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Abstract 

 

The climate of Thailand has not been studied in as much depth as in other parts of 

continental Southeast Asia. The baseline climate of Thailand during 1961-1990 is first 

analysed using daily observational data from five surface stations, each representing a 

different region of Thailand, supplemented by the high resolution 0.5° monthly 

gridded observational dataset, CRUTS2.1. The latter leads to a deeper understanding 

of the spatial variation in seasonal cycles of key climate variables in Thailand. Also 

revealed is an increase in the number of tropical depressions crossing Thailand during 

La Niña years. It was found that there is a statistically significant intensification 

(reduction) of precipitation during La Niña (El Niño) years at Surat Thani (Chiang 

Mai) in southern (northern) Thailand during ON (JJAS). This work facilitates the 

Regional Climate Model validation work which follows. 

 

The Providing REgional Climates for Impact Studies regional climate model, 

PRECIS, was run for the first time over Southeast Asia to specifically study the 

climate of Thailand. The first phase is model validation during the 1961-1990 

baseline period. An ensemble of RCM runs is undertaken to study the sensitivity to 

the driving GCM. The added value provided by PRECIS in comparison to the coarser 

driving models is discussed. The possible causes of model bias are investigated. The 

model projections for the end of this century are undertaken based on high (SRES-

A2) and low (SRES-B2) emission scenarios which estimate the range of possible 

climate change in Thailand. These RCM simulations suggest trends in temperature 

that are broadly in line with those reported by IPCC. PRECIS A2 and B2 simulations 

mostly produce small precipitation increases in JJAS and small precipitation increases 

(decreases) during DJF under the A2 (B2) scenario. Wet season precipitation 

increases appear to be related to higher rain intensity on fewer rain days.  
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Abstract 

 

The climate of Thailand has not been studied in as much depth as in other 

parts of continental Southeast Asia. The baseline climate of Thailand 

during 1961-1990 is first analysed using daily observational data from five 

surface stations, each representing a different region of Thailand, 

supplemented by the high resolution 0.5° monthly gridded observational 

dataset, CRUTS2.1. The latter leads to a deeper understanding of the spatial 

variation in seasonal cycles of key climate variables in Thailand. Also 

revealed is an increase in the number of tropical depressions crossing 

Thailand during La Niña years. It was found that there is a statistically 

significant intensification (reduction) of precipitation during La Niña (El 

Niño) years at Surat Thani (Chiang Mai) in southern (northern) Thailand 

during ON (JJAS). This work facilitates the Regional Climate Model 

validation work which follows. 

 

The Providing REgional Climates for Impact Studies regional climate 

model, PRECIS, was run for the first time over Southeast Asia to 

specifically study the climate of Thailand. The first phase is model 

validation during the 1961-1990 baseline period. An ensemble of RCM 

runs is undertaken to study the sensitivity to the driving GCM. The added 

value provided by PRECIS in comparison to the coarser driving models is 

discussed. The possible causes of model bias are investigated. The model 

projections for the end of this century are undertaken based on high (SRES-

A2) and low (SRES-B2) emission scenarios which estimate the range of 

possible climate change in Thailand. These RCM simulations suggest 

trends in temperature that are broadly in line with those reported by IPCC. 

PRECIS A2 and B2 simulations mostly produce small precipitation 

increases in JJAS and small precipitation increases (decreases) during DJF 

under the A2 (B2) scenario. Wet season precipitation increases appear to be 

related to higher rain intensity on fewer rain days.  



Chapter 1 

Introduction and literature review 
 

The changing composition of the atmosphere, resulting from anthropogenic emission 

of greenhouse gases (carbon dioxide (CO2), methane (CH4), nitrous oxide (N2O), 

halocarbons and sulphur hexafluoride (SF6)) and natural variations in volcanic and 

solar forcing, causes radiative forcing changes which affect the climate system. For 

example, the variable forcing is associated with trends in surface air temperature at 

global and subcontinental scales, changing ocean heat content, snow cover extent, 

season length, precipitation regime and mean sea level pressure patterns (Mitchell et 

al. (2001); Zwiers and Zhang (2003); Stott (2003); Braganza et al. (2004); Gillett et al. 

(2004); Zhang et al. (2006); Karoly and Wu (2005)). IPCC-AR4 (2007) showed that 

positive forcing by greenhouse gases is propagated almost equally between the 

hemispheres and varies with latitude; response to anthropogenic forcing is detected 

over all continents except Antarctica. Greenhouse gases modify the warm climate by 

reducing longwave radiation escaping to space. They are well mixed through the 

troposphere so their concentrations vary little. Global climate changes associated with 

anthropogenic forcing in the latter half of the 20th century include climate extremes, 

upper level ocean warming, declining sea ice extent, glacier retreat contributing to sea 

level rise, increasing land-ocean temperature contrast, increases in heavy precipitation 

and troposphere height increase with simultaneous tropospheric warming and 

stratospheric cooling (IPCC-AR4, 2007). Recent studies show that anthropogenic 

greenhouse gas emissions are expected to lead to more frequent and intense summer 

temperature extremes, not only due to the mean warming itself, but also due to 

changes in temperature variability (Fischer and Christoph, 2009). Interestingly, over 

tropical regions, anthropogenic forcing contributed to increases in the frequency of 

the most intense tropical cyclones since the 1970s (IPCC-AR4, 2007).  

 
The radiative forcing is also related to the capacity of atmospheric sulphate aerosols 

to directly reflect solar radiation back into space and to produce brighter clouds 

through their action as cloud condensation nuclei, producing a cooling effect. The 

(negative) climate forcing by the aerosols has strong regional character, with the 
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greatest forcing over Northern Hemisphere land surfaces (Taylor and Penner, 1994). 

Anthropogenic sulphate aerosols contribute a globally averaged annual forcing of -0.3 

Wm-2 as compared with +2.1 Wm-2 for greenhouse gases (IPCC, AR4, 2007). The 

magnitude of radiative forcing as a result of the sulphate effect is relatively low 

compared with that of the greenhouse gas effect and, with respect to their sulphur 

aerosol study over SEA, Siniarovina and Engardt (2005) concluded that the sulphur 

deposition is still relatively low (i.e. <0.5 g sulphur m−2 year−1) in most of rural 

Malaysia.  

 

Regional climate model simulations are now possible in every region of the world. 

However, while there is a considerable literature looking at global models and their 

description of current and possible future Southeast Asia (SEA; area of 24°N, 94°E to 

15°S 154°E; Figure 1.1) climate, regional climate simulations in this area are only 

just beginning. Regional climate is an important issue in Southeast Asia because 

many countries in the region depend on agriculture. For example, in Thailand the 

proportion of the labour force in agriculture is 42.6% with GDP by sector of 11.4% 

(CIA, 2008). It is obvious that more study of current and future climate could benefit 

the agricultural economy of both the region and of Thailand in particular, helping 

them become more resilient. This thesis aims to extend knowledge regarding the 

current and future climate of Thailand by using both station and gridded observational 

data and through modelling of past and future regional climate in Southeast Asia. 
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Figure 1.1: Map of Continent of Southeast Asia. [Source: Central Intelligence 

Agency, USA]. 

1.1 The General Circulation of the tropics and the Southeast 
Asia monsoon 
 

Study of the general circulation of the atmosphere requires consideration of air 

movement in three dimensions and is a prerequisite for understanding the global wind 

systems. The tropics commonly refer to the latitude region from 23.5oS to 23.5oN 

which covers more than 40% of the earth’s surface. There are two large scale 

circulations associated with the tropical region, the meridional Hadley cell and the 

zonal Walker circulation. The Hadley circulations show seasonal variations because 

there is a larger equator-pole temperature gradient in the winter hemisphere (Newell 

et al., 1972) as show in Figure 1.2. The meridional Hadley cell dominates the tropical 

atmosphere with air rising at the inter-tropical convergence zone (ITCZ) and sinking 
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in the sub-tropics. The returning surface air flow near the equator is a prevailing 

pattern of easterly winds known as the trade winds. The trade winds in both the 

northern and southern hemisphere, laden with heat and moisture from surface 

evaporation and sensible heating, converge in the area known as the ITCZ. Seasonal 

shifts in the ITCZ relate to the shifts in the location of the overhead sun. The main 

characteristics of the ITCZ are increased mean convection, cloudiness and 

precipitation due to surface convergence (Waliser, 1993). There are seven non-

overlapping ITCZ regions, including the Indian / Southeast Asia region as shown in 

Table 1.1.  

 

Figure 1.2: The Hadley Cell circulation illustrates how rising air in the superheated 
tropics descends in the subtropics. This creates high-pressure zones in subtropical 
regions. Source: Barbara Summey, NASA Goddard Visualization Analysis Lab. 
http://www.nasa.gov/  

 

Table 1.1: Region and longitude limits for ITCZ domain analyzed. Latitude limits are 

25 oS to 25 oN (Waliser and Gautier, 1993) 

Region Longitude limits 

Africa 10o - 40oE 

Indian 60o - 100oE 

West Pacific 110o - 150oE 

Central Pacific 160oE- 160oW 

East Pacific 100o - 140oW 

South America 45o - 75oW 

Atlantic 10o - 40oW 
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Seasonal movement of the ITCZ near the equator induces large scale monsoonal wind 

regimes, known as the northeast and southwest monsoons. The tropical zonal 

circulation, the Walker circulation named after Sir Gilbert Walker, explains the 

distribution of tropical convection which is caused by the pressure gradient force that 

results form high pressure over the eastern Pacific and relatively low pressure over 

Indonesia, leading to ascending motion over Indonesia and the western tropical 

Pacific and descending motion over the eastern Pacific, with upper level westerly 

(low level easterly) winds (Bjerknes, 1969) as shown in Figure 1.3. This circulation is 

part of a more complex ocean–atmosphere coupled phenomenon called the El 

Niño/Southern Oscillation (ENSO), through the exchange of air between the eastern 

Indian Ocean/Indonesia and the south-eastern tropical Pacific. The low (warm) phase 

of the ENSO is accompanied by higher than normal sea level pressure (SLP) in the 

western tropical Pacific and lower than normal SLP in the southeastern tropical 

Pacific, positive sea surface temperature (SST) anomalies and weakened trade winds 

in the central and eastern equatorial Pacific (e.g. Rasmusson and Carpenter, 1982; 

Rasmusson and Arkin, 1985). These variables show nearly reversed anomaly patterns 

during the high (cold) phase of the ENSO (Kousky and Ropelewski, 1989). In the 

normal condition, the tropical western Pacific is warmer than the eastern Pacific. As a 

result air rises over the warm western Pacific and flows eastward in the upper troposphere 

to subside in the eastern Pacific high pressure system and equatorial winds in the surface 

layers are westward associated with the convection in the western Pacific and subsidence 

over the eastern Pacific. This circulation cell is known as Walker Circulation.  

 

During El Niño episodes, weaker easterly trade winds in the lower atmosphere and 

weaker westerly winds in the upper atmosphere over the eastern half of the Pacific 

reflect a reduced equatorial Walker Circulation with enhanced suppression of 

convective precipitation across the region; the convection in the west is weaker and the 

convection in the eastern Pacific is stronger. Since the convection is suppressed in the 

western Pacific, El Niño causes drier conditions over Indonesia, the Philippines, 

Indonesia and southern Thailand during the boreal winter, DJF, while northern 

Thailand is mostly influenced by the dry and cold air mass from the northeast 

monsoon. There are some studies in the literature which discuss El Niño/La Niña 

impacts on precipitation variability over SEA. An El Niño event tends to be 

associated with droughts while a La Niña event is more likely to be associated with 
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excessive monsoon rain over SEA including Thailand (with relatively small effect 

compared with maritime countries, i.e., Indonesia and the Philippines). In other words, 

seasonal precipitation over SEA is known to be modulated but not dominated by the 

El Niño Southern Oscillation (ENSO) phenomenon, with ENSO warm (cold) events 

contributing to drought (excessive precipitation) in many areas. Manton et al. (2001) 

reported that annual total precipitation in SEA and the number of rain days generally 

decreased between 1961 and 1998 and that this was associated with a predominance 

of El Niño events since the mid-1970s. Roy (2000) showed that El Niño events in 

1972 and 1976 had lead to a 10% reduction in precipitation amount in Myanmar. 

During one of the strongest El Niño events in 1997, Bell and Halpert (1998) 

mentioned that most of the Southeast Asian countries experienced relatively lower 

precipitation than average; 50% in Indonesia during March to December, drought and 

wild fires in Sumatra and Borneo during July and August. Singapore, Malaysia, 

Brunei, Philippines, Thailand and Vietnam were also faced with prolonged drought 

during May to September. Indonesia is expected to be influenced by the Indian Ocean 

Dipole, IOD, a coupled ocean-atmosphere phenomenon in the Indian Ocean. Positive 

IOD is associated with anomalously warm SSTs in the western Indian Ocean and colder 

than normal SSTs in the east associated with surface winds which reverse from a westerly 

to an easterly direction over the central equatorial Indian Ocean; atmospheric convection 

normally situated over the eastern Indian Ocean shifts to the west and was related to 

severe dry conditions over Indonesia in 1997. Krishnan et al. (2000) indicated that 

suppressed convection over Burma, Vietnam, Thailand, the Philippines, and Indonesia 

is in phase with that over the Indian subcontinent. The 1997 El Niño year led to a 

reduction in cash crops, rice, and sugar over the next eight months; an 8% cut from 

expected in 1997/98 sugar cane yields; 38% reduction in 1998 second rice crop (from 

1997 yields) and reduced agricultural exports in Thailand ( 

http://enso.unl.edu/ndmc/enigma/elnino.htm). Singhrattna et al. (2005) found that 

ENSO has a negative relationship with the summer monsoon precipitation over 

Thailand in the post 1980 period, i.e. El Niño events tend to reduce equatorial Walker 

circulation over the Thailand-Indonesian region, as a result of significant convection 

reduction and reducing precipitation over Thailand. Dry years can be associated with 

ENSO events (Boochabun, 2004). 
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Figure 1.3: The east-west Walker Circulation of the tropics. Source: Bureau of 

Meteorology, Australian Government. http://www.bom.gov.au 

 
The Asian monsoon, one of the most important components of the global climate 

system, plays a significant role in large-scale climate variability over much of the 

globe, affecting the Southeast Asia region. The term ‘monsoon’ generally refers to the 

seasonal winds and precipitation. Heat capacity differences between land and sea are 

the key driving force maintaining the Asian summer monsoon cycle. The onset, 

progression and retreat of the SEA can be diagnosed through the behaviour of deep 

convection and the atmospheric circulations. Ramage (1971) defined the monsoon as 

a resultant wind direction shift which exceeds 3 ms-1 by at least 120o between January 

and July. Nicholls et al (1982) define the monsoon onset as a precipitation amount 

greater than or equal to 15% of the mean annual. Davidson et al (1983) define the 

monsoon onset by using infrared satellite imagery to identify the first large-scale 

development of tropical convection spanning the region for several days. Others 

define the recognised characteristics of the Southeast Asia summer monsoon onset to 

be strong deep convection, a threshold of 5 mm precipitation per day and a south 

westerly wind over the Indo-china Peninsula and the South China Sea at low level 

(Tanaka, 1992; Murakami and Matsumoto, 1994). Sangwaldach (2006) suggested that 

the southwest monsoon onset criteria should require that (i) there are three 

consecutive rainy days in a five day period (pentad analysis), (ii) the consecutive 

rainy days must have not less than 5 mm each day, (iii) the accumulated rain of the 

five rainy days must not be less than 25 mm, (iv) the low level wind direction must 
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change to westerly or southwesterly and (v) the upper level wind must change to 

easterly.  

 

Traditionally, the Asian monsoon is considered to consist of two subsystems; the 

Indian and East Asia monsoons. The Southeast Asia monsoon circulation is a part of 

the Indian monsoon. There are two seasonal monsoons over Southeast Asia; (i) the 

north-east monsoon, (ii) the south-west monsoon. Nieuwolt (1981) points out that 

January (July) can be considered to represent the typical climate of the north-east 

(south-west) monsoon period as shown for the surface wind system in Figure 1.3. 

 

 

 

 

 

 

 

 

 

Figure 1.4: Average NCEP Reanalysis 850 mb winds (ms-1) for January (left) and July 

(right) in 1998-2009 over SEA.  

1.1.1 The Northeast monsoon 
 

The northeast monsoon, also known as the winter monsoon, occurs between 

November and February when the ITCZ moves southwards. The Northeast monsoon 

brings two air masses which are (i) a very cold, dry and stable (polar-continental) air 

mass from Siberia and Mongolia and (ii) a generally very warm and moist 

(tropical/equatorial maritime) air mass from the Pacific Ocean, north of the equator, 

carried by trade winds (Nieuwolt, 1981). During the north-east monsoon, the cold air 

mass emanates from a region of high pressure and travels across Korea, Japan, 

southern China, Indochina and the western Pacific resulting in relatively dry 

conditions (Chang and Lau, 1982). Occasionally, typhoon activity over the South 

China Sea decreases in this north-east monsoon period (Lau and Yang, 1996). As the 

air associated with the northeast monsoon traverses the South of China it is 
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transformed to a warm and tropical air mass as it moves along the east coast of 

peninsular Thailand and maritime SEA, resulting in convective activity and a 

relatively wet period during November to March (Houze et al, 1981; Webster et al, 

1998). In the November-December period equatorial westerlies converge with the 

advancing northeast monsoon resulting in ascent and a considerable increase in 

precipitation where the centre of convection is located over Indonesia (Nieuwolt, 

1981). Sudden increases in wind speed are usually stronger during the early northeast 

monsoon period and progressively weaker during the latter half of the northeast 

monsoon. Over the northern South China Sea winds can increase from 4-6 ms-1 to 

over 30 ms-1. In the latter period of the northeast monsoon, the low level jet flows 

across the equator and this marks the beginning of the northwest Australia monsoon. 

Convective activity increases over Borneo, the Indochina coast and the Philippines 

(Kemball and Wang, 2001). 

 

1.1.2 The Southwest monsoon 
 

The Southwest monsoon, also known as the summer monsoon, occurs form June to 

September. There are two main origins of the air mass of the Southwest monsoon. 

First, the southeasterly trade winds from Australia and the South Pacific bring stable 

air to the equatorial area (Nieuwolt, 1981; He et al., 1987; Murakami, 1994; Lau, 

1997; Ding 2004).  The air then flows westward over the warm seas and islands of 

Indonesia so that when it reaches continental Southeast Asia it is very humid and has 

become unstable (Nieuwolt, 1981; Qian and Lee, 2000; Wang 2002). Second, the 

other important air masses come from the Indian Ocean (Nieuwolt, 1981). The main 

feature of this period is deep convection. In the meantime, convection and low-level 

winds from the equatorial Indian Ocean move northward to the Bay of Bengal 

(Joseph, 2007). Lau and Yang (1996) found that the Asian summer monsoon onset is 

a demonstration of northward progression of convection in early May. An Easterly jet 

from the South China Sea across India can produce precipitation over northern 

Southeast Asia (Hasternrath, 1991, Matsumoto, 1997; Zang and Gottschalck, 2002). 

The rain’s progress moves toward northwestern and northern India during June 

(McGregor and Nieuwolt, 1998). 
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1.1.3 The Inter-monsoon 
 

There are two transitional periods in between the Northeast and Southwest monsoons 

and these are known as inter-monsoons which are characterised by light winds, 

overcast skies and squally weather over the South China Sea. 

 

In the inter-monsoon period of April and May, the continental high pressure area over 

Siberia and Mongolia has declined and the trade winds with lower speed are mainly 

from the North Pacific. During April, the general circulation over SEA is relatively 

weak. May is part of the Southwest monsoon period over southern Thailand, Malaysia 

and Indonesia. but is still a month of transition over the northern part while the other 

parts, such as Indonesia, Brunei, east Malaysia, Papua New Guinea and Philippines, 

are much more influenced by equatorial winds. 

 

In the Inter-monsoon period of October, the Southwest monsoon is weakened while at 

the same time the Northeast monsoon still mainly consists of trade winds from the 

northern Pacific. The wind velocities are generally very low. November sees the 

complete retreat of the southwest monsoon and the influence of the northeast 

monsoon which brings moisture from the South China Sea to the peninsula.  

 

1.2 The Climate of Southeast Asia and Thailand 
 

Southeast Asia can be divided into two geographic regions: (i) the Indochina consists 

of Cambodia, Laos, Myanmar, Thailand, Vietnam, Peninsular Malaysia, and (ii) 

maritime sections consist of Brunei, East Malaysia, East Timor, Indonesia, the 

Philippines and Singapore. The region covers an approximate latitude range from 

10°S to 25°N (Figure 1.1). Thailand is located between latitudes of 5.4˚N and 20.3˚N 

and longitudes of 97.7˚E and 105.45˚E. Its estimated land area, 513,115 km2, can be 

divided into four distinct topographic regions: (i) The peninsular region begins from 

the head of the Gulf of Thailand and consists of several ridges parallel to the coast; 

(ii) The elevation along the border with Myanmar reaches 1300-1800 m, (iii) the 

remaining ridges are generally below 300-600 m; (iv) The northern and eastern 

regions of the plateau are separated from Laos by the Mekong River. 
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The four Thai topographic regions are influenced by the southwest monsoon; a strong 

monsoon system would appear to be very beneficial. A weak summer monsoon with 

lower than mean precipitation may lead to lower crop yields while a strong summer 

monsoon is likely to produce higher crop yields. Rice is the chief crop of SEA; 

rubber, tea, spices and coconuts are also important since the 1960s  For example, in 

Thailand, Rice is grown on approximately 66% of the land area (source: the Office of 

Agricultural Economics, Thailand, 2002). The rice cultivation season begins in May 

or June with the onset of the monsoon showers in northern Thailand while the first 

crop is grown in central Thailand in March-October. Too much precipitation can 

result in flooding and associated problems. Obviously, better understanding of the 

monsoon variability could lead to improvements in seasonal forecasting and climate 

modelling which could assist agriculture and society. 

The first rains occur over Myanmar and Thailand in mid-May associated with the 

development of a lower tropospheric trough over the Bay of Bengal (Slingo, 1999). In 

May the whole of Thailand receives well over 100 mm of precipitation, and the west 

coast of the peninsula, i.e. areas on the windward side of the mountain ranges facing 

the south-westerly air-stream, receives more than 200 mm. Some portions in this 

region even receive 500 mm of rain based on station data over 1961-1980 (Kripalani 

et. al, 1995). In Thailand, during May to October, the weather is dominated by the 

Southwest monsoon blowing from the Indian Ocean bringing a warm, humid air mass 

and much cloud. Precipitation during this period is not only caused by the Southwest 

monsoon but also by orographic precipitation enhancement, the Inter Tropical 

Convergence Zone (ITCZ) and tropical cyclones. The ITCZ first arrives in the 

southern part of Thailand in May and then moves rapidly northwards and generally 

lies across southern China during June to early July leading to a dry spell over 

northern parts of Thailand. Precipitation on the west coast of peninsular Thailand, in 

the southeastern region, over a large part of the continental highlands, and in the 

eastern section of the northeastern region is typically over 200 mm, but dry portions 

can be found on the leeward side of the mountain ranges. In the central valley and in 

some parts of the western region, precipitation remains below 100 mm (Kripalani et. 

al, 1995). The ITCZ moves southward once again, following the path of the overhead 

sun, to lie over the northern and northeastern parts of Thailand in August and later 

over the central and southern parts in September and October respectively. 
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Interestingly, the variation in timing of the beginning and end of the rainy season in 

Thailand is quite large from place to place with precipitation peaking first in the east, 

northeast, central and then north of Thailand (Chokngamwong and Chiu, 2006). Wang 

(2002) proposed that the summer monsoon cycle spans from the middle of May to 

early September. Matsumoto (1997) indicated that the onset passes over the Indochina 

peninsula, i.e., Laos, Vietnam, Cambodia, Myanmar, Thailand, in pentad 25 (6 to 10 

May) and 26 (11 to 15 May). Takahashi and Yasunari (2006) found that the monsoon 

season extends from pentad 26-60. The first monsoon rains occur over Myanmar and 

Thailand in approximately mid-May and subsequently extend to the northwest.   

With respect to the summer monsoon, Zhang et al. (2004), using NCEP reanalysis 

data, confirmed the mechanism of summer monsoon onset over the Indochina 

peninsula as being triggered by active convection and precipitation resulting from the 

convergence of southwesterly flow from the Bay of Bengal vortex and easterly winds 

associated with the subtropical anticyclone over the South China Sea in early May, 

although the atmosphere over the Indochina peninsula has already become quite 

thermally unstable since early April. By April, the whole of Thailand, except for a 

small portion in the northwestern region, receives over 50 mm, and the peninsula 

receives over 100 mm of precipitation (Kripalani et. al, 1995).  

 

Kripalani and Kulkarni (1997) analysed station precipitation data during 1970-2000 

and did not find systematic climate change in the Southeast Asia region. Similarly, 

Zveryaev and Aleksandrova (2004) indicated that there is no significant precipitation 

trend in the South China Sea precipitation during January and February based on 

CRU05 0.5°lat/lon gridded monthly climate data for 1949–98. They also showed that 

decadal-scale JJAS precipitation changes over Southeast Asia become more 

pronounced during 1979-1998 with predominantly dry conditions from 1984 to 1990 

and anomalously wet conditions in 1993–97. Pai (2007) found that monsoon onset at 

the surface is recognised as a rapid, substantial and sustained increase in precipitation. 

The monsoon onset in each year in Thailand, located in the central part of the 

Indochina Peninsula, was defined by Zhang et al (2004) using the daily area-averaged 

precipitation from 30 stations over the region from 1951-1996. The trend in overall 

precipitation over Thailand, both temporal and spatial, has not changed significantly 

over 1980-1999. McGregor (1998) found that precipitation during the summer 
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monsoon over the South China Sea (SCS) is associated with the ITCZ returning 

southward, reaching 15°N during July-August when moist air from the Indian Ocean 

helps enhance convection.  

 

Chokngamwong and Chiu (2008), using Thailand gauges over the period 1993-2002, 

show two distinct seasons, dry and rainy with the latter starting in May and 

progressing southeast to northwest. The wettest month occurs in August for the north 

and northeast Thailand, in September for the central and east regions and in 

November for the southern region with the retreat of precipitation following ITCZ 

movement from north to south, bringing extremely intense precipitation.  The reason 

for this peak in precipitation is a significant increase of westerly wind components at 

850mb while westerly winds are being slowly replaced by easterlies, of anticyclonic 

origin, in the upper parts of the troposphere. The boundary between these two 

airstreams, at around 19˚N latitude, is associated with the zone of the doldrums with 

light wind velocity and changeable wind direction; strong upward motions and 

convection are promoted from the associated atmospheric instability (Ding, 1994; Zhu 

and Houghton, 1996, Kripalani and Kulkarni, 1997a) This situation persists until it 

becomes cooler over the land and until Sea Surface Temperature (SST) attains a 

sufficient level to affect the horizontal pressure gradient and thereby reduce the moist 

inflow from the sea, marking the end of the monsoon season. 

 

In addition to the ITCZ and the South-west Monsoon, cyclonic disturbances make an 

important contribution to the seasonality of precipitation in some parts of Thailand. A 

Tropical cyclone is a synoptic-scale low pressure system occurring over regions of 

Tropical Ocean with latitude greater than 5o and with SST greater than 26.5oC and 

limited vertical wind shear in order to facilitate thunderstorm development 

(Hasternrath, 1991 and McGregor and Nieuwolt, 1998). Observation tracks indicate 

that more tropical storms develop in the South China Sea than in the Indian Ocean.  

According to records of cyclonic disturbances moving across Thailand, the most 

active months are in September, October and November, respectively (Table 1.2). The 

highest record of cyclonic disturbance parts in September is moving easterly toward 

Vietnam followed by upper NE and lower northern Thailand, including Phitsanuloke 

site. This cyclonic disturbance related to the high surface water temperatures over the 
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South China Sea, often occur near Vietnam and may also reach Thailand during June 

to September developed from the South China Sea or the northwest Pacific Ocean  

(Takahashi and Arakawa 1981). And during October and November, the record shows 

favourite path of the disturbance moving to southern Thailand. It is implied that the 

cyclonic disturbance path is related to ITCZ movement. 

 

Table 1.2: Record of cyclonic disturbances moving across Thailand provided by Thai 

Meteorology Office.  

 

Year/month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

1961    1 2   1  2   6 
1962       1  1 1 1  4 
1963       1  2 1 1  5 
1964         2 4 2 1 9 
1965        2 6   1 9 
1966      1    2 2 1 6 
1967         1 3 1  5 
1968        2  1 1  4 
1969      1 1  2 1 1  

6 
1970        1 2 2 2  7 
1971       2  1 1   4 
1972      1   2 1  1 5 
1973       1 1 1 1 2  6 
1974        1  1 1 1 4 
1975     1    2    3 
1976             0 
1977         1  1  2 
1978       1 1 2  1  5 
1979        1 1    2 
1980     1    2  1  4 
1981          1   1 
1982     1    1    2 
1983      1    3 1  5 
1984      1    1 1  3 
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Table 1.2 (continued)  

 

Year/month Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Total

1985         1 2   3 
1986         1 1   

2 
1987        1     1 
1988         1    1 
1989     1    2 1   4 
1990             0 
total    1 6 5 7 11 34 30 19 5 118 

 

 

With respect to upper tropospheric winds, the tropical easterly jet, TEJ was found to 

be responsible for the large high-cloud amount in the Asian monsoon region cooling 

this region by spreading the cloud tops and increasing the high-cloud amount. 

Sathiyamoorthy et al. (2004) suggest that apart from the TEJ, other meteorological 

(e.g. shifts in the position of convective clouds between excess and deficient monsoon 

years) and cloud microphysical properties (water/ice particle size, shape, etc.) may 

also affect the cloud radiative forcing in the Asian monsoon region. It is noted that 

large data gaps are present in the radiative flux data over the Indian and SEA region. 

 

With respect to teleconnections, Ye and Bao (2001) used long-term historical synoptic 

observational records and recently available remote sensing observations during 

1936–1990 to demonstrate that teleconnections exist between Eurasian winter snow 

and Southeast Asian summer monsoon precipitation (for example snow volume has a 

more significant connection to summer monsoon precipitation than snow coverage). 

The earliest snow onsets over northeastern Siberia significantly affect warm season 

monsoon strength, i.e. precipitation, moisture fluxes and wind vectors, over Southeast 

Asia (Ye, et al., 2005). They implied that snow depth over the northern Ural 

Mountains may have some influence on June precipitation over Southeast Asia. Many 

studies have also found that snow volume has a larger impact on monsoon 

precipitation than spatial snow coverage (e.g. Barnett et al., 1988, 1989; Douville and 

Royer, 1996; Dong and Valdes, 1998).  The variation of snow depth over western 

rather than eastern Eurasia seems to have a significant influence on summer monsoon 
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precipitation over Southeast Asia. The monsoons over SEA are sensitive to uplift over 

the Tibetan Plateau and positively correlated with the snow cover (and hence the 

surface albedo) over the Tibetan Plateau (Liu and Chen, 2000). With respect to El 

Niño events, it is directly related to the onsets of the Southeast Asian monsoon rather 

than the withdrawal dates (Fasullo and Webster, 2003) and it tends to overwhelm the 

connections of the snow-monsoon relationship (Fasullo, 2004).  

 

In summary, the known climate of Thailand based on analysing precipitation data 

reveals a climate which is governed by monsoonal air flow and ITCZ movement. In 

this study, additional observational data are deployed to generate derived variables 

such as, for example, number of wet days and diurnal temperature range, in order to 

gain a more comprehensive understanding of the climate of Thailand. 

1.3 Climate Change in SEA 
 

It is well known that the global temperature has increased in recent times. The IPCC 

Third Assessment Report states that the average global surface temperature over the 

20th century has increased by about 0.6±0.2 °C (Houghton 2001) while the IPCC 

Fourth report (AR4) updated the 100 year observed linear trend (1906-2005) 

indicating that the average global surface temperature over the 20th century has 

increased by 0.74°C with the range 0.56°C to 0.92 °C and the linear warming trend 

over the last 50 years is 0.13°C per decade. Griffiths et al. (2005) found that there is 

spatial coherence in daily maximum and minimum temperatures, extremes and 

variance across the Asia-Pacific region based on station observations during the 

period 1961-2003. The majority of stations exhibit significant trends, with increases 

in mean, maximum and minimum temperature, decreases in cold nights and cool days 

and increases in warm nights. Correlations between mean temperature and the 

frequency of extreme temperatures were strongest in the tropical Pacific Ocean from 

French Polynesia to Papua New Guinea, Malaysia, the Philippines, Thailand and 

southern Japan. The annual mean temperature during the period 1976-1990 over 

Bangladesh, the Bay of Bengal, northern Thailand, Malaysia and Sri Lanka 

significantly increased by 0.04 °C/year (Quadir et al. 2004). Moreover, the region 

over northeastern India and its east coast and over southern Thailand has shown a 

considerable decrease in temperature standard deviation so a reduction in variability 
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(Shrestha et al. 2004). Two out of five surface monitoring stations in Thailand, Supun 

Buri and Chanthaburi showed a considerable increase in minimum temperature during 

the period 1961-2003 with larger decreases in minimum temperature variability, 

significant at the 5% level, than at the other stations, Nan, Udon Thani and Prachuap 

Khiri Khan (Griffith et al. 2005). Normally, seasonal temperature variability is 

especially small in the lowest latitudes. However, in the north of Thailand the 

variability of temperature is larger due to mountainous topography.  

 

With respect to temperature projection, IPCC-AR4 (2007) projects that annual 

warming for SEA is 2.5°C by the end of the 21st century, with little seasonal variation 

under the A1B scenario and a stronger warming tendency was found over Indochina. 

IPCC-TAR (2001) indicated the change in global average annual surface air 

temperature by the end of the century is 3.0°C (with a range of 1.3 to 4.5°C) for the 

A2 scenario and 2.2°C (with a range of 0.9 to 3.4°C) for the B2 scenario (the warming 

over SEA is greater than the average annual warming in DJF and JJAS in both A2 and 

B2).  The warming over Thailand is lower than the SE Asia average in all seasons.  

Some studies project that the temperature will be in the range 1-2 ๐C higher during the 

rainy season in upper Thailand and in the range 0.5-3 ๐C warmer all year round in 

southern Thailand according to the A2 projection (2010-2029). Weaker increases of 

the mean precipitation in Southeast Asia are suggested due to increased 

concentrations of sulfate aerosols in the future (Roeckner et al., 1999).  

 

With respect to precipitation projection, the change, over the current century, in 

global average annual precipitation is +3.9% (with a range of 1.3 to 6.8%) for the A2 

scenario and +3.3% (with a range of 1.2 to 6.1%) for the B2 scenario (IPCC-TAR, 

2001). Average precipitation change over SEA, of between -5 and 5%, is categorised 

as  “no change”,  in DJF for both A2 and B2 as well as JJA for A2, however, there 

was disagreement in JJA for B2. The B2 scenario, which is consistent with a lower 

rate of increased atmospheric GHG emissions. IPCC-AR4 (2007) shows simulations 

with the A1B scenario over SEA with 7% annual precipitation change by 2080-2099. 

The strongest precipitation increases widely follow the ITCZ, occurring over northern 

Indonesia and Indochina in JJA, and over southern Indonesia and Papua New Guinea 

in DJF. 
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1.4 General Circulation Models over Southeast Asia 
 

In the Southeast Asia (SEA) region, the first detailed climate scenarios were 

developed by the Climate Impact Group (1992) using four general circulation models 

(GCMs), namely the Canadian Climate Centre model (CCCJ1), the United Kingdom 

Meteorological Office model (UKMO), the Geophysical Fluid Dynamics Laboratory 

model (GFDL), and the Australian CSIRO9 model (IPCC, 1997). Based on these 

models under a doubled CO2 level assumption, the temperature in most of the SEA 

region was projected to increase by 0.4–3.0°C by the year 2070, which is well below 

the global average largely because polar regions were expected to warm more due to 

albedo changes. For the same future years, the precipitation was projected to fluctuate 

between -5% and +15% during the northeast monsoon, and between 0 to +10% during 

the southwest monsoon. In further global modelling studies in the region by Hulme et 

al. (1999), using the HadCM3 global model under the influence of IS92a emission 

scenarios, the radiative forcing was projected to increase by about 20% (1.0 Wm-2) by 

the year 2100 with economic growth averages of  2.3% year -1 from 1990. In the same 

studies, doubling the GHGs such as CO2 with no aerosol forcing caused a projected 

global temperature and precipitation increase of 3.0°C and 3.2% respectively in the 30 

year averages from the present (1961−1990) to the future (2070−2099) periods. Using 

the same model, Hulme et al. (1999) also projected that at regional scales, SEA would 

experience a fairly uniform progression of warming and larger precipitation by the 

year 2050. 

 

Another modelling study using the same model, the coupled atmosphere-ocean model 

HadCM3, found that the simulated 30 year averages (from 2069−2099) for 

temperature over Southeast Asia under the A2 and A1F1 emission scenarios of IPCC 

(1994) were 3.4°C and 4.1°C respectively, which are higher than the projected global 

average temperature increase of 3.2°C (Johns et al., 2003), as shown in Figure 1.5. In 

terms of precipitation, four emission scenario experiments (B1, B2, A2, and A1F1) 

for the 30 year averages also showed a clear and significant signal in both monsoon 

seasons, where conditions were projected to be drier during the NE monsoon and 

wetter during the SW monsoon. Corresponding with the SW monsoon period (JJA), 

the mean precipitation signals were found to be higher than the global average of 0.8 
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mm/day, namely 0.9 mm/day (B2), 1.1 mm/day (A2), and 1.8 mm/day (A1F1) (Johns 

et al., 2003), as shown in Figure 1.6. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: Annual mean changes in surface air temperature (°C) averaged over years 

2070-2099) for A1F1, A2, B1 and B2 emission scenarios (adapted from Johns et al., 

2003). 
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Figure 1.6: JJA changes in precipitation (mm/day) averaged over years 2070-2099) 

for A1F1, A2, B1 and B2 emission scenarios (adapted from Johns et al., 2003). 

 

More recent studies by Hori and Ueda (2006) and Ueda et al. (2006) on the impact of 

global warming in the region of SEA using a composite of nine coupled GCMs have 

revealed that the region may experience drier and warmer conditions during the 

northeast monsoon, coinciding with the winter monsoon in East Asia that spans from 

December to early March during the current century. The average surface temperature 

in SEA (90°−140° E, 30° N−5° S) during both monsoons was projected to increase 

between 2.2°C to 2.8°C by the period 2081−2100 (30 year averages) (pers. 

communication with Matasake E. Hori). Meanwhile, the precipitation was also 

projected to fluctuate between -2.4% to 6% depending upon season with 6% 

precipitation increase during JJA.  

 

There is a general agreement from the global climate modelling results that there will 

be an increase in temperature and notable significant changes in precipitation in 

response to the increase in climatically active gases and aerosols in the atmosphere, 
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though there is less agreement about the possible regional climate changes such as in 

SEA, even if the forcing and the global-mean sensitivity are the same. The 

disagreement about prospects for the SEA has been well documented (Hulme et al., 

1999), and the fundamental differences in model design (Hulme et al., 1999), which 

in turn are a function of incomplete understanding of important physical processes 

and feedback (e.g. the treatment of the interactions between the atmosphere and the 

oceans and of cloud formation) have been identified as one of the attribution factors. 

These differences may also be attributed to different climate sensitivities and climate 

system unpredictability (Hulme et al., 1999).  

 

The RGOALS-g.10 GCM, created by China, focuses upon ENSO and SST anomalies 

over the North Pacific and Indian Ocean (Saji and Xie 2006; Zhou and Yu et al. 

2006). The RGOALS-g10 successfully simulates several major El Niño events in the 

east mode and La Niña events in the west mode similar to the observations, although 

the region of difference between the two modes at the 95% significant level extends to 

the whole equatorial Pacific (Zhou, Yu et al. 2006). Moreover, the model simulates 

the realistic convergence zone near 30°N and the spatial distributions of precipitation 

anomalies in parts of the Yangtze River Valley, South Japan, and the Korean 

Peninsula with only a small difference from the observations. Dai (2006) indicates 

that the MRI-CGCM2.3.2, Japanese GCM, has the most realistic precipitation pattern 

at low latitudes among the models with data submitted to the Program for Climate 

Model Diagnosis and Inter comparison (PCMDI). The MRI-CGCM2.3.2 also 

reproduces the broad patterns of the daily precipitation frequency and intensity over 

the Asia monsoon region. Among GCMs in PCMDI without flux corrections,  

HadCM3 produces relatively realistic patterns of tropical precipitation and the 

horseshoe-shaped ENSO-related precipitation pattern originating from the Indonesia 

region and extending northeast- and southeast-ward (Dai 2006). This is a good reason 

for selecting HadCM3/HadAM3 as the global model used in this research. 

 

1.5 Regional Climate Modelling 
 

A regional climate model (RCM) is a higher resolution model that covers a limited 

area of the globe. RCMs are comprehensive physical models which include the 
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atmosphere and land surface components of the climate system, as well as the 

representation of the important processes within the climate system. In RCMs the 

physical processes that take place on much smaller spatial scales than the GCM model 

grid are either resolved or calculated using parameterizations (Jones et al., 2004). By 

using boundary and initial conditions from a GCM, RCMs produce high resolution 

simulations for an interest region which are consistent with the large-scale simulations 

from that GCM. The whole process is a form of dynamical downscaling. There are a 

number of reasons to consider why a RCM is necessary as a tool in the investigation 

of regional climate change at a higher resolution (Jones et al., 2004). A RCM has the 

capability to simulate current climate more realistically particular in mountainous 

areas and closer to the coastline on scales of 100 km or less.  A finer spatial scale is 

clearly more apparent in such areas with RCM simulations than from a GCM (Figure 

1.7).  RCMs are also able to represent smaller islands in change simulations, in which 

the RCM can resolve the difference in terms of thermal inertia between land and 

ocean (Figure 1.8). Another interesting feature of RCMs is their capability to better 

simulate extreme changes of weather such as heavy precipitation events than GCMs. 

RCMs could also resolve greater detail associated with features such as cyclones and 

hurricanes, which may be absent in the driving GCM (Figure 1.9). 

 

 
Figure 1.7:  A more realistic simulation by a RCM of enhanced precipitation 

(mm/day) over the mountains of western Great Britain in winter (adapted from Hulme 

et al., 2002) 

   1             2           3            5        7   10 
                     Precipitation (mm/day) 

       300 km GCM                                50 km RCM                        10 km observations 
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Figure 1.8:  A temperature simulation by a RCM in summer over southern Europe 

showing the details of the simulation over islands in the Mediterranean (e.g. Corsica, 

Sardinia and Sicily) in comparison with a GCM simulation (adapted from Jones et al., 

2004). 

 

 
 

Figure 1.9:  Mesoscale pressure patterns indicating a cyclone in the Mozambique 

Channel, clearly illustrated in the RCM but absent in the driving GCM (adapted from 

Hudson and Jones, 2002). 
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RCMs are nested into a GCM in either a ‘one way’ or ‘two way’ configuration, but to 

date nested regional climate modelling techniques tend to consist of using initial 

conditions, time-dependant lateral meteorological conditions and surface boundary 

conditions to drive RCMs in a ‘one-way’ only mode (Giorgi et al., 2001). The one-

way nesting technique doesn’t allow feedback from the RCM’s simulation to the 

driving GCM. Theoretically, the one-way nesting technique could impose limitations 

such as the effects of systematic errors in the driving fields provided by GCMs. Also 

the lack of two-way interactions between RCM and GCM does not allow feedback 

effects from fine scales to coarse scales whereas in the real atmosphere, feedbacks 

derive from different regions and interact with each other (Giorgi et al., 2001). 

Despite the setbacks in terms of dependency on input from the GCM driving model, 

the lack of two-way nesting with its driving model, as well as the computationally 

expensive costs, RCMs are still developing rapidly and are widely used in climate 

change investigations as they are capable of providing higher spatial and temporal 

resolution information for a number of climatic variables while still providing better 

representation than the GCM for some weather extremes.  

 

The Climate High Resolution Model (CHRM) is another regional climate model that 

has been used in a number of climate studies in Europe for example by Lüthi et al. 

(1996) and Vidale et al. (2003). Lüthi et al. (1996) using CHRM driven by ECMWF 

6-hourly resolution analyses to simulate interannual variability, found that the model 

captures wintertime changes but does not satisfactorily simulate summertime 

precipitation totals. They suggested the shortcomings are related to (i) larger model 

bias in dynamical fields for summer than winter because summertime interannual 

variability is associated with weaker effects in dynamical fields and (ii) summertime 

precipitation distribution being affected by small-scale moist convection and surface 

hydrological processes.  

 

The regional climate model REMO is based on the Europamodell, the former 

numerical weather prediction model of the German Weather Service. Jacob (2001) 

indicated that the capability of REMO driven by ECHAM4 to realistically simulate 

the water budget over the Baltic Sea covering a time period of 1979-1988 was good 

when compared against observations. The coupled regional climate model system, the 

Rossby Centre Atmosphere Ocean model RCAO, has also been used as a tool for 
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climate studies in northern Europe. For example Döscher et al. (2002), using RCAO 

driven by ERA15 over northern Europe, found that the coupled sea surface 

temperatures agree well with observations while overestimation of ice, due to 

negative bias of longwave radiation, was found.  

 

The HIRHAM model is a state-of-the-art RCM that has already been  successfully 

applied for European regions (Christensen and Christensen, 2007), for the Arctic 

(Rinke and Dethloff, 2008) as well as for Antarctica (Dethloff et al.,2010). Moreover, 

HIRHAM has recently been applied to simulate the Indian monsoon circulation 

driven by ERA40 for the period from 1958 to 2001 with a resolution of 50 km and 

successfully reproduced the summer monsoon climatology and its variability 

concerning temperature and precipitation (Polanski et al., 2010).  

 

One of the earliest RCMs which has been developed is the NCAR Regional Climate 

Model (RegCM), initially built upon the PSU/NCAR Mesoscale Model version 4 

(MM4) by the National Center for Atmospheric Research (NCAR) and nested into the 

NCAR Community Climate Model (CCM) (Dickinson et al., 1989; Giorgi and Bates, 

1989). Since then, the model has been updated and improved with new modules 

added for use in chemistry-climate interaction studies (Giorgi et al., 1993; 1999: 

2002).  
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Table 1.3 General Information of some RCMs 

 

Model 
 
Institution 
and model 
origin 

Resolu
tion 

Nudging 
Zone 
(number 
of 
points) 

Vertic
al 
levels 

Convection Micro-
physics 

Land 
surface  

Radiation 

CHRM 
 
Swiss 
Federal 
Institute of 
Technology
, Zurich, 
Switzerland 
(ETHZ) 

0.5 
deg  
(55 
km) 
 

8, 
Davies 
(1976) 

20 Mass flux, 
Tiedtke, 
(1989) 

Kessler 
(1969), 
Lin et al. 
(1983) 

4 
thermal 
and 
3 
moisture 
layers, 
Dickins
on 
(1984), 
Jacobse
n and 
Heise 
(1982) 

Ritter and 
Geleyn 
(1992) 

RCAO 
 
Swedish 
Meteorolog
ical and 
Hydrologic
al Institute, 
Sweden 
(SMHI) 

0.44 
deg  
(50 
km) 

8 24-60 Mass flux, 
Kain & 
Fritach, 
1990 

Rasch 
and 
Kristjan
sson, 
1998 

2 soil 
thermal 
and 2 
moisture 
layers 
Bringfel
t et 
al., 2001 

Savijarvi, 
1990 
Sass et. 
al., 
1994 

RegCM3 
National 
Center for 
Atmospheri
c Research 
(NCAR) 

50 km 11 16 mass flux (3 
options) 
Anthes-Kuo 
scheme/ the 
Grell 
scheme / the 
Massachuse
tts Institute 
of 
Technology 
(MIT) 
scheme 

Pal et al. 
(2000) 

Force-
restore 
soil 
thermal 
layers, 3 
soil 
moisture 
layer 
Dickins
on et al. 
(1993) 

Kiehl et 
al. 
1996, 
Giorgi et 
al., 
1999 
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Table 1.3 (continued) 

 

Model 
 
Institution 
and model 
origin 

Resolu
tion 

Nudging 
Zone 
(number 
of 
points) 

Vertic
al 
levels 

Convection Micro-
physics 

Land 
surface  

Radiation 

REMO 
 
Max-
Planck-
Institute for 
Meteorolog
y, Germany 
(MPI) 

0.5 
deg  
(55 
km) 

8, 
Davies 
(1976) 

20 Mass flux, 
Tiedtke 
(1989), 
Nordeng 
(1994) 
for CAPE 
closure 

Sundqvi
st (1988) 

5 
thermal 
layer, 
1 
moisture 
bucket, 
Du¨meni
l and 
Todini 
(1992) 

Morcrette 
(1991), 
Giorgetta 
and 
Wild 
(1995) 

HIRHAM 
 
Danish 
Meteorolog
ical 
Institute, 
Denmark 
(DMI) 

0.44 
deg  
(50 
km) 

10 (no 
vertical 
depende
nce), 
Davies 
(1976) 

19 Mass flux, 
Tiedtke 
(1989), 
Nordeng 
(1994) 

Sundqvi
st (1988) 

5 
thermal 
layer, 
1 
moisture 
bucket, 
Du¨meni
l and 
Todini 
(1992) 

Morcrette 
(1991), 
Giorgetta 
and 
Wild 
(1995) 

PRECIS 
 
Hadley 
Centre, UK 
Meteorolog
ical Office 

0.44 
deg 
(50 
km), 

4 19 Mass flux, 
Gregory 
and 
Rowntree 
(1990), 
Gregory and 
Allen 
(1991) 

Smith 
(1990), 
Jones et 
al. 
(1995) 

4 
thermal 
and 
4 
moisture 
layers, 
Cox et 
al. 
(1999) 

Edwards 
and 
Slingo 
(1996) 

 

Frei et al. (2006) undertook an intercomparison of precipitation extremes as simulated 

by six European RCMs: HIREM, CHRM, HadRM3H/HadRM3P, REMO, GKSS and 

SMHI, driven by the atmosphere-only GCM of the Hadley Centre at the UKMO, 

HADAM3H, for 1961-1990 and for 2071-2100 covering the European continent from 

the Mediterranean to Scandinavia. They found that in the wettest season, autumn, all 

RCMs are capable of representing mesoscale spatial patterns in precipitation, however 

model biases are large in some cases, in particular in summer. HadRM3P (PRECIS) 

tended to overestimate topographic enhancement at the southern rim but 
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underestimate values in the Po valley while CHRM, HIRHAM, SMHI and REMO all 

show an overall underestimate. The simulation of dryness occurrence in RCMs, 

particularly in summer, reveals model biases in soil moisture and in other components 

of surface water and energy budgets. In terms of wet day analysis, all models 

overestimate wet day frequency in the northern Alps from autumn to spring which is 

possibly due to errors in the driving GCM since similar bias was not found in RCMs 

driven by reanalysis data. Clearly, comparison of the RCM results to those of their 

driving GCM reveals the benefit from the higher model resolution, moreover, Frei et 

al. (2003) implied that errors inherited from the forcing GCM were small and did not 

change the RCM specific error characteristics. With respect to simulated future 

changes, all six RCM simulations are very consistent, with precipitation increasing by 

0–11% in central Europe and by 10–22% in southern Scandinavia. However, in 

summer changes in the magnitude of precipitation vary considerably between models 

(-13% to +21% over central Europe and +2 to +34% over southern Scandinavia). The 

authors mentioned that the differences are explained by differences in the change of 

average precipitation events as represented by wet day intensity and frequency. 

 

RCMs developed by the Hadley Centre, which include PRECIS, the latest version 

RCM (third-generation), have been used in a number of climate change impact studies 

worldwide, and these are briefly highlighted in the following sections (the full detail 

is in Chapter 3). It is possible to widely apply PRECIS to any part of the globe, with 

the boundary conditions of the model’s domain needing to be specified. The model is 

forced at the lateral boundaries by a high resolution GCM, HadAM3, with horizontal 

resolution of 150km x 150km. HadAM3 is an atmosphere-only GCM derived from 

the atmospheric component of HadCM3. The observed SST and sea-ice are used as 

lower boundary conditions. 

1.5.1 RCMs over SEA. 
 

In the last 15 years, RCMs have been recognised as an excellent tool in a number of 

climate studies in smaller geographical regions such as in climate impact studies 

(Jones et al., 1997; Bhaskaran et al., 1998; Hudson and Jones, 2002; Huntingford et 

al., 2003), temperature extremes (Hennessy et al., 1998; Mearns, 2004), water 

resources (Wang et al., 1999; Stone et al., 2001, 2003; Wilby et al., 1997), agriculture 
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(Erda et al., 2005; Challinor et al., 2005, 2007), energy demand, paleoclimate studies, 

atmospheric chemistry studies and forest fires. Feser (2008), using an atmospheric 

regional climate model, the Climate version of the Lokal Model (CLM), simulated a 

typhoon track, Winnie, similar to the observations. Kreasuwun et.al (2009) using the 

MM5 Regional Climate Model driven by CCSM3 found that simulated temperatures 

are not very different from the station observations during the rainy season (May-

September) but are about 2-5 ๐C underestimated during the dry season (ONDJFM) 

over the period 1970-1999. Torsri (2009) using RegCM3 driven by ERA40 during 

1961-2000 indicated that the model systematically underestimates near surface 

temperature in dry and wet seasons compared with selected station observational data 

from the Thai Meteorology Department, with smallest biases in southern Thailand. 

Liu et al. (2006) suggested that the reduced moisture transport to the South China Sea, 

SCS, simulated in the model results in underestimated precipitation over the SCS. 

Satomura (2000), using a two dimensional, nonhydrostatic, and cloud-resolving 

numerical model indicated that diurnal variation of precipitation is as follows: 

convection is activated at the lee-side foot of two mountainous regions located in 

western and central Thailand in the late afternoon, forming squall lines which 

propagate eastward and which produce night maxima of precipitation in inland areas 

far eastward of the high ground.   

Chotamonsak et al. (2011) applied the WRF RCM at 60 km resolution forced by 

ECHAM5 and SRES A1B emissions to simulate temperature and precipitation over 

SEA during 1990–1999 and 2045–2054. They found a cold bias for maximum 

temperatures and a warm bias for minimum temperatures and projected warming 

varies from <0.1 to 3 °C while precipitation slightly increases for all seasons in the 

overall region with local decreases in the dry season. McGregor (1998) using the fine 

resolution (44 km) Division of Atmospheric Research Limited Area Model 

(DARLAM) predicts small increase in precipitation over land in SEA with larger 

increase over the oceans and Sulawesi and temperature increases of around 1.5°C for 

most countries in the region after 100 years with little change in diurnal range 

compared with 1990.  

 

 



 30

1.5.2 Use of the PRECIS model around the world 
 

Asia – South Asia 

Bhaskaran et al. (1998) used an early version of the RCM developed by the Hadley 

Centre to study the intra-seasonal variability of the oscillation circulation and 

precipitation anomalies in South Asia. The study found that the HadRM3 captured the 

intra-season variability more realistically than the driving GCM. Further 

investigations by Hassell and Jones (1999) for the same area concluded that a nested 

RCM captured observed precipitation anomalies in the active break phases of the 

monsoon that were not detected by the driving GCM. 

 

A study in India by Kumar et al. (2006) used PRECIS to develop high-resolution 

climate change scenarios for the 21st century for various surface and upper air 

parameters. This study concluded that PRECIS has the capability to resolve features 

at a higher resolution than GCMs do, particularly in projecting the spatial patterns of 

summer monsoon precipitation along the windward side of the Western Ghats. With 

respect to island and coastal areas, the PRECIS simulation was able to clearly 

distinguish climate over land and surrounding oceans, for example the land surface 

has less heat capacity than the oceans and warms faster. Notable quantitative biases 

(overestimates, both in terms of mean and extreme amount) were identified, 

particularly in precipitation over some regions of the Indian sub-continents. The 

authors indicated that the overestimation of precipitation has been inherited from the 

bias of the driving GCM in representing the large-scale features. Interestingly, some 

apparent cold bias in the model throughout the year, particularly in the seasons other 

than spring, could be partly due to the limited network of stations and interpolation 

due to the gridding algorithm used to derive the observed patterns. The authors 

showed that model simulations by PRECIS under scenarios of increasing GHG 

concentrations and sulphate aerosols in this study have indicate marked increases in 

both precipitation and temperature towards the end of the 21st century.  

 

In Bangladesh, a study was carried out to validate the performance of PRECIS against 

the surface observational data of precipitation and temperature at 26 observational 

sites from 1961-1990 (Islam and Mannan, 2005). Results indicated that PRECIS 
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revealed positive biases for precipitation and temperature in the region, though in 

some locations it provides better performance. Islam et al. (2007) reported that 

PRECIS simulated an overestimate of precipitation between the dry month of 

December and the monsoon month of June, underestimates of precipitation during 

July to September and accurate estimates in the post monsoon months of October and 

November in Bangladesh, when compared with the Tropical Precipitation Measuring 

Mission (TRMM). It is mentioned that there are seasonal changes in the 

characteristics of precipitation in this region and it is suggested that the same selected 

cloud parameterization cannot accurately represent this seasonality. Comparing the 

model grid to a gridded observation analysis method produced similar precipitation 

patterns with a few exceptions. They reported that this may be partly attributed to the 

lack of observational data sites throughout the country and may also have resulted 

from the inherent uncertainties of the model. Islam et al. (2007) indicated that 

temperature variation (i.e. cold bias in the dry season and hot bias in the rainy season) 

may be due to the decrease and increase of latent heat flux for the two seasons 

respectively, which may not be well simulated by the model. 

 

Saeed et al. (2006) applied PRECIS forced by reanalysis data, ERA15, to study 

physical processes responsible for the extreme precipitation event of September, 1992 

that caused severe flooding in the River Jhelum, South Asia and found that the model 

reproduced well the temporal pattern of area averaged precipitation, the monthly 

mean spatial precipitation pattern and the daily precipitation intensity distribution. 

The model realistically simulated the trends and fluctuations in the area averaged 

daily maximum and minimum temperature except for a warm bias (less then 2°C) in 

the daily maximum temperature in June and minimum temperature in June and 

August and a cold bias (0.8°C-3.5°C) in both maximum and minimum temperature in 

the later months. They suggested that the maximum bias is in June and then reduced 

in the later months, probably because the land surface processes and the associated 

forcings are better resolved in the later months. The model captured not only the 

moisture transport from the Arabian Sea and Bay of Bengal but also the intense 

westerly wave over the north of Pakistan which generated the high amount of 

moisture in the circulation and orographic uplifting producing precipitation 

intensification. 
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Asia - Far East 

In China, PRECIS was used by Erda et al. (2005) to investigate the future climate and 

to develop climate change scenarios for China. The results from this study concluded 

that at the end of the 21st century, depending on the level of future emissions, the 

average annual temperature was projected to increase between 3-4°C. Meteorological 

output data from PRECIS was also used to drive regional crop models to investigate 

possible changes in yields of the main crops in China such as rice, maize, and wheat. 

It was found that the projected climate change without carbon dioxide (CO2) 

fertilization could potentially reduce the production yields by up to 37% in the next 

20-80 years. Wang and Shallcross (2005) also used PRECIS to simulate Taiwan's 

current climate, with particular focus on time-slices between 1979-1981. The 

simulation results have been compared against observed data, reanalysis data, and 

other global climate models. The PRECIS simulation was found to reproduce well the 

spatial patterns of surface precipitation as well as the inter-annual variability of 

precipitation. PRECIS was also found to demonstrate good capability in simulating 

the spatial distribution of surface temperature over the whole selected region, 

particularly over Taiwan's Central Mountain Range.  

 

Europe 

The regional climate model, HadRM3P, which is also the model used in the regional 

modelling system PRECIS, was used by Moberg and Jones (2004) to evaluate the 

simulations of daily maximum and minimum near-surface temperatures across Europe 

by comparison with the observational data for the same period. The performance of 

the model for surface temperature is generally good over the United Kingdom, and 

elsewhere between latitudes 50 and 55°N, with biases within ±0.5K. However, in 

other regions within the domain of study, seasonal biases were found to be higher and 

even biases in climatological averages were as high as ±15K at the Icelandic coast and 

in northern Sweden. These authors mentioned that significant positive summer 

temperature biases in southern Europe have been observed in several RCM 

simulations and the possible reasons are circulation biases, deficiencies in convective 

parameterization, parameterization of cloud, clear-sky radiation errors and errors in 

precipitation frequency distribution. The main cause for the problem is that warm bias 

in summer associated with too little precipitation and too dry soils in RCMs (Moberg 
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and Jones, 2004). PRECIS was also used to investigate the regional climate model 

performance against the observed data obtained from radiosondes in Cyprus 

(Hadjinicolaou et al., 2006). This study also concluded that the PRECIS simulation 

over the selected region could satisfactorily reproduce the temporal evolution of 

temperature and other meteorological parameters. Lalas et al. (2005) also used 

PRECIS in Greece to evaluate the regional climate change impact on the energy 

system in Greece. Based on annual analysis, results have indicated that climate 

change in the region has caused the electrical energy demand to increase 

approximately 5% solely due to the change in meteorological conditions. 

 

North America and South America 

PRECIS has also been tested over North America by Martineu (2005) to investigate 

climate changes in the region. In terms of performance, PRECIS has the capability to 

reproduce regional climates quite satisfactory, particularly over the Rocky mountains, 

the Cordillera, and the Caribbean islands. The spatial patterns of precipitation and 

temperature of the selected domains are coherent with the observational datasets, 

though some biases (overestimates of up to 6°C) exist, particularly on seasonal 

datasets over the central US in the summer of 1980. Preliminary results of the 

PRECIS application in Brazil under the SRES A2 scenario have shown a large 

warming in 2070-2100 for southern Amazonia (up to 6oC) (Marengo and Ambrizzi, 

2006). In terms of precipitation, the simulation has indicated a drier phenomenon 

occurring in Eastern Amazonia and North East Brazil, and precipitation reduction in 

Southern Brazil and parts of Western Amazonia along the Andes. For comparison, the 

precipitation projection in Amazonia using the GFDL, RCM, was also found to show 

some reduction in individual locations, but the evaluation of the performance of the 

model in this region was not that satisfactory (Fowell, 2006). A PRECIS experiment 

over Bolivia by Seiler (2009) shows underestimation of temperature and 

overestimation of precipitation in highland regions. It was commented that the lateral 

boundary conditions did not appear to be the main error and the failure may be related 

to an inaccurate representation of the topography and/or to the parameterization 

schemes. 
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Marengo et al. (2009) stated that PRECIS realistically reproduces the spatial and 

temporal patterns of precipitation and temperature in tropical and subtropical South 

America during 1961-1990. Nevertheless systematic negative precipitation biases 

were detected during the warm rainy season and a systematic cold bias existed 

throughout the year compared to the CRU temperature climatology. It was suggested 

that the parameterization of radiation or land-surface processes may be related to 

precipitation underestimation and a possible effect of local dynamic forcings for 

example dry or wet soil may be dominant over the large-scale SST forcing. 

Meanwhile the cold bias, which is not large, could be the result of too few observing 

stations contributing to the CRU data set. 

 

Soares and Marengo (2009) affirmed that the ability of PRECIS forced by HadAM3P 

to accurately represent specific humidity fields over South America is the same order 

of magnitude as that of reanalyses. Some systematic positive or negative biases in 

some regions could also be due to the meridional shifts of bands of high specific 

humidity during the annual cycle, or to the parameterization of the Andes in PRECIS. 

They found that the RCM underestimated the zonal wind intensity in the tropical 

region as compared to the reanalyses, by about 3 ms-1 and underestimated pressure 

over a large part of South America. Larger pressure differences are observed over 

northern Argentina, perhaps due to an overestimation (more intense) of the thermal 

low pressure in this region by the model.  

 

Alves and Marengo (2009) indicated that PRECIS underestimates the surface 

temperature by 2°C over South America which may be due largely to some 

misrepresentation in land-surface processes and interactions associated with changes 

in surface energy and water balances, therefore, leading to cooling through long wave 

radiation reduction. Another possible problem is the observed temperature 

interpolated from too few stations over tropical South America. 

 

Africa 

A number of studies have used PRECIS to investigate climate changes in the African 

continent. In one of the recent studies by Beraki (2005) over the Eritrean domain, the 

PRECIS simulation has indicated satisfactory performance in terms of spatial patterns 

against the observed data (the correlation with the observed data was 0.88 to 0.89). 
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Future climate scenario simulations over this region in terms of temperature were 

found to increase in both SRES A2 and B2 scenarios at the end of this century. 

Meanwhile, for precipitation, mixed signals were found, though it was expected to 

increase in most of the Eritrean region. Earlier studies have been carried out by Arnell 

et al. (2003) using the regional climate model, HadRM3H with spatial resolution of 

0.44 × 0.44° with two other global models (HadCM3 and HadAM3H) to investigate 

the macroscale river runoff in southern Africa. Jones and Hudson (2002) have also 

used the Hadley Centre RCM, HadRM3H, to investigate the climate change scenario 

over southern Africa. The results have shown that the RCM is capable of resolving 

features on fine scales, which includes extreme events such as tropical cyclones, 

though there are indications of positive biases in precipitation and negative biases in 

surface temperature over most of southern Africa in summer. 

 

Druyan et al. (2009), studying the domain 20°S–35°N and 35°W–35°E commented 

that PRECIS uses initial soil moisture and soil temperature fields at four vertical 

levels spun up from a multi-year integration driven by the reanalysis so it did not 

detect any significant sensitivity to the specification of initial soil moisture. Moreover, 

PRECIS favours a double ITCZ over the West African monsoon region during June 

creating the early onset of Sahel precipitation, accompanied by light rain during the 

onset of the South African monsoon onset, with the precipitation band encroaching 

too far northward. PRECIS was found to underestimate orographic precipitation in 

regions of inland orographic enhancement maxima along the southwest African coast 

by at least 5 mm day-1 and the Cameroon Highland effects imply a model deficiency 

rather than the negative influence of unrealistic boundary data. With respect to 

precipitation, PRECIS scores a near perfect spatial correlation against observations 

over the eastern Sahel and a small positive bias over the central region. With respect 

to moisture, PRECIS shows a local reduction in the meridional moisture advection in 

the lee of the Guinean Highlands, which is likely a real feature that reflects their 

higher resolution of topography. They suggested that some of the PRECIS 

precipitation deficit could derive from inhibitions in triggering moist convection since 

P-E is not underestimated. With respect to zonal winds, downscaling with PRECIS 

produces no discernable impact on the cross-section of zonal winds which closely 

resemble the solution of the driving data, despite the increased horizontal and vertical 

resolutions of the regional model – this is thought to be due to the similarity of the 
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physics in the driving GCM, HadAM3 and PRECIS. Lastly, PRECIS was found to 

better resolve lower tropospheric meridional moisture advection in West African, 

through higher resolution topography, than HadAM3. 

 

Moufouma-Okia and Rowell (2010) indicated that PRECIS underestimates the 

orographic precipitation maxima by 3–4 mm/day, overestimates precipitation over the 

Sahel, and likely produces too much precipitation over the oceanic areas adjacent to 

the coast occurring in May–June and September–October when the ITCZ lies in the 

Gulf of Guinea. They also suggest a possible deficiency in triggering moist 

convection along the coastal regions. 

 

Table 1.4: Limitations and biases with PRECIS which have been reported in the 

literature.  

 

Limitations and biases with 
PRECIS 

Effects and Possible causes of biases 

Any errors in the driving 
GCM, HadCM3/HadAM3, 
may be carried through to the 
RCM 

- shortcomings in the ability to accurately reproduce 
larger scale circulation features (Kumar et al., 
2006).  

- excessive soil drying in the GCM (Moberg and 
Jones, 2004).  

- cloud and radiation parameterization schemes 
(Randall, 1989).  

Internal model physics error   -    excess of thick cloud producing incident surface 
shortwave radiation deficit (Hudson and Jones, 
2002). 

  -     Increased evaporation contributing to increased 
moisture convergence into the ITCZ over the 
tropics (Hudson and Jones, 2002). 

  -     unsuitable selected cloud precipitation for region 
(Islam, 2007). 

Error in soil moisture input - insufficient sensitivity of soil moisture (Druyan et 
al., 2009, Hudson and Jones, 2002). 

- too dry soil affecting low evaporation and land 
surface warm too rapidly (Moberg and Jones, 
2004). 
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Table 1.4 (continued) 

 

Limitations and biases with 
PRECIS 

Effects and Possible causes of biases 

positive precipitation biases in 
mountainous region 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

- an inaccurate representation of the topography 
and/or sub-optimal parameterization schemes 
(Saeed et al., 2009). 

- incorrect balance between the effect of radiation or 
land-surface process parameterizations and the 
effect of local dynamic forcings. (Marengo et al., 
2009). 

- failure in simulating convective precipitation 
(Alves and Marengo, 2009, Shahgedanova et al., 
2010).  

- overestimation (more intense) of thermal low 
pressure systems (Marengo et al., 2009, Soares and 
Marengo, 2009). 

- Possible deficiency in triggering moist convection 
along the coastal regions (Okia and Rowell, 2010). 

- underestimation of the zonal wind intensity and 
pressure in the tropical region (Marengo et al., 
2009, Soares and Marengo, 2009). 

Cold biases 
 
 
 

- misrepresentation in the land-surface processes and 
interactions associated with changes in the surface 
energy and water balance (Alves and Marengo, 
2009).  

- too small a latent heat flux in the dry season (Islam 
et al., 2007; Uchiyama et al. 2006). 

- circulation and soil moisture errors. (Moberg and 
Jones, 2004). 

- inaccurate topography and parameterization in 
highland region (Seiler, 2009) 

hot bias 
 
 
 
 
 
 
 

- too little precipitation and artificially enhanced 
drying of soils in summer. 

- circulation biases. 
- deficiencies in convective parametrization. 
- errors in precipitation frequency distribution. 
- errors in clear-sky radiation and clouds, and 

parameterization of land-surface schemes (Islam et 
al., 2007; Moberg and Jones, 2004). 
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1.5.3 Motivation for RCM use over SEA. 
 

Most studies of Southeast Asia climate use GCMs which can provide the overall 

climate regimes. SEA has complex topography, including the Indochina peninsula and 

the surrounding maritime continent in the Indian and Pacific Oceans. It is clearly 

shown that there is a lack of regional modelling studies in Southeast Asia, especially 

in Thailand, compared with the other parts of Asia, for example, South Asia, China, 

Japan. Most of the studies investigate ENSO, SST anomalies, the Indian Ocean, the 

North Pacific and the monsoon cycle over India. So, to address this deficiency, in this 

study a RCM is used as a tool to investigate regional climate over SEA. 

 

1.6 Structure of Thesis Content 
 
This chapter has, through a literature review, provided background to the issues which 

are relevant to this research. The remaining chapters are structured as follows. 

 

Chapter two 

Description of the project design, including the aims and objectives of this project 

followed by details of the methodology, including the model climate simulation 

experiments. 

 

 

Chapter three 

In this chapter, detail is given of the regional climate model system, the Providing 

REgional Climates for Impact Studies (PRECIS) model. Also discussed are the 

observational datasets used in this thesis. 

 

Chapter four 

Station and gridded observational data are used to present analyses and fill gaps in 

understanding of the current climate of Southeast Asia and, specifically, of Thailand. 
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Chapter five 

Before using the PRECIS model to simulate future possible SEA climate, the model is 

verified against current climate. The results of the first known RCM simulation over 

Southeast Asia are presented in this chapter. Model validation is undertaken using key 

climate variables such as temperature and precipitation, using high resolution gridded 

observational data sets and station data. The sensitivity of the model to incorporating 

a realistic sulphur cycle and to different initial conditions are also investigated. 

Possible causes of model bias are discussed and compared with the findings in the 

literature. 

 

Chapter six 

This chapter contains an ensemble approach for the possible climate regimes in SEA 

at the end of the current century. The future simulations of RCM and GCMs are used 

to gain an indication of the nature of possible future changes to the main climate 

features in Thailand, for example the trend of heavy precipitation. 

 

Chapter seven 

This chapter provides the conclusions leading from this research. The strengths and 

weaknesses of the approaches are discussed. Finally, recommendations for possible 

future work to extend this study are proposed. 



Chapter 2 

Project Design and Methods 
 

2.1 Introduction 
 

One of the most stringent tests of a climate model is its ability to simulate a realistic 

climate regime. The literature discussing model simulations of tropical climate, either 

of mean climate or its variability, was summarized in chapter 1. One of the major 

components of the tropical circulation is the monsoon system. Many general 

circulation models, GCMs, have produced a reasonably good monsoon simulation in 

terms of both circulation and precipitation, however the latter is rather overestimated 

and the onset is slightly early in comparison with observations. GCMs with global 

coverage have been the primary tools used in climate studies. The current resolution 

GCMs (200–500 km) are generally capable of simulating the broad global climate. 

However, due to their low resolution, the simulated results for regional climate tend to 

produce apparent errors of as much as ±5oC in annual temperature, and -40% to +60% 

in annual precipitation (IPCC, 2001; Leung et al., 2003; Fowell, 2006). In order to 

provide a more realistic response of regional climate changes to radiative forcings, 

particularly in areas with complex orography, coastline, and landuse patterns, it has 

been suggested that higher resolution regional climate models should be considered 

(IPCC, 2001).  RCMs developed by the Hadley Centre, which include PRECIS, the 

latest version RCM (third-generation), have been used in a number of climate change 

impact studies worldwide and they have been discussed in Chapter 1. Chapter 3 

describes the PRECIS setup in detail. There are some publications paying attention to 

using Thai station observational data (Chokngamwong and Chiu, 2006; Matsumoto, 

1997; Kripalani et. al, 1995; Zhang et al., 2004; Chokngamwong and Chiu, 2008; 

Takahashi and Arakawa 1981; Henson 2002) and limited published information about 

Thai climate, based on gridded observations. 
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2.2 Aims 
 

The overall aim of this study is to understand current climate and possible future 

climate change over Southeast Asia and, in particular, over Thailand by using station 

and gridded observational data and PRECIS as a regional climate modelling tool.  

 

The following specific questions will be addressed in the study: 

- How much can be understood about the recent climate of Thailand from the 

limited observational data? 

- How well does the regional climate model, PRECIS, capture main regimes in 

SEA for current climate? How does this performance compare with other 

published PRECIS studies and with RCMs in general? 

- What are the strengths and weaknesses in the output of PRECIS and the 

driving GCMs: HadAM3 and ECHAM4? 

- Does the RCM add value to the GCM?  

- What range of climate changes are anticipated in SEA by the end of century 

according to ensemble experiments based on different emission scenarios and 

assumptions? 

- Does the model reveal any apparent trend in extreme events by the end of the 

century, such as in heavy precipitation? 

- Do RCMs capture realistic inter-annual and/or inter-decadal variability of the 

Southeast Asia Monsoon system? 

 

2.3 Project Design 
 

The manner in which the above aims will be addressed is now considered in detail. 

 

How much can be understood about the climate of Thailand from the limited 

observational data?  

 

There is very little published in the literature on the current climate of Thailand. 

Those studies that do exist also used the surface station dataset provided by the Thai 

Meteorology Department (TMD) over mainland Thailand. A few of them have 
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investigated the current climate over the peninsula of Thailand; due to complex 

topography in the Thai peninsula, the area was previously ignored in studying Thai 

climate, i.e. Takahshi and Yasunari (2006) used 27 stations to validate the monsoon 

onset over Thailand. Another recent publication indicated that ENSO events are an 

important source of inter-annual/inter-decadal variability in Thailand air surface 

temperature (Limsakul, 2008). So the inter-annual variability in precipitation during 

El Niño and La Niña years should be considered. Thai surface station data over the 

period 1961-1990 and the gridded observation dataset CRUTS2.1 (full detail found in 

section 3.1.2) for the period 1960 to 1990 are used. 5 station observational timeseries 

of precipitation data will be analysed as pentad mean time series of precipitation to 

evaluate monsoon onset and to identify any trends. The gridded data set is analysed 

seasonally to identify temporal and spatial climate features, for example daily 

precipitation, wet day frequency, surface temperature and diurnal temperature range 

as well as specific El Niño/ La Niña impacts over Thailand.  

 

How well does the regional climate model capture main regimes for current climate? 

 

There was no evidence that RCMs were being used in application to SEA just 5 years 

ago (2006). This project is the first one to study both current and future climate in 

Thailand by using a RCM. First of all, the model validation for the current climate 

needed to be studied in terms of building more confidence for investigating future 

climate projections. The CRUTS2.1 high resolution gridded dataset, which has a 

comparable resolution to that of the RCM and which is based on 36 station 

observations would be more useful for model evaluation than individual station 

observations. Nevertheless, the gridded data set has monthly resolution so daily 

station data is also needed to address this question. 

 

Does the RCM add value to the GCM? 

 

One of the purposes of an RCM is clearly to add detail to the GCM, through 

dynamical downscaling capturing the climate regime at a finer scale. An RCM is one-

way nesting dynamical downscaling so the RCM simulation does not allow feedback 

to the driving GCM. It is a key research question as to how much the RCM, PRECIS, 

adds value to the driving GCM, in this case HadAM3P. This leads to the question of 
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justifying if the RCM is necessary to study Thai climate. The answer to the question 

“what are the strengths and weaknesses in the RCM and GCM output” is also needed 

in terms of applications.  

 

To meet these objectives, a three-phase simulation experiment is carried out. 

(i) Three 30-year RCM simulations (1961-1990) driven by HadAM3H (with different 

initial conditions -more detail found in section 2.3.2), by ECHAM4 and by 

ERA40.  

(ii) Three simulations for the A2 future scenario (2071-2100), one for the B2 future 

scenario driven by HadAM3P. 

(iii) Simulations for the A2 and B2 future emission scenarios (2071-2100) driven by 

ECHAM4 

More detail on the models and emission scenarios is found in Chapter 3. 

 

Regarding the numerical experiments, collaboration with other centres is helpful in 

terms of an ‘ensemble’ approach. The participants in a SEA PRECIS workshop 

(2006) agreed to run the experiment with the same domain. With PRECIS centre 

support, I was a consortium member able to share the model output. The experiments 

run by the consortium are shown in Table 2.1. 
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Table 2.1: Experiment designs with consortium. UEA; University of East Anglia, 

LANCS; Lancaster University, UKM; University Kebangsaan Malaysia, MMD; 

Malaysia Meteorology Department.  

 

Source Experiment 
Run without Sulphur cycle Run with Sulphur cycle 

1. control experiment 
    HadAM3P(baseline1) 
    HadAM3P(baseline2) 
    HadAM3P(baseline3) 
    ECHAM4 
    ERA40 
 

 
UEA 
LANCS 
UEA 
UEA 
UKM 

 
MMD 
LANCS 
UEA 
- 
UKM 

2. A2 scenario experiment 
     HadAM3P-A2(future1) 
     HadAM3P-A2(future2) 
     HadAM3P-A2(future3) 
   B2 scenario experiment 
 

 
UEA 
LANCS 
UEA 
UEA 

 
MMD 
LANCS 
UEA 
MMD 

3. ECHAM4 scenario 
experiment 
      A2 echja 
      B2 echjd 
 

 
 
UKM 
UKM 

 
 
- 
- 

 

It should be noted that the ECHAM4 forced runs are without sulphur cycle only but 

the other experiments were designed to run PRECIS both with and without the 

sulphur cycle. However, in this study, the runs without sulphur cycle are used for 

climate analysis in terms of investigating the impact of using different forcing GCMs. 

It is shown that there is no marked change in the simulations either in terms of 

precipitation or surface air temperature when comparing between the simulations 

performed with and without sulphur cycle switched on in PRECIS (Kumar, 2006). 

sulphate aerosol particles tend to give a surface cooling because more solar radiation 

reflects back to space resulting from the particles themselves scattering incoming 

solar radiation and increasing planetary albedo. As the driving GCM already has the 

sulphate aerosols included, the regional sulphur cycle considered by the model 

therefore has no major impact on the scenarios derived. With respect to investigation 

of differences between the runs with and without the sulphur cycle, Islam et al. (2006) 

ran three experiments with different initial conditions and undertook validation of an 

RCM applying a grid to grid method and point to point method over Bangladesh. 
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These authors produced a seasonal cycle of precipitation and temperature and 

undertook time series analysis in comparison with observations to investigate model 

bias. The simulations from runs with and without sulphur cycle show insignificant 

differences while they found that among 3 experiments with different initial 

conditions (IC), the run with first type of IC produced results closest to observations 

(Islam et al., 2006).  

 

This research focuses more on the sensitivity of the results to the driving GCMs than 

to either the sensitivity to different initial conditions or to the presence or not of a 

sulphur cycle in the RCM; Table 2.2 supersedes Table 2.1. Nevertheless, comparing 

the differences between the mean and standard deviation of precipitation, maximum 

and minimum surface temperature shows insignificant difference between runs 

with/without sulphur cycle and between the runs involving different initial conditions 

(Tables 5.1 and 5.2). The two-tailed t-test is applied to precipitation and maximum 

and minimum surface temperature to evaluate the statistical differences between the 

runs with and without a sulphur cycle. After doing the primary analysis, the p-level 

reported with a t-test represented the probability of error involved in accepting no 

difference between the with/without sulphur cycle runs. Theoretically, there were no 

significant differences found at the 95% confidence level so the selected experiment 

outputs are from the experiment running without sulphur cycle.  

 

Table 2.2: Experiment designs and abbreviations in this study. 

 

Experiment Named 

Control experiment 
Baseline 
ERA40 
ECHAM4 

 
PRECIS-HadAM3P 
PRECIS-ERA40 
PRECIS-ECHAM4 

A2 scenario experiment 
B2 scenario experiment 

PRECIS-A2 
PRECIS-B2 

ECHAM4 scenario experiment 
      A2  
      B2  

 
PRECIS-ECHAM4-A2 
PRECIS-ECHAM4-B2 
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2.3.1 Modelling domain 
 

PRECIS has been configured for a domain extending from 30°N to 15°S and 90°E to 

140°E in the Southeast Asian region with a horizontal resolution of 0.44° x 0.44° 

(Figure 2.1). The selected domain is large enough so that the RCM can develop its 

own internal regional-scale circulations, but not too large that the climate of the RCM 

differs significantly from the GCM in the centre of the domain. This is the first 

regional climate experiment over the region so that the choice of running the model 

with 50km resolution instead of 25 km resolution over the region is applied as a first 

step towards scientific understanding. The choice of running the model with higher 

resolution would indeed add detail over complex terrain, however, it does not 

necessarily lead to quantitatively accurate values of those variables. If the choice of 

running the model with 50 km resolution reveals “added value” over this geographical 

area, then it may also be worth undertaking 25km resolution simulations. In terms of 

the computer simulation time, 50 km resolution runs take up to 4 months over the area 

of interest using the IT facilities available while the 25km run takes twice as long. The 

original aim of this study is to address if the RCM, PRECIS, adds value to the driving 

GCM, HadAM3P which leads to the question of justifying if the RCM is necessary to 

study Thai climate. Moreover, increasing resolution without tuning the model physics 

increases model bias, such that if, for example, the model simulation is already too 

wet, the bias may simply be even larger at higher resolution. Rauscher et. el. (2010) 

noted that spatial disaggregation at high resolution without any improved 

representation of processes or topography, will lead to increased temporal variability 

of local precipitation at 25 km. 
 
The land-sea mask and surface topography have been developed by the PRECIS 

Malaysia workshop based on the US Navy 10-minute resolution dataset. Land mask 

and surface topography changes, relative to the US Navy dataset, are shown as orange 

grid cells in Figure 2.1 based on additional reliable datasets provided by, for example, 

the Philippines and Malaysia governments. The changes include terrain height, 

vegetation and soil type. Surely, the effect of land-use change on RCM run has to be 

through physical land-atmosphere inter-action. The selected domain is large enough 

that the regional model can develop its own regional scale circulations driven by the 
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application of the boundary conditions, and small enough that the climate of the RCM 

does not deviate significantly from the GCM and that a simulation can be completed 

in a reasonable amount of time (Wanner et al., 1997; Kumar, 2006). The selected 

domain should not be too large that the generated climate of the RCM is significantly 

different from the GCM in the centre of domain (Kumar, 2006). The selected domain 

might, arguably, be extended further north, given the role of Eurasia and the Tibetan 

plateau, but the area would fall within the maritime continent, where the latent heating 

is considered one of the important energy sources of the global circulation. However, 

there is a risk of extending the domain further north in terms of insufficient boundary 

conditions from the driving GCM in the complex topography of the Himalaya 

mountain range. The computational expense and length of experiment would also be 

extended. 

 
 

Figure 2.1: PRECIS domain for model simulation over SEA, showing cells in orange 

with updated land data relative to the US Navy 10’ dataset. 

 
2.3.2 Model Experiments 
 

The second part of the project involves model validation for the ‘current’ climate, 

taken to be 1960-1990 for the purposes of this study, including comparisons with both 

station and gridded observational dataset (full detail in section 3.3). The second 
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section studies model projections for the end of the century. PRECIS and the driving 

GCM model (HadAM3P) use emission scenarios developed by IPCC (2000). The 

climate of the recent past, which is assumed as belonging to the present-day climate, 

is used as a climatological baseline or control. Good quality climatological data is 

required in order to characterise the present-day climate in the SEA region for a given 

baseline period. The baseline period of 30 years, from 1961 to 1990, is defined by the 

World Meteorological Organisation (WMO) as the normal period and fulfils the 

criteria set by the IPCC (1994) – it has therefore been used in this study as the 

climatological baseline. The following section is a listing of climatological simulation 

scenarios used in this study, which are simulated by PRECIS and defined in terms of 

the source of the boundary data and the relevant emissions data. 

 

Baseline scenario (HadAM3P: 1961-1990) 
 

Data for this scenario is derived from three 31-year (1960-1990) integrations of 

HadAMP3P (atmosphere only GCM; full details in section 3.3) with 150 km 

resolution (Wilson et al., 2005). That is, this scenario is an ensemble of three 

realisations or simulations of lateral boundary conditions, known as addfa, addfb and 

addfc in PRECIS, each spanning from 1st January 1960 to 1st January 1991, which 

have been integrated using different initial conditions in terms of testing model 

sensitivities (but all using a common observed time series of HadISST sea-surface 

temperatures and sea ice for the same period (Moberg and Jones, 2004)). The current 

climate simulation is important for the evaluation of the performance of the PRECIS 

regional climate model and as a baseline for the climate change investigation. The 

other SEA consortium partners also use the baseline simulation in terms of 

comparison with future projections. 

 

ERA40 (1957-2001) 
 

ERA40 reanalysis data are gridded data (2.5° x 2.5°), derived from ECMWF 

(European Centre for Medium-Range Weather Forecasting) Re-Analyses (ERA) 

through data assimilation over the period 1957-2001, combining observations with 

simulated data from a single, consistent numerical model. ERA40 is a second-
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generation reanalysis carried out by the ECMWF after ERA15, with the objective of 

producing the best analysis with the availability of enhanced observational and 

computational resources (Uppala et al., 2005).  In comparison with ERA15, ERA40 is 

produced with an improved NWP model wherein the assimilation, sea surface 

temperature (SSTs), and sea ice fractions are taken from a combination of the 

HadISST and NCEP observed datasets. Also, ERA40 uses the observed values of 

various greenhouse gases for this period to provide relevant information on 

atmospheric composition, compared to ERA15, which used only the average values 

(Jones et al., 2004). In comparison with ERA15, ERA40 can provide fields with 

higher horizontal and vertical resolutions in the planetary boundary layer and 

stratosphere (Uppala et al., 2005). The RCM output, using large quantities of 

reanalysis datasets as an input, is useful in describing the climatological baseline, for 

example in examining the relationship between reanalyses of upper air fields and 

surface variables to produce regional climate scenarios downscaled from GCM 

outputs (Kaas and Frich, 1995). This methodology helps with the diagnosis of model 

errors since model outputs can be compared directly with observational data for 

specific events. 
 

Future climate scenario (HadAM3P: 2070-2100) 
 

The simulation study consists of an ensemble of three simulations based on the SRES 

A2 emission scenario, known as addja, addje and addjf in PRECIS, and one 

realisation for scenario SRES B2, known as addjd, running for the period 2070-2100. 

The running of the ensemble (particularly SRES A2) is important for addressing 

sensitivity to initial conditions. 
 

Emission scenarios 
 

The Intergovernmental Panel on Climate Change (IPCC, 2000) has produced four 

emission scenario families with their coherent narrative part storylines, namely SRES 

A1, SRES A2, SRES B1, and SRES B2 (Table 2.3) for future emissions reflecting 

different possible human future activities that yield different levels of greenhouse gas 

emissions. These scenarios were constructed to reflect the possible future 

developments in environmental or economic perspectives, and reflecting either global 

or regional development. Each storyline describes a demographic, social, economic, 
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technological, environmental, and policy future. For future climate simulations in 

SEA, a time slice from 2070-2100 was selected from 240-year transient simulations 

(1860-2100) with HadCM3. Within this time slice, two emissions scenarios were 

selected, namely SRES A2 and SRES B2, For general comparison between the two 

selected scenarios, SRES A2 was assumed to have a higher population growth, slower 

per capita economic growth rates, and technological change, resulting in higher 

emissions of CO2 and larger emissions of other GHGs such as methane, nitrous oxides 

and hydrofluorocarbons (HFCs) (IPCC, 2000).  

 

Table 2.3:  Emission scenario storylines; source IPCC (2000)  

Scenarios Storyline Descriptions 

 

A1 

Describes a future world of very rapid economic growth, global 

population that peaks in mid-century and declines thereafter, and the 

rapid introduction of new and more efficient technologies. Major 

underlying themes are convergence among regions, capacity building, 

and increased cultural and social interactions, with a substantial reduction 

in regional differences in per capita income. The population increases to 

8.7 billion by 2050 and declines toward 7 billion by 2100 which 

combines low fertility with low mortality. The total CO2 emission range 

of the A1 family scenarios is so wide from 4.3 to 37 GtC in 2100. The 

total cumulative carbon emission of the A1 family scenarios from around 

1000 GtC to more than 2500 GtC. 

 

 

A2 

Describes a very heterogeneous world. The underlying theme is self-

reliance and preservation of local identities. Fertility patterns across 

regions converge very slowly, resulting in a continuously-increasing 

population. Economic development is primarily regionally-oriented, and 

per capita economic growth and technological change is more 

fragmented and slower than other storylines. The A2 scenario family is 

based on a high population growth scenario of 15 billion by 2100 

assuming a significant decline in fertility for most regions and 

stabilization at above replacement levels. Total cumulative carbon 

emissions in the A2 scenario group range between 1710 and 1860 GtC by 

2100. 
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Table 2.3 (continued)  

 

Scenarios Storyline Descriptions 

 

 

B1 

Describes a convergent world with the same global population that peaks 

in mid-century and declines thereafter, as in the A1 storyline, but with 

rapid change in economic structures toward a service and information 

economy, with reductions in material intensity and the introduction of 

clean and resource-efficient technologies. The emphasis is on global 

solutions to economic, social, and environmental sustainability, including 

improved equity, but without additional climate initiatives. The B1 

population statistic is the same rate as the A1 scenario. Carbon Emissions 

peak around 2040 at 12 GtC, twice the 1990 level, and by 2100 the 

emissions fall below the base-year level to 5 GtC. Total cumulative 

carbon emissions in the B1 scenario amount to 983 GtC by 2100. 

 

 

B2 

Describes a world in which the emphasis is on local solutions to 

economic, social, and environmental sustainability. It is a world with 

continuously increasing global population at a rate lower than A2, 

intermediate levels of economic development, and less rapid and more 

diverse technological change than in B1 and A1 storylines. While the 

scenario is also oriented towards environmental protection and social 

equity, it focuses on local and regional levels. The B2 scenario indicates 

population projection of 10.4 billion by 2100. A steady increase of CO2 

emissions emerges in the B2. By 2050 emissions reach 11 GtC and by 

2100 they reach 14 GtC and total cumulative CO2 emissions in the B2 

marker scenario amount to 1160 GtC by 2100. 
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Figure 2.2: Atmospheric CO2 concentrations as observed at Mauna Loa from 1958 to 

2008 (black dashed line) and projected under the 6 SRES marker and illustrative 

scenarios. (IPCC, 2001) 

 

2.4 Model spin-up and simulation duration 
 
2.4.1 Initial conditions (Spin-up) 
 
Land, ocean, and sea ice contribute significantly to surface forcing in regional climate 

simulations (see Giorgi et al., 1996; Pielke et al., 1999; Maslanik et al., 2000; 

Rummukainen et al., 2001), and therefore, at the beginning of the RCM modelling 

experiment, the initialisation of surface variables, particularly soil moisture and 

temperature are not in equilibrium conditions. Since the atmosphere within the RCM 

domain takes a few model days to achieve equilibrium with its lateral boundary 

conditions, and while the temperature and moisture in the deep soil levels take many 

months to reach equilibrium, it is therefore necessary to allow the atmosphere and 

land surface to adjust or “spin-up” to a mutual equilibrium state prior to the 

commencement of climate simulation. In PRECIS, the spin-up period of 12 months is 

applied and during this period the RCM climate will experience some drift (Jones et 

al., 2004). The output during this spin-up period was not used as input to analyses 

undertaken in this project. 
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2.4.2 Length of simulation 
For regional climate investigations in SEA, the simulation length for the current 

climate (1960-1990) and future climate (2070-2100) has been set for 30 years, 

although the minimum length requirement is at least 10 years. This length is chosen in 

order to provide a reasonable idea of the mean climate change and to better determine 

changes in higher order statistics, particularly for the analysis of climate variability 

(McGregor et al., 1999; Kato et al., 2001; Jones et al., 2004). Longer periods of 

simulation (i.e. 30 years) were found to capture about 75% of the variance of the true 

climate change signals, compared to 50% for 10-year simulations (Jones et al., 1997). 

Another study by Huntingford et al. (2003) has shown that statistically significant 

changes in extreme precipitation can be obtained using 20-30 year simulations. 

 
2.4.3 Boundary conditions 
 

Normally, RCMs are driven with either observed boundary conditions, which are 

derived from Numerical Weather Prediction (NWP) analyses, or with GCM boundary 

conditions (Gibson et al., 1997; Kalnay et al., 1996). For PRECIS-RCM, the boundary 

conditions consist of the surface and lateral boundary conditions. Surface boundary 

conditions are only required over the ocean and inland water points, where time series 

of surface temperature and ice extent are provided and are updated daily. Meanwhile, 

the lateral boundary conditions provide information on atmospheric dynamics and 

thermodynamics at the latitudinal and longitudinal edges of the model domain such as 

surface pressure, winds, temperature, humidity, and sulphur variables (if sulphur cycle 

is chosen) and are updated every 6 hours (Jones et al., 2004). Due to the improved 

aspects of internal physics and dynamics, as well as the incorporation of better large-

scale boundary condition fields, regional biases have been reduced in RCMs as shown 

in a number of previous studies in Europe (Noguer et al., 1998; Jones et al., 1999), 

South East Asia (McGregor et al., 1998), East Asia (Kato et al., 2001), and the US 

(Giorgi et al., 1998). 

 

For the simulation study, the boundary data are obtained from the four 30 year 

integrations of the HadAM3P (atmosphere-only) GCM. For the two selected future 

scenarios (A2 and B2), the sea-surface boundary conditions are derived by combining 

changes in sea-surface temperature (SST) and sea ice simulated in integrations of 
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HadCM3 (ocean-atmosphere GCM) with the HadISST (observed time-dependent 

fields of SST and sea ice), which has been detailed by Moberg and Jones (2004). 

Meanwhile, the evolution of greenhouse gases (GHGs) and sulphur dioxide (from 

anthropogenic and natural sources) concentrations prescribed in the regional model 

over the simulated period are the same as in the corresponding HadCM3 experiment, 

which were calculated offline from the SRES emission scenarios data (Jones et al., 

2004). 

 

2.4.4 Post-Processing and Visualisation of PRECIS Data 
 

Once the modelling run was completed, all PRECIS output data were saved under the 

$ARCHIVEDIR/RUNID directory. All the PRECIS output data were generated in the 

pp format, which is a default file format. The pp format is a record-based binary 

format, a UK Met Office proprietary format, mainly associated with Met Office 

products. One of the advantages of this format is that the data format can be converted 

to other data formats such as GRIB and NetCDF (network Common Data Form) at 

any time for post-processing (Wilson et al., 2005). In this study, the output file is 

manipulated in pp format using the utility package and then it is converted to NetCDF 

format (nc). The PRECIS output data with a fine resolution of 50 km x 50 km (0.44°) 

were then re-interpolated to a slightly coarser resolution (0.5o), the same resolution as 

the CRUTS2.1 datasets, in order to facilitate model validation in Chapter 5 but the 

output remains the original resolution for analysis in Chapter 6. In this study, the 

PRECIS output is visualised using GrADS (Grid Analysis and Display System; 

http://www.iges.org/grads/gadoc/users.html).  

 

2.5 Statistical methods 
 
In the investigation of climate change using RCMs, there are a number of 

uncertainties that need to be taken into consideration when discussing the simulation 

results. This section provides brief insights of uncertainties in climate modelling 

(regional or global) resulting from the development of climate scenarios or from the 

model itself, and how these uncertainties were addressed using PRECIS. Future 

emission uncertainty has been one of the most clearly identified major causes of 
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uncertainty in future climate projection (Jones et al., 2004) and has been well 

documented (Morita et al., 2001). This is due to the inherent uncertainties in key 

assumptions and relationships about future population, socio-economic development, 

and technology changes that are the basis of the IPCC SRES Scenarios (Morita et al, 

2001). In PRECIS, the future emissions uncertainties have been addressed by running 

the Hadley Centre GCM with a range of emission scenarios (SRES A1F1, A2, B2, 

and B1 emissions) (Jones et al., 2004). In this project we consider only A2 and B2 

emission scenarios because these projections represent the possible worst and central 

estimates, producing a range of results which are useful to policy makers for agreeing 

climate adaptation and mitigation decisions. 

 

Another important uncertainty that has been identified in the use of RCMs is the 

future concentration of atmospheric pollutants, due to the incomplete understanding 

of the processes and feedbacks in the carbon cycle and chemical reactions in the 

atmosphere that affect the emissions-to-concentration relationships. So far, this 

uncertainty has not yet been addressed in the current PRECIS-RCM, but in the near 

future this uncertainty will be reflected in climate scenarios by using atmosphere-

ocean general circulation models (AOGCMs) that explicitly simulate the carbon cycle 

and chemistry of all relevant species (Jones et al., 2004). 

 

Incomplete description of the key processes and feedbacks in the climate models has 

also contributed to the uncertainty in the response of climate systems (Jones et al. 

2004). The current GCMs, which contain different representations of the climate 

system, project different patterns and magnitudes of climate change for the same 

period and same concentration scenarios (Cubasch et al., 2001). In climate impact 

studies, this uncertainty can be addressed by using a number of different GCMs, 

though this approach is still under development by the Hadley Centre (Jones et al., 

2004).  

 

The exhibition of internal variability in RCM simulations, due to linear internal 

dynamics not associated with the boundary forcing, has been identified as another 

factor of uncertainty in RCM simulations (Ji and Vernekar, 1997; Giorgi and Bi, 

2000; Christensen et al., 2001). Uncertainty in the model simulation is reflected by 

annual and decadal climate variability. This uncertainty can be quantified, and 
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therefore can be addressed by running ensembles of climate projections. In PRECIS-

RCM, an ensemble of three experiments or realisations for both Baseline (Control) 

Scenario and SRES A2 and one experiment for SRES B2 are provided (see Section 

3.3.2), which used the same model and same emission scenarios but initiated from a 

different starting point (Jones et al., 2004). 

 

Regionalisation techniques have been developed allowing fine scale information to be 

derived from the GCM output and applying to a wide range of climate-change 

problem. The approaches can be divided into statistical and dynamical technique. 

Applying regionalization, it is necessary to fully understand the assumptions and 

potential and limitations. In applying dynamical technique, i.e., RCM, uncertainties 

also arise from the regionalisation of climate change models from the driving GCM 

fields, as any errors from the GCMs are carried with them during this process. The 

inherent effect of systematic errors from the driving large-scale fields provided by the 

GCM have been observed and described in previous studies (Pan et al., 2001; Mearns 

et al., 2001). The differences in regionalisation techniques not only resulted in 

different projections, but even the use of the same regionalisation techniques on the 

same GCM projection can also give different projections. For example, using 

different RCMs with the same driving GCM, each RCM provides different 

simulations. This uncertainty issue can be addressed by using other RCMs or by 

carrying out statistical downscaling in parallel with PRECIS (Jones et al., 2004). 

 

2.5.1 RCM validation 
 

Mearns et al. (2003) stressed that any regional climate model for climate change 

studies should be capable of reproducing the present day climate of the studied region 

with reasonable error bounds. Since the signals of GCM and RCM are often different, 

either at the regional or sub-regional scale, it is therefore important that the RCM 

simulations are validated and the performance of the simulation is verified to ensure 

that the model errors are identified, quantified, and understood, as these can help in 

the interpretation of the climate change simulations. The RCM validation is essential 

for a number of reasons, primarily because most of the PRECIS runs are over new 

areas where the model performance is untested, and also as an indicator of how much 
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credibility the RCM results have and how the model should be used in impact studies 

(Wilson et al., 2005). Furthermore, in assessing the model, the discrepancies between 

GCM, RCM and the real observations can be addressed by identifying any systematic 

model bias, spatial sampling issues (differences in resolution of model and 

observations) and observational errors (gridding issues, instrument-dependent errors). 

In this study, the validation of PRECIS is undertaken as follows: PRECIS-CRUTS2.1, 

PRECIS-ERA and PRECIS-GCM. 

 

2.5.2 Future Climate Projection 
 

In this study, the climate projections of PRECIS are analysed by comparing PRECIS-

future with PRECIS-baseline and PRECIS & GCM. The comparison of GCM-future 

and GCM-baseline is also analysed. The correlation, or the correlation coefficient, is a 

normalised measure of how well the simulated and observed data co-vary. The bias of 

a series of observations and their corresponding simulations can be interpreted as a 

systematic error for a given variable. If the bias is less than zero then the model is 

under-predicting the mean, and if the bias is larger than zero then the model is 

overestimating the mean. The typical difference between observations and model 

predictions can be estimated by using the Mean Square Error (MSE). The MSE will 

have the value zero for a perfect forecast. However, it is sensitive to only a few large 

differences between observations and predictions due to the squaring of the 

difference. A variant of the MSE is the Root Mean Square Error, which can be 

interpreted as the expected error of the simulations. Another variant is the Normalised 

Mean Square Error (NMSE) that obtains a value between 0 and 1, which can be 

practical when comparing the relative efficiency between observations and 

simulation. A two-sided student t-test was also used to measure the statistical 

significance of the difference between averages of two series of datasets. 



Chapter 3 

Data and Tools 
 

3.1 Introduction 
 

In this chapter, detail is given of the regional climate model system utilised in this 

thesis, the Providing REgional Climates for Impact Studies (PRECIS) model. Also 

discussed are the observational datasets used in this research for establishing a 

climatology of Thailand and for model verification. 

 

3.2 Observational Dataset 
 

To address the aims of this project, there is a desire for long, high resolution, 

continuous observational datasets over the region of SEA. This section describes the 

detail of those datasets. 

3.2.1 Thai surface station observational dataset 
 
There are currently 87 surface measurement weather stations unevenly spread over 

the whole area of Thailand, data for which are provided by the Thai Meteorology 

Department (TMD) (Figure 3.1(a)). The meteorological data are available at monthly 

and daily temporal resolution, three hourly at some sites. A charge is made in 

response to data requests, even for education purposes, of approximately 1 penny per 

kilobyte. The data volume for one single site would be approximately 8.5 Mb, costing 

£85, so the dataset for the complete Thai network would cost around £7,000. Written 

requests were made asking for the fees to be waived. Over a period of twelve months, 

free access to an essential subset of the station network was negotiated; stations were 

selected which broadly encompassed the range of climatic environments across 

Thailand. The period which the data covers in this study is 1961-1990 because this is 

the period over which the model climate simulations are being evaluated.  
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Figure 3.1. : (a) Locations of the 87 stations over Thailand (b) Location of 5 selected 

stations in Thailand (source: www.googleearth.com). 

 

The TMD classified the climate of Thailand into four geographic regions.  The 

northern part is mountainous with the highest peak 2,565 m above sea level. The 

northeastern part consists of Plateau with average altitude of 140-200 m above sea 

level while the centre of Thailand is very flat. Eastern areas consist of a mixture of 

mountainous and plain areas. Southern Thailand is a peninsula with the Gulf of 

Thailand and part of the South China and Andaman Seas.  The 87 surface 

measurement stations spread over Thailand are categorized into these four regions; 

each station located in the same region has a similar mean air surface temperature 

seasonal cycle. Chiang Mai, Phitsanulok, Ubon Ratchathani, Surat Thani and 

Bangkok were carefully chosen as study sites because they characterise the range of 

topographies in Thailand located in northern, lower northern or upper central, 

northeastern, southern areas and in the capital of Thailand. The correlation 

coefficients between station pairs of mean monthly surface temperature and 

precipitation over the available period 1970-1990, as shown in Tables 3.1 and 3.2, 

indicated that these chosen stations reasonably represent regional climate. 

CM 

Phitlok 

Ubon 

BKK 

Surat 
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Table 3.1: Correlation coefficient of mean monthly surface temperature (1970-1990) 

between the selected station and nine nearest stations in the same region.  

 

Nearby 

stations 

Chiang Mai 

(North) 

Phitsanulok 

(lower North) 

Bangkok 

(Center) 

 

Ubon 

Ratchathani 

(Northeast) 

Surat Thani 

(South) 

1 0.992 0.985 0.985 0.986 0.969 

2 0.983 0.996 0.990 0.998 0.968 

3 0.981 0.980 0.985 0.987 0.956 

4 0.992 0.993 0.982 0.987 0.931 

5 0.995 0.989 0.983 0.995 0.962 

6 0.993 0.993 0.996 0.991 0.922 

7 0.996 0.984 0.987 0.983 0.957 

8 0.989 0.987 0.998 0.986 0.920 

9 0.972 0.992 0.982 0.974 0.922 

 

Table 3.2: Correlation coefficient of mean monthly precipitation (1970-1990) between 

the selected station and nine nearest stations in the same region. 

 

Nearby 

stations 

Chiang Mai 

 

Phitsanulok 

 

Bangkok 
 

Ubon 

Ratchathani 

Surat Thani 

 

1 0.972 0.973 0.988 0.955 0.902 

2 0.962 0.968 0.971 0.991 0.945 

3 0.974 0.967 0.986 0.965 0.965 

4 0.99 0.939 0.984 0.93 0.924 

5 0.97 0.943 0.953 0.982 0.917 

6 0.979 0.973 0.948 0.981 0.937 

7 0.954 0.924 0.995 0.978 0.913 

8 0.921 0.936 0.976 0.922 0.898 

9 0.976 0.947 0.996 0.987 0.905 

 

These stations (Figure 3.1) also have long and reliable records (Table 3.3). In terms of 

recording time scale, these five stations have 30 year daily records covering the 
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baseline 1961-1990 period to support the subsequent modelling work. The data 

consists of daily surface measurements of precipitation amount, 

minimum/maximum/mean temperature, cloud fraction and mean pressure along with 

rawinsonde data, i.e. vertical profiles of wind, temperature and humidity.  

 

Table 3.3: Percentage of missing surface meteorological data during the period 1961-

1990 

Station  Daily 

precipitation 

Daily temperature Daily wind profile 

CM 1.78 0 1.78 

Phitlok 1.60 0 1.60 

BKK 2.52 0 2.52 

Ubon  1.79 0 1.79 

Surat 3.15 0 3.15 

 

The Chiang Mai (CM) site, 312m above sea level, is nearby the area of highest terrain 

in Thailand which extends from the Himalaya range to the north. Chiang Mai 

province, the 2nd largest province in Thailand, divides into two contrasting 

geographical areas (i) 80% mountainous over northern and western watershed areas 

and not suitable for cultivation (ii) basin plain and flat area between valleys. The 

typical altitude in northern Thailand is about 250-400 m above sea level.  

The Phitsanulok site, hereafter called Phitlok, is 45m above sea level and was chosen 

because it was likely to be affected by tropical depressions more than the other 

stations among nearby stations approaching from the South China Sea. Phitsanulok 

province has generally high terrain in the northern region, and basin plains in central 

and southern areas.  

The Ubon Ratchathani site, hereafter called Ubon, is located 123m above sea level. 

General plateaus average 68m above sea level sloping to the east to the river Mekong 

and the southern border of the province is hilly. 

The Surat Thani site, hereafter called Surat, is located on the Thai peninsula. Surat 

Thani Province is located on the east coast of southern Thailand with varied 

topography; hilly, mountainous, coast of the Gulf of Thailand. The province is 
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typically rainy during the northeast monsoon flow with moisture from the South 

China Sea and Bay of Thailand as mentioned in chapter 1. 

The Bangkok (BKK) site, 3m above sea level, is also a challenging location for 

representation by models. As capital of Thailand it is the most crowded and polluted 

urbanised area in Thailand, and the main river basin for flow from central Thailand. 

This station might be particularly affected by an urban heat island phenomenon that 

would be difficult for an RCM to fully account for. The temperature difference 

between urban and rural areas is known as the Urban Heat Island (UHI) and this is 

greatest under clear-sky, low-wind situations which often occur during wintertime at 

higher latitude locations globally. Stations located in urbanized areas typically show 

large increases in mean maximum/minimum surface temperature (Voogt and Oke, 

2003) due to the storage and later release of solar energy by the urban fabric and 

exacerbated also by city anthropogenic heat sources. Bangkok city is expanding its 

borders and population due to increased industrialization and urbanization. This can 

lead to increases in temperature in the urban area (moderated however by the coastal 

location) and create an urban heat island which can affect human comfort and air 

pollution concentration and lead to higher energy consumption for air conditioning. 

Tran et al (2006) revealed large highest day time surface UHI intensity values using 

satellite measurements in most Asian megacities in the period 2001-2003 , such as in 

Tokyo (12 °C), Bangkok (8 °C), and Shanghai (7 °C). Tonsuwonnont (2006) also 

mentioned that the maximum intensity of around 6-7°C is detected during clear and 

calm nights in the dry season (when excess energy is more likely to contribute to 

sensible heat transfer rather than for evaporating water). Moreover, she found that the 

mean annual air temperature in Bangkok city is higher by 0.8°C than outside the city 

by using hourly air temperature data from ten automatic stations around Bangkok, one 

in rural site and nine in urban sites during 2000-2004. The magnitude of observed 

surface UHIs are positively correlated with urban growth and the population density 

of that area and inversely proportional to wind, clouds, and precipitation. An inverse 

relationship between green area and surface temperature is found and the difference 

between urban parks and built-up areas can be 6-8°C (Tonsuwonnont, 2006). A 

decrease in urban vegetation and the extension of the built-up area can enhance the 

magnitude of the UHI. The location of Bangkok monitoring station is within the city 

environment, located about 30 km north of the Gulf of Thailand. There is no 

published evidence that the other selected stations here are affected by an UHI. 
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Table 3.4: Location and Elevation of surface monitoring stations in the study area and 
average of four nearest model grid cells 

Location Elevation (m) Station name 

Station Model grid cell Station Model grid 

cell 

Chiangmai 18.78°N, 

98.98°E 

18.83°N, 98.82°E 312 606.1 

Phitsanulok 16.78°N, 

100.27°E 

16.99°N,100.08°E 45 317 

Bangkok 13.73°N, 

100.57°E 

13.85°N, 

100.74°E 

3 5 

Ubon 

Ratchathani 

15.25°N, 

104.87°E 

15.34°N, 

104.85°E 

123 122.4 

Surat Thani 9.12°N, 

99.35°E 

9.12°N, 99.07°E 5 140.7 

 

It is clear in Table 3.4 that PRECIS is using a terrain field over northern Thailand 

where the nearest gridcells are higher than the stations adopted here for model 

verification – these altitude differences will need to be accounted for in the analyses.  

 

The TMD considered geographies and divided the climate of Thailand into 4 sectors 

which are covered by the stations selected. 

(i) North (CM and Phitlok); mostly north-south mountainous terrain 

(ii) Northeast (Ubon); hilly and sloping southeastward 

(iii) Central (BKK); plains sloping down to the Gulf of Thailand 

(iv) Southern (Surat); Peninsula situated between the Andaman Sea to the west 

and the Gulf of Thailand in the east. 

 

Peel et al. (2007) produced a global map of climate using the Koppen-Geiger system 

based on a large global data set of long-term monthly precipitation and temperature 

station time series. Figure 3.2 shows climate types for SEA. A description of Koppen 

climate types is shown in Table 3.5. 
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Figure 3.2: The map of Koppen-Geiger climate type over SEA (Peel et al., 2008) 

[Noted that the red point in the map representing 5 selected station; i.e., CM, Phitlok, 

Ubon, BKK and Surat] 

 

Tabel 3.5: A description of the Koppen climate symbol (Peel et al., 2007) 

Tcold =Temperature of the coldest month 

Pdry =Precipitation of the driest month 

MAP=mean annual precipitation 

 

1st 2nd Description Criteria 

A  Tropical Tcold≥ 18 oC 

 f - Rainforest Pdry ≥60 

 m - Monsoon Not (Af) & Pdry  ≥ 100 – MAP/25 

 w - Savannah Not (Af) & Pdry  < 100 – MAP/25 

 
 
 

   Aw 
 
   Am 
 
   Af 
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SEA is classified as having a tropical moist climate which means that average surface 

temperature each month is higher than 18°C and total precipitation is higher than 150 

cm per year. The maximum mean temperature difference between daytime and 

nighttime is up to 10°C. 

Based on the Koppen climate classification, the regions of north, northeast and central 

Thailand are considered as Aw (Savannah Climate) and southern Thailand as Am 

(Tropical Monsoon). Therefore, Chaing Mai, Phitsanulok, Bangkok and Ubon 

Ratchathani stations are considered in the same Koppen classification, Aw, while the 

southern station, Surat Thani, is considered as Am. 

 

These sets of daily station data are used (i) to underpin the analysis of climate 

including the study of the mesoscale southeast monsoon onset and the effect of El 

Niño and La Niña events in chapter 4 and (ii) to compare and validate grid point 

model output in chapter 5. 

 

It is worth recalling that systematic errors can appear in point precipitation 

measurements. Such errors could occur due to the following reasons: (i) Aerodynamic 

effects; (ii) wetting of the internal walls of the gauge; (iii) evaporation of water in the 

gauge; (iv) surrounding afforestation and (v) splashing of raindrops away from or into 

the gauge.  

 

Aerodynamic effects have the most influence on the accuracy of raingauge 

measurements. These effects cause greater systematic errors if rain gauges are set 

above the ground surface. The systematic error range in measurements of 

precipitation varies from 10% to 30 % and depends on wind velocity and precipitation 

type.  Wind is the most dominant environmental variable affecting the gauge 

collection efficiency, for example, with wind speeds exceeding 3 ms-1, the wind 

caused losses may be above 5% (Goodison et al., 1998). 

 

Wetting loss is another cumulative systematic loss from manual gauges which 

depends on precipitation type and gauge type and the frequency with which the gauge 

is emptied. Average wetting loss for some gauges can be up to 0.3mm per 

observation. Countries using manual gauges for precipitation measurement have 
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determined the average wetting loss for their National gauge. At synoptic stations 

where precipitation is frequent and measured every six hours, this can become a very 

significant amount, for example, wetting loss was calculated to be 15-20 percent of 

the measured winter precipitation at some Canadian stations (Goodison et al., 1998). 

 

Evaporation from manual gauges can significantly lead to the systematic under-

measurement of precipitation. Aaltonen et al. (1993) reported on the comprehensive 

assessment in Finland of evaporation loss. Average daily losses varied by gauge type 

and time of year, for example, evaporation loss was a problem in the late spring; 

evaporative losses from the gauge in April of over 0.8 mm/day were measured. 

Losses during winter were much less than that recorded during comparable spring and 

summer comparisons, and ranged from 0.1-0.2 mm/day. These losses, however, are 

cumulative. Many gauges install a funnel for summer (precipitation) measurements, 

helping to reduce potential evaporation loss. 

 

Increase of collected precipitation amounts from the exposed gauge site will appear a 

few years after any surrounding afforestation, when the height of growing trees 

reaches above the level of the gauge opening.  

 

3.2.2 Gridded Observational Data 

The high resolution half degree resolution monthly surface climatology of the global 

land area for the period 1901-2002, CRUTS2.1 (Mitchell and Jones, 2005), comprises 

nine variables: cloud cover, diurnal temperature range, frost day frequency, 

precipitation, mean temperature, minimum temperature, maximum temperature, 

vapour pressure and wet day frequency. Primary variables, such as precipitation, 

mean temperature, and diurnal temperature range, were interpolated directly from 

station observations. Secondary variables were interpolated from merged datasets 

comprising station observations and, in regions where there were no station data, 

synthetic data estimated using predictive relationships with the primary variables. In 

this study the relevant modelling period is the period 1961-1990. The data are in large 

ASCII formats which are in 360x720 grid cells so the data is converted to netcdf 

format by using Climate Data Analysis Tools, CDAT. The sources of station data 
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contributing to CRUTS2.1 are the World Meteorological Organisation (WMO), 

National meteorological agencies, CRU global datasets of station time series, the 

Centro Internacional de Africultura Tropical South American database, published 

sources and the U.S. Air Force Climatological Data Volume. Data from the WMO 

collection were comprehensively analysed to quality control (QC) checks, for 

example, data failing QC were flagged by the National Climate Data Center and were 

removed from interpolation for CRUTS2.1. All data from the other sources were 

subjected to a two stage QC process; (i) internal consistency checks and between 

variable consistency tests and (ii) interpolation of station data with identification of 

station months with large residuals. Data failing QC were removed, however, the data 

could be replaced with data from the CRU monthly station time series. The accuracy 

of the monthly grids for temperature is most reliably interpolated from the available 

station data while precipitation reliability is lower. The less reliable variables have 

poor data coverage and complex topography particularly Greenland, the Himalaya-

Tibetan region and SEA during the active monsoon season. Some errors in station 

location were not identified in the interpolation process. However, comparing CRU 

precipitation to other climatological data sets, for example, Legates and Willmott 

(YEARLEG), Leemans and Cramer (YEARCRA), CRU grids are more accurate in 

high elevation regions. Uncertainties in primary variables, such as temperature, may 

be caused by poor measurements, uncertainties in the station data, sampling 

uncertainties caused by the limited number of measurements available, and large-

scale biases such as urbanisation. 

The data are interpolated by using a distance weighting which has a number of 

variants in both the selection of stations that contribute to a grid point estimate and the 

form of the distance weighting function. The eight nearest stations are used, 

regardless of direction or distance, in estimating each grid point value. All stations are 

first weighted by distance from the grid point. The limitation of this gridded data set is 

that interpolation over SEA as a function of latitude and longitude ignores the 

influence of elevation. However, interpolation of mean temperature and diurnal 

temperature range as a function of only latitude and longitude is adequate. The 

stations used in the interpolation in the SEA region are shown in Figure 3.3. More 

detail is available in Mitchell and Jones (2005). The data are available from the 

Climatic Research Unit via http://www.cru.uea.ac.uk/cru/data/hrg/cru_ts_2.10.  
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Figure 3.3: Location of stations used in the CRUTS2.1 interpolation over SEA. (New 

et.al, 1998) 

 

The purpose of using the surface station observational dataset in this study is to build 

a climatology and validate the model performance at individual points at the daily 

timescale while the objective of using the monthly gridded data is to analyse spatial 

variation and directly compare with the spatial model output. [Note that the CRU 

dataset has resolution of 0.5x0.5 degree while the RCM downscales to 0.44x0.44 

degree so, in this study the RCM outputs are re-gridded to the coarser CRUTS2.1 

resolution.] 

 

Tables 3.6 and 3.7 show comparisons between station data and the nearest CRUTS2.1 

grid cell data. The station sites are located at the centre of the 9 surrounding grid cells. 
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Table 3.6: Correlation coefficient of mean monthly surface temperature (1970-1990) 

between surface stations and the respective nearest grid cell data. 

Nearby 

grid cell 

Chiang Mai Phitsanulok Bangkok Ubon 

Ratchathani 

Surat Thani 

1 0.99 0.995 0.985 0.992 0.968 

2 0.996 0.997 0.991 0.987 0.972 

3 0.991 0.986 0.986 0.983 0.981 

4 0.992 0.991 0.984 0.972 0.988 

5 0.986 0.987 0.982 0.985 0.963 

6 0.991 0.989 0.995 0.991 0.985 

7 0.993 0.993 0.993 0.978 0.977 

8 0.989 0.992 0.984 0.981 0.97 

9 0.987 0.982 0.986 0.995 0.959 

 

Table 3.7: Correlation coefficient of mean monthly precipitation (1970-1990) between 

surface stations and the respective nearest grid cell data  

 

Nearby 

grid cell 

Chiang Mai Phitsanulok Bangkok Ubon 

Ratchathani 

Surat Thani 

1 0.979 0.978 0.977 0.965 0.914 

2 0.972 0.979 0.985 0.981 0.962 

3 0.988 0.951 0.976 0.953 0.973 

4 0.975 0.95 0.984 0.94 0.933 

5 0.977 0.941 0.993 0.991 0.939 

6 0.941 0.951 0.971 0.986 0.945 

7 0.963 0.966 0.985 0.988 0.921 

8 0.943 0.951 0.964 0.934 0.914 

9 0.985 0.988 0.976 0.987 0.912 

 

The CRUTS2.1 dataset was created by calculating a mean climate for 1961–1990, and 

then calculatingting anomalies for that period and adding them to the mean to create 

the full field (New et al. 1999, 2000). The station data were interpolated to the grid 

using thin plate splines considering latitude, longitude, and elevation as parameters. 
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No corrections for rain gauge type, wind conditions, or anthropogenic disturbances 

were applied. The uncertainties in the gridded data depend on effects of the station 

uncertainties, on the density of stations and on sampling error. 

 
It is of course also instructive to compare the relative degree to which ERA40 data 

and CRUTS2.1 correlate with the station data used in this project In comparison with 

the station observations CRUTS2.1 best matches annual precipitation, while ERA-40 

reports less precipitation than the observations. With regard to the amplitude of the 

inter-annual variations, CRU is better than the reanalyses in representing the 

corresponding observations. The amplitude in CRUTS2.1 is almost the same as TMD 

over northern and southern Thailand but that of ERA-40 is higher and lower than the 

observations in northern Thailand and the other three parts of Thailand, respectively. 

ERA-40 has a less obvious inter-annual variability than CRUTS2.1 and TMD in the 

mainland of Thailand. The results also suggest that the magnitude of the precipitation 

difference between ERA-40 and the station observations is larger than that between 

CRUTS2.1 and the observations.  
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Figure 3.4: Area average annual mean total precipitation (mm) from 1961-1990 

comparing ERA40 data, CRUTS2.1 and station data (using monthly averages for 89 

stations). (a) Northern Thailand (b) Northeastern Thailand (c) Central Thailand (d) 

Southern Thailand  

3.2.3 TRMM satellite data  
 

The main goal of the Tropical Precipitation Measuring Mission (TRMM), a joint 

scientific initiative between NASA and NASDA, the National Space Development 

Agency of Japan, (ex-organization of JAXA, Japan Aerospace Exploration Agency) is 

to provide accurate estimates of global tropical precipitation (Simpson et al. 1996). 

TRMM's sensors, including the precipitation radar and the TRMM Microwave 

Imager, have provided information about precipitation in the Tropics since 1997. 

TRMM’s orbit which allows for coverage of the tropics taking about 91 minutes for 

one orbit around the earth is circular which ranges between 35°N and 35°S of the 

equator at an attitude of 350km.  Information on monthly precipitation is important 

for the evaluation of regional model simulations, especially where other forms of 

observational datasets are lacking. Satellite observations are also important for 

contributing to a better understanding of the global water cycle. However, satellite 

data sometimes have large biases and need to be compared with and adjusted to site 

observations. It was shown that the TRMM 3B42 data is useful for estimating the 

average values of precipitation over Bangladesh (Islam and Uyeda, 2006). They 



 73

compared daily precipitation measured by TRMM 3B42 to that of rain-gauge values 

from pre-monsoon to post-monsoon months (March–November) and found that 

spatial and temporal averages of precipitation revealed good estimations of 

precipitation: during March to November; the V5 3B42- and rain gauge-estimated 

daily average precipitation were 8.12 and 8.34 mm, respectively. The average 

percentage of rainy days determined by V5 3B42 data with respect to the rain-gauge 

value was 96%.  

 

As in Bangladesh, the SEA climate is also influenced by the movement of the ITCZ. 

In this thesis, the 3-hourly TRMM product 3B42 (Adler et al. 2000) data are used to 

describe the general precipitation patterns within the wet and dry spells associated 

with monsoon intra-seasonal variability. All TRMM datasets are distributed by the 

Goddard Distributed Active Archive Center (see online at 

lake.nascom.nasa.gov/data/dataset/TRMM/). The 3-hourly TRMM data are an 

optimal combination of different high-quality microwave products to adjust infrared 

estimates from high-frequency geostationary observations (see online at 

http://trmm.gsfc.nasa.gov/3b42.html). Therefore, the dataset does not have issues 

arising from satellite sampling issues and it provides a reasonably good idea of the 

convective activity throughout the day. The spatial resolution of this dataset is 0.25° 

with data available from January 1998 to the present. The average precipitation, as 

shown in Figure 4.1 in the following chapter, are from the available period of January 

to August 2009. In this study, TRMM satellite is used to contribute to the 

understanding of ITCZ movement and for the purpose of model validation. One of the 

uncertainties in the TRMM satellite data set compared to surface precipitation 

observations is that gauges give a near-point precipitation rate while radar estimates 

correspond to a volume-averaged precipitation rate. Stephen (2009) indicated that 

variability of a factor of 2–10 inches (50-250mm) is common in actual annual 

precipitation totals over spatial scales of several to tens of kilometers in steep 

topography. Franklin (2002) highlighted that TRMM is the first satellite to carry both 

active and passive sensors for measuring precipitation with associated uncertainties; 

passive estimates are a less direct measure of precipitation. 
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3.2.4 NCEP–NCAR reanalysis 
 
Average monthly zonal and meridional wind components were obtained from the 

National Centers for Environmental Prediction–National Center for Atmospheric 

Research (NCEP–NCAR) reanalysis product archived on a 2.5° grid for use in 

describing the general climate of Thailand 

(www.esrl.noaa.gov/psd/data/gridded/data.ncep.reanalysis.html). 

 

3.3 Model boundary and initial condition data 
 

3.3.1 Hadley Centre Atmospheric Model version 3 with higher 
resolution (HadAM3P) 
 

The HadAM3P is an atmosphere-only GCM with a spatial resolution of 1.24° latitude 

× 1.88° longitude (~150 x 150 km) and a timestep of 15 minutes (Pope, 2000). The 

output from this model is provided by the UK Meteorological Office. HadAM3P is 

UKMO’s GCM which is used extensively in the IPCC 4th Assessment. The initial 

atmospheric and land surface conditions in HadAM3P are interpolated from the 

atmosphere model, HadAM3, with a lower-resolution of 3.75° latitude x 2.5° 

longitude (~300 km). The HadAM3 is based on the previous version of the climate 

model HadAM2b, described by Stratton (1999), with some major improvements (not 

shown here, see Pope, 2000). In terms of the output used in this study, the tropical 

cold bias is reduced by 0.3°C in the annual mean in HadAM3 when compared to 

HadAM2b and there is less precipitation over most regions in the tropics. There are 

increases in precipitation over the Indonesian region. These show improvement in 

simulation over the region. 

 

3.3.2 ECMWF Reanalysis Data (1951-2001); ERA40 
 

The ERA40 spans the period of September 1957 to August 2002. The data set consists 

of 6 hourly analyses with a resolution of TL159 (2.5° x 2.5° regular latitude/longitude 

grid). The data during 1957-1972 is known as “pre-satellite” with old observation 
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types only while the data during 1972-1988 incorporates the assimilation of some 

satellite observation types and the data during 1988-2002 incorporate the assimilation 

of other latest observation types. ERA40 produces surface wind analyses and surface 

turbulent exchanges more realistically than ERA15. A revised and more accurate 

surface orography description has been used in the ERA-40. The most serious 

problem diagnosed in the ERA-40 analyses is excessive tropical oceanic precipitation 

since 1991 (note that in this study, the baseline period is 1961-1990). Chan and 

Nigam (2009) indicated that ERA-40 tropical heating and divergent circulations were 

found to be stronger in the tropics (especially in the summer, July) than in NCEP-

NCAR reanalyses, which is consistent with the stronger Hadley Circulation. 

Moreover, ERA-40 reanalyses show a significantly stronger ITCZ than NCEP-NCAR 

Reanalysis. Challinor et al. (2005) mentioned that ERA-40 overestimates the 

frequency of light rains, and underestimates heavy rains over India. Simmons et al. 

(2004) noted that gaps in the availability of synoptic surface data contribute to 

relatively poor performance of ERA-40 prior to 1967, leading to a warm bias.  

3.4 PRECIS modelling 

3.4.1  Introduction 
 

The PRECIS model (Providing Regional Climates for Impact Studies), which was 

used in the research was developed by the UKMO Hadley Centre with a resolution of 

50km x 50km, is capable of producing a high resolution climate with reasonable 

computational requirements (Jones et al., 2004) and has been used in a number of 

climate change impact studies in South Asia (Bhaskaran et al., 1998; Hassel and 

Jones, 1999; Islam and Mannan, 2005; Challinor et al., 2006;  Kumar et al., 2006), 

East Asia (Erda et al., 2005; Wang and Shallcross, 2005), Europe (Moberg and Jones, 

2004; Lalas et al., 2005), Africa (Hudson and Jones, 2002; Arnell et al., 2003; Beraki, 

2005), and North America and South America (Martineu, 2005; Marengo and 

Ambrizzi, 2006). Further details of these studies are given in Chapter 1. 

 

PRECIS, also know as HadRM3P, is the latest Hadley Centre model based on the 

atmospheric component of the HadCM3 climate model (Gordon et al., 2000), which 

differs from earlier versions mainly in the representation of dynamic and convective 

clouds and thresholds associated with the formation of precipitation. The model 
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employs one-way nesting. The nesting ensures that the RCM results are consistent 

with the driving model GCM projection; the additional detail due to the increase in 

resolution facilitates interpretation of climate responses and impacts (Hudson and 

Jones, 2002; Arnell et al., 2003; Wang et al., 2004). Using this approach, the GCM is 

used to simulate the response of the global circulation to large-scale forcing, while the 

RCM is used to account for sub-GCM grid scale forcing in a physical way 

(orography, land cover, etc.), and to enhance the simulation of atmospheric circulation 

and climatic variables at fine spatial scales (Mearns et al., 2003). PRECIS is an 

atmospheric and land surface model of a limited area with a horizontal resolution of 

0.44° x 0.44° (50 x 50 km) or 0.22° x 0.22° (25 x 25 km) on its own rotated latitude-

longitude grid and has a timestep of 5 minutes.  

 

PRECIS is embedded in the atmosphere-only GCM (HadAM3P) which has spatial 

resolution of 1.24° latitude × 1.88° longitude (~150 x 150 km) and a timestep of 15 

minutes. The sea surface boundary conditions are derived by the observed time series 

of HadISST and sea-ice for 1960-1990 for the baseline period and by combining 

changes in SST and sea-ice simulated in integrations of the HadCM3 coupled model 

with the HadISST for the future scenarios. The initial atmospheric and land surface 

conditions in HadAM3P are interpolated from the lower-resolution (3.75° latitude x 

2.5° longitude, ~300 km) coupled ocean-atmosphere model (HadCM3) (Gordon et al., 

2000). Both HadAM3P and HadRM3P (PRECIS) have 19 levels in the atmosphere; 

from approximately 50 m up to the 0.5 hPa pressure level and four levels in the soil 

(Hudson and Jones, 2002). 

3.4.2  Model description 
 

Numerical models such as PRECIS are used to obtain an objective simulation of 

future climates by solving a set of equations that describe the evolution of 

atmospheric variables such as temperature, wind speed, humidity, and pressure. The 

numerical modelling process involves the analysis of the observation data and 

assimilation of those observations in the model in order to generate and obtain the 

best estimate of the current true state of the atmosphere. All numerical models of the 

atmosphere are based upon the same set of governing equations as described in the 

following sections, but differ in the approximations and assumptions made in the 
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application of these equations, how they are solved, and also in the representation of 

physical processes. A numerical model of the atmosphere consists of several 

components such as atmospheric dynamics, physical parameterisations, and sulphur 

cycles (Jones et al., 2004). 

 

Atmospheric dynamics 
The atmospheric component of the PRECIS is a hydrostatic version of the full 

primitive equations and uses a regular latitude-longitude grid, in the horizontal, and a 

hybrid vertical coordinate. All the governing equations of the model are solved 

numerically on a discrete 3-D grid spanning the area of the model domain and the 

depth of the atmosphere. The model simulates values at discrete and evenly spaced 

points in time with a 5-minute timestep to maintain numerical stability. The evolution 

of atmospheric dynamics of pressure, wind, temperature, and moisture are governed 

by three fundamental principles: conservation of momentum, conservation of mass, 

and conservation of energy. 

 

Physical parameterisations 
Physical processes in the atmosphere such as clouds and precipitation, radiation, 

convection and boundary layer exchanges, and gravity wave drag have been 

represented numerically in the PRECIS. Due to computational constraints as well as 

shortcomings due to lack of understanding of the processes involved, assumptions are 

required for the parameterisation of these physical processes (Jones et al., 2004). The 

following sections briefly describe the parameterisation principles of the important 

physical components of the atmosphere in the model. 

 

Radiation 
The atmosphere is driven by solar radiation, which can be divided into short-wave 

(incoming radiation) and long-wave (outgoing radiation) components. The amounts of 

short-wave (sunlight) and long-wave (terrestrial heat) radiation that are absorbed, 

emitted and reflected depend on the properties of the atmosphere such as temperature, 

water vapour, concentration of chemically reactive gases (such as GHG, trace gases, 

etc.), the surface (land cover types, etc.) and the frequency of the radiation. In 

PRECIS, the spectrum of radiation is split into six short-wave bands and eight long-
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waves bands, where each band has different strengths of interaction with atmospheric 

constituents such as GHGs (Jones et al., 2004). Short-wave fluxes depend principally 

on the solar zenith angle (varying according to latitude, season, and time of day), 

clouds and the albedo of the surface, while long-wave fluxes depend upon the amount 

and temperature of the emitting medium and its emissivity (Edwards and Slingo, 

1996). For full radiation calculations, both schemes require more computational 

expense than any other physical process, and thus longer timesteps of about three 

hours (Ingram et al., 1997). 

 

Surface exchange and sub-surface processes 
In PRECIS, the soil and vegetation types that characterise the land points are 

considered in the calculation of the heat, moisture, and momentum fluxes at each land 

grid point. The land cover type was used in the calculations to determine the surface 

albedo, surface roughness length, and hydraulic properties of the roots and the 

vegetated canopy. The HadAM3P component of PRECIS simulates the global 

atmospheric and land surface processes at a horizontal resolution of 2.5º x 3.75º using 

the Radiative Transfer Scheme (Edwards and Slingo, 1996) and Meteorological 

Office Surface Exchange Scheme (MOSES) (Cox et al., 1999). Depending on the 

local land cover types, the parameters representing “snow-free albedo” and 

“maximum deep-snow albedo” in each grid box were assigned with appropriate 

values.For example the albedo parameter was assigned a higher value for open land  

(e.g grassland, pasture and cropland) and lower values for woodland and forests (Cox 

et al., 1999; Betts, 2000).  Within the model, the radiative forcing due to surface 

albedo change can be calculated by performing additional sets of calculations of 

surface albedo and the shortwave radiation budget on a model timestep. In the tropics, 

surface albedo change due to land cover changes may affect the climate via 

evapotranspiration, where the rate of evapotranspiration and the fluxes of sensible and 

latent heat are dependant on the parameters of rooting depth, aerodynamic roughness 

length and canopy water holding capacity (Betts et al., 1997).  

 

In the MOSES simulation, all these parameters are assigned with an appropriate value 

in each grid box, where values are comparatively lower for open land compared to 

forested areas (Cox et al., 1999). In the SEA region, which consists of mostly forested 
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areas, a cooling influence is anticipated as a result of the greater flux of moisture to 

the atmosphere and the larger ratio of latent to sensible heat fluxes. In PRECIS, the 

global datasets of the vegetation parameter values were derived from Wilson and 

Henderson-Sellers (1985) at a resolution of 1º x 1º grid. The land cover dataset has 

specified 53 land cover classes, which includes 11 crop classes, 7 pasture/grazing 

classes, and 1 urban class. In PRECIS, the land cover dataset allows two classes of 

land cover for each grid, namely the primary land cover class if the coverage of the 

grid box is between 50-100%, and the secondary land cover class if the coverage is 

between 25-50%. These vegetation covers, which are represented in the HadAM3 

surface parameter, are then bi-linearly interpolated to the GCM resolution. Meanwhile 

for the soil, a multilayer scheme (4-layer scheme) is used to model the heat transport 

through the soil (Smith, 1993), which also includes the effects of soil water phase 

change and the influence of water and ice on the thermal and hydraulic properties of 

the soil (Jones et al., 2004). 

 

In PRECIS, the soil properties dataset provided by Wilson and Henderson-Sellers 

(1985) was used in the parameterisation of the soil scheme. In MOSES,  the thickness 

of the soil layers from the top are 0.1, 0.25, 0.65, and 2.0 metres, which are 

specifically designed to resolve the diurnal and seasonal cycles with minimal 

distortion. The 4-layer scheme with appropriate values of parameters was found to 

provide good amplitude and phase response for periods of surface forcing between 

half a day and a year; the details of the multilayer soil thermodynamics model can be 

found in Smith (1996). This project assumed no change in surface characteristics in 

the future. 

  

Clouds and precipitation 
The representation of clouds and precipitation in PRECIS is very important as clouds 

interact strongly with solar and infrared radiation, which may affect the occurrence of 

precipitation. The release of latent heat during this process also plays a critical role in 

the movement of air in the atmosphere. Layer cloud cover and cloud water content in 

each grid box of the model are calculated from a saturation variable (qc), which is 

defined as the difference between total water (qτ) and the saturation of vapour 

pressure (see Smith, 1990). The formation of layer cloud is assumed to occur at any 
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level of the 19 levels of the atmosphere, except at the 19th level (top of the 

stratosphere). In PRECIS, an assumption is made that the cloud water is in liquid form 

above 0°C, frozen below -9°C, and a mixture in between (Smith, 1990; Smith et al., 

1998).  

 

The large-scale formation of precipitation is assumed to occur when the threshold 

values of cloud liquid water reach 1.0 x 10-3 (kg/kg) over land and 2.0 x 10-3 (kg/kg) 

over sea (Smith 1990). Large-scale formation of precipitation is dependent on cloud 

water content, with a greater efficiency of precipitation when the cloud is glaciated, 

and assumed to fall on 75% of the land surface within a grid box in the model 

regardless of layer cloud fraction (Jones et al., 2004). The large-scale cloud and 

precipitation scheme of the model has considered the water transfer between clouds 

and precipitation as a result of cloud physics processes, the free fall of ice and rain 

downwards to the earth surface, and the calculation of fractional coverage of cloud in 

each grid box of the model.  

 

The cloud physics processes that are represented in the scheme are condensation of 

water vapour to cloud droplets and the evaporation of these droplets, deposition of 

water vapour to ice crystals or aggregates and the evaporation of these particles, the 

riming of supercooled cloud droplets by ice particles, melting of ice particles to 

produce raindrops, evaporation of raindrops, accretion (“sweep-out”) of cloud 

droplets by raindrops, the collision/coalescence mechanism to form raindrops from 

cloud droplets, and the downward fall of ice particles and raindrops (Wilson and 

Ballard, 1999). This model is also able to account for the convective precipitation 

(occurring on a local scale), which represents the convection of cumulus and 

cumulonimbus clouds. A single cloud model is used to represent a number of 

convective plumes within the grid box, and the convective precipitation is diagnosed 

within that grid box if the cloud liquid/ice content exceeds a critical amount and the 

cloud depth exceeds a critical value. The threshold values of cloud liquid water for 

convective precipitation are higher than for the large-scale clouds and precipitation of 

2 g/kg over land and 0.4 g/kg over sea. This value is set to 1.5 km over the sea and 4 

km over land. However, for cloud depth, if the cloud-top temperature is less than -

10°C, the critical depth is reduced to 1 km over land or sea. Similar to large-scale 
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precipitation, the convection scheme also allows for evaporation and melting of 

precipitation. In each grid box, it is assumed that the convective precipitation falls on 

65% of the land surface, regardless of the convective cloud fraction (Jones et al., 

2004). 

 

Gravity wave and orographic drag 
In the free atmosphere, the gravity wave drag scheme parameterises the effect of the 

mountain ranges on scales between 5 km and the model grid scale, which acts as a 

sink for the momentum. Depending on the conditions of atmospheric stability and 

wind shear, air passing over the mountains may create lee waves, which could result 

in eddies over and to the lee of the mountains and deprive momentum over a 

considerable depth (Palmer et al., 1986). The fundamental elements of this scheme are 

the determination of surface stress, and the distribution of this stress through the 

atmospheric column, which is dependent on the wind speed, density, and static 

stability of the low-level flow, where the low-level flow is the layer of air that 

intersects the sub-grid scale orography (McIntyre, 1980). Closer to the earth's surface, 

the orographic drag scheme parameterises the effect on the boundary layer of sub-grid 

scales of about 5 km or less, where the wind speed decreases due to interaction with 

the roughness of the earth surface. The orographic drag is determined in terms of a 

constant drag coefficient and linearly depends on the silhouette area of orography, 

which is a measure of the slopes within a grid box (Jones et al., 2004). The calculation 

also uses an effective roughness length, which is a combination of the effects of the 

topography and vegetation within a grid box (see Gregory et al., 1998) but does not 

take into account the wave reflection or trapping as well as the gravity waves 

generated by other means such as convective storms (Wilson and Swinbank, 1996). 



Chapter 4 

The Climate of Thailand based on Observational 
Data 

 

4.1 Introduction 
 

This chapter examines Thailand climatology using the station and gridded 

observational datasets described in Chapter 3. The year-to-year and seasonal 

variability along with the spatial patterns in the period 1961-1990 are analysed, 

supported by satellite and model data from more recent years. The estimated 

southwest monsoon onset date is also investigated. The impact of tropical cyclones 

and the effect of El Niño and La Niña events on climate variability are discussed.  

4.2 The mean climate of Thailand 

4.2.1 Precipitation 
 

The Intertropical Convergence Zone (ITCZ) is recognised as a band of relatively 

intense convective precipitation, associated with surface moisture, which moves 

seasonally. Figure 4.1 shows the seasonal migration of the ITCZ, a narrow latitude 

zone of wind convergence and precipitation, associated with the onset and duration of 

precipitation in tropical areas. 

 

Figure 4.1(a) shows the average precipitation (1998-2009) from TRMM (left) and the 

average wind (right) over the same period from NCEP/NCAR reanalysis data during 

December, January and February, respectively. The northeast monsoon is active 

during DJF, the winter season in the northern hemisphere. During December (Figure 

4.1(a) top), the ITCZ fully retreats back to the southern hemisphere. Precipitation is 

found over Indonesia, peninsular Indochina, Borneo and the Philippines. The wettest 

areas are peninsular Malaysia and eastern Philippines with the prevalence of 

northeasterly/easterly winds. The wind brings moisture from the northwest Pacific 

Ocean and the South China Sea. Some precipitation is also found over southern 

Thailand. During January, the ITCZ is located in the southern hemisphere. Thailand, 
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Indochina and other regions in the northern hemisphere are not affected by the ITCZ 

at this time and they are under the influence of the northeasterly trade winds 

(northeast monsoon) as show in Figure 4.1(a) (middle). The ITCZ gradually moves 

further northward but is still located in the Southern hemisphere with consistent 

northeastery trade winds in February as shown in Figure 4.1(a) (bottom). 

  

Figure 4.1(b) shows the average precipitation (1998-2009) from TRMM (left) and the 

average wind over the same period from NCEP/NCAR reanalysis data during March, 

April and May respectively. The ITCZ gradually moves further northward across the 

equator covering the Thai peninsula, the Bay of Bengal and the nearby area. The 

winds turn from northeasterly to southwesterly in this region. This is the trigger for 

the southwest monsoon. The heaviest precipitation can be found in the Bay of Bengal. 

 

Figure 4.1 (c), representing the northern hemisphere summer season, shows that the 

ITCZ rapidly propagates further northward, moving to the area of northern Thailand. 

Heaviest precipitation can be found on the west coast of peninsular Thailand and in 

eastern Thailand near the Gulf of Thailand. During the period of August and 

September, the southwest monsoon is at its maximum strength. The southward 

movement of the ITCZ, first over northern Thailand and in September over central 

Thailand, brings extremely intense precipitation. Heavy precipitation over the south 

China Sea was also identified during this period by Cheang (1993) and McGregor 

(1998) who found that precipitation during the summer monsoon over the South 

China Sea is associated with the ITCZ returning southward, reaching 15°N during 

July-August when moist air from the Indian Ocean helps enhance convection. As 

noted in earlier chapters, the seasonal variation of monsoon precipitation involves the 

Hadley Circulation, the zonal mean meridional overturning mass flow between the 

tropics and subtropics involving the ITCZ and the Walker Circulation, the latter being 

the zonal east-west overturning.  

 

Figure 4.1 (d) shows the average precipitation (1998-2008) from TRMM (left) and the 

average wind over the same period from NCEP/NCAR reanalysis data during the 

months of October and November (ON). October is already a dry month in the north 
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and northeast of Thailand but still wet in the central plains and in the Thai peninsula. 

The wind direction changes to northeasterly across the region. 

 

 
 

 
 

 

 
 

(a) 

Figure 4.1: Average SE Asia monthly precipitation (mm) from TRMM during 1998-

2008 (left) and wind vectors (right) based on NCEP/NCAR reanalysis data, 1998-

2008; the colour bar shows wind speed (m/s). (a) DJF (b) MAM (c) JJAS (d) ON  
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(b) 

 

Figure 4.1(continued)  
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(c) 
Figure 4.1 (continued)  
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(d) 
 

Figure 4.1 (continued): Average SE Asia monthly precipitation from TRMM during 

1998-2008 (left) and wind vectors (right) based on NCEP/NCAR reanalysis data, 

1998-2008; the colour bar shows wind speed. (a) DJF (b) MAM (c) JJAS (d) ON  

 

As discussed in chapter 3, there are two sets of TMD station data, monthly during 

1970-2000 and daily mean during 1961-1990. The station average of annual 

precipitation total in the period 1970-2000 based on TMD monthly datasets from 87 

stations is 1543 mm. This can be broken down into four different topographic regions 

with 23, 17, 22 and 25 stations contributing to the northern, northeastern, central and 

southern areas respectively. The wettest part is southern Thailand (2158mm) and 

where 1398mm, 1379mm and 1218mm represent the 30-year average precipitations in 

central, northeastern and northern regions, respectively. The average number of rain 

days (days with rain exceeding 1 mm) for the whole year in southern, central, 

northeastern and northern Thailand are 161, 120, 116 and 121 days, respectively. 

Figure 4.2 shows that northern and northeastern Thailand have very similar seasonal 
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precipitation regimes, the highest peak tending to be in August (September in the 

central region).  However, the Thai peninsula behaves somewhat differently with 

maximum rain in November. The possible cause of the later November peak is the 

complete retreat of the southwest monsoon and the influence of the northeast 

monsoon which brings moisture from the South China Sea to the peninsula as 

discussed in section 1.1.3. 
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Figure 4.2: Seasonal cycle of 30-year (1970-2000) average monthly precipitation 

(mm) divided into four topographic regions and based on 87 stations 
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Figure 4.3: Seasonal cycle of 30 year (1961-1990) average monthly precipitation for 

the five representative daily reporting stations across Thailand. 



 89

Figure 4.3, in comparison with Figure 4.2, shows that the five selected daily reporting 

stations chosen for this research can be seen to be representative of the regions. 

Chiang Mai and Phitsanulok are located in northern Thailand and Bangkok, Ubon 

Ratchthani and Surat Thani are representative of central, northeastern and southern 

Thiland, respectively.   

 

The correlations between the seasonal cycle of monthly precipitation at individual 

stations and the corresponding region are 0.98 (Chiang Mai and north), 0.99 

(Phitsanulok and north), 0.95 (Bangkok and centre), 0.98 (Ubonratcha Thani and 

northeast) and 0.95 (Surat Thani and south). In this study, the meanings of correlation 

value are defined as (i) 0.95-1.00 means very strong positive correlation (ii) 0.8-0.94 

means strong positive correlation (iii) 0.5-0.79 means weak positive correlation, (iv) -

0.49-0.49 means no correlation. Therefore, reduction in station numbers to 5 does not 

show a significant impact on validation. It is noted that Phitsanulok is an extra chosen 

station in northern Thailand because it is more likely to be in the tropical cyclonic 

track. Each station and its corresponding region has a very strong positive linear 

relationship so the reduction in station numbers to five does not impact detrimentally 

upon the climatological results nor on the model validation presented later. 

Correlations among stations located in northern, northeastern and central Thailand 

(CM, Phitlok, Ubon and BKK) are between 0.87-0.99 while correlations between 

those stations and southern Thailand are between 0.47-0.62. This suggests that CM, 

Phitlok, Ubon and BKK can be summarized by a single averaged mainland station 

which is quite distinct from conditions in the south. This is consistent with the 

Koppen-Geiger climate type (Figure 3.2). 

 

Precipitation peaks first in May and a secondary peak occurs in August/September 

over the mainland and then in November in the south of the peninsula, consistent with 

ITCZ movement. Seasonal precipitation variation shows two significant peaks in the 

climatological annual cycle over Thailand, the first rainy peak occurs during pentad 

29 and the second rainy peak occurs during pentad 50 while the monsoon break 

occurs during pentad 34-36 (Figure 4.4) consistent with may studies. For example, 

Wang (2002) proposed two views of the summer monsoon cycle; (i) running from the 

middle of May to early July with a precipitation peak in mid-June and (ii) from late 

July to early September with a precipitation peak in late August. Takahashi and 
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Yasunari (2006) found that there is a similarity of average precipitation during 1951-

2000 over mainland Thailand based on using 32 sites distributed randomly over the 

region, finding that the first peak occurs from pentad 28-30 and the second peak 

occurs from pentad 49-51. A possible cause of the monsoon break during July is that 

the monsoon wind changes direction from southwesterly to westerly in association 

with the trough over the Bay of Bengal (Figure 4.1(c)) and a strong ridge is formed 

over western Indochina. 
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Figure 4.4: Climatological pentad mean time series of precipitation (1961-1990) in 

units of mm/day. The index is averaged precipitation at the mainland stations [CM, 

Phitlok, BKK and Ubon]. 

 

Considerable differences between the stations can be observed regarding absolute 

values, variations and temporal trends. The analysis of the 30 year records of TMD 

from 1961 to 1990for the four individual stations at CM, Phitlok, BKK and Ubon in 

Thailand reveals no significant trend in annual precipitation (not shown here); instead 

the precipitation time series for the mainland as a whole and for the Surat site are 

presented (Figure 4.5). The precipitation variability over the Surat site is higher in 

comparison with the mainland in all seasons. It can be observed that year-to-year time 

series precipitation trends at both mainland sites and at Surat reveal decreases at both 

the annual and seasonal scales (excluding ON on the mainland and MAM at Surat 

which show positive trends). . At Surat, a 95% statistically significant decreasing 
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trend can be detected for ON and DJF when the absolute precipitation totals are still 

relatively high (about 40% of annual totals) while the precipitation trend during JJAS 

(40% of annual precipitation total) also shows a  negative sign (Table 4.1); a positive 

precipitation trend in MAM at Surat is insufficient to overcome the negative overall 

annual trend (Table 4.1).  Meanwhile, JJAS, with about 60-70 % of annual 

precipitation totals over the mainland, clearly shows the existence of negative trends 

over the mainland region. The corresponding regression lines are also plotted. The 

inter-annual precipitation variability around the mean value (118 mm/month over the 

mainland and 137 mm/month over the Surat site) reveals a declining trend given the 

slope of the regression line; the slopes are -0.1331 and -0.6622 mm/month-year giving 

an estimated decrease of about 1.6 mm/year and 7.9 mm/ year over mainland and 

Surat sites, respectively. However, these trends are not statistically significant. During 

JJAS, the slope reveals that precipitation decreases about 9.13 mm/year and 3.42 

mm/year over the mainland and Surat sites respectively (Table 4.1). 
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JJAS
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Figure 4.5: Precipitation time series for mainland (average of CM, Phitlok, Ubon, 

BKK) and Surat site expressed as anomalies from 1960-1990 (a) annual (b) DJF (c) 

MAM (d) JJAS (e) ON  
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Table 4.1 Variance and Linear Trend of anomaly precipitation in 1961-1990 over 
mainland (average of CM, Phitlok, Ubon and BKK) and Surat site. 

 
Station Variance(R2) Slope  (mm/month-year) 

Mainland 

              Annual 

              DJF 

              MAM 

              JJAS 

              ON 

 

0.0111 

0.0780 

0.0153 

0.0734 

0.1230 

 

-0.1331 

-0.2205 

-0.3833 

-0.7613 

1.6297 

Surat 

              Annual 

              DJF 

              MAM 

              JJAS 

              ON 

 

0.0546 

0.0988 

0.0601 

0.0072 

0.0444 

 

-0.6622 

-1.4498 

0.8113 

-0.2850 

-2.4454 
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(c)       (d) 

Figure 4.6: Spatial distribution of average precipitation (mm/day) in the period of 

1961-1990 from CRUTS2.1 during (a) DJF (b) MAM (c) JJAS (d) ON 

 

The gridded CRUTS2.1 data set is useful for visualising spatial patterns and in 

extending the station analysis, even though it is based upon the surface station 

network, and seasonal patterns are shown in Figure 4.6. The precipitation over the 

mainland of SEA is relatively low during the winter monsoon because of the 

influence of the Siberian High which contributes to mild and dry weather conditions 

(as shown in the PRECIS simulation in Chapter 5). During ON and DJF the equatorial 

region of SEA experiences more precipitation when compared to the summer 

monsoon, in particular over the maritime continent; the centre of deep convection is 

located over Indonesia (Webster and Yang, 1992). 

 

(a)      (b) 
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The pre-summer monsoon, MAM, sees a notable decrease of precipitation over the 

maritime region of SEA while over Indochina, the South China Sea precipitation 

starts to appear before the full trigger of the summer monsoon around mid May. 

During the pre-winter monsoon, precipitation activity starts to increase over the 

marine continent and conversely for the mainland of SEA. Major cloud movement 

switches from a northeastward direction in the Indian Ocean to a northwestward 

direction over the western North Pacific. The air flow from the Indian Ocean and 

northern Australia arrives in SEA however during JJAS the Indochina peninsula is 

predominantly influenced by the southwesterly wind flow which comes from the 

South Asian monsoon region (Ding, 1994) and the other parts of SEA are much more 

influenced by northern Australia (Kripalani, 1998).  

 

Table 4.2: Seasonal total precipitation over Thailand for the 1961-1990 based on 

CRUTS2.1. 

Precipitation(mm) DJF MAM JJAS ON Annual 

North 22 288 785 165 1261
Northeast 24 321 1061 124 1532
Centre 24 281 742 179 1225
South 339 447 961 628 2375
 

The mean 1961-1990 precipitation over Thailand (Table 4.2) shows the maxima in the 

annual total is in the south, followed by the north-east, central Thailand and, finally, 

the northern region. There is a remarkable contrast between rainy season and winter 

precipitation totals in the mainland of Thailand with some sections featuring up to 

1000mm during the rainy season and only 25 mm during DJF. The peninsula 

precipitation is significantly enhanced during both JJAS and ON which is in 

agreement with the station data where November is the wettest month in this region 

[recall that the gridded dataset is based on station data].  

 

The precipitation during JJAS in peninsular Thailand is about 40% of the annual total 

while the contribution of this season over the Thai mainland is about 64% of the 

annual. The precipitation fractions during ON and DJF in peninsular Thailand are 
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about 26% and 14% respectively of the annual total while the equivalent amounts 

over mainland Thailand are about 12% and 2% of the annual.  

4.2.2 Wet days 
 

To be consistent, the definition of a wet day in this study is a day with at least 1 mm 

of rain as defined in CRUTS2.1 over the tropical region. As mentioned in section 

4.2.1, 40-60% of total precipitation occurs during JJAS, according to location, so in 

this section, the frequency of wet days is focused upon in this summer season. Figure 

4.7 shows that the frequency of wet days during JJAS lies mostly in the range 50-70 

days. The annual total precipitation decreased between 1961 and 1990 as shown 

earlier in 4.2.1 and this is associated with decreases in the number of monsoon season 

wet days at a rate of 10 days per 30 years (Figure 4.8). The corresponding regression 

lines over the mainland and Surat sites are also shown in Figure 4.8; decreases in wet 

day frequency are shown over both areas with the respective slopes of the time series 

being about 2.8 days/10 years and 3 days/10 years. The r-squared value is 0.25 and 

0.01 over the mainland and Surat sites, respectively. It is clear that the number of wet 

days in 1987 and 1990 is anomalously low during the wet season at Surat (Figures 

4.5(d) and 4.8). In 1987 (1990), there are 34 (33) out of a possible 122 days with 

precipitation over 1 mm corresponding to precipitation anomalies of -35 (-48) 

mm/month giving an estimated decrease of about 140 (192) mm during JJAS. While 

at Surat in the wettest year, 1973, the number of wet days is 70 with a positive 

precipitation anomaly of 25 mm/month, or about 100 mm over the four month 

summer season. Menton et al. (2001) show that the number of days with greater than 

2mm of rain has decreased significantly throughout most of Southeast Asia over 

1961-1998. 
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Figure 4.7: Time series of the number of wet days for the five stations for the active 

southwest monsoon season (JJAS)  
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Figure 4.8: Time series of the number of wet days (≥1mm) for mainland (CM, 

Phitlok, Ubon, BKK) and Surat site expressed as anomalies from the 1961-90 average 

for the active southwest monsoon season (JJAS) 

 

The relationship between the number of wet days and precipitation amount for all five 

sites is a simple linear function as shown in Figure 4.9 which implies that if the model 

correctly simulates the number of wet days, then the possibility of accurately 

simulating total precipitation is increased; the r-squared value is 0.45 in both data sets 

which means that the linear trend explains 45% of the variability. 
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Figure 4.9 Linear relationships between wet day anomalies and precipitation total 

anomalies for JJAS (1961-1990) 

 

4.2.3 Tropical Depressions 
 

Tropical cyclones in this study region are called typhoons. Tropical cyclones moving 

into Thailand mostly weaken into depressions. The statistics for 1961-1990 show a 

single record of a tropical typhoon over Thailand, Typhoon Gay, during 1-10 

November, 1989, six tropical storms and 114 tropical depressions (Figure 4.10). 
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Figure 4.10: Record of all cyclonic disturbances from tropical depressions upwards 

moving across Thailand (1961-1990) based on Thai Meteorology Department records.  

 

It can be seen in Figure 4.11 that the precipitation ranges in September at all stations 

in the mainland region are 65.9 to 499.3mm in years with no depressions, 148.3mm to 

351.6mm in years with 1 depression moving across those stations, 194.7mm to 

529.6mm in years with 2 depressions and 553.5mm in the year with 3 depressions. 

The precipitation ranges in November at the Surat station (noting that tropical 

depression tracks only move across the peninsula during this month) are 146.5 mm to 

1333.6 mm in years with no depression, 73.4 mm to 507.8 mm in years with 1 

depression moving across those stations and 315.9 mm to 844.5 mm in years with 2 

depressions (Figure 4.12). There is a weak positive link between the number of 

cyclonic disturbances and monthly precipitation. 
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Analysing precipitation on the individual days when depressions pass the 

corresponding station revealed a statistically significant difference at the 95% 

confident level in precipitation between individual days with and without cyclonic 

disturbances activities (Table 4.3). Therefore, depressions statistically significantly 

increase precipitation, consistent with several studies. Tropical cyclones have an 

important effect on total precipitation over ocean basins. They have the potential to 

lead to extreme  precipitation totals which may lead to flood risk and may also 

generate  coastal flooding due to sea surge area Shepherd et al. (2007) indicated that 

over the southeastern U.S., days with tropical cyclones active are more likely to 

produce wet days than days without them and more intense tropical cyclones, for 

example category 3–5 hurricane days, contribute extreme precipitation days while 

tropical depression days make important contributions (8-17%) to cumulative 

seasonal precipitation. Rappaport (2000) showed that a hurricane can typically 

produce 5-12 inches of precipitation and the amounts of precipitation greatly depend 

on storm speed and size. Therefore, the impact of strong tropical cyclones on 

precipitation totals may be apparent in extreme daily events while weaker cyclones 

may critically affect trends in cumulative seasonal precipitation. Trends in 

precipitation associated with tropical cyclones may be apparent if the number of 

storms is changing over time; Figure 4.10 suggests fewer tropical cyclones have 

affected Thailand in the second half of the 1961-90 period. It is therefore desirable 

that RCMs should be able to simulate tropical depressions reasonably well. 
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Figure 4.11: Number of cyclonic disturbances (from tropical depressions upwards) 

moving across Thailand (1961-1990) considered by cyclone track against total 

precipitation in September over all stations located on the mainland. 
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Figure 4.12: Number of cyclonic disturbances (from tropical depressions upwards) 

moving across Thailand (1961-1990) considered by cyclone track against total 

precipitation in November at Surat. 
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Table 4.3: Analysis of the influence of cyclonic disturbances on individual station 

precipitation during 1961-1990. (noted that mean precipitation with depression is 

determined by averaging individual station precipitation and mean precipitation with 

no depression is determined by averaging daily precipitation in the month with 

depression excluding the day with depression.) 

 

Mean Precipitation (mm) Standard daviation Station 

With 

depression 

With no 

depression

With 

depression 

With no 

depression 

p-value 

Chiang Mai 47.1 6.2 26.4 11.5 2.14x10-6 

Phitsanulok 42.6 9.4 16.9 22.6 0.003 

Bangkok 64.2 9.9 31.4 17.6 0.004 

Ubon  62.7 4.7 47.0 10.4 8.04x10-4 

Surat Thani 78.4 7.8 40.7 14.4 0.0002 

 

4.2.4 El Niño and La Niña 
 

An El Niño event is associated with droughts while a La Niña event is more likely to 

be associated with excessive monsoon rain over Indochina (section 1.1). This section 

further investigates whether ENSO is specifically associated with the climate of 

Thailand. The El Niño and La Niña data were obtained from 

http://www.cpc.ncep.noaa.gov/. The criteria used to classify the year as El Niño and 

La Niña is sea surface temperature anomaly over the equatorial Pacific Ocean, warm 

(cold) SSTs relating to El Niño (La Niña). During the occurrence of an El Niño event, 

the easterly trade winds relax over central and western Pacific which leads to the 

thermocline descending in the eastern Pacific and ascending in the western Pacific.   

During the 1961-90 period, El Niño/La Niña events occurred as follows: 

El Niño years (1961-1990): 1963, 1965, 1969, 1972, 1976, 1982, 1986 

La Niña years (1961-1990): 1964, 1970, 1973, 1975, 1984, 1988 
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Figure 4.13: Average monthly precipitation totals during  1961-1990 in El Niño and 

La Niña years at (a) CM (b) Phitlok (c) BKK (d) Ubon (e) Surat  

 

Table 4.4: Average precipitation anomaly (%) during the JJAS season in El Niño 

years and La Niña years, relative to 1961-90 averages. 

 

Precipiation anomaly during JJAS (%) 
JJAS ON 

Site 

El Niño La Niña El Niño La Niña 
CM -23 +11 +9 -13 
Phitlok  -1 +13 +13 -8 
BKK  +22 +10 +10 -14 
Ubon  +3 -12 +12 +24 
Surat -3 +11 +3 +22 
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Figure 4.13 and Table 4.4 show that during El Niño years, a reduction in precipitation 

is found at the CM site (in JJAS), a intensification at the BKK site and no sign of 

precipitation change at the Phitlok, Ubon and Surat sites. Meanwhile during La Niña 

years, modest precipitation increases were found at the CM, Phitlok, BKK and Surat 

sites and a small precipitation decrease at the Ubon site.  Due to the relatively small 

number of events and the inter-station variability, it is not possible to draw strong 

conclusions from these results. Table 4.5 summarizes the results of the p value at the 

95% confidence level from two tailed t-test of the differences in precipitation in DJF, 

MAM, JJAS and ON for the 5 stations between El Niño and La Niña, El Niño and 

neutral, and La Niña and neutral events as defined on page 103. For DJF and MAM 

seasons, no statistically significant differences in rainfall are found between any pair 

of these ENSO events. This indicates that the rainfall during the DJF and MAM 

seasons is not influenced by the ENSO phenomenon. Differences in JJAS 

precipitation between the El Niño and La Niña events, as well as, between El Niño 

and neutral years can be found at CM, located at northern Thailand (Table 4.5). 

Moreover, Differences in ON precipitation between the El Niño and La Niña events, 

as well as, between La Niña and neutral years can be found at Surat, located at 

southern Thailand. Therefore, El Niño (La Niña) events can be lead to statistical 

significant precipitation decrease (increase) during JJAS (ON) at CM (Surat) site 

(table 4.4 and 4.5). 

 

Table 4.5: Analysis of the influence of ENSO on precipitation in season at selected 

stations in Thailand and t -tests of the difference in precipitation between El Niño, La 

Niña and normal years.  

p value Station 

El Niño-La Niña El Niño-Normal La Niña -Normal 
DJF 
CM 
Phitlok 
BKK 
Ubon 
Surat 

 
0.98 
0.39 
0.78 
0.97 
0.35 

 

 
0.96 
0.40 
0.66 
0.73 
0.60 

 

 
0.95 
0.20 
0.57 
0.61 
0.10 

MAM 
CM 
Phitlok 
BKK 

 
0.16 
0.21 
0.66 

 
0.07 
0.26 
0.32 

 
0.54 
0.77 
0.12 
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Table 4.5: continued 

p value Station 
El Niño-La Niña El Niño-Normal La Niña -Normal 

JJAS 
CM 
Phitlok 
BKK 
Ubon 
Surat 

 
0.04 
0.42 
0.93 
0.72 
0.42 

 
0.01 
0.78 
0.26 
0.91 
0.61 

 
0.46 
0.36 
0.35 
0.60 
0.12 

ON 
CM 
Phitlok 
BKK 
Ubon 
Surat 

 
0.43 
0.40 
0.21 
0.78 
0.04 

 
0.65 
0.57 
0.57 
0.66 
0.68 

 

 
0.61 
0.73 
0.49 
0.57 
0.02 

 

Seasonal precipitation in the Philippines is known to be modulated by the El Niño 

Southern Oscillation (ENSO) phenomenon, with ENSO warm (cold) events 

frequently contributing to drought (excessive precipitation) in many areas of the 

Philippines. Based on bridging the gap between seasonal climate forecasts and 

decision makers in agriculture, a project in the Philippines preliminarily found that 

tropical cyclone frequency was about 6.5 in neutral years, 6.7 in La Niña years and 

4.4 during El Niño years during October-December 1948-2005. It could be concluded 

that El Niño events have a negative effect on tropical cyclone frequency in the 

Philippines. Analysis of the average number of tropical depressions in Thailand from 

July to November showed that there are about 3.11 in neutral years, 3.57 in El Niño 

years and 4.8 in La Niña years. Tropical depression activity during neutral years and 

El Niño years is approximately equal for the JASON period, however it can be seen 

that during La Niña years, the number of depressions in Thailand is generally above 

average. 

 

A case study of El Niño in 1982 

 
Based on El Niño records during the baseline 1961-1990 period from the El Niño 3.4 

region (5oN-5oS, 120o-170oW), a major event occurred in 1982. The associated SST 

anomaly over the Pacific Ocean began increasing above 0.5oC from May 1982 to July 
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1983 as shown in Table 4.6 (This highlights the important point that El Niños can run 

across years). 

 

 Table 4.6: SST anomalies (°C) over the Pacific Ocean El Niño 3.4 region bounded by 

120°W-170°W and 5°S- 5°N during 1982-1983 (source: 

http://www.cpc.ncep.noaa.gov/). 

 

Year DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ
1982 0.0 0.1 0.1 0.3 0.6 0.7 0.7 1.0 1.5 1.9 2.2 2.3 
1983 2.3 2.0 1.5 1.2 1.0 0.6 0.2 -0.2 -0.6 -0.8 -0.9 -0.7 
 

La Niña is associated with cooler than normal water temperatures in the Equatorial 

Pacific Ocean, unlike El Niño which is associated with warmer than normal water.  

 

 Figure 4.14: Precipitation anomalies  

(a)      (b) 

(c)      (d) 
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       (i)              (j) 

 

Figure 4.14: Precipitation anomalies (mm/day) during active El Niño in 1982-83 

relative to a 1961-1990 baseline for (a) August (b) September (c) October (d) 

November (e) December (f) January (g) February (h) March (i) April (j) May  

 

Due to the late arrival in August of the southwest monsoon in 1982 a negative 

precipitation anomaly occurred in the region north of 15°N in Thailand and a 

significant negative precipitation anomaly along the Bay of Bengal and over 

(g)      (h) 

(e)      (f) 
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Indonesia (Figure 4.14a) while the rest of Thailand recorded a positive precipitation 

anomaly and in September (Fig 4.14b) a positive precipitation anomaly occurred over 

the whole land region north of 13°N and over some parts of the western coast of 

Thailand. During the peak in precipitation normally experienced over peninsular 

Thailand in October and November, there is no significant precipitation anomaly. In 

summary, there is no significant overall precipitation anomaly in Thailand during this 

El Niño event. 

 

A case study of La Niña in 1988 
Based on La Niña records during the baseline period of 1961-1990, one of the 

recognised El Niño 3.4 events is in 1988-89, with the sea surface temperature over the 

Pacific Ocean increasing between May 1988 and May 1989 as shown in Table 4.7. 

 

Table 4.7: SST anomalies over the Pacific Ocean El Niño 3.4 region, 1988-89. 

 

Year DJF JFM FMA MAM AMJ MJJ JJA JAS ASO SON OND NDJ
1988 0.7 0.5 0.1 -0.2 -0.7 -1.2 -1.3 -1.2 -1.3 -1.6 -1.9 -1.9 
1989 -1.7 -1.5 -1.1 -0.8 -0.6 -0.4 -0.3 -0.3 -0.3 -0.3 -0.2 -0.1 
 

La Niña is associated with cooler than normal water temperatures in the Equatorial 

Pacific Ocean, unlike El Niño which is associated with warmer than normal water.  
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(c)      (d) 

(a)      (b) 

(e)      (f) 
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        (i) 

Figure 4.15: Spatial precipitation anomaly (mm/day) during the active La Niña in 

1988-89 based on a 1961-1990 baseline for (a) July (b) August (c) September (d) 

October (e) November (f) December (g) January (h) February (i) March  

 

In July 1988, early in the event, there are positive precipitation anomalies around 

western Thailand, Burma and along the Andaman Sea coast, northern Philippines, 

northern Sumatra and Borneo (Figure 4.15a). In August 1988, the precipitation 

anomaly increases over most areas of Indonesia and the southern Philippines and, 

interestingly, the northern Philippines sees a rapid decrease in precipitation totals 

(Figure 4.15b). In November 1988, there was an increase in precipitation amount over 

mainland Thailand and a decrease in precipitation over the peninsula. It is seen that 

there is no significant change in Thailand in the other months during this La Niña 

event (Figure 4.15e). In summary, there is no significant overall precipitation anomaly 

in Thailand during this El Niño/ La Niña event. 

 

 

(g)      (h) 
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4.2.5 Temperature 
 

Figure 4.16 shows that the seasonal cycle in mean temperature over Thailand exhibits 

a similar pattern at all the mainland sites; a peak in April and a trough in January. The 

TMD defines 3 seasons in Thailand, namely summer (mid February to mid May), the 

rainy season (mid May to mid October) and the cool season (mid October to mid 

February). In contrast, we also observe that the peninsula, represented by the Surat 

station, exhibits very little seasonality in terms of mean temperature, a feature typical 

of maritime equatorial latitudes. Around the peninsula the surrounding waters are 

warm all through the year and daily solar heating establishes local circulations with 

warm moist air from the sea converging inland and triggering deep atmospheric 

convection and precipitation in the afternoon. 
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Figure 4.16: Average 30 year (1961-1990) mean temperature (deg C) seasonal cycle 

for five stations over Thailand 

 

A positive trend over time of both maximum and minimum temperature is detected at 

both mainland sites and at Surat for MAM and DJF (Figures 4.17 and 4.18). The slope 

of the yearly maximum temperature time series is approximately +0.16 °C /10 years 

during MAM over both regions. The minimum temperature shows a warming rate of 

+0.36°C/10 years and +0.26°C/10 years over the mainland and Surat sites 
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respectively during MAM. However the warming trends are not statistically 

significant. The largest maximum temperature anomalies during MAM occur in 1966, 

1969, 1980, 1983 and 1989 when, in the years of 1966, 1969 and 1983, an El Niño 

event was underway.  

 

During MAM, 1961-1990, maximum temperature has risen approximately 0.5 °C at 

both mainland sites and at Surat while during DJF, the maximum temperature has 

risen by approximately 1°C at the Surat site (but not significantly at the mainland 

sites). During MAM, 1961-1990, minimum temperature has risen approximately 1°C 

at mainland sites and by approximately 1.6°C at Surat while during DJF, the 

equivalent figures are 1.1°C at the mainland sites and about 0.8°C at Surat. Through 

reference to the CRUTS2.1 dataset, there is considerable spatial coherence in the sign 

of the maximum and minimum temperature increases. Figure 4.19 shows the number 

of grid cells exhibiting increases in the maximum temperature anomaly. Some of the 

grid cells showing warming occur over northern Thailand as well as over Sumatra and 

the Philippines. Figure 4.20 shows a noticeable number of grid cells with positive 

minimum temperature trends over the whole region, in particular, over Thailand, 

Burma, Laos, Cambodia and Vietnam. Most of the grid cells over SEA show 

warming. IPCC-AR4 (2008) indicated that the updated 100 year linear trend (1906-

2005) for global surface temperature is 0.74°C with a range of 0.56°C to 0.92 °C and 

a linear warming trend over the last 50 years of 0.13°C per decade.  
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Figure 4.17: Mean maximum temperature (°C) time series for mainland (CM, Phitlok, 

Ubon, BKK) and Surat sites expressed as anomalies from 1960-1990 during MAM 

(top) and DJF (below) 
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Figure 4.18: Mean minimum temperature (°C) time series for mainland (CM, Phitlok, 

Ubon, BKK) and Surat sites expressed as anomalies from 1960-1990 during MAM 

(top) and DJF (below) 
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Figure 4.19: Spatial distribution of average maximum temperature (°C) from 

CRUTS2.1 during 1961-1970 (left) and 1981-1990 (right), expressed as an anomaly 

from the 1961-90 average. 

 
Figure 4.20: Spatial distribution of average minimum temperature (°C) from 

CRUTS2.1 during 1961-1970 (left) and 1981-1990 (right), expressed as an anomaly 

from the 1961-90 average. 

 

Figures 4.21 and 4.22 show the SEA spatial patterns of absolute seasonal mean 

maximum and minimum temperature respectively, clearly revealing the TMD cool 

and hot seasons. Table 4.7 shows that, within a season, there is remarkably little 

temperature variation across Thailand. 
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Figure 4.21: Spatial distribution of average maximum temperature (°C) in the period 

of 1961-1990 from CRUTS2.1 during (a) DJF (b) MAM (c) JJAS (d) ON 

 

 

 

(a)      (b) 

(c)      (d) 
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Figure 4.22: Spatial distribution of average minimum temperature (°C) in the period 

of 1961-1990 from CRUTS2.1 during (a) DJF (b) MAM (c) JJAS (d) ON 

 

 

 

 

 

 

 

 

 

 

(a)      (b) 

(c)      (d) 
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Table 4.8: Seasonal maximum and minimum temperatures (oC) over Thailand based 

on CRUTS2.1 

 

Maximum 
Temperature 
(oC) 

DJF MAM JJAS ON Annual 

North 28.5 33.1 29.7 28.6 30.1
Northeast 29.5 33.8 31.1 29.8 31.2
Centre 31 34.8 31.4 30.2 32
South 29.9 31.9 30.5 29.6 30.6
Minimum 
Temperature 
(oC) 

DJF MAM JJAS ON Annual 

North 12.5 19.3 21.5 18.2 18.2
Northeast 16.4 22.8 23.6 20.4 21.1
Centre 17 22.5 22.9 20.7 20.9
South 20.8 22.1 22.2 21.8 21.7

 

4.2.6 Diurnal temperature range (DTR) 
 

The greatest DTR values occur during the cool season but the magnitude is seen to 

vary at the five stations (Figure 4.23). It is known that urbanized areas often show a 

smaller DTR than nearby rural areas, due to the overnight release of heat from the 

building fabric, and this is shown to be true at BKK. To be consistent, the five sites 

are once again divided into mainland sites and Surat for analysis. Since the DTR is the 

maximum temperature minus the minimum temperature, the DTR can decrease when 

the trend in the maximum or minimum temperature is positive, negative or 

unchanging. The section 4.2.5 showed a faster rise in minimum temperature over time 

than in maximum temperature, during MAM, resulting in a decrease in the DTR for 

both mainland sites and the Surat site while during DJF there is a decrease in the DTR 

at mainland sites but an increase at Surat (Figure 4.24). The slop of yearly DTR time 

series is approximately -0.19°C/10 years (-0.09°C/10 years) over mainland and -

0.31°C/10 years (+0.08°C/10 years) at Surat during MAM (DJF). 
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Figure 4.23: Average 30 year (1961-1990) seasonal cycle in DTR (°C) for five 

stations over Thailand 
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Figure 4.24: Annual DTR temperature time series for mainland (CM, Phitlok, Ubon, 

BKK) and Surat sites expressed as anomalies from 1960-1990 during MAM (top) DJF 

(below) 
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Figure 4.25: Spatial distribution of seasonal DTR (oC)  in the period of 1961-1990 

from CRUTS2.1 during (a) DJF (b) MAM (c) JJAS (d) ON 

 

Table 4.9 Seasonal DTR (oC)  over Thailand for 1961-1990 based on CRUTS2.1 

Diurnal (oC) DJF MAM JJAS ON Annual 
North 15.6 13.6 7.6 10.1 11.5 
Northeast 12.5 10.4 7.0 8.9 9.6 
Centre 13.5 11.8 8.0 9.2 10.5 
South 8.7 9.4 8.0 7.5 8.4 
 

The most DTR over mainland was found in DJF while DTR over southern Thailand 

has a small seasonal variation. 

 

 

(a)      (b) 

(c)      (d) 
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4.2.7 Monsoon onset 
 

Definition of southwest monsoon onset 
 

Several criteria for identifying the monsoon season onset have been applied to the 

monsoon regions of the world, for example based on precipitation (Nicholls et al. 

1982), wind (Ramage, 1971) or cloudiness from satellite observations (Davidson et al. 

1983). For Thailand, Sangwaldach (2006) suggested using five successive rainy days 

with more than 5mm each day accompanied by westerly or southwesterly low level 

winds and easterly upper level winds to determine the monsoon onset. This issue is 

discussed extensively in Chapter 1. 

 

In this study, the onset of the southwest monsoon season over Thailand is defined as 

the occurrence of an 850-hPa westerly wind with minimum speed of 4 m/s and 250-

hPa easterly wind along 100oE in the band 5-20oN together with precipitation greater 

than 6 mm/day each day for a consecutive five day period. Based on Thai 

Meteorology Department reports the onset of the rainy season in Thailand occurs 

around mid-May . 

 

Approximated southwest monsoon onset date 
 

Based on the above definitions of the onset of the monsoon and on TMD available 

daily precipitation and wind data, the approximate dates of monsoon onset at 

mainland sites and at Surat over the period 1961-90 are shown in Table 4.10.  
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Table 4.10: Approximated monsoon onset date (May) over 1961-1990 at mainland 

sites and at Surat  

 
year Mainland 

(CM+Phitlok+Ubon+BKK)
Peninsula 

(Surat) 
Onset Timing difference 

(Mainland-Peninsula) 
1961 6th 1st 5 
1962 16th 14th 2 
1963 18th 21st -3 
1964 3rd 3rd 0 
1965 20th 18th 2 
1966 2nd 6th -4 
1967 2nd 3rd -1 
1968 1st 1st 0 
1969 5th 6th -1 
1970 10th 10th 0 
1971 16th 15th 1 
1972 9th 8th 1 
1973 7th 8th -1 
1974 15th 11th 4 
1975 6th 7th -1 
1976 4th 1st 3 
1977 22nd 21st 1 
1978 8th 9th 1 
1979 19th 12th 7 
1980 16th 17th -1 
1981 17th 17th 0 
1982 19th 21st -2 
1983 24th 21st 3 
1984 18th 12th 6 
1985 11th 10th 1 
1986 6th 6th 0 
1987 1st 1st 0 
1988 1st 1st 0 
1989 6th 2nd 4 
1990 14th 14th 0 

 

From statistical analysis, the monsoon onset date averaged over the 1961-1990 period 

over the mainland is approximately 11th May and over the peninsula is the 10th May; 

there is no significant different at the 5% level. The 95% confidence interval is -0.11 

to 1.78 day. Applying t-test, it found that monsoon onset over mainland is related the 

onset over the peninsula. 
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Figure 4.26: Inter-annual variation of the date of monsoon onset over Thailand during 

the period 1961-1990 

 

Figure 4.26 shows a small delay in the arrival of the monsoon over Thailand, based on 

the selected criteria, of 3 days over the mainland and 1 day over the peninsula over 

the 30 year period, possibly occurs in association with SST anomaly. Based on an 

analysis of SST fields, Joseph et al. (1994) hypothesized that the delay of monsoon 

onset is due to warm anomalies over the equatorial central Pacific Ocean causing a 

delay in the shifting of convection from the equatorial western Pacific to the north 

Indian Ocean.  

4.3 Summary 
 

Based on the literature review, there are few publications about Thai climate, most of 

them using the station data over the Thai mainland to study current climate, ignoring 

the peninsular Thailand climate completely. Yet a gridded observational data set is 

available over SEA and Thailand. In this chapter, the limited observational data, i.e., 

station observation data from the Thai Meteorology Department (TMD) and the high 

resolution gridded dataset (CRUTS2.1) are studied to more fully quantify the Thai 

climate. It is demonstrated that the climate over peninsular Thailand can be clearly 
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distinguished from the climate over the Thai mainland. Furthermore, this work 

provides a valuable baseline against which the model climates, presented in the 

following two chapters, can be compared. 

 

The average annual precipitation over the mainland region is shown to decrease 

marginally by about 4mm during 1961-1990; the dominant precipitation season is 

JJAS contributing 60-70 % of the annual rain, with the number of rain days (≥ 1 mm) 

decreasing by approximately 10 days during JJAS over the thirty year period. 

Minimum temperatures are shown to be increasing at a rate of 1oC/30 years during 

MAM and DJF which is somewhat higher than the linear global warming trend over 

1956-2005 of 0.13oC per decade (IPCC-AR4, 2008) while maximum temperature are 

increase at a rate of 0.47oC (0.02oC)/30 years in MAM (DJF). The diurnal temperature 

range (DTR) is shown to decrease at a rate of 0.6 °C/30 years in MAM and 0.3°C /30 

years in DJF. The decrease in DTR is caused by temperatures increasing faster at 

night than during the day. The average monsoon onset (1961-1990) is about the 11th 

May and the trend over this period is 1 day/30 year.  

 

Annual precipitation over the southern region of Thailand decreased at a faster rate 

than over the mainland region, by 20 mm during the 1961-1990 period, and 

precipitation during the JJAS wet season is found to contribute 40 % of the annual 

rain, with the number of rain days during JJAS appearing to decline by approximately 

10 days in thirty years.The maximum precipitation in southern Thailand is detected in 

November due to the influence of the northeast monsoon which brings moisture from 

the South China Sea to the peninsula. The minimum and maximum temperature over 

southern Thailand show relatively small changes through the year. The minimum and 

maximum temperatures are shown to be increasing at 1.6oC (0.7oC) /30 years and 

0.46oC (1oC) /30 years in MAM (DJF) respectively.  The DTR is shown to decrease at 

a rate of 0.9oC /30 years in MAM and increase at a rate of about 0.25oC /30 years in 

DJF. The average monsoon onset date (1961-1990) is the 10th May, one day earlier 

than the mainland region, with minimal change over the 1961-90 period. 

 

In terms of tropical depressions, there is a statistically significant difference in 

precipitation over both the mainland and the peninsula. Therefore, depressions 
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statistically significantly increase precipitation, consistent with several studies 

(Shepherd et al., 2007; Rappaport, 2000). It is therefore desirable that RCMs should 

be able to simulate tropical depressions reasonably well. Trends in precipitation 

associated with tropical cyclones may be apparent if the number of storms is changing 

over time. It was found that fewer tropical cyclones have affected Thailand in the 

second half of the 1961-90 period.  

 

Moreover, it was found that the relationship between the number of wet days and 

precipitation amount for all five sites is a simple linear function as shown in Figure 

4.11-4.12. The decrease in the number of wet days is one of the factors to induce the 

precipitation decrease.  

 

In this study, analyzing precipitation amounts at 5 representative stations over 

Thailand, it was found that there is an statistically intensification (reduction) of 

precipitation during La Niña (El Niño) years at Surat Thani (Chiang Mai) during ON 

(JJAS) and no statistically significant differences in rainfall are found between any 

pair of these ENSO events during DJF and MAM seasons over 1961-1990. Regarding 

the El Niño years, the tropical depression activity during neutral years and El Niño 

years is roughly equal for the JASON period and, during La Niña years, the number 

of depressions in Thailand is generally above average. Therefore, there is no 

significant change in both precipitation amount and number of tropical depressions 

during El Niño years and there is an intensification of precipitation and increased 

number of tropical depressions moving across Thailand during La Niña years. 



Chapter 5 

Current Climate and Model validation 
 

5.1 Introduction 
 

This chapter examines how well PRECIS captures the main current climatic regimes 

in Southeast Asia and the extent to which PRECIS adds fine scale value to that 

provided by GCMs. Uncertainties in regional climate simulations were discussed in 

detail in earlier chapters and these are also addressed here by forcing with different (i) 

initial conditions (ii) boundary conditions (iii) global climate models. To address one 

of the main aims of the thesis, the daily station and gridded CRUTS2.1 datasets, 

described in Chapters 3 and 4, are compared with the model results. 

 

According to the experimental design detailed in chapter 2, both spatial and point 

model precipitation and temperature estimates show insignificant differences between 

climate simulations run with and without interactive sulphur cycle (Tables 5.1 and 

5.2). Moreover, in terms of simulations driven from different initial conditions of 

HadAM3P, a 150 km resolution version of the Hadley Centre’s global atmosphere-

only model, using observed time series of HadISST SST and sea-ice for 1960-1990, 

there is also no significant difference in output. Therefore, this chapter focuses on the 

sensitivity of the model simulations to the use of reanalysis and 2 different Global 

Models for RCM boundary conditions: (i) ERA40, (ii) HadAM3 (iii) ECHAM4, 

assuming no sulphur cycle since the results seem not to be sensitive to the latter. The 

baseline experiments are hereafter known by the names PRECIS-ERA40, PRECIS-

HadAM3P and PRECIS-ECHAM. 
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Table 5.1 Seasonal total precipitation statistics for land points over the domain 5-

20.5°N and 97-105°E. Results show the area-averaged mean precipitation and spatial 

standard deviation (mm/day) for experiments running with sulphur cycle and without 

sulphur cycle (note that PRECIS-HadAM3P-IC 1 stands for PRECIS driven by 

HadAM3P and a different initial condition.) 

 

Total precipitation (mm/day) DJF MAM JJAS ON 

Mean: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

0.90 

0.98 

0.88 

0.97 

0.87 

0.95 

 

 

3.68 

3.80 

3.74 

3.83 

3.45 

3.52 

 

 

8.90 

9.12 

8.67 

8.96 

8.38 

8.71 

 

4.47 

4.76 

4.34 

4.60 

4.19 

4.42 

Standard deviation: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

1.62 

1.47 

1.30 

1.56 

1.38 

1.65 

 

 

1.20 

0.98 

1.15 

1.07 

0.95 

1.36 

 

3.94 

3.09 

2.73 

2.51 

3.13 

2.82 

 

3.11 

3.03 

2.78 

2.82 

2.93 

2.74 
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Table 5.2 Seasonal 1.5m air temperature statistics for land points only over the 

domain 5-20.5°N and 97-105°E. Results show the area-averaged mean surface 

temperature and spatial standard deviation (°C) for experiments running with sulphur 

cycle and without sulphur cycle.  

 
Maximum Temperature (°C) DJF MAM JJAS ON 

Mean: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

28.5 

28.8 

28.0 

28.1 

27.9 

28.0 

 

 

32.2 

32.4 

32.5 

32.7 

32.3 

32.5 

 

 

29.7 

29.7 

29.4 

29.5 

29.5 

29.6 

 

28.8 

28.9 

28.1 

28.1 

28.5 

28.7 

Standard deviation: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

2.7 

2.6 

2.5 

2.7 

2.1 

2.3 

 

2.2 

2.2 

2.9 

2.4 

2.8 

2.8 

 

1.8 

1.6 

1.9 

1.9 

1.4 

1.8 

 

1.4 

1.7 

1.5 

1.4 

1.9 

1.6 
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Table 5.2: (continued) 
 
Minimum Temperature (°C) DJF MAM JJAS ON 

Mean: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

16.2 

16.4 

15.8 

16.1 

16.0 

16.2 

 

20.8 

21.0 

20.8 

20.9 

20.9 

21.1 

 

22.0 

22.1 

21.7 

21.8 

21.8 

21.9 

 

19.9 

19.9 

19.6 

19.7 

19.6 

19.8 

 

Standard deviation: 

PRECIS-HadAM3P-IC 1- with sulphur cycle 

PRECIS-HadAM3P-IC 1- without sulphur cycle 

PRECIS-HadAM3P-IC 2- with sulphur cycle 

PRECIS-HadAM3P-IC 2- without sulphur cycle 

PRECIS-HadAM3P-IC 3- with sulphur cycle 

PRECIS-HadAM3P-IC 3- without sulphur cycle 

 

3.2 

3.6 

3.4 

3.9 

3.3 

3.9 

 

2.6 

2.2 

2.5 

2.7 

2.4 

2.8 

 

 

1.6 

1.4 

1.3 

1.8 

1.3 

1.8 

 

 

2.6 

2.2 

2.5 

2.6 

2.2 

2.9 

 

 

5.2 Model Validation 
 

5.2.1 Total Precipitation 
 

The model precipitation simulations produced by the GCM (HadAM3P) and the RCM 

(PRECIS-HadAM3P, PRECIS-ERA40, PRECIS-ECHAM)) are compared in Figure 

5.1 with the observational gridded dataset, CRUTS2.1, for JJAS, the southwest 

monsoon season, during the period 1961-1990. In general, the model simulations, 

excluding PRECIS-ECHAM4, realistically simulate the heavy precipitation over the 

Bay of Bengal coast shown in CRUTS2.1. The area of intense precipitation of up to 

26 mm/day extends into the Bay of Bengal coastline in Western Thailand in both the 
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GCM and RCM simulations. The wettest areas of Indochina are the three mountain 

ranges named the Rakhine Yoma along the western coast of Burma where orographic 

lifting frequently occurs.  Meanwhile the rain shadow areas on the eastern sides of the 

mountains, such as over central Burma and Thailand, are also captured by HadAM3P, 

PRECIS-HadAM3P and PRECIS-ERA40. The RCM, except PRECIS-ECHAM, 

shows patterns over both land and ocean which are consistent with the GCM 

HadAM3P. With respect to Thailand, the average daily precipitation during JJAS over 

1961-1990 simulated by the RCM adds more detail, in particular, over the coastline 

but is insignificant in adding further value over the southern region. The relatively 

high amount of precipitation over the Bay of Bengal, northwest Pacific Ocean and the 

South China Sea also show a similar pattern but with differing magnitude. Applying 

the grid-to-grid analysis method, the displayed spatial JJAS precipitation patterns are 

similar, with more detail provided by the PRECIS simulation compared with 

HadAM3P itself, but it is not clear if PRECIS produces a more realistic simulation. 

To aid the comparison, precipitation amounts from all model simulations are re-

gridded and displayed at the same resolution as applied for the gridded CRUTS2.1 

dataset, at 0.5x0.5°. Interestingly, precipitation over mainland Thailand and the 

surrounding area from the RCM and GCM simulations agree well with CRUTS2.1, 

excepting the PRECIS-ECHAM4 simulation, while over peninsular Indochina, 

Sumatra and Borneo, the GCM noticeably underestimates compared with the absolute 

rainfall measurements from the observations. The resolution of the GCM is 150x150 

km and it is less able to distinguish between land and sea. The heat capacity of water 

is approximately three times higher than the heat capacity of land. In other words, 

raising the water temperature by 1 degree requires significantly more heat energy than 

raising the air temperature by 1 degree. When land and water gain the same amount of 

thermal energy, the land surface temperature rises higher than the water surface 

temperature so convection occurs more readily over the land than over the ocean. 

Moreover, the concept of convective parameterization in a GCM is based on a process 

that is of a smaller scale than the grid spacing itself and hence simulated precipitation 

could be representative of scales smaller than the models’ grid spacing. This is also 

one likely reason for the GCM underestimate of precipitation over the peninsula.  
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   (e) 

Figure 5.1: Spatial distribution of average precipitation (mm/day) in the period of 

1961-1990 during JJAS (a) HadAM3 (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) 

PRECIS-ECHAM4 (e) CRUTS2.1  

(a)      (b) 

(c)      (d) 
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Figures 5.2-5.5 show spatial distributions of seasonal precipitation difference 

(mm/day) between model and observations (CRUTS2.1) in the period 1961-1990. 

Over mainland Thailand and the surrounding area, the GCM and RCM, excepting 

PRECIS-ECHAM4, produce DJF precipitation amounts which are close to 

observations (Figure 5.2). An underestimate in precipitation was found in the 

Indochina peninsula and over Sumatra and Borneo. The GCM and PRECIS-ECHAM 

underestimate of precipitation over those regions is in the range of 6-9 mm/day which, 

is higher than the biases in the PRECIS-HadAM3P and PRECIS-ERA40 results over 

these regions (3-5 mm/day). Overestimates in precipitation produced by both the 

GCM and RCM in MAM were found in northern mainland Thailand and nearby 

areas, while the PRECIS-ECHAM underestimated precipitation in some areas in those 

regions (Figure 5.3). In contrast, the underestimated precipitations in MAM were 

found in the same region of underestimated precipitation in DJF. Figure 5.4 shows 

that all simulations excluding PRECIS-ECHAM4 reasonably reproduce precipitation 

in JJAS and PRECIS-HadAM3P adds more detail over Thailand. However, it is not 

possible to clearly see which simulations simulate precipitation amount over Thailand 

more consistently when compared with the observations and so this will be 

investigated later (section 5.2.1.1). The mixture of positive convective precipitation 

over mainland of Thailand may be due to increasing resolution of topography that 

may impact on local scale diurnal heating and airstream convergence. In general, 

underestimates in precipitation during ON were found across most of the domain 

(Figure 5.5). Interestingly, there is a striking difference in the sign of bias between the 

north and south of the domain, unlike other PRECIS studies over other part of the 

world, in which precipitation bias more likely depends on season, for example, 

underestimation (overestimation) during summer (winter) possibly responding to 

hydrostatic restriction as PRECIS fails to fully simulate convective precipitation 

(Hudson and Jones, 2002, Alves and Marengo, 2009, Shahgedanova et al., 2010). The 

bias over SEA more likely depends on geographical location. Therefore, the possible 

cause of the bias could be observation quality and/or RCM error. CRUTS2.1 is likely 

to be a reliable gridded observational precipitation dataset because the interpolated 

values depend on a number of surrounding station with large residuals are removed 

where they are defined as potentially in error (New et al., 2002). The interpolation 

methods assume relations between the variables latitude, longitude and surface 

elevation. The density of corresponding stations for interpolation over SEA was 
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provided by both GHCN and HadCRU and there are a few stations in each 0.5 x 0.5 

resolution grid cell ( http://www.appinsys.com/GlobalWarming/climapview.aspx) 

provided by both GHCN and HadCRU. The underestimate in both GCM and RCM 

for all season arounds the equator over marine continents implied that the convection 

scheme and/or the physical parameterization fail to faithfully reproduce precipitation 

over the region. Even with improved boundary conditions, the skill of dynamical 

downscaling was also controlled by the regional scale forcings which may include 

orography, land-sea contrast, vegetation cover, lake effects, or they may be 

anthropogenic for example air pollution, urban heat island, and land and water 

management. 

 
 

Figure 5.2 Difference between model and observations (CRUTS2.1) of average 

precipitation (mm/day) in the period of 1961-1990 during DJF (a) HadAM3P (b) 

PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4. 

(a)      (b) 

(c)      (d) 
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(c)      (d) 

 

Figure 5.3: Difference between model and observations (CRUTS2.1) of average 

precipitation (mm/day) in the period of 1961-1990 during MAM (a) HadAM3P (b) 

PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

 

(a)      (b) 
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(c)      (d) 

 

Figure 5.4: Difference between model and observations (CRUTS2.1) of average 

precipitation (mm/day) in the period of 1961-1990 during JJAS (a) HadAM3P (b) 

PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4. 

 

(a)      (b) 
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(c)      (d) 

Figure 5.5: Difference between model and observations (CRUTS2.1) of average 

precipitation (mm/day) in the period of 1961-1990 during ON (a) HadAM3P (b) 

PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

 

5.2.1.1  Comparison of GCM and RCM with gridded observation data 
 

The Koppen-Geiger climate classification of Thailand divided the rainforest over 

mainland Thailand from the monsoon over the Thai peninsula as shown in chapter 3 

and 4. As introduced in Chapter 3, Thailand is indeed divided by topography into 4 

different regions, the north, northeast, centre and south of Thailand. The estimated 

precipitation totals over each topographic region from each simulation are shown in 

Figure 5.6.    

 

(a)      (b) 
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Figure 5.6: Mean seasonal precipitation (1961-1990) over land points divided into 4 

topographic regions in Thailand from GCM and RCM simulations during (a) DJF (b) 

MAM (c) JJAS (d) ON.  

 
The GCM and RCM data were interpolated to the 0.5x0.5° CRUTS2.1 grid and only 

land points used in the interpolation. In the cool season (DJF, Figure 5.6(a)), most of 

mainland Thailand records relatively low precipitation totals so it is difficult to 

achieve meaningful comparisons. Meanwhile, in the same season, the GCM, PRECIS-

HadAM3P and PRECIS-ERA produce comparable amounts of precipitation and an 

underestimate in the order of 3 mm/day over the south region peninsula. During 

MAM (Figure 5.6b), all simulations excluding PRECIS-ECHAM slightly 

overestimated precipitation over mainland Thailand by 1-2mm/day. More specifically, 

the best estimated precipitation simulations are PRECIS-ERA over northern Thailand 

and the GCM, HadAM3P, and PRECIS-ERA are most accurate precipitation over 

northeast and central Thailand. The model simulations show the closest absolute 

precipitation totals to observations during JJAS are provided by PRECIS-ERA, 

PRECIS-HadAM3P, PRECIS-ERA and PRECIS-HadAM3P over north, northeast, 

central and south Thailand, respectively (Figure 5.6(c)), demonstrating a modest 

“added value” of using the RCM over the GCM. Figure 5.6(d) shows that all model 

simulations produced comparable precipitation during ON over northern Thailand, 

underestimating observations by approximately 50%. The PRECIS-HadAM3P and 

PRECIS-ERA show the closest absolute precipitation total compared with the 

observation. The PRECIS-ERA shows better skill in simulating precipitation over 
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northeast Thailand. All model simulations, excluding PRECIS-ECHAM4, estimated 

comparable precipitation totals over southern Thailand in ON representing 

approximately 50% of observed totals. The radiation scheme and/or land sea 

interaction may be related to precipitation underestimation in southern Thailand in 

particular.  Marengo et al. (2009) mentioned that possible effects of local dynamic 

forcings, for example dry or wet soil, may be dominant over the large-scale SST 

forcing.  

  

Table 5.3: p-value of precipitation produced from GCM and RCM compared with 

CRUTS2.1 

 

P value Model simulation 

 North Northeast Centre Mainland Peninsula 

HadAM3P 0.878 0.472 0.910 0.538 0.010 

PRECIS-HadAM3P 0.724 0.701 0.573 0.391 0.024 

PRECIS-ERA40 0.534 0.594 0.939 0.442 0.016 

PRECIS-ECHAM4 0.056 0.158 0.071 0.001 0.031 

 

Results from a two-tailed t-test comparing model output with observations, 

CRUTS2.1, are shown in Table 5.3. The GCM and RCM excluding PRECIS-

ECHAM4 are not significantly different at the 95% level of probability. Over the 

peninsula, the p-value is much less than 0.05 in all simulations so there are significant 

differences. This suggested that HADAM3P, PRECIS-HadAM3P and PRECIS-

ERA40 are able to represent total precipitation over mainland Thailand. 

 

5.2.1.2 Comparison of precipitation simulation between ERA40 and 

PRECIS-ERA40 

 
Figures 5.7(a)–(c) show the value of PRECIS in its ability to realistically dynamically 

downscale. Over Central Thailand, the ERA40 total precipitation amount in July, 

August and September compared with the gridded observations reveals average 

relative errors underestimates of 45%, 52% and 60%, respectively, while the PRECIS-

ERA40 simulates total precipitation amount in the same months with much lower 
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errors of 30%, 26% and 22%, respectively. This indicates that, in the summer 

monsoon season, the dynamical downscaling performed by PRECIS–ERA40 results 

in more accurately simulated precipitation amounts over this geographical area. The 

ERA40 strongly underestimated total precipitation mainly results from the coarse 

resolution, 2.5 x 2.5 degree, and may be related to (i) underestimation of atmospheric 

surface wind speed (ii) inaccurate cloud radiation and (iii) error of tropical deep 

convection cloud and low level cloud amount in particular over this geographic area 

which are improved with skill of PRECIS. 

 

Over Southern Thailand, the ERA40 total precipitation amount in July, August and 

September underestimates the gridded observation with an average relative error of 

34%, 31% and 30%, respectively, while the equivalent PRECIS-ERA40 

underestimates are 54%, 56% and 50%, respectively (Figure 5.8a-c). This indicates 

that, in the more topographically complex peninsula area, the dynamical downscaling 

has not been able to add value during this summer monsoon season.  
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(c) 

Figure 5.7: Total precipitation amount (mm) from ERA40, PRECIS-ERA40 and 

gridded observation during 1961-1990 over Central Thailand in (a) July (b) August 

(c) September 
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Figure 5.8: Total precipitation amount (mm) form ERA40, PRECIS-ERA40 and 

gridded observation during 1961-1990 over Southern Thailand in (a) July (b) August 

(c) September 

5.2.1.3 Comparison of GCM and RCM with station observation data  
 
Precipitation from station observations and from HadAM3P and PRECIS-HadAM3P 

simulations are compared using the point-to-point analysis method, comparison of a 

station and a nearest grid point, and shown in Figure 5.9. One nearest grid cell is 

appropriate enough to be compared with a station because the resolution of PRECIS 

in this study is 50 km so that using an average of four grid cells may be too wide to 

compare with a single site. PRECIS-HadAM3P and HadAM3P can be seen to be able 

to capture the two peaks of precipitation during the summer monsoon period. 

Takahashi and Yasunari (2006) demonstrated that the Indochina precipitation system 
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can be divided into two sub-systems in the vicinity of the climatological monsoon 

break; the former, secondary peak, is characterized as a monsoon southwesterly 

system in late May and the latter, primary peak, is characterized by tropical 

depression systems in September. 

 

At the Chiang Mai site (Figure 5.9a), the GCM produces double the observed 

precipitation during mid May to late June and underestimates precipitation during mid 

July to October while the RCM produces too much precipitation in the first half of 

May, then produces realistic amounts during the monsoon break period (July) and 

also underestimates precipitation in the period mid July to October. At Phitsanulok 

(Figure 5.9b), the GCM produces too much precipitation for the whole period of mid 

March to October while the RCM simulates too much precipitation during mid May 

to June but is overall more realistic. In the southwest monsoon season, mountainous 

terrain over northern Thailand and the high plateau over north-eastern Thailand may 

provide up-slope heat and increased convection. Hudson (2002) concluded that 

PRECIS-HadAM3P over South Africa is too sensitive to the mesoscale variations in 

orography and the results presented here seem to concur to some degree.  

 

The selected nearest GCM grid point to Bangkok is actually over the sea where the 

annual precipitation cycle is rather smooth, as can be seen in Figure 5.9(c) that means 

the GCM is not able to manage with the detail of coastline at this site and therefore 

not able to realistically simulate daily precipitation variability. Interestingly, the GCM 

and the RCM produce a reliable average seasonal precipitation cycle at the Ubon 

Ratchathani site located in northeastern Thailand. Meanwhile, the GCM produces an 

underestimate for precipitation over the whole year at Surat Thani and is not able to 

reproduce the observed maximum precipitation amount in November (Figure 5.9e). 

While the RCM produces too much precipitation during March and April but does a 

somewhat better job than the GCM through the remainder of the year. Of course it 

should be remembered that other types of error may be affecting the rain gauge data 

themselves, such as the reading practice and changes in the gauge location or local 

conditions near the station (urban area, vegetation) over the span of the 

measurements. Taking all the stations together, there is some evidence that the RCM 

adds some value to the GCM simulations in reproducing the station data. 
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(e) 

Figure 5.9: Observed and PRECIS-HadAM3P (nearest gridpoint) annual precipitation 

cycles for the 1961-90 period at station (a) Chiang Mai (CM) (b) Phitchanulok 

(Phitlok) (c) Bangkok (BKK) (d) Ubon Ratchathani (Ubon) (e) Surat Thani (Surat) 

[note that TMD means station observational data from Thai Meteorology 

Department.] 

 

The frequency distributions of daily precipitation amounts from the PRECIS-

HadAM3P RCM are compared with station observations in Figure 5.10. In general the 

model generates too many low precipitation events and insufficient high precipitation 

events. In other words, the number of extreme precipitation days in the model is lower 

than in observations, as shown in Table 5.4 below. Osborn and Hulme (1997) and 

Osborn (1997) evaluated daily precipitation characteristics of a GCM developed from 
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estimation in standard deviation and rain day frequency of grid-box mean. These 

authors applied a few stations in a GCM grid cell and they mentioned that reduction 

in variance as number station increases can be computed as 2 2 1 ( 1)
n i

n rS s
n

⎡ ⎤+ −
= ⎢ ⎥

⎣ ⎦
where 

2
is is the mean of station variances, 2

nS  is the variance of the combination of n station 

time series and r  is the mean interstation correlation between all pairs of stations 

within the grid box considered. However, it is not possible to obtain an r value for 

grid boxes that have just one station in. In this thesis, with 50 km resolution RCM, 

each grid cell contains a single station. Therefore, standard deviations of daily 

precipitation time series give an indication of precipitation variability at a location 

(Table 5.4). A realistic model should produce a standard deviation similar to 

observation. 
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Figure 5.10: Observed and PRECIS-HadAM3P (nearest gridpoint) precipitation 

frequency distributions for the 1961-90 period at stations (a) CM (b) Phitlok (c) BKK 

(d) Ubon (e) Surat. 
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Table 5.4: Precipitation frequency using grid-to-grid analysis method at five stations 

over Thailand. In the table, TMD means the station observation data and Precis refers 

to the PRECIS-HadAM3P simulation. 

 

Number of days (%) 

CM Phitlok BKK Ubon Surat 

Precipitation 

(per day) 

Precis TMD Precis TMD Precis TMD Precis TMD Precis TMD

≥0.1 mm 54.3 32.8 60.3 33.6 61.0 33.6 62.5 34.1 78.0 44.8 

≥1mm 36.9 25.7 53.5 25.4 52.7 25.4 54.5 27.4 58.3 35.6 

≥95th 

percentile of 

PRECIS 

5.0 10.5 5.0 5.0 5.0 6.2 5.0 8.2 5.0 11.8 

Standard 

deviation 

8.4 

 

7.9 10.9 11.1 6.4 11.4 7.8 13.0 4.7 13.2 

 

5.2.2 Humidity fields 
 
Over the oceans, the humidity is generally controlled by the SST for which PRECIS is 

forced by observation data.  Vapour pressure is at a maximum near the equator and 

decreases polewards, largely as a function of the Clausius-Clapeyron equation; during 

DJF, MAM and ON, there are large differences over SEA between the land regions 

north and south of 16oN. During JJAS the high humidity is simulated over the 

domain, in general, with moisture convergence prevailing over the equatorial regions 

in the area of the ITCZ, which is retreating and moving equatorward across 

Indochina. By compared with the CRUTS2.1 gridded observations, underestimations 

in vapour pressure were found in DJF, MAM and ON while overestimation was found 

in JJAS. Therefore, PRECIS-HadAM3P has a difficulty to accurately simulate 

humidity fields over this geographic area. 
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   (a) 

   (b) 
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(d) 

Figure 5.11: Vapour pressure fields (mb) (1961-1990) from PRECIS-HadAM3P (left) 

and PRECIS-HadAM3P compared with CRUTS2.1 (right) during (a) DJF (b) MAM 

(c) JJAS (d) ON 

 

The IPCC AR4 report (IPCC, 2007) highlights that precipitation patterns are 

intimately linked to atmospheric humidity, evaporation, condensation and transport 

processes, therefore the model simulation of the seasonal cycle of vapour pressure is 

also compared with observational data in Figure 5.12 

   (c) 
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Figure 5.12: CRU and Precis-HadAM3P surface vapour pressure annual cycle (1961-

1990) over central Thailand (left) and southern (peninsular) Thailand (right)  

 

PRECIS-HadAM3P simulates too little humidity over central and northern Thailand, 

during the period December-April, and so this could be one of the possible causes for 

underestimated precipitation amount as shown in Figure 5.11. Meanwhile the model 

produced vapour pressure reasonably over the largely marine environment of the 

peninsula. This suggests a deficiency in the simulation of the water cycle, perhaps 

through land-atmosphere interactions, over more continental areas.  

 

5.2.3 Wet days   
 
Overall, the PRECIS simulations slightly overestimate the frequency of wet days, 

confirming the earlier analysis of frequency distributions and Figure 5.15. 

Considering the highest precipitation amounts during JJAS along Burma’s west coast, 

as shown in Figure 5.1, and the spatial distribution of the number of wet days shown 

in Figure 5.13, the PRECIS model simulates total precipitation amount fairly 

accurately through an underestimate of precipitation intensity but an overestimate of 

wet day frequency. The same performances among PRECIS-HadAM3P, PRECIS-

ERA40 and PRECIS-ECHAM4 also appear over central Thailand. The PRECIS-

ECHAM4 number of wet days over the peninsula of Thailand is notably fewer than in 

the other model simulations, on top of the underestimate in precipitation intensity 

shown in Table 5.4.  
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   (c)          (d) 

Figure 5.13: Difference between numbers of wet days (>1mm) (1961-1990) from 

PRECIS-HadAM3P compared with CRUTS2.1 during (a) DJF (b) MAM (c) JJAS (d) 

ON. 

 

The annual precipitation cycle for 4 selected areas in Thailand is presented in Figure 

5.14. The two precipitation peaks occur during the southwest monsoon period (mid 

May to mid September). The annual cycle test over the area of Peninsular Thailand 

simulated by ERA40 shows the closest pattern to CRUTS2.1, as would be expected 

given the nature of a reanalysis. However, over the other regions of the country, 

ERA40 strongly underestimates precipitation because the ERA 40 data during 1957-

1972 represents the pre-satellite observation period. It is also reported that ERA40 

underestimated the climatology of clear-sky outgoing longwave radiation by around 

10 Wm-2 and clear-sky absorbed solar radiation by around 30 Wm-2 as well as cloud 

(a)      (b) 
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fraction over tropical convection regions (Allan et al., 2004). Moreover, these same 

authors mentioned that ERA40 may underestimate humidity over tropical ocean 

regions. In general, the GCMs and RCM simulate that the first precipitation peak 

arrives in Peninsular Thailand in May, the same month as in central Thailand, because 

of the arrival of the southwest monsoon. During the month of May, the southwest 

monsoon gradually reaches the southern part of mainland Thailand but the northern 

part is in a transition period. The beginning of the monsoon in the northern part is 

more irregular, varying from May until June. Deep convection over the South China 

Sea (SCS) is detected. Cyclonic disturbances usually move with the monsoon air flow 

and can develop into typhoons. Convection is the key process for bringing 

precipitation especially at latitude 10oN. Therefore the possible causes of 

overestimating precipitation during May could be (i) the earlier monsoon onset (ii) too 

much deep convection generated over the SCS and around the latitude of 10oN. The 

later peak is observed in November in observations while PRECIS peaks one month 

earlier. Clearly, the PRECIS-ECHAM4 is not able to calculate either the first arrival 

of heavy precipitation in May or the later one. 
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Figure 5.14: 30 year precipitation annual cycle (1961-1960) over (a) northern (b) 

northeastern (c) central (d) peninsular Thailand.  
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The PRECIS-ERA40 and PRECIS-ECHAM4 produce the first peak of precipitation 

in June while the ERA40 and PRECIS-HadAM3P produce the peak correctly in May. 

The PRECIS-HadAM3P and PRECIS-ERA40 overestimate precipitation by 58.6% 

and 30.8% in May. All RCM ensemble members and ERA40 perform correctly in 

simulating the timing of the secondary peak, although the magnitude of the latter is 

underestimated for PRECIS-HadAM3P, PRECIS-ERA40, PRECIS-ECHAM4 and 

ERA40 by about 10%, 15.1%, 30.9% and 74.8%, respectively. In some cases, 

HadAM3 is performing better than PRECIS, producing less precipitation than the 

RCM, for example, in the onset month of May in northern, northeastern and central 

Thailand. The RCM is likely to reproduce the convection which is activated at the lee-

side foot of two mountainous regions located in western and central Thailand during 

the daytime and to extend that precipitation during the night time over inland regions 

far downwind from the mountains themselves. Generally, RCM simulations show 

more precipitation than driving GCM simulations because in the RCM there is more 

convective and large scale precipitation throughout the seasonal cycle as well as a 

more active hydrological cycle compared to the driving GCM (Hudson and Jone, 

2002). However, during the southwest monsoon, the RCM performances are closer to 

the observations.  

 

Interestingly, PRECIS-HadAM3 produced wetter conditions than other simulations 

from the warming month of March to the intermonsoon month of October over 

northern, northeastern and central Thailand, however, a significant positive bias in 

precipitation during May and June and a slight negative bias in the later active 

monsoon period, July-September, were detected (Figure 5.14 and 5.15) which is 

similar to the findings with the station analysis (Figure 5.9 and 5.10). The bias may be 

partially related to the tropical region where more optically thick clouds are simulated 

than are observed (Hudson and Jones, 2002) and Figure 5.16 shows total cloud 

fraction slightly in excess of observations. However, there is mix bias in precipitation 

during JJAS that implied that the systematic model error which could be error in the 

wind and pressure field through the lateral boundaries (Hudson and Jones, 2002). That 

possibly produced convergence condition at low level and divergence condition in 

upper level of the atmosphere which promoted strong updraft and positive 

precipitation over the region during the beginning of southwest monsoon active 

combined with orographic convection from the Bay of Bengal.  In the other hand, all 
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model simulations produced negative bias in precipitation throughout the year with 

excessive of wet day during most of year and cloud fraction closed to observation 

during JJAS, this due to RCM calculated precipitation less than the actual condition 

which may related to the limitation of hygroscopic nuclei, which water vapour can 

condense, over the region surrounding with the ocean which could be one of 

recommendations for further study. 
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Figure 5.15: CRUTS2.1 and PRECIS-HadAM3 annual cycle in the average number of 

wet days (1961-1960) over (a) northern (b) northeastern (c) central (d) Peninsular 

Thailand  

 

Since precipitation over the tropics is dominated by convection it is clearly relevant to 

consider model simulation of cloud amount (Figure 5.16). The modelled annual cycle 

of total cloud fraction in Central Thailand is fairly realistic (Figure 5.16).While the 

model looks acceptable in creating cloud over the peninsula during the active 

southwest monsoon period, it significantly underestimates total cloud amount during 

the northeast monsoon and this affects precipitation amount in November as shown in 

Figure 5.15. 
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Figure 5.16: Annual Cycle of observed and PRECIS-HadAM3P total cloud fraction 

(1961-1990) over Central Thailand (left) and Southern (Peninsular) Thailand (right).  

 

Figure 5.17 shows how much agreement during June to September precipitation was 

found between PRECIS driven by the reanalysis data, ERA40, and the gridded 

observations in the Central Thailand region. Most of the model overestimates are 

within a factor of two of the observations except in the month of May. It is found that 

during the southwest monsoon period, PRECIS has difficulties realistically  

simulating precipitation in the month of monsoon onset which may be related to the 

earlier monsoon arrival in central Thailand or to too much convective precipitation 

simulation. 
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(c)      (d) 

 

Figure 5.17: Observed (CRUTS2.1) and Modelled (PRECIS-ERA40) monthly 

average precipitation (mm/day) (1961-1990) over Central Thailand in the month of 

(a) June (b) July (c) August (d) September. 

 

If we now consider equivalent results for peninsular Thailand for the months of May-

November, the scattering of the PRECIS-ERA40 and CRUTS2.1 data seem similar 

each month which would appear to suggest a systematic negative bias in the model 

(Figure 5.18). The radiation scheme and/or land sea interaction may be related to 

precipitation underestimation in southern Thailand in particular.  Marengo et al. 

(2009) mentioned that the possible effect of local dynamic forcings, for example dry 

or wet soil, may be dominant over the large-scale SST forcing. 
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(d)    (e)    (f) 

Figure 5.18: PRECIS-ERA40 modelled and observed (CRUTS2.1) monthly average 

precipitation (mm/day) (1961-1990) over peninsular Thailand in the months of (a) 

May (b) June (c) August (d) September (e) October (f) November [note that July 

shows the same pattern as June] 

 

In summary, PRECIS simulations run with and without interactive sulphur cycle, 

show insignificant differences in spatial and point precipitation analysis, moreover, in 

terms of simulations driven from different initial conditions of HadAM3P, a 150 km 

resolution version of the Hadley Centre’s global atmosphere-only model, using 

observed time series of HadISST SST and sea-ice for 1960-1990, there is also no 

significant difference in output (Table 5.1 and 5.2). Applying the grid-to-grid analysis 

method, there is a striking difference in the sign of bias between the north and south 

of the domain indicating that model biases over SEA more likely depend on 

geographical location. In PRECIS simulation over other parts of the world, 

precipitation bias more likely depends on season, for example, underestimation 

(overestimation) during summer (winter) possibly responding to hydrostatic 

restriction as PRECIS fails to realistically simulate convective precipitation (Hudson 

and Jones, 2002, Alves and Marengo, 2009, Shahgedanova et al., 2010). Generally, 

RCM simulations show more precipitation than driving GCM simulations because in 
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the RCM there is more convective and large scale precipitation throughout the 

seasonal cycle as well as a more active hydrological cycle compared to the driving 

GCM (Hudson and Jones, 2002). Therefore, the possible cause of the bias would be 

gridded observation quality and/or RCM error.  

 

PRECIS is able to add value to the driving GCM during the active monsoon season, 

JJAS (Figure 5.6). The negative bias occurring over the peninsula implied that the 

convection scheme and/or physical parameterization fails to fully reproduce 

precipitation over the region. Even with improved boundary conditions, the skill of 

dynamical downscaling was also controlled by the regional scale forcings which may 

include orography, land-sea contrast, vegetation cover, lake effects, or they may be 

anthropogenic for example air pollution, urban heat island, and land and water 

management. The radiation scheme and/or land sea interaction may be related to 

precipitation underestimation in southern Thailand in particular.  Marengo et al. 

(2009) mentioned that the effect of local dynamic forcing for example of dry or wet 

soil, may be dominant over the large-scale SST forcing. Applying the point-to-point 

analysis method, there is evidence that the RCM adds some value to the GCM 

simulations in reproducing the station data, however, PREICS generates too many 

low precipitation events and insufficient high precipitation events and these biases are 

unlikely to be due to large biases in the humidity fields. Hence the bias may be 

partially related to the tropical region where more optically thick cloud is simulated 

than observed (Hudson and Jones, 2002); total cloud fraction slightly in excess of the 

observations was found in this study (Figure5.16) which could be related to an  error 

in the wind and pressure field through the lateral boundaries (Hudson and Jones, 

2002).  
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5.2.4 Surface Temperature 
 

The RCM results, which are available at a resolution of 0.44ox0.44o, are first re-

interpolated to the 0.5ox0.5o resolution of the CRUTS2.1 grid. 

 

5.2.4.1 GCM and RCM compared with the gridded CRUTS2.1 
observations 
 

Figures-5.22 shows, in general, that the GCM and RCM simulations underestimate 

(overestimate) maximum temperature north (south) of 12oN during JJAS and ON, 

excluding PRECIS-ECHAM which is too warm in all seasons. . PRECIS-HadAM3P 

simulated the surface maximum temperature quite realistically over Thailand with a 

cold bias mostly less than 3°C during JJAS and ON. The RCM simulated surface 

maximum temperature with a negative bias while the GCM simulated the temperature 

with positive bias. Biases in maximum temperature are consistent with biases in 

precipitation, negative (positive) temperature biases were found mostly over Thailand 

where precipitation was overestimated (Figure 5.4 and 5.22) which is the same 

finding as Solman et al. (2007). The negative bias is also related to vertical updraft 

(Figure 5.33). This cold bias is unlikely to be due to gridded observations but more 

likely due to PRECIS itself. During DJF, all simulations produce overestimated 

maximum temperature except over the northern Vietnam, Laos and Burma region, 

while during MAM, all model simulations have a tendency to produce conditions 

which are too warm, except PRECIS-HadAM3P which underestimates maximum 

temperature over central Thailand. The difference of regional maximum temperature 

compared with the gridded observation data set is shown in Figure 5.23 with detail for 

northern and mainland Thailand. In summary, PRECIS is able to most accurately 

simulate the maximum temperature field over these regions. 
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(c)       (d) 

Figure 5.19: Difference between model and observations (CRUTS2.1) of average 

surface maximum temperature (oC) in the period of 1961-1990 during DJF (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4  

 

 

(a)      (b) 
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(c)       (d) 

Figure 5.20: Difference between model and observations (CRUTS2.1) of average 

surface maximum temperature (oC) in the period of 1961-1990 during MAM (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

(a)      (b) 
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(c)       (d) 

Figure 5.21: Difference between model and observations (CRUTS2.1) of average 

surface maximum temperature (oC) in the period of 1961-1990 during JJAS (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

(a)      (b) 
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(c)       (d) 

Figure 5.22: Difference between model and observations (CRUTS2.1) of average 

surface maximum temperature (oC) in the period of 1961-1990 during ON (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

 

(a)      (b) 
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Figure 5.23: The seasonal maximum temperature difference of GCM and RCM 

compared with the gridded CRUTS2.1. [Note that the four groups in the graph 

represent the seasons, DJF, MAM, JJAS and ON].  

 

Figures 5.24-5.27 show that, in general, all model simulations produce overestimated 

minimum temperature for the whole domain during DJF, MAM and JJAS. Warm 

biases were found in both the driving GCM, HadAM3P, and PRECIS with maximum 

magnitude of 5.5°C, 3°C and 1°C for PRECIS-ECHAM4, PRECIS-ERA40 and 

PRECIS-HadAM3P respectively (Figure 5.28). Interestingly, the GCM shows 

smallest (largest) positive bias over mainland (peninsular) Thailand neglecting 

PRECIS-ECHAM4 simulation (Figure 5.28 and 5.30). This would be an expectation 

of GCM skill, providing a good simulation of a large scale climate regime over an 

aggregated area of mainland Thailand while the limitation of GCM skill was found 

over coastal region. The largest warm bias in PRECIS-ECHAM4 may be due to the 

insufficiency of driving boundary condition. In summary, the GCM is able to 

calculate most accurately the minimum temperature over mainland Thailand while 

PRECIS-HadAM3P and PRECIS-ERA simulate minimum temperature reasonably 

well over peninsular Thailand. 
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Figure 5.24: Difference between model and observations (CRUTS2.1) of average 

surface minimum temperature (oC) in the period of 1961-1990 during DJF (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

(a)      (b) 

(c)      (d) 
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Figure 5.25: Difference between model and observations (CRUTS2.1) of average 

surface minimum temperature (oC) in the period of 1961-1990 during MAM (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

(a)      (b) 

(c)      (d) 
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Figure 5.26: Difference between model and observations (CRUTS2.1) of average 

surface minimum temperature (oC) in the period of 1961-1990 during JJAS (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

(a)      (b) 

(c)      (d) 
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Figure 5.27: Difference between model and observations (CRUTS2.1) of average 

surface minimum temperature (oC) in the period of 1961-1990 during ON (a) 

HadAM3P (b) PRECIS-HadAM3P (c) PRECIS-ERA40 (d) PRECIS-ECHAM4 

 

(a)      (b) 

(c)      (d) 
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Figure 5.28: The minimum temperature difference between GCM and RCM 

compared with the gridded CRUTS2.1. [Note that the four groups in the graph 

represent the seasons, DJF, MAM, JJAS and ON] 

5.2.4.2 Model Comparison with available daily station observational 
datasets  
 

Figure 5.29 shows direct comparisons in maximum and minimum temperature 

between models and station data, using the point to point analysis method. The 

surface temperature decreases with higher altitude so the difference in elevation 

between RCM and station should be primarily considered. The model elevations of 

the nearest model grid cell at BKK and Ubon are very close to those of the station 

while the rest are somewhat different (Table 3.3). Moberg and Jones suggested that 

the RCM temperatures should be adjusted to the station level by assuming an average 

lapse rate of 6.5°C/km. In that case the surface temperature would be reduced by 

1.9°C, 1.7°C and 0.9°C at CM, Phitlok and Surat site, respectively.  

 

At the CM site, both the RCM and GCM calculated minimum temperatures warmer 

than the observations during the cool season, continuing through to the month of May. 

Acceptable simulations of minimum temperature are made during the summer 

monsoon period (Figure 5.29(a) left). Regarding the simulations of maximum 
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temperature, both RCM and GCM have a cool bias for all months while the RCM is 

closer to the station observation data (Figure 5.29(a) right). The largest warm bias in 

minimum temperature from PRECIS-HadAM3P simulation was found in March with 

a magnitude of 5 °C (about 3°C after including the altitude effect) and the largest cold 

biases in maximum temperature from HadAM3P (PRECIS-HadAM3P) simulation are 

9°C (6°C). This implied that the altitude effect in the GCM might be larger than 

RCM. In summary, the RCM produced an acceptable simulation in both surface 

minimum and maximum temperature annual cycle. 

 

At the Phitlok site, both GCM and RCM produce a very accurate simulation of the 

seasonal cycle of surface temperature (Figure 5.29(b)). 

 

At the BKK site (Figure 5.29(c)), both GCM and RCM overestimate the minimum 

temperature to a similar extent in most months. The largest biases were found in 

March of the order of 5°C(4°C) in RCM (GCM). The observed maximum temperature 

does not vary too much at this station with the GCM underestimating values due to its 

grid-point. However, significant warm biases in the RCM were found in February to 

April with magnitudes of 8.8°C, 9.4°C and 5.5°C, respectively. The nearest grid cell 

elevation is very close to station elevation (Table 3.3) so this is unlikely due to model 

elevation error. Clearly, the average urban heat island (UHI) effect was found to be 

strongest in winter which might correspondences to maximum surface temperature 

increase found on observation (Figure 5.29(c) right) which should result exclusively 

from anthropogenic energy. The maximum temperature annual cycle at BKK is 

consistent in pattern with the cycle at CM, Phitlok and Ubon located over mainland 

Thailand so the implication is that the RCM is inadequate in simulating the UHI 

effect. One of the other possible causes of RCM overestimation is an unrealistic 

degree of coastal influence.  

 

At the Ubon site, the RCM is rather poor in accurately simulating minimum 

temperature over DJFM, withvalues of warm bias of 3.8°C, 5.8°C, 6°C and 3°C 

which is consistent with the GCM. The PRECIS grid cell altitude is comparable to 

that of the station, 0.6 m lower. The warm bias in minimum temperature coincides 

with a dry bias in soil moisture content. RCM performance is generally better during 
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JJAS and the rest of the months. The maximum temperature annual cycle at this site is 

consistent with the cycle at the CM site, for example, slightly positive bias in JFMA 

and less than 5°C negative bias in MJJASON. 

At Surat Thani, on the peninsula, both GCM and RCM generally overestimate the 

minimum temperature to a similar extent, producing small negative and positive 

biases in their maximum temperature simulations; both capture the relatively low 

amplitude of the temperature seasonal cycles at this station very well. (Figure 

5.29(e)).  
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(e) 

Figure 5.29: 1961-90 annual cycle of  monthly minimum  (left) and maximum (right) 

1.5m temperature from station data, HadAM3P and PRECIS-HadAM3 at (a) CM (b) 

Phitlok (c) BKK (d) Ubon (e) Surat  

 

Figure 5.30 (a) shows that the monthly averaged minimum surface temperature over 

central Thailand obtained from the PRECIS model simulations exhibits a small warm 

bias during the southwest monsoon season (JJAS) when the magnitudes of the 

overestimations are 0.33, 0.91 and 1.92oC for PRECIS-HadAM3P, PRECIS-ERA40 

and PRECIS-ECHAM4, respectively. The equivalent minimum temperature biases 

during the cool season (DJF) are 0.42, 1.00 and 2.93oC.  It is found that for maximum 

surface temperature a cold bias exists in PRECIS-HadAM3P and PRECIS-ERA40 for 

the active monsoon season. Uchiyama et al. (2006) found that the variation in 

temperature bias, for example, cold bias in the dry season and hot bias in the rainy 

season, may be linked to incorrect energy partitioning related to the latent heat flux. 

The GCM, HadAM3P, simulates the minimum temperature more accurately than the 

other RCM simulation over central Thailand. 
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All model simulations overestimated the temperature over the peninsula where, the 

RCMs, excluding PRECIS-ECHAM4, are closer to the absolute value of the observed 

temperature. 
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Figure 5.30: (a) Minimum and (b) maximum 1.5 temperature cycle (1961-1990) from 

model simulations and gridded observation data set over central Thailand (left) and 

over Southern Thailand (right). 

 

Figure 5.30(b) shows that the model overestimations of PRECIS-HadAM3P, 

PRECIS-ERA and PRECIS-ECHAM4 are 1.69 (0.68), 1.78 (0.81) and 4.05 (5.18)oC 

for JJAS (DJF) respectively over central Thailand while the monthly averaged 

maximum surface temperature obtained from the PRECIS model simulation exhibits a 

cold bias for every month in the area of peninsular Thailand. The model 

underestimations of PRECIS-HadAM3P, PRECIS-ERA and PRECIS-ECHAM4 are 

1.3 (1.19), 0.44 (0.62) and 0.96 (0.06)oC for JJAS (DJF) over the peninsula 

respectively. The GCM generates more accuracy in maximum temperature than the 

RCM over both central and Southern Thailand. 
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In general, the RCM provides regional detail in surface temperature while the GCM 

calculates area averaged surface temperature more accurately than the RCM. 

Applying grid to grid analysis, the cold bias during JJAS and ON (Figure 5.21 and 

5.22) is unlikely due to biases in the gridded observation data itself but likely due to 

PRECIS itself. The variation in temperature (i.e. cold bias in the rainy season and 

warm bias in the dry season) may be due to the decrease and increase of latent heat 

flux for the two seasons  which may not be well distinguished by the model (Islam et 

al., 2007). Applying the point to point analysis, corrected RCM elevation may reduce 

the bias in surface temperature at some sites, i.e., CM, Phitlok and Surat, however,  

consistencies of surface temperature annual cycle at the sites located over the 

mainland were revealed (Figure 5.29) . The positive bias in minimum temperature in 

JFM (Figure 5.29 (d)) may be related to the radiation scheme. The radiation scheme in 

both GCM and RCM defined the corresponding gases in a series of spectral bands, for 

example, carbon dioxide, ozone, methane, nitrous oxide and halocarbons, which over-

absorb energy flux relative to the actual climate condition so that the models calculate 

excessive long-wave energy flux over the region (Mlawer et al., 1997). Another 

possible cause for the warm bias in minimum temperature is the result of the land 

surface scheme which may release too much energy heat flux from the soil, compared 

with reality, during night time. On the other hand, the warm bias in maximum 

temperature during Feb-Mar (Figure 5.29(c) and 5.29(d)) may be related to 

unrealistically low soil energy absorption during daytime. 

  

5.2.5 Monsoon onset 
 

This chapter also uses the same monsoon onset criteria as mentioned in Chapter 4 

which suggested using five successive rainy days with more than 5 mm each day 

accompanied by westerly or southwesterly low level winds and easterly upper level 

winds to determine the monsoon onset (Sangwaldach, 2006). The observation record 

indicated that the onset of the rainy season in Thailand generally occurs around mid-

May. It is assumed that the onset is similar in each year and that the same mechanisms 

are involved. 
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The mean 1961-1990 variables show the rainy season over Thailand starts at 

approximately the same time each year, with just 1 pentad difference. The first 

appearance of an average resultant westerly wind of strength 4 m/s occurs in the 

second pentad of May, while the average 250-hPa easterly wind first appears in the 

third pentad of May (Figure 5.31). The first arrival of the rapid increase in daily mean 

precipitation appears in the first pentad of May (Figure 5.32). Therefore, the average 

monsoon onset during 1961-1990, with all three criteria satisfied, occurs in the third 

pentad of May. Using a similar approach at the end of the rainy season over Thailand 

shows that this occurs around  the third pentad of September. 

 

 

 

 

 

 

 

 

 

 

 

(a)       (b) 

 

Figure 5.31: Time-longitude section averaged over 5oN-20oN (the latitude range 

covering Thailand) of climatological pentad zonal wind (ms-1) from PRECIS-

HadAM3P at (a) 850 hPa (b) 250 hPa 

 

Considering the topography of the region of 97.5-105oE, the changing direction in 

winds when the westerly wind is stronger can be seen during the fourth pentad of May 

to the third pentad of October in Figure 5.31 representing a change to upslope flow 

along the mountainous region over western Thailand (Figure 3.1). The 850-hPa 

westerly winds extend eastward to the whole domain of SE Asia during the period 

from May until October. The maximum wind speed occurs at 90-95oE, in the Bay of 
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Bengal, in the period mid-May through mid July accompanied by the peak in 

precipitation amount. 

 
Figure 5.32: Time-longitude section averaged over 5oN-20oN of climatological pentad 

total precipitation (mm/day) from PRECIS-HadAM3P 

 

Figure 5.33 shows the existence, during the southwest monsoon season, of ascending 

vertical motion over western Thailand occuring at approximately 97.5oE, associated 

with highest precipitation amounts. It is shown that the monsoon onset reaches 

Thailand later by 1.5 day/30 year (Figure 5.34). 

 

 
Figure 5.33: Pressure Level-longitude section averaged over 5oN-20oN of 

climatological vertical wind (ms-1) from PRECIS-HadAM3P during JJAS  
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Figure 5.34: Inter-annual variation, 1961-1990, of the date of the south-west monsoon 

onset from PRECIS-ERA simulation. The y-axis represents the difference in monsoon 

onset compared with the average onset date (15th May). 

 

The average onset date of the rainy season for the baseline period (1961-1990) from 

the PRECIS-ERA simulation is 15 May and the standard deviation for the onset is 3 

days. The earliest monsoon arrival is 9 May in 1984 and the latest is 21 May in 1966 

and 1981. The monsoon arrived earlier than 15th May during the years of El Niño 

(year in parenthesis) by 3 days (1963), 2 days (1965), 4 days (1969), +4 days(1972), 2 

days (1976), +1 day (1982) and 3 days (1986), the positive number meaning the 

monsoon started later than the average onset date. The monsoon arrived earlier than 

15th May during the years of La Niña (year in parenthesis): +2 days (1964), +2 days 

(1970), 3 days (1973), 3 day (1975),  6 days (1984) and +4 days (1988). From these 

results there appears to be no link between the ENSO cycle and the monsoon onset 

over Thailand. During the monsoon active phase the specific humidity increases quite 

rapidly from May to September (Figure 5.15). 
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5.3 Summary 
 

This chapter addresses the questions; how well does the RCM capture the main 

regimes for current Thai climate, which variables do the GCM and RCM simulate 

realistically, and does the RCM add value to the GCM when compared against daily 

station and gridded CRUTS2.1 datasets. 

 

All simulations, HadAM3P, PRECIS-HadAM3P and PRECIS-ERA, excluding 

PRECIS-ECHAM4, produced precipitation patterns consistent with the gridded 

CRUTS2.1 datasets during JJAS (Figure 5.1). In general, all simulations generated 

too much precipitation over the area north of 12°N and underestimated precipitation 

over the area south of this latitude (Figures 5.2-5.5). In detail, the driving GCM, 

HadAM3P, underestimated absolute precipitation more than the RCM, PRECIS-

HadAM3P, does. Considering Thailand specifically, it was found that while the 

driving GCM HadAM3P simulated precipitation amount more accurately in all 

seasons over the mainland, PRECIS-HadAM3P did a better job over the peninsula. 

Daily station data were also used for model validation, to help address the question of 

potential added value from the RCM. The precipitation annual cycle produced from 

daily data shown as Figure 5.9 indicated that the RCM is more consistent than the 

GCM. 

 

The average precipitation annual cycle from both station and model simulation over 

Thailand shows that there are two peaks, the first one occurs in May and the later one 

occurs in September in the mainland and in November over peninsular Thailand. 

Overestimated precipitation in May was found in all simulations and underestimated 

precipitation in September/November. Precipitation distributions over 5 stations were 

produced and show the model generates too many low volume precipitation events 

and insufficient high volume precipitation events. The possible causes inducing this 

performance were investigated. Regarding the limitations of the observation data, 

some variables are tested including number of wet days (defined as a day with rain 

above 1mm), humidity fields, cloud fractions, presence of an El Niño/La Niña event, 

and monsoon onset. The models calculated too many wet days during March to 

September compared with CRUTS2.1. The model calculated acceptable cloud 

fractions over Thailand compared with the observation data. A case study of an El 
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Niño event in 1982 and La Niña event in 1988 shows weak relations with the anomaly 

precipitation. The average monsoon onset from model simulation during 1961-1990 is 

also investigated. It was found that the average monsoon onset occurs in the third 

pentad of May while the literature review and the result from chapter 4 indicated that 

the onset occurs in pentad 25-26 (10th May). 

 

In general, compared with the gridded data set, the GCM HadAM3P overestimated 

seasonal minimum temperature in all four regions in Thailand while all RCM 

simulations underestimated the temperature (Figure 5.23) in all seasons. Regarding 

the comparison between the forcing GCM and RCM, it was found that the GCM 

simulates surface minimum air temperature more realistically over both mainland and 

peninsular Thailand (Figure 5.30(a)). All model simulations producing surface 

maximum air temperature overestimate compared with the gridded data set for all 

seasons over the four regions in Thailand. It was found that the GCM (RCM) 

simulated maximum temperature more realistically over the mainland (peninsular) 

Thailand (Figure 5.28). Compared with station observational data, it was found that 

both HadAM3P and PRECIS-HadAM3P produce similar minimum temperatures in 

terms of both the annual cycle pattern and the absolute amount.  

 

It was concluded, overall, that HadAM3P and PRECIS are sufficiently good in 

simulating current Thai climate to be used in analyses of their simulations of potential 

future regional climate in SEA. These results are considered in the following chapter. 



Chapter 6 

Future Projections of Climate Change 
 

6.1 Introduction 
 
This chapter contains a discussion of the main characteristics of climate change 

projections in Thailand and the surrounding area for both the high emission scenario 

(SRESA2) and the low emission scenario (SRESB2) for the end of the 21st century 

(2071 to 2100) relative to the period of 1961-1990 produced by the PRECIS-HadAM3 

model.  

IPCC-AR4 (2007) presents results from a global simulation with the A1B scenario 

while IPCC-TAR (2001) shows global projections based on SRESA2 and SRESB2 

which are the same scenarios as used in this study. The change in global average 

annual precipitation is +3.9% (with a range of 1.3 to 6.8%) for the A2 scenario and 

+3.3% (with a range of 1.2 to 6.1%) for the B2 scenario (IPCC-TAR, 2001). These 

GCM assessments from CSIRO Mk2, CCSR/NIES, ECHAM/OPYC, CGCM1 

(average three-member ensemble) and HadCM2 (average four-member ensemble) 

show reasonable agreement with average precipitation change over SEA of between -

5 and 5% in DJF for both the A2 and B2 scenarios as well as for JJA for A2, however 

there was disagreement in JJA based on the B2 scenario (IPCC-TAR, 2001). Based on 

an ensemble of GCM simulations, the change in global average annual surface air 

temperature by the end of the century (JJA and DJF combined) is 3.0°C (with a range 

of 1.3 to 4.5°C) for the A2 scenario and 2.2°C (with a range of 0.9 to 3.4°C) for the 

B2 scenario. These GCMs show warming over SEA is less than 40% of the global 

average annual warming in JJA under both A2 and B2 emission scenarios (IPCC-

TAR, 2001). The AOGCMs included in AR4  are CCSM3, CGCM3.1 (T47 and T63), 

CNRM-CM3, CSIRO-MK3, ECHAM5/MPI-OM, ECHO-G, FGOALS-g1.0, GFDL-

CM2.0, GFDL-CM2.1, GISS-EH, GISS-ER, INM-CM3.0, IPSL-CM4, MIROC3.2 

(medium and high resolution), MRI-CGCM2.3.2, PCM1, UKMO-HadCM3 and 

UKMO-HadGEM1. IPCC-AR4 (2007) mentioned that precipitation in DJF is likely to 

increase over the south of SEA and precipitation in JJA is likely to increase by 5% 

under the A1B scenario. Moreover, extreme precipitation and winds associated with 
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tropical cyclones are likely to increase in SEA, in other words, more intense 

precipitation events (IPCC-AR4). The annual warming for SEA is 2.5°C (with a range 

of 1.5 to 3.7°C) by the end of 21st century similarly to global mean on the A1B 

scenario (IPCC-AR40, 2007). The seasonal warming is similar to annual warming. 

6.2 Projections of Climate Change 
 

As per the experimental design outlined in chapter 3, PRECIS-A2, PRECIS-B2 and 

PRECIS-ECHAM4-A2 experiments were undertaken. To enable direct comparisons 

with experiments for the current climate (1961-1990) presented in chapter 5, these 

future simulations are also run without a sulphur cycle and results are analyzed in this 

chapter and compared against IPCC global model findings. In chapter 5 it was 

demonstrated that PRECIS-ECHAM4 simulations show a fairly poor ability to 

realistically simulate the current climate over Thailand, relative to the gridded 

observational data set CRUTS2.1, therefore, in this chapter, only the results from 

PRECIS-A2 and PRECIS-B2 will be discussed.  

6.2.1 Precipitation Projections  
 

Precipitation changes in the global and regional model simulations for 2071-2100 

include a pronounced seasonality and considerable variation across the region of SEA 

(Figures 6.1-6.4). When compared with the precipitation pattern simulated by the 

forcing global model, HadAM3P, the regional model, PRECIS, is generally consistent 

with the forcing model in all seasons. The similarity over SEA will be due to the fact 

that the RCM maintains the large-scale weather systems from the GCM, 

superimposing finer scale regimes that derive from interactions with the land surface 

and mesoscale weather processes, for example, moisture flux.  

 

Figure 6.1 shows increases of precipitation during the cool season (DJF) over 

mainland Thailand, Laos, the northeast Pacific, Borneo and southern Indonesia with a 

maximum increase of +45% over mainland Thailand for the PRECIS-A2 and +20 % 

for the PRECIS-B2. In the same season, precipitation decreases are found over 

peninsular Indochina, the southern South China Sea and Bay of Bengal with a 

maximum reduction of -40% in both scenarios. Figure 6.2 shows that the area of the 
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precipitation reduction in the cool season (DJF) is likely to continue decreasing in 

MAM and the reductions expand over the South China Sea though the Philippines to 

the northwest Pacific Ocean. However, both scenarios simulate 15-20% increases of 

precipitation during MAM over the marine continent of Sumatra, Malaysia and 

Borneo. Precipitation reductions of 30%-5% in MAM were detected for both the A2 

and B2 scenario in Thailand excluding some parts of northeastern Thailand. The 

difference in the summer monsoon period (JJAS) precipitation total at the end of the 

21st century relative to the baseline current climate (1961-1990) is depicted in Figure 

6.3. Although there are regional details in SEA in the difference between the future 

(both A2 and B2 scenarios) and current monsoon season simulations, the key change 

appears to be increases in monsoon season precipitation over the Bay of Bengal, 

Sumatra, and the Gulf of Thailand through the western North Pacific excluding the 

area of the South China Sea. In the detail of the SE Asia region, the precipitation 

projection for the PRECIS-A2 scenario during JJAS suggests a reduction of 15% in 

monsoon precipitation over part of peninsula Thailand and the southern Philippines 

and a reduction of up to 45% in some parts of Indonesia. At the same time, 

precipitation increases are simulated especially in Burma, northern Sumatra Island 

and by up to +40% in the northern Philippines compared to the 1961-1990 baseline 

period. Small increases in precipitation in northeast Thailand, Cambodia and Laos of 

up to 5-10% are projected under both the A2 and B2 scenarios, with the projected 

change under A2 being slightly larger than under B2. An increase in precipitation was 

found during ON over all continental SEA, excepting southern Indonesia, with the 

largest changes, +45%, simulated over Mainland Thailand, the coast of Burma along 

the Bay of Bengal, northern Laos and Vietnam  under the A2 scenario (Figure 6.4).  
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(b) 

Figure 6.1: Projected precipitation changes (%) in the cool season (DJF) for 2071–

2100 relative to 1961–1990 from GCM-HadAM3P (left) and RCM-PRECIS (right) 

(a) projections for the PRECIS-A2 scenario (b) projections for the PRECIS- B2 

scenario  

(a) 
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(b) 

 

Figure 6.2: Projected precipitation changes (%) in MAM for 2071–2100 relative to 

1961–1990 from GCM-HadAM3P (left) and RCM-PRECIS (right) (a) projections for 

the PRECIS-A2 scenario (b) projections for the PRECIS- B2 scenario. 

 

(a) 
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(b) 

 

Figure 6.3: Projected precipitation changes (%) in summer monsoon season (JJAS) 

for 2071–2100 relative to 1961–1990 from GCM-HadAM3P (left) and RCM-PRECIS 

(right) (a) projections for the PRECIS-A2 scenario (b) projections for the PRECIS- 

B2 scenario 

 

(a) 
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(b) 

 

Figure 6.4: Projected precipitation changes (%) in ON for 2071–2100 relative to 

1961–1990 from GCM-HadAM3P (left) and RCM-PRECIS (right) (a) projections for 

the PRECIS-A2 scenario (b) projections for the PRECIS- B2 scenario. 

 

The regional area averages in total precipitation change over Thailand from driving 

GCM, HadAM3P and PRECIS under the A2 and B2 scenario are presented in Table 

6.1. During DJF, over northern, northeastern and central Thailand PRECIS-A2 

produces precipitation increases of 7%, 18% and 61%, respectively and PRECIS-B2 

produces a precipitation decrease of -25%, -31% and -10%. In the same season, over 

the peninsula the two simulations produce a similar precipitation decrease response by 

-16%. Consistent responses in both A2 and B2 simulations are found in MAM 

(decreased precipitation) and in JJAS (increased precipitation) throughout Thailand. 

The magnitudes of the precipitation decreases in MAM under the A2 (B2) scenario 

(a) 
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over northern, northeastern, central and southern Thailand are 15% (11%), 5% (9%), 

22% (18%) and 10% (8%), respectively. The magnitude of the precipitation increases 

in JJAS under the A2 (B2) scenario over northern, northeastern, central and southern 

Thailand are 25% (29%), 8% (8%), 4% (4%) and 14% (13%), respectively. During 

ON, the two scenarios produce similar responses with increased precipitation 

throughout Thailand except that PRECIS-B2 produces decreased precipitation over 

northeast Thailand. The magnitude of the precipitation increases in ON under the A2 

(B2) scenario over northern, northeastern, central and southern Thailand are +53% 

(+15%), +56% (-14%), +49% (+8%) and +17% (+11%), respectively.  

 

When compared with the precipitation patterns simulated by the forcing global model, 

HadAM3P, the regional results over Thailand from the regional model, PRECIS, can 

be summarised as follows, supported by Table 6.1. 

(i) North; the RCM results are generally consistent with the GCM in every season. 

(ii) Northeast; the RCM results are variable with the GCM; consistent with the GCM 

during DJF and MAM, different to the GCM in JJAS in both A2 and B2 simulations 

(PRECIS produces changes double those of the GCM) and the A2 simulation is 

consistent with the GCM during ON. 

(iii) Central; the RCM results are generally consistent with the GCM. 

(iv) South; the RCM results are generally consistent with the GCM except the B2 

simulation during ON. 

 

Focusing upon differences in results between scenarios, there is little to highlight at 

the annual timescale. Seasonally, DJF and ON results reveal the largest sensitivity to 

choice of emission scenario; DJF shows negative (positive) changes under B2 (A2) 

over the mainland regardless of model while ON reveals, in both models, larger 

positive changes over the mainland under A2. 
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Table 6.1: Seasonal precipitation change (%) obtained from GCM and RCM 

simulation in Thailand  

Precipitation change (%) Annual DJF MAM JJAS ON 
Northern Thailand      

    HadAM3-A2 9 12 -13 15 53 
    HadAM3-B2 7 -21 -10 14 16 
    PRECIS-A2 12 7 -15 25 53 
    PRECIS-B2 14 -25 -11 29 15 
Northeastern Thailand      
    HadAM3-A2 -1 6 -1 -5 25 
    HadAM3-B2 -4 -18 -8 -2 3 
    PRECIS-A2 8 18 -5 8 56 
    PRECIS-B2 1 -31 -9 8 -14 
Central Thailand      
    HadAM3-A2 -4 44 -18 -2 31 
    HadAM3-B2 -3 -22 -15 3 0 
    PRECIS-A2 -1 61 -22 4 49 
    PRECIS-B2 -3 -10 -18 4 8 
Southern Thailand      
    HadAM3-A2 1 -16 -16 12 5 
    HadAM3-B2 -5 -33 -20 12 -8 
    PRECIS-A2 6 -16 -10 14 17 
    PRECIS-B2 2 -16 -18 13 11 
 

 

Precipitation seasonal cycles from the future simulations are shown in Figure 6.5 for 

four regions over Thailand. In general, the absolute monthly precipitation from the 

GCM future simulation is lower than from the RCM and the changes for the B2 

scenario are similar to those for the A2 scenario although with somewhat smaller 

(larger) amplitude in August-November (April-July). The GCM with both A2 and B2 

scenarios produces increased precipitation by 1-2 mm/day during July - September 

over northern Thailand and by 1 mm/day in northeast, central and southern Thailand. 

The RCM, under both scenarios, produces increases by 2 mm/day in precipitation 

during JAS over all regions in Thailand excepting by 1 mm/day in central Thailand 

(Figure 6.5). The maximum increases in precipitation by 2 (1.5) mm/day were found 

in September in northern Thailand under the A2 (B2) scenario.  
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Over mainland Thailand the pattern of the future precipitation seasonal cycle is 

consistent with the baseline; the first peak is in May and the later peak is in 

September. The precipitation magnitude is significant decreased in May in both A2 

and B2 scenarios over mainland Thailand while it is significant increased over 

northern and northeastern Thailand and small increases over central Thailand in the 

later peak and during ON. This might be related to a possibility of increased tropical 

cyclones over SEA which is reported by IPCC-AR4 because 70% of tropical cyclonic 

disturbance move across Thailand during September to November (Table 3.2).  

Comparing the A2 and B2 scenarios in May (September), the A2 scenario produces 

less (more) precipitation than the B2 scenario. Over peninsular Thailand a modest 

precipitation increase stretches from May to November. The magnitude of 

precipitation from the A2 and B2 scenarios shows no significant difference. The 

simulated increase in precipitation in September is possibly due to a shift of monsoon 

period which is discussed later in this section. Moreover, the future vertical velocity 

simulation during JJAS increases from the period of 1960-1990 to the period of 2071-

2100 which implies more ascending air possibly producing more precipitation (Figure 

6.6). 
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(d) 

Figure 6.5 Comparison of 30 year seasonal cycle of baseline (1961-1990) and future 

(2071-2100) precipitation intensity (mm/day) over (a) northern (b) northeastern (c) 

central and (d) Peninsular Thailand from HadAM3 and  PRECIS. 
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When we consider the Koppen climate classification, northern, central and 

northeastern Thailand can be merged into one mainland region under the climate of 

tropical rainforest (Chapter 3). Specifically, the same criteria to define precipitation 

change as was used in the IPCC Third Assessment Report, TAR, is used here for 

defining precipitation projections in Thailand; the precipitation amount changing by 

greater than 20% is defined as a significant increase/decrease, while the precipitation 

amount changing between 5%-20% is defined as a small increase/decrease. A change 

of between -5 to 5% is defined as no significant change. Over mainland Thailand, 

during DJF, the GCM-A2 and RCM-A2 mostly project a small precipitation increase 

and the GCM-B2 and RCM-B2 agree on a small decrease. During JJAS, the GCM A2 

and B2 scenarios project no significant precipitation change while both the RCM A2 

and B2 scenarios agree on small precipitation increases during JJAS. Over peninsular 

Thailand the GCM and RCM future simulations agree on small precipitation 

increases during JJAS and small decreases during DJF (Table 6.1). Some are in 

agreement with the average precipitation projections published in the most recent 

IPCC report (IPCC-AR4, 2007) indicated that over SEA an increase in precipitation 

during DJF of 6% and of 7% during JJA is anticipated under the A1B scenario [the 

scenario projection between the low emission SRES-B2 and high emission SRES-A2 

scenarios].   
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Figure 6.6: Mean 30 year vertical velocity (ms-1) averaged over a latitude band of 

10°S-25°N covering Thailand during JJAS (a) PRECIS-HadAM3 (1961-1990) (b) 

PRECIS-A2 (2071-2100) (c) PRECIS-B2 (2071-2100)  

(a) 

(b) 

(c) 
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When we consider Figure 6.7 based on the Koppen climate classification it is found 

that over the mainland the GCM-A2 and B2 simulations produce a reduced number 

of wet days (days with rain above 1 mm) by 5-8 days during JJAS relative to the 

baseline period and simulate no change in the number of wet days during DJF. The 

RCM calculates 2 days decrease, under either emission scenario, in the number of wet 

days in JJAS and simulates no change in the number of wet days during DJF. Over 

the peninsula, both the GCM A2 and B2 scenarios simulated 9 fewer wet days during 

DJF than in the baseline period and  no change in wet day frequency during JJAS 

while the RCM simulated a decrease in the number of wet days with magnitude of 5 

(9) days in JJAS (DJF). 

 

The RCM (A2 and B2 scenarios) produce average precipitation increases during JJAS 

with a decrease in the simulated average number of wet days over the mainland and 

the peninsula. This implies that the amount of precipitation on wet days in the future 

is larger than the amount during the baseline period. 
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(d) 

Figure 6.7: Number of wet days in current and future climate (a) north (b) northeast 

(c) central (d) Peninsular Thailand 
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Figure 6.8: Horizontal surface moisture flux (kg m-2 s-1) between 1961-1990 from 

PRECIS-HadAM3P simulation (left) and 2071-2100 from PRECIS-A2 (right) during 

JJAS. 

 

The future changes in the surface moisture flux during the southwest monsoon season 

clearly indicate an enhancement of the moisture transport over the Indian Ocean into 

the Indochina region (Figure 6.8). The specific humidity also increased remarkably 

over the Indian Ocean (Figure 6.9), which is consistent with the intensified moisture 

transport. Therefore, the small precipitation increases during JJAS found in the future 

scenario projections seem to be most associated with a moister atmosphere and 

increased precipitation intensities. Ueda et al. (2006) showed that the enhanced 

moisture transport into the Asian monsoon region, associated with the increased 

moisture sourced from the Arabian Sea though the Indian Ocean into SE Asia, is a 

key mechanism that is responsible for intensified precipitation in future simulations. 
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Figure 6.9: Specific humidity (kg kg-1) 1961-1990 from PRECIS-HadAM3P 

simulations (top) and 2071-2100 from PRECIS-A2 (below)  during JJAS. 

 

In conclusion, over the mainland PRECIS projects a small precipitation increase 

(5%-20%) under the A2 and B2 scenarios associated with a 2 day decrease in the 

simulated average number of wet days during JJAS. The maximum total precipitation 

increase was found in September with a magnitude of 2 mm/day. During DJF, 

PRECIS-A2 (B2) mostly projects a small precipitation increase (decrease) associated 

with no change in the number of wet day under either emission scenario.  Over the 

peninsula and under both the A2 and B2 scenarios, PRECIS projects a small 

precipitation increase associated with a decrease of 5 days per season in the simulated 

average number of wet days during JJAS and a small decrease in DJF associated with 

a 9 day per season decrease in wet days. The precipitation increase during JJAS may 

be related to more likely intense precipitation events, tropical cyclone increase in SEA 



 202

(IPCC-AR4) and intensified moisture transport from the Indian Ocean into the 

Indochina region.  

 

This study found small increases in precipitation during JJAS while the global models 

reported by the IPCC under the same A2 and B2 scenarios found no significant 

change., This study agrees, however, with precipitation increases of +6% (with a 

range of -2% to 10%) in global model precipitation simulations under the A1B 

scenario. During DJF, this study found a small precipitation increase in some regions 

of Thailand under the A2 scenario but small increases was found over the whole of 

Thailand under the B2 scenario; IPCC indicated no significant change in the A2 

scenario, disagreement change in the B2 scenario and a 7% increase with a range of -4 

to 17% in the A1B scenario.  

6.2.2 Surface air temperature projections 
 

6.2.2.1 GCM and RCM comparison 

Changes in seasonal maximum surface air temperature from the GCM and RCM are 

shown in Figures 6.10-6.14. In general, both models produce similar patterns of 

changes in maximum temperature but with differences over specific areas. During the 

cool season (DJF) there are considerable maximum temperature differences; the 

GCM-A2 simulation produces approximately 1oC more warming than RCM-A2 over 

Burma. In contrast, the RCM-A2 produces approximately 1oC more warming than the 

GCM-A2 over Cambodia and northeastern Thailand. It is also clear that the RCM-B2 

produces 1.5oC higher maximum temperature changes than the GCM-B2 over the 

Philippines (Figure 6.11). During MAM, there are notable temperature differences 

(about 1oC higher in the RCM) over eastern Burma, a mountainous area, central 

Thailand and the coast of western Borneo (Figure 6.12). During JJAS, there are 

considerable maximum temperature differences (approximately 1oC higher in GCM) 

over central Thailand and Borneo in the A2 scenario while there is no significant 

difference in the temperature response over particular regions between the models in 

the B2 scenario (Figure 6.13). During ON, there is no significant difference in 

maximum temperature between the GCM and RCM in both A2 and B2 scenarios 

(Figure 6.14).   
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6.2.2.2 RCM-A2 and RCM-B2 comparison 
 
In general, the RCM-A2 scenario produces maximum temperature patterns which are 

generally consistent with the RCM-B2 but with magnitudes 1oC higher in the A2 

scenario in all seasons. The largest warming in DJF was found over Burma and parts 

of peninsular Malaysia (5oC), over mainland Thailand, Laos and southern Borneo 

(5oC) and in Vietnam (4.5oC) in the RCM-A2 scenario. The largest simulated change 

in JJAS maximum temperature were found over Indonesia and Borneo, along the 

equator, with a magnitude of 6.5oC in the A2 scenario and reaching 5oC for the B2. 

Overall the largest SEA temperature changes occur in JJAS. 

 
(c)     (d) 

 

Figure 6.10: Projected changes in cool season (DJF) maximum surface temperature 

(°C) for 2071–2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) 

HadAM3P-B2 (c) PRECIS-A2 (d) PRECIS-B2 

(a)     (b) 
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(c)     (d) 

 

Figure 6.11: Projected changes in MAM maximum surface temperature (°C) for 

2071–2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) HadAM3P-

B2 (c) PRECIS-A2 (d) PRECIS-B2 

 

 

 

 

 

(a)     (b) 
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(c)     (d) 

 

Figure 6.12: Projected changes in summer monsoon (JJAS) maximum surface 

temperature (°C) for 2071–2100 relative to 1961–1990 projections from (a) HadAM3-

A2 (b) HadAM3P-B2 (c) PRECIS-A2 (d) PRECIS-B2  

 

 

 

 

 

 

 

 

 

(a)     (b) 
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(c)     (d) 

 

Figure 6.13: Projected changes in ON maximum surface temperature (°C) for 2071–

2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) HadAM3P-B2 (c) 

PRECIS-A2 (d) PRECIS-B2 

 

Changes in seasonal minimum surface air temperature from the GCM and RCM are 

shown in Figures 6.14-6.17. The minimum temperature warming patterns are 

consistent with the maximum temperature patterns; the largest warming in minimum 

temperature is detected in the same areas as the largest warming in maximum 

temperature. However, in the regions of largest warming, the minimum temperature 

change is 0.5°C lower than the warming of maximum temperature. For the SEA 

region overall, the largest warming in minimum temperature is in DJF. 

 

(a)     (b) 
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(c)     (d) 

Figure 6.14: Projected changes in cool season (DJF) minimum surface temperature 

(°C) for 2071–2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) 

HadAM3P-B2 (c) PRECIS-A2 (d) PRECIS-B2 

 

(a)     (b) 
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(c)     (d) 

Figure 6.15: Projected changes in MAM minimum surface temperature (°C) for 

2071–2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) HadAM3P-

B2 (c) PRECIS-A2 (d) PRECIS-B2 

(a)     (b) 
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(c)     (d) 

Figure 6.16: Projected changes in summer monsoon (JJAS) minimum surface 

temperature (°C) for 2071–2100 relative to 1961–1990 projections from (a) HadAM3-

A2 (b) HadAM3P-B2 (c) PRECIS-A2 (d) PRECIS-B2 

 

(a)     (b) 
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(c)     (d) 

Figure 6.17: Projected changes in ON minimum surface temperature (°C) for 2071–

2100 relative to 1961–1990 projections from (a) HadAM3-A2 (b) HadAM3P-B2 (c) 

PRECIS-A2 (d) PRECIS-B2 
 
 

 

 

 

 

 

 

 

 

 

(a)     (b) 
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Table 6.2: Seasonal temperature warming (oC) obtained from GCM and RCM 

simulations in Thailand  

 

tmin change (oC) Annual DJF MAM JJAS ON 
mainland Thailand      

    HadAM3-A2 4.2 4.7 4.3 3.7 4.5 
    HadAM3-B2 3 3.1 3.4 2.8 2.8 
    PRECIS-A2 4.3 4.3 3.9 3.5 4.2 
    PRECIS-B2 3.2 3.1 3 2.7 3 
Peninsular Thailand      
    HadAM3-A2 3.4 3.2 3.5 3.4 3.3 
    HadAM3-B2 2.5 2.1 2.7 2.6 2.4 
    PRECIS-A2 3.4 3.4 3.4 3.4 3.5 
    PRECIS-B2 2.5 2.2 2.5 2.6 2.5 
tmax change (oC)      
mainland Thailand      

    HadAM3-A2 4.1 3.5 3.6 4.5 4.8 
    HadAM3-B2 3.1 2.7 3.1 3.1 3.8 
    PRECIS-A2 3.1 3.4 4.2 4.3 4.5 
    PRECIS-B2 2.6 2.7 3.6 3.3 3.5 
Peninsular Thailand      
    HadAM3-A2 3.1 3.1 3.2 3.1 3.1 
    HadAM3-B2 2.4 2.3 2.6 2.4 2.4 
    PRECIS-A2 3.4 3.5 3.7 3.2 3.4 
    PRECIS-B2 2.7 2.6 3.1 2.5 2.6 
 

 

The warming seen in the seasonal temperatures is reflected in the extreme 

temperatures also, and both maximum and minimum temperature are getting warmer 

in the future scenarios. 

 

The seasonal cycle of maximum temperature change (Figure 6.18) differs 

dramatically between the hot and cool seasons. The largest warming in the mainland 

region occurs in May and the smallest in March for both A2 and B2 scenarios. The 

A2 scenario produces a larger warming by approximately 1oC from May to December 

but a more modest increment during the rest of the year. The GCM and RCM produce 

a similar degree of warming during the summer monsoon season. Over peninsular 
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Thailand, the seasonal warming range is a modest 0.5oC in each of the simulations, 

with the A2 scenario producing a larger warming of about 1oC in each month. The 

GCM produces less warming than the RCM over the peninsula, most probably due to 

the relatively coarse GCM spatial resolution being unable to reproduce any land 

effects on the climate of this area. 
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Figure 6.18: Surface air maximum temperature change projection over (a) mainland 

Thailand (b) Peninsular Thailand.  
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The seasonal cycle of minimum temperature change is shown in Figure 6.19. The 

largest warming in the mainland region, of the order of 5°C, occurs in February, May 

and November and the smallest in August for both A2 and B2 scenarios. The A2 

scenario also produces a 1.5°C larger warming every month. The GCM produces a 

modestly larger warming than the RCM. Over peninsular Thailand the seasonal cycle 

in the warming shows a small range, with increases averaging 3.5°C and 2.5°C in the 

A2 and B2 scenarios respectively.. The A2 scenario produces a larger warming of 

about 1oC in every month and the GCM and RCM produce comparable warming 

every month. 
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Figure 6.19: Air surface minimum temperature projection over (a) mainland Thailand 

(b) Peninsular Thailand 
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In Thailand specifically, annual temperature change (minimum and maximum 

combined) over mainland (peninsular) Thailand is approximately 4.2oC (3.4oC) in the 

A2 scenario and about 3.1oC (2.5oC) in the B2 scenario from the HadAM3 projection. 

There is a small difference in annual temperature change between the GCM and the 

RCM of <1oC over the mainland; the annual temperature change over mainland 

(peninsular) Thailand is about 3.6oC (3.2oC) in the A2 scenario and about 2.8oC 

(2.5oC) in the B2 scenario in the PRECIS simulation. IPCC-TAR reported that the 

warming projection over SEA under the A2 and B2 scenario is less than 40% of the 

global annual average in both DJF and JJA, amounting to 1.8oC under the A2 scenario 

and 1.3oC under the B2 scenario. Meanwhile the IPCC-AR4 end of the century 

temperature estimate under the A1B scenario over SEA is 2.5oC with range of 1.6oC 

to 3.6oC in DJF and 2.4oC with the range of 1.5oC to 3.8oC in JJA. 

6.2.3 Changes in extreme events 
 

A key motivation for using RCMs in climate impacts research is the requirement to 

represent extreme events. By definition, extreme weather often occurs rapidly and 

over a small geographical extent. Extreme seasonal conditions, such as drought, occur 

more slowly and with larger geographical extent, and typically depend on fine-scale 

interactions between the atmosphere and land surface features such as topography that 

are not well resolved in global models. Thus, regional climate models are potentially 

better suited to studying these events. Summary statistics for several types of extreme 

events related to temperature and precipitation are presented in this section.  
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Figure 6.20: Air surface minimum temperature Pdfs over (a) mainland Thailand (b) 

Peninsular Thailand under different model simulations. 

 

Simulated daily minimum temperature for the period of 2071 to 2100 is projected to 

show a shift in the mean of the distribution by about 3.5°C (6.0°C) and 2.8°C (2.3°C) 

over northern (Southern) Thailand for PRECIS under the A2 scenario and B2 

scenario, respectively. Considering the distribution of the temperature change, the 

difference of the standard deviation appears to be about 0.1°C wider (absolute 

standard deviation about 3.2°C over northern Thailand and 1.3°C over the peninsula). 
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Figure 6.21: Air surface maximum temperature Pdfs over (a) mainland Thailand (b) 

Peninsular Thailand under different model simulations. 

 

Simulated daily maximum temperatures for the period 2071-2100 show a shift in the 

mean of the distribution by about +3.0°C (+3.6°C) and 2.3°C (2.6°C) over northern 

(Southern) Thailand for the A2 scenario and B2 scenario, respectively, as shown in 

Figure 6.21. Considering the distribution of the temperature change, the difference of 

the standard deviation appears to be about 0.1-0.2°C wider (the absolute standard 

deviation is 3.9°C over northern Thailand and 1.6°C over the peninsula according to 

PRECIS-HadAM3).  
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The increase in daily maximum temperature is greater than the increase in daily 

minimum which leads to an increased mean diurnal temperature range. The results 

indicate an increase in the 95th percentile of maximum temperature to 41.7°C in 

northern Thailand and 36.4°C in the peninsula region while the baseline value are 

36.7°C and 32.6°C.  

 

Considering temperature extremes with specific temperature thresholds, hot and cold 

events can be divided into days above and below a threshold. TMD defined a hot day 

to be a day with temperature >35°C and a cold day to be a day with temperature <16 

°C. Rising daily maximum temperatures result in an increase in the number of days 

exceeding a predefined threshold value, such as, ≥35°C. In a similar way, the numbers 

of days with minimum temperatures below a specific threshold (eg.≤16°C) are 

expected to decrease in all seasons (Table 6.3). Bell et al. (2004) indicated that the 

increase in daily minimum temperature is associated with decrease in days below 

freezing and prolonged cold events occur less often and are shorter and warmer on 

average over California, a climatically complex region. 
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Table 6.3: Absolute number of hot days (≥35°C) and cold nights (≤ 16°C) in total 

during each season for 1961-1990 and 2071-2100.  

 

number of hot days DJF MAM JJAS ON 

mainland Thailand 

PRECIS-HadAM3P 

PRECIS-A2 

PRECIS-B2 

 

13 

39 

29 

 

44 

73 

69 

 

1 

31 

20 

 

0 

18 

9 

peninsular Thailand 

PRECIS-HadAM3P 

PRECIS-A2 

PRECIS-B2 

 

0 

15 

3 

 

0 

52 

39 

 

0 

13 

4 

 

0 

2 

0 

number of cold days     

mainland Thailand 

PRECIS-HadAM3P 

PRECIS-A2 

PRECIS-B2 

 

35 

5 

9 

 

0 

0 

0 

 

0 

0 

0 

 

13 

1 

3 

peninsular Thailand 

PRECIS-HadAM3P 

PRECIS-A2 

PRECIS-B2 

 

0 

0 

0 

 

0 

0 

0 

 

0 

0 

0 

 

 

0 

0 

0 
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(b) 

Figure 6.22: Frequency distributions of daily precipitation over land during JJAS over 

(a) northern (b) peninsular Thailand. The dashed lines show baseline simulations 

(1961-1990). Solid lines show future simulations (2071-2100) 

 

Figure 6.22 presents changes in frequency distribution of daily precipitation from 

1961–1990 to 2071–2100 during the rainy (JJAS) season. Due to the pdfs similarity 

over the mainland, the northern region is considered as a whole. Changes in frequency 

of daily precipitation are slightly different between the A2 and B2 scenarios. For 

northern Thailand, during JJAS, the number of days with daily precipitation below 
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3.5(3) and above 11(12.5) mm/day tends to increase in the A2 (B2) scenario, with a 

broader standard deviation. The extreme precipitation, over the 95th percentile, of 

precipitation increases from 15.7mm/day to 17.8 and 17.1 mm/day in the A2 and B2 

scenarios, respectively. For peninsular Thailand the number of days with daily 

precipitation above 6.5 (5.5) mm/day tends to increase in the A2 (B2) scenario during 

the active southwest monsoon accompanying a +10% precipitation amount increase. 

The extreme precipitation, over the 95th percentile, of precipitation shifts from 8.2 to 

9.6 and 9.2 mm/day for the A2 and B2 projections. 

 

In terms of the most damaging extreme events in Thailand, this study found that the 

95th percentile daily precipitation intensity increased by up to 2 mm/day which might 

be associated with hot day increases being larger than cold day decreases. These two 

conditions, hotter and wetter, may more likely lead to severe storms and floods. 

6.2.4 Monsoon onset 
 

The rainy season over Thailand extends from mid-May to mid-September (Tanaka, 

1992; Murakami and Matsumoto, 1994; Sangwaldach, 2006). The 30 year monthly 

mean specific humidity at 1.5 m over Thailand (Figure 6.23) shows a rapid increase 

between February and May. The largest specific humidity occurs from May to 

September. Approximately 70-80% of the total annual precipitation in Thailand 

occurs during this period, with the onset of monsoon occurring in mid-May and the 

wettest month occurring in September. Surface specific humidity remains essentially 

constant for the whole monsoon season. 
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Figure 6.23: 30 year monthly mean specific humidity (kg/kg) at 1.5 m over mainland 

Thailand (left) and southern Thailand (right) from PRECIS during 2071-2100. 
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From the PRECIS-A2 simulation, the first appearance of an average resultant 850 hPa 

westerly wind of strength 4 m/s occurs in the fourth pentad of May (Figure 6.24a), 

while an average 250 hPa easterly wind first appears in the third pentad of May 

(Figure 6.24b) and the first appearance of an average precipitation greater than 6 

mm/day occurs in the first pentad of May (Figure 6.26a). Based on the same criteria 

to justify the monsoon onset date as used in Chapters 4 and 5, PRECIS-A2 simulates 

average monsoon onset during 2071-2100 in the fourth pentad of May. 

 

 
(a)              (b) 

Figure 6.24: Time-longitude section averaged over 5oN-20oN of climatological pentad 

zonal wind (ms-1) from PRECIS-A2 at (a) 850 hPa (b) 250 hPa 

 

On the other hand, from the PRECIS-B2 simulation, the first appearance of an 

average resultant 850 hPa westerly wind of strength 4 m/s occurs in the fourth pentad 

of May (Figure 6.25a), while the average 250 hPa easterly wind first surprisingly 

appears in the third pentad of May (Figure 6.25b) and the arrival of an average 

precipitation greater than 6 mm/day occurs in the second pentad of May (Figure 

6.26b). The PRECIS-B2 simulation therefore produces an average monsoon onset 

during 2071-2100 which also occurs in the fourth pentad of May. Therefore, the 

projection of monsoon onset for the end of this century is one pentad (5 days) later 

than the average monsoon onset during 1961-1990. From statistical analysis, the 

monsoon onset date averaged over the 1961-1990 period over Thailand was 

approximately 11th May with a standard deviation of 8 days (section 4.2.7). The 
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monsoon possibly arrives in Thailand, by the end of this century, in the range of the 

second pentad of May to the first pentad of June. The latter might lead to a more 

prolonged drought period which could affect rice cultivation. 

 

 
(a)              (b) 

Figure 6.25: Time-longitude section averaged over 5oN-20oN of climatological pentad 

zonal wind (ms-1) from PRECIS-B2 at (a) 850 hPa (b) 250 hPa 

 

 
(a)              (b) 

Figure 6.26: Time-longitude section averaged over 5oN-20oN of climatological pentad 

total precipitation (mm/day) from (a) PRECIS-A2 (b) PRECIS-B2 
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6.3 Summary 
 

Over mainland Thailand, during DJF, the precipitation projection from the A2 

emission scenario shows a small increase and the precipitation projection from the B2 

emission scenario shows a small decrease (Figure 6.1). During JJAS the GCM A2 and 

B2 scenarios both project no significant precipitation changes while the RCM A2 and 

B2 scenarios project small precipitation increases. Over the peninsula all simulations, 

GCM-A2, GCM-B2, RCM-A2 and RCM-B2, project small precipitation decreases 

during DJF and small increases during JJAS (Table 6.1). 

 

The increase in precipitation during JJAS occurs in association with a either an 

unchanging or decreased number of wet days, implying that the average amount of 

precipitation on wet days in the future is larger than the amount in the baseline period. 

Moreover, the future vertical velocity simulations during JJAS are increased 

compared with the baseline period. The specific humidity also increased remarkably 

over the Indian Ocean which is consistent with intensified moisture transport. 

Therefore, the small precipitation increases during JJAS found in the future scenario 

projections seem to be most associated with higher moisture in the atmosphere and 

increased precipitation intensities. Intensive precipitation events, i.e., tropical 

cyclones, are likely to be associated with the JJAS precipitation increase. In terms of 

small precipitation changes (both positive and negative) in DJF, this does not imply a 

significant climate change impact in Thailand because precipitation during this season 

is relatively low.  On the other hand, a small precipitation decrease during MAM and 

a small precipitation increase during JJAS (Table 6.1) is an important climate change 

in a country which has fluctuated from severe droughts to severe floods. Most 

recently severe floods occurred in October-November, 2009, when over 40 cities on 

the mainland, including Bangkok, were affected with 21,901 damaged houses, 1.2 

million km2 of agriculture damage and 11 deaths. Another severe flood occurred over 

southern Thailand in the period 23 March - 3 April, 2011 while precipitation was 

below normal level causing drought during 1 November, 2009 to 28 February, 2010 

over 29 cities in Thailand (http://www.thaiwater.net/web/index.php/archive.html, in 

Thai). 
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In general, for the SEA region, both GCM and RCM produce similar patterns of 

changes in maximum and minimum temperature but with small differences over 

specific areas. The warming according to the RCM is about 1oC higher than with the 

GCM. The difference in warming between RCM-A2 and RCM-B2 is about the same 

amount, 1oC. The RCM A2 and B2 simulations show warming over both the 

mainland and peninsular Thailand, greater than the average annual warming (3.0oC 

for A2 and 2.2oC for B2), in DJF and JJAS in both A2 and B2 scenarios. The 

warming over the mainland is higher than over the peninsula by 0.9oC in DJF and by 

0.1oC in JJAS. This warming is consistent with the 4oC global average-temperature 

rise proposed by IPCC, however, it is greater than the agreement in most GCMs under 

the A2 and B2 scenario in IPCC-TAR (2001) and most AOGCMs under the A1B 

scenario in IPCC-AR4 (2007). IPCC-TAR (2001) reported a warming projection over 

SEA under the A2 and B2 scenarios of less than 40% of the global average annual 

warming in both DJF and JJA, namely 1.8oC under the A2 scenario and 1.3oC under 

the B2 scenario. IPCC-AR4 temperature increase under the A1B scenario over SEA is 

2.5oC with a range of 1.6oC to 3.6oC in DJF and 2.4oC with a range of 1.5oC to 3.8oC 

in JJA. 

 

In general, the annual minimum temperature change over mainland (peninsular) 

Thailand is about 4.2oC (3.4oC) under the A2 scenario and about 3.1oC (2.5oC) under 

the B2 scenario. There is an interesting difference in annual maximum temperature 

change between the GCM and the RCM of up to 1oC over the mainland. The annual 

maximum temperature change over mainland (peninsular) Thailand is about 3.6oC 

(3.2oC) in the A2 scenario and about 2.8oC (2.5oC) from B2.  This high warming 

could lead to rain forest loss in northern Thailand either through drought stress on 

vegetation or through uncontrolled spread of forest fire. Thailand produces only 0.8% 

of the world’s carbon dioxide emissions, and has a lower per capita emission rate than 

the global average. However, with a global average temperature increase of 4oC, the 

proportion of CO2 emissions remaining in the atmosphere could rise to 70%. The 

warming would also have an effect on water availability by reducing river run-off and 

sea level rise would threaten to submerge Bangkok. 
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PRECIS-A2 and PRECIS-B2 both simulate average monsoon onset during 2071-2100 

in the fourth pentad of May. Therefore, the monsoon projection for the end of this 

century is for monsoon onset to occur one pentad later than the average monsoon 

onset during the baseline period 1961-1990 (the third pentad of May). 

Thailand is home to about 64 million people, the majority living in rural and 

agricultural areas. Agriculture employs 49% of the population and contributes 10% of 

GDP (http://www.nso.go.th/). Moreover, tourism along the coastline plays an 

important role in the Thai economy, providing 6% of GDP. As capital city, Bangkok 

is home to 15% of the Thai population and serves as the economic, political and 

social centre. Therefore climate change threatens all three important sectors of 

Thailand’s economy: agriculture, tourism, and trade. The effects of climate change, 

including higher surface temperatures, floods, and droughts put Thailand’s rice crop 

at risk.  In this study, it is projected that a warming of 1.5°C-4.3°C by the end of this 

century will occur, affecting rice productivity. One degree of warming will destroy 

the rice crops that are central to the economy, and a few centimeters of sea level rise 

will submerge the capital city and devastate coastal tourism. This study also found 

that the wet season will be wetter through fewer wet days but more intense 

precipitation events and that the dry season will be drier and longer;  an action plan is 

needed to mitigate against and adapt to this climate change.  One mitigation measure 

must be urgent global action to significantly reduce greenhouse gas emissions from 

vehicles and energy use. 

 

 



Chapter 7 
Conclusions and Recommendations 
 
7.1 Conclusions 
 

Thailand is located on the Indochina peninsula and is a country of complex and 

contrasting topography, including the mountainous north, the high plateau in the 

north-east, the lowland plains in central regions and the peninsula in the south. The 

country has coastal borders with the Andaman Sea and the Gulf of Thailand and the 

climate is also influenced by the Bay of Bengal and the South China Sea. Southern 

Thailand includes the narrowest part of Indochina in the form of a long peninsula with 

a width of just 0.7° longitude. Coarse resolution GCMs clearly struggle to resolve 

some of the climatic influences of all this complex topography. It is essential that 

higher resolution climate modelling is trialled, in application to Thailand, to test its 

capability to simulate the Thai climate more faithfully and to project possible climate 

futures. 

 
This project first tried to develop new knowledge about the recent climate of Thailand 

by using daily surface station observations from the Thai Meteorology Department 

(TMD) and a high resolution monthly gridded dataset (CRUTS2.1) covering the 

period 1961-90. Brief details of CRUTS2.1 are provided in chapter 3 and full details 

are available in Mitchell and Jones (2005). There is no previous literature 

documenting the application of CRUTS2.1 specifically to Thailand. The CRUTS2.1 

gridded dataset was based on 36 stations in Thailand and is used to summarise the 

spatial variation in Thai climate seasonality and to provide a good resource to assist 

with verification of the climate model output.  

 

Using the above observational data over the period 1961-1990, it is found that the 

climate over peninsular Thailand can be clearly distinguished from the climate over 

the mainland. It was shown that the annual/JJAS precipitation over the mainland 

region has decreased by 0.13/0.76 mm/year respectively, over this period; the 

dominant precipitation season is JJAS, the SEA summer monsoon, contributing 60-70 

% of the annual rain; the number of rain days (≥1 mm) in JJAS is also shown to have 

decreased in this region by approximately 10 days over the period which supports the 
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findings of other studies. For instance, Manton et al. (2001) also found that the 

number of rain days had decreased significantly at one station located in northern 

Thailand and at another station located in southern Thailand over 1961-1998, and the 

proportion of precipitation from extreme events had increased at the Nan station, 

located in northern Thailand. In this thesis, minimum temperatures over the mainland 

are shown to have increased by approximately 1oC in MAM and DJF during the 1961-

1990 period, higher than the linear global warming trend over 1956-2005 of 0.13oC 

per decade (IPCC-AR4, 2007) while maximum temperatures have increased by. 

0.47oC (0.02oC)/30 years in MAM (DJF). Regarding the spatial minimum and 

maximum temperature pattern in Thailand, the area showing a warming trend appears 

larger in 1961-1970 compared with 1981-1990. The trend in mainland Thailand 

diurnal temperature range (DTR) reveals a decrease in MAM and DJF. This decrease 

in DTR is caused by temperatures increasing faster at night than during the day. The 

estimated average summer monsoon onset date (1961-1990) is shown in this thesis to 

be 11th May and would appear to be happening insignificantly later by the end of the 

1961-90 period (1 day/30 year). The monsoon onset date can be seen to vary, over the 

1961-90 period, between 10 days later and 13 days earlier than the mean for the 

period.  

 
The annual precipitation over the southern region of Thailand shows a faster rate of 

decrease in some seasons than over the mainland region, 0.66, 0.28 and 2.44 

mm/month-year in annual, JJAS and ON 1961-90 data respectively; the precipitation 

during JJAS (ON) in this region contributes approximately 40 (30) % of the annual 

rain and the number of rain days is shown to have decreased by approximately 10 

days over the 1961-90 period. This finding is consistent with Mention et. al. (2000) 

who showed that Prachuap Khiri Khan, one of the stations in southern Thailand, 

demonstrates a significant decrease in rain days over 1961-1998. The minimum and 

maximum temperatures over southern Thailand show relatively small changes 

through the year. The minimum and maximum temperatures are shown to be 

increasing at 1.6oC (0.7oC) /30 years and 0.46oC (1oC) /30 years in MAM (DJF) 

respectively over the 1961-1990 period.  The DTR is shown to have decreased at a 

rate of 1oC /30 years in MAM and increased at a rate of 0.25oC /30 years in DJF. The 

average monsoon onset (1961-1990) date is the 10th May, slightly earlier than over the 
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mainland region. The inter-annual variability in onset over southern Thailand is 

similar to that over mainland Thailand. 

 

In terms of tropical depressions, analyzing the impact of cyclonic disturbances on 

individual station precipitation in this study found that there is a statistically 

significant difference in precipitation over both the mainland and the peninsula, 

therefore, depression frequency statistically significantly increases precipitation. 

Moreover, it was found that the relationship between the number of wet days and 

precipitation amount for all five sites analysed is a simple linear function. The 

decrease in the number of wet days is therefore a key factor in inducing the 

precipitation decrease during JJAS. 

 

In this thesis it was shown in section 4.2.4 that there is no sign of precipitation change 

over the mainland during La Niña events, however, there is a statistically significant 

decrease of precipitation during El Niño years at the Chiang Mai site during JJAS and 

a statistically significant intensification of precipitation during La Niña years at Surat 

Thani during ON. There are no statistically significant differences in precipitation 

found between any pair of these ENSO events during DJF and MAM seasons over 

1961-1990. This indicates that the precipitation during the DJF and MAM seasons is 

not influenced by the ENSO phenomenon. Meanwhile, in El Niño years, tropical 

depression activity during neutral years and El Niño years over Thailand is 

comparable during the period July-November whereas during La Niña years, the 

number of depressions in Thailand is generally above average.  

 

A case study of the major El Niño event in 1982 using the gridded CRU dataset 

showed that precipitation during JJAS was slightly lower than average (1961-1990) 

over Thailand. Over peninsular Thailand, there is no significant anomaly detected 

during ON, a period when 30% of the precipitation occurs on average. A case study of 

the 1988 La Niña event showed that increased precipitation is observed over western 

Thailand in July while during November decreased precipitation occurred over the 

peninsula. No other significant anomalies occur in Thailand in the remaining months 

during this La Niña event. 
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PRECIS simulations run with and without an interactive sulphur cycle show 

insignificant differences in spatial and point precipitation analysis, moreover, in terms 

of simulations driven from different initial conditions of HadAM3P, a 150 km 

resolution version of the Hadley Centre’s global atmosphere-only model, using 

observed time series of HadISST SST and sea-ice for 1960-1990, there is also no 

significant difference in output (Table 5.1 and 5.2). Both PRECIS and HadAM3 

produce precipitation spatial patterns for the current climate (1961-90) which are in 

general consistent with the gridded CRUTS2.1 dataset, but with the models 

overestimating precipitation over the area north of 12°N and underestimating 

precipitation over the area to the south. Comparison between the driving GCM, 

HadAM3P, and PRECIS over Thailand specifically, shows that HadAM3P simulates 

the precipitation amount in all seasons better over the mainland than PRECIS while 

the latter simulates the precipitation amount more accurately over peninsular 

Thailand. This shows that PRECIS has the capability to resolve features in a complex 

area, as shown in Figure 7.1; the coarser resolution of HadAM3 assumes that the 

peninsular is in fact sea. Over another region affected by the southwest monsoon, 

India, Kumar et al. (2006) found that PRECIS can capture the spatial pattern of the 

summer monsoon along the windward side of the Western Ghats. With respect to 

Thailand, the average daily precipitation during JJAS over 1961-1990 simulated by 

the RCM added more detail, in particular, over the coastline. It was found that 

PRECIS-ERA simulates total precipitation amount in JJAS with much lower error of 

20-30% than ERA. This indicates that, in the summer monsoon season, the dynamical 

downscaling performed by PRECIS–ERA40 results in more accurately simulated 

precipitation amounts over this geographical area. The ERA40 strongly 

underestimated total precipitation mainly results from the coarse resolution, 2.5 x 2.5 

degree, and may be related to (i) underestimation of atmospheric surface wind speed 

(ii) inaccurate cloud radiation and (iii) error of tropical deep convection cloud and low 

level cloud amount in particular over this geographic area which are improved with 

skill of PRECIS. 
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(a) (b) 

 
    (c) 

Figure 7.1: Spatial distribution of average precipitation (mm/day) during JJAS (1961-

1990) from (a) GCM, HadAM3P (b) RCM, PRECIS-HadAM3P (c) CRUTS2.1 

 

Applying the grid-to-grid analysis method, there is a striking precipitation difference 

in the sign of the model bias between the north and south of the domain (Figures 5.2-

5.5) indicating that the bias over SEA depends on geographical location.  In PRECIS 

simulations over other parts of the world, precipitation bias more commonly depends 

on season, for example, underestimation (overestimation) during summer (winter) 

possibly responding to the hydrostatic restriction which leads to PRECIS failing to 

adequately simulate convective precipitation (Hudson and Jones, 2002, Alves and 

Marengo, 2009, Shahgedanova et al., 2010). Generally, RCM simulations show more 

precipitation than driving GCM simulations because in the RCM there is more 
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convective and large scale precipitation throughout the seasonal cycle as well as a 

more active hydrological cycle compared to the driving GCM (Hudson and Jones, 

2002). The possible cause of the Thailand bias would not be expected to be the quality 

of the gridded observation dataset because the reliability of the interpolation method 

over SEA has been assessed by New et al. (2002). The negative bias occurring over 

the peninsula implied that the convection scheme and/or the physical parameterization 

fail to adequately reproduce precipitation over the region, perhaps also implying that 

50km resolution remains insufficient in resolving the complexity of the peninsula.  

Even with improved boundary conditions, the skill of dynamical downscaling was 

also constrained by the regional scale forcings which may include orography, land-sea 

contrast, vegetation cover, lake effects, or they may be anthropogenic in origin, for 

example local air pollution, urban heat island, and land and water management.   

 

Point precipitation distributions at the five surface observing stations were simulated 

using PRECIS and these showed that the model generates too many low precipitation 

events and insufficient high precipitation events. These limitations are unlikely to be 

due to large biases in the humidity fields but may be partially related to the tropical 

region where more optically thick cloud occurs in the model than in the observations 

(Hudson and Jones, 2002); total cloud fraction slightly in excess of the observations 

was found in this study and may result from an error in the wind and pressure field 

through the lateral boundaries (Hudson and Jones, 2002). It was also shown that 

PRECIS calculated too many wet days during the period March to September when 

compared to CRUTS2.1.  

 

Atsamon (2006) showed that ENSO is influential with respect to temperature 

anomalies in Thailand. Some other studies found that El Niño is also associated with 

decreased precipitation in Thailand (eg Kulkarni, 1997) but others demonstrated no 

such effect. So this study investigated a case study El Niño event in 1982 and La Niña 

event in 1988 revealing weak relationships with precipitation anomaly Sirabaha 

(2004) indicated that Thailand is considered to be less affected by ENSO compared 

with the other countries of the maritime continent.  

 

In the thesis it was shown that the average PRECIS monsoon onset in the ‘current 

climate’ occurs in the third pentad of May and the end of the rainy season over 
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Thailand occurs around the third pentad of September. This is consistent with the 

literature review and with the observational analyses shown in chapter 4. 

 

In general, compared with the gridded observational data set, HadAM3P 

overestimates seasonal minimum temperature (Tmn) in all four regions of Thailand 

while all PRECIS simulations underestimate the minimum temperature for all 

seasons, the latter agreeing with the underestimate in temperature simulated by the 

NWP-MM5 as a RCM (Kreasuwan et al., 2009). Using the RegCM3 regional climate 

model to simulate a case study in JJA 1996 and 1997, Kieu Thi Xin (2004) also found 

that the model underestimated temperature by 2oC. 

 

Regarding the comparison between HadAM3P and PRECIS, it is found that the GCM 

simulates surface maximum air temperature (Tmx) more realistically over both the 

mainland and peninsular Thailand, and conversely that PRECIS simulates the 

minimum temperature more realistically over peninsular Thailand (Figure 5.23 and 

5.28). In conclusion, the GCM produces more accurate temperature and precipitation 

over the mainland of Thailand while the RCM produce those variables more 

accurately over the peninsula. In general, the RCM provides regional detail in surface 

temperature while the GCM calculates area averages of surface temperature more 

accurately than the RCM. Applying grid to grid analysis, the cold bias during JJAS 

and ON is unlikely to be due to gridded observation but more likely due to PRECIS 

itself. The variation in temperature (i.e. cold bias in the rainy season and warm bias in 

the dry season) may be due to the decrease and increase of latent heat flux for the two 

seasons  which may not be well distinguished by the model (Islam et al., 2007). 

Applying point to point analysis, corrected RCM elevation may reduce the bias in 

surface temperature at some sites, i.e., CM, Phitlok and Surat. The positive bias in 

minimum temperature in JFM may be related to the radiation scheme; the scheme in 

both GCM and RCM defined the corresponding gases in a series of spectral bands, for 

example, carbon dioxide, ozone, methane, nitrous oxide and halocarbons, which 

absorb energy fluxes more than in actual climatic conditions so that the models 

calculate excessive energy fluxes for longwave radiation over the region (Mlawer et 

al., 1997). Another possible cause for the warm bias in minimum temperature is the 

land surface scheme which may release heat energy flux from soil to surface more 

than is the case in actual climatic conditions during the night time. On the other hand, 
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the warm bias in maximum temperature during Feb-Mar may be related to soil energy 

absorption which is less than in actual conditions during the daytime. Interestingly, 

the GCM shows smallest (largest) positive bias over mainland (Peninsular) Thailand. 

This would be an expectation of GCM skill, realistically simulating the large scale 

climate regime over an aggregate area of mainland Thailand while being less 

successful over coastal regions.  

 

In summary, the RCM produced an acceptable simulation of both the surface 

minimum and maximum temperature annual cycle. A similar surface temperature 

annual cycle at the sites located over the mainland was detected (Figure 5.29). The 

positive bias in minimum temperature may be related to the radiation scheme (as 

discussed above). At an urban site, BKK, significant warm biases in the RCM were 

found in February to April with magnitudes of 8.8°C, 9.4°C and 5.5°C, respectively 

although the nearest grid cell elevation is very similar to the station elevation. The 

maximum temperature annual cycle at BKK has a pattern which is consistent with the 

cycle at CM, Phit and Ubon located over mainland Thailand which implies that the 

RCM has an inadequate UHI effect, as one would expect from the 50km resolution. 

One of the other possible causes of RCM overestimation is due to insufficient coastal 

influence in the model, again partly as a function of spatial resolution. 

 

The results emerging from the validation of the models in the baseline period 

provided sufficient encouragement to progress onto the simulations of possible future 

climate in the SEA region and in Thailand in particular. Based on the Koppen climate 

classification, climate projections were classified in two geographical areas, mainland 

and peninsular Thailand, and the results are summarised in Table 7.1. 
 

In the PRECIS simulations of possible future climate over Thailand and SEA it was 

found that the HadAM3 A2 and B2 simulations projected no significant change of 

precipitation over mainland Thailand specifically in JJAS while the PRECIS A2 and 

B2 simulations mostly produce small precipitation increases in the same months over 

mainland. The GCM A2 and the RCM A2 simulations produce small precipitation 

increases during DJF while both GCM-B2 and RCM-B2 mostly produce small 

precipitation decreases during DJF over mainland. Over the peninsula of Thailand the 

GCM and RCM show small precipitation increases (decrease) during JJAS (DJF). 
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Some are in agreement with the average precipitation projections published in the 

most recent IPCC report (IPCC-AR4, 2007) indicated that over SEA an increase in 

precipitation during DJF of 6% and of 7% during JJA is anticipated under the A1B 

scenario [the scenario projection between the low emission SRES-B2 and high 

emission SRES-A2 scenarios].   
 

Across the SEA region, both the GCM and RCM produce similar general spatial 

changes in maximum and minimum temperature, under the two emission scenarios, 

but with differences of detail over specific areas. The RCM A2 and B2 simulations 

show warming over both (continental) mainland and (maritime) peninsular Thailand 

which are greater than the average annual warming (3.0oC for A2 and 2.2oC for B2) in 

DJF and JJAS and are greater than the agreement in most GCMs under the A2 and B2 

scenario in IPCC-TAR (2001) and most AOGCMs under the A1B scenario in IPCC-

AR4 (2007). IPCC-TAR (2001) reported a warming projection over SEA under the 

A2 and B2 scenarios of less than 40% of the global average annual warming in both 

DJF and JJA, namely 1.8oC under the A2 scenario and 1.3oC under the B2 scenario. 

IPCC-AR4 temperature increase under the A1B scenario over SEA is 2.5oC with a 

range of 1.6oC to 3.6oC in DJF and 2.4oC with a range of 1.5oC to 3.8oC in JJA. 
 

In this thesis it was found that the increase in precipitation during JJAS over mainland 

and peninsular Thailand occurs with a decreased number of wet days implying that 

the amount of precipitation on wet days in the future will increase compared to the 

baseline period. Moreover, the future vertical velocity simulation during JJAS shows 

an increase compared with the baseline period, hinting at enhanced convection. The 

specific humidity also increased remarkably over the Indian Ocean which is 

consistent with warming and greater atmospheric moisture holding capacity plus the 

possibility of intensified moisture transport. Therefore, the small precipitation 

increases during JJAS found in the future scenario projections seem to be mostly 

associated with a more humid atmosphere and increased precipitation intensities. 

 

PRECIS-A2 and PRECIS-B2 both simulate average monsoon onset during 2071-2100 

in the fourth pentad of May. Therefore, the monsoon projection for the end of this 

century is for monsoon onset to occur one pentad later than the average monsoon 

onset during the baseline period 1961-1990. 
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Table 7.1: Climate projections over mainland and peninsular Thailand during the 

period of 2071-2100 compared with the period 1961-1990.  

(note that: precipitation amount change of greater than 20% is a ‘Large increase’ (++), 

increase with a change between 5 and 20% is a ‘Small increase’ (+), a change 

between −5 and 5% is a ‘No change’ (0), decrease with a change between −5 and 

−20%  is a ‘Small decrease’ (-), decrease with a change of less than −20% is a ‘Large 

decrease’(--), and disagreement with average change is ‘Inconsistent sign’ (i), IPCC-

TAR, 2001) and IPCC shows warming projection as mean surface temperature. Tmn 

(Tmx) is surface minimum (maximum) temperature).  

 

Precipitation change (%) Tmn change 
(°C) 

Tmx change  
(°C) 

Model 

DJF JJAS DJF JJAS DJF JJAS 
Mainland 
HadAM3P-A2 
HadAM3P-B2 
PRECIS-A2 
PRECIS-B2 

 
+ 
- 
+ 
- 

 
0 
0 
+ 
+ 

 
4.7 
3.1 
4.3 
3.1 

 

 
3.7 
2.8 
3.5 
2.7 

 

 
3.5 
2.7 
3.4 
2.7 

 

 
4.5 
3.1 
4.3 
3.3 

 
Peninsula 
HadAM3P-A2 
HadAM3P-B2 
PRECIS-A2 
PRECIS-B2 

 
- 
- 
- 
- 

 
+ 
+ 
+ 
+ 

 
3.2 
2.1 
3.4 
2.2 

 

 
3.4 
2.6 
3.4 
2.6 

 

 
3.1 
2.3 
3.5 
2.6 

 

 
3.1 
2.4 
3.2 
2.5 

 
SEA 
GCMs-A2 
GCMs-B2 
(IPCC-Tar, 2001) 

 
0 
0 

 
0 
i 

 
1.8 
1.3 

 
1.8 
1.3 

 
1.8 
1.3 

 
1.8 
1.3 

SEA 
GCMs-A1B 
(IPCC-AR4, 2007) 

 
6 

 
7 

 
2.5 

 
2.4 

 
2.5 

 
2.4 

 

 

 



 236

0

2

4

6

8

10

12

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pr
ec

ip
ita

tio
n(

m
m

/d
ay

)

HadAM3-base HadAM3-A2 HadAM3-B2
Precis-base Precis-A2 Precis-B2

0
1
2
3
4
5
6
7
8

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

pr
ec

ip
ita

tio
n(

m
m

/d
ay

)

HadAM3-base HadAM3-A2 HadAM3-B2
Precis-base Precis-A2 Precis-B2

 
 

Figure 7.2: 30 year seasonal cycle of baseline (1961-1990) and future (A2/B2 2071-

2100) precipitation intensity (mm/day) over northeastern (top) and Peninsular 

Thailand (bottom) produced by HadAM3P and PRECIS. 

  

In general, the original project objective in this study addressed specific questions in 

section 2.2 as follows. 

 

Analysing limited observation data indicated that that the climate over peninsular 

Thailand can be clearly distinguished from the climate over the mainland. Annual 

precipitation over the peninsular shows a faster rate of decrease in some seasons than 

over the mainland region. The number of rain days is shown to have decreased in both 

regions over the 1961-90 period. The minimum temperature has increased rapidly 

than the maximum temperature in mainland and peninsula in MAM and DJF 



 237

excepting over the peninsula in DJF. The average monsoon onset date (1961-1990) 

over the peninsula is one day earlier than the mainland region and would appear to be 

happening insignificantly later by the end of 1961-1990 period. It was also confirmed 

that tropical depression frequency statistically significantly increases precipitation and 

the relationship between the number of wet days and precipitation amount for all five 

sites analysed is a simple linear function. It was shown that rainfall during the DJF 

and MAM seasons is not influenced by the ENSO phenomenon and El Niño (La 

Niña) events can be lead to statistical significant precipitation decrease (increase) 

during JJAS (ON) at a northern (southern) station. 

 

PRECIS is able to capture precipitation for current climate in SEA. Applying the grid-

to-grid analysis method, the displayed spatial JJAS precipitation patterns are similar, 

with more detail provided by the PRECIS simulation compared with HadAM3P itself 

and the model simulations realistically simulate the heavy precipitation over the Bay 

of Bengal coast. With respect to Thailand, the average daily precipitation during JJAS 

over 1961-1990 simulated by the RCM adds more detail, in particular, over the 

coastline but is insignificant in adding further value over the southern region. The 

model simulations show a modest “added value” of using the RCM over the GCM 

during the active monsoon season, JJAS (Figure 5.6(c)). There is a striking difference 

in the sign of bias between the north and south of the domain indicating that model 

biases over SEA more likely depend on geographical location. The underestimation in 

precipitation arounds the equator over marine continents implied that the convection 

scheme and/or the physical parameterization fail to faithfully reproduce precipitation 

over the region. Moreover, the radiation scheme and/or land sea interaction may be 

related to precipitation underestimation in southern Thailand in particular. PRECIS 

model simulates total precipitation amount fairly accurately through an underestimate 

of precipitation intensity but an overestimate of wet day frequency. Compared with 

station observation data, the model generally simulates too many low precipitation 

events and insufficient high precipitation events. This bias may be partially related to 

the tropical region where more optically thick cloud is simulated than observed which 

total cloud fraction slightly in excess of the observations was found in this study 

(Figure5.16) which could be related to an  error in the wind and pressure field through 

the lateral boundaries (Hudson and Jones, 2002). Annual precipitation cycle revealed 

that RCM generated too much precipitation during the monsoon onset, May, 
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meanwhile the model generated inadequate precipitation in some local scale in 

Thailand during JJAS. The RCM has a difficulty to accurately simulate humidity 

fields over this geographic area (Figure 5.11). The model produced vapour pressure 

reasonably over the largely marine environment of the peninsula which suggests a 

deficiency in the simulation of the water cycle, perhaps through land-atmosphere 

interactions, over more continental areas. The strengths in the output of PRECIS is 

adding value of the driving GCM, however, in some cases HadAM3P is performing 

better than PRECIS producing less precipitation than the RCM, for example, in the 

onset month of May in northern, northeastern and central Thailand. This is related to 

that RCM there is more convective and large scale precipitation throughout the 

seasonal cycle as well as a more active hydrological cycle compared to the driving 

GCM. Therefore, RCM is likely to reproduce the convection which is activated at the 

lee-side foot of two mountainous regions located in western and central Thailand 

during the daytime and to extend that precipitation during the night time over inland 

regions far downwind from the mountains themselves. Moreover, the driving GCM is 

able to calculate most accurately the minimum and maximum surface temperature 

over mainland Thailand (Figure 5.30). This would be an expectation of GCM skill, 

providing a good simulation of a large scale climate regime over an aggregated area 

of mainland Thailand while the limitation of GCM skill was found over coastal 

region. PRECIS-ECHAM4 simulations reveal largest underestimation in precipitation 

and surface temperature which may be due to the insufficiency of driving boundary 

condition.  

 

PRECIS A2 and B2 simulations mostly produce small precipitation increases in JJAS 

over all region in Thailand meanwhile PRECIS A2 (B2) simulations produce small 

precipitation increases (decrease) during DJF over mainland Thailand and RCM under 

either emission scenario produce small decrease during DJF over peninsular Thailand. 

Some are in agreement with the average precipitation projections published in the 

most recent IPCC report (IPCC-AR4, 2007) under the A1B scenario [the scenario 

projection between the low emission SRES-B2 and high emission SRES-A2 

scenarios].  PRECIS A2 and B2 simulations show warming over both (continental) 

mainland and (maritime) peninsular Thailand which are greater than the average 

annual warming in DJF and JJAS and are greater than the agreement in most GCMs 

under the A2 and B2 scenario in IPCC-TAR (2001) and most AOGCMs under the 
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A1B scenario in IPCC-AR4 (2007). The results indicated an increase in the 95th 

percentile of maximum temperature to 41.7°C in northern Thailand and 36.4°C in the 

peninsula region while the baseline value are 36.7°C and 32.6°C. This study found 

that the 95th percentile daily precipitation intensity increased by up to 2 mm/day 

which might be associated with hot day increases being larger than cold day 

decreases. These two conditions, hotter and wetter, may more likely lead to severe 

storms and floods. RCM is able to realistically captured period of southwest monsoon 

active and monsoon onset and the projection of monsoon onset for the end of this 

century is one pentad (5 days) later than the average monsoon onset during 1961-

1990. 
 

7.2 Limitations and Recommendations 
 

In this study, just five surface observation stations distributed over Thailand were 

used to study recent Thai climate due to the costs associated with accessing the larger 

network; the Thai Meteorology Department makes a charge, even for educational 

purposes, of approximately £7,000 for the larger dataset. Without personal contact, 

the process to obtain the data set took fourteen months to complete. To more fully 

validate the RCM performance and document local climatic variation in Thailand, 

more local scale data is ideally needed. There was only one station in the peninsular 

considered in this study, however this site can be used to represent the general climate 

in the southern area. The specific geographic area which it would be particularly 

valuable to test further is in the peninsula of Thailand because this is a challenging 

area to simulate for an RCM. 

 

Specifically studying extreme events such as tropical cyclones, heavy precipitation 

and drought are also recommended as these were beyond the scope of this thesis; in 

this study it was found that the precipitation is likely to change in terms of intensity 

which is in agreement with the IPCC-AR4 (2007). Approximately one third of 

Thailand’s area is used for agricultural production. Crop yield, for example of rice, is 

associated with climate change. Using PRECIS forced with ECHAM4, Agarwal 

(2009) projected the future climate to drive a crop model over the Mekong basin and 

found that the reduction in yield reached 18, 28 and 24% in the region during the 
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2020s, 2050s and 2080s, respectively, compared to the average yield of years 1997-

2006. This sort of work is also desperately needed in Thailand. 

 

The WHS, Wilson and Henderson-Sellers, land use dataset (global coverage, 1x1 

degree gridded data) was used in the PRECIS modelling reported in this thesis. Some 

of the SEA PRECIS modelling consortium undertook sensitivity studies with respect 

to land use impacts. The latter was not specifically done for Thailand and this would 

be an interesting study to carry out so as to improve the model’s skill in representing 

the climate of Thailand, using more realistic terrain and land use data. 

 

The office of the National Economic and Social Development Board has 

responsibility for adaptation in Thailand. Regarding climate change issues, the office 

receives full details from the Office of National Resources and Environmental Policy 

and Planning (ONEP), interacting with the communities (i.e. private organisations and 

government) and has already joined the United Nations Framework Convention on 

Climate Change, UNFCCC. The ONEP has responsibility for writing a national report 

for UNFCC and contributing to the framework of climate change in Thailand, 

including reduction of greenhouse gas emissions (Mitigation) and reacting to the 

impacts caused by climate change (Adaptation). My thesis will be given to the Office 

of the higher Education Commission and it will be distributed to the organisations 

which are involved this issue. 

 
Forest fires are a long-term problem at the local scale in northern Thailand, occurring 

every year during February-March during the relatively dry period controlled by the 

northeast monsoon. In the 2007 El Niño year, measurements of particulate matter 

(PM10) exceeded the threshold level for health impact security (383µg/m3) in Chiang 

Mai province and nearby areas (source: Pollution Control Department, PCD). It is 

unclear what the main cause of this event is but possibilities are forest fires, pollution 

from tourism and the effect of El Niño. This is a regional scale event and if it should 

be repeated regularly then important climatic radiative forcing might occur. Studying 

the possible impact of climate change on such events, together with associated 

feedbacks, would therefore also be a valuable next step.  
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