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Abstract Two-dimensional oscillatory oblique stagnation-point flow towards a plane wall is investigated. The
problem is a generalisation of the steady oblique stagnation-point flow examined by previous workers. Far
from the wall, the flow is composed of an irrotational orthogonal stagnation-point flow with a time-periodic
strength, a simple shear flow of constant vorticity, and a time-periodic uniform stream. An exact solution of
the Navier–Stokes equations is sought for which the flow stream function depends linearly on the coordinate
parallel to the wall. The problem formulation reduces to a coupled pair of partial differential equations in time
and one spatial variable. The first equation describes the oscillatory orthogonal stagnation-point flow discussed
by previous workers. The second equation, which couples to the first, describes the oblique component of the
flow. A description of the flow velocity field, the instantaneous streamlines, and the particle paths is sought
through numerical solutions of the governing equations and via asymptotic analysis.

1 Introduction

Flows with a stagnation-point similarity structure form a broad class of exact solutions to the Navier–Stokes
equations [e.g. 1,9]. Such flow structures offer relatively simple paradigms which are useful for understanding
and interpreting flow in regions of larger and more complex flow fields. In this paper, we present an exact
solution describing unsteady flow at a stagnation point on a wall, in which the dividing streamline makes an
oblique, time-dependent angle with the wall. Such a description may be useful in studying more complex
unsteady flow phenomena, for example, the flow at the rear stagnation point which appears on a cylinder held
fixed in a pulsatile stream [2]. A physical example of unsteady stagnation-point flow at a wall is provided by
pulsatile blood flow through a dividing artery, or blood flow through an end-to-side anastomosis [e.g. 3].

A considerable body of research has built up on the subject of stagnation-point flows. Steady two-dimen-
sional orthogonal stagnation-point flow towards a plane wall is described by an exact solution of the Navier–
Stokes equations due to Hiemenz [e.g. 4]. An extended scenario, in which the plane wall moves at constant
speed either towards or away from the stagnation-point flow, has very recently been described by Weidman
and Sprague [5]. In this case, a steady flow is obtained by working in a frame of reference moving with the
plate. The orthogonal stagnation-point flow solution may be generalised to encompass steady oblique stag-
nation-point flow, in which the dividing streamline makes contact with the wall at an acute angle [6–8]. Far
from the wall, the oblique flow comprises an irrotational orthogonal stagnation-point flow, a simple shear flow
with constant vorticity moving parallel to the wall, and a uniform stream directed parallel to the wall. The
problem was recently revisited by Drazin and Riley [9] and Tooke and Blyth [10], who unified the previous
work with reference to a free parameter which quantifies the strength of the uniform stream in the far field. In
all of the aforementioned papers, an exact solution of the Navier–Stokes equations is constructed by assuming

R. M. Tooke · M. G. Blyth (B) · P. W. Hammerton
University of East Anglia, Norwich NR4 7TJ, UK
E-mail: m.blyth@uea.ac.uk



R. M. Tooke et al.

a similarity structure in which the flow stream function depends linearly on the coordinate parallel to the wall.
In this case, the problem is simply described by a set of ordinary differential equations, which must be solved
numerically in general. Steady oblique stagnation-point flow impinging on a circular cylinder was studied by
Weidman and Putkaradze [11,12]. Once again, the flow is described using a coupled set of ordinary differential
equations.

Grosch and Salwen [13] discussed oscillating orthogonal stagnation-point flow, in which the strength of
the irrotational flow far from the wall takes the time-periodic form 1 +� cosωt , where t is time and� and ω
are positive constants representing the amplitude and frequency of the oscillations, respectively. They obtained
a quasi-steady solution in the limit of low frequency, and in the high frequency limit, they demonstrated that
the flow field adopts the double boundary layer structure described by Stuart [14] and Riley [15]. In this
double-layered structure, a Stokes layer at the wall generates a steady-streaming motion which persists away
from the wall and drives a steady-streaming layer above. Merchant and Davis [17] showed that an asymptotic
solution valid in the limit of large frequency and large amplitude, �, can be constructed provided that the
amplitude lies below a threshold value. For a general value of the frequency of oscillation, Blyth and Hall [18]
showed that when the amplitude lies above a threshold value, which depends on the oscillation frequency, the
stagnation-point solution breaks down at a finite-time singularity. When the amplitude lies below the critical
value, the solution is regular and time-periodic. In the case of purely oscillatory stagnation-point flow, for
which the strength of the far-field flow has the form � cosωt , Riley and Vasantha [20] demonstrated that the
solution terminates in a finite-time singularity for any value of the amplitude �. They attributed the failure
of the stagnation-point solution to an unsustainable steady streaming of fluid particles towards the dividing
streamline from either side of the stagnation point. This results in an eruption of the boundary layers adjacent
to the wall which cannot be described by the assumed similarity form. Riley [16] extended the discussion to
an axisymmetric oscillatory stagnation-point flow at a plane wall and found the same singular behaviour.

Here, we discuss the related problem of oscillatory two-dimensional oblique stagnation-point flow towards
a plane wall. Far from the wall, the effectively inviscid flow is composed of an irrotational orthogonal stagna-
tion-point flow, whose strength varies periodically in time, a shear flow with constant vorticity, and a uniform
stream whose strength is time-periodic. Our primary goal is to describe the flow structure as it evolves through-
out one time period and to discuss how this flow structure depends on the various flow parameters. This is
accomplished via numerical solutions of the governing equations and an asymptotic description of the flow
field in the limit when the amplitude and frequency of the oscillatory part of the far-field orthogonal flow
component are both large. In common with the studies of steady stagnation-point flow mentioned above, a
viscous solution near to the wall is sought by assuming a linear dependence on the wall coordinate. The flow
is described by a pair of partial differential equations depending on time and on the vertical coordinate per-
pendicular to the wall. The governing equation that describes the oblique flow component is coupled to the
orthogonal flow and cannot be solved in isolation. In contrast, the governing equation for the orthogonal flow
component is independent of the oblique flow and may be solved independently. Consequently, the asymptotic
results of Merchant and Davis [17] and Blyth and Hall [18] for large amplitude and frequency may be applied
directly, and only the asymptotic solution of the oblique equation needs to be determined.

In the next section, we present a formal statement of the problem. In Sect. 3, we describe the structure of the
near-wall flow through numerical solutions of the governing equations. In Sect. 4, we present an asymptotic
analysis for large amplitude and frequency. We conclude with a discussion of our findings in Sect. 5.

2 Problem statement

We consider the oscillatory two-dimensional oblique stagnation-point flow of a viscous fluid towards a plane
wall situated at y = 0. The flow may be represented using a stream function, ψ(x, y), so that the velocity
components in the x and y directions, respectively, are u = ψy and v = −ψx . The rotational inviscid flow,
which prevails in the limit y → ∞, is given by

ψ = ka(t)xy + 1
2χy2 − χ(ν/k)1/2b(t)y. (2.1)

The first term on the right-hand side of (2.1) represents an orthogonal stagnation-point flow, of strength
ka(t), where k is a positive constant and a(t) is a dimensionless time-periodic modulational factor taken to be

a(t) = 1 +� cosωt, (2.2)
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Fig. 1 Sketch of the dividing streamline at one time instant. The broken line illustrates the continuation of the far-field dividing
streamline to the notional wall intercept xi (τ ) given in (2.11). The solid line shows how the viscous adjustment near to the wall
bends the streamline towards the contact point xs(τ ) given in (2.10)

for constant frequency ω > 0 and constant amplitude � ≥ 0. The second term on the right-hand side of (2.1)
represents a simple shear flow, with constant vorticity −χ < 0. The third term represents a uniform stream
whose time-dependent strength is set by the dimensionless function b(t), which we are free to choose. The
complete flow (2.1) is a solution of the Euler equations provided that the vorticity χ is constant. The solution
describes an oblique stagnation-point flow whose dividing streamline, identified by ψ = 0, approaches the
wall, y = 0, at an angle β such that tan β = −2ka/χ as is illustrated in Fig. 1.

Two characteristic far-field flow types are distinguished by the cases � < 1 and� > 1. When� < 1, the
contact angle satisfies β1 ≤ β ≤ β2, where β1 and β2 are both obtuse angles. When � > 1, the contact angle
varies such that β ≥ β3 and β ≤ β4, where β3 is an obtuse angle and β4 is an acute angle. This means that dur-
ing the time cycle the dividing streamline sweeps down to vanish on one side of the x axis and instantaneously
reappear on the other side.

Since (2.1) does not satisfy the no-slip condition at y = 0, we introduce the more general flow description

ψ = (νk)1/2x f (η, t)+ χ(ν/k)

η∫

0

g(η′, t) dη′, (2.3)

so that

u = kx fη(η, t)+ χ(ν/k)1/2g(η, t), v = −(νk)1/2 f (η, t), (2.4)

where f (η, t) and g(η, t) are dimensionless functions which depend on the new coordinate η = (k/ν)1/2 y.
Matching the horizontal velocity component with the far-field flow (2.1), we require

f ∼ a(t)η − α(t)+ o(1), g ∼ η − b(t)+ o(1), (2.5)

as η → ∞, where α(t) is a function of time to be determined, which may be interpreted as a viscous displace-
ment of the streamlines in the far field, as will be discussed below.

Substituting (2.3) into the Navier–Stokes equations, and defining the new time variable τ = ωt , we obtain
the following pair of partial differential equations governing f (η, τ ) and g(η, τ ):

σ fητ + f 2
η − f fηη = σaτ + a2 + fηηη, (2.6)

σgτ + fηg − f gη = α − ab − σbτ + gηη, (2.7)

where the Strouhal number σ = ω/k, and the time-periodic function a(τ ) is given by (2.2). At the solid
boundary, the no-slip and tangential flow conditions require

f (0, τ ) = fη(0, τ ) = 0, g(0, τ ) = 0. (2.8)

As a result of the viscous adjustment, both the angle of intercept and the point of intercept of the dividing
streamline at the wall are modified from the inviscid predictions quoted above, as is illustrated in Fig. 1. It can
readily be shown that the angle of intercept γ (τ) varies in time and satisfies

tan γ = 1/m, m =
(χ

k

) 1

3 fηη(0, τ )

(
(α − ab − σbτ )− (σaτ + a2)

gη(0, τ )

fηη(0, τ )

)
. (2.9)
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The point of intercept, which moves in time, is given by

xs(τ ) = −
(ν

k

)1/2 (χ
k

) gη(0, τ )

fηη(0, τ )
, (2.10)

and coincides with a point where the wall shear stress is zero. Substituting the asymptotic far-field behaviour
(2.5) into (2.3), we may determine the notional wall intercept of the far-field dividing streamline, which is
illustrated in Fig. 1, to be

xi (τ ) =
(ν

k

)1/2 (χ
k

)(
b

a
− α

2a2

)
. (2.11)

The first term in the final bracket represents the intercept of the inviscid dividing streamline according to
(2.1), and the second term in the final bracket represents the displacement effect due to the viscous adjustment
at the wall. For the special choice of the uniform stream strength b(τ ) = α/2a, the far-field streamline is
always directed towards the origin so that xi (τ ) = 0.

The orthogonal flow problem, represented by (2.6), can be solved independently to obtain f . The oblique
flow problem, represented by (2.7), is coupled to (2.6) and in general may be solved only once f is known.
In the absence of an orthogonal flow, f ≡ 0, the solution for the oblique flow function in the presence of an
oscillatory uniform stream of the form b(τ ) = δ cos(τ + φ), for constants δ and φ, is given by

g = η + δ
[
exp(−σ 1/2η/

√
2) cos(τ − σ 1/2η/

√
2 + φ)− cos(τ + φ)

]
, (2.12)

which represents a simple shear flow which is superimposed onto a classical Stokes layer over a plane wall
[e.g. 4, p.192]. Solutions to the uncoupled Eq. (2.6) have been discussed by a number of authors [13,17,18].
Merchant and Davis [17] identified an asymptotic regime for σ 
 1 such that � ∼ O(σ 1/2) in which the
flow decomposes into a double-layered structure comprising a viscous Stokes layer at the wall which drives
a steady slip velocity which persists away from the wall. This match to the far-field flow at infinity (2.1) is
effected by a second viscous layer, known as the steady-streaming layer. The asymptotic solution breaks down
at a finite-time singularity when the amplitude exceeds the threshold�c. In the limit σ → ∞, this is given by
the asymptotic approximation

�c ∼ 1.29σ 1/2 + 0.76 + O(σ−1/2) (2.13)

[17,18]. Blyth and Hall [18] showed that a similar breakdown occurs for all values of the frequency param-
eter σ and delineated the threshold curve �c(σ ). In general, obtaining the solution to Eqs. (2.6) and (2.7)
is a numerical task. In the next section, we compute numerical solutions for moderate values of the control
parameters.

3 Flow structure

We present a discussion of the oscillatory oblique stagnation-point flow for different parameter values based on
numerical solutions of the coupled system (2.6) and (2.7) subject to the conditions (2.5) and (2.8). We integrate
the governing equation for the orthogonal flow, (2.6), forward in time numerically using the Crank–Nicolson
scheme described by Blyth and Hall [18]. Once f is available at each new time step, we compute the dis-
placement α(τ) = limη→∞(aη− f ) and then advance (2.7) forward one time step using the Crank–Nicolson
method to obtain g. The integral in the second term in (2.3) is evaluated using the trapezium rule to determine
the stream function ψ at the new time step. In all of the results to be presented, the calculations were initiated
from the starting profiles f ≡ 0 and g ≡ 0 at τ = −π/2. Results are shown below over the time interval
2π ≤ τ ≤ 4π by which time transients have decayed.

For the first part of the discussion, we assume that there is no superimposed uniform stream, so that
b(τ ) is identically zero. The particular flow structure observed during one time period depends sensitively
on the amplitude�. For this reason, we break the ensuing discussion into three separate subsections detailing
the three characteristically different regimes. In each case, a specific discussion is presented pertaining to
the typical case σ = 1.
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Fig. 2 The variation of η∗ during one time period for σ = 1.0: a � = 0.8 (lowermost curve), � = 0.85 (middle curve), and
� = 0.95 (upper curve); b � = 1.2; the vertical broken lines indicate the zeros of a(τ ) at the times τ = 8.84 and τ = 10.01

(a) Single-layered flow: � < �1.
When � < �1, where �1 is a threshold value which depends on σ , the flow structure is single-layered.
By this, we mean that an instantaneous streamline emanating from infinity approaches the wall, and there
are no subdivisions within the flow field. Under this regime, the point of attachment xs(τ ) roams the
wall between two bounds so that the dividing streamline moves rather like a windscreen wiper swishing
to and fro. For the case σ = 1, the threshold value �1 = 0.785.

(b) Two-layered flow: �1 < � < �2.
A different, two-layered flow pattern emerges when �1 < � < �2, where �2 is a second threshold
value which depends on σ . For the case σ = 1, we find that �2 = 0.835. At one time during the cycle,
the attachment point travels along the wall to infinity and a horizontal streamline rises up from the wall to
create a streamline pattern like that shown in Fig. 3. The reason for the new flow pattern is that fηη(0, τ )
becomes negative over a certain time interval during one flow period, during which time f has a zero
at η = η∗ > 0. This implies the presence of a horizontal streamline in the interior of the fluid (we note
that in regime (a) above, fηη(0, τ ) > 0 throughout each flow period and so f has no zeros in η > 0.).
By way of example, we plot η∗ against time in Fig. 2a for the case � = 0.8 < �2. The zero appears
at τ = 8.95 and disappears at τ = 9.27. Accordingly, a horizontal streamline appears at the wall at
τ = 8.95. The streamline moves upwards into the fluid before turning back and vanishing at the wall at
τ = 9.27. Referring to (2.4), we see that there is a stagnation point located on the horizontal streamline
at the point

x∗ = −
(ν

k

)1/2 (χ
k

) g(η∗, τ )
fη(η∗, τ )

. (3.1)

The instantaneous two-layered streamline pattern qualitatively resembles that shown in Fig. 3, which
occurs under regime (c) to be discussed next.

(c) Three-layered flow: �2 < � < 1.
In this regime, f has one and then two positive zeros η∗ during the period when fηη(0, τ ) is negative.
This is made clear by inspection of the curves for � = 0.85 and � = 0.95 (both for σ = 1) in Fig. 2a.
For� = 0.95, the first zero appears at τ = 8.56, and the second zero appears at τ = 9.63. The two zeros
collide and disappear at τ = 9.71, which corresponds to the rightmost point on the relevant curve in
the figure. Correspondingly, a horizontal streamline emerges from the wall and moves upwards. A short
time afterwards a second horizontal streamline appears at the wall creating a three-layered structure.
These two streamlines move towards each other and eventually annihilate each other whereupon the
flow returns to the single-layered structure of before. The instantaneous streamline pattern during the
two-layered part of the flow period is illustrated in Fig. 3. The streamline snapshot occurs at the time
τ = 9.13 for the case σ = 1 and � = 0.85. The horizontal streamline can be seen at η = η∗ = 1.2 at
this time instant. The three-layered structure is illustrated by the example shown in Fig. 4 for the case
σ = 1.0 and � = 0.95. In this case, the instantaneous streamline snapshot corresponds to the time
τ = 9.66.
It is worth remarking that under this regime, a(τ ) is single-signed throughout each flow period and so the
far-field flow is always moving towards the wall and spreading out towards x = ±∞. However, during
part of one time cycle, near to the wall there are streamlines coming in from x = ±∞ towards the origin.
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Fig. 3 Instantaneous streamlines for the case δ = 0, σ = 1, and � = 0.85 shown at τ = 9.13. At this time, η∗ = 1.2, the
stagnation point inside the fluid lies at x∗ = −40.3 (shown with a dot), and the attachment point lies at xs = 18.4. The streamline
ψ = 0 is shown with a broken line

Fig. 4 The instantaneous streamline pattern illustrating the three-layered structure at τ = 9.66 for δ = 0, σ = 1.0, and� = 0.95

(d) Eruption: � ≥ 1.
When� ≥ 1, a(τ ) passes through zero during a flow period. The streamline pattern throughout one flow
cycle is similar to the previous case (c) except now the horizontal streamline which emerges at the wall
moves up to infinity and the flow ‘erupts’. This is evident from the trace of the zero η∗ in Fig. 2b for the
case σ = 1,� = 1.2. One flow period includes the following stages: first, we observe the single-layered
structure with a sweeping dividing streamline; next, the double-layered structure appears as a horizontal
streamline moves upwards from the wall towards infinity; then, the single-layered structure reappears;
next, the double-layered structure returns—this time a second horizontal streamline emerges from infinity
and descends towards the first creating a triple-layered structure. The two streamlines meet at a critical
time and annihilate one another to herald the return of the single-layered flow for the remainder of the
time period.
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Finally, we briefly comment on the flow when b(τ ) is not zero. When � = 0 and b(τ ) is constant, the
oblique flow is steady and has been described by previous workers [6–8]. Tooke and Blyth [10] noted that on
increasing the constant value of b, the whole streamline pattern is shifted in the positive x direction. If � = 0
and b is not constant, the streamline pattern will change non-trivially with time. For example, although the
gradient of the dividing streamline in the far field will remain constant, the angle of intercept of the dividing
streamline with the wall, γ , which is given in (2.9), will vary in time. Calculations performed with non-zero
b(τ ) may be found in Tooke [21].

4 The flow at large amplitude and frequency

The pertinent asymptotic limit to study when the amplitude and frequency are both large is � = O(σ 1/2)
[17,18]. To study the flow in this limit, it is convenient to rescale the dependent variables in the problem by
writing f = �1/2 f̂ , g = �−1/2 ĝ and the independent variable by writing η = �−1/2 η̂. This permits ready
comparison with the work of Merchant and Davis [17] and Blyth and Hall [18]. We introduce the inverse
amplitude parameter ε = 1/� and the frequency parameter � = εσ . In the rescaled variables, (2.6) and (2.7)
become

� f̂η̂τ + f̂ 2
η̂

− f̂ f̂η̂η̂ = −� sin τ + (ε + cos τ)2 + f̂η̂η̂η̂, (4.1)

�ĝτ + f̂η̂ ĝ − f̂ ĝη̂ = α̂ − (ε + cos τ)b̂ −�b̂τ + ĝη̂η̂, (4.2)

where α̂ = ε1/2α is a function of time to be found, and b̂ = ε−1/2b is a prescribed function of time. The
matching conditions (2.5) become

f̂ ∼ (ε + cos τ)η̂ − α̂ + o(1), ĝ ∼ η̂ − b̂ + o(1). (4.3)

At η̂ = 0, we have the no-slip and tangential flow conditions

f̂ (0, τ ) = f̂η̂(0, τ ) = 0, ĝ(0, τ ) = 0. (4.4)

We seek an asymptotic solution to (4.1) and (4.2) in the limit of large frequency, � 
 1. Following
Merchant and Davis [17] and Blyth and Hall [18], we assume that

ε = a0�
−1 + a1�

−2 + · · · , (4.5)

for constants a0 and a1. We note that (4.5) corresponds to the relation � = a−1/2
0 σ 1/2 + · · ·, so that we have

the relations ε = 1/� = a1/2
0 σ−1/2 + · · · and � = εσ = a1/2

0 σ 1/2 + · · ·. In this limit, the mean orthogonal
flow component in the far field is small in comparison with the oscillatory orthogonal flow component. For
the oblique component of the flow, we will work on the assumption that the strength of the uniform stream in
the far field is of the same order of magnitude as the mean orthogonal flow component in the far field. In the
notation of Sect. 2, this means that b ∼ O(1). We write

b̂(τ ) ∼ [B00 + B01 cos(τ + φ)] �1/2 + [B10 + B11 cos(τ + φ)] �−1/2 + · · · , (4.6)

where B00, B01, B10, B11, and φ are all O(1) constants. The asymptotic flow structure consists of a Stokes
layer of thickness O(�−1/2) adjacent to the wall which drives a steady-streaming layer of thickness O(�1/2).
In the present notation, the expansions inside the Stokes layer are [17,18]

f̂ = �−1/2φ0(ξ, τ )+�−3/2φ1(ξ, τ )+ · · · , α̂(τ ) = �−1/2 A(τ ), (4.7)

where ξ = �1/2η̂ is an order one variable inside the layer. For the oblique flow, in the Stokes layer, we pose
the expansion

ĝ = �1/2�0(ξ, τ )+�−1/2�1(ξ, τ )+ · · · . (4.8)

The details of the analysis in the Stokes layer and the steady-streaming layer are given in the Appendix.
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Fig. 5 a The first non-trivial zero ξ0 of φ0(ξ) versus time τ shown with a solid line. The asymptotic predictions (4.11) and (4.12)
are shown with broken lines. b Particle paths for a0 = 1.0, B00 = 1.2, and� = 100, plotted with k/χ = 1. The dots indicate the
starting points for each particle’s motion

We will discuss the flow behaviour described by the asymptotic solution during the time interval 0 ≤ τ ≤
2π . In the high frequency limit, with the scaling (4.6) for the uniform stream in the far field, the point of
attachment is given by the asymptotic formula

xs =
(ν

k

)1/2 (χ
k

)
a3/2

0 B01
cos(τ + π/4 + φ)

cos(τ + π/4)
�−1 + O(�−2). (4.9)

Evidently, |xs | → ∞ as τ → π/4 at which time we expect the double-layered structure (see scenario
(c) in Sect. 3) to emerge. To scrutinise the flow around this time, we introduce the new local time variable
T̂ = τ − π

4 , and work on the assumption that |T̂ | � 1. For small |T̂ |, the leading order Stokes layer solution
for the orthogonal flow (A.1) becomes

φ0(ξ, τ ) ∼
[
ξ√
2

− 1 + e−ξ/√2 cos(ξ/
√

2)

]
+ T̂

[
e−ξ/√2 sin(ξ/

√
2)− ξ√

2

]
+ · · · . (4.10)

The first square-bracketed term has a simple zero at ξ = 0 and is positive for ξ > 0. Balancing the leading
order and first-order terms in (4.10), we find that a non-trivial zero, labelled ξ0, appears when T̂ > 0 and is
given by

ξ0 = 3
√

2 T̂ + · · · (4.11)

to leading order approximation for small T̂ > 0. The two-layered flow structure therefore emerges with the
birth of the non-trivial zero, ξ0. The horizontal streamline is located at ξ = ξ0 and moves upwards in time
according to (4.11). For non-small times T̂ , the streamline continues to move upwards. This is evident from
Fig. 5a which shows the graph of ξ0 against time over the interval π/4 < τ < π/2. The graph was constructed
by computing the zero of the leading order term in (A.1) numerically using Newton’s method.

The apparently divergent behaviour of the zero, ξ0, close to τ = π
2 seen in Fig. 5a suggests that a special

investigation in the neighbourhood of this time is warranted. Accordingly, we introduce the new time variable
T = τ − π

2 , with the assumption that |T | is small. By expanding the leading order solution, φ0, in the Stokes
layer, given by (A.1), for small negative T , we find that

ξ0 ∼ − 1√
2

T −1, (4.12)

as T → 0−. This estimate is shown as a broken line in Fig. 5a and is almost coincident with computed zero
of φ0 near to τ = π

2 . The divergent behaviour of ξ0 in this vicinity indicates that the horizontal streamline
departs the Stokes layer and moves up into the steady-streaming layer. One may continue the analysis along
the preceding lines to trace the trajectory of the streamline through this layer and up into the far field. We will
simply note that the horizontal streamline is found to vanish at infinity at the same instant (to within a first-
order asymptotic approximation) that a(τ ) reaches zero and the dividing streamline in the far field becomes
parallel with the x axis. Note that this conclusion has been reached purely by reference to the orthogonal flow
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component, encapsulated by the function f̂ . Therefore although the function b(t) associated with the oblique
flow component is taken to be O(1) here and zero in Sect. 3, comparison is still permitted between the two,
and the conclusion is in accord with the numerical simulations presented in Sect. 3.

Heretofore, we have discussed the instantaneous streamline patterns encountered in the flow. However,
it is difficult from these to discern the paths taken by individual fluid particles. To conclude, we present a
description of the motion of a point particle placed within the flow in the high frequency, large amplitude
limit. In particular, we focus attention on particle motion on the scale of the outer steady-streaming flow. The
appropriate expansions for the orthogonal and the oblique flow components in the steady-streaming layer are
given by (A.7) and (A.10), respectively. In the present high frequency limit, the horizontal and vertical velocity
components (2.4) become

u = kx

(
�

a0
− a1

a2
0

) [
cos τ +�−1 f ′

0

]

+ χ
(ν

k

)1/2
a1/2

0

(
1 + a1

2a0�

) (
F1 − B01 cos(τ + δ1)

)
, (4.13)

v = −(νk)1/2
�

a1/2
0

(
1 − a1

2a0�

) (
ζ cos τ −�−1 cos(τ − π/4)+�−1 f0

)
.

The particle paths are computed as the solution of the differential system

dx

dt
= u,

dy

dt
= v. (4.14)

Recalling that τ = σkt , we find to leading order approximation τ = (k�2/a0) t . Inspecting the right-hand
sides of (4.14), we anticipate that the particle paths will operate on the two distinct time scales a0/k and
�−2(a0/k). Accordingly, we define the new slow and fast time variables,

t̂ = k

a0
t and τ̂ = k�2

a0
t. (4.15)

Rewriting the second equation in (4.14) in terms of the new time scales, we obtain

k

a0�2 yt̂ + k

a0
yτ̂ = −ky�−1

(
1

a0
− a1

a2
0�

)
cos τ̂ −�−2

(
νk

a0

)1/2 (
f0 − cos

(
τ̂ − π

4

))
. (4.16)

The dominant balance in (4.16) is given by �yτ̂ ∼ −y cos τ̂ . This suggests defining the new dependent
variable Y = E−1 y, where E = e−�−1 sin τ̂ , whereupon (4.16) becomes

�−2 E Yt̂ + EYτ̂ = −�−2
(ν

k

)1/2
a1/2

0

(
f0(EY )− cos

(
τ̂ − π

4

))
. (4.17)

We seek a solution in the form of the asymptotic expansion

Y (t̂, τ̂ ) = Y0(t̂, τ̂ )+�−1Y1(t̂, τ̂ )+�−2Y2(t̂, τ̂ )+ · · · , (4.18)

Substituting into (4.17), we find from the leading order and first-order equations that Y0 = Ỹ0(t̂) and Y1 = Ỹ1(t̂).
Integrating the second-order equation with respect to τ̂ , we obtain

Y2 = −
(

Y0t̂ +
(ν

k

)1/2
a1/2

0 f0(Y0)

)
τ̂ +

(ν
k

)1/2
a1/2

0 sin
(
τ̂ − π

4

)
+ Ỹ2(t̂), (4.19)

where Ỹ2 is a function of integration. Following the standard methodology for multiple scales, we avoid the
growth of the secular term in (4.19) by demanding that

Ỹ0t̂ = −
(ν

k

)1/2
a1/2

0 f0(Ỹ0). (4.20)
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Turning to the first equation in (4.14), we introduce the new variable X = Ex and pose the expansion

X (t̂, τ̂ ) = X0(t̂, τ̂ )+�−1 X1(t̂, τ̂ )+�−2 X2(t̂, τ̂ )+ · · · . (4.21)

Substituting the expansion, we find that X0 = X̃0(t̂) and obtain at second order

X̃0t̂ = f ′
0(Ỹ0) X̃0 +

(ν
k

)1/2 (χ
k

)
a3/2

0 F1(Ỹ0). (4.22)

Equations (4.20) and (4.22) are solved numerically using second-order Runge–Kutta to determine the lead-
ing order particle paths. Different particle paths are found by selecting different initial conditions X̃0(t̂ = 0)
and Ỹ0(t̂ = 0). The functions f0 and F1 on the right-hand sides of (4.20) and (4.22) are found by solving the
differential systems (A.8) and (A.18) using a standard boundary value solver. Once we have found X̃0(t̂) and
Ỹ0(t̂), we construct the particle paths by plotting the locus of the points

(x, y) =
(

e�
−1 sin τ̂ X̃0(t̂), e−�−1 sin τ̂ Ỹ0(t̂)

)
, (4.23)

for a suitably large choice of the parameter �. Sample particle paths are displayed in Fig. 5b for the case
a0 = 1.0, B00 = 1.2 and � = 100. In this limiting case, the particle paths broadly follow the streamlines
associated with the steady component of the steady-streaming layer solution, with small amplitude rapid
oscillations superimposed.

5 Discussion

We have investigated an unsteady stagnation-point flow towards a wall when the inviscid flow in the far field
is composed of a time-periodic orthogonal stagnation-point flow, a shear flow with constant vorticity and a
uniform stream parallel to the wall. The flow was investigated for different values of the flow parameters
quantifying the strength of the oscillatory and mean orthogonal flow components, the oscillatory and mean
strength of the uniform stream, and the phase difference between the uniform stream and the orthogonal flow.

In the simplest scenario, when the dimensionless amplitude of the oscillatory component of the orthogonal
flow,�, is sufficiently low, the flow field is characterised by a dividing streamline, which approaches the wall
at an oblique angle from infinity. The dividing streamline bends as it passes through the viscous layer adjacent
to the wall to make contact with the wall at a generally different angle. During the flow cycle, the point of
contact sweeps along the wall, oscillating between two finite limits. The oblique angle of approach of the
dividing streamline also varies in time between two definite limits.

The flow structure becomes more complex when� is increased. For amplitudes�1 < � < �2 < 1, where
�1 and �2 are threshold values, the intercept of the dividing streamline with the wall moves to infinity at a
critical point in the cycle, and a double-layered flow structure develops for a short time interval. A horizontal
streamline emerges from the wall and migrates upwards through the fluid separating the flow into two layers.
A new stagnation point emerges in the fluid interior located on the moving horizontal streamline. At the end of
the short time interval, the horizontal streamline moves back down towards the wall, and the flow field recovers
the previous single-layered structure. For values �2 < � < 1, the upward-moving horizontal streamline is
met by a second horizontal streamline descending from infinity, creating a triple-layered streamline pattern. In
this case, the collision of these two streamlines heralds the return to the single-layered flow structure. When
� > 1, one flow period is witness to the single-layered, double-layered, and triple-layered flow structures.

When � lies above a threshold value, which is dependent on the frequency of the oscillatory orthogonal
flow, solutions to the governing equations are singular and terminate in a finite-time singularity. We have
conducted an asymptotic analysis in the limit of large amplitude and frequency close to the threshold value.
The results of the analysis corroborate the observations of the numerical simulations. For large amplitude,
one time period includes two intervals during which the streamline pattern becomes multi-layered. During the
first interval, a horizontal streamline appears at the wall and moves upwards to infinity. In the second interval,
after the appearance of the horizontal streamline at the wall, a second horizontal streamline moves down from
infinity, and the two merge.

Using a multiple scales analysis, we determined the motion of point particles within the steady-streaming
layer in the large amplitude and large frequency limit. Essentially, the particle paths follow the streamlines asso-
ciated with the steady component of the steady-streaming layer solution, with rapid oscillations superimposed.



Oscillatory oblique stagnation-point flow

Appendix

We present the details of the asymptotic analysis for the high frequency flow discussed in Sect. 4. For reference,
we note that the solution φ0 appearing in (4.7) is given by [17]

φ0(ξ, τ ) = ξ cos τ − cos(τ − π/4)+ e−ξ/√2 cos(τ − ξ/
√

2 − π/4). (A.1)

The solution φ1 is rather lengthy. Here, we simply note that φ1ξ → −3/4 as ξ → ∞.
The problem for the oblique flow, given by (4.2) together with the second condition in (4.3) and the third

condition in (4.4), depends on the solution to the orthogonal flow problem. In the Stokes layer, we pose the
expansion (4.8). Substituting (4.6), (4.5), (4.7), and (4.8) into (4.2), we obtain at leading order, O(�3/2),

�0τ = B01 sin(τ + φ)+�0ξξ , (A.2)

which is independent of the leading order orthogonal flow function φ0. The solution satisfying�(0, τ ) = 0 is

�0(ξ, τ ) = c0ξ + B01

[
e−ξ/√2 cos(τ + φ − ξ/

√
2)− cos(τ + φ)

]
, (A.3)

where c0 is a constant to be determined. At first order, O(�1/2), we find

�1τ + φ0ξ�0 − φ0�0ξ = −B00 cos τ − B01 cos τ cos(τ + φ)+ B11 sin(τ + φ)+�1ξξ . (A.4)

We may seek a solution in the form

�1 = F(ξ)+
{

G1(ξ) eiτ + G2(ξ) e2iτ + c.c.
}
, (A.5)

where F is real, G1, and G2 are complex, and c.c. denotes the complex conjugate. Exact solutions for F,G1,
and G2 satisfying the boundary conditions F(0) = G1(0) = G2(0) = 0 may be derived without difficulty,
but since the resulting expressions are somewhat lengthy we will simply note that

�1 ∼ c1ξ + 3

2
√

2
B01 cos

(
φ + π

4

)
+ c0 cos

(
τ + π

4

)

−B00 sin τ − B11 cos(τ + φ)+ edt, (A.6)

as ξ → ∞, where c1 is a constant and edt stands for exponentially decaying terms. The value of c1 will be
fixed through the match with the steady-streaming layer to be discussed below.

Inside the steady-streaming layer, which is of thickness O(�1/2), we introduce the new independent vari-
able ζ = �−1/2η̂, where ζ = O(1). In this region, Merchant and Davis [17] showed that it is appropriate to
write

f̂ = �1/2ζ cos τ −�−1/2 cos(τ − π/4)+�−1/2 f0(ζ )+�−3/2[ψ1(ζ, τ )+ f1(ζ )] + · · · , (A.7)

where the functions ψ j , for j = 1, 2, 3, . . ., have zero time average over a period. The leading order steady
component f0 satisfies the system [see 18]

f ′′′
0 + f0 f ′′

0 − f ′2
0 + a2

0 = 0, (A.8)

where a prime denotes differentiation with respect to ζ , with f0(0) = 0, f ′
0(0) = −3/4 and f ′

0(∞) = a0. The
first-order steady component satisfies the system

f ′′′
1 + f0 f ′′

1 − 2 f ′
0 f ′

1 + f ′′
0 f1 = 1

2
√

2
f ′′
0 − 2a0a1, (A.9)

with f1(0) = 13/(4
√

2), f ′
1(0) = 0 and f ′

1(∞) = a1. Guided by (A.6), we expand the stream function for the
oblique flow in the streaming layer by writing

ĝ(ζ, τ ) = �3/2 {�0(ζ, τ )+ F0(ζ )} +�1/2 {�1(ζ, τ )+ F1(ζ )} + · · · . (A.10)
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Substituting this expansion into the governing Eq. (4.2), it is straightforward to show that the solutions to
the leading and first-order problems are

�0 ≡ 0, �1 = (ζ F ′
0 − F0) sin τ − B01 cos(τ + φ). (A.11)

At next order, O(�1/2), we find

�2τ + (�1 + F1) cos τ + f ′
0 F0 − ζ(�1ζ + F ′

1) cos τ + cos(τ − π/4)F ′
0 − f0 F ′

0

= −B00 cos τ − B01 cos τ cos(τ + φ)+ B11 sin(τ + φ)+ F ′′
0 . (A.12)

Averaging (A.12) over one time period, we find

F ′′
0 + f0 F ′

0 − f ′
0 F0 = 0. (A.13)

Matching to the Stokes layer, we require that F0 ∼ c0ζ as ζ → 0, and matching to the far-field flow, we
require that F0 → 0 as ζ → ∞. The general solution to (A.13) is given by

F0 = α1 f ′′
0 (ζ )+ α2h(ζ ), h = f ′′

0

ζ∫

0

[ f ′′
0 (s)]−2e

−
s∫

0
f0(r) dr

ds, (A.14)

for arbitrary constants α1 and α2. Following an argument similar to that presented by Glauert [22], it can be
shown that

h ∼ κ1ζ + κ2, (A.15)

as ζ → ∞, where the coefficients κ1 and κ2 are constant. The constant κ1 may be computed by solving (A.8)
numerically for a specific choice of a0. The results of Merchant and Davis [17] and Riley and Weidman [19]
indicate that there are no solutions of the orthogonal streaming problem (A.8) when a0 < 0.602, there are two
solutions when 0.602 < a0 < 3/4, and there is a unique solution when a0 > 3/4. Taking the limit ζ → ∞ in
(A.13), we see that κ2 = −cκ1/a0, where

c = lim
ζ→∞(a0ζ − f0), (A.16)

is the average value of A(τ ) over one time period. In view of this, and the facts that h(0) = 0 and f ′′
0 (0) = 0,

we conclude that the only possibility to satisfy the matching conditions for F0 is to set

c0 = 0, (A.17)

in which case F0 ≡ 0 and�0 reduces to the classical Stokes layer solution represented by the time-dependent
part of (2.12).

Taking the average over one time period of the equation derived at next order, O(�−1/2), we obtain

F ′′
1 + f0 F ′

1 − f ′
0 F1 = a0 B00 − c, (A.18)

where c was defined in (A.16). The matching conditions are F1(0) = 0, F ′
1(0) = c1 and F1 ∼ ζ − B00 as

ζ → ∞, where we recall that c1 is the constant introduced in (A.6). The solution that satisfies the boundary
conditions F1(0) = 0 and the condition at infinity is

F1 = a−2
0 (c − a0 B00)

[
f ′
0(ζ )+ 3

4 f ′′
0 (0)

f ′′
0 (ζ )

]
+ κ−1

1 h(ζ ). (A.19)

It is now possible to fix the as yet undetermined constant c1 by satisfying the remaining boundary condition.
We find

c1 = a−2
0 (c − a0 B00)

[
f ′′
0 (0)− 3

4 f ′′
0 (0)

(
a2

0 − 9

16

)]
+ 1

κ1 f ′′
0 (0)

. (A.20)

For the sample case a0 = 1 and B00 = 1, we compute κ1 = 2.257 and c1 = 0.8932.
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