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Abstract  

 
SLC24A5 has previously been identified as the gene responsible for the 

hypopigmented golden phenotype seen in zebrafish.  A variant allele of human 

SLC24A5 correlates with lighter skin pigmentation associated with European 

populations.  SLC24A5 encodes a potassium-dependent sodium calcium 

exchanger of the NCKX family, it is found on an intracellular membrane in 

pigment cells and partially co-localises with the trans-Golgi network. siRNA 

knockdown of SLC24A5 in human and murine melanocytes resulted in a 

significant reduction of pigment production.  To further investigate the role of 

SLC24A5 in pigmentation, we are using Xenopus laevis embryos as an in vivo 

model system. We have cloned full length Xenopus laevis SLC24A5 and shown 

it to be expressed from stage 25 in melanophores (pigment cells) and the retinal 

pigmented epithelium (RPE).  To do loss of function studies we have knocked 

down the SLC24A5 protein using morpholinos (antisense oligonucleotides).  We 

have shown that knockdown of SLC24A5 causes a reduction of pigmentation in 

the trunk and RPE of stage 38 (4 day old) embryos.  The morpholino knockdown 

phenotype can be rescued by wild type human NCKX5 and some mutated 

constructs.  This suggests that it is not the ion transport function of NCKX5 that 

is required for its role in pigmentation. 
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Chapter One:  

 

Introduction  

 

 

Pigmentation is the natural colouration of animal and plant tissue, it provides 

camouflage and protection, and offers a means of communication.  

Pigmentation also has a significant cultural and cosmetic impact.  Pigment cells, 

melanocytes in mammals and birds, melanophores in fish and amphibians, are 

responsible for producing melanin, the pigment that provides the characteristic 

pigmentation pattern observed on an animal’s skin, hair or fur and eyes. A wide 

variety of pigment colouring and pattern phenotypes are observed among 

humans, where the skin, hair and eyes are affected.  This variation is a result of 

numerous genes coordinating their activities in a complex fashion. Pigment 

phenotypes are hereditary but can be influenced by mutations and 

environmental factors, namely ultra violet radiation (UVR).  Melanin 

pigmentation is also the main form of protection against UV induced DNA and 

cellular damage (Brenner and Hearing, 2008). Many pathologies are associated 

with defects in pigmentation pathways including; vitiligo, albinism and 

melanoma. As such, a large volume of research has been conducted over the 

years, revealing in excess of 120 genes involved in pigmentation, many of which 

have not been fully characterised, including SLC24A5.  Melanoma is a 

particularly aggressive cancer, incidence of which has increased more than any 

other cancer in last 10 years.  Once diagnosed with malignant melanoma less 

than 10% of patients survive for more than 5 years (Kuphal and Bosserhoff, 

2009).  With this in mind it is important to further understand the mechanisms 

underlying pigment cell function and behaviour.   
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SLC24A5 was originally identified as the gene responsible for a hypopigmented 

‘golden’ phenotype observed in zebrafish. Its role in human pigmentation has 

been highlighted by the presence of a non synonymous single nucleotide 

polymorphism (nsSNP) which correlates with lighter skin colour at a population 

level (Lamason et al., 2005).  Studies so far have shown SLC24A5 to be 

partially co-localised to the trans Golgi network and knockdown results in a 

decrease in pigmentation (Ginger et al., 2008).  SLC24A5 has been shown to 

encode NCKX5, a potassium dependent sodium calcium exchanger.  However, 

the role for such a protein in melanogenesis is not clear.  The work here 

presents an in vivo study of SLC24A5 and aims to further elucidate the function 

of this gene in pigmentation.   

X.laevis (Xenopus laevis) is an ideal model organism for developmental biology 

due to the ease at which embryos can be acquired and manipulated, and their 

fast development time.  At stage 38 (Nieuwkoop and Faber, 1994), 53 hours 

post fertilisation (hpf), X.laevis tadpoles have a distinct pigmentation pattern, 

thus perturbations in pigmentation are easily detected by microscopic analyses.  

As a derivative of the neural crest population, pigment cells also provide a good 

system in which to study cellular migration and differentiation. 

 

Mice have also proved to be an invaluable tool for pigment research, thanks to 

the identification of many different coat colour strains.    Many mutant lines are 

available and also many pigment genes have a knock out mouse (Steingrimsson 

et al., 2006).  It is also relatively easy to conduct human studies, due to the ease 

at which phenotypes can be determined, in a non invasive manner.  Samples 

are easy to take of healthy or diseased skin.  Pigmentation is also studied at an 

evolutionary level as it holds many clues to our development over long time 

scales and can also indicate dietary habits, environment etc (Jablonski and 

Chaplin, 2000).  Thus pigmentation is an important area to study for its 

physiological role and as an evolutionary trait and this can be accomplished by 

the combination of techniques using many different model organisms. 
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1.1 Pigmentation 

 

Pigmentation results from the production of melanin.  This takes place in 

melanosomes found in melanocytes.  The amount, type and distribution of 

melanin determines the pigmentation phenotype.  As well as providing the 

obvious pigmentation pattern for an organism, melanin also serves to protect 

DNA from UV induced damage, and acts as a free radical sponge to protect the 

cell from oxidative damage (Parra, 2007).   

 

Melanocytes are found in the basal epidermal layer of skin, they form epidermal 

melanin unit’s by contacting up to 30 surrounding keratinocytes via their long 

dendritic processes (figure 1), to which they pass packages of melanin.  

Melanocytes are also found at significant levels in hair follicles and the retinal 

pigmented epithelium (RPE), iris and choroid structures of the eye and at lower 

levels in structures of the brain including, the medulla, adrenal gland and 

brainstem.  Melanin is derived from tyrosine and is present in two main forms, 

eumelanin and pheomelanin (Le Pape et al., 2008).  Melanin is produced in 

melanocytes which contain specialised organelles – melanosomes which 

synthesize melanin.  Melanosomes are translocated from melanocytes to 

surrounding keratinocytes where they accumulate around the nucleus, as 

depicted in figure 1. 
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Figure 1 
A cartoon cross section of human skin.   
Melanocytes are found in the epidermis of the skin. Melanin producing 
melanosomes are synthesized in melanocytes and transported to neighbouring 
keratinocytes (squamous cells), where they localise to the supranuclear region. 
 

 

 

Melanocytes arise from the neural crest and migrate to their final positions 

around the embryo during embryogenesis (Silver et al., 2006).  During their 

migration they encounter a number of factors which leads them to their terminal 

differentiation as a pigment cell (Thomas and Erickson, 2008).  Once migrated 

and differentiated, melanocytes respond to UV light and other cues to interact 

with the surrounding keratinocytes to provide a photoprotective layer (Park et al., 

2009). 
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1.2 Melanocytes are derived from the neural crest 

 

The protective pigment, melanin is synthesised in melanocytes.  Melanocytes of 

the epidermis are derived from the neural crest and migrate to the epidermis 

during embryogenesis (Goding, 2007).  Melanocytes of the RPE are not derived 

from the neural crest (Thomas and Erickson, 2008). 

 

1.2.1 The neural crest 
 

The neural crest is a transient population of pluripotent cells unique to 

vertebrates.  Originating from the border between the dorsal neural tube and 

overlying ectoderm, neural crest cells (NCC) appear following closure of the 

neural tube during neurulation. Induction of the neural crest population requires 

the actions of several transcription factors including; Msx1, Pax3, FoxD3, Zic1, 

Snail2, AP-2 and Sox10 (Steventon et al., 2005).  Expression of these factors is 

in turn regulated by Wnt and BMP signalling (Abu-Elmagd et al., 2006; Thomas 

and Erickson, 2008).  

NCC initially undergo an epithelial to mesenchymal transition to delaminate from 

the neural tube, after which are discernible as discrete cells.  The NCC then 

migrate along defined paths to various areas of the embryo, differentiating as 

they go.  NCC give rise to a number of different cell types including ectodermal 

cells such as; neurons and glia of the peripheral nervous system, endocrine 

cells specifically those of the adrenal medulla, and melanocytes.  NCC are also 

precursors to mesodermal tissues including; craniofacial bones, cartilage and 

connective tissue, and some cardiac tissues such as the septum and semilunar 

valves (figure 2) (Le Douarin and Dupin, 2003), (Jessell et al 2007).   
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Figure 2 
Neural crest lineages.  This figure shows a simplistic view of signalling 
processes during neural crest specification and differentiation, and the cell types 
which arise from the neural crest. 
 

 

Neural crest cells migrate extensively around the embryo, during which they 

differentiate into specialised cell types. 
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1.2.2 Neural crest migration 

 

The fate of NCC is determined by their original position along the anterior-

posterior axis of the neural tube and the migration pathway they undertake.   

NCC of the mid/hind brain region will give rise to cranial structures and neurons, 

whereas NCC of the trunk region will give rise to adrenal cell, peripheral ganglia 

and melanocytes (Baker et al., 1997).  Neural crest cells are transient in nature 

and migrate from their origin across the embryo via two distinct pathways, 

dorso-laterally or ventrally (figure 3).   

Before migration, NCC have to undergo an epithelial to mesenchymal transition 

to allow them to migrate away from their origin.  This process requires 

expression of transcription factors of the Slug/Snail family, which repress E-

cadherin and thus allow the cells to move.  This expression is lost when the cells 

complete their migration (Cano et al., 2000). Slug expression is positively 

regulated by Sox10 (Uong and Zon, 2010). 

Pigment cells arise from dorso-laterally migrating NCC while ventrally migrating 

NCC become cells of the peripheral and enteric nervous system and other 

tissues including bone, tendon, connective and adipose (Erickson, 1993; Silver 

et al., 2006; Thomas and Erickson, 2008).  As depicted in figure 3, dorso-

laterally migrating cells move over the somite, or more specifically the 

dermatome, close to the overlying ectoderm, they then invade the ectoderm and 

complete the differentiation process to become melanocytes of the epidermis.  

Ventrally migrating cells move between the somite and neural tube.  The ventral 

migration pathway is initiated about a day before the dorso-lateral path.  During 

this time the later ‘born’ NCC, including  melanoblasts (prospective 

melanocytes) accumulate in a migration staging area (Wehrle-Haller and 

Weston, 1997), (figure 3), before they embark on their migration route through 

the mesenchyme to the epidermis (Dupin and Le Douarin, 2003).  In the 

migration staging area melanoblasts express the receptor tyrosine kinase Kit, 

and require its ligand Kitl for survival and differentiation, Kitl is expressed early 

along the dorso-lateral pathway by dermatome cells (Wehrle-Haller and Weston, 

1995) (Wehrle-Haller et al., 2001) it is possible that Kitl acts as a cue for the 

cells to migrate (Silver et al., 2006) 
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Figure 3 
Neural crest migration pathways and gene expression.   
Following delamination from the dorsal neural tube, NCC migrate ventrally (blue) 
or dorsolaterally (pink).  Cells destined to become melanocytes take the 
dorsolateral route after a short pause in the migration staging area, (taken from 
Thomas and Erickson 2008). 
 
 
 
Endothelins and their respective receptors have also been shown to be 

important for melanoblast migration (Uong and Zon, 2010).  This has been 

demonstrated in Endothelin receptor B (EdnrB) and endothelin 3 (Edn3) mutant 

mice, which have a disrupted pigmentation pattern (Dupin and Le Douarin, 

2003).  EndrB is expressed as the cells reach the migrating staging area, and is 

not required before then, indicating that endothelin signalling is not important to 

neural crest induction (Saldana-Caboverde and Kos, 2010).  Furthermore, in 

conjunction with Kit and Kitl, Edn3 and EdnrB have been shown to be crucial for 

melanocyte differentiation and proliferation.  Edn3 and Kitl have a symbiotic 

relationship whereby without Edn3/EdnrB signalling, melanocytes cannot fully 

proliferate, yet Edn3/EndrB signalling is dependent on previous Kit/Kitl 

stimulation (Ono et al., 1998). 
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Like any other cell migratory behaviour, neural crest migration is dependent on 

interactions between the cells and the extra cellular matrix (ECM).  Melanoblasts 

express a profile of integrins which respond to components of the ECM.  These 

interactions allow the migrating melanoblasts to interpret their surrounding 

environment and respond accordingly, this is crucial for melanocyte survival and 

homeostasis (Pinon and Wehrle-Haller, 2011).  Developing and mature 

melanocytes also express a repertoire of cadherins which are important to cell 

migration, as well as induction and differentiation. In particular N-cadherin, which 

is expressed in the neural plate, is involved in epithelial to mesenchymal 

transition and subsequent migration. (Taneyhill, 2008).  N-cadherin is negatively 

regulated by BMP signalling (Burstyn-Cohen et al., 2004).  Once migrated to the 

epidermis melanocytes continue to express N-cadherin, here it is thought to 

facilitate contacts with the surrounding keratinocytes and fibroblasts (Derycke 

and Bracke, 2004).  Cadherin 6B is expressed in the dorsal most region of the 

neural folds and remains in this region following neural tube closure.  This 

differential expression of these cadherins is thought to assist separation of 

different cells at this early stage of neural crest development (Taneyhill, 2008). 

 

 

1.2.3 Melanocyte specification 

 

Melanocytes are specified prior to migration, however melanin is not 

synthesised until after migration (Kumasaka et al., 2003).  As NCC migrate 

dorso-laterally some of them gradually become determined to a melanocytic 

fate.  Melanocyte precursor cells (melanoblasts) are specified by a combination 

of Wnt and BMP signalling, and other intrinsic and extrinsic factors including Kit 

and Kitl interactions (figure 3) (Jessell et al 2007) (Kanzler et al., 2000).   

 

The canonical Wnt signalling pathway is initiated by the binding of an 

extracellular Wnt molecule to a Frizzled receptor which results in the 

cytoplasmic accumulation of β-catenin. Some β-catenin translocates to the 

nucleus where it interacts with Tcf/Lef sites in Wnt target genes and thus 

triggers transcription.  The master melanocyte transcription factor, 

microphthalmia-associated transcription factor (Mitf) contains such a Tcf/Lef site 

and is thus thought to be a target of Wnt signalling (Yasumoto et al., 2002).  This 

is supported by some experimental observations.  In Xenopus and zebrafish, 



  

 26 

over expression of canconical Wnt signalling has been shown to increase 

expression of neural crest markers at the expense of neural markers (Le 

Douarin and Dupin, 2003), conversely inhibition of Wnt signalling down 

regulates neural crest markers.  Double knockout of Wnt1 and Wnt3a in mice 

results in a decrease of melanocyte markers (Ikeya et al., 1997; Silver et al., 

2006).  As well as promoting a melanocytic fate, Wnt signalling is also proposed 

to inhibit a neurogenic fate, as increasing the amount of β-catenin is inhibitory to 

neurogenesis.  Thus Wnt signalling can be considered as the switch between 

neural and melanogenic specification (Dorsky et al., 1998).   

Once initially activated, by Wnt signalling, Mitf interacts with Lef1 to transactivate 

its own promoter (Saito et al., 2002; Uong and Zon, 2010).  Mitf acts as a master 

switch to drive NCC to a melanocytic fate.  Mitf positive cells are first seen as 

developing melanoblasts just after migration from the neural tube, and before 

they enter the dorso-lateral pathway.  This expression timing is coincident with 

lineage specification.  Mitf is essential for specification and survival of 

melanoblasts, this is achieved by up regulation of Tbx2 and Bcl2, which are 

important for cell identity, growth and survival respectively.  Mitf is a basic-helix-

loop-helix leucine zipper transcription factor, it is the earliest marker of the 

melanocytic lineage.  Mitf is responsible for activating expression of various key 

pigmentation enzymes.  Mutations in Mitf cause various pigmentation defects 

across many species, indicating its conservation.  The human pigment and 

hearing condition, Waardenburg syndrome 2A is caused by mutations in Mitf.  In 

the absence of Mitfa, zebrafish do not develop normal pigmentation and also 

suffer loss of hearing, however RPE development and function appear normal, 

unlike similar mammalian mutants.  It is thought that a secondary Mitf gene, 

Mitfb is able to compensate in the fish (Lister et al., 1999).  Mitf is also 

dynamically involved in the progression of melanoma (Hoek, 2010).  Naturally 

Mitf is not solely regulated by Wnt signalling; Sox10 and Pax3 are also involved.  

These proteins can work individually or together to activate Mitf expression.  

Mutations in Sox10 and Pax3 can also lead to defects in pigmentation as seen 

in Waardenburg syndrome (Bondurand et al., 2000; Saito et al., 2002).  Sox10 

and Pax3 are expressed in the dorsal neural tube before neural crest formation 

and knockout studies suggest they have an important role in neural crest 

differentiation.  Sox10 and Pax3 are thought to activate Mitf expression, by 

targeting the Mitf promoter, but Pax3 has another interesting role.   
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Pax3 also binds to the promoter region of DCT (dopachrome tautomerase), a 

key pigment gene, and thus is a competitor for Mitf binding to the same site.  In 

this way Pax3 is repressive to the expression of DCT.  Such repression is 

alleviated by Wnt signalling, where β-catenin removes Pax3, and indeed the 

ubiquitous Wnt repressor groucho, allowing the accumulated Mitf to activate 

DCT expression (Lang et al., 2005).  DCT expression cannot be activated by 

Mitf alone, Sox10 is required here as a transactivator (Passeron et al., 2007).  In 

conjunction with Sox10 and Pax3, Mitf is responsible for conferring a 

melanocytic fate.  

 

BMP signalling has been suggested to play an inhibitory role in melanocyte 

formation.  When BMP4 or BMP2 plus FGF2 are added to chick neural crest 

cultures melanocyte numbers are reduced, whereas neurogenic neural crest 

derivatives are increased (Silver et al., 2006). FoxD3 is expressed in early NCC, 

several studies indicate that FoxD3 is repressive to melanogenesis.  FoxD3 is a 

transcriptional repressor and targets Mitf (Thomas and Erickson, 2008).   

 

These and other genes compile the genetic profile of a specified melanocyte, 

their expression and function often continues throughout differentiation (Thomas 

and Erickson, 2008).   

 

 

1.2.4 Melanocyte differentiation 

 

Expression and regulation of many of the genes discussed above continues 

after specification, for example Mitf expression is continued and this activates 

expression of other key genes for pigment cell function, thus defining the 

melanocyte lineage.  Additional genes are also expressed to activate other 

genetic pathways involved in differentiation and function of the melanocytes, for 

example MC1R, which is an important receptor for endogenous signals 

(discussed later 1.3.5).  It is also thought that post translational mechanisms are 

required to promote specificity and maintain the differentiated state. 

Differentiated melanocytes are characterised by the presence of melanin (visibly 

dark), melanosome transport to surrounding keratinocytes and dendritic 

morphology.    
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Each of the defining characteristics of the melanocyte requires the expression, 

function and regulation of another set of genes, many of which are activated by 

Mitf.  The melanin synthesising enzymes; tyrosinase (Tyr), tyrosinase related 

protein 1 (Tyrp1) and tyrosinase related protein 2 (Tryp2, also known as 

dopachrome tautomerase, DCT) are expressed early in differentiation by the 

actions of Mitf.  These enzymes interact to regulate each other’s activities 

(Kobayashi and Hearing, 2007).  In order to achieve pigmentation, the melanin 

containing organelles, melanosomes must be transported out of the melanocyte 

to surrounding keratinocytes.  Several cytoskeletal related proteins are important 

for this process; Rab27a, melanophilin and myosinVa.  Mutations in any of these 

leads to lighter pigmentation phenotypes in mice (Hammer and Wu, 2007).  The 

dendritic nature of melanocytes is crucial to its role in pigmentation.  Once 

differentiated, melanocytes form many dendritic processes to interact with 

multiple keratinocytes.  Adhesion proteins such as CCN3  (Cooper and Raible, 

2009) and N-cadherin (Derycke and Bracke, 2004) are vital for this process. 

  

Another important gene for melanoblast differentiation is Kit and its ligand Kitl or 

SCF (stem cell factor, also called steel).   Kit activation leads to phosphorylation 

of Mitf via the MAPK pathway, and subsequently an increase in Mitf activity and 

therefore an increase in expression of melanogenic genes (Thomas and 

Erickson 2008).  As a target of Mitf, anti apoptotic Bcl2 expression is increased 

indirectly by Kit activation, this promotes melanocyte survival.  Mutations in Kit 

or Kitl loci (w and sl, respectively) result in pigmentation disorders, as 

demonstrated in the white dominant spotting (w) and steel (sl) mutant mice.  

These mutations are homozygous lethal, but heterozygotes show abnormal 

pigmentation, as well as hematopoietic and germ cell defects (Williams et al., 

1992). 

 

Wnt signalling continues to play a role in melanocyte differentiation (Dunn et al., 

2000).  As described earlier, Wnt signalling is crucial to remove Pax3 from the 

DCT promoter site, allowing Mitf to access this region and activate DCT 

transcription and thus keep the drive to differentiation going (Cooper and Raible, 

2009).  Sox10 has also been shown to be a vital transactivator of DCT (Potterf 

et al., 2001).  Mitf has also been shown to interact directly with β-catenin and as 

such can tweak the Wnt signalling target towards melanogenic genes (Schepsky 

et al., 2006) .   
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Factors secreted from surrounding keratinocytes also play a role in melanocyte 

differentiation, as well as proliferation and dendrite formation.  Melanocyte 

stimulating hormone (αMSH) , adrenocortin trophic hormone (ACTH), neuron 

growth factor (NGF), endothelin-1, bFGF and Kitl are just some of the factors 

produced in and secreted from keratinocytes (Hirobe, 2005).  

 

Once differentiated, melanocytes are maintained by the signalling pathways 

described above, as well as extrinsic environmental signals.  For example, 

isolated chick melanocytes have been shown to respond to external endothelin 

3, which binds the endothelin B2 receptor causing proliferation of the 

melanocytes (Lahav et al., 1998).  In mice it has been shown that surrounding 

epithelial cells can also alter the behaviour of melanocytes (Weiner et al., 2007).  

The melanocytes also have to be renewed from time to time.  Studies in the hair 

follicles, of humans and mice, have shown there to be a population of 

melanocyte stem cells in the bulge region of the follicle (discussed further in 

section 1.5).  These cells have the potential to differentiate into mature 

melanocytes in the presence of appropriate transcription factors such as Pax3, 

Sox10 and Mitf (Nishimura et al., 2005).  Bcl2 activity also plays a role here 

(McGill et al., 2002). 

 

Once specified, differentiated and migrated to the appropriate location 

melanocytes can start to produce melanin in order to fulfil their pigmentary and 

photoprotective role. 

 

 

1.3 Melanogenesis 

 

The process of melanogenesis begins with the progressive synthesis of 

melanosomes, within the melanocyte, which then produce melanin.  Mature 

melanin rich melanosomes are then moved out of the melanocyte into 

neighbouring keratinocytes. 

 

1.3.1 Melanosomes 

 

Melanin is synthesized in specialised organelles termed melanosomes. 

Melanosomes are membrane bound lysosome-like organelles and are made 
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solely within melanocytes following a four stage biosynthetic programme 

(Hearing, 2005), summarised in figure 4 and 5.  Melanosomes are tailored to 

produce either eumelanin or pheomelanin. Eumelanosomes tend to be larger 

and ellipsoidal in shape, whereas pheomelanosomes are small and spherical 

(Hirobe and Abe, 2006; Hirobe et al., 2006). 

 

Broadly speaking melanosome biogenesis can be divided into 4 stages (Sturm, 

2006), which are described below. 

Melanosome synthesis starts with the budding of empty vacuoles from the 

endoplasmic reticulum (Scherer and Kumar, 2010).  These stage I 

melanosomes have a round morphology and contain scaffolding proteins such 

as Pmel17, which are involved in creating a proteinaceous fibrillar matrix 

structure in the melanosome (Schiaffino, 2010).  Mutations in Pmel17 (also 

known as silver and gp100) lead to defects in pigmentation, due to the loss of 

the fibrillar structure within melanosomes (Theos et al., 2006). Pmel17 is 

synthesized within the melanocyte and following processing in the trans-Golgi 

network is transported into melanosomes (Leonhardt et al., 2010).  During 

transportation into the melanosome, Pmel17 is cleaved by a proprotein 

convertase, into a large N terminal fragment and a smaller C terminal fragment, 

which form the fibrillar matrix (Raposo and Marks, 2007).  This cleavage has 

been shown to be vital for Pmel17’s role in fibrillogenesis (Berson et al., 2003).  

Expression, stability, processing and trafficking of Pmel17 is highly dependent 

on another melanogenic protein – MART1 (melanoma antigen recognised by T 

cells) (Hoashi et al., 2005).   

MART1 is a type III transmembrane protein and is expressed in the endoplasmic 

reticulum (ER), trans-Golgi network (TGN) and melanosomes (De Maziere et al., 

2002).    

The importance of the fibrillar network becomes clear as the melanosomes 

progress to stage II.  During this process the fibrillar network becomes visible 

and these organelles elongate (figures 4 and 5).  The fibrillar scaffold is also 

important for melanin depositition.  At stage II, the first melanogenic enzyme, 

tyrosinase (TYR) is expressed, closely followed by tyrosinase related protein 1 

(TYRP1) and DCT, also known as tyrosinase related protein 2 (Chi et al., 2006).  

These proteins catalyse the synthesis of melanin, which is deposited on the 

matrix structure making the melanosome visibly darker (figures 4 and 5), leading 

to the next stage of melanosome maturation.  By the final stage of melanosome 



  

 31 

biogenesis the matrix is so densely packed with melanin it is indistinguishable 

and the melanosome is very dark (figures 4 and 5).  At this final stage the 

melanosomes are considered mature, and are transported out of the melanocyte 

to the surrounding keratinocytes, here they cluster around the nucleus to the 

protect the DNA, the pigmented keratinocytes then in turn protect the underlying 

melanocytes, as shown in figure 1 (Aspengren et al., 2006).   

 

 

 

 

 

Figure 4  
Schematic representation of melanosome formation within the melanocyte.   
The small round early melanosomes bud off the ER, initially as endosomes, but 
develop into melanosomes. Pmel17 forms a scaffold structure (stage I).  
Tyrosinase and related proteins synthesise melanin and deposit it on the 
scaffold structure (stage II).  Melanin synthesis and deposition continues (stage 
III).  Mature, melanin dense, stage IV melanosomes are transported to 
keratinocytes. 
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          I 
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Figure 5 
Transmission electron micrograph (TEM) of developing melanosomes.  
The top panels show the different stages of melanosome synthesis.  Note stage 
I melansomes round shape and intralumenal vesicles.  Stage II melanosomes 
are clearly elongated and show the developing fibrillar scaffold.  In stage III 
melanosomes melanin can be seen.  Stage IV melanosomes are dense with 
melanin, such that the fibrillar structure is no longer distinguishable (Raposo and 
Marks, 2007). 
 

 

1.3.2 Melanosome motility 

 

Upon maturation to stage IV, melanin rich melansomes are transported from the 

perinuclear region to the cell periphery and along the dendrites of the 

melanosome to be transferred to surrounding keratinocytes.  This is 

accomplished by a combination of microtubule and actin filament activity.  

Mature melanosomes interact with microtubules via kinesin or dynein molecules 

which move the melanosomes in an anterograde/reterograde direction 

respectively (figure 6) (Byers et al., 2000; Hara et al., 2000).  Kinesin and dynein 

are motor proteins which use ATP to ‘walk’ along the microtubules with their 

cargo (Gennerich and Vale, 2009).  They are comprised of a globular domain 
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which attaches to the microtubules by two heavy chain subunits, and several 

light chains which attach to the melanosome (Hara et al., 2000).  Kinesin 

molecules are responsible for moving the melanosome from the perinuclear 

area to the cell periphery where the melanosome is taken on by the actin 

filaments (Barral and Seabra, 2004).  Actin filaments are particularly important 

for dispersal of melanosomes.  Melanosomes engage with actin filaments via a 

complex of proteins; Rab27a, melanophilin and myosinVa. Mutations in these 

proteins lead to various forms of Griscelli syndrome in humans (characterised by 

perinuclear accumulation of melanosomes), and have also been characterised 

by mouse mutants.  Ashen, leaden and dilute are mouse coat colour phenotypes 

associated with mutations in Rab27a, melanophilin and myosinVa respectively 

(Wilson et al., 2000).  In these mutants melanosomes are seen to cluster around 

the melanocyte nucleus, this is due to the imbalance of microtubule/actin 

filaments and an overriding dynein activity versus kinesin activity (Barral and 

Seabra, 2004).  Rab27a provides the direct linkage between melanosomes and 

the complex, and is independent of melanophilin and myosinVa (Hume et al., 

2001).  Melanophilin is recruited to the complex by Rab27a-GTP, and binds to 

Rab27a by its N terminal domain and to actin via its C terminus.  Interaction 

between melanophilin and myosinVa is via a coiled coil domain (Strom et al., 

2002).  MyosinVa colocalises with actin and is thought to be crucial for capturing 

the melansome at the cell periphery (Barral and Seabra, 2004).  The process of 

melanosome movement around the melanocyte is depicted in figure 6. 
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Figure 6 
Melanosome movement from the perinuclear region to the cell periphery.  
Schematic representation of the components involved in translocating 
melanosomes.  Microtubules govern melanosome movement to and from the 
nuclear region towards the cell periphery.  At the cell periphery actin filaments 
take on the melanosomes in preparation for transfer to surrounding 
keratinocytes (Barral and Seabra, 2004).  
 

 

1.3.3 Melanosome transport to keratinocytes 

 

The process by which melanin is transferred from melansomes to keratinocytes 

is not fully understood, despite many years of research in this area (Yamaguchi 

and Hearing, 2009).  Several mechanisms have been suggested based on 

experimental evidence, these include; exocytosis/phagocytosis, membrane 

fusion and cytophagocytosis (Park et al., 2009).  Exocytosis is a highly regulated 

process, involved in many cellular situations.  Electron microscopy analysis 

shows the melanosome membrane fuses to the melanocyte membrane and 

consequently unbound melanin is released into the intracellular space, this 

‘naked’ melanin is then phagocytosed by keratinocytes (Yamamoto and 

Bhawan, 1994).  This process is likely regulated by SNARES and Rab-GTPases 
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expressed on melanocytes. Keratinocytes take up the melanin via clathrin 

coated pits.  Once in the keratinocyte melanin can be seen as aggregates of 

small granules of individual larger granules (Van Den Bossche et al., 2006). 

Direct plasma membrane fusion between melanocytes and keratinocytes has 

also been observed by electron microscopy.  This forms a tunnel for 

melanosomes to move through (Scott et al., 2002).  Electron microscopy has 

also provided evidence for keratinocytes engulfing the dendritic tips of 

melanocytes and taking them up by cytophagocytosis (Park et al., 2009).  

During this process the dendrite tip of the melanocyte contacts the keratinocyte 

which stimulates membrane ruffling and subsequent engulfment of the dendrite 

tip. Which is then pinched off and invaginates into the keratinocytes as a 

phagolysosome, the contents of which are dispersed following catabolises of the 

lysosome type structure (Van Den Bossche et al., 2006). This phenomenon is 

also observed by time lapse video microscopy.  However, all the experimental 

data for this type of melanin transfer could be considered somewhat dated 

(Klaus, 1969; Mottaz and Zelickson, 1967) and as such should be examined 

with more advanced techniques to ensure accurate interpretation. Another 

proposed method by which melanin reaches the keratinocytes employs 

membrane vesicles.  Here melanosomes are enclosed in membrane bound 

vesicles which are secreted from the melanocytes and taken up by 

keratinocytes, or fibroblasts (Aspengren et al., 2006).   Despite the evidence 

available, so far none of these methods of melanin transfer have been 

conclusively accepted within the field.  Perhaps all these methods occur in 

response to different stimuli or environmental cues (Virador et al., 2002). 

One component that has been shown to be involved in all proposed methods of 

melanin transfer is PAR2.  This is a G protein coupled receptor, expressed in 

keratinocytes and not melanocytes.  PAR2 comes from a family of PAR proteins 

(1-4), these are protease activated receptors.  They are activated by serine 

proteases, in an autocrine fashion. The serine protease cleaves the extracellular 

domain of the PAR2 receptor, the resulting amino terminus acts as a bound 

ligand to the receptor.  PAR2 activity can also be triggered by UV. Activated 

PAR2 has been shown to increase phagocytosis.  (Seiberg, 2001; Van Den 

Bossche et al., 2006).  PAR2 functions via Rho-GTP which is involved in 

cytoskeletal remodelling during phagocytosis (Scott et al., 2003).  As PAR2 is 

involved in all melanin transfer mechanisms it is assumed that phagocytosis is a 

crucial element in this process.  Moreover, loss of function studies indicate 
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possible redundancy of PAR2 function,  this is thought to come from 

keratinocyte growth factor (KGF) and keratinocyte growth factor receptor 

(KGFR) signalling (Cardinali et al., 2005).  

 

1.3.4 Melanin synthesis 

 

The pigment melanin is derived from the amino acid tyrosine and is found in two 

forms.  Eumelanin is the most prevalent form; this is an insoluble polymer of 

dihyrdroxyindole carboxylic acids, (figure 7) and gives a black/brown colour.  

Pheomelanin gives a yellow/red/brown colouration and is synthesised from 

benzothiazine intermediates (figure 7).  The balance of eumelanin-pheomelanin 

provides some of the variation of pigment phenotypes.  Individual melanosomes 

will only make one kind of melanin, depending on the internal environment, 

particularly the level of cAMP and presence of cysteine (Tully, 2007). Tyrosinase 

is an essential enzyme for the synthesis of both types of melanin (Park et al., 

2009).  Tyrosinase is a membrane bound glycoprotein, found in melanosomes.  

The N terminal catalytic portion of the protein is found within the melanosome 

where it interacts with copper ions which are required for its stability.  These 

copper ions are removed by L-DOPA in order to activate tyrosinase.  The C 

terminal domain which protrudes into the melanocyte cytosol, contains two 

serine residues which are phosphorylated by PKC, this activates tyrosinase 

(Park et al., 1999).  Tyrosinase colocalises with its related proteins, they form a 

stable catalytic complex (Olivares and Solano, 2009).  Tyrosinase conducts the 

first reaction in the synthesis of melanin which is the hydroxylation of L-tyrosine 

to L-3,4-dihydroxyphenylalanine (L-DOPA).  L-DOPA is also a substrate for 

tyrosinase.  L-DOPA can also be formed by tyrosine hydroxylase isoform 1 

(THI), an enzyme which resides close to tyrosinase in the melansome 

membrane.  Tyrosinase and THI compete for their substrate, L-tyrosine, which 

itself is generated from L-phenylalanine by phenylalanine hydroxylase (PAH).  

PAH is found in the melanocyte cytosol, thus the resulting tyrosine must be 

transported into the melanosome by facilitated diffusion (Schallreuter et al., 

2007).  L-DOPA is a transient intermediate and is quickly converted to L-

dopaquinone (Olivares and Solano, 2009).  In the absence of thiol compounds, 

i.e. cysteine, L-dopaquinone undergoes cyclisation to generate dopachrome 

(Lamoreux et al., 2001).  Dopachrome is then converted to 5,6,dihydroxyindole-

2-carboxylic acid (DHICA), this reaction is catalysed by DCT (Ito et al., 2000).  
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DHICA is then oxidised to form polymers by DCT, some dopachrome becomes 

5,6,dihydroxyindole (DHI), which is oxidised by tyrosinase to form polymers (Ito 

et al., 2000).  This sequence of catalysis leads to the production of eumelanin.   

When thiol compounds are present, dopaquinone becomes cysteinyldopas, 

which, following cyclisation and polymerisation become pheomelanin polymers 

(Kobayashi et al., 1995). 

 

 

 

 

Figure 7 
Melanin synthesis. 
The pathways to melanin production (Lamoreux et al., 2001). 
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1.3.5 Regulation of melanogenesis 

 

As with any cellular process, tight regulation of melanogenesis is important.  

This ensures timely and appropriate production of the protective pigment.      

Mis-regulation of melanogenesis can have pathological consequences.  If too 

little pigment is made the DNA is not sufficiently protected from UV induced 

damage and is thus susceptible to mutations which in turn could have disastrous 

consequences for the cell and surrounding tissue, such as induction of various 

skin cancers.  If too much pigment is made it can prove toxic to the cell causing 

apoptosis, and can also prevent synthesis of vital molecules such as vitamin D 

and folate.  The various factors regulating melanogenesis will now be discussed. 

 

As previously discussed, Mitf is considered the master regulator of melanocyte 

specification and differentiation. This is because it is a key element in the 

activation of transcription of many melanogenic genes, including tyrosinase and 

related proteins, as such Mitf is also considered a master regulator of 

melanogenesis.  

There are four different isoforms of Mitf, A,C,H and M, which differ in their N 

terminal domain and expression pattern (Shibahara et al., 2001).  Mitf-A is the 

longest isoform and is found in many types of cultured cells including RPE, Mitf-

C is also found in many cultured cells, but has not been detected in 

melanocytes, Mitf-H is found primarily in heart tissue, Mitf-M is exclusively found 

in the melanocytes, and controls the expression of tyrosinase (Tachibana, 

2000).  The Mitf-M isoform contains a Lef promoter site which is targeted by Wnt 

signalling (Shibahara et al., 2001). 

As well as tyrosinase, Mitf also regulates the transcription of Pmel17, the 

structural component of melanosomes, and Rab27a, important for melanosome 

movement (Chiaverini et al., 2008; Du et al., 2003).  Mitf itself is regulated by 

phosphorylation.  Phosphorylation of Mitf is accomplished by MAPK signalling, 

whereby Erk-2 is most likely responsible for phosporylation of S73 in the N 

terminal region, which activates Mitf.  MAPK signalling is induced by Kit/Kitl 

signalling (Hemesath et al., 1998).  However, Kit induced phosphorylation of Mitf 

also leads to its degradation by the proteosome (Wu et al., 2000).  Mitf is also 

stimulated by αMSH which activates Mitf for a prolonged period of several hours 

by increasing cAMP (Price et al., 1998).   



  

 39 

So a careful balance of short term Mitf activation by Kit/MAPK signalling and 

long term Mitf activation by αMSH must be maintained to ensure appropriate 

melanocyte behaviour.    

 

αMSH triggers melanogenesis by binding to the melanocortin 1 receptor (MC1R) 

found on the melanocyte plasma membrane.  MC1R is a G protein coupled 

receptor, which activates Gαs proteins to stimulate cAMP production via 

adenylate cyclase.  Increased cAMP activates PKA (protein kinase A) by binding 

to its regulatory subunit which activates the catalytic subunit.  PKA in turn 

phosphorylates and activates CREB (cAMP response element binding protein) 

this then activates Mitf by binding to its CRE motif in the promoter region.  Mitf is 

a basic helix loop helix transcription factor with a leucine zipper domain, it binds 

to the E and M box motifs in the promoter region of its target genes, including 

tyrosinase etc, thus stimulating melanin synthesis (Busca and Ballotti, 2000; 

Newton et al., 2007; Park et al., 2009).  As well as inducing Mitf expression, 

cAMP signalling is also important for regulating PAH and THI by phosphorylation 

and as such regulating their behaviour and subsequent production and activity 

of tyrosine and tyrosinase respectively (Schallreuter et al., 2007).  cAMP 

signalling is also induced by other receptor/ligand complexes on the melanocyte 

including; β2-adrenoceptor, muscarinic receptors, α and β estrogen receptors 

and corticotrophin releasing hormone (CRH)  receptor.  These are responsible 

for initiating other synthetic pathways such as; catecholamine, acetylcholine and 

oestrogen synthesis in melanocytes (Gillbro et al., 2004).  CRH signalling 

however leads to POMC (proopiomelanocortin) expression and thus subsequent 

αMSH and ACTH (adrenocortico trophin hormone) production (Slominski et al., 

2006).  Signalling via MC1R can also initiate Ras/Raf interactions and 

subsequently trigger the cascade of kinase reactions involving MEK, MAPK and 

ERK proteins, resulting in ERK translocation to the nucleus where it regulates 

gene expression to control proliferation and differentiation. (Busca et al., 2000).  

This signalling pathway is more commonly activated by receptor tyrosine 

kinases such as Kit, as mentioned earlier. 

 

In contrast to αMSH binding, when the agouti signalling protein (ASIP) binds to 

MC1R, eumelanogenesis is inhibited whereas pheomelanogenesis is enhanced, 

due to the decreased transcription of tyrosinase related proteins.  ASIP is a  

paracrine agent, released from nearby dermal papillae cells (Gantz and Fong, 
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2003).  ASIP is a competitive ligand for αMSH, ASIP antagonism  is also thought 

to play a negative role in melanocyte differentiation (Le Pape et al., 2008).   In 

birds, mutation of ASIP has been shown to reduce the expression of SLC24A5, 

implying that ASIP positively regulates SLC24A5  (Nadeau et al., 2008).  ASIP is 

in turn regulated by mahogany (Gunn et al., 1999).  Mahogany is a trans-

membrane protein and despite having a relatively low affinity for ASIP, is able to 

rescue ASIP mutant phenotypes (Gantz and Fong, 2003).  

MC1R is a highly polymorphic gene and therefore is highly influential for the 

great variety of pigmentation phenotypes, as well as dictating susceptibility to 

melanoma.  In contrast αMSH and ASIP are less polymorphic, therefore their 

role is more dependent on the type of MC1R present (Le Pape et al., 2009). 

 

ACTH is also a stimulating ligand for MC1R, αMSH and ACTH are both derived 

from POMC.   POMC is a large precursor polypeptide of 241 amino acids, it is 

ubiquitously expressed but is cell specifically cleaved into smaller peptide 

hormones by prohormone convertases (PC) (Gantz and Fong, 2003; Peters et 

al., 2000).  POMC is expressed and processed in melanocytes and 

keratinocytes, this is enhanced by UV (Cui et al., 2007).   

 

αMSH is just one of several  paracrine agents secreted from keratinocytes and 

fibroblasts that act upon melanocytes, these include; Kitl, endothelin 1 (ET1), 

keratinocyte growth factor (KGF) and bFGF, all of which are increased by UV 

exposure (figure 8).  Kitl has already been discussed here.  ET1 activates 

tyrosinase and tyrp1 expression and has also been show to stimulate 

melanocyte proliferation and dendrite formation (Imokawa et al., 1992).  KGF 

(FGF7) has been shown to promote melanosome transfer to keratinocytes by 

increasing phagocytosis. KGF receptor is expressed on the recipient 

keratinocyte, KGF is secreted from keratinocytes, thus establishing an autocrine 

signalling loop (Cardinali et al., 2005). bFGF isn’t actually secreted from 

keratinocytes, it remains embedded in the membrane and activates receptor 

tyrosine kinases in the presence of cAMP to promote melanocyte survival and 

proliferation (Halaban et al., 1988).  cAMP also regulates the expression of THI 

via its CRE, and,  the phosphorylation of PAH via PKA.   

The enzymes; tyrosinase, THI and PAH are also heavily regulated by (6R) –L-

erythro-5, 6, 7, 8-tetrahydrobiopterin (6BH4).  This cofactor is an essential 

electron donor to PAH and THI, whilst also acting as an inhibitor of tyrosinase.  
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6BH4 itself is synthesised and recycled by keratinocytes and melanocytes in an 

autocrine fashion (Schallreuter et al., 2007).  αMSH can bind 6BH4 and thus 

alleviate the inhibition of tyrosinase, this little loop provides positive feedback 

(Moore et al., 1999).  

 

Melansome pH can also be considered as a regulating factor for melanogenesis.  

Indeed tyrosinase activity is sensitive to fluctuations in pH.  However, there has 

been some controversy regarding optimal melanosomal pH over the past 

decade and the experimental data is conflicting.  It is generally acknowledged 

that melanosomes can be acidic (Bhatnagar et al., 1993), however the benefits 

of an acidic environment to melanogenesis are debated, as is the role of 

particular proteins (Ancans et al., 2001a; Chi et al., 2006; Puri et al., 2000).  

Reviewing the work over the last decade it can be observed that while some 

tyrosinase activity occurs at an acidic pH, more activity can be seen at a more 

neutral pH (6.5-7.0), thus this is optimal for tyrosinase activity.  Also the 

observed acidic organelles may be early or precursor melanosomes and 

perhaps there is a change in pH during melanosome maturation (Schallreuter et 

al., 2007). It should also be noted that melanosomes from black melanocytes 

tend to have a more neutral pH than those of white melanocytes (Fuller et al., 

2001).  As black melanosomes contain more pigment this indicates tyrosinase 

functions better at neutral pH, this has also been shown experimentally (Smith et 

al., 2004). The P protein has caused much controversy over its role in 

melanosomal pH.  The P protein is encoded by the OCAII gene and when 

mutated causes oculocutaneous albinism type II.  As a relative of the SLC13 

sodium/sulphate transporter family, the P protein was originally thought to move 

tyrosine, however this was shown not to be the case in pink eyed dilution mice 

which have a mutated P protein but can still transport tyrosine (Puri et al., 2000).   

 

The P protein has been speculated to be involved in pH due to the less acidic 

nature of the pink eyed melanosomes, which is unfavourable for melanin 

synthesis (Puri et al., 2000). Moreover, this concurs with the general consensus 

that factors that increase melanosomal pH are favourable to melanogenesis 

(Ancans et al., 2001b; Brilliant, 2001; Hirobe et al., 2011).  

Melanosomal pH is thought to be regulated by sodium proton exchangers (NHE) 

(Smith et al., 2004).  Studies have shown that acidifying melansomes in vitro 

causes a reduction in tyrosinase processing and trafficking as well as catalytic 
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activity (Watabe et al., 2004).  Conversely neutralisation of acidic melanosomes 

leads to an increase in tyrosinase activity and subsequent pigmentation (Ancans 

et al., 2001b).   

αMSH and cAMP have recently been shown to play a role in regulating 

melanosomal pH. In vitro, increased αMSH leads to an increase in melanosomal 

pH, the same result is observed following forskolin treatment, forskolin is a 

known cAMP elevating agent, so this suggests αMSH is acting via cAMP 

signalling.  In the same study cAMP was also shown to effect the expression of 

several ion transporters, thus indicating a mechanism for the alkanisation of the 

melanosome (Cheli et al., 2009).  One of the transporters they found to be 

upregulated by cAMP was SLC24A5, which is of interest to this project.   

The vesicular ATPase (V-ATPase) has been shown to be expressed in 

melanosomes and is thought to play a role in melanosome pH regulation.  This 

has been demonstrated using a specific inhibitor (Basrur et al., 2003).  Cheli et 

al (2009) showed that cAMP up regulates V-ATPase, this should cause a 

decrease in the melanosomal pH and subsequently inhibit melanogenesis, 

however this remains to be confirmed experimentally.  The electrochemical 

equilibrium contributes to the regulation of pH.  cAMP up regulates the 

expression of several solute carriers, including SLC24A5, SLC24A4 and 

SLC45A2 (also known as membrane associated transport protein, MATP) (Cheli 

et al., 2009), all of which are thought to play a role in pigmentation.   This 

promotes the idea that solute carriers can be coupled to    V-ATPases to 

establish electrochemical gradients (Lamason et al., 2005). 
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Figure 8 
Signalling interaction between keratinocytes and melanocytes. 
Secreted factors from keratinocytes induce expression of melanogenic genes in 
melanocytes and thus increase pigment production and melanosome transfer. 
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1.3.6 Calcium signalling and melanogenesis 

 

Calcium signalling is involved in many physiological processes including; 

fertilisation, neuronal synapses and muscle contraction.  Calcium ions are 

ubiquitous intracellular second messenger molecules. Therefore it is not 

surprising to find calcium plays a role in melanogenesis, however, in other 

processes calcium signalling tends to come about in the form of fluxes of 

intracellular Ca2+ concentration from low levels to relatively high, which tend to 

be observed in excitable tissues.  So in this context a role in melanogenesis is 

surprising, but nonetheless there is substantial evidence for a role of calcium in 

pigment production.  

 

Calcium signalling within melanocytes is initiated by the binding of ACTH to 

MC1R (Schallreuter et al., 2007).  This activates phospholipase C (PLC), which 

cleaves phosphatidylinositol 4, 5-bisphosphate (PIP2) into inositol 4,5-

trisphosphate (IP3) and diacyl glycerol (DAG).  IP3 then binds to IP3 receptors 

(IP3R) on the ER membrane; this allows Ca2+ to be released from the ER into 

the cytosol.  Whereas, DAG remains associated with the plasma membrane but 

in conjunction with the increased Ca2+, activates protein kinase C (PKC), which 

in turn activates tyrosinase by phosphorylating it at two serine residues in its C 

terminal domain (Park et al., 1999). 

 

Calcium has been suggested to be important for the active transport of the 

melanin precursor L-phenylalanine, into melanocytes.  This is an important step 

for melanogenesis as without imported L-phenylalanine there is not enough L-

tyrosine to produce adequate amounts of melanin. This same work showed that 

L-tyrosine uptake is much slower than that of phenylalanine and is not calcium 

dependent  (Schallreuter and Wood, 1999). 

 

Melanin is able to bind calcium at high affinity.  This has been proposed to be 

important for protecting the melanocyte from oxidative damage by H2O2 

(Hoogduijn et al., 2004).  As more melanin is synthesised more Ca2+ will be 

bound, therefore the amount of free Ca2+ available to assist L-phenylalanine 

transport is reduced, in this sense Ca2+ provides a negative feedback loop 
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POMC processing is also heavily dependent on Ca2+ concentration.  POMC is 

cell specifically cleaved into smaller peptide hormones by prohormone 

convertases (PC).  αMSH and ACTH are both derived from POMC, several 

prohormone convertases are required to yield αMSH and ACTH, including PC1 

and PC2, all of which are found within the melanocyte and are calcium 

dependent (Peters et al., 2000).  Another aspect of melanogenesis that is Ca2+ 

dependent is the processing of the melanosomal structural protein Pmel17.  This 

involves a furin- like proprotein convertase (Berson et al., 2003) which is calcium 

dependent  (Thomas, 2002). 

 

 

1.3.7 Protecting DNA from UV 

 

The UV spectrum can be arbitarily broken down into UVA (320-400nm), UVB 

(280-320nm) and UVC (100-280nm) radiation.  UVC does not make it through 

the earth’s ozone layer.  UVB, having a shorter wavelength, is more energetic 

than UVA and is thus the most damaging UV radiation, as its wavelength is 

absorbed best by DNA, therefore directly causing DNA base mutations.  

However, UVA can penetrate through to the dermal skin layer and is thought to 

cause accumulation of reactive oxygen species which cause single strand DNA 

breaks (Fisher et al., 2002).  UV damage can be visualised by sun burn 

(erythema), tanning and photoageing, non visible damage can also occur, such 

as immunosuppression and genetic mutations. UV can damage DNA in a 

number of ways including; pyrimidine dimer formation and oxidative damage 

(Abdel-Malek et al., 2010).  Cells have a number of ways of handling such 

damage, including DNA repair mechanisms, apoptosis, and pigmentation 

(Brenner and Hearing, 2008).  It is well documented that melanin is the main 

photoprotective agent in the skin.  This observation comes from epidemiologic 

evidence, which shows an inverse correlation between skin cancer incidence 

and density of melanin pigmentation (Brenner and Hearing, 2008).           

Melanin pigments absorb and reflect/scatter UV waves and convert them into 

harmless heat (Park et al., 2009) they also have antioxidant and free radical 

scavenging properties.   
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Many melanogenic genes are upregulated in response to UV exposure, 

including Mitf and therefore its target genes. The catalytic activity of tyrosinase, 

PAH and THI also increases. 

Paracrine agents, αMSH and ET-1 have been shown to have additional roles in 

protecting against DNA damage.  αMSH has been shown to enhance the 

nucleotide excision repair pathway and inhibit the production of reactive oxygen 

species, by increasing the amount of the enzyme catalase which reduces the 

amount of hydrogen peroxide.  This also highlights the importance of MC1R in 

UV protection, as αMSH cannot provide such protective measures in the 

presence of mutated MC1R (Kadekaro et al., 2005; Song et al., 2009).  It has 

also been shown that MC1R expression is up regulated by αMSH, ET-1 and 

bFGF and MC1R dependent UV responsive genes are generally cell cycle or 

oncogenesis related (April and Barsh, 2007).  Activation of adenylate cyclase by 

forskolin and subsequent increase in cAMP has the same effect on photo 

protection as αMSH, thus supporting the role of αMSH and the cAMP pathway in 

DNA damage response (Passeron et al., 2009).   

Thus the mechanisms involved in producing constitutive pigmentation are also 

employed to increase pigmentation in response to the environment, namely UV 

radiation. 

 

 

1.4 Pigment pathologies 

 

There are many diseases associated with malfunctions in pigmentation.  The 

most dangerous of which is skin cancer, which results from mis-guided 

behaviour of melanocytes or keratinocytes.  Other diseases are less lethal but 

still pose a health risk.  Pigmentation diseases are easy to detect and relatively 

easy to diagnose.  Some diseases are the result of direct genetic mutations of 

the pigmentary system others are caused by mis-placed autoimmune 

responses.  Either way pigmentation diseases can be divided into two 

categories; hypopigmentation or hyperpigmentation. 

The most common pigmentation related diseases will be discussed below. 
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1.4.1 Melanoma 

 

Melanoma is cancer of melanocytes.  It is the least common but most lethal form 

of skin cancer.  Other, more common skin cancers include; basal cell carcinoma 

(BCC) and squamous cell carcinoma (SCC), both neoplasms of the 

keratinocytes, but vary depending on their location in the skin.  Skin cancers are 

caused by genetic and environmental factors.  A genetic predisposition to skin 

cancer can be caused by mutation(s) in any number of different genes; such a 

predisposition makes one more susceptible to the effect of carcinogenic 

environmental contributors, principally UV exposure (Scherer and Kumar, 2010).  

Skin phenotypes such as fair skin and light hair and freckled skin and red hair 

are known risk associated phenotypes, these are often associated with 

mutations in MC1R.  Incidence and mortality of melanoma has increased more 

than any other cancer in the last 10 years.  Malignant melanoma is a particularly 

tricky cancer to treat successfully this is partly due to its highly aggressive 

nature, but also as not enough is known about the molecular interactions 

involved in its development and progression (Levy et al., 2006).  Arising from the 

neural crest, melanocytes have a naturally high motility and survival rate, and 

have a reduced self afflicted apoptosis record (Gray-Schopfer et al., 2007).  

Melanocytes are also highly resistant to apoptosis, which is thought to be due 

partly to their resistance to the toxins accumulated during the melanin synthesis 

but also because they are not a renewable population, unlike keratinocytes 

which are replaced following damage, melanocytes have to be able to withstand 

such damage without conceding to apoptosis.   

Whilst this behaviour is advantageous to the protective role of melanocytes, it 

also makes neoplasm of these cells difficult to treat, as many available 

treatments are based on apoptosis (Robinson and Fisher, 2009).   

 

Many of the genes involved in melanocyte development and function are also 

implicated in the development and progression of melanoma.  Many genome 

wide association studies have been conducted which reveal particular variants 

of genes that are associated with an increased risk of developing melanoma. 

 

MC1R is a highly polymorphic gene and is associated with various pigment 

phenotypes and correlating cancer risk, including melanoma.  Different variants 

of MC1R are associated with different pigmentation phenotypes and aspects of 
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disease susceptibility and this varies between populations, for instance the V60L 

mutant is a major risk contributor in Spanish populations whereas red hair colour 

(RHC) mutants are the greater risk factor in German populations (Scherer et al., 

2009).  The V60L mutant was one of several found to show decreased cell 

surface expression and subsequent loss of cAMP signalling.  Other mutants had 

normal cell surface expression but demonstrated a lack of G protein coupled 

signalling, while others showed impaired ligand binding or dominant negative 

effects (Beaumont et al., 2007).   

 

ASIP is a ligand for MC1R and is reported to be involved in various pigment 

phenotypes.  ASIP is inhibitory to eumelanogenesis thus pheomelanogenesis is 

favoured following ASIP signalling, leading to lighter skin/hair and red hair colour 

phenotypes.  A polymorphism has been identified in ASIP which causes a down 

regulation of ASIP mRNA and therefore alleviates its inhibitory effects leading to 

production of darker eumelanin.  However this polymorphism has not been 

shown to correlate with any increased risk of melanoma (Voisey et al., 2006).  

More recently a two SNP haplotype was discovered in ASIP which does strongly 

correlate to increased melanoma risk (Gudbjartsson et al., 2008).   

 

Tyrosinase, as previously discussed, is the key enzyme in melanin synthesis; 

therefore it is not surprising that variants of tyrosinase lead to different 

pigmentation phenotypes.  However, the correlation of tyrosinase variants with 

melanoma is not clear and this has caused some controversy (Duffy et al., 2007; 

Gudbjartsson et al., 2008; Nan et al., 2009).  Tyrosinase does not regulate 

melanocyte behaviour and therefore seems unlikely to play a role in melanoma.  

Over-active tyrosinase may be detrimental to the cell by way of producing 

excessive amount of toxic free radicals during melanin synthesis, this process is 

also energetically demanding for the cell.  Tyrosinase seems more likely to have 

a contributory rather than a causative role in melanoma.  Mutations in tyrosinase 

are more commonly associated with oculocutaneous albinism (Scherer and 

Kumar, 2010).  The TYRP1 enzyme, involved in eumelanogenesis, also has 

variants which are associated with mild oculocutaneous albinism, but one 

particular variant has also been found to correlate with melanoma (Duffy et al., 

2007). 
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Mutations in proteins involved in signalling pathways can lead to mis-regulation 

of melanocyte growth, survival and proliferation.  Ras/Raf/MAPK/ERK signalling 

is important for normal melanocyte behaviour (Busca et al., 2000), when 

components of this pathway are mutated it can lead to uncontrolled cell growth 

and/or proliferation/survival (Gray-Schopfer et al., 2007).  Common mutations of 

this pathway include; ERK hyperactivation (seen in 90% of melanomas) (Cohen 

et al., 2002), Ras gain of function (15% - 30% of melanomas) (Chin et al., 1999), 

and BRAF (~66% melanomas) (Davies et al., 2002).  In particular, the V599E-

BRAF mutant which stimulates constitutive ERK signalling and consequently 

hyperproliferation and survival of tumour cells.  Mitf is a target of V599E-BRAF 

(Gray-Schopfer et al., 2007). 

 

Another signalling pathway found to be equally significant in melanoma is the 

PI3K pathway (phosphoinositide-3-OH kinase).  This pathway utilises lipid 

second messengers, which are activated by PI3K, these lipid molecules regulate 

cell proliferation, survival, growth and motility.  PI3K signalling is over active in  

5-20% of melanomas, this is often due to mutations in PTEN. PTEN (phosphate 

and tensin homologue found on chromosome ten) is a lipid and protein 

phosphatase, it is a negative regulator of PI3K signalling (Wu et al., 2003).  In 

vitro analyses of PTEN have revealed it to be a key tumour suppressor in 

melanoma.  

In PTEN deficient melanoma cells addition of exogenous PTEN reduced 

melanoma progression.  In vivo, PTEN+/- heterozygous mice show increased 

development of many cancers, including melanoma (homozygous knockout was 

embryonic lethal).  These animals also demonstrated a reduced sensitivity to 

agonist induced apoptosis.  This strongly indicates PTEN is crucial for 

controlling cell cycle progression and cell death (Di Cristofano et al., 1998; 

Podsypanina et al., 1999; Stambolic et al., 1998).  PTEN can dephosphorylate 

lipids, particularly PIP3, which is a product of PI3K activity.  Active PIP3 

activates Akt.  Akt is a serine threonine kinase with a plethora of different 

targets, many of which are involved in cell proliferation, survival and migration.  

Protein targets of PTEN include MAPK (Wu et al., 2003).  By de-

phosphorylation, PTEN de-activates its targets and consequently inhibits further 

downstream signalling thus providing a restraining mechanism on cell survival, 

proliferation and migration.  So when mutated or absent, alleviation of PTEN 
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inhibition allows uncontrolled cell growth and proliferation to proceed, leading to 

tumour development.       

 

The role of Mitf as a key player in melanocyte development and melanogenesis 

has been covered earlier.  It is therefore not surprising that Mitf has a role in 

melanoma.  Mitf has been shown to be over expressed in 10-20% of primary 

melanoma tissue, this correlates with the 5 years or less survival rate associated 

with metastatic melanoma (Garraway et al., 2005).  Having said this, the levels 

of Mitf expression are variable across specimens, and display little consistency.  

Having many targets, variability in Mitf expression has numerous consequences, 

promotion of cell survival and proliferation is typical but apoptosis and 

differentiation are also likely.  Thus Mitf can be proliferative or inhibitory to 

melanoma development and progression. It is not understood how different 

melanomas express different levels of Mitf, with no consistent pattern.  It is 

thought that perhaps the different classes of melanoma have different responses 

to Mitf levels (Levy et al., 2006).  It would also be beneficial to determine what is 

causing the mis-regulation of Mitf and therefore how this could be corrected 

therapeutically.       

 

Remarkably mutations in p53 are rarely detected in malignant melanoma, 

despite the well established role of p53 mutants in other malignancies.  This is 

also surprising as melanomas are particularly resistant to apoptotic therapies, as 

a pro apoptotic protein, p53 is often the cause of such resistance (Soengas and 

Lowe, 2003).  

 

 

1.4.2 Vitiligo 

 

Vitiligo is an acquired condition characterised by localised skin 

hypopigmentation.  It is thought to be caused by a combination of factors 

including genetic mutations in melanogenic genes but also immune system 

defects, which result in the body targeting melanocytes for destruction, and 

environmental factors.  Furthermore, vitiligo is due to a lack of melanocytes as 

opposed to a lack of melanin synthesis within melanocytes.  It is not a serious 

life threatening disorder; however it can have a significant psychological effect 

on sufferers.  There are limited treatments available, none of which are suitably 
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effective.  More often individuals tend to manage the condition using cosmetic 

approaches.  Vitiligo is relatively common, effecting ~1:200 people.(Fistarol and 

Itin, 2010) (Boissy and Nordlund, 2011). 

 

1.4.3 Albinism 

 

There are two forms of albinism, OCA (oculocutaneous albinism) which is 

characterised by the lack of melanin pigment in the skin, hair and eyes.  OA 

(ocular albinism) just affects the eye.  OCA causes an increased susceptibility to 

UV damage and skin cancer.  In both disorders the lack of eye pigment causes 

a reduction in visual acuity (Oetting and King, 1999).  There are three different 

categories of OCA; OCA1 is the most severe, this is caused by mutation of the 

tyrosinase gene leading to an inactive enzyme.  OCA1 patients have no pigment 

from birth and do not develop any throughout their life span (King, 1993).  OCA2 

is caused by mutation of the OCA2 (or P gene) gene, these patients are born 

with a little hair pigment, but do not develop any more, this is the most common 

form of albinism (Rinchik et al., 1993).  Mutations in Tyrp1 gene cause OCA3, 

these individuals have minimal pigment from birth and do develop more over 

time (Boissy et al., 1996).  

OA1 hypopigmentation is caused by mutation of a melanosomal membrane 

GPCR  called OA1 (Schiaffino et al., 1996).  The exact role of OA1 in eye 

pigmentation is not known, OA1 mutations cause a number of visual defects 

including; optic misrouting, nystagmus, strabismus and loss of stereoscopic 

vision. Several types of mutations have been found in patients with OA, all of 

which lead to a non functional protein.  The melanosomal membrane localisation 

of the OA1 protein suggests it is involved in melanosome biogenesis as 

opposed to directly affecting tyrosinase function (Schiaffino, 2010).   

 

1.4.4 Other syndromes 

 

Hermansky-Padlat syndrome is a diseased caused by abnormal lysosome and 

melanosome biosynthesis.  This leads to UV sensitivity and an increased risk of 

developing skin cancers, and increased bleeding, due to lack of lysosome 

related bodies in the thrombocytes.  
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Chediak-Higashi syndrome is also caused by abnormal melanosome 

biogenesis, it is characterised by partial OCA and immune deficiency.  This 

disease is caused by a mutation in LYST, a lysosomal trafficking regulator 

(Fistarol and Itin, 2010; Hershkovitz and Sprecher, 2008). 

 

Piebaldism and Waardenburg syndrome are related hypopigmentation diseases 

associated with defective migration of melanoblasts to the epidermis from the 

neuroectoderm.  This presents in localised hypopigmentation particularly of the 

face.  Waardenburg syndrome is associated with defects in Mitf (Price et al., 

1998) 

 

Griscelli syndrome is another hypopigmentation disorder, in which melanosomes 

cannot be transferred to keratinocytes.  Patients with this disease also have 

neurological and immunological issues. 

 

Phenylketonuria is a relatively common skin complaint, in which PAH levels are 

reduced thus inhibiting tyrosine synthesis and melanogenesis.  This results in 

fair skin, blue eyes phenotype with a tendency to develop eczema. Due to role 

of tyrosine in other physiological processes this disease also presents other 

more severe effects such as; motor and mental retardation, microcephaly and 

seizures (Baxter et al., 2009; Fistarol and Itin, 2010; Hershkovitz and Sprecher, 

2008).  However it can be easily treated using diet restrictions. 
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1.5 Pigmentation of hair 

 

Melanocytes of the hair follicle are also derived from the neural crest.  A subset 

of migrating melanoblasts leave the epidermis and localise to the hair follicle, 

here they can reside in one of two areas; the bulge region and hair bulb     

(figure 9).  The bulge region tends to be occupied by melanocyte stem cells 

(melanoblasts), whereas differentiated melanocytes tend to occupy the hair 

bulb, where they transfer melanin to the growing hair fibre.  This is the only site 

of active melanogenesis and hair pigmentation (Peters et al., 2002).    

Melanocytes of the hair follicle tend to be larger than their epidermal 

counterparts, they also have more dendrites, more extensive Golgi and RER 

networks and produce larger melanosomes (Tobin and Bystryn, 1996).    

Follicular melanocytes are regulated by the hair growth cycle.  They only 

produce pigment during the anagen phase where the hair is growing (Slominski 

et al., 1994).  This is in contrast to the constitutively active melanocytes of the 

skin.   

 

The anagen phase can last for several years in human head hair.  The hair cycle 

ends with catagen, during this phase the hair bulb structure is lost and the 

melanocytes undergo apoptosis (Robinson and Fisher, 2009).  This is of 

particular significance because epidermal melanocytes are highly resistant to 

apoptosis, as discussed above.  More melanocytes are produced during 

telogen, the resting phase between catagen and the next anagen, these are 

thought to arise from a population of melanocyte stem cells present in the hair 

bulge (Steingrimsson et al., 2005).  This stem cell niche is continuing to provide 

researchers with a model to understand stem cell behaviour, understanding of 

which could lead to exploitation of stem cells in a therapeutic manner. 

 

Like skin melanocytes, hair follicle melanocytes are regulated by many factors, 

such as growth factors, cytokines and hormones.  These are associated with the 

individual phenotype, such as gender, race, age and genetic background.  

These regulatory factors can operate via autocrine, paracrine and endocrine 

systems.  Also hair melanocytes are not affected by UV (Tobin, 2008).  Follicular 

melanocytes are lost over time, this is demonstrated by hair greying in mature 

years (Tobin, 2009). 
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Figure 9 
The hair follicle. Melanocyte stem cells reside in the hair bulge whereas 
differentiated functional melanocytes are found in the hair bulb, where they pass 
their melanosomes to the keratinocytes (Lin and Fisher, 2007). 
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1.6 Pigmentation of the Eye 

 

Melanin pigments are the key factor that allow light reception in the eye and thus 

provide the sense of sight.  The majority of pigment in the eye comes from the 

retinal pigmented epithelium (RPE) cells, these cells are supported by choroidal 

melanocytes and there are also iris pigmented epithelium (IPE) cells (Aoki et al., 

2008). 

In contrast to skin and hair melanocytes, RPE cells are not derived from the 

neural crest, they arise from the multi potent optic neuroepithelium during eye 

development (Fuhrmann, 2010).  They are non migratory cells and thus remain 

embedded in the local environment (Bharti et al., 2006).  They are initially 

present in the posterior portion of the optic vesicle, but as the optic cup and 

eventual eye develop their domain spreads to encompass the retina, lens and 

cilary marginal zone (figure 10), (Fuhrmann et al., 2000).  Posteriorly the RPE is 

boarded by Bruch’s membrane, which separates the RPE from the choroid 

structure, which also contains pigment cells.  This sets up the blood-retinal 

barrier (Bharti et al., 2006). 

 

 

 

 

 

Figure 10 
Schematic representation of embryonic eye development.   
The RPE monolayer remains posterior to the multi layered retina.  RPE cells 
eventually cover the ciliary marginal zone (CMZ), as they become iris pigmented 
epithelium cells (IPE) they partially cover the lens.  The anterior portion of the 
eye is in turn covered and protected by the cornea (not shown).  Posterior is to 
the left. (Fuhrmann et al., 2000). 
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The most notable role of the RPE is to absorb the light energy focussed by the 

lens onto the retina (Boulton and Dayhaw-Barker, 2001).  Another important role 

of RPE cells is to re-isomerize retinal.  Following photon absorption in the 

photoreceptors, all-trans-retinal is transported to RPE cells, which isomerize it to 

11-cis-retinal and pass it back to the photoreceptors.  This cycle is key to 

maintain the excitability of the photoreceptors.  

 

As well as providing visual acuity, RPE cells are also important for various 

aspects of eye development and maintenance of the surrounding photoreceptor 

cells (Strauss, 2005).  RPE cells are not dendritic like skin melanocytes, they are 

however ciliated on their apical aspect, this is to facilitate ion exchange and 

transport of other factors including retinal, and also uptake of pieces of degraded 

retina cells, to keep the environment clear of debris (Bharti et al., 2006).  Like 

epidermal melanocytes, RPE cells express Mitf and thus many of its targets.  

RPE cells and epidermal melanocytes also share the common feature of 

melanosomes, where the melanin pigments are synthesized in much the same 

manner (Martinez-Morales et al., 2004).  However, RPE cells do not transport 

their melanosomes out of the cell (Futter, 2006).  Another significant difference 

between RPE and epidermal pigment cells is their interaction with their 

surrounding environment.  Epidermal melanocytes function independently of 

each other and respond to dynamic environmental cues, whereas RPE cells 

work together more a like a tissue and have limited responses from other cells of 

their relatively static environment. 

   

The loss of a functional tyrosinase gene in the RPE, as seen in albinism, causes 

abnormal development of the retina and inappropriate crossing of retinal axons 

leading to incorrect cerebral innervations and consequently defects in visual 

acuity (Jeffery, 1997) 
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1.7 Evolution of Human Pigmentation 

 

Pigmentation phenotypes can be unique to individuals, but general phenotypes 

among populations have emerged through evolution by natural selection.  This 

is largely due to UVR incidence (Chaplin, 2004; Jablonski and Chaplin, 2000).  

Figure 11 describes the distribution of pigmentation phenotypes, measured by 

skin reflectance, across the world, of indigenous populations.  Reduced skin 

reflectance (i.e. darker skin) is shown to correlate with higher UVR intensity 

(Chaplin, 2004). 

Lighter skin pigmentation phenotypes are thought to have evolved as 

populations emigrated out of Africa.  This equatorial ancestral continent is 

exposed to high levels of UVR, therefore the presence of a dense layer of 

photoprotective pigment is advantageous and selected for over lighter more 

damage prone skin.  In regions of lower UVR exposure such density of photo 

protection is unnecessary and hinders vitamin D synthesis.   

The damaging effects of UVR exposure on unprotected skin are well 

established.  Symptoms initially present as sunburn, extreme sunburn can cause 

damage to sweat glands leading to disruption of thermoregulation and greater 

risk of infections.  Prolonged exposure to UVR is associated with skin cancer.  

However, such damage is progressive and doesn’t present until later life, i.e. 

post reproduction, therefore it cannot be a selective trait (Parra, 2007).  Other 

UVR related factors have to be considered.  More vitamin D is synthesised in 

response to UVR than is consumed by diet.  Vitamin D is essential for many 

physiological processes including; bone metabolism, immunoregulation and 

calcium homeostasis (Parra, 2007).  In regions of high UVR, vitamin D synthesis 

is easily stimulated even with heavily pigmented skin.  However, populations 

living in lower UVR regions have evolved lighter skin to facilitate maximum 

absorption of UVR to stimulate vitamin D synthesis, as lack of vitamin D can 

result is disorders such as osteomalacia.  Darker skin individuals living in lower 

UVR areas are prone to vitamin D deficiency related disorders due to the lack of 

UVR stimulus (Parra, 2007).   
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Another victim of UVR damage is folate.  Folate is essential for DNA synthesis 

and repair, folate deficiency is known to cause numerous birth defects, and as 

such pregnant women are encouraged to supplement their diet with folic acid.  

UVR has been shown to significantly reduce the concentration of plasma folate 

in light skin populations in high UVR areas.  Due to the necessity of optimal 

folate levels, particularly during early life, selective influences are likely to apply 

here (Parra, 2007).  

 

 

 

 

 

Figure 11 
The distribution of global skin pigmentation phenotypes. Greater exposure to 
UVR correlates to increased pigmentation (Chaplin, 2004). 
 

Changes in human skin colour over evolutionary time scales can be associated 

with human migration and changes in diet, as well as environmental changes.  

According to natural selection, individuals with the best adaptive mechanism will 

have a survival advantage, and therefore their genetic adaptation will be carried 

on throughout generations (Juzeniene et al., 2009). 

 

Many genes are associated with variations in pigmentation.  For example, the 

previously mentioned MC1R is highly polymorphic and mutations in this gene 

are associated with red hair and freckles.  The high polymorphism rate in this 
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gene is thought to be a response to selective pressures (Harding et al., 2000).  

Wild type MC1R is associated with dark skin colouration (Rees, 2000), as this 

receptor leads to eumelanin production. There are also reports that SNP’s in 

MATP (membrane associated transport protein), also known as SLC45A2, 

correlate with pigment variations between populations, this is interesting as the 

role of MATP in pigmentation is not yet clear (Graf et al., 2005).  Some allelic 

changes in MATP are conserved among European populations whereas some 

are shared between European and East Asian populations (Lao et al., 2007).   

The related gene SLC24A5 also has a significant SNP which correlates with 

European population and thus is heavily associated with evolutionary skin 

lightening (Soejima and Koda, 2007) 

 

 

1.8 NCKX family  

 

NCKX’s (potassium dependent sodium calcium exchangers) are members of the 

Ca2+ cation (CaCA) antiporter superfamily.  This superfamily plays key roles in 

mediating Ca2+ movement over the plasma, or intracellular membrane.  The 

superfamily can be broken down into 5 sub-families; CCX, Ca2+/cation 

exchangers,  CAX, Ca2+/anion exchangers, YRBG (uncharacterised E.coli 

membrane transporter), NCX, Na+/Ca2+ exchangers and NCKX (Lytton, 2007). 

 

The NCKX protein family has five members, (NCKX1-5, SLC24A5 encodes 

NCKX5).  NCKX 1-4 extrude calcium across the plasma membrane using the 

sodium/potassium gradient (Altimimi and Schnetkamp, 2007b).  Lamason et al 

(2005) showed that NCKX5 is found intracellularly (figure17), not restricted to 

the plasma membrane, and is therefore likely to be found in an organelle 

membrane.  This has been further analysed by Ginger et al (2008)  (see section 

1.9.2). 

 
Calcium is an important signalling molecule and is involved in many 

physiological functions.  The extracellular calcium concentration is much higher 

than cytosolic calcium concentration; calcium is also stored in some organelles, 

such as endoplasmic reticulum, Golgi and mitochondria.  Small increases in 

cytosolic calcium can bring about dramatic effects, thus movement of calcium 

into and out of the cytosol must be carefully regulated.  This is achieved though 
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the behaviour of many ion channels and transporter proteins that move Ca2+ 

across membranes (Lytton, 2007). 

Na+/Ca2+ exchange has been studied since the 1960’s, but K+ dependent 

Na+/Ca2+ exchange was not described until the 1980’s in retinal rod outer 

segments. The potassium dependent sodium calcium exchanger (NCKX) family 

comprises 5 distinct gene products, making it the most numerous calcium 

transport family (Altimimi and Schnetkamp 2007).  

NCKX proteins are found in various excitable tissues.  NCKX1 was the first to be 

described and this is found in the outer segments of bovine retinal rod cells  

(Reilander et al., 1992).  Here NCKX1 is the only calcium extrusion pathway, 

which is accomplished by interaction with the cGMP-gated channels (Krizaj and 

Copenhagen, 1998; Schnetkamp et al., 1991).  NCXK1 was then cloned from 

human and other species and soon found to be the first member of a new family 

of proteins, NCKX, encoded by the SLC24 gene family (Schnetkamp, 2004).  

NCKX2 was identified in 1998 (Tsoi et al., 1998) and is found in various areas of 

rat brain, particularly the cerebellum, midbrain and hippocampus.  NCKX2 is 

also detected at lower levels in the eye, this was later shown to be specific to the 

cone photoreceptor cells (Prinsen et al., 2000).  NCKX3 is also widely 

expressed in the brain, although this is also found in smooth muscle tissues 

(Kraev et al., 2001).  NCKX4 is also detected in the brain, particularly the 

hippocampus as well as other tissues including heart, stomach and kidney (Li et 

al., 2002).  NCKX5 is expressed in pigment producing cells of the skin and eye 

(Lytton, 2007).  A sixth NCKX, NCKX6, was found in mice.  Here it is widely 

expressed in the brain, lung, heart and kidney (Cai and Lytton, 2004) 

SLC24 family genes have been cloned from many mammalian species such as 

human,  mouse and rat and lower animals including; sea urchins (Su and 

Vacquier, 2002), drosophila (Haug-Collet et al., 1999; Webel et al., 2002) and 

the nematode C.elegans (Szerencsei et al., 2000), and even in some 

prokaryotes (Schnetkamp, 2004) and this suggests an evolutionarily conserved 

role for these genes. 

 

Due to their cerebral expression NCKX proteins have attracted interest as 

potential targets for drugs to treat conditions such as ischaemia and stroke 

(Cuomo et al., 2008; Kiedrowski, 2007)  
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So far most experimental work has been conducted on NCKX1 (Cooper et al., 

1999; Poon et al., 2000)and NCKX2 (Kinjo et al., 2007; Kinjo et al., 2003; Li et 

al., 2006) .  Such studies suggest the overall topology of NCKX family members 

is identical; figure 12 describes the structure of NCKX2.  NCKX structure 

comprises an N terminal signal peptide, followed by an extracellular loop, which 

leads to a cluster of 5 hydrophobic transmembrane domains.  This cluster is 

separated from another cluster of 5 hydrophobic domains by a large cytosolic 

loop.  The C terminus is found on the cytosolic side of the membrane.  All 5 

members of the NCKX family contain two alpha repeats, alpha 1 and alpha 2, 

these are thought to have arisen from a gene duplication event and contain 

several conserved residues which are important for Na+/Ca2+/K+ exchange (Kinjo 

et al., 2003).  Much work has been done to establish the essential residues for 

NCKX function.  By substituting candidate residues in the transmembrane 

domains of NCKX2, Kang et al (2005), showed that charge conserved 

substitution of Glu188 (E188D) and Asp548 (D548E) resulted in reduced K+ and 

Ca2+ dependencies compared to wild type NCKX2.  This suggests that Glu188 

and Asp548 are important residues for the binding of K+ and Ca2+ at the binding 

pocket of NCKX2 (Kang et al., 2005a).  In a similar study, Asp575 was found to 

be essential for the K+ dependence of NCKX2.  When Asp 575 was substituted 

to asparagine or cysteine (charge removal), NCKX2 was found to transport Ca2+ 

independently of K+.  Charge conservative substitution of Asp575 rendered the 

protein non functional (Kang et al., 2005b).  Site directed disulphide mapping 

was used to demonstrate that the alpha repeat domains of NCKX2 are close 

together in 3 dimensional space, and this in turn shows that the key residues 

(Glu188 and Asp548) previously identified for Ca2+/K+ transport are also in close 

proximity (Kinjo et al., 2005). 
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Figure 12 
NCKX2 structure based on experimental findings.  TMS 0 is the signal peptide, 
which is cleaved at the SPase site.  N-CHO is the single glycosylation site.  
Alpha repeats are highlighted in dark blue and essential residues are highlighted 
red.  The alternative splicing sites of the cytosolic loop are indicated, T and S 
labels on the loop represent phosphorylation sites and the C is thought to be 
important for redox.  Phosphorylation and redox are thought to be important for 
regulation of NCKX2 function – not discussed here.  (TMS, transmembrane 
segment), (Lytton, 2007). 
 
 
 
NCKX proteins use the Na+ gradient across the membrane to transport other 

substrates.  NCKX proteins are thought to function by the alternating access 

model.  This model suggests the binding sites on the protein of different ions can 

alternate from one side of the membrane to the other by conformational 

change(s).  As such these proteins are assumed to be bidirectional depending 

on the Na+ gradient.  NCKX5 mediated Ca2+ transport is activated by Na+ it is 

thought 4Na+ ions are transported to 1Ca2+ and 1K+. 

 

Physiologically, NCKX1 is the only NCKX protein to be fully characterised.  

NCKX1 is the main Ca2+ transporter in retinal rod outer segments.  In the dark 

cGMP-gated channels are open, which causes Na+ entry by depolarization, this 

also causes Ca2+ influx, but this is balanced by NCKX1 Ca2+ efflux.  In the light, 

cGMP-gated channels close, this stimulates NCKX1 to remove the excess Ca2+, 

this in turn results in an increase in cGMP synthesis and re-opening of the 
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cGMP channels.  NCKX2 is thought to play a similar role in cone photoreceptors 

(Lytton, 2007). 

NCKX2 has been successfully knocked out in mice.  These animals were found 

to have a clear reduction in Ca2+ flow in cortical neurons, a loss of long term 

potentiation and an increase in long term depression at hippocampal 

Schaffer/CA1 synapses.  Lack of motor learning and working memory was also 

detected by specific tests (Li et al., 2006).  The authors were surprised not to 

find any defects in the cone photoreceptors. 

 

More recently NCKX5 knockout mice have been developed.  These mice were 

viable, fertile, displayed normal behaviour, and had indistinguishable coat 

colour, from wild-type and heterozygous animals.  However, opthalmoscopic 

and histologic inspection found significant hypopigmentation of the retinal 

pigment epithelium, iris pigment epithelium and ciliary body.  Hypopigmentation 

was also identified in melanocytes of the ears and nose of the NCKX5 null mice.  

The authors conclude NCKX5 is important for normal melanin pigmentation in all 

pigmented cells, but most especially in the pigmented cells of the eye (Vogel et 

al., 2008). 

 

1.9 SLC24A5 

 

SLC24A5 was first identified in the zebrafish as the gene responsible for the 

golden pigmentation phenotype (figure13).  A non-synonymous SNP (single 

nucleotide polymorphism), identified in the human gene (Tanaka, 2005), 

encodes an amino acid switch (alanine to threonine) at position 111 of the 

protein.  The two different alleles have been shown to be population specific.  

Alanine is found at 93–100% in African, East Asian and indigenous American 

populations, whereas threonine is found in 98.7– 100% of European and 

American populations (Lamason et al., 2005; Stokowski et al., 2007). 

 

Unilever Discover have conducted extensive cell based analysis of SLC24A5 

(Ginger et al., 2008).  More recent work has involved genome wide micro array 

analysis following repression of SLC24A5. This has provided clues as to the role 

of SLC24A5 in pigmentation.  This work is as yet unpublished and will therefore 

be referred to as Wilson et al unpublished data in this thesis, and is referenced 

in the bibliography. 
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1.9.1 Golden zebrafish 

 

The golden mutant is a well known strain of zebrafish, and is used as a 

background model for many different areas of research (Denvir et al., 2008; 

Hattori et al., 2011; Liao and Essner; Moore et al., 2006). The golden phenotype 

is characterised by the delayed expression of fewer, smaller and less dense 

melanophores, and thus a hypopigmented appearance (figures 13 and 14). This 

is comparable to lighter skin humans, such as European populations, which 

make it of interest to understanding human melanogenesis.  The golden 

phenotype can be observed in developing zebrafish larvae, but is particularly 

prominent in the adult animal where the ‘golden’ colour can be seen (figure 14). 

 

 

 

 

 

 

 

 

 

 

 

Figure 13 
Golden zebrafish larvae.   
D and E wild type larvae, F and G golden larvae.  D and F lateral views of eyes.  
E and G dorsal views of head.  Golden larvae clearly show reduced 
pigmentation in the head and eye pigment cells (Lamason et al., 2005). 
 



  

 65 

 
Figure 14 
Golden pigmentation phenotype in zebrafish. 
A, wild type adult.  B, golden mutant adult.  Boxes show close up of 
melanophores. C, E, transmission electron micrograph of skin melanophores of 
wild type 55hpf embryos.  D, F, TEM of skin melanophores from golden 55hpf 
embryos, arrow heads indicate edge of melanophore. (Lamason et al 2005). 
 

 

Lamason et al (2005) used a combination of linkage analysis, PCR and 

screening a zebrafish genomic library to identify satellite markers and a clone in 

which they reside.  They then used shotgun sequencing, contig assembly and 

gene prediction to identify the genes within this clone.  Morpholinos targeted to 

the potential targets were then used to see if they could phenocopy the golden 

phenotype.  Only the morpholino to SLC24A5 did, and this was confirmed by 

rescue experiments (Lamason et al 2005).  The mutation responsible for golden 

pigmentation was found at position 208 of the SLC24A5 protein.  Here there is a 

C to A nucleotide switch, which converts a tyrosine residue to a stop codon, thus 

prematurely truncating the protein, reducing it to 40% of its normal size.  This 

truncation includes loss of the cytosolic loop and C terminal transmembrane 

domains (Lamason et al., 2005) 
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1.9.2 Expression of SLC24A5 

 

In situ hybridisation was used to detect expression of SLC24A5 in wild type and 

golden zebrafish.  Expression was seen in melanophores and RPE of 24hpf wild 

type larvae (figure 15).  Expression was not detectable in golden embryos 

(figure 15); this is likely due to nonsense mediated decay of the truncated 

transcript.  RT PCR was also used for expression analysis in normal mouse 

tissues and B16 melanoma cells, this showed 10 fold greater expression of 

SLC24A5 in skin and eye tissues and melanoma cells compared to non melanin 

producing tissues (figure 16) (Lamason et al 2005).  

 

 

 

 

 
 
Figure 15 
SLC24A5 and DCT expression in 24hpf zebrafish embryos.   
A, SLC24A5 expression in wild type embryos. B, DCT expression in wild type 
embryos. C, SLC24A5 expression in golden embryos and D, DCT expression in 
golden embryos (Lamason et al., 2005) 
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As well as its obvious expression in the pigment cells, SLC24A5 transcript was 

also detected in other tissues, including heart and muscle (figure 16).  Of 

particular interest is the increased expression level in B16 melanoma cells 

(figure 16), indicating this gene is upregulated during melanoma development.  

Determining the role of SLC24A5 could therefore provide additional information 

on the genes and functions involved in melanoma development and 

progression. 

 

 

 

 

Figure 16 
Relative expression of SLC24A5 in various tissues as analysed by RT-PCR 
(Lamason et al., 2005) 
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Lamason et al (2005) used confocal microscopy to detect GFP and HA tagged 

SLC24A5 proteins in MNT1 cells (constitutively pigmented human melanoma 

cell line), to analyse the intracellular expression pattern (figure 17).   

 

 

 

 
Figure 17 
Intracellular localisation SLC24A5 following over expression in MNT1 cells. 
A, GFP tagged SLC24A5.  B, HA tagged SLC24A5 transfected into MNT1 cells 
(constitutively pigmented melanoma cells (Lamason et al., 2005). 
 

 

As shown in figure 17 SLC24A5 is expressed throughout the cell, excluding the 

nucleus, showing no restriction to the plasma membrane.  This is in contrast to 

other NCKX proteins which are found within the plasma membrane (figure 18). 

 

 

 

 

Figure 18 
Localisation of NCXK1 (A) and NCKX2 (B) in HEK293 cells.  These proteins are 
predominantly expressed in the plasma membrane (Kang and Schnetkamp, 
2003; Poon et al., 2000).  
 
 

 

A                               B 
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Human SLC24A5 has since been shown to be partially localised to the trans-

Golgi network (TGN) in human melanocytes, (figure 19).  This fits with the TGN 

role as a calcium store and processing department for secretory and membrane 

proteins, which is sensitive to calcium fluctuations (Ginger et al 2008). 

 

 

 

 

Figure 19 
NCKX5 partially colocalises with the TGN. 
Untreated normal human melanocytes (NHM) were probed with anti-NCKX5 (I 
antibody raised against the cytoplasmic loop or C antibody raised against the 
carboxyl terminal peptide) (green) or anti-TGN (red).  Yellow staining in merged 
images indicates colocalisation (Ginger et al 2008). 
 

 

 

 

 

 

 

 

 

 

 

 



  

 70 

1.9.3 Knockdown of SLC24A5 

 

To confirm SLC24A5 was the gene responsible for the golden phenotype, 

Lamason et al (2005) used morpholinos to phenocopy the golden phenotype in 

zebrafish embryos.  Figure 20 clearly shows morpholino knockdown of 

SLC24A5 results in the same phenotype as the golden mutant, where 

pigmentation is lost on the body as well as in the eye. 

 

 

 

 

 

Figure 20 
Morpholino knockdown of SLC24A5 in zebrafish embryos phenocopies the 
golden phenotype. A, wild type 48hpf zebrafish embryo.  B, golden 48hpf 
zebrafish embryo.  C wild type 48hpf embryo injected with morpholino targeted 
to SLC24A5 (Lamason et al., 2005). 
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SLC24A5 can also be knocked down by siRNA, this results in a marked 

reduction in melanin production (figure 21), and demonstrates a role for 

SLC24A5 in melanogenesis in human melanocytes (Ginger et al., 2008). 

 

 

 

Figure 21 
siRNA  knockdown of SLC24A5 in NHM. 
Light NHM were transfected with siRNA 185, siRNA 492, scrambled control (SC) 
or untransfected (MGM) and left to grow in MGM (M254 medium supplemented 
with human melanocyte growth supplement) or melanoblast media (MB) for five 
days.  A clear reduction in pigmentation can be seen in the siRNA transfected 
cells, compared with the SC or untransfected samples. MB remain melanoblasts 
and therefore do not produce pigment (Ginger et al 2008). 
 

 

Knockdown of SLC24A5 resulted in reduced protein levels of Pmel17, MART1, 

Tyr and Tyrp1, and increased levels of the lysosome associated protein Lamp1.  

Indicating that NCKX5 plays an early role in melanosome biogenesis and this is 

linked to lysosome biogenesis.  However the mRNA levels were not affected.  

Therefore it is thought that NCKX5 may be involved in post transcriptional 

regulation of these proteins, most likely in the Golgi network as ER trafficking 

has been assessed by EndoH and PHGaseF treatment (Ginger et al., 2008; 

Wilson S., unpublished data).    

SLC24A5 knockdown also effected the expression of several genes involved 

cholesterol and sterol homeostasis, including ATP-binding cassette transporter 

A1 and the low density lipoprotein receptor.  This led to an increase in cytosolic 

cholesterol and esters.  SLC24A5 has therefore been proposed to play a role in 

cholesterol homeostasis, (Wilson et al unpublished data).  Reduced melanin 

pigmentation following SLC24A5 RNAi knockdown has also been observed in 

chicken RPE cells (Liu et al., 2011). 
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1.9.4 SLC24A5 encodes NCKX5 

 

Sequence homology suggested that SLC24A5 encoded a member of the NCKX 

(potassium dependant sodium calcium exchanger) protein family – NCKX5, 

(Lamason et al 2005). This has been determined experimentally using a high 

five insect cell expression system (Ginger et al. 2008).   In this assay the cells 

are transfected with human NKCX5 and loaded with sodium, this reverses the 

ion exchange direction and therefore allows radioactive calcium uptake to be 

measured.  The A111T mutant protein was also assessed and showed less 

activity than the wild type. 

 

 

 

 

 

Figure 22 
NCKX5 activity was determined using a heterologous expression system 
(Ginger et al., 2008).  NCKX2 and NCKX5 were transfected into insect high five 
cells, which were loaded with Na+ to reverse the direction of ion exchange. 
45Ca2+ uptake was recorded. 
 
 
 
 
 
 

A                                                                      B 
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As an ion exchanger, NCKX5 was initially assumed to reside in the plasma 

membrane, however as the expression analysis in MNT1 cells shows (figure 

17), it is not restricted to the plasma membrane.  Thus it is thought to reside in 

an internal organelle membrane, possibly the melanosome membrane although 

colocalisation studies suggest it is more likely to be in the TGN membrane 

(figure 19).  An internal localisation of NCKX5 is also consistent with the 

functional data in figure 22.  NCKX2 is a plasma membrane protein and shows 

much greater activity than NCKX5 in the same assay, also NCKX5 has to be 

over expressed in this assay to detect any function, this thought to be due to its 

being trafficked to and organelle membrane.  

 

1.10 Pigmentation in X.laevis 

 

X. laevis is an ideal developmental model organism in many respects.  The adult 

animals are easy and cheap to keep, large numbers of eggs are easily obtained 

from the female by simple hormone injection and in vitro translation (IVF) can be 

performed using testes extracted from a euthanized male.  The embryos are 

large and robust and thus amenable to microinjection and surgical manipulation.   

In particular X. laevis tadpoles are suitable for pigmentation studies due to their 

distinct pigmentation pattern (figure 23).  By stage 38 (Nieuwkoop and Faber, 

1994) (~4 days post fertilisation) pigment cells (melanophores in lower 

vertebrates) can be clearly seen around the head, neural tube and along the 

lateral area.  The retinal pigment epithelium (RPE) and cement gland is also 

very clear.  X.laevis also have xanthophores and iridophores, these provide 

yellow pigmentation and reflective iridescent colouration respectively. They are 

also neural crest derived (Akira and Ide, 1987).  However, as their function is 

distinct from melanophores they will not be discussed further here. 

The distinct pattern of melanophores makes it very easy to observe 

pigmentation phenotypes in response to gain of function and loss of function 

experiments, especially since affecting pigmentation is rarely lethal.  A previous 

chemical genomic screen identified several compounds that effect pigmentation, 

including migration and pigment production (Tomlinson et al., 2005; Tomlinson 

et al., 2009a; Tomlinson et al., 2009b; White et al., 2011). 
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Figure 23 
Pigmentation in X.laevis tadpoles. A, wild type stage 38 tadpole, hp; head 
pigmentation, rpe; retinal pigmented epithelium, cg; cement gland, lp; lateral 
pigmentation and tp; tail pigmentation. B, compound NCS 84093 from the 
Diversity Set, National Cancer Institute, caused a segmented pattern in the 
pigment cells and was found to be an matrix metalloproteinase (MMP) inhibitor.  
C, compound NSC 86153, also from the Diversity Set, caused a complete loss 
of pigmentation and was found to be a tyrosinase inhibitor (Tomlinson et al., 
2009b) 
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Aims and Approaches  

 

The aim of this project is to further characterise the role of SLC24A5 in X.laevis 

pigmentation development.  This is part of an ongoing project coordinated by 

Unilever Discover. Bringing together a number of different labs with expertise in 

biochemical, computer modelling, cell based assay development and 

developmental biology.  To look at SLC24A5 in greater detail in order to 

determine if it could be used as a target for manipulating pigmentation in 

humans. 

Approaches will include PCR and cloning of X.laevis SLC24A5; whole mount in 

situ hybridisation to determine the expression pattern of SLC24A5 in X.laevis 

tadpoles.  Morpholinos will be used to knock down expression of SLC24A5 in 

developing tadpoles. To begin to understand the biochemistry of SLC24A5 we 

will rescue the resulting phenotypes using mutant constructs of human 

SLC24A5.  The effect of knocked down SLC24A5 on other melanogenic genes 

will also be analysed.  Over expression analysis of SLC24A5 will also be 

conducted.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 76 

 

Chapter Two:  

 

Materials and Methods  

 

 

2.1 Frog housing and care 

 

Animals were housed in large plastic tanks (approximately 1m x 1m), in 40L 

water.  They were kept at 18°C in 12 hour cycles of  light and dark, the water was 

changed weekly.  The diet of dried trout pellets was biweekly, and supplemented 

with live maggots.  During egg collection females were squeezed once per hour 

for a maximum of 6 squeezes.  After use females were rested for at least 3 

months. The dissection of the males for testes was carried out following the 

legislation in the Animals (Scientific Procedures) Act 1986.   Males were 

euthanized by immersion in a solution of 0.5g Ethyl 3-aminobenzoate 

methanesulfonate salt (sigma) in 300ml water for 1hr at 4ºC.  To ensure the 

animal was dead the digits were nipped with forceps and the gag reflex tested.  

The testes were then dissected, any remaining blood vessels or other tissue 

was removed and the testes were stored in 100% goat serum at 4°C.  

 

2.2 Obtaining embryos 

 

To induce ovulation adult female X.laevis frogs were primed by sub cutaneous 

injection with 100U of Pregnant Mare Serum Gonadotropin (PMSG) into the 

dorsal lymph sac. The frogs were then kept at 18oC for 4-7 days without feeding. 

14 hours before the eggs were required the primed frogs were induced with 

500U of Human chorionic gonadotropin (HCG) and placed at 18oC.  Eggs were 

obtained by manually squeezing female frogs over 9cm Petri dishes.   IVF (in 

vitro translation) was conducted using testes isolated from a euthanized male 

frog.  A small piece of testes was masticated and dragged with forceps over the 

freshly laid eggs, the piece of testes was then placed in an eppendorf tube with 

1ml 1XMMR and further crushed using small plastic pestle.  The testis/1XMMR 
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solution was then evenly distributed over the eggs, by pipette and left at 18oC for 

5 minutes.   The eggs were then covered with 0.1XMMR for 20 minutes at 18oC. 

Eggs can then be visually assayed for cortical rotation, an indication of 

successful fertilisation. Once fertilised, the jelly coating around the eggs is 

removed. The eggs are covered in 2% cysteine (pH 8) dissolved in 1XMMR and 

transferred to a 250ml glass beaker. Eggs are then gently swirled until de-

jellying is complete, tight packing of the eggs is taken as an indication of jelly 

coat removal. The eggs are then immediately washed several times in 1XMMR 

then 0.1XMMR to remove trace amounts of cysteine.  The eggs are now ready 

for experimental use and can be left at varying temperatures to influence 

developmental timing, embryos were staged according to Nieuwkoop and Faber 

(1994).   

 

Solutions 

 

0.1XMMR: 10mM NaCl, 0.2mM KCl, 0.1mM MgCl2,0.2mM CaCl2, 0.5mM 

HEPES (pH 7.5).  

1XMMR: 100mM NaCl, 2mM KCl, 1mM MgCl2, 2mM CaCl2, 5mM HEPES (pH 

7.5). 

Cysteine: 5g L-cysteine (Sigma), 250ml 1XMMR, pH 8 by addition of ~1ml 10M 

NaOH 

 

2.3 Generating cDNA from embryos 

 

Total RNA was extracted from 10 stage 38 embryos using a Qiagen RNeasy 

mini kit, the protocol provided was followed. Reverse transcription from 

extracted total RNA was set up as follows on ice; 9.9µl dH20, 6µl M-MLV RT 5x 

Buffer, 1µl DTT (100mM), 1µl dNTP mix-10mM, 1µl random hexamer, 

200mg/ml, 1µl RNasin, 1µl (200U) reverse transcriptase, 10µl RNA template (1-

3µg). Incubated at 42oC for 1 hour. 
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2.4 Bioinfomatical sequence analysis 

 

NCBI BLAST and Ensembl searches were conducted to find the 

sequence of SLC24A5 in several different species; human, mouse, 

zebrafish and X.tropicalis.  These were aligned using DNAstar software, 

using the Clustral W method.  From this sequence homology between 

species could be analysed with a view to designing primers for PCR to 

generate X.laevis SLC24A5. 

 

2.5 PCR/RACE PCR  

 

As the sequence for X.laevis SLC24A5 was unknown, PCR primers were 

designed from the closely related X.tropicalis sequence (www.xenbase.org), 

(see appendix).  Reactions were conducted using a thermocycler.  Each 50µl 

reaction contained; 1X PCR buffer, 2.5mM MgCl2 , 0.2µM of  each primer, 

0.25mM dNTPs, 1µl cDNA template and 1 unit Taq polymerase and up to final 

volume of 50µl with dH2O.  The conditions were; initial denaturation step of 94°C 

for 3 minutes, followed by 30 cycles of 94°C 30 seconds, 50°C 45 seconds, 

72°C 1 minute, the reaction was finished with a 10 minute 72°C step.  5µl of 

each reaction was analysed by 1% agarose gel electrophoresis using ethidium 

bromide to visualise the DNA.  This yielded an internal 800 base pair fragment 

of X. laevis SLC24A5, using primers I.P1F and I.P2R (see appendix).  To obtain 

the 5’ and 3’ ends RACE (rapid amplification of cDNA ends) PCR had to be 

implemented.   

 

2.5.1 5’ RACE 

 

RACE was conducted using Invitrogen GeneRacerTM kit.   

3µg of total RNA was treated with 10U of calf intestinal phosphatase (CIP) in a 

reaction containing; 1X CIP buffer, 40U RNaseOutTM  and made up to a final 

volume of 10µl with DEPC treated water, to dephosphorylate the mRNA ,  this 

was left at 50°C for 1 hour.  The RNA was then extracted from the reaction by 

phenol chloroform and ethanol precipitation.  Here 100µl of phenol:chloroform 

and 90µl of DEPC H2O are added to the reaction, this is vortexed for 30 
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seconds.  The sample is then centrifuged at full speed for 5 minutes.  The top 

aqueous phase is removed and placed in a new tube.  2µl of 10mg/ml mussel 

glycogen, 10µl of 3M sodium acetate, pH 5.2, are added and the sample is 

mixed before 220µl of 95% ethanol is then added and this is vortexed briefly.  

The sample is then frozen on dry ice for at least 10 minutes.  To pellet the RNA 

the sample is centrifuged at full speed for 20 minutes at 4°C.  The supernatant is 

then discarded and 500µl of 70% ethanol is added, this is mixed and vortexed 

briefly followed by full speed centrifugation for 2 minutes at 4°C. The ethanol 

supernatant is removed and the sample is spun again and the residual ethanol 

is removed by pipette.  The sample is then air dried for 10 minutes at room 

temperature.  The dry RNA pellet is resuspended in 7µl of DEPC H2O and 

stored at -20°C.  The RNA was then treated with 0.5U of tobacco acid 

pyrophosphatase (TAP), to remove the 5’ cap structure, this reaction contained 

7µl dephosphorylated RNA, 1X TAP buffer, 40U RNaseOutTM  in a final volume 

of 10µl, this was incubated at 37°C for 1 hour, then the RNA was extracted 

using phenol chloroform and precipitated with ethanol, as described earlier.  The 

GeneRacerTM RNA oligo was then ligated to the 5’ ends of RNA.  The oligo is 

specifically designed to ligate to decapped mRNA and contains priming sites for 

the GeneRacerTM 5’ primers, supplied.  The ligation reaction contained 1X ligase 

buffer, 1µl 10mM ATP, 40U RNaseOutTM and 5U T4 RNA ligase in a final volume 

of 10µl, this reaction was incubated at 37°C for 1 hour.  After the ligation 

reaction the RNA is again extracted and precipitated using phenol chloroform 

and ethanol.  The RNA is now ready to be reverse transcribed to cDNA to use 

as the template in the PCR.  Reverse transcription was carried out using 

SuperScriptTM III RT.  For this reaction 1µl of GeneRacer TM oligo dT, 1µl of a 

gene specific primer (RACE 1*), 1µl of dNTP mix and 6µl of dH2O was added to 

5µl of the ligated RNA, this was incubated at 65°C for 5 minutes to remove any 

RNA secondary structure.  After this incubation the following components were 

added, 1X first strand buffer, 1µl 0.1M DTT, 40U RNaseOut TM and 200U 

SuperScript TM III RT, this reaction was incubated at 55°C for 1 hour then 

inactivated at 70°C for 15 minutes.  1µl of RNase H (2U) was added to the 

reaction mix and incubated at 37°C for 20 minutes.  1µl of this RACE ready 

cDNA was then used in a 50µl PCR with 1X buffer, 2.5mM MgCl2, 0.2µM of 

each primer (GeneracerTM 5’ and RACE 1*), 0.25mM dNTPs, IU Taq 

polymerase and made up to 50µl with dH2O.  Touchdown conditions were used, 
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94°C for 3 minutes, followed by 5 cycles of 94 °C for 30 seconds and 72°C for 1 

minute, then 5 cycles of 94°C for 30 seconds and 70°C for 1 minute, then 25 

cycles of 94°C for 30 seconds, 66°C for 30 seconds and 70°C for 1 minute, the 

reaction was completed with 70°C for 10 minutes.  The products of this reaction 

were then used in a nested PCR, the reaction was assembled as described 

above, only with the previous PCR product as template and the GeneRacer 5’ 

Nested primer, and the same touchdown conditions were used again. 

 

2.5.2 3’ RACE 

 

3’ RACE was carried out using Invitrogen 3’ RACE system. 

3µg of total RNA extracted from 10 stage 38 embryos was used in the first 

strand cDNA synthesis reaction, to this, DEPC treated water was added to a 

final volume of 11µl plus 1µl AP (adapter primer), solution, these were heated to 

70°C for 10 minutes.  The AP provided in the kit is designed to target the natural 

poly A tail of mRNA and contains several restriction enzyme sites as well as the 

priming site for the adapter primer.  After the 10 minute incubation the following 

components were added to the reaction; 1XPCR buffer, 2µl 25mM MgCl2, 1µl 

10mM dNTP mix and 2µl 0.1M DTT, this mixture was equilibrilated to 42°C for 5 

minutes, after which time 1µl of SuperScript TM II RT was added and the reaction 

was incubated at 42°C for 50 minutes.  The reaction was inactivated at 70°C for 

15 minutes before being briefly chilled on ice, 1µl RNase H was then added and 

incubated for 20 minutes at 37°C.  the cDNA is now ready to be used in PCR.   

The PCR contained; 1XPCR buffer, 2.5mM MgCl2, 0.2µM of each primer 

(AUAP, abridged universal amplification primer, provided in kit, recommended 

for T4 DNA polymerase cloning and 3’RACE 2), 0.25mM dNTPs, 2µl cDNA, IU 

Taq polymerase and made up to 50µl with dH2O.  The conditions used were as 

follows; 94°C for 3 minutes, then 30 cycles of 94°C for 30 seconds, 58°C for 45 

seconds and 72°C for 2 minutes, and completed with 72°C for 10 minutes.  The 

product of this reaction was then used as the template in a nested primer 

reaction, the same recipe and conditions were used, only using the 3’RACE 3 

nested primer. 
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2.5.3 Full Length PCR 

 

Primers were designed from the 5’ and 3’ RACE products and used to generate 

the full sequence of SLC24A5.  Stage 38 cDNA was used as the template, 

12.5µl of BioTaq Premix was used with 1µl template, 0.2µM of each primer (FL 

5’* and FL3’3*) and made up to 25µl with water.  The reaction conditions were 

94°C for 3 minutes, then 35 cycles of 95°C for 30 seconds, 64°C for 1 minute, 

72°C for 2 minutes, and finished with 72°C for 10 minutes.  This PCR product 

was cloned and sequenced. 

 

2.5.4 Semi quantitative RT PCR 

 

Primers XLF and XLR (see appendix) were used in PCR across a range of 

embryo stages to detect expression. Primers for DCT were used at the same 

stages to provide a comparison and Histone H4 primers were used as a loading 

control.  The PCR contained; 1X PCR buffer, 2.5mM MgCl2 , 0.2µM of  each 

primer, 0.25mM dNTPs, 1µl cDNA template and 1 unit Taq polymerase and up 

to final volume of 50µl with dH2O.  The conditions were; initial denaturation step 

of 94°C for 3 minutes, followed by 30 cycles of 94°C 30 seconds, 50°C (58°C for 

H4 and DCT primers) 45 seconds, 72°C 1 minute, the reaction was finished with 

a 10 minute 72°C step. Reactions were analysed by 1% agarose gel 

electrophoresis using ethidium bromide to visualise the DNA. 

 

2.5.5 Intron/exon boundary PCR 

 

PCR was also used to obtain sequence data over an intron/exon boundary such 

that a splice junction could be targeted by morpholino mediated knockdown.  

X.tropicalis intronic and exonic sequence data was determined bioinfomatically, 

this was then translated to the X.laevis sequence, obtained in this work.  This 

revealed close homology over exons 9 and 10, (10 being the last exon).   

 

To extract genomic DNA 10 stage 38 embryos were lysed in 1ml lysis buffer 

(50mM tris pH8.8, 1mM EDTA, 0.5% tween20, 200µg/ml proteinase K) and 

incubated at 56°C for 4 hours, this was then used i n PCR as follows.  Primers 

SLC frameshift 1 and FL 3’ 3* were used.  PCR was carried out using Bioline taq 
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premix as previously described.  Following initial denaturation at 95°C for 3 

minutes, 35 cycles of 95°C 30 seconds, 66°C 90 seco nds, 72°C 150 seconds 

and a final elongation step of 72°C 10 minutes. The  resulting products were 

purified and cloned into pGEM and sequenced.  

 

2.6 TA cloning 

 

All PCR products were cloned directly into pGEM® T easy vector system from 

Promega.  Taq polymerase adds a single A to the 3’ end of PCR products, 

pGEM has a single T at the 3’ end, thus Taq synthesized PCR products can be 

easily ligated into pGEM.  PCR products were extracted from a 1% TAE agarose 

gel, following visualisation with ethidium bromide. Gel extractions were 

performed using a Qiagen gel extraction kit, manufacturers instructions were 

followed. Ligation reactions were assembled as follows; 1µl of pGEM vector, 1µl 

of 10X ligation buffer, 1µl Ligase, 4µl of PCR product, dH20 to a final volume of 

10µl and left at 16°C overnight.  The ligation reactions were then transformed 

into DH5α competent E.coli cells. The ligation product was added to 100µl cells 

and incubated on ice for 30 minutes, the cells were then heatshocked at 42°C 

for 90 seconds then returned to ice for 2 minutes.  300µl of SOC media was 

then added and the cells were incubated at 37°C with shaking for 1 hour.  After 

this incubation 150µl of the cells was spread onto pre-warmed, LB(Luria 

broth)/carbicillin plates along with 4µl IPTG ad 40µl Xgal, to allow for blue/white 

colony selection, the plates were left inverted at 37°C overnight.  12 white 

colonies were selected from each sample and grown overnight at 37°C in 5ml 

LB media, inoculated with carbicillin. 

 

Solutions 

 

LB, (Luria Broth) 1L: Tryptone 10g, Yeast extract 5g, Sodium Chloride 10, up to 

1L with dH2O autoclave to sterilise 

 
SOC (super optimal broth with catabolite repression) media: 2% w/v bacto-

tryptone (20 g), 0.5% w/v bacto-yeast extract (5 g) 8.56mM NaCl (0.5 g), 2.5mM 

KCl (0.186 g), ddH2O to 1000 ml, 10mM MgCl2 (0.952 g) or 20mM MgSO4 (2.408 

g), 20mM glucose (3.603 g) 
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2.6.1 Mini Prep isolation of plasmid DNA 

 

To isolate the plasmid DNA from the E.coli culture alkaline lysis was used, using 

Qiagen kit buffers. 1.5ml of each culture was transferred to an eppendorf tube 

and centrifuged for 5 minutes at maximum speed.  The supernatant was 

discarded and the cell pellet was resuspended by vortexing in 100µl buffer P1 

(resuspension buffer, 50mM Tris-Cl pH 8.0, 10mM EDTA, 100µg/ml RNase A).  

200µl of buffer P2 (alkaline lysis buffer, 200mM NaOH, 1% SDS) was added, 

mixed by inverting 6 times and left on ice for 5 minutes.  100µl ice cold buffer P3 

(neutralisation buffer, 3.0M potassium acetate pH 5.5) was added next and 

mixed by inverting, this was centrifuged for 10 minutes at maximum speed.  The 

supernatant was, discarded and the pellet was washed with 100% ethanol, air 

dried and resuspended in 30µl water.  Mini prep samples were then analysed by 

restriction digests. 1µg of DNA was added to 1µl 10X buffer, 1µl appropriate 

restriction enzyme and up to 10µl H2O, the digests were left at 37°C for 1 hour.  

For pGEM diagnostic digests were performed using EcoR1 as this cuts either 

side of the cloning site, thus dropping out the insert. 

 

2.6.2 Midi prep isolation of plasmid DNA  

 

Following mini prep and restriction digest analyses, 2 colonies of each sample 

were grown up in 50ml LB/carb media, overnight at 37°C with shaking.  Plasmid 

DNA was then isolated from these cultures using the Qiagen Compact Midi prep 

kit, manufacturers instructions were followed. DNA concentrations from midi 

preps were determined by gel electrophoresis, using a quantative DNA ladder 

and nanodrop OD readings, and the appropriate amount sent for sequencing. 

 

2.6.3 Sequencing  

All sequencing analyses was conducted by Unilever Discover at Colworth Park, 

Bedfordshire.  Using plasmid primers T7 and SP6 and gene specific primers. 

 

 

 

 

 



  

 84 

2.7 Whole mount In Situ Hybridisation 

 

2.7.1 Probe synthesis 

 

Plasmids containing cDNAs to be tested were first linearised by restriction 

enzyme digestion (according to manufactures guidelines; Roche), using an 

appropriate downstream restriction enzyme site. Probe synthesis with a 

promoter specific RNA polymerase, used the following reaction conditions; 2µl 

linearised DNA template, 2µl DTT, 1µl DIG labelled UTPs, 1µl RNase inhibitor, 

2µl (40U) RNA polymerase, 4µl transcription buffer, dH2O to a final volume of 

20µl. This was incubated at 37oC for 3hrs. The reaction was stopped and diluted 

to 50µl with Sigma H2O. Unincorporated UTPs were removed by G50 column 

centrifugation, according to the manufacturers protocol.  Probe quality and 

transcription efficiency was checked by agarose gel electrophoresis. 5µl of the 

purified probe was mixed with 1ml of Hybridisation buffer for long term storage 

at –20oC. Under normal conditions sufficient probe was generated to make 

15mls of probe:Hyb buffer mix. 

 

2.7.2 In situ protocol 

 

Following egg collection and fertilisation, embryos can be fixed at the desired 

stage by a 1 hour wash in MEMFA, after which they are rinsed in DEPC PBST 

and can be stored in 100% EtOH at -20ºC, or processed immediately for in situ 

analysis.  Whole mount in situs were done according to (Harland, 1991). 

Embryos were re-hydrated after storage in 100% EtOH using 100%, 75%, 50% 

and 25% methanol/phosphate buffered saline with 0.1% Tween 20 (PBST) 5 

minutes each and finally 2 washes of DEPC PBST. The embryos were then 

treated with 10µg/ml Proteinase K for 5 minutes for stage 20-25 embryos and 8 

minutes for stage 38-40 embryos. Washed twice with a 0.1M triethanolamine 

solution (pH 7.8) at RT for 5 minutes each, then 2.5µl of acetic anhydride was 

added. Embryos were allowed to wash in this solution for 5 minutes at RT before 

another 2.5µl of acetic anhydride was added. Embryos were then transferred 

into DEPC PBST twice for 5 minutes each and then incubated in 3.7% 

formaldehyde/DEPC PBST for 20 minutes at room temperature with rocking. 
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Embryos were washed three times in PTw, 5 minutes each, then transferred into 

hybridisation buffer for 2-6hrs at 60ºC. 

After the embryos are adjusted to the hybridisation buffer they were then 

incubated overnight in hybridisation buffer plus probe at 60oC with rocking. 

Probe was replaced with fresh hybridisation buffer for 10 minutes, 3 washes of 

2x Sodium Chloride and sodium Citrate solution at pH 7 (2XSSC) for 20 minutes 

each and 2 washes of 0.2X SSC (pH 7) for 30 minutes each, all at 60ºC. The 

probe can then be stored at -20°C and reused up to ten times. The embryos 

were then washed twice with 1xMAB (Maleic acid buffer) for 5 minutes at room 

temperature and blocked in 2% BMB/1xMAB for 1 hour.  

Embryos were then incubated over night (15-16 hours) with anti-digoxigenin 

(1:1000) in 2%BMB/20% Goat serum/ 1XMAB at 4oC. The antibody solution was 

replaced with 1XMAB and washed by five further washes of 1XMAB at pH 7.5, 

30 minutes each at room temperature the final wash was allowed to incubate 

over night at 4ºC.  

The colour reaction was performed after washing the embryos in freshly 

prepared alkaline phosphate buffer twice for 5 minutes at room temperature. 

Detection of the probe was performed by using NBT/BCIP in alkaline phosphate 

buffer, keeping the embryos in the dark. Whole mount embryos were 

photographed using a Ziess stemi SV 6 stereo dissection microscope and 

Qcapture software. 

 

Solutions  

 

MEMFA: 10% MEM salts, 10% formaldehyde 

MEM salts: 0.1M MOPS, 2mM EGTA, 1mM MgSO4, pH7.4 

PBS 10X: 2.5g NaH2PO4.H2O, 11.94g NaHPO4.H2O, 102.2g NaCl, 400ml DEPC 

dH2O. pH adjusted to 7.4 and volume to 1 litre. 

PBST: 1XPBS, 0.1%Tween 20. 

Proteinase K (10µg/ml): 1µl proteinase K, 1ml PBST. 

Triethanolamine (0.1M), pH 7.5: 1.86g triethanolamine, 90ml DEPC H2O, pH 

was adjusted to 7.8 and volume to 100ml with DEPC H2O. 
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Hybridisation buffer: 50% formamide, 5XSSC, 1mg/ml Torula RNA, 100µg/ml 

Heparin, 1X Denharts solution, 0.1% Tween 20, 0.1% CHAPS, 10mM EDTA. 

SSC 20X: 175.3g NaCL, 88.2g Sodium citrate. pH adjusted to 7.0 and volume to 

1 litre with DEPC H2O. 

MAB 1X (Maleic Acid Buffer): 100mM Maleic acid; 150mM NaCL (pH 7.5). 

Blocking solution: 2% BMB in 1X MAB. 

BMB (Boehringer Mannheim Blocking agent) 10%: 10% (w/v) in BMB preheated 

(50oC) 1XMAB, stirred until dissolved and then autoclaved, aliquoted and stored 

at –20oC. 

Antibody solution: 2% BMB, 20% goat serum, anti-DIG Fab fragment, (1:2000 

dilution) in 1X MAB. 

Alkaline Phosphatase Buffer: 100mM Tris (pH 9.5), 50mM MgCl2, 100mM NaCl, 

0.1% Tween 20. 

BCIP: 50mg/ml in 100% DMF. 

NBT (Nitro Blue tetrazolium): 75mg/ml in 70% dimethylformamide (DMF). 

 

2.7.3 Bleaching embryos 

 

Following in situ hybridisation some stage 38 embryos were bleached to remove 

the naturally occurring pigment, to better observe the in situ colour.  To achieve 

this, embryos were submerged in bleach solution in a multi well dish, placed on 

a fluorescent light box and covered in foil for approximately 10 minutes, 

inspecting the reaction every 2 minutes.  When the desired affect was achieved 

the embryos were rinsed twice in PBST for 5 minutes before fixing in MEMFA 

overnight at 4°C. 

 

Bleach solution 

 

10% H2O2, 5% formamide, 0.5XSSC, up to final volume with dH2O. 
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2.7.4 Histology 

 

To further analyse embryos after in situ hybridisation or to inspect the 

morpholino mediated disruption of the natural pigment pattern, embryos were 

processed for cyrosectioning.  Embryos were fixed in MEMFA overnight at 4°C.  

Following two 5 minute PBS washes the embryos were incubated overnight in 

30% sucrose (in PBS) at 4°C.  The embryos were then embedded in OCT 

(TissueTek).  A labelled cyro mould (10mm x 10mm x 5mm) was filled with OCT, 

using forceps the embryo was gently placed into the cryo mould and using a 

dissecting microscope the embryo was vertically aligned.  These where then 

snap frozen on dry ice and kept at -20°C until sectioned.  Sectioning was 

performed using a Leica cyrostat CM1950. 

 

2.8 Microinjection of embryos 

 

Microinjection was into a single blastomere at the two cell stage, or other targets 

as discussed later.  Needles were calibrated to inject 10nl/injection using 

Harvard Apparatus Pli100 set to Pout= 16, Pbalance= 0.6 and Pinject=85.  Injections 

were carried out in 3% ficol in 1XMMR.  To perfect the injection technique lacZ 

cRNA was injected and its expression analysed by detecting β-galactosidase 

activity as follows; embryos were rinsed in DEPC PBS 3 times for 10 minutes 

before fixation in MEMFA for 1 hour at room temperature (no longer as this 

could impair β-galactosidase activity).  They were then rinsed again in DEPC 

PBS 3 times for 10 minutes before being transferred in the Red Gal colour mix, 

which comprises; 5mM K3Fe(Cn)6, 5mM K4Fe(Cn)6, 1mg/ml Red Gal* and 2mM 

MgCl2. 

 

After complete development, 1-2 hours, embryos were rinsed in DEPC PBS 3 

times for 10 minutes and re-fixed in MEMFA for 1 hour at room temperature.  

MEMFA was then replaced with 100% MeOH and the embryos were stored at -

20ºC. 

 

*Red Gal (Apollo Scientific, cat No. 1026) 1g was dissolved in 50ml DMF to 

make a 20mg/ml stock, and aliqutoted and stored at -20ºC. 
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2.9 Using Morpholino to manipulate gene expression 

 

Morpholinos are used to repress translation of the target gene.  The morpholinos 

were designed by Gene Tools (Oregon, USA)  based on supplied sequence of 

X.laevis SLC24A5. Morpholinos were re-suspended in 300µl RNase free water 

to make a 1mM stock, which was aliquoted and stored at -20°C, after thawing 

they were heated to 65°C for 10 minutes prior to use, morpholinos were kept at 

room temperature during use.  Morpholino was delivered to a single blastomere 

at the two cell stage by microinjection.  Embryos were then left in 3% 

ficoll/1XMMR at 23°C, to activate the morpholino and accelerate embryo 

development. 

 

Morpholino efficacy was tested using the Promega TNT in vitro translation kit, 

L4600.  Manufacturers protocol was followed, using S35-methionine.  Samples 

were not boiled prior to SDS PAGE on a 10% gel.  Photograph film was exposed 

overnight. 

 

2.9.1 Rescuing the morpholino knockdown 

 

Human SLC24A5 was used to rescue the morpholino knockdown phenotype.  

cRNA was synthesised from wild type and mutant human SLC24A5 in pCS2+ 

and co-injected with 100ng morpholino, injections were performed as above.  

cRNA was synthesized using the mMESSAGE mMACHINE  kit from Ambion, 

the manufacturers instructions were followed. 

 

2.9.2 Statistical analysis 

 

Statistical analysis was undertaken to determine the significance of the rescues.  

The Kruskal Wallis test was used to compare the difference between the 

percentage of phenotypes seen in the rescue data and the morpholino alone 

data.  P < 0.05 indicates statistical significance.  This in indicated at the top of 

the graphs. 
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2.9.3 Mutating X. laevis SLC24A5 

 

In order to rescue the morpholino phenotype with X. laevis SLC24A5 it had to be 

mutated such that the morpholino wouldn’t recognise it, it also had a myc tag 

incorporated so it could be detected by western blot.  A primer was designed 

over the morpholino target sequence with two base pair changes, this 

conveniently gave a BamH1 site (SDM of SLC, see appendix).  This primer was 

used in a PCR reaction with the FL 3*2 primer (see appendix), the reaction was 

assembled as follows; 12.5µl Bioline Taq pre mix, 2.0µl primers (20µM), 1.0µl 

template cDNA, 1.0µl phusion, 6.5µl H2O, the conditions for the reaction were; 

95°C 3 minutes, followed by 35 cycles of 95°C 30 seconds, 62°C 1 minute, 72°C 

2 minutes and finished with 10 minutes at 72°C.  1µl of taq was added for 15 

minutes at 72°C.  The product was gel purified and cloned into pGEM as 

previously described, this clone is pRW07. 

 

2.9.4 Adding the myc tag 

 

To facilitate incorporation of a myc tag into pRW07, an EcoR1 site was inserted 

at position 93 of the amino acid sequence.  PCR using primers 5’ Xho1 and 

EcoR1R, and EcoR1F and 3’Xba1** yielded two products each with an EcoR1 

site.  These products were gel purified and ligated together using T4 ligase, and 

cloned into pGEM.  This clone is pRW08. 

 

Separately, PCR was performed using pRW07 as template again, and primers 

including the myc tag sequence and another EcoR1 site (5’ Xho1 and mycR).  

This yielded a 300bp fragment of the 5’ end of the gene with the myc tag 

sequence and EcoR1 site at the 3’ end.  This was also purified, cloned and 

named pRW09.  

 

Both pRW08 and pRW09 were digested with EcoR1 and re-ligated together to 

give a full length clone containing a myc tag and mutation at the morpholino 

target sequence.  This clone was sub cloned into pCS2+ using Xho1 and Xba1, 

previously included in the PCR primers, and named pRW11. 
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2.10 Western blotting 

 

Western blotting was used to detect the myc tagged constructs after injection 

into the embryo.  

 

2.10.1 Preparing embryos 

 

At stage 11, 10 embryos from each injection were lysed in 100µl NP40 

containing protease inhibitors and left on ice for 10 minutes.  To extract the 

proteins 300µl of Freon was added, the mixture was vortexed thoroughly then 

spun at 4°C, at full speed for 15 minutes.  After c entrifugation the top layer of the 

mixture was removed and stored at -20°C. 

 

2.10.2 Determining protein concentration 

 

Total protein concentrations were determined by the Bradford assay.  Individual 

samples were compared to a standard curve constructed of known bovine 

serum albumin protein concentrations (BSA 0-10mg/ml), 1 µl of sample was 

added to 1ml 1x BIORAD Bradford reagent, the OD values were read at 595nm  

(A595). 

  

2.10.3 SDS PAGE 

 

Embryo lysates were separated by SDS PAGE.  The glass plates were cleaned 

with 70% ethanol and assembled in the BIORAD apparatus.  A 10% resolving 

gel was prepared and poured in between the glass plates, this was topped with 

0.5ml isopropanol and left to set.  The isopropranol was removed by blotting with 

Whatman paper.  A 4% stacking gel was prepared and poured on top of the 

resolving gel, a well comb was inserted immediately and the gel was left to set.  

The gel was then assembled in the BIORAD mini PROTEAN® TETRA system 

and covered with running buffer.  Protein loading buffer (2µl) was added to 50µg 

of each lysate, which were then loaded on to the gel. A protein marker 
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(Precision Plus Protein Standards, BIORAD) was loaded on the gel. Gel 

electrophoresis took place at 200V for 45 minutes.   

 

2.10.4 Wet transfer 

 

The gel was removed from the electrophoresis kit and placed into transfer buffer 

for 5 minutes.  A piece of PVDF membrane was soaked in 100% methanol for 

approximately 30 seconds.  The gel was transferred to the PVDF (BIORAD 

Immuno-Blot™ 0.2µm) membrane using the BIORAD mini PROTEAN II ™ kit in 

transfer buffer, at 100V for one hour. 

 

2.10.5 Antibody treatment 

 

After transfer the gels were blocked in 5% (w/v) skimmed milk powder in PBST 

for one hour, at room temperature with gentle agitation, then incubated in 

primary antibody overnight at 4°C, with gentle agit ation.  The gels were then 

rinsed in PBST three times for 5 minutes each, before 1 hour incubation in 

secondary antibody. 

 

2.10.6 Antibody detection 

 

The gels were rinsed in PBST, 3X5 minutes, again.  The antibody was detected 

using enhanced chemiluminescence (ECL) and Fujifilm LAS 3000 Intelligent 

dark box. 

 

Solutions  

 

NP40; 150nM NaCl, 1% NP-40, 50nM Tris pH 8.0 

 

Freon; 1,1,2, trichlorotrifluroethane 99.9% 

 

Resolving gel (10%);  Tris-HCl  (1.5 M, pH 8.8), 3.33ml 30% Bis-acrylamide, 

0.1ml 10% SDS, 0.05ml 10% APS (ammonium perrsulphate), 0.01ml TEMED, 

4.01ml dH2O. 
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Stacking gel (4%);  2.5ml Tris-HCl  (0.5 M, pH 6.8), 1.33ml Bis-acrylamide, 

0.1ml 10% SDS, 0.05ml APS, 0.02ml TEMED, 6ml dH2O. 

 

Running buffer; 10ml 10%SDS, 100ml 10X tris glycine, 890ml dH2O 

 

Transfer buffer; 100ml 10X tris gylcine, 700ml dH2O, 200ml 100% methanol 

 

10X tris gylcine; 25mM Tris, 192mM glycine pH 8.3, up to 1L dH2O 

 

Antibodies; primary - anti myc (9B11 New England Biolabs), diluted 1:1000 in 

5% skimmed milk, secondary – polyclonal goat anti mouse immunoglobins HRP 

diluted 1:2000 in 5% skimmed milk, actin mouse monoclonal, Abcam. 

 

ECL Solution 1;  200µl luminol (250mM), 88 µl p-coumaric acid (90mM), 2ml Tris 

(1M, pH 8.5), 17.7ml H2O. 

 

ECL Solution 2; 12 µl  H2O2 (30%), 2ml Tris (1M, pH 8.5), 17.7ml H2O 
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Chapter Three:  

 

          Cloning X.laevis SLC24A5 

 

 

3.1 Background  

 

As discussed earlier, SLC24A5 was first found as the gene responsible for the 

golden hypopigmented phenotype seen in zebrafish (Lamason et al., 2005).  

Human SLC24A5 carries a non synonymous SNP which correlates with lighter 

skin populations. 

Due to its significant role in human skin pigmentation, SLC24A5 is of interest to 

the large international household product company Unilever.  Here they have 

worked with SLC24A5 for over 6 years and collaborate with several labs.  This 

project was developed to provide an in vivo dimension to their research.  The 

Unilever team have analysed the intracellular expression of SLC24A5 and 

demonstrated its function as an ion exchanger in cell culture (Ginger et al., 

2008).  Unilever also conducted a genomewide association study of skin 

pigmentation, this included analysis of more than 1.6 million SNP’s in a South 

Asian population, where they found that polymorphisms in SLC24A5, SLC45A2 

and tyrosinase account for a large proportion of the natural variation of human 

skin pigmentation (Stokowski et al., 2007). 

 

3.2 Introduction 

 

The genome of X.laevis has not yet been sequenced.  This is partly due to the 

pseudotetraploidy of the species.  Some genes and expressed sequence tags 

have been published, but it is difficult to obtain some sequences of interest.   

X.tropicalis (Xenopus tropicalis) is more commonly used for genetic studies and 

does now have a published genome sequence (Hellsten et al., 2010).   

However, this was not available at the start of this project. 

 

No previous work has been conducted on X.laevis SLC24A5; as such no 

sequence data was available.  Therefore bioinfomatical approaches were 

employed to investigate the sequence information available from other species.  
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This included Ensembl and GenBank searches.  The human and zebrafish 

sequence have been well characterised (Lamason et al., 2005), the mouse 

sequence was also found (Vogel et al., 2008), but of particular use was the 

X.tropicalis sequence, which was found in Ensembl.  From this sequence 

primers were designed for PCR to be used with X.laevis cDNA.  Alignment 

analysis using DNAstar software revealed approximately 68% similarity in the 

protein sequence across the different species (figure 24).  

 

The pseudotetraploidy of X.laevis complicates the process of isolating a gene of 

interest by PCR, as there may be more than one paralog of the gene.  Although 

primers were designed from highly conserved regions of the gene in other 

species, this is no guarantee that they will work with the X.laevis template.  Thus 

a considerable amount of optimisation was required to yield even a fragment of 

X.laevis SLC24A5.  Eventually RACE PCR was utilised to identify the 5’ and 3’ 

extremities of the sequence. Successful RACE PCR negated the need to screen 

a cDNA library. Template cDNA generated from stage 38 (Nieuwkoop and 

Faber, 1994) tadpoles was used for all PCR analyses as at this stage the 

tadpoles have developed their characteristic pigment pattern. 

 

RACE PCR is based on oligo-capping and RNA-ligase mediated (RLM) 

techniques (Fehr et al., 1999).   These methods involve replacing the cap 

structure of mRNA with a predefined oligonucleotide to label this region 

(Maruyama and Sugano, 1994) and using T4 RNA ligase to join endogenous 

RNA to a predefined ribonucleotide sequence respectively (Clepet et al., 2004; 

Volloch et al., 1994).  In the RACE method used here unknown regions of DNA 

are amplified between primers in the known sequence and within ‘tags’ added to 

the 5’ or 3’ ends (Scotto-Lavino et al., 2006).   
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3.3 Results 

 

In order to functionally characterise SLC24A5 in X.laevis we need the nucleotide 

sequence.  Bioinfomatic searches using the NCBI BLAST and Ensembl 

programmes identified two transcripts for X.tropicalis, encoding 503 and 555 

amino acid peptides.  Figure 24 shows an alignment of these sequences with 

human, mouse and zebrafish SLC24A5.  The transcript encoding a 555 amino 

acid peptide appeared to have extra sequence in the middle which is not 

homologous to any of the other species; therefore this sequence was not used 

for further analyses. 

 

Several PCR primers were designed from the X.tropicalis 503 sequence 

(appendix).  Primer3 software was used to assist primer design, factors such as; 

length, AT:GC content, annealing temperature and sequence repeats were 

considered to ensure optimum performance of the primers. The primers were 

tested and optimised on cDNA synthesised from X.tropicalis stage 38 tadpoles 

(kind gift from Lyle Zimmerman).   
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10 20 30 40 50

M Q T K G G Q T W A R R - - - - - - - - A L L L G I L W A T A H L P L S G T S L P - - - - Q R L P R1 HS
M R T K W G P T W T R R - - - - - - - - V L L L G I F W V S A Y L P V R G V S L P - - - - P R L P R1 MM
M R T D V F L Q R R K R R D V L L S I I A L L L L I F A I V H L V F C A G L S F Q G S S S A R V R R1 ZF
R K T K M C T C M T F T - - - - - - - - L C L L S V F S Y T S I V P L L I L D C P - - - T R N T H A1 XT 503
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 XT 555

60 70 80 90 100

A T G N S T Q C V I S P S S E F P E G F F T R Q E R R D G G I I I Y F L I I V Y M F M A I S I V C D39 HS
A T G N S T Q C A V S P A S E F P E G F F T K Q E S T D G G I V I Y F L I I L Y M C M A I S I V C D39 MM
D L E N A S E C V Q P Q S S E F P E G F F T V Q E R K D G G I L I Y F M I I F Y M L L S V S I V C D51 ZF
S S E N E T L C I A S P S S E F P E D F F T E Q E R K Q G G L I I H F L I I L Y M F L A V A I V C E40 XT 503
- L E N E T L C I A S P S S E F P E D F F T E Q E R K Q G G L I I H F L I I L Y M F L A V A I V C E1 XT 555

110 120 130 140 150

E Y F L P S L E I I S E S L G L S Q D V A G T T F M A A G S S A P E L V T A F L G V F I T K G D I G89 HS
K Y F L P S L E I I S D S L G L S Q D V A G A T F M A A G S S A P E L V T A F L G V F I T K G D I G89 MM
E Y F L P S L E V I S E R L G L S Q D V A G A T F M A A G S S A P E L V T A F L G V F V T K G D I G101 ZF
S Y F I P S L E V I S E R L G L S Q D V A G A T F M A I G S S A P E F V T V F L G V F V T K G D I G90 XT 503
S Y F I P S L E V I S E R L G L S Q D V A G A T F M A I G S S A P E F V T V F L G V F V T K G D I G50 XT 555

160 170 180 190 200

I S T I L G S A I Y N L L G I C A A C G L L S N T V S T L S C W P L F R D C A A Y T I S A A A V L G139 HS
I S T I L G S A I Y N L L G I C A A C G L L S N M V S T L S C W P L F R D C A V Y A V S V G A V F G139 MM
V S T I M G S A V Y N L L C I C A A C G L L S S A V G R L S C W P L F R D C V A Y A I S V A A V I A151 ZF
V S T I V G S A V Y N L L G I C A A C C L L S L S V S R L T C W P L F R D C V A Y A I S V A A V I A140 XT 503
V S T I V G S A V Y N L L G I C A A C C L L S L S L - - L Y M L K V W R - - - - Y V C P W M Y F S T100 XT 555

210 220 230 240 250

I I Y D N Q V Y W Y E G A L L L L I Y G L Y V L V L C F D I K I N Q Y I I K K C S P C C A C L A K A189 HS
I I F D N R I Y W Y E G A G L L L I Y G L Y V L L L C F D T T I S R H V M K T C S P C C P C L A R A189 MM
I I S D N R V Y W Y D G A C L L L V Y G V Y V A V L C F D L R I S E Y V M Q R F S P C C W C L K P R201 ZF
I T F D N R I Y W Y E S A S L I L I Y G I Y I V T M C F D I R I N Q Y I M R R F S P C C T C C R E A190 XT 503
I H W D - A W N R Y E S A S L I L I Y G I Y I V T M C F D I R I N Q Y I M R R F S P C C T C C R E A144 XT 555

260 270 280 290 300

M E - R S E Q Q P L M G W E D E G Q P F I R R Q S R T D S G I F Y E D S G Y S Q L S I S L H G L S Q239 HS
M E E R I E Q Q T L L G W E D E S Q L F I R R Q S R T D S G I F Q E D S G Y S Q L S L S L H G L S Q239 MM
D R D S G E Q Q P L V G W S D D S S L R V Q R R S R N D S G I F Q D D S G Y S H L S L S L H G L N E251 ZF
M V G N T E H E P L L G W K E D S L P V I R R H S R S D S G I F Q E E S D Y S Q L S I S L S G L K E240 XT 503
M V G N T E H E P L L G W K E D S L P V I R R H S R S D S G I F Q E E S D Y S Q L S I S L S G L K E193 XT 555

310 320 330 340 350

V S E - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -288 HS
V S E - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -289 MM
I S D - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -301 ZF
S S N - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -290 XT 503
S S N S M Y Y Q T T D Q Y L I I T H K F P L S R R L I S P K C H P T G E N G N R G A A Y A I P P E I243 XT 555

360 370 380 390 400

- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -291 HS
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -292 MM
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -304 ZF
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -293 XT 503
Y I F T G G M A F R G D Y S P A N R E I C R G R L I S P C A R A L M V T G S H L Q L F C S H M F L S293 XT 555

410 420 430 440 450

- - D P P S V F N M P E A D L K R I F W V L S L P I I T L L F L T T P D C R K K F W K N Y F V I T F291 HS
- - D P P S V F S M P E A D L R R I F W V L S L P I I T L L A L T T P D C R R K F W K N Y F V I T F292 MM
- - E H K S V F S M P D H D L K R I L W V L S L P V S T L L F V S V P D C R R P F W K N F Y M L T F304 ZF
- - N P P S V F T M P E N D L K R I I W V L S L P I I T L L Y L T V P D C R R K R W K N L F I L T F293 XT 503
H S D P P S V F T M P E N D L K R I I W V L S L P I I T L L Y L T V P D C R R K R W K N L F I L T F343 XT 555

460 470 480 490 500

F M S A I W I S A F T Y I L V W M V T I T G E T L E I P D T V M G L T L L A A G T S I P D T I A S V339 HS
F M S A L W I S A F T Y I L V W M V T V T G E T L G I P D T V M G L T L L A A G T S I P D T V T S V340 MM
L M S A V W I S A F T Y V L V W M V T I V G E T L G I P D T V M G M T L L A A G T S I P D T V A S V352 ZF
L M S A V W I S A V T Y I L V W M V T V V G E T L S I P D T V M G L T L L A A G T S I P D T V A S V341 XT 503
L M S A V W I S A V T Y I L V W M V T V V G E T L S I P D T V M G L T L L A A G T S I P D T V A S V393 XT 555

510 520 530 540 550

L V A R K - G K G D M A M S N I V G S N V F D M L C L G I P W F I K T A F I N G S A P A E V N S R G389 HS
L V A R K - G K G D M A I S N I V G S N V F D M L C L G L P W F I K T A F T N A S A P I E V N S K G390 MM
M V A R E - G K S D M A M S N I V G S N V F D M L C L G L P W F I Q T V F V D V G S P V E V N S S G402 ZF
L V A R E A G K G D M A M S N I V G S N V F D M L C L G V P W F I K T V F V D R S A P V E V N S S G391 XT 503
L V A R E A G K G D M A M S N I V G S N V F D M L C L G V P W F I K T V F V D R S A P V E V N S S G443 XT 555

560 570 580 590 600

L T Y I T I S L N I S I I F L F L A V H F N G W K L D R K L G I V C L L S Y L G L A T L S V L Y E L438 HS
L T Y I T I S L N I S I L F L F L A V H F N G W K L D R K L G V V C L V L Y L G L A T L S V L Y E I439 MM
L V F M S C T L L L S I I F L F L A V H I N G W K L N W K L G L V C L A C Y I L F A T L S I L Y E L451 ZF
I T Y T T I S L L F S I L F I F V A I H L N G W K L D K K L G V M C L L M Y L L F V T L S I L Y E L441 XT 503
I T Y T T I S L L F S I L F I F V A I H L N G W K L D K K L G V M C L L M Y L L F V T L S I L Y E L493 XT 555

610

G I I G N N K I R G C G G                                      488 HS
G I I G N N R I R G C G V                                      489 MM
G I I G N N P I R S C R D                                      501 ZF
G I I G N T A I V M C G D                                      491 XT 503
G I I G N T A I V M C G D                                      543 XT 555

 

 
Figure 24 
ClustalW alignment using DNAstar, of the X.tropicalis (39854) SLC24A5 protein 
sequences with human (283652), mouse (317759) and zebrafish (570312) 
reveals close similarity of 68.7% over the protein sequence across the selected 
species.  GenBank numbers in brackets.. 
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3.3.1. Initial PCR’s yield a fragment of X.laevis SLC24A5 

 

Primers XT I.P1F and XT I.P1R yielded a 400bp fragment of X.tropicalis 

SLC24A5 (figure 25A). XT I.P1F/I.P1R and XT I.P2F/I.P2R primers were then 

used on stage 38 X.laevis cDNA which yielded two separate overlapping 400bp 

fragments (figure 25B and C).  The outer primers of these fragments (I.P1F and 

I.P2R) were then successfully used to create an 800bp fragment of SLC24A5 in 

X.laevis (figure 25 D).  This was cloned into pGEM T easy and sequenced.  The 

alignment data showed approximately 70% similarity of X.laevis SLC24A5 

compared with human, mouse, zebrafish and X.tropicalis (figure 26). 

 

  
 

Figure 25  
PCR results 
A, PCR using primers IP1F/IP1R over a temperature gradient yields a 400bp 
fragment of X.tropicalis, lane 1 54°C, lane 2 56°C, lane 3 58°C, lane 4 60° C, 
lane 5 ODC control.  The product in lane 4 was cloned and sequenced. 
B, PCR using the same primers and temperature gradient yields a 400bp 
fragment of X.laevis SLC24A5.  Lanes 1-4 H4 controls, lane 1 50°C, lane  2 
53°C, lane 3 57°C, lane 4 60°C.  Lanes 5-8 primers IP1F/IP1R, lane 5 50°C, 
lane 6 53°C, lane 7 57°C, lane 8 60°C.  The product  in lane 8 was cloned and 
sequenced. 
C, PCR at 60°C with primers IP2F/IP2R yields a seco nd 400bp fragment of 
X.laevis SLC24A5.  This product was cloned and sequenced; it is just slightly 
downstream of the first 400bp fragment. 
D, combinations of different primers were used to try to obtain further X.laevis 
sequence of SLC24A5.  Lane 1 IP1F/SLCR, lane 2 SLCF/SLCR, lane 3 
SLCF/IP1R, lane 4 IP2F/SLCR, lane 5 SLCF/IP2R, lane 6 IP1F/IP2R.  Only lane 
6 worked, this 800bp product was cloned and sequenced; this is effectively the 
two previous 400bp fragments together. 
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Figure 26 
Alignment of the 800bp X.laevis sequence, showing the missing the 5’ and 3’ 
sequence.  
 
 
 
 
 
 
 

10 20 30 40 50

- - - - - - - - M Q T K G G Q T W A R R A L L L G I L W A T A H L P L S G T S L P - - - Q R L P R A1 HS
- - - - - - - - M R T K W G P T W T R R V L L L G I F W V S A Y L P V R G V S L P - - - P R L P R A1 MM
M R T D V F L Q R R K R R D V L L S I I A L L L L I F A I V H L V F C A G L S F Q G S S S A R V R R1 ZF
- - - - - - - - R K T K M C T C M T F T L C L L S V F S Y T S I V P L L I L D C P - - - T R N T H A1 XT 503
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 Xl 800bp

60 70 80 90 100

T G - N S T Q C V I S P S S E F P E G F F T R Q E R R D G G I I I Y F L I I V Y M F M A I S I V C D40 HS
T G - N S T Q C A V S P A S E F P E G F F T K Q E S T D G G I V I Y F L I I L Y M C M A I S I V C D40 MM
D L E N A S E C V Q P Q S S E F P E G F F T V Q E R K D G G I L I Y F M I I F Y M L L S V S I V C D51 ZF
S S E N E T L C I A S P S S E F P E D F F T E Q E R K Q G G L I I H F L I I L Y M F L A V A I V C E40 XT 503
- - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - -1 Xl 800bp

110 120 130 140 150

E Y F L P S L E I I S E S L G L S Q D V A G T T F M A A G S S A P E L V T A F L G V F I T K G D I G89 HS
K Y F L P S L E I I S D S L G L S Q D V A G A T F M A A G S S A P E L V T A F L G V F I T K G D I G89 MM
E Y F L P S L E V I S E R L G L S Q D V A G A T F M A A G S S A P E L V T A F L G V F V T K G D I G101 ZF
S Y F I P S L E V I S E R L G L S Q D V A G A T F M A I G S S A P E F V T V F L G V F V T K G D I G90 XT 503
- - - - - - - - - - - - - - - - - - - - - - - - F M A I G S S A P E F V T V F L G V F V T K G D I G1 Xl 800bp

160 170 180 190 200

I S T I L G S A I Y N L L G I C A A C G L L S N T V S T L S C W P L F R D C A A Y T I S A A A V L G139 HS
I S T I L G S A I Y N L L G I C A A C G L L S N M V S T L S C W P L F R D C A V Y A V S V G A V F G139 MM
V S T I M G S A V Y N L L C I C A A C G L L S S A V G R L S C W P L F R D C V A Y A I S V A A V I A151 ZF
V S T I V G S A V Y N L L G I C A A C C L L S L S V S R L T C W P L F R D C V A Y A I S V A A V I A140 XT 503
V S T I V G S A V Y N L L G I C A A C C L L S S S I S R L T C W P L F R D C V A Y A I S V A A V I A27 Xl 800bp

210 220 230 240 250

I I Y D N Q V Y W Y E G A L L L L I Y G L Y V L V L C F D I K I N Q Y I I K K C S P C C A C L A K A189 HS
I I F D N R I Y W Y E G A G L L L I Y G L Y V L L L C F D T T I S R H V M K T C S P C C P C L A R A189 MM
I I S D N R V Y W Y D G A C L L L V Y G V Y V A V L C F D L R I S E Y V M Q R F S P C C W C L K P R201 ZF
I T F D N R I Y W Y E S A S L I L I Y G I Y I V T M C F D I R I N Q Y I M R R F S P C C T C C R E A190 XT 503
I T F D N R I Y W Y E S A S L L L I Y G I Y I V I M C F D I K I S K Y V V R R F S P C C A C C A E A77 Xl 800bp

260 270 280 290 300

M E - R S E Q Q P L M G W E D E G Q P F I R R Q S R T D S G I F Y E D S G Y S Q L S I S L H G L S Q239 HS
M E E R I E Q Q T L L G W E D E S Q L F I R R Q S R T D S G I F Q E D S G Y S Q L S L S L H G L S Q239 MM
D R D S G E Q Q P L V G W S D D S S L R V Q R R S R N D S G I F Q D D S G Y S H L S L S L H G L N E251 ZF
M V G N T E H E P L L G W K E D S L P V I R R H S R S D S G I F Q E E S D Y S Q L S I S L S G L K E240 XT 503
M V E N T E H A P L L G W K E E S L P V I R R H S R S D S G I F Q E D S D Y S Q L S I S L S G L K E127 Xl 800bp

310 320 330 340 350

V S E D P P S V F N M P E A D L K R I F W V L S L P I I T L L F L T T P D C R K K F W K N Y F V I T288 HS
V S E D P P S V F S M P E A D L R R I F W V L S L P I I T L L A L T T P D C R R K F W K N Y F V I T289 MM
I S D E H K S V F S M P D H D L K R I L W V L S L P V S T L L F V S V P D C R R P F W K N F Y M L T301 ZF
S S N N P P S V F T M P E N D L K R I I W V L S L P I I T L L Y L T V P D C R R K R W K N L F I L T290 XT 503
P S N N P P S V F K M P E N D L R R I I W V L S L P I I T L F Y L T V P D C R R K T W K K W F I L T177 Xl 800bp

360 370 380 390 400

F F M S A I W I S A F T Y I L V W M V T I T G E T L E I P D T V M G L T L L A A G T S I P D T I A S338 HS
F F M S A L W I S A F T Y I L V W M V T V T G E T L G I P D T V M G L T L L A A G T S I P D T V T S339 MM
F L M S A V W I S A F T Y V L V W M V T I V G E T L G I P D T V M G M T L L A A G T S I P D T V A S351 ZF
F L M S A V W I S A V T Y I L V W M V T V V G E T L S I P D T V M G L T L L A A G T S I P D T V A S340 XT 503
F V M S A V W I S A V T Y I L V W M V T I V G E T L N I P D T V M G L T L L A A G T N H       227 Xl 800bp

410 420 430 440 450

V L V A R K - G K G D M A M S N I V G S N V F D M L C L G I P W F I K T A F I N G S A P A E V N S R388 HS
V L V A R K - G K G D M A I S N I V G S N V F D M L C L G L P W F I K T A F T N A S A P I E V N S K389 MM
V M V A R E - G K S D M A M S N I V G S N V F D M L C L G L P W F I Q T V F V D V G S P V E V N S S401 ZF
V L V A R E A G K G D M A M S N I V G S N V F D M L C L G V P W F I K T V F V D R S A P V E V N S S390 XT 503
                                                  270 Xl 800bp

460 470 480 490 500

G L T Y I T I S L N I S I I F L F L A V H F N G W K L D R K L G I V C L L S Y L G L A T L S V L Y E437 HS
G L T Y I T I S L N I S I L F L F L A V H F N G W K L D R K L G V V C L V L Y L G L A T L S V L Y E438 MM
G L V F M S C T L L L S I I F L F L A V H I N G W K L N W K L G L V C L A C Y I L F A T L S I L Y E450 ZF
G I T Y T T I S L L F S I L F I F V A I H L N G W K L D K K L G V M C L L M Y L L F V T L S I L Y E440 XT 503
                                                  270 Xl 800bp

510

L G I I G N N K I R G C G G                                     487 HS
I G I I G N N R I R G C G V                                     488 MM
L G I I G N N P I R S C R D                                     500 ZF
L G I I G N T A I V M C G D                                     490 XT 503
                                                  270 Xl 800bp
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3.3.2 5’ RACE 

 

The 800bp fragment of X laevis SLC24A5 initially cloned was an internal 

fragment providing no sequence data for the 5’ or 3’ ends (figure 26).  5’ 

sequence is crucial for designing a morpholino, so other primers were designed 

and used to try to obtain the extremities of the sequence, however despite 

numerous PCR’s this sequence was not found, so RACE (rapid amplification of 

cDNA ends) was used.  RACE PCR is a technique frequently used to facilitate 

the isolation of 5’ and 3’ end sequence data.   

 

To perform 5’ RACE, total RNA was obtained from stage 38 X.laevis embryos.  

The RNA is treated as described in materials and methods to remove phosphate 

groups and the cap structure.  After these reactions the specific oligo, provided 

in the kit, can be ligated, using T4 ligase, to the 5’ end, the oligo will only attach 

here as it needs the free phosphate group left after the de-capping reaction.  

The oligo contains the priming site for the RACE PCR primers also provided in 

the kit, this ensures polymerisation will only commence at the 5’ end. In 

conjunction with a 3’ gene specific primer (RACE 1*)  designed from the 800bp 

sequence the 5’ end was amplified, (figure 27).  

 

  

 

 

Figure 27 
5’ RACE PCR product  
This 5’ product was obtained using GeneRacer 5’ and RACE1* primers.  This 
fragment is approximately 600bp, indicating ~480bp of new 5’ sequence is 
present; this correlates with the length of 5’ sequence of other species seen in 
figure 24. 
 

500bp 
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This 5’ RACE product was cloned and sequenced and showed good similarity to 

human, mouse, zebrafish and X.tropicalis sequence (data not shown). 

3.3.3. 3’ RACE  

 

3’ RACE works by the same principle as 5’ RACE, except with 3’ RACE the 

endogenous polyA tail is used as a ligation site for the oligo provided.  Again 

total RNA from stage 38 X.laevis embryos was used.  The oligo contains the 

adapter primer sequence, which was used with 3’RACE 3 primer to yield the 3’ 

product, (figure 28). 

 

 

Figure 28 
3’RACE PCR product.   
The 3’ fragment is approximately 600bp, as expected when looking at the length 
of SLC24A5 from other species. 
 
This product was also cloned and sequenced, the results of which suggest this 

is most likely SLC24A5 (data not shown).  

 

 

 

 

 

 

 

 

 

 

1kb 
 
 
 
 
 
 
 
 
500bp 



  

 101 

 

 

3.3.4. Cloning the full length X.laevis SLC24A5 

 

The 5’ and 3’ ends were now obtained, both overlapping into the previously 

cloned 800bp fragment, to obtain the full length sequence new primers were 

designed from the new 5’ and 3’ sequence, after some optimisation these 

yielded the full length X.laevis SLC24A5 1.5kb in length (figure 29). 

 

 

 

 

Figure 29 
PCR to obtain the full length SLC24A5 
A, primers FL5’* and FL3’* were used to obtain the full 1.5kb length SLC24A5.  
PCR was conducted over a temperature gradient, lane 1 58°C, lane 2 60°C, 
lane 3 62°C, lane 4 64°C, lane 5 66°C, lane 6 68°C.   Only lane 3 and 5 gave a 
product which was cloned and sequenced. B, PCR product from A, lane 5, 
before gel extraction and subsequent cloning. 
 

 

When analysing the sequence data following cloning of the full length product a 

frameshift was found.  Further PCR analysis was conducted over this area to 

see if it was just a PCR error or if it potentially could be the other allele of 

SLC24A5.  The PCR results in figure 30 B shows that the frameshift is not 
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present in the PCR over this area and thus it was most likely a PCR error in the 

original PCR. This was found to be due to a nucleotide insertion (green arrow in 

figure 30 A). 

 

 

 

      A 

 

     B 

 

 

Figure 30 
PCR analysis was conducted over a frameshift seen in sequencing data.  A and 
B, the open reading frame is indicated by the red box.  A sequencing data from 
full length clone showing a frameshift.  B, sequence data following PCR over the 
frameshift region showing no frameshift. 
 

 

A summary of the PCR/cloning process is presented in figure 31.  Internal 

primers were used to obtain internal fragments of the gene, RACE PCR was 

then used to obtain the full length gene. 
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ii

iii
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B
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3’ RACE 3

i

ii  

 

 

Figure 31 
Schematic summary of PCR strategy. 
Ai, primers (IP1F, IP1R, IP2F and IP2R) were designed from the full length 
X,tropicalis SLC24A5 sequence.  Aii, these primers yielded two 400bp 
fragments of X,tropicalis SLC24A5, which were then also generated from 
X.laevis.  Aiii the outer primers (IP1F and IP2R) of these two fragments yielded 
an 800bp fragment of X.laevis SLC24A5. 
B, RACE PCR was used to obtain the 5’ and 3’ missing sequence. Bi, for RACE 
internal primers (RACE1* and 3’RACE3) were designed from the 800bp 
fragment.  Bii, these primers were used in conjunction with the RACE kit primers 
(GeneRacer 5’ and AUAP) to generate the full length sequence. 
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Once the full length gene was cloned and sequenced it was compared to the 

sequence data obtained from cloning the individual fragments of SLC24A5, 

which aligned at ~100% similarity.  The full length sequence was also compared 

to the human and other species sequence, which revealed 64-84% similarity (as 

shown in figure 31).  Also when used as the query sequence in a BLAST search 

X.laevis SLC24A5 protein sequence returns human SLC24A5, again reassuring 

that the cloned sequence is SLC24A5.  When assembled on a phylogenetic tree 

with other SLC24 proteins from other species, it is clear that the sequence we 

have for X.laevis SLC24A5 is closer to SLC24A5 than any other SLC24 proteins 

and X.laevis SLC24A5 is most closely related to X.tropicalis SLC24A5 (figure 

32).  

 

A 

 

B 

Nucleotide Substitutions (x100)
0

96.5

102030405060708090

Xl SLC24A5
xt slc24a5 nuc 
zf slc24a5 nuc
hs slc24a5 nuc
mm slc24a5 nuc
hs slc24a1 nuc
mm slc24a1 nuc
hs slc24a2 nuc
mm slc24a2 nuc
hs slc24a3 nuc
mm slc24a3 nuc
zf slc24a3 nuc
hs slc24a4 nuc
mm slc24a4 nuc
zf slc24a4 nuc
xt slc24a4 nuc 

 

 

 
 
Figure 32 
A, Sequence distances between full length X.laevis SLC24A5 and other species 
SLC24A5. B, Phylogenetic tree of SLC24A1, SLC24A2, SLC24A3, SLC24A4 and 
SLC24A5 across humans (hs), mouse (mm), zebrafish (zf), X. tropicalis (xt) and X.laevis 
(xl). 
 
  

Percent Identity

1 2 3 4 5
1 84.8 66.6 67.6 65.8 1 HS
2 17.0 66.1 66.5 65.7 2 MM

3 44.1 45.0 64.7 63.9 3 ZF
4 42.3 44.3 44.9 84.7 4 XT 503
5 45.5 45.7 47.9 16.7 5 XL full length

1 2 3 4 5

D
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10 20 30 40 50

- - - - - - - - - - - - - - - - - - - - - M Q T K G G Q T W A R R A L L L G I L W A T A H L P L S G1 HS
- - - - - - - - - - - - - - - - - - - - - M R T K W G P T W T R R V L L L G I F W V S A Y L P V R G1 MM
- - - - - - - - - - - - - M R T D V F L Q R R K R R D V L L S I I A L L L L I F A I V H L V F C A G1 ZF
- - - - - - - - - - - - - - - - - - - - - R K T K M C T C M T F T L C L L S V F S Y T S I V P L L I1 XT 503
M E K G S V A L N V G R R P F G K K R L P C R A P L G S F A L F L I V C G T V Y L V N Q V A T T L V1 XL full length

60 70 80 90 100

T S L - - - - P Q R L P R A T G N S T Q C V I S P S S E F P E G F F T R Q E R R D G G I I I Y F L I30 HS
V S L - - - - P P R L P R A T G N S T Q C A V S P A S E F P E G F F T K Q E S T D G G I V I Y F L I30 MM
L S F Q G S S S A R V R R D L E N A S E C V Q P Q S S E F P E G F F T V Q E R K D G G I L I Y F M I38 ZF
L D C P - - - T R N T H A S S E N E T L C I A S P S S E F P E D F F T E Q E R K Q G G L I I H F L I30 XT 503
V R G - - - - T Q R I R R D I E N E T L C I A S P S S E F P E D F F T E Q E R K Q G G L I I H F L V51 XL full length

110 120 130 140 150

I V Y M F M A I S I V C D E Y F L P S L E I I S E S L G L S Q D V A G T T F M A A G S S A P E L V T76 HS
I L Y M C M A I S I V C D K Y F L P S L E I I S D S L G L S Q D V A G A T F M A A G S S A P E L V T76 MM
I F Y M L L S V S I V C D E Y F L P S L E V I S E R L G L S Q D V A G A T F M A A G S S A P E L V T88 ZF
I L Y M F L A V A I V C E S Y F I P S L E V I S E R L G L S Q D V A G A T F M A I G S S A P E F V T77 XT 503
I L Y M F L A V S V V C E Y Y F I P S L E V I S E R L G L S Q D V A G A T F M A I G S S A P E F V T97 XL full length

160 170 180 190 200

A F L G V F I T K G D I G I S T I L G S A I Y N L L G I C A A C G L L S N T V S T L S C W P L F R D126 HS
A F L G V F I T K G D I G I S T I L G S A I Y N L L G I C A A C G L L S N M V S T L S C W P L F R D126 MM
A F L G V F V T K G D I G V S T I M G S A V Y N L L C I C A A C G L L S S A V G R L S C W P L F R D138 ZF
V F L G V F V T K G D I G V S T I V G S A V Y N L L G I C A A C C L L S L S V S R L T C W P L F R D127 XT 503
V F L G V F V T K G D I G V S T I V G S A V Y N L L G I R A A C C L L S S S I S R L T C W P L F R D147 XL full length

210 220 230 240 250

C A A Y T I S A A A V L G I I Y D N Q V Y W Y E G A L L L L I Y G L Y V L V L C F D I K I N Q Y I I176 HS
C A V Y A V S V G A V F G I I F D N R I Y W Y E G A G L L L I Y G L Y V L L L C F D T T I S R H V M176 MM
C V A Y A I S V A A V I A I I S D N R V Y W Y D G A C L L L V Y G V Y V A V L C F D L R I S E Y V M188 ZF
C V A Y A I S V A A V I A I T F D N R I Y W Y E S A S L I L I Y G I Y I V T M C F D I R I N Q Y I M177 XT 503
C V A Y A I S V A A V I A I T F D N R I Y W Y E S A S L L L I Y G I Y I V I M C F D I K I S K Y V V197 XL full length

260 270 280 290 300

K K C S P C C A C L A K A M E - R S E Q Q P L M G W E D E G Q P F I R R Q S R T D S G I F Y E D S G226 HS
K T C S P C C P C L A R A M E E R I E Q Q T L L G W E D E S Q L F I R R Q S R T D S G I F Q E D S G226 MM
Q R F S P C C W C L K P R D R D S G E Q Q P L V G W S D D S S L R V Q R R S R N D S G I F Q D D S G238 ZF
R R F S P C C T C C R E A M V G N T E H E P L L G W K E D S L P V I R R H S R S D S G I F Q E E S D227 XT 503
R R F S P C C A C C A E A M V E N T E H A P L L G W K E E S L P V I R R H S R S D S G I F Q E D S D247 XL full length

310 320 330 340 350

Y S Q L S I S L H G L S Q V S E D P P S V F N M P E A D L K R I F W V L S L P I I T L L F L T T P D275 HS
Y S Q L S L S L H G L S Q V S E D P P S V F S M P E A D L R R I F W V L S L P I I T L L A L T T P D276 MM
Y S H L S L S L H G L N E I S D E H K S V F S M P D H D L K R I L W V L S L P V S T L L F V S V P D288 ZF
Y S Q L S I S L S G L K E S S N N P P S V F T M P E N D L K R I I W V L S L P I I T L L Y L T V P D277 XT 503
Y S Q L S I S L S G L K E P S N N P P S V F K M P E N D L R R I I W V L S L P I I T L F Y L T V P D297 XL full length

360 370 380 390 400

C R K K F W K N Y F V I T F F M S A I W I S A F T Y I L V W M V T I T G E T L E I P D T V M G L T L325 HS
C R R K F W K N Y F V I T F F M S A L W I S A F T Y I L V W M V T V T G E T L G I P D T V M G L T L326 MM
C R R P F W K N F Y M L T F L M S A V W I S A F T Y V L V W M V T I V G E T L G I P D T V M G M T L338 ZF
C R R K R W K N L F I L T F L M S A V W I S A V T Y I L V W M V T V V G E T L S I P D T V M G L T L327 XT 503
C R R K T W K K W F I L T F V M S A V W I S A V T Y I L V W M V T I V G E T L N I P D T V M G L T L347 XL full length

410 420 430 440 450

L A A G T S I P D T I A S V L V A R K - G K G D M A M S N I V G S N V F D M L C L G I P W F I K T A375 HS
L A A G T S I P D T V T S V L V A R K - G K G D M A I S N I V G S N V F D M L C L G L P W F I K T A376 MM
L A A G T S I P D T V A S V M V A R E - G K S D M A M S N I V G S N V F D M L C L G L P W F I Q T V388 ZF
L A A G T S I P D T V A S V L V A R E A G K G D M A M S N I V G S N V F D M L C L G V P W F I K T V377 XT 503
L A A G T S I P D T V A S V I V A R E - G K G D M A M S N I V G S N V F D M L C L G V P W F I K T V397 XL full length

460 470 480 490 500

F I N G S A P A E V N S R G L T Y I T I S L N I S I I F L F L A V H F N G W K L D R K L G I V C L L424 HS
F T N A S A P I E V N S K G L T Y I T I S L N I S I L F L F L A V H F N G W K L D R K L G V V C L V425 MM
F V D V G S P V E V N S S G L V F M S C T L L L S I I F L F L A V H I N G W K L N W K L G L V C L A437 ZF
F V D R S A P V E V N S S G I T Y T T I S L L F S I L F I F V A I H L N G W K L D K K L G V M C L L427 XT 503
F V D R S S P V E V N S S G I T Y T T I S L L F S I M F I F V A I H L N G W K L D K K L G V I C L F446 XL full length

510 520

S Y L G L A T L S V L Y E L G I I G N N K I R G C G G                        474 HS
L Y L G L A T L S V L Y E I G I I G N N R I R G C G V                        475 MM
C Y I L F A T L S I L Y E L G I I G N N P I R S C R D                        487 ZF
M Y L L F V T L S I L Y E L G I I G N T A I V M C G D                        477 XT 503
M Y L V F V T L S I L Y E L G I I G N T P M V L C G D .                       496 XL full length

 
 
Figure 33 
Alignment of newly cloned X.laevis SLC24A5.  
Clustal W (DNAstar) was used to align the full length X.laevis SLC24A5 with 
SLC24A5 from human, mouse, zebrafish and X.tropicalis (amino acid 
sequences were used).  Overall similarity is good, average ~70% similarity 
between X.laevis and other species. The 5’ end and in the middle region show 
the least similarity.  The yellow star indicates the 111 position of the human 
sequence, which in X.laevis and other species is an A. 
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The phylogenetic tree in figure 32 represents how the SLC24 family members 

have diverged over time into their respective groups, but ultimately sharing a 

common ancestor.  X.laevis SLC24A5 is most closely related to X.tropicalis 

SLC24A5, showing less than 1000 nucleotide substitutions and then next closely 

related to SLC24A5 from other species.  This provides further confidence that 

the gene cloned here is indeed X.laevis SLC24A5. 

 

The newly cloned X.laevis SLC24A5 is 84.7% similar to the known X.tropicalis 

SLC24A5 sequence (at the protein level), this is 79% at the nucleotide level.  The 

high level of similarity seen here indicates this gene is well conserved between 

these species, but also they are sufficiently dissimilar to offer confidence that the 

new clone is indeed X.laevis and there has not been a mix up with X.tropicalis 

material in the lab, as was seen earlier in the cloning process.  The greatest 

region of divergence in the sequences is the 5’ area of X.laevis SLC24A5.  This 

did cause some concern, particularly as there is not a stop codon upstream of the 

start methionine, however further work using morpholinos targeted to this area 

have proved successful (see chapter five), thus suggesting this is the complete 

sequence. 

 

3.4. Discussion 

 

Using a combination of RT PCR and 5’ and 3’ RACE PCR we have cloned the 

full length open reading frame of X.laevis SLC24A5.   This is approximately 

1.5kb in length and encodes a protein of 523 amino acids. 

 

BLAST and alignment analysis of the sequencing results strongly suggest the 

PCR products generated here are X.laevis SLC24A5.  The sequence presented 

here also shows close similarity to the SLC24A5 sequence from other species, 

although there are some differences at the 5’ region between all species.  This 

region is thought to contain a cleavable signal peptide, it could be therefore that 

this region is not crucial to the function of the protein and thus displays less 

homology.      The high similarity revealed by the alignment in figure 33 suggests 

SLC24A5 is an evolutionary conserved gene.  Note at the equivalent 111 

position of the human sequence (indicated by a yellow star), an alanine residue 

is present, indicating X.laevis does not carry the ns-SNP observed in humans.  

This also seems to be true for mouse, zebrafish and X.tropicalis, as these other 
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species also carry the ancestral alanine residue. This residue is found in a highly 

conserved region of the protein. It would be of interest to explore the genome of 

the other species to determine if they also have a divergent SNP at this position 

and if this correlates with population changes in pigmentation patterns.   

 

As mentioned previously X.laevis is tetraploid, meaning there are 4 copies of 

chromosomes and thus potentially 4 copies of every gene.  This is thought to be 

caused by a genome duplication event 21-41 million years ago (Chain and 

Evans, 2006).   X.laevis has 36 chromosomes (Hughes and Hughes, 1993).  

Due to this it is not unusual to isolate more than one paralog of any one gene 

during identification experiments; however, here no such phenomenon was 

uncovered here.  Only one PCR product was found, although this did have a 

frameshift in the sequence, this was found to be a PCR error and not to 

represent the presence of the other paralog (figure 30). 

 

Closer analysis of the peptide sequence shows several features of the NCKX5 

protein.  In silico transmembrane domain predictions suggest 11 or 12 

transmembrane domains, the first of which is assumed to be the cleaved signal 

peptide, the others form clusters of 4 and 6 or 5 and 6 (depending on software 

used), both show a large cytosolic loop (figure 34).  This analysis is consistent 

with that of NCKX2 (Kinjo et al., 2003).  One of the potential transmembrane 

domains (figure 34 *) actually appears to be too short to cross the membrane.  It 

is possible that this region associates with the inside of the membrane, as has 

been proposed for NCKX2 (figure 55). 
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Figure 34 
Peptide sequence of X. laevis SLC24A5 showing predicted transmembrane 
domains (yellow) and the intracellular loop (green), as predicted by TMHMM, 
this differs slightly from the prediction by TMpred.  The bold enlarged A is the 
equivalent residue to position 111 of the human sequence.  Pink boxes indicate 
roughly where the alpha repeats are located, these are highly conserved regions 
between NCKX proteins and NCX proteins. 
 
 

 

Functional analysis of NCXK5 has been hindered by its intracellular localisation.  

Despite many efforts the protein cannot be targeted to the plasma membrane to 

facilitate functional analyses.  Massive over expression of human NCKX5 in 

insect high five cells has yielded the only functional data, although this showed 

much less activity compared with NCKX2, which does reside in the plasma 

membrane (figure 22). 

 

Once sequence data for X.laevis SLC24A5 was available expression studies 

could commence followed by knockdown analysis once the 5’ sequence was 

determined.  These experiments will be discussed next. 

 

 

 

 

 

 

* 



  

 109 

Chapter Four:  

 

Expression analysis  

 

 

4.1. Introduction 

 

In order to understand the function of any gene, it is essential to first determine 

its temporal and spatial expression pattern.  In developmental biology this is 

commonly done using Whole mount In Situ Hybridisation (WISH).  Here we use 

whole embryos at various stages of development, to determine at which stages 

expression of SLC24A5 can be detected.  This also shows the exact cells and 

tissues that express SLC24A5.   

 

In order to carry out WISH an RNA probe specific to the gene of interest must be 

generated.  The probe must be the antisense sequence to the mRNA of interest 

such that they will bind by complementary base pairing.  This is achieved by 

reverse transcribing the DNA sequence of the gene of interest.  Nucleotides are 

the building blocks for this process, a mixture of nucleotides including UTP 

labelled with digoxigenin (DIG) are added to the reaction.  DIG is one of several 

haptens isolated from plants.  Haptens have high immunospecificity, their readily 

available antibodies have high affinity, and thus they are amenable to many 

molecular applications.  Once generated the RNA probe is applied to the 

embryos, they are then treated with the anti-DIG antibody, following a series of 

washes (more details in materials and methods), the DIG labelled probe is 

detected by applying the substrate for an enzyme (typically alkaline phospatase) 

conjugated to the DIG antibody.  This causes a colour change reaction which 

allows visualisation of the expression of the gene of interest. 

 

RT PCR is another way of determining expression, although it only indicates the 

temporal pattern, but it does have the advantage of being semi quantitative. 
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4.2. Results 

 

4.2.1. Whole Mount In Situ Hybridisation (WISH) 

 

An RNA probe was generated from the 800bp fragment of X.laevis SLC24A5 

(figure 26).  This was used to detect expression of X.laevis SLC24A5 transcripts 

by whole mount in situ hybridisation, as described in materials and methods.  A 

probe to the melanophore marker DCT was also synthesised and used 

alongside SLC24A5 to compare melanophore expression, (figure 35).  Sense 

probes were also used as negative controls, no expression was seen with these 

(data not shown).  A variety of stages of X.laevis embryos were used to 

determine the temporal expression of SLC24A5 during the course of 

embryogenesis.  Albino embryos were used to give clearer background.  These 

are heterozygous for albinism; the fathers are pigmented, so they still have 

pigment cells that produce melanin at tadpole stages. As a control, the in situ 

was also performed on homozygous pigmented embryos which following in situ 

hybridisation were bleached (see materials and methods) to remove the melanin 

pigment, this revealed the same pigment pattern as seen in the albino embryos 

(data not shown). 

 

The expression pattern of SLC24A5 and DCT is shown in figure 35.  Expression 

of SLC24A5 was first seen at stage 25 (Nieuwkoop and Faber, 1994) in the 

neural crest cells (or dorsal neural  tube) and retinal pigmented epithelium 

(RPE).  Expression continues in the developing melanoblasts and mature 

melanophores in the lateral stripe and tail pigment pattern.  RPE expression also 

continues and increases, throughout development.  This expression is generally 

consistent with that seen with the DCT probe, suggesting this expression is most 

likely in the pigment cells.  However when comparing the expression patterns in 

figure 35B and F it looks like SLC24A5 is not expressed in migrating cells as 

DCT is.  This suggests SLC24A5 is expressed in differentiated melanophores. 
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Figure  35 
WISH analysis of SLC24A5 expression during X.laevis development. A, 
expression is first seen at st25 in the neural crest tissue and eye.  B,stage 30 
expression develops throughout the developing melanoblasts and further 
develops in the eye.  C, D, expression continues in melanogenic neural crest 
cells along the dorso-lateral aspects. E-H, the same expression pattern is 
observed for DCT a known melanophore marker.  RPE retinal pigmented 
epithelium, LP, lateral pigmentation, TP, tail pigmentation, arrow head in E 
points to neural crest cells, arrow heads in F point to migrating pigment cells.    
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To facilitate clearer observation of the in situ staining, some embryos 

were bleached following the in situ procedure.  This process removes the 

endogenous brown melanin pigment while leaving the purple/blue of the 

in situ unaffected, figure 36. 

 

  

 

Figure 36 
Following in situ hybridisation analysis of SLC24A5 expression, some older 
embryos were bleached to remove the pigment such that the blue staining of 
expression could be seen more clearly.  This shows the expression is strong in 
the pigment cells and is unaffected by the bleaching procedure.  A, SLC24A5 
stage 35, B, SLC24A5 stage 38, C, DCT stage 35, D, DCT stage 38. 
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4.2.2. Histological analysis  
 

To further investigate the expression pattern of SLC24A5 post hybridisation 

embryos were processed for cyrosectioning (figure 37).   

 

 

 

Figure 37 
Histological analyses of SLC24A5 in situ expression. 
Transverse sections through stage 38 tadpole following in situ for SLC24A5, (a) 
head and (b) body, locations of sections shown in C. 
 

 

Sectioning through the embryo reveals no further expression of SLC24A5 inside 

the embryo.  Expression is restricted to the RPE of the eye and lateral and head 

pigment cells.  Also again expression is restricted to stationery melanophores, 

indicating no expression in migrating cells 

 

 

 

A B 
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4.2.3. RT PCR 

 

Reverse transcription PCR was used to analyse the temporal expression pattern 

of SLC24A5, DCT was used as a melanogenic comparison.   SLC24A5 

expression is first seen at stage 28 and continues through to stage 38.  Stages 

between 20 and 28 were tested but no expression was seen, this is probably 

due to the small amount of PCR product loaded on the gel (5µl of a 25µl 

reaction), as expression was seen at stage 25 in the in situ and PCR should be 

more sensitive. A similar pattern is observed for DCT, however this is also 

expressed in earlier stages, this is thought to be maternal (figure 38). 

 

 

 

Figure 38 
RT PCR analysis of SLC24A5 expression. The cells used were X. laevis 
melanophores (kind gift from Vladimir Gelfand).  Histone H4 was used as a 
loading control. 
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4.3. Discussion 

 

To analyse the expression pattern of SLC24A5 in the developing embryo, whole 

mount in situ hybridisation analysis was performed.  An antisense RNA probe 

was generated from the 800bp fragment of SLC24A5; a sense probe was also 

made and used as a negative control (data not shown).  As expected SLC24A5 

expression is seen in the epidermal pigment cells and the RPE of the eye.  

Expression is first detected at stage 25, (earlier stages were analysed but no 

expression was seen, data not shown), in the melanocytes above the dorsal 

neural tube (figure 35 and 36) and becomes more intense as the embryo 

develops through stages 30 and onwards, as more pigment cells develop (figure 

35 and 36).  During this time expression is detected as the melanophores 

develop from the neural crest (figure 35 and 36) and is seen across the embryo 

in the lateral pigment stripe and pigmented areas of the tail (dorsal and ventral) 

(figure 35 and 36).  The dendritic structure of the melanophores is clear. The 

SLC24A5 expression pattern mirrors that of DCT, a known melanophore marker, 

strongly suggesting the SLC24A5 expression is indeed in the melanophores. 

The curling up of some embryos in figure 35 is an artefact of the WISH protocol.  

This expression pattern is consistent with that seen in zebrafish embryos (figure 

15), where both SLC24A5 and DCT are detected in the melanophores and RPE 

(Lamason et al., 2005).  No expression was detected in other tissues such as 

pancreas, heart and lung, as seen by Lamason et al (2005) in mouse. 

 

Cryosectioning of the embryos following WISH allows visualisation of any 

internal expression of SLC24A5.  As expected all SLC24A5 expression was 

found in the epidermal tissue and eye.  The sections clearly show high levels of 

expression in the eye, specifically the RPE.  Sections further along the anterior-

posterior axis show expression of SLC24A5 in the flank of the tadpole, this is the 

expression seen in the lateral strip on the whole animal (figure 37).  This 

confirms, unlike other SLC24 genes that SLC24A5 is not expressed in the brain 

or other organs, and that unusually for this protein family its expression is quite 

restricted.  Of the NCKX family, NCKX5 is the only protein expressed in non-

excitatory tissue i.e. the melanophores, with the exception of a report where 

NCKX was found in platelet cells (Kimura et al., 1993). 
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The temporal expression of SLC24A5 detected by RT PCR is consistent with 

that seen by in situ analysis.  Although the onset of expression detected by this 

method (RT PCR) was not until stage 28, this may be because so little of the 

gene is expressed at earlier stages it is not detectable in the volume of PCR 

visualised on the gel. Expression becomes stronger as the embryos get older 

which is consistent with the onset and increasing development of pigmentation 

across these stages.  The timing of SLC24A5 expression is consistent with that 

of the melanophore marker DCT, although DCT is also expressed at early 

stages; this is thought to be maternal transcript.  There also appears to be more 

DCT present than SLC24A5 at the later stages, and DCT comes on quite bold 

and remains constant, whereas SLC24A5 expression appears more gradually. 
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Chapter Five:  

 

Loss of Function Analysis  

 

 

 

5.1. Introduction  

 

To further investigate the role of any given gene it is common practice to 

knockdown the expression of the gene and analyse the resulting phenotype, 

from which inferences can be made as to the function of the protein encoded by 

the gene. 

In developmental biology morpholinos are used to repress the translation of a 

protein.  Morpholinos are antisense oligonucleotides.  They are non toxic 

synthetic nucleic acids which have a morpholine moiety (figure 39) in place of 

the ribose sugar group, this stabilises the oligo as well as making it more 

soluble.  The morpholino groups are held together by phosphoramidate 

linkages, these linkages are less susceptible to damage than phosphodiester 

bonds because they are non-ionic.  Also the morpholino backbone of the oligo is 

not recognised by any intracellular nucleases, therefore it is not degraded, and 

also does not initiate an immune response and related inflammation.  

Morpholinos can be designed to target either the ATG start codon to repress 

translation or a splice junction to interfere with normal mRNA splicing events.  

Morpholinos are generally 25 nucleotides in length and function by sterically 

blocking access to the transcript by molecular machinery needed for translation 

or splicing, thus inhibiting translation or splicing of the mRNA.  Complementary 

base pairing facilitates morpholino targeting; they also show greater specificity 

and efficiency than ribonucleotides (Eisen and Smith, 2008). 
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Figure 39 
Morpholino structure.  The morpholine moiety is shown in green these are joined 
by phosphorodiamidate linkages instead of phosphodiester linkages 
(GeneTools.com).  
 
 

Once the 5’ sequence of X.laevis SLC24A5 was known, a morpholino directed 

to the translational start site of this gene could be designed.  This was done by 

GeneTools who also provided the morpholino, as was a splice site targeting 

morpholino.  This is designed to inhibit splicing of the pre-mRNA such that the 

protein product should be truncated at the C terminal, this will be discussed in 

more detail below. 
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5.2. Results 

 

5.2.1. Morpholino knockdown of SLC24A5 

 

In order to confirm the ATG morpholino is indeed repressing translation of 

X.laevis SLC24A5 we carried out an in vitro translation (IVT) experiment.  This 

revealed that the ATG morpholino does prevent translation of the target gene, 

SLC24A5, figure 40. 

 

 

Figure 40 
IVT analysis of ATG morpholino efficacy 
Lanes 1 and 2 show the control luciferase is not affected by the morpholino.  
SLC24A5 protein expression is significantly reduced in the presence of the ATG 
morpholino, lanes 3 and 4.  MO, morpholino. 
 

X.laevis SLC24A5 was detected as a typical doublet band, of approximately 

30kDa (figure 40).  This is smaller than expected (40kDa by western analysis).  

This is possibly due to the in vitro environment in which the protein is translated, 

where post translational modification may differ.  Luciferase is approximately 

55kDa (figure 40), this is also slightly smaller than expected, 61kDa.   

 

 

 

 

 



  

 120 

The morpholino was delivered to the embryo by microinjection in a final volume 

of 20nl; several concentrations were tested to determine the optimal 

concentration (figure 44).  The target of microinjection was one cell at the two 

cell stage (figure 41a), although other more refined neural crest target sites 

(figure 41b) were tried, this proved to be the most effective and easiest to keep 

consistent.  Injection into 1 cell of 2 cells or 1/2 cells at 8, 16, or 32 cell stages 

gave the same results.  LacZ was co-injected to monitor targeting of injections 

(figure 42). 

 

 

                A                        B    

 

 

 

Figure 41 
Target of morpholino injection. 
A, 2 cell stage (~1.5hpf) X.laevis embryo, showing site of injection.  B, 32 cell 
stage (~4hpf) X.laevis embryo.  Historical fate mapping experiments have 
elucidated the fate of early blastomeres.  Here the origin of neural crest cells is 
shown; red indicates the blastomeres from which the majority of neural crest 
cells are derived, green represents those blastomeres which offer less of a 
contribution to neural crest and orange indicates those blastomere which make 
no contribution.  Ventral views, animal pole is at the top and vegetal pole is at 
the bottom, dorsal to the right and ventral to the left (www.Xenbase.com) 
(Bowes et al., 2008). 
 
 
The red blastomeres were injected with morpholino, however precision of these 

injections proved difficult to maintain as obtaining embryos where the correct 

blastomeres could be identified was difficult. 

 

Initially lacZ cRNA was injected alone into 1 cell at the 2 cell stage and analysed 

by detecting B-galactosidase activity at later stages by Red Gal staining (figure 

42).  This was to ensure targeting of the injections was accurate, as seen in 

figure 42, lacZ expression was only detected on the injected side of the embryo. 
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Figure 42 
Tadpoles following injection with LacZ in to 1 cell at the 2 cell stage.  The 
background red colour seen along the back of the non injected tadpole is simply 
the colour from the other side showing through as this area is transparent. 
 

By injecting just one cell at the two cell stage just one lateral half of the 

developing embryo is affected, leaving the other half as an internal negative 

control. The embryos subjected to morpholino injection were raised to stage 38, 

counted and scored visually for a reduced pigmentation phenotype.  Morpholino 

treatment resulted in a reduction in pigmentation.  Varying degrees of effect 

were observed so a scale was devised  to describe the different levels of 

morpholino effect (figure 43). 

 

 

Figure 43 
Scale of morpholino effect seen in morpholino treated embryos.  Scale 0, no 
effect (wild type), scale 1, subtle effect, scale 2 clear effect, scale 3 obvious 
effect.  The same tadpole is represented for each different scale, but 
photographed from different prospectives. 

Non inj. side 

Inj. side 
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The reduction in pigmentation is most prominant in the RPE of the eye, although 

some reduction in lateral pigmentation is also observed, particulary in scale 3 

tadpoles (figure 43).  Head and tail pigmentation is generally not affected as 

much, as will be discussed below. 

 

Following morpholino treatment embryos were raised to stage 38 and the 

phenotypes were scored according to the scale in figure 43, the relative 

percentages of each phenotype were then calculated and represented in graphs 

from here on (figure 44). 
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Figure 44 
ATG morpholino knockdown of SLC24A5 
Increasing concentration of morpholino results in more embryos of scale 3 
phenotype.   CMO is a control morpholino supplied by GeneTools (appendix).  
Numbers shown here reflect pooled data from 3 separate experiments. 
 

 

No effect was seen in non injected embryos or with the control morpholino.  

Higher concentrations become toxic.  Maximum reduction in pigmentation was 

90%, as seen with 120ng morpholino.  60ng of morpholino was the lowest 

concentration to give any effect (figure 44). 

  

 

 n=241        n=34        n=94        n=212      n=165        n=77 
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5.2.2. Characterising the morpholino knockdown 

 

5.2.2.1. Effects of SLC24A5 Knockdown on other Melanogenic Genes  

 

Many other genes are involved in the complex process of melanogenesis.  Key 

gene sequences in this pathway have been obtained from X.laevis and their 

expression pattern determined by in situ.  These include; Tyr, Tyrp1, DCT 

(Kumasaka et al., 2003), and Mitf, (Kumasaka et al., 2004).  The expression of 

these genes following morpholino knockdown of SLC24A5 was analysed by 

WISH to see firstly if the melanophores are present and morphologically normal 

and secondly to see if knockdown of SLC24A5 led to any change in expression 

of these different markers (figures 45, 46, 47). 

 

 
Figure 45 
Expression of DCT following morpholino knockdown of SLC24A5.  A, non 
injected side.  B, 100ng morpholino injected side.  C, A following DCT in situ.  D, 
B following DCT in situ. E,F non injected controls following DCT in situ, n=19.   
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Figure 46 
Expression of Mitf following morpholino knockdown of SLC24A5.  A, non 
injected side.  B, 100ng morpholino injected side.  C, A following Mitf  in situ.  D, 
B following Mitf in situ. E,F non injected controls following Mitf  in situ, n=15. 
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Figure 47 
Expression of Tyr following morpholino knockdown of SLC24A5.  A, non injected 
side.  B, 100ng morpholino injected side.  C, A following Tyr in situ.  D, B 
following Tyr in situ. E,F non injected controls following Tyr in situ, n=14. 
 
 

Figures 45 and 47 show that expression of DCT and tyrosinase is not effected 

by SLC24A5 knockdown.  However, Mitf expression, as seen in figure 46 does 

appear to be slightly repressed in the eye, following SLC24A5 knockdown. 

The same tadpoles are shown in A-D of each figure, E and F are positive 

controls for the in situ.  These figures also highlight that the migration and 

morphology of the melanophores is normal. 
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5.2.2.2. Histological examination of morpholino knockdown 

 

To further analyse the effects of the morpholino some embryos were processed 

for cyrosectioning.  Figure 48 clearly shows a significant reduction in eye 

pigmentation.  There appears to be fewer pigment cells and those present 

contain less melanin (figure 48).  

 

 

 

Figure 48 
Transverse cyrosections through stage 38 tadpole injected on one side with 
200ng morpholino. A, non injected side.  B, injected side, C, transverse section 
through head, indicated on B by asterisk.  D, transverse section through the 
body, indicated on B by double asterisk.  Data shown here is representative of 
25 embryos processed for sectioning. 
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It is clear from the section in figure 48C, that the morpholino causes a dramatic 

reduction in pigmentation in the eye, where there also appears to be fewer 

pigment producing cells.  There is also a difference between the non injected 

and injected side in the lateral region (figure 48D).  The head pigmentation does 

appear lighter in the injected side in the whole mount image (figure 48B), but this 

observation is not reflected in the sections (figure 48C and 48D). Again it can be 

seen that the melanophores are able to migrate normally (figure 48) 

 

Morpholino to SLC24A5 was also injected into the two ventral blastomeres at 

the 4 cell stage to determine if the effect was cell autonomous or non cell 

autonomous.  No effect on pigmentation was seen following these injections 

(data not shown), indicating that this is cell autonomous effect, i.e. cells injected 

with the morpholino do not have any influence on their surrounding cells. 

 

5.2.3 Splice morpholino 

 

When using morpholinos it is generally preferable to have more than one 

morpholino knockdown to show the effect is specific to the gene of interest.  In 

order to confirm the morpholino knockdown phenotype is due to a reduction of 

SLC24A5 protein, and to see if a stronger knockdown could be achieved, a 

splice site morpholino was used.  Splice morpholinos are different to ATG 

morpholinos because they prevent splice processing of the pre-mRNA in the 

nucleus, their effects can also be monitored by PCR (Draper et al., 2001; 

Morcos, 2007).   

 

5.2.3.1. Obtaining splice morpholino sequence 

 

To obtain a splice morpholino, sequence data over an intron/exon boundary is 

required, so further PCR analyses were conducted.  The intron/exon boundary 

regions for the X.tropicalis sequence were already determined and available on 

Ensembl (figure 49), this was translated onto the X.laevis sequence, as these 

species often show close sequence similarity it was hoped the intron/exon 

structure would be similar.  X.tropicalis SLC24A5 is comprised 9 exons which 

aligned reasonably well with the X.laevis sequence; however X.laevis appeared 

to have one extra exon at the end.  As primers were already available over the 
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last intron/exon boundary of the X.laevis sequence, these were used in PCR on 

genomic X.laevis DNA to obtain the intronic sequence. 

 

 

 
 

Figure 49 
Intron/exon architecture of the X.tropicalis SLC24A5 gene (Ensembl). 
 

 

 

 

 

 

Figure 50 
PCR product from primers SLC frameshift1 and full length 3’3* which cover the 
exon 9/intron 9 boundary.   
 

 

Based on X.tropicalis sequence data a 2kb product was expected from the PCR. 

However a 1.5kb product (figure 50) was cloned and sequenced as there is 

likely to be some difference between X.tropicalis and X.laevis. 

The sequencing results shown in figure 51, show the already known exonic 

sequence at the 5’ and 3’ ends of the PCR product and a large amount of 

unknown intronic sequence (represented by xxx in figure 51). 

 

1.5kb 



  

 129 

 

1258

1331

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

splice donor site

splice acceptor site

 

 

 

Figure 51 
PCR over an intron/exon boundary. 
Known exonic sequence is framed by pink boxes and the amino acid sequence 
they encode is also shown.  Some nucleotide numbers are shown to orientate 
region of the gene. xxxxx represents previously unknown intronic sequence.  
The heavy black line indicates the target region of the splice morpholino.  The 
splice donor and acceptor sites are also indicated. 
 

 

Some of the sequence at the border of the new intron data and exon 10 was 

sent to GeneTools to design a morpholino.  

 

 

1     2      3       4     5     6         7               8          9          10 

1     2      3       4     5     6         7               8          9          10 

1258 1331

 

 

Figure 52 
Schematic of X.laevis exon structure before and after morpholino treatment. 
Pink boxes represent the exons of X.laevis SLC24A5, again some nucleotide 
numbers are indicated to offer some orientation, and the morpholino (MO) target 
sequence is represented as a black bar. 
 

 

MO 
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As shown in figure 52, the splice target morpholino should truncate the protein 

by removing the final exon.  However it is also possible that the resulting 

transcript following splice morpholino treatment could be degraded by non-

sense mediated RNA decay 

 

5.2.3.2. Splice morpholino knockdown of SLC24A5 

 

The splice morpholino was tested in embryo injections as for the ATG 

morpholino.  As expected splice morpholino treated embryos display the same 

reduced pigment phenotype as that seen with the ATG morpholino, therefore 

tadpoles were scored to the same scale as that devised from the ATG 

morpholino results (figure 43).  Various concentrations were used to establish a 

dose response; this showed that at lower concentrations the splice morpholino 

was more effective than the ATG morpholino, as shown in figure 53. 
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Figure 53 
Splice morpholino knockdown 
Increasing concentration of splice morpholino causes an increase in the amount 
of tadpoles with a scale 3 phenotype. 
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Lower concentrations of splice morpholino have a stronger effect than those of 

the ATG morpholino.  60ng of ATG morpholino causes approximately 55% of 

embryos to have a reduction in pigment, whereas with the same concentration 

of splice morpholino approximately 75% of embryos are affected.  Similar 

patterns are seen with 80ng, 100ng and 120ng. 

 

 

5.2.3.3 Determining the activity of the splice morpholino 

 

Following splice morpholino treatment, some scale 3 tadpoles (the embryos 

used were injected at the 1 cell stage) were processed for PCR analysis over 

and around the intron/exon boundary target of the splice morpholino. To 

determine what affect the splice morpholino was having on the transcript. 

 

 

 

 

Figure 54 
PCR analysis following splice morpholino treatment. 
1 and 2 H4 controls, 3 and 4 full length primers (5’Xho1 and 3’Xba1 primers) , 1 
and 3 NI embryos, 2 and 4 splice MO embryos, 5 and 6 NI embryos, 7 and 8 
splice MO embryos, 5 and 7 FS2 and 3’Xba1 primers, 6 and 8 FS1 and 3’Xba1 
primers (see appendix for primer information). NI; non injected, MO; morpholino. 
 

Primers FS1 and 3’Xba1 cover the area over the splice morpholino target 

(400bp) and primers FS2 and 3’Xba1 cover a region following the splice 

morpholino target (300bp).  The PCR results indicate that the splice morpholino 

is not affecting the exon structure for the SLC24A5 transcript (figure 54).  This is 

also reflected in the full length PCR (1.5kb) where the splice morpholino treated 

sample would not be expected to work with these primers as the 3’ priming site 

should be missing (1.1kb) (figure 54). 

         1        2          3       4           5       6       7        8  

500bp 
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5.2.4. Double morpholino knockdown 

 

Once both the ATG and splice morpholino had been shown to give a 

hypopigmented phenotype individually, they were used in combination to see if 

collectively they would give a stronger phenotype, particularly in the lateral 

pigmentation, where much of the pigmentation remains following individual 

morpholino treatment.  The experiment was conducted as previously described 

for individual morpholinos, and the results are shown in figure 55. 
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Figure 55 
Double morpholino knockdown of SLC24A5.   
Even at lower concentrations, combining the morpholinos has a stronger effect 
than individual treatment. 
 

Treating embryos with both morpholinos causes a greater proportion of them to 

have a reduced pigment phenotype when compared to individual treatments.  

40ng of each morpholino (total 80ng) causes a 95% knockdown, whereas 80ng 

of ATG morpholino alone causes 63% knockdown and 80ng of the splice 

morpholino alone causes 85% knockdown.  The same result is seen with 50ng 

both morpholino (100ng total) and100ng of morpholinos individually (figure 55). 
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5.3. Discussion 

 

Antisense morpholino oligos knockdown expression of target genes by 

complementarily base pairing to the gene transcript and thus repressing 

translation or splicing (Heasman, 2002).   

 

Morpholino knockdown of SLC24A5 in X.laevis embryos causes a clear 

reduction in pigmentation (figure 43).  This is most prominent in the RPE of the 

eye but also noticeable in the lateral pigmentation. The morpholino effect is 

proportional to the concentration of morpholino injected (figure 44, 53, 55).  That 

is the proportion of embryos affected, rather than individual severity of effect, 

which is not seen to get any more severe than a scale 3 (figure 43).  As varying 

degrees of effect were seen, a scale was devised to represent the phenotypes, 

by which all embryos could be visually scored and thus the phenotypes could be 

better qualified.  Unaffected embryos were presented as scale 0, wild type.  A 

subtle reduction in pigment was represented in scale 1.  A clearer affect was 

represented as scale 2.   Scale 3 was the most severe phenotype and 

corresponds to the golden phenotype in zebrafish larvae (figure 13).  This kind 

of result where varying degrees of effect are seen is consistent with other 

X.laevis morpholino experiments (Afouda and Hoppler, 2011; Garcia-Morales et 

al., 2009).  The lack of an all or nothing effect is presumably due to natural 

variations in the embryos, human error during injection or damaged morpholino.  

We see no non specific effects from either morpholino here suggesting that the 

morpholinos are specific, and other effects sometimes seen with morpholinos 

can be ruled out (Eisen and Smith, 2008). 

 

60ng of ATG morpholino was the lowest concentration to give a reduced 

pigment phenotype although this was subtle.  80-120ng proved to be more 

effective, and gave a dose response (figure 44).  Across these concentrations of 

the ATG morpholino, the percentage of scale 0 and scale 3 embryos changes 

considerably, whereas the percentages of scale 1 and 2 embryos remains quite 

similar.  This could suggest that there is almost an all or nothing affect. 
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The splice morpholino gave a much stronger effect at lower concentrations.  At 

60ng the splice morpholino causes 75% of the embryos to have some 

pigmentation defect; this is 22% higher than that seen at the same concentration 

of ATG morpholino.  At 80ng the difference between the 2 morpholinos is 44%, 

as here the ATG morpholino actually seems to have less of an effect, this is 

presumably due to some experimental variation.  At higher concentrations, the 

difference in effect between the morpholinos is less significant; at 100ng and 

120ng the difference is 11% and 5.2% respectively, indicating that at this range 

of concentration repression of SLC24A5 translation is maximal.   Above 120ng 

gave similar phenotypes but also proved more toxic (data not shown). The PCR 

analysis shown in figure 53 suggests the splice morpholino is not affecting the 

transcript structure, as here the splice morpholino treated embryos have the 

same bands as the non injected controls.  It is thought that as the splice 

morpholino cannot target all the transcript present the remaining transcript is 

being picked up in the PCR and as this is a sensitive technique no difference 

can be seen between the samples and controls.  Quantitative PCR would be a 

better approach here, however this was not done due to time constraints. 

 

When used in combination the morpholinos gave a stronger effect as seen in 

figure 54.  Here just 25ng of each morpholino, (total 50ng morpholino), is 

sufficient to induce a reduction in pigmentation in a significant percentage of 

treated embryos (94%).  40ng, 50ng and 80ng also give a strong effect at 

94.8%, 96.9% and 92.1% respectively.  The double morpholino treatment also 

causes a larger proportion of the embryos to be scale 3 suggesting, as 

expected, that the morpholinos are stronger in conjunction than individually.  

However, a complete loss of pigment is still not achieved.   

 

As discussed earlier, X.laevis is tetraploid, and only one SLC24A5 paralog was 

isolated in this study.  Both morpholinos are targeted to this one gene, therefore 

it is possible that the other gene is sufficiently different in sequence that it  is not 

targeted by the morpholinos, and as such is offering some redundancy to the 

function of the targeted protein.   
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The morpholino knockdown phenotype described here is consistent with that 

seen in the zebrafish, where morpholino knockdown of SLC24A5 phenocopies 

the golden phenotype (Lamason et al., 2005) (figure 56).  The morpholino could 

be less effective in X.laevis due to the tetraploidy condition discussed above. 

 

 

 

 

 

Figure 56 
Morpholino knockdown of SLC24A5 in zebrafish. 
As shown earlier, morpholino knockdown in zebrafish embryos reduces 
pigmentation.  A, wild type 48hpf zebrafish embryo.  B, golden 48hpf zebrafish 
embryo.  C, wild type 48hpf embryo injected with morpholino targeted to 
SLC24A5 (Lamason et al., 2005). 
 
 
 
The unilateral delivery of the morpholinos provides a good internal control, but it 

should also be noted that some neural crest cells do migrate from one lateral 

side of the developing tadpole to the other, thus pigment cells originating from 

the injected cell may be effected by the morpholino but move to the non injected 

side, and vice versa.  This goes some way to explain the lack of pigment 

reduction in the lateral pigment stripe.   As RPE cells do not originate from the 

neural crest there are no such issues with migration.  Also as a dense 

population of cells a loss of pigmentation is more noticeable and thus easier to 

visually score with the eye. 
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Another issue regarding morpholino effectiveness is dilution.  As the embryos 

have to be raised up to tadpole stages, ~3 days, to see the effect on 

pigmentation, the morpholino becomes diluted throughout the developing 

embryo and thus there is less available to saturate the pool of SLC24A5 

transcript, which itself is not expressed until stage 25 at the earliest.   

 

SLC24A5 expression is concentrated in one small cell population (the pigment 

cells), so overall SLC24A5 abundance throughout the whole embryo is relatively 

low, also when compared to other pigment genes SLC24A5 appears to be less 

prevalent (figure 38); therefore it is not surprising that relatively high 

concentrations of morpholino are needed to observe a phenotype. 

 

As an ion exchanger protein, SLC24A5 was not expected to be directly involved 

in a signalling pathway.  However, Ginger et al (2008) showed that siRNA 

mediated knockdown of SLC24A5 in human repigmented melanoblasts resulted 

in a significant decrease in protein expression of Pmel17, MART1, Tyr and 

Tyrp1, suggesting that SLC24A5 is important throughout melanosome 

development.  Protein expression of the lysosome marker LAMP1 was found to 

be up-regulated following SLC24A5 knockdown (Ginger et al., 2008).  In the 

absence of antibodies, in situ analysis was used here to detect any changes in 

the expression of key melanogenesis genes following SLC24A5 morpholino 

knockdown in vivo.  As seen in figures 45 and 47 DCT and tyrosinase transcript 

expression is not affected by the SLC24A5 morpholino.  This data also shows 

that the melanophores are able to migrate and have normal morphology 

following morpholino treatment.   

Mitf expression however does seem to be reduced following SLC24A5 

morpholino knockdown, this can be seen in the eye of the tadpole in figure 46D.  

This seems perverse as DCT and Tyr are targets of Mitf so if Mitf is affected 

then an effect on its targets would be expected.  It would be of interest to 

analyse expression of these; and other targets of Mitf, at the protein level. 

 

The presence of DCT and tyrosinase suggests that the melanophores do have 

the appropriate infrastructure to enable pigment production, but somehow the 

lack of SLC24A5 inhibits this to a degree.  However, this analysis only shows 

any affect on the transcript of these genes, it is possible that translation is 

affected, but due to lack of antibodies this cannot be detected in this system.  
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Alternatively, SLC24A5 may be expressed after tyrosinase, DCT and Mitf and 

therefore its repression has no effect on their expression.  Potentially, 

morpholino knockdown of one of these pigment genes could affect SLC24A5 

expression, although at this time these gene functions are not thought to be inter 

linked.  

 

The normal expression of transcripts of pigmentation genes seen here and the 

altered protein levels seen in human cell culture, and taking into account the 

TGN colocalisation of SLC24A5 suggest perhaps SLC24A5 is involved in the 

sorting and trafficking of these proteins.  This fits with a model proposed by 

Ginger et al (2008) that NCXK5 plays a role in maintaining Ca2+ levels during 

membrane fusion events which are critical for melanosome biogenesis and are 

Ca2+ mediated (Ginger et al., 2008; Raposo et al., 2007; Raposo et al., 2001). 

 

Histological analysis of morpholino treated tadpoles shows how severe the 

morpholino effect can be.  This is particularly clear in the eye, which while 

remaining normal in size and shape appears to be lacking a layer of pigment 

cells thus giving a lighter phenotype (figure 48).  It would be of interest to 

determine if this has any effect on visual acuity.  This could be explored using a 

simple assay, where morpholino treated embryos are placed in a container 

which is half kept in darkness and half in light, if the embryos can see they 

would stay in the dark side, persistent presence of embryos in the light side 

would indicate some degree of blindness. (Viczian et al., 2009). 

 

In summary, morpholino knockdown of SLC24A5 results in reduction of 

pigmentation.  This supports a role for SLC24A5 in pigment production as seen 

already in human cell culture and zebrafish embryos.  However this data alone 

does not provide any insight into the function of SLC24A5, thus further functional 

analyses were conducted. 
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Chapter Six:  

 

Rescue analyses  

 

 

6.1. Introduction 

 

Currently it has been shown that SLC24A5 is important for pigmentation and 

that it likely encodes an NCKX protein; however the ion exchanger activity of this 

protein has not yet been linked to its role in pigmentation.  To further analyse the 

role of NCKX5 in pigmentation a functional approach was undertaken.  This 

involved rescue experiments with mutant clones of SLC24A5.   

 

Previously, a significant amount of research has been conducted into the 

function of other NCKX proteins, including NCKX2.  Much of this work has 

related to the biochemistry of the protein and has been done at the University of 

Calgary in the lab of Paul Schnetkamp (Altimimi et al., 2010; Altimimi and 

Schnetkamp, 2007a; Kang and Schnetkamp, 2003; Kang et al., 2005b; Kinjo et 

al., 2005; Kinjo et al., 2007; Kinjo et al., 2003; Kinjo et al., 2004; Shibukawa et 

al., 2007; Winkfein et al., 2004).  This has revealed a number of residues within 

NCKX2 which are particularly important for various aspects of its function.  As a 

plasma membrane protein it is relatively easy to perform functional assays on 

NCKX2, such as the reverse exchange assay used by Winkfein et al (2004), 

discussed earlier (figure 22.) and patch clamp experiments as used by Kang et 

al (2005).  NCKX5 however, is found on an intracellular organelle membrane 

and therefore it is very difficult to examine in the same assays.  We have 

collaborated with the Schnetkamp lab and they have provided several NCKX5 

mutants, based on their findings in NCKX2.  As proteins of the same family it is 

reasonable to infer that the crucial residues of NCKX2 are also crucial for 

NCKX5 function as some of these are conserved (figure 59).   These mutant 

clones were used in rescue experiments to determine which residues of the 

protein are crucial for its role in pigmentation. 
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6.1.1. Mutant constructs 

 

All the constructs used to rescue the morpholino effect were human sequences 

and had a myc tag added at the N terminal small intracellular loop to allow 

detection by western blot, location of a myc here in NCKX2 has been found not 

to interfere with the protein function (Kang and Schnetkamp, 2003). The wild 

type human gene was provided, along with the A111T variant allele, discussed 

earlier.  The other mutants were; D383N, 4C and CH.  The D383N mutant is the 

equivalent mutation to D548N in NCKX2 (Kang et al., 2005a) (figure 59), which 

has been shown to inhibit calcium transport function and thus render the protein 

non functional. In the 4C mutant, the 4 cysteines found in the large cytosolic 

loop have been replaced with glycine, and the CH mutant is missing the large 

cytosolic loop, this has been replaced with a spacer region (Kinjo et al., 2003).  

By sequence similarity, it was hypothesised that the human wild type clone 

should rescue or partially rescue the morpholino phenotype, as was also seen in 

the zebrafish (Lamason et al., 2005).  It was also thought that the A111T may 

provide a partial rescue, although this may be less significant as it is a less 

functional protein. Based on the NCKX2 work the D383N mutant was not 

expected to rescue as this has impaired calcium transport.  The Asp residue at 

this position is conserved in NCKX5, across the selected species (figure 59).   

The 4C and CH mutants were used to determine if the cysteines and cytosolic 

loop are important for function of the protein.  Despite their common critical role 

in many proteins, it has been previously shown that cysteine residues are not 

important for NCXK2 function, here we can examine if this is also true for 

NCXK5 (Kinjo et al., 2004). The X.laevis clone was also used in rescue 

experiments, before this could be tested it had to be mutated in the morpholino 

target region to prevent it from being repressed by the morpholino and thus 

masking any rescue affect. 
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6.1.2. NCKX2 and chimeras 

 

We also set out to test chimeras of NCKX2 and NCKX5 to determine crucial 

regions of the NCKX5 protein.  NCKX2 is related to NCKX5, although they are 

expressed in different tissues and in different cellular locations; NCKX2 being 

plasma membrane bound and NCKX5 being intracellular.  Human NCKX2 was 

used to rescue NCKX5 repression, although this was not expected to rescue, as 

it is does not have high similarity to NCKX5 and also although they are both 

potassium dependent sodium calcium exchangers they have different 

physiological roles.  Also chimeric constructs of NCKX2 and NCKX5 were made 

and used in rescue analysis to test various parts of the protein.  These were; 

NCKX5 with the large cytosolic loop of NCKX2 and NCKX5 with the signal 

sequence and N-terminal loop of NCKX2 (figure 58).   

 

 

 

Figure 57 
Schematic representation of the topology of NCKX2. 
NCKX2 is comprised 12 transmembrane domains and a large cytosolic loop 
(Kang et al., 2005b). 
 

 

Figure 57 shows the topology of NCKX2, Bioinfomatic analyses of NCKX5 

suggest a similar topology (figure 34).  Various areas of the SLC24A5 sequence 

have been substituted with the corresponding area of SLC24A2 sequence to 

encode chimera proteins. 
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Figure 58 
Schematic representation of the NCKX2/NCKX5 chimeras used in rescue 
analysis.  Highlighting domains of the proteins. A, NCKX2, B, NCKX5, C, 
NCKX5 with cytosolic loop of NCKX2, D, NCKX5 with N-terminal domain of 
NCKX2. TM, transmembrane domains 
 

 

Rescue from the first construct (figure 58C) would suggest that the cytosolic 

loop of NCKX5 is not crucial to its function, or that the loop from NCKX2 is 

similar enough to allow the protein to function.  Conversely, no rescue would 

suggest the cytosolic loop is crucial for NCKX5 function.  The loop of NCKX2 is 

approximately 170 amino acids in length (Winkfein et al., 2004); whereas the 

predicted cytosolic loop of NCKX5, based on sequence alignment is only 76 

amino acids (figure 59). 

With the second construct (figure 58D), (NCKX5 with signal peptide and N-

terminal loop of NCKX2), a rescue would suggest this region is unimportant or 

functionally conserved between NCXK2 and NCKX5.   It would be of interest to 

determine if this construct can target NCKX5 to the plasma membrane, in this 

system, and if from here it has any function in melanogenesis.  The N terminal 

region of NCKX2 and NCKX5 is not well conserved (figure 59), so it would be 

surprising to see a rescue. 
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10 20 30 40 50
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60 70 80 90 100

T V S F S I S A F S E T D T Q S T G E A S V V S G P R V A Q G Y H Q R T L L D L N D K I L D Y T P Q51 NCKX2
H L P L S G T S L P Q R L P R A T - - - - - - - - - - - - - - - - G - - - - - - - - - - - - - - - -24 NCKX5

110 120 130 140 150

P P L S K E G E S E N S T D H A Q G D Y P K D I F S L E E R R K G A I I L H V I G M I Y M F I A L A101 NCKX2
- - - - N - - - S T Q C V I S P S S E F P E G F F T R Q E R R D G G I I I Y F L I I V Y M F M A I S42 NCKX5

160 170 180 190 200

I V C D E F F V P S L T V I T E K L G I S D D V A G A T F M A A G G S A P E L F T S L I G V F I A H151 NCKX2
I V C D E Y F L P S L E I I S E S L G L S Q D V A G T T F M A A G S S A P E L V T A F L G V F I T K85 NCKX5

210 220 230 240 250

S N V G I G T I V G S A V F N I L F V I G M C A L F S R E I L N L T W W P L F R D V S F Y I V D L I201 NCKX2
G D I G I S T I L G S A I Y N L L G I C A A C G L L S N T V S T L S C W P L F R D C A A Y T I S A A135 NCKX5
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A V L G I I Y D N Q V Y W Y E G A L L L L I Y G L Y V L V L C F D I K I N Q Y I I K K C S P C C A C185 NCKX5

310 320 330 340 350

K V T A P E A Q A K P S A A R D K D E P T L P A K P R L Q R G G S S A S L H N S L M R N S I F Q L M301 NCKX2
L A K A M E R S E Q Q P L M G W E D E - - - - G Q P F I R R - - - - - - - - - - - - - - - - - - - -235 NCKX5

360 370 380 390 400

I H T L D P L A E E L G S Y G K L K Y Y D T M T E E G R F R E K A S I L H K I A K K K C H V D E N E351 NCKX2
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410 420 430 440 450

R Q N G A A N H V E K I E L P N S T S T D V E M T P S S D A S E P V Q N G N L S H N I E G A E A Q T401 NCKX2
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560 570 580 590 600
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660

L E D R I L T C P V S I                                       650 NCKX2
Y E L G I I G N N K I R G C G G                                   485 NCKX5  

 
 
 
 
 
 
 
Figure 59 
Conserved residues between NCKX2 and NCKX5. 
Alignment of human NCKX2 and NCKX5. Showing residues mutated in the 
rescue constructs.  Purple box; signal peptide sequence of NCKX2, green box; 
large cytosolic loop of NCKX2, blue circle; 111 position of the A to T switch, 
yellow circles; cysteines of the cytosolic loop, pink circle; D383N, orange circle; 
E188, light blue boxes; alpha repeats.  
 
6.2. Results 

 

6.2.1. Site Directed Mutagenesis of X.laevis SLC24A5 

 

In order to use the X.laevis sequence in the rescue analysis it had to be mutated 

such that the morpholino would not recognise it.  This was done by designing 

primers (SDM of SLC, full length 3’3*, see appendix), over this region with two 

nucleotide changes (figure 60), this should be sufficient to prevent the 

morpholino binding.  Also the nucleotides chosen gave a BamH1 site 

(GGATCC), this was useful to ensure presence of the mutation as there are no 

other BamH1 sites in the full length sequence. 

 

 

 

 

Figure 60 
SDM of the X.laevis sequence showing the two nucleotide mismatches. 
 

 

6.2.2. Rescuing the ATG morpholino phenotype 

10 20

A T G G A G A A A G G T T C T G T T G C T1 MO target
A T G G A G A A A G G A T C C G T T G C T1 SDM MO target
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Synthetic capped RNA of the mutant constructs were combined with the 

morpholino and co-injected in the same way as the morpholino experiments.  

cRNA of the mutants was also injected alone as a control and also to see if 

there was any over expression affect.  In each experiment some embryos were 

injected with just morpholino to provide a fair comparison of affect.  Again all 

embryos were scored to the scale in figure 43.  All the chimera constructs were 

tagged with GFP and myc to facilitate detection of the protein. 

 

100ng of morpholino was felt to be the lowest concentration to give a strong 

consistent knockdown so this concentration was used in rescue experiments, as 

the threshold for the cRNA to rescue was thought to be achievable. Lower and 

higher concentrations of morpholino were tested, but 100ng seemed to be the 

best (data not shown).  1-5ng of cRNA was used to rescue 100ng morpholino 

(data not shown), only 4-5ng showed a rescue – depending on the construct, so 

5ng was used for all constructs.   5ng of cRNA alone was not toxic and gave no 

phenotype (data not shown).  The results are represented in the following 

figures. 
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Figure 61 
Rescuing the ATG morpholino.   

* 
   n=166      n=124      n=60       n=81       n=70       n=30       n=38        n=36       n=77 
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Embryos injected with 100ng ATG morpholino and 5ng cRNA of the various 
constructs.  Embryos were allowed to develop to stage 38 and then scored for 
effects in pigment pattern as the scale in figure 41. 
NI non injected, WT wild type, AT A111T, DN D383N, XL X.laevis, mo 
morpholino, CMO control morpholino.  Kruskal Wallis test revealed significant 
difference between 100ng ATG MO and the WT, AT, DN, CH and XL constructs, 
p=0.001 for all, but not 4C p=0.988, (for statistical analysis, see materials and 
methods 2.8.2). 
 

 

In figure 61, following morpholino alone treatment 13.7% of embryos are wild 

type, however this increases to 31.6% when human wild type NCXK5 is co-

injected with the morpholino.  The percentage of embryos of the severe scale 3 

phenotype is reduced from 48.3% to 26.6% with the human construct.  Scales 1 

and 2 remain largely unchanged (16.1% to 20% and 21.7% to- 21.6% 

respectively).  This rescue also proved to be statistically significant where 

p=0.001*. 

 

(* the statistical tests applied here and throughout further results,  indicate a 

significant difference between the morpholino alone and WT rescue data, on 

analysing the percentages of different phenotypes one can conclude that this 

‘difference’ suggests a rescue from this construct). 

 

Addition of A111T with the morpholino caused an increase in wild type (scale 0) 

embryos from 13.7% (morpholino alone) to 28.4%.  The percentage of scale 1 

embryos was also increased, from 16.1% to 23.5% and scale 2 and 3 embryos 

were reduced by 3.3% and 18.75% respectively.  This rescue is statistically 

significant, p=0.001. 

 

D383N increased the amount of wild type embryos from 13.7% to 34.2% and 

scale 2 embryos from 16.1% to 25.7%.  Scale 2 and 3 percentages were 

reduced by 7.4% and 22.7% respectively, p=0.01. 

 

The percentages of embryos of the given phenotypes is largely unchanged with 

4C, there does actually appear to be a slightly increased morpholino effect 

where the percentage of wild type embryos is 13.7% (MO alone) compared to 

10% with 4C, this is not significant and is likely due to experimental variation.  

20% of embryos are scale 1, compared with 16.1% in morpholino alone.  Scale 
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2 is increased by 1.5% and scale 3 is reduced by 1.7%, but again this is 

insignificant, p=0.988 for 4C rescue.  

 

Rescue with the CH mutant was a strong as wild type, indicating the loop region 

is not important for NCXK5 function.  Scale 1 embryos were increased by 

17.9%.  Scale 1 and 2 were reduced by 8.2% and 13.9% respectively.  Scale 3 

actually increased slightly to 52.6% from 48.4%, but this is likely due to variation.  

This rescue is statistically significant p=0.001. 

 

The mutated X.laevis construct can rescue, here scale 0 embryos were 

increased to 58.3% from 13.7%.  Scale 1 and 2 embryos were reduced by 

10.6% and 16.2% respectively.  Scale 3 was reduced by 17.8%.  This is 

statistically significant, p=0.001.   

 

All constructs, except 4C, show a significant rescue (figure 60).  This is 

particularly apparent in the percentage of scale 0 (wild type) embryos, which 

increases with the rescue constructs, compared to the morpholino alone data.  

Also the percentage of scale 3 embryos reduces significantly when treated with 

WT, A111T, D383N or Xl cRNA, this is less significant following CH or 4C 

treatment.  The relative percentage of scale 1 and 2 embryos remains largely 

the same in the rescue treatments compared with the morpholino alone data, 

except CH and Xl where these phenotypes are significantly reduced.  
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Figure 62   
NCKX2/5 chimera rescues of the ATG morpholino. 
NI non injected. NCKX2, NCKX5, NCKX5 cyto2, NCKX5 ntl2 are discussed in 
the text.  Kruskal Wallis revealed a significant difference between 100ng ATG 
MO alone and the NCKX5 and NCKX5 ntl2 constructs, p=0.01 and p=0.022 
respectively. 
 

The NCKX2 construct and NCKX5 cyto2 chimeric constructs cannot rescue the 

100ng ATG morpholino effect, the NCKX5 and NCKX5 ntl2 construct however 

can.  This is consistent with previous data where the WT construct (effectively 

the same as NCKX5 here, although NCKX5 has a GFP tag) can rescue.  Also 

earlier we saw that the 4C construct could not rescue, here the NCKX5 cyto2 

construct cannot rescue either, these are both mutants/variants of the large loop 

 

 

 

6.2.3. Rescuing the splice morpholino  

 

As seen in figure 52, the splice morpholino gives a stronger effect at lower 

concentrations.  However, 100ng of splice morpholino was used in the rescue 

experiments, consistent with the ATG morpholino rescues. 
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Figure 63 
Rescuing the splice morpholino. 
NI non injected, WT wild type, AT A111T, DN D383N, XL X.laevis, mo 
morpholino.  Kruskal Wallis test showed no significant difference between 
morpholino alone and any of the rescue constructs. 
 
  
Surprisingly the splice morpholino effect could not be rescued by any of the 

constructs tested (figure 63).  Lower concentrations of splice morpholino were 

used to see if these could be rescued, but 80ng and 50ng splice morpholino still 

could not be rescued (data not shown).  Increased concentrations of cRNA were 

not tried as 5ng is already the recommended maximum, and higher 

concentrations could lead to toxicity effects. 

    n=76      n=41      n=56       n=60       n=28       n=54       n=41      n=33 
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Figure 64 
NCKX2 chimera rescues of splice morpholino 
None of the chimera constructs can rescue the splice morpholino, there was no 
statistical significance. SP MO, splice morpholino. 
 

Consistent with the other mutant constructs the chimera constructs cannot 

rescue the splice morpholino effect (figure 64).  No statistical significance was 

observed. 
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6.2.4 Rescuing the double morpholino knockdown 

 

To follow up the ATG and splice morpholino rescues we attempted to rescue the 

double morpholino knockdown.  50ng of both morpholino was the chosen 

concentration of morpholino, and again 5ng of cRNA was used. 
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Figure 65 
Double morpholino rescue 
NI non injected, WT wild type, AT A111T, DN D383N, XL X.laevis, MO 
morpholino.  Kruskal-Wallis test revealed significant differences between 50ng 
both MO and the WT, AT, DN, CH and XL constructs where p=0.029, 0.03, 
0.001, 0.001, and 0.004 respectively, 4C p=0.123. 
 
 

All constructs except 4C can rescue the double morpholino knockdown (figure 

63).  Surprisingly A111T seems to rescue better than wild type and X.laevis.   

Morpholino alone is having a strong effect, which is relatively consistent with the 

previous ATG morpholino alone data (figure 55).  Lower concentrations of 

double morpholino could also be rescued (data not shown). 

 
 
 
 

 

 

n=96      n=36       n=52     n=60      n=38       n=64       n=42      n =37  

* 



  

 150 

 

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
%

 e
m

br
yo

s

ng RNA and MO

Scale 3

Scale 2

Scale 1

Scale 0

 

Figure 66 
Rescue of the double knockdown with the chimera constructs. 
 
 
Unexpectedly the NCKX2 construct appears to rescue the double morpholino 

knockdown, as can NCKX5.  Also the NCKX5 cyto2 appears to rescue, this is 

inconsistent with the lack of rescue from the 4C construct seen earlier.  The 

NCKX5 ntl2 construct rescue suggests this region of the protein is not 

functionally important, that or the NCKX2 region can perform here (figure 66).  

Statistical significance was detected in all constructs; p= 0.003, 0.01, 0.01 and 

0.02 respectively.  However the double morpholino effect here is so strong, no 

embryos were scale 0 (wild type), therefore any amount of wild type embryos in 

the rescue samples is potentially a rescue.  Analysing the data it could be 

suggested that the NCKX5 ntl2 rescue is not real as there were only 2 wild type 

embryos. 
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6.2.5 Protein detection 

 

 

 

 

 

 

Figure 67 
Western blot of embryo lysates following injection with the rescue constructs, 
using anti-myc antibody to the myc tag added to the constructs. 
 

 

All rescue constructs could be detected by probing western blot with anti myc 

antibody.  The proteins are ~40kDa and appear as a triplet, consistent with 

Ginger et al (2008). The X.laevis NCKX5 appears to be larger than the human. 

 

 

 

 

 

Figure 68 
Western blot of embryo lysates following injection with the chimera constructs, 
using A; GFP antibody and B; actin loading control. 1, NCKX2, 2, NCKX5, 3, 
NCKX5 cyto2, 4, NCKX5 ntl2, 5, NI 
 
 
Unfortunately the chimera constructs could not be detected by western blot, 
either with an anti GFP antibody (figure 68 A) or anti myc antibody (data not 
shown). 
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6.3 Discussion 

 

6.3.1 Rescuing the Knockdown Phenotype 

 

To further investigate the function of SLC24A5, mutant human NCKX5 

constructs were used to attempt to rescue the morpholino induced pigmentation 

phenotype.  These constructs carry mutations at equivalent residues, in NCKX5, 

known to be important for NCKX2 function, as well as one which carries the 

ancestral SNP at A111T, and two NCKX2/NCKX5 chimeras.  The X.laevis 

construct was also used to rescue and to demonstrate the specificity of the ATG 

morpholino, this was mutated such that the morpholino wouldn’t target it.  These 

experiments were designed to elucidate key residues for NCKX5 function in 

melanogenesis. 

 

6.3.1.1 Wild type human NCKX5 can rescue the ATG morpholino 

 

The wild type human NCKX5 is 65.8% similar to the X.laevis sequence, at the 

amino acid level, (figure 33).  In rescue experiments we found it could rescue 

the morpholino knockdown of X.laevis NCKX5.  The rescue is assessed by the 

recovery of wild type embryos (scale 0).  This was not as strong a rescue as the 

X.laevis clone provided though (figure 61), which is to be expected and fits with 

the hypothesis.  This also fits with the zebrafish work, where human SLC24A5 

could partially rescue the SLC24A5 morpholino which phenocopied the golden 

phenotype (Lamason et al., 2005) 

 

6.3.1.2. A111T can rescue the ATG morpholino 

 

The non synonymous SNP at position 111 of the human sequence causes an 

amino acid change, alanine to threonine.  The alanine encoding allele was found 

to be prevalent in dark skin human populations, whereas the threonine encoding 

allele was found in lighter skin human populations.  Switching alanine for 

threonine at position 111 of the human sequence causes the protein to be less 

active (Ginger et al., 2008).  Thus it was rightly predicted that this protein would 

provide some rescue but not as much as the wild type human protein (figure 61).  

Although the rescue is stronger than anticipated.  It may be worthwhile to 
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replace the alanine at the equivalent position of the X.laevis sequence (177), to 

determine if a switch here also affects X.laevis NCKX5 activity.  This would be 

predicted to cause a similar reduction in function as this residue is thought to be 

conserved across species and the NCKX family.  It has been shown that 

substituting the equivalent amino acid in NCKX2 also causes a reduction in 

protein activity (Ginger et al., 2008). 

 

6.3.1.3 D383N can rescue the ATG morpholino 

 

In NCKX2 aspartate 548 (383 in NCKX5) was found to be one of two crucial 

residues for calcium transport.  Both these residues are conserved in NCXK5 

(figure 59). This residue along with glutamate 188 is the central residue within 

the ion binding pocket of NCKX2.  This binding pocket can hold 1 K+ and 1 Ca2+ 

simultaneously and can alternate between an inward and outward facing 

conformation.  Size conservative substitution of asp548 with asparagine 

eliminates the charge and results in a non functional NCKX2 protein.  Whilst 

charge conservative D548E, affects the K+ and Ca2+ concentration 

dependencies (Kang et al., 2005a).  D548 and E188 are conserved residues in 

NCKX5, it would be of interest to use a E188N mutant to determine if this has 

the same effect. 

 

The D383N mutant gave a strong rescue which is surprising because this 

mutant was predicted to have impaired calcium transport activity based on 

similar work in NCXK2 (Kang et al., 2005a).  This suggests it is not the calcium 

transport function of NCKX5 which is important for its role in pigmentation, but 

that the protein may have some other function.  Which is not uncommon for ion 

transporters, it has been demonstrated that NKCC1 (SLC12A2) Na+/K+/Cl- could 

induce secondary axis formation in X.laevis, independently of its co-transporter 

function (Walters et al., 2009).  To this end X.laevis SLC24A5 was injected into 

the ventral marginal zone in 4 cell stage embryos (Garcia-Morales et al., 2009), 

to see if a duplicate axis could be induced (data not shown).  No such effect was 

observed, ruling out this phenomenon from SLC24A5 function. 
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6.3.1.4 4C cannot rescue the ATG morpholino 

 

Cysteine residues are known to be important in many proteins, particularly for 

enzymatic reactions and inter/intra molecular interactions (Leonard and Carroll, 

2011). 

The 4C cysteine mutant cannot rescue the morpholino knockdown; this 

suggests that these cysteine residues are important for NCKX5 function.  Kinjo 

et al (2004) found that cysteine residues were not important for NCKX2 function.  

They developed a series of cys-mutants including a cys-less mutant, which did 

show some activity.  However, their cysteine mutants did lose some transport 

activity, thus it is possible that the 4C mutant also loses some transport activity, 

and in NCKX5 in this system, the reduction is sufficient such that it cannot 

compensate for the reduction in NCXK5.  Also the 4C mutant has lost cysteine 

residues within the cytosolic loop, whereas Kinjo et al (2004) substituted 

cysteines in the transmembrane domains.  NCKX2 only has one cysteine in its 

cytosolic loop (C394), which has been shown to be particularly active (Kang et 

al., 2003).  NCKX5 does not have a cysteine at this position, but does have 4 

other cysteines in this loop region, which are conserved across selected species 

(figure 33), thus the cytosolic loop cysteines of NCXK5 may be equally as active 

and important for NCKX5 function.  The cysteines in the 4C mutant have been 

replaced with glycine, previous analysis in NCKX2 have used serine or alanine 

(Cai et al., 2002; Kinjo et al., 2004) to replace the cysteines, it may be relevant 

to make cys-mutants with these residues as well to determine if the replacement 

amino acid is having an effect on the protein function.  So it appears that 

perhaps structural effects are not important for transport function, but maybe 

they are involved in protein/protein interaction. 

 

6.3.1.5 CH can rescue the ATG morpholino 

 

The topology of NCKX2 has been shown to consist of a cleavable 

transmembrane signal peptide, followed by 2 groups of 5 transmembrane 

domains which are separated by a large hydrophilic cytoplasmic loop.  Analysis 

of the NCKX5 sequence here suggests a similar topology (figure 34).  The 

NCKX2 cytoplasmic loop is ~175 amino acids long, whereas the predicted loop 

of NCKX5 is just 76 amino acids long, and this is not a well conserved area.   

Previously, NCKX2 has been shown to form homodimers, and this is thought to 
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be stabilized by cys-395 in the large cytosolic loop (Cai et al., 2002).  However 

this has not been demonstrated with NCKX5.  In NCKX1 the large hydrophilic 

loop has been shown to not affect the transport activity of the protein (Kim et al., 

1998), this could also be the case for NCKX5 here, however the D383N rescue 

indicates it is not the transport activity that is needed for NCKX5 function 

anyway. The CH mutant was used to test the importance of this loop in NCKX5 

function.  The significant rescue from the CH construct suggests the hydrophilic 

loop is not crucial for NCKX5 function, or the spacer region is somehow able to 

compensate.  This result is surprising compared to the lack of rescue from the 

4C mutant.  In the 4C construct the 4 cysteines in the hydrophilic loop have 

been substituted and this does not rescue, in the CH construct the whole loop 

has been substituted, including the cysteines, there is only 1 cysteine in the 

spacer (Kinjo et al., 2003) so this is unlikely to have any effect, but it would be 

good to try a different spacer sequence to test this. 

 

6.3.1.6 X.laevis SLC24A5 can rescue the ATG morpholino 

 

As predicted, the strongest rescue was observed from the mutated X.laevis 

construct.  This is mutated such that the morpholino would not target it.  

Primarily this confirms that the morpholino is specifically targeting SLC24A5. 

This also corresponds to morpholino rescue data seen in the zebrafish 

SLC24A5 work (figure 20) (Lamason et al., 2005).  Unfortunately we have not 

had the opportunity to make other mutants in the X.laevis protein. 

 

6.3.1.7 Chimera rescues 

 

As expected, and consistent with the WT rescue seen earlier, the NCXK5 

construct can rescue 100ng ATG morpholino effect.  The NCKX5 ntl2 chimera 

can also rescue, this suggests the N-terminal region of NCKX5 is not crucial for 

its function, or the NCKX2 N-terminal region can substitute its function.  NCKX2 

was not expected to rescue as although it has the same core function it is 

normally expressed in different tissues.  The lack of rescue from the NCKX5 

cyto2 chimera is also consistent with the previous data where the 4C construct 

could not rescue.  The 4C construct has had its loop cysteines replaced with 

glycine, the cytosolic loop of NCKX2 has no cysteines in it, so this chimera is 
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comparable with the 4C mutant.  The rescues here also indicate that the GFP 

tag in these constructs does not affect protein function.  

NCKX5 is a notoriously difficult protein to detect by western bloting. Human 

antibodies are available but are not very efficient and the results are difficult to 

reproduce.  Here the mutant constructs were detected by western blot (figure 

67), however this took at lot of optimisation and is difficult to reproduce. The 

chimera constructs could not be detected by western blot (figure 68). 

 

6.3.2 Rescuing the splice morpholino 

 

Very surprisingly none of the human or X.laevis constructs could rescue the 

splice morpholino phenotype, even at lower morpholino concentrations. This 

was not expected as these constructs (except 4C) can rescue the ATG 

morpholino and as the splice morpholino is targeting the same protein it is 

reasonable to assume it could also be rescued.  It was considered that perhaps 

the splice morpholino was also targeting the sequence of the rescue constructs.  

This may be the case for the X.laevis construct as this has not been mutated in 

the splice morpholino region, but the human sequence has two nucleotide 

differences in the splice morpholino target region, so it is unlikely that the 

morpholino would target it.  Consistently the chimera constructs are also unable 

to rescue the splice morpholino.  None of the chimeras affect the splice 

morpholino target region of the gene, so this is not a factor.  However this is not 

the only case where morpholino effects cannot be rescued, Haworth et al could 

not rescue their ATG or splice morpholino phenotypes (Haworth et al., 2008) 

 

The splice morpholino was predicted to truncate the gene by removing the last 

exon (figure 52).  According to the predicted trans membrane structure in figure 

34, this truncation would include the last 3 trans membrane domains and part of 

the second alpha repeat.   

 

It has been speculated that NCKX5, like NCKX2, could function as a homodimer 

or by interacting with another protein, it is possible that by truncating the protein 

it can no longer interact with its partner and thus cannot function in 

melanogenesis but equally cannot be rescued by the constructs.  Conversely it 

could be that NCKX5 does not normally function as a dimer and truncation has 

caused it to interact with itself or something else. 
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It is also possible that the splice morpholino truncated protein acts as a 

dominant negative and thus the threshold of activity is too high for the constructs 

to rescue.  It would be good to generate the truncated protein by PCR and inject 

this as mRNA alone to see if it has any dominant negative effect on the embryo. 

 

It may also be prudent to generate further sequence data of intron/exon 

boundaries within X.laevis SLC24A5 and try morpholinos to these targets. 

 

6.3.3 Rescuing the double morpholino 

 

Similar to the ATG morpholino, the double morpholino can also be rescued by 

the mutant constructs.  Presumably, due to the lack of rescue of the splice 

morpholino, the rescue seen here of the double knockdown is likely just 

representing rescue of the ATG morpholino, however this is not consistent with 

the dominant negative theory.  Here again all constructs except 4C provided a 

statistically significant rescue.  Surprisingly AT provides the strongest rescue, 

and CH rescues better than the XL or WT constructs.  However the strength of 

the rescue (based on percentage of wild type embryos) from AT and CH is no 

greater with the double morpholino knockdown than the ATG morpholino, it is 

more a case that the other constructs give a weaker rescue. 

It is very surprising to see that the NCKX2 construct can rescue the double 

knockdown.  It is assumed that some of this protein gets into the 

melanosome/TGN membrane where it assumes the role of NCKX5, although it 

is then peculiar that this does not occur in the ATG or splice morpholino 

rescues.  The rescue from NCKX5 is consistent with the rescue from the wild 

type construct and is expected.  Rescue from the NCKX5 ntl2 construct is 

questionable as so few embryos here where recovered to scale 0, however if 

this constructs can rescue it indicates this region of the protein is not vital for its 

function, or that the NCKX2 equivalent region is redundant here. 

NCKX5 cyto2 does not appear to rescue; this is consistent with our earlier 

finding that the 4C mutant could not rescue.  Taken together this indicates the 

loop of NCKX5 is important for correct functioning in melanogenesis; however 

this theory is not supported by the rescue from the CH mutant. 
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6.3.4 Chimera rescues 

 

Chimeric constructs of NCKX2/5 were made by the Schnetkamp lab and these 

were used here in rescue experiments. 

Although members of the same protein family, NCKX2 and NCKX5 are only 

36% similar in humans and human NCKX2 and X.laevis NCKX5 are only 27% 

similar.  These proteins are thought to perform the same core function, as a 

potassium dependent sodium calcium exchanger, but their physiological roles 

are quite distinct.  NCKX2 is predominantly found in the brain, where it has been 

shown to play a role in neuronal Ca2+ homeostasis (Li et al., 2006).  NCKX2 is 

also found in retinal cone cells. The precise role of NCKX2 here is as yet 

undetermined; knockout of this gene surprisingly did not cause any significant 

retinal phenotype (Li et al., 2006). However the exchanger activity of NCKX2 

has been demonstrated in retinal cone cells isolated from fish, this work also 

showed NCKX2 to be excusive in this cell type (Paillart et al., 2007).  NCKX5 is 

found solely in pigment cells, where its role is as yet undetermined. Also NCKX5 

is the only NCKX protein to be found on an intracellular membrane, which has 

hindered functional analysis of this protein. 

By ‘mix matching’ regions of the NCKX2 and NCKX5 proteins it was hoped that 

important protein domains would be elucidated.  However in this system these 

experiments are not conclusive.  The rescue from NCKX5 ntl2 construct of the 

ATG morpholino could suggest that the N-terminal region (including the signal 

peptide) of NCKX5 is not vital to its function.  In other NCKX proteins, this region 

is thought to be important for trafficking the protein to the plasma membrane 

(Kang and Schnetkamp, 2003), as NCKX5 does not translocate to the plasma 

membrane, this could explain its lack of importance to NCKX5 function.   The 

other explanation is that this region of NCKX2 is able to perform the same role 

as the equivalent region of NCKX5, thus offering some redundancy of function.  

The lack of rescue from the NCKX5 cyto2 chimera indicates a fundamental 

importance of the large loop of NCKX5.  In NCKX2 this loop is cytosolic, as 

NCKX5 is found on an organelle membrane it is thought this loop resides within 

the organelle.  The sequence of the cytosolic loop is not well conserved across 

species, however a region of acidic residues is commonly found just before helix 

6 (Paillart et al., 2007).  NCKX1 has been shown to have a longer loop than 
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other NCKX proteins, and this has been suggested to play a role in protein-

protein interactions (Poon et al., 2000).      

The exact role of the large cytosolic loop of NCKX2 is not known, however the 

data presented here suggests its role is not conserved in NCKX5.  The loop of 

NCKX2 is also approximately 100 amino acids longer than the equivalent region 

of NCKX5.    

It would be interesting to develop chimeras of the alpha repeat region of NCKX2 

and NCKX5 and test these in the rescue assay. 

 

6.3.5 Overexpression analysis 

 

All the constructs were injected alone, individually into embryos.  This was to 

test for toxicity as well as identify any over expression phenotypes.  No such 

phenotype was observed; however it would be difficult to detect visually an 

increase in pigmentation as the pigment cells are already black.  No obvious 

increase in number of pigment cells was observed.  A dominant negative effect 

was also considered but as no reduction in pigmentation observed this was 

ruled out.  It may be worth analysing any effect on other pigmentation genes 

following over expression of NCKX5 constructs. 

 

6.3.6 Constraints of the rescues  

 

It must be acknowledged that not all X.laevis SLC24A5 is repressed by the 

morpholino, so there will always be some function, hence not complete 

knockdown and lower threshold for mutants to reach.  Also as previously 

discussed there is likely a second paralog of SLC24A5 for which there is no 

sequence data and thus no morpholino, therefore this protein will be functioning 

normally and providing some redundancy to the morpholino knockdown. 

All the rescue constructs used here are based on work conducted with NCKX2, 

although this is a related protein it is possible that some key residues differ in 

position and function.  Also these human NCKX2 mutations were transferred 

into human NCKX5 and used to rescue.  It could be that the human sequence is 

not similar enough to the X.laevis sequence to provide a clear interpretation of 

the function of the protein via rescue analysis.  To better analyse the rescue 

capability of these mutants it would have been preferable to clone the mutations 

into the X.laevis sequence.  This would have been advantageous as the rest of 
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the sequence would be wild type and thus more likely to behave normally within 

the embryo and would thus give a better reflection of the function of the protein.   

However, the human sequence was readily available for mutation and the 

transfer of mutations from human NCKX2 to human NCKX5 was quicker and 

easier. 
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Chapter Seven:  

 

Final discussion  

 

 

7.1 Summary 

 
Over the past 6 years SLC24A5 has emerged as a key player in global skin 

pigmentation phenotypes.  Research has predominantly focused on the ns SNP 

and how this correlates across population groups; however the function and 

mode of action of SLC24A5 in pigmentation is yet to be clarified.  Ginger et al 

(2008) were the first to demonstrate a role for SLC24A5 in human 

melanogenesis in cell culture. 

 

Here we have successfully cloned SLC24A5 from X.laevis and shown it to be 

expressed in pigment cells from their inception and throughout later stages of 

development.  We have suppressed translation of SLC24A5 using antisense 

morpholinos and report that this causes a decrease in pigmentation in the RPE 

and epidermal pigmentation.  The morpholino effect can be rescued by X.laevis 

SLC24A5 and some human mutant constructs, which indicate the role of 

SLC24A5 in pigmentation is not dependent on its ion exchanger function.  A 

splice morpholino can also give a reduction in pigment, however this cannot be 

rescued. 

 

Due to sequence homology SLC24A5 is suspected to encode NCKX5, but 

because of the intracellular location of this protein, functional analyses has been 

very tricky.  Massive over expression of NCKX5 in insect high five cells does 

make some protein go to the plasma membrane and thus some functional 

assays have been performed (figure 22), but these are difficult to reproduce.  

Despite many other efforts including attaching signal peptides for plasma 

membrane targeting, NCKX5 cannot be persuaded to reside in the plasma 

membrane.  This work provides some in vivo contribution to the functional 

analysis of NCKX5.  
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7.2 Potential roles for NCKX5 

 

Morpholino knockdown of SLC24A5 does not appear to interfere with pigment 

cell development, morphology or migration (figures 45, 46, 47, 48), thus 

attention can be turned to the pigment producing organelle the melanosome.  

 

7.2.1 NCKX5 and the melanosome 

 

At the melansome level there are several potential roles for SLC24A5.  Firstly a 

role in melanosome pH regulation is possible, and this has been shown to be 

important for melanosome function (Ancans et al., 2001b).  Also, cholesterol 

metabolism has been suggested to be affected by SLC24A5 knockdown in cell 

culture (Wilson et al unpublished).  Ca2+ signalling is also reported to be 

important for melanogenesis (Schallreuter, 2007).  Despite the evidence 

presented here that the Ca2+ exchange function of NCKX5 may not be vital to its 

role in pigmentation, it cannot be ruled out, because we rescue X.laevis 

SLC24A5 knockdown with human SLC24A5 constructs which are based on 

NCKX2 mutations and these have not themselves been shown to be important.   

 

It is possible that SLC24A5 is involved in the biogenesis or function of the 

melanosome.  This is supported by the finding that the early melanosome 

marker and important structural protein Pmel17 is reduced following SLC24A5 

siRNA knockdown in cell culture (Ginger et al., 2008).  Electron microscopy was 

employed in the present study  to analyse the melanosomes following 

morpholino knockdown, to see if they were still present, or whether they may be 

‘stuck’ at an early developmental stage etc, but unfortunately the work was not 

completed.  However the observation that later melanosome proteins such as 

tyrosinase and DCT are expressed following SLC24A5 knockdown suggest the 

melanosomes can develop normally. Although Mitf expression seems to be 

disrupted. 
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7.2.2 NCKX5 and the Trans Golgi network  

 

The colocalisation of SLC24A5 with the trans Golgi network (TGN) (figure 19), 

implies the protein could be involved in the processing and trafficking of other 

proteins, potentially those of the melanosome.  However, there is also 

expression of SLC24A5 throughout pigment cells (figure17 and 19), so direct 

expression within the melanosome cannot be ruled out.  Furthermore, NCKX5 

was enriched in melanosome fractions following proteomic analysis of 

fractionated melanocytes (Ginger et al., 2008).  Also, the marker TGN-46, used 

in the colocalisation experiments can also be found in endosomes (Pfeffer, 

2009),  as melanosomes have been suggested to form from early endosomes it 

is possible that SLC24A5 has a role here.   

 

The TGN can be regarded as the final sorting office of the Golgi network, distal 

from the Golgi cisternae stacks.  It has a key role in sorting and transport of 

newly synthesised and recycled proteins and lipids.  The TGN is particularly 

important for glycosylating proteins; TYRP-1 has to be extensively glycosylated 

before being transferred to the melanosome (Jimbow et al., 1997). 

The TGN is distinct from the Golgi cisternae stacks as it forms different vesicles 

from the rest of the Golgi; the cisternae generate COPI (coat protein complex I) 

vesicles and the TGN produces clathrin coated vesicles.  These domains also 

respond differently to brefeldin A (BFA, which disrupts ER/Golgi transport) 

treatment; the cisternae stacks tend to fuse with the endoplasmic reticulum 

whereas the TGN can fuse with endosomes (Nakano and Luini, 2010).  BFA 

however does not affect cholesterol transport.  It has recently been shown that 

the TGN localisation of SLC24A5 is robust enough to survive BFA treatment 

(Wilson et al unpublished data).  This however does not rule out an endocytic 

localisation of SLC24A5.   It was also shown nocodazole mediated disruption of 

the microtubule network did not affect SLC24A5 localisation.  Nocodazole does 

however prevent the transport of cholesterol, via microtubule networks. 

The Golgi is a known calcium store and fluctuations in calcium concentration 

can influence its function (Pinton et al., 1998).  In this capacity the TGN also 

helps to regulate cellular calcium concentrations which are important to maintain 

homeostasis and for signalling pathways. As such it is possible that NCKX5 

plays a role in regulating the calcium concentration of the TGN, and in this way 

contributes to the correct folding and processing of melanosomal proteins.  
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However, if this were the case one could reasonably expect more general 

phenotypes from knockdown of SLC24A5.  The pH of the TGN also has to be 

carefully regulated to ensure correct folding of proteins, including tyrosinase 

(Wang and Hebert, 2006).  A role here for NCKX5 would tie in with the model 

proposed by Lamason et al (2005), discussed below. 

 

 It has also been noted that tyrosinase activity is higher in melanocytes derived 

from black individuals than white melanocytes, this is thought to be due to the 

more acidic environment of white melanosomes.  Na+/H+ exchangers (NHE’s) 

have been found to be differentially expressed in black and white melanosomes.  

The vesicular ATPase was also found to be expressed in melanocytes, from 

both black and white backgrounds, highlighting the pH regulation system (Smith 

et al., 2004).  This evidence correlates with the nsSNP in SLC24A5, where the 

SNP is present in white skinned populations, it reduces the activity of NCKX5 

which in turn imbalances the electrochemical gradient resulting acidification of 

the TGN/ melanosome, and this impairs the activity of tyrosinase and thus the 

production of melanin.  

 

Another model for NCKX5 function put forward by Ginger et al (2008) suggests 

NCKX5 may play a role in melanosome biogenesis.  Here they hypothesise that 

NCKX5 is involved in protein trafficking and sorting at the endosome membrane.  

This is supported by their observation that Pmel17 is downregulated following 

SLC24A5 knockdown, indicating lack of endosomes, and the upregulation of 

Lamp1, a lysosome marker, following SLC24A5 knockdown, which indicates 

loss of SLC24A5 causes diversion of membrane proteins and lipids to the 

lysosome pathway (Ginger et al., 2008).  Moreover the cleavage of Pmel17 into 

smaller fragments has been shown to be pH sensitive (McGlinchey et al., 2011; 

Pfefferkorn et al., 2010).  
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7.2.3 pH regulation 

 

As discussed earlier (1.3.5) melanosome pH is an important factor for melanin 

synthesis.  Lamason et al (2005) proposed a model for SLC24A5 in 

melanosome pH regulation, where proton exchange via a V-ATPase is coupled 

to SLC24A5 mediated calcium movement by a Na+/H+ exchanger (figure 69). 

 

 

 

 

Figure 69 
A potential role for SLC24A5 in melanosome pH regulation.  The V-ATPase (left, 
dark circle) pumps protons into the melanosome, this drives Na+ movement into 
the melanosome via the Na+/H+ exchanger (middle), the Na+ gradient then 
stimulates Ca2+ uptake with K+ in exchange for Na+ by NCKX5 (right) 
(Lamason et al., 2005) 
 

Figure 69 demonstrates the potential interplay between electrochemical 

gradients over the melanosome membrane. This model links together 

melanosome pH and calcium content both of which are important for regulation 

of melanogenesis.  In this model Ca2+ is removed from the cytosol and 

accumulated in the melanosome, and the proton gradient is maintained.  This 

model assumes that endogenous NCKX5 mediated ion exchange moves Ca2+ 

and K+ into the melanosome and Na+ out, in vivo, so far there is no experimental 

evidence that this is the case.  According to this model, a reduction in activity of 

NCKX5 would cause a net acidification of the melanosome, which would hinder 

melanin synthesis due to the pH sensitivity of tyrosinase.  The pH of early 

endosomes varies between discrete regions of the organelle (Jovic et al., 2010), 

this could be a niche for SLC24A5 function.  The A111T and D383N mutants are 

both suspected to reduce the activity of NCKX5 and indeed, although these can 
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rescue the knockdown of SLC24A5 here, they cannot restore normal 

pigmentation to the same extent as the WT or XL clones (figure 61), suggesting 

a less active NCKX5 can hinder melanin synthesis, potentially via pH 

misregulation. 

To further analyse the role of NCKX5 in pH regulation of melanosomes it would 

be useful to conduct cell culture experiments using acridine orange.  This labels 

acidic organelles and could be used in conjunction with NCKX5 immunostaining, 

with and without siRNA to NCKX5, to see if there is any colocalisation. 

The Lamason model also suggests that Ca2+ uptake into the melanosome is vital 

for the correct functioning of furin-like proteases which are important for 

processing Pmel17 (Lamason et al., 2005).  This correlates with the observation 

by Ginger et al (2008) that Pmel17 protein levels are downregulated following 

siRNA knockdown of SLC24A5.   

Despite finding alterations in protein expression of several melanogenic genes 

(Pmel17, Tyr, Tyrp1, Mart1 AND Lamp1), following siRNA knockdown of 

SLC24A5 no alterations in the corresponding mRNA levels (Wilson et al 

unpublished), this correlates with the findings here that following morpholino 

repression of SLC24A5, transcripts of Tyr and DCT are unaffected (figures 45, 

47).  However, figure 46 does suggest Mitf transcript is repressed by SLC24A5 

knockdown, this has not been anaylsed at the protein level.  This suggests 

SLC24A5 has more of a role in the post translational processing and trafficking 

of proteins.  This has been analysed this in further detail by treating NHM with 

EndoH and PNGaseF, following siRNA knockdown of SLC24A5 (Wilson et al 

unpublished data).  EndoH is an endogylcosidase which cleaves off 

oligosaccharides added to proteins in the ER and early stages in the Golgi.  

PNGaseF can cleave oligosaccharides added in the ER and throughout the 

Golgi.  Western blot analysis of Tyr and Tyrp1 following such treatment revealed 

no differences between the control and SLC24A5 knockdown cells, suggesting 

that SLC24A5 has a role later in post translational processing, i.e. after the Golgi 

(Wilson et al unpublished).  

In the same work, it was found that MC1R (melanocortin 1 receptor) mRNA 

levels were reduced following SLC24A5 knockdown, however the link here has 

not been established (Wilson et al unpublished data).  MC1R is the receptor for 

αMSH and ASIP, αMSH has been shown to increase protein levels of NCKX5.  

They also found NCKX5 levels can be depleted by siRNA knockdown of Mitf.  

These findings highlight a role of SLC24A5/NCKX5 in the pigmentary system.  
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There has been no evidence, to date, to suggest that repression of NCKX5 

causes an increase in any other NCKX or NCX protein, suggesting there is no 

redundancy among these families. 

  

7.2.4 Acidic calcium stores 

 

Based on data discussed so far, the melanosome can be considered as an 

acidic calcium store, which act as buffers to calcium fluctuations within the cell 

(Patel and Docampo, 2010).  The Golgi, endosomes and lysosomes are well 

known acidic calcium stores.  These organelles regulate their pH and Ca2+ levels 

through Ca2+ pumps and exchangers.  These often use the proton gradient 

across the organelle membrane to move Ca2+ via calcium hydrogen exchangers 

(CAX), however this type of exchangers have not been found in mammals 

(Shigaki et al., 2006), thus other mechanisms for connecting proton and calcium 

gradients may be presence, this could be a role for NCKX5. 

The accumulated Ca2+ in melanosomes can be absorbed by melanin which has 

been shown to play a role in Ca2+ homeostasis (Hoogduijn et al., 2003).  Melanin 

binds Ca2+ via its carboxyl group (Bush and Simon, 2007) in a pH dependent 

manner (Drager, 1985).  Although melanocytes are not excitory cells they do 

experience fluctuations in Ca2+ concentrations, similar to that seen in naive 

neurons, which is unsurprisingly due to their common origin (neural crest), also 

these calcium fluxes are thought to be associated with migration which again 

ties with their neural crest origin and thus extensive migration.  Calcium is 

required in the skin to induce keratinocyte differentiation, this process is 

enhanced by the presence of vitamin D, which is synthesised in the 

keratinocytes and acts as an autocrine agent to increase keratinocyte sensitivity 

to Ca2+ (Bikle et al., 2001).  Expression of NCKX5 in the keratinocytes has not 

been tested, this would be a worthy experiment as NCKX5 could play a role 

here once the melanosomes have been transferred.   

 

The Golgi is a known calcium store, as are endosomes and lysosomes, although 

these are also acidic (Patel and Docampo, 2010), thus wherever NCKX5 may be 

expressed it could have a role in balancing pH and calcium concentration.  Ca2+ 

is vital for a number of cellular functions including; migration and proliferation, it 

is also an important cofactor for many enzymes, notably phenylalanine 

hydroxylase (Schallreuter and Wood, 1999).  It has also been shown to be 
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important for melanogenesis and melanosome transfer (Meyer zum 

Gottesberge, 1988).  Hoogdujin et al (2003) described the dynamic nature of 

basal Ca2+ concentration in black and white melanocytes.    Addition of 

exogenous Ca2+ to NHM results in a transient increase in intracellular Ca2+ 

concentration.  The extent to which the Ca2+ concentration increases appears to 

be dependent on the endogenous melanin content, i.e. black and well melanised 

white melanocytes show less of an increase in cytosolic Ca2+ concentration than 

poorly melanised white melanocytes.  This is thought to be due the  Ca2+ binding 

capacity of melanin, whereby the more melanin that is present the more Ca2+ 

can be sequested and therefore the cytoplasmic Ca2+ concentration does not 

increase as much (Hoogduijn et al., 2003).  In this way melanin acts as a 

reservoir for Ca2+.  NCKX5 could influence this phenomenon, less active NCKX5 

in white melanocytes, will move less Ca2+ into the melanosome/TGN thus the 

cytoplasmic Ca2+ concentration goes up. So it would appear that while Ca2+ is 

important for melanogenesis and melanocyte behaviour, melanin is equally 

important for Ca2+ homeostasis.  Salceda and Sanchez (2000) conducted Ca2+ 

uptake and release experiments of melanosome extracts from frog RPE cells.  

They noted that melanosomes are able to take up Ca2+ and this could not be 

interrupted by various inhibitors of plasma membrane or ER channels and 

pumps, including ATPase’s.  This is contrary to results using these inhibitors in 

other mammalian cell types, where they did inhibit Ca2+ uptake, leading to the 

suggestion that in these cells Ca2+uptake is ATP dependent and partly driven by 

SERCA’s (sacroplasmic endoplasmic reticulum Calcium ATPase) (Lopez et al., 

2005).  This suggests the melanosome has its own Ca2+ transport system, which 

may not be energy dependent, but may rely more on the proton gradient.  This 

study was conducted in 2000, however here they implied this could be a job for 

Ca2+-Na+-K+ exchange, in light of more recent research this system is potentially 

run by NCKX5.  It would be of interest to repeat these Ca2+ uptake and release 

experiments following siRNA knockdown of SLC24A5 to determine if this protein 

does have a role in this system.  Of course all this accumulated Ca2+ needs to 

get out of the melanosome too, this is proposed to be conducted by IP3 and 

ryanodine receptors (Salceda and Sanchez-Chavez, 2000), but could NCXK5 be 

moving Ca2+ in the opposite direction or could it be bidirectional, like NCKX1 and 

NCKX2.  We do know it is possible to reverse the direction of ion movement in 

vitro (figure 22).  Defects in Ca2+ or pH regulation in melanosomes, or other 

endosomal/lysosomal organelles are thought to be partly responsible for the 
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pigmentation phenotype seen in Hermansky-Pudlak and Chediak-Higashi 

syndromes (Spritz, 1998).  Mutations in secretory pathway Ca2+ ATPases 

(SPCA) have been found to be responsible for the keratinocyte disorder; Hailey-

Hailey disease.  SPCA’s are a family of ATPases which regulate Ca2+ transport 

into the Golgi (Missiaen et al., 2007; Vanoevelen et al., 2007) 

 

7.2.5 Cholesterol homeostasis 

 

Cholesterol is an important component of cell membranes.  It provides stability, 

fluidity, and permeability.  85% of cellular cholesterol is found in the plasma 

membrane, most organelle membranes contain very little cholesterol, except the 

TGN membrane which contains cholesterol at levels almost equivalent to that 

seen in the plasma membrane (Fielding and Fielding, 1997).  Cholesterol is also 

the precursor for the synthesis of many steroid hormones and vitamin D, which 

have a role in melanogenesis (Rosenheim and Webster, 1927; Schallreuter et 

al., 2009).  A role for cholesterol in pigmentation has been demonstrated (Hall et 

al., 2004; Jin et al., 2008; Schallreuter et al., 2009).  

Cholesterol and related processing/biosynthesis proteins have been found to be 

expressed in melanocytes and melanoma cells, partially colocalises with a 

melanosome marker (NKI/beteb).  Content of cholesterol was particularly high in 

amelanotic melanoma cells, indicating cholesterol may have a role in early 

melanosome biogenesis.  Addition of exogenous cholesterol resulted in an 

increase in melanin content in melanocytes.  The same study also found that 

cholesterol enhances cAMP, CREB, Mitf, THI, tyrosinase and estrogen 

receptors expression (Schallreuter et al., 2009), which are all important for 

melanogenesis.  Taken together these results suggest that melanogenesis is 

regulated by cholesterol in melanocytes and melanoma cells.  Hall et al (2004) 

found that by adding 25-hydroxy cholesterol (25HC) to melanocytes, 

pigmentation was reduced; this was found to be due to an increase in tyrosinase 

degradation  (Hall et al., 2004).  This correlates with the finding that cholesterol 

levels are high in amelanotic cells but not with the evidence that addition of 

cholesterol increases melanin content, however cholesterol and 25HC have 

previously been shown to function via different mechanisms (Adams et al., 

2004).  This adds another dimension to regulation of melanogenesis by 

cholesterol.  Also 25HC mediated degradation of tyrosinase was found to take 

place in a Golgi compartment (Hall et al., 2004), this brings NCKX5 into the 
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picture.  Recently NCKX5 has been proposed to play a role in cholesterol 

homeostasis since siRNA mediated reduction of NCKX5 causes an increase in 

cholesterol and ester levels (Wilson et al unpublished data).  This observation 

was made in normal human melanocytes where following siRNA treatment 

micro array analysis of global mRNA profiles revealed altered expression levels 

of several cholesterol homeostasis genes, including; the ATP-binding cassette 

transporter A1 (ABCA1) and the low density lipoprotein receptor (LDLR).  These 

both have well established functions in cholesterol metabolism (Chen et al., 

2007; Zhou et al., 2009). 

The current work can provide no additional evidence for a role of NCKX5 in 

cholesterol, nor can it contradict it.  In future experiments X.laevis could provide 

an in vivo system to assess the effects of cholesterol on pigmentation and how 

this may be regulated by NCKX5.  X.laevis has been shown to be a strong 

model for chemical genomic screening (Tomlinson et al., 2005; Tomlinson et al., 

2009b), so it would seem reasonable to adopt a similar experimental paradigm 

to test cholesterol and its derivatives, in a medium-high throughput manner.  

Also cholesterol homeostasis components have been found to be expressed in 

X.laevis skin tissue (Tadjuidje and Hollemann, 2006). 

 

It is clear from this work that NCKX5 has an important role in eye pigmentation.  

The expression seen here is thought to be in the RPE, however expression in 

the choroidal or iridial melanophores cannot be ruled out.  Interaction between 

these cell types is known to be important for their respective functions, and this 

has been shown to involve calcium signalling (Smith-Thomas et al., 2001).  

NCKX proteins were first discovered in the eye.  NCKX1 is expressed in the rod 

photoreceptor cells and has been shown to be important for extruding calcium 

from the cells, following its entry via cGMP gated channels in response to light 

(Prinsen et al., 2000). It has been thought that NCKX1 was the only calcium 

extrusion mechanism in the rod photoreceptors, but perhaps NCKX5 is also 

playing a part in this system.  NCKX2 is also expressed in the eye, specifically 

the cone photoreceptors, as well as broad expression in the brain (Winkfein et 

al., 2004).  To date,  most functional analyses has been conducted on NCKX1, 

due to its convenient location in the rod outer segments which can be easily 

isolated with intact plasma membranes, and NCKX2, in vitro studies suggest it 

plays a similar role to NCKX1 but in the cone photoreceptor cells (Altimimi and 

Schnetkamp, 2007b; Lytton, 2007).  NCKX1 has been shown the form a dimer 
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(Schwarzer et al., 1997) and associate with the cGMP gated channel 

(Schwarzer et al., 2000), it would be of interest to determine if NCKX5 interacts 

with any other protein(s).   

 

Calcium signalling is important for photo transduction, this is closely regulated 

by cGMP and calcium binding proteins within the cell (Koch et al., 2010).  Ca2+ 

concentration within photoreceptor cells decreases dramatically following 

closure of cGMP cation channels, which stops Ca2+ getting in, this is initiated by 

the stimulation of light.  NCKX1 is moving Ca2+ out of the cell during this 

process, contributing to the drop in cytosolic Ca2+.  Ca2+ levels also regulate 

retinal guanylate cyclases, which during the reduction in Ca2+ can synthesise 

GMP (Stephen et al., 2008).  GMP is involved in a signalling cascade to pass on 

the photo transduction pathway (Koutalos et al., 1995), Ca2+ is important to 

restore equilibrium after photon excitation (Pugh and Lamb, 1990). 

NCKX1 has recently been implicated in the eyesight disorder congenital 

stationery night blindness (Riazuddin et al., 2010).  NCKX5 is yet to be 

associated with any disease state, although it is expressed in melanoma cells, 

weather it is enhancing the cancer is known. 

 

7.3 Conclusion 

 

A role for NCKX5 in pigmentation is now well established, in vitro and in vivo 

and across different species.  The function of NCKX5 is likely to be as 

potassium dependent sodium calcium exchanger, although direct evidence of 

this is limited, due to the unusual intracellular location of NCKX5.  Linking 

together ion exchange and pigmentation has proved challenging. Previous 

speculation has indicated a role for NCKX5 in pH maintenance, which is known 

to be important for melanin production, however how exactly NCKX5 links to 

proton exchange has not been determined experimentally.  As an important 

signalling molecule for many processes, Ca2+ homeostasis has to be tightly 

regulated, as a Na+/Ca2+/K+ exchanger it is acceptable to suggest a role for 

NCXK5 in Ca2+ regulation.  It should also be taken into account that some ion 

exchangers do have secondary functions, this work has indicated that perhaps it 

is not the ion exchange activity of NCKX5 that is vital for its role in pigmentation, 

thus other functions should not be ruled out.  
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Appendix 

 

Appendix 1 - Primer table 

 
Primers are colour coded to the sequence map in the next figure. 

 
Primer name  Sequence  Length  Tm 

°C 
XT SLC24A5 F +  EcoR1 GAATTCATGTGTACGTGTATGACCTTTAC 29 63 
XT SLC24A5 R+ HA + 
BamH1 

CCTAGGTCAAGCGTAATCTGGAACATCGTATGGGTAGT
CACCACACATCACGATAGC 

57 76 

XT SLC24A5 R+ BamH1 CCTAGGTTAGTCACCACACATCACGATAGC 30 68 
XT SLC I.P1 F TCATGGCAATTGGAAGTTCA 20 56 
XT SLC I.P1 R TGGCTCATGCTCTGTGTTTC 20 60 
XT SLC I.P2 F ACACAGAGCATGAGCCATTG 20 60 
XT SLC I.P2 R GTTCCAGCAGCGAGTAATG 

 
20 60 

XT ODC F (X.tropicalis cDNA 
control) 

GCCAGTAAGACGGAAATCCA 20 60 

XT ODC R (X.tropicalis 
cDNA control) 

CCCATGTCAAAGACACATCG 20 60 

T7 sense CCAGTGAATACGACTCACTATAGG 24 62 
SP6 antisense CCAAGCTATTTAGGTGACACTATAG 25 61 
RACE 1* CCAACAACAGGCGGCACATATCCCAAGA 28 69 
AUAP (3’RACE kit primer) GGCCACGCGTCGACTAGTAC 20 66 
AP (3’RACE kit primer) GGCCACGCGTCGACTAGTACTTTTTTTTTTTTTT 37 65 
GeneRacer (5’ kit primer) CGACTGGAGCACGAGGACACTGA 23 68 
GeneRacer 5’ nested primer GGACACTGACATGGACTGAAGGAGTA   
3’ RACE 3 CAGACTGCAGGAGGAAAACATGG 23 64 
DCT F TGCTGGAAAGGGATCTTCAG 20 60 
DCT R TGTACATCTTCCACGGATGG 20 60 
Full length 5’ * TCGA GAATTC CTGGCAGGGAGAGCAGAGTC 30 70 
Full length 3’ 3* TCGACTCGAG TTAGTCACCACACAGTACCATAGG 34 70 
SLC frameshift 1 AGTATCCCAGACACGGTTGC 20 54 
SLC frameshift 2 GATATGCTGTGTTTGGGAGTCCCT 24 57 
SDM  of SLC TCGA GAATTC ATGGAGAAAGGATCCGTTGC 30 62 
EcoR1 F GCATCACCATCATCAGAATTCCCTGAAG 28 60 
EcoR1 R CCGTGAAAAAATCTTCAGGGAATTCTGATGATGG 34 62 
Myc R GAATTC CAGATCCTCTTCTGAGATGAGCTTCTGTTC 

TGATGATGGTGATGCTATACAGAG 
61 71 

5’ Xho1 TCGA CTCGAG GTGCATTTTAGCCATGGAG 29 63 
3’ Xba1 ** TATA TCTAGA TTAGTCACCACACAGTACC    29 57 
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Appendix 2 - Full length X.laevis SLC24A5 

 

Full nucleotide sequence of X.laevis SLC24A5 showing morpholino target 
sites and primers, coloured coded with primer table. 
 
GAATTCGATTTCGAGAATTCCTGGCAGGGAGAGCAGAGTCTGTGCATTTTAGCCAT

GGAGAAAGGTTCTGTTGC TCTGAATGTAGGAAGAAGGCCCTTTGGAAAGAAGAGA

TTGCCCTGCAGAGCTCCGCTGGGTTCATTCGCCCTGTTCTTGATTGTTTGCGGCAC

AGTCTATCTGGTCAACCAAGTGGCTACTACCCTGGTGGTGAGAGGCACGCAGAGA

ATCCGGAGGGATATAGAGAATGAGACTCTCTGTATAGCATCACCATCATCAGAATTT

CCTGAAGATTTTTTCACGGAACAGGAGAGGAAGCAAGGAGGCCTTATCATTCACTT

CCTAGTTATACTTTACATGTTCCTAGCGGTGTCCGTTGTATGCGAATACTATTTTATC

CCCTCATTAGAAGTCATTAGTGAACGTCTTGGTCTCTCCCAGGATGTCGCAGGGGC

AACATTTATGGCAATTGGAAGTTCAGCTCCAGAATTTGTCACTGTATTTCTAGGCGT

ATTTGTCACAAAGGGAGATATTGGTGTGAGCACTATTGTTGGATCAGCTGTCTACAA

TCTTCTTGGGATACGTGCCGCCTGTTGTTTGCTTTCATCATCGATTTCAAGGCTCAC

TTGCTGGCCTTTGTTTAGAGATTGTGTGGCGTATGCAATTAGTGTAGCAGCAGTAAT

TGCAATAACATTTGACAACAGGATATACTGGTATGAATCTGCATCTCTGCTTTTGAT

ATATGGCATATATATTGTTATAATGTGCTTCGACATTAAGATTAGCAAATATGTTGTA

AGGAGGTTCAGTCCTTGCTGTGCCTGTTGCGCTGAAGCAATGGTGGAAAACACAG

AGCACGCGCCATTGCTAGGTTGGAAAGAAGAGAGTTTGCCAGTTATTCGCCGCCA

CTCAAGATCAGACAGTGGGATTTTTCAGGAAGATTCTGATTATTCTCAACTCTCAAT

AAGTCTGAGTGGGCTAAAGGAACCCTCTAATAACCCGCCAAGTGTCTTCAAGATGC

CAGAAAATGACCTGAGAAGGATTATTTGGGTATTGTCGCTGCCTATTATTACTTTGT

TTTATCTGACTGTGCCAGACTGCAGGAGGAAAACATGGAAAAAGTGGTTCATTCTC

ACATTTGTCATGTCAGCCGTTTGGATTTCTGCAGTGACTTACATTCTTGTATGGATG

GTGACGATTGTTGGTGAAACACTAAATATTCCAGACACAGTGATGGGACTGACATT

GCTTGCTGCTGGAACAAGTATCCCAGACACGGTTGCAAGTGTGATAGTAGCAAGA

GAAGGTAA AGGAGACATGGCCATGTCCAATATTGTGGGTTCCAACGTGTTTGATAT

GCTGTGTTTGGGAGTCCCTTGGTTTATTAAGACAGTCTTTGTCGACAGATCATCCCC

CGTGGAGGTTAATAGCAGCGGCATCACATACACCACAATTTCTCTCCTGTTCTCCAT

TATGTTCATCTTTGTGGCTATACATTTAAATGGCTGGAAACTTGATAAGAAGTTAGG

AGTTATTTGCCTATTTATGTATTTAGTATTTGTTACTTTATCGATATTGTATGAACTTG

GAATTATAGGGAACACTCCTATGGTACTGTGTGGTGACTAACTCGAGTGCAAAWCR

CTAGTGAATTC 

 

BOLD = MO target 

Colours = see primer table for code 
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Appendix 3 

 
 
Map of pGEM-T Easy Vector 
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Appendix 4 

 

Map of pCS2+ vector 

 

 

 

 

Appendix 5 

 

Sequence of control morpholino 

 

CCTCTTACCTCAGTTACAATTTATA 
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