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Abstract 

NO (nitric oxide) is an intermediate of respiratory denitrification and is one of the 

toxic species released by macrophages of the immune system in the defence against 

invading pathogenic bacteria. In Escherichia coli, the expression of the Nitric Oxide 

(NO) reductase (NorVW) is tightly regulated by NorR, a member of the bacterial 

Enhancer Binding Protein (bEBP)-family that activates σ
54

-dependent transcription of 

the norVW genes under conditions of nitrosative stress. Binding of NorR to three 

conserved enhancer sites upstream of the norVW promoter is essential for 

transcriptional activation and promotes the formation of a stable higher-order 

nucleoprotein complex. NorR falls into a class of bEBPs that are negatively regulated 

– the regulatory (GAF) domain represses the activity of the ATPase (AAA+) domain 

in the absence of NO. NO binds to the non-heme iron centre of the GAF domain, 

stimulating ATP hydrolysis by the AAA+ domain and establishing an interaction 

between the activator and σ
54

 that leads to the remodelling of the closed promoter 

complex. However, the route by which NorR couples signal sensing to substrate 

remodelling is unknown. Here, the mechanism of interdomain repression in NorR has 

been investigated by characterising substitutions in the AAA+ domain that bypass 

repression by the regulatory domain. Most of these substitutions are located in the 

vicinity of the surface-exposed loops that engage σ
54

 during the ATP hydrolysis cycle 

or in the highly conserved GAFTGA motif that directly contacts σ
54

. A combination 

of genetic and biochemical approaches were used to show that the regulatory domain 

of NorR is unlikely to control AAA+ activity using previously characterised 

mechanisms, employed by related bEBPs. Instead, this work identifies a novel 

mechanism in which the σ
54

-interaction surface of the AAA+ domain is a target of the 

GAF-mediated repression mechanism. This hypothesis is further supported by EM-

reconstructions of two characterised escape-variants in their on-states, one of which 

represents the first structure of a bEBP bound to enhancer DNA. In the case of NorR, 

regulation at the point of σ
54

-interaction may be linked to the pre-assembly of an 

inactive hexamer, “poised” at the enhancer sites, enabling the cell to rapidly respond 

to nitrosative stress. 
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General Abbreviations 

σ   Sigma factor 

σ
54   

Alternate sigma factor 54 

σ
70   

Housekeeping sigma factor 70 

2-OG   2-oxoglutarate 

AAA+   ATPases Associated with various cellular Activities 

ACT   Aspartokinase, Chorismate mutase and TyrA 

ADP   Adenosine Diphosphate 

ADP.AlFx  ADP Aluminium Flouride  

ADP.BeFx  ADP Beryllium Flouride   

APS   Ammonium Persulphate 

ATP   Adenosine Triphosphate 

bEBP   bacterial Enhancer Binding Protein 

BSA   Bovine Serum Albumin 

BsNsrR  Bacillis subtilis NsrR 

cAMP   cyclic Adenosine Monophosphate 

CC   Closed Complex 

C domain  Central domain 

cGMP   cyclic Guanosine Monophosphate 

Cra   Catabolite repressor-activator 

CRP   cAMP Receptor Protein 

CTD   C-terminal Domain 

D domain  DNA-binding domain 

DctD   C4-Dicarboxylic Acid Transport Protein D 

DmpR   3,4-demethylphenol Catabolism Regulatory Protein 

DNA    Deoxyribonucleic Acid 

DNIC   Dinitrosyl-iron complex 

dNTP    Deoxy Nucleotide Triphosphate 

DTT   Dithiothreitol 

E    RNA Polymerase (core) 

Eσ
54/70

   RNA Polymerase (sigma factor 54/70 holoenzyme) 

EBP   Enhancer Binding Protein 

ECF   Extracytoplasmic Function 

EDTA   Ethylenediaminetetraacetic acid 

EM   Electron Microscopy 

EMSA   Electrophoretic Mobility Shift Assay 

EPR   Electron Paramagnetic Resonance 

ES-MS  Electrospray-Mass Spectrometry 

FAD   Flavin Adenine Dinucleotide 

Fe-S   Iron-Sulfur 

FhlA   Formate-Hydrogen |Lyase Activator Protein 

FIS   Factor for Inversion Stimulation 

FlgR   Flagella Gene Regulator 

FMN    Flavin Mononucleotide 

FNR   Fumarate and nitrate reductase regulator 

Fur   Ferric Uptake Regulator 

GAF cGMP-specific and stimulated phosphodiesterases, Anabaena 

adenylate cyclases and E. coli FhlA 
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GSNO   S-nitrosoglutathione 

Hcp   Hybrid cluster protein 

Hcy   Homocysteine 

HK   Histidine Kinase 

Hrp   Hypersensitive response and pathogenicity 

HTH   Helix-Turn-Helix 

IHF   Integration Host Factor 

IPTG   Isopropyl-β-D-thiogalactopyranoside 

IscR   Iron-Sulfur Cluster Regulator 

LB    Luria-Bertani broth 

MALDI-TOF  Matrix-Assisted Laser Desorption/Ionization-Time Of Flight 

MCS   Multiple Cloning Site 

NAD   Nicotinamide Adenine Dinucleotide 

NifA   Nitrogen Fixation Regulatory Protein A 

NgNsrR  Neisseria gonorrhoeae NsrR 

NMR   Nuclear Magnetic Resonance 

Nnr   Nitrate and nitrite reducase regulator 

NO   Nitric Oxide 

NOD   Nitric Oxide Dioxygenase 

NOR   Nitric Oxide Reductase 

NorR   Nitric Oxide Reductase Regulator 

NorRΔGAF  NorR lacking the N-terminal, Regulatory GAF domain 

NOS   Nitric Oxide Synthase 

NTD   N-terminal Domain 

NTP   Nucleotide Triphosphate 

NtrC   Nitrogen Regulatory Protein C 

NtrC1   Nitrogen Regulatory Protein C 1 

NtrC4   Nitrogen Regulatory Protein C 4 

OC   Open Complex 

ONPG   Ortho-nitrophenyl-β-galactoside  

OPC   Open Promoter Complex 

PAGE   Polyaccrylamide Gel Electrophoresis 

PAS  Per, ARNT and Sim 

PCR   Polymerase Chain Reaction 

PDB    Protein Data Bank 

PDE5   Phosphodiesterase 5 

Pfam    Protein Families database 

PMF   Proton Motive Force 

PSI   Pounds per Square Inch 

PspF   Phage Shock |Protein F 

PFV   Protein Film Voltammetry 

PRD   PTS Regulation Domain 

R domain  Regulatory domain 

R-finger  Arginine-Finger 

RNAP   RNA Polymerase (core)  

RNAP-σ
54/70  

RNA Polymerase (sigma factor 54/70 holoenzyme) 

RNS   Reactive Nitrogen Species 

ROO   Rubredoxin:Oxygen Oxidoreductse 

ROS   Reactive Oxygen Species 

RPM   Revolutions Per Minute 
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RR   Response Regulator 

RT   Room Temperature 

SAP    Shrimp Alkaline Phosphatase  

SAXS   Small-Angle X-ray Scattering 

ScNsrR  Streptomyces coelicolor NsrR 

SDM   Site Directed Mutagenesis 

SDS   Sodium Dodecyl Sulfate 

SFM   Scanning Force Microscopy 

SMART  Simple Modular Architecture Research Tool 

SNAP   S-nitroso-N-acetylpenicillamine 

SNO   S-nitrosothiol 

SNP   Sodium Nitroprusside 

TBE   Tris Borate EDTA 

TEMED  N,N,N',N'-Tetramethylethylenediamine 

Tris   Tris (hydroxymethyl) aminomethane 

TyrR   Tyrosine Regulator 

UAS   Upstream Activator Sequence 

V4R   Vinyl 4 Reductase 

WA   Walker A 

WAXS  Wide Angle X-ray Scattering 

WB   Walker B 

WT   Wild Type 

X-gal   5-bromo-4chloro-3-indolyl-B-D-galactopyranoside 

XylR   Xylene Catabolism regulatory Protein 

ZraR   Zinc Resistance-Associated Protein Regulator 
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Chapter 1 – Nitric Oxide (NO) and the regulation of NO-detoxification 

Nitric Oxide (NO) is a highly reactive free-radical gas with wide-ranging roles in both in 

animals and plants (MacMicking et al. 1997; Bosca et al. 2005; Mur et al. 2008). 

Depending upon the concentration present it can function either as a signalling molecule 

e.g. in the regulation of enzymes and transcription factors, or as a potent mediator of 

cellular toxicity e.g. the antimicrobial response of macrophages. At lower (nanomolar) 

concentrations, NO functions in signalling. For example, NO causes the stimulation of 

guanylyl cyclase in smooth muscle cells (Arnold et al. 1977) and as a result the second 

messenger cyclic GMP (cGMP) is produced, causing muscle relaxation. Consequently, 

drugs that increase and decrease the NO levels in the body have been developed. 

Compounds such as sodium nitroprusside (SNP) which release NO are used in the 

treatment of hypertension to promote vasodilation and a drop in blood pressure (Wang et 

al. 2002; Hanson and Whiteheart 2005). The role of NO in vasodilation has been utilised 

most famously, in the development of the drug Sildenafil (Viagra). This drug competitively 

inhibits phosphodiesterase 5 (PDE5) which catalyses the breakdown of cGMP, and is 

commonly prescribed in the treatment of male impotence (Corbin and Francis 1999). As a 

small, neutral and lipophilic molecule, NO can rapidly diffuse across cell membranes and 

at higher (micromolar) concentrations, has toxic effects (Stamler et al. 1992; Lamattina et 

al. 2003; van Wonderen et al. 2008). The potency of NO as a biological signalling 

molecule and its toxicity can be largely explained by the single, unpaired electron that 

renders it highly reactive. It can be rapidly oxidised by the removal of an electron to form 

the nitrosonium cation (NO
+
) or reduced by the addition of an electron to form the nitroxyl 

anion (NO
-
); both are important molecules in the biochemistry of NO (Figure 1.1A). 

Consequently NO can react with oxygen (O2), superoxide (O2
-
), nitrogen-species and 

transition metals leading to the formation of a wide range of derivatives, collectively 

known as reactive nitrogen species (RNS) (Figure 1.1B) (Lamattina et al. 2003; van 

Wonderen et al. 2008). NO can react with transition metals such as zinc, iron and copper to 

form metal-nitrosyl complexes, a reaction utilised in the regulation of certain enzymes and 

transcription factors. Reaction with the cysteine (thiol) residues of proteins can form S-

nitrosothiols (SNOs). When superoxide is present, a rapid reaction occurs to form 

peroxynitrite (ONOO
-
). This derivative can lead to the formation of a highly reactive, 

DNA-damaging hydroxyl radical (OH
●
) and NO2. Further peroxynitrite induced reactions 

include the nitration of tyrosine residues to yield Tyr-NO2 and the oxidation of thiol groups 

to yield sulfenic and sulfonic acids.  
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Figure 1.1 - Chemistry of the interrelated forms of NO and their biological activities. 

(A) Interconversion of NO forms. NO radical (NO
●
) is rapidly oxidized by the removal of 

one electron to give nitrosonium cation (NO
+
), or reduced by the addition of one electron to 

form nitroxyl anion (NO
-
). NO

+
 and NO

-
 are important intermediates in the biochemistry of 

NO. (B) Chemical reactions of NO (produced endogenously or released by NO donors). NO 

can react with transition metals (M
+x

) such as Zn, Fe and Cu to form metal-nitrosyl 

complexes. NO
+ 

and NO
●
 can also nitrosylate thiol groups of cysteines of proteins (R-SNO). 

NO reacts with superoxide (O2
-
) to form the peroxynitrite (ONOO

-
) derivative that can lead 

to the formation of hydroxyl radical (OH
●
) and NO2. Peroxynitrite can also induce the 

nitration of tyrosine residues to form Tyr-NO2 as well as the oxidation of thiols to produce 

sulfenic/sulfonic acids (Lamattina et al. 2003). 
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1.1 Targets of NO and reactive nitrogen species (RNS) 

NO may have either a cytostatic or cytotoxic effect, depending on the bacterial species. 

Evidence indicates that NO/S-nitrosothiols can reversibly inhibit DNA replication via a 

mechanism that involves mobilisation of zinc from metalloproteins (Schapiro et al. 2003). 

NO itself has also been shown to inhibit respiration by binding to the copper and heme 

centres in the quinol oxidases cytochrome bo' and bd (Stevanin et al. 2000). In addition, 

interaction of NO with tyrosine residues has been demonstrated to inhibit the enzyme 

ribonucleotide reductase which is believed to limit the availability of precursors for the 

synthesis and repair of DNA (Lepoivre et al. 1991). NO and hydrogen peroxide (H2O2) are 

known to act in synergy in the killing of E. coli (Pacelli et al. 1995). Iron chelators reduce 

the number of double stranded DNA breaks in cultures treated with NO and H2O2, 

indicating a role for the Fenton reaction (the reduction of H2O2 by ferrous iron) in DNA 

damage: 

 

Fe
2+

 + H2O2 → Fe
3+

 + OH
-
 + OH

●
 

 

The hydroxyl radical formed in this reaction is highly reactive, causing DNA damage. As a 

substrate of the Fenton reaction, the role of H2O2 is clear but the role of NO in the synergy 

of killing is less well understood. It has been suggested that interaction of NO with iron-

sulfur clusters increases the level of ferrous iron to accelerate the Fenton reaction (Pacelli 

et al. 1995). Another possible role for NO centres around its inhibition of respiration by 

binding copper and heme centres in quinol oxidases (Stevanin et al. 2000). It has been 

suggested that the resulting accumulation of NADH would promote FADH production by 

an NADH-dependent flavin reductase. FADH would then reduce free ferric iron to the 

ferrous form, thereby accelerating the Fenton reaction (Woodmansee and Imlay 2002; 

Woodmansee and Imlay 2003). It is likely that both hypotheses have a role in the NO-

dependent damage of DNA. Increasing evidence suggests that proteins that contain iron-

sulfur (Fe-S) clusters or mononuclear iron may be the primary target of NO cytotoxicity 

(Spiro 2007). Well over 200 Fe-S proteins have been identified in E. coli with diverse roles 

including sugar metabolism, amino acids biosynthesis, RNA modification and DNA-

synthesis and repair (Johnson et al. 2005; Lill and Muhlenhoff 2006). In vitro studies have 

shown that the Fe-S clusters can be modified by the binding of NO to form dinitrosyl-iron 

complexes (DNICs) which have a unique Electron Paramagenetic Resonance (EPR) signal 

at g = 2.04 (Drapier 1997; Kennedy et al. 1997; Ding and Demple 2000; Cruz-Ramos et al. 
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2002; Rogers et al. 2003). Furthermore in vivo studies suggest that many iron-sulfur cluster 

proteins are highly sensitive to NO including aconitase [4Fe-4S] (Gardner et al. 1997), 

ferredoxin [2Fe-2S] (Rogers and Ding 2001), endonuclease III [4Fe-4S] (Rogers et al. 

2003) and the dihyroxy-acid dehydratase (I1vD) [4Fe-4S] (Hyduke et al. 2007; Ren et al. 

2008). In addition, a number of transcription factors have also been shown to respond to 

NO (see below) and it may be that such regulators have evolved to mediate the cellular 

response to NO cytoxicity. 

 

1.2 Encounter of NO by bacteria 

1.2.1 Exogenous NO 

In mammals, nitric oxide synthases (NOS) are present in three isoforms (Fang 2004). The 

eNOS and nNOS isoforms are so-called because of their discovery in endothelial and 

neuronal tissue respectively (Bredt et al. 1991; Janssens et al. 1992; Sessa et al. 1992). 

They are constitutively expressed in a range of tissues and are considered low-output 

enzymes with roles in signal transduction. Production of NO is strongly dependent on 

calcium (Ca
2+

) levels. When Ca
2+

 levels increase, a Ca
2+

-calmodulin complex is formed 

that binds strongly to eNOS/nNOS to activate NO production. Therefore eNOS and nNOS 

are collectively termed cNOS. A third isoform, iNOS was first discovered in macrophages 

and is so-called because its function is independent of calcium signalling. Unlike cNOS, 

iNOS is not constitutively expressed and only low levels are normally present (Nathan and 

Xie 1994). Regulation is at the level of transcription (Taylor and Geller 2000); stimulation 

of receptors and cytokine signalling can trigger signalling cascades that result in large 

amounts of NO being produced. Macrophages of the immune system are able to express 

iNOS and produce NO as part of the antimicrobial response. Significantly, 

lipopolysaccharide (LPS) present on the surface of bacteria can induce the expression of 

iNOS via the production of cytokines (Nathan 1992; Xie et al. 1994). 

 

NOS enzymes are dimeric (Crane et al. 1998) and catalyse the synthesis of NO from L-

arginine via an NωOH-L-arginine intermediate (Figure 1.2). The C-terminal reductase 

domain contains binding sites for NADPH, FAD and FMN and shares 30-40% similarity 

with cytochrome P450 reductase (Xie et al. 1994). The oxidation of NADPH releases 

electrons that are passed between the domains, facilitated by a calmodulin/Ca
2+

 complex. 

The N-terminal oxidase domain contains the tetrahydobiopterin (BH4) and heme cofactors. 
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Oxygen binds the heme and electrons received from the reductase domain drive the two-

step oxygenation to NO, releasing L-citrulline as a by-product. 

 

1.2.2 Endogenous NO 

NO is an intermediate of denitrification, a process by which denitrifying bacteria convert 

nitrate into dinitrogen gas (Knowles 1982; Zumft 1997). This anaerobic process is utilised 

by many bacteria to generate energy and is accomplished by four different types of 

metalloenzymes in four simple steps (reviewed by (Tavares et al. 2006)) (Figure 1.3). The 

reduction of nitrate to nitrite is catalysed by a molybdenum-containing nitrate reductase 

(reviewed by (Richardson et al. 2001)) of which there are two types involved in 

denitrification. The membrane-bound nitrate reductase (Nar) has three components: NarI 

and NarH together make up the electron transfer centres whilst NarG contains the active 

site for the reduction. NarGH is present in the cytoplasm but anchored to the inner 

cytoplasmic membrane by NarI (Jormakka et al. 2004). The nitrate reductase (Nap) is in 

contrast located in the periplasm and examples exist in Desulfovibrio desulfuricans and 

Paracoccus pantotrophus (Sears et al. 2000; Marietou et al. 2005). The second step in the 

denitrification pathway involves the reduction of nitrite to nitric oxide (NO) and is 

facilitated by either the cytochrome cd1 (van Wonderen et al. 2007) or copper-containing 

nitrite reductases (Nojiri et al. 2009), both of which contain distinct electron transfer and 

catalytic centres. Nitric Oxide Reductase (NOR) catalyses the two-electron reduction of 

NO to nitrous oxide (N2O) (Watmough et al. 2009). This membrane-bound enzyme is 

found in three forms (cNOR, qNOR and qCuNOR) that have a conserved active site but 

differ in the number and type of electron transfer centres. The best characterised is the 

cNOR from Paracoccus denitrificans (Field et al. 2008), containing a NorC subunit that 

receives electrons from cytochrome c or cupredoxin and a binuclear heme iron-non heme 

iron catalytic NorB subunit. The final step of the complete denitrification pathway is the 

reduction of N2O to dinitrogen (N2), carried out by the perisplasmic multi-copper nitrous 

oxide reductase (N2OR) (Haltia et al. 2003). This enzyme contains a binuclear CuA centre 

involved in electron transfer and a multinuclear CuZ catalytic centre (Rosenzweig 2000). 
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Figure 1.2 – (A) Schematic showing the structure of the NO synthase (NOS) enzyme. NOS 

is a dimer and comprises two domains (shaded and un-shaded). A reductase domain (curved 

oblong) receives electrons from NADPH and passes them on to the oxygenase domain (oval) 

of the other monomer via the FAD and FMN cofactors. A calmodulin/Ca
2+

 complex 

facilitates the transfer of electrons between the two domains. The oxygenase domain 

contains the tetrahydobiopterin (H4B) and heme cofactors. Oxygen binds to the heme moiety 

and the electrons drive the two-step oxygenation of L-arginine to L-citrulline which releases 

NO. Electron transfer is indicated using arrows and does not occur between the reductase 

and oxygenase domains of the same subunit (Stuehr et al., 1999). (B) Shows the two-step 

oxygenation of L-arginine to NO via the N
ω
OH-L-arginine intermediate. L-citrulline is 

released as a by-product (MacMicking et al. 1997). 
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NO production has also been observed in non-denitrifying bacteria, including E. coli (Ji 

and Hollocher 1988). Such bacteria are able to carry out steps of the denitrification 

pathway as part of anaerobic respiration in order to utilise nitrate as a terminal electron 

acceptor. This process is called respiratory denitrification (Figure 1.3). E. coli contains 

three nitrate reductases, all of which absolutely require molybdenum as a cofactor 

(Moreno-Vivian et al. 1999). The membrane-bound NarA and NarZ reduce nitrate in the 

cytoplasm (Berks et al. 1995). Under nitrate-sufficient conditions, NarA is the predominant 

reductase (Potter et al. 1999), whereas NarZ confers a selective advantage during 

stationary phase or periods of poor growth (Iobbi-Nivol et al. 1990). Under conditions of 

nitrate-starvation, the periplasmic nitrate reductase (Nap) is expressed (Stewart et al. 

2002). The Nap reductase consists of a number of different subunits; the NapA-NapB 

complex is believed to receive electrons from the quinol pool via the membrane bound 

cytochrome NapC, whilst NapG and NapH, but not NapF are also essential for reduction 

(Brondijk et al. 2002; Nilavongse et al. 2006). Depending on their cellular location, the 

nitrate reductases in E. coli produce nitrite that acts as the substrate for one of two 

biochemically distinct nitrite reductase enzymes (Wang and Gunsalus 2000). The NirB 

nitrite reductase is a cytoplasmic siroheme-containing enzyme that uses NADH as an 

electron donor to reduce nitrite. Together the nitrate reductase NarA/NarZ and the nitrite 

reductase NirB function in the cytoplasm to reduce nitrate to ammonium. In contrast, the 

cytochrome C nitrite reductase (NrfA) is located in the periplasm and functions in concert 

with Nap in respiratory denitrification. NrfA is known to catalyse the six-electron 

reduction of nitrite to ammonia via NO (Costa et al. 1990) but has more recently been 

implicated in the detoxification of NO in E. coli (Poock et al. 2002; van Wonderen et al. 

2008). The function of NrfA as an enzyme in detoxification will be discussed in greater 

detail later (section 1.4.1). 
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Figure 1.3 – The steps in the denitrification pathway and associated enzymes for 

E. coli (red arrows) and denitrifiers e.g. Paracoccus denitrificans (blue arrows). The 

complete denitrification pathway involves the reduction of nitrate to dinitrogen 

involving four different types of enzymes: (1) nitrate reductase (Nar or Nap), (2) nitrite 

reductase (cytochrome cd1 or copper-containing), (3) nitric oxide reductase (cNOR, 

qNOR or qCuNOR) and (4) nitrous oxide reductase (N2OR) (Tavares et al. 2006). 

Non-denitrifiers are also able to carry out steps of the pathway under anaerobic 

conditions, in a process known as respiratory denitrification. Nitrate is reduced to 

ammonia via nitrate and nitrite reductases in the cytoplasm (NarA/NarZ and NirB) or 

in the periplasm (Nap and NrfA). The six-electron reduction of nitrite to ammonia by 

NrfA occurs via a Nitric Oxide intermediate which may be an endogenous source of 

NO in E. coli (Poock et al. 2002; van Wonderen et al. 2008). 
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1.3 NO-sensing in bacteria 

As part of the response to RNS, bacteria have evolved specific sensor proteins that detect 

NO and subsequently activate the expression of proteins that mediate the cellular response 

to nitrosative stress. This is particularly relevant in pathogenic bacteria that encounter NO 

released by macrophages upon infection of mammalian and plant cells. Many of the NO-

sensing proteins and detoxification enzymes are conserved in both pathogenic and non-

pathogenic bacteria, suggesting that their evolution may have originally occurred in soil 

microbes before horizontal gene transfer provided pathogenic bacteria with methods for 

NO-detoxification (Tucker et al. 2010b). Bacterial NO-sensing proteins can be divided into 

two classes: (i) regulators whose primary function is not to sense NO and (ii) regulators 

that are solely dedicated to sensing NO. The best example of the first class is the global 

fumarate and nitrate reductase regulator (FNR) whose primary function is to sense oxygen 

but which has also been shown to be NO-responsive (Cruz-Ramos et al. 2002). In addition 

to an FNR orthologue, denitrifying soil bacteria also possess an orthologue of the dedicated 

NO-sensor nitrate and nitrite reducase regulator (Nnr). For example the denitrifier P. 

denitricans has the Nnr1 protein in addition to an FNR protein (FnrP) that senses both 

oxygen and NO (Hutchings et al. 2002a). The role of the former is to detect NO, activating 

the transcription of the nir and nor genes that encode the nitrite and NO reductases 

respectively. This ensures that nitrate is rapidly converted into nitrous oxide, preventing 

the accumulation of the toxic intermediates of denitrification (Hutchings et al. 2000; 

Hutchings and Spiro 2000; Spiro 2007).  

 

1.3.1 Direct NO-sensors in E. coli 

The role of NO-sensing proteins in the model organism and human pathogen, Escherichia 

coli, will be discussed in this section. A number of regulators in E. coli mediate cellular 

responses to oxygen and reactive oxygen species (ROS) but can additionally respond to 

NO. The SoxR, IscR and FNR proteins all act as NO-sensors via the Fe-S clusters that they 

contain. Fe-S proteins are an ancient and important class (Beinert 2000), ubiquitous in 

nearly all organisms with roles in electron-transfer and catalysis. Their role as redox agents 

is well understood but in recent years it has emerged that Fe-S cluster proteins can also 

have regulatory functions (reviewed in (Kiley and Beinert 2003). All Fe-S clusters employ 

tetrahedral coordination of the iron. The simplest Fe-S cluster is represented by the 

rubredoxins but more complex clusters exist e.g. [2Fe-2S], [4Fe-4S], and [3Fe-4S] (Kiley 

and Beinert 2003). 
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(i) SoxR 

SoxR is a member of the MerR-family of regulators and was the first transcription factor 

shown to contain an Fe-S cluster (reviewed in (Demple et al. 2002). Initially, SoxR was 

implicated in sensing superoxide. Superoxide is a ROS that causes SoxR to activate the 

transcription of SoxS in E. coli, (Demple et al. 2002). SoxS in turn activates the expression 

of ~45 gene products e.g. superoxide dismutase which catalyse the removal of superoxide 

and the repair of oxidative stress-induced damage. Electron Paramagnetic Resonance 

(EPR) spectroscopy indicates that each monomer of the SoxR homodimer contains a [2Fe-

2S] cluster that under normal cellular conditions is in its reduced form ([2Fe-2S]
1+

) and 

unable to activate transcription. Superoxide stress results in the generation of the oxidised 

form ([2Fe-2S]
2+

) that is competent to activate transcription (Ding and Demple 1997). A 

membrane-associated NAD(P)H-dependent complex reduces SoxR, returning it to its 

transcriptionally inactive state, in the absence of superoxide (Koo et al. 2003). More 

recently, activation of SoxR by NO has been shown to occur via the nitrosylation of the 

[2Fe-2S] centres to form dinitrosyl-iron complexes (DNICs). Nitrosylated SoxR has a 

similar transcriptional activity to oxidised SoxR but is short-lived in vivo, indicating the 

presence of mechanisms that repair nitrosylated clusters (Ding and Demple 2000). The 

nitrosylated [2Fe-2S] cluster of ferredoxin can be repaired in vitro by the cysteine 

desulphurase, IscS (Yang et al. 2002). Despite the identification of SoxR as an NO-sensor, 

the significance of the SoxRS system in the biological response to NO remains unclear. 

Recent microarray analyses suggest that SoxR and SoxS only play a minor role in the 

response to NO (Mukhopadhyay et al. 2004; Flatley et al. 2005; Justino et al. 2005b). 

However, the inter-relatedness of the different RNS species makes the relative 

contributions of each molecule difficult to assess and microarray analysis may not detect 

the subtle effects of NO on the SoxRS regulon (Spiro 2007). 

 

(ii) FNR 

FNR is a global regulator that controls the transcription of greater than 100 genes (Guest et 

al. 1996; Kiley and Beinert 1998; Green et al. 2001). The primary role of FNR is to sense 

oxygen via its [4Fe-4S] iron-sulfur cluster and therefore FNR generally controls the 

expression of proteins that contribute to the anaerobic lifestyle of E. coli. In its active form, 

FNR contains one [4Fe-4S]
2+

 cluster per subunit of the dimer and is competent to bind to 

DNA. Upon exposure to oxygen, rapid conversion of the cluster from [4Fe-4S]
2+ 

to [2Fe-

2S]
2+

 prevents dimerisation and therefore DNA-binding. In addition, FNR has been shown 
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to sense and respond to NO in Escherichia coli (Cruz-Ramos et al. 2002; Crack et al. 

2008), Azotobacter vinelandii (Wu et al. 2000), Paracoccus denitrificans (Hutchings et al. 

2002a) and Salmonella enterica serovar Typhimurium (Gilberthorpe and Poole 2008). 

Here, it is thought that the inactivation of FNR occurs via the formation of monomeric and 

dimeric dinitrosyl-iron (DNIC) complexes (Cruz-Ramos et al. 2002). 

 

(iii)  IscR 

The iron-sulfur cluster regulator (IscR) contains a [2Fe-2S] cluster and is a member of the 

Rrf2 family of transcription factors. IscR represses the transcription of the iscRSUA 

operon (Schwartz et al. 2001), the products of which are required for iron-sulfur cluster 

biogenesis (Zheng et al. 1998). Removal of the cluster rather than modification of the 

redox state has been suggested to modify the activity of IscR by altering the DNA-binding 

activity of the transcription factor (Schwartz et al. 2001). When there is a need for iron-

sulfur cluster assembly e.g. under conditions of oxidative stress, the levels of [2Fe-2S] 

IscR are likely to be low, leading to derepression of the iscRSUA operon. The resulting 

increase in the expression of the Isc assembly apparatus will eventually lead to higher 

[2Fe-2S] IscR levels and repression of the operon (Figure 1.4). In this way regulation by 

IscR is thought to couple iron-sulfur cluster assembly with the cellular requirement for 

synthesis or repair (Schwartz et al. 2001). In the absence of the cluster, IscR has also been 

shown to directly activate rather than derepress target genes (Figure 1.4). For example 

under conditions of oxidative stress, the apo form of IscR is thought to activate the 

expression of the Suf Fe-S cluster assembly system (Yeo et al. 2006). Where both the Isc 

and Suf assembly systems are present (e.g. E. coli), the Isc system is thought to a play a 

primary role in cluster assembly whereas the Suf system acts as a back-up or more 

specialised system (Takahashi and Tokumoto 2002; Outten et al. 2004). In addition to its 

response to redox status, IscR has been shown to respond to NO (Hyduke et al. 2007; 

Pullan et al. 2007; Jones-Carson et al. 2008). This corresponds with a proposed role for 

IscR in the sensing of NO-induced iron-sulfur cluster damage and the subsequent up-

regulation of mechanisms for cluster re-synthesis.  

 

(iv) Fur 

The disruption of iron-sulfur clusters is one of the major toxic effects of NO. In attempt to 

restore such iron centres, E. coli up-regulates proteins involved in the control of 

intracellular iron levels (reviewed by (Andrews et al. 2003). This has been shown to occur 



30 
 

via the inactivation of the iron-responsive ferric uptake regulator (Fur). Indeed a fur mutant 

of E. coli has increased susceptibility to NO (D'Autreaux et al. 2002). Fur is a global 

regulator and controls the expression of >90 genes in E. coli (Hantke 2001). In contrast to 

the Fe-S cluster proteins SoxR, FNR and IscR, Fur contains a non-heme ferrous iron centre 

in its active form that allows it to bind to and prevent expression from Fur-regulated 

promoters (e.g. those involved in iron sequestration). When the levels of iron are low, the 

iron centre is lost and Fur is no longer able to repress the transcription of such genes. In 

addition to IscR (Yeo et al. 2006), Fur has been shown to regulate expression of the suf 

operon encoding the secondary, Suf Fe-S cluster assembly system (Figure 1.4). Fur binds 

to DNA at a site that overlaps the apo-IscR binding-site, preventing IscR-mediated 

activation of transcription. Iron depletion or oxidative stress leads to derepression through 

the loss of the Fur iron centre with the concomitant dissociation of the IscR [2Fe-2S] 

cluster (Lee et al. 2008). Derepression at Fur-regulated promoters has also been shown to 

be induced by the presence of NO which binds to Fur to form a dinitrosyl iron complex 

(DNIC) (D'Autreaux et al. 2002). This presumably increases the intake of Fe
2+

 and the 

production of the Isc and Suf assembly systems to enable the cell to repair NO-damaged 

iron containing proteins.  

 

Ferrous iron largely mediates the cytotoxic effects of ROS as hydrogen peroxide leads to 

the formation of the DNA-damaging hydroxyl radical via the Fenton reaction (Pacelli et al. 

1995). This reaction is accelerated by superoxide, firstly because the action of superoxide 

dismutases leads to increased levels of hydrogen peroxide and secondly, because 

superoxide liberates further ferrous iron due to the attack on the iron-sulfur clusters. The 

SoxR and OxyR regulators that respond to superoxide and hydrogen peroxide respectively, 

have additionally been shown to up-regulate the expression of the Fur repressor (Zheng et 

al. 1999). The induction of fur transcription by OxyR and SoxRS leads to an increase in 

Fur protein concentration although the exact consequences of this increase are unclear. It 

has been suggested that up-regulation may be required to replace Fur damaged by ROS or 

to prevent the uptake of ferrous iron into the cell, although this seems to contradict the 

derepression of the Fur regulon under conditions of oxidative stress (D'Autreaux et al. 

2002). Compartmentalisation of Fe
3+

 by the production of the storage proteins ferritin and 

bacterioferritin may additionally help to counteract the Fenton reaction in bacteria 

(Andrews et al. 2003). It has been suggested that the ferritin-like protein Dps may have a 

particularly significant role in the sequestration of iron in the vicinity of DNA  
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Figure 1.4 – Regulation of the Isc and Suf iron-sulfur cluster assembly systems. 

Both systems are controlled by a common regulator (IscR), acting in opposite ways to 

ensure maximal activation of transcription from the sufABCDSE and iscRSUA promoters 

under conditions of oxidative stress and iron-depletion. Under reducing conditions, Fur 

(containing a non-heme iron centre) binds at an overlapping DNA site to prevent binding 

of the RNA polymerase and apo-IscR-mediated activation of suf transcription. Under 

oxidizing conditions or iron-depletion, the IscR and Fur regulators lose the [2Fe-2S] 

cluster and ferrous iron centre respectively. This leads to derepression by Fur and 

activation by apo-IscR. Transcription of suf genes further requires OxyR that is activated 

by peroxide via reversible cysteine oxidation. OxyR-mediated activation is dependent on 

DNA bending induced by Integration Host Factor (IHF). Activation of transcription from 

the isc promoter occurs under the same conditions but is regulated solely in response to 

IscR. In contrast to its role in the regulation of the suf genes, IscR represses isc 

transcription under reducing/iron-replete conditions when an intact [2Fe-2S] cluster is 

present. Under oxidizing or iron-deplete conditions, the cluster is lost and derepression of 

the isc system occurs. (Yeo et al. 2006). Significantly, IscR and Fur have also been 

shown to respond to NO. Therefore NO may lead to the expression of the Isc and Suf 

assembly systems to enable the cell to repair NO-damaged iron containing proteins. 
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(Almiron et al. 1992; Grant et al. 1998). In line with this, the transcription of Dps has been 

shown to be under the control of OxyR (Altuvia et al. 1994). 

 

1.3.2 Dedicated NO-sensors in E.coli 

Two regulators in E. coli have been identified that appear solely dedicated to the sensing of 

NO (Spiro 2007). The bacterial Enhancer Binding Protein (bEBP), NorR, activates the σ
54

-

dependent transcription of genes encoding the flavorubredoxin (NorVW) in response to the 

direct binding of NO to a mononuclear non-heme iron centre in NorR (Hutchings et al. 

2002b; Gardner et al. 2003; D'Autreaux et al. 2005; Tucker et al. 2007). σ
54

-dependent 

transcription and bEBPs are discussed in greater detail in Chapters 2 and 3 respectively. 

NorR is the subject of this work and is discussed in depth in Chapter 4. More recently, a 

second dedicated NO-sensor has been identified. NsrR (reviewed by (Tucker et al. 2010b) 

which like IscR, is a member of the Rrf2 family of transcriptional repressors will now be 

discussed. 

 

(i) NsrR 

First identified in Nitrosomonas europaea (Beaumont et al. 2004), NsrR is predicted to be 

encoded in the genomes of most β- and γ-proteobacteria. Notable exceptions include 

Pseudomonas aeruginosa and Vibrio cholerae (Rodionov et al. 2005). Interestingly in 

these cases, NorR takes the place of NsrR to control the expression of the NO dioxygenase 

Hmp. This underlies the importance of a dedicated NO-sensor in the regulation of NO-

detoxification mechanisms (Tucker et al. 2010b). Microarray studies in E. coli identified a 

number of genes that were NO-inducible in strains that lacked putative NO-responsive 

regulators (Mukhopadhyay et al. 2004; Flatley et al. 2005; Justino et al. 2005b). It was 

therefore proposed that E. coli contained another NO-sensing regulator, the product of the 

yjeB gene (NsrR). Bioinformatic analysis (Rodionov et al. 2005), microarray analysis 

(Filenko et al. 2007) and a genetic approach using transposon mutagenesis (Bodenmiller 

and Spiro 2006) have been used to show that NsrR negatively regulates the transcription of 

a number of genes in the absence of nitrosative stress (reviewed by (Tucker et al. 2010b). 

Key members of the NsrR regulon include the hmp gene that encodes the 

flavohaemoglobin (Hmp) and the nrfA gene that encodes the periplasmic nitrite reductase, 

which are enzymes that detoxify NO in E. coli. NsrR is also suggested to regulate the 

expression of the hcp and hcr genes that encode the Fe-S-containing Hybrid Cluster 

Protein (Hcp) and its partner reductase, which are suggested to form a hydroxylamine 
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oxidoreductase converting hydroxylamine to ammonia (Wolfe et al. 2002; Cabello et al. 

2004). However, a role for Hcp as a peroxidase in the ROS-response has also been 

demonstrated since Hcp can turnover hydrogen peroxide and hcp transcription is regulated 

by OxyR in vitro (Almeida et al. 2006). It is unclear whether either role represents a 

biologically relevant function that is repressed by NsrR. It has also been suggested that 

another RNS-intermediate might represent the true substrate of Hcp and Hcr (Filenko et al. 

2007). In addition, NsrR has been shown to regulate the expression of the ytfE gene that 

encodes a protein involved in the repair of iron-sulfur clusters (Justino et al. 2007; 

Todorovic et al. 2008). Finally, NsrR has been shown to be a negative regulator of motility 

in E. coli (Partridge et al. 2009). 

 

Recently, in vitro studies of the NsrR proteins from Streptomyces coelicolor (Tucker et al. 

2008), Bacillis subtilis (Yukl et al. 2008) and Neisseria gonorrhoeae (Isabella et al. 2009), 

heterologously expressed and purified in E. coli, have shed light on the mechanism by 

which NsrR might act as an NO-sensor (reviewed by (Tucker et al. 2010b). All three 

studies indicate that NsrR contains a Fe-S cluster but the nature of the cluster was not 

found to be the same in each case. UV-visible and circular dichroism spectra of 

Streptomyces coelicolor NsrR (ScNsrR) indicate the presence of a [2Fe-2S] cluster (Tucker 

et al. 2008). Significantly this cluster was stable when ScNsrR was purified aerobically, 

indicating an insensitivity to oxygen that is in line with its role as a dedicated NO-sensor. 

EPR-spectroscopy indicates that upon exposure to NO, the [2Fe-2S] cluster forms a 

dinitrosyl iron complex (DNIC). DNA binding assays indicate that the unmodified ScNsrR 

[2Fe-2S] protein is competent to bind to its promoter targets but that modification by NO 

prevents the binding to DNA (Tucker et al. 2008). Studies of Neisseria gonorrhoeae NsrR 

(NgNsrR), purified aerobically in E. coli, are also consistent with the presence of a [2Fe-

2S] cluster (Isabella et al. 2009).  Matrix-Assisted Laser Desorption/Ionization-Time Of 

Flight (MALDI-TOF) mass spectrometry revealed a higher mass than expected for the apo-

protein. Furthermore substitution of one of the three conserved cysteine residues with 

alanine resulted in a mass that was in line with the expected mass of the apo-form of 

NgNsrR. In agreement with the ScNsrR data, NgNsrR [2Fe-2S] was able to bind 

specifically at its target promoter but exposure to NO abolished this activity in vitro. In 

contrast to the S. coelicolor and N. gonorrhoeae studies, spectroscopy of B. subtilis NsrR 

(BsNsrR) indicates the presence of a [4Fe-4S] rather than a [2Fe-2S] cluster (Yukl et al. 

2008). Unlike the ScNsrR [2Fe-2S] and NgNsrR [2Fe-2S] proteins, the BsNsrR [4Fe-4S] 
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protein was not aerobically stable; exposure to oxygen resulted in loss of the cluster with 

some evidence of the formation of an unstable [2Fe-2S] intermediate. In common with the 

other studies however, exposure of BsNsrR to NO resulted in the formation of DNIC 

complexes. Importantly, no studies were carried out to determine the DNA-binding activity 

of the BsNsrR [4Fe-4S] protein and so it remains unclear whether this form of the protein 

is biologically relevant. Overall, in the absence of studies in the native hosts, the true 

nature of the Fe-S clusters in the NsrR proteins from S. coelicolor, N. gonorrhoeae and B. 

subtilis remains unclear. It is possible that the anaerobically purified BsNsrR [4Fe-4S] 

represents the biologically relevant form and that the ScNsrR [2Fe-2S] and NgNsrR [2Fe-

2S] proteins form as a result of the breakdown of the cluster during aerobic purification. 

Initial, unpublished data suggest that when anaerobically purified the ScNsrR protein does 

contain a [4Fe-4S] cluster, but that exposure to oxygen or NO causes precipitation in vitro 

rather than breakdown to a [2Fe-2S] cluster (Tucker et al. 2010b). The demonstration that 

the binding of ScNsrR [2Fe-2S] and NgNsrR [2Fe-2S] to target promoters is abolished 

upon exposure to NO, suggests that this form of the protein is biologically relevant (Tucker 

et al. 2010b). An alternative possibility is that NsrR is able to respond to oxygen as well as 

NO and that the [4Fe-4S], [2Fe-2S] and apo-forms of NsrR may all have DNA-binding 

activity. In a manner analogous to IscR (also a member of the Rrf2 family of 

transcriptional repressors), NsrR may be able to activate the transcription of genes when 

the cluster is absent as well as prevent the transcription of a distinct set of genes when the 

cluster is present (Yeo et al. 2006; Tucker et al. 2010b).  Overall, current evidence 

supports a model in which NsrR acts as a dedicated NO-sensor via its [2Fe-2S] cluster 

(Figure 1.5). Exposure of NO, leads to the formation of a DNIC-species leading to the loss 

of DNA-binding and hence derepression at the promoters of NsrR target genes. In addition 

to the three conserved cysteine residues, NsrR (like IscR) has a fourth proposed-ligand that 

is thought to be located in the helix-turn-helix (HTH) motif. This is in agreement with the 

hypothesis that NO-binding at the Fe-S cluster modifies the DNA-binding affinity of the 

transcriptional repressor (Tucker et al. 2010b). 
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Figure 1.5 – Model of the NsrR regulatory mechanism at a generic hmp promoter. 

NsrR [2Fe-2S] binds in the promoter region of the target gene and prevents the binding 

of the RNA polymerase holoenzyme. In the presence of NO, a number of dinitrosyl 

iron (DNIC) complexes can potentially form, leading to the loss of DNA-binding 

activity and derepression at the target promoter. Only the mononuclear DNIC is shown 

here. It should also be noted that for clarity, co-regulators such as FNR have been 

omitted and that nsrR is not always genetically associated with hmp (Tucker et al. 

2010b). 
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1.3.3 The dominant mechanism of NO-sensing by iron-containing proteins 

Overall, the majority of NO-sensing mechanisms are based on iron (Figure 1.6). The 

secondary NO-sensors SoxR, FNR, IscR and the dedicated NO-sensor NsrR all contain 

iron-sulfur clusters whilst Fur contains a non-heme iron centre. The NO-induced formation 

of DNICs is irreversible and re-activation of Fe-S cluster-containing proteins therefore 

requires dissociation of the DNIC and assembly of new iron-sulfur clusters. A number of 

proteins have been identified as critical for the repair of NO-damaged clusters including 

the cysteine desulphurase IscS (Yang et al. 2002) and a diiron protein YtfE (Justino et al. 

2007). Both IscS and YtfE in E. coli are highly induced upon exposure to NO 

(Mukhopadhyay et al. 2004; Justino et al. 2005b; Hyduke et al. 2007; Pullan et al. 2007). 

Under aerobic conditions, the levels of these enzymes are not thought to be limiting and it 

has been suggested that availability of small molecules (ATP, L-cysteine, NADPH/NADH) 

drive the repair (Ren et al. 2008). In contrast to many of the NO-sensing proteins in E. coli, 

the dedicated NO-sensor NorR reversibly binds NO via a non-heme iron centre 

(D'Autreaux et al. 2005) and unlike the other regulators it is not a global regulator, 

activating transcription from a single promoter (Gardner et al. 2003).  

 

1.4 Enzymes of NO detoxification and regulation of their expression 

Many of the NO-sensing proteins in E. coli directly regulate the transcription of genes that 

encode enzymes capable of detoxifying nitric oxide (NO). There are at least three enzymes 

in E. coli that directly detoxify NO, employing either NO dioxygenase (NOD) or NO 

reductase (NOR) activities: the pentaheme periplasmic nitrite reductase (NrfA) that also 

has NO reductase activity under anaerobic conditions (Poock et al. 2002), the 

flavohaemoglobin (Hmp) that catalyses the oxidation of NO to nitrate in the presence of 

oxygen (Poole and Hughes 2000; Gardner and Gardner 2002) and the 

flavorubredoxin/flavodiiron (NorV) protein capable of reducing NO to nitrous oxide in the 

absence of oxygen (Gardner et al. 2002; Gomes et al. 2002; D'Autreaux et al. 2005). 

Deletion of any of the genes encoding these enzymes significantly increases the sensitivity 

of E. coli cells to NO grown aerobically or anaerobically. However, all of these enzymes 

are still not sufficient to protect the cell from NO-cytotoxicity (Mukhopadhyay et al. 2004; 

Justino et al. 2005b; Hyduke et al. 2007; Pullan et al. 2007). These enzymes and the 

regulation of their expression will now be discussed. 
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Figure 1.6 – The role of dedicated and secondary NO-sensing proteins as transcription 

factors. The majority of NO-sensing proteins are secondary sensors (red) i.e. their primary 

function is in the detection of another signal e.g. O2 (FNR, IscR, Fur), superoxide (SoxR). The 

dedicated NO-sensors NorR and NsrR (orange) respond to NO and no other signal (Spiro 

2007). The enzymes that detoxify NO in E. coli (light blue) are regulated by a variety of NO-

sensors. The transcription of the flavorubredoxin, NorV and its redox partner, NorW is 

regulated by the activator NorR. The transcription of the NO dioxygenase (Hmp) and the 

periplasmic nitrite reductase (NrfA) is negatively regulated by both the global regulators FNR 

and NsrR. There is some evidence that the Ferric Uptake Regulator (Fur) negatively regulates 

the expression of hmpA (Hernandez-Urzua et al. 2007). Regulation of NrfA and Hmp is more 

complex than NorR and a number of other non-NO-sensing proteins (not shown) may be 

involved. Although SoxR primarily senses superoxide, it has also been shown to respond to 

NO via its [2Fe-2S] cluster (Ding and Demple 2000). SoxR activates SoxS which regulates 

the transcription of a number of genes including sodA that encodes a superoxide dismutase. 

Under oxidising or iron-deplete conditions, IscR loses its [2Fe-2S] cluster. At the isc 

promoter, this leads to the derepression of transcription. At the suf promoter, the apo-IscR 

protein acts as an activator in concert with the OxyR protein. This activation further requires 

the derepression of the Fur protein which loses its iron centre under similar conditions (Yeo et 

al. 2006; Lee et al. 2008). Transcription of the isc and suf genes leads to the production of the 

Isc and Suf iron-sulfur cluster assembly systems. Significantly the IscR and Fur proteins have 

also been shown to respond to NO (D'Autreaux et al. 2002; Hyduke et al. 2007; Pullan et al. 

2007; Jones-Carson et al. 2008), in line with a role in the activation of expression of systems 
that repair damaged Fe-S clusters. 
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1.4.1 Periplasmic nitrite reductase, NrfA 

NrfA is known to catalyse the six-electron reduction of nitrite to ammonia via NO (Costa 

et al., 1990), as part of respiratory denitrifcation in non-dentrifying enterobacteriaceae. In 

line with this, the 2.5 Å structure of E. coli NrfA shows a 52 kDa homodimer (Figure 

1.7A), with each monomer consisting of five c-type hemes (Bamford et al. 2002; Clarke et 

al. 2008b). An additional electron may be provided by another electron-donating step or 

from the other monomer in the NrfA homodimer (Clarke et al. 2008b). Crystal structures 

are also available for the NrfA enzymes from Wolinella succinogenes (Einsle et al. 2000), 

Sulfospirillum deleyianum (Einsle et al. 1999), Desulfovibrio desulfuricans (Cunha et al. 

2003) and Desulfovibrio vulgaris (Rodrigues et al. 2006). In each structure, four of the five 

hemes are attached by the conventional CXXCH motif and have bis-histidine ligands. The 

catalytic heme (heme 1) however, is attached via a novel CXXCK sequence motif with the 

lysine (K126 in E. coli) coordinating the heme on the proximal side and a water 

(hydroxide) molecule or substrate on the distal side. There are four other highly conserved 

residues in the active site (R106, Y216, H264 and Q263 in E. coli) that provide a positive 

environment for the heme centre and act as potential proton donors (Figure 1.7B). The 

glutamine is positioned 8 Å away from the heme and coordinates an essential calcium ion. 

Together the glutamine and calcium ion are thought to increase substrate affinity by 

supporting a network of hydrogen-bonded water molecules (Clarke et al. 2008a). A second 

calcium ion has been suggested to have a structural role (Cunha et al. 2003). It is proposed 

that the input of electrons occurs at heme 2; there are then two potential routes for electron 

transfer to the active site. Either electrons move to the nearest catalytic heme via heme 3 

(Figure 1.7C) or across the protomer-protomer interface via heme 5 to reach heme 1 of the 

adjacent monomer (Clarke et al. 2008b). 

 

The ability of NrfA to act as an NO-reductase in vitro was first shown in 1990 (Costa et al. 

1990). Since then the contribution of NrfA as an NO reductase (NOR) has been assessed in 

vivo through comparative studies of E. coli wild-type and mutant strains deficient for the 

periplasmic nitrite reductase (Poock et al. 2002). Wild-type cells (deficient for the other 

nitrite reductase, NirB) were calculated to have an in vivo turnover by NrfA of 390 NO s
-1

 

anaerobically, whilst no activity was detected in the mutant strain. This indicates that NrfA 

can act as an NO reductase as well as functioning in the six-electron reduction of nitrite to 

ammonia. Furthermore Nrf
-
 cells were more sensitive than Nrf

+
 cells to treatment with 

either NO or nitrosating agent S-nitroso-N-acetylpenicillamine (SNAP). This suggests a 
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role for NrfA in the detoxification of NO. Recently, protein film voltammetry (PFV) has 

shown that the NrfA protein has a higher NO reductase activity than either of the dedicated 

NO reductases flavohaemoglobin and flavorubredoxin (van Wonderen et al. 2008). The 

authors suggest a role for the periplasmic nitrite reductase in pathogenic bacteria as part of 

the first line of defence against exogenously encountered NO. The site of NO reduction is 

likely to be near to the periplasmic face of the membrane, which would help to detoxify the 

toxic free radical before it enters the cell (Poock et al. 2002). This is anticipated to allow 

the flavorubredoxin, NorV to efficiently detoxify any remaining NO under anaerobic 

conditions. Whilst studies demonstrate that NrfA confers the capacity for NO reduction 

and detoxification, there is limited data to support an in vivo role for NrfA in protection 

against NO toxicity. The physiological role for NrfA as a NOR therefore remains 

uncertain. 

 

(i) Transcriptional regulation of nrfA expression 

Regulation of nrfA is complex with expression controlled by at least three regulators and 

two nucleoproteins (Figure 1.8B) (Browning et al. 2002; Browning et al. 2005) . Under 

anaerobic conditions, the global regulator FNR binds to a site centred at position -41.5 

relative to the nrf promoter and activates expression through interaction with RNA 

polymerase (RNAP). An fnr mutant is unable to produce NO, most likely due to a lack of 

nrf expression, providing evidence for the production of NO by NrfA and its regulation by 

FNR (Corker and Poole 2003). The FNR protein is sufficient to activate transcription under 

anaerobic conditions (reviewed by (Guest et al. 1996) but FNR-dependent activation is 

blocked by the binding of the nucleoproteins Integration Host Factor (IHF) and Factor for 

Inversion Stimulation (FIS) downstream of the nrf promoter. This repression integrates two 

further signals into the regulation of nrf expression. Firstly, FNR-dependent activation is 

reliant upon NarL or NarP, two homologous response regulators controlled by the NarX 

and NarQ sensor kinases respectively (Rabin and Stewart 1993; Darwin and Stewart 1996). 

Phosphorylated NarL/P disrupts the binding of the DNA-bending IHF upstream of the 

promoter, in response to nitrate or nitrite (Browning et al. 2002).  Secondly, the 

nucleoprotein, FIS, functions in catabolite repression to ensure that transcription only 

occurs under nutrient-limiting conditions (Browning et al. 2005). This is in contrast to the 

FNR-dependent activation of nir expression where the catabolite repressor-activator (Cra) 

protein ensures that transcription only occurs under nutrient-rich conditions (Figure 1.8A) 

(Tyson et al. 1997). This difference in the regulation at the nrf and nir promoters ensures
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Figure 1.7 - Overall structure of E. coli NrfA. (A) The NrfA dimer, showing 

arrangement of monomers (pale blue and pale yellow) about a 2-fold crystallographic axis 

PDB ID: 1GU6 (Bamford et al., 2002). Heme groups are shown in green and calcium ions 

in magenta. (B) The ligand environment of the active site heme (heme 1). Five conserved 

residues (R106, K126, Y216, H264 and Q263) provide a positive environment around the 

active site and may act as proton donors. Once again the catalytic calcium ion is shown in 

magenta. (C) The arrangement of the 5 hemes in an NrfA monomer. Heme 1 is the 

catalytic heme and the catalytic calcium iron is shown in magenta. The hemes are 

numbered according to the order of attachment to CXXC motifs on the polypeptide chain. 

The orientation of the hemes is similar to that shown in (A).  
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that the cytoplasmic and periplasmic nitrite reductases, NirB and NrfA respectively, are 

expressed under different conditions. In agreement with this, the expression of the nrf and 

nir operons at varying nitrate and nitrite levels suggest that NrfA has a physiological role 

where nitrate (or nitrite) is limiting in the cell environment, whereas NirB functions when 

the substrate is in excess (Wang and Gunsalus 2000). Recently, yet another regulator was 

identified as having a role in controlling expression from the nrf promoter. There is 

residual activation by nitrite even in a narP-narL double mutant (Rabin and Stewart 1993) 

and subsequently NsrR was confirmed as a fifth regulator. Anaerobic expression of nrfA 

was increased in an NsrR mutant, identifying NsrR as a negative regulator of nrfA 

expression and repressor titration experiments were fully consistent with this conclusion 

(Filenko et al. 2007). The NsrR protein binds at an upstream site and represses 

transcription in the absence of nitric oxide (NO) (Figure 1.8B) (Browning et al. 2010). It is 

interesting to note that both enzymes involved in the periplasmic pathway for respiratory 

denitrification (Nap and Nrf) but not the cytoplasmic pathway (Nar and Nir) are members 

of the NsrR regulon (Filenko et al. 2007). 

 

1.4.2 Flavohaemoglobin, Hmp 

The flavohaemoglobin (Hmp), encoded by the hmp gene, is an NO dioxygenase (NOD) 

that converts NO to nitrate at the expense of oxygen and NAD(P)H (Gardner et al. 1998b; 

Gardner et al. 2000b; Poole and Hughes 2000; Gardner and Gardner 2002): 

 

2NO + 2O2 + NAD(P)H → 2NO3
-
 + NAD(P)

+
 + H

+
 

 

This reaction occurs via a two-electron flavoenzyme mechanism (Gardner et al. 2000b).  

The overall fold of E. coli Hmp consists of a heart-shaped structure in which the N-

terminal globin domain, the FAD-binding domain and the C-terminal NAD binding 

domains are clearly distinguished (Figure 1.9A; (Ilari et al. 2002). Initially NADH reduces 

bound FAD and the heme iron is then reduced by FADH2. Oxygen binds to the reduced 

flavohaemoglobin and the oxygenated Hmp dioxygenates NO to form nitrate at a rate of 

240 NO s
-1

 (Figure 1.9B) (Gardner et al. 2000a; Gardner et al. 2000b). The requirement of 

oxygen in this reaction correlates with the protection of the citric acid cycle enzyme, 

aconitase by Hmp under aerobic conditions (Gardner et al. 1998a). At low concentrations 

of oxygen (microaerobic conditions) it has been suggested that Hmp catalyses a similar
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Figure 1.8 - Control of bacterial transcription at the pnir and pnrf promoters by 

activators and repressors. (A) FNR (blue)-dependent activation of transcription at the nir-

promoter is repressed by the binding of IHF (purple) and FIS (red) at the -88 and -142 

positions respectively (Browning et al. 2000). Under nutrient-limiting conditions, the Cra 

protein (orange) binds to a site centred on position -16.5 and represses transcription (Tyson et 

al. 1997). The binding of NarL/P (green) to a site centred on position -69.5 (yellow arrows), in 

response to nitrate or nitrite, counteracts the effects of FIS and IHF and enables transcription 

providing the Cra protein is not bound. (B) FNR (blue)-dependent activation of transcription at 

the nrf-promoter is repressed by the binding of IHF (purple) and FIS (red) at positions -54 and 

-15 respectively. Provided that FIS does not bind and in the presence of nitrate or nitrite, the 

NarL/P (green) activator binds at a site centred on position -74.5 (yellow arrows) to displace 

IHF and enable FNR-mediated activation of transcription (Browning et al. 2005). Unlike at the 

nir-promoter, FIS binds downstream of the FNR-binding site and functions instead of the Cra 

protein in catabolite repression; transcription is prevented under nutrient-rich conditions. The 

binding of the NsrR (pink) repressor to a site that overlaps both the IHF and NarL/P sites 

(orange arrows) provides a further level of regulation (Ogura and Wilkinson 2001; Hanson and 

Whiteheart 2005; Rodionov et al. 2005; Browning et al. 2010). In the presence of nitric oxide 

(NO), NsrR cannot bind, enabling transcription at the promoter if the other criteria for 

activation are also met.  
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conversion of NO to nitrate via a nitroxyl-oxidation reaction. Here, NO binds the heme 

before reaction with oxygen but this reaction is approximately 50% slower than the 

conventional nitric oxide dioxygenase (NOD) reaction (Hausladen et al. 2001). In addition, 

there is some evidence that Hmp functions under anaerobic conditions. hmp mutants are 

sensitive to NO both aerobically and anaerobically (Gardner et al. 1998a), suggesting that 

a function for flavohaemoglobin might exist in the absence of oxygen. It has been shown 

that Hmp can act as an NO reductase to produce nitrous oxide (N2O) but this gives a 

turnover of only 0.24 NO s
-1

 (Figure 1.9C; (Kim et al. 1999), bringing into question the 

physiological significance of this activity. Comparative studies in aerobically and 

anaerobically grown E. coli cells reveal that Hmp is an efficient NO dioxygenase but 

exhibits little NO reductase activity. Furthermore, the NOR activity of Hmp did not confer 

any protection to the NO-sensitive aconitase (Gardner and Gardner 2002). Significantly, 

transcriptome profiling indicated that the addition of the NO donor S-nitrosoglutathione 

(GSNO) up-regulated hmp only under aerobic and not anaerobic conditions (Flatley et al. 

2005).   

 

(i) Anaerobic Regulation of hmp expression 

Under anaerobic conditions, regulation of the hmp gene is facilitated by the global 

regulator FNR. Expression of an hmp-LacZ fusion increased three- to four- fold in an 

FNR-deficient mutant, indicating that FNR negatively regulates hmp expression (Poole et 

al. 1996). Indeed, inspection of the hmp promoter reveals an FNR binding site centred at 

position +5 (Cruz-Ramos et al. 2002). Although FNR primarily senses oxygen via its [4Fe-

4S] cluster to regulate the anaerobic lifestyle of E. coli, EPR spectroscopy has revealed that 

it can also respond to NO (Cruz-Ramos et al. 2002). A mechanism of derepression has 

subsequently been proposed in which NO binds to the [4Fe-4S] clusters of FNR dimers, 

generating dinitrosyl-iron (DNIC) complexes that are no longer able to bind to the FNR-

box at the hmp promoter (Figure 1.10) (Cruz-Ramos et al. 2002). The derepression of 

transcription under anaerobic conditions in response to NO could support a minor role for 

the flavohaemoglobin as an NO reductase. When only the dioxygenase (NOD) activity of 

Hmp is considered, it is unclear how the NO-sensing function of oxygen-sensitive FNR 

would contribute to the control of hmp expression. 
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Figure 1.9 – (A) Overall structure of E. coli ferric unliganded flavohaemoglobin (PDB 

ID: 1GVH).The heart-shaped structure is positioned with the flavin binding domain at the 

upper apex (sky blue), the globin domain on the lower right side (red), and the NAD-

binding domain on the lower left side (green). FAD is shown by a cyan-stick model and the 

heme group by a magenta stick model. NAD(P)H is not shown bound at the NAD-binding 

domain (Ilari et al. 2002). (B and C) Electron transfer and ligand reduction in Hmp. The 

heart-shaped structure (Ilari et al. 2002) is shown as a surface-mesh with the FAD and heme 

emphasised by stick-models.  Electrons from NAD(P)H are passed to FAD (cyan) and 

thence to the single heme (magenta). His-85 is the proximal heme ligand (red); O2 and other 

ligands bind in the enlarged distal heme pocket (Poole and Hughes 2000). (B) Aerobic 

(NOD) activity of Hmp. O2 is reduced at the ferrous heme to superoxide. O2 occupancy at 

the heme appears to persist during the oxygenation reaction yielding nitrate, probably via a 

bound peroxynitrite intermediate species (not shown). The alternative nitroxyl-oxidation 

reaction is not illustrated. (C) Anaerobic (NOR) activity of Hmp. NO reacts with the 

ferrous heme to give a nitrosyl species. Electron transfer from heme gives NO
-
. N2O 

formation may occur via a dimeric species (not shown).  In both reactions, the ferric heme 

resulting from electron transfer to the ligand can be re-reduced in the presence of NAD(P)H 

via FAD. 
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Figure 1.10 - Anaerobic regulation of the E. coli hmp gene by the NO-responsive regulator, 

FNR. FNR forms are represented by red ovals. The [4Fe-4S]
2+

 and DNIC Fe-S clusters are labelled. 

The hmp promoter, NO and Hmp molecules are also shown. (A) Under anaerobic condititions, FNR 

(which is a dimer in the [4Fe-4S]
2+

 form) binds to the hmp promoter and prevents expression of hmp. 

(B) FNR senses NO by reaction with the [4Fe-4S]
2+

 cluster to generate a dinitrosyl iron (DNIC) 

complex. This is likely to cause FNR to dissociate into a monomer. (C) NO-treated FNR binds the 

hmp promoter with a lower affinity to avoid sudden and complete derepression of the hmp gene. (D) 

Eventually depression is achieved and Hmp is synthesized. Hmp can then act to detoxify NO. (E) 

When the NO concentration is reduced, Fe-S cluster-repairing mechanisms can reconstitute the NO 

sensor FNR. (Cruz-Ramos et al. 2002). 
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(ii) Regulation of hmp expression by NsrR 

The hmpA gene has already been shown to be subject to regulation by FNR (Cruz-Ramos 

et al., 2002) and the confirmation that Hmp is part of the NsrR regulon increases the 

complexity of regulation at the hmp promoter (Rodionov et al. 2005; Bodenmiller and 

Spiro 2006; Filenko et al. 2007). As mentioned previously, NsrR is a negative regulator of 

hmp expression, and is released from the hmp promoter as a result of NO binding to the 

probable [2Fe-2S] cluster to form DNICs (Figure 1.5; (Tucker et al. 2010b). The recent 

discovery of NsrR means that the relative roles of FNR and NsrR in the negative regulation 

of hmp expression are unknown (Spiro 2007). The binding sites for FNR and NsrR overlap 

(Bodenmiller and Spiro 2006) and it is not known whether the two regulators can bind 

simultaneously. There is some evidence in vitro to suggest that the NsrR proteins from S. 

coelicolor and N. gonorrhoeae are aerobically stable (Tucker et al. 2008; Isabella et al. 

2009). Therefore NsrR may regulate hmp expression under aerobic conditions to ensure 

that transcription only occurs in response to NO.  In addition, binding sites for the MetR 

regulator have been identified in the intergenic region between the hmp promoter and the 

divergently transcribed glyA gene (Figure 1.5) (Lorenz and Stauffer 1995). It has been 

suggested that MetR (the regulator of methionine biosynthesis in E. coli) regulates the 

transcription of both genes depending upon the availability of the homocysteine (Hcy) 

cofactor (Membrillo-Hernandez et al. 1998). When the levels of Hcy are high, MetR-Hcy 

induces transcription from the glyA promoter. RNS apparently act to deplete the pool of 

available Hcy, allowing MetR to instead promote hmp transcription. Activation of hmp is 

lost in a metR mutant, evidence in support of this mechanism (Membrillo-Hernandez et al. 

1998) but MetR-dependent regulation has not been shown for NO itself and methionine 

biosynthesis genes do not respond to NO under anaerobic conditions (Justino et al. 2005b). 

This mechanism of regulation remains unclear therefore, especially as Mukhopadhyay et 

al. showed no role for MetR in the regulation of hmp (Mukhopadhyay et al. 2004). 

Together, NsrR (and possibly MetR) may function aerobically to ensure that Hmp is only 

produced in response to nitrosative stress whilst FNR ensures no functional enzyme is 

present in the absence of oxygen and NO (Figure 1.11).  Recent evidence suggests Fur 

modestly represses expression at the hmp promoter in E. coli (Hernandez-Urzua et al. 

2007) but it is not clear whether this is a direct effect; no strongly predicted Fur binding 

sites have been identified at hmp promoters. 

 



47 
 

 

Figure 1.11 - Regulation of flavohaemoglobin (Hmp) expression in E. coli (Spiro 2007). 

Schematic (not to scale) of the intergenic region between the divergently transcribed glyA 

and hmp genes. The MetR protein and corresponding binding sites are shown in green, FNR 

and its corresponding binding site in orange and NsrR and its binding site in blue. The FNR 

and MetR binding sits have been experimentally verified (Lorenz and Stauffer 1995; Cruz-

Ramos et al. 2002); the NsrR binding site is inferred from genetic and bioinformatic studies 

(Lupas and Martin 2002; Bodenmiller and Spiro 2006). 
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1.4.3 Flavorubredoxin, NorV 

The flavorubredoxin (NorV) is an NO reductase (NOR) capable of reducing NO to nitrous 

oxide under anaerobic conditions (Gardner et al. 2002; Gomes et al. 2002; D'Autreaux et 

al. 2005). NorV is a member of the A-type flavoproteins which are characterised by two 

core domains, revealed in the well-studied rubredoxin:oxygen oxidoreductse (ROO) from 

Desulfovibrio gigas (Figure 1.12; (Frazao et al. 2000; Gomes et al. 2000). The N-terminal 

region consists of a metallo-β-lactamase-like domain containing the non-heme di-iron 

active site. A flavodoxin-like domain contains a FMN moiety that is well positioned for 

electron transfer and receives electrons from a rubredoxin protein to reduce oxygen to 

water (Chen et al. 1993). NorV proteins in enterobacteria contain a third C-terminal 

domain, pointing to the fact that such proteins are a fusion of the flavoprotein and the 

rubredoxin redox partner. NorV is therefore known as a flavorubredoxin. The NorV 

protein has been shown to act as a nitric oxide reductase (NOR) with a turnover of around 

15 mol NO-mol NorV
-1

 s
-1

 (Gomes et al. 2002). Immediately downstream of the norV gene 

in E. coli and co-transcribed with it, is the norW gene encoding the 

NADH:flavorubredoxin oxidoreductase (Gomes et al. 2000), which acts as the electron 

donor for NO reduction. It has been shown that NorW is required for maximal NorV 

activity both in vivo (Gardner et al. 2002) and in vitro (Gomes et al. 2002). There are two 

possible mechanisms for reduction of NO to nitrous oxide by NorV (Gardner et al. 2002). 

The diferrous centre could initially bind two NO molecules, which are each reduced to 

form two nitroxyl anions (HNO) with a concomitant oxidation to form a diferric centre. 

The nitroxyl anions are suggested to combine to form N2O and water. Alternatively, the 

diferrous centre could initially bind a single NO molecule which is reduced by two 

electrons to produce a Fe
3+

-O-Fe
3+

-NO2
- 
(H+) species. Reaction of this intermediate with a 

second NO molecule is suggested to form the product N2O. 
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Figure 1.12 - Structure of Desulfovibrio gigas rubredoxin:oxygen oxidoreductse 

(ROO). PDB ID: 1E5D (Frazao et al. 2000). (A) – Modular structure of the dimeric ROO 

enzyme (monomers in blue and green). The two core domains are shown; the metallo-β-

lactamase-like domain (dark blue or dark green) containing the non-heme di-ferrous active 

site (Fe
2+

-O-Fe
2+

; iron =orange spheres; oxygen = red) and the flavodoxin-like (light blue or 

light green) domain that contains the FMN moiety (stick model). E. coli NorV has an 

additional C-terminal rubredoxin-like domain (Frazao et al. 2000). (B) di-iron centre of 

ROO. E. coli flavorubredoxin (NorV) has 34% sequence similarity with D. gigas ROO and 

the conserved residues at the di-iron centre are labelled (H146, E81, H79, D83, H226, D165 

and Y193 in D. gigas). Reduction of NO is proposed to occur at the di-iron centre since NO 

binds the di-ferrous centre (Fe
2+

-O-Fe
2+

) to form a ferric-nitroxyl species, detectable by EPR 

(Gomes et al. 2000). The proximal Y193 residue is thought form a hydrogen bond 

interaction with bound NO. The location of the low potential FMN isoalloxazine ring is 

shown; it is positioned to reduce the di-ferric centre by two electrons for cycles of NO 

reduction. The coordination of FMN is not shown (Gardner et al. 2002). 



50 
 

(i) Transcriptional regulation of norVW expression 

Divergently transcribed from the norVW genes is the norR gene, located 187bp upstream 

of the norV start site (Tucker et al. 2005). The NorR protein is a bacterial Enhancer 

Binding Protein (bEBP) of the sigma 54 (σ
54

) class and has been shown to activate 

transcription of norV and norW in response to NO (Hutchings et al. 2002b; Gardner et al. 

2003). The role of bEBPs in the initiation of transcription in bacteria will be discussed in 

Chapters 2 and 3. As the subject of this work, the bEBP NorR will be discussed in greater 

depth in Chapter 4. 

 

1.5 Overview 

Given the toxicity of NO at higher concentrations, it is easy to understand why bacteria 

including E. coli have evolved to use enzymes with NO reductase (NOR) and dioxygenase 

(NOD) activities (Figure 1.13A). The combination of the aerobic NODs and anaerobic 

NORs allow detoxification of NO across the physiological range of oxygen concentrations 

(Gardner et al. 1998a; Gardner and Gardner 2002; Gardner et al. 2002). Indeed, both NorV 

(a NOR) and Hmp (a NOD) show evidence of activity under microaerobic conditions 

(Gardner et al. 2002) that may ensure complete protection against nitrosative stress as 

bacteria make the transition between aerobic and anaerobic states. Together such enzymes 

help to detoxify NO before it reaches lethal concentrations. However where bacteria 

encounter higher levels of NO production (e.g. released by macrophages of the mammalian 

immune system), NO-mediated damage will undoubtedly occur. There exist therefore, 

various systems in bacteria to repair damage to proteins and to DNA. Since the production 

of detoxification enzymes and repair systems is energetically expensive to the cell, their 

expression is tightly regulated by a number of regulators (Figure 1.13B). This regulation is 

commonly mediated by iron and Fe-S cluster-containing proteins that act as direct NO-

sensors to activate (or derepress) transcription of key genes only under conditions of 

nitrosative stress (Figure 1.6). Since many pathogenic bacteria encounter NO as part of the 

immune response, inhibition of the detoxifying NODs and NORs and/or their regulators 

may represent a novel therapy to enhance the host response or the action of antibiotics in 

pathogenic infections (Gardner et al. 2002). 
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Figure 1.13 – (A) Pathways for NO-formation and metabolism in E. coli. Under 

anaerobic conditions, E. coli reduces nitrate to ammonium in the cytoplasm (using the 

nitrate reductase NarA/NarZ and the nitrite reductase NirB) and the periplasm (using 

the nitrate reductase Nap and the nitrite reductase NrfA). NrfA has also been suggested 

to act as an NO reductase (NOR) in the detoxification of NO. In the absence of oxygen, 

NO can be reduced to nitrous oxide by the NOR flavorubredoxin (NorVW). In the 

presence of oxygen the NO dioxygenase (NOD) Hmp oxidises NO to nitrate. Reactions 

utilised in respiratory denitrification are shown by red arrows whilst detoxification is 

shown by blue arrows (Spiro 2006). (B) Regulation of NO-detoxification enzymes. 

The NORs NrfA and NorVW and the NOD Hmp are shown in blue. Regulators of 

these enzymes are shown in red along with their signals. Positive regulation is denoted 

by arrows, negative regulation is donated by perpendicular lines. GSNO = S-

nitrosoglutathione; Hcy = homocysteine (Spiro 2007). 
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Chapter 2 – Role of sigma factors in the initiation of transcription in bacteria 

2.1 The core RNA Polymerase 

In contrast to eukaryotes and archaea, the transcription of all genes in bacteria is dependent 

on a single form of the core RNA polymerase (RNAP) enzyme (E). This multi-subunit 

polymerase (~400 kDa) has a subunit composition of α2ββ‟ω (Figure 2.1). Structural 

studies of the bacterial core enzyme reveal an overall “crab-claw” shape with the large β 

and β‟ subunits (~150 and 155 kDa respectively) forming the two “pincers”, either side of 

the active site (Zhang et al. 1999; Murakami et al. 2002a; Murakami et al. 2002b). This is 

a feature also present in the archaeal RNAP (Hirata et al. 2008) and eukaryotic RNAPs (Fu 

et al. 1999; Cramer et al. 2000; Cramer et al. 2001) which show a similar overall structure. 

Each of the two identical α-subunits (37 kDa) consists of two domains that are connected 

via a ~20 amino acid flexible linker (Blatter et al. 1994). The ~26 kDa N-terminal domain 

(αNTD) dimerises to facilitate the assembly of the β and β‟ subunits. The ~9 kDa C-

terminal domain (αCTD) binds to promoter DNA and interacts with a diverse range of 

activators to modulate the level of transcription (Gourse et al. 2000; Browning and Busby 

2004). Lastly, the small (91-residue, 11 kDa) ω subunit (Mathew and Chatterji 2006) 

assists in the folding and incorporation of the β‟ subunit in the final stage of the core 

RNAP assembly (Ghosh et al. 2010). In addition to its structural role, the ω subunit has 

been shown to play a functional role in the stringent response since in the absence of ω, 

RNAP cannot respond to the effector ppGpp (Vrentas et al. 2005).  

 

2.2 Initiation of transcription 

The first step in the initiation of transcription in bacteria is promoter recognition (Busby 

and Ebright 1994). Although the core enzyme (E) contains all the catalytic elements 

required for transcription, it can only bind to promoter sequences weakly and in a largely 

non-specific manner (Paget and Helmann 2003). The major promoter-RNAP contact is 

facilitated by the αCTD domains which bind to the UP element, a ~20 bp sequence 

upstream of the transcriptional start site of some promoters (Ross et al. 2001).  In order to 

initiate transcription of specific genes, the core RNAP (E) associates with a sixth subunit, 

the sigma factor (σ) to yield the RNAP holoenzyme (α2ββ‟ωσ, Eσ). σ factors confer the 

specificity of RNAP for different promoters and are often associated with the expression of 

sub-sets of genes required for different cellular activities (Buck et al. 2000). The σ factor 

directs the binding of the core enzyme via interaction with three different promoter 

elements. σ domain 2.4 recognises the conserved -10 sequence whilst σ domain 4.2  
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Figure 2.1 - Schematic showing the assembly of the bacterial RNA polymerase 

holoenzyme. In the first step, the two identical α subunits (37 kDa) dimerise. Each α 

subunit is composed of a ~26 kDa N-terminal domain (αNTD) and a ~9 kDa C-terminal 

domain (αCTD), connected via a flexible ~20 amino acid linker. Dimerisation of α 
provides the scaffold for the assembly of the core enzyme. The ~150 kDa β subunit 

binds to α2. The 11 kDa ω subunit facilitates the folding of the ~ 155 kDa β‟ subunit and 

together β‟ and ω bind to form the core enzyme composed of α2ββ‟ω. In order to bind to 

and transcribe from specific promoters, the core enzyme must associate with one of the 

available σ-factors in the cell to form the holoenzyme (α2ββ‟ωσ). 
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recognises the conserved -35 sequence (Campbell et al. 2002; Murakami et al. 2002a). The 

extended -10 element, located immediately upstream of the -10 sequence of some 

promoters , is 3-4 bp in length and recognised by domain 3 of the σ factor (Barne et al. 

1997; Murakami et al. 2002a; Sanderson et al. 2003). 

 

Once the polymerase has bound to the promoter, open complex formation must occur to 

open up the double-stranded DNA for transcription (deHaseth et al. 1998). During 

isomerisation, unwinding of the duplex DNA is initiated at the -10 promoter element (Guo 

et al. 2000). A conserved threonine residue in σ (T429 in E. coli) destabilises the stacking 

of the conserved adenine base at the -11 position, causing it to “flip” out and stack against 

a tyrosine residue in region 2.3 of σ (Schroeder et al. 2007; Schroeder et al. 2008; 

Schroeder et al. 2009). Subsequently, the template strand is loaded into the RNAP active 

site and synthesis of an RNA chain begins with initial short-chain products being formed 

and released in a process known as abortive initiation. During this time, the holoenzyme 

moves forward but the contacts between the trailing edge of Eσ and the -35 promoter 

element remain intact. This causes the DNA strands of the -10 promoter element to be 

extruded from the main DNA channel in a process called DNA scrunching (Kapanidis et 

al. 2006; Revyakin et al. 2006). It has been proposed that the release of the energy stored 

in the “scrunched” intermediate is responsible for the disruption of Eσ-promoter contacts 

that leads to promoter clearance. Eventually, the sigma factor may be released (Mooney et 

al. 2005) and the core enzyme is able to participate in the elongation process, catalysing 

the addition of complementary nucleotides to form an extending RNA chain before 

termination occurs to complete the transcription process (Figure 2.2). 

 

2.3 Regulation by Sigma factors 

Since their discovery (Burgess et al. 1969) it has become clear that the role of the sigma 

factor is central to the ability of the RNA polymerase enzyme to carry out transcription. 

Not only do sigma factors direct the binding of the polymerase to specific promoters, they 

also inhibit non-specific initiation, mediate the isomerisation of the closed promoter 

complex and regulate the process of promoter escape (Buck et al. 2000). The most 

abundant σ factor in E. coli is σ
70

 (RpoD). Discovered in 1968 (Burgess et al. 1969), the 70 

kDa protein is often referred to as the housekeeping factor as it transcribes the majority of 

genes in growing cells. Although some bacteria contain only one σ factor e.g. Mycoplasma 

genitalium, the majority of bacteria contain multiple σ factors. For example, the 
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Figure 2.2 - Schematic of the pathway of bacterial transcription initiation (σ
70

-family 

dependent). The σ factor directs the RNA polymerase holoenzyme (ω subunit not shown) to 

bind at the -10 (recognised by σ region 2.4) and -35 (recognised by σ region 4.2) promoter 

elements. The -10 and -35 consensus sequence is shown for the housekeeping σ
70

. An additional 

interaction can form between the extended -10 element (if present) and σ domain 3 at some 

promoters. The core enzyme itself can interact with the UP element (if present), a ~20 bp 

sequence upstream of the -35 element that is recognised by the αCTD domains. The promoter 

recognition sequences as well as the different subunits of the holoenzyme are labelled. After 

promoter binding, the closed complex (CC) isomerises to form the open complex (OC): the 

double stranded DNA “melts” or unwinds to form the transcription “bubble”. The initiating 

complex then forms and RNA synthesis begins using the single-stranded DNA as a template. 

Initially, small abortive RNA products are produced (abortive initiation) before the transcribing 

complex moves into the elongation phase. σ may be released and the mRNA molecule is formed 

as the RNA chain length increases. Figure adapted from (Browning and Busby 2004). 
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actinomycete Streptomyces coelicolor which has a complex life cycle and is highly adapted 

to living in soil environments, contains 63 alternative sigma factors (Gruber and Gross 

2003). A vast range of regulatory strategies exist in bacteria to control the level of these 

alternative σ factors in the cell. Of particular importance is the production of a diverse 

range of anti-σ factors that bind and sequester their corresponding sigma factors in 

response to environmental cues (Helmann 1999). In addition to the housekeeping σ
70

, E. 

coli contains six alternative σ factors that are up-regulated in response to various 

environmental conditions or stresses (Ishihama 2000): σ
38

 (RpoS), σ
32

 (RpoH), σ
28

 (RpoF), 

σ
19 

(FecI), σ
24

 (RpoE) and σ
54 

(RpoN). As these σ factors accumulate, they compete with 

σ
70

 for binding to the core RNA polymerase. In this way the bacterial cell is able to 

channel a greater proportion of its energy and resources towards the stress response. For 

example, in response to the stress induced from heat shock, the σ
32 

(RpoH) and σ
24 

(RpoE) 

σ factors bind core RNAP to activate the expression of genes that assist the cell in 

surviving increases in temperature (Yura and Nakahigashi 1999; Raivio and Silhavy 2001). 

Based on sequence similarity, the recognised promoter consensus sequence and their mode 

of activation, the bacterial σ factors can be placed in two distinct groups: the σ
70

-family 

and the σ
54 

family (Wosten 1998). 

 

The sigma factors σ
38

, σ
32

, σ
28

, σ
19

, σ
24

 as well as the housekeeping σ
70 

factor are all 

members of the σ
70

-class. Each member binds to conserved -10 and -35 promoter elements, 

although the consensus sequences and spacing differs for each sigma-factor. The Eσ
70

 

holoenzyme recognises and binds to the consensus sequences TTGACA at -35 and 

TATAAT at -10 and the spacing between these sequences is crucial for expression (Harley 

and Reynolds 1987). Sequence comparison of the σ
70

-family of σ factors reveals four 

conserved helical domains (σ1, σ2, σ3 and σ4), connected by flexible linkers (Figure 2.3A). 

Each domain can be divided into functionally distinct sub-regions that have roles in 

promoter recognition, core binding and isomerisation (Murakami and Darst 2003; Haugen 

et al. 2008).  
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Figure 2.3 – The σ70
 and σ54

 sigma factors. Adapted from (Ghosh et al. 2010). (A) 

Schematic showing the sequence and conserved structural elements of the σ
70

 factor. 

Suggested roles for the structural elements are indicated above. (B) Domain organisation 

of σ
54

. E. coli σ54
 (residues 1-477) consists of 3 regions (I to III). DNA binding motifs 

include the DNA cross-linking (XLINK) region, the helix-turn-helix (HTH) motif and 

the RpoN box, all present at the C-terminus. Region I interacts with the activator of 

transcription. Region II is often acidic and occasionally absent. The location of the main 

core RNAP binding determinants (residues 120-215) is shown (Buck et al. 2000).  
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2.4 σ
54

-dependent transcription  

Unlike the σ
70

-family, the σ
54

-family of sigma-factors contains just a single member, σ
54

, 

which shows little sequence similarity to the σ
70

-class (Merrick 1993; Buck et al. 2000). 

Although members of both families associate with the same core polymerase enzyme, the 

resulting holoenzymes activate transcription by entirely different mechanisms. Both the 

σ
70

-type and the alternate σ
54 

factors
 
form holoenzyme-promoter complexes with a default 

closed and non-productive form (Guo et al. 2000) (Figure 2.4). However, the requirements 

for the formation of an open promoter complex differ. σ
54

 binds to different consensus 

sequences that are more strongly conserved than σ
70

. Binding occurs at the GG -24 and 

TGC -12 elements (Morett and Buck 1989) that are part of the wider sequence 

YTGGCACGrNNNTTGCW (highly conserved = upper case, weakly conserved = lower 

case, N = non-conserved, Y = pyrimidines, R = purines, W is A or T, (Barrios et al. 1999). 

The -12 element is critical for σ
54

-dependent transcription; changes at the -12 position of 

the DNA or substitution of amino acids of the protein, to destroy interaction with this 

element causes deregulated transcription (Guo et al. 1999; Wang et al. 1999). It appears 

that interaction of σ
54

 with the -12/-11 fork junction prevents binding of the holoenzyme to 

the non-template strand, a key step in the DNA melting process (Guo et al. 2000). So the 

σ
54

 holoenzyme binds promoter sequences tightly in such a way that isomerisation is not 

spontaneous; the holoenzyme is transcriptionally silent (Cannon et al. 2003; Cannon et al. 

2004). Therefore, initiation of σ
54

-dependent transcription is unique in that it requires an 

activator of the AAA+ (ATPases Associated with various cellular Activities) class that 

couples the energy produced from ATP hydrolysis to changes in the structure of the σ
54

 

subunit and the fork junction. The inhibitory interaction at the -12/-11 position is removed 

so that the thermodynamic and kinetic barriers that restrict open complex formation in the 

σ
54

 system are overcome (Cannon 2000; Guo et al. 2000; Cannon et al. 2001; Zhang et al. 

2002). In contrast, the σ
70

 holoenzyme binds to the consensus -10 (TATAAT) and -35 

(TTGACA) sequences to form an energetically unfavourable closed complex (CC) that is 

readily converted into an open complex (OC) without a requirement for activators (Guo et 

al. 2000). 
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Figure 2.4 - Activation of bacterial transcription by the RNAP-σ
70

 (A) and RNAP-σ
54

 

(B) holoenzymes. The σ
70 

factor directs the binding of polymerase to the consensus -10 

(TATAAT) and -35 (TTGACA) sequences to form an energetically unfavourable closed 

complex (CC) that is readily converted into an open complex (OC) to initiate transcription. In 

contrast, the σ
54 

factor directs the binding of RNAP to conserved -12 (GG) and -24 (GC) 

promoter elements that are part of the wider consensus YTGGCACGrNNNTTGCW (Barrios 

et al., 1999). This forms an energetically favourable closed complex (CC) that rarely 

isomerises into the open complex (OC). In order to form the transcription “bubble”, a 

specialised activator (an Enhancer Binding Protein, EBP) must bind and use the energy from 

ATP hydrolysis to re-model the holoenzyme. 
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Since the regulation of σ
54

 and σ
70

-dependent transcription is so different, it is pertinent to 

examine the evolutionary advantages of regulating the transcription of genes through the 

activation of the alternative σ factor rather than by regulating the pool of available σ
70

. Due 

to the requirement of an activator, transcription is tightly regulated and σ
54

-dependent 

transcription occurs primarily in response to cellular and extracellular signals that regulate 

the activity of the AAA+ protein. As a result, the activation of transcription occurs rapidly 

and specifically. This is important since σ
54

 commonly binds to the promoters of genes 

associated with the bacterial stress response. For example in response to the presence of 

Nitric Oxide (NO), NorR activates transcription from the norV promoter, leading to the 

expression of the flavorubredoxin (NorV) that functions in NO detoxification (Hutchings 

et al. 2002b). In addition to regulation of transcription via signal-sensing bEBPs, the output 

from σ
54

-dependent promoters can be controlled in response to global regulatory signals 

(Shingler 2010). This regulation could be mediated by factors that counteract the binding 

of either the holoenzyme at the promoter or of the activator (exclusion). In Pseudomonas 

sp. strain ADP, the bEBP NtrC has been shown to activate σ
54

-dependent transcription of 

the atzR gene from solution (Porrua et al. 2009). The AtzR protein acts as a regulator of 

cyanuric acid metabolism but also autoregulates its own expression by binding to a site that 

overlaps the atzR promoter to inhibit the formation of the closed complex by the σ
54

-RNA 

polymerase (Porrua et al. 2009). In Klebsiella aerogenes, NtrC activates transcription from 

the σ
54

-nac promoter under nitrogen-limiting conditions. In this case, Nac negatively 

autoregulates its own expression by a mechanism of anti-activation; it binds within the 

intergenic region (between the upstream NtrC binding sequences and the promoter) to 

prevent a productive interaction between the activator and the holoenzyme (Feng et al. 

1995). Both the mechanisms of exclusion and anti-activation seem to be utilised in 

regulating the activation of transcription by DctD at the σ
54

-dctA promoter. cAMP-bound 

CRP (cAMP receptor protein) is able to bind to two sites that overlap the binding sites of 

the bEBP but is also able to directly interact with the holoenzyme to inhibit transcription 

(Wang et al. 1998). In vitro data suggest that this cAMP-CRP-bound holoenzyme forms an 

alternative closed complex that slowly converts into one that is subject to bEBP-activation. 

Therefore, in some cases the activation of σ
54

-dependent transcription by bEBPs can be 

modulated in response to regulators that communicate global signals. 
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2.5 σ
54

 domain architecture 

The σ
54

 factor, encoded by the rpoN (ntrA) gene, is composed of three regions, based on 

function (Figure 2.3B) (Cannon et al. 1997; Buck et al. 2000; Bordes et al. 2003; Ghosh et 

al. 2010). Region I (residues 1-56 in E .coli) is a glutamine and leucine rich sequence that 

represents the regulatory domain of σ
54

, binding to the -12 promoter element to form the 

RNAP-σ
54 

regulatory centre (Wigneshweraraj et al. 2001). This nucleoprotein structure 

prevents spontaneous open complex formation (Wang et al. 1995; Syed and Gralla 1998; 

Cannon et al. 1999b). Direct binding of region I to the central, ATP-hydrolysing domains 

of the activators PspF and NifA has been shown in the presence of nucleotide (Chaney et 

al. 2001; Bordes et al. 2003) and biochemical studies show that deletion of region I 

bypasses the requirement for an activator when pre-melted DNA is used (Guo and Gralla 

1998; Chaney and Buck 1999). This indicates that this region is the target of the AAA+ 

activator in σ
54

-dependent transcription. Region II (residues 57-107 in E. coli) is variable in 

amino acid composition and length, ranging from 26 residues in Rhodobacter capsulatus to 

110 residues in Bradyrhizobium japonicum but can be characterised by the predominance 

of acidic residues (Southern and Merrick 2000). This region is not essential for σ
54

-

dependent transcription; region II is virtually absent in some bacterial species e.g. Bacillus 

subtilis (Buck et al. 2000). However, deletions in Klebsiella pneumoniae σ
54

 region II 

significantly impair the activity of holoenzyme in open complex formation (Southern and 

Merrick 2000). Current evidence suggests region II has roles in DNA binding (Cannon et 

al. 1999a) and DNA melting (Wong and Gralla 1992). The C-terminal Region III (residues 

108-477 in E. coli) is well conserved, containing the major determinants for binding to 

promoter DNA (residues 329-463 in E. coli) (Buck et al. 2000; Wigneshweraraj et al. 

2002; Burrows et al. 2003; Burrows et al. 2004). These determinants include a DNA cross-

linking motif (residues 329-346 in E. coli) (Cannon et al. 1994), and a RpoN box (residues 

454-463 in E. coli), (Taylor et al. 1996). Recently, NMR-based structural studies of the C-

terminal region of Aquifex aeolicus σ
54

 bound to promoter DNA have revealed a helix-

turn-helix (HTH) motif in which the RpoN box forms the recognition helix that binds to 

the -24 promoter element (Doucleff et al. 2005b; Doucleff et al. 2007). An additional HTH 

motif, previously suggested to bind to the -12 promoter element is present outside of the 

RpoN box (residues 366-386 in E. coli) (Merrick and Chambers 1992; Buck et al. 2000). 

As well as containing promoter-binding determinants, region III of σ
54 

also contains 

determinants for core RNAP binding (residues 120-215 in E. coli) (Gallegos and Buck 

1999; Hsieh et al. 1999; Buck et al. 2000). 
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2.6 The structural basis for activator-dependence 

Although high-resolution crystal structures have been determined for σ
70

-family members 

(Campbell et al. 2002; Murakami et al. 2002b; Jain et al. 2004; Sorenson et al. 2004) the 

alternate sigma-factor (σ
54

) has only yielded low-resolution small-angle x-ray scattering 

and cryo-Electron Microscopy (cryo-EM) structures (Svergun et al. 2000; Rappas et al. 

2005; Bose et al. 2008b). Recently, cryo-EM has revealed structural features of the RNAP-

σ
54

 holoenzyme that explain the stability of the closed complex and therefore the need for 

an activator (Bose et al. 2008b; Ghosh et al. 2010). Reconstructions of RNAP-σ
54

 in the 

presence and absence of an activator protein have identified three distinct structural regions 

(named D1, D2 and D3 by Bose et al.) of σ
54

, each positioned on the β‟ side and on the 

upstream face of the core RNA polymerase (Bose et al. 2008b). The D1 region likely 

represents the core RNAP binding domain (residues 120-215 in E. coli) of region III and is 

located at the tip of the β‟ subunit, well positioned to contact the β‟ coiled-coil motif which 

is the binding site of σ-factors in the core enzyme (Young et al. 2001). This is consistent 

with Nuclear Magentic Resonance (NMR)-studies of the core-binding region of Aquifex 

aeolicus σ
54

 in which one surface is negatively charged and predicted to interact with the 

coiled-coil motif of β‟ (Hong et al. 2009). Bose et al., attribute the density of the D3 region 

to the DNA-binding domain of region III that includes the RpoN box. Of particular 

importance is the presence of a strong bridging density (Db), connecting the two “pincers” 

of the polymerase enzyme that is more pronounced in RNAP-σ
54

 compared to an RNAP-

σ
70 

structure. Since the Db region correlates with the -12 position of the promoter DNA, it 

has been proposed that this connecting density (attributed to region I), obstructs the loading 

of DNA into the active site channel of the core enzyme. Therefore the presence of the 

bridging density (Db) could explain why the σ
54

-holoenzyme forms an energetically 

favourable closed complex unlike the σ
70

-holoenzyme which spontaneously isomerises 

into an open form. Comparison of the RNAP-σ
54 

reconstruction with one also in the 

presence of an activator and nucleotide transition-state analogue reveals a significant 

conformational change in region I upon activator binding that is coupled to a slide of the 

DNA towards the active site of the polymerase (Figure 2.5) (Bose et al. 2008b). Indeed, 

hydroxyl radical footprinting and photo-crosslinking have demonstrated that the ATPase 

domain of the activator is within 12 Å of the -12 promoter element during open complex 

formation (Burrows et al. 2004). This is consistent with a role for the activator in 

remodelling the nucleoprotein regulatory centre (Chaney et al. 2001; Wigneshweraraj et al. 

2001; Bordes et al. 2003).  Based on studies of σ
54

 (residues 69-198) from Aquifex aeolicus 
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it has also been suggested that the hydrophobic interface between the N-terminal and C-

terminal sub-domains of the core binding region (D1 in the Bose et al. reconstruction) 

might be disrupted upon activator binding to region I of σ
54

, paving the way for 

conformational changes in the holoenzyme and the isomerisation of the closed complex 

(Hong et al. 2009). Overall, structural and biochemical studies have revealed three main 

roles for the activator in σ
54

-dependent
 
transcription (Bose et al. 2008b; Ghosh et al. 2010). 

First, the activator must stimulate DNA melting at the -12 promoter element since 

activator-bypass mutants only function in the presence of pre-melted DNA (Guo and 

Gralla 1998; Chaney et al. 2001). Secondly, the activator must remodel region I of the σ
 

factor that physically blocks the loading of the DNA into the active site (Bose et al. 

2008b). Thirdly, the activator must cause the repositioning of the DNA-binding domains of 

σ
54

 downstream since the -12 promoter element at which DNA melting originates is 

located too far upstream from the active site of the core enzyme for elongation to proceed 

(Bose et al. 2008b). The properties of such activators will now be discussed, in Chapter 3. 
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Figure 2.5 - A schematic representation of the proposed relative positions and movements of 

σ54
 domains and promoter DNA in the closed (A), intermediate (B), and open (C) complexes 

(Bose et al. 2008b). The DNA-binding region (D3 density) and Region I (Db density) of σ54
 are 

shown in blue with the core enzyme in green. The bEBP/activator is shown as a hexamer in red 

and the promoter DNA is shown in orange. Cryo-EM structures of the RNAP-σ
54

 holoenzyme 

indicate that the “Db density” is in close proximity to the -12 position of the promoter DNA. 

Therefore it has been proposed that Region I of σ
54 

prevents the initiation of transcription by 

obstructing the loading of DNA into the active site channel of the core RNAP. The activator (i) 

causes the melting of DNA at the -12 position, (ii) interacts with Region I to relocate the Db 

density and (iii) results in the downstream movement of the DNA-binding (D3) region of σ54
,
 

bringing the origin of DNA melting (-12) near to the active site. 
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Chapter 3 - The AAA+ Enhancer Binding Proteins (EBPs) 

AAA+ (ATPases Associated with various cellular Activities) proteins are universal in 

living organisms, functioning as molecular machines to convert the chemical energy stored 

in ATP into a mechanical energy that can be used in various cellular processes (Neuwald et 

al. 1999; Ogura and Wilkinson 2001; Lupas and Martin 2002; Hanson and Whiteheart 

2005; Tucker and Sallai 2007). In contrast to σ
70

-dependent transcription, σ
54

-dependent 

transcription absolutely requires the presence of an activator of the AAA+ class that 

couples the energy generated from ATP hydrolysis to the isomerisation of the RNAP-σ
54

 

closed complex (Schumacher et al. 2004).  Such activators typically bind at sites 80-150 bp 

upstream of the promoter, known as upstream activator sequences (UASs) or enhancer 

sites (Figure 3.1A). This is similar to the binding of eukaryotic enhancer binding proteins 

(EBPs) and so activators of σ
54

-dependent transcription are referred to as bacterial 

enhancer binding proteins (bEBPs) (reviewed in (Zhang et al. 2002; Schumacher et al. 

2006; Rappas et al. 2007; Wigneshweraraj et al. 2008). Despite only sharing 20% 

sequence similarity with other AAA+ proteins, bEBPs are sufficiently similar in structure 

and function to be classified as members (Neuwald et al. 1999). Since the activator binds 

so far upstream of the transcriptional start site, DNA must bend between the enhancers and 

the promoter site in order for it to interact with the RNAP-σ
54 

holoenzyme (Figure 3.1B) 

(Zhang et al. 2002; Wigneshweraraj et al. 2005; Schumacher et al. 2006). Such DNA 

looping has been visualised by electron microscopy (EM) (Su et al. 1990) and scanning 

force microscopy (SFM) (Rippe et al. 1997). DNA looping is often aided by the integration 

host factor (IHF), a small heterodimeric protein which binds between promoter and 

enhancer sites to bend the DNA up to 180° (Yang and Nash 1989; Hoover et al. 1990; 

Arfin et al. 2000). Since correct interfacing between the bEBP and holoenzyme is crucial 

for the activation process, the phasing of the IHF-binding site relative to the promoter is 

important (Claverie-Martin and Magasanik 1992; Huo et al. 2006). In addition to ensuring 

efficient activator-holoenzyme contact, IHF-induced changes in DNA topology contribute 

to the specificity and efficiency of activation (Perez-Martin and De Lorenzo 1995; 

Dworkin et al. 1997). For example, at the pspA-E promoter, IHF has been shown to 

mediate architectural changes that aid the binding of the bEBP PspF and increase promoter 

output (Jovanovic and Model 1997). Once DNA bending has been induced, the bEBP 

utilises nucleotide triphosphate (NTP) hydrolysis to drive conformational rearrangements 

in the holoenzyme that promote the transition of the closed to an open complex (Figure 

3.1C) (Schumacher et al. 2004; Rappas et al. 2006). Although ATP binding to a bEBP  
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Figure 3.1 - The activation of bacterial transcription initiation (σ
54

-family dependent). The 

σ factor directs the RNA polymerase holoenzyme to bind at the -12 and -24 promoter elements. 

(A) Interaction of the bacterial Enhancer Binding Protein (bEBP) with the σ
54

-RNAP 

holoenzyme is dependent on the binding of the activator (shown as an oligomer in green) to 

Upstream Activator Sequences (UAS), 80-150 bp upstream of the transcriptional start site. (B) 

DNA looping occurs; often facilitated by other proteins such as Integration Host Factor (IHF), 

enabling bEBP-σ
54

 interactions. In σ
54

-dependent transcription, the closed complex does not 

spontaneously undergo isomerisation (melting of the double stranded DNA). (C) Nucleotide 

hydrolysis by the activator promotes re-modelling of the closed complex through a series of 

protein-protein and protein-DNA interactions that promote the formation of the open complex 

(Buck et al. 2000) 
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dimer has been demonstrated (Rombel et al. 1999), oligomerisation is required to stimulate 

full ATPase activity (Wikstrom et al. 2001; Rappas et al. 2005). Well characterised 

examples of bEBPs include the nitrogen regulatory protein C (NtrC), C4-dicarboxylic acid 

transport protein D (DctD), the nitrogen fixation regulatory protein (NifA), the phage 

shock protein F (PspF), the xylene catabolism regulatory protein (XylR) and 3,4-

demethylphenol catabolism regulatory protein (DmpR) (Table 3.1) (Studholme and Dixon 

2003). 

 

3.1 Domain architecture 

In common with their eukaryotic counterparts, bEBPs are modular proteins and in general 

consist of three domains (Studholme and Dixon 2003; Schumacher et al. 2006). The N-

terminal regulatory (R) domain has a role in signal perception and modulates the activity of 

the bEBP. The central AAA+ domain (C) is responsible for ATP-hydrolysis in the bEBP; it 

is indispensible and often sufficient to activate σ
54

-dependent transcription (Berger et al. 

1995; Jovanovic et al. 1999; Wikstrom et al. 2001; Xu et al. 2004a). Lastly, the C-terminal 

DNA binding domain (D) contains a helix-turn-helix (HTH) motif (Pelton et al., 1999; 

Sallai et al., 2005) that enables specific UAS/enhancer site recognition (Xu and Hoover 

2001). However, not all activators of σ
54

-dependent transcription consist of each of the 

three domains (Table 3.1 and Figure 3.2). Whilst the presence of the central domain is 

conserved, some bEBPs lack either the regulatory domain (i.e. consist of C+D) or the 

DNA-binding domain (i.e. consist of R+C) (Hutcheson et al. 2001; Elderkin et al. 2002; 

Brahmachary et al. 2004). In addition, the regulatory domains do not share common 

homology and contain a variety of sensory motifs depending on the signal that is detected 

(Table 3.1) (Studholme and Dixon 2003). Consequently, the bEBP family has been divided 

into five groups (I-V) based on the organisation of the three domains that are present 

(Wigneshweraraj et al. 2005).  The structure and function of these three domains will now 

be discussed in more detail. 
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bEBP Full-name Organism Function (target) 
Regulatory domain 

(s) 
Stimuli/ mode of regulation  

Regulation of AAA+ 

activity 
Reference 

PspF phage shock protein F Escherichia coli Phage-shock response (Eσ
54

) absent interaction in trans with PspA Negative (by PspA) 
(Elderkin et al. 2002; Elderkin et al. 

2005; Joly et al. 2009) 

NifA 
nitrogen fixation 

regulatory protein  
Azotobacter vinelandii Regulation of Nitrogenase (Eσ

54
) GAF domain 

1. Small-ligand binding (2-

oxoglutarate) 2. in trans in 

response to NifL 

1. Positive (by 2-OG) 2. 

Negative (by NifL) 

(Martinez-Argudo et al. 2004b; 

Martinez-Argudo et al. 2004c) 

NtrC 
nitrogen regulatory 

protein C 
Salmonella enterica 

Regulation of Glutamine Synthetase 

(and other functions of nitrogen 

metabolism) (Eσ
54

) 

Response Regulator 

(RR) 

Phosphorylation by sensor-kinase 

NtrB 
Positive 

(Weiss et al. 1991; Austin and Dixon 

1992; Doucleff et al. 2005a; De Carlo 

et al. 2006) 

NtrC1 
nitrogen regulatory 

protein C 1 
Aquifex aeolicus homolog of NtrC (Eσ

54
) 

Response Regulator 

(RR) 
Phosphorylation 

Negative (R domain 

releases inhibition of C 

domain) 

(Lee et al. 2003; Doucleff et al. 

2005a) 

NtrC4 
nitrogen regulatory 

protein C 4 
Aquifex aeolicus homolog of NtrC (Eσ

54
) 

Response Regulator 

(RR) 
Phosphorylation 

Negative (R domain 

releases inhibition of C 

domain) 

(Batchelor et al. 2008; Batchelor et al. 

2009) 

XylR 
xylene catabolism 

regulatory protein 
Pseudomonas putida 

Regulation of oxidative 

transformation of toluene, m-xylene 

and p-xylene (Eσ
54

) 

V4R domain 
Small-ligand binding (aromatic 

effectors) 

Negative (R domain 

releases inhibition of C 

domain) 

(Fernandez et al. 1995; Perez-Martin 

and Lorenzo 1995; Perez-Martin and 

de Lorenzo 1996) 

DctD 
C4-dicarboxylic acid 

transport protein D 
Sinorhizobium meliloti 

Regulation of C4-dicarboxylic 

acid transport (Eσ
54

) 

Response Regulator 

(RR) 
Phosphorylation 

Negative (R domain 

releases inhibition of C 

domain) 

(Xu et al. 2004a; Xu et al. 2004b; 

Doucleff et al. 2005a) 

DmpR 

3,4-demethylphenol 

catabolism regulatory  

protein 

Pseudomonas CF600 
Regulation of (methyl)phenol 

catabolism (Eσ
54

) 
V4R domain 

Small-ligand binding (aromatic 

effectors) 

Negative (R domain 

releases inhibition of C 

domain) 

(Shingler and Moore 1994; Shingler 

and Pavel 1995; Wikstrom et al. 2001) 

NorR 
nitric oxide reductase 

regulator 
Escherichia coli 

Regulation of NO-detoxification 

system (Eσ
54

) 
GAF domain 

Small-ligand binding (Nitric 

Oxide) 

Negative (R domain 

releases inhibition of C 

domain) 

This work; (Hutchings et al. 2002b; 

D'Autreaux et al. 2005; Tucker et al. 

2007) 

ZraR 

zinc resistance-

associated protein 

regulator 

Salmonella typhimurium 
Regulation of heavy-metal tolerance 

system (Eσ
54

) 

Response Regulator 

(RR) 

Phosphorylation by sensor-kinase 

ZraS 
Unknown 

(Leonhartsberger et al. 2001; Sallai 

and Tucker 2005) 

FhlA 
formate-hydrogen 

lyase activator protein 
Escherichia coli 

Regulates formate-hydrogen lyase 

(which oxidises formic acid) (Eσ
54

) 
2 x GAF domains Small-ligand binding (Formate) Negative 

(Schlensog et al. 1994; Hopper and 

Bock 1995) 

TyrR tyrosine regulator Escherichia coli 
Regulation of  aromatic amino acid 

biosynthesis and transport (Eσ
70

) 

PAS and ACT 

domains 

Small-ligand binding 

(Phenylalanine, tyrosine or 

tryptophan) in presence of ATP 

ATPase-inactive (activates 

or represses   Eσ
70 

promoters) 

(Pittard and Davidson 1991; Pittard et 

al. 2005) 

HrpR/S 

hypersensitive 

reaction pathogenicity 

island regulator 

Pseudomonas syringae 
Regulation of hrp-hrc pathogenicity 

island (Eσ
54

) 
absent 

interaction with apparent sensor-

kinase (HrpS) 

Negative (HrpS regulated 

by HrpV; HrpR regulated 

by HrpG) 

(Preston et al. 1998; Schuster and 

Grimm 2000; Hutcheson et al. 2001; 

Jovanovic et al. 2011) 

FlgR 
flagella gene 

regulator 
Helicobacter pylori 

Regulates class III flagella genes. 

Only σ
54 

activator in organism – 

activates from solution (no D domain) 

(Eσ
54

) 

Response Regulator 

(RR) 

Phosphorylation by sensor-kinase 

FlgS 

Negative (release of 

repression) 

(Spohn and Scarlato 1999; 

Brahmachary et al. 2004) 

Table 3.1 – The function and regulation of selected examples of bEBPs 
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Figure 3.2– Domain architecture of the five groups (I-V) of bEBPs 

(Wigneshweraraj et al. 2005). The central AAA+ domain (C, Red) is highly 

conserved and absolutely essential for σ
54

-dependent transcription. The C-terminal 

DNA-binding domain (D, Green) consists of a helix-turn-helix (HTH) motif that 

directs the bEBP to specific UAS/enhancer binding sites and in some bEBPs is absent 

(Group V). The N-terminal regulatory domain (R) is not well conserved between 

members of the bEBP family. Different sensory domains are present depending on the 

environmental signal to be detected but in some bEBPs it is absent (Group IV). Group 

I bEBPs contain a response regulator (RR) or PTS regulation (PRD) domains (Blue). 

Group II bEBPs contain Per, ARNT, and Sim (PAS) domains or a V4R (vinyl 4 

reductase) domain (Orange). Group III bEBPs contain a cGMP-specific and 

stimulated phosphodiesterases, Anabaena adenylate cyclases and E. coli FhlA (GAF) 
domain (Purple).  
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3.2 Role of the central AAA+ (C) domain 

The central (AAA+) domain is responsible for nucleotide binding and hydrolysis, 

oligomerisation and σ
54

 contact. It is indispensable and often sufficient for transcriptional 

activation both in vitro and in vivo (Berger et al. 1995; Jovanovic et al. 1999; Wikstrom et 

al. 2001; Xu et al. 2004a). The AAA+ domain is the most conserved of the three domains 

and has been divided into seven conserved regions, C1-C7 (Figure 3.3) (Morett and 

Segovia 1993; Osuna et al. 1997). 

 

3.2.1 Conserved regions of the C domain 

Crystal structures of the PspF, NtrC and ZraR bEBP AAA+ domains (Lee et al. 2003; 

Rappas et al. 2005; Sallai and Tucker 2005) reveal an α/β subdomain, followed by a 

smaller α-helical subdomain, characteristic of all AAA+ proteins (Zhang et al. 2002; 

Rappas et al. 2007). The nucleotide binding site is located in the cleft between these 

subdomains and between two adjacent protomers (Figure 3.7) (Rappas et al. 2007). AAA+ 

domains are characterised by the Walker A and Walker B motifs that have roles in 

nucleotide binding and hydrolysis (Walker et al. 1982; Hanson and Whiteheart 2005). 

Walker A is in the C1 region and forms a P-loop with the consensus GxxxxGK[T/S] that 

interacts with the phosphates of ATP (Saraste et al. 1990). The requirement for the Walker 

A motif has been shown in a number of bEBPs including PspF (Schumacher et al. 2004) 

and NtrC (Rombel et al. 1999). In Pseudomonas putida XylR, the G268N substitution 

abolishes ATP-binding and hydrolysis (Perez-Martin and de Lorenzo 1996). Likewise, the 

Walker B motif of the C4 region has a consensus hhhhDE (h = any hydrophobic amino 

acid) and has been shown to be required for nucleotide hydrolysis. Mutagenesis of the key 

aspartate residue suggests a role in coordination of Mg
2+

, required for ATP hydrolysis 

(Rombel et al. 1999; Schumacher et al. 2004) and this residue is also thought to activate 

water for nucleophilic attack of the γ-phosphate. Another common feature of AAA+ 

proteins is the presence of the Sensor I and Sensor II motifs, present in the conserved 

regions C6 and C7 respectively (Schumacher et al. 2006). Sensor I residues are located 

within a loop with the side chain of threonine in between the Walker A (WA) and Walker 

B (WB) motifs. This threonine residue has been implicated in coupling nucleotide 

hydrolysis to conformational change (Schumacher et al. 2007). Sensor II residues within 

the C7 region are located in the third helix of the α-helical subdomain and have been 

implicated in nucleotide base binding. I226 in PspF has been suggested to be involved in 

this function whilst the adjacent arginine residue points towards the γ-phosphate and may 
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be involved in hydrolysis (Schumacher et al. 2006). Indeed R227 in PspF was suggested to 

have a role in Mg
2+

 coordination (Zhang et al. 2002; Rappas et al. 2006). Members of the 

AAA+ superfamily also contain one or two arginine residues (R-fingers) that have been 

implicated in inter-subunit catalysis and nucleotide sensing (Ogura and Wilkinson 2001; 

Lupas and Martin 2002; Hanson and Whiteheart 2005). In accordance with this, bEBPs 

contain two potential R-fingers that together with the catalytically important Sensor II 

residues are located at the protomer interface. In PspF, the predicted R-finger R168 has 

been shown to be required for ATP-hydrolysis but not for ATP-binding (Schumacher et al. 

2004) whilst the same is observed in NtrC for the second R-finger R294 (R162 in PspF) 

(Rombel et al. 1998; Rombel et al. 1999).  These phenotypes reflect the observation that 

the ATPase active site is formed at the interface between adjacent protomers to “share” the 

catalytic arginine(s). The structure of the AAA+ protein p97 shows the catalytic arginine 

protruding from one protomer into the catalytic site of the adjacent protomer, contacting 

the γ-phosphate of ATP (Zhang et al. 2000). Indeed the recent publication of the crystal-

structure of ATP-bound NtrC1 indicates that the first R-finger (R299 in NtrC1) engages 

with the γ-phosphate (Chen et al. 2010). Therefore oligomerisation is essential for the 

bEBP‟s ability to hydrolyse ATP.  

 

3.2.2 Structural elements of AAA+ domains specific to bEBPs 

The bEBP-subfamily of AAA+ domains contains specific structural features that enable 

nucleotide-dependent interactions with σ
54 

(Figure 3.3) (Zhang et al. 2002; Schumacher et 

al. 2006). Most conserved amongst these is the GAFTGA motif (conserved region C3), 

which forms a loop on the surface of the AAA+ domain that contacts σ
54

 during the ATP 

hydrolysis cycle (Bordes et al. 2003). Crystal structures of the NtrC1 and ZraR AAA+ 

domains (Lee et al. 2003; Sallai and Tucker 2005) show that the GAFTGA motif is located 

at the α/β subdomain surface at the tip of loop 1 (L1) which is inserted into helix 3 (H3). 

Although the surface-exposed loops appear to point towards the central pore of the 

oligomeric rings, the GAFTGA motifs are not in an extended conformation. Stable 

interaction between the GAFTGA loop and σ
54 

has only been observed in studies that use 

the ATP-transition state analogue, ADP.AlFx. Cryo-electron microscopy (Cryo-EM) 

studies of the PspF central domain in complex with σ
54

 and ADP.AlFx reveals a hexameric 

bEBP ring in contact with monomeric σ
54 

(Rappas et al. 2005). Significantly, the 

reconstruction reveals connecting electron densities between the bEBP and σ
54

. Fitting of 

the PspF AAA+ crystal structure into the 3D-reconstruction confirms that the GAFTGA-
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Figure 3.3 - Domain map and sequence alignment of the conserved regions of bEBP AAA+ domains (C1-C7; (Morett and Segovia 1993). The 

conserved regions are based on a structure-based sequence alignment (Schumacher et al. 2006). Key residues (Walker A, “Switch” Asn, GAFTGA, 

Walker B and R-fingers) are highlighted in yellow and non-consensus sequences in the alignments are highlighted in red. The locations of Loop 1, Loop 2, 

Sensor I and Sensor II motifs are indicated with their sequences highlighted in grey. Alignments were conducted using ClustalW 

(www.ebi.ac.uk/clustalw/) using the sequences from UniProtKB/Swiss-Prot (http://www.expasy.ch/): PspF (E. coli), NifA (A. vinelandii), XylR (P. 

putida), DmpR (Pseudomonas sp.), NtrC (E. coli), ZraR (E. coli), NtrC1 (A. aeolicus), NtrC4 (A. aeolicus), FlgR (H. pylori), DctD (S. meliloti), FhlA (E. 

coli), HrpR (P. syringae), NorR (E. coli), TyrR (E. coli).  The R (regulatory) and D (DNA binding) domains are also illustrated, though not to scale. 
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containing L1, assisted by loop 2 (L2) mediate this interaction. Therefore, it is likely these 

conserved motifs enable nucleotide-dependent σ
54

-interaction to initiate the transition of 

the closed complex. In accordance with this, the GAFTGA motif has been shown to be 

critical for open complex formation (Zhang et al. 2002). The effect of substituting residues 

of the GAFTGA motif has been studied in the bEBPs NtrC (North et al. 1996; Li et al. 

1999; Yan and Kustu 1999), DctD (Wang et al. 1997), NifA (Gonzalez et al. 1998), DmpR 

(Wikstrom et al. 2001) and PspF (Chaney et al. 2001; Bordes et al. 2003; Bordes et al. 

2004; Dago et al. 2007; Zhang et al. 2009). There seems to be an absolute requirement for 

an intact GAFTGA motif; mutation of any one of the six amino acids has severe effects on 

the bEBP‟s ability to hydrolyse ATP, contact σ
54

 or activate transcription (Table 3.2). 

Other bEBP-like proteins that lack this motif such as the E. coli TyrR protein and NtrC 

from Rhodobacter capsulatus are unable to activate σ
54

-dependent transcription (Bowman 

and Kranz 1998; Poggio et al. 2002; Pittard et al. 2005). In the case of TyrR, the α-helical 

residues that precede the GAFTGA motif in other bEBPs (ESELFGHEK) are thought to 

couple ATP hydrolysis to effects on transcription at σ
70

-dependent promoters (Kwok et al. 

1995).   

 

3.2.3 Coupling ATP hydrolysis to the activation of transcription 

ATP hydrolysis is coupled to open complex formation via conformational changes in the 

AAA+ domain that ultimately lead to the relocation of the GAFTGA-containing L1, and 

the L2 loops. A number of crystal structures of bEBP AAA+ domains have been reported 

providing detailed information about the nucleotide binding pocket and other key 

determinants (Lee et al. 2003; Rappas et al. 2005; Sallai and Tucker 2005; Chen et al. 

2010). In order to examine the structure of the AAA+ domain at the discrete stages of the 

nucleotide cycle, a variety of structural and biochemical techniques have been employed 

(Bose et al. 2008a). This includes the soaking of transiently stable crystals of the PspF C 

domain (1-275) in the presence of different nucleotides to obtain various nucleotide-bound 

structures (Rappas et al. 2006). High resolution crystal structures of NtrC1 bound to both 

ATP and ADP have also been published (Lee et al. 2003; Chen et al. 2010). Lower 

resolution techniques that include Cryo- EM and SAXS (small-angle X-ray 

scattering)/WAXS (wide angle X-ray scattering) used in conjunction with nucleotide 

analogues have provided information about the larger, macromolecular conformational 

changes that occur in the bEBP as ATP is hydrolysed (Rappas et al. 2005; De Carlo et al. 

2006; Chen et al. 2007; Chen et al. 2008). However, caution should be taken in the 
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analysis of all such structures since the coordination of ATP hydrolysis between bEBP-

protomers is thought to involve different nucleotide-bound states (Joly et al. 2006). 

 

(i) Studies of the ground-state of nucleotide hydrolysis 

The ATP-bound “ground” state of the nucleotide cycle has been examined by soaking 

crystals of PspF1-275 with ATP, either in the absence of Mg
2+

 to prevent hydrolysis or by 

using a hydrolysis-defective variant of the bEBP (Figure 3.4A) (Buck et al. 2006; Rappas 

et al. 2006; Bose et al. 2008a). Structures reveal the residues responsible for binding ATP 

within the nucleotide binding pocket. The Walker B glutamate (E108 in PspF) senses the 

γ-phosphate of ATP and forms a strong interaction with a nearby highly conserved 

asparagine (N64 in PspF). The adjacent aspartate (D107 in PspF) coordinates the position 

of a water molecule for nucelophilic attack of this γ-phosphate (Rappas et al. 2006). In 

NtrC1, the conserved R-finger from the adjacent protomer (R299 in NtrC1, R168 in PspF) 

appears to engage with the γ-phosphate, stabilising the binding of ATP (Chen et al. 2010). 

Significantly, the ATP-bound structures of PspF and NtrC1 indicate that the L1 and L2 

loops are in a raised conformation, consistent with low-resolution SAXS-derived structures 

using the ground-state analogue ADP-BeFx in NtrC1 (Rappas et al. 2006; Chen et al. 2007; 

Chen et al. 2010). Biochemical experiments confirm that both PspF and NtrC1 can 

establish contact with σ
54

 in the presence of this ground-state analogue (Chen et al. 2007; 

Bose et al. 2008a). Taken together this data indicates that the binding and sensing of 

nucleotide causes significant conformational changes in the bEBP AAA+ domain. The 

combined data to date suggest that the GAFTGA-containing L1 loop, assisted by L2 is 

released to make an initial, unstable interaction with Eσ
54

. 

 

(ii) Studies of the transition state of nucleotide hydrolysis 

Studies using the transition state analogue ADP.AlFx have established a clear role for the 

GAFTGA-motif of loop 1 in contacting Region I of σ
54

 prior to the remodelling of the 

closed complex (Chaney et al. 2001; Bordes et al. 2003; Cannon et al. 2003). Most 

significantly, a stable interaction between the GAFTGA-containing L1 loop and σ
54 

is 

formed in the presence of the transition state analogue, as revealed by the fitting of the 

PspF1-275 crystal structure into the Cryo-EM reconstruction of the activator in complex with 

σ
54

 (Rappas et al. 2005; Rappas et al. 2006). In agreement with this, low-resolution 

structures of NtrC and NtrC1 bound to ADP.AlFx, reveal electron density above the plane 

of the oligomeric bEBP corresponding to a raised position of the L1 and L2 loops (De 
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Carlo et al. 2006; Chen et al. 2007). Significantly, the ADP.AlFx complex of NtrC1 was 

shown to be more stable than the ADP-BeFx complex, indicating that ATP-hydrolysis 

strengthens the unstable interaction between the bEBP and σ
54

 that forms in the ground 

state (Chen et al. 2007). Similar results have been obtained for the bEBP PspF (Burrows et 

al. 2009). In addition, this form of the activator is able to initiate the early stages of 

promoter “melting” (Burrows et al. 2004), identifying it as a true intermediate in the 

transition of the closed complex. However, the “trapped” forms of PspF are largely 

defective for nucleotide hydrolysis and incapable of activating transcription (Chaney et al. 

2001; Burrows et al. 2009) suggesting that continuation of the cycle of nucleotide-driven 

conformational changes is vital for formation of the open complex.  

 

(iii) Studies of the post-nucleotide hydrolysis state 

The “post-hydrolysis” state has been extensively studied through the publication of crystal-

structures of various bEBPs in their ADP-bound forms (Lee et al. 2003; Rappas et al. 

2005; Sallai and Tucker 2005; Rappas et al. 2006). Comparison of the post-hydrolysis state 

with ground- and transition- state structures has shed light on the conformational 

rearrangements that occur upon ATP hydrolysis. Structures of PspF (Figure 3.4B) indicate 

that the release of the γ-phosphate to form ADP causes a 90° rotation of the glutamate side 

chain of the Walker B motif (E108 in PspF). As a result, the interaction between the 

glutamate and the conserved asparagine (N64 in PspF) is broken resulting in the Walker B 

glutamate interacting instead with the Sensor I threonine residue (T148 in PspF), via a 

water molecule (Figure 3.4C). Communication of the altered position of Walker B by the 

asparagine residue leads to conformational changes in helix 3 (H3) and helix 4 (H4) that 

are translated to loop 1 (L1) and loop 2 (L2) via strategically placed residues in the central 

domain. The functional significance of these key residues has now been assessed and it has 

emerged that both intra- and inter-subunit interactions have a role in modulating the 

conformation of the σ
54

-interaction surface (Figure 3.5) (Joly and Buck 2010). The 

structure of ADP-bound PspF1-275 suggests that the Walker B-asparagine “switch” results 

in the disruption of an interaction between the R131 residue of the L2 loop and the E97 

residue of H3 (Figure 3.5A) (Rappas et al. 2006). Single substitutions at these positions 

abolish ATPase activity and σ
54

-interaction whilst residue swap experiments 

(R131E/E97R) partially restore activity, demonstrating the importance of this polar 

interaction (Joly and Buck 2010). Following this, the E97 residue is proposed to interact 

with R91 whilst the R131 residue is thought to contact the L1 loop residue E81. Variants 
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of R91 in PspF were unaltered for ATPase activity and although they showed only a slight 

decrease in the ability to contact σ
54

, they were significantly less able to isomerise σ
54

, 

indicating that this residue is important for substrate remodelling after the initial interaction 

(Joly and Buck 2010). This residue does not show high conservation in the bEBP 

subfamily of AAA+ proteins but in many cases, the adjacent residue may serve a similar 

function. Together these new interactions result in the compaction of the loops down 

towards the surface of the AAA+ domain enabling σ
54 

relocation, crucial to the conversion 

from the closed to the open complex (Rappas et al. 2006; Chen et al. 2007; Bose et al. 

2008a). 

 

Interestingly, it has now been shown that inter-subunit (in trans) interactions confer 

cooperativity in nucleotide-dependent substrate remodelling of PspF (Figure 3.5B) (Joly 

and Buck 2010). In the ATP-bound state, the E130 residue at the base of L2 is proposed to 

interact in trans with the R98 of H3 from the adjacent subunit. Upon release of the γ-

phosphate, the E130 residue is expected to interact instead with R95 of H3 also from the 

adjacent protomer. Substitutions made at these positions cause the uncoupling of ATPase 

activity and substrate remodelling since these variants are able to oligomerise and 

hydrolyse ATP but are not competent to contact σ
54

. Therefore the “switching” of this in 

trans interaction between protomers is thought to contribute to the coordination of the L1 

and L2 loops during nucleotide hydrolysis (Joly and Buck 2010). These residues do not 

show strict conservation in the bEBP subfamily but similar interactions may play a 

significant role in the coupling of ATP hydrolysis to substrate remodelling. For example in 

NtrC1, the equivalent residues (F226, L229 and Y261) are thought to facilitate in trans 

hydrophobic contracts (Chen et al. 2010).  

 

(iv) The Walker B-asparagine “switch” 

Analysis of active site structures reveal that the glutamate “switch” residue of the Walker 

B motif (E108 in PspF) is a common feature of hydrolysis in the majority of AAA+ 

proteins (Zhang and Wigley 2008). Whereas substitutions of the adjacent Walker B 

aspartate have severe effects on various aspects of PspF activity, in line with a key role for 

this residue in ATP hydrolysis, substitution of the adjacent glutamate (E108 in PspF) only 

has moderate effects upon activity. Such variants have been used to effectively study 

intermediate states en route to open complex formation and confirm the pivotal role of the 
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Figure 3.4 – Structure of monomeric PspF1-275 bound to ATP (A) (PDB code 2C96/2C9C) and ADP (B) (PDB code 2C98/2C9C). Important 

motifs are highlighted: Walker A (brown), Walker B/E108 (cyan), Sensor I/T148 (magenta), “Switch” N64 (yellow), E97 (bright green), E81 (red), 

R131 (blue), R91 (purple). Loop 1 (L1) and loop 2 (L2) are labelled with the non-resolved fold of L1 indicated using a red-dotted line. (C) The 

switching mechanism of the Walker B E108 residue. In the ATP-bound state, E108 interacts with N64 (indicated by double-headed arrow). In the 

ADP-bound state there is a 90° rotation in the N64 side chain so that it interacts with the Sensor I residue T148 (indicated by double-headed arrow). 

Upon ATP-hydrolysis, the absence of the γ-phosphate induces the “switch”, resulting in the E97 residue breaking the contact with R131 of L2. R131 

is then thought to contact E81 whilst E97 contacts R91 in PspF. This switch in the interactions causes the compaction of the loops downwards 

allowing for σ
54

-relocation. (D) Summary of the nucleotide-driven conformational changes that occur during ATP-hydrolysis, as proposed in 

PspF (Rappas et al. 2006). The ground- (blue), transition- (red), post-hydrolysis- (green) and released (purple) states are indicated. For simplicity, 

only the “switch” interactions are shown with the associated re-locations of linker 1, helix 3 (H3) and the L1/L2 loops. 
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Figure 3.5 – in cis and in trans 

interactions predicted to form during 

nucleotide hydrolysis in PspF. 

Interactions in cis centre around the E97 

(green) residue which interacts with either 

R131 (blue) (ATP-state) or R91 (purple) 

(ADP-state) depending on the position of 

the Walker B-asparagine “switch”. Upon 

γ-phosphate release, E97 breaks its 

interaction with R131, allowing R131 to 

instead contact R81 (red). These new 

interactions result in the compaction of the 

L1 and L2 loops down towards the surface 

of the AAA+ domain enabling σ54 

relocation. Interactions in cis centre 

around the E130 residue (orange) (subunit 

n) which contacts the R98 residue 

(magenta) (subunit n+1) in the ATP-bound 

state but interacts with the R95 residue 

(cyan) (subunit n+1) in the ADP-bound 

state. (A) Region of the crystal structure of 

PspF1-275 in ATP-bound form (PDB 2C96) 

and ADP-bound form (PDB 2C98) 

showing the location of the key residues 

involved in inter- and intra- subunit 

interactions. Interactions occurring within 

the protomer are indicated by double-

headed arrows. (B) Schematic showing the 

in cis and in trans interactions that occur 

before and after γ-phosphate release. 

Adapted from (Joly and Buck 2010). 

Interactions are indicated by arrows and 

residue colours correspond to those in (A). 
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Walker B glutamate in transmitting nucleotide-dependent conformational changes (Joly et 

al. 2007). Sequence alignments of bEBPs indicate that the glutamate switch-interacting 

asparagine (N64 in PspF) is strictly conserved, in agreement with the hypothesis that this 

residue plays a key role in these specialised activators (Joly et al. 2009). In PspF, variants 

of the N64 residue have altered oligomeric states and ATPase activities, suggesting that the 

conserved asparagine plays a significant role in the organisation of the active site. In line 

with this, the position of Mg
2+

-bound ATP, and the water molecule involved in 

nucleophilic attack of the γ-phosphate correspond with a catalytic role of the asparagine in 

ATP hydrolysis (Rappas et al. 2006). Significantly, in the absence of the glutamate or 

asparagine side chains (i.e. in the variants E108A or N64A), PspF was shown to form a 

stable complex with σ
54

, indicating that the interaction between the activator and σ
54

 is not 

strictly dependent on the Walker B glutamate or asparagine residues (Joly et al. 2007; Joly 

et al. 2009). However, the N64A variant was significantly less able to form open 

complexes than the wild-type activator. This defect was suppressed when pre-melted DNA 

was used, suggesting that the conserved asparagine is also required for the melting of the 

promoter DNA and the associated loading of the template into the RNAP active site (Joly 

et al. 2009). Despite the Walker B-interacting asparagine not being present in all members 

of the AAA+ family, the distance between the glutamate and this residue seems to be 

conserved. Consequently, it has been suggested that the positioning of these two residues is 

important for their communication with each other and for forming a fully functional 

catalytic site. In the case of the specialised bEBP family, the communication helps to 

control the positioning of the GAFTGA-containing L1 loop. In AAA+ proteins that do not 

contain the GAFTGA insertion, it is likely that the interaction between these residues 

controls similar nucleotide-dependent conformational changes that regulate functionality in 

the oligomeric ring (Joly et al. 2009).   

 

(v) R-finger directed “switch” 

More recently, the publication of a high resolution crystal structure of the ATP-bound 

NtrC1 central domain (NtrC
C
) and comparison with the ADP-bound form, has identified an 

alternative mechanism for coupling hydrolysis to substrate remodelling (Lee et al. 2003; 

Buck and Hoover 2010; Chen et al. 2010). In order to examine the configuration of an 

ATP-bound activator, the Walker B glutamate was replaced with alanine, allowing NtrC1 

to bind but not to turnover the nucleotide. This led to the first structure of a bEBP in which 

the highly conserved arginine (R)-finger (R299 in NtrC1) is seen to contact the γ-
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phosphate (Figure 3.6B). This is in contrast to the ATP-bound structure of monomeric 

PspF1-275, where the alternative R-finger R162 (R293 in NtrC1) rather than R168 (R299 in 

NtrC1) is predicted to be in close proximity to the γ-phosphate of the adjacent protomer 

(Figure 3.8B; Rappas et al., 2006). Comparison of the ATP- and ADP-bound NtrC1 

structures indicates that the engagement of the γ-phosphate by the R299 R-finger 

stimulates a rearrangement of interaction networks in the same protomer (in cis), at the R-

finger side of the inter-protomer interface. It is proposed that interaction of this R-finger 

with the γ-phosphate causes helical distortions that ultimately lead to the transition of the 

L1 and L2 loops to a raised conformation. The K250 residue appears to be particularly 

important in this transition; the side chain exists in distinct environments in the two 

nucleotide-bound states (Chen et al. 2010). This model is in stark contrast to prior studies 

in PspF which indicate that the Walker B-asparagine “switch” is responsible for 

modulating the conformation of the σ
54

-interaction surface in the protomer on the Walker 

AB side of the inter-protomer interface (Joly et al. 2007; Joly et al. 2008a). However, 

caution should be taken when interpreting the role of the R299 residue in the ATP-bound 

structure of the E239A NtrC1 variant. Comparison of the wild-type (ADP-bound) and 

E239A (ATP-bound) variant structures suggests that the Walker B substitution prevents an 

interaction between residue 239 and the other possible R-finger (R293) (Figure 3.6). R293 

instead interacts with E242 which appears to cause the displacement of R299, bringing it 

into closer proximity with the ATP γ-phosphate. Furthermore, compared to the ATP-bound 

structure of PspF (Figure 3.8B), the Walker B aspartate appears to be too distant from ATP 

for hydrolysis to occur. Therefore the role of the R299 residue in coupling hydrolysis to 

substrate remodelling remains unclear. Although work in NtrC1 suggests a role for R299 

(R168 in PspF) in γ-phosphate sensing, studies in PspF suggests that R293 (R162 in PspF) 

is the “true” R-finger. 

 

(vi) A model of the nucleotide-driven conformational change 

Overall, structural and biochemical studies have shown that the coupling of ATP-

hydrolysis to open complex formation by Eσ
54

 is dependent upon conformational changes 

in the AAA+ domain (Figure 3.4D) (Rappas et al. 2006; Bose et al. 2008a; Chen et al. 

2010). These changes centre on the “sensing” of the γ- phosphate by either the asparagine 

“switch” residue that detects changes in the Walker B motif upon ATP hydrolysis (Rappas 

et al. 2006) or by the highly conserved R-finger of the adjacent protomer (Chen et al. 

2010). Depending upon the stage in the ATP-hydrolysis cycle and the position of the 
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Figure 3.6 - Comparison of the ADP-bound and ATP-bound structures of the AAA+ 

domains of NtrC1 and NtrC1 (E339A) respectively. In each structure the proposed R-

fingers are indicated (R293; dark blue and R299; magenta). The Sensor II arginine (R357) is in 

cyan. The Walker B “DE” residues (D238 and E239) are in orange and yellow respectively. 

The E242 (brown) and E256 (green) residues may form inter-protomer interactions (A) The 

ADP-bound structure of NtrC1 AAA+ (PDB ID: 1NY6 B-C interface; (Lee et al. 2003)). 

Work in PspF suggests that R293 Is the real R-finger and in this structure is shown to interact 

with the Walker B glutamate residue. In both ADP and ATP-bound structures, E256 forms an 

inter-protomer contact with the Sensor II arginine (R357). (B) The ATP-bound structure of 

NtrC1 (E239A) AAA+ (PDB ID: 3MOE; (Chen et al. 2010)). The magnesium ion is shown as 

a light pink sphere. To achieve this structure the Walker B glutamate was substituted for an 

alanine to prevent the turnover of ATP. Consequently, the possible R-finger R293 instead 

interacts with the E242 residue rather than the Walker B residue from the adjacent protomer. 

This appears to result in the displacement of the R299 residue, shifting it onto the other side of 

E256. Therefore caution should be taken with the suggestion that R299 has a direct role in γ-

phosphate sensing. In agreement with this, the Walker B aspartate appears to be too far from 

the γ-phosphate for ATP hydrolysis to occur (compare ATP-bound NtrC1 [Figure 3.6B] with 

ATP-bound PspF [Figure 3.8B]).  
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“switch” or R-finger, the GAFTGA-containing L1 and L2 loops adopt varying 

conformations (Chen et al. 2010; Joly and Buck 2010). Upon nucleotide binding, the loops 

are in an extended conformation and the GAFTGA motif forms an unstable interaction 

with σ
54

. ATP hydrolysis strengthens this interaction and remodelling of the holoenzyme 

can then occur to enable open complex formation. Upon phosphate release, rearrangement 

of both in cis and in trans interactions cause the loops to disengage with the σ factor. The 

cycle can then start-over with the exchange of ADP for ATP. The GAFTGA motif thus 

performs a crucial role in the „power stroke‟ of bEBPs in coupling ATP hydrolysis to 

conformational rearrangements of the σ
54

-RNA polymerase. The role of the individual 

residues within this essential motif will be discussed shortly (section 3.2.4) 

 

(vii) The coordination of ATP hydrolysis 

Structural studies of the activator bound to different nucleotides have helped establish the 

conformational changes within the AAA+ domain that couple nucleotide hydrolysis to σ
54

-

contact (Rappas et al. 2006). The ADP.AlFx-bound cryo-EM structure of PspF1-275 

indicates that not all protomers within the AAA+ hexamer contact σ
54

 during the transition 

state of ATP hydrolysis, indicating assymmetry (Rappas et al. 2005). In line with this, a 

number of hetero-hexameric AAA+ proteins exist (e.g. eukaryotic MCM2-7) comprising 

up to six different proteins, strongly suggesting that each subunit may have a distinct role 

in the activity of the hexamer (Forsburg 2004; Bochman and Schwacha 2008). Studies in 

the homo-hexameric bEBP, PspF, have subsequently confirmed that an asymmetric 

configuration is a key requirement for open complex formation (Joly and Buck 2011). The 

introduction of the GAFTGA substitution T86A into single-chain forms of PspF with two 

or three subunits, allowed Joly and Buck to examine the minimal requirements for σ
54

-

contact and substrate remodelling. Such a substitution was shown to uncouple the ATPase 

and oligomerisation activities of the bEBP from its ability to contact and remodel σ
54

. 

Results show that the minimal configuration for stable interaction with σ54
 is two adjacent 

functional subunits, revealing that more than one GAFTGA-containing L1 loop is likely to 

contact σ54
 at the point of ATP-hydrolysis (Joly and Buck 2011). However, two wild-type 

subunits, opposite relative to each other in the ring give rise to a hexamer that is markedly 

less able to interact with σ54 
or form open complex. This result strongly suggests that 

asymmetry in the hexamer is important for its ability to contact and remodel σ54
, which is 

itself asymmetrical. This is in contrast to the previously proposed model of homotropic 
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control in which the requirement of three subdomains for the formation of the catalytic site 

leads to ring-imposed symmetry constraints (Schumacher et al. 2008). Here, it is 

anticipated that alternating nucleotide states (ATP, ADP and unbound) around the ring 

produce a two-fold symmetric conformation, suggested to be important for effective ATP 

hydrolysis at opposite sites in the hexamer (Figure 3.8A). Significantly, efficient open 

complex formation requires at least one more additional subunit, revealing that the 

minimal requirements for stable interaction with σ54 
are different to those for substrate 

remodelling (Joly and Buck 2011).  

 

The finding that only a subset of the GAFTGA-containing L1 loops are required to mediate 

σ54
-interaction and open complex formation in turn, reveals that only a subset of ATP-

hydrolysis sites are required for bEBP activity (Joly and Buck 2011). In support of this, 

work carried out to determine how ATP hydrolysis between protomers is coordinated has 

suggested that ATPase activity in PspF is partially sequential (Joly et al. 2006). In the 

AAA+-family of proteins, two models of nucleotide occupancy may explain how 

hydrolysis is coordinated (Figure 3.7) (Ades 2006). Homogeneous nucleotide occupancy 

has been observed in a number of AAA+ protein crystal structures (Lenzen et al. 1998; 

Zhang et al. 2000; Gai et al. 2004), supporting a model of concerted/synchronised 

hydrolysis (Figure 3.7D)  in which subunits of the AAA+ ring simultaneously hydrolyse 

ATP. Other AAA+ structures show mixed nucleotide occupancy with ATP, ADP or no 

nucleotide bound at the catalytic sites between subunits (Bochtler et al. 2000; Wang et al. 

2001). This supports a model of sequential or rotational hydrolysis (Figure 3.7C) in which 

heterogenous nucleotide occupancy is coordinated between protomers. Studies using the 

bEBP PspF reveal that either ATP or ADP stimulates oligomerisation of the activator and 

that physiological ADP concentrations stimulate the ability of the protein to hydrolyse 

ATP. This suggests that in PspF, ADP binding: (i) promotes formation of the stable 

hexamer and (ii) causes structural changes leading to increased ATPase in adjacent 

protomers. Furthermore, where non-optimal binding of nucleotide occurs there are 

negative homotropic effects (Schumacher et al. 2008). High ATP concentrations, at which 

every catalytic site in the hexamer is likely to be in the ATP-bound form, inhibit ATP 

hydrolysis and the activation of transcription in vitro. Taken together these data strongly 

suggest that heterogeneous nucleotide occupancy, coordinated between protomers in the 

hexameric ring plays a crucial role in the activation of σ54-dependent transcription by 

bEBPs. Therefore, the concerted/synchronised model of hydrolysis can be discounted 
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(Figure 3.7C). Because of the “ATP-inhibition” and “ADP-stimulation” of PspF ATPase 

activity, nucleotide hydrolysis in bEBPs is unlikely to be a stochastic process, in which 

each catalytic site is independent (Figure 3.7A). Rather, the arrangement of the hydrolysis 

site and in vitro data suggest that cooperativity exists between protomers of the hexamer 

(Joly et al. 2006). Indeed R-finger residues have been shown to function in trans, 

coordinating the bound nucleotide in the adjacent subunit of the hexamer (Zhang et al. 

2002; Briggs et al. 2008; Greenleaf et al. 2008; Chen et al. 2010). Furthermore, recent 

mutagenesis in PspF has identified non R-finger residues involved in inter-protomer 

interactions that help to coordinate the position of the L1 and L2 loops during ATP 

hydrolysis (Joly and Buck 2010). Subsequently, a model of sequential or rotational 

hydrolysis is favoured (Figure 3.7B/C). These mechanisms would create an asymmetry in 

the exposure of GAFTGA motifs in the hexamer that has been shown to be important for 

the mechanical action of the activator (Joly et al. 2006; Joly and Buck 2011). However the 

exact number of nucleotides bound and the conformation of individual protomers at the 

discrete steps of hydrolysis still remains unclear. The generation of high-resolution crystal 

structures of mixed nucleotide-bound hexamers would therefore be beneficial.  
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Figure 3.7 – Models for the coordination of nucleotide hydrolysis 

between protomers in the AAA+ hexamer. In solution the majority of 

bEBPs exist in equilibrium between dimeric and hexameric forms. In 

the case of PspF, binding of ATP or ADP promotes hexamerisation and 

ATP hydrolysis. (A) The stochastic model assumes that each catalytic 

site is independent. (D) The synchronised/concerted model is based on 

homogenous nucleotide occupancy and assumes that each site 

simultaneously hydrolyses ATP. Data in PspF suggests that ATP 

hydrolysis occurs either via the rotational (B) or sequential (C) 

mechanisms that utilise heterogeneous nucleotide occupancy. Both 

models are based on cooperativity between protomers in the hexamer. 

(Joly et al. 2006) 
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Figure 3.8 – Model of homotropic coordinated ATP hydrolysis between heterogenously occupied subunits. (A) Model of hexameric PspF built 

from the structure of monomeric PspF1-275 (PDB 2C96) by Xiaodong Zhang, Imperial College, showing the α/β and α-helical subdomains of two 

adjacent protomers in the AAA+ ring. Subunits proposed to be bound by ATP at any one time are in blue, ADP-bound in green and unbound (apo) in 

grey. (B) Close-up of the nucleotide hydrolysis site in PspF in the ATP-bound state. The Walker A (G36, G41, K42) residues are labelled in brown, 

Walker B (D107 and E108) residues are labelled in cyan, Sensor I threonine (T148) in magenta, conserved asparagine (N64) in yellow, Sensor II 

arginine in red, Sensor II isoleucine in orange and the putative in trans R-fingers (R162, R168) in green. The location of ATP and its γ-phosphate is 

also indicated. Walker A forms a P-loop that interacts with the phosphates of ATP. The Walker B aspartate has a role in coordination of Mg
2+

 and the 

glutamate residue is thought to activate water for nucleophilic attack of the γ-phosphate. The conserved asparagine functions in the hydrolysis-

dependent “switch” (Rappas et al. 2006). The Sensor I threonine residue (T148) has been implicated in coupling nucleotide hydrolysis to 

conformational change (Rappas et al. 2006). Sensor II residues are located in the third helix of the α-helical subdomain. I226 in PspF has been 

implicated in nucleotide base binding whilst the R227 residue points towards the γ-phosphate and may have a role in Mg
2+

 coordination (Schumacher 

et al. 2006). The R-fingers that have been implicated in inter-subunit catalysis and nucleotide sensing (Ogura and Wilkinson 2001; Lupas and Martin 
2002; Hanson and Whiteheart 2005). 
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3.2.4 The GAFTGA motif 

Sequence alignments of bEBP AAA+ domains indicate a very high level of conservation 

for the GAFTGA motif (Figure 3.3) (Zhang et al. 2009), reflecting its importance in σ
54

-

dependent transcription. The first glycine residue of the motif appears to be absolutely 

conserved although has not been widely studied in bEBPs (Table 3.2). In NtrC, random 

mutagenesis identified the G215V mutation that abolished in vivo and in vitro 

transcriptional activation (Li et al. 1999).  In DctD, substitution of the equivalent residue 

(G220D) also produced an inactive protein in vivo (Wang et al. 1997). Likewise, 

substitution of the second amino acid of the GAFTGA motif in the bEBPs NtrC, NifA and 

DctD, gave rise to variants that were unable to activate transcription (North et al. 1996; 

Wang et al. 1997; Gonzalez et al. 1998). However, these variants showed little or no 

reduction in ATPase activity, suggesting that whilst this residue may be required for 

contacting σ
54

, it does not communicate with the ATP-hydrolysis machinery of the AAA+ 

domain. Interestingly, in the case of the A216C variant, the defect in transcriptional 

activation is relieved in a form of NtrC that is incapable of binding DNA (Yan and Kustu 

1999). Therefore, it appears that in the A216C mutant-version of NtrC, DNA binding 

prevents the bEBP from contacting σ
54

, suggesting a relationship between DNA binding 

and AAA+ function. 

 

The role of the conserved theronine of the GAFTGA motif in transcriptional activation is 

better understood (Table 3.2). Substitution of the T218 residue of NtrC, the T308 residue 

of NifA and the T223 residue of DctD abolishes the ability of the bEBP to activate 

transcription (Wang et al. 1997; Gonzalez et al. 1998; Li et al. 1999). The same is true for 

the T85A and T85V substitutions in PspF but T86S remains partially active (Chaney et al. 

2001). Strong evidence for a direct interaction between the threonine residue of the 

GAFTGA-motif and Region I of σ
54

 was provided through the identification of 

substitutions (e.g. G4L in Region I) that specifically suppress the defects of the partially 

active T86S variant (Chaney et al. 2001; Bordes et al. 2004; Dago et al. 2007). 

Significantly, the G4L substitution allows the T86S variant to interact with but not activate 

the Eσ
54 

(G4L) complex when the promoter DNA is “pre-melted”. This supports a role for 

the GAFTGA motif in the “sensing” of the promoter DNA conformation downstream of 

the -10 position. It has been suggested that communication of this information to σ
54

 via 

Region I might allow Eσ
54

 to establish contact with single-stranded DNA, required for 

open complex formation (Dago et al. 2007). 
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The role of the phenylalanine of the GAFTGA motif in transcriptional activation by the 

bEBP has also been extensively studied (Table 3.2). Mutagenesis of this residue in NtrC 

(F217), NifA (F307), DctD (F222), DmpR (F312) and PspF (F85) produced bEBPs that 

failed to activate transcription (Wang et al. 1997; Gonzalez et al. 1998; Li et al. 1999; 

Wikstrom et al. 2001; Bordes et al. 2003). The exception is the F307Y variant of NifA 

which retained 20% of its activity in vivo (Gonzalez et al. 1998). Indeed, 16 of 248 bEBPs 

identified in an alignment have a naturally occurring tyrosine at this position (Zhang et al. 

2009). This indicates that an aromatic ring here is absolutely required for transcriptional 

activation by the bEBP. To further investigate the role of the phenylanine of the GAFTGA 

motif in σ
54

-dependent transcription, the F85 residue of PspF was systematically 

substituted with 10 other amino acid residues and the functionality of the resulting variants 

assessed in vitro (Zhang et al. 2009). Each of the substitutions rendered the bEBP unable 

to activate transcription from the nifH promoter. The F85H, F85I, F85W, F85L, F85C and 

F85Q variants retained the ability to hydrolyse ATP, explained by their ability to self-

associate. However, they were unable to interact with σ
54

 to form “trapped” complexes in 

the presence of ADP.AlFx, indicating that this residue is critical for bEBP-σ
54 

contact. 

Since some variants e.g. F85Q showed a significant decrease in ATPase activity, it was 

suggested that the F85 residue communicates with the ATP hydrolysis site. In contrast, the 

F85A, F85E and F85R variants showed <10% of ATPase activity compared to the wild-

type protein and gel filtration indicates that this was due to a defect in their ability to form 

higher order oligomers. This suggests that there is a structural and functional link between 

the phenylalanine and the distant interface of self-association. PspF F85Y was the only 

variant able to interact with σ
54

 to form the ADP.AlFx “trapped” complex. However, it too 

was unable to activate transcription and this can be explained by the inability of the protein 

to form activator-σ
54

-DNA complexes using promoter DNA probes with a mismatch at the 

-11/-12 position (Bordes et al. 2004; Zhang et al. 2009). Importantly, the G4L substitution 

in Region I of σ
54

 (Dago et al. 2007) can rescue this σ
54

-DNA interaction defect (Zhang et 

al. 2009).  Therefore the conserved phenylalanine of the GAFTGA motif plays a role in 

“sensing” the conformation of DNA at the -12 promoter position, in agreement with the 

model based on recent Cryo-EM reconstructions (Bose et al. 2008b). Overall, studies using 

different bEBPs suggest that the conserved phenylalanine has multiple, interrelated roles 

during transcriptional activation. The conserved threonine has been shown to contact 

Region I of σ
54

 and the adjacent phenylalanine is also critical for this interaction. Previous 

studies suggest that F85 stabilises loop 1 (L1)–Region I interactions indirectly through the 
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positioning of T86 (Bordes et al. 2003) and therefore its major role is likely to be in 

contacting the promoter DNA rather than σ
54

. 

 

The role of the second glycine of the GAFTGA motif has been less well studied. The 

G219K variant of NtrC showed only a 50% reduction in activity but failed to initiate open 

complex formation. Surprisingly, G219K showed improved DNA binding properties 

(North et al. 1996). In contrast, the G219C variant was competent to activate transcription 

with an increased ATPase activity that is most likely due to increased oligomerisation. 

However, as is the case for the A216C variant of NtrC, binding to enhancer DNA, prevents 

the bEBP from activating transcription. The ability of the variant to activate transcription is 

restored in a form of the bEBP defective for DNA-binding (Yan and Kustu 1999). Taken 

together, the data suggests that in NtrC, there exists communication between the second 

glycine of the GAFTGA motif and the C-terminal DNA-binding domain. 

 

In common with the other residues of the GAFTGA motif, studies in NtrC, NifA, DctD 

and DmpR reveal that the second alanine residue is critical for σ
54

-dependent transcription. 

The A220T and A220V variants of NtrC (North et al. 1996; Li et al. 1999), the A310N, 

A310D and A310G variants of NifA (Gonzalez et al. 1998), the A225T variant of DctD 

(Wang et al. 1997) and the A315T variant of DmpR (Wikstrom et al. 2001) all fail to 

activate transcription. Only the A310S variant of NifA exhibits activity, although this is 

less than 20% compared to the wild-type protein (Gonzalez et al. 1998). Many of the 

variants of this position are still able to hydrolyse ATP and it is therefore likely that these 

substitutions destabilise the Loop1-Region I contact that forms at the regulatory centre of 

the closed complex. 
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bEBP Residue NorR Substitution Comments Reference 

NtrC G215 G262 V Fails to activate transcription in vivo or in vitro (Li et al. 1999) 

DctD G220 G262 D Fails to activate transcription in vivo (Wang et al. 1997) 

NtrC A216 A263 V Fails to activate transcription despite little reduction in ATPase activity (North et al. 1996) 

NtrC A216 A263 C Sufficient ATPase. Increased oligomerisation state. Binds enhancer but activity perturbed by DNA (Yan and Kustu 1999) 

NifA A306 A263 D/N Fails to activate transcription in vivo (Gonzalez et al. 1998) 

DctD A221 A263 V/D Fails to activate transcription in vivo (Wang et al. 1997) 

NtrC F217 F264 L Fails to activate transcription in vivo or in vitro (Li et al. 1999) 

NifA F307 F264 A/L/I/P/R/H/N Fails to activate transcription in vivo (Gonzalez et al. 1998) 

NifA F307 F264 Y <20% activity in vivo (Gonzalez et al. 1998) 

DctD F222 F264 L Fails to activate transcription in vivo/in vitro. ATPase 13% of WTΔNTD  (Wang et al. 1997) 

DmpR F312 F264 L Fails to activate transcription in vivo. ATPase 75-85% of WTΔNTD (ATP), 23-25% WTΔNTD (dATP).  (Wikstrom et al. 2001) 

PspF F85 F264 A/E/R <1% activity WT– in vitro transcription assays. Does not form ADP.AlFx-dependent trapped complex. Decreased ATPase 

activity. Defective for oligomerisation 

(Bordes et al. 2003) 

(Zhang et al. 2009) 

PspF F85 

 

F264 C <1% activity WT– in vitro transcription assays. Does not form ADP.AlFx-dependent trapped complex. Decreased ATPase 

activity. Oligomerises in the presence/absence nucleotide 

(Zhang et al. 2009) 

PspF F85 

 

F264 H/I/W <1% activity WT– in vitro transcription assays. Does not form ADP.AlFx-dependent trapped complex. WT ATPase activity. 

Nucleotide-dependent oligomerisation (~WT) 

(Zhang et al. 2009) 

PspF F85 

 

F264 L/Q <1% activity WT– in vitro transcription assays. Does not form ADP.AlFx-dependent trapped complex. Decreased ATPase 

activity. Nucleotide-dependent oligomerisation (~WT) 

(Zhang et al. 2009) 

PspF F85 F264 Y <1% activity WT– in vitro transcription assays.  Forms ADP.AlFx-dependent trapped complex.  Decreased ATPase activity. 

Oligomerises in the presence/absence nucleotide. Cannot form activator-DNA-σ
54 

complex (phenotype rescued by G4L 

substitution in σ
54

) 

(Zhang et al. 2009) 

NtrC T218 T265 A/N Fails to activate transcription in vivo/in vitro. (Li et al. 1999) 

NifA T308 T265 A/L/M/P/R/V/G

/C/S 

Fails to activate transcription in vivo (Gonzalez et al. 1998) 

DctD T223 T265 I Fails to activate transcription in vivo/in vitro. ATPase 123% of WTΔNTD (Wang et al. 1997) 

DctD T223 T265 A Fails to activate transcription. Significant ATPase retained (Wang et al. 1997) 

PspF T86 T265 A <1% activity WT– in vitro transcription assays. Wild-type ATPase activity 

Does not form ADP.AlFx-dependent trapped complex  

(Chaney et al. 2001) 

(Bordes et al. 2003) 

PspF T86 T265 S 52% activity WT – in vitro transcription assays. In vivo ~ 25% WT 

Region I G4L σ
54

 substitution restores transcription activation activity 

Wild-type ATPase activity. 

Forms ADP.AlFx-dependent trapped complex  

(Chaney et al. 2001) 

(Bordes et al. 2003) 

(Bordes et al. 2004) 

(Dago et al. 2007) 

PspF T86 T265 V <1% activity WT– in vitro transcription assays. Wild-type ATPase activity 

Does not form ADP.AlFx-dependent trapped complex  

(Chaney et al. 2001) 

NtrC G219 G266 K 50% ATPase but fails to activate transcription. Improved DNA binding (North et al. 1996) 

NtrC G219 G266 C Increased ATPase due to increased oligomerisation 

Binding of enhancer DNA prevents transcription 

(Yan and Kustu 1999) 

NtrC A220 A267 T Fails to activate transcription despite little reduction in ATPase activity (North et al. 1996) 

NtrC A220 A267 V Does not activate transcription in vivo but shows “hyperactivity” at low concentrations in vitro (Li et al. 1999) 

NifA A310 A267 S <20% activity in vivo (Gonzalez et al. 1998) 

NifA A310 A267 N/D/G Fails to activate transcription in vivo (Gonzalez et al. 1998) 

DctD A225 A267 T Fails to activate transcription in vivo/in vitro. Reduced ATPase  (Wang et al. 1997) 

DmpR A315 A267 T Fails to activate transcription in vivo.  Wild-type ATPase activity. (Wikstrom et al. 2001) 

Table 3.2 – Substitutions made in related bEBPs within the highly conserved GAFTGA motif. WT = wild-type; NTD = N-terminal domain 
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3.2.5 Oligomerisation of the bEBP 

Since the nucleotide hydrolysis site is formed through interactions between residues of 

adjacent protomers (Figure 3.8), oligomerisation of the AAA+ domain is required to form 

a bEBP that is competent to activate transcription (Zhang et al. 2002; Rappas et al. 2007). 

bEBPs are typically dimeric in their inactive state with the dimerisation determinants 

existing in either the N-terminal regulatory (R) domain as is the case for DctD (Meyer et 

al. 2001; Park et al. 2002) or C-terminal DNA-binding (D) domains, as shown for NtrC  

(Pelton et al. 1999; Hastings et al. 2003). In response to a stimulatory signal, the 

oligomerisation of the bEBP is then facilitated through interactions between the central 

AAA+ (C) domains.  

 

Recently the exact functional oligomeric state of bEBPs has become a matter for debate. 

The first structure determined for an activator of σ
54

-dependent transcription was of the 

isolated ADP-bound ATPase domain of the NtrC1 protein from the extreme thermophile 

Aquifex aeolicus (Lee et al. 2003). The 3.1 Å structure revealed a heptameric ring with a 

height and diameter of 40 Å and 124 Å respectively. The recently published crystal 

structure of the ATP-bound form of NtrC1 confirms a heptameric arrangement and 

furthermore negative-stain EM of the Walker B mutant-derivative (that can bind but not 

hydrolyse nucleotide) shows it is competent to form a complex with σ
54

 (Buck and Hoover 

2010; Chen et al. 2010).
 
 However, other bEBP structures have revealed hexameric 

arrangements (Table 3.3). When the crystal structure of the isolated ATPase domain of 

PspF (PspF1-275) is fitted into the Cryo-EM structure of the activator in complex with σ
54

, 

the electron density can accommodate six monomers (Rappas et al. 2005). Indeed, 

electrospray-mass spectrometry (ES-MS) shows that six monomers of PspF1-275 form a 

complex with monomeric σ
54

, consistent with bEBPs functioning as hexamers (Ogura and 

Wilkinson 2001; Lupas and Martin 2002). The 3 Å X-ray structure of the zinc-responsive 

ZraR from Salmonella tyohimurium, lacking the N-terminal regulatory domain also reveals 

a hexameric arrangement (Sallai and Tucker 2005). These more recent studies have called 

into question whether the heptameric configuration of NtrC1 (Lee et al. 2003) represents a 

physiologically relevant form of the bEBP.  In the absence of the C-terminal (DNA 

binding) and N-terminal (regulatory) domains, it has remained unclear as to whether the 

higher order oligomer is a heptamer or has another stoichiometry. In addition, the odd-

number of subunits does not match up with the dimeric arrangement of the receiver 

domains in both active and inactive forms (Lee et al. 2003; Doucleff et al. 2005a). To 
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resolve the effect that different domains have on the oligomerisation state of σ
54

-dependent 

activators, a more thorough analysis was conducted using different domain combinations 

of the NtrC4 protein from Aquifex aeolicus (Batchelor et al. 2009). As is the case for 

NtrC1, the ATPase activity of NtrC4 is subject to negative regulation. The assembly of the 

active oligomer is repressed by the receiver domain and phosphorylation is likely to 

remove this repression (Batchelor et al. 2008). Unlike NtrC1, NtrC4 has a partially 

disrupted receiver–AAA+ domain interface and can assemble into active oligomers at high 

protein concentrations independent of phosphorylation (Batchelor et al. 2008). ES-MS 

experiments show that full-length NtrC4 (NtrC4
RCD

) and activated NtrC4, lacking the 

DNA binding domain (NtrC4
RC

) form hexamers. In contrast, the isolated ATPase domain 

(NtrC4
C
), non-activated NtrC4, lacking the DNA binding domain (NtrC4

RC
) and NtrC4 

lacking the regulatory domain (NtrC4
CD

) all form heptamers. A heptameric arrangement 

for the central ATPase domain in isolation is consistent with the heptamer observed when 

this domain of NtrC1 is crystallised (Lee et al. 2003). Therefore it seems that for the 

extreme thermophile Aquifex aeolicus, a heptamer is the most stable arrangement for the 

AAA+ domain in the absence of regulatory and DNA-binding domains. This is in contrast 

to the central domain of PspF which forms hexamers when in isolation (Rappas et al. 

2005) and so despite the high conservation of AAA+ domains, the PspF and NtrC1/NtrC4 

central domains must have some differences.  Interestingly, when the regulatory domain of 

NtrC4 is absent a heptamer is formed but when present and activated, hexamerisation 

occurs. Since the activated receiver domain stabilizes the hexameric form of NtrC4, it 

appears that an intermediate mechanism of regulation exists; somewhere between the 

negative mechanism of NtrC1/DctD and positive mechanism of NtrC (Batchelor et al. 

2008; Batchelor et al. 2009). Overall, studies examining the oligomeric state of NtrC4 have 

conclusively shown that truncated or non-activated proteins may have a propensity to 

exhibit altered stoichiometries. In the crystal structure of ZraR, it has been suggested that 

the AAA+ domain is held in a hexameric configuration by the DNA-binding domains 

which are dimeric in nature (Sallai and Tucker 2005). Therefore one explanation is that in 

the absence of this domain, dimerisation determinants do not exist to prevent the 

heptamerisation of NtrC1 and NtrC4. Due to the difficulty in activating full-length NtrC1, 

the oligomeric state of this construct cannot be assessed but the similarity of NtrC4 and 

NtrC1 suggests that NtrC1 would form hexamers. In addition to bEBPs, heptameric 

arrangements have also been frequently observed in other proteins of the AAA+ family 

(Table 3.3) such as MCM (Yu et al. 2002; Costa et al. 2006b; Costa et al. 2006a) RuvB 
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(Miyata et al. 2000), ClpB (Kim et al. 2000; Akoev et al. 2004), magnesium chelatase 

(Reid et al. 2003), HslU (Rohrwild et al. 1997), Lon (Stahlberg et al. 1999) and the C-

terminal domain of p97 (Davies et al. 2008). Significantly, hexamers have also been 

observed for each of these proteins (Miyata et al. 2000; Zhang et al. 2000; Yu et al. 2002; 

Willows et al. 2004; Costa et al. 2006b; Costa et al. 2006a; Park et al. 2006). Various 

explanations exist for the existence of two different isoforms of the same AAA+ protein. In 

the case of RuvB from Thermus thermophilus and the MCM protein from 

Methanothermobacter thermoautotrophicus, heptamers form in the absence of DNA but 

hexamerisation occurs when DNA is present (Miyata et al. 2000; Yu et al. 2002; Costa et 

al. 2006b; Costa et al. 2006a). It is possible that the heptamer facilitates the loading of 

DNA into the central channel of the protein ring before the loss of a single subunit results 

in the hexamer (Yu et al. 2002). The bacterial protein-disaggregating chaperone, ClpB 

forms heptamers in the absence of nucleotide but undergoes rearrangements to form 

hexamers when ATP or ADP binds (Kim et al. 2000; Akoev et al. 2004). This implies that 

during the ATP-hydrolysis cycle (as ATP binds, is hydrolysed and ADP is released), there 

is “switching” between hexameric and heptameric states. This partial ring-dissociation has 

been suggested to facilitate the “prying apart” of aggregated substrates (Akoev et al. 2004). 

In the case of the ATPase HslU, rings of 7-fold and 6-fold symmetry have apparently been 

observed under the same conditions (Rohrwild et al. 1997). Here it is unclear as to whether 

the heptameric form of the protein is competent to associate with the partner protease, 

HslV. However, it has been suggested that the symmetry mismatch between a heptameric 

HslU and a hexameric HslV may facilitate loading of the substrate into the proteolytic 

chamber, as has been suggested for ClpAP (Kessel et al. 1995). Unlike the ATP-dependent 

proteases HslUV and ClpAP, the Lon protease combines both proteolytic and ATPase 

functions within a single subunit. The Lon protease from Saccharomyces cerevisiae has 

been reported to consist of seven flexible subunits (Stahlberg et al. 1999), possibly 

reflecting the requirement for “mismatch symmetry” of the HslUV and ClpAP systems. 

However electron microscopy of the Lon protease from Escherichia coli indicates a 

hexameric arrangement (Park et al. 2006). Likewise, the magnesium chelatase subunit 

BchI from the proteobacterium Rhodobacter capsulatus has 6-fold symmetry (Willows et 

al. 2004) but the equivalent subunit in the cyanobacterium Synechocystis has 7-fold 

symmetry (Reid et al. 2003). This suggests that it may also be possible for the same AAA+ 

protein to have different oligomeric states in different organisms or evolutionary groups. 

Finally, proteins may have heptameric AAA+ domains that are hexameric when expressed 
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as part of the intact protein, as has been shown for the bEBP NtrC4 (Batchelor et al. 2009). 

For example, when crystallised, the C-terminal (D2) domain of p97 reveals a 7-fold 

symmetry (Davies et al. 2008) but Cryo-EM studies of the full-length form indicate that in 

fact the protein has a hexameric arrangement (Zhang et al. 2000).  

 

3.3 Role of the amino-terminal domain  

3.3.1 Signal sensing 

Many bEBPs contain an N-terminal or regulatory (R) domain that responds to various 

environmental signals and regulates the activity of the central AAA+ domain as a result 

(Figure 3.9) (Schumacher et al. 2006). There are three main ways in which activation of 

the bEBP occurs in response to an environmental cue: (1) phosphorylation, (2) ligand 

binding and (3) protein-protein interaction (Table 3.1). Depending on the method of bEBP 

activation, different domains are found in the regulatory region of the protein (Studholme 

and Dixon 2003). Many bEBPs are part of two-component systems that couple an external 

stimulus to an internal response (Stock et al. 2000). Such systems are commonly composed 

of a histidine protein kinase (HK) with a conserved kinase core domain and a response 

regulator protein (RR) with a conserved regulatory domain. Extracellular stimuli are 

sensed by the HK to modulate its activity in phosphotransfer. The HK translates a 

phosphoryl group to a conserved aspartate in the RR (a reaction catalysed by the RR) and 

the phosphorylated RR is able to activate a downstream effector domain that elicits a 

specific response in the bacterial cell. The bEBPs NtrC, NtrC1, NtrC4, DctD, ZraR and 

FlgR all have RR domains that are phosphorylated by specific sensor kinases. The best-

studied RR in this group is the bEBP NtrC which is phosphorylated at the conserved D54 

residue by the sensor kinase NtrB in response to the nitrogen status of the cell (Reitzer 

2003). Briefly, the phosphorylation cascade is controlled by the uridylyltransferase (GlnD) 

which transmits the nitrogen status to the NtrB protein via the PII protein GlnB. Under 

nitrogen-limiting conditions, NtrB phosphorylates NtrC, activating it as a bEBP. Under 

nitrogen-excess conditions, the phosphatase activity of NtrB prevents NtrC activation 

(reviewed in (Dixon and Kahn 2004) The NtrC1 and NtrC4 bEBPs are both classed as 

NtrC-family members based on the high amino acid similarity (59%) but the cognate HKs 

and the signals controlling the two-component systems have not yet been identified 

(Deckert et al. 1998; Lee et al. 2003). In response to phosphorylation by the HK DctB, the 

DctD RR in Sinorhizobium meliloti and Rhizobium leguminosarum activates the expression 

of DctA (Yurgel et al. 2000; Meyer et al. 2001), a transport protein that allows bacteria to  
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Protein Class Function From Technique Oligomeric structure(s) Reference 

PspF
C
 

bEBP/ 

AAA+ 

Transcriptional activator that regulates 

phage-shock response 
E.coli Electron Microscopy Hexamer (Rappas et al. 2005) 

NtrC
RCD bEBP/ 

AAA+ 

Transcriptional activator that regulates 

nitrogen metabolism 
Salmonella tyohimurium 

SAXS/WAXS (small- angle and 

wide- angle X-ray scattering) and 

Electron Microscopy 

Hexamer (activated) (De Carlo et al. 2006) 

ZraR
CD

 
bEBP/ 

AAA+ 

Zinc-responsive transcriptional 

activator 
Salmonella tyohimurium X-ray crystallization Hexamer (Sallai and Tucker 2005) 

NtrC1
C bEBP/ 

AAA+ 

Homologue of NtrC (Salmonella 

enterica) 
Aquifex aeolicus X-ray crystallization Heptamer (ADP-bound and ATP-bound) 

(Lee et al. 2003; Chen et 

al. 2010) 

NtrC4 

 
(RC, C, CD)

 

bEBP/ 

AAA+ 

Homologue of NtrC (Salmonella 

enterica) 
Aquifex aeolicus 

Electrospray ionization mss 

spectrometry (ES-MS) 

Full-length and activated-

RC domain proteins 

hexameric 

Isolated ATPase, 

unactivated-RC and 

CD proteins 

heptameric 

(Batchelor et al. 2009) 

RuvB AAA+ 

ATP-dependent motor for branch 

migration in homologous 

recombination 

Thermus thermophilus Electron Microscopy 
Hexamer in presence of 

dsDNA 

Heptamer  in absence 

of dsDNA 
(Miyata et al. 2000) 

MCM AAA+ 
orthologue of eukaryotic replicative 

helicase candidate 

Methano-thermobacter 

thermo-qutotrophicus 
Electron Microscopy 

Hexamer in presence of 

dsDNA 

Heptamer in absence 

of dsDNA and 

presence of nucleotide 

(Yu et al. 2002; Costa et 
al. 2006b; Costa et al. 

2006a) 

ClpB AAA+ 
Chaperone in protein-disaggregating 

machinery 
E.coli 

Sedimentation equilibrium/ 

sedimentation velocity and 

Electron Microscopy 

Hexamer predominant in 

presence of ATPγS and 

ADP 

Heptamer 

predominant under 

low ionic strength 

conditions 

(Kim et al. 2000; Akoev et 
al. 2004) 

HslU AAA+ 
Part of HslUV two-component 

protease 
E.coli 

Electron Microscopy; scanning 

transmission electron microscopy 

(STEM) of cross-linked protein; 

cross-linking/EMSA 

Mixture of hexameric and heptameric rings (Rohrwild et al. 1997) 

Lon 

protease 
AAA+ ATP-dependent protease 

E.coli and  

Saccharomyces 
cerevisiae 

Electron Microscopy Hexamer (E.coli) Heptamer (Saccharomyces) 
(Stahlberg et al. 1999; 

Park et al. 2006) 

Magenisum 

chelatase 
AAA+ 

Drives insertion of Mg
2+

 into 

protoporphyrin (chlorophyll 

biosynthesis) 

Synechocystis (cyano-

bacterium) and   

Rhodobacter capsulatus 

(proteo-bacterium) 

Electron Microscopy 
Hexamer 

(Rhodobacter) 

Heptamer 

(Synechocystis) 

(Reid et al. 2003; Willows 

et al. 2004) 

p97 AAA+ Homotypic membrane fusion Mammalian 
X-ray crystallization Electron 

Microscopy 

Hexamer 

(full-length) 

Heptamer 

(C-terminal D2 only) 

(Zhang et al. 2000; Davies 

et al. 2008) 

Table 3.3 – The formation of hexamers and heptamers by AAA+ proteins and bEBPs of the AAA+ protein 

family 
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use C4-dicarboxylic acids to grow as free-living cells or to power nitrogen fixation within 

symbiotic bacteroids (Park et al. 2002). The ZraR RR is phosphorylated by the HK ZraS in 

response to high Zn
2+ 

concentrations and the activation of the effector domain of the bEBP 

results in the expression of a periplasmic Zn
2+

-binding protein, ZraP (Leonhartsberger et 

al. 2001). Finally in Helicobacter pylori, the sensor HK FlgS, phosphorylates the RR FlgR, 

activating it as a bEBP and leading to the transcription of genes required for flagella 

biosynthesis (Spohn and Scarlato 1999; Brahmachary et al. 2004). 

 

Other σ
54

-activators have a regulatory domain that binds small effector molecules. Direct 

binding of aromatic compounds to a vinyl 4 reductase (V4R) domain activates the bEBPs 

DmpR and XylR (Perez-Martin and Lorenzo 1995; Shingler and Pavel 1995; Shingler 

1996). In response to small-ligand binding, DmpR activates the expression of the dmp 

operon that encodes enzymes involved in the catabolism of phenol and methylphenols 

(Shingler et al. 1989; Shingler et al. 1993; Shingler and Moore 1994). XylR binds to 

toluene, m-xylene and p-xylene to activate transcription at the Pu promoter of the TOL 

plasmid allowing Pseudomonas putida to grow on toluene and related hydrocarbons 

(Delgado et al. 1995) N-terminal domain swaps between the XylR and DmpR proteins 

confirm that the specificity of the response is conferred by the regulatory domain (Shingler 

and Moore 1994). Another domain, the GAF (cGMP-specific and stimulated 

phosphodiesterases, Anabaena adenylate cyclases and E. coli FhlA) domain is a member of 

a large and diverse domain family that is found in all kingdoms of life (Aravind and 

Ponting 1997). These domains have a range of functions; they are found in diverse 

evolutionary and functional contexts. FhlA contains two GAF domains that bind formate to 

activate the transcription of the formate hydrogen lyase system (Hopper and Bock 1995). 

NorR contains a single GAF domain which binds NO to activate transcription of the norV 

and norW genes, enabling NO detoxification and is the subject of this work (Hutchings et 

al. 2002b; D'Autreaux et al. 2005). The crystal structure of the Saccharomyces cerevisiae 

YKG9 GAF domain reveals it is structurally similar to another class of ubiquitous amino-

terminal signalling domain (Ho et al. 2000). The Per, ARNT and Sim (PAS) domain 

(Ponting and Aravind 1997) often detects signals via a bound cofactor such as heme or 

flavin (Taylor and Zhulin 1999) and like the GAF domain, is present in many proteins in 

eukaryotes, bacteria and archaea (Zhulin et al. 1997). Although the PAS and GAF domains 

share little sequence similarity they have similar structures and may share a common 

ancestor (Ponting and Aravind 1997; Ho et al. 2000). Finally, the aspartokinase, 
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chorismate mutase and TyrA (ACT) domain is common in metabolic enzymes that are 

regulated by amino acid concentration. The bEBP, TyrR contains both a PAS domain and 

an ACT domain, and facilitates the activation or repression of transcription of genes 

involved in aromatic amino acid biosynthesis and transport, although it is not an activator 

of σ
54

-dependent transcription (Pittard and Davidson 1991; Pittard et al. 2005; Verger et al. 

2007). The ACT domain is most likely the binding site for the aromatic amino acids 

tyrosine, phenylalanine or tryptophan whereas the PAS domain has been suggested to have 

a role in contacting the αCTD of RNAP (Pittard et al. 2005). 

 

A further group of bEBPs regulate the activity of the AAA+ domain through protein-

protein interaction with another protein called an anti-activator. In nitrogen fixing 

Azotobacter Vinelandii, the bEBP NifA is bound by the anti-activator NifL to prevent 

transcription of nif genes under conditions that are inappropriate for nitrogen fixation 

(Money et al. 2001; Martinez-Argudo et al. 2004b; Martinez-Argudo et al. 2004c). In 

addition, the NifA protein also contains other sensing domains. Binding of 2- oxoglutarate 

(2-OG) to the GAF domain of NifA antagonises the influence of adenosine nucleotides on 

the NifL-NifA interaction to ensure that the bEBP is not inhibited by NifL under nitrogen-

fixing conditions (Little and Dixon 2003; Martinez-Argudo et al. 2004a). 

Some bEBPS such as PspF, lack an N-terminal regulatory domain altogether (Studholme 

and Dixon 2003). PspF is instead negatively regulated by PspA in trans (Dworkin et al. 

2000; Elderkin et al. 2002). Initially PspA was suggested to be an escaped regulatory 

domain of PspF but phylogenetic analysis has placed PspF in a distinct clade of response 

regulators (Studholme and Dixon 2003). The pspABCDE operon encodes several proteins 

that help maintain membrane integrity. It has been suggested that upon proton motive force 

(PMF) dissipation, PspB and PspC act as positive regulators of transcription by binding 

PspA and relieving inhibition of PspF. This enables PspF to activate the σ
54

-dependent 

transcription from the psp promoter (Model et al. 1997; Adams et al. 2003; Darwin 2005). 

Like PspF, the related HrpR and HrpS bEBPs both lack an N-terminal regulatory domain. 

The HrpR/HrpS system regulates transcription from the hrp (hypersensitive response and 

pathogenicity) gene cluster (Schuster and Grimm 2000; Hutcheson et al. 2001) that 

encodes plant pathogenicity genes including components and effectors of a type III 

secretion pathway in Psuedomonas syringae (Alfano and Collmer 1997; Collmer et al. 

2000). The extracytoplasmic function (ECF) σ-factor (Missiakas and Raina 1998), HrpL, is 
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the primary transcription factor that controls the expression of the hrp gene cluster. HrpR 

and HrpS have been shown to interact, forming a stable heteromeric complex and activate 

the σ
54

-dependent transcription of hrpL (Hutcheson et al. 2001). In a manner analogous to 

the regulation of the PspF protein, in the absence of a regulatory (R) domain, HrpS (but not 

HrpR) is specficially bound by another protein, HrpV, to repress the activity of the 

heterohexamer (Jovanovic et al. 2011). However, there is no apparent homology between 

HrpV and PspA (Preston et al. 1998; Studholme and Dixon 2003).  

 

3.3.2 Controlling the activity of the central (C) AAA+ domain 

(i) Negative regulation as a dominant mechanism of control 

As discussed, the N-terminal regulatory (R) domain allows the bEBP to regulate 

transcription at σ
54

-dependent promoters in response to an environmental cue. Various R 

domains exist that function in two-component signalling or to detect the binding of small 

ligands. However, bEBPs have developed different methods for the transduction of this 

signal from the R domain (the site of detection) to the enzymatic C domain. Generally, this 

transduction can be subject to (1) positive control or (2) negative control (Shingler 1996). 

Assaying the activity of the bEBP (i.e. ATP hydrolysis, oligomerisation or activation of 

transcription) in a truncated form that lacks the N-terminal R domain has become the 

standard method for determining the mechanism of control. The first indication that the R 

domains of bEBPs may function in the repression of AAA+ domain activity came from the 

identification of semi-constitutive variants of XylR and DmpR that had substitutions in 

either the R domain, C domain or the interdomain linker (often referred to as the B-linker, 

Q-linker or L1-linker) (Delgado et al. 1995; Fernandez et al. 1995; Shingler and Pavel 

1995). Furthermore, N-terminally truncated forms of the proteins that lacked the R domain 

exhibited constitutively active phenotypes in vivo, indicating that the C domain is subject 

to repression by the R domain. For DmpR, constitutive ATPase activity in vitro was 

demonstrated in the absence of this negative control (Fernandez et al. 1995; Shingler and 

Pavel 1995). These observations led to a model of interdomain repression in which the R-

domain represses the ATPase activity of the C-domain in the absence of a small molecule. 

Ligand binding to the R domain is then expected to cause derepression, allowing the bEBP 

to hydrolyse ATP and activate transcription (Figure 3.10A).   
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Figure 3.9 – Domain architecture of bEBPs indicating the type of regulatory (R) domain present. The different domains are coloured: The 

central (C) domain in red, the DNA-domain (D) if present, in green, response-regulator (RR) in light blue, cGMP-specific and stimulated 

phosphodiesterases, Anabaena adenylate cyclases and E. coli FhlA (GAF) in purple, vinyl 4 reductase (V4R) and XylR_N (found next to V4R 

domains) in pink, aspartokinase, chorismate mutase and TyrA (ACT) in dark blue, Per, ARNT and Sim (PAS) in orange and in trans regulators in 

yellow. HrpR and HrpS are co-activators of transcription and therefore grouped together. Where available, the predicted domain boundaries are 

indicated above the domain representation in black (Pfam) or red (SMART). The size of the gene product is also indicated, according to the 

UniProtKB database. Sequences for NtrC1 and NtrC4 were from Aquifex aeolicus; PspF, NorR, FhlA and TyrR were from Escherichia coli; NtrC 

and ZraR from Salmonella typhimuriu; XylR from Pseudomonas putida; DctD from Sinorhizobium meliloti; DmpR from Pseudomonas CF600; 

NifA from Azotobacter vinelandii; HrpR/S from Pseudomonas syringae and FlgR from Helicobacter pylori. 
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In a similar manner, NorR, the subject of this work, is thought to undergo derepression in 

response to the binding of NO to the R domain (D'Autreaux et al. 2005). More recently, 

this mechanism of negative control has been identified in the response regulator bEBPs 

DctD and NtrC1 (Lee et al. 2003). Here, phosphorylation and not effector binding, relieves 

interdomain repression (Lee et al. 2003; Doucleff et al. 2005a). Removal of the R domain 

and L1-linker in DctD produced an active protein without the need for phosphorylation (Gu 

et al. 1994). Similar results were obtained with NtrC1 where activity was repressed both in 

vivo and in vitro in the presence of the R domain and L1-linker but derepressed in their 

absence (Lee et al. 2003). The founder member of the σ
54

-dependent class of transcription 

factors, NtrC, in contrast is positively regulated (Figure 3.10B). Deletion of the R domain 

to give a form of the activator that can no longer be phosphorylated by NtrB results in a 

constitutively inactive form of the protein, indicating that the AAA+ domain is subject to 

positive regulation (Drummond et al. 1990; Weiss et al. 1991). Here the phosphorylation 

of the R domain has a genuine stimulatory, rather than a derepressive function. Therefore, 

despite sharing ~60% sequence similarity, the NtrC and NtrC1 bEBPs have evolved 

entirely different mechanisms of regulation. In the absence of a transcriptional assay, it is 

not known whether ZraR is subject to positive or negative regulation but on the basis of 

structural similarities, it is likely to belong to the NtrC-subgroup (Sallai and Tucker 2005). 

Overall, the relative advantages of protein-protein interaction, phosphorylation and effector 

binding as control mechanisms are not understood but it seems that whatever the 

mechanism of sensing, negative regulation is the dominant mechanism of control (Shingler 

1996). 

 

(ii) Functions of the C domain targeted by the R domain 

In order for the output of the bEBP to be regulated, the sensory domain must respond to the 

detection of an environmental or metabolic signal by controlling the activity of the AAA+ 

domain that is indispensible and often sufficient for σ
54

-dependent transcription (Berger et 

al. 1995; Jovanovic et al. 1999; Wikstrom et al. 2001; Xu et al. 2004a). Irrespective of 

whether the R domain regulates the C domain positively or negatively, it has been shown 

to target two different aspects of AAA+ activity: (1) the oligomerisation of the AAA+ 

domain and (2) the ATPase activity of the AAA+ domain. These targets will now be 

considered.
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Figure 3.10 – Negative (A) and positive (B) control of AAA+ domain activity. In the 

more common mechanism of negative control, ligand binding (or phosphorylation) relieves 

the repression of the regulatory (R) domain on the central (C) domain which is intrinsically 

competent to hydrolyse ATP. The AAA+ domain is then able to carry out ATP hydrolysis. 

Accordingly, when the R domain is removed, the bEBP is active irrespective of the 

presence/absence of a signalling molecule or available kinase. In positive control, ligand 

binding or phosphorylation has a genuine stimulatory function. The phosphorylated or 

ligand bound form of the R domain activates the C domain which is not intrinsically 

competent to hydrolyse ATP. The AAA+ domain is then able to carry out ATP hydrolysis. 

Accordingly, when the R domain is removed, the bEBP is inactive irrespective of the 

presence/absence of a signalling molecule or available kinase. 



102 
 

(1) Controlling AAA+ oligomerisation 

As has been described, self-association of the AAA+ domains of the bEBP must occur in 

order to form the functional activator (Zhang et al. 2002; Rappas et al. 2007). Therefore 

the oligomeric determinants of the C domain represent an ideal target for the N-terminal 

regulatory domain in either a positive or negative mechanism of control. Structural studies 

of full-length and truncated forms of NtrC1 and DctD from Aquifex aeolicus and 

Sinorhizobium meliloti respectively indicate that the N-terminal R domain targets the 

oligomeric determinants of the AAA+ C domain in the mechanism of negative control 

(Figure 3.11B) (Meyer et al. 2001; Park et al. 2002; Lee et al. 2003; Doucleff et al. 2005a; 

Chen et al. 2008). The crystal structure of the NtrC1 protein composed of the regulatory 

domain joined to the central AAA+ domain by linker 1 (R-L1-C) reveals a dimeric 

structure in which the arrangement of the subunits is incompatible with AAA+ ring 

assembly (Lee et al. 2003). Here, the unphosphorylated receiver domains form a 

homodimer that holds the AAA+ protomers in an inactive front-to-front configuration via 

interactions involving the coiled-coil linker between the R and C domains (linker 1).  

Structures of the activated regulatory domain indicate that phosphorylation disrupts the 

repressive interaction between the R and C domains, forming an alternative homodimer 

configuration and allowing reorientation of the AAA+ protomers into a front-to-back 

configuration (Doucleff et al. 2005a). This phosphorylation-dependent rearrangement 

allows self-association to take place to form an oligomer competent to hydrolyse ATP. In-

line with this, a crystal structure of the NtrC1 C domain that is not subject to repression 

from the R domain shows a heptameric arrangement (Lee et al. 2003).  It appears that the 

coiled-coil of linker 1 is critical to holding the central domains in an inhibitory 

configuration; its presence has become indicative of this type of regulation (Doucleff et al. 

2005a). Indeed, in the ligand-binding XylR and DmpR proteins, mutational analysis has 

shown that the integrity of the linker between the regulatory and central domains is crucial 

for the repression of activity (Garmendia and de Lorenzo 2000; O'Neill et al. 2001). 

Despite employing the same mechanism of repression, the DNA-binding specificities of 

NtrC1 and DctD have evolved to target the promoters of genes linked to entirely different 

cell functions. The mechanism of regulation in NtrC also targets the oligomeric 

determinants of the AAA+ domain but is in stark contrast to that in NtrC1 and DctD 

(Figure 3.11A) (Doucleff et al. 2005a; De Carlo et al. 2006; Chen et al. 2008). A truncated 

form of the protein that lacks the R domain is constitutively inactive, indicating a genuine 

stimulatory rather than a derepressive role for phosphorylation. Activation of 
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oligomerisation occurs upon phosphorylation which exposes a hydrophobic patch on the R 

domain allowing it to bind to the N-terminal region of the central AAA+ domain. Recent 

X-ray solution scattering (SAXS/WAXS) and electron microscopy studies indicate that the 

R domain interacts with the C domain of an adjacent protomer on the outside edge of the 

AAA+ ring, promoting self-association and contributing to the stability of the resulting 

hexamer (De Carlo et al. 2006). Put simply, in the positive regulation of NtrC, 

phosphorylation of the regulatory domain creates a new interaction that leads to 

oligomerisation whereas in negative regulation, typified by NtrC1 and DctD, 

phosphorylation releases an interaction that leads to the formation of the functional 

oligomer (Figure 3.11). Interestingly, sequence analysis reveals a correlation between the 

mechanism of negative control in NtrC1 and DctD and the presence of a structured linker 

between R and C domains (linker 1) and an unstructured linker between C and D domains 

(linker 2). Conversely, the positively regulated NtrC contains an unstructured linker 1 and 

a structured linker 2. In both classes, the structured linker seems to play a significant role 

in stabilising the inactive dimer and the examination of the linker 1 and linker 2 sequences 

of other bEBPs may help identify whether self-association is subject to positive or negative 

control (Doucleff et al. 2005a). For example, mutation of the linker between the R and C 

domains in NtrC does not affect its activity (Wootton and Drummond 1989), in agreement 

with a function for the regulatory domain in positive rather than negative control. The 

bEBP NtrC4 from Aquifex aeolicus has a partially disrupted receiver–AAA+ domain 

interface and can assemble into active oligomers at high protein concentrations 

independent of phosphorylation, a process that does not occur with NtrC1 (Batchelor et al. 

2008). The activated receiver domain has been shown to stabilize the hexameric form of 

NtrC4, thus functioning as an intermediate between the negative mechanism of 

NtrC1/DctD and positive mechanism of NtrC (Batchelor et al. 2008; Batchelor et al. 

2009). 
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Figure 3.11 – Models of bEBP 

activation by phosphorylation 

through the promotion of 

oligomerisation by genuine 

stimulatory (A) and derepressing 

(B) functions of the response 

regulator (RR) domain. In 

activated NtrC the DNA-binding 

domain is hidden underneath the 

hexamer ring. For DctD and 

NtrC1, no information is available 

to define the position of DNA-

binding domains. R = regulatory 

domain; L1 = linker 1; C = central 

domain; L2 = linker 2; D = DNA-

bidning domain. Models were built 

using published structures: for 

NtrC fragments R (off-state PDB 

1KRW, on-state 1KRX) and L2-D 

(PDB 1NTC); for NtrC1 fragment 

R (PDB 1ZY2), and fragments R-

L1-C (PDB 1NY5) and L1-C (PDB 

1NY6). Figure adapted from 

(Doucleff et al. 2005a). 
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(2) Controlling AAA+ ATPase activity 

Ultimately the target of R domain-mediated regulation is the enzymatic activity of the 

bEBP. Where the R domain targets the oligomeric determinants, the effect is to promote or 

prevent formation of an oligomer that is capable of hydrolysing ATP. However, the 

regulatory domain of some bEBPs may specifically target the nucleotide hydrolysis 

machinery. This has been shown for the bEBP PspF which is regulated in trans through 

direct interaction between the activator and the negative regulator PspA (Figure 3.12) 

(Dworkin et al. 2000; Elderkin et al. 2002; Elderkin et al. 2005). Here oligomerisation is 

driven by the binding of ADP and ATP to the individual protomers (Joly et al. 2006); the 

„DE‟ residues of the Walker B prevent nucleotide-independent hexamer formation (Joly et 

al. 2007). PspA has been shown to negatively regulate the ATPase activity of PspF through 

the formation of an interaction that is dependent on a surface exposed tryptophan residue 

(W56 of PspF) (Elderkin et al. 2002; Elderkin et al. 2005). Recently it has been shown that 

PspA-mediated inhibition of PspF ATPase activity is likely to involve repositioning of the 

conserved asparagine (N64 in PspF) involved in the sensing of the γ-phosphate during 

nucleotide hydrolysis. Substitutions of this asparagine in PspF do not prevent PspA-

binding but ATPase activity is not significantly decreased as it is in the wild-type activator 

(Joly et al. 2008a). Consequently a model has been proposed to link the binding of PspA to 

the inhibition of ATP hydrolysis in PspF. Binding of PspA is detected via the W56 residue 

which relays this information to N64, via β-sheet 2. This leads to the repositioning of the 

N64 side chain, altering the distances between ATP, the conserved asparagine and the 

Walker B glutamate (E108 in PspF) (Joly et al. 2008a). These distances are thought to be 

critical for ATP hydrolysis and the coordination of resulting conformational changes in the 

AAA+ domain. Significantly it has been demonstrated that the inactive regulatory complex 

consists of approximately six PspA subunits and six PspF subunits (Joly et al. 2009). 

Therefore in contrast to the bEBPs NtrC1 and DctD, negative regulation of PspF activity is 

unlikely to target the oligomeric determinants (Lee et al. 2003; Doucleff et al. 2005a). In 

addition, PspA does not inhibit the interaction between PspF and σ
54

, suggesting that 

negative regulation does not target the σ
54

-interaction surface of PspF. The PspA-PspF 

regulatory complex is instead expected to have an altered arrangement in the key ATPase 

determinants that form the catalytic site at the inter-protomer interfaces of the PspF 

hexamer. It may be that the inhibition of a pre-assembled PspF hexamer by PspA, allows 

the cell to rapidly respond to membrane damage (Joly et al. 2009). 
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Figure 3.12 – Negative regulation of 

PspF AAA+ activity by PspA targets 

the nucleotide hydrolysis machinery 

via the W56 residue (Joly et al. 2008a). 

(A) Crystal structure of PspF1-275 (PDB 

2C96) in ATP-bound state showing the 

key residues involved. (B) Model of the 

signalling pathway coupling negative 

regulation to substrate remodelling. 

PspA directly interacts with PspF, an 

interaction that is detected via the 

surface exposed W56 (purple) residue of 

PspF. W56 relays this information to the 

conserved asparagine (N64, red) via β-

sheet 2 (blue). This causes the 

repositioning of the Walker B glutamate 

(E108, green) to prevent ATP 

hydrolysis. Upon dissipation of the 

proton motive force (PMF), PspA 

inhibition is prevented (possibly 

facilitated by PspB and PspC) and ATP 

hydrolysis can occur, strengthening the 

σ54 
interaction and leading to substrate 

remodelling. Removal of the γ-

phosphate leads to a 90° rotation of the 

E108 side chain, breaking the interaction 

with N64. This change is translated to 

the GAFTGA-containing L1 (orange) 

via helix 3 (H3, yellow) and the loops 
compact back downwards.  
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3.4 Role of the carboxy-terminal domain  

The C-terminal or DNA binding (D) domain contains a helix-turn-helix (HTH) motif that 

directs the binding of the bEBP to enhancer sites typically 80-150 bp upstream of the 

promoter (Xu and Hoover 2001; Studholme and Dixon 2003). FleQ, a regulator of flagellar 

biosynthesis from Pseudomonas aeruginosa is an atypical bEBP in that DNA binding can 

occur either upstream or downstream depending on the target promoter. On binding 

upstream from a distance, FleQ activates transcription as a typical bEBP via DNA looping 

but on binding downstream in the vicinity of the promoter, FleQ activates transcription via 

a novel mechanism that probably involves contacting the core RNAP (Jyot et al. 2002). In 

general, the role of the D domain in bEBPs can be considered to be two fold: (1) directing 

the binding of the activator to ensure a specific response; (2) facilitating the formation of, 

or stabilising the hexamer. The specificity of binding is maintained by well conserved 

enhancer binding sites (upstream activator sequences; UASs), bound by the second 

(recognition) helix of the HTH motif (Contreras and Drummond 1988). All sites exhibit a 

dyad symmetry and it is therefore unsurprising that the majority of bEBPs bind to DNA as 

dimers. This is supported by the crystal structure of ZraR and the NMR structure of NtrC 

that show dimerisation of the HTH motifs involving an α-helix, similar to that found in the 

FIS protein (Pelton et al. 1999; Sallai and Tucker 2005). All bEBPs bind to at least one 

enhancer site and as many as three have been identified upstream of the target promoter. 

NtrC dimers bind to two enhancer sites and recruit a third dimer from solution to form the 

functional hexamer upon phosphorlyation of the R domain (De Carlo et al. 2006). NorR is 

unusual in that it binds to three enhancer sites, each of which is essential for formation of 

an ATPase active-hexamer (Tucker et al. 2010a).  

 

Oligomerisation has been shown to be DNA dependent in the bEBPs XylR (Perez-Martin 

and de Lorenzo 1996), NtrC (Rombel et al. 1998) and NorR (Tucker et al. 2010a). Where 

more than one UAS site is present, the binding of multiple bEBP dimers to enhancer DNA 

may lead to an increase in the local concentration of activator, thereby facilitating 

oligomerisation. However, at high concentrations some bEBPs have been shown to 

activate transcription without binding to enhancer DNA. Indeed C-terminally truncated 

forms of the activators PspF, NtrC, NifA and DctD have been shown to be active in vivo 

and in vitro (Morett et al. 1988; Huala and Ausubel 1989; Huala et al. 1992; Berger et al. 

1994; North and Kustu 1997; Jovanovic et al. 1999). Intriguingly, some bEBPs such as 

Chlamydia trachomatis CtcC and Helicobacter pylori FlgR naturally lack the C-terminal 
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DNA-binding domain that is present in most other bEBPs (Beck et al. 2007). An N-

terminally truncated version of FlgR (lacking the repressing RR domain) is competent to 

activate σ
54

-dependent transcription from a promoter that naturally contains no upstream or 

downstream enhancer sites (Brahmachary et al. 2004). FlgR and CtcC (Koo and Stephens 

2003) are the only activators of σ
54

-dependent transcription in H. pylori and C. trachomatis 

respectively negating the need for enhancer-binding in these organisms. The energy 

savings gained by using such activators are likely to be small given the regulatory potential 

of using multiple DNA-binding bEBPs. Consistent with this C. trachomatis and H. pylori 

have only a limited biosynthetic capability (Brahmachary et al. 2004). In contrast FleT also 

lacks the C-terminal domain but is not the sole activator of σ
54

-dependent transcription in 

Rhodobacter sphaeroides. Here, specificity is achieved through multiple σ
54

 paralogues 

that function at different sets of promoters (Poggio et al. 2002; Beck et al. 2007). For 

example, one of the paraolgues, RpoN1 functions with NifA to regulate the expression of 

the nif genes whilst RpoN2 is required for the transcription of the flagella genes. 

 

Recent SAXS/WAXS structures and cryo-EM reconstructions of full-length, activated 

NtrC indicate a role for the DNA-binding domains in the stabilisation of the oligomer 

(Figure 3.13) (De Carlo et al. 2006). EM reconstructions of the bEBP bound to different 

nucleotides reveal significant changes in the position of the D domains during the ATP 

hydrolysis cycle (De Carlo et al. 2006). In the ADP.AlFx-bound transition state in which 

σ
54

 contact is strengthened by interactions involving the GAFTGA motif, the DNA binding 

domains pack closely against the bEBP ring and are therefore likely to distort enhancer 

DNA. Upon phosphate release and disengagement of the GAFTGA-loop, the DNA binding 

domains appear to lose their tight association with the ATPase ring. Such conformational 

changes may stabilise the hexameric arrangement and/or facilitate the interaction between 

the bEBP and σ
54

 (De Carlo et al. 2006). 
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Figure 3.13 – Schematic representation of σ54
-remodelling by NtrC. Shows the 

conformational changes in the GAFTGA-loops of the central (C) domain (red/yellow 

circles) and the DNA binding (D) domain (blue/purple ovals) in activated NtrC. The 

regulatory (R) domains (red/yellow squares) are shown in the phosphorylated form that 

promotes hexamerisation. NtrC dimers are thought to bind to two UAS sequences and 

once activated, recruit a further dimer from solution in order to oligomerise. The D 

domains are located on the bottom of the bEBP ring whereas the GAFTGA loops 

contact σ54
 (green) from the top. In the transition state of ATP hydrolysis, the 

interaction between the GAFTGA loops and σ54
 is strengthened and the DNA binding 

domains form a tight association with the oligomeric ring. Upon phosphate release, the 

loops disengage from σ54
 and the tight constraints upon enhancer DNA are relaxed. 

Figure from (De Carlo et al. 2006).   
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Chapter 4 – Introduction to NorR and the present work 

As outlined in Chapters 1 and 3, the subject of this thesis, NorR, activates the expression of 

the anaerobic NO reductase (NOR), flavorubredoxin (NorV) as part of the response to 

nitrosative stress E. coli and is a bacterial Enhancer Binding Protein (bEBP) of the σ
54

-

dependent class. The structure and function of NorR will now be discussed in greater depth 

here. 

 

4.1 NorR regulates norV expression in E. coli in response to NO 

Formerly known as ygaA, the NorR protein was first identified as a putative regulator of 

unknown function in E. coli (Ramseier et al. 1994). It was subsequently shown to have 

43% sequence identity with the NorR protein in Ralstonia eutropha, a denitrifying 

bacterium that contains a novel single component NO reductase (NOR) (Cramm et al. 

1999; Pohlmann et al. 2000). The gene that encodes this protein is present in two copies; 

the norB1 allele is present on the megaplasmid pHG1 and the norB2 allele is located on the 

chromosome. Both produce functional proteins that can compensate for each other under 

physiological conditions (Cramm et al. 1997). The norA1 and norA2 genes are present 

immediately upstream of the norB1 and norB2 genes respectively and encode NorA 

proteins that share homology with the YtfE protein from E. coli (Justino et al. 2007; 

Todorovic et al. 2008). It was previously shown that denitrification in R. eutropha requires 

rpoN (Romermann and Friedrich 1985; Romermann et al. 1989) and a σ
54

 consensus 

promoter was identified upstream of the norAB cluster (Pohlmann et al. 2000). 

Furthermore the expression of both norB alleles was shown to require rpoN and norR. 

Indeed, in common with the majority of σ
54

-dependent bEBPs, R. eutopha NorR is a 

tripartite protein with an amino-terminal regulatory (R) domain, a central (C) AAA+ 

domain and a carboxy-terminal DNA-binding (D) domain (Figure 4.1B). Pohlmann et al. 

constructed a norA1-lacZ fusion and demonstrated that in the presence of norR, the NO 

donor sodium nitroprusside (SNP) gave high levels of expression implying that NO is an 

efficient inducing agent. When the signalling domain of NorR was removed, the resulting 

truncated protein led to constitutive expression of norA1. Following demonstration that 

NorR in R. eutropha regulates norAB, it was shown that the ygaA gene product in E. coli 

regulates the expression of the flavorubredoxin NorV (Gardner et al. 2002; Gomes et al. 

2002; Hutchings et al. 2002b). Expression of norV was demonstrated in the presence of 

nitrate, nitrite, NO gas and reactive nitrogen species (RNS) such as that produced by the 

NO donor SNP. This suggested that NorR activates the expression of norV in response to 
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NO (Figure 4.1A). On the basis of this regulation ygaA was renamed norR. As was the 

case in R. eutropha (Pohlmann et al. 2000), when the N-terminal signalling domain was 

removed, the truncated form of NorR induced expression both in the presence and absence 

of an NO source (Gardner et al. 2003).  

 

4.2 Negative regulation of NorR activity 

Many bEBPs have an additional N-terminal regulatory domain that stringently controls the 

activity of the AAA+ domain either positively or negatively in response to various 

environmental cues (Studholme and Dixon 2003). NorR contains an N-terminal regulatory 

GAF (cGMP-specific and –stimulated phosphodiesterases, Anabaena adenylate cylases 

and Escherichia coli FhlA) domain that has been predicted to bind NO. Since an N-

terminally truncated form of NorR, lacking the regulatory GAF domain (NorRΔGAF), is 

competent to activate transcription in the absence of NO (Pohlmann et al. 2000; Gardner et 

al. 2003), NorR falls into a category of bEBPs in which the activity of the central AAA+ 

domain is negatively regulated by the N-terminal domain (Shingler 1996). Similar results 

have been obtained with XylR (Fernandez et al. 1995), DmpR (Shingler and Pavel 1995), 

NtrC1 and DctD (Lee et al. 2003; Doucleff et al. 2005a) in which the activity of the C 

domain is also negatively regulated by the R domain. 

 

4.3 Mechanism of NO-sensing by NorR 

Much of the recent research surrounding NorR has focussed on the mechanism of NO-

sensing. NO responsive proteins are commonly “secondary” NO sensors whereby the 

principal function of the regulator is to sense another signal (Spiro 2007). Examples 

include SoxR, which principally responds to superoxide (Ding and Demple 2000), OxyR, 

which responds to hydrogen peroxide (Hausladen et al., 1996) and FNR, which responds to 

oxygen (Cruz-Ramos et al. 2002). NorR and the global regulator, NsrR, are the only 

known dedicated NO-sensors (Spiro 2007). Recent studies in NsrR support a model in 

which the repressor senses NO directly via a [2Fe-2S] cluster (Tucker et al. 2010b).  A 

number of mechanisms for NO-sensing by NorR have been suggested (Gardner et al. 

2003). Initially, it was proposed that NorR might find itself in the NtrC-class of activators 

that are part of two-component systems (Ninfa and Magasanik 1986; Weiss and Magasanik 

1988). In this case, as a receiver (RR) domain, the N-terminal region of NorR would be 

phosphorylated by an NO-sensing histidine kinase (HK). In support of this hypothesis, 
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Figure 4.1 - NorR regulates norV expression in response to NO. (A) Schematic representation 

of the norR-norVW intergenic region. The flavorubredoxin, NorV and its redox partner, NorW 

together exhibit NO reductase (NOR) activity that allows E. coli to convert nitric oxide (NO) into 

nitrous oxide (N2O). NorR is divergently transcribed upstream from the norVW genes and 

regulates their expression in response to NO. (B) Schematic showing the tripartite domain 

organisation of the bEBP NorR with an amino-terminal signalling and regulatory (GAF) domain 

(purple), a central nucleotide binding (AAA+) domain (red) and a carboxy-terminal DNA-binding 

(HTH) domain (green). 
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there are conserved aspartate residues in the N-terminal domain of NorR that could 

potentially be phosphorylated by a sensor kinase. However, the N-terminal signalling 

domain of R. eutropha NorR is devoid of phosphorylation signatures and the cognate 

histidine kinase is absent in the DNA sequences adjacent to the norR genes (Pohlmann et 

al. 2000). Another possibility suggested was that the NorR N-terminal domain could 

interact with a signal transduction protein in a manner reminiscent of the NifL/NifA and 

PspA-PspF systems (Elderkin et al. 2002; Gardner et al. 2003; Martinez-Argudo et al. 

2004b; Martinez-Argudo et al. 2004c; Elderkin et al. 2005). Alternatively the NorR N-

terminal domain might possibly sense NO directly, as previously demonstrated for the 

bEBP FhlA which binds formate (Hopper and Bock 1995). Indeed, a number of potential 

candidate residues that could form the NO-sensor in the N-terminal domain of NorR have 

been suggested (Gardner et al. 2003). The N-terminal domain contains a His
111

-X-Cys
113

 

site reminiscent of the Cys
75

-X-Cys
77

 heme iron switch motif in the carbon monoxide 

sensing protein CooA of Rhodospirillum rubrum (Lanzilotta et al. 2000). 

 

In order to investigate the mechanism of NO sensing in NorR, electron paramagnetic 

resonance (EPR) spectroscopy was carried out on whole cells of  E. coli exposed to NO 

(D'Autreaux et al. 2005). A new EPR signal was observed in the g = 4 region only when 

the cells expressed NorR and were exposed to NO. This indicates that NorR contains a 

non-heme iron centre since similar spectra have been observed for several non-heme iron 

enzymes when exposed to NO (Arciero et al. 1983; Brown et al. 1995; Ray et al. 1999; 

Hauser et al. 2000; Clay et al. 2003). This characteristic EPR signal was observed in cells 

expressing the isolated GAF domain of NorR (GAFNorR) but not in cells that expressed a 

form of the protein lacking the regulatory domain (NorRΔGAF), indicating that the non-

heme iron centre is present within the N-terminal GAF domain. Purification and 

reconstitution of NorR and GAFNorR with ferrous iron, gave identical NO-spectra to those 

observed with whole-cell EPR, confirming that the NorR GAF domain contains the non-

heme iron centre. Overall, this work showed that the NorR GAF domain regulates the 

activity of the C domain in response to direct binding of NO at the non-heme iron centre to 

form a mononitrosyl complex (D'Autreaux et al. 2005). This is the first known example of 

a GAF domain using a transition metal as a mechanism of sensing and reveals a novel 

biological role for activation of a non-heme iron centre to form a high-spin {Fe(NO)}
7
 (S = 

3/2) complex. Subsequently, a model for the activation of transcription was proposed  
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  Figure 4.2 - Schematic of the proposed mechanism for transcriptional activation by 

NorR. For simplicity NorR is represented as a monomer and is shown in complex with 

DNA. NorR is a tripartite protein that consists of an N-terminal regulatory GAF domain 

(purple), a central ATPase-active domain (red) and a C-terminal DNA-binding domain 

(green) that contains a helix-turn-helix (HTH) motif. The binding of NO to the 

mononuclear non-heme iron centre in the GAF domain leads to the formation of a 

{Fe(NO)}7 (S = 3/2) mononitrosyl complex in which the GAF-mediated repression of the 

AAA+ domain is released. ATP hydrolysis can then occur, allowing expression of norV 

encoding flavorubredoxin. Adapted from (D'Autreaux et al. 2005). 
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(Figure 4.2). The central (AAA+) domain of NorR is intrinsically competent to hydrolyse 

ATP but in the absence of NO, the regulatory (GAF) domain represses the activity of the 

central domain to prevent the activation of transcription by NorR. In the presence of NO 

however, formation of the mononitrosyl {Fe(NO)}
7
 (S =3/2) species triggers a 

conformational change that relieves the interdomain repression exerted by the GAF 

domain upon the AAA+ domain. NorR is then able to hydrolyse ATP leading to open 

complex formation and the expression of the norVW genes leading to NO detoxification by 

the flavorubredoxin. 

 

4.4 The ligand environment of the non-heme centre in the NorR regulatory 

domain 

The spectroscopic features of the NorR paramagnetic mononitrosyl-iron complex suggest 

that the iron centre has distorted octahedral symmetry and is coordinated by five or six 

ligands within the GAF domain (D'Autreaux et al. 2005). In order to study the 

coordination of the iron-centre in NorR, targeted mutagenesis was carried out at conserved 

residues within the regulatory domain (Tucker et al. 2007). As a result, five candidate 

ligands were proposed: D99, D131, C113, R75 and D96 (Figure 4.3). Variant forms of 

NorR containing substitutions at these positions gave proteins that were unable to bind iron 

or did not exhibit the characteristic g = 4 EPR signal after reconstitution in vitro. 

Therefore, these residues are likely to have a role in iron coordination. The identification of 

C113 as a candidate ligand is in accordance with a role in NO-sensing as previously 

suggested (Gardner et al. 2003). The C113, R75, and D131 residues are predicted to be 

part of a relatively rigid region of the GAF domain whereas D96 and D99 are predicted to 

be part of a random coil or loop structure. This raises the possibility that these latter 

residues may play a role in signalling the NO-response via a conformational change within 

this flexible region. Subsequently, a hexacoordinated model was proposed (Figure 4.3), 

based on the crystal structure of the GAF-B domain of 3‟, 5‟-cyclic nucleotide 

phosphodiesterase (Martinez et al. 2002; Tucker et al. 2007). In the model, D99, D131, 

C113, R75 and D96 coordinate the Fe centre. Whilst D96 is likely to act as a bidentate 

ligand, it is also possible that a water molecule provides a sixth ligand. Futhermore, 

arginine is not an ideal ligand for transition metals but examples have been reported 

elsewhere such as for biotin synthase (Berkovitch et al. 2004). The predicted hexa-

coodination of the iron centre suggests that one of the five predicted ligands would need to  
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Figure 4.3 - Proposed model of the nitric oxide–sensing non-heme iron centre in the NorR 

regulatory protein.  Structural model of the GAF domain of NorR based on the GAF-B domain of 

3‟,5‟-cyclic nucleotide phosphodiesterase PDB ID: 1MC0 (Martinez et al. 2002; Tucker et al. 2007) 

showing the iron centre (magenta) and proposed ligands C113, D96, D99, R75 and D131 (Ball and 

Stick: Carbon = green; Nitrogen = blue; Oxygen = red; Cysteine = orange; Hydrogen; grey) The 
R75 residue is the most likely to undergo ligand displacement upon NO binding.  
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be displaced in order to form the mononitrosyl-iron complex. R75 is the most likely 

candidate to relinquish a binding site for NO and may also stabilise the NO-bound form of 

the iron through hydrogen bonding (Tucker et al. 2007). Interestingly, the R81L and 

H111L substitutions do not affect the coordination at the non-heme iron centre but do give 

rise to an escape phenotype of NorR in vivo; the R81L and H111L variants are able to 

activate expression from a norV-lacZ promoter fusion both in the presence and absence of 

endogenously-produced NO (Tucker et al. 2007). Since these substitutions do not seem to 

affect NO-signalling, it is unlikely that the constitutive activity in vivo is due to changes in 

iron coordination or the conformation of the regulatory domain, to mimic the activated 

state. Rather, it is more likely that the R81L and H111L substitutions influence GAF-

AAA+ interactions, suggesting a potential role for the R81 and H111 residues in the 

mechansism of interdomain repression. 

 

4.5 Role of enhancer-DNA in NorR-dependent activation of transcription 

In common with all bEBPs, NorR has been shown to bind enhancer sequences sites 80-150 

bp upstream of the verified transcriptional start site (Tucker et al. 2004; Tucker et al. 

2005). Gel retardation assays and DNase I footprinting experiments revealed the presence 

of three NorR binding sites that were confirmed using methylation protection experiments 

(Figure 4.4B). Results showed that the binding site closest to the norV promoter is 

protected from methylation at lower concentrations of the NorR protein than the second 

and third NorR binding sites. The quantified DNA binding data gives rise to a sigmoidal 

curve suggesting a cooperative binding mechanism (Tucker et al. 2004); NorR may have 

higher affinity for one site (NorR site 1), the occupation of which increases the affinity for 

the remaining sites (NorR sites 2 and 3). Comparison of the three E. coli NorR binding 

sites showed that sites 1 and 3 consist of the perfect inverted repeat GTCA-(N3)-TGAC, 

while site 2 consists of the imperfect repeat GTCA-(N3)-CGAC (Tucker et al. 2004). 

Alignment of the norVW promoter regions from the proteobacteria Escherichia coli, 

Salmonella enteric, Salmonella typhimurium, Shigella flexneri, Erwinia carotovora along 

with the chromosomal and megaplasmid copies of the norAB promoter from Ralstonia 

eutropha enabled the minimal consensus sequence GT(N7)AC to be established for NorR 

binding (Figure 4.4A). Bioinformatics did not subsequently reveal other predicted NorR 

binding sites upstream of σ
54

-dependent promoters in E. coli, suggesting that the norVW 

transcriptional unit is the sole target for NorR (Tucker et al. 2004). Transcriptomics has 

revealed further potential targets of the NorR regulon including ybiJ  
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Figure 4.4 – Binding of NorR to conserved binding sites in the norR-norVW 

intergenic region. (A) The consensus NorR binding site based on sequences from the 

following organisms: E. coli (norVW); Shigella flexneri (norVW); Pseudomonas 

aerugionosa (hmp); Salmonella Typhimurium (norVW); Salmonella enterica (norVW); 

Erwinia carotovora (norVW); Ralstonia eutropha (norAB:megaplasmid); Ralstonia 

eutropha (norAB:chromosomal). Sequences were input into WebLogo 

(http://weblogo.berkeley.edu) as described in (Tucker et al. 2005). (B) The annotated 

norR-norVW intergenic region. The numbering on the left hand side is relative to the 

conserved -12 and -24 elements (indicated) of the predicted σ54
 site (boxed in orange). 

The two regions protected by IHF in DNAase footprinting experiments are shaded in 

purple and labelled IHF site 1 and site 2 respectively. The three NorR binding regions 

(as determined by DNAse footprinting) are labelled NorR site 1, 2 and 3 respectively 

and are shaded in green. Bases protected from methylation or hypermethylated in 

methylation protection experiments are not indicated. The sequences corresponding to 

the NorR consensus binding site are in bold with inverted repeats indicated by 

underlining. Both the norV and norR transcript start sites are indicated in red whilst 

the start ATG start codons are in bold (Tucker et al. 2004). 

http://weblogo.berkeley.edu/
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(Mukhopadhyay et al. 2004) but neither NorR binding sites or a predicted σ
54

-dependent 

promoter could be identified using bioinformatic analysis. This suggests that if NorR does 

target the ybiJ promoter, it does not do so directly. The identification of a minimal 

consensus sequence suggests that NorR activates σ
54

-dependent transcription at promoters 

upstream of the hmp  (fhp) gene that encodes a putative flavohemoglobin in Pseudomonas 

putida, Pseudomonas aeruginosa and Vibrio cholerae. In addition, potential NorR sites 

have been identified upsteam of a norV-like gene in Vibrio vulnificus. Overall, it seems 

that NorR may form part of a conserved mechanism among a diverse range of 

proteobacteria to control the expression of genes encoding enzymes that respond to NO. 

Indeed three NorR sites were later identified upstream of the norAB genes in R. eutropha 

(Busch et al. 2004).  

 

A role for IHF in transcriptional activation of the norVW genes was confirmed by the 

identification of two IHF binding sites by DNA footprinting (Figure 4.4B) (Tucker et al. 

2004). IHF site 1 is located between the promoter proximal NorR site and the σ
54

 

promoter, consistent with a role in DNA looping. The location of the second site is 

intriguing since it is within the norV transcribed region. IHF binding sites have been 

previously identified in the coding sequence of other genes such as csgD. In this case, the 

IHF protein has been suggested to compete with another regulator OmpR in order to 

modulate the response to microaerophilic conditions (Gerstel et al. 2003). Indeed, as 

nucleoid-associated proteins, FIS and IHF has been shown to compete with other 

regulators in order to integrate additional signals and form more complex regulatory 

networks (Browning et al. 2000; Browning et al. 2004; Browning et al. 2005; Squire et al. 

2009). However, since complete protection of this site was only achieved at very high 

concentrations of IHF, it is not thought to have a physiological role. 

 

In order to assess the importance of each of the three NorR binding sites in E. coli, the 

enhancers were individually altered from the consensus GT-(N7)-AC to GG-(N7)-CC and 

introduced upstream of norV-lacZ promoter fusions on the E. coli chromosome. Disruption 

of any one of the three sites completely abolished the ability of NorR to activate 

transcription of norVW in vivo (Tucker et al. 2010a). Biochemical experiments have 

demonstrated that the ATPase activity of NorR is dependent not only on the presence of 

NO, but also on the enhancer DNA that contains the three NorR binding sites (D'Autreaux 

et al. 2005). In the absence of the regulatory GAF domain (NorRΔGAF), the requirement 
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for the NO-signal is relieved but enhancer DNA is still required to stimulate activity.  

When any of the three binding sites was individually altered from the consensus, the 

enhancer-dependent ATPase activity of NorRΔGAF was significantly diminished (Tucker 

et al. 2010a). Efficient open complex formation by NorR in vitro also required the three 

enhancer sites (Tucker et al. 2010a). The prerequisite for the three enhancer sites for 

transcriptional activation by NorR both in vivo and in vitro might reflect a requirement for 

three NorR dimers to assemble to form an inactive hexamer on the promoter DNA, given 

the dyad symmetry present at each of the sites. However, binding of NorR to a 21bp 

sequence encoding one of the enhancer sites (NorR site 1) stimulated both the ATPase 

activity and oligomerisation state to a certain extent, indicating that DNA binding per se 

promotes self-association and ATPase activity. Binding to a 66bp DNA fragment that 

contained all three enhancer sites stimulated ATPase activity and oligomerisation further, 

although not to the levels observed when a longer 266bp DNA fragment containing the 

intergenic region was used. This implies that the DNA flanking the enhancer sites has an 

important role in stabilising the NorR oligomer, possibly by wrapping around the hexamer. 

In agreement with this, electrophoretic mobility shift assays (EMSA) revealed a significant 

increase in the affinity and cooperativity of binding when the longer DNA fragment was 

present. Furthermore, negative-stain electron microscopy revealed the formation of 

protein-DNA complexes with the expected diameter of a NorR hexamer in the presence of 

the 266bp DNA, but not with the 66bp or 21bp fragments (Tucker et al. 2010a). Overall, 

this data supports a model in which three NorR dimers bind to the enhancer sites, inducing 

conformational changes that stimulate formation of a higher order oligomer, most probably 

a hexamer. The results suggest that this higher order NorR species is stabilised by 

extensive DNA interactions, possibly by wrapping around the hexamer to form a stable 

nucleoprotein complex.  

 

4.6 NorR autoregulation 

NorR is suggested to autoregulate its own expression due to the overlap of the norR 

transcriptional start site and the third putative NorR binding site (Figure 4.4B). Indeed, in 

the NorR protein of R. eutropha, analysis of a norR1-lacZ promoter fusion suggests that 

the transcription of the norR1 gene (encoding the NorR1 megaplasmid copy) is negatively 

regulated by NorR1 (Pohlmann et al. 2000).  In E. coli, the activity of a norR-lacZ fusion 

significantly increased in a norR mutant, indicating that the binding of NorR to the norR-

norVW intergenic region prevents norR transcription (Hutchings et al. 2002b). In line with 
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this, DNA binding studies using probes with altered enhancer binding sites showed an 

increase in the activity of a norR-lacZ fusion (Tucker 2005). A model of steric hindrance 

has subsequently been proposed (Tucker 2005) in which NorR binds to the three enhancer 

sites, preventing binding of RNAP at the -35 and - 10 sites of the norR promoter (Figure 

4.5). Formation of the higher oligomer might also facilitate distortion of the DNA to 

further prevent transcription of the norR gene. This would ensure that the low level of 

NorR required for norV expression is maintained whilst allowing transcription to occur if 

the level of NorR is sufficiently limited. Since NorRΔGAF readily binds to DNA in vitro 

and the expression of norR in vivo is not affected by NO (Hutchings et al. 2002b; Tucker et 

al. 2004), this mechanism of autoregulation is unlikely to require activation of NorR by 

NO. Similar mechanisms have been proposed for other members of the bEBP family such 

as the XylR regulator of the TOL plasmid in Pseudomonas putida (Bertoni et al. 1997). 
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Figure 4.5 – Model of NorR dependent norR repression (Tucker 2005). The 

RNAP β and β‟ subunits are represented in blue and the σ70
 subunit is represented 

as a red oval. The -10 and -35 promoter elements are indicated as white boxes and 

are labelled. The three NorR binding sites are represented as grey boxes and are 

also labelled. NorR is represented in hexameric form (green circles) and is 

labelled. (A) When the cellular concentration of NorR is low, the RNAP-σ70
 

holoenzyme is able to bind at the norR promoter and activate transcription. (B) As 

the level of NorR accumulates, it forms enhancer/UAS-bound oligomers that 

result in the wrapping of DNA around the complex. This nucleoprotein-like 

complex blocks the binding of σ70
 to the -10 and -35 promoter elements, 

preventing norR expression.  
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4.7 Aims of this work 

It is clear that interdomain repression is of central importance to the function of the bEBP 

NorR. Recent work has shown that NO is the signal that activates NorR via binding to the 

non-heme iron centre of the regulatory GAF domain (D'Autreaux et al. 2005) and the 

ligand environment in this domain has been extensively studied (Tucker et al. 2007). The 

importance of enhancer DNA has been shown in the formation of the active oligomer and 

its subsequent stabilisation, possibly by wrapping around the hexamer. Removal of the N-

terminal domain produces a constitutively active form of NorR (Gardner et al. 2003), 

placing it in a sub-group of bEBPs that are regulated via interdomain repression (Shingler 

1996). However, it remains unclear how the regulatory domain represses the activity of the 

central AAA+ domain in the mechanism of negative control in NorR. One possibility is 

that the regulatory domain targets the oligomeric determinants to prevent AAA+ activity in 

a manner reminiscent of the bEBPs NtrC1 and DctD (Lee et al. 2003; Doucleff et al. 

2005a). In PspF, negative regulation by PspA is signalled to the nucleotide machinery to 

prevent ATP hydrolysis (Joly et al. 2008a). Alternatively, the NorR GAF domain may 

repress the activity of the AAA+ domain by another, unknown mechanism. In the absence 

of a crystal structure, it is not possible to discern the relative orientation of the regulatory 

and central domains but undoubtedly, an interface exists between them. Disruption of one 

or more of the points of contact by substitution of residues in either of the domains could 

therefore result in a constitutively active (“escape”) phenotype. In this work it was decided 

to use random mutagenesis to search for mutations in the AAA+ domain that allow the 

NorR protein to escape GAF-mediated repression. Identification of substitutions in the 

AAA+ domain that cause a bypass of negative control and suppressor substitutions in the 

GAF domain that restore it, might help to characterise the interface of interdomain 

repression. Subsequent biochemical analysis of such NorR variants may reveal the 

mechanism by which the regulatory domain controls the activity of the catalytic AAA+ 

domain. It was hoped that structural studies in collaboration with the Zhang laboratory at 

Imperial College, London would support this approach.  
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Chapter 5 - Materials and Methods 

5.1 Bacterial strains and plasmids 

The bacterial strains and plasmids used in this work are listed in the appendix (section 

12.1). 

 

5.2 Buffers and solutions 

5.2.1 Media 

Liquid and solid media were prepared by dissolving the relevant amounts of reagents listed 

below in distilled water, followed by autoclaving at 121 ˚C and 15 PSI for 15 minutes. 

Solid media for plates was prepared by addition of bactoagar to liquid media prior to 

sterilisation. Agar plates were prepared by pouring approximately 20 ml of molten agar 

(containing required antibiotics and/or substrates) into each Petri dish and allowing it to 

set. Plates were then placed in a sterile laminar flow hood for 20 minutes to dry off excess 

liquid. 

 

(i) Liquid media 

LB    1 % (w/v) Tryptone  

0.5 % (w/v) Yeast extract 

0.5 % (w/v) NaCl 

 

TGYES   1 % (w/v) Tryptone 

    0.5 % (w/v) Yeast extract 

    1 % (w/v) NaCl 

    0.2 % (w/v) Glucose 

 

MC Buffer   0.1M MgSO4 

    5 mM CaCl2 

  

2 x YT    1.6 % (w/v) Tryptone  

2.0 % (w/v) Yeast extract 

0.5 % (w/v) NaCl 
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(ii) Solid media 

LB Plates   1 % (w/v) Tryptone  

0.5 % (w/v) Yeast extract 

0.5 % (w/v) NaCl 

1 % (w/v) agar 

 

R Plates   1 % (w/v) Tryptone 

    0.1 % (w/v) yeast extract 

    0.8 % (w/v) NaCl 

    1.2 % (w/v) agar 

 

Soft Agar   1 % (w/v) Tryptone  

0.5 % (w/v) Yeast extract 

0.5 % (w/v) NaCl 

    0.65 % (w/v) agar 

    5 mM CaCl2 

    10 mM MgSO4 

  

5.2.3 Antibiotics and substrates 

Antibiotics or and/or substrates were added to liquid or solid media when required at the 

following final concentrations: 

 

Carbenicillin  (Cb)  100 μg/ml 

Kanamycin (Km)  50 μg/ml 

Chloramphenicol (Cm) 35 μg/ml 

Spectinomycin (Spc)  100 μg/ml 

X-gal    40 μg/ml 
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5.2.4 Buffers for use with Polyacrylamide gels 

5 x Loading Dye   0.25 % (w/v) bromophenol blue 

0.25 % (w/v) xylene cyanol ff 

50 % glycerol 

 

Resolving buffer (4x)  1.5 M Tris-HCl (pH 8.8) 

0.4 % (w/v) SDS 

 

Stacking buffer (4x)   0.5 M Tris-HCl (pH 6.8) 

0.4 % (w/v) SDS 

 

Tris-Glycine SDS  192 mM Glycine 

Running Buffer   25 mM Tris 

0.1 % (w/v) SDS 

 

SDS-PAGE loading dye  63 mM Tris 

2 % (w/v) SDS 

10 % (v/v) Glycerol 

5 % (v/v) β-Mercaptoethanol 

0.001 % (w/v) Bromophenol blue 

 

SDS-PAGE stain   41.5 % (v/v) Methanol 

16.5 % (v/v) Acetic acid 

0.1 % (w/v) Coomassie blue 

 

SDS-PAGE destain   5 % Methanol 

10 % Acetic acid 

 

Madams Buffer (5x)   25 mM Tris (pH 8.6) 

400 mM Glycine 
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2 x TAP   100 mM Tris-acetate (pH 7.9) 

200 mM potassium acetate 

16 mM magnesium acetate 

54 mM ammonium acetate 

2 mM dithiothretol 

7 % (w/v) PEG 6000 

 

Acrilamide mix 80:1  40 % (w/v) acrylamide solution 

   2 % (w/v) methylenebisacrylamide solution 

 

OPC loading dye  0.1 % (w/v) Xylene cyanol ff 

0.05 % (w/v) Bromophenol blue 

50 % (v/v) Glycerol 

2 mg heparin 

 

Formamide loading dye 95 % Formamide 

    20 mM EDTA pH 8.0 

    0.1 % (w/v) Bromophenol blue 

    0.1 % (w/v) Xylene cyanol ff 

 

Buffers for western blotting 

1 x TBS   10 mM Tris-HCl (pH 7.5) 

    100 mM NaCl 

     

TBST    20 mM Tris-HCl (pH 7.5) 

    500 mM NaCl 

    0.05 % (v/v) Triton-20 

    0.2 % (v/v) Triton-X-100  

Blocking buffer/ 

Antibody Buffer  3 % BSA in 1 x TBS 
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5.2.5 Buffers for use with agarose gels 

TBE buffer    135 mM Tris base 

 45 mM boric acid 

 2.5 mM Na2EDTA 

 

Loading dye   0.1 % (w/v) Xylene cyanol ff 

0.05 % (w/v) Bromophenol blue 

50 % (v/v) Glycerol 

 

5.2.6 Buffers for β-galactosidase assay 

Z-Buffer   0.06 M Na2HPO4.7H2O 

    0.04 M NaH2PO4.2H2O 

    0.01 M Kcl 

    0.001 M MgSO4.7H2O 

     

 

Lysis Buffer   0.06 M Na2HPO4.7H2O 

    0.04 M NaH2PO4.2H2O 

    0.01 M Kcl 

    0.001 M MgSO4.7H2O 

    0.27 % (v/v) β-mercaptoethanol 

    0.005 % (w/v) SDS 

 

O-Nitrophenyl  4 mg/ml in Z-buffer 

β–D-Galactopuyranoside 

(ONPG) 

 

Stop Solution   1 M Na2CO3 
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5.2.7 Buffers for protein purification 

 

Buffer A   100 mM Tris-HCl (pH 8.5) 

    50 mM NaCl 

    5 % Glycerol 

 

Buffer B   100 mM Tris-HCl (pH 8.5) 

    1 M NaCl 

    5 % Glycerol 

 

Buffer C   100 mM Tris-HCl (pH 8.5) 

200 mM NaCl 

8 mM DTT 

5 % Glycerol 

 

Buffer D   100 mM Tris-HCl (pH 8.5) 

    50 mM NaCl 

    50 mM Imidazole 

    5 % Glycerol 

 

Buffer E   100 mM Tris-HCl (pH 8.5) 

    50 mM NaCl 

    500 mM Imidazole 

    5 % Glycerol 

 

NorR storage buffer  100 mM Tris-HCl (pH 8.5) 

    80 % Glycerol 
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5.3 Microbiological methods 

5.3.1 Preparation of competent E. coli 

A 250 ml conical flask containing 100 ml of LB was inoculated with 500 μl of an 

overnight culture and grown at 37 
°
C with shaking until the optical density at 650 nm 

(OD650) was approximately 0.4. The cells were then harvested by centrifugation in 50 ml 

falcon tubes at 4500 RPM for 10 minutes at 4 °C. The cell pellets were gently resuspended 

in 12.5 ml of ice cold 100 mM MgCl2. This cell suspension was then centrifuged at 4000 

RPM for 10 minutes at 4 °C to harvest the washed cells. The cell pellet was then gently 

resuspended in 25 ml of ice cold CaCl2 and incubated on ice for 20 minutes. Once again, 

the cells were harvested by centrifugation at 4000 RPM for 10 minutes at 4 °C. The cell 

pellet was then gently resuspended in 1 ml of ice cold 100 mM CaCl2 and 20 % (v/v) 

glycerol. The competent cells were then stored in 200 μl aliquots at -80 °C until required. 

 

5.3.2 Transformation of competent E. coli for cloning, complementation assays and 

overexpression. 

50 μl of competent cells were added to approximately 0.5 μg plasmid DNA and incubated 

on ice for 30 minutes. The cells were then heat shocked at 42 °C for 90 seconds, after 

which they were incubated on ice for 2 minutes. 450 μl of sterile LB broth was added and 

the cells were incubated at 37 °C for at least 1 hour to allow them to recover. Typically 100 

µl aliquots of the transformed cells were then spread onto separate LB agar plates 

containing the appropriate antibiotic(s). These plates were then incubated at 37 °C 

overnight. 

 

5.3.4 Electroporation 

Electroporation is a technique that is known to increase the transformation efficiency and 

is useful in forcing the uptake of ligated plasmids. A 1 ml volume of DH5α cells competent 

for electroporation was prepared by inoculating a 250 ml LB culture with 2.5 ml of 

overnight culture. This culture was divided into 50 ml volumes and placed at 37 ºC until 

the OD600 was between 0.5-0.7. At this point cultures were incubated on ice for 15 mins. 

The culture was then centrifuged at 4 ºC for 10 min at 4000 RPM. The supernatant was 

carefully discarded and the pellet gently resuspended in 200 ml of cold sterile MilliQ 

water. This centrifugation and resuspension step was repeated twice more before the pellet 

was resuspended in 50 ml cold MilliQ water. This was split into two 25 ml volumes before 
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a final centrifugation at 4 ºC for 10 mins at 4000 RPM and resuspension of each pellet in 

500 μl of cold MilliQ water.  

 

200 μl of competent cells were added to 3 μl of sample (typically a ligation prepared by 

butanol precipitation) and a current applied using the Biorad gene pulser system (set to 2.5 

Kv/400 Ohm/ 25 μF). 1 ml of LB was added to allow the cells to recover and 5 μl of 

recovered cells was plated out on LB-agar containing the appropriate antibiotic(s). 

Commonly, the remaining volume was used to inoculate a 5 ml overnight culture before 

plasmid purification the next day. 

 

5.3.5 P1 Phage Transduction 

P1 bacteriophage can be used to move sections of a bacterial genome from a donor strain 

to a recipient strain. Briefly, the phage infect the donor strain and randomly package up 

sections of the bacterial genome. The resulting lysate is then used to infect the recipient 

strain and the genomic DNA is inserted into the genome via homologous recombination. A 

selectable marker is then used to isolate a strain with the desired genomic change. 

 

5.3.6 Preparation of P1 lysate 

A 5 ml LB culture of the donor strain was set-up (with appropriate antibiotics) and placed 

shaking at 30 °C overnight. The next morning, this culture was added to 5 ml of MC buffer 

and left shaking at 37 °C for 30 minutes. Several dilutions of P1 phage were then prepared 

in LB (1x10
-1

 to 1x10
-3

) and 0.1 ml of each phage solution was added to 0.15 ml of 

bacterial suspension. Solutions (including cell only control) were mixed and incubated at 

15 °C without shaking. Each solution was mixed with 3 ml of soft agar in a glass universal 

(heated to 45 °C) and the contents of each tube poured onto a fresh, thick R plate. Once the 

R plates had hardened, they were placed at 37 °C for 5-7 hours and plates were 

periodically checked for partial lysis. To such plates, 2 ml of LB was added and left to 

stand for 10 minutes. The soft agar was then scrapped off using a disposable spatula and 

placed in an oakridge tube. 50 μl of chloroform was added per ml of volume, the contents 

mixed and left for 5 minutes. The tubes were centrifuged at 4 °C for 15 minutes at 12000 

RPM. The supernatant was removed and to that, 50 μl of chloroform added per ml of 

volume and mixed. The resulting P1 lysate was stored in the dark at 4 °C. 
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5.3.7 P1 Transduction 

A 5 ml LB culture of the donor strain was set-up (with appropriate antibiotics) and placed 

shaking at 30 °C overnight. The next morning, this culture was added to 5 ml of MC buffer 

and left shaking at 37 °C for 30 minutes. Three 2 ml volumes of this bacterial suspension 

were placed into 15 ml falcon tubes and centrifuged for 10 minutes at 8000 RPM. With the 

first tube, cells were resuspended in 0.2 ml TGYES (control). With the second tube, cells 

were resuspended in 0.1 ml TGYES and 0.1 ml P1 lysate added along with 10 μl of 0.1M 

CaCl2. With the third tube, cells were resuspended in 0.1 ml TGYES and 0.1 ml of P1 

phage added (non-lysate control). All tubes were incubated for 30 minutes at 37 °C without 

shaking. 5 ml of 1 M sodium citrate was added to each tube before centrifugation at 8000 

RPM for 10 minutes. Cells were resupended in 5 ml LB and the centrifugation step 

repeated. Cells were then resuspended in 5 ml TGYES with 20 mM sodium citrate and left 

at 37 °C with shaking for 3 hours. Centrifugation was carried out at 8000 RPM for 10 

minutes and cells then resuspended in 1.5 ml TGYES with 20 mM sodium citrate. Entire 

volumes were plated out onto LB plates and colonies selected for on the basis of antibiotic 

resistance. Successful transduction of the desired fragment was then confirmed by colony-

PCR. 
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5.4 Mutagenesis 

5.4.1 Site Directed Mutagenesis (Quickchange) 

Quickchange is a commercially available mutant strand synthesis mutagenesis method 

produced by Stratagene. A methylated template plasmid is used to amplify mutated 

„daughter‟ plasmids with DNA polymerase and oligonucleotides containing the desired 

point mutations. After thermal cycling, the reaction mixture is treated with DpnI to digest 

only the methylated, non-mutated template DNA. The mutated, circular, nicked, double-

stranded DNA is then transformed into ultracompetent cells which are able to repair the 

nicks in the mutated plasmid. 

 

5.4.2 Site Directed Mutagenesis (Two-step PCR) 

In this method three separate PCR reactions are carried out using two sets of 

oligonucleotide primers (Figure 5.1). External primers, outside of the region of interest are 

used to amplify the entire DNA fragment (appendix section 12.1.4). The mutagenic 

primers are complementary to each other and contain the desired point mutation(s) 

(appendix section 12.1.3). Initially two separate PCR reactions are carried out, using non-

mutated DNA as a template. The first uses the forward external primer and the reverse 

mutagenic primer and the second uses the reverse external primer and the forward 

mutagenic primer. This produces two separate PCR products which include the desired 

mutation on opposite strands. Between 50-100 ng of each of these PCR products are used 

in a final reaction using only the external primers to amplify the entire region of interest 

producing the mutated PCR product. The Acuzyme system (Bioline) was used for all 

targeted changes using this protocol. 

  



134 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  

Figure 5.1 - Overview of the two-step PCR method of targeted mutagenesis 

In the first step, two PCR reactions using opposite pairs of external primers (red arrows) and 

mutagenic primers (blue arrows) create two separate products that each include the desired 

mutation (yellow star). These products are mixed in the second step and the external primers 

used to complete the region of interest (between green lines). Restriction enzymes can then 

be employed to cut at appropriate sites outside this region, for easy cloning into a vector. 
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5.4.3 Error-prone PCR 

Error-prone PCR is a technique based on the random incorporation of incorrect bases by a 

low-fidelity polymerase during a standard PCR reaction. Here, random PCR mutagenesis 

was carried out with Taq DNA polymerase under standard reaction conditions. To increase 

the frequency of incorporated mutations, a high cycle number was used (35 cycles). 

Reaction mixtures contained 75 ng of template DNA, 100 ng of each primer, 0.2 mM 

dNTPs, 1.5 mM MgCl2 and 5 units of enzyme in a final volume of 50 ml.  After the PCR 

reaction, reactions were purified and restriction digestion carried out to re-clone the 

randomly mutated region into a suitable vector for sequencing and in vivo characterisation. 

 

5.5 Plasmids 

5.5.1 Purification of plasmid DNA  

Small scale preparations of plasmid DNA were carried out from 5 ml overnight cultures 

using the Qiaquick plasmid miniprep kit (Qiagen) as directed by the manufacturer. Large 

scale plasmid preparations were performed with Qiagen plasmid midiprep kits from 150 ml 

of overnight culture. This technique was typically used for preparation of low copy number 

plasmids and plasmid samples for DNA sequencing. 

 

5.5.2 Plasmid Sequencing 

Dye terminator sequencing reactions were carried out using the BigDye Terminator v3.1 

kit (Applied Biosciences) and submitted to Genome Enterprise Ltd. as ready reactions for 

determination of the sequence by capillary electrophoresis and florescence detection. 

Reactions contained 100-200 ng/µl of plasmid DNA, 10 pmol/μl of primer, 1x BigDye 

v3.1 and 1x sequencing reaction buffer.  

 

5.5.3 Butanol precipitation 

This technique was commonly used to prepare ligated plasmids for electroporation. 1.2 ml 

of butan-1-ol (room temperature) was added to each sample which was mixed thoroughly 

before incubation at room temperature for 10 mins. Samples were then centrifuged at 

13000 RPM for 4 mins and the supernatant carefully discarded. 1 ml of ice-cold 100 % 

ethanol was added and the sample vortexed briefly before incubation at -20 ºC for 20 mins. 

Samples were again centrifuged at 13000 RPM, the supernatant carefully discarded and 1 

ml of ice-cold 70 % ethanol added before vortexing briefly and incubating at -20 ºC for 10 

mins. A final centrifugation at 13000 RPM for 5 mins was carried out, the supernatant 
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discarded and the pellet vacuum-dried using a speed vac concentrator. The sample pellets 

were resuspended in 5 μl H20 and placed on ice until required. 

 

5.6 DNA manipulation Methods 

5.6.1 PCR purification 

Following PCR, reactions were purified using the QIAquick PCR purification kit (Qiagen). 

This technique was also employed between two restriction digests to remove enzyme 

buffer, when a double digest could not be carried out. In addition, PCR purification was 

often employed following the restriction digestion of PCR products where the desired 

fragment was retained but unwanted products (<40mer) not. If possible, in order to achieve 

a high concentration of DNA, it was ensured that the 10 μg column capacity was reached 

during the PCR purification.  

 

5.6.2 Restriction Digests 

Up to 10 μg of DNA was typically digested in a 60 μl reaction, containing the appropriate 

buffer and enzyme units (as defined by the manufacturer). Bovine serum albumin (BSA) 

was added to the same volume as the buffer to aid the digestion which was carried out at 

the optimum temperature for the given enzyme (as defined by the manufacturer), typically 

37 °C. 

 

5.6.3 Agarose gel electrophoresis 

Agarose gel electrophoresis was used for the size determination and purification of DNA. 1 

% (w/v) of agarose was melted in 1 x TBE buffer using a microwave. Ethidium bromide 

was added to a final concentration of 1 μg/ml and poured into a gel mould. DNA samples 

were mixed with 5x loading dye alongside commercially available molecular weight 

markers and run out on the gel at 80 V for between 45 minutes and 1.5 hours, depending 

on DNA size. Since ethidium bromide intercalates between bases in DNA, visualisation of 

the different sized fragments was carried out using UV-light. 

 

5.6.4 Gel extraction 

DNA separated by electrophoresis was recovered and purified using the QIAquick gel 

extraction kit (Qiagen). DNA bands, visualised under UV light were removed from the 

surrounding agarose before purification of the DNA using the gel extraction kit. If 

possible, in order to achieve a high concentration of DNA, it was ensured that the 10 μg 
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column capacity was reached. This technique was typically used following restriction 

digestion to purify the digested fragments. 

 

5.6.5 DNA dephosphorylation 

During ligation, the DNA ligase enzyme will only splice together adjacent nucleotides if 

one nucleotide contains a 5‟ phosphate and the other contains a 3‟ hydroxyl group. 

Recircularisation of the vector can therefore be minimised by removing the 5‟ phosphate 

groups using shrimp alkaline phosphatase (SAP). A foreign DNA segment with 5‟ 

phosphate groups can then be ligated efficiently into dephosphorylated vector DNA. 

Samples were incubated with SAP (Roche, 1 unit/µg DNA) and 1 x SAP buffer for one 

hour at 37 ˚C and then for 20 minutes at 65˚C to deactivate the phosphatase enzyme. 

 

5.6.6 Ligation 

T4 DNA ligase is employed to catalyse the formation of a phosphodiester bond between 

the 5‟ and 3‟ ends of DNA molecules, thus joining them together. Ligation reactions were 

mostly carried out at 16 
˚
C overnight in the buffer supplied by the manufacturer (NEB). 

Typically a ratio of 5:1 of insert:vector was used with a minimum of 20 ng of 

dephosphorylated DNA vector in the reaction. Some ligation reactions were carried out 

using a Rapid DNA Ligation Kit as instructed by the manufacturer (Roche).  

 

5.7 Construction of plasmids 

5.7.1 Engineering constructs for determination of in vivo NorR activity 

To determine the in vivo activity of NorR and its mutant derivatives, β-galactosidase 

assays were carried out in the MH1003 strain of E.coli, based on leaky overexpression 

from the pET21a plasmid. The pNorR plasmid contains the complete norR sequence with 

an Nde I site at the N-terminus (overlaps with the start codon ATG) and a Bam HI site 

following the stop codon at the C-terminus. 

 

5.7.2 The pMJB1 plasmid 

In order for targetted and random PCR-based mutagenesis techniques to be employed, 

suitable restriction sites were required to isolate either the GAF or AAA+ domain 

sequences after amplification before re-cloning into the norR sequence. However, there 

were no suitable restriction sites present that cut either side of the GAF and AAA+ 

domains and not elsewhere in the pNorR plasmid (pET21a). Therefore, silent mutations 
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were made either side of the AAA+ domain of NorR to create restriction sites without 

changing the norR coding sequence. Using the “WATCUT” online tool 

(http://watcut.uwaterloo.ca/watcut/watcut/template.php), the restriction sites for the 

enzymes Mfe I (Mun I) and Sst II (Sac II) were selected. These sites allowed for the 

isolation of the GAF domain sequence (1-495bp) using the Nde I and Mfe I sites and for 

the isolation of the AAA+ domain sequence (496-1341bp) using the Mfe I and Sst II sites. 

The location of the silent mutations in the norR coding sequence and the resulting 

restriction sites are shown in Figure 5.2.  

 

5.7.3 Mutagenesis of the pMJB1 plasmid 

(i)  Random mutagenesis 

Random mutagenesis of the AAA+ domain was carried out using the AAA+ Fwd and 

AAA+ Rev primers (appendix section 12.1.4) to amplify a 960bp region that includes the 

sequence encoding the AAA+ domain of NorR. The Mfe I and Sst II restriction enzymes 

could then be used to re-clone the mutagenic PCR product into the pMJB1 plasmid (cut 

with the same enzymes) to reconstitute the complete norR sequence. Random mutagenesis 

of the GAF domain was carried out in a similar fashion but instead used the T7long and 

GAF Rev primers (appendix section 12.1.4) to amplify a 593bp region that includes the 

GAF-domain encoding sequence. The Nde I and Mfe I restriction enzymes were then 

employed for re-cloning into the pMJB1 plasmid. 

 

(ii) Targeted mutagenesis 

Targeted mutagenesis using the 2-step PCR method was used to substitute residues in the 

GAF and AAA+ domains. For AAA+ domain substitutions, AAA+ Fwd and AAA+ Rev 

primers were used as external primers (appendix section 12.1.4) with the Mfe I and Sst II 

restriction enzymes used to re-clone the second step PCR product back into the pMJB1 

plasmid. For GAF domain substitutions, T7long and GAF Rev primers (appendix section 

12.1.4) were used as external primers with the Nde I and Mfe I restriction enzymes used to 

reconstitute the complete norR sequence in the pMJB1 plasmid. 
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Figure 5.2 - Restriction site engineering in the pNorR plasmid. 

Engineered restriction sites are highlighted in yellow with the base changes in red. The Mfe  

I/Mun I restriction site was created by making the C496T silent base substituion (CAACTG 

to CAATTG). The Sst II/Sac II restriction site was created by making the G1341C silent 

base substituion (CGGCGG to CCGCGG). The Nde I (CATATG) and Bam HI (GGATCC) 

sites are highlighted in light blue. The annealing sites for the forward (light green) and 

reverse (dark green) primers that flank the AAA+ domain  coding sequence, used in the 

error-prone PCR are also shown (AAA+ Fwd and AAA+ Rev). 

 



140 

 

 

(iii) C-terminal truncation 

Mutagenesis was also carried out to truncate the C-terminal sequence of NorR to produce 

three ΔHTH constructs with different domain boundaries. Here, a single PCR reaction was 

performed using pMJB1 as a template and T7long as a forward primer (appendix section 

12.1.4). Depending on the truncation required, reverse primers were designed to anneal to 

the norR sequence so that the last annealing base would be the point of truncation. 

Additionally, the reverse primers encoded a non-annealing stop codon, followed by a Bam 

HI site. Therefore, digestion of the PCR product using the Nde I and Bam HI enzymes 

created the C-terminally truncated norR sequence for re-cloning into pMJB1. 

 

(iv) N-terminal truncation 

In previous work, the N-terminal sequence that encoded the first 170 amino acids of NorR 

was deleted from the pNorR plasmid to create the pNorRΔGAF plasmid. In this work, in 

order for the in vivo activity of N-terminally truncated NorR AAA+ variants to be 

assessed, the substitutions in the AAA+ domain were made using a targeted approach with 

pNorRΔGAF as a template in the PCR-based method. Since pNorRΔGAF does not contain 

the Mfe I or Sst II sites, the T7long and T7term external primers were used to amplify a 

region of the norR sequence containing the Nde I and Bam HI sites. 

 

5.7.4 Overexpression 

Since pMJB1 and its mutant derivatives are overexpression vectors based on pET21a, 

these plasmids were also used to overexpress and purify native NorR and its variants. 

However, in order to purify NorR with an N-terminal His-tag, the wild-type and mutant 

norR sequences were moved into the pETNdeM11 vector. This vector is based on the 

pETM11 vector (EMBL) and encodes an N-terminal, hexahistidine, TEV protease 

cleavable tag. In the pETNdeM11 vector, the Nco I site has been altered to an Nde I site by 

silent mutation to allow easy cloning of the NorR sequence. The Nde I and Bam HI 

restriction enzymes were used to move the entire norR sequence from the pMJB1 plasmid 

into the multiple cloning site (MCS) of the pETNdeIM11 vector. 
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5.7.5 Mutagenesis of the pETNdeM11 plasmid 

In order to assess the activity of NorR-His and its mutant derivatives in vivo, the antibiotic 

resistance-cassette used to maintain the norR-derivatives of the pETNdeM11 plasmid had 

to be changed. This was because the E. coli strain MH1003 is also maintained by the 

kanamycin resistance gene. Therefore the 2.0 Kb omega (Ω) cassette was removed from 

the 4.3 Kb pHP45Ω plasmid (Prentki and Krisch 1984) using the Sma I restriction enzyme 

(Figure 5.3). The 2.0 Kb insert was gel-purified away from the 2.3 Kb Sma I-digested 

pHP45 and then ligated into Sma I-digested pETNdeM11 that encoded the norR sequence 

of interest. This disrupted the kanamycin resistance gene whilst simultaneously inserting 

the sequence that encodes streptomycin (Sm)/ spectinomycin (Spc) resistance. 

 

5.7.6 Mutagenesis of the pNPTprom plasmid 

The pNPTprom plasmid is derived from the pUC19 cloning vector and encodes the 361bp 

fragment of the norR-norVW intergenic region between Eco RI and Bam HI sites. This 

DNA contains each of the 3 NorR-binding sites and was used in DNA-binding as well as 

Open Promoter Complex (OPC) EMSA assays. In order to study the functionality of NorR 

and its variants in the absence of the NorR binding sites, a 66bp sequence of the intergenic 

region was deleted. In order to remove the NorR-binding region, PCR-mediated deletion 

mutagenesis was employed (Lee et al. 2004). Two mutagenic primers were designed 

(appendix section 12.1.3). The forward mutagenic primer (pNPTprpm 66bp_DEL Fwd) 

anneals immediately downstream of the 66bp region to be deleted (Figure 5.4: shown in 

blue). At the 5‟ end there is a 9nt non-annealing sequence that is complementary to the 

region immediately upstream of the 66bp region (Figure 5.4: shown in green). The reverse 

mutagenic primer (pNPTprpm 66bp_DEL Rev) anneals immediately upstream of the 66bp 

region to be deleted. At the 5‟ end there is a 9nt non-annealing sequence that is 

complementary to the region immediately downstream of the 66bp region (Figure 5.4: 

shown in orange). In the first step, two PCR reactions were carried out; one with the M13 

Fwd external primer and the reverse mutagenic primer and another with the M13 Rev 

primer and the forward mutagenic primer. This produced two partially complementary 

PCR products neither of which contained the 66bp sequence. In the second step, external 

primers were used to complete the 295bp intergenic region that is deleted for the NorR-

binding region. Upstream (Eco RI) and downstream (Bam HI)  
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Figure 5.3 – Mutagenesis of the pETNdeM11 plasmid. To change the antibiotic resistance of 

pETNdeM11 from kanamycin (Km) to streptomycin (Sm)/ spectinomycin (Spc), the 2.0 kb omega 

(Ω) cassette was removed from the pHP45Ω plasmid (Prentki and Krisch 1984) using Sma I and 

then ligated into the Sma I site of the pETNdeM11 vector that already encoded the norR sequence 

of interest. The wild-type and mutant versions of norR could not be cloned into a pETNdeM11/Ω 

vector, since the Ω cassette contains multiple Bam HI sites. Figure adapted from pETM-11 vector 
map (http://www.embl-hamburg.de/~geerlof/webPP/vectordb/bact_vectors/). 
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Figure 5.4 - PCR-mediated deletion mutagenesis (Lee et al. 2004). Two mutagenic primers are 

designed. The forward mutagenic primer anneals immediately downstream of the region to be 

deleted (blue). At the 5‟ end there is a 9nt non-annealing sequence that is complementary to the 

region immediately upstream of the region to be removed (shown in green). The reverse 

mutagenic primer anneals immediately upstream of the region to be deleted. At the 5‟ end there 

is a 9nt non-annealing sequence that is complementary to the region immediately downstream of 

the region to be removed (shown in orange). In the first step, two PCR reactions are carried out; 

one with the forward external primer and the reverse mutagenic primer (A) and another with the 

reverse external primer and the forward mutagenic primer (B). This produces two partially 

complementary PCR products neither of which contains the region to be deleted. In the second 

step, external primers are used to complete the product that now lacks the undesired sequence. 

Upstream and downstream restrictions sites can then be used to re-clone the new fragment into a 

suitable vector. 
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restriction sites were then used to re-clone the new fragment into the pNPTprom to give 

the pNPTprom2 plasmid (appendix section 12.1.2). 

 

5.8 Protein methods 

5.8.1 Overexpression of NorR 

Expression of NorR was carried out using either the pET21a vector or the pETNdeM11 

vector encoding native and N-terminal His-tagged NorR respectively. The appropriate 

plasmid was transformed into BL21(DE3) (appendix section 12.1.1) and colonies picked 

into 5 ml cultures that were left shaking at 37 ˚C during the day. 0.75 ml of this culture was 

used to inoculate a 50 ml overnight culture containing appropriate antibiotics which was 

then left shaking at 37 ˚C. The next morning, 10 ml of overnight culture was used to 

inoculate 1 l LB cultures containing antibiotic which were then left shaking at 37 ˚C until 

the OD600 was approximately 0.6. IPTG was then added to a final concentration of 1 mM 

and the culture left shaking at 37 ˚C for a further three hours. After 2-3 hours, cells were 

harvested by centrifuging at 5000 RPM for 10 minutes. Pellets were resuspended in 30 ml 

of breaking buffer in to which three mini EDTA-free protease inhibitor tablets were 

dissolved (Roche). The resuspension was stored at -80 ˚C until required. Both pre- and 

post- induction samples were removed to check for successful overexpression. 1 ml of 

culture was centrifuged at 14000 RPM for one minute. 900 μl was then discarded and to 

the remaining 100 μl, 100 μl 2x SDS-PAGE loading dye was added. Samples were then 

heated at 100 ˚C for five minutes before being loaded onto a 12.5 % polyacrylamide gel. 

 

5.8.2 SDS polyacrylamide gel electrophoresis (SDS-PAGE) 

SDS-PAGE is a technique widely used to separate proteins by size.  The resolving gel 

(12.5 % polyacrylamide) was prepared by mixing 12.5 ml 30 % acrylamide, 7.5 ml 4x 

resolving buffer, 9.55 ml of water and 0.3 ml 10 % SDS. 150 μl of 10 % ammonium 

persulfate (APS) and 10 μl of TEMED were added and the mixture poured to 

approximately 5 mm of the top of the gel mould. The stacking gel was prepared by mixing 

2.5 ml of 4 x stacking buffer with 6.1 ml of distilled water and 1.33 ml of 30 % acrylamide 

solution. 50 µl 10 % APS and 5 µl TEMED was added, the mixture poured into the gel 

mould and the comb inserted until the gel had set.  

 

An equal volume of 2x SDS-PAGE loading dye was added to the protein samples, which 

were then heated at 100 ˚C for 5 minutes before gel-loading. Samples were loaded using a 
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Hamilton syringe and run at approximately 150 V and 20 mA for 1 hour (ATTO corp.) in 

1x Tris Glycine SDS buffer (Severn Biotech). Staining in approximately 20 ml of SDS-

PAGE stain for 15 minutes, followed by destaining in 40 ml of SDS-PAGE destain 

overnight, enabled visualisation of the protein bands. Alternatively, Instant Blue 

(Expedeon) was used to enable rapid detection and visualisation of the protein bands.   

 

5.8.3 Western Blotting  

Western blotting is an analytical technique used to detect specific proteins and was 

employed to determine the stability of protein constructs when expressed in the β-

galactosidase assay. Under denaturing conditions, it uses gel electrophoresis to separate 

proteins on the basis of size. The proteins are then transferred to a nitrocellulose membrane 

where they are detected by an antibody specific to the protein.  

 

Before loading, the OD600 of cultures was measured and appropriate volumes taken to 

standardise them. Cells were then span down for 1 minute at 14000 RPM and the pellet 

resuspended in 100 μl LB and 100 μl 2x SDS-PAGE dye. Samples were boiled for 5 

minutes and then loaded on a 12.5 % polyacrylamide SDS-PAGE gel. After 

electrophoresis, blotting was carried out using the Invitrogen XCell II Blot system. A piece 

of nitrocellulose membrane (pre-soaked in 1 x transfer buffer) was placed carefully onto 

the protein gel, in between two pieces of pre-soaked filter paper. Transfer was carried out 

at 30 V for 1 hour in 1 x transfer buffer, surrounded with dH2O to ensure the assembly 

remained cool.  After blotting, the membrane was transferred to a clean, square, plastic 

dish and two 10 minute washes with 1 x TBS carried out with gentle shaking at RT. 

Blocking of non-specific epitopes was carried out in 3 % BSA for 1 hour, shaking at RT or 

alternatively at 4 °C overnight, without shaking. 

 

(i) Preparation of primary antibody 

Anti-NorR antibody was generated against rabbits and the crude serum was aliquoted and 

stored at -20 °C. To improve the specificity of the antibody serum, it was cross-reacted 

with a cell extract of a strain that does not contain NorR (MH1003, appendix section 

12.1.1). To prepare the cell extract, a 5 ml overnight MH1003 culture was centrifuged at 

4000 RPM for 10 minutes and the pellet resuspended in 500 μl SP buffer. The cell 

resuspension was kept on ice and sonicated 5 times at an amplitude of 10 microns (15 

seconds on and 15 seconds off). The lysed sample was then span down at 4000 RPM at 4 
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°C for 10 minutes. The resulting cell extract was placed on ice. The crude anti-NorR serum 

was mixed with the cell extract in a 1:1 ratio and incubated at 30 °C for 1 hour. It was then 

span down at 14000 RPM for 1 minute to remove precipitation and the supernatant (the 

cross-reacted primary antibody) stored at -20 °C until required. 

 

(ii) Washing and detection 

After blocking, the membrane was washed twice for 10 minutes in TBST. The cross-

reacted NorR antibody was diluted 1 in 2500 in 3 % BSA, added to the membrane and then 

left shaking for 1 hour at RT. After treatment with primary antibody, the membrane was 

washed twice for 10 minutes in TBST and then for 10 minutes in 1 x TBS. An anti-rabbit 

IgG alkaline phosphatase secondary antibody (sigma) was diluted 1 in 5000 in 3 % BSA 

and added to the membrane. After shaking for 1 hour at RT, the membrane was washed 

four times for 10 minutes in TBST. 

 

Secondary antibody detection was carried out using the SigmaFast system (Sigma). An 

BCIP/NBT (5-Bromo-4-chloro-3-indolyl phosphate/Nitro blue tetrazolium) tablet was 

crushed and dissolved in 10 ml of double distilled water and the solution added to the 

membrane. Once sufficient exposure had been achieved, the reaction was quenched using 

water and the membrane dried between two sheets of blotting paper. 
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5.8.4 Protein Purification 

Cell resuspensions, produced from the overexpression of typically 3 litres of culture, were 

thawed in tepid water and once completely thawed, the cells were placed on ice. Cells were 

broken by French pressure disruption (1000 PSI) in two passes. The insoluble material was 

then removed by centrifugation in oakridge tubes at 15000 RPM for 30 minutes in the 

SS34 rotor (Sorvall Rc5B Plus centrifuge). The supernatant was then decanted into a clean 

falcon tube and placed on ice. 

 

(i) Purification of native NorR - Affinity Chromatography 

For native protein preparations, NorR was purified using a 5 ml Hi-Trap Heparin HP 

column (Amersham Biosciences) equilibrated with buffer A using an Akta protein purifier. 

The clarified supernatant was loaded before NorR was eluted using buffer B. Samples for 

SDS-PAGE were taken to determine which fractions contained NorR. 

 

(ii) Purification of His-tagged NorR - Affinity Chromatography 

This technique is a form of immobilised metal ion chromatography (IMAC) and is based 

on the ability of nickel to specifically interact with amino acids such as histidine. His-

tagged proteins therefore bind strongly to the column, reducing impurities and are eluted 

using imidazole, which breaks the nickel - histidine interaction. For His-tagged protein 

preparations, two 1 ml Hi-Trap Ni-chelation columns (Amersham Biosciences) were 

connected in series and 3 ml of 100 mM NiCl2
 
passed through the columns. The columns 

were washed with 2 ml of water and attached to the chromatograph (Akta protein purifier). 

The column was equilibrated using buffer D and the clarified supernatant loaded. NorR-

His was eluted using buffer E. 1 ml fractions were collected and samples taken for SDS-

PAGE, in order to determine the NorR-containing fractions. 

 

(iii) Purification of native and His-tagged NorR – Gel filtration 

In both the native and His-tagged purification protocols, NorR shows a high tendency to 

precipitate after affinity chromatography, particularly at high concentrations. Therefore 2- 

4 ml of pooled NorR fractions was loaded onto a Superdex 200 16/60 column (Amersham 

Biosciences), pre-equlibrated in buffer C and the flow rate set at 1.0 ml/min. Depending on 

the oligomeric state,  NorR eluted anything between 45 ml (the void volume) and 100 ml. 

NorR-containing fractions were again identified by SDS-PAGE. Prior to storage, protein 
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could be concentrated using an Amicon Ultra spin column (Millipore) with appropriate 

molecular weight cut-off. An equal volume of NorR storage buffer was added to selected 

fractions or concentrated samples. Aliquots were made and stored at -80 °C until required. 

In subsequent biochemical experiments, each aliquot was only used once to avoid repeated 

freeze – thaw which has been known to compromise NorR activity in vitro.  

 

5.8.5 Bradford assay for protein concentration 

This assay is widely used for protein concentration determination (Bradford 1976). 

Bradford reagent and BSA standards were supplied by Pierce and the assays were carried 

out according to the manufacturer‟s instructions. Rough estimates of protein concentration 

were carried out using the Nanodrop instrument. 

 

5.8.6 ATPase activity assays 

ATPase activity was measured using an assay in which production of ADP is coupled to 

the oxidation of NADH by lactate dehydrogenase and pyruvate kinase (Norby, 1988). The 

oxidation of NADH was monitored at 340 nm at 37°C using the PerkinElmer Lambda 35 

UV/VIS Spectrometer. A master mix was prepared which contained 0.35 mM NADH, 3 

mM phosphoenolpyruvate, 0.075 mg lactate dehydrogenase, 0.15 mg pyruvate kinase, 6 

mM ATP and 4 mM MgCl2 in 88.6 mM Tris-HCl (pH 8.5), 177.2 mM NaCl and 4.4 % 

glycerol. Reaction volumes were typically 0.5 ml with protein added to the master mix at 

the concentrations required. Reactions were carried out both in the absence and presence of 

5 nM of a 266bp fragment of the norR-norVW intergenic region generated from the 

pNPTprom plasmid (Tucker et al., 2004) using the NorRprom Fwd and NorRprom Rev  

primers (appendix section 12.1.3). ATPase activity was measured by observing the change 

in absorbance at 340 nm (ΔA). ΔA is calculated using the following equation: ΔA = 

(OD340 nm start - OD340 nm end) / (time end – time start). The total ATPase activity was 

then calculated using the equation: µmol ATP/min = (ΔA / 6220) x 1x10
6
. 

 

5.8.7 Gel Retardation Assays (Electophoretic Mobility Shift Assay, EMSA) 

EMSA is a common technique used to study protein-DNA interactions and can determine 

whether a protein is capable of binding a specific DNA sequence in vitro. The technique is 

often performed concurrently with footprinting or when studying transcription initiation.  
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(i) DNA binding assay 

(1) Labelling of norR-norV intergenic region constructs 

Gel shift assays were carried out to study the binding of NorR to either 361bp or 266bp 

fragments of the norR-norVW intergenic region in vitro. In order to study the binding to a 

361bp fragment of the intergenic region, 5 μg of pNPTprom that contains the norR-norVW 

region blunt-end cloned into the SmaI site of pUC19 (Tucker et al. 2004) was digested 

using the Eco RI and Bam HI restriction enzymes. In addition, binding to a shorter 266bp 

product created by PCR using the NorRprom Fwd and Rev primers was studied. 

Measuring the binding to the nifH promoter derived from the pNH8 plasmid served as a 

negative control. Following restriction digestion or PCR, the sample was passed over a 

Qiagen PCR purification column to remove enzymes and buffers before Shrimp Alkaline 

Phosphotase (SAP) treatment (to remove the 5‟ phosphate groups). The intergenic region 

was double gel-purified using the Qiagen gel-extraction kit and finally eluted into a 

volume of 30 μl. To this, 2 μl of T4 polynucleotide kinase (Epicentre) was added along 

with 10 μl of 5x T4 polynucleotide kinase buffer, 2 μl [γ-32P] ATP (specific activity 10 

μCi / μl) and distilled water to produce a final volume of 50 μl. This reaction was 

incubated at 37 ºC for 15 minutes before inactivation of the enzyme at 65 ºC for 15 

minutes. 25 μl of mixture was then passed over a column containing sephadex G-50, span 

at 12000 RPM for three minutes to remove unincorporated nucleotide. The resulting 

labelled-DNA fragment was stored at -20 ºC until required.  

 

(2) DNA binding and separation of retarded species 

32
P-labelled DNA fragments were diluted with distilled water to a volume to give roughly 

30 counts per second. Diluted DNA was then added to 2x TAP buffer in a 1:5 ratio. 6 μl 

volumes of this mastermix were then added to 4 μl samples of purified NorR protein. 

Binding reactions were then incubated at 30 ºC for 20 minutes before the addition of 3 μl 

OPC dye. Samples were loaded onto 4.2 % polyacrylamide gels made in MADAM‟s 

buffer and the gel was resolved at ~30 mA until the bromophenol blue dye front 

approached the bottom of the gel. Gels were then dried onto Whatman filter paper and 

exposed to film or quantified using a Fuji BAS 1000 Phosphorimager. 

 

(ii) Open Promoter Complex assay 

Open complex assays were carried out using the 361bp fragment of the norR-norVW 

intergenic region, derived from the pNPTprom plasmid and 
32

P-end labelled as in the gel 
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retardation assays. Open complex formation was assayed in TAP buffer as in the band-shift 

assays and contained 1 nM template DNA, 200 nM core RNA polymerase (Epicentre 

Biotechnologies), 200 nM σ
54

-His, 130 nM IHF-His, 5 mM ATP (Pharmacia Biotech), 0.5 

mM CTP (Pharmacia Biotech), 0.5 µg denatured salmon sperm DNA (Sigma Aldrich) and 

0.15 mg BSA (NEB). The reaction components were pre-incubated for 10 min at 30 °C 

and reactions initiated by adding NorR/variants to a final concentration of 1 µM. After a 

further 20 min incubation at 30 °C, samples were mixed with 3 ml of dye mixture 

containing 50 % glycerol, 0.05 % bromophenol blue, 0.1 % xylene cyanol and 2 mg of 

heparin and the heparin resistant open complex resolved on a 4 % polyacrylamide gel as 

for the DNA-binding assays. 

 

(iii) Potassium permanganate footprinting of open complex 

(1) 5’ labelling of norR-norV intergenic region construct 

Potassium permanganate targets single-stranded regions of DNA for cleavage and 

therefore can be used following open complex formation, using an EMSA approach to 

visualise the activation of transcription in vitro in a sequence specific manner. In this 

method, open complex formation and subsequent cleavage was carried out using a 266bp 

fragment of the norR-norVW intergenic region amplified from the pNPTprom plasmid 

using the norRprom Fwd and Rev primers (appendix section 12.1.3). The reverse primer 

was first 5‟-end labelled with γ-
32

P ATP using T4 polynucleotide kinase (Epicentre). PCR 

amplification from the pNPTprom template using the 
32

P-labelled reverse primer and 

“cold” forward primer ensured that the 266bp product was single-end labelled. Following 

PCR, the DNA was purified using the Qiagen PCR purification kit to remove all buffers 

and unincorporated nucleotide.  
32

P-labelled DNA was diluted to give 400-500 cps per 

reaction. 

 

(2) Preparation of G+A sequencing ladder 

G+A sequencing markers were used to identify regions of enhanced cleavage following 

potassium permanganate cleavage of open complexes (Maxam and Gilbert 1977). 20 ng of 

5‟ end labelled intergenic DNA was mixed with 2 μg of salmon sperm DNA and 1 μl of 4 

% formic acid in a final volume of 20 μl and incubated at 37 °C for 25 minutes. 150 μl of 1 

M piperidine was then added to the mixture which was incubated at 90 °C for 30 minutes.  

Samples were left on ice for 5 mins before addition of 1 ml butan-1-ol. After 

centrifugation, pellets were resuspended in 150 µl of 1 % SDS and a further 1 ml butan-1-
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ol added. Two further precipitations/resupensions were then carried out using 0.5 ml butan-

1-ol. The resulting pellets were vacuum dried and 25 µl of loading dye added (95 % 

Formamide, 20 mM EDTA pH 8.0, 0.1 % bromophenol Blue, 0.1 % Xylene Cyanol). 2.5 

µl (200-300 cps) was loaded on each sequencing gel. 

 

(3) Potassium permanganate footprinting 

Open complex reactions were carried out as described above. After the 20 min incubation 

step at 30 °C, 1 µl of 200 mM potassium permanganate was added to each reaction and 

samples incubated at RT for 4 mins. Reactions were stopped by adding 60 µl of stop 

solution (1.5 M β-mecaptoethanol, 0.3 M Na acetate, 0.1 mM EDTA, 2 mg/ml glycogen) 

and 750 µl ice-cold EtOH added before incubation on ice for 5 mins. Samples were 

centrifuged and the pellets resuspended in 300 µl Na acetate before the addition of 900 µl 

EtOH to each sample. Samples were again centrifuged and the pellets resuspended in 1 ml 

EtOH. The centrifugation step was repeated and the pellet vacuum dried before addition of 

100 µl 1M piperidine and incubation at 95 °C for 30 mins. Samples were left on ice for 5 

mins before addition of 1 ml butan-1-ol. After centrifugation, pellets were resuspended in 

150 µl of 1 % SDS and a further 1 ml butan-1-ol added. Two further 

precipitations/resupensions were then carried out using 0.5 ml butan-1-ol. The resulting 

pellets were vacuum dried and 20 µl of loading dye added (95 % Formamide, 20mM 

EDTA pH 8.0, 0.1 % bromophenol Blue, 0.1 % Xylene Cyanol). Samples were denatured 

by heating at 90 °C for 3 mins and 10 µl loaded (200-250 cps) on a 6 % (w/v) 

polyacrylamide sequencing gel (acrylamide/bisacrylamide ratio, 19: 1) in 1x TBE, which 

had been pre-run until the temperature of the gel was 50 °C. Gels were run at 55 W and 

were dried and exposed to autoradiograph film or a phosphorimager screen. 
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5.9 Assaying NorR activity in vivo 

5.9.1 Culture conditions 

Transcriptional activation by NorR in vivo was measured by introducing wild-type and 

mutant plasmids into MH1003, a norR::cat derivative of E. coli strain MC1000 with a lacZ 

reporter fusion to the norVW promoter inserted at the phage λ attachment site (appendix 

section 12.1.1) (D'Autreaux et al. 2005). Cultures were grown with shaking in 50 ml of LB 

medium at 37 °C until the OD650 reached 0.2-0.3, at which point glucose was added to the 

culture to a final concentration of 1 %. Cultures were then split into 8   ml Bijou bottles 

and were grown anaerobically overnight at 37 °C with or without potassium nitrite (4 

mM). Under these conditions, NorR is activated by the NO that is generated endogenously 

by nitrite reduction in E. coli (D'Autreaux et al. 2005). The next morning, β-galactosidase 

assays were carried out. 

 

5.9.2 β-galactosidase assay 

β-galactosidase is able to hydrolyse o-nitrophenyl-β-D-galactopyraniside (ONPG), 

releasing  o-nitrophenol which has a yellow colour detectable at 420 nm. Here, ONPG was 

used to monitor gene expression from the norV-lacZ promoter fusion that is activated by 

the norR transgene. Initially the OD600 of the overnight cultures was measured and 

recorded. 30 μl of each culture was added to 970 μl of Lysis buffer in appropriately marked 

glass tubes. 20 µl of chloroform was then added to each tube. Tubes were vortexed for 10 

seconds and incubated at 28 ˚C for five minutes. Each reaction was initiated by the 

addition of 200 μl of ONPG, at which point a timer was started. When a yellow colour had 

developed, the assay was quenched using 500 μl of 1 M sodium carbonate. The time course 

of the reaction was then recorded. 300 µl of the quenched samples was transferred to a 96-

well microtitre plate and the OD420 and OD550 measured and recorded using a BioTek plate 

reader. In each case, the β-galactosidase activity (Miller units) was calculated using the 

equation: (1000*OD420 – (1.75*OD550)) / (t*0.03*OD600); where t is the time in minutes.  
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Chapter 6 - Error-prone PCR mutagenesis of the AAA+ domain in NorR 

As a member of the AAA+ family of proteins, NorR uses the energy derived from ATP 

hydrolysis to activate transcription. However, the regulatory (GAF) domain ensures that 

the activity of the AAA+ domain is repressed in the absence of the signalling molecule, 

NO (D'Autreaux et al. 2005). Since this regulation is absent in a variant form of NorR that 

lacks the N-terminal domain (Pohlmann et al. 2000; Gardner et al. 2003), direct contact(s) 

between residues of the GAF and AAA+ domains are likely to mediate this mechanism of 

interdomain repression. To explore the interface between the N-terminal regulatory (GAF) 

domain and the central ATPase (AAA+) domain of NorR, PCR mutagenesis of the coding 

sequence of the AAA+ domain was employed to create mutations that disrupt the 

mechanism of interdomain repression (Figure 6.3A). Error-prone mutagenesis exploits the 

random incorporation of incorrect nucleotides by a low-fidelity polymerase during a 

standard PCR reaction. In order to employ this mutagenic technique to the sequence 

encoding only the central domain of NorR, specific primers that amplify the AAA+ 

domain sequence were used. In addition, suitable restriction sites were required to isolate 

the AAA+ domain sequence after amplification and to enable re-cloning back into the 

norR sequence. However, there were no suitable restriction sites either side of AAA+ 

domain sequence that were absent in the remainder of the norR sequence or the the 

pET21a vector. Therefore, two silent mutations were engineered either side of the 

sequence encoding the AAA+ domain to create restriction sites that did not change the 

norR coding sequence. A base change C496T created the Mfe I/ Mun I restriction site and a 

further base change G1341C created the Sst II/ Sac II restriciton site at the 5‟ and 3‟ ends 

of the norR AAA+ sequence respectively. The resulting plasmid was named pMJB1 and 

the Mfe I – Sst II fragment formed the template for the random PCR mutagenesis. 

 

6.1 Confirmation of wild-type activity of mutant plasmid pMJB1 

Although the engineered mutations were silent in terms of the coding sequence, it was 

important to establish that they did not alter the expression of the NorR protein as a result 

of codon changes. Transformation of the pMJB1 and pNorR plasmids into the MH1003 E. 

coli strain (appendix section 12.1.1) enabled comparison of the expression of NorR 

proteins from sequences with and without the engineered codon changes respectively. 

MH1003 is a norR::cat derivative of the E. coli strain MC1000 (appendix section 12.1.1) 

with a lacZ reporter fusion to the norVW promoter inserted at the phage λ attachment site 

(D'Autreaux et al. 2005). Transformation of this strain, which lacks a chromosomal copy 
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of the norR gene, with a plasmid encoding NorR is the basis of the β-galactosidase that 

relies upon “leaky” expression from the pET21a vector. In the presence of NO, wild-type 

NorR activates the expression from the norV-lacZ promoter, and the accumulation of β-

galactosidase indicates the level of expression and transcriptional activity of NorR. The 

subsequent measurement of β-galactosidase activity confirmed that creation of the 

restriction sites does not alter the activity of NorR with respect to activation of 

transcription at the norV promoter (Figure 6.1). 

 

6.2 Searching for escape mutants in the AAA+ domain 

The overall strategy for identifying mutations in the AAA+ domain which allow the 

protein to escape GAF-mediated repression of activity is shown in Figure 6.2. 35 cycles of 

a standard PCR reaction were conducted using the AAA+ Fwd and Rev primers (appendix 

section 12.1.4) and the low-fidelity Taq polymerase. Several, separate reactions were set-

up to maximise the number of novel base variations within the AAA+ sequence of norR. 

Multiple PCR reactions were pooled and then purified. The amplified sequence encoding 

the AAA+ region of NorR was subsequently digested with the Mfe I and Sst II restriction 

enzymes that cut at the engineered restriction sites. The resulting population of Mfe I – Sst 

II fragments was cloned into pMJB1, similarly treated to remove the Mfe I – Sst II 

fragment, to reconstitute the complete norR sequence. This created a population of 

plasmids with randomly incorporated base substitutions within the AAA+ sequence of 

norR. Electroporation of the plasmid population into the E. coli strain DH5α was 

conducted and plasmid purification carried out before transformation of the sample into the 

E. coli strain MH1003 (appendix section 12.1.1). 

 

6.3 Identification of constitutive mutants 

Identification of constitutive mutants was based around the ability of the variant forms of 

NorR encoded by the mutant plasmid population to activate expression from the norV-lacZ 

promoter fusion of MH1003 in the absence of an NO-source. Transformants were plated 

out on LB agar containing suitable antibiotics and the X-gal substrate (40 μg/ml). In the 

absence of an NO-source, the regulatory (GAF) domain represses the activity of the central 

(AAA+) domain of NorR (D'Autreaux et al. 2005). Therefore the wild-type protein is 

largely unable to activate transcription and significant production of β-galactosidase does 

not occur. In some plasmids random PCR mutagenesis of the AAA+ sequence might lead  
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Figure 6.1 – Comparison of the in vivo activity of wild-type NorR and a derivative expressed 

from a sequence containing two silent mutations that introduced the Mfe I and Sst II 

restriction sites. Transcriptional activation was assessed using the β-galactosidase (norV-lacZ 

reporter) assay after transformation of the MH1003 complementation strain with the pMJB1 and 

pNorR plasmids that contain norR sequences with and without the engineered codon changes 

respectively. Cultures were grown either in the absence (black bars) or presence (white bars) of 4 

mM potassium nitrite, which induces endogenous NO production. Error-bars show the standard 

error of the three replicates carried out for each condition. 
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Figure 6.2 - Summary of the strategy used to identify constitutive mutants of the AAA+ domain in NorR. pMJB1 plasmid encoding the three NorR 

domains is shown; N-terminal regulatory domain (GAF) = Green; central ATPase domain (AAA+) = blue; C-terminal DNA binding domain (HTH) = orange. 

Since no suitable restriction sites were present, silent mutations were made by SDM to create the Mfe I (493/497) and Sst II (1343/1347) restriction sites either 

side of the AAA+ domain. Error-prone PCR mutagenesis was then carried out using the AAA+ Fwd and AAA+ Rev primers that anneal outside of the 

restriction sites, either side of the central domain. A low fidelity Taq polymerase was used to ensure that mutation events occurred during the amplification 

(indicated by the red star). Restriction digestion using the Mfe I and Sst II enzymes removed the “mutated” AAA+ sequence and electrophoresis followed by 

gel extraction enabled purification of the PCR insert. Non-treated pMJB1 was digested simultaneously and the larger “empty” vector isolated in the same 

way. Ligations were then set-up to clone the “mutated” AAA+ sequence back into norR. Electroporation of the ligated mutant plasmid sample into DH5α was 

conducted and plasmid purification carried out before transformation of the sample into the E. coli strain MH1003. Constitutive mutants were identified by a 

blue-white screen based on the ability of the norR gene to produce a protein that can activate expression of a norV-lacZ fusion. In the absence of NO, 

constitutive mutants activate expression of β-galactosidase that cleaves the X-gal substrate to produce a blue product. Mutant colonies were picked for 

sequencing and determination of their activity by the β-galactosidase assay. 
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to the expression of NorR variants that escape GAF-mediated repression of activity. Such 

mutant derivatives will therefore be able to activate transcription from the norV-lacZ 

fusion and β-galactosidase will cleave the X-gal substrate to produce a blue colour.  Blue 

colonies that represented the expression of a constitutively active form of NorR were 

observed at a frequency of less than 5 % (Figure 6.3B). Within this population, the 

majority of colonies were pale blue in colour, suggesting a moderate NorR activity, 

compared to a small number of dark blue colonies that indicated a higher expression of β-

galactosidase. All dark blue colonies as well as a large number of pale blue colonies 

identified in the screen were streaked out to ensure homogeneity before purification of the 

variant plasmids.  Overall, three separate rounds of random PCR mutagenesis were carried 

since amplification commonly resulted in multiple copies of the Mfe I – Sst II fragment 

with the same base change. This facilitated the identification of the less frequent, dark blue 

colonies that represented variants of NorR with particularly strong phenotypes. In total 100 

colonies identified in the screening were picked for plasmid purification and sequencing. 

 

6.4 Escape mutants of the AAA+ domain of NorR 

After screening, sequenced plasmids from blue colonies were transformed back into the E. 

coli strain, MH1003, for analysis of the in vivo phenotype (Figure 6.4). This strategy 

produced variant versions of NorR that exhibited activity in cultures grown in the absence 

of endogenous NO, generated by the presence of potassium nitrite. Plasmids isolated from 

pale blue colonies in the screen gave rise to NorR variants with only a small β-

galactosidase activity in the absence of endogenously generated NO, typically only 10-fold 

higher compared to the wild-type protein (Figure 6.4A). Furthermore, in the presence of an 

NO-source, these variants exhibited two to five-fold lower activities compared to wild-type 

NorR. Since, the K226E, E249K, K274R, Y305C, Y305N, V323A, H346Y and S349N 

NorR variants still require NO to activate transcription in vivo, these substitutions do not 

appear to significantly disrupt GAF-mediated repression of AAA+ activity. In contrast, 

plasmids isolated from dark blue colonies in the screen led to the expression of NorR 

variants with significant β-galactosidase activity in the absence of potassium nitrite (Figure 

6.4B).  In some cases (L256F, E276G, G266D and S292L) activity in the absence of the 

NO-signal was similar to that exhibited by a truncated version of NorR lacking the GAF 

domain (NorRΔGAF). This phenotype suggests that repression by the GAF domain has 

been completely bypassed, resulting in loss of regulation upon the AAA+ domain. In other 
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A 

X 

Figure 6.3 - NorR constitutive AAA+ mutants (A) Schematic of constitutively active 

NorR mutants. A substitution in the AAA+ domain is anticipated to interrupt the GAF-

AAA+ interface, preventing interdomain repression and activating the protein in the 

absence of NO. (B) Transformation of mutated pMJB1 into MH1003 (in the absence of 

NO) yields blue colonies when the X-gal substrate is present that indicate an escape 
phenotype. 

B 
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Figure 6.4 - Transcriptional activation by NorR AAA+ domain variants in vivo as 

measured by the norV-lacZ reporter assay. (A) in vivo activities of NorR variants 

expressed from plasmids that gave rise to a pale blue colony-phenotype in the screen. (B) 

in vivo activities of NorR variants expressed from plasmids that gave rise to a dark blue 

colony-phenotype in the screen. Substitutions are indicated on the x axis. “NorR” refers to 

the wild-type protein and “NorRΔGAF” refers to the truncated form lacking the GAF 

domain (residues 1-170). Cultures were grown either in the absence (black bars) or 

presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO 

production. Error-bars show the standard error of the three replicates carried out for each 

condition.  
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cases (P248L, V251M, F264Y, G266S, L295S and Q304E) some repression in the absence 

of NO was evident, indicative of a partial bypass phenotype. In order to predict the 

location of residues identified in the random mutagenesis, a structural model of the NorR 

AAA+ domain of NorR was built (by R.A Dixon) based on the crystal structure of the 

NtrC1 monomer (1NY5 Chain A) (Lee et al. 2003). Using this NtrC1 structure as a basis 

for the structural model had the advantage that the surface-exposed loops were well-

defined unlike many other available bEBP structures.  The model predicted that the 

majority of the substitutions are located in either helix 3 (H3), helix 4 (H4) or loop 1 (L1) 

of the AAA+ domain of NorR (Figure 6.5). These are the structural features in the central 

domain that undergo nucleotide-dependent conformational changes during the ATPase 

cycle to promote engagement with σ
54

. In a structural model of the the NorR oligomer 

(built by R.A Dixon) based on the ATP-bound forms of the NtrC1 heptamer (PDB ID: 

3MOE) (Chen et al. 2010), the majority of residues identified are clearly located at the 

upper surface of the ring and towards the centre of the pore within the region of σ
54

-

interaction (Figure 6.5C). Therefore, this region may represent a target of the GAF domain 

in the mechanism of interdomain repression in NorR.  

 

6.4.1 P248L, V251M, S292L, L295S and L256F substitutions 

The P248 and V251 residues are predicted to be located at the base of helix 3a in the model 

of the NorR AAA+ domain based on the NtrC1 structure (Figure 6.5) (PDB ID: 1NY5 

Chain A) (Lee et al. 2003). Based on their relative positions, they are predicted to form an 

H-bonding interaction (Figure 6.6B). The V251M mutation gave rise to significant activity 

in the absence of an NO-source with β-galactosidase activity similar to that of NorRΔGAF 

(Figure 6.4B). However, in the presence of endogenously-generated NO, the activity of the 

V251M variant increased 1.5 to 2-fold suggesting that although this substitution leads to 

significant “escape”, AAA+ activity is still partially repressed by the GAF domain. It is 

possible that substitution of the valine residue to methionine at position 251 is enough to 

disrupt the 248-251 interaction and significantly reduce the repression exerted by the GAF 

domain upon the AAA+ domain. However, unlike NorR-V251M, the P248L variant only 

exhibited low β-galactosidase activity in the absence of the NO-signal which was strongly 

induced in the presence of an NO-source (Figure 6.4B). In this case, a weaker escape 

phenotype might be explained by the ability of a leucine residue at the same position to 

maintain the potential H-bond with V251. Alternatively, disruption of the H-bonding 

interaction may not be responsible for the phenotypes observed in vivo. 
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Figure 6.5 - (A) Domain map and sequence alignment of bEBP AAA+ domains. The locations of the residues identified in the random mutagenesis are 

indicated relative to the Helix 3a, Loop 1, Helix 3b, Helix 4 and Loop 2 motifs (shaded in grey). Residues that are identical to the NorR sequence (underlined) 

in the bEBP alignment are shaded. The locations of the Walker A, “Switch” Asn, Walker B and R-finger motifs are also indicated by colour coding. Alignments 

were conducted using ClustalW (www.ebi.ac.uk/clustalw/) using the sequences from UniProtKB/Swiss-Prot (http://www.expasy.ch/): PspF (E. coli), NifA (A. 

vinelandii), XylR (P. putida), DmpR (Pseudomonas sp.), NtrC (E. coli), ZraR (E. coli), NtrC1 (A. aeolicus), NtrC4 (A. aeolicus), FlgR (H. pylori), DctD (S. 

meliloti), FhlA (E. coli), HrpR (P. syringae), NorR (E. coli), TyrR (E. coli). R = regulatory domain; D = DNA binding domain. (B) Structural model of the 

AAA+ domain of NorR based on the NtrC1 structure (Lee et al. 2003) (1NY5 Chain A). The residues identified in the mutagenesis and key conserved 

motifs are labelled and shaded, correlating to the domain map in (A). The F264 and G266 residues form part of the GAFTGA motif that contacts σ
54

. (C) 

Structural model of the NorR oligomer based on the ATP bound NtrC1 heptamer (Chen et al. 2010) (PDB ID: 3MOE). Alternative monomers are 

indicated by dark and light shading. For clarity the ATP molecules are not shown but the catalytic magnesium ions are shown as light pink spheres. The 

majority of residues identified are clearly located in the region of the NorR oligomer that undergoes conformational change u pon ATP hydrolysis i.e. at the 

upper surface and towards the centre of the ring (shaded in red). The exception is the Q304 residue (shaded in blue) which is not expected to have a role in 

modulating the conformation of the σ54
-interaction surface. 
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Likewise, the S292 and E249 residues are also predicted to interact via an H-bond (Figure 

6.6C). The activity of the S292L variant in vivo was very similar to that of the truncated 

version of wild-type NorR (NorRΔGAF), indicating that the mutation allows the central 

domain to fully escape repression (Figure 6.4B). Potentially, the serine to leucine 

substitution prevents this H-bond contact from forming between the two residues, thereby 

disrupting the interface between the GAF and AAA+ domains. Error-prone PCR also 

identified the E249K variant of NorR. This substitution would also be expected to disrupt a 

potential H-bonding interaction between the 249 and 292 residues but the E249K variant 

only has a mildly constitutive phenotype (Figure 6.4A). Possibly, the lysine residue 

maintains the interface between GAF and AAA+ domains by forming a polar interaction 

with another nearby residue. Alternatively, the disruption of this potential H-bond may not 

be responsible for the in vivo phenotype of the S292L variant. Indeed, the S292 residue is 

also predicted to form an H-bonding interaction with L295, so disruption of this potential 

interaction may be responsible for the escape phenotype of S292L. The L295S and L256F 

mutants also showed strong activity in the absence of NO and according to the structural 

model the L295 residue (H4) may form a hydrophobic interaction with L256 in the 

opposite helix (H3) (Figure 6.6D), although the model calculates this distance as 4.0 Å. 

The L256F variant appeared to fully escape repression by the GAF domain unlike the 

L295S protein which remained partially inducible (Figure 6.4B). The disruption of this 

potential hydrophobic interaction by the L to S change at position 295 or by the L to F 

change at position 256, may offer an explanation for the constitutive phenotypes observed 

in vivo. 

 

6.4.2 The E276G substitution 

The E276 residue is predicted to be located at the tip of helix 3b in the structural model 

(Figure 6.5). The E276G variant showed a fully constitutive phenotype (Figure 6.4B), 

indicating complete escape from GAF-mediated repression of AAA+ activity. E276 is 

predicted to form a salt bridge with the R310 residue (Figure 6.6E) and the disruption of 

this interaction might therefore explain the escape phenotype of the E276G variant. In 

order to further investigate the escape of repression in this variant, targeted mutagenesis 

was carried out at positions 276 and 310 (Figure 6.7). If the loss of an E276-R310 polar 

interaction was responsible for the constitutive activity, then exchange of the negatively 

charged glutamate for a positively charged residue would be expected to result in a similar 

phenotype. Similarly, exchange of the positively charged arginine for a negatively charged  
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Figure 6.6 - Model of the expected interactions between residues in the AAA+ domain of 

NorR, based on the structure of NtrC1 (Lee et al., 2003) (1NY5 Chain A; NtrC1 inactive 

dimer) (A) Overall fold of the AAA+ domain based upon a single monomer of the NtrC1 (PDB 

ID: 1NY5 Chain A of inactive dimer) (Lee et al. 2003). Helix 3 (H3), Helix 4 (H4), Loop 1 (L1) 

and Loop 2 (L2) are labelled. (B) Predicted H-bond between the P248 and V251 residues of 

Helix 3. (C) Predicted H-bond between the E249 (Helix 3) and S292 (Helix 4) residues. (D) 

Predicted contact between the L295 (Helix 4) and L256 (Helix 3) residues. (E) Predicted salt-

bridge between the R310 (Loop 2) and E276G (Helix 3) residues. The residue side chains are 

coloured as in Figure 6.5 with the additional residues R310 and E249 coloured in black and 

orange respectively. 
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residue would also be expected to produce a constitutive phenotype. However, lysine, 

arginine, and histidine substitutions at position 276 all gave phenotypes similar to wild-

type NorR. Additionally, an alanine substitution gave a wild-type response, suggesting that 

this residue is not of crucial importance in the mechanism of interdomain repression. 

Mutagenesis of the R310 residue (the predicted interaction partner of E276) to either 

glutamate or alanine resulted in a null phenotype, indicating that this residue is of crucial 

importance in NorR (Figure 6.7). It appears then, that the breaking of a potential E276-

R310 polar interaction is not the explanation for the escape phenotype and that the glycine 

change at position 276 enables escape from GAF-mediated repression by some other 

mechanism. 

 

6.4.3 The Q304E substitution 

The only substitution identified in the random mutagenesis screen that gave rise to a 

significant escape phenotype but is predicted to be located outside the region of nucleotide-

induced conformational change was Q304. The equivalent residue in NtrC1 is most 

probably involved in inter AAA+ domain subunit interactions. β-galactosidase assays 

showed that the Q304E variant had a partially constitutive phenotype (Figure 6.4B). The 

mutant protein showed significant activity in the absence of the NO-signal but an NO-

source was required to enable full activation. The Q304E variant of NorR is the subject of 

Chapter 9. 

 

6.4.4 Mutations in the GAFTGA motif of NorR give rise to constitutive activity 

Error-prone PCR identified three substitutions within the highly conserved GAFTGA motif 

which forms part of a loop on the surface of the AAA+ domain that makes contact with σ
54

 

during the ATP-hydrolysis cycle (Bordes et al. 2003). Structural studies have shown that 

the GAFTGA loop (also known as loop 1), assisted by loop 2 is in an extended 

conformation in the ATP-bound transition state and is therefore well positioned for contact 

with region I of σ
54 

(Rappas et al. 2006; Bose et al. 2008a). Upon phosphate release, the 

GAFTGA loops collapse down towards the surface of the AAA+ domain, allowing for 

relocation of σ
54

 and open complex formation (Figure 3.4D). Therefore the GAFTGA 

motif is critical in coupling the ATP-dependent conformational changes that occur in the 

AAA+ domain to the isomerisation of holoenzyme.  
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Figure 6.7 - Transcriptional activation by variants of the E276 and R310 residues of NorR 

in vivo as measured by the norV-lacZ reporter assay. Substitutions are indicated on the x 

axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the truncated form 

lacking the GAF domain (residues 1-170). Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO 

production. Error-bars show the standard error of the three replicates carried out for each 
condition. 
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β-galactosidase assays revealed that the F264Y substitution enabled partial escape from 

interdomain repression (Figure 6.4B). This phenylalanine is part of the key GAFTGA 

motif found in all bEBPs and has recently been implicated in the remodelling of the Eσ
54 

closed complex through an interaction with the -12 DNA fork junction structure (Zhang et 

al. 2009). Two substitutions at the second glycine of the GAFTGA motif (position 266) 

were identified in the random mutagenesis of the NorR AAA+ domain. The most notable 

of these was the G266D mutation, which allowed full escape from the GAF-mediated 

repression of NorR activity (Figure 6.4B). This might seem surprising given that this loop 

is required to contact σ
54

 to drive open complex formation (Buck et al. 2006) and that 

substitutions at G266 are likely to influence the conformational flexibility of this loop. In 

order to determine which amino acids at the G266 position give rise to constitutive 

activity, the glycine residue was substituted for each of the other 19 natural amino acids 

(Figure 6.8A). Like the GAFTGA variant G266D, the G266N variant of NorR was fully 

active and furthermore escaped GAF-mediated repression in vivo. In addition to the 

aspartate and asparagine substitutions that gave rise to constitutive activity; glutamine, 

serine, cysteine, and methionine all gave activity in the absence of an NO-source. Whereas 

asparagine and aspartate changes gave fully constitutive phenotypes, the other changes 

were still partially subject to regulation by the GAF domain. Surprisingly, the glutamate 

substitution did not produce a functional NorR protein. The remaining amino acid changes 

all resulted in non-functional proteins and Western blotting confirmed that this was not due 

to instability (Figure 6.8B).  
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Figure 6.8 –Mutagenesis at position 266 of NorR (A) Transcriptional activation by mutants of 

the G266 residue of NorR in vivo as measured by the norV-lacZ reporter assay. Substitutions are 

indicated on the x axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the 

truncated form lacking the GAF domain (residues 1-170). Cultures were grown either in the 

absence (black bars) or presence (white bars) of 4 mM potassium nitrite, which induces 

endogenous NO production. Error-bars show the standard error of the three replicates carried 

out for each condition. (B) Western blot analysis indicating the stability of NorR G266 variants 

in vivo when cultures are grown in the absence of potassium nitrite. “NorR” refers to the wild-

type protein. Lane 1 shows the result of Western blot analysis against the E. coli strain MH1003 
only (i.e. without expression of NorR). Here, the uppermost band, correlating to NorR is absent.  
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6.5 Testing the requirement for the GAF domain in the GAFTGA variant G266D 

β-galactosidase assays showed that the G266D mutant-version of NorR is fully 

constitutive, indicating a complete escape from GAF-mediated repression of AAA+ 

activity (Figure 6.4B). Although this GAFTGA-variant is fully constitutive, the N-terminal 

domain could still be required for the full-escape phenotype observed. To investigate this, 

the G266D and G266N substitutions were introduced into a construct that lacks the first 

170 residues (pNorRΔGAF). Surprisingly, the resulting G266DΔGAF and G266NΔGAF 

variants exhibited a much lower activity in vivo than the full-length G266D and G266N 

variants respectively (Figure 6.9). Unlike G266, the Q304 residue is not predicted to have a 

role in modulating the conformation of the σ
54

-interaction surface and the Q304E variant 

remains partially subject to GAF-mediated repression. When the Q304E substitution was 

introduced into a NorRΔGAF construct, the NorR variant was able to fully escape 

interdomain repression (Figure 6.9). In order to confirm a genuine requirement for the N-

terminal GAF domain in the NorR variant G266D, Western blot analysis was carried out to 

compare the stability of the full-length and truncated constructs. Unfortunately, the NorR 

primary antibody was unable to detect the version of NorR that lacks the GAF domain, 

presumably since part of the N-terminal domain forms the epitope for the antibody. Since 

ΔGAF and Q304EΔGAF constructs exhibited a strong constitutive phenotype in the assay, 

it is unlikely that the G266DΔGAF variants are unstable although this cannot be entirely 

ruled out. 

 

6.6 Testing the requirement for the GAF domain in other AAA+ variants of NorR 

Next, it was important to investigate whether the potential requirement for the GAF 

domain is a feature of all of the AAA+ variants identified here. As mentioned previously, 

the Q304E variant remained partially subject to repression and as expected, the N-

terminally truncated form was able to fully escape regulation by the GAF domain (Figure 

6.9). Likewise, those variants that remained partially inducible in vivo (P248L, V251M, 

L295S and F264Y) became fully constitutive when the GAF domain was absent (Figure 

6.10). However, as was the case for the G266D and G266N variants, other AAA+ variants 

(P248L, V251M, L256F, E276G, and F264Y) showed reductions in activity in the ΔGAF 

form. Since it was not possible to test the stability of such constructs, reduced stabilities in 

variants that lack the first 170 residues cannot be ruled out. Overall, only the activities of 

the Q304E, L295S and S292L variants were not reduced in the absence of the N-terminal  
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Figure 6.9 - Transcriptional activation in vivo by the G266D, G266N and Q304E 

variants in full-length and truncated forms (Δ1-170) as measured by the norV-lacZ 

reporter assay. Substitutions are indicated on the x axis. “NorR” refers to the wild-type 

protein and “NorRΔGAF” refers to the truncated form lacking the GAF domain (residues 1-

170). Cultures were grown either in the absence (black bars) or presence (white bars) of 4 

mM potassium nitrite, which induces endogenous NO production. Error-bars show the 

standard error of the three replicates carried out for each condition. 
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Figure 6.10 - Transcriptional activation in vivo by AAA+ variants in full-length and 

truncated forms (Δ1-170) as measured by the norV-lacZ reporter assay. Substitutions 

are indicated on the x axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers 

to the truncated form lacking the GAF domain (residues 1-170). Cultures were grown either 

in the absence (black bars) or presence (white bars) of 4 mM potassium nitrite, which 

induces endogenous NO production. Error-bars show the standard error of the three 

replicates carried out for each condition. 
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domain and interestingly these are the only substitutions identified in helix 4 (H4) of the 

AAA+ domain.  

 

6.7 Testing the requirement for the GAF domain in His-tagged AAA+ variants  

Since the NorR primary antibody was unable to detect the stability of wild-type and mutant 

versions of the protein that lack the GAF domain, it was decided to make tagged-versions 

of the full-length and truncated constructs and test the stabilities of expressed proteins in 

vivo using a primary antibody raised to detect the presence of the tag.  In order to do this, 

the sequences that encode wild-type and mutant versions of NorR and NorRΔGAF were 

cloned into the pETNdeM11 vector (appendix section 12.1.2). The resulting constructs 

expressed proteins with a TEV cleavable, hexahistidine tag at the N-terminus and were 

later employed in protein purification (Chapters 7 and 8).  The E. coli strain used to 

measure β-galactosidase activity expressed from the norV promoter, MH1003 (norR::cat 

norV-lacZ), is maintained by the chloramphenicol and kanamycin resistance genes and 

hence there was no oppotunity to select for the presence of the pETNdeM11 vector (which 

is also maintained by kanamycin) when expressed in the MH1003 strain. Therefore a 

strategy was devised to insert the omega (Ω) cassette, which encodes 

streptomycin/spectinomycin resistance, from the pHP45Ω plasmid (Prentki and Krisch 

1984) into the norR-derivatives of the pETNdeM11 plasmid at the Sma I site (Chapter 5, 

Figure 5.3). The resulting His-tagged full-length and truncated constructs were then 

assayed for NorR activity in the E. coli strain MH1003. In contrast to the non-tagged 

constructs, there was no reduction in NorR activity for the G266DΔGAF-His and 

G266NΔGAF-His proteins compared to their full-length counterparts (Figure 6.11). It 

appears therefore that the decrease in activity observed for the non-tagged constructs is due 

to decreased stability. Presumably, the presence of the hexahistidine tag at the N-terminus 

of the truncated constructs is able to stabilise the variant proteins. 
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Figure 6.11 - Transcriptional activation in vivo by the G266D, G266N and Q304E 

variants in full-length and truncated forms (Δ1-170) with N-terminal hexahistidine 

tags, as measured by the norV-lacZ reporter assay. Substitutions are indicated on the x 

axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the truncated form 

lacking the GAF domain (residues 1-170). Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO 

production. Error-bars show the standard error of the three replicates carried out for each 

condition. 
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6.8 Influence of GAF domain substitutions on the G266D phenotype 

In order to further investigate the role of the N-terminal (GAF) domain in the GAFTGA 

variant G266D, mutagenesis was carried out to substitute residues in the regulatory domain 

of the NorRG266D construct. In previous work, substitution of conserved residues prior to 

spectroscopic characterisation led to the identification of five candidate ligands to the non-

heme iron centre (Tucker et al. 2007). The C113, D96 and D131 side chains are predicted 

ligands to the iron centre since the C113G, C113S, D96A and D131A variant proteins are 

unable to bind iron or do not exhibit the characteristic g = 4 Electron Paramagnetic 

Resonance (EPR) signal after reconstitution in vitro (Tucker et al. 2007). The EPR and 

UV-visible spectra of the D99A variant protein show that this substitution alters the 

structure of the Fe(NO) complex, making it a good candidate as an iron ligand (Tucker et 

al. 2007). Although arginine generally does not make a good ligand for transition metals, 

R75 has emerged as a fifth ligand in the model of the hexa-coordinated iron centre. Despite 

a normal complement of iron, EPR of the R75K variant is unable to detect the signal 

characteristic of the mononitrosyl complex in whole cells or after reconstitution of the iron 

in vitro (Tucker et al. 2007). The R75K, D96A, D99A, C113G, C113S or D99A 

substitutions were combined with the G266D change in the AAA+ domain of NorR to 

examine their influence on the escape phenotype of the G266D mutant protein. Results 

showed that substitutions at each of the five candidate ligands resulted in a reduction of 

NorR activity. Such reduction in activity could conceivably arise by affecting coordination 

at the iron centre, disrupting transmission of the NO-signal from the ferrous iron or by 

causing structural perturbations in the GAF domain.  The former is more likely when the 

reduction in iron binding of the variants or the inability to form the mononitrosyl complex, 

observed in vitro, is considered (Tucker et al. 2007). As well as a reduction in activity, a 

number of the GAF-substitutions enabled escape from the GAF-mediated regulation of 

AAA+ activity e.g. D99A, D131A.  Here,  constitutive phenotypes could arise either as a 

consequence of disruption of the GAF-AAA+ interface, a conformational change in the N-

terminal domain similar to that of the activated form, or a change in the coordination 

environment of the iron centre to mimic the NO-activated state. Considering the predicted 

role of these residues as ligands to the iron centre, the latter appears the most likely. 

Irrespective of the phenotype caused by the single GAF-substitutions, β-galactosidase 

assays revealed that these changes did not cause a reduction in the ability of G266D to 

activate transcription (Figure 6.12). This confirms that the NO-sensing function of the  
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Figure 6.12 – Activities of G266D variants in vivo as measured by the norV-lacZ reporter 

assay when additional substitutions are made in the GAF domain to substitute residues 

predicted to form ligands to the non-heme iron centre (Tucker et al. 2007). Substitutions are 

indicated on the x axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the 

truncated form lacking the GAF domain (residues 1-170). Cultures were grown either in the 

absence (black bars) or presence (white bars) of 4 mM potassium nitrite, which induces 

endogenous NO production. Error-bars show the standard error of the three replicates carried 
out for each condition.  
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GAF domain does not contribute to the constitutive phenotype of the G266D mutant 

observed in vivo. 

 

Unlike substitutions at the predicted iron ligands of the non-heme iron centre of NorR, 

changes at the R81 and H111 residues do not appear to disrupt the iron centre since 

Electron Paramagnetic Resonance (EPR) reveals an Fe(NO) complex with identical 

spectral properties to the wild-type protein (Tucker et al. 2007). In addition, in vivo, the 

R81L, H111L and H111Y variants responded to the addition of nitrite suggesting that NO-

induced signalling functions normally in these variants (Figure 6.13A). Therefore these 

residues are not predicted to have a role in coordinating the ferrous iron. Although not 

highly conserved in NorR proteins, the R81 residue is predicted to be surface exposed and 

a charged residue here would be well situated to form interaction(s) with residues in the 

AAA+ domain. The H111 residue is predicted to be found closer to the coordination site 

and may have a role in transmitting the “on” signal from the NO-bound iron to affect 

interactions between the GAF and AAA+ domains.  The predicted location of R81 and 

H111 raises the possibility that these residues contribute to the mechanism of interdomain 

repression in NorR. In order to assess the effect of the R81L, H111L and H111Y 

substitutions on the ability of the G266D variant to activate transcription in vivo, these 

changes were made in the GAF domain of NorRG266D to create double mutants. β-

galactosidase assays showed that the R81L substitution (but not the H111Y or H111L 

changes) in the GAF domain resulted in a significant decrease in the activity of the G266D 

mutant protein and Western blotting has shown that this is not due to a decrease in stability 

(Figure 6.13B). Therefore, it appears that substitution(s) in the GAF domain at R81 can 

partially restore the interface of interdomain repression in the G266D protein. Since R81 is 

predicted to be surface exposed and well placed for AAA+ domain contact, this 

suppression event suggests that the R81 residue may have a significant role in maintaining 

GAF-AAA+ interactions. The role of R81 in interdomain repression will be studied further 

in the Chapter 7. 
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Figure 6.13 - Activities of G266D variants in vivo as measured by the norV-lacZ reporter 

assay when additional substitutions are made at the predicted surface-exposed R81 and 

H111 residues of the GAF domain (Tucker et al. 2007). Substitutions are indicated on the x 

axis. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the truncated form 

lacking the GAF domain (residues 1-170). Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO 

production. Error-bars show the standard error of the three replicates carried out for each 

condition. (B) Western blot analysis indicating the stability of NorR variants in vivo when 

cultures are grown in the absence of potassium nitrite. “NorR” refers to the wild-type protein. 

“MH1003” refers to the E. coli strain only. The uppermost of three bands that is not detected in 
the MH1003 strain correlates to NorR and its variants in the Western analysis. 
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6.9 Discussion 

The lack of NO-responsive regulation in truncated forms of NorR that lack the GAF 

domain (D'Autreaux et al. 2005), clearly places NorR in the class of bEBPs that are 

negatively regulated. Here, a random mutagenic approach has been used to identify 

mutations in the central (AAA+) domain of NorR that allow the protein to escape 

repression by the N-terminal regulatory domain. The in vivo screening approach was based 

on the cleavage of the X-gal substrate by β-galactosidase, expressed from a norV-lacZ 

fusion and led to the identification of two types of NorR variant. Variants with weak 

escape phenotypes correlating to pale-blue colonies in the screen were more frequent but 

showed minimal transcriptional activity in the absence of an NO-source (Figure 6.4A). 

Therefore the K226, E249, K274, Y305, V323 and H346 residues are unlikely to have a 

significant role in the mechanism of interdomain repression. In contrast, variants with 

strong escape phenotypes correlating to dark-blue colonies in the screen were less common 

but showed significant constitutive activity in the β-galactosidase assay (Figure 6.4B). 

Substitutions of the AAA+ domain that result in such a phenotype indicate that the 

repression of the regulatory (GAF) domain upon the central (AAA+) domain has been 

bypassed. These include the changes L256F, E276G, G266D and S292L that gave rise to 

fully constitutive phenotypes and therefore appear to completely bypass the GAF-mediated 

repression mechanism. Other substitutions (P248L, V251M, F264Y, G266S, L295S and 

Q304E) were still responsive to NO, indicating a partial bypass phenotype. Overall three 

rounds of random PCR mutagenesis were sufficient to generate a plethora of constructs 

encoding mutant-versions of NorR. When coupled to an effective screening strategy, this is 

a powerful approach to identify variants of a particular phenotype. However, error-prone 

PCR is limited by the codon changes that can be made when any one (or more) base 

change occurs at a given position in the DNA sequence. Therefore it is possible that 

alternative substitutions at residues not deemed here to have a significant role in 

repression, may lead to stronger escape phenotypes. Significantly, the majority of 

substitutions identified here that gave rise to strong escape-phenotypes are all found in 

helix 3, helix 4 or loop 1. This region of the AAA+ domain undergoes significant 

conformational change throughout the ATP hydrolysis cycle to promote contact with σ
54 

(Rappas et al. 2006). Therefore, one explanation for the escape phenotypes of such variants 

is that substitutions prevent the GAF-mediated repression of this region thereby enabling 

σ
54

-interaction without the need for NO-activation of NorR activity. Unlike the other 

substitutions identified in the AAA+ domain that lead to strong escape phenotypes, the 
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Q304E change is at a residue not expected to have a role of modulating the conformation 

of the σ
54

-interaction surface. Predicted to be located at the tip of helix 4, changes at this 

residue are predicted to influence inter-protomer interactions, based on structures of related 

bEBPs. The Q304E variant and its mechanism of escape from GAF-mediated repression is 

the subject of Chapter 9. 

 

It is noteworthy that the E276G substitution is at a residue predicted to play a major part in 

the conformational changes that couple the energy derived from ATP hydrolysis to σ
54

-

contact. A glycine substitution would be expected to change the nature of helix 3b, of 

which E276 is predicted to be a part. In PspF, the equivalent residue (E97) makes a salt -

bridge with the key R131 residue (R310 in NorR) and the NtrC1 structure reveals a 

potential salt-bridge that forms between the R310 and E276 residues (Figure 6.6E). As part 

of the nucleotide-driven conformational change proposed in PspF (Figure 3.4D), PspF-

R131 breaks this contact to establish a salt bridge with the PspF-E81 residue that leads to 

the rotation of helix 3 and return to the ADP bound state, when σ
54

 is released (Rappas et 

al. 2006). Therefore, the loss of the NorR E276-R310 interaction may lock the L1 loop in a 

conformation that is resistant to interdomain repression by the GAF domain. However, 

targeted mutagenesis revealed no correlation between the loss of the potential E276-R310 

interaction and the in vivo phenotype, suggesting that the E276G variant escapes the GAF-

mediated repression mechanism by some other, unknown mechanism. 

 

Of particular interest is the identification of escape variants located in the highly conserved 

GAFTGA motif. This critical motif couples ATP-dependent conformational changes in the 

AAA+ domain to isomerisation of the Eσ
54

-complex (Bordes et al. 2003). It is remarkable 

that substitutions in the surface exposed GAFTGA loop are able to prevent negative 

regulation by the GAF domain but still retain the ability to interact with σ
54

 and activate 

open complex formation. In the majority of bEBPs, substitutions in the GAFTGA motif 

cause a severe defect on the ability of the protein to activate transcription (Table 3.2). This 

includes substitutions at position 264 (GAFTGA) (Wang et al. 1997; Gonzalez et al. 1998; 

Li et al. 1999; Wikstrom et al. 2001; Bordes et al. 2003; Zhang et al. 2009). This work has 

identified the F264Y variant of NorR that was competent to activate transcription in vivo 

but required the addition of an NO-source to become fully active (Figure 6.4B). It may be 

that other substitutions at this position cause more significant disruption of the GAF-

AAA+ interface but that the F264Y change is the only one that can be tolerated for NorR 
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activity. Work in NifA and PspF has shown that only substitution of the phenylalanine for 

a tyrosine residue permits transcriptional activation (Gonzalez et al. 1998; Zhang et al. 

2009), indicating that the aromatic ring at this position is important for bEBP activity. In 

agreement with the observation that a F264Y substitution in NorR does not prevent 

transcriptional activation in vivo, ~ 7% of the 291 bEBPs available on the NCBI database 

have a naturally occurring tyrosine at this position. In PspF, the equivalent F85Y protein is 

the only variant of this position competent to interact with σ
54

 and form the ADP.AlFx 

“trapped” complex. However, in contrast to the F264Y variant in NorR, the F85Y variant 

of PspF did not activate transcription in vivo (Zhang 2010), although it was competent for 

low-level transcriptional activation in vitro (Zhang et al. 2009). It has been suggested that 

the presence of a tyrosine residue at this position of the motif in some bEBPs may ensure 

the lower level of σ
54

-dependent-transcription that is required at certain promoters. In 

agreement with this proposal, a naturally occurring tyrosine is present in the bEBP HrpS 

that together with HrpR activates transcription from the hrpL promoter in P. syringiae 

(Hutcheson et al. 2001). When the tyrosine is substituted for a phenylalanine to produce 

the consensus “GAFTGA” motif, there is a 50 % increase in transcription from the hrpL 

promoter (Zhang et al. 2009). In the case of NorR, in vivo data suggest that the presence of 

a tyrosine at position 264 does not decrease the level of transcription and it may be that co-

variance elsewhere in the bEBP, σ factor or promoter sequence is required to ensure a 

lower level of transcription.  

 

Few studies have been carried out to explore the role of the second glycine in the 

GAFTGA motif. Targeted mutagenesis at the G266 position of NorR revealed that thirteen 

of nineteen possible amino acid changes resulted in a variant protein that was unable to 

activate transcription irrespective of whether an NO-source is present (Figure 6.8A). The 

non-functional nature of most substitutions at this position is not unexpected, given the 

importance of the GAFTGA motif and its high conservation in bEBPs. In agreement with 

the in vivo phenotype of the NorR variant G266K, the equivalent substitution in NtrC 

(G219K) results in the expression of a protein that fails to activate transcription. However, 

this variant had improved DNA binding activity and the ATPase activity was 50% of the 

activated wild-type (North et al. 1996), suggesting that the lysine substitution may result in 

a null phenotype by preventing interaction with σ
54

. Overall, positively charged or 

aromatic residues are apparently not tolerated at this position in NorR, which may reflect a 

requirement for the σ
54

-interaction. In contrast, the cysteine, serine, glutamine and 



180 
 

methionine substitutions at position 266 of NorR resulted in proteins that were competent 

to activate transcription (Figure 6.4A). These variants showed varying levels of activity in 

the absence of an NO-source but in all cases were still subject to the GAF-mediated 

repression of full NorR activity. The G266C variant of NorR exhibited a phenotype similar 

to that of the wild-type, indicating that the presence of a cysteine residue at the tip of loop 

1 does not prevent interaction with σ
54

, nor normal regulation of AAA+ activity. The 

G219C variant of NtrC is competent to form open complexes in vitro but intriguingly can 

only do so in the absence of enhancer DNA (Yan and Kustu 1999). This defect may be 

explained by changes in the relative juxtaposition of the DNA binding and ATPase 

domains observed during the ATPase cycle (De Carlo et al. 2006). 

 

Here, random PCR and targeted mutagenesis has identified the G266D and G266N 

substitutions respectively that both gave rise to fully constitutive phenotypes, indicating a 

complete escape from the GAF-mediated repression of AAA+ activity (Figure 6.8A). 

Indeed, further substitutions designed to disrupt the detection of NO at the non-heme iron 

centre of the GAF domain had no effect on the activity of the G266D variant (Figure 6.12). 

Therefore, the NO-sensing function of the regulatory domain does not contribute to the 

constitutive phenotype observed in vivo. In order to confirm that the G266D and G266N 

mutant-versions or NorR are “true” escape variants, the aspartate or asparagine 

substitutions were introduced into the NorRΔGAF construct (Figure 6.9). It appears that 

removal of the N-terminal domain caused a decrease in activity in all AAA+ variants 

identified here except for those with substitutions in helix 4 (Figure 6.10). Since the ΔGAF 

and Q304EΔGAF proteins exhibited strong constitutive phenotypes, it seems unlikely that 

similar constructs with alternative substitutions should be unstable, although Western 

blotting was unable to detect any NorR construct that lacks the first 170 amino acids. 

Interestingly, β-galactosidase assays showed that the complete bypass phenotypes of the 

G266D and G266N are not affected in the absence of the GAF domain when an additional 

TEV-cleavable, hexahistidine tag is present at the N-terminus (Figure 6.11). It is possible 

that the N-terminal His-tag stabilises such proteins and therefore the GAF domain probably 

does not contribute to the activity of the GAFTGA variants G266D and G266N, suggesting 

that they are “true” escape variants. 

 

In line with the identification of active G266D and G266N variants of NorR, a number of 

bEBPs exist with naturally occurring aspartate or asparagine residues at position 266 
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(Figure 6.14). These include two theoretical proteins that are each predicted to contain a 

GAF domain (Swiss-Prot Q7M8U4 from Wolinella succinogenes and Swiss-Prot Q7UK84 

from Rhodopirellula baltica). A protein (Swiss-Prot Q8EN58) from Oceanobacillus 

iheyensis is predicted to contain a PAS domain whilst a number of other theoretical 

proteins are predicted Response Regulators (RRs) of two-component systems and contain a 

REC (cheY-homologous receiver domain) domain. Notable amongst this group is the 

bEBP GAFTDA-containing FlgR which is phosphorylated by FlgS, activating it as a bEBP 

for the transcription of genes required for flagella biosynthesis (Spohn and Scarlato 1999; 

Brahmachary et al. 2004). Helicobacter pylori and Helicobacter hepaticus FlgR both 

contain the GAFTDA motif but only FlgR from H. pylori also lacks the C-terminal DNA-

binding domain that is present in most other bEBPs. This suggests that the loss of the DNA 

binding domain in H. pylori occurred after the divergence of the Helicobacter 

(Brahmachary et al. 2004) and since both contain GAFTDA motifs, the presence of an 

aspartate at position 266 is not linked to the enhancer-independent function of H. pylori 

FlgR.  As is the case for FlgR, the other bEBP-like proteins with altered GAFTGA motifs 

are presumably still subject to normal regulation of AAA+ activity. In contrast to the 

G266D and G266N NorR variants, such proteins therefore would not be predicted to 

exhibit escape phenotypes.  

 

Overall, the identification of the fully constitutive GAFTGA variants gives rise to the 

hypothesis in which regulation of NorR activity is mediated by the GAF domain which 

prevents interaction of the GAFTGA motif with σ
54

 in the absence of NO. Reduction in the 

constitutive activity of the G266D variant by the additional R81L change (Figure 6.13A) 

may suggest that this phenotype can be suppressed to restore the NO-dependent activity of 

NorR. The means by which the GAFTGA variant G266D escapes repression and the role 

of the R81 residue in interdomain repression will be the subject of Chapter 7. 
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Figure 6.14 – AAA+ proteins with 

altered coding-sequences in the highly 

conserved GAFTGA motif of bEBPs. 

(A) Alignments were conducted using 

ClustalW (www.ebi.ac.uk/clustalw/) 

using the sequences (accession numbers 

in red) from UniProtKB/Swiss-Prot 

(http://www.expasy.ch/): P37013/NorR 

(E. coli K12); Q8A7J5, Q8A9F9, 

Q8A7Q5 (B. thetaiotaomicron); 

Q7MW89, Q7MXY0 (P. gingivalis); 

Q7MAA8, Q7M8U4 (W. succinogenes); 

Q7UK84, Q7UJ61 (Rhodopirellula 

baltica); O25408 (H. pylori); Q7VFP0 

(H. hepaticus); Q8EN58 (O. iheyensis). 

The sequence of the GAFTGA motif is 

boxed in green. (B) The predicted 

domain structures of the unusual-

“GAFTGA” containing AAA+ proteins 

according to the SMART database 

(http://smart.embl-heidelberg.de/). The 

accession number, organism, 

recommended protein name and 
GAFTGA motif conservation are listed.  
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Chapter 7 - Investigating the escape mechanism of the GAFTGA variant G266D 

7.1 Introduction 

In the previous chapter, error-prone mutagenesis identified substitutions in the AAA+ 

domain that allow NorR to bypass repression by the GAF domain. The majority of these 

substitutions are located in the vicinity of the surface exposed loops that couple ATP-

dependent conformational changes in the AAA+ domain to isomerisation of the Eσ
54

-

complex (Bordes et al. 2003). Mutations were also identified in the GAFTGA motif that 

directly contacts σ
54

. Together, this suggests that in NorR, negative regulation may target 

the σ
54

-interaction surface. In other members of the bEBP family, negative regulation has 

been shown to target oligomerisation (Lee et al. 2003; Doucleff et al. 2005a). Since AAA+ 

domain self-association is required to form an activator that is competent to hydrolyse ATP 

(Zhang et al. 2002; Rappas et al. 2007), the oligomeric determinants are an ideal target of 

the regulatory domain in either a positive or negative mechanism of control. The bEBPs 

NtrC1 and DctD are subject to negative control of AAA+ activity. In these cases, the 

unphosphorylated receiver domains form a homodimer that maintains the AAA+ domains 

in an inhibitory front-to-front configuration. Upon phosphorylation, this homodimer 

undergoes rearrangement, allowing reorientation of the AAA+ protomers into the front-to-

back configuration, stimulating the formation of the active oligomer (Figure 3.11). In 

contrast, in the bEBP PspF, the activity of the central domain is controlled in trans by the 

PspA protein which targets the ATPase hydrolysis machinery (Joly et al. 2008a). PspA has 

been shown to negatively regulate PspF activity in this way via an interaction that is 

dependent upon a surface-exposed tryptophan residue (W56 of PspF) (Elderkin et al. 2002; 

Elderkin et al. 2005). In order to further study the mechanism by which the GAFTGA 

variants of NorR escape GAF-mediated repression, in vitro studies were performed to 

identify any changes in enhancer DNA-binding, oligomerisation and ATP hydrolysis. This 

work was carried out to determine whether or not NorR employs a novel mechanism for 

negatively regulating bEBPs. 

 

7.2 Purification of Δ1-170 forms of NorR 

In order to study the biochemical properties of the GAFTGA variants, the mutant versions 

of NorR were purified. Variants were first purified in full-length form but initial results 

suggested that substitutions in the AAA+ domain severely reduced the percentage of 

soluble protein, even when purified via an N-terminal histidine tag (Chapter 8). Therefore, 

N-terminally truncated versions of NorR that lack the first 170 amino acids were 



184 
 

engineered into the pETNdeM-11 vector. This is a vector based on pETM-11 (appendix 

section 12.1.2) with a silent mutation to convert the Nco I site into an Nde I site to allow 

for easy cloning of the norR sequence. The resulting overexpression vectors encoded wild-

type and variant forms of NorRΔGAF with additional N-terminal, TEV cleavable, 

hexahistidine tags. This enabled the protein constructs to be purified to a relatively high 

concentration using nickel affinity chromatography (Figure 7.1A and B). Typically, wild-

type and mutant derivatives of NorRΔGAF-His eluted in the range of 100 mM to 200 mM 

imidazole. Under these conditions, the protein had a propensity to precipitate. Therefore, 4-

5 ml of the eluted fractions were quickly loaded onto a Superdex 200 16/60 column 

(Amersham Biosciences) which separated NorR from any remaining impurities as well as 

removing the imidazole from the sample. NorRΔGAF-His and variants thereof typically 

eluted in the range of 70-80 ml, corresponding to a molecular weight in the monomer-

dimer range (Figure 7.1C and D). 

 

7.3 The G266D mutation does not affect enhancer binding of NorR in vitro 

Since the oligomerisation state and hence the activity of the AAA+ domain of bEBPs is 

often controlled by the regulatory domain, it was important to question whether the NorR 

GAFTGA substitutions might bypass the repressive function of the GAF domain by 

altering the assembly of higher order oligomers. Since binding of NorR to enhancer sites is 

essential for the formation of stable oligomers and enhancer DNA appears to be a key 

ligand in the activation of NorR as a transcription factor (Tucker et al. 2010a), it was first 

investigated whether the GAFTGA mutations influence DNA binding. Electrophoretic 

Mobility Shift Assays (EMSA) were employed to measure the binding of purified wild-

type and GAFTGA variants of the truncated (Δ1-170) form of NorR to a 361 bp DNA 

fragment containing the three enhancer sites upstream of the norV promoter. Results 

showed that the affinity of NorRΔGAF-His for enhancer DNA was not significantly 

influenced by the presence of the G266D and G266N substitutions (Figure 7.2). 

Dissociation constants (Kd) were calculated as 100 nM in each case. Therefore, the 

GAFTGA substitutions do not bypass the GAF-mediated repression of the AAA+ domain 

by altering the affinity of binding to enhancer DNA. 
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Figure 7.1 – Purification of NorRΔGAF-His by affinity chromatography and gel 

filtration. (A) Nickel affinity chromatography showing non-binding pool (NBP) and protein 

eluted using an increasing concentration of imidazole. The NorRΔGAF-His bound to the Ni
2+ 

column and eluted in the range of 100 mM-200 mM imidazole. (B) SDS-PAGE gel of bound 

protein eluted by increasing imidazole concentrations. L = lysate, S = supernatant, P = pellet, 

NBP = Non Binding Pool. (C) Gel filtration of selected NorR-containing affinity fractions 

using the 124 ml superdex 200 16/60 column. NorRΔGAF-His eluted at 70-80 ml.  The peak 

around the void volume (43 ml) did not contain any protein (D) SDS-PAGE gel of the eluted 

protein from gel filtration. In each case the presence of the NorRΔGAF-His protein (39.72 

kDa monomer) is indicated by a red arrow. The Q304E and G266D variants exhibited similar 

purification profiles when expressed in a form that lacked the first 170 amino acids.  
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Figure 7.2 - Enhancer binding activity of the G266DΔGAF-His (blue squares) and 

G266NΔGAF-His (green triangles) variants compared to NorRΔGAF-His (red circles) 

as determined by EMSA. The percentage of fully shifted DNA was quantified using a 

Fujix BAS 1000 phosphoimager. The G266 substitutions do not significantly affect the 

affinity of NorR for the 361bp fragment of the norR-norVW intergenic region that contains 

the 3 NorR binding sites. 
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7.4 The G266D mutation does not affect oligomerisation of NorR in vitro 

NorR is known to bind to three binding (or enhancer) sites within the norR-norVW 

intergenic region, each of which is essential for the ability of the bEBP to hydrolyse ATP 

and form open complexes (Tucker et al. 2004; Tucker et al. 2005; Tucker et al. 2010a). 

Furthermore, it appears that DNA flanking these sites promotes the formation of the NorR 

oligomer (Tucker et al. 2010a). To determine the effect of the G266D substitution on 

enhancer dependent NorR oligomer formation, purified protein was sent to two different 

collaborating research groups. Analytical gel filtration experiments in the absence and 

presence of a 266bp DNA fragment containing the three enhancer sites were performed by 

Tamaswati Ghosh of Prof. Xiaodong Zhang‟s group at Imperial College, London. Based 

on reference elution volumes obtained with different protein standards, unbound 

G266DΔGAF-His eluted as an apparent monomer/dimer species (Figure 7.3A). In 

agreement with this, Electrospray-Mass Spectrometry (ES-MS) experiments performed by 

Ahyoung Park of Prof. Carol Robinson‟s group at the University of Oxford, indicated that 

in the absence of DNA, the G266D and G266N variants of NorRΔGAF are in equilibrium 

between monomeric and dimeric states (data not shown). Gel filtration experiments 

showed that the presence of the 266bp DNA fragment shifted the eluted protein peak 

towards a higher molecular mass species (Figure 7.3A) indicating formation and 

stabilization of a higher order nucleoprotein complex. These elution profiles are similar to 

those reported recently for wild-type NorRΔGAF (Tucker et al. 2010a). Analysis of the 

purified protein-DNA complex using negatively-stained electron microscopy, allowed 

visualisation of higher order ring-shaped particles with dimensions of 125 Å in diameter 

(Figure  7.3B) consistent with a hexameric ring observed for NorRΔGAF in complex with 

the 266bp DNA fragment (Tucker et al. 2010a). No oligomeric particles were seen in the 

electron micrographs for protein alone (Figure 7.3C). We conclude from these studies that 

the G266D mutation does not apparently influence the oligomeric assembly of the AAA+ 

domain or the requirement for enhancer sites to stabilise the formation of a higher order 

oligomer. 
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Figure 7.3 - Enhancer-dependent higher order oligomeric assembly of the G266DΔGAF-His 

variant. (A). Gel filtration chromatography of 9 μM G266DΔGAF-His variant in the absence (dotted 

line) and presence (solid line) of 0.75 μM 266bp dsDNA (molar ratio of 12:1 monomer : DNA), 

containing all three enhancer sites, performed at 4 
°
C using a Superose 6 column (24 ml). The presence 

of DNA stabilises a higher order oligomeric form of G266DΔGAF-His. The lines below the elution 

peaks represent the fractions analyzed by negative-stain electron microscopy. Corresponding molecular 

weight of standard globular proteins are indicated at their elution volume. (B,C) Negative-stain EM 

studies. Shown are raw micrographs of G266DΔGAF-His alone (C) and in complex with 266 bp DNA 

(B), scale bar 100 nm. Ring-shaped oligomeric particles were only observed in the presence of DNA. 

Experiments were conducted by Tamaswati Ghosh as part of a collaboration with Prof. Xiaodong 

Zhang, Imperial College, London (Ghosh 2010). 
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7.5 G266 bypass variants show enhancer-dependent ATPase activity in vitro. 

In bEBPs the ATP hydrolysis site is configured through interactions between adjacent 

AAA+ protomers in the hexameric ring (Schumacher et al. 2008). Previously, it has been 

established that enhancer DNA is required for ATP hydrolysis by NorR and that the three 

binding sites upstream of the norV promoter are necessary for activation of ATPase 

activity, consistent with the requirement for DNA for formation of a functional higher 

order oligomer (Tucker et al. 2010a). Low levels of ATP hydrolysis were observed in the 

absence of enhancer DNA (Figure 7.4, closed bars/closed squares). Consistent with 

previous studies with a non-his-tagged form of NorRΔGAF (Tucker et al. 2010a), ATPase 

activity was strongly stimulated by the presence of promoter DNA. Under these conditions 

ATP hydrolysis by NorRΔGAF-His increased as a sigmoidal response to increasing protein 

concentration indicative of positive cooperativity, with a lower rate of increase exhibited at 

concentrations above 250 nM (Figure 7.4A, open bars/open squares). The absence of 

increased activity at higher protein concentrations may reflect saturation of the enhancer 

sites consistent with the observed DNA binding constant (100 nM as reported above, 

Figure 7.2). In order to confirm that the activity observed is due to turnover by NorR and 

not a contaminating protein, an additional alanine substitution was made at the D286 

residue which forms part of the Walker B motif. The DExx residues of this motif are 

highly conserved in AAA+ proteins and are essential for catalytic activity. Structural 

studies of PspF1-275 bound to ATP and AMPPNP show that D107 (equivalent to D286 in 

NorR) is closely positioned to the γ-phosphate and therefore well placed to catalyse ATP 

hydrolysis. Accordingly, a D107A variant of PspF was completely unable to hydrolyse 

ATP in vitro (Tucker et al. 2010a). In line with this, the ΔGAF-His protein with the 

additional D286A substitution is largely inactive (Figure 7.5). Therefore the turnover 

measured here is due to the catalytic activity of NorRΔGAF-His and not a contaminating 

protein. 
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Figure 7.4 - ATPase activity of the NorRΔGAF-His (A), G266DΔGAF-His (B) and 

G266NΔGAF-His (C) variants in response to protein concentration and the presence 

of enhancer DNA. Each data set is shown in (stacked) bar chart and graphical form. Non-

linear regression was carried out using GraphPad Prism software. Assays were conducted 

either in the absence (closed bars or closed squares) or presence (open bars or open squares) 

of the 266bp DNA fragment (final concentration 5 nM) that includes the norR-norVW 

intergenic region and each of the three NorR binding sites. Data are shown as the mean 

from at least two experiments. 
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Figure 7.5 - ATPase activity of the NorRΔGAF-His (A) and D286AΔGAF-His (B) 

variants in response to protein concentration and the presence of enhancer DNA. Each 

data set is shown as a (stacked) bar chart. (C) Graph showing the ATPase activity of 

NorRΔGAF-His (triangles) and D286AΔGAF-His (squares). For clarity error-bars are not 

included. Non-linear regression was carried out using GraphPad Prism software. All assays 

were conducted either in the absence (closed bars or closed shapes) or presence (open bars 

or open shapes) of the 266bp DNA fragment (final concentration 5 nM) that includes the 

norR-norVW intergenic region and each of the three NorR binding sites. Data are shown as 

the mean from at least two experiments. 
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Since the GAFTGA motif relays nucleotide-dependent interactions at the ATP hydrolysis 

site to enable contact with σ
54

, the influence of the G266 substitutions upon ATPase 

activity was next assessed. Results showed that like NorRΔGAF-His, the G266DΔGAF-

His and G266NΔGAF-His proteins exhibited enhancer-dependent ATPase activity. In the 

absence of the 266bp DNA, required for the formation of a stable oligomer, only low 

levels of ATP hydrolysis were observed (Figure 7.4B and C, closed bars/closed squares). 

However, in the presence of DNA that contained the three enhancer sites, ATPase activity 

was strongly stimulated (Figure 7.4B and, open bars/open squares). Furthermore, when the 

additional D286A substitution was made in a G266DΔGAF construct, the expressed 

Walker B-mutant derivative was inactive with respect to ATP turnover (Figure 7.6). This 

indicated that the ATPase activity observed is the result of turnover by the G266D variant 

and not a contaminating protein. Although ATP hydrolysis by the G266D and G266N 

variants was also stimulated by the enhancer sites, the response to protein concentration 

was less cooperative than observed with NorRΔGAF-His and activities were lower than 

those of the wild-type protein even at a relatively high protein concentration (2 µM) 

(Figure 7.4, compare A, B and C).  

 

7.6 Testing the requirement for ATPase activity in the NorR variant G266D  

Structural studies of PspF have shown that the energy from ATP hydrolysis is used to drive 

a series of conformational changes in the AAA+ domain that lead to relocation of the 

surface exposed loops including the GAFTGA-containing loop 1 (Rappas et al. 2006). 

Earlier it was shown that the GAFTGA variants G266D and G266N hydrolyse ATP in an 

enhancer-dependent manner when expressed in a form of NorR that lacks the N-terminal 

GAF domain. However, it is possible that a substitution in the L1 loop might promote a 

conformation of the AAA+ domain that is able to engage with σ
54

, without the need for 

ATP hydrolysis. In order to confirm that the GAFTGA variant G266D is still dependent 

upon the ATPase activity of NorR, the additional D286A change was made to substitute 

the catalytically-essential Walker B aspartate side chain.  Data in vitro showed that this 

residue is essential for ATP turnover by the bEBP since the Walker B-mutant derivative of 

G266DΔGAF-His was unable to turnover ATP in vitro (Figure 7.6).  β-galactosidase 

assays showed that the D286A substitution abolished the activity of the NorR and 

NorRΔGAF proteins in vivo (Figure 7.7). These null phenotypes are presumably due to the 

inability of the proteins to turnover ATP, required to drive the remodelling of the closed  
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Figure 7.6 - ATPase activity of the G266DΔGAF-His (A) and G266D-D286AΔGAF-His 

(B) variants in response to protein concentration and the presence of enhancer DNA. 

Each data set is shown in (stacked) bar chart form. (C) Graph showing the ATPase activity 

of G266ΔGAF-His (triangles) and D286AΔGAF-His (squares). For clarity error-bars are 

not included. Non-linear regression was carried out using GraphPad Prism software. All 

assays were conducted either in the absence (closed bars or closed shapes) or presence 

(open bars or open shapes) of the 266bp DNA fragment (final concentration 5 nM) that 

includes the norR-norVW intergenic region and each of the three NorR binding sites. Data 

are shown as the mean from at least two experiments. 
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complex. Likewise, the additional D286A substitution prevented the G266D variant from 

being able to activate transcription at the norV promoter (Figure 7.7). Therefore, the 

G266D substitution does not negate the requirement for ATPase activity and it can be 

concluded that the G266D variant of NorR does not escape the GAF-mediated repression 

mechanism by modelling the post-ATP hydrolysis conformation of the AAA+ domain. 

 

7.7 Negative regulation in NorR does not directly target the ATP hydrolysis 

machinery 

Previously it was shown that the escape mutants G266D and G266N of the GAFTGA 

motif exhibit enhancer-dependent ATPase activity in a manner similar to the wild-type 

form of NorRΔGAF-His (Figure 7.4). This would suggest that the GAFTGA variants do 

not escape the repression mechanism by significantly altering the ATPase behaviour of the 

AAA+ domain. Furthermore, the ability of the G266D variant to hydrolyse ATP has been 

shown to be essential to activate transcription, suggesting escape from repression does not 

involve modelling the conformation of the post-ATP hydrolysis state (Figure 7.7). It is 

clear that repression by the GAF domain results in an ATPase-inactive protein, since full-

length NorR does not exhibit ATPase activity in the absence of NO (D'Autreaux et al. 

2005).  Next, we wanted to provide evidence that the N-terminal GAF domain does not 

directly target the ATPase hydrolysis machinery in the mechanism of interdomain 

repression.  

 

In PspF, negative regulation occurs in trans by interaction with the PspA protein at the 

W56 residue of PspF. Structural studies of PspF bound to different nucleotides identified 

N64 as the key residue that couples ATP hydrolysis to conformational changes in the 

AAA+ domain of bEBPs (Rappas et al. 2006). Although N64 variants were able to bind 

PspA, the ATPase activity of the bEBP was not reduced (Joly et al. 2008a). This suggests 

that in PspF, negative regulation by PspA at the W56 residue is signalled to the nucleotide 

machinery, including N64 to prevent ATPase hydrolysis. To explore the role of this 

conserved asparagine in the regulation of NorR, substitutions were made at the equivalent 

residue (N243) and NorR activity assessed in the absence and presence of an NO-source in 

the E. coli strain MH1003. In contrast to PspF, N243 variants of NorR were still subject to 

repression. The N243A and N243S variants were unable to activate transcription in the 

absence of an NO-source but became active once NO-dependent derepression had occurred  
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Figure 7.7 - Activities of NorR and the NorR G266D variant in vivo when the additional 

D286A substitution is made at the Walker B motif in the AAA+ domain, as measured by 

the norV-lacZ reporter assay. Substitutions are indicated on the x axis. “NorR” refers to the 

wild-type protein and “NorRΔGAF” refers to the truncated form lacking the GAF domain 

(residues 1-170). Cultures were grown either in the absence (black bars) or presence (white 

bars) of 4 mM potassium nitrite, which induces endogenous NO production. Error-bars show the 

standard error of the three replicates carried out for each condition. 



196 
 

  

Figure 7.8 - Transcriptional activation by NorR in vivo, when substitutions are made at 

position 243 of the AAA+ domain, as measured by the norV-lacZ reporter assay. 

Substitutions are indicated on the x axis. “NorR” refers to the wild-type protein and 

“NorRΔGAF” refers to the truncated form lacking the GAF domain (residues 1-170). Cultures 

were grown either in the absence (black bars) or presence (white bars) of 4 mM potassium 

nitrite, which induces endogenous NO production. Error-bars show the standard error of the 
three replicates carried out for each condition. 
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(Figure 7.8). This would suggest that regulation does not occur directly through the 

nucleotide machinery as it does in PspF but instead occurs via a different mechanism. 

 

7.8 The GAFTGA variants can activate open complex formation in vitro 

To further test the functionality of the G266 variants in vitro, assays were conducted to 

measure their ability to catalyse the conversion of the σ
54

-RNA polymerase closed 

complexes to open promoter complexes. Although NorR-DNA complexes exhibit heparin 

resistance, open promoter complexes can be visualised as heparin resistant super-shifted 

species on non-denaturing gels (D'Autreaux et al. 2005). In the presence of all the 

components required for open complex formation, the G266D and G266N variants were 

competent to form the super shifted species, as in the case of NorRΔGAF (Figure 7.9A 

compare lanes 3, 5, 7 and 9). Open complex formation was ATP-dependent as expected 

(Figure 7.9A lanes 2, 4, 6 and 8). In order to probe the nature of the open complexes 

formed, footprinting of complexes was carried out using potassium permanganate, which 

targets cleavage to single stranded DNA regions, hence providing sequence-specific 

information. In all cases enhanced cleavage was observed corresponding to T residues 

located between -11 to +1 at the norV promoter, consistent with the expected footprint 

(Figure 7.9B). Notably, the band intensity observed with the G266 variants was decreased 

in comparison with NorRΔGAF or NorRΔGAF-His (Figure 7.9B compare lanes 3,4,5 and 

6), a feature that was not clearly visible when the proportion of open complex formed was 

compared (Figure 7.9A compare lanes 3,5,7 and 9). The reduction in the intensity of the 

footprint could reflect the slight reduction in total ATP turnover observed for the 

GAFTGA variants at 1.5 µM when compared to the wild-type (Figure 7.4, compare A, B 

and C). Despite this, overall the results confirm that the G266 variants are competent to 

interact with σ
54

 and can activate transcription in vitro. 
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Figure 7.9 - Open promoter complex formation by AAA+ variants. (A) Heparin resistant 

complexes formed by NorRΔGAF, NorRΔGAF-His, G266DΔGAF-His and G266NΔGAFHis, on 

the 361bp DNA fragment carrying the norR-norVW intergenic region. In all cases the final NorR 

concentration was 1500 nM. Reactions contained no NorR (lane 1), NorRΔGAF (lanes 2 and 3), 

NorRΔGAF-His (lanes 4 and 5), G266DΔGAF-His (lanes 6 and 7), and G266NΔGAF-His (lanes 8 

and 9). Reactions loaded in lanes 1, 3, 5, 7 and 9 contained ATP (final concentration 5 mM which 

was absent in lanes 2, 4, 6 and 8. Arrows indicate the position of free DNA, NorR bound DNA and 

the open promoter complexes. (B) Potassium permanganate footprinting of the 266bp norR-norVW 

promoter fragment after open complex formation initiated by NorR. Lane 1 is a G+A ladder. Lane 2 

is a control without activator present. Lanes 3, 4, 5, and 6 show footprinting after initiation of open 

complexes in the presence of 1 μM (final concentration) ΔGAF, ΔGAF-His, G266DΔGAF-His and 

G266NΔGAF-His respectively. The arrow marks the norVW transcriptional start and the positions of 

the enhanced cleavage at T bases are indicated. 
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7.9 Evidence for direct intramolecular interaction between the GAF domain and 

the σ
54

- interaction surface  

From the biochemical results presented thus far it seems likely that the GAFTGA 

mutations do not bypass intramolecular repression solely on the basis of changes in DNA 

binding, ATP hydrolysis or oligomerisation state. To gain more insight into the nature of 

the interactions between the GAF and AAA+ domains, a genetic suppression strategy was 

employed. Previously, mutagenesis of conserved residues in the GAF domain identified 

the R81L change that when engineered in a construct encoding the GAFTGA variant 

G266D, suppresses the constitutive phenotype (Chapter 6). To further investigate the role 

of this residue in the regulation of AAA+ activity, the arginine residue was substituted for 

each of the other 19 natural amino acids (Figure 7.10A). In vivo assays for transcriptional 

activation by NorR showed that the R81 residue is critical for the negative regulation of the 

AAA+ domain by the GAF domain. When the side chain was absent, the R81A variant 

showed significant activity in the absence of an NO-source. Hydrophobic changes 

(including R81L) resulted in significant constitutive activity whereas negatively charged 

residues and serine substitutions not only prevented negative control but also stimulated 

NorR activity beyond wild-type levels. R81D, R81N, R81Q and R81E gave rise to two to 

three-fold more activity than NorRΔGAF in the E. coli strain MH1003. The only 

substitution that exhibited the normal NO-response was the R81K change, providing 

further evidence that the R81 residue contributes to the repression mechanism through the 

formation of a polar contact between the GAF and AAA+ domains.  

 

Since the R81 residue appears to be critical for inter-domain repression, it was decided to 

investigate whether R81 is required for positioning the GAF domain in the vicinity of the 

GAFTGA motif. As discussed in Chapter 6, the R81L substitution was able to suppress the 

constitutive activity of the GAFTGA variant G266D so that the GAF-mediated repression 

of AAA+ activity in the off-state was almost completely restored (Figure 6.13A). Western 

blotting analysis showed that the reduction in activity is not due to a decrease in the 

stability of this double mutant (Figure 6.13B). Interestingly, the R81L mutation had a 

similar effect on other constitutively active variants located in the key region of the AAA+ 

domain that is predicted to undergo conformational change upon ATP hydrolysis (Figure 

7.11A). As well as reducing the activities of the GAFTGA variants G266D, G266N, 

G266S and F264Y, the R81L substitution was also able to suppress the “escape”  
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Figure 7.10 - (A) Activities of R81 variants in vivo as determined by the norV-lacZ 

reporter assay. “NorR” represents the wild-type protein and “NorRΔGAF”, the N-

terminally truncated (Δ1-170) protein. Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO 

production. Error-bars show the standard error of the three replicates carried out for each 

condition. (B) Western blot analysis indicating the stability of NorR variants in vivo 

when cultures are grown in the absence of potassium nitrite. “NorR” refers to the wild-

type protein. “MH1003” refers to the E. coli strain only. The uppermost band that is not 

detected in the MH1003 strain correlates to NorR and its variants in the Western analysis. 
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Figure 7.11 - Influence of the R81 substitution on the activity of AAA+ domain variants. 

(A) NorR AAA+ variants that are effectively suppressed by the R81L substitution in the 

GAF domain. (B) NorR AAA+ variants that are not significantly suppressed by the R81L 

substitution in the GAF domain. “NorR” is the wild-type protein. “NorRΔGAF” is the N-

terminally truncated (Δ1-170) protein. Activities in vivo (as determined by the norV-lacZ 

reporter assay) were measured either in the absence (black bars) or presence (white bars) 

of 4 mM potassium nitrite, which induces endogenous NO production. Error-bars show 
the standard error of the three replicates carried out for each condition. 



202 
 

phenotypes of the E276G, S296L and L295S variants in vivo. Most noticeable was the 

suppression of the E276G mutant phenotype. The E276G substitution allows complete 

escape from GAF-mediated repression but when the additional R81L substitution was 

present in the regulatory domain, the protein was almost entirely inactive, even in the 

induced state. This suggests that when both substitutions are present in the two domains 

that make up the interface of interdomain repression, the NorR protein is unable to make 

the NO-dependent transition from the off to the on-state. However, a number of other 

escape variants located in the key region of conformational change in the AAA+ domain 

were not effectively suppressed (Figure 7.11B). The P248L, V251M and L256F 

constitutive phenotypes were not reduced when the R81L mutation was additionally 

present in the regulatory domain. These substitutions are predicted to cluster in the lower 

region of Helix 3 (H3), furthest away from the GAFTGA-containing loop 1 (L1) and loop 

2 (L2) (Figure 6.5).  The Q304 residue is predicted to be at the base of helix 4 in the AAA+ 

domain of NorR and is not expected to have a role in coordinating movements in the 

GAFTGA loop upon transition to the “on” state. In accordance with this, the Q304E 

mutation was not suppressed by the R81L substitution. Instead, when combined with 

Q304E, the R81L substitution enabled complete escape from inter-domain repression 

(Figure 7.11B). 

 

Next, the specificity of the suppression of the G266D-variant phenotype was determined 

by making different substitutions at the R81 position. Only hydrophobic changes including 

R81L, V, I and F were able to suppress the escape phenotype of G266D (Figure 7.13). It is 

possible that such changes introduce a new hydrophobic contact that helps restore 

interactions between the GAF and AAA+ domains. Moreover other substitutions such as 

the charge change R81D have no effect on the constitutive activity of the G266D NorR 

variant (Figure 7.12).  Overall, the constitutive activity of the G266D variant and the 

specific suppression of this phenotype by hydrophobic changes at the R81 position suggest 

that the GAF domain may target the GAFTGA motif to prevent σ
54 

contact in the absence 

of the NO signal. Furthermore, the R81 residue is critical in maintaining the repression 

mechanism in NorR and may form essential contacts at the interface of interdomain 

repression. 
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Figure 7.12 - Suppression of the constitutive phenotype of the NorRG266D variant by 

hydrophobic substitutions made at the R81 residue in the GAF domain. “NorR” is the wild-

type protein. “NorRΔGAF” is the N-terminally truncated (Δ1-170) protein. Activities in vivo (as 

determined by the norV-lacZ reporter assay) were measured either in the absence (black bars) or 

presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO production. 

Error-bars show the standard error of the three replicates carried out for each condition. 
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7.10 Discussion 

As discussed in Chapter 6, error-prone mutagenesis of the NorR AAA+ domain identified 

the GAFTGA variants G266D and G266N that fully escape the mechanism of GAF-

mediated repression in vivo (Figure 6.8A). Here, biochemical analysis of the GAFTGA 

variants has been conducted to investigate the mechanism by which these mutant-versions 

of NorR are able to elude the repression of AAA+ activity. Since self-association of bEBP 

AAA+ domains is required to form the functional ATPase (Zhang et al. 2002; Rappas et 

al. 2007), the oligomeric determinants of the central domain represent an ideal target for 

the regulatory (GAF) domain in the absence of NO. However, purification of the 

GAFTGA variants G266D and G266N via an N-terminally His-tagged form of NorR that 

lacks the first 170 amino acids suggested that the substitutions caused no major change in 

the oligomeric state. As was the case for wild-type NorRΔGAF, the G266 variants eluted 

at a volume corresponding to a monomeric/dimeric molecular weight in gel filtration 

during protein purification (Figure 7.1). This is in full-agreement with ES-MS studies, 

performed in collaboration, which reveal that in vitro samples of the NorRΔGAF, 

G266DΔGAF and G266NΔGAF proteins, in the absence of DNA, consisted of a 

monomeric and a dimeric population. Furthermore, gel-filtration followed by Cryo-EM of 

eluted fractions, performed in collaboration, revealed that the G266D substitution did not 

alter the enhancer-dependent oligomerisation of NorR, at least in the context of the 

NorRΔGAF protein (Figure 7.3). Importantly, higher order oligomers were only observed 

in the presence of DNA that contains the three NorR binding sites. These particles were the 

expected size of a NorR hexamer, as has been observed for the wild-type protein (Tucker 

et al. 2010a) suggesting that the G266D variant does not exhibit any major changes in 

oligomerisation. Therefore the explanation that the GAFTGA substitutions bypass the 

mechanism of interdomain repression by locking the AAA+ domain in a constitutive 

hexameric oligomerisation state seems unlikely. In the response regulators NtrC1 and 

DctD, the N-terminal regulatory domain represses the activity of the AAA+ domain by 

preventing self-association (Figure 3.11B). A structured coiled-coil linker between the 

regulatory and central domain stabilises an inactive dimeric conformation of the AAA+ 

domain. Phosphorylation enables the rearrangement of dimers from a front-to-front into a 

front-to-back configuration, allowing oligomerisation to take place (Lee et al. 2003; 

Doucleff et al. 2005a). In agreement with data here suggesting the mechanism of 

repression in NorR does not target oligomeric determinants, the linker region between the 

GAF and AAA+ domains of NorR is not predicted to form a coiled-coil helix, a structural 
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feature that is also absent in negatively regulated NtrC4 and positively regulated NtrC 

(Batchelor et al. 2008).  

 

In agreement with the ability of the GAFTGA variants to self-associate in an enhancer-

dependent manner, here the G266D and G266N mutant-versions of NorR also hydrolysed 

ATP in the presence of a 266bp section of the norR-norVW intergenic DNA (Figure 7.4). 

The slight reduction in total ATP turnover and decrease in cooperatively in response to 

protein concentration cannot be explained by a decrease in the affinity of binding to 

enhancer DNA since the GAFTGA variants and wild-type NorR all bound to a 361bp 

section of the norR-norVW intergenic with a Kd of ~ 100 nM (Figure 7.2). Since the 

enhancer DNA is likely to be fully saturated with protein at concentrations above 300 nM, 

the G266 substitutions may alter the stability of the nucleoprotein complexes, perhaps by 

influencing protomer interactions that impact upon the ATP hydrolysis site. When the 

ability of the GAFTGA variants to activate transcription in vivo as well as to turnover ATP 

in vitro is considered, it is not surprising that they were also able to form open complexes 

in vitro (Figure 7.9A). In accordance with the ATPase data, potassium permanganate 

footrpinting revealed a slight decrease in the intensity of the expected footprint upstream of 

the transcriptional start site (Figure 7.9B). Because the NorRG266D and NorRG266N 

proteins are still capable of hydrolysing ATP in a manner strictly dependent upon the 

presence of enhancer DNA, it is unlikely that such variants exhibit escape phenotypes in 

vivo by preventing repression of ATP hydrolysis. In the case of PspF, which does not 

contain an amino-terminal regulatory domain, the activity of the AAA+ domain is 

negatively controlled in response to the PspA protein (Figure 3.12). Repression does not 

seem to be achieved by controlling oligomerisation of the AAA+ domains, but rather by 

inhibition of ATP hydrolysis (Joly et al., 2009). Inhibition is mediated by the interaction of 

PspA with a surface exposed tryptophan residue (W56) on PspF, which is likely to 

communicate with the ATP hydrolysis site. The N64 residue in PspF was shown to play an 

important role in the glutamate “switch” that functions to translate nucleotide hydrolysis 

the remodelling of the surface-exposed L1 and L2 loops (Rappas et al. 2006). Importantly, 

N64 variants are still able to bind PspA, but their ATPase activity is no longer inhibited 

(Joly et al. 2008a) suggesting that negative regulation by PspA at the W56 residue is 

directly signalled to the nucleotide machinery via N64 to prevent ATPase hydrolysis by 

PspF. In contrast, the N243A and N243S variants in NorR were still subject to regulation 

by the N-terminal GAF domain in vivo (Figure 7.8), suggesting that the ATP hydrolysis 



206 
 

site is not the direct target of the GAF domain in the mechanism of negative control in 

NorR. 

 

The data here suggests that the mechanism of interdomain repression in NorR does not 

regulate the activity of the AAA+ domain through the control of self-association or via the 

direct targeting of the ATP hydrolysis machinery. This leads to an alternative hypothesis in 

which the N-terminal GAF domain prevents interaction between the AAA+ domain of the 

activator and σ
54

 in the absence of NO. In agreement with this model, the majority of 

substitutions identified in the random PCR mutagenesis of the AAA+ domain (Chapter 6) 

are predicted to be located in a region of the AAA+ domain that undergoes conformational 

change to couple ATP hydrolysis to the relocation of the surface-exposed L1 and L2 loops. 

The role of the σ
54

-interaction surface in negative regulation by the GAF domain is further 

supported by genetic suppression data. The R81 residue in the GAF domain appears to 

play a crucial role in the repression mechanism since an alanine substitution at this position 

lead to significant constitutive NorR activity whilst the R81D and R81E charge changes 

gave rise fully constitutive phenotypes (Figure 7.10). Hydrophobic substitutions, 

particularly leucine, restored repression only when combined with specific bypass 

mutations in the AAA+ domain, including those in the GAFTGA loop (Figure 7.11A). 

Previous structural modelling of the GAF domain suggested that the R81 residue is surface 

exposed (Tucker et al. 2007) and therefore well placed to make contact with the AAA+ 

domain. In the model, it is located at the opposite end of an -helix to the R75 residue 

(Figure 7.13), which is postulated to be a ligand to the hexa-coordinated iron and is the 

most suitable candidate to be displaced upon NO binding (Tucker et al. 2007). Therefore it 

is possible that formation of the mononitrosyl iron complex would displace the R75 ligand 

causing a conformational change in the helix that repositions R81. Interactions between the 

R81 residue and residue(s) in the AAA+ domain may thus facilitate the switch from the 

“off” to the “on” state. 

 

In conclusion, NorR represents another mechanism of negative regulation in which the N-

terminal regulatory domain targets the σ
54

-interacting region of the AAA+ domain that 

includes the GAFTGA motif.  In the case of those “rare” bEBPs that contain a naturally 

occurring aspartate or asparagine residue at the second glycine of this motif (Figure 6.14), 

it is anticipated that the AAA+ domain of such proteins is still subject to regulation by the 

N-terminal domain. Indeed, the FlgR protein from H. pylori contains a “GAFTDA” motif 
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but still requires phosphorylation by FlgS in order to activate transcription (Brahmachary 

et al. 2004). Therefore these bEBPs are not likely to be regulated by targeting the σ
54

-

interaction surface as may be the case in NorR; instead control may be at the point of 

oligomerisation or ATP hydrolysis.  
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Figure 7.13 - The role of the R81 residue in the mechanism of interdomain repression 

in NorR. Structural model of the GAF domain of NorR based on the GAF-B domain of 

3‟,5‟-cyclic nucleotide phosphodiesterase PDB ID: 1MC0 (Martinez et al. 2002; Tucker et 

al. 2007) showing the iron centre and proposed ligands, relative to the R81 residue. The 

iron centre is indicated (magenta) as well as the proposed ligands C113, D96, D99, and 

D131 (in grey ball and stick). The fifth ligand, R75 and the R81 residue are highlighted 

(ball and stick: Carbon = green; Nitrogen = blue; Oxygen = red; Cysteine = orange; 

Hydrogen; grey). The R75 residue is the most likely to undergo ligand displacement upon 

NO binding. The structural model predicts that R81 is surface exposed and at the opposite 

end of an α-helix that also contains the R75 ligand. Therefore, NO-binding and subsequent 

displacement of R75 may lead to conformational changes that involve re-positioning of the 

R81-containing α-helix. This may cause disruption of GAF-AAA+ interactions (that could 

involve R81), leading to the activation of NorR. 
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Chapter 8 - In vitro studies of the full-length GAFTGA-variant G266D 

8.1 Introduction 

In Chapter 6, the GAFTGA substitution G266D was identified that enabled the NorR 

protein to bypass GAF-mediated repression in vivo. In vitro studies of this unique variant 

together with genetic suppression data in vivo, support the hypothesis that the N-terminal 

GAF domain targets the σ
54

-interaction surface in the mechanism of interdomain 

repression (Chapter 7). Such work employed a version of the NorR G266D variant purified 

via an N-terminal His-tag in a construct that lacked the sequence encoding the first 170 

amino acids (G266DΔGAF-His). This gave a high concentration of pure protein (100-150 

µM) that was amenable to biochemical studies (Figure 7.1). In contrast, the full-length 

form of the G266D variant was significantly less soluble than G266DΔGAF even when 

purified via a hexa-histidine tag.  

 

Recently, the effect of different domain combinations on the overall oligomeric state of 

bEBPs has been investigated in NtrC4 from Aquifex aeolicus (Batchelor et al. 2009). 

Electrospray mass spectrometry (ES-MS) experiments showed that full-length NtrC4 

forms hexamers but that the isolated AAA+ domain forms heptamers. Likewise structural 

studies of the AAA+ protein p97 have revealed rings with 6-fold symmetry for the intact 

protein (Zhang et al. 2000) but with 7-fold symmetry for a truncated form of the protein 

(Davies et al. 2008). Taken together, these studies stress the importance of examining the 

oligomeric state of a full-length, intact AAA+ protein or bEBP. In the previous chapter, 

comparisons between the wild-type and GAFTGA-variant forms of NorR were made in a 

construct that lacked the N-terminal regulatory domain. Therefore it was decided to assess 

the role of the GAF domain in the GAFTGA variant by characterising the full-length 

G266D protein in vitro. In order to do this, further purification trials were carried out to 

maximise the concentration and purity of protein available for biochemical studies of the 

full-length G266D-His protein. 
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8.2 Purification of full-length (1-504) GAFTGA variants 

Initially, the full-length form of the G266D variant protein was overexpressed and purified 

without a tag using heparin affinity chromatography. However, unlike wild-type NorR 

which has been previously purified using this method (D'Autreaux et al. 2005; Tucker 

2005), the GAFTGA variant was largely insoluble when overexpressed in its non-tagged 

form (Figure 8.1). Therefore, the norR sequences encoding the GAFTGA substitutions 

G266D and G266N were moved into the pETNdeM11 vector  to enable purification via an 

N-terminal, TEV-protease cleavable, hexahistidine tag. To increase the solubility of the 

GAFTGA-variant proteins further, overexpression was carried out at lower temperature. 

This is thought to help the large amounts of protein being overexpressed in the cell to fold 

correctly, increasing solubility. E. coli, BL21(DE3) cells expressing the G266D-His or 

G266N-His proteins were grown to an OD600 of 0.6 and then immediately cooled on ice 

before the addition of IPTG to a final concentration of 0.5 mM. Cells were then left 

shaking overnight for 12-16 hours at 7 °C. The next day, cells were harvested and 

resuspended in breaking buffer containing EDTA-free protease inhibitors (Roche); pellets 

were stored at -80 °C until required. 

 

Purification of the His-tagged full-length GAFTGA-variant proteins was more successful 

than the non-tagged versions (Figure 8.2). Overexpression produced high levels of protein 

and although 90 % of the expressed protein was insoluble, a significant amount was able to 

bind to the nickel column. The GAFTGA variants G266D and G266N eluted in the range 

of 100 mM – 200 mM imidazole as is typical for NorR and its mutant derivatives. In 

contrast to other NorR variants, the G266 mutant proteins were not prone to precipitation 

under these conditions. It is likely that the precipitation usually observed in the presence of 

imidazole is a concentration-dependent phenomenon and the lower concentration of the 

full-length G266 variants when purified means that precipitation does not occur so readily. 

In order to remove the imidazole and separate contaminants from the NorR-containing 

fractions, gel filtration was carried out using a Superdex 200 16/60 column (Amersham 

Biosciences). Significantly, the G266 variants eluted over a broad range of volumes around 

the void volume (43 ml). This suggests the formation of a large protein complex. Indeed, 

gel filtration standards (BioRad) revealed that the eluted peak centred on a volume 

corresponding to ~1020 kDa or ~17 NorR monomers (data not shown). In order to 

minimise aggregation, the salt concentration was increased (200 mM) to produce a 
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Figure 8.1 – Purification of full-length NorR and G266D by affinity chromatography. 

(A) Heparin affinity chromatography for NorR and G266D (C) showing non-binding pool 

(NBP; not shown for NorR) and protein eluted using an increasing concentration of NaCl. 

(B) SDS-PAGE gel of bound NorR and G266D (D) protein eluted by increasing NaCl 

concentrations. S = supernatant, NBP = Non Binding Pool. The presence of the protein 

(55.25 kDa monomer) is indicated by a red arrow. Both the wild-type  NorR and variant 

G266D proteins eluted in the range of 200 mM-500 mM NaCl but the G266D protein was 

significantly less soluble. NorR-containing fractions were subsequently loaded onto a 124 ml 

superdex 200 16/60 column for gel filtration. Wild-type NorR eluted in the range of 65-75 ml 

but pure fractions of the G266D variant were not obtained (data not shown)  
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Figure 8.2– Purification of NorRG266D-His by affinity chromatography and gel 

filtration. (A) Nickel affinity chromatography showing non-binding pool (NBP) and protein 

eluted using an increasing concentration of imidazole. G266D-His bound to the Ni
2+ 

column 

and eluted in the range of 100 mM-200 mM imidazole. (B) SDS-PAGE gel of bound protein 

eluted by increasing imidazole concentrations. L = lysate, S = supernatant, P = pellet, NBP = 

Non Binding Pool. (C) Gel filtration of selected NorR-containing affinity fractions using the 

124 ml superdex 200 16/60 column. G266D-His eluted over a broad range of fractions 

around the void volume (43 ml). (D) SDS-PAGE gel of the eluted protein from gel filtration. 

Purified protein was at a low concentration (1-3 µM) and contained a small proportion of 

impurities. In each case the presence of the G266D-His protein (58.5 kDa monomer) is 

indicated by a red arrow.  
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“salting-in” effect, in which protein solubility is increased slightly. Here ions from the salt 

associate with the surface of the protein, increasing the concentration of “free” water. The 

thiol-containing reducing agent, dithiothreitol (DTT), was also added to the gel filtration 

buffer (8 mM) in an attempt to separate multimers in what was anticipated to be a large 

oligomeric assembly. However, neither the presence of salt nor DTT was effective in 

preventing this larger “complex” from forming. The resulting G266D and G266N-

containing fractions were of a low concentration (1-3 µM) and contained a small 

proportion of impurities. If higher concentrations were required, fractions could be 

concentrated using Amicon Ultra (Millipore) centrifugal units, span at a lower than 

recommended speed to prevent protein precipitation.  

 

8.3 The full-length G266D variant forms enhancer-independent, higher order 

oligomers in vitro 

To determine the effect of the G266D substitution on the oligomeric state of NorR in the 

context of the full-length protein, analytical gel filtration experiments using the G266D-His 

protein were carried out by Tamaswati Ghosh from Prof. Xiaodong Zhang‟s group at 

Imperial College, London. In agreement with size-exclusion chromatography, performed 

as part of the purification process, G266D-His eluted at a volume corresponding to a high 

molecular weight. Using the superdex 200 16/60 preparative column (Amersham 

Biosciences), the protein eluted over a broad range close to the void volume (Figure 8.2). 

The superpose 6 analytical column (Amersham Biosciences) confirmed that the protein is 

likely to form a complex with a high molecular weight but gave better separation of this 

species from the void volume. At 3 µM, the major peak was at 10.5 ml, corresponding to a 

complex larger than the 669 kDa molecular weight marker, thyroglobulin. Although an 

accurate molecular weight cannot be measured using this technique, based on the monomer 

(58.5 kDa), this volume corresponds to a complex greater than 11 monomers in size.  In 

order to assess the impact of enhancer binding upon the oligomerisation state of the full-

length variant protein, nucleoprotein complexes were prepared by our collaborators at 

Imperial College, London, using purified G266D-His and a 266bp fragment of DNA 

carrying the norR-norVW intergenic containing the 3 NorR binding sites. Analytical gel 

filtration revealed that the G266D-His protein in complex with the 266bp DNA gave a 

major peak at 9.5 ml. This volume is similar to that of the nucleocomplex formed between 

the G266DΔGAF-His protein and intergenic DNA (Figure 7.3A). To more accurately 
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Figure 8.3 - Enhancer independent higher order oligomerisation of G266D-His. (A) 3 μM NorR-

G266D alone (red line) or in complex with the 266 bp DNA fragment at a molar ratio of 12:1 

monomer:DNA molar ratio (black line) analysed by gel filtration at 4 °C using a Superose 6 column 

(24 ml). The protein eluted as a higher order oligomer at 10.5 ml and the nucleoprotein complex 

elutes at 9.5 ml (dashed lines). (B), Negative-Stain Electron Microscopy (EM) of the G266D-His 

(full-length) protein in the absence of the 266bp fragment of the norR-norVW intergenic region and 

ATP, in the presence of ATP (C) and in the presence of DNA (D). Ring-shaped oligomeric particles 

were observed under all conditions. Scale bar 100 nm. Experiments were conducted by Tamaswati 

Ghosh as part of a collaboration with Prof. Xiaodong Zhang, Imperial College, London (Ghosh 

2010). 
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examine the oligomeric state of the full-length G266D-His protein in the presence and 

absence of enhancer DNA, fractions collected from analytical gel-filtration of G266D-His 

alone and in complex with 266bp DNA (Figure 8.3A, dashed lines) were subjected to 

negative-stain electron microscopy. Analysis of the protein and nucleoprotein complexes 

by negative-stain EM revealed the formation of large oligomeric particles irrespective of 

the presence of enhancer DNA (Figure 8.3B). This is in stark contrast to the G266DΔGAF-

His protein which was previously shown to oligomerise in an enhancer-dependent manner 

(Figure 7.3), as is observed for NorRΔGAF (Tucker et al. 2010a). To confirm that the 

GAFTGA-variant is not required to bind to enhancer DNA in order to form this higher 

oligomeric assembly, a truncated protein was purified lacking the C-terminal DNA-binding 

domain (Δ442-504) was expressed and purified. Gel filtration data indicated that this 

version of the protein still eluted over a broad range of volumes close to the void volume 

of the Superdex 200 16/60 column (Amersham Biosciences) (data not shown). Therefore, 

the G266D-His variant does not appear to need to bind to enhancer DNA in order to form 

the high molecular weight complex observed by gel filtration and Cyro-EM in vitro.  

Overall the results demonstrate that the GAFTGA variant of NorR is able to oligomerise in 

the absence of enhancer DNA but only when the regulatory GAF domain is present. The 

fact that both the wild-type and G266D variant forms of ΔGAF-His oligomerise in an 

enhancer-dependent manner suggests that the enhancer-independent oligomerisation of 

full-length G266D-His is due to the substitution at position 266 and not simply due to the 

presence of the regulatory GAF-domain. To confirm this, full-length NorR-His was 

purified and subjected to analytical gel filtration and negative-stain EM analysis. 

Compared to the G266D variant, wild-type, full-length NorR-His was significantly more 

soluble and gel filtration gave pure protein at high concentration (10-15 µM) (Figure 8.4). 

Significantly, the protein did not elute as part of the void volume (45 ml) of the superdex 

200 16/60 preparative column (Amersham Biosciences), as was the case for the G266D-

His protein. Instead, the protein eluted at 60-70 ml, roughly corresponding to the volume 

of a NorR trimer. This is in agreement with previous size-exclusion chromatography 

studies using non-tagged NorR (Tucker 2005). Furthermore, cross-linking studies revealed 

the presence of a species roughly three times the size of a NorR monomer (Justino et al. 

2005a). Although, this trimeric species may represent an intermediate of higher oligomeric 

assembly, it is not expected to have a biological role given that bEBPs are known to form 

larger rings. After protein purification, analytical gel filtration was performed by our  
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Figure 8.4 – Purification of NorR-His by affinity chromatography and gel filtration. (A) 

Nickel affinity chromatography showing non-binding pool (NBP) and protein eluted using an 

increasing concentration of imidazole. NorR-His bound to the Ni
2+ 

column and eluted in the 

range of 100 mM-200 mM imidazole. (B) SDS-PAGE gel of bound protein eluted by 

increasing imidazole concentrations. L = lysate, S = supernatant, P = pellet, NBP = Non 

Binding Pool. (C) Gel filtration of selected NorR-containing affinity fractions using the 124 

ml superdex 200 16/60 column. NorR-His eluted at 50-55 ml.  (D) SDS-PAGE gel of the 

eluted protein from gel filtration. In each case the presence of the NorR-His protein (58.44 

kDa monomer) is indicated by a red arrow.  
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collaborators at Imperial College, as was carried out for the variant protein G266D-His. 

Results indicate that the wild-type, full-length protein forms oligomers in a manner that is 

strictly dependent upon the presence of enhancer DNA. Analytical gel filtration using the 

superpose 6 column (Amersham Biosciences) revealed the formation of a nucleoprotein 

complex that elutes at 9.5 ml (Figure 8.5A), as is seen for the G266DΔGAF-His (Figure 

7.3) and G266D-His (Figure 8.3) proteins. Subsequently, negative-stain EM analysis 

revealed the presence of oligomeric ring-like particles only in the presence of a 266bp 

section of the norR-norVW intergenic region (Figure 8.5B). The requirement for enhancer 

DNA for oligomerisation of wild-type NorR is in agreement with recent work indicating 

that the norR-norVW intergenic DNA acts as a key ligand for the activation of NorR as a 

transcription factor (Tucker et al. 2010a). The binding of DNA may lead to conformational 

changes, translated to the AAA+ domain via the C-terminal domains, to promote 

oligomerisation. In the case of full-length G266D, it appears that inter-protomer 

interactions that are dependent on the regulatory domains can take place without the 

requirement for DNA-induced conformational changes. However, in the absence of higher-

resolution structural information, it is not known whether the G266D substitution 

stimulates the same inter-protomer contacts that are DNA-dependent in wild-type NorR. 

 

8.4 Testing the requirement for enhancer binding in the GAFTGA-variant G266D 

in vivo 

Negative-stain electron microscopy of the full-length GAFTGA variant has revealed that 

the G266D substitution negates the requirement for enhancer DNA for oligomerisation, 

although it is not clear whether such oligomeric rings represent a functional and 

physiologically relevant form of the protein. Next, it was decided to investigate the 

requirement for enhancer binding on the ability of the G266D variant to activate 

transcription in vivo. Since Cryo-EM indicates oligomerisation can occur in the absence of 

DNA, it was decided to measure the ability of the G266D protein to activate transcription 

in vivo when unable to bind to the norR-norVW intergenic region. Therefore, C-terminal 

truncations were made to remove the helix-turn-helix (HTH) motif (Δ444-504, Δ442-504, 

and Δ436-504) in the NorRΔGAF and NorRG266D proteins. Results showed that both 

NorRΔGAF and NorRG266D were unable to activate transcription at the norV promoter 

when their ability to bind to enhancer DNA was removed (Figure 8.6A). However, 

Western blotting showed that one of the truncations resulted in an unstable protein, both in 

the context of wild-type NorR and G266D (Figure 8.6B). The inability of the stable  
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Figure 8.5 - Enhancer-dependent higher order oligomeric assembly of full length NorR-

His. (A) Gel filtration chromatography of 3 μM His-tagged NorR in the absence (dotted 

line) and presence (solid line) of 0.4 μM 266bp dsDNA (molar ratio of 12:1 monomer : 

DNA), containing all three enhancer sites, performed at 4 °C using a Superose 6 column (24 

ml). The His-tagged wild type nucleoprotein complex eluted at 9.5 ml. Corresponding 

molecular weights of standard globular proteins are indicated relative to their elution 

volumes. (B) Negative-stain Electron Microscopy. Shown are raw micrographs of NorR-

His in complex with 266bp DNA fragment. Scale bar 100 nm. Ring-shaped higher order 

oligomeric particles were observed only in the presence of DNA. Particles of other sizes 

were also observed, which may represent intermediate assembly-states of the protein. 

Experiments were conducted by Tamaswati Ghosh as part of a collaboration with Prof. 

Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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Figure 8.6 – (A) Activities of NorR and the G266D variant when C-terminal truncations 

are made in the norR sequence. Substitutions are indicated on the x axis. “NorR” refers to the 

wild-type protein, “NorRΔGAF” refers to the N-truncated form lacking the GAF domain 

(residues 1-170) and “NorRΔHTH” refers to the C-truncated form lacking the helix-turn-helix 

(HTH) motif (residues 436-504, 442-504 or 444-504). Cultures were grown either in the 

absence (black bars) or presence (white bars) of 4 mM potassium nitrite, which induces 

endogenous NO production. Error-bars show the standard error of the three replicates carried 

out for each condition. (B) Western blot analysis indicating the stability of NorR variants in 

vivo when cultures are grown in the absence of potassium nitrite. The locations of the bands 

corresponding to the full-length and ΔHTH constructs are indicated by red arrows. “MH1003” 

refers to the E. coli strain only. The uppermost band that is not detected in the MH1003 strain 

correlates to full-length NorR and its variants. Results showed that the Δ444-504 constructs 

were unstable in vivo. 
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truncations to activate transcription indicates that NorR and the GAFTGA-variant G266D 

can only function as transcriptional activators when bound to enhancer DNA. Recent work 

has suggested that DNA-induced conformational changes are essential for the activation of 

NorR (Tucker et al. 2010a). Therefore, although the G266D protein can oligomerise in the 

absence of DNA, binding to enhancer DNA is likely to be required to activate it as a 

transcription factor. Alternatively, the ability of a NorR hexamer to activate transcription 

may not depend on changes that occur upon enhancer binding. The binding of NorR to 

DNA in vivo may simply serve to anchor the activator and orientate it relative to the 

holoenzyme bound at the promoter. In order to assess the overall requirement for enhancer 

binding whilst allowing in cis activation of the holoenzyme at the promoter, the ability of 

NorR to activate transcription was assessed in E. coli strains with individually altered 

enhancer sites. When the consensus sequence of binding site 1 (S1), site 2 (S2) or site 3 

(S3) was altered from GT-(N7)-AC to GG-(N7)-CC, the NorRΔGAF protein was able to 

bind to the other two sites but was unable to hydrolyse ATP and as a result was largely 

unable to activate open complex formation (Tucker et al. 2010a).  In line with this, the 

NorR and NorRΔGAF proteins were mostly inactive in vivo, in strains where either one of 

the three enhancer sites was altered (Figure 8.7). This emphasises the importance of the 3 

NorR binding sites for the formation of the active oligomer. Interestingly, the GAFTGA-

variant G266D was significantly more able to activate transcription when one of the 3 sites 

had been altered (Figure 8.7). When NorR site 3 (S3) was altered to GG-(N7)-CC, the 

G266D protein still showed 50 % activity compared to its activity when all three sites were 

present in their consensus forms. Overall this suggests that the GAFTGA variant is less 

dependent than wild-type NorR upon enhancer binding for the formation of an active 

oligomer. Since, each of the three binding sites is required to induce oligomerisation 

(Tucker et al. 2010a), this data is in agreement with gel filtration and electron microscopy 

data which together suggest that the G266D substitution stimulates oligomerisation in full-

length NorR. 

 

8.5 3D-reconstruction of the full-length G266D-His protein in the absence of 

enhancer DNA 

In order to understand the molecular architecture of the enhancer-independent G266D-His 

oligomers, visualised in negative-stain EM in vitro, particle images were selected by 

Tamaswati Ghosh of Prof. Xiaodong Zhang‟s group at Imperial College, London and 

single particle reconstruction carried out to generate a 3D structure. Initially 3701 particles  
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Figure 8.7 – In vivo transcriptional activation by GAFTGA variant G266D in the absence of 

NorR binding site 1, 2 or 3. NorR constucts were transformed into strains of E. coli with either three 

wild-type (WT) NorR binding sites (GT-(N7)-AC) or with one of three NorR binding sites (S1, S2, S3) 

altered to GG-(N7)-CC. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the 

truncated form lacking the GAF domain (Δ1-170). Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO production. 

Error-bars show the standard error of the three replicates carried out for each condition. 
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were picked prior to the generation of class averages (Figure 8.8A). The most striking 

observation after single particle analysis was the seven-fold symmetry of the protein rings 

with seven clear regions of EM-density around the central cavity (Figure 8.8B). This 

seven-fold symmetry was used to generate the initial 3D before iterative refinement of the 

structure. The final reconstruction of G266D-His contained 1600 particles in 110 class 

averages, with the resolution estimated to be 24 Å. Importantly, there was a good 

correlation between the class averages and the reprojections, providing confidence in the 

3D model (Figure 8.8 B and C). Looking at the 3D reconstruction of G266D-His, the EM-

density appears to be composed of three major layers with an expanded central pore 

(Figure 8.9). The major, central density consists of a clear heptameric ring 165 Å wide with 

the central cavity 63 Å in diameter. Seven distinct EM-densities extend downwards from 

the heptameric ring in a claw-like shape that forms the bottom layer of the 3D-

reconstruction. The third, upper-layer of the model is composed of seven further areas of 

EM-density that protrude upwards from the central ring. From the side, the three-layered 

structure is 77 Å in height.  

 

The formation of heptamers by bEBPs has long been a matter for debate with several 

proteins of the AAA+ class showing heptameric arrangements in either their crystal or 

Cryo-EM structures (Miyata et al. 2000; Lee et al. 2003; Akoev et al. 2004). In the case of 

the bacterial protein-disaggregating chaperone, ClpB, heptamers are able to form in the 

absence of nucleotide but in the presence of ATP or ADP, hexamerisation occurs (Kim et 

al. 2000; Akoev et al. 2004). Therefore, in order to determine whether the formation of 

G266D hexamers also requires nucleotide, nucleoprotein complexes were prepared in the 

presence of ATP. Results show the formation of higher order oligomers with seven-fold 

symmetry, indicating that the presence of nucleotide is unable to prevent heptamerisation 

in the full-length GAFTGA variant G266D (Figure 8.3C). 

 

8.5.1 An atomic model of the G266D-His protein 

In order to examine the predicted interactions between the seven protomers of the 

heptameric ring, collaborators performed manual fitting of crystal structures into the 3D-

reconstruction (Figure 8.10). Initially a model of the monomeric NorR AAA+ domain was 

built based on the crystal structure of the ADP-bound AAA+ domain of NtrC1 from 

Aquifex aeolicus (PDB ID: 1NY6). This AAA+ model was then fitted into the central EM  
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Figure 8.8 - Negative stain EM analysis of G266D-His. (A) Raw micrograph collected on the 

CM200 electron microscope at a magnification of 50000x. Some of the selected particles are 

boxed. The scale bar is 1000 Å. (B) Selection of the best class averages (~ 10 particles/class) 

and (C) their corresponding reprojections from the initial 3D model. Experiments were 

conducted by Tamaswati Ghosh as part of a collaboration with Prof. Xiaodong Zhang, 

Imperial College, London (Ghosh 2010). 
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Figure 8.9 - 3D reconstruction of full length NorR-G266D at 26 Å resolution. A surface 

representation including 100 % of the expected volume of the EM density obtained from the 

3D reconstruction of the G266D complex is shown in different orientations. The structure 

consists of three layers, when viewed from the side (dashed green lines). The main body of 

the molecule (central heptameric ring) has a diameter of 165 Å and a central opening of 63 

Å. Small density lobes are found at the ends of each of the seven claw-shaped densities that 

extend down from the central ring; no connections appear between the individual subunits 

(bottom and side „cut-away‟ views). A side view has been cut open to reveal the expanded 

central cavity and the channel spanning the entire length of the molecule. Analysis was 

conducted by Tamaswati Ghosh as part of a collaboration with Prof. Xiaodong Zhang, 

Imperial College, London (Ghosh 2010). 
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Figure 8.10 - Assignment of the NorR domains in the 3D reconstruction of 

NorRG266D-His. Fitting of the atomic models of the individual NorR domains into the 

3D density map (grey mesh), shown in the top view (top-left), bottom view (bottom-

left), side view (top-left) and titled side view (bottom-right) orientations. Seven AAA+ 

domains (yellow) were fitted into the central ring density, with individual GAF domains 

(blue) positioned at the outer rim of the ring. The DNA binding domains (shown in 

green) were fitted into the density lobes found at the bottom of the central ring. Also 

shown are the positions of the G266 (orange spheres) and R81 (purple spheres) residues, 

both of which are thought to play key roles in maintaining the mechanism of repression. 

Analysis was conducted by Tamaswati Ghosh as part of a collaboration with Prof. 

Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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density so that the N-terminal α/β subdomain containing helix 3 and helix 4, occupied the 

upper-layer of density that extends upwards in the 3D-reconstruction. This ensured that the 

L1 and L2 loops were surface-exposed in the model as is observed in the crystal structures 

of the ZraR hexamer and the NtrC1 heptamer (Lee et al. 2003; Sallai and Tucker 2005). 

However, in order to fit neatly within the EM-density, the C-terminal helix of the 

monomeric NorR AAA+ model was rotated approximately 90° such that it faced 

downwards towards the bottom of the central ring. Following modelling of the NorR 

AAA+ domain, homology modelling based on the crystal structure of the Acinetobacter 

phosphoenolpyruvate-protein phosphotransferase GAF domain (PDB ID: 3CI6) was used 

by collaborators to generate a model of the NorR GAF domain. In the 3D-reconstruction of 

G266D-His, additional EM-density is present at the outside edge of the ring formed by the 

AAA+ domains. Therefore the model of the monomeric NorR GAF domain was fitted into 

these peripheral regions. This arrangement is similar to that observed in the EM model of 

full-length activated NtrC (De Carlo et al. 2006). Together the AAA+ and GAF domains of 

the seven protomers account for the central EM density that forms the heptameric ring. 

Finally, a model of the NorR C-terminal DNA-binding domain was generated based on the 

crystal structure of the DNA-binding domain from ZraR. Secondary structure prediction 

revealed that the NorR C-terminal domain is likely to contain a three-helix bundle, 

something observed in the crystal structure of the ZraR D domain (Sallai and Tucker 

2005). The first helix (α1) is implicated in the dimerisation of the C-terminal domains 

whilst the second and third (α2 and α3) helices together form the helix-turn-helix motif. 

The ZraR DNA-binding domain was manually fitted into the EM-density below the central 

body of the heptameric ring to complete the atomic model for the full-length GAFTGA 

variant. 

 

The proposed atomic model for G266D-His is shown in Figure 8.10. Examination of the 

model revealed that the NorR AAA+ domains are arranged in a front-to-back configuration 

in agreement with other bEBPs including PspF, NtrC1 and ZraR (Lee et al. 2003; Rappas 

et al. 2005; Sallai and Tucker 2005; De Carlo et al. 2006). Importantly, the N-terminal 

regulatory (GAF) domains are positioned on the periphery of the ring, away from L1 and 

L2 loops which are surface exposed and well placed for σ54
-interaction at the top of the 

heptamer. In this state, the GAF domains appear to interact with the AAA+ domain of the 

same protomer but there is no inter-protomer association facilitated by the regulatory 
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domains. Furthermore, based on the model no inter-protomer interactions are predicted to 

form between GAF domains. However, it is possible that the regulatory domains contribute 

to the stability of the oligomeric assembly by restricting the relative conformations of the 

AAA+ α-helical and α/β subdomains. This may explain why enhancer-independent 

oligomerisation was only observed for the full-length GAFTGA variant and not for 

G266DΔGAF-His. The arrangement of the GAF domains on the outer-edge of the AAA+ 

ring may account for the large 165 Å diameter that is observed in the reconstruction. In 

contrast, the wild-type and G266D variant forms of NorRΔGAF-His are 125 Å in diameter. 

This is consistent with hexameric rings formed by PspF that lacks a regulatory domain and 

by ZraR, which was crystallised in its absence. The NtrC1 heptameric AAA+ ring, 

crystallised in the absence of the receiver domain also adopts a similar diameter of 

approximately 124 Å (Lee et al. 2003). Finally, fitting of the ZraR C-terminal, DNA-

binding domain within the density lobes beneath the central plane of the ring suggests that 

binding to enhancer DNA would take place on the opposite surface of the protein from the 

upper, σ54
-interaction surface. The DNA-binding domains do not occupy the full EM-

density below the central plane and this might reflect the independent motion of the C-

terminal domains relative to the AAA+ domain that may result from the flexible (>22 

amino acids) linker between the two domains. In contrast to the EM model of NtrC (De 

Carlo et al. 2006), the DNA-binding domains are not in close enough proximity to 

dimerise. However, it has been suggested that this may be a result of the seven-fold 

symmetry imposed during the refinement of the 3D-reconstruction (Ghosh 2010). 

 

8.5.2 The 3D-reconstruction predicts that the G266D-His protein is ATPase inactive 

in vitro 

One of the most striking features of the NorRG266D-His reconstruction is the significantly 

larger diameter of the central pore (~63 Å) compared to the AAA+ ring of the crystal 

structure of NtrC1 (~20 Å) (Figure 8.11, compare A and B). Since both structures consist 

of seven protomers, this is likely to result in differences in the separation and organisation 

of individual domains. In order to assess the implications of these differences on the 

function of the ATPase, the AAA+ inter-protomer interactions in the NorR 3D-model were 

compared to those present in the crystal structure of NtrC1
C
. In particular the position of 

key residues required for the ATPase activity of bEBPs was examined at the interface 
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Figure 8.11 – Comparison of ATP hydrolysis sites in the NorRG266D-His heptamer model and 

the crystal structure of the heptameric NtrC1. (A) Top view of the G266D variant model 

showing the heptameric ring assembly. Consecutive AAA+ domains are shown in alternating red 

and yellow colours with the seventh monomer in dark grey. GAF domains are in light blue and 

DNA binding domains in light grey. (B) The crystal structure of the AAA+ domain of NtrC1 (PDB 

1NY6). Consecutive AAA+ domains are shown in alternating red and yellow colours with the 

seventh monomer in dark grey. Both the regulatory domains and DNA binding domains are absent 

in the crystal structure. An example of the interprotomer interface at which the ATP hydrolysis site 

is found is shown in both models (blue circles). (C) Close-up of the ATPase active site located 

between adjacent AAA+ subunits in the atomic model of NorRG266D-His and in the crystal 

structure of NtrC1 (D). Conserved residues implicated in ATP binding and hydrolysis, inter-subunit 

catalysis and relaying nucleotide states to the surface exposed L1/L2 loops are indicated: Walker A 

residues G220/G172, K221/K173, G215/G167 (brown), Walker B residues D286/D238 and 

E287/E239 (cyan), “switch” asparagine N243/N195 (dark blue), Sensor I T327/T279 (magenta), 

sensor II residue R405/R357 (green), and trans-acting putative R-fingers R341/R393 and 

R347/R299 (green). An ADP molecule is present in the active site of NtrC1 (C) whilst a molecule of 

ATP has been positioned in the NorR model (D). Analysis was conducted as part of a 

collaboration with Prof. Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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between two AAA+ protomers that forms the site for hydrolysis (Schumacher et al. 2008). 

The NtrC1 AAA+ heptamer was crystallised in its ADP-bound form and an ATP molecule 

was also positioned in the NorR model in the cleft between two subdomains, such that the 

phosphate backbone wrapped around the P-loop (residues 214-222). The Walker A motif 

forms a P-loop with the consensus GxxxxGK[T/S] and contacts the phosphates of ATP 

(Saraste et al. 1990). It has been shown to be essential for hydrolysis in a number of bEBPs 

including PspF and NtrC (Rombel et al. 1999; Schumacher et al. 2004). The position of the 

conserved lysine of the Walker A motif in NtrC1 (K173) is in line with this role. However, 

in the 3D-reconstruction, the NorR side chain (K221) faces away from the phosphates of 

ATP. The Sensor II arginine has been implicated in ATP hydrolysis via the coordination of 

the γ-phosphate (Schumacher et al. 2006) and the position of this residue in NtrC1 (R357) 

correlates with this. However, in the G266D-His reconstruction, the R405 residue points 

away from the nucleotide. The open conformation at the ATP hydrolysis site also appears 

to alter the position the highly conserved Walker B “DE” residues. The aspartate side chain 

is suggested to have a role in Mg
2+

 coordination as well as the activation of a water 

molecule for the nucleophilic attack of the γ-phosphate. However in the NorR model, the 

D286 and E287 side chains are not well placed to carry out these functions unlike the D238 

and E239 residues in NtrC1. This may be due to the inability of the R-finger residue 

(R341) to H-bond to the Walker B aspartate (D238), a contact observed in the NtrC1 

structure (R293-D238) that helps to position the Walker B glutamate. Overall, the more 

open conformation of the G266D-His 3D-reconstruction, compared to the NtrC1 crystal 

structure suggests that key ATPase determinants are not suitably placed for efficient 

turnover of nucleotide. Next, it was decided to test this hypothesis by carrying out ATPase 

activity assays in vitro. 

 

8.6 The G266D-His protein exhibits contaminating ATPase activity in vitro. 

The position of key determinants in the 3D-model of G266D-His suggests that this protein 

is unable to hydrolyse ATP. Therefore, it was important to determine whether the 

heptameric G266D-variant protein maintained the interactions that result in a functional 

ATPase in vitro. Non-activated wild-type NorR has been shown to be inactive for ATP 

hydrolysis irrespective of whether DNA containing the norR-norVW intergenic region is 

present (D'Autreaux et al. 2005). A truncated variant lacking the regulatory GAF domain, 

(NorRΔGAF) showed a low level of ATP hydrolysis in the absence of enhancer DNA  

 



230 
 

 

 

  

Figure 8.12 - ATPase activity of the G266D-His (A), G266N-His (B) and G266D-

D286A-His (C) variants in response to protein concentration and the presence of 

enhancer DNA. Non-linear regression was carried out using GraphPad Prism software. 

Assays were conducted either in the absence (closed bars or closed squares) or presence 

(open bars or open squares) of the 266bp DNA fragment (final concentration 5 nM) that 

includes the norR-norVW intergenic region and each of the three NorR binding sites. Data 
are shown as the mean from at least two experiments. 
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(Figure 7.4A). The presence of DNA presumably stimulates oligomerisation with the 

appropriate interactions occurring between residues of adjacent protomers to form the 

functional hexamer. This is reflected in the significant increase in ATPase activity that was 

observed as enhancer DNA was added (Figure 7.4A). Initial results revealed that the 

G266D and G266N variants both exhibited enhancer-independent ATPase activity. A high 

level of ATPase activity was observed that was not dependent on the presence of a 266bp 

DNA fragment containing the three NorR enhancer sites of the norR-norVW intergenic 

region (Figure 8.12). This suggests that the large oligomers visualised in the Cryo-EM with 

a central pore of ~63 Å in diameter are competent to hydrolyse ATP. To confirm this 

result, an additional substitution was made at the essential Walker B motif (D286A). This 

mutation renders bEBPs inactive for ATPase activity as observed for NorRΔGAF (Figure 

7.5) and G266DΔGAF (Figure 7.6). The D286A-G266D double mutant was expressed 

prior to purification of the protein that eluted from the gel filtration column at a volume 

corresponding to ~960kDa or ~16 NorR monomers (data not shown). This volume is 

similar to that observed for the single-mutant G266D (~1020kDa or ~17 monomers). 

Importantly, no reduction in ATPase activity was observed when the D286A substitution 

was additionally present, suggesting that the G266D substitution is not responsible for the 

ATP turnover previously observed. Since the G266D protein eluted over a large range of 

volumes around the void volume of the gel filtration column, it may be that it co-purified 

with one or more contaminating proteins. Changes in the protocol for the purification of 

the GAFTGA variants were not successful in removing contaminating ATPases (data not 

shown). Overall, in vitro assays were unable to determine whether or not the heptameric 

form of NorR is functional for ATP hydrolysis. However, when the position of the key 

catalytic residues in the 3D-reconstruction is considered, it can be concluded that it is most 

unlikely that the G266D-His protein can turnover ATP in vitro. 

 

8.7 Full-length G266D does not activate open complex formation in vitro 

Since it was not possible to discern whether the full-length G266D protein was able to 

hydrolyse ATP in vitro, it was decided to test the functionality further by conducting open 

promoter complex (OPC) assays. The presence of a contaminating ATPase would not be 

expected to interfere with the OPC assay since other proteins should be unable to activate 

transcription from the norV promoter within the physiological range of activator 

concentrations. Whilst the assay conditions enabled NorRΔGAF-His to form open 

complexes (Figure 8.13A), it was not possible to determine whether the G266D variant  
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Figure 8.13 – Analysis of Open promoter complex formation by the GAFTGA variant 

G266D. Heparin resistant complexes formed by NorRΔGAF-His (A) and G266D-His (C) on 

a 361bp DNA fragment carrying the norR-norVW intergenic region. Complex formation by 

NorRΔGAF-His (B) and G266D-His (D) on the 295bp DNA fragment that does not contain 

the NorR-binding region, is also shown.  The presence or absence of ATP is indicated above 

each lane by the -/+ sign and the NorR concentrations are indicated in nM. Arrows indicate 

the position of free DNA, NorR bound DNA and the open promoter complexes. 
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was functional.  Assays indicated that the G266D variant bound effectively to a 361bp 

section of the norR-norVW intergenic region but that the NorR-DNA complex was unable 

to migrate into the polyacrylamide gel to form a distinct DNA-bound species (Figure 

8.13C). This is in line with gel filtration experiments that indicated that this variant forms a 

large mulitimeric assembly. Studies in vivo showed that the G266D variant was able to 

activate transcription when either one of the three NorR binding sites was altered from the 

consensus sequence (Figure 8.7). Although the transcriptional activity was reduced, the 

GAFTGA variant appeared to be less reliant than NorRΔGAF on the three NorR binding 

sites to facilitate the formation of a functional oligomer. Because of this, and the fact that 

Cryo-EM data showed enhancer-independent oligomerisation (Figure 8.3B), it is possible 

that the G266D variant might be able to activate transcription in the absence of all three 

NorR binding sites in the intergenic region. Therefore, PCR-based deletion mutagenesis 

was carried out to remove a 66bp sequence of the norR-norVW intergenic region (section 

5.7.6). The resulting 295bp fragment was used in the same way as the 361bp fragment to 

detect the formation of open complexes. Neither the NorRΔGAF nor G266D variant 

proteins were able to activate transcription from a 295bp fragment that lacks the three 

NorR binding sites (Figure 8.13B and 8.13D). It appears that for both the wild-type and 

G266D-variant, NorR requires the ability to bind to enhancer DNA in order to activate 

transcription. This is in agreement with the inability of NorR and the GAFTGA-variant to 

activate transcription in the absence of the C-terminal DNA-binding domain (Figure 8.6). 

These data emphasise the importance of enhancer-DNA in the activation of NorR as a 

transcription factor, as has been previously demonstrated (Tucker et al. 2010a).  

 

Since the large oligomeric assembly that forms when the G266D variant is purified in full-

length form prevented identification of the open promoter complexes in the standard OPC 

assay, we decided to try to detect the presence of open complex using potassium 

permanganate footprinting. In contrast to the standard open promoter complex assay, this 

technique does not analyse the migration of protein-DNA complexes but rather detects 

transcriptional activation by the cleavage of single stranded DNA regions, including the 

region immediately upstream of the start-site. For the non-tagged and tagged versions of 

NorRΔGAF, we observed enhanced cleavage corresponding to T residues located between 

-11 to +1 in the norV promoter, consistent with the expected footprint (Figure 8.14, lanes 3 

and 4). However, no enhancement of cleavage was observed when G266D-His was used as 

an activator in the reaction (Figure 8.14 lane 5). Taken together, these data suggest that the  
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Figure 8.14 - Potassium permanganate footprinting of the 266bp norR-norVW promoter 

fragment after open complex formation initiated by NorR. Lane 1 is a G+A ladder. Lane 

2 is a control without activator present. Lanes 3, 4, and 5 show footprinting after initiation of 

open complexes in the presence of 1 μM (final concentration) ΔGAF, ΔGAF-His and 

G266D-His respectively. The arrow marks the norVW transcriptional start and the positions 

of the enhanced cleavage at T bases are indicated. 
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full-length G266D “heptameric” species previously observed in Cryo-EM analysis is non-

functional with respect to open promoter complex formation.   

 

8.8 Discussion 

In the previous chapter, the N-terminal regulatory domain of NorR was proposed to target 

the GAFTGA-containing loop 1 (L1) in order to prevent access of the activator to σ
54 

in the 

absence of NO. Biochemical analysis of the G266D variant protein in the context of GAF-

truncated NorR suggested that neither the oligomeric determinants nor the ATP hydrolysis 

site serve as targets in the mechanism of interdomain repression, as has been demonstrated 

in related bEBPs. However, a number of recent studies have highlighted the importance of 

examining the activity and structure of such proteins in their full-length forms. Despite 

difficulties with the low-solubility of full-length G266D-His, low-levels of protein (1-3 

µM) were eventually purified. The first clue indicating that the presence of the regulatory 

domain altered the properties of the GAFTGA variant was provided by size-exclusion 

chromatography. The truncated form of the protein (G266DΔGAF-His) eluted at a volume 

corresponding to a monomer or dimer (70-80 ml on the Superdex 200 16/60 preparative 

column). In contrast, full-length G266D-His eluted over a broad range of volumes close to 

the void (43 ml) (Figure 8.2). Based on the elution of gel filtration standards, this peak 

centred on a volume corresponding to ~1020 kDa or ~17 monomers. The analytical 

Superose 6 column provides better separation of larger protein complexes and gel filtration 

carried out by collaborators at Imperial College indicated that the G266D-His complex was 

greater in size than the 669 kDa molecular weight marker, thyroglobulin (Figure 8.3A). 

This suggests that in vitro, the full-length GAFTGA variant forms a complex with greater 

than 11 monomers. Structural studies of the related proteins p97 and MCM have identified 

double-AAA+ rings (Rouiller et al. 2002; Beuron et al. 2003; Costa et al. 2006b; Davies et 

al. 2008) and G266D-His may form similar complexes. Since the protein does not elute at 

a discrete volume during gel filtration, it is likely that a range of oligomeric particles 

assemble.  

 

Significantly, cryo-electron microscopy has revealed that the G266D-His protein is 

competent to form oligomeric rings in the absence of the three NorR binding sites (Figure 

8.3B). Since full-length, wild-type NorR-His does not form such complexes in the absence 

of DNA (Figure 8.5), it can be concluded that the G266D substitution causes this dramatic 

change in behaviour rather than the presence of the regulatory GAF-domain per se. The 
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question of why the G266D substitution stimulates enhancer-independent oligomerisation 

of NorR only when the GAF domain is present remains unanswered. The 3D-model of 

G266D-His suggests that there are no inter-protomer interactions that involve the 

regulatory domain (Figure 8.10) although it is possible that the GAF domains help stabilise 

the higher oligomer by restricting the relative conformations of the α-helical and α/β 

subdomains of the AAA+ domain. In contrast, the GAFTGA variant was shown to exhibit 

a complete bypass phenotype in vivo (Figure 6.4B), suggesting that the GAF domain does 

not contribute to the activity of the G266D protein. This is supported by the observation 

that when the regulatory domain was absent altogether in a hexa-histidine-tagged construct 

expressed from the pETNdeM-11 vector (G266DΔGAF-His), there was no reduction in the 

in vivo activity of the escape mutant (Figure 6.11). However, the GAF domain may 

contribute to the activity of the non-tagged protein in vivo, since G266DΔGAF showed a 

reduction in activity (Figure 6.9). 

 

Previous data supports a model in which three NorR dimers bind to the enhancer sites, 

inducing conformational changes that lead to the formation of a hexamer (Tucker et al. 

2010a). Each of the three NorR binding sites has been shown to be essential for 

oligomerisation, ATP hydrolysis and open complex formation.  Here, it has been shown 

that the GAFTGA variant G266D must still bind to enhancer DNA in order to activate 

transcription. A truncated form of the protein that lacks the C-terminal DNA binding 

domain was inactive in vivo (Figure 8.6). Furthermore in vitro, the full-length protein was 

unable to form open promoter complexes when the upstream DNA did not include the 

enhancer sites (Figure 8.13). Interestingly, the G266D variant was partially active in vivo 

when either site 1 (S1), site 2 (S2) or site 3 (S3) was altered from the consensus (Figure 

8.7). Indeed when NorR site 3 (S3) was altered from GT-(N7)-AC to GG-(N7)-CC, the 

activity of the G266D variant showed only a two-fold reduction compared to the activity 

when all three sites were present in their consensus forms. This phenotype may be 

explained by an increase in the cooperativity of DNA-binding at the remaining intact sites, 

induced by the G266D substitution.  The 3D-reconstruction suggests that the regulatory 

GAF domains are located close enough to the DNA-binding domains to mediate such an 

effect (Figure 8.10). The G266D substitution may also have an indirect effect on DNA 

binding through the stimulation of GAF-AAA+ interactions that increase cooperative 

binding at the enhancer sites. An alternative explanation is that the greater propensity of 

full-length G266D to oligomerise (as demonstrated by the formation of DNA-independent 
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heptamers) enables the protein to form active oligomers in vivo in the presence of two 

rather than three enhancer sites. 

 

Particularly important is the observation that the G266D-His oligomeric particles are larger 

than the expected size of a NorR hexamer (125 Å) and correspond to a ring with 7-fold 

symmetry (165 Å).  Heptameric structures have also been observed in the bEBPs NtrC1 

(Lee et al. 2003; Chen et al. 2010) and NtrC4 (Batchelor et al. 2009) as well as in the 

AAA+ proteins RuvB (Miyata et al. 2000); MCM (Yu et al. 2002; Costa et al. 2006b; 

Costa et al. 2006a), ClpB (Kim et al. 2000; Akoev et al. 2004); HslU (Rohrwild et al. 

1997); Lon (Stahlberg et al. 1999); magnesium chelatase (Reid et al. 2003) and p97 

(Davies et al. 2008).  Since the physiological relevance of such structures has been a 

matter for debate it was important to verify whether the G266D-His protein that forms 

heptamers in vitro was functional with respect to ATP hydrolysis and open complex 

formation. Although the presence of contaminating ATPases meant that the ability of the 

GAFTGA variant to turnover ATP could not be determined (Figure 8.12 A and C), given 

the inability to form open complex (Figure 8.13) it might also be expected that the protein 

is inactive with respect to ATP hydrolysis. In agreement with this hypothesis, the 3D-

reconstruction revealed that the key residues involved in hydrolysis are too distant relative 

to the expected position of the nucleotide for efficient hydrolysis (Figure 8.11).  

 

Although in some AAA+ proteins, functional roles for two higher oligomeric forms have 

been proposed (Table 3) e.g. RuvB, MCM, ClpB (Kim et al. 2000; Miyata et al. 2000; Yu 

et al. 2002; Akoev et al. 2004; Costa et al. 2006b; Costa et al. 2006a), it is becoming 

increasingly clear that the active form of the protein is most commonly hexameric. The 

most common reason for the formation of heptameric rings is the truncation of proteins 

that lead to non-native stoichiometries. Therefore, if possible, the oligomeric state of an 

intact AAA+ protein should be assessed. Interestingly, in the case of the NorR variant 

G266D, heptameric rings form when the protein is intact and truncation of the N-terminal 

domain results in the formation of the 6-membered ring. However, it is probable that the 

existence of the two configurations is not due to the presence or absence of the GAF 

domain per se since both the full-length and N-truncated forms of wild-type NorR form 

hexamers. In other cases, heptameric rings can often be converted into rings with 6-fold 

symmetry upon binding of a key ligand or cofactor. The bacterial protein ClpB forms 

heptamers in the absence of nucleotide but rearranges to form hexamers when ATP or 



238 
 

ADP binds (Kim et al. 2000; Akoev et al. 2004). However, the addition of ATP was not 

sufficient to prevent the formation of G266D-His heptamers (Figure 8.3C). In the case of 

RuvB from Thermus thermophilus and the MCM protein from Methanothermobacter 

thermoautotrophicus, heptamers form in the absence of DNA but hexamerisation occurs 

when DNA is present (Kim et al. 2000; Miyata et al. 2000; Yu et al. 2002; Akoev et al. 

2004; Costa et al. 2006b; Costa et al. 2006a). However, in the current analysis, the addition 

of a DNA fragment carrying the three enhancer sites to the G266D-His protein did not 

facilitate the conversion of the 165 Å diameter oligomers into smaller 125 Å hexamers 

(Figure 8.3D). However, OPC assays have confirmed that the full-length variant is able to 

bind to a DNA fragment containing the three enhancer sites in a heparin-resistant manner. 

It is possible that the 7-membered ring represents a configuration of NorR, stimulated by 

the G266D substitution that is capable of binding to enhancer DNA but unable to undergo 

the DNA-induced conformational changes required to form the NorR hexamer.  

 

The non-functional nature of the G266D variant in vitro contradicts in vivo data that 

indicates that the G266D substitution enables full escape from the GAF-mediated 

repression mechanism (Figure 6.8A). This would suggest that the ability of the GAFTGA 

variant to form heptamers in vitro does not contribute to the proteins ability to activate 

transcription in vivo. It is likely that the conditions inside the cell are suited to the 

formation of the active hexamer rather than the inactive heptamer. The assembly of the 

higher order oligomer from NorR dimers using DNA as a scaffold may promote the 

formation of the hexamer over the heptamer in this case. It would be interesting to test 

therefore whether the G266D heptamer can be denatured and re-folded in the presence of 

enhancer DNA to encourage the formation of an active NorR hexamer. 

 

In the previous chapter it was shown that the N-terminal, regulatory domain of NorR is 

likely to target the σ
54

-interaction surface in the mechanism of interdomain repression. In 

this model, the GAF domain “clamps-down” over a region of the AAA+ domain that 

includes the GAFTGA-containing loop 1, required for σ
54

-interaction. The G266D 

substitution leads to a complete bypass phenotype in vivo (Figure 6.8A), suggesting that 

the GAF domain adopts a conformation close to its position in the on-state. This proposed 

conformation can be examined in the 3D-reconstruction of the G266D-His protein (Figure 

8.10). The most striking feature of the 3D-model is the large size of the heptameric ring. 

The reconstruction is 165 Å in diameter in contrast to the predicted diameter of 125 Å for 
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the hexamers formed by the wild-type and G266D variant of NorRΔGAF-His (Figure 8.9). 

This size may be explained in part by the presence of the regulatory GAF domain which 

appears to occupy the EM-density on the periphery of the AAA+ ring, away from the σ
54

-

interaction surface (Figure 8.10). Based on the model of interdomain repression proposed 

in Chapter 7 and the position of the GAF domain in the reconstruction, it is possible that a 

“swing-out” movement occurs from the top to the outer edge of the AAA+ ring (Figure 

8.15). The random coiled-coil linker present between the GAF and AAA+ domains is of 

sufficient length (29 residues) to enable such a transition. Furthermore, in the proposed off-

state conformation, the critical R81 residue would be in a position to interact with the α/β 

subdomain. Structural analysis of the wild-type protein in the absence of NO would be 

helpful in order to identify a more exact position of the regulatory domain in the off-state. 
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Figure 8.15 – Proposed model of GAF-domain relocation upon the release of 

repression. (A) Shows the “swing-out” movement (monomer in purple, positions I-III) of 

the GAF domain depicting the potential „off-state‟ (dark blue) and „on-state‟ (light blue) 

conformations adopted by the NO-sensing domain. The central AAA+ domain is also 

shown (monomer in yellow) (B) Schematic to show the potential relocation of the GAF 

domain as NorR becomes activated upon binding to NO. Modelling was conducted by 

Tamaswati Ghosh as part of a collaboration with Prof. Xiaodong Zhang, Imperial 

College, London (Ghosh 2010). 
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Chapter 9 - Investigating the escape mechanism of the Q304E variant  

9.1 Introduction 

Of the ten substitutions identified in the screen that gave rise to a significant escape 

phenotype, only the Q304E change was at a residue predicted to be located outside the 

region of nucleotide-induced conformational change (Figure 6.5). Since the Q304E variant 

of NorR is still subject to NO-dependent regulation of AAA+ activity, it might be inferred 

that the Q304E substitution does not directly disrupt the GAF-AAA+ interface. To 

investigate the mechanism by which the Q304E variant of NorR escapes GAF-mediated 

repression of AAA+ activity, the protein was purified prior to structural and biochemical 

studies. 

 

9.2 Targeted mutagenesis at position 304 

Initially, the escape-mechanism of the Q304E variant was studied by making a number of 

other substitutions at this position (Figure 9.1). β-galactosidase assays showed that removal 

of the amino acid side chain (i.e. alanine substitution) does not affect the ability of NorR to 

activate transcription in response to NO, suggesting that the Q304 residue does not have a 

role in maintaining GAF-mediated repression of AAA+ activity. This is unsurprising, since 

the Q304 residue is not predicted to be located within the region of nucleotide-induced 

conformational change (Figure 6.5 B and C) that is proposed to be the target of the GAF 

domain in the mechanism of negative control in NorR. The Q304D variant of NorR gives a 

similar level of activity to the Q304E variant, with a partial escape from repression (Figure 

9.1). In contrast, the Q304N and Q304R variants have null phenotypes and are unable to 

activate transcription irrespective of the presence of nitrite in the β-galactosidase assay, 

although stability was not tested. The requirement of a polar carboxyl group in the side 

chain of the 304 residue for escape is reflected in the ability of the glutamate and aspartate, 

but not the glutamine (wild-type) or asparagine changes to produce constitutive activity. 

Interestingly, the non-polar proline substitution also gives significant activity in the 

absence of an NO-source (Figure 9.1). Such a residue at this position would cause 

significant distortion in and around helix 4 (H4) and therefore may lead to “escape” by an 

indirect mechanism.  
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Figure 9.1 - Transcriptional activation by mutants of the Q304 residue of NorR in vivo as 

measured by the norV-lacZ reporter assay. Substitutions are indicated on the x axis. “NorR” 

refers to the wild-type protein and “NorRΔGAF” refers to the truncated form lacking the GAF 

domain (residues 1-170). Cultures were grown either in the absence (black bars) or presence 

(white bars) of 4 mM potassium nitrite, which induces endogenous NO production. Error-bars 

show the standard error of the three replicates carried out for each condition. 
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9.3 Influence of GAF domain substitutions on the Q304E phenotype 

Since β-galactosidase assays demonstrate that the Q304E substitution produces a partial 

escape phenotype (Figure 9.1), it was of interest to determine what role the GAF domain 

plays in the regulation of NorR activity. In order to confirm that the NO-sensing function 

of the GAF domain contributes to the phenotype of the Q304E variant, targeted 

substitutions were made at residues known to disrupt the non-heme iron centre in the GAF 

domain (Tucker et al. 2007). The Y98L, R75K, D99A, H111Y and C113S variants gave 

rise to a null phenotype in vivo and the mutant proteins were unable to activate 

transcription in the absence or presence of an NO-source. In Chapter 6 it was shown that 

when such additional substitutions were made in the fully constitutive GAFTGA variant 

G266D, there was no reduction in NorR activity in vivo. In the partial-escape variant 

Q304E, the apparent NO-induced activity in the on-state suggests a requirement for an 

intact iron-centre. Therefore, it might be expected that such substitutions would result in a 

reduction of activity in the on-state to the level observed in the off-state. Surprisingly 

however, these additional substitutions instead led to an increase in the activity of the 

Q304E variant protein (Figure 9.2). In the case of the R75K-, D99A- and H111Y-Q304E 

variants, the additional GAF-domain substitutions gave rise to a fully-escaped phenotype. 

The Y98L-Q304E and C113S-Q304E variants were still subject to partial regulation by the 

GAF domain but there was a significant increase in the activity of the double mutant 

compared to the Q304E-variant. This suggests that the non-heme iron-centre may play a 

role in maintaining the interface of interdomain repression in the Q304E variant of NorR. 

Furthermore, the differences in the requirement for NO-activation between the GAFTGA 

variant G266D and the Q304E variant further suggests that these mutant-versions of NorR 

escape repression by entirely different mechanisms. 
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Figure 9.2 - Activities of Q304E variants in vivo as measured by the norV-lacZ reporter 

assay when additional substitutions are made in the GAF domain to disrupt the non-heme 

iron centre (Tucker et al. 2007). Substitutions are indicated on the x axis. “NorR” refers to the 

wild-type protein and “NorRΔGAF” refers to the truncated form lacking the GAF domain 

(residues 1-170). Cultures were grown either in the absence (black bars) or presence (white 

bars) of 4 mM potassium nitrite, which induces endogenous NO production. Error-bars show the 

standard error of the three replicates carried out for each condition. 



245 
 

9.4 In vitro studies of the partial escape variant Q304E 

9.4.1 Purification of full-length NorRQ304E 

In order to further study the mechanism of escape in the Q304E variant, the protein was 

biochemically characterised. Initially, the full-length form of the Q304E variant protein 

was overexpressed and purified without a tag using heparin affinity chromatography. 

However, like the GAFTGA variant G266D, the Q304E mutant protein was largely 

insoluble compared to wild-type NorR when overexpressed in its non-tagged form (Figure 

9.3A and B). Therefore, the protein was overexpressed and purified in the pETNdeM11 

vector which encodes an N-terminal, TEV-cleavable, hexahistidine tag (Figure 9.3C and 

D). The Q304E-His protein was much more soluble than the previously characterised 

G266D-His protein. As is typical for NorR and its variants, the protein eluted in the range 

of 100 mM -200 mM imidazole and under these conditions, the Q304E protein showed a 

propensity to precipitate. Therefore, Q304E-containing fractions were loaded immediately 

onto a Superdex 200 16/60 column (Amersham Biosciences) to remove the imidazole as 

well as any impurities (Figure 9.3 E and F). NorRQ304E-His had an elution volume of 

around 65 ml, corresponding to a molecular weight in the dimer-trimer range, as was 

observed for wild-type NorR-His. Concentration using an Amicon Ultra spin column 

(Milipore) gave on average 10-15 µM of pure protein. 

 

9.4.2 Purification of Q304EΔGAF 

In order to investigate the effect of the Q304E substitution on NorR activity in the absence 

of the N-terminal GAF domain, a Q304E variant that additionally lacks the first 170 

residues was purified via an N-terminal, TEV-cleavable, hexahistidine tag. As is the case 

for NorRΔGAF-His and the GAFTGA-mutant derivatives, Q304EΔGAF-His is highly 

soluble when overexpressed. Nickel affinity chromatography resulted in pure protein that 

elutes in the range of 100 mM to 200 mM imidazole. As was the case for all NorR 

constructs, under these conditions there was a propensity for the protein to precipitate at 

high concentrations. Gel filtration was employed to remove the imidazole and 

Q304EΔGAF-His eluted in the range of 70-80 ml as was observed for wild-type 

NorRΔGAF-His, corresponding to a molecular weight in the monomer-dimer range. 

Concentration using an Amicon Ultra spin column (Milipore) typically gave 100-150 µM 

of pure protein.  
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Figure 9.3 – Purification of full-length Q304E (A) Heparin affinity chromatography for 

non-tagged Q304E showing non-binding pool (NBP; not shown for NorR) and protein eluted 

using an increasing concentration of NaCl. (B) SDS-PAGE gel of bound protein. The 

presence of the protein (55.25 kDa monomer) is indicated by a red arrow. Both the wild-type 

NorR (Figure 70 A and B) and variant Q304E proteins eluted in the range of 200 mM-500 

mM NaCl but the Q304E protein was significantly less soluble. NorR-containing fractions 

were subsequently loaded onto a 124 ml superdex 200 16/60 column for gel filtration. Wild-

type NorR eluted in the range of 65-75 ml but pure fractions of the Q304E variant were not 

obtained (data not shown). (C) Purification of Q304E-His by affinity chromatography. Nickel 

affinity chromatography showing non-binding pool (NBP) and protein eluted using an 

increasing concentration of imidazole. The Q304E-His protein was significantly more soluble 

than the non-tagged form and bound to the Ni
2+ 

column , eluting in the range of 100 mM-200 

mM imidazole. (D) SDS-PAGE gel of bound protein eluted by increasing imidazole 

concentrations. L = lysate, S = supernatant, P = pellet, NBP = Non Binding Pool. (E) Gel 

filtration of selected NorR-containing affinity fractions using the 124 ml superdex 200 16/60 

column. Q304E-His eluted at 60-70 ml.  The peak around the void volume (43 ml) did not 

contain any protein (D) SDS-PAGE gel of the eluted protein from gel filtration. In each case 

the presence of the Q304E-His protein (58.44 kDa monomer) is indicated by a red arrow.  
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9.4.3 The Q304E mutation does not affect enhancer binding of NorR in vitro 

Transcription factors of the bEBP family are commonly regulated through the control of 

their oligomeric states. Binding of NorR to the three enhancer sites in the norR-norVW 

intergenic region has been shown to be essential for the formation of stable oligomers 

capable of hydrolysing ATP. Furthermore enhancer DNA appears to be a key ligand in the 

activation of NorR as a transcription factor (Tucker et al. 2010a). Therefore, it was first 

investigated whether the Q304E mutation influences the binding of NorR to enhancer 

DNA. Electrophoretic Mobility Shift Assays (EMSA) were employed to measure the 

binding of the purified wild-type and Q304E variants in full length and truncated (Δ1-170) 

forms to two different fragments of the norR-norVW intergenic region. The 266bp and 

361bp fragments both contain the three NorR binding sites. Recent work has demonstrated 

that the NorRΔGAF protein has a greater affinity for the longer 266bp fragment than a 

minimal 66bp fragment spanning the NorR binding region only (Tucker et al. 2010a). 

Therefore the DNA that flanks the NorR binding sites has been implicated in stabilising the 

NorR-DNA complex, possibly via DNA-wrapping. In order to investigate the extent to 

which flanking DNA stimulates enhancer-binding, the longer 361bp fragment was also 

employed in the EMSA experiments. The affinity of NorR and NorRΔGAF for the 

intergenic fragments was not significantly influenced by the presence of the Q304E 

substitution (Figure 9.4). For NorR-His and Q304E-His, dissociation constants (Kd) were 

estimated as 1-2 nM for the 361bp fragment (Figure 9.4A, closed symbols) and roughly 5 

nM for the 266bp fragment (Figure 9.4B, closed symbols). For NorRΔGAF-His and 

Q304EΔGAF-His, dissociation constants (Kd) were estimated as 75-100 nM for the 361bp 

fragment (Figure 9.4A, open symbols) and 150-200 nM for the 266bp fragment (Figure 

9.4B, open symbols). Therefore, it can be concluded that the Q304E substitution does not 

partially bypass the GAF-mediated repression of the AAA+ domain by altering the affinity 

of binding to enhancer DNA. However, the results do confirm that NorR and its variants 

have an increased affinity for the longer 361bp fragment compared to the 266bp fragment 

of the intergenic region, in line with the hypothesis that flanking DNA stabilises the 

hexamer.  NorR is likely to bind to the intergenic region in vivo with a very high affinity 

and this may contribute to the rapid response of NorR to NO-induced stress. Intriguingly, 

the EMSA experiments also reveal that the full-length forms of wild-type NorR and its 

variants have a greater affinity for enhancer DNA than truncated forms that lack the GAF 

domain (Δ1-170). 
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Figure 9.4 - Enhancer binding activity of the Q304E-His (closed squares) and 

Q304EΔGAF-His (open squares) variants compared to NorR-His (closed circles) and 

NorRΔGAF-His (open circles) as determined by EMSA. (A) Binding of NorR to a 

361bp fragment of the norR-norVW intergenic region. (B) Binding of NorR to a 266bp 

fragment of the norR-norVW intergenic region. The percentage of fully shifted DNA was 

quantified using a Fujix BAS 1000 phosphoimager. The Q304E substitution does not 

significantly affect the affinity of NorR for either the 361bp or 266bp fragment of the 

norR-norVW intergenic region that contains the 3 NorR binding sites. 
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9.4.4 The GAF domain contributes to the DNA-binding activity of NorR 

The DNA-binding assays in Figure 9.4 show that the Q304E substitution does not 

significantly affect the affinity of enhancer-binding in either the full-length NorR protein 

or a variant that lacks the first 170 amino acids (NorRΔGAF), both of which have 

hexahistidine tags at their N-terminus. Surprisingly, the full-length form of the tagged 

protein bound to both 361bp and 266bp norR-norVW intergenic DNA with a significantly 

greater affinity than the truncated variant. This suggests that the N-terminal GAF domain 

contributes to the strength of DNA-binding in NorR. An alternative explanation is that the 

hexahistidne tag that includes a linker region with a TEV-cleavage site is responsible for 

the differences in affinity. The tag may not influence DNA binding when placed at the N-

terminus of the GAF domain in full-length constructs but may have a negative effect on 

DNA binding when placed at the N-terminus of the AAA+ domain in the ΔGAF 

constructs.  In order to assess the role of the GAF domain in DNA binding in NorR, EMSA 

assays were conducted to compare the binding of tagged and non-tagged NorR to both the 

266bp and 361bp fragments. The affinity of binding was significantly reduced in the 

absence of the regulatory domain irrespective of whether the protein is tagged or non-

tagged (Figure 9.5). This suggests that the regulatory domain in NorR does contribute to 

the affinity of DNA-binding, at least in vitro. In contrast, in vitro ATPase and OPC assays 

as well as in vivo β-galactosidase assays have indicated that the absence of the GAF 

domain only removes the requirement for induction by NO rather than reducing the ability 

to activate transcription per se.  

 

Although the GAF-domain contributes to DNA-binding in this assay for both NorR and 

NorR-His, there is a clear difference in the size of the reduction in affinity between tagged 

and non-tagged proteins. For example, binding to the shorter 266bp fragment (Figure 9.5B) 

had a dissociation constant (Kd) of 8.58 for non-tagged NorR and 30.1 for non-tagged 

NorRΔGAF, a reduction in affinity of 3.5-fold (red arrow). For the tagged proteins NorR-

His and NorRΔGAF-His, dissociation constants (Kd) were 6.36 and 215.9 respectively, a  

reduction in affinity of approximately 35-fold (blue arrow). Hence, although the N-

terminal His-tag had little effect on the affinity of the full-length protein for DNA, its 

presence caused a ten-fold greater reduction in the affinity when the GAF domain is 

absent. Similar effects were observed when the binding to the longer 361bp fragment was 

studied. This data is in contrast to β-galactosidase assays which showed no significant 

reduction in the in vivo activity of the NorRΔGAF protein when the N-terminal tag is  
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Figure 9.5 - Enhancer binding activity of non-tagged NorR (closed squares) and non-

tagged NorRΔGAF (open squares) compared to NorR-His (closed circles) and 

NorRΔGAF-His (open circles) as determined by EMSA. (A) Binding of NorR to a 

361bp fragment of the norR-norVW intergenic region. (B) Binding of NorR to a 266bp 

fragment of the norR-norVW intergenic region. The percentage of fully shifted DNA was 

quantified using a Fujix BAS 1000 phosphoimager. The absence of the N-terminal GAF 

domain significantly reduced the affinity of both the non-tagged NorR (red arrows) and 

NorR-His proteins (blue arrows) for either the 361bp or 266bp fragments of the norR-

norVW intergenic region that contained the 3 NorR binding sites. However the presence of 

the N-terminal tag appeared to enhance this effect. 
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present (Compare Figure 6.9 and Figure 6.11). This is somewhat surprising since based on 

the dissociation constants calculated here, a ~7-fold higher protein concentration is 

required to give 50 % occupancy for NorRΔGAF-His compared to NorRΔGAF. It may be 

that in vivo, sufficient activator is present to activate transcription despite changes in the 

affinity of enhancer-binding. 

 

In order to investigate the effect of the Q304E substitution on the oligomeric state of NorR, 

size-exclusion chromatography was performed. Results showed that the Q304E 

substitution did not alter the elution volume relative to wild-type NorR in either the full-

length or N-terminally truncated forms. Unbound Q304E-His eluted at around 65 ml using 

the Superdex 200 16/60 column (Figure 9.3E) and the Q304EΔGAF-His protein eluted in 

the range of 70-80 ml (for typical profile see Figure 7.1C); corresponding to molecular 

weights in the dimer/trimer and monomer/dimer range respectively. In agreement with this, 

Electrospray-Mass Spectrometry (ES-MS) experiments performed by Ahyoung Park of 

Prof. Carol Robinson‟s group at the University of Oxford indicated that in the absence of 

DNA, the Q304E variant of NorRΔGAF-His is in equilibrium between monomeric and 

dimeric states (data not shown). Therefore, the oligomeric state of the Q304E variant 

appeared to be unaffected, at least under the conditions used for the purification of the 

protein. Next, it was important to determine whether the Q304E variant was able to 

oligomerise in the presence of intergenic DNA that contains the three NorR binding sites. 

Analytical gel filtration experiments were conducted in the presence of a 266bp DNA 

fragment that includes the norR-norVW intergenic region by T. Ghosh of Prof. Xiaodong 

Zhang‟s group at Imperial College, London. In agreement with size-exclusion data from 

the protein purification, unbound Q304E and Q304EΔGAF variants eluted at similar 

volumes previously observed for NorR and NorRΔGAF. The presence of 1 mM ATP did 

not seem to alter the oligomeric state in these variants. In both cases, in the presence of the 

266bp DNA fragment, the protein peak was shifted to elute at ~9 ml, indicating the 

formation of a higher order nucleoprotein complex. This is similar to the elution volumes 

observed for wild-type NorR-His (Figure 8.5A), G266D-His (Figure 8.3A) and the N-

truncated proteins NorRΔGAF-His (Figure 6B) (Tucker et al. 2010a), and G266DΔGAF-

His (Figure 7.3A) in the presence of DNA. In order to determine the exact oligomeric state 

of the Q304E variants, individual unbound and DNA-bound fractions from gel filtration 

(Figure 9.6A) were analysed by negative-stain electron microscopy (EM). Results showed 

that the full-length Q304E-His protein oligomerised in an enhancer-dependent manner to 
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form hexameric-like particles 146 Å in diameter (Figure 9.6C).  In the absence of 266bp 

DNA, only smaller particles were observed (Figure 9.6B). This is in contrast to the full-

length GAFTGA mutant G266D-His which oligomerised in an enhancer-independent 

manner to form particles 165 Å in diameter and with 7-fold symmetry (Figure 8.9). 

However, when a higher protein: DNA ratio (24:1 based on the monomer) was employed, 

larger oligomeric assemblies were visualised (Figure 9.7A). 2800 particles were selected 

and class averages showed heptameric particles 160 Å in diameter, similar to the 

dimensions of the G266D-His oligomer. In the G266D variant, the heptamers visualised 

were formed in the absence of enhancer DNA and it is not known here whether or not the 

Q304E-His heptamers are bound to the 266bp fragment. Cryo-EM analysis of the AAA+ 

proteins p97 and MCM identified double-rings (Rouiller et al. 2002; Beuron et al. 2003; 

Costa et al. 2006b; Costa et al. 2006a; Davies et al. 2008) and 2D-side-views of the 

Q304E-His heptamer typically revealed a two-tiered (~14mer) oligomer (Figure 9.7B). 

However, smaller 140 Å particles were also observed and the dataset showed significant 

heterogeneity. Consequently further single particle reconstruction was discontinued.  In 

line with what has been observed for the N-terminally truncated proteins NorRΔGAF 

(Tucker et al. 2010a) and G266DΔGAF-His (Figure 7.3), the Q304EΔGAF-His protein 

formed hexameric-like particles but only in the presence of DNA. The presence or absence 

of ATP did not appear to affect oligomerisation in this case (Figure 9.8B and 9.8C). Taken 

together, the gel filtration, Cryo-EM and ES-MS data suggest that the Q304E substitution 

does not significantly affect the oligomerisation of NorR. Hexamerisation of the NorR 

variant is strictly dependent on the presence of enhancer DNA, although at high protein 

concentrations, a small proportion of heptamers appear to form for the full-length protein. 

However, it is possible that this substitution influences the oligomerisation state in a 

manner that cannot be visualised under the conditions employed here.   
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Figure 9.6 – Enhancer-dependent higher order oligomeric assembly of Q304E-His mutant. (A) 

Gel filtration chromatography of 6 μM Q304E-His variant alone (red line), in the presence of 1 mM 

ATP (green line) and the presence of 0.2 μM 266bp dsDNA (molar ratio of 12:1 monomer:DNA), 

containing all three enhancer sites (black line), performed at 4 
°
C using a Superose 6 column (24 ml). 

The presence of DNA stabilises a higher order oligomeric form of full length Q304E variant. 

Complex peak eluted at 9 ml and the fractions were visually analyzed by negative stain electron 

microscopy. The dotted lines below the elution peaks (9 ml and 15 ml) represent the fractions 

analyzed by negative-stain electron microscopy. Corresponding molecular weights of standard 

globular proteins are indicated at their elution volumes. (B,C) Negative-stain EM studies. Shown are 

raw micrographs of Q304E-His alone (C) and in complex with 266bp DNA (B). The 266bp DNA 

can be visualised as short fibres in the micrographs, scale bar 100 nm. At the 12:1 ratio, ring-shaped 

oligomeric particles were only observed in the presence of DNA. Experiments were conducted by 

Tamaswati Ghosh as part of a collaboration with Prof. Xiaodong Zhang, Imperial College, 

London (Ghosh 2010). 
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Figure 9.7 - Q304E variant can assemble into heptamer rings. (A) Raw micrographs of Q304E-

His in complex with the 266bp DNA fragment (protein: DNA ratio of 24:1 based on monomer). 

Scale bar is 1000 Å. (B) Selection of class averages generated. The rows (1-5) and columns (a-f) of 

the figure panel are labelled. Locations 1.d, 1.f and 2.b are typical top views of a NorR heptamer. 

1.b and 2.d represent side views of a double heptamer (14-mer). Experiments were conducted by 

Tamaswati Ghosh as part of collaboration with Prof. Xiaodong Zhang, Imperial College, 

London (Ghosh 2010). 
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Figure 9.8 - Negative-Stain Electron Microscopy of the Q304EΔGAF-His (Δ1-170) protein in 

the absence of the 266bp fragment of the norR-norVW intergenic region and ATP (A), in the 

presence of ATP (B) and in the presence of DNA (C). Ring-shaped oligomeric particles were 

observed in the presence of DNA. Scale bar 100 nm. Protein: DNA ratio of 12:1 based on monomer. 

Experiments were conducted by Tamaswati Ghosh as part of collaboration with Prof. 

Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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9.5 3D-reconstruction of the full-length Q304E-His protein in the presence of 

enhancer DNA 

Cryo-EM analysis of unbound and DNA-bound protein has revealed the enhancer-

dependent hexamerisation of the full-length Q304E variant. Previous single particle 

analysis of the G266D-His protein led to the generation of a 3D-reconstruction of the 

heptamer in the absence of DNA (Chapter 8). However, this form of the protein was shown 

to be non-functional and is therefore probably not physiologically relevant. As a partial-

escape variant, 3D-reconstruction of the Q304E-His protein might allow the DNA-bound 

hexameric structure of the “on-state” to be examined. Therefore, negatively-stained EM 

images of the Q304E-His protein bound to 266bp DNA were collected by collaborators at 

Imperial College, London before single particle reconstruction (Figure 9.9A). 

 

An initial reconstruction was generated with no symmetry constraints. However, iterative 

refinement of the model did not give rise to consistent side or intermediate views. 

Therefore, to determine the shape of the ring, six-fold symmetry was imposed and the 

model refined via iterative cycles until the reprojections showed strong correlation to the 

class-averages used in the reconstruction. Results showed the appearance of EM-density at 

the bottom of the central pore with connecting density to both the bottom and the top faces 

of the ring. This arrangement is very different to that observed for the 3D-reconstruction of 

the G266D-His heptamer. In order to confirm that this density at the centre of the ring was 

not due to an artefact of staining or due to the six-fold symmetry constraints, this 3D model 

was refined with no symmetry constraints. After iterative refinements, one of the two faces 

displayed three-fold symmetry, correlating with the binding of three NorR dimers to 

enhancer DNA. Consequently, three-fold symmetry was imposed to improve the 

reconstruction given the relatively small dataset (Figure 9.9B and C). The final 3D 

reconstruction of Q304E-DNA complex obtained by applying three-fold symmetry 

included 1900 particles in 60 class averages with a resolution of 24 Å. Picking more 

particles to increase the size of the data-set would increase the signal to noise ratio and the 

overall resolution achieved. The structure is composed of two stacked rings with the upper 

ring structure consistent with an oligomer of six NorR subunits, 155 Å in diameter (Figure 

9.10A). The central pore is 45 Å in diameter and appears blocked, although this could be 

due to the symmetry-constraints imposed during the reconstruction process. When viewed 

from the side, the top-face of the ring structure appears dome-like and is 54 Å in height. In 
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Figure 9.9- Negative stain EM analysis of Q304E-His. (A) Raw micrograph collected on the 

CM200 electron microscope at a magnification of 50000x. Some of the selected particles are 

circled. The scale bar is 1000 Å. (B) Selection of the best class averages (~ 10 particles/class) and 

(C) the corresponding reprojections from the final six-fold symmetric 3D model. Experiments 

were conducted by Tamaswati Ghosh as part of collaboration with Prof. Xiaodong Zhang, 

Imperial College, London (Ghosh 2010). 
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Figure 9.10 - 3D-reconstruction of Q304E-His bound to the 266bp DNA fragment 

containing all three enhancer sites. (A) A surface representation from the 3D 

reconstruction refined with three-fold symmetry constraints is shown in different 

orientations. The overall dimensions for the complex are given. A side-view has been 

cut-open to reveal the central chamber spanning the entire length of the molecule. (B) 

A view from the top to the bottom face of the nucleoprotein complex, along the 

symmetry axis. The protein monomers assemble into a hexameric ring around a wide  

central channel (I), with a clear asymmetric ring on the opposite face of the complex 

(III). Six distinct densities, connected and surrounding the symmetry axis, are found in 

the cavity just below the hexameric ring with clear connections to the top (A, side 

views) and bottom (II) rings in the structure. Analysis was conducted by Tamaswati 

Ghosh as part of collaboration with Prof. Xiaodong Zhang, Imperial College, 

London (Ghosh 2010). 
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contrast, the lower ring shows no clear hexameric symmetry and is instead rounded in 

shape. It has a diameter of 140 Å with a wide (94 Å) central opening. Such dimensions are 

in line with the structures of other full-length, hexameric AAA+ proteins, including ADP-

bound p97 (Beuron et al. 2003) and DNA-bound MCM (Costa et al. 2006b; Costa et al. 

2006a). However, unlike these structures the 3D-reconstruction of Q304E-His does not 

have a hollow central channel. Six regions of EM-density are found just below the upper, 

hexameric ring and above the lower, circular ring (Figure 9.10B). This small, ring-like 

density has a diameter of 85 Å and has a central pore of 26 Å. Clear EM-density connects 

this ring to both the upper and lower rings in the 3D-model. In order to evaluate whether 

this density is an artefact due to the imposed symmetry constraints, the reconstruction was 

compared to that of the only other published Cryo-EM structure of a full-length bEBP 

(Figure 9.11). Superimposition of EM maps reveals a similar architecture for the top-half 

of the NorRQ304E-His protein as the ADP.AlFx-bound structure of NtrC (De Carlo et al. 

2006). Importantly, the small ring-like density below the hexameric ring in the Q304E-His 

reconstruction corresponds to the DNA-binding domain-containing density of NtrC. 

Therefore, the density in the reconstruction of the Q304E variant is not likely to be due to 

an artefact or due to imposed symmetry constraints but rather is likely to contain the DNA-

binding domains of the protein. In the NtrC structure, the density of the upper-ring 

correlates to the presence of the AAA+ and regulatory domains, as it does in the 3D-

reconstruction of the G266D-His heptamer (Chapter 8). Since the circular-region of density 

below the lower-hexamer is unaccounted for in the Q304E structure, it is possible that this 

correlates to the bound dsDNA that wraps around the oligomer.  

 

9.5.1 An atomic model of the DNA-bound Q304E-His hexamer 

In order to confirm the predicted locations of the three NorR domains in the reconstruction 

of the Q304E variant, atomic models of the NorR domains were fitted into the EM-

structure. For the fitting of the central AAA+ and regulatory GAF domains, the model of 

monomeric NorR
R+C

 (lacking the DNA-binding domain), generated in the fitting of 

G266D-His heptameric 3D-reconstruction (Chapter 8), was used. This model was fitted 

into the Q304E-His hexameric reconstruction as a rigid-body such that the AAA+ domain 

occupied the main EM-density of the ring. This arrangement ensured that the L1 and L2 

loops were surface-exposed and therefore well-placed for σ
54

-contact. However, the  
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Figure 9.11 - Superimposed negative-stain EM maps of full-length, DNA-bound 

NorRQ304E-His and NtrC-ADP.AlFx. (A) A surface representation of the 28 Å structure of 

NtrC (EMD 1218; (De Carlo et al. 2006) shown in different orientations. Positions of the N-

terminal receiver (R) domain, the C-terminal DNA-binding (D) domains and the surface exposed 

L1/L2 loops of the AAA+ domain in the hexameric ring structure are indicated. (B) The 

superimposed maps (NtrC map is in pink or red mesh and NorR in blue) are shown in top, 

bottom and side view orientations. The NorR map was filtered to ~28 Å, and the top rings of the 

two maps were aligned in Chimera. Also shown is a cut-open side view (surface caps are in 

green) of the NorR mutant map to highlight the architectural similarity shared between the top-

half of the NorR molecule and the NtrC structure. Analysis was conducted by Tamaswati 

Ghosh as part of collaboration with Prof. Xiaodong Zhang, Imperial College, London 

(Ghosh 2010). 
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EM-density at the upper-surface of the hexameric ring did not accommodate the 

GAFTGA-loops in an extended conformation, unlike the 3D reconstructions for 

NorRG266D-His (Chapter 8) and ADP.AlFx-bound NtrC (De Carlo et al. 2006). This 

suggests that the L1 and L2 loops are in a collapsed state as would be expected in a 

structure that lacks bound nucleotide. A comparison between the two EM-maps of G266D-

His and Q304E-His reveal similar diameters but significantly the G266D-His 

reconstruction has a much wider central channel that does not contain additional EM-

density within it (Figure 9.12). Fitting of the regulatory GAF domains places them at the 

periphery of the AAA+ ring, as was observed for the 3D-reconstruction of G266D-His.   

Interestingly, the EM-density attributed to the GAF domains in the Q304E reconstruction 

reaches down to contact the circular structure believed to correspond to the position of the 

dsDNA. This would suggest that the GAF domains are well-placed to interact with the 

intergenic DNA upon derepression. Next, the ZraR DNA-binding domain which is 

predicted to have the same overall fold as the NorR DNA-binding domain was fitted 

manually as a rigid-body into the small ring-like density located below the hexamer. In this 

orientation, the predicted-recognition helix is surface-exposed and well placed to interact 

with enhancer DNA. After the location of the three NorR domains had been determined 

(Figure 9.13A, B and C), the EM-density of the lower circular-ring remained unaccounted 

for. This density is likely to correspond to the location of the dsDNA wrapped around the 

hexamer since the DNA-binding domains of the bEBP are predicted to be in close 

proximity. Initial fitting of a circular dsDNA model was conducted by collaborators 

(Figure 9.13D, E and F). The model shows the recognition helix of the NorR DNA-binding 

domain well-placed to bind to the major-groove of the enhancer DNA.   

 

9.5.2 The 3D-reconstruction predicts that the Q304E-His protein is ATPase active in 

vitro 

In order to assess the implications of the Q304E substitution upon the arrangement of 

protomers in the bEBP, inter-protomer interactions identified in the 3D-model were 

compared to those present in the crystal structure of the ZraR
CD

 hexamer. In particular the 

position of key residues located at the ATPase site, at the interface between two protomers, 

was examined. Since the published crystal structure of ZraR reveals bound nucleotide, an 

ATP molecule was positioned in the cleft between the α/β and α-helical subdomains such 

that the phosphate backbone wrapped around the P- loop (residues 214-222). The Walker 

A motif forms the P-loop and is essential for ATPase activity, contacting the phosphates of  
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Figure 9.12 – Comparison of the EM-density maps for the Q304E-His hexamer and the 

G266D-His heptamer. Superimposition of the 3D maps of the full-length, unbound G266D-His 

variant (yellow) and the full-length DNA-bound Q304E-His variant (blue). The three-fold 

symmetry imposed 3D map of the Q304E nucleoprotein complex (blue) is superimposed on to the 

heptameric ring structure of the G266D mutant (yellow). Both structures were filtered to ~20 Å. 

Analysis was conducted by Tamaswati Ghosh as part of collaboration with Prof. Xiaodong 

Zhang, Imperial College, London (Ghosh 2010). 
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Figure 9.13 - Assignment of the NorR domains in the 3D reconstruction of NorRQ304E-

His bound to enhancer DNA. Top (A), bottom (B) and side (C) view orientations of the model 

created by manual fitting of the atomic models of the three NorR domains, refined by applying 

three-fold symmetry restraints. The atomic models of the N-terminal GAF domain (blue), the 

NorR AAA+ domain (yellow), and the crystal structure of the ZraR DNA-binding domain 

(green; PDB code 1OJL, chain A) have been placed in the top half of the reconstruction (grey 

mesh). The bottom half of the map, consisting of a circular-density and displaying no 

symmetry, remains unoccupied. Fitting of a circular dsDNA model into the bottom half of the 

EM-map with top (D), bottom (E) and side (F) views. A representation of the DNA model is 

shown in red. Also shown are the positions of the GAFTGA motifs (orange) and R81 residues 

(purple spheres), both of which are thought to play key roles in maintaining the mechanism of 

repression. The Q304 residue is indicated by cyan spheres. Analysis was conducted as part of 

collaboration with Prof. Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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ATP (Saraste et al. 1990). In line with this the conserved lysine residues in both the 

NorRQ304E-His reconstruction (K221) and the ZraR crystal structure (K175) are suitably 

placed. Importantly, the conserved Walker B “DE” residues (D286, E287 in NorR; D240, 

E241 in ZraR) are also appropriately positioned for a role in catalysis. In addition the 

catalytically-active Sensor II argninine (R405 in NorR) is well placed in the 3D-model to 

coordinate the γ-phosphate prior to hydrolysis, in agreement with its position in the ZraR 

structure (R359). Finally the putative R-finger in the Q304E reconstruction (R341) has its 

side chain pointing towards the active site, as is the case in the ZraR structure (R295). 

Taken together this analysis suggests that in contrast to the 3D-reconstruction of the 

unbound G266D-His heptamer, the key catalytic residues are well placed in the model of 

the DNA-bound Q304E-His hexamer for efficient ATP hydrolysis. To test this prediction, 

biochemical characterisation of the Q304E-His variant was performed. 

 

9.6 The Q304E variant shows enhancer-independent ATPase activity in vitro 

The ability of bEBPs to hydrolyse ATP is central to their role as activators of σ
54

-

dependent transcription. Since the catalytic site is formed via the interactions of 

neighbouring protomers, oligomerisation of the activator is required to form the functional 

ATPase. This self-association is highly dependent on the individual protomers binding to 

the norR-norVW intergenic region, reflected in the enhancer-dependent ATPase activity 

that is observed for NorRΔGAF-His (Figure 7.4A). Analysis of the 3D-reconstruction of 

DNA-bound Q304E-His indicated that the protomers of the hexamer are tightly packed in 

the front-to-back configuration that is required for ATP-hydrolysis in related bEBPs 

(Figure 9.14). In order to more accurately investigate the effect of the Q304E substitution 

on the ability of NorR to hydrolyse ATP, ATPase assays were conducted in vitro. Results 

indicate that in the presence of DNA, the full-length Q304E-His protein was competent to 

hydrolyse ATP (Figure 9.15B, open squares), although compared to NorRΔGAF-His 

(Figure 9.15A, open squares), the curve is less cooperative in nature. Interestingly, Q304E-

His also exhibited ATPase activity in the absence of DNA that contains the three NorR 

binding sites, indicating that, under the conditions of the assay, the protein was able to 

oligomerise in an enhancer-independent manner (Figure 9.15B, closed bars/closed 

squares). However, the addition of DNA to the reaction did cause a further increase in 

activity (Figure 9.15B, open bars/open squares) suggesting that the protein still needs to 

bind to the DNA to become fully active. In the absence of the N-terminal regulatory 
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Figure 9.14 – Comparison of the ATP hydrolysis sites in the hexameric, DNA-bound 

NorRQ304E-His 3D reconstruction and the hexameric ZraR crystal structure. (A) Top view 

of the Q304E variant model showing the hexameric ring assembly. Consecutive AAA+ domains 

are shown in alternating red and yellow colours. GAF domains are in light blue and DNA binding 

domains in light grey. For clarity the DNA has been omitted. (B) The structure of the AAA+ 

domain of ZraR, built from PDB: 1OJL. Consecutive AAA+ domains are shown in alternating red 

and yellow colours. The regulatory domains are absent in the crystal structure and for clarity the 

DNA binding domains have been omitted. An example of the interprotomer interface at which the 

ATP hydrolysis site is found is shown in both models (blue circles). (C) Close-up of the ATPase 

active site located between adjacent AAA+ subunits in the atomic model of NorRQ304E-His and 

in the crystal structure of ZraR (D). Conserved residues implicated in ATP binding and hydrolysis, 

inter-subunit catalysis and relaying nucleotide states to the surface exposed L1/L2 loops are 

indicated: Walker A residues G220/G174, K221/K175, G215/G169 (brown), Walker B residues 

D286/D240 and E287/E241 (cyan), “switch” asparagine N243/N197 (dark blue), Sensor I 

T327/T281 (magenta), sensor II residue R405/R359 (green), and trans-acting putative R-fingers 

R341/R395 and R347/R301 (green). ATP molecules have been placed in the active site of both 

NorRQ304E-His (C) and ZraR (D). Analysis was conducted as part of a collaboration with 

Prof. Xiaodong Zhang, Imperial College, London (Ghosh 2010). 
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Figure 9.15 - ATPase activity of the NorRΔGAF-His (A), Q304E-His (B) and 

Q304EΔGAF-His (C) variants in response to protein concentration and the presence 

of enhancer DNA. Non-linear regression was carried out using GraphPad Prism software. 

Assays were conducted either in the absence (closed squares) or presence (open squares) of 

the 266bp DNA fragment (final concentration 5 nM) that includes the norR-norVW 

intergenic region and each of the three NorR binding sites. Data are shown as the mean 
from at least two experiments. 
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domain, the Q304E variant also exhibited enhancer-independent ATPase activity, similar 

to that of the full-length mutant protein (Figure 9.15C), but in contrast to the truncated 

forms of wild-type NorR and the GAFTGA variant G266D (Figure 7.4A and B). However, 

compared to the NorRΔGAF-His protein, Q304EΔGAF-His was significantly less 

competent to hydrolyse ATP, particularly at lower concentrations. Cryo-EM indicates that 

like the full-length variant, Q304EΔGAF-His must bind DNA in order to oligomerise 

(Figure 9.8), apparently contradicting the enhancer-independent ATPase activity observed 

here. 

 

In Chapter 8, it was shown that the full-length GAFTGA variant protein preparations 

exhibited strong DNA-independent ATPase activity that did not reflect turnover of ATP by 

NorR (Figure 8.12). It is likely that the presence of contaminating ATPases was 

responsible since the GAFTGA-variants did not show good separation from the void 

volume in gel filtration chromatography. In the case of Q304E-His, pure protein elutes 

away from the void, at a volume of around 65 ml on the Superdex 200 16/60 column 

(Amersham Biosciences). Furthermore, ATPase activities are in line with values that have 

previously been observed for bEBPs. This suggests that the ATPase activity observed for 

the NorR variant Q304E may represent a bona fide turnover of ATP by the NorR protein. 

To confirm this, an additional D286A substitution was made at the Walker B motif. This 

mutation renders bEBPs inactive for ATPase activity as observed for NorRΔGAF-His 

(Figure 7.5). Importantly, the additional substitution did not alter the gel filtration profile 

of the Q304E variant (data not shown); any contaminants present in the Q304E-His 

preparation would therefore also be expected to be present in the D286A-Q304E-His 

preparation. The Walker B substitution diminished the ATPase activity of the Q304E 

variant protein, suggesting that the ATP turnover observed for Q304E-His was not due to 

the presence of contaminating ATPase (Figure 9.16A). Likewise, ATPase assays 

confirmed that the alanine substitution in the Walker B motif rendered the Q304EΔGAF 

variant inactive, suggesting that the activity observed for Q304EΔGAF-His also represents 

a bona fide catalytic turnover of ATP (Figure 9.16B). Overall, it can be concluded that the 

Q304E substitution allows the NorR protein to hydrolyse ATP in an enhancer-independent 

manner. Whilst binding to DNA may be required for full NorR activity, it appears that 

functional ATPase units can be formed in the absence of the three NorR binding sites.  
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Figure 9.16 - ATPase activity of the Q304E-His (A) and Q304EΔGAF-His (B) variants 

when an additional D286A substitution is made in the Walker B motif, in response to 

protein concentration and the presence of enhancer DNA. Each data set shows the 

ATPase activity of Q304E variant (triangles) and the same variant with the additional 

D286A substitution (squares). For clarity error-bars are not included. Non-linear regression 

was carried out using GraphPad Prism software. All assays were conducted either in the 

absence (closed shapes) or presence (open shapes) of the 266bp DNA fragment (final 

concentration 5 nM) that includes the norR-norVW intergenic region and each of the three 

NorR binding sites. Data are shown as the mean from at least two experiments. 
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9.7 Testing the requirement for ATPase activity in the NorR variant Q304E in 

vivo 

Structural studies using the bEBP PspF bound to different nucleotide analogs has revealed 

the importance of the nucleotide driven-conformational change in order to expose the σ
54

 

interaction surface of the AAA+ domain in the mechanism of transcriptional activation 

(Rappas et al. 2006; Schumacher et al. 2006). Although the Q304 residue is not expected 

to have a role in modulating the conformation of the σ
54

 interaction surface, the possibility 

that the Q304E substitution affects the position of the L1 and L2 loops, cannot be entirely 

ruled out. It was therefore important to confirm that the ability of the Q304E variant to 

activate transcription in vivo is dependent upon its ability to hydrolyse ATP. If the Q304E-

mutant version of NorR can activate transcription without hydrolysing ATP, it would 

suggest that the Q304E substitution promotes a conformation of the AAA+ domain that 

models the transition state at the point of sigma contact.  The ability of NorRQ304E to 

activate transcription in vivo was completely abolished when the additional D286A 

substitution was present (Figure 9.17). Similar results were observed for the both the full-

length and GAF-truncated forms of wild-type NorR (Figure 9.17) as well as the GAFTGA 

variant G266D (Figure 7.7). Therefore like G266D, the Q304E substitution does not negate 

the requirement for ATPase activity and it can be concluded that the Q304E variant of 

NorR does not partially escape the GAF-mediated repression mechanism by modelling the 

post-ATP hydrolysis conformation of the AAA+ domain. This is in agreement with data 

which suggest that the ATP-hydrolysis machinery is not a direct target of negative control 

in NorR as it is in PspF (Figure 7.8). 
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Figure 9.17 - Activities of NorR, NorRΔGAF and the NorRQ304E variant in vivo when the 

additional D286A substitution is made at the Walker B motif in the AAA+ domain, as 

measured by the norV-lacZ reporter assay. Substitutions are indicated on the x axis. “NorR” 

refers to the wild-type protein and “NorRΔGAF” refers to the truncated form lacking the GAF 

domain (residues 1-170). Cultures were grown either in the absence (black bars) or presence 

(white bars) of 4 mM potassium nitrite, which induces endogenous NO production. Error-bars 

show the standard error of the three replicates carried out for each condition. 



271 
 

9.8 Testing the requirement for enhancer binding in the NorR variant Q304E in 

vivo 

The binding of NorR to the norR-norVW intergenic region that contains the three NorR 

binding sites is essential to form the ATPase-active oligomer that is competent to activate 

transcription. However, the Q304E-mutant version of NorR exhibited a certain level of 

enhancer-independent ATPase activity in vitro in both full-length and GAF-truncated 

forms (Figure 9.16), suggesting that this substitution may promote the formation of 

ATPase-active oligomers. Although, negative-stain EM indicated that the formation of 

Q304E hexamers was strictly DNA-dependent in vitro (Figure 9.6), it is possible that 

transcriptional activation by Q304E variant in vivo can occur independently of enhancer-

binding.  In order to test this, C-terminal truncations were made in the norR constructs to 

delete the helix-turn-helix (HTH)-encoding sequence of wild-type and Q304E variant 

forms of NorR. Activation of transcription in vivo by the Q304E variant was dependent on 

the ability to bind to the NorR enhancer sites. Each of the three C-terminal truncations 

made (Δ444-504, Δ442-504 and Δ436-504) rendered the NorR and Q304E proteins 

inactive both in the absence and presence of an NO-source (Figure 9.18A). A similar result 

was observed for the GAFTGA variant G266D (Figure 8.6). Western blot analysis revealed 

that the Δ442-504 and Δ436-504 constructs were stable in the complementation assay, 

although the Δ444-504 construct was shown to be unstable (Figure 9.18B). Whilst it is 

possible that the Q304E substitution promotes the formation of an ATPase active oligomer 

in the absence of DNA, the binding to the norR-norVW intergenic region may be required 

to anchor the NorR variant upstream of the promoter and orientate it relative to the 

holoenzyme. In order to assess the requirement of each of the three NorR binding sites but 

at the same time allow in cis activation at the norV promoter, the ability of the Q304E-

variant to activate transcription in vivo was tested in strains of E. coli with altered NorR- 

binding sites. When the consensus sequence of binding site 1 (S1), site 2 (S2) or site 3 (S3) 

is altered from GT-(N7)-AC to GG-(N7)-CC, the NorRΔGAF protein binds to the wild-

type sites but is unable to hydrolyse ATP and effectively activate open complex formation 

(Tucker et al., 2010).  Consistent with the published result, the wild-type protein was 

significantly diminished in its ability to activate transcription in vivo in the absence of 

functional binding sites (Figure 9.19). Intriguingly, the Q304E variant was still active but 

only when endogenously-produced NO was present (Figure 9.19). This suggests that the 

Q304E variant does not require each of the three NorR binding sites to form the functional 

oligomer in vivo when activated by NO.  
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Figure 9.18 – (A) Activities of NorR and the Q304E variant when C-terminal truncations 

are made in the norR sequence. Substitutions are indicated on the x axis. “NorR” refers to the 

wild-type protein, “NorRΔGAF” refers to the N-truncated form lacking the GAF domain 

(residues 1-170) and “NorRΔHTH” refers to the C-truncated form lacking the helix-turn-helix 

(HTH) motif (residues 436-504, 442-504 or 444-504). Cultures were grown either in the 

absence (black bars) or presence (white bars) of 4 mM potassium nitrite, which induces 

endogenous NO production. Error-bars show the standard error of the three replicates carried 

out for each condition. (B) Western blot analysis indicating the stability of NorR variants in 

vivo when cultures are grown in the absence of potassium nitrite. The locations of the bands 

corresponding to the full-length and ΔHTH constructs are indicated by red arrows. “MH1003” 

refers to the E. coli strain only. The uppermost band that is not detected in the MH1003 strain 

correlates to full-length NorR and its variants. Results showed that the Δ444-504 constructs 

were unstable in vivo. 
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Figure 9.19 – In vivo transcriptional activation by the NorR variant Q304E in the absence of 

NorR binding site 1, 2 or 3. NorR constucts were transformed into strains of E.coli with either three 

wild-type (WT) NorR binding sites (GT-(N7)-AC) or with one of three NorR binding sites (S1, S2, 

S3) altered to GG-(N7)-CC. “NorR” refers to the wild-type protein and “NorRΔGAF” refers to the 

truncated form lacking the GAF domain (Δ1-170). Cultures were grown either in the absence (black 

bars) or presence (white bars) of 4 mM potassium nitrite, which induces endogenous NO production. 

Error-bars show the standard error of the three replicates carried out for each condition. 



274 
 

9.9 The GAF-truncated version of the NorR variant Q304E can activate open 

complex formation in vitro 

In order to further test the functionality of the Q304E variant in vitro, open promoter 

complex assays were conducted. This assay measures the conversion of the closed σ
54

-

RNA polymerase complex to an open promoter complex. Despite the fact that NorR-DNA 

complexes are heparin resistant, the open complex can be visualised on non-denaturing 

gels as it forms a distinct, supershifted species that is also heparin resistant (D'Autreaux et 

al. 2005). As has been observed previously, the formation of open complex by the 

NorRΔGAF-His protein was ATP-dependent (Figure 9.20A, compare lanes 2 and 3). The 

Q304EΔGAF-His variant was also able to form the ATP-dependent supershifted species 

(compare lanes 6 and 7) but the proportion of closed comples converted to open complex 

was significantly lower (compare lanes 3 and 7). This may reflect the lower ATPase 

activity of the Q304EΔGAF-His protein compared to the NorRΔGAF-His protein (Figure 

9.15, compare B and C). In contrast, when the Q304E substitution was present in the full-

length form of NorR, the variant protein was apparently unable to form open complexes 

(lanes 4 and 5). Interestingly, in the presence of ATP, the Q304E-DNA complex was less 

able to migrate into the non-denaturing gel, indicating the formation of a larger complex 

(lane 5). This has been observed previously for the GAFTGA variant G266D-His which 

forms a high-molecular weight complex irrespective of the presence of nucleotide (Figure 

8.13C). Possibly the Q304E substitution promotes the ATP-dependent formation of a 

larger NorR complex but only in the presence of DNA.  

 

In order to further probe the nature of the open complexes formed, and to confirm the 

results of the standard OPC assay, complexes were footprinted using potassium 

permanganate. This method cleaves single stranded regions of DNA and so can detect the 

presence of “melted” DNA at the promoter in a sequence-specific manner. For the 

NorR∆GAF-His and Q304E∆GAF-His proteins, enhanced cleavage was observed 

corresponding to T residues located between -11 to +1 at the norV promoter, consistent 

with the expected footprint (Figure 9.20B, lanes 3 and 5). The band intensity for the 

Q304E∆GAF-His footprint was decreased in comparison with NorR∆GAF-His, in 

agreement with the lower proportion of open complexes formed by the Q304E∆GAF 

variant in the standard open promoter complex assay (Figure 9.20A, lane 7). These results 

also confirmed that the full-length Q304E-His protein was unable to activate the formation  
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Figure 9.20 - Open promoter complex formation by AAA+ variants. (A) Heparin resistant 

complexes formed by NorRΔGAF-His, Q304E-His, Q304EΔGAF-His and C113S-Q304E-His on 

the 361bp DNA fragment carrying the norR-norVW intergenic region. In all cases the final NorR 

concentration was 1500 nM. Reactions contained no NorR (lane 1), NorRΔGAF-His (lanes 2 and 

3), Q304E-His (lanes 4 and 5), Q304EΔGAF-His (lanes 6 and 7) and C113S-Q304E-His (lanes 8 

and 9). Reactions loaded in lanes 1, 3, 5, 7 and 9 contained ATP (final concentration 5 mM), which 

was absent in lanes 2, 4, 6 and 8. Arrows indicate the position of free DNA, NorR bound DNA and 

the open promoter complexes. (B) Potassium permanganate footprinting of the 266bp norR-norVW 

promoter fragment after open complex formation initiated by NorR. Lane 1 is a G+A ladder. Lane 

2 is a control without activator present. Lanes 3, 4, 5 and 6 show footprinting after initiation of 

open complexes in the presence of 1 μM (final concentration) ΔGAF-His, Q304E-His, 

Q304EΔGAF-His and C113S-Q304E-His respectively. The arrow marks the norVW transcriptional 

start and the positions of the enhanced cleavage at T bases are indicated. 
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of open complexes in vitro, at least under the conditions used in the assay since no 

enhancement of cleavage was observed compared to a reaction in which the activator was 

absent (Figure 9.21B compare lane 4 with lane 2). 

 

9.10 The C113S-Q304E variant protein is ATPase active but unable to form open 

promoter complex in vitro  

Open promoter complex assays and subsequent potassium permanganate footprinting have 

shown that the full-length Q304E-His protein is inactive in vitro with respect to open 

complex formation (Figure 9.20). In vivo the protein exhibits a partial-escape phenotype 

since the Q304E substitution does not allow NorR to fully escape GAF-mediated 

repression of AAA+ activity (Figure 9.1). One explanation is that the repression still 

exerted by the regulatory domain upon the central domain is responsible for the inability of 

the Q304E variant to activate the formation of open promoter complexes in vitro. β-

galactosidase assays have shown that additional substitutions in the GAF domain increase 

the activity of the Q304E variant in vivo (Figure 9.2). Although the C113S substitution did 

not enable complete escape from repression, the higher activity in the non-induced state in 

vivo might give rise to an active protein in vitro. Therefore, the C113S-Q304E variant was 

overexpressed and purified by Nickel affinity chromatography, followed by gel filtration. 

The resulting pure-protein eluted at a similar volume to the Q304E-His protein on the 

Superdex 200 16/60 column (Amersham Biosciences), corresponding to a molecular 

weight in the dimer-trimer range (data not shown).  ATPase assays revealed that the 

additional C113S substitution in the GAF domain of the Q304E variant did not affect the 

ability of the protein to hydrolyse ATP (Figure 9.21). Both the Q304E and C113S-Q304E 

variants exhibited ATPase activity in the absence of enhancer DNA, with maximal activity 

achieved upon addition of DNA containing the three NorR binding sites. Therefore, the 

C113S substitution was unable to stimulate ATP turnover any further, or achieve the high 

level of cooperativity that is observed for NorRΔGAF-His (Figure 9.15A). Furthermore, 

assays showed that the additional C113S substitution did not allow the Q304E-His protein 

to activate the formation of open complex (Figure 9.20A, lane 8 and 9). Potassium 

permanganate footprinting of the open complex reactions confirmed that the C113S-

Q304E-His protein was inactive with respect to open promoter complex formation since 

the C113S-Q304E-His variant showed a similar level of enhancement of cleavage 

compared to a reaction that does not contain activator (Figure 9.20B, compare lanes 2 and  
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Figure 9.21 - ATPase activity of the Q304E-His (A) and C113S-Q304E-His (B) 

variants in response to protein concentration and the presence of enhancer DNA. Non-

linear regression was carried out using GraphPad Prism software. Assays were conducted 

either in the absence (closed squares) or presence (open squares) of the 266bp DNA 

fragment (final concentration 5 nM) that includes the norR-norVW intergenic region and 

each of the three NorR binding sites. Data are shown as the mean from at least two 

experiments. 
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6).  It is interesting that the C113S substitution caused an increase in the level of 

transcriptional activation by the Q304E variant in vivo but that the C113S-Q304E mutant 

version of NorR remained inactive for open complex formation in vitro. Although the 

C113S-Q304E variant did not exhibit a complete escape phenotype, in vivo assays suggest 

that the C113S-Q304E variant is not subject to the same level of GAF-mediated repression 

as the Q304E protein. One explanation is that when the Q304E substitution is present, only 

complete escape from repression leads to open complex formation in vitro. In this work, 

this is not the first time that a NorR variant with an escape-phenotype in vivo has been 

shown to be unable to activate transcription in vitro. The full-length G266D-His protein 

was also apparently unable to activate the formation of open promoter complex (Figure 

8.13 and 8.14), although this was presumably due to the formation of ATPase-inactive 

heptamers rather than the ATPase-active “hexamers” observed for Q304E-His.  
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9.11 Discussion 

Random mutagenesis has identified a number of substitutions in the central domain of 

NorR that escape the GAF-mediated repression of AAA+ activity (Chapter 6). The 

majority of these residues are predicted to be located in the vicinity of the surface-exposed 

L1 and L2 loops or within the highly conserved GAFTGA motif that contacts σ
54

. It is 

likely that such substitutions allow NorR to escape the repression mechanism by 

preventing the GAF domain from targeting the σ
54

-interaction surface of the AAA+ 

domain (Chapter 7). Unlike the other substitutions that gave rise to strong-escape 

phenotypes, the Q304E substitution is at a residue not thought to have a significant role in 

modulating the conformation of the σ
54

-interaction surface. In agreement with this, targeted 

mutagenesis at position 304 revealed that this residue is not essential in maintaining the 

mechanism of negative control in NorR (Figure 9.1). The requirement of a polar carboxyl 

group for escape is in line with the ability of glutamate and aspartate but not glutamine or 

asparagine changes to give rise to constitutive activity.  

 

In the model of the NorR AAA+ fold based on the NtrC1 structure, Q304 is located in 

Helix 4, next to loop 2 in the AAA+ central domain (Figure 6.5B). Equivalent residues in 

other activators place this residue in a similar location. Interestingly, in NtrC1, DctD and 

PspF, the equivalent residue is glutamic acid rather than glutamine as in wild-type NorR. 

In the NtrC1 activated heptamer (PDB ID: 1NY6) (Lee et al. 2003), this glutamate is 

predicted to form a polar interaction with the sensor II arginine (R405 in NorR) of the 

adjacent protomer (Figure 9.22C). In contrast, the structure of the ZraR activated hexamer 

(PDB ID: 1OJL) (Sallai and Tucker 2005) reveals a glutamine residue as is present in the 

wild-type NorR protein. In this case, the interaction with the Sensor II arginine is not 

predicted to occur (Figure 9.22B). Therefore, it is possible that the Q304E mutation in 

NorR results in a polar contact between the 304 residue and the Sensor II arginine. In the 

NtrC1 inactive dimer the equivalent E256 and R357 residues are on opposite surfaces of 

adjacent subunits (Figure 9.22A). Upon activation and subsequent reorientation of the 

NtrC1 dimer from a front-to-front to a front-to-back configuration (Figure 3.11) (Doucleff 

et al. 2005a), interaction between these two residues may help drive formation of the 

oligomer. Therefore the Q304E substitution in NorR may facilitate the process of 

oligomerisation through the formation of the 304-405 polar interaction. Whilst the 

formation of the putative 304-405 polar contact in the Q304E variant of NorR may 
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Figure 9.22 - Structures of related bEBPs suggest the Q304E substitution may influence 

the oligomerisation state of NorR. Adjacent protomers are indicated by light and dark 

shading. (A) Structure of NtrC1 (PDB ID: 1NY5 inactive dimer) (Lee et al. 2003) showing the 

location of the Sensor II R357 (blue), E256 (green) and proposed R-finger R299 (red) in the 

non-activated state. ADP is also shown bound. In the front-to-front configuration (Doucleff et 

al. 2005a), the R357-E256 polar interaction is prevented. Reorientation of the inactive dimer 

into a front-to-back configuration might allow formation of the polar contact that could 

facilitate the formation of the heptamer. (B) The protomer interface from the structure of the 

ZraR active hexamer (PDB ID: 1OJL) (Sallai and Tucker 2005) showing the Q258 residue and 

the R359 residue of the adjacent protomer. In ZraR, the glutamine at position 258 is not able to 

interact with the R359 residue. (C) The expected polar interaction that forms between E256 and 

R357 of the adjacent protomer in the ADP-bound activated heptamer of NtrC1 (PDB ID: 

1NY6, B-C interface) (Lee et al. 2003). 
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stimulate oligomerisation, it is unclear how this would lead to the partial escape phenotype 

of the Q304E variant in vivo. In chapter 7, it was proposed that the regulatory domain 

targets the σ
54

-interaction surface and not the oligomeric determinants in the mechanism of 

negative regulation. In addition, wild-type, non-activated NorR was only able to form 

higher oligomers in the presence of DNA (Figure 8.5), further suggesting that solely 

promoting constitutive hexamerisation would not lead to the escape from GAF-mediated 

repression of AAA+ activity. Possibly, formation of the new polar contact indirectly 

disrupts the interface of interdomain repression or the Q304E variant escapes negative 

control by some other mechanism not yet considered. 

 

The hypothesis that the GAFTGA (G266D) and Q304E variants escape repression by 

different mechanisms is enhanced by the observation that substitutions in the GAF domain 

expected to disrupt NO-signalling at the iron-centre, led to an increased rather than a 

reduced escape-phenotype in NorRQ304E (Figure 9.2). In the wild-type protein, the R75K, 

D99A, H111Y, Y98L and C113S substitutions gave rise to a null-phenotype and the 

observation that these changes had no effect on the phenotype of the GAFTGA variant 

G266D confirmed that the NO-signal was not required for its activity (Figure 6.12). The 

reduction in the ability of the GAF domain to inhibit the activity of the Q304E variant 

when these substitutions are present suggests that the non-heme iron centre may have a 

role in maintaining repression of AAA+ activity. Furthermore an unexpected role for the 

GAF domain in the DNA-binding of NorR was revealed by EMSA assays using both NorR 

and the Q304E variant in full-length and ΔGAF forms. The Q304E substitution did not 

affect the affinity of binding to either the 266bp or 361bp fragments of the norR-norVW 

intergenic region (Figure 9.4), suggesting that the Q304E variant does not partially escape 

repression by altering the affinity of binding to enhancer DNA. However, there was a 

significant difference in the binding affinity between full-length and GAF-truncated (Δ1-

170) forms of NorR. This reduction in affinity in the absence of the GAF domain was 

observed irrespective of the presence of the His-tag (Figure 9.5), confirming that the 

regulatory domain does contribute to the strength of enhancer-binding in NorR. Caution 

should be applied when interpreting these data since a greater reduction in the affinity of 

binding when the GAF domain was absent was observed for tagged compared to non-

tagged proteins. 
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In vivo studies confirmed that the Q304E-version of NorR still required the ability to bind 

to the norR-norVW intergenic region in order to activate transcription, although this could 

additionally reflect the requirement of the hexamer to be brought into close proximity with 

the σ
54

-RNA polymerase at the norV promoter (Figure 9.18). However, the Q304E protein 

was able to activate transcription in E. coli strains with altered NorR binding sites in vivo 

but only in the presence of NO (Figure 9.19). Other AAA+ variants were shown to activate 

transcription at the mutant promoters (data not shown) but none showed the absolute 

dependence of in vivo activity upon NO, as was observed for the Q304E variant. Possibly 

the Q304E substitution increases the propensity of the protein to oligomerise but only 

under conditions of nitrosative stress. However, to test this, the protein would need to be 

purified under anaerobic conditions and to-date heparin affinity chromatography has been 

unsuccessful in purifying non-tagged NorRQ304E (Figure 9.3A and B).  

 

Biochemical studies of the Q304E variant in both full-length and ΔGAF forms have given 

conflicting data on whether the proteins display altered oligomeric properties. However, 

contradictions may be partly explained by the differences in the protein: DNA ratio 

employed in Cryo-EM, ATPase assays and open promoter complex experiments. Cryo-EM 

analysis showed that at a molar ratio of 12:1 monomer: DNA, the formation of hexamers 

was strictly dependent upon the presence of enhancer DNA, as was previously observed 

for NorR-His (Figure 8.5), NorRΔGAF-His (Tucker et al. 2010a) and G266DΔGAF-His 

(Figure 7.3). However, at a higher protein: DNA ratio (24:1 monomer: DNA), a small 

number of Q304E-His heptamers were visualised, similar in architecture to the enhancer-

independent G266D-His heptamers identified in Chapter 8 (Figure 9.7). This suggests that 

the Q304E substitution stimulates self-association, especially at high protein 

concentrations, in line with structural data predicting the formation of a 304-405 polar, 

inter-protomer interaction. 3D-reconstruction of the G266D variant predicted that catalytic 

residues were not suitably positioned for ATP hydrolysis and in vitro ATPase assays 

confirmed that this was likely to be the case (Figures 8.11 and 8.12). In contrast the Q304E 

variant was able to form hexamers and hydrolyse ATP in vitro, in both full-length and 

GAF-truncated forms (Figure 9.15). The ability to turnover nucleotide is in line with the 

prediction based on the location of catalytic residues in the 3D-reconstruction of DNA-

bound Q304E-His (Figure 9.14). Importantly, the Q304E substitution enabled NorR to 

exhibit a low level of activity in the absence of enhancer DNA (Figure 9.15). Since self-

association of bEBP AAA+ domains is required for the formation of a functional oligomer, 
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the Q304E substitution must partially negate the requirement for DNA in oligomerisation, 

at least in vitro. In contrast, wild-type NorR lacking the N-terminal GAF domain exhibited 

DNA-dependent hydrolysis with activity increasing as a sigmoidal response to increasing 

protein concentration. A lower rate of increase was exhibited at concentrations above 250 

nM (Figure 9.15A, open squares) which may reflect saturation of the enhancer sites 

consistent with the observed DNA binding constant (100 nM, Figure 7.2). At similar 

concentrations of Q304E-His, the enhancer DNA is presumably also saturated since the 

Q304E substitution was shown not to have a significant effect on the affinity of DNA-

binding (Figure 9.4). Therefore, the increase in the ATPase activity of Q304E observed in 

the presence of DNA and at higher protein concentrations (Figure 9.15B, open squares) 

may be due to enhancer-independent self-association. In line with this, the same increase in 

turnover was observed when DNA was absent from the reaction (Figure 9.15B, closed 

squares). 

 

The inability of the full-length Q304E variant to activate the formation of open complexes 

(Figure 9.20) is puzzling given the ability of the protein to turnover ATP at similarly high 

concentrations (Figure 9.15). In the presence of DNA and at protein concentrations closer 

to the kd of binding, the Q304E variant exhibits a turnover approximately four-fold less 

than the NorRΔGAF-His protein (compare Figures 9.15A and 9.15B, closed squares). This 

reduction in activity may explain why open complex formation was not observed in vitro.  

An alternative explanation is that although the Q304E substitution gives rise to a partial-

bypass phenotype in vivo, it does not cause sufficient escape from GAF-mediated 

repression to enable the formation of a fully active protein in vitro. However, when the 

additional C113S substitution was introduced into the Q304E variant, the purified protein 

was equally unable to activate the formation of open complexes (Figure 9.20). Therefore 

the increased escape-phenotype of C113S-Q304E observed in vivo (Figure 9.2) appears 

insufficient to render the protein fully active in vitro. Another clue as to why the Q304E-

His variant was inactive for open complex formation in vitro may be revealed in the 

formation of a high molecular weight species in the presence of ATP that is unable to 

migrate effectively into the polyacrylamide gel (Figure 9.20A, lane 5). This has been 

previously observed for the GAFTGA-variant G266D that migrates poorly irrespective of 

the presence of ATP. This large protein complex may be competent to hydrolyse ATP but 

not activate open complex formation. In addition, the possibility that full-length, His-
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tagged proteins may not be able to catalyse open complex formation under the conditions 

employed in this assay cannot be eliminated. 

 

Cryo-Electron Microscopy of Q304E has led to the first 3D-reconstruction of a bEBP 

bound to enhancer DNA. In this model, there are two stacked rings of EM-density with the 

upper ring corresponding to the AAA+ hexamer with GAF domains located at the outer-

edge of the ring (Figure 9.13). In Chapter 7, biochemical analysis of the GAFTGA variant 

combined with genetic suppression studies suggested that the regulatory GAF-domain 

targets the σ
54

-interaction surface in the mechanism of interdomain repression. Since the 

L1 and L2 loops are surface-exposed, the Q304E-His reconstruction likely represents an 

on-state of the NorR protein. As the GAF domains are located at the periphery of the 

AAA+ ring in both the Q304E and G266D EM-structures, this raises the question as to 

why the G266D variant has a full-escape phenotype in vivo but the Q304E substitution 

only enables partial escape. Significantly, the EM-density of the lower circular ring was 

attributed to the intergenic DNA used in the negative-stain analysis. A small ring-like 

density located below the hexamer and with a connection to the DNA ring was attributed 

to the DNA-binding domains of the protein. Therefore enhancer binding occurs on the 

opposite face of the bEBP compared to the σ
54

-interaction surface. Since the EM-density 

attributed to the N-terminal GAF domain is connected to the EM-density attributed to the 

dsDNA DNA, it might be speculated that specific contacts form between the GAF domain 

and enhancer DNA. In particular, the positively charged R49 and R81 residues are 

predicted to be located close to the phosphate backbone (Ghosh 2010) and therefore may 

contribute to the stability of the nucleoprotein complex, at least in the on-state. The R81 

residue was earlier shown to be critical for maintaining GAF-mediated repression of 

AAA+ activity and was suggested to be located at the interface of interdomain repression 

(Chapter 7). The significant movement of the GAF domain, proposed to occur upon release 

of repression (Figure 9.2) may allow this residue to form an interaction with DNA rather 

than the AAA+ domain in the on-state. Interestingly, the reconstruction predicts that ~ 

130bp of the intergenic region is required to encircle the Q304E-His hexamer. This is in 

line with previous work that has shown the importance of DNA flanking the 3 NorR 

enhancer sites for NorR to activate transcription. A 66bp fragment is insufficient to 

stabilise the hexamerisation of NorRΔGAF reflected in the lower ATP turnover compared 

to a 266bp fragment (Tucker et al. 2010a). However, the remaining length of the 266bp 

DNA fragment is presumably unbound in the reconstruction and refinement of the model is 
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likely to have prevented its EM-density from being represented. DNA-binding studies in 

this chapter have shown that a 361bp fragment including the intergenic region further 

contributes to the strength of enhancer-binding (Figure 9.4) and it is possible that 

additional protein-DNA interactions are present to those identified in the reconstruction. 

Since three-fold symmetry was applied to generate the 3D-model, local-distortions in the 

enhancer DNA cannot be visualised.  In this case, single-particle reconstruction, performed 

in the absence of symmetry constraints may help to increase the resolution of the bound 

DNA and the DNA-binding domains. Although the identification of the Q304E 

substitution has not significantly contributed to the study of interdomain repression in 

NorR, the subsequent structural studies have provided a greater understanding as to how 

NorR and other bEBPs bind to enhancer DNA to form functional oligomers capable of 

activating transcription. 
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Chapter 10 - General discussion 

In contrast to σ
70

-dependent transcription, the requirement of an activator at σ
54

-dependent 

promoters imposes tight regulation of transcription which occurs primarily in response to 

cellular and extracellular signals that regulate the activity of the bEBP. A variety of 

regulatory domains exist to couple the activation of transcription to the presence of these 

signals, producing a highly specific response in the bacterial cell. Recent work has shed 

light on the mechanisms utilised by the variety of response regulator and sensory domains 

that regulate the activity of the enzymatic AAA+ domain responsible for the isomerisation 

of the closed promoter complex. Examples of both positive and negative control have been 

demonstrated in which the regulatory domain either stimulates or represses the activity of 

the central domain. Much effort has been expended to characterise the route by which 

these bEBPs couple signal sensing to substrate remodelling. In several bEBPs (e.g.NtrC1, 

DctD), the N-terminal regulatory domain regulates the activity of the AAA+ domain by 

controlling the oligomeric state of the activator (Figure 10.1A) (Lee et al. 2003; Doucleff 

et al. 2005a). The adaptation of activators to control their enzymatic activity by this 

mechanism is understandable, given the absolute requirement for self-association in order 

to form the functional ATPase (Zhang et al. 2002; Rappas et al. 2007). The well-studied 

PspF falls into a second class of bEBPs in which the ATP hydrolysis determinants are the 

target of regulation (Figure 10.1B). In the absence of an N-terminal regulatory domain, 

AAA+ activity is modulated in trans through direct interaction between the activator and 

the negative regulator PspA (Dworkin et al. 2000; Elderkin et al. 2002; Elderkin et al. 

2005). The PspA-PspF regulatory complex is expected to have an altered arrangement in 

the key ATPase determinants that form the catalytic site at the inter-protomer interfaces of 

the PspF hexamer (Joly et al. 2009). 

 

This work has identified for the first time, a third mechanism of regulation in bEBPs 

(Figure 10.1C). In NorR, a number of AAA+ variants that escape GAF-mediated 

repression have been identified (Chapter 6), located in a key region of the central domain 

that undergoes significant conformational change as ATP is hydrolysed. This invokes a 

model whereby the GAF domain negatively regulates the AAA+ domain by preventing 

access of the L1 and L2 loops to σ
54

. Genetic and biochemical studies, using the 

GAFTGA-motif escape variant (G266D) suggest that the GAF domain does not regulate 

AAA+ activity through the control of oligomerisation or by directly targeting the ATP 

hydrolysis machinery (Chapter 7). Regulation at the level of σ
54

-interaction is further 
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supported by suppression of the escape-phenotype via substitutions at the R81 residue. 

Mutagenesis has revealed that this arginine is essential in maintaining the repression 

mechanism and models predict it is surface-exposed and well-placed to make direct 

interactions with the AAA+ domain. The R81 residue is predicted to be located at the 

opposite end of an α-helix that also contains the R75 residue which is a proposed ligand to 

the hexa-coordinated non-heme iron and the most likely candidate to be displaced upon 

NO binding. Upon ligand displacement, significant conformational change is likely to 

occur in the α-helix, altering the position of R81 and potentially modifying GAF-AAA+ 

interactions. Whilst random screening of GAF-domain variants has been largely 

unsuccessful in identifying further residues at the GAF-AAA+ interface, during the 

completion of this work, targeted changes have identified two further amino acids, F68 and 

D84, with important roles in the repression mechanism (data not shown). The systematic 

substitution of the phenylalanine at position 68 suggests that F68, like R81 may have a 

direct role in maintaining GAF-AAA+ interactions in the absence of signal. Although the 

D84 residue does not appear essential for interdomain repression, its predicted position 

suggests that it may coordinate the position of other key residues involved in AAA+ 

contact. In the absence of high resolution structural data for NorR in the off-state, it will be 

difficult to further characterise the interface of repression or identify interacting partners.  

 

Cryo-electron microscopy carried out by collaborators at Imperial College, London has led 

to a 3D-reconstruction of the GAFTGA variant. Studies show that the full-length form of 

G266D-His forms heptamers irrespective of the presence of enhancer DNA (Chapter 8). 

This form of the protein was shown to be inactive for ATP hydrolysis and open complex 

formation, in line with the hypothesis that bEBPs form hexamers in their physiologically 

relevant and functional form. It is likely that conditions inside the cell in which DNA acts 

as a scaffold for self-association of NorR, promotes the formation of a hexameric rather 

than a heptameric activator. Importantly, the EM model suggests that in the “on” state, the 

GAF domains are located at the periphery of the AAA+ ring, leaving the surface-exposed 

L1 and L2 loops free to facilitate the remodelling of σ
54

. Consequently, activation of the 

NorR protein as a transcription factor is predicted to require a significant “swing-out” 

movement of the GAF domain(s) from the top to the outer edge of the oligomeric ring, 

facilitated by the long, flexible linker between the regulatory and central domains. 
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Structural studies in PspF suggest that there is significant in cis communication between 

the σ54
 interaction determinants on the surface of the bEBP-ring and the ATP hydrolysis 

machinery (Rappas et al. 2006) as well as in trans interactions between subunits of the 

hexamer (Joly and Buck 2010). Therefore, the mechanisms of regulation that target ATP 

hydrolysis, oligomerisation and σ
54

-interaction are likely to be highly interconnected. In 

the case of NorR, the repression mechanism might also serve to lock the loops in a 

restrained conformation that feeds back to the nucleotide-binding site to prevent ATP 

hydrolysis. Considering the inter-relatedness of the different control mechanisms, the 

evolutionary advantage of each remains unclear. However, regulation at the level of ATP 

hydrolysis or σ
54

-contact would potentially allow for assembly of the higher order 

oligomer prior to activation and this may confer a physiological advantage by enabling a 

rapid stress response. In PspF, the inhibition of a preassembled PspF hexamer by a PspA 

complex may allow the cell to rapidly respond to the dissipation of the proton motive force 

(PMF) at the cell membrane (Joly et al. 2009). In the case of NorR, the pre-assembly of a 

NorR hexamer, “poised” as a nucleoprotein complex at the enhancer sites, may enable the 

cell to rapidly respond to nitrosative stress.  

 

Previous work has highlighted the importance of enhancer DNA for the activation of NorR 

as a transcription factor (Tucker et al. 2010a). In the absence of the regulatory domain, the 

requirement for the NO signal is bypassed but DNA containing the three NorR binding 

sites is still required for NorR to hydrolyse ATP and activate transcription. Furthermore 

each of the three sites has been shown to be essential for NorR activity both in  vivo and in 

vitro (Tucker et al. 2010a). While multiple enhancer sites for bEBPs are not uncommon, an 

absolute dependency on more than one binding site is unusual. In NorR this may reflect the 

requirement of DNA to act as a scaffold to facilitate oligomerisation prior to receipt of the 

NO-signal. In contrast, NtrC dimers bind to two target sites and recruit a third dimer from 

solution upon activation by phosphorylation (De Carlo et al. 2006). Possibly, since release 

of the GAF-mediated repression mechanism does not stimulate self-association in NorR, 

DNA-binding has instead evolved to drive the process of oligomerisation. Interestingly, the 

number of enhancer sites is not strictly conserved between different norR-containing 

proteobacteria. For example, in the aerobic, soil-dwelling organism Azotobacter vinelandii 

only two predicted NorR binding sites exist upstream of the hmp gene. It would be 

beneficial to extend this work in such bacteria to provide insight into the conservation of 

NorR-mediated regulation of gene transcription. 
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Cryo-EM microscopy, performed in collaboration has provided further insights into the 

requirement of enhancer DNA for the activation of NorR (Chapter 9). In contrast to the 

G266D variant protein which forms heptamers in the absence of DNA, the Q304E variant 

forms DNA-dependent hexamers, in agreement with the expected oligomeric state of wild-

type NorR. Although at a low-resolution, the resulting reconstruction represents the first 

structure of a bEBP bound to DNA. The 3D-model reveals an on-state protein with the 

regulatory domains occupying the EM-density at the periphery of the AAA+ ring, leaving 

the GAFTGA-motifs exposed at the top of the ring. Significantly, the structure predicts 

that ~130bp of the norR-norVW intergenic region encircles the Q304E hexamer. Since the 

3 NorR binding sites cover a length of only 66bp, the structure suggests that DNA flanking 

the three enhancers is required to stabilise the oligomeric ring. This is in agreement with 

previous work that demonstrated the ability of a 266bp fragment but not the minimal 66bp 

fragment of the intergenic region to stimulate self-association (Tucker et al. 2010a). 

 

In summary, the regulation of NorR as a transcriptional activator of σ
54

-dependent 

transcription is proposed to occur by a unique mechanism (Figure 10.2). Three NorR 

dimers are thought to bind with high affinity to the enhancer sites of the norR-norVW 

intergenic region. The binding of DNA induces conformational changes in NorR that result 

in the self-association of the AAA+ domains to form a hexamer. This hexamer is stabilised 

by interactions with ~130bp DNA that includes the NorR binding sites. In the absence of 

the NO-signal, the regulatory (GAF) domains repress the activity of the central (AAA+) 

domains via interactions with the σ
54

-interaction surface. In the presence of Integration 

Host Factor (IHF), DNA-bending brings the inactive NorR-oligomer into close proximity 

with σ
54

-RNAP bound at the norVW promoter. Under conditions of nitrosative stress, NO 

binds to the non-heme iron centre, causing displacement of the R75 ligand. Conformational 

changes in the regulatory domain result in the disruption of GAF-AAA+ interactions, 

leading to a release of the GAF-mediated mechanism of interdomain repression. NorR is 

then free to hydrolyse ATP, leading to conformational changes in the AAA+ domain(s) 

that enable the hexamer to make contact with the σ
54

-RNAP holoenzyme via the GAFTGA 

motifs. Remodelling of the closed complex and the subsequent expression of the norVW 

genes enables NO-detoxification by the flavorubredoxin (NorV) and its associated redox 

partner (NorW). 
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Figure 10.1 – Possible targets of regulatory domain-mediated regulation. Most 

commonly, the regulatory domain represses oligomerisation (A) e.g. NtrC1, DctD (Lee et al. 

2003; Doucleff et al. 2005a) or promotes self-association in response to signal e.g. NtrC (De 

Carlo et al. 2006). (B) In PspF, negative regulation directly targets the nucleotide hydrolysis 

machinery (Joly et al. 2008b). Whilst the binding of ATP, releases the L1 and L2 loops to 

establish a weak interaction with σ54
, hydrolysis is required to produce a strong interaction 

that results in remodelling of the holoenzyme (Rappas et al. 2006). NorR may represent a 

newly identified mechanism of control in which the interaction with σ54
 is the target of the 

regulatory domain (C). Where oligomerisation is not the target, pre-assembly of a hexamer 

prior to activation may have a physiological advantage e.g. rapid response to stress. The 

mechanisms of regulation that target ATP hydrolysis, oligomerisation and σ
54

-interaction are 

likely to be highly interconnected with the enzymatic activity of the AAA+ domain the 
ultimate target of regulation. 
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Figure 10.2 - Model of NorR-dependent activation of norVW (A) Binding of NorR to the 

norR-norVW intergenic region that contains the three NorR binding sites (1, 2 and 3, highlighted 

in red) is thought to facilitate the formation of a higher order oligomer that is most likely to be a 

hexamer (Tucker et al. 2010a). (B) Although bound to DNA, in the absence of NO, the N-

terminal GAF domains (blue rectangles) negatively regulate the activity of the AAA+ domains 

(green circles) by preventing access of the surface-exposed loops to σ
54

. (C) In the „on‟state, NO 

binds to the iron centre in the GAF domain forming a mononitrosyl iron species. The repression 

of the AAA+ domain is relieved, enabling ATP hydrolysis by NorR coupled to conformational 

changes in the AAA+ domain. (D) In the presence of ATP, the surface-exposed loops (red) that 

include the GAFTGA motifs move into an extended conformation to establish an initial 

interaction with σ
54 

that is strengthend upon hydrolysis, resulting in the remodelling of the 

closed complex. Upon phosphate release, the L1 and L2 loops compact downwards, enabling 

relocation of the sigma factor (Rappas et al. 2006). For simplicity, DNA is not illustrated in B, C 
or D. 
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12 Appendix 

12.1 Appendix – Materials and Methods 

12.1.1 Appendix - E. coli strains used in this work 

 

Strain Description Reference/Source 

BL21(DE3) ompT hsdSB(rB-mB-
) gal dcm (DE3). General expression host. (Studier et al. 1990) 

DH10B 
mcrA Δ(mrr-hsdRMS-mcrBC) φ80lacZΔM15 ΔlacX74 recA1 

endA1 araD139 Δ(ara,leu)7697 galU galK λ- rpsL nupG 
Invitrogen 

DH5α 
sipE44 Δ(lacU169 (Φ80dlacZΔM15) hsdR17 recA1 endA1 

gyrA96 thi-1 relA1 
(Hanahan 1983) 

XL10 Gold 

Tetr Δ(mcrA)183 Δ(mcrCB-hsdSMR-mrr)173 endA1 supE44 thi-

1 recA1 gyrA96 relA1 lac Hte [F‟ proAB lacIqZΔM15 Tn10 
(Tetr) Camr]. Quickchange host.  

Stratagene 

MH1003 DH10B norR::cat λnorV-lacZ (Hutchings et al. 2002b) 

MC1000 
araD139 Δ (araABC-leu)7679 galU galK 

Δ(lac)X74 rpsL 
(Casadaban and Cohen 1980) 

MC100V MC1000 λnorV-lacZ (Tucker 2005) 

MC101V MC1000 λnorV-lacZ NorR site 1 mutant (Tucker 2005) 

MC102V MC1000 λnorV-lacZ NorR site 2 mutant (Tucker 2005) 
MC103V MC1000 λnorV-lacZ NorR site 3 mutant (Tucker 2005) 
MC100VΔnorR MC1000 λnorV-lacZ norR::cat This work 

MC101VΔnorR MC1000 λnorV-lacZ norR::cat NorR site 1 mutant This work 

MC102VΔnorR MC1000 λnorV-lacZ norR::cat NorR site 2 mutant This work 

MC103VΔnorR MC1000 λnorV-lacZ norR::cat NorR site 3 mutant This work 
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Construct Name Description Reference 

pUC19 Standard cloning vector 
(Yanisch-Perron et al. 
1985) 

pET21a  Expression vector. Cb resistance Novagen 

pETM11 
Expression vector derived from pET24d (Novagen) by introducing a TEV protease 

cleavage site between the polyhistidine tag and the multiple cloning site. 
EMBL 

pETNdeM11 
pETM11 but with NcoI site mutated to Nde I site to allow for easy cloning of the norR 

sequence 
This Work 

pHP45Ω 
plasmid containing 2.0kb omega cassette between SmaI sites – confers Sm/Spc 

resistance 
(Prentki and Krisch 1984) 

pNorR pET21a expressing norR (Tucker et al. 2004) 

pNorRΔGAF pET21a expressing norRΔGAF (D'Autreaux et al. 2005) 

pNH8 
carries the nifH promoter fragment from pSMM8 in the 

transcription vector pTE103 
(Buck et al. 1986) 

pNPTprom 
pUC19 encoding the 361bp fragment of the norR-norVW intergenic region between 

Eco RI and Bam HI sites 
(D'Autreaux et al. 2005) 

pNPTprom2 
pNPTprom with the 66bp sequence that contains the 3 NorR binding sites deleted 

(295bp intergenic region) 
This work 

pMJB1 
pNorR with C496T and G1341C substitutions in the norR sequence to create the Mfe 

I/Mun I and Sst II/Sac II restriction sites 
This work 

pMJB2 pMJB1 with Q304E substitution in the AAA+ domain  This work 

pMJB3 pMJB1 with L295S substitution in the AAA+ domain This work 

pMJB4 pMJB1 with P248L substitution in the AAA+ domain This work 

pMJB5 pMJB1 with V251M substitution in the AAA+ domain This work 

pMJB6 pMJB1 with S292L substitution in the AAA+ domain This work 

pMJB7 pMJB1 with E276G substitution in the AAA+ domain This work 

pMJB8 pMJB1 with G266S substitution in the AAA+ domain This work 

pMJB9 pMJB1 with F264Y substitution in the AAA+ domain This work 

pMJB10 pMJB1 with L256F substitution in the AAA+ domain This work 

pMJB11 pMJB1 with G266D substitution in the AAA+ domain This work 

pMJB12 pMJB1 with K226E substitution in the AAA+ domain This work 

pMJB13 pMJB1 with E249K substitution in the AAA+ domain This work 

pMJB14 pMJB1 with K274R substitution in the AAA+ domain This work 

pMJB15 pMJB1 with Y305C substitution in the AAA+ domain This work 

pMJB16 pMJB1 with Y305N substitution in the AAA+ domain This work 

pMJB17 pMJB1 with V323A substitution in the AAA+ domain This work 

pMJB18 pMJB1 with H346Y substitution in the AAA+ domain This work 

pMJB19 pMJB1 with S349N substitution in the AAA+ domain This work 

pMJB20 pMJB1 with E276A substitution in the AAA+ domain This work 

pMJB21 pMJB1 with E276K substitution in the AAA+ domain This work 

pMJB22 pMJB1 with E276R substitution in the AAA+ domain This work 

pMJB23 pMJB1 with E276H substitution in the AAA+ domain This work 

pMJB24 pMJB1 with R310A substitution in the AAA+ domain This work 

pMJB25 pMJB1 with R310E substitution in the AAA+ domain This work 

pMJB26 pMJB1 with G266S substitution in the AAA+ domain This work 

pMJB27 pMJB1 with G266C substitution in the AAA+ domain This work 

pMJB28 pMJB1 with G266N substitution in the AAA+ domain This work 

pMJB29 pMJB1 with G266K substitution in the AAA+ domain This work 

pMJB30 pMJB1 with G266R substitution in the AAA+ domain This work 

pMJB31 pMJB1 with G266P substitution in the AAA+ domain This work 

pMJB32 pMJB1 with G266A substitution in the AAA+ domain This work 

pMJB33 pMJB1 with G266E substitution in the AAA+ domain This work 

pMJB34 pMJB1 with G266L substitution in the AAA+ domain This work 

pMJB35 pMJB1 with G266Q substitution in the AAA+ domain This work 

pMJB36 pMJB1 with G266V substitution in the AAA+ domain This work 

pMJB37 pMJB1 with G266T substitution in the AAA+ domain This work 

pMJB38 pMJB1 with G266H substitution in the AAA+ domain This work 

pMJB39 pMJB1 with G266I substitution in the AAA+ domain This work 

pMJB40 pMJB1 with G266M substitution in the AAA+ domain This work 

pMJB41 pMJB1 with G266W substitution in the AAA+ domain This work 

pMJB42 pMJB1 with G266Y substitution in the AAA+ domain This work 

pMJB43 pMJB1 with G266F substitution in the AAA+ domain This work 

pMJB44 pNorRΔGAF with Q304E substitution in the AAA+ domain This work 

pMJB45 pNorRΔGAF with G266D substitution in the AAA+ domain This work 

pMJB46 pNorRΔGAF with G266N substitution in the AAA+ domain This work 

pMJB47 pNorRΔGAF with F264Y substitution in the AAA+ domain This work 

pMJB48 pNorRΔGAF with E276G substitution in the AAA+ domain This work 

pMJB49 pNorRΔGAF with V251M substitution in the AAA+ domain This work 

pMJB50 pNorRΔGAF with S296L substitution in the AAA+ domain This work 

12.1.2  Appendix - The plasmids used and engineered in this work 
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pMJB51 pNorRΔGAF with P248L substitution in the AAA+ domain This work 

pMJB52 pNorRΔGAF with L295S substitution in the AAA+ domain This work 

pMJB53 pNorRΔGAF with L256F substitution in the AAA+ domain This work 

pMJB54 
pETNdeM11 expressing pMJB1-derived NorR with 2.0kb omega cassette from 

pHP45Ω inserted at SmaI site to allow selection using Sm/Spc 
This work 

pMJB55 
pETNdeM11 expressing NorRΔGAF with 2.0kb omega cassette from pHP45Ω 

inserted at SmaI site to allow selection using Sm/Spc 
This work 

pMJB56 
pETNdeM11 expressing G266D with 2.0kb omega cassette from pHP45Ω inserted at 

SmaI site to allow selection using Sm/Spc 
This work 

pMJB57 
pETNdeM11 expressing G266DΔGAF with 2.0kb omega cassette from pHP45Ω 

inserted at SmaI site to allow selection using Sm/Spc 
This work 

pMJB58 
pETNdeM11 expressing Q304E with 2.0kb omega cassette from pHP45Ω inserted at 

SmaI site to allow selection using Sm/Spc 
This work 

pMJB59 
pETNdeM11 expressing Q304EΔGAF with 2.0kb omega cassette from pHP45Ω 

inserted at SmaI site to allow selection using Sm/Spc 
This work 

pMJB60 
pETNdeM11 expressing G266N with 2.0kb omega cassette from pHP45Ω inserted at 

SmaI site to allow selection using Sm/Spc 
This work 

pMJB61 
pETNdeM11 expressing G266NΔGAF with 2.0kb omega cassette from pHP45Ω 

inserted at SmaI site to allow selection using Sm/Spc 
This work 

pMJB62 pMJB1 with D286A substitution in the AAA+ domain This work 

pMJB63 pNorR with R75K substitution (Tucker et al. 2007) 

pMJB64 pNorR with Y98L substitution (Tucker et al. 2007) 

pMJB65 pNorR with C113S substitution (Tucker et al. 2007) 

pMJB66 pNorR with H111Y substitution (Tucker et al. 2007) 

pMJB67 pNorR with D131A substitution (Tucker et al. 2007) 

pMJB68 pNorR with H111L substitution (Tucker et al. 2007) 

pMJB69 pNorR with C113G substitution (Tucker et al. 2007) 

pMJB70 pNorR with D96A substitution (Tucker et al. 2007) 

pMJB71 pNorR with D99A substitution (Tucker et al. 2007) 

pMJB72 pNorR with R81L substitution (Tucker et al. 2007) 

pMJB73 pMJB11 with additional H111L substitution in the GAF domain This work 

pMJB74 pMJB11 with additional R81L substitution in the GAF domain This work 

pMJB75 pMJB11 with additional D131A substitution in the GAF domain This work 

pMJB76 pMJB11 with additional D96A substitution in the GAF domain This work 

pMJB77 pMJB11 with additional C113G substitution in the GAF domain This work 

pMJB78 pMJB11 with additional C113S substitution in the GAF domain This work 

pMJB79 pMJB11 with additional H111Y substitution in the GAF domain This work 

pMJB80 pMJB11 with additional D99A substitution in the GAF domain This work 

pMJB81 pMJB11 with additional R75K substitution in the GAF domain This work 

pMJB82 pNorRΔGAF  with D286A substitution in the AAA+ domain This work 

pMJB83 pMJB1 with G266D and  D286A substitutions  in the AAA+ domain This work 

pMJB84 pMJB1 with N243A substitution in the AAA+ domain This work 

pMJB85 pMJB1 with N243S substitution in the AAA+ domain This work 

pMJB86 pMJB1 with R81G substitution in the GAF domain This work 

pMJB87 pMJB1 with R81D substitution in the GAF domain This work 

pMJB88 pMJB1 with R81S substitution in the GAF domain This work 

pMJB89 pMJB1 with R81T substitution in the GAF domain This work 

pMJB90 pMJB1 with R81E substitution in the GAF domain This work 

pMJB91 pMJB1 with R81N substitution in the GAF domain This work 

pMJB92 pMJB1 with R81Q substitution in the GAF domain This work 

pMJB93 pMJB1 with R81H substitution in the GAF domain This work 

pMJB94 pMJB1 with R81F substitution in the GAF domain This work 

pMJB95 pMJB1 with R81A substitution in the GAF domain This work 

pMJB96 pMJB1 with R81Y substitution in the GAF domain This work 

pMJB97 pMJB1 with R81M substitution in the GAF domain This work 

pMJB98 pMJB1 with R81L substitution in the GAF domain This work 

pMJB99 pMJB1 with R81I substitution in the GAF domain This work 

pMJB100 pMJB1 with R81W substitution in the GAF domain This work 

pMJB101 pMJB1 with R81V substitution in the GAF domain This work 

pMJB102 pMJB1 with R81C substitution in the GAF domain This work 

pMJB103 pMJB1 with R81K substitution in the GAF domain This work 

pMJB104 pMJB1 with R81P substitution in the GAF domain This work 

pMJB105 pMJB7  with additional R81L substitution in the GAF domain This work 

pMJB106 pMJB5 with additional R81L substitution in the GAF domain This work 

pMJB107 pMJB8 with additional R81L substitution in the GAF domain This work 

pMJB108 pMJB3 with additional R81L substitution in the GAF domain This work 

pMJB109 pMJB10 with additional R81L substitution in the GAF domain This work 

pMJB110 pMJB9 with additional R81L substitution in the GAF domain This work 

pMJB111 pMJB2 with additional R81L substitution in the GAF domain This work 

pMJB112 pMJB4 with additional R81L substitution in the GAF domain This work 

pMJB113 pMJB28 with additional R81L substitution in the GAF domain This work 

pMJB114 pMJB6 with additional R81L substitution in the GAF domain This work 
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pMJB115 pMJB2 with additional R81A substitution in the GAF domain This work 

pMJB116 pMJB11 with additional R81A substitution in the GAF domain This work 

pMJB117 pMJB11 with additional R81V substitution in the GAF domain This work 

pMJB118 pMJB11 with additional R81I substitution in the GAF domain This work 

pMJB119 pMJB11 with additional R81F substitution in the GAF domain This work 

pMJB120 pMJB11 with additional R81D substitution in the GAF domain This work 

pMJB121 pMJB11 with additional R81N substitution in the GAF domain This work 

pMJB122 pMJB11 with additional R81K substitution in the GAF domain This work 

pMJB123 pMJB1 encoding a truncated form of NorR with residues 444-504 deleted This work 

pMJB124 pMJB1 encoding a truncated form of NorR with residues 442-504 deleted This work 

pMJB125 pMJB1 encoding a truncated form of NorR with residues 436-504 deleted This work 

pMJB126 pMJB11 encoding a truncated form of NorR with residues 444-504 deleted This work 

pMJB127 pMJB11 encoding a truncated form of NorR with residues 442-504 deleted This work 

pMJB128 pMJB11 encoding a truncated form of NorR with residues 436-504 deleted This work 

pMJB129 pMJB1 with Q304A substitution in the AAA+ domain This work 

pMJB130 pMJB1 with Q304D substitution in the AAA+ domain This work 

pMJB131 pMJB1 with Q304N substitution in the AAA+ domain This work 

pMJB132 pMJB1 with Q304R substitution in the AAA+ domain This work 

pMJB133 pMJB1 with Q304P substitution in the AAA+ domain This work 

pMJB134 pMJB2 with additional H111Y substitution in the GAF domain This work 

pMJB135 pMJB2 with additional R75K substitution in the GAF domain This work 

pMJB136 pMJB2 with additional C113S substitution in the GAF domain This work 

pMJB137 pMJB2 with additional D99A substitution in the GAF domain This work 

pMJB138 pMJB2 with additional Y98L substitution in the GAF domain This work 

pMJB139 pMJB2 with additional D286A  substitution  in the AAA+ domain This work 

pMJB140 pMJB2 encoding a truncated form of NorR with residues 444-504 deleted This work 

pMJB141 pMJB2 encoding a truncated form of NorR with residues 442-504 deleted This work 

pMJB142 pMJB2 encoding a truncated form of NorR with residues 436-504 deleted This work 

pMJB143 pETNdeM11 expressing pMJB1-derived NorR This work 

pMJB144 pETNdeM11 expressing NorRΔGAF This work 

pMJB145 pETNdeM11 expressing  the pMJB11-derived NorR variant G266D This work 

pMJB146 pETNdeM11 expressing  the pMJB45-derived NorR variant G266DΔGAF This work 

pMJB147 pETNdeM11 expressing  the pMJB28-derived NorR variant G266N This work 

pMJB148 pETNdeM11 expressing  the pMJB46-derived NorR variant G266NΔGAF This work 

pMJB149 pETNdeM11 expressing  the pMJB2-derived NorR variant Q304E This work 

pMJB150 pETNdeM11 expressing  the pMJB44-derived NorR variant Q304EΔGAF This work 

pMJB151 pETNdeM11 expressing  the pMJB62-derived NorR variant D286A This work 

pMJB152 pETNdeM11 expressing  the pMJB82-derived NorR variant D286AΔGAF This work 

pMJB153 pETNdeM11 expressing  the pMJB83-derived NorR variant G266D-D286A This work 

pMJB154 
pETNdeM11 expressing  the pMJB45-derived NorR G266DΔGAF with the additional 

D286A substitution 
This work 

pMJB155 pETNdeM11 expressing  the pMJB139-derived NorR variant D286A-Q304E This work 

pMJB156 
pETNdeM11 expressing  the pMJB44-derived NorR variant Q304E with the additional 

D286A substitution 
This work 

pMJB157 pETNdeM11 expressing  the pMJB136-derived NorR varitant C113S-Q304E This work 

pES6 
Plasmid encoding wild-type K.pneumoniae σN 

with a C-terminal hexahistidine tag 

(based on pRJ21) 

(Southern and Merrick 

2000) 

pEE2003 Plasmid encoding IHF (with His tag on the β subunit)  
(Yu and Haggard-

Ljungquist 1993) 
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12.1.3  Appendix - Mutagenic primers used in this work 

 

Primer Name Sequence Description/Function Reference 

Engineering pMJB1 plasmid 

C496T Fwd 
AGCAATGCGTTGCTGATTGAAC

AATTGGAAAGCCAGAA 

Forward mutagenic primer to engineer the Mfe I/Mun I site 

outside of the AAA+ domain in NorR 
This work 

C496T Rev 
TTCTGGCTTTCCATTTGTTCAAT

CAGCAACGCATTGCT 

Reverse mutagenic primer to engineer the Mfe I/Mun I site 

outside of the AAA+ domain in NorR 
This work 

G1341C Fwd 
CCAGAAGTGGCCGCGGTGCCC

GT 

Forward mutagenic primer to engineer the Sst II/Sac II site 

outside of the AAA+ domain in NorR 
This work 

G1341C Rev 
ACGGGCACCGCGGCCACTTCT

GG 

Reverse mutagenic primer to engineer the Sst II/Sac II site 

outside of the AAA+ domain in NorR 
This work 

SDM of GAFTGA residue G266 

G266A Fwd AGCGTTTACTGCCGCTATCAG 
Forward mutagenic primer for the G266A change in the AAA+ 

domain of NorR 
This work 

G266A Rev CTGATAGCGGCAGTAAACGCT 
Reverse mutagenic primer for the G266A change in the AAA+ 

domain of NorR 
This work 

G266E Fwd AGCGTTTACTGAGGCTATCAG 
Forward mutagenic primer for the G266E change in the AAA+ 

domain of NorR 
This work 

G266E Rev CTGATAGCCTCAGTAAACGCT 
Reverse mutagenic primer for the G266E change in the AAA+ 

domain of NorR 
This work 

G266P Fwd AGCGTTTACTCCCGCTATCAG 
Forward mutagenic primer for the G266P change in the AAA+ 

domain of NorR 
This work 

G266P Rev CTGATAGCGGGAGTAAACGCT 
Reverse mutagenic primer for the G266P change in the AAA+ 

domain of NorR 
This work 

G266R Fwd AGCGTTTACTCGCGCTATCAG 
Forward mutagenic primer for the G266P change in the AAA+ 

domain of NorR 
This work 

G266R Rev CTGATAGCGCGAGTAAACGCT 
Reverse mutagenic primer for the G266R change in the AAA+ 

domain of NorR 
This work 

G266K Fwd AGCGTTTACTAAGGCTATCAG 
Forward mutagenic primer for the G266R change in the AAA+ 

domain of NorR 
This work 

G266K Rev CTGATAGCCTTAGTAAACGCT 
Reverse mutagenic primer for the G266K change in the AAA+ 

domain of NorR 
This work 

G266C Fwd AGCGTTTACTTGCGCTATCAG 
Forward mutagenic primer for the G266C change in the AAA+ 

domain of NorR 
This work 

G266C Rev CTGATAGCGCAAGTAAACGCT 
Reverse mutagenic primer for the G266C change in the AAA+ 

domain of NorR 
This work 

G266N Fwd GAGCGTTTACTAACGCTATCA 
Forward mutagenic primer for the G266N change in the AAA+ 

domain of NorR 
This work 

G266N Rev CTGATAGCGTTAGTAAACGCT 
Reverse mutagenic primer for the G266N change in the AAA+ 

domain of NorR 
This work 

G266D Fwd AGCGTTTACTGACGCTATCAG 
Forward mutagenic primer for the G266D change in the AAA+ 

domain of NorR 
This work 

G266D Rev CTGATAGCGTCAGTAAACGCT 
Reverse mutagenic primer for the G266D change in the AAA+ 

domain of NorR 
This work 

G266Q Fwd AGCGTTTACTCAGGCTATCAG 
Forward mutagenic primer for the G266Q change in the AAA+ 

domain of NorR 
This work 

G266Q Rev  CTGATAGCCTGAGTAAACGCT 
Reverse mutagenic primer for the G266Q change in the AAA+ 

domain of NorR 
This work 

G266L Fwd AGCGTTTACTCTCGCTATCAG 
Forward mutagenic primer for the G266L change in the AAA+ 

domain of NorR 
This work 

G266L Rev CTGATAGCGAGAGTAAACGCT 
Reverse mutagenic primer for the G266L change in the AAA+ 

domain of NorR 
This work 

G266V Fwd AGCGTTTACTGTCGCTATCAG 
Forward mutagenic primer for the G266V change in the AAA+ 

domain of NorR 
This work 

G266V Rev CTGATAGCGACAGTAAACGCT 
Reverse mutagenic primer for the G266V change in the AAA+ 

domain of NorR 
This work 

G266S Fwd AGCGTTTACTTCCGCTATCAG 
Forward mutagenic primer for the G266S change in the AAA+ 

domain of NorR 
This work 

G266S Rev CTGATAGCGGAAGTAAACGCT 
Reverse mutagenic primer for the G266S change in the AAA+ 

domain of NorR 
This work 

G266T Fwd AGCGTTTACTACCGCTATCAG 
Forward mutagenic primer for the G266T change in the AAA+ 

domain of NorR 
This work 

G266T Rev CTGATAGCGGTAGTAAACGCT 
Reverse mutagenic primer for the G266T change in the AAA+ 

domain of NorR 
This work 

G266H Fwd AGCGTTTACTCACGCTATCAG 
Forward mutagenic primer for the G266H change in the AAA+ 

domain of NorR 
This work 

G266H Rev CTGATAGCGTGAGTAAACGCT 
Reverse mutagenic primer for the G266H change in the AAA+ 

domain of NorR 
This work 

G266I Fwd AGCGTTTACTATCGCTATCAG 
Forward mutagenic primer for the G266I change in the AAA+ 

domain of NorR 
This work 
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G266I Rev CTGATAGCGATAGTAAACGCT 
Reverse mutagenic primer for the G266I change in the AAA+ 

domain of NorR 
This work 

G266M Fwd AGCGTTTACTATGGCTATCAG 
Reverse mutagenic primer for the G266M change in the AAA+ 

domain of NorR 
This work 

G266M Rev CTGATAGCCATAGTAACGCT 
Forward mutagenic primer for the G266M change in the 

AAA+ domain of NorR 
This work 

G266F Fwd AGCGTTTACTTTCGCTATCAG 
Reverse mutagenic primer for the G266F change in the AAA+ 

domain of NorR 
This work 

G266F Rev CTGATAGCGAAAGTAAACGCT 
Forward mutagenic primer for the G266F change in the AAA+ 

domain of NorR 
This work 

G266W Fwd AGCGTTTACTTGGGCTATCAG 
Reverse mutagenic primer for the G266W change in the 

AAA+ domain of NorR 
This work 

G266W Rev CTGATAGCCCAAGTAAACGCT 
Forward mutagenic primer for the G266W change in the 

AAA+ domain of NorR 
This work 

G266Y Fwd AGCGTTTACTTACGCTATCAG 
Reverse mutagenic primer for the G266Y change in the AAA+ 

domain of NorR 
This work 

G266Y Rev CTGATAGCGTAAGTAAACGCT 
Forward mutagenic primer for the G266Y change in the AAA+ 

domain of NorR 
This work 

SDM of key AAA+ residues 

P248L Fwd CTGTGCTGCACTGCTGGAAA 
Forward mutagenic primer for the P248L change in the AAA+ 

domain of NorR 
This work 

P248L Rev TTTCCAGCAGTGCAGCACAG 
Reverse mutagenic primer for the P248L change in the AAA+ 

domain of NorR 
This work 

V251M Fwd CCGGAAAGTATGGCGGAAAG 
Forward mutagenic primer for the V251M change in the 

AAA+ domain of NorR 
This work 

V251M Rev CTTTCCGCCATACTTTCCGG 
Reverse mutagenic primer for the V251M change in the AAA+ 

domain of NorR 
This work 

L256F Fwd AGTGAGTTCTTCGGGCATGT 
Forward mutagenic primer for the L256F change in the AAA+ 

domain of NorR 
This work 

L256F Rev ACATGCCCGAAGAACTCACT 
Reverse mutagenic primer for the L256F change in the AAA+ 

domain of NorR 
This work 

F264Y Fwd AAGGAGCGTATACTGGCGCTA 
Forward mutagenic primer for the F264Y change in the AAA+ 

domain of NorR 
This work 

F264Y Rev TAGCGCCAGTATACGCTCCTT 
Reverse mutagenic primer for the F264Y change in the AAA+ 

domain of NorR 
This work 

E276G Fwd GGGAAGTTTGGAATGGCGGAT 
Forward mutagenic primer for the E276G change in the AAA+ 

domain of NorR 
This work 

E276G Rev ATCCGCCATTCCAAACTTCCC 
Reverse mutagenic primer for the E276G change in the AAA+ 

domain of NorR 
This work 

S292L Fwd GCGAGTTGTTGTTGGCATTG 
Forward mutagenic primer for the S292L change in the AAA+ 

domain of NorR 
This work 

S292L Rev CAATGCAACAACAACTCGC 
Reverse mutagenic primer for the S292L change in the AAA+ 

domain of NorR 
This work 

L295S Fwd TTGGCATCGCAGGCCAAGCT 
Forward mutagenic primer for the L295S change in the AAA+ 

domain of NorR 
This work 

L295S Rev AGCTTGGCCTGCGATGCCAA 
Reverse mutagenic primer for the L295S change in the AAA+ 

domain of NorR 
This work 

Q304E Fwd AGGGTGTTGGAGTATGGCGAT 
Forward mutagenic primer for the Q304E change in the AAA+ 

domain of NorR 
This work 

Q304E Rev ATCGCCATACTCCAACACCCT 
Reverse mutagenic primer for the Q304E change in the AAA+ 

domain of NorR 
This work 

SDM of R81 residue 

R81A Fwd TGGAAGCGATTGCCGCCGCCG 
Forward mutagenic primer for the R81A change in the GAF 

domain of NorR 
This work 

R81A Rev CGGCGGCGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81A change in the GAF 

domain of NorR 
This work 

R81P Fwd TGGAGCGATTGCCCCCGCC 
Forward mutagenic primer for the R81P change in the GAF 

domain of NorR 
This work 

R81P Rev GGCGGGGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81P change in the GAF 

domain of NorR 
This work 

R81V Fwd TGGAAGCGATTGCCGTCGCC 
Forward mutagenic primer for the R81V change in the GAF 

domain of NorR 
This work 

R81V Rev GGCGACGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81V change in the GAF 

domain of NorR 
This work 

R81I Fwd TGGAAGCGATTGCCATCGCC 
Forward mutagenic primer for the R81I change in the GAF 

domain of NorR 
This work 

R81I Rev GGCGATGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81I change in the GAF 

domain of NorR 
This work 

R81F Fwd TGGAAGCGATTGCCTTCGCC 
Forward mutagenic primer for the R81F change in the GAF 

domain of NorR 
This work 

R81F Rev GGCGAAGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81F change in the GAF 

domain of NorR 
This work 
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R81D Fwd TGGAAGCGATTGCCGACGCC 
Forward mutagenic primer for the R81D change in the GAF 

domain of NorR 
This work 

R81D Rev GGCGTCGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81D change in the GAF 

domain of NorR 
This work 

R81N Fwd TGGAAGCGATTGCCAACGCC 
Forward mutagenic primer for the R81N change in the GAF 

domain of NorR 
This work 

R81N Rev GGCGTTGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81N change in the GAF 

domain of NorR 
This work 

R81S Fwd TGGAAGCGATTGCCTCCGCC 
Forward mutagenic primer for the R81S change in the GAF 

domain of NorR 
This work 

R81S Rev GGCGGAGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81S change in the GAF 

domain of NorR 
This work 

R81K Fwd TGGAAGCGATTGCCAAAGCC 
Forward mutagenic primer for the R81K change in the GAF 

domain of NorR 
This work 

R81K Rev GGCTTTGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81K change in the GAF 

domain of NorR 
This work 

R81E Fwd TGGAAGCGATTGCCGAAGCC 
Forward mutagenic primer for the R81E change in the GAF 

domain of NorR 
This work 

R81E Rev GGCTTCGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81E change in the GAF 

domain of NorR 
This work 

R81C Fwd TGGAAGCGATTGCCTGCGCC 
Forward mutagenic primer for the R81C change in the GAF 

domain of NorR 
This work 

R81C Rev GGCGCAGGCAATCGCTTCCA 
Reverse mutagenic primer for the R81C change in the GAF 

domain of NorR 
This work 

SDM of Q304 residue 

Q304A Fwd AGGGTGTTGGCGTATGGCGAT 
Forward mutagenic primer for the Q304A change in the AAA+ 

domain of NorR 
This work 

Q304A Rev ATCGCCATACGCCAACACCCT 
Reverse mutagenic primer for the Q304A change in the AAA+ 

domain of NorR 
This work 

Q304D Fwd AGGGTGTTGGAGTATGGCGAT 
Forward mutagenic primer for the Q304D change in the AAA+ 

domain of NorR 
This work 

Q304D Rev ATCGCCATACTCCAACACCCT 
Reverse mutagenic primer for the Q304D change in the AAA+ 

domain of NorR 
This work 

Q304N Fwd AGGGTGTTGAACTATGGCGAT 
Forward mutagenic primer for the Q304N change in the AAA+ 

domain of NorR 
This work 

Q304N Rev ATCGCCATAGTTCAACACCCT 
Reverse mutagenic primer for the Q304N change in the AAA+ 

domain of NorR 
This work 

Q304R Fwd AGGGTGTTGCGGTATGGCGAT 
Forward mutagenic primer for the Q304R change in the AAA+ 

domain of NorR 
This work 

Q304R Rev ATCGCCATACCGCAACACCCT 
Reverse mutagenic primer for the Q304R change in the AAA+ 

domain of NorR 
This work 

SDM of E276G residue 

E276H Fwd GGGAAGTTTCACATGGCGGAT 
Forward mutagenic primer for the E276H change in the AAA+ 

domain of NorR 
This work 

E276H Rev ATCCGCCATGTGAAACTTCCC 
Reverse mutagenic primer for the E276H change in the AAA+ 

domain of NorR 
This work 

E276K Fwd 
GCGGGAAGTTTAAAATGGCGG

A 

Forward mutagenic primer for the E276K change in the AAA+ 

domain of NorR 
This work 

E276K Rev TCCGCCATTTTAAACTTCCCGC 
Reverse mutagenic primer for the E276K change in the AAA+ 

domain of NorR 
This work 

E276R Fwd GGGAAGTTTCGAATGGCGGAT 
Forward mutagenic primer for the E276R change in the AAA+ 

domain of NorR 
This work 

E276R Rev ATCCGCCATTCGAAACTTCCC 
Reverse mutagenic primer for the E276R change in the AAA+ 

domain of NorR 
This work 

E276A Fwd GGGAAGTTTGCAATGGCGGAT 
Forward mutagenic primer for the E276A change in the AAA+ 

domain of NorR 
This work 

E276A Rev GGGAAGTTTGCAATGGCGGAT 
Reverse mutagenic primer for the E276A change in the AAA+ 

domain of NorR 
This work 

SDM of residues involved in nucleotide hydrolysis cycle 

R310E Fwd ATTCAGGAGGTTGGCGATGAC 
Forward mutagenic primer for the R310E change in the AAA+ 

domain of NorR 
This work 

R310E Rev GTCATCGCCAACCTCCTGAAT 
Reverse mutagenic primer for the R310E change in the AAA+ 

domain of NorR 
This work 

R310A Fwd ATTCAGGCCGTTGGCGATGAC 
Forward mutagenic primer for the R310A change in the AAA+ 

domain of NorR 
This work 

R310A Rev GTCATCGCCAACGGCCTGAAT 
Reverse mutagenic primer for the R310A change in the AAA+ 

domain of NorR 
This work 

N243A Fwd GCTGGTCTATCTCGCCTGTG 
Forward mutagenic primer for the N243A change in the AAA+ 

domain of NorR 
This work 

N243A Rev CACAGGCGAGATAGACCAGC 
Reverse mutagenic primer for the N243A change in the AAA+ 

domain of NorR 
This work 
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N243S Fwd GCTGGTCTATCTCAGCTGTG 
Forward mutagenic primer for the N243S change in the AAA+ 

domain of NorR 
This work 

N243S Rev CACAGCTGAGATAGACCAGC 
Reverse mutagenic primer for the N243S change in the AAA+ 

domain of NorR 
This work 

DNA binding and Open Promoter Complex (OPC) assays  

NorRprom Fwd GGCGATATTCGCCAGCACAT 
Forward primer used to amplify a 266bp region of the norR-

norVW intergenic region 
This work 

NorRprom Rev CGTTGACCAACCCAATGAATGT 
Reverse primer used to amplify a 266bp region of the norR-
norVW intergenic region 

This work 

pNPTprpm 

66bp_DEL Fwd 

ATCTTTGCCATTAATGGGCATA

ATTTT 

Forward primer used in the deletion mutagenesis of the 66bp 

region of the norR-norVW intergenic region 
This work 

pNPTprpm 

66bp_DEL Rev 

CCCATTAATGGCAAAGATGAG

TTTTTC 

Reverse primer used in the deletion mutagenesis of the 66bp 

region of the norR-norVW intergenic region 
This work 

SDM of Walker B motif 

D286A Fwd TGTTTCTGGCTGAGATCGGC 
Forward mutagenic primer for the D286A change in the AAA+ 

domain of NorR 
This work 

D286A Rev GCCGATCTCAGCCAGAAACA 
Reverse mutagenic primer for the D286A change in the AAA+ 

domain of NorR 
This work 

Deletion of Helix-Turn-Helix motif 

Δ444-504 Rev 
CGAAGGATCCTTACGTCGGCA

ACGTCACCTCA 

reverse mutagenic primer for deletion of C-T of NorR 

sequence that includes HTH motif 
This work 

Δ442-504 Rev 
CGAAGGATCCTTACAACGTCA

CTTCAGGAAAAGC 

reverse mutagenic primer for deletion of C-T of NorR 

sequence that includes HTH motif 
This work 

Δ436-504 Rev 
CGAAGGATCCTTAAGCAAAAT

GTTGCGCCTCAAG 

reverse mutagenic primer for deletion of C-T of NorR 

sequence that includes HTH motif 
This work 
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12.1.4  Appendix  - External Mutagenic and sequencing primers used in this work 

Primer Name Sequence Description/Function Reference 

T7long AAATTAATACGACTCACTATAGGGG 
Universal primer that anneals outside the NorR sequence 

in pET21a 
This work 

T7term-long TATGCTAGTTATTGCTCAGCGGT 
Universal primer that anneals outside the NorR sequence 

in pET21a 
This work 

AAA+ Fwd GAAGAGCTACGGCTGATTGC Forward primer flanking the NorR AAA+ domain This work 

AAA+ Rev GAACGCTTCTGTCGCTTCAC Reverse primer flanking the NorR AAA+ domain This work 

GAF Rev CCTGGCAGCATATTCTGGCT Reverse primer flanking the NorR GAF domain This work 

Km1 TGCCTCTTCCGACCATCAAG 
Forward flanking primer to the Sma I site in the Km 

resistance cassette within pET24d+ (pETM11) 
This work 

Km2 AACACTGCCAGCGCATCAAC 
Reverse flanking primer to the Sma I site in the Km 

resistance cassette within pET24d+ (pETM11) 
This work 

Km3 CAGCCATTACGCTCGTCATCAAA 
Alternative reverse flanking primer to the SmaI site in the 

Km resistance cassette within pET24d+ (pETM11)  
This work 

M13 Fwd CGTTGTAAAACGACGGCCAGTG 
Forward universal primer that anneals outside of the 

norR-norVW intergenic region in pNPTprom 
This work 

M13 Rev GAGCGGATAACAATTTCACACAGG 
Reverse universal primer that anneals outside of the norR-
norVW intergenic region in pNPTprom 

This work 

GAF1 TTTATTCCGCTTGCCATCGAC NorR GAF domain internal sequencing primer This work 

GAF2 AGGCGTGAACCTTCAGACTCT NorR GAF domain internal sequencing primer This work 

Seq1 GCCCGATCAGTTCGAT NorR internal sequencing primer This work 

Seq2 CCGTTGTTTGCGGGTC NorR internal sequencing primer This work 

Seq3 TCGCCCTGCCAGCACC NorR internal sequencing primer This work 

Seq4 ATTGCTTAACGCTCCC NorR internal sequencing primer This work 

Table  External primers used in mutagenesis and primers used in sequencing. 
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ABSTRACT

The bacterial activator protein NorR binds to
enhancer-like elements, upstream of the promoter
site, and activates p54-dependent transcription
of genes that encode nitric oxide detoxifying
enzymes (NorVW), in response to NO stress.
Unique to the norVW promoter in Escherichia coli
is the presence of three enhancer sites associated
with a binding site for p54-RNA polymerase. Here
we show that all three sites are required for
NorR-dependent catalysis of open complex forma-
tion by p54-RNAP holoenzyme (Ep54). We demon-
strate that this is essentially due to the need for all
three enhancers for maximal ATPase activity of
NorR, energy from which is used to remodel the
closed Ep54 complex and allow melting of the
promoter DNA. We also find that site-specific DNA
binding per se promotes oligomerisation but the
DNA flanking the three sites is needed to further
stabilise the functional higher order oligomer
of NorR at the enhancers.

INTRODUCTION

Nitric oxide (NO) is a highly reactive radical species
that is toxic to micro-organisms. It can be encountered
exogenously, as a consequence of pathogen invasion,
or endogenously through the process of respiratory
denitrification (1,2). Escherichia coli is known to possess
at least three enzymes capable of directly detoxifying NO,
by utilising either NO reductase or NO dioxygenase

activities (3–5). One of these systems comprises the
enzyme flavorubredoxin (encoded by norV) and its
associated NADH oxidoreductase (encoded by norW),
which reduces the NO radical to nitrous oxide under
anaerobic conditions (4,6).
Immediately upstream of the norVW genes is the

divergently transcribed norR gene, which encodes an
NO sensing s54-dependent transcriptional regulator
(7,8). This protein is essential for activating transcription
of the norVW operon and shares �40% sequence
homology with Ralstonia eutropha NorR, which is respon-
sible for the transcriptional regulation of heme b3-iron NO
reductase in response to NO (9). NorR has a modular
domain architecture typical of bacterial s54-dependent
enhancer binding proteins (bEBPs) (10) and consists
of three key domains: an N-terminal regulatory GAF
(for cGMP-specific and cGMP-regulated cyclic nucleotide
phosphodiesterase, Anabaena Adenylyl cyclase and
E. coli transcription factor FhlA) domain containing a
mononuclear ferrous iron centre that detects NO (11,12),
a central AAA+ (for ATPase associated with various
cellular activities) domain that interacts with s54 and
couples ATP hydrolysis to promoter DNA melting
by RNA polymerase, and a C-terminal helix-turn-helix
DNA-binding domain.
Previously we reported that E. coli NorR binds to

three sites upstream of the norV promoter that contain
inverted repeats with core consensus GT-(N7)-AC (13).
These NorR-binding sites are conserved amongst the
proteobacteria and are found upstream of genes
encoding NorV (e.g. Salmonella typhimurium), Hmp (e.g.
Pseudomonas aeruginosa) and NorA (Ralstonia eutropha).
In E. coli, integration host factor (IHF) binds to the region
upstream of norVW between the norV transcription start
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site and the NorR enhancer sites (13). In common with
other s54-dependent systems, the bending of DNA
induced by IHF at this location may encourage interac-
tions between NorR and s54-RNA polymerase by DNA
looping (14,15).
bEBPs function by coupling the energy yielded from

ATP hydrolysis to the isomerisation of s54-RNA
polymerase from the closed promoter complex to the
open promoter complex that is competent for transcrip-
tion initiation (16–18). Oligomerisation of the AAA+
domain of bEBPs to form hexameric rings is required
for the formation of a functional ATPase (19–21) but
not for ATP binding (18,22). In some cases the ATPase
activity of bEBPs is not only regulated in response to
environmental signals but is also responsive to interaction
with specific enhancers (23–25).
We previously demonstrated that the ATPase activity

of NorR is enhancer DNA-dependent in vitro (11). Here
we report that each of the three NorR enhancer sites
upstream of the norV promoter is essential for
transcriptional activation. We demonstrate that this is a
consequence of the stringent requirement for the three
enhancers for maximal ATPase activity of NorR
through promoting and stabilising a functional higher
order oligomer of the activator. We use a GAF domain
deleted form of NorR (NorR�GAF), which can activate
transcription in the absence of NO, to correlate ATP
hydrolysis with higher order oligomer formation. We
also suggest that the NorR oligomer formed at the three
enhancers is stabilised by the wrapping of flanking
DNA around the higher order oligomer identified in
negative-stain electron microscopy images.

MATERIALS AND METHODS

Protein purification

E. coli NorR�GAF was over-expressed and purified as
described previously (11). NorR178–452 AAA+ domain
was generated from plasmid pNorR (13) that expresses
NorR residues from 178 to 452 with a N-terminal
6-histidine tag in pET28b. The protein was purified by
nickel affinity chromatography and gel filtration. The
His-tag was removed by thrombin cleavage for 3 h at
23�C (38). Purified proteins were stored in buffer contain-
ing 100mM Tris–HCl pH 8, 150mM NaCl, 4mM DTT
and 5% glycerol at �80�C. Protein concentrations were
determined by the Folin-Lowry method (26).

Construction of plasmids and site-directed mutagenesis

The pNPTfus series plasmids designed for use with lacZ
fusion experiments contain either a wild type or a
mutagenised norR/norV intergenic region cloned into the
SmaI site of pUC19 (Table 1). Mutations were generated
using a PCR based mutagenesis method (27). Wild type
constructs were PCR amplified using the external primers
only:

norRfusion (external) 50-GGCGCTGAAAACGATC
CTGG-30,

norVfusion (external) 50-TCACGCACTTCCCAGTC
ACG-30.

Mutant constructs were amplified using combinations
of the external primers and the following mutagenic
internal primers:

Site1� 50-TAATGAGTAGGCAAAATGCCTATCAATC-30,
Site1+ 50-GATTGATAGGCATTTTGCCTACTCATTA-30,
Site2� 50-ATCAAATGGGCGATATGCCAATATCT-30,

Site2+ 50-AGATATTGGCATATCGCCCATTTGAT-30,
Site3� 50-ATCTATAGGCAAATTGCCAGTGAGGCAAAG-30,
Site3+ 50-CTTTGCCTCACTGGCAATTTGCCTATAGAT-30.

To construct lacZ fusions in the E. coli chromosome,
wild type and mutant norR-norV intergenic region con-
structs were cloned from pNPTfus series plasmids into
pRS551 (28) using EcoRI and BamHI to generate lacZ
fusions. Derivatives of pRS551 were transformed into
E. coli strain MC1000. The lacZ fusion constructs were
then crossed into phage �RS45 by homologous recombi-
nation and transferred into the MC1000 chromosome at
the phage � attachment site as described previously (28).

b-galactosidase assays

Derivatives of E. coli strain MC1000 containing either the
wild type promoter or mutant promoters upstream of the
norV-lacZ reporter (Table 1) were grown either in LB
medium aerobically or in LB medium supplemented with
1% glucose when grown anaerobically. The cultures were
grown to an OD600 of �0.6 nm before being induced with
potassium nitrite to a final concentration of 4mM.
Cultures were then grown for a further 2 h to allow for
expression of the norV-lacZ promoter fusion construct.

Methylation protection footprinting

DNA fragments for footprinting reactions were prepared
as described previously (13) but using plasmids
pNPTfusV, pNPTfus1V, pNPTfus2V or pNPTfus3V.
Binding reactions were carried out in DMS buffer
(50mM sodium cacodylate, 1mM EDTA) with 0.5 mg of
50 end-labelled EcoRI–BamHI restriction fragments and
the indicated concentration of NorR�GAF in a final
volume of 200 ml. Salmon sperm DNA 2 mg was also
present in reaction. Reactions were incubated for 10min
at room temperature, then 5 ml of 10% dimethyl sulphate
(Sigma, in ethanol) was added to each binding reaction
and incubation continued for a further 5min. Reactions
were stopped with 50 ml of ice cold DMS stop buffer
(1M b-mercaptoethanol, 1.5M sodium acetate, 1mg/ml
glycogen) and the DNA was then precipitated by the
addition of 750 ml of ice cold ethanol, followed by
centrifugation at 13 000 rpm in bench-top centrifuge.
After a wash with 0.3M sodium acetate, the DNA was
subjected to a second ethanol precipitation and then
treated with 1M piperidine (Sigma) for 30min at 100�C.
The samples were then lyophilised and subjected to two
cycles of resuspension in 20 ml of sterile water followed
by further lyophilisation. After the final lyophilisation,
10 ml of formamide loading dye was added to each
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sample followed by resolution on a 6% polyacrylamide
sequencing gel.

Coupled ATPase activity assay

For experiments with low protein concentrations, ATPase
activity was measured using an assay in which production
of ADP is coupled to the oxidation of NADH by lactate
dehydrogenase and pyruvate kinase (29). The oxidation of
NADH was monitored at 340 nm at 37�C. All reaction
mixtures contained ATP (30mM), phosphoenolpyruvate
(1mM), NADH (0.3mM), pyruvate kinase (7U, Roche),
lactate dehydrogenase (23U, Roche) in 50mM Tris–HCl
(pH 8.0), 100mM KCl, 2mM MgCl2 and 300 nM of
NorR�GAF. Either wild type pNPTfusV or a plasmid
carrying a mutation in one of the NorR-binding sites
were added to the reaction mixtures, since NorR�GAF
ATPase activity is enhancer-DNA dependent (30).
ATPase activity was measured by observing the change
in absorbance at 340 nm.

Open promoter complex and band-shift assays

Template DNA for open complex assays was obtained
by digesting the plasmid pNPTfusV, pNPTfus1V,
pNPTfus2V or pNPTfus3V with EcoRI and BamHI to
yield a DNA fragment including the norVW promoter
and upstream activator sequences. The DNA fragments
were 50 end-labelled with 32P as described above for use
in gel retardation and DNA footprinting assays.
Open complex formation was assayed in TAP buffer
(50mM Tris–acetate, 100mM potassium acetate,
8mM magnesium acetate, 3.5% polyethylene glycol
8000, 1mM DTT, pH 7.9) and contained 1 nM template
DNA, 200 nM core RNA polymerase (Epicentre
Biotechnologies), 200 nM s54, 130 nM IHF, 5mM ATP
and 0.5mM CTP. The reaction components were
pre-incubated for 10min at 30�C, and reactions were
initiated by adding NorR�GAF to a final concentration

of between 115 and 460 nM. After a further 20min incu-
bation at 30�C, samples were mixed with 3 ml of dye
mixture containing 50% glycerol, 0.05% bromophenol
blue, 0.1% xylene cyanol and 2 mg of heparin and imme-
diately loaded onto a 4% (wt/vol) polyacrylamide gel
(acrylamide/bisacrylamide ratio, 80 : 1) in 25mM Tris–
400mM glycine, pH 8.6, which had been pre-run at
180V at room temperature down to a constant power of
2W. Gels were run at 150V and were dried and exposed
to autoradiograph film or a phosphorimager screen.
NorR�GAF-DNA band-shift experiments were carried
out using either a 32P labelled 266 bp PCR product
(primer norvfus 50-GGCGCTGAAAACGATCCTGG-30

and primer norRpromR 50-GGTTGACCAACCCAATG
AATG-30) or a 66 bp fragment generated by hybridisation
of oligonucleotide primers spanning the NorR-binding
region (50-TCACTGTCAATTTGACTATAGATATTGT
CATATCGACCATTTGATTGATAGTCATTTTGACT
ACTC-30 and its reverse complemented partner).
Reactions were prepared in the same way as for the
open complex assay but with NorR�GAF and DNA
only in TAP buffer. The same dilution series of a fresh
preparation of NorR�GAF was used for both experi-
ments, which were run at the same time. Gels were
quantified with a Fujix BAS1000 phosphorimager and
the data was plotted using Graphpad Prism as described
previously (13).

Radioactive ATPase activity assay

Reactions were performed in a 10 ml final volume in
ATPase buffer (50mM Tris–HCl pH 8.0, 50mM NaCl,
15mM MgCl2, 0.01mM DTT) and different concentra-
tions of NorR�GAF in complex with DNA, where
indicated. The mix was preincubated at 23�C for 10min
and the reaction was started by adding 3 ml of an ATP
mixture [1mM ATP and 0.6mCi/ml of [a-32P]ATP
(3000Ci/mmol)] and incubated for different times at

Table 1. Strains and plasmids

Description Reference/source

Plasmid
pRS551 Vector for construction of lacZ promoter fusions. (28)
pNorR Derivative of pET21a expressing norR (13)
pNPTfusV pUC19 carrying the norRV intergenic region for norV promoter fusions This work
pNPTfus1V As pNPTfusV but NorR site 1 mutated to GG(N7)CC This work
pNPTfus2V As pNPTfusV but NorR site 2 mutated to GG(N7)CC This work
pNPTfus3V As pNPTfusV but NorR site 3 mutated to GG(N7)CC This work
pRS551-wtV Fusion vector constructed from pNPTfusV This work
pRS551-1V Fusion vector constructed from pNPTfus1V This work
pRS551-2V Fusion vector constructed from pNPTfus2V This work
pRS551-3V Fusion vector constructed from pNPTfus3V This work

Strain
DH10B mcrA �(mrr-hsdRMS-mcrBC) u80lacZ�M15 �lacX74 recA1 endA1 araD139

�(ara, leu)7697 galU galK �- rpsL nupG
Invitrogen

MC1000 araD139 � (araABC-leu)7679 galU galK �(lac)X74 rpsL (44)
MH1003 DH10B norR::cat �norV-lacZ (7)
MC100V MC1000 �norV-lacZ This work
MC101V MC1000 �norV-lacZ NorR site 1 mutant This work
MC102V MC1000 �norV-lacZ NorR site 2 mutant This work
MC103V MC1000 �norV-lacZ NorR site 3 mutant This work
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37�C. We examined the enhancer DNA-dependency of
NorR�GAF ATPase using double-stranded (ds) DNA
of three different lengths (21, 66 and 266 bp) containing
different regions of the norR-norV intergenic region.
The 21 bp fragment was generated by hybridisation
of oligonucleotide primers spanning the NorR-binding
site 1 (50-GATAGTCATTTTGACTACTCA-30 and its
reverse complemented partner). Complexes tested were
composed of different protein to DNA molar ratios (as
indicated in figure legends). Reactions were stopped by
adding five volumes of 2M formic acid. [a-32P]ADP was
separated from [a-32P]ATP using thin-layer chromatogra-
phy (Polygram Cel 300 PEI). Radioactivity was detected
by PhosphorImager (Fuji Bas-5000) and quantified using
the AIDA image analyzer software, version 3.52 (Raytest,
Straubenhardt, Germany). Reactions were stopped when
�20% of total ATP was hydrolysed to ensure similar pro-
portion of ADP in all reactions. The ATPase activity
is expressed in turnover per minute for all experiments.
The curves were fitted using the Origin 7.0 software
(OriginLab Corp.). All experiments were performed at
least in triplicate. Moreover, we established (data not
shown) that the rate of ATP hydrolysis was linear under
assay conditions.

Analytical gel filtration

NorR�GAF (at different concentrations) was incubated
with different DNA fragments where specified (at concen-
trations specific to the desired molar stoichiometry of the
complex) for 10min at 23�C in buffer containing 20mM
Tris–HCl pH 8.0, 100mMNaCl, 15mMMgCl2 and 1mM
ATP where indicated. In the presence of ATP, samples
were incubated at 4�C. Samples (100ml) were then
injected onto a Superose 6 column (10� 300mm, 24ml)
(GE Healthcare) installed on an AKTA system (GE
Healthcare), which was pre-equilibrated with the sample
buffer. Chromatography was performed at 4�C at a flow
rate of 0.5mlmin�1, and the column was calibrated
with globular proteins: apoferritin (443 kDa), alcohol
dehydrogenase (150 kDa), bovine serum albumin
(66 kDa) and carbonic anhydrase (29 kDa). NorR178–452

(100mM) was filtered through a Superdex 200 column
(10� 300mm, 24ml; GE Healthcare) in the presence and
absence of 1mM ATP at 4�C. Chromatography condi-
tions were similar to that of NorR�GAF.

Negative-stain electron microscopy and image processing

Two microlitre of fractions containing the NorR�GAF-
266 bp DNA complex eluted from the gel filtration
column (elution peak at 9.3ml) was adsorbed onto
glow-discharged continuous carbon grids (TAAB) and
stained with 2% uranyl acetate. Data were collected at
50 000�magnification using a Phillips CM200 FEG
electron microscope operating at 200 kV. Micrographs
were recorded directly on a 4k� 4k CCD camera (F415
from Tietz Video and Imaging Processing GmbH), giving
a pixel size of 1.76 Å. Digitised images were then
coarsened by a factor of two giving a pixel size of 3.52 Å
per pixel. Ten-thousand particles were picked automati-
cally using the IMAGIC-5 software (31). Particles were

windowed into 128 by 128 pixel boxes, extracted and
band-pass filtered between 170 and 20 Å. Poor-quality
particles were removed before reference free alignment
to a total sum of the dataset was carried out. Initial
class averages were generated by classification based on
multi-variate statistical analysis (MSA). Strong class-
averages were then used as references for multi-reference
alignment (MRA) (32,33) using selected class averages as
new references. The quality of the alignment was assessed
by the class averages produced and the individual aligned
images in each class. Multiple iterations of MRA, MSA
and classification were performed with the selected new
class-averages used as references for subsequent rounds
of MRA. Poor-quality particles were removed throughout
the alignment procedure based on alignment shifts and
visual inspection of the particles within each class. The
final class averages were generated from 5000 particles
which were classified into 500 classes.

RESULTS

All three NorR enhancer sites are required for
activation of norV expression in vivo

In order to assess the importance of each NorR-binding
site, the enhancers were individually altered from the
consensus sequence GT-(N7)-AC to GG-(N7)-CC and
then introduced as norV-lacZ promoter fusions into the
E. coli chromosome at the phage lambda insertion site.
To activate NorR, cultures grown either under aerobic
or anaerobic conditions were treated with potassium
nitrite for 2 h to induce endogenous NO production.
b-Galactosidase assays were then performed to determine
the level of norV-lacZ expression. In agreement with
previous microarray data (34) and the observation that
NorR is competent to activate transcription in the
presence of oxygen, we observed almost identical levels
of norV expression in cultures grown either in aerobic or

Figure 1. Effect of NorR-binding sites on activation of a norV-lacZ
reporter. Strains MC100V, MC101V, MC102V and MC103V
(Table 1) were grown under either aerobic or anaerobic conditions
and induced with potassium nitrite (4mM). norV-lacZ expression was
then determined by measuring b-galactosidase activity. b-galactosidase
activity was minimal in MC1000 lacking a promoter fusion construct.
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anaerobic conditions (Figure 1). Disruption of any one of
the three NorR-binding sites was sufficient to completely
prevent norVW expression. Thus, all three enhancer sites
must be intact to facilitate NorR-dependent activation of
norVW transcription in vivo.

NorR binding is disrupted at mutant, but not wild type
enhancer sites in vitro

To determine the influence of the enhancer mutations on
the interaction of NorR with the promoter, methylation
protection footprinting was carried out with a 266 bp
DNA fragment that contains all three NorR-binding
sites. For these experiments and all subsequent biochem-
ical assays described here, we used a truncated derivative
of NorR (NorR�GAF) that retains the AAA+ and the
DNA-binding domains, but lacks the NO responsive
GAF domain. We have demonstrated previously that
NorR�GAF activates norVW transcription in the
absence of NO both in vitro and in vivo (11). The
DNA-binding characteristics of NorR�GAF are similar
to that of wild-type NorR (data not shown). As observed
previously, the interaction of NorR with the three
enhancer sites in the wild-type promoter was manifested
by protection and enhancement of G residues between
position �137 and �84 relative to the norV transcript
initiation site (13). In the case of the site 1 mutant, pro-
tection was observed at sites 2 and 3 but was absent at site
1 as anticipated (Figure 2B). Similarly, with either the site

2 or 3 mutant, protection by NorR�GAF was lost at the
mutant site but was maintained at the two remaining wild
type enhancer sites (Figure 2C and D). However, some
methylation enhancement was detectable in most cases
at the mutant sites. If NorR binding to the three sites is
strongly co-operative it would be expected that disruption
of a single site would influence binding to the wild-type
sites. As this was not evident from the methylation pro-
tection experiments, the mutations apparently prevent
binding of NorR to each of the mutant sites, without
discernable loss of binding to the remaining wild-type
sites.

All three enhancer sites are required for stimulating the
ATPase activity of NorR"GAF

Our previous investigations have demonstrated that acti-
vation of the ATPase activity of NorR not only requires
the binding of NO to the Fe(II) centre in the GAF domain
but also requires specific DNA containing the three
enhancer sites in the norR-norV intergenic region [(11)
and data unpublished]. This suggests that in the absence
of NO, the GAF domain represses the ATPase activity of
the AAA+ domain and that binding to specific DNA
targets is also required for ATPase activation. In the
case of the truncated NorR�GAF protein, the require-
ment for NO-dependent signal activation is relieved, but
the presence of DNA containing the norR-norV intergenic
region is still required for significant ATPase activity (11).

Figure 2. Methylation protection footprinting of wild type and mutant norR-norV intergenic region constructs with NorR�GAF. Footprinting
reactions contained 32P-labelled 362-bp DNA fragments from pNPTfusV series plasmids (Table 1) spanning the norR-norV intergenic region 50

end-labelled at the EcoRI end. Fragments encoded either the wild type promoter (A) or promoter constructs with NorR-binding site mutations at site
1 (B), site 2 (C) or site 3 (D). NorR�GAF-DNA-binding reactions were treated with dimethyl sulphate. In each case, reactions carried out in the
absence of protein are labelled ‘DNA only’. Other reactions contained between 88 and 700 nM NorR�GAF as indicated. Residues are numbered
relative to the norV transcript start site. Protected G residues are marked with lollipops on the left-hand side of each series. Arrows denote enhanced
methylation at G residues.
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This further suggests that binding to the enhancer sites
is necessary to activate the ATPase activity of NorR.
In order to investigate the role of individual enhancer

sites in activation of the ATPase activity, we assayed ADP
release in the presence and absence of DNA fragments
carrying mutations in each of the NorR-binding sites.
In the absence of promoter DNA, NorR�GAF exhibited
a low level of ATP hydrolysis (<50mMATPmin�1mol �1

NorR) (Figure 3A, solid bars). This activity was
stimulated �40-fold in the presence of a DNA fragment
containing all three enhancer sites as observed previously
(11). However, the stimulation of the ATPase activity of
NorR�GAF was significantly reduced in the presence of
DNA fragments carrying mutations in each of the
NorR-binding sites (Figure 3A, open bars), and in each
case the DNA stimulation was <2-fold. These results
imply that under these conditions, at relatively low
protein concentrations (300 nM), NorR�GAF must be
bound to all three enhancer binding sites to catalyse
ATP hydrolysis.

Influence of NorR-binding sites on the formation of open
promoter complexes by p54-RNA polymerase

Conformational changes in bEBPs derived from ATP
hydrolysis are coupled to the restructuring of the s54-
RNA polymerase–promoter complex to drive the transi-
tion from closed to open complexes. In order to correlate
the effects of enhancer-binding on ATP hydrolysis with
the ability of NorR�GAF to remodel the s54-RNA
polymerase, we performed open complex assays with
wild-type and mutant norV promoter DNA templates.
We assayed open promoter complex formation by
NorR�GAF on wild type and mutant promoter templates
in the presence of s54-RNA polymerase, IHF, CTP and
ATP (11) and quantified the heparin resistant species
resolved on non-denaturing polyacrylamide gels (35).
Although the binding of NorR to enhancer binding sites
is itself heparin resistant, the mobility of nucleoprotein
complexes formed upon open complex formation is con-
siderably slower and such complexes can be detected as a
super-shifted species (11). At low concentrations of
NorR�GAF (115 and 230 nM), open complex formation
was only observed on the DNA fragment with the three
wild type NorR enhancer sites (Figure 3B, lanes 3 and 4).
In contrast, reactions containing DNA fragments with
mutant NorR sites only exhibited open complex forma-
tion at concentrations of 460 nM NorR�GAF or above
(Figure 3B, lanes 10, 15 and 20). In this case, activation
may occur in trans since open complex formation is
possible in the absence of IHF at relatively high
NorR�GAF concentrations (data not shown). In
control reactions carried out with 460 nM NorR�GAF,
but lacking the s54 subunit, no open complex forma-
tion was observed, as expected (Figure 3B, lanes 2, 7,
12 and 17).
Super-shifted species were quantified as a percentage

of the open complexes formed at the wild type norV
promoter at 460 nM NorR�GAF (Figure 3C). This
analysis confirmed that the level of open complexes
formed at the mutant promoter constructs was minimal

Figure 3. ATPase and open complex stimulating activities of
NorR�GAF associated with wild type and mutant promoter DNA
constructs. (A) Rates of ATP hydrolysis by NorR�GAF were moni-
tored at 340 nm for 20min at 37�C (filled bars) after which 5 nM of the
wild type norR-norVW fragment was added, and the rates were mon-
itored for a further 20min at 37�C (empty bars). ATPase activities of
NorR�GAF in the presence of DNA constructs carrying a mutant
NorR-binding site were compared with the wild type construct.
ATPase activities are expressed as specific activity relative to protein
concentration in mmol ATPmin�1mol NorR�1. The bar representation
is a sum of the values obtained without and with DNA. (B) Each open
complex assay reaction contained 1 nM of a 32P-labelled DNA
fragment encoding either the wild type or mutant norR-norVW
intergenic region. All lanes contained the components required for
open complex formation except lanes 1, 6, 11 and 16, which contained
DNA only and lanes 2, 7, 12 and 17, which contained 115 nM
NorR�GAF but lacked s54. NorR�GAF concentrations were
115 nM (lanes 3, 8 13, 18), 230 nM (lanes 4, 9, 14, 19) and 460 nM
(lanes 5, 10, 15, 20). Free DNA, NorR�GAF/DNA and open
complexes are indicated by the arrows to the left of the figure.
(C) Heparin resistant open complex species were quantified using
a Fujix BAS 1000 phosphorimager. Bands were quantified by their
intensity relative to the open complex band formed with the wild
type DNA construct at 460 nM NorR�GAF, which was assumed
to be 100%.
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compared to the wild type at relatively low protein con-
centrations (<200 nM) but increased to 50% or less of the
wild type at 460 nM NorR�GAF. At this relatively high
concentration it is possible that activation of promoter
bound s54-RNAP by NorR�GAF occurs from solution
as observed with other s54-dependent activators (17,36).

Three shifted bands (other than the super-shifted
species) were visible in reactions containing the wild type
DNA fragment (Figure 3B, lanes 2–5). These bands were
observed in the absence of IHF and s54-RNA polymerase
(data not shown) and are presumably heparin resistant
NorR–DNA complexes. The presence of more than one
band is indicative of partial occupancy of the enhancer
sites at relatively low protein concentrations under these
buffer conditions. We assume that the three bands result
from the binding of NorR to one, two or all three
sites (labelled as NorR–DNA complexes A, B or C in
Figure 3B). It is notable that bands B and C were
evident in reactions carried out with the site 2 mutant
DNA fragment whereas band C was the main species
visible with fragments containing the site 1 or site 3 muta-
tions (Figure 3B, lanes 7–10, 12–15 and 17–20, respec-
tively). Therefore the latter mutations apparently
influence the binding of NorR to adjacent wild-type
enhancer sites in these heparin challenge experiments,
thus providing some evidence for cooperative binding.

NorR functions as an oligomer in vitro

The prerequisite of all three enhancer sites for maximal
ATP hydrolysis by NorR can be interpreted as the require-
ment of three functional dimers to form an active
hexamer, given the dyad axes of symmetry of the individ-
ual sites. A number of well characterised bEBPs form
hexameric ring assemblies in their active state, and this
oligomerisation itself can depend upon nucleotide (ATP
or ADP) binding or self-association at high protein con-
centrations (37). To determine if higher order oligomer
formation is necessary for NorR ATPase activity, we
assayed radioactively labelled ADP release from
[a-32P]ATP at different concentrations of NorR�GAF.
The relationship between ATP turnover and the
NorR�GAF concentration is shown in Figure 4A. We
obtained a concentration dependent sigmoidal activity
curve (Figure 4A), with a Hill coefficient of 2 (Figure
4B), implying that cooperativity between monomers is
required for maximum ATPase activity of NorR�GAF.
The maximum turnover (kcat), expressed in terms of
NorR�GAF monomer, was 3.8min�1, and the amount
of NorR�GAF required to achieve half-maximal
ATPase activity, Keff, was 12.5 mM (Figure 4A).

To examine the effect of physiological concentrations of
ATP on oligomer formation, we performed analytical gel
filtration experiments with various concentrations of
NorR�GAF in the presence and absence of 1mM ATP
at 4�C. Based on reference elution volumes obtained with
different protein standards NorR�GAF exhibited a
concentration-dependent elution profile, with the dimer
form predominating at high protein concentrations
(Figure 4C, upper panel). However, in the presence of
ATP, the dimer peak broadened towards higher

oligomeric forms, independent of the protein concentra-
tion (Figure 4C, lower panel). These observations suggest
that under these conditions, ATP binding promotes self
association of NorR�GAF as inferred from gel filtration
profile and concentration-dependent ATPase activity
(Figure 4).

Binding to a single enhancer site can stimulate NorR"GAF
ATPase activity in vitro

Our data so far demonstrate that the ATPase activity of
NorR�GAF is strongly stimulated by binding to DNA
containing all three enhancer sites. This influence of DNA
on ATP hydrolysis can be either due to DNA binding
per se and/or due to increased protein concentration and
propensity for stable oligomer formation at the enhancer
sites.
To determine the effects of DNA binding per se on the

state of association and ATPase activity of NorR�GAF,
we used a 21 bp oligonucleotide containing site 1 (NorR1),
which apparently has a stronger binding affinity for

Figure 4. ATPase activity and gel filtration profile of NorR�GAF.
(A) Plot of ATP turnover versus protein concentration, measured at
a fixed concentration of ATP as substrate (1mM). (B) Log of relative
ATP hydrolysis rate V (compared to maximum rate Vmax at 47 mM)
was plotted against the log of NorR�GAF concentration. The slope
of the linear regression slope was used to determine the Hill coeffi-
cient (1.98). (C) Different concentrations of NorR�GAF were
chromatographed at 4�C (upper) or preincubated with 1mM ATP
and chromatographed in the presence of 1mM ATP at 4�C (lower).
Corresponding molecular weight of standard globular proteins were
indicated at their elution volume.
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NorR than either site 2 or site 3 (13). To determine the
optimal molar ratio between NorR�GAF and DNA,
ATP turnover was measured at different protein:DNA
molar ratios while maintaining NorR�GAF at 35.6 mM
and ATP at 1mM (Supplementary Figure S1A, left
panel). A 1:1 molar ratio gave maximal activity and was
chosen for subsequent experiments in which we measured
ATPase activity at various NorR�GAF concentrations.
In the presence of the NorR1 oligonucleotide, the ATPase
activity displayed the same sigmoidal kinetics with respect
to NorR�GAF concentration (Figure 5A) while the Keff

reduced from 12.5mM with NorR�GAF alone to 8.4 mM
in the presence of the 21 bp DNA fragment (Figure 5A),
suggesting that DNA binding increases the tendency of
NorR�GAF to self-associate. Interestingly, binding of
NorR�GAF to the 21 bp DNA fragment also increased
the kcat from 3.8 to 5.2min�1, implying allosteric stimula-
tion of the intrinsic ATPase activity.
To confirm whether binding to the 21 bp oligo-

nucleotide indeed promotes self-association, we analysed
the gel filtration profiles of NorR�GAF:NorR1 com-
plexes in the presence and absence of nucleotide. The
presence of the 21 bp oligonucleotide shifted the
NorR�GAF associated peak towards higher molecular
mass species, independent of the presence of ATP
(Figure 5B), suggesting that binding to the single
enhancer site promotes oligomerisation, in agreement
with the increased ATPase activity observed in Figure 5A.
We next investigated if the DNA-binding domain of

NorR controls the ATPase activity of the AAA+
domain in a manner analogous to the intramolecular
repression exerted by the GAF domain. In this case the
stimulatory effect on the ATPase upon DNA binding
might simply be due to the removal of this inhibition,
similar to the activation of the GAF domain by NO
binding. We compared the ATPase activity of AAA+
domain alone with that of NorR�GAF under the same
protein concentrations. Interestingly, the isolated AAA+
domain of NorR had negligible ATPase activity compared
to that of NorR�GAF (Figure 5C, left panel). This result
may suggest that DNA binding actively promotes ATPase
activity (probably through promoting oligomerisation of
AAA+ domain) rather than simply relieving an inhibition
imposed by the DNA-binding domain. Indeed the AAA+
domain fails to form higher order oligomers at high
concentration and in the presence of ATP (Figure 5C,
right panel).

Binding to a 66 bp fragment containing three enhancer
sites (NorR123) marginally increases the ATPase
activity relative to binding to a single NorR1 site

Our data show that DNA binding per se promotes
self-association and ATPase activity. We next tested
whether availability of the three consecutive sites further
enhances the ATPase activity of NorR�GAF. We used a
66 bp DNA fragment (NorR123), which is the minimum
DNA length containing the three NorR-binding sites
based on previous DNA footprinting results. ATPase
activity assays were performed with increasing
NorR�GAF concentrations while maintaining a 3 : 1

activator monomer: DNA molar stoichiometry in the
complex. This optimal DNA to protein molar stoichio-
metry was determined as described above by fixing
protein and ATP concentrations and varying DNA:
protein ratios for optimal ATP turnover (Supplementary
Figure S1A, right panel). In the presence of this 66 bp
DNA fragment, ATPase activity increased marginally to
a kcat of 6.8min�1 when compared to that with the 21 bp
NorR1 oligonucleotide (Figure 5A), although the Keff

Figure 5. Effect of individual enhancer sites on ATPase activity and
oligomerisation states of NorR�GAF. (A) Comparison of the ATPase
activity of NorR�GAF in the absence (cf. Fig 4A) and presence of
NorR1 or NorR123 dsDNA. A molar ratio of 1: 1 and 3: 1 activator
monomer: DNA was maintained for complexes formed with NorR1
and NorR123 fragments, respectively. (B) Gel filtration studies of
NorR�GAF (20 mM) in the absence or presence of dsDNA as in
A. Complexes were also chromatographed in the presence of 1mM
ATP, with no significant effect observed on the elution profile.
(C) left: ATPase activities of 26.5 mM NorR�GAF and NorR178–452

AAA+ domain compared. The assays were performed at 37�C, and
turnover in min�1 was calculated when [a-32P]ADP formed was �20 %
of total radiolabeled nucleotide. Right: the elution profile of NorR
AAA+ domain (100 mM) gel filtered through a Superdex 200 column
in the presence and absence of 1mM ATP at 4�C. Standard globular
proteins were used for calibration: thyroglobulin (669 kDa), b-amylase
(200 kDa), bovine serum albumin (66 kDa) and carbonic anhydrase
(29 kDa).
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remained unchanged. Size exclusion chromatography
indicated that the complexes elute as multiple peaks
(Figure 5B), implying a highly heterogeneous population
of oligomers. Our results so far indicate that the increased
ATPase activity of NorR�GAF upon binding to
enhancer DNA is largely due to DNA binding per se
rather than increased local protein concentration at the
three enhancer sites.

Binding to a 266 bp DNA fragment, containing the three
enhancer sites, strongly stimulates the ATPase
activity of NorR

As stimulation of ATP hydrolysis by the 66 bp oligo-
nucleotide was less than anticipated for a DNA
fragment containing all three NorR enhancer sites
(Figure 3A), we measured the ATPase activity of
NorR�GAF in complex with a longer (266 bp) DNA
fragment. We performed ATPase assays with this
fragment using a protein:DNA stoichoiometry of 6 : 1,
which was again chosen based on the optimal ATPase
activity at fixed protein and ATP concentrations
(Supplementary Figure S1B). ATP turnover increased
significantly at low protein concentrations and the Keff

fell significantly to 1.4 mM when compared to that of
protein alone or in complex with the 21 and 66 bp
dsDNA (Figure 6A). Furthermore, the sigmoidal nature
of the curve indicates clear evidence for cooperativity. Size
exclusion chromatography of NorR�GAF in complex
with the 266 bp DNA fragment revealed a significant
shift towards a higher molecular mass species (elution
peak at 9.3ml; Figure 6B), suggesting that this DNA
fragment stabilises a higher order oligomeric form of
NorR�GAF (possibly a hexamer), in contrast to the
complexes observed on the 21 and 66 bp oligonucleotides
(compare Figures 5B with 6B). The presence of DNA in
the peak fraction was confirmed by measuring the absorp-
tion at 280 and 260 nm wavelengths. We infer from these
observations that stabilisation of a higher order oligomer
on the 266 bp fragment may be responsible for the
increased stimulation of the ATPase activity of
NorR�GAF.

In order to further assess the differences between the 66
and 266 bp DNA, we used a gel retardation assay to
compare the affinity of NorR�GAF for these DNA frag-
ments. Whereas only a single shifted species was observed
on the 266 bp DNA (Figure 7A), partial occupancy of
the enhancer sites was evident at low protein concentra-
tions with the 66 bp DNA (Figure 7B). Quantitation of the
fully shifted species showed that NorR�GAF has a 2-fold
higher affinity for the 266 bp DNA fragment (KD, 81 nM)
compared to the 66 bp DNA (KD, 174 nM). Moreover, the
NorR�GAF-DNA-binding curve for the 266 bp DNA
fragment exhibited increased positive cooperativity with
a Hill coefficient of 3.4 compared with 1.3 for the 66 bp
oligonucleotide (Figure 7C). This increase in affinity and
cooperativity is consistent with a more stable hexameric
ring formation, in agreement with the increased ATP
turnover observed with the longer DNA fragment
(Figure 6A). Although we cannot rule out the possibility
that the increase in affinity is due to thermodynamic

requirements for DNA recognition, it is highly likely
that the affinity increase is due to additional interactions
between protein and DNA, such as those encountered
through the DNA wrapping around NorR. Nevertheless,
under the conditions at which the ATPase activity and gel
filtration were measured (micromolar concentrations), the
DNA should be fully saturated with protein, thus the dif-
ferences in gel filtration profile and ATPase activity
(Figures 5 and 6) are likely due to the different nature of
the nucleoprotein complexes formed rather than the dif-
ferent affinities for the protein–DNA interaction.

EM studies of NorR"GAF bound to 266 bp
NorR123 DNA

To investigate the mechanism behind the increased
ATPase activity stimulated by the longer 266 bp DNA
fragment, we analysed these protein–DNA complexes,
prepared either in situ or after purification by gel filtration
chromatography, using negatively-stained electron micro-
scopy. As shown in Figure 8B, NorR�GAF does in fact
form high order oligomers in the presence of 266 bp DNA.
Image analysis and classification of 5000 particles into
class averages of 7–10 particles per class (Figure 8C)

Figure 6. The ATPase activity and oligomerisation state of
NorR�GAF in the presence of the 266 bp dsDNA that contains all
three enhancer sites. (A) Plot of ATP turnover versus NorR�GAF
concentration in the presence of 266 bp dsDNA, containing all three
enhancer sites. Activity curves are also included for comparison of
ATPase turnover at low concentrations in the presence and absence
of shorter DNA fragments. (B) Gel filtration chromatography of
9mM NorR�GAF in complex with 0.75 mM 266bp dsDNA (a molar
ratio of 12 : 1 monomer: DNA) performed at 4�C using a Superose 6
column. The dotted line below the 9.3ml elution peak represents the
fractions analysed by negative-stain electron microscopy.
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allowed visualisation of ring-shaped particles with dimen-
sions of 126 Å in diameter, consistent with a hexameric
ring observed in cryo-EM studies of other bEBPs such
as PspF1–275 and NtrC (20,38). These ring shaped particles
were not observed in the presence of the 21 or 66 bp
oligonucleotides (Figure 8A), in agreement with the obser-
vations from size exclusion chromatography that the
stable higher order oligomer is only observed upon
binding of NorR�GAF to the longer 266 bp DNA
fragment (Figure 5B and 6B).

DISCUSSION

It has now been experimentally confirmed that all
three NorR-binding sites are required for transcriptional

activation of the E. coli norV promoter. Similar conclu-
sions have been derived from deletion analysis of this
promoter (39) and also the Ralstonia eutropha norB
promoter (40). Our data extend these observations and
characterise the requirement for the three enhancers in
vitro. The presumed physiological role of bacterial
enhancers is to tether activators at high local concentra-
tion close to the promoter and to facilitate the formation
of higher oligomeric forms that are active for
transcriptional activation. While multiple enhancers are
common in s54-dependent promoters, an absolute depen-
dency on more than one target site is unusual. For
example, two enhancers are sufficient to assemble higher
order oligomers of NtrC, in which some protomers are
bound by protein–protein interactions and apparently do
not contact DNA (41). In contrast, our data for NorR
indicate that all three enhancer sites are necessary for
the formation of an active oligomeric species. When
present at high concentration, bEBPs can activate tran-
scription from solution in the absence of enhancer DNA
in vitro and some s54-dependent activators naturally lack
a DNA-binding domain (42). Moreover, in many cases the
DNA-binding domain does not appear to be essential for
transcriptional activation. For example, PspF lacking the
enhancer-binding domain (PspF1–275) can form high-order
oligomers and activate transcription in vitro.

The increased ATPase activity of NorR�GAF
observed upon binding to the three enhancer sites could
be due to one or all of the following three reasons: (i)
DNA binding induces conformational changes that
promote self-association and therefore increases ATPase
activity, (ii) DNA binding stimulates ATPase activity per
se, (iii) since there are three NorR-binding sites, binding to
DNA increases the local protein concentration and thus
promotes self-association, which increases the ATPase
activity. Our data suggest that the significant increase in
ATPase activity upon binding to enhancer sites is not
likely to be a consequence of self-association resulting
from an increase in local protein concentration. It is
more likely due to the conformational changes induced
by DNA binding that promote hexameric ring formation
and ATP hydrolysis per se, therefore increasing the
ATPase activity. Hence in the case of NorR, in addition
to GAF domain activation, the enhancer DNA sites
provide an important ligand to promote assembly of the
active oligomeric form of the activator. This is in stark
contrast to the activation mechanism of other bEBPs
such as NtrC, where activation of the receiver domain is
key to hexamer formation and ATPase activity (20). Our
results are consistent with the observation that all three
NorR-binding sites are required for catalytic activity.
Mutating any one of the sites abolishes binding of one
NorR dimer to the DNA, therefore preventing proper
hexameric ring formation. However, in the absence of
DNA, ATPase activity increases with protein concentra-
tion, in agreement with the observation that open complex
formation can be achieved in the absence of enhancer
DNA at relatively high concentrations of NorR. This
demonstrates that although the native conformation in
the absence of DNA is not optimal for formation
of higher order oligomers (as shown in gel filtration

Figure 7. NorR�GAF has a higher affinity for the 266 bp DNA
fragment than for the 66 bp DNA fragment NorR123. NorR�GAF
concentrations between 0 and 1000 nM (as indicated above the gels)
were incubated with either the 266 bp DNA fragment (A) or the
66 bp DNA fragment (B). The percentage of fully shifted DNA was
quantified using a Fujix BAS 1000 phosphorimager (C).
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experiments), at higher protein concentrations and in the
presence of ATP, oligomerisation can occur to enable
catalytic activity. However, the higher order complexes
formed under these conditions are likely to be far less

stable than the nucleoprotein complexes formed in the
presence of the three enhancer sites. In the absence of
the DNA-binding domain, the isolated AAA+ domain
of NorR fails to form higher order oligomers and the

Figure 8. Negative-stain electron microscopy of NorR�GAF in complex with 266 bp dsDNA, containing all three enhancer sites. (A) Raw
micrographs of NorR�GAF in complex with 21 bp NorR1 (right panel) or 66 bp NorR123 (left panel) DNA fragments. Scale bar 90 nm.
(B) Top, raw micrograph of NorR�GAF in complex with 266 bp dsDNA, with arrows showing some of the higher order oligomers. Scale bar
90 nm. Bottom, gallery of picked particles. Scale bar 15 nm. (C) Selected class averages of 7–10 particles per class generated from 5000 particles show
ring-shaped particles with a diameter of 126 Å. Scale bar 11 nm.
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ATPase activity is further reduced compared to
NorR�GAF, consistent with the hypothesis that the
DNA-binding domain can promote oligomerisation, and
hence ATPase activity. DNA binding appears to shift the
conformation of NorR�GAF to a form that favours
hexameric ring formation at physiological protein concen-
trations, thus providing the necessary ATPase activity
required for open complex formation.
The requirement for three consecutive enhancer sites

is reminiscent of the EBP-related protein TyrR, which is
proposed to bind as a dimer to three TyrR boxes, forming
a hexameric species that is active in transcriptional repres-
sion (43). Another unusual feature of the NorR–DNA
interaction is the heparin resistance of the protein–DNA
complexes, which implies that NorR makes extensive
DNA contacts, possibly forming a topologically distinct
nucleoprotein complex. Our EM data show that in the
presence of the 266 bp DNA fragment carrying the three
enhancer sites, NorR�GAF forms oligomeric rings,
similar to other bEBPs in their active functional states.
The precise mechanism whereby the enhancer DNA
stabilises ring formation is currently unclear. One
possible model is that the DNA wraps around the
hexameric ring, making extensive contacts that help to
stabilise it. Assuming that the diameter of the hexameric
ring assembly of the AAA+ domain is �120 Å (38), a
minimum of 450 Å (the total diameter to the centre of
duplex DNA is 120+25 Å) or �130 bp DNA is
required to wrap around the ring. The 66 bp NorR123
oligonucleotide would therefore be insufficient, consistent
with our finding that the stimulatory effect of this DNA
fragment, which contains all three UAS sites, is similar
that of the 21 bp oligonucleotide, which carries only a
single UAS site.
The assembly of bEBPs into at least a hexamer is nec-

essary for activation of the ATPase activity required
to drive the transition of the s54-RNA polymerase
promoter complex from the closed to the open
DNA-melted state. Although the experiments described
here have been performed with a constitutive form of
NorR lacking the regulatory GAF domain, the ATPase
activity of wild-type NorR is also enhancer dependent,
and in addition requires the binding of NO to the
ferrous iron centre to activate the catalytic activity of
the AAA+ domain. Given that the NorR apoprotein is
fully competent for DNA binding, the three enhancers
clearly provide a scaffold for the assembly of a stable
heparin-resistant NorR nucleoprotein complex that is
poised at the promoter, ready to perceive the NO signal.
In contrast to other EBPs such as NtrC and DctD which
are dimeric in their inactive forms and are regulated
through control of the oligomerisation state, the activity
of wild-type NorR is apparently regulated when bound
to DNA as a higher order oligomer.
In summary, our data support a unique activation

mechanism for NorR. Three NorR dimers readily bind
to the three consecutive UAS sites. DNA binding by
NorR induces conformational changes that stimulate
hexameric ring formation. NorR then forms a hexameric
ring with extensive DNA interactions (possibly through
DNA wrapping) for increased stability. In the presence

of the NO signal, intramolecular repression of the
AAA+ domain by the GAF domain is released, activat-
ing ATPase activity and allowing the NorR hexamer to
interact with RNAP-s54 and activate transcription.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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Summary

Bacterial enhancer binding proteins (bEBPs) are spe-
cialized transcriptional activators that assemble as
hexameric rings in their active forms and utilize ATP
hydrolysis to remodel the conformation of RNA poly-
merase containing the alternative sigma factor s54.
Transcriptional activation by the NorR bEBP is con-
trolled by a regulatory GAF domain that represses the
ATPase activity of the central AAA+ domain in the
absence of nitric oxide. Here, we investigate the
mechanism of interdomain repression in NorR by
characterizing substitutions in the AAA+ domain that
bypass repression by the regulatory domain. Most of
these substitutions are located in the vicinity of the
surface-exposed loops that engage s54 during the ATP
hydrolysis cycle or in the highly conserved GAFTGA
motif that directly contacts s54. Biochemical studies
suggest that the bypass mutations in the GAFTGA
loop do not influence the DNA binding properties of
NorR or the assembly of higher order oligomers in the
presence of enhancer DNA, and as expected these
variants retain the ability to activate open complex
formation in vitro. We identify a crucial arginine
residue in the GAF domain that is essential for inter-
domain repression and demonstrate that hydropho-
bic substitutions at this position suppress the bypass
phenotype of the GAFTGA substitutions. These
observations suggest a novel mechanism for nega-

tive regulation in bEBPs in which the GAF domain
targets the s54-interaction surface to prevent access
of the AAA+ domain to the sigma factor.

Introduction

The promoter specificity of bacterial RNA polymerase is
determined by the binding of an additional subunit, the
sigma factor (s). In contrast to the prototypical s70 class
of bacterial sigma factors, transcription by the s54 class
requires activation by bacterial enhancer binding
proteins (bEBPs) that utilize nucleotide triphosphate
hydrolysis to drive conformational rearrangements in the
s54-RNA polymerase holoenzyme. The central AAA+
domain of bEBPs is responsible for ATP hydrolysis and
the consequent remodelling of the s54-RNA polymerase
that enables isomerization of the promoter DNA com-
plexes from the closed to the open form (Wedel and
Kustu, 1995, Cannon et al., 2000; Schumacher et al.,
2004). As in the case of other AAA+ proteins, the s54-
interaction domain of bEBPs is competent for ATP
hydrolysis when assembled as a hexameric ring
(Rappas et al., 2007 and references therein). The bEBP
subfamily of AAA+ domains contain specific structural
features that enable nucleotide-dependent interactions
with s54. Most conserved amongst these is the GAFTGA
motif, which forms a loop on the surface of the AAA+
domain that contacts s54 during the ATP hydrolysis cycle
(Bordes et al., 2003). Structural studies demonstrate that
the GAFTGA loop (also known as the L1 loop), assisted
by a second surface-exposed loop, L2, is in an extended
conformation in the ATP bound transition state and is
thus competent to engage with s54. However, in the ADP
bound state both loops are compacted towards the
surface of the AAA+ domain enabling s54 relocation,
crucial to the conversion from the closed to the open
complex (Rappas et al., 2006; Chen et al., 2007; Bose
et al., 2008). The GAFTGA loop thus performs a crucial
role in the ‘power stroke’ of bEBPs in coupling ATP
hydrolysis to conformational rearrangements of the s54-
RNA polymerase.

Many bEBPs contain an amino-terminal regulatory
domain that stringently controls the activity of the central
AAA+ domain either negatively or positively in response to
environmental cues (Studholme and Dixon, 2003). Most
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bEBPs also contain a helix–turn–helix DNA binding
domain that binds to enhancer-like sequences upstream
of promoters. In several well-characterized examples,
allosteric control by the regulatory domain is exerted by
controlling the oligomeric state of the AAA+ domain. In the
‘off’ state, the regulatory domain holds the AAA+ domain
in an inactive dimeric form (Lee et al., 2003). Conforma-
tional changes in the regulatory domain induced by the
signal enable transition to the ‘on’ state in which the AAA+
domain is released to form an active hexameric ring that
is competent to activate transcription (Doucleff et al.,
2005; De Carlo et al., 2006).

The nitric oxide (NO)-responsive bEBP, NorR, is
required for transcriptional activation of the norVW genes
in Escherichia coli that encode a flavorubredoxin and its
associated NADH-dependent oxidoreductase respec-
tively (Hutchings et al., 2002). These enzymes provide a
detoxification system that reduces the NO radical to
nitrous oxide under anaerobic conditions (Gardner et al.,
2002; Gomes et al., 2002). Transcriptional activation by
NorR is controlled by intramolecular interactions between
an N-terminal regulatory GAF domain and the central
AAA+ domain. The GAF domain contains a mononuclear
non-haem iron centre that responds to NO through the
formation of a mononitrosyl iron complex (D’Autreaux
et al., 2005). In the absence of the NO signal, the GAF
domain inhibits the activity of the AAA+ domain via inter-
domain repression (Gardner et al., 2003). Upon receipt of
the signal and formation of the mononitrosyl iron species,
repression of the AAA+ domain is relieved, activating ATP
hydrolysis by NorR coupled to conformational remodelling
of the s54-RNA polymerase (D’Autreaux et al., 2005). In
addition to allosteric control exerted by the GAF domain,
our studies indicate that the C-terminal DNA binding
domain of NorR plays a major role in the assembly of the
functional AAA+ oligomer. Three enhancer sites located
upstream of the norVW promoter are essential for tran-
scriptional activation by NorR and provide a scaffold for
the assembly of higher order oligomers (Tucker et al.,
2010).

To investigate mechanisms of interdomain regulation in
NorR, we have used a random mutagenesis approach to
screen for mutations in the AAA+ domain that enable
escape from GAF domain-mediated repression. Surpris-
ingly, we find that substitutions within the highly conserved
GAFTGA motif and in residues predicted to influence
nucleotide-dependent conformational changes in this loop
prevent intramolecular repression by the GAF domain in
the absence of the NO signal. We demonstrate that the
GAFTGA substitutions neither influence the DNA binding
function of NorR nor the enhancer DNA-dependent oligo-
merization of the AAA+ domain and that variant proteins
remain competent to catalyse open complex formation by
s54-RNA polymerase. Our results suggest that the s54-

interaction surface in the AAA+ domain is a target for
intramolecular repression by the GAF domain.

Results

Mutations in the GAFTGA motif of NorR give rise to
constitutive activity

To explore the mechanism of interdomain repression in
NorR, error-prone polymerase chain reaction (PCR)
mutagenesis was employed to create mutations that
potentially disrupt repression of the AAA+ domain by the
N-terminal (NO-sensing) GAF domain. This strategy pro-
duced mutant versions of NorR that had significant activity
in cultures grown in the absence of an NO source, in
contrast to wild-type NorR, which is activated by endog-
enous NO generated in the presence of potassium nitrate
(Fig. 1A). In some cases (e.g. G266D, S292L) activity in
the absence of the signal was similar to that exhibited by
a truncated version of NorR lacking the GAF domain
(NorRDGAF). This phenotype suggests that repression by
the GAF domain has been bypassed, resulting in loss of
regulation upon the AAA+ domain. In other cases (e.g.
F264Y, Q304E) some repression in the absence of NO
was evident, indicative of a partial bypass phenotype. In
structural models of the AAA+ domain of NorR based on
the structure of NtrC1 (Lee et al., 2003), the majority of
the substitutions are located in either helix 3 (H3), helix 4
(H4) or loop 1 (L1) (Fig. 1B). These are the structural
features in the AAA+ domain that undergo nucleotide-
dependent conformational changes during the ATPase
cycle to promote engagement with s54. For example, the
equivalent of E276 in PspF (E97) is located close to the
base of the L1 loop and forms nucleotide-dependent inter-
actions with R131 (equivalent to NorR R310) in the L2
loop that co-ordinate loop movements during ATP hydroly-
sis (Rappas et al., 2006). The only substitution predicted
to be located outside this region of nucleotide-induced
conformational change is Q304; where the equivalent
residue in NtrC1 is most probably involved in inter AAA+
domain subunit interactions. Significantly, three substitu-
tions were identified within the highly conserved GAFTGA
motif itself. The most notable of these was the G266D
mutation, located in the second glycine of the motif, which
allowed full escape from the GAF-mediated repression of
NorR activity (Fig. 1A). This is surprising given that this
loop is required to contact s54 to drive open complex
formation (Buck et al., 2006) and that substitutions at
G266 are likely to influence the conformational flexibility of
this loop. In order to examine which amino acids at the
G266 position give rise to constitutive activity, we substi-
tuted this residue for each of the other 19 natural amino
acids (Fig. S1). In addition to the aspartate substitution
that gives rise to constitutive activity; asparagine,
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glutamine, serine, cysteine and methionine all gave activ-
ity in the absence of an NO source. Asparagine and
aspartate changes gave fully constitutive phenotypes
whereas the other changes were still partially subject to
regulation by the GAF domain. Surprisingly, the glutamate
substitution did not produce a functional NorR protein.
The remaining amino acid changes all resulted in non-
functional proteins and Western blotting confirmed that
this is not due to instability (data not shown). The non-

functional nature of most substitutions at this position is
not unexpected, given the importance of the GAFTGA
motif and its high conservation in bEBPs.

The apparent loss of regulation in the G266D and G266N
variants suggest that these mutations completely bypass
the repressive function of the N-terminal GAF domain. To
confirm that the NO-sensing function of the GAF domain no
longer contributes to the phenotype of the G266D variant,
targeted substitutions were made at residues known to
disrupt the non-haem iron centre in the GAF domain
(Tucker et al., 2008). When the R75K, Y98L, C113S,
H111Y or D99A substitutions were combined with G266D,
no reduction in the ability to activate transcription by NorR
was observed (Fig. S2). To further test the influence of the
GAF domain in this variant, the sequence encoding the first
170 residues of NorR was deleted in constructs containing
an additional N-terminal, hexa-histidine tag. The resulting
G266DDGAF–His protein was comparable with the
G266D–His variant in its ability to activate transcription in
vivo (Fig. S3). This was also true for the G266N–His
protein. The Q304E variant in contrast showed a partial
bypass phenotype (Fig. 1A) and removal of the GAF
domain led to constitutive activity as anticipated (Fig. S3).

The G266D mutation does not affect enhancer binding
or oligomerization of NorR in vitro

Since the oligomerization state and hence the activity of
the AAA+ domain of bEBPs is often controlled by regula-
tory domains, we questioned whether the NorR GAFTGA
substitutions might bypass the repressive function of the
GAF domain by altering the assembly of higher order
oligomers. Since binding of NorR to enhancer sites is
essential for the formation of stable oligomers and
enhancer DNA appears to be a key ligand in the activation
of NorR as a transcription factor (Tucker et al., 2010), we
first investigated whether the GAFTGA mutations influ-
ence DNA binding. For this and subsequent biochemical
experiments we used GAF domain deleted forms of NorR
(NorRDGAF) and utilized N-terminal histidine tags as an
aid to protein purification. The presence of this tag does
not significantly affect the activity of wild-type NorRDGAF
or its variants in vivo (data not shown). We observed that
the affinity of NorRDGAF for a 361 bp DNA fragment
containing the three enhancer sites upstream of the norV
promoter was not significantly influenced by the presence
of the G266D and G266N substitutions (Fig. S4). Disso-
ciation constants (Kd) were calculated as 100 nM in each
case. To determine the effect of the G266D substitution on
enhancer-dependent NorR oligomer formation (Tucker
et al., 2010), we performed analytical gel filtration experi-
ments in the absence and presence of a 266 bp DNA
fragment containing the three enhancer sites. Based on
reference elution volumes obtained with different protein

Fig. 1. A. Transcriptional activation by NorR AAA+ domain
variants in vivo as measured by the norV–lacZ reporter assay.
Substitutions are indicated on the x-axis. ‘NorR’ refers to the
wild-type protein and ‘NorRDGAF’ refers to the truncated form
lacking the GAF domain (residues 1–170). Cultures were grown
either in the absence (black bars) or presence (white bars) of 4 mM
potassium nitrite, which induces endogenous NO production. Error
bars show the standard error of the three replicates carried out for
each condition.
B. Structural model of the AAA+ domain of NorR based on the
NtrC1 structure (Lee et al., 2003) (1NY5 chain A). The helices and
loops (H3 and H4, L1 and L2) involved in nucleotide-dependent
conformational changes in bEBPs are labelled in red. Residues that
were substituted as a consequence of the PCR mutagenesis of the
AAA+ domain are indicated. The F264 and G266 residues form
part of the GAFTGA motif that contacts s54.
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standards, unbound G266DDGAF–His eluted as an
apparent monomer/dimer species (Fig. 2A). The pres-
ence of the 266 bp DNA fragment shifted the protein peak
towards a higher molecular mass species (Fig. 2A) indi-
cating formation and stabilization of a higher order nucle-
oprotein complex. These elution profiles are similar to that
reported recently for wild-type NorRDGAF (Tucker et al.,
2010). Analysis of the purified protein–DNA complex
using negatively stained electron microscopy, allowed
visualization of higher order ring-shaped particles with
dimensions of 125 Å in diameter (Fig. 2B) consistent with
a hexameric ring observed for NorRDGAF in complex with
the 266 bp DNA fragment (Tucker et al., 2010). No oligo-
meric particles were seen in the electron micrographs for
protein alone (Fig. 2C). We conclude from these studies
that the G266D mutation does not apparently influence
the oligomeric assembly of the AAA+ domain or the
requirement for enhancer sites to stabilize the formation
of a higher order oligomer.

G266 bypass variants show enhancer-dependent
ATPase activity in vitro

In bEBPs the ATP hydrolysis site is configured through
interactions between adjacent AAA+ protomers in the

hexameric ring (Schumacher et al., 2008). Since the
GAFTGA motif relays nucleotide-dependent interactions
at this site to enable contact with s54, we were interested
to examine if the G266 substitutions influence ATPase
activity. We have already established that enhancer DNA
is required for ATP hydrolysis by NorR and that the three
binding sites upstream of the norV promoter are neces-
sary for activation of ATPase activity, consistent with the
requirement for DNA for formation of a functional higher
order oligomer (Tucker et al., 2010). Using concentrations
of NorRDGAF–His within the anticipated physiological
range, we observed low levels of ATP hydrolysis in the
absence of enhancer DNA. This was also a property of the
G266D and G266N variants (Fig. 3B and C, black bars).
Consistent with our previous studies with a non-his-
tagged form of NorRDGAF, ATPase activity was strongly
stimulated by the presence of promoter DNA. Under these
conditions ATP hydrolysis by NorRDGAF–His increased
as a sigmoidal reponse to increasing protein concentra-
tion indicative of positive cooperativity, with a lower rate of
increase exhibited at concentrations above 250 nM
(Fig. 3A, white bars). The absence of increased activity at
higher protein concentrations may reflect saturation of the
enhancer sites consistent with the observed DNA binding
constant (100 nM as reported above, Fig. S4). Although

Fig. 2. Enhancer-dependent higher order
oligomeric assembly of the G266DDGAF-His
variant.
A. Gel filtration chromatography of 9 mM
G266DDGAF–His variant in the absence
(dotted line) and presence (solid line) of
0.75 mM 266 bp dsDNA (molar ratio of 12:1
monomer: DNA), containing all three
enhancer sites, performed at 4°C using a
Superose 6 column (24 ml). The presence of
DNA stabilizes a higher order oligomeric form
of G266DDGAF–His. The lines below the
elution peaks represent the fractions analysed
by negative-stain electron microscopy.
Corresponding molecular weight of standard
globular proteins are indicated at their elution
volume.
B and C. Negative-stain electron microscopy
studies. Shown are raw micrographs of
G266DDGAF-His alone (C) and in complex
with 266 bp DNA (B), scale bar 100 nm.
Ring-shaped oligomeric particles were only
observed in the presence of DNA.

4 M. Bush et al. �

© 2010 Blackwell Publishing Ltd, Molecular Microbiology



ATP hydrolysis by the G266D and G266N variants was
also stimulated by the enhancer sites, the response to
protein concentration was less cooperative than observed
with NorRDGAF–His and activities were lower than those
of the wild-type protein even at a relatively high protein
concentration (2 uM). Since the enhancer DNA is likely to
be fully saturated with protein at concentrations above
300 nM, the G266 substitutions may alter the stability of
the nucleoprotein complexes, perhaps by influencing pro-
tomer interactions that impact upon the ATP hydrolysis
site.

The GAFTGA variants can activate open complex
formation in vitro

To further test the functionality of the G266 variants in
vitro, we conducted assays to measure their ability to
catalyse the conversion of the s54-RNA polymerase
closed complexes to open promoter complexes. Although
NorR–DNA complexes exhibit heparin resistance, open
promoter complexes can be visualized as heparin-
resistant super-shifted species on non-denaturing gels
(D’Autreaux et al., 2005). In the presence of all the com-
ponents required for open complex formation, the G266D
and G266N variants were competent to form the super-
shifted species, as in the case of NorRDGAF (Fig. 4A
compare lanes 3, 5, 7 and 9). Open complex formation
was ATP-dependent as expected (Fig. 4A lanes 2, 4, 6
and 8). In order to probe the nature of the open complexes
formed, we footprinted complexes with potassium per-
manganate, which targets cleavage to single stranded
DNA regions, hence providing sequence-specific
information. In all cases, we observed enhanced cleavage
corresponding to T residues located between -11 and +1
in the norV promoter, consistent with the expected
footprint. Notably, the band intensity observed with the
G266 variants was decreased in comparison with NorRD-
GAF or NorRDGAF–His, perhaps reflecting the lower
ATPase activities exhibited by the GAFTGA variants when
compared with the wild type. These results confirm that
the G266 variants are competent to interact with s54 and
can activate transcription in vitro, even though they exhibit
altered ATPase activities.

Evidence for direct intramolecular interaction between
the GAF domain and the s54-interaction surface

From the biochemical results presented thus far, it seems
likely that the GAFTGA mutations do not bypass intramo-
lecular repression solely on the basis of changes in oligo-
merization state. To gain more insight into the nature of
the interactions between the GAF and AAA+ domains, we
followed a genetic suppression strategy. In previous work,

Fig. 3. ATPase activity of the NorRDGAF–His (A),
G266DDGAF–His (B) and G266NDGAF–His (C) variants in
response to protein concentration and the presence of enhancer
DNA. Assays were conducted either in the absence (closed bars)
or presence (open bars) of the 266 bp DNA fragment (final
concentration 5 nM) that includes the norR–norVW intergenic
region and each of the three NorR binding sites. Data are shown
as the mean from at least two experiments.
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mutagenesis of conserved residues in the GAF domain
identified the R81L change that allows partial escape from
interdomain repression in NorR (Tucker et al., 2008). To
further investigate the role of this residue in the regulation
of AAA+ activity, a number of other changes were made at
this position (Fig. S5). In vivo assays for transcriptional
activation by NorR showed that the R81 residue is critical
for the negative regulation of the AAA+ domain by the
GAF domain. Hydrophobic changes (including R81L)
result in significant constitutive activity. Negatively
charged residues and serine substitutions not only
prevent negative control but also stimulate NorR activity
beyond wild-type levels. R81D, R81N and R81E give rise
to twofold to threefold more activity than NorRDGAF.

Since the R81 residue appears to be critical for inter-
domain repression, we decided to investigate whether
R81 is required for positioning the GAF domain in the
vicinity of the GAFTGA motif. We observed that the R81L
substitution suppresses the constitutive activity of the
G266D mutant so that repression of the AAA+ domain is
almost completely restored (Fig. 5). Interestingly, the
R81L mutation has a similar effect on other constitutively
active variants located in the key region of the AAA+
domain that is predicted to undergo conformational
changes upon ATP hydrolysis (Fig. S6A). As mentioned
above, the Q304 residue is predicted to be at the base of
helix 4 in the AAA+ domain of NorR and is not expected to

Fig. 4. Open promoter complex formation by AAA+ variants.
A. Heparin-resistant complexes formed by NorRDGAF, NorRDGAF–His, G266DDGAF–His and G266NDGAF–His, on the 361 bp DNA fragment
carrying the norR–norVW intergenic region. In all cases, the final NorR concentration was 1500 nM. Reactions contained no NorR (lane 1),
NorRDGAF (lanes 2 and 3), NorRDGAF–His (lanes 4 and 5), G266DDGAF–His (lanes 6 and 7) and G266NDGAF–His (lanes 8 and 9).
Reactions loaded in lanes 1, 3, 5, 7 and 9 contained ATP (final concentration 5 mM), which was absent in lanes 2, 4, 6 and 8. Arrows indicate
the position of free DNA, NorR bound DNA and the open promoter complexes.
B. Potassium permanganate footprinting of the 266 bp norR–norVW promoter fragment after open complex formation initiated by NorR. Lane 1
is a G+A ladder. Lane 2 is a control without activator present. Lanes 3, 4, 5 and 6 show footprinting after initiation of open complexes in the
presence of 1 mM (final concentration) DGAF, DGAF–His, G266DDGAF–His and G266NDGAF–His respectively. The arrow marks the norVW
transcriptional start and the positions of the enhanced cleavage at T bases are indicated.

Fig. 5. Suppression of the G266D variant phenotype by the R81L
mutation as measured by the norV–lacZ reporter assay in vivo.
Substitutions are indicated on the x-axis. ‘NorR’ refers to the
wild-type protein and ‘NorRDGAF’ refers to the truncated form
lacking the GAF domain (D1–170). Cultures were grown either in
the absence (black bars) or presence (white bars) of 4 mM
potassium nitrite, which induces endogenous NO production. Error
bars show the standard error of the three replicates carried out for
each condition.
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have a role in co-ordinating movements in the GAFTGA
loop upon transition to the ‘on’ state. In accordance with
this, the Q304E mutation was not suppressed by the
R81L substitution. Instead, when combined with Q304E,
the R81L substitution enabled complete escape from
interdomain repression (Fig. 5).

Next, we wanted to determine whether the suppres-
sion of the G266D phenotype was dependent on the
substitution made at the R81 position. Results show that
only hydrophobic changes including R81L, V, I and F
enable suppression (Fig. S7). It is possible that such
changes introduce a new hydrophobic contact that helps
restore interactions between the GAF and AAA+
domains. Western blotting analysis shows that reduction
in activity is not due to a decrease in the stability of
these double mutants (data not shown). Moreover other
substitutions such as R81D have no effect on the con-
stitutive activity of the G266D NorR variant (Fig. 5).
Overall, the constitutive activity of the G266D variant
and the specific suppression of this phenotype by hydro-
phobic changes at the R81 position suggest that the
GAF domain may target the GAFTGA motif to prevent
s54 contact in the absence of the NO signal. Further-
more, the R81 residue is critical in maintaining repres-
sion and may be a key residue in mediating the
transition from the ‘off’ to the ‘on’ state.

Discussion

The lack of NO-responsive regulation in truncated forms
of NorR that lack the GAF domain (D’Autreaux et al.,
2005), clearly places NorR in the class of bEBPs that
are negatively regulated. The substitutions we have
identified in the AAA+ domain that bypass negative
control by the GAF domain, cluster in regions that modu-
late the conformation of the s54-interaction surface or in
the conserved GAFTGA motif itself. This invokes a
model whereby the GAF domain negatively regulates

the AAA+ domain by preventing access of the L1 and L2
loops to s54 (Fig. 6). This mode of repression might also
serve to lock the loops in a restrained conformation that
feeds back to the nucleotide binding site to prevent ATP
hydrolysis. According to this model, substitutions in the
s54-interaction surface bypass negative regulation either
by altering the conformation of this surface to restrict
access by the GAF domain or by directly disrupting
GAF–AAA+ domain interactions. The alternative expla-
nation that these substitutions bypass negative control
by locking the AAA+ domain in a constitutive hexameric
oligomerization state seems unlikely given that the
GAFTGA substitutions exhibited no major changes in oli-
gomerization properties when examined in the context of
the NorRDGAF protein. Although the full-length NorR
apoprotein is competent to bind enhancer DNA this
nucleoprotein complex is inactive with respect to ATP
hydrolysis and transcriptional activation (D’Autreaux
et al., 2005). This suggests that in the absence of the
NO signal, the GAF domain maintains the nucleoprotein
complex in an inactive state by preventing access to s54-
RNA polymerase.

It is remarkable that substitutions in the surface-
exposed GAFTGA loop are able to prevent negative
regulation by the GAF domain but still retain the ability
to interact with s54 and activate open complex formation.
In the majority of bEBPs, substitutions in the GAFTGA
motif cause a severe defect on the ability of the protein
to activate transcription (Zhang et al., 2002 and refer-
ences cited therein). In PspF, the conserved threonine in
this loop plays a critical role in contacting s54 (Bordes
et al., 2003; Dago et al., 2007) and only substitution of
tyrosine for the highly conserved phenylalanine permits
transcriptional activation (Zhang et al., 2009). We
observe that the equivalent aromatic substitution in
NorR, F264Y, allows partial escape from repression by
the GAF domain. Few studies have been carried out to
explore the role of the second glycine in the GAFTGA

Fig. 6. Model for regulation of s54-dependent transcription by the EBP NorR. Binding of NorR to the norR–norVW intergenic region that
contains the three NorR binding sites (not shown) is thought to facilitate the formation of a higher order oligomer that is most likely to be a
hexamer (Tucker et al., 2010). In the ‘off’ state, the N-terminal GAF domains (orange rectangles) negatively regulate the activity of the AAA+
domains (blue circles) by preventing access of the L1 and L2 loops to s54 (left). In the ‘on’ state, NO binds to the iron centre in the GAF
domain forming a mononitrosyl iron species. The repression of the AAA+ domain is relieved (centre), enabling ATP hydrolysis by NorR
coupled to conformational changes in the AAA+ domain. During the nucleotide hydrolysis cycle, the surface-exposed loop that includes the
GAFTGA motif moves into an extended conformation to allow s54-interaction and remodelling (right).
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motif. In NtrC, the G219K variant has improved DNA
binding activity and ATPase activity is 50% of the acti-
vated wild type (North et al., 1996). However, it fails to
activate transcription (a property exhibited by the equiva-
lent mutation in NorR, G266K), suggesting that this
mutation may prevent the interaction with s54. In con-
trast, the G219C variant of NtrC is competent to form
open complexes but intriguingly can only do so in the
absence of enhancer DNA (Yan and Kustu, 1999). This
defect may be explained by changes in the relative jux-
taposition of the DNA binding and ATPase domains
observed during the ATPase cycle (De Carlo et al.,
2006). Overall, positively charged or aromatic residues
are apparently not tolerated at this position in NorR,
which may reflect a requirement for the s54-interaction.

The role of the s54-interaction surface in negative regu-
lation by the GAF domain is further supported by our
suppression data. The R81 residue in the GAF domain
apparently plays a critical role in the mechanism of inter-
domain repression since an alanine substitution at this
position leads to constitutive activation, whereas hydro-
phobic substitutions, particularly leucine, restore repres-
sion only when combined with specific bypass mutations
in the AAA+ domain, including those in the GAFTGA loop.
Structural modelling of the GAF domain, suggests that the
R81 residue is surface-exposed (Tucker et al., 2008). It is
located at the opposite end of an a-helix to the R75
residue (Fig. S8), which is postulated to be a ligand to the
hexa-coordinated iron and is the most suitable candidate
to be displaced upon NO binding (Tucker et al., 2008).
Therefore, it is possible that formation of the mononitrosyl
iron complex would displace the R75 ligand causing a
conformational change in the helix that repositions R81.
Interactions between the R81 residue and residue(s) in
the AAA+ domain may thus facilitate the switch from the
‘off’ to the ‘on’ state.

The results presented here suggest a novel mecha-
nism for negatively regulating bEBPs in which the s54-
interaction surface is a target for repression, rather than
the assembly of the active higher order oligomer. In the
response regulator bEBPs NtrC1 and DctD, interactions
between the receiver domain and the AAA+ domain
maintain these proteins as inactive dimers in the
absence of a regulatory signal. Extensive interdomain
contacts, established via a coiled-coil linker, hold the
ATPase domains in a dimeric front-to-front configuration
to prevent oligomerization. Upon phosphorylation the
dimerization interface in the receiver domain, which
includes the coiled-coil linker is disrupted, allowing the
AAA+ domain to reorient into the front-to-back configu-
ration required for assembly into the active oligomeric
ring (Lee et al., 2003; Doucleff et al., 2005). The linker
region between the GAF and AAA+ domains of NorR is
not predicted to form a coiled-coil helix, a structural

feature that is also absent in negatively regulated NtrC4
and positively regulated NtrC (Batchelor et al., 2008).
NtrC4 has a partially disrupted receiver–AAA+ domain
interface and can assemble into active oligomers at high
protein concentrations independent of phosphorylation, a
process that does not occur with NtrC1 (Batchelor et al.,
2008). The activated receiver domain has been shown
to stabilize the hexameric form of NtrC4, thus function-
ing as an intermediate between the negative mechanism
of NtrC1/DctD and positive mechanism of NtrC (Batch-
elor et al., 2008; Batchelor et al., 2009). In some bEBPs,
the activity of the AAA+ domain is controlled by another
regulatory protein, rather than by intramolecular repres-
sion (e.g. NifA, PspF, HrpR/S). In the case of PspF,
which does not contain an amino-terminal regulatory
domain, the activity of the AAA+ domain is negatively
controlled by the PspA protein. In this case, repression
is neither achieved by controlling the assembly of the
ATPase subunits nor by preventing access of PspF to
s54, but rather by inhibition of ATP hydrolysis (Joly et al.,
2009). Inhibition is mediated by the interaction of PspA
with a surface-exposed tryptophan residue (W56) on
PspF, which is likely to communicate with the ATP
hydrolysis site. Structural studies have identified N64 in
the AAA+ domain of PspF as being the key residue that
translates nucleotide hydrolysis to conformational
changes (Rappas et al., 2006) and links ligand binding
to ATPase activity (Zhang and Wigley, 2008). Although
N64 variants are still able to bind PspA, their ATPase
activity is no longer inhibited (Joly et al., 2008) suggest-
ing that negative regulation by PspA at the W56 residue
is directly signalled to the nucleotide machinery via N64
to prevent ATPase hydrolysis by PspF. NorR represents
another mechanism of negative regulation in which the
N-terminal regulatory domain targets the s54-interacting
region of the AAA+ domain that includes the GAFTGA
motif. The evolutionary and physiological advantages of
these different modes of regulation in bEBPs remain to
be elucidated. In the case of NorR, we speculate that
pre-assembly of an inactive oligomeric NorR species,
poised as a nucleoprotein complex at the enhancer
sites, enables the cell to rapidly respond to NO stress.

Experimental procedures

Plasmids and site directed mutagenesis

The pMJB1 plasmid was constructed from the pNorR plasmid
(Tucker et al., 2004) by making two silent mutations within the
norR sequence. The C496T mutation produced the MfeI/
MunI restriction site (CAATTG) upstream of the AAA+ domain
and the G1341C mutation produced the SstII restriction site
(CCGCGG) downstream. In all other cases, targeted
mutagenesis of the norR sequence was carried out using a
PCR method (Ito et al., 1991) with pMJB1 as a template.
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Random mutagenesis

Random PCR mutagenesis was carried out with Taq DNA
polymerase under standard reaction conditions. Reaction mix-
tures contained 75 ng of template pMJB1, 100 ng of each
primer (AAA+Fwd 5′-GAAGAGCTACGGCTGATTGC-3′ and
AAA+Rev 5′-GAACGCTTCTGTCGCTTCAC-3′), 0.2 mM
dNTPs, 1.5 mM MgCl2 and 5 units of enzyme in a final volume
of 50 ml. The PCR products were purified, digested with MfeI
and SstII and subsequently recloned into pMJB1 digested with
the same enzymes. Ethanol precipitation followed by elec-
troporation of the ligated mutant plasmid sample into DH5a
was conducted and plasmid purification carried out before
transformation of the sample into MH1003 (Hutchings et al.,
2002). Transformants were screened on Luria–Bertani (LB)
supplemented with Xgal (40 mg ml-1), chloramphenicol
(30 mg ml-1), carbenicillin (100 mg ml-1) and kanamycin
(50 mg ml-1). Constitutive mutants were identified based on the
ability of the norR gene to produce a protein that can activate
expression of a norV–lacZ fusion. In the absence of inducer,
constitutive mutants activate expression of b-galactosidase
that cleaves the Xgal substrate to produce a blue product.

Assaying NorR activity in vivo

Transcriptional activation by NorR in vivo was measured by
introducing wild-type and mutant plasmids into MH1003 a
nor: : cat derivative of E. coli strain MC1000 with a lacZ
reporter fusion to the norVW promoter inserted at the phage
l attachment site (Hutchings et al., 2002). Cultures were
grown with shaking in 50 ml of LB medium at 37°C until the
OD650 reached 0.3, at which point glucose was added to the
culture to a final concentration of 1%. Cultures were then split
into 8 ml Bijou bottles and were grown anaerobically over-
night at 37°C with or without potassium nitrite (4 mM). Under
the latter conditions, NorR is activated by the NO that is
generated endogenously by nitrite reduction in E. coli (Hutch-
ings et al., 2002). Levels of expression of the norV–lacZ
fusion were then determined by assaying b-galactosidase
activity as previously described (Tucker et al., 2008).

Protein purification

Escherichia coli K12 NorRDGAF was overexpressed and
purified as described previously (D’Autreaux et al., 2005).
NorRDGAF and mutant derivatives were additionally purified
via an N-terminal TEV cleavable His-tag. Proteins were over-
expressed from the pET-M11 construct but with the NcoI site
altered to an NdeI site, to allow easy cloning of the norR
sequence. BL21(DE3) transformed with the relevant con-
struct was grown shaking at 250 r.p.m. at 30°C to an OD600
of 0.6. IPTG was then added to a final concentration of 1 mM
and the cells left for 2–3 h before harvesting at 5000 r.p.m.
Pellets were resuspended in buffer A (100 mM Tris-Cl, 50 mM
NaCl, 50 mM imidazole, 5% glycerol, pH 8.5) containing
EDTA-free protease inhibitors (Roche) and the cells were
broken by French pressure disruption (1000 psi) in two
passes. The insoluble material was then removed by centrifu-
gation at 15 000 r.p.m. for 30 min. The clarified supernatant
was loaded onto two 1 ml HiTrap chelating HP columns,
connected in series and charged with 100 mM nickel

chloride. The columns were equilibrated with NorR buffer A.
Protein was then eluted using NorR buffer B (100 mM Tris-Cl,
50 mM NaCl, 500 mM imidazole, 5% glycerol, pH 8.5). To
remove imidazole and to prevent precipitation, NorR contain-
ing fractions were loaded as quickly as possible onto a
Superdex 200 16/60 column (Amersham Biosciences), pre-
equlibrated in buffer C (100 mM Tris-Cl, 200 mM Nacl, 8 mM
DTT, 5% glycerol). NorR containing fractions were concen-
trated using Amicon Ultra (Millipore) centrifugal devices with
a 30 kDa MWC, aliquoted and stored in buffer containing
100 mM Tris-Cl, 100 mM NaCl, 4 mM DTT and 40% glycerol
at -80°C, until required.

Open promoter complex and gel retardation assays

Open complex and gel retardation assays were carried out as
described previously (Tucker et al., 2010) using fragments
derived from the pNPTprom plasmid that contains the norR–
norVW region blunt-end cloned into the SmaI site of pUC19
(Tucker et al., 2004).

Potassium permanganate footprinting of open
complexes

Open complexes were probed using potassium permangan-
ate as described previously (Whitehall et al., 1992). Following
potassium permanganate treatment, samples were resus-
pended in sodium acetate before ethanol precipitation.
Samples were then subjected to chemical cleavage using the
Maxam and Gilbert method. A G+A sequencing ladder was
prepared by treatment with formic acid prior to the same
cleavage treatment. The footprinting fragments were dried
and dissolved in sequencing dye before being loaded on a
sequencing gel.

ATPase assays

ATPase activities were measured using an assay in which
production of ADP is coupled to the oxidation of NADH by
lactate dehydrogenase and pyruvate kinase (Norby, 1988).
The oxidation of NADH was monitored at 340 nm at 37°C. All
reaction mixtures contained ATP (30 mM), phosphoenolpyru-
vate (1 mM), NADH (0.3 mM), pyruvate kinase (7 U, Roche),
lactate dehydrogenase (23 U, Roche) in 50 mM Tris-HCl (pH
8.0), 100 mM KCl, 2 mM MgCl. Increasing volumes of NorR–
His and its variants were added and the ATPase activity was
measured by observing the change in absorbance at 340 nm.
Total activity (mmol ATP min-1) at each concentration was
calculated using the equation: [(DOD340/Dt)/6220]*1 ¥ 106

where t is the time-course of the experiment in minutes.
Reactions were carried out both in the absence and presence
of 5 nM of a 266 bp fragment of the norR–norVW intergenic
region generated from the pNPTprom plasmid (Tucker et al.,
2004) using the norRpromF (5′-GGCGATATTCGCCAGCAC
AT-3′) and norRpromR (5′-CGTTGACCAACCCAATGA
ATGT-3′) primers.

Analytical gel filtration

Gel filtration chromatography of G266DDGAF–His protein
alone and in complex with a 266 bp DNA fragment, contain-
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ing all three enhancer sites, was performed using a Super-
ose 6 column (10 ¥ 300 mm, 24 ml) as described previously
(Tucker et al., 2010). The DNA fragment was generated by
PCR as described previously (Tucker et al., 2010).

Negative-stain electron microscopy

Samples (2 ml) from fractions eluted from gel filtration
columns containing either G266DDGAF–His alone or in
complex with 266 bp dsDNA were absorbed onto glow-
discharged continuous carbon grids (TAAB) and stained with
2% uranyl acetate. Data were collected at 35 000¥ magnifi-
cation using a FEI Tecnai 12 electron microscope operating at
120 kV. Micrographs were recorded directly on a 1 k ¥ 1 k
CCD camera (TVIPS, Germany).
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Abstract
A flavorubredoxin and its associated oxidoreductase (encoded by norV and norW respectively) detoxify NO
(nitric oxide) to form N2O (nitrous oxide) under anaerobic conditions in Escherichia coli. Transcription of
the norVW genes is activated in response to NO by the σ 54-dependent regulator and dedicated NO sensor,
NorR, a member of the bacterial enhancer-binding protein family. In the absence of NO, the catalytic activity
of the central ATPase domain of NorR is repressed by the N-terminal regulatory domain that contains a
non-haem iron centre. Binding of NO to this centre results in the formation of a mononitrosyl iron species,
enabling the activation of ATPase activity. Our studies suggest that the highly conserved GAFTGA loop in
the ATPase domain, which engages with the alternative σ factor σ 54 to activate transcription, is a target
for intramolecular repression by the regulatory domain. Binding of NorR to three conserved enhancer sites
upstream of the norVW promoter is essential for transcriptional activation and promotes the formation
of a stable higher-order NorR nucleoprotein complex. We propose that enhancer-driven assembly of this
oligomeric complex, in which NorR apparently forms a DNA-bound hexamer in the absence of NO, provides
a ‘poised’ system for transcriptional activation that can respond rapidly to nitrosative stress.

Introduction
NO (nitric oxide) is an intermediate of respiratory
denitrification [1], and is one of the toxic species released
by macrophages of the immune system in the defence against
invading pathogenic bacteria [2]. As a consequence, bacteria
have evolved mechanisms in order to survive nitrosative-
induced stress. The Escherichia coli flavorubredoxin and
its associated oxidoreductase function under anaerobic
conditions to convert NO into N2O (nitrous oxide) and
are encoded by the norV and norW genes respectively
[3]. Expression of these genes is controlled by norR,
which is divergently transcribed upstream of the norVW
transcriptional unit. NorR is a bEBP (bacterial enhancer-
binding protein) of the AAA+ (ATPase associated with
various cellular activities) class of proteins and activates the
σ 54-dependent transcription of norVW in response to NO
[4,5]. NorR and the global regulator, NsrR, are the only
known dedicated NO sensors [6].

In contrast to the housekeeping σ 70-class of bacterial σ

factors, transcription by the σ 54-class requires the bEBP
to use the energy generated from ATP hydrolysis to drive

Key words: GAFTGA motif, interdomain repression, nitric oxide, NorR, oligomerization, σ 54-

dependent transcription.

Abbreviations used: AAA+ , ATPase associated with various cellular activities; bEBP, bacterial

enhancer-binding protein; GAF, cGMP-specific and -stimulated phosphodiesterases, Anabaena

adenylate cylases and Escherichia coli FhlA; GAFNorR , GAF domain of NorR; HTH, helix–turn–helix;

NO, nitric oxide.
1To whom correspondence should be addressed: (email matt.bush@bbsrc.ac.uk).

conformational rearrangements in the σ 54-RNA polymerase
holoenzyme. As is the case for other AAA+ proteins, bEBPs
are competent to hydrolyse ATP when assembled as a
hexamer, since the catalytic site is formed by residues from
adjacent protomers ([7] and references therein). The central
(AAA+) domain (Figure 1A) contains specific structural
features that enable nucleotide-dependent interactions with
σ 54. The highly conserved GAFTGA motif forms part of
a surface-exposed loop that contacts σ 54 during the ATP
hydrolysis cycle [8–11]. In the ATP-bound transition state,
the GAFTGA-containing loop 1, assisted by a second loop
(loop 2) is in an extended conformation and is therefore able to
establish contact with region I of the alternative σ factor, σ 54.
After phosphate release, the surface-exposed loops compact
down towards the surface of the AAA+ domain, enabling
relocation of the σ factor and formation of the open promoter
complex [12–14].

Many bEBPs have an additional N-terminal regulatory
domain (Figure 1A) that stringently controls the activity
of the AAA+ domain either positively or negatively
in response to various environmental cues [15]. NorR
contains an N-terminal regulatory GAF (cGMP-specific and
-stimulated phosphodiesterases, Anabaena adenylate cylases
and Escherichia coli FhlA) domain that has been predicted to
bind NO. It has previously been shown that an N-terminally
truncated form of NorR, lacking the regulatory GAF domain
(NorR�GAF), is competent to activate transcription in
the absence of NO [4,16]. Therefore NorR falls into a
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Figure 1 Structural features of NorR

(A) Domain architecture of the bEBP NorR showing the N-terminal

regulatory GAF domain (purple) containing a non-haem iron centre,

the central ATPase-active domain (red) and the C-terminal DNA-binding

domain (green) that contains an HTH motif. (B) Proposed model of

the NO-sensing non-haem iron centre in the NorR regulatory domain.

Structural model of the GAF domain of NorR based on the GAF-B

domain of 3’,5’-cyclic nucleotide phosphodiesterase [26] showing the

iron centre (magenta) and proposed ligands Cys113, Asp96, Asp99, Arg75

and Asp131 (labelled). The Arg75 residue is the most likely to undergo

ligand displacement upon NO binding. Also shown is the Arg81 residue,

at the opposite end of an α-helix that also contains the Arg75 ligand. The

model predicts that Arg81 is surface-exposed and well placed to make

contact with the NorR AAA+ domain. (C) The σ 54-interaction surface of

the AAA+ domain of NorR is the target of GAF-mediated repression.

Structural model of the AAA+ domain of NorR based on the NtrC1

structure [23] (PDB code 1NY5, chain A). The helices and loops (H3

and H4, L1 and L2) involved in nucleotide-dependent conformational

changes in bEBPs are labelled in red. Residues that were substituted

as a consequence of the PCR mutagenesis of the AAA+ domain are

indicated. The Phe264 and Gly266 residues form part of the GAFTGA motif

that contacts σ 54.

category of bEBPs in which the activity of the central
AAA+ domain is negatively regulated by the N-terminal
domain [17]. In the absence of NO, the GAF domain
represses the activity of the AAA+ domain via inter-
domain repression [4]. The detection of the NO signal causes
this repression to be relieved, allowing ATP hydrolysis by
NorR and thus driving transcriptional activation. Other
activators of σ 54-dependent transcription that are controlled
by similar mechanisms of interdomain repression include
XylR [18,19], DmpR [20,21], DctD [22] and NtrC1 [23].

In addition to the central (AAA+) and regulatory domains,
bEBPs also have a C-terminal HTH (helix–turn–helix)
domain (Figure 1A) that binds to conserved enhancer-like
sequences 80–150 bp upstream of the bacterial promoter.
This ensures that activation of transcription occurs only at
the specific promoter(s) with which the bEBP can associate.
Interactions between the bEBP upstream of the promoter and
the holoenzyme at the transcriptional start site are facilitated
by DNA bending, assisted by IHF (integration host factor)
[18,24].

In the present paper, we review recent developments
in our understanding of the mechanism of NO-dependent
activation of transcription by NorR. We address various
aspects of this mechanism including: (i) a novel mechanism of
NO sensing by the GAF domain, (ii) how the DNA-binding
properties of the activator control NorR activity, and (iii) how
the GAF domain negatively regulates the AAA+ domain.

Mechanism of NO sensing by NorR
In order to investigate the mechanism of NO sensing in
NorR, EPR spectroscopy was carried out on whole cells of
E. coli exposed to NO [25]. A new EPR signal was observed in
the g = 4 region only when the cells expressed NorR and were
exposed to NO. This indicates that NorR contains a non-
haem iron centre, since similar spectra have been observed
for several non-haem iron enzymes when exposed to NO
([25] and references [15–19] therein). This characteristic EPR
signal was observed in cells expressing the isolated GAFNorR

(GAF domain of NorR) but not in cells that expressed a form
of the protein lacking the regulatory domain (NorR�GAF),
indicating that the non-haem iron centre is present within the
N-terminal GAF domain. Purification and reconstitution of
NorR and GAFNorR with ferrous iron gave identical NO
spectra to those observed with whole-cell EPR, confirming
that the NorR GAF domain contains the non-haem iron
centre. This is the first example of a GAF domain using
a transition metal as a mechanism of sensing and, to our

C©The Authors Journal compilation C©2011 Biochemical Society
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knowledge, reveals a novel biological role for the activation
of a non-haem iron centre to form a high-spin {Fe(NO)}7

(S = 3/2) complex.
The spectroscopic features of this paramagnetic

mononitrosyl iron complex suggest that the iron centre
has distorted octahedral symmetry and is co-ordinated by
five or six ligands within the GAF domain. In order to
study the co-ordination of the iron centre in NorR, targeted
mutagenesis was carried out at conserved residues within the
regulatory domain [26]. As a result, five candidate ligands
were proposed: Asp99, Asp131, Cys113, Arg75 and Asp96

(Figure 1B). Variant forms of NorR containing substitutions
at these positions gave proteins that were unable to bind
iron or did not exhibit the characteristic g=4 EPR signal
after reconstitution in vitro. Therefore these residues are
likely to have a role in iron co-ordination. These EPR data
are in agreement with our hexa-co-ordinated structural
model (Figure 1B). In the model, Asp96 is proposed to be a
bidentate ligand. Although it is possible that a water molecule
instead provides a sixth ligand, we believe this is unlikely
since the iron-binding site appears to be solvent inaccessible.
Although, arginine is not an ideal ligand for transition metals,
examples have been reported elsewhere such as for biotin
synthase [27]. The predicted hexa-co-ordination of the iron
centre suggests that one of the five predicted ligands would
need to be displaced in order to form the mononitrosyl iron
complex. Arg75 is the most likely candidate to relinquish a
binding site for NO and may also stabilize the NO-bound
form of the iron through hydrogen bonding [26].

Role of enhancer-DNA in NorR-dependent
activation of transcription
In previous work, purified NorR has been shown to bind
to three sites in the norVW promoter region [28]. To assess
the importance of each of these sites, the enhancers were
individually altered from the consensus GT-(N7)-AC to GG-
(N7)-CC and introduced upstream of norV–lacZ promoter
fusions on the E. coli chromosome. Disruption of any one
of the three sites completely abolished the ability of NorR
to activate transcription of norVW in vivo [29]. Biochemical
experiments have demonstrated that the ATPase activity of
NorR is dependent not only on the presence of NO but also
on the enhancer DNA that contains the three NorR-binding
sites [25]. In the absence of the regulatory GAF domain
(NorR�GAF), the requirement for the NO signal is relieved,
but enhancer DNA is still required to stimulate activity.
When any of the three binding sites was individually altered
from the consensus, the enhancer-dependent ATPase activity
of NorR�GAF was significantly diminished [29]. Efficient
open complex formation by NorR in vitro also required
the three enhancer sites, consistent with the requirement for
bEBPs to use the energy from ATP-hydrolysis to remodel
the σ 54-RNA polymerase holoenzyme [29]. The prerequisite
for the three enhancer sites for transcriptional activation by
NorR both in vivo and in vitro might reflect a requirement for
three NorR dimers to assemble to form an inactive hexamer

on the promoter DNA, given the dyad symmetry present
at each of the sites. However, binding of NorR to a 21 bp
sequence encoding one of the enhancer sites (NorR site 1)
stimulated both the ATPase activity and oligomerization
state to a certain extent, indicating that DNA binding per
se promotes self-association and ATPase activity. Binding
to a 66 bp DNA fragment that contained all three enhancer
sites stimulated ATPase activity and oligomerization further,
although not to the levels observed when a longer 266 bp
fragment containing the intergenic region was used. This
implies that the DNA flanking the enhancer sites has an
important role in stabilizing the NorR oligomer, possibly
by wrapping around the hexamer. In agreement with this,
EMSAs (electrophoretic mobility-shift assays) revealed a
significant increase in the affinity and co-operativity of
binding when the longer DNA fragment was present.
Furthermore, negative-stain electron microscopy revealed the
formation of protein–DNA complexes with the expected
diameter of a NorR hexamer in the presence of the 266 bp
DNA, but not with the 66 bp or 21 bp fragments. Overall,
these data support a model in which three NorR dimers
bind to the enhancer sites, inducing conformational changes
that stimulate the formation of a higher-order oligomer, most
probably a hexamer. The results suggest that this higher-order
NorR species is stabilized by extensive DNA interactions,
possibly by wrapping around the hexamer to form a stable
nucleoprotein complex.

Negative regulation of NorR activity
To investigate the mechanism of interdomain repression in
NorR, we used a random mutagenic approach to search
for mutations in the AAA+ domain that enable escape
from GAF domain-mediated repression [30]. This approach
generated mutant versions of NorR that were able to activate
the transcription of a norV–lacZ fusion in vivo in the
absence of NO, generated endogenously by the addition
of potassium nitrite. In some cases, the NorR variants
exhibited activity in the absence of NO signal that was
similar to a truncated version of NorR lacking the GAF
domain (NorR�GAF). This phenotype indicates a complete
bypass of the repression of AAA+ activity by the GAF
domain. In structural models of the NorR AAA+ domain
based on the crystal structure of the NtrC1 AAA+ domain
(Figure 1C), the substitutions identified are located in H3
(helix 3), H4 (helix 4) or L1 (loop 1). This is the region
of the AAA+ domain that undergoes nucleotide-dependent
conformational changes before engagement with σ 54 [9,12].
Significantly, two bypass mutations were identified in the
GAFTGA motif, within surface-exposed loop 1. The G266D
and G266N mutations within the second glycine of this
motif enabled complete escape from the negative control
exerted by the GAF domain. Furthermore, when additional
substitutions were made to disrupt NO signalling at the
iron centre, both GAFTGA variants retained the ability to
activate transcription in vivo, suggesting that NO sensing is
not required for their activity. The ability of these variants to

C©The Authors Journal compilation C©2011 Biochemical Society
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Figure 2 Model of NorR-dependent activation of norVW

(A) Binding of NorR to the norR–norVW intergenic region that contains the three NorR binding sites (1, 2 and 3, highlighted

in red) is thought to facilitate the formation of a higher-order oligomer that is most likely to be a hexamer [29]. (B) Although

the hexamer is bound to DNA (not shown), in the absence of NO, the N-terminal GAF domains (blue rectangles) negatively

regulate the activity of the AAA+ domains (green circles) by preventing access of the surface-exposed loops to σ 54. (C)

In the ‘on’ state, NO binds to the iron centre in the GAF domain forming a mononitrosyl iron species. The repression of

the AAA+ domain is relieved, enabling ATP hydrolysis by NorR coupled to conformational changes in the AAA+ domain.

(D) During the nucleotide hydrolysis cycle, the surface-exposed loops (red) that include the GAFTGA motifs move into an

extended conformation to allow σ 54-interaction and remodelling.

activate transcription is surprising given the high conservation
of the GAFTGA motif and that substitutions at this position
are likely to affect the conformational flexibility of the loop.

In several bEBPs (e.g. NtrC1 and DctD), the N-terminal
regulatory domain regulates the activity of the AAA+ domain
by controlling the oligomerization state of the activator
[22,23]. In order to further study how the Gly266 variants
escape repression by the GAF domain, the variant proteins
were purified using an N-terminal His-tag. DNA-binding
studies demonstrated that both wild-type NorR and the
G266D and G266N substitutions had similar affinities for
the norVW promoter DNA (Kd ∼100 nM) indicating that
these Gly266 substitutions do not influence binding of NorR
to the three enhancer sites. Furthermore, gel filtration studies
indicated that, like NorR, the Gly266 variants eluted at a
volume corresponding to a monomer or dimer in the absence
of DNA, but formed stable higher-order oligomers in the
presence of the promoter DNA. Analysis of eluted fractions
by negative-stain electron microscopy showed the formation
of particles of the size expected for a NorR hexamer.
Furthermore, the ATPase activity of the substitutions was
enhancer DNA dependent as is the case with wild-type
NorR. Since the GAFTGA substitutions do not exhibit
any changes in enhancer-dependent oligomerization, it seems
unlikely that interdomain repression by the regulatory GAF
domain is exerted by changing the oligomerization state of
the AAA+ domain. Rather, the properties of the bypass
mutations in the GAFTGA loop suggest that the regulatory

domain negatively regulates the activity of the AAA+ domain
by preventing access of the surface-exposed L1 and L2
loops to σ 54 (Figure 2). This model is further supported
by genetic suppression studies. Previous work identified the
R81L substitution that results in partial escape from GAF-
mediated repression [26]. Targeted mutagenesis at the Arg81

position confirms that this residue is critical in maintaining
the mechanism of interdomain repression. Our structural
model (Figure 1B) places it on the surface of the GAF domain,
at the opposite end of an α-helix that also contains the
Arg75 residue. Displacement of the Arg75 ligand upon NO
binding would lead to significant conformational changes
along this helix and so the Arg81 residue may have a key
role in the transmission of the NO signal to the AAA+

domain. Significantly, hydrophobic changes at Arg81 are
able to specifically suppress the escape phenotype of AAA+

bypass variants including the GAFTGA mutant G266D. This
suggests that the GAF domain targets the GAFTGA motif to
prevent interaction with σ 54 in the absence of NO signal.
Binding of NO to form the mononitrosyl iron complex
is expected to lead to conformational changes in the GAF
domain which release repression, allowing the GAFTGA
motif to contact the σ factor.

Conclusions
Our current model for the NO-dependent activation of
norVW transcription by NorR is shown in Figure 2. The
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work reviewed in the present paper suggests that enhancer
DNA induces conformational changes in NorR that allow
the formation of an inactive hexamer. This is in stark contrast
to bEBPs such as NtrC1 where the signal drives the process
of oligomerization [23]. We suggest that in the case of NorR,
the pre-formation of a NorR hexamer on enhancer DNA,
‘poised’ to respond to NO, allows the cell to rapidly respond
to NO-induced stress. We have shown that this dedicated NO
sensor detects the signal through the formation in a novel
mononitrosyl complex at the non-haem iron centre of the
regulatory domain. Furthermore, we have identified a novel
mechanism of interdomain repression in which the regulatory
domain targets the σ 54-interaction surface in the absence of
NO to prevent ATP hydrolysis.
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