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Abstract

The integrity of the small intestinal epithelial barrier is essential for a
healthy gut and preventing infection. Tight junction complexes main-
tain barrier function as they seal adjacent cells and regulate paracellular
permeability. Their importance is exemplified by the many diseases and
infections associated with dysregulated tight junction complexes, as ob-
served in Inflammatory Bowel Disease. Tight junction complexes include
proteins, such as occludin, claudins and Zonula-Occludens, that interact
with each other and the cytoskeleton. The function of occludin is un-
clear, but studies show that it can contribute to the pathogenesis of
various diseases and be affected by pathogens such as Toxoplasma gondii
(T. gondii), during infection. A third of the world’s population is thought
to be infected with 7. gondii and it can cause fatal Toxoplasmosis. 7.
gondit invades the host via the gastrointestinal tract, crossing the epi-
thelial barrier to disseminate into the body and studies indicate that the
paracellular pathway is important for this process.

The aim of this research was to ascertain whether or not 7. gondu
interacts with occludin during the invasion of and transmigration between
epithelial cells. Epithelial cells derived from the small intestine were
used to determine if 7. gondii alters barrier integrity and tight junction
physiology.

This thesis demonstrates that T. gondii can infect and disseminate
between epithelial cells without affecting barrier integrity. In addition to
altering cellular distribution, 7. gondii co-localised with and bound to
the extracellular loops of occludin, indicating that this protein could be
a key component of the moving junction. In cells where the expression
of occludin was reduced, transmigration was impaired, suggesting that
interactions with occludin are a possible mechanism of transmigration
between epithelial cells. Results identify possible regulators and binding
partners of occludin, derived from both cells and 7. gondii, which could

represent targets for therapeutic intervention.
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Chapter 1

Introduction

1.1 The Gastrointestinal Tract

1.1.1 Anatomy of the gastrointestinal tract

The human gastrointestinal tract (GI tract) is a 200m? tubular organ
the primary function of which is to absorb water and nutrients. The GI
tract consists of the oesophagus, stomach, small intestine, large intest-
ine, rectum and anus. The small intestine is the main site of digestion
and absorption, and is divided into three sections called the duodenum,
the jejunum and the ileum. In humans, the small intestine is 6m long
and surface area is increased by longitudinal folds within the tube which
are further folded into finger-like projections called villi, and tubular in-
vaginations called crypts of Lieberkiihn. Individual cells have microvilli
on their surface to increase the absorptive area and limit adherence of
microbes. Cells are covered in a mucus layer which acts as a primary
defence against physical and chemical injury caused by food, the micro-
biota and pathogens in the lumen [Kim and Hol 2010]. The microbiota,
which consist of over 1000 species, comprise of microbes that reside in
the GI tract that are important for extracting additional nutrients from
the diet and producing vitamins, preventing harmful microbes (patho-
gens) from invading the epithelium, promoting peristalsis, regulating cell
proliferation and differentiation, and stimulating the intestinal immune
system |O’Hara and Shanahan| 2006; Hooper and Macpherson, 2010].
The intestinal immune system lies within and beneath the epithelium in
a layer of connective tissue called the lamina propria, which resides on
top of smooth muscle tissue called the muscularis mucosa. Collectively,
the epithelium, lamina propria and muscularis mucosa make up the gut
mucosa which rests on a network of blood vessels and lymphatic systems
[Turner and Turner, [2010].
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1.1.2 The intestinal immune system

The immune system consists of cells such as lamina propria lymphocytes
(LPLs), intraepithelial lymphocytes (IELs), macrophages, dendritic cells,
natural killer cells, neutrophils and secretory plasma cells.

IELs in the small intestine are predominantly CD8" T cells and ex-
press either the o T-cell antigen receptor (TCR) or the y& TCR, the
latter of which is present in the highest proportion |Guy-Grand et al.
1991]. IELs are situated at the basal domain of the mucosal epithe-
lium and bind to cells via op 37 integrin |[Taraszka et al., 2000|. IELs are
thought to have a protective function and can respond to stress signals re-
leased from epithelial cells in conjunction with releasing their own. Stress
signals include the secretion of small soluble signalling molecules called
cytokines and chemokines (chemotactic cytokines) which can be anti-
inflammatory and promote wound healing and cell proliferation |[Chen et
al.l 2002b; Ismail et al.; 2009]. In addition, they instigate the recruitment
and activation of neutrophils, macrophages and antigen presenting cells
such as dendritic cells to sites of infection, leading to inflammation [Shaw
et al.l [1998; [ITramonti et al., 2006; Dalton et al., 2006; Komano et al.|
1995|. Neutrophils and macrophages phagocytose bacteria while natural
killer cells lyse bacteria, which leads to secretion of cytokines such as
Tumour Necrosis Factor o (TNFa), Interferon y (IFNy) and hydrolytic
enzymes like lysozyme |Colgan et al., [1993].

Epithelial cells, innate immune cells and subsets of T lymphocytes re-
cognise microbes and microbial antigens by pattern recognition receptors
on the cell surface known as Toll like receptors (TLRs), and in the cyto-
plasm, such as the nucleotide-binding oligomerisation domain (NOD)
family of proteins, for example NOD2 [Hornef et al| [2003; Minns et
al.l 2006; [Wesch et al., [2011]. Upon binding, signal transduction cas-
cades are initiated through myeloid differentiation factor 88 (MyD88),
resulting in activation of inflammatory pathways following NFxB (nuc-
lear factor kappa light chain enhancer of activated B cells) translocation
to the nucleus, that leads to the secretion of cytokines, chemokines and
anti-microbial proteins.

Intertwined within the crypts and villi of the small intestine is the
follicle-associated epithelium (FAE) containing specialised microfold cells
(M cells), which lie in close proximity to Peyers Patches (PP, Figure[1.1]).
The antigens they absorb are detected by the underlying immune cells

such as dendritic cells, macrophages and activating LPLs, which travel
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through the lymphatic system to the lamina propria [Miller et al., [2007].
M cells are different to other enterocytes as they lack a defined brush
border, have no glycocalyx mucus layer, and morphologically have an
invaginated basal membrane in which lymphocytes can be found [Corr
et al.l 2008|. After microbial challenge the numbers of M cells increase
which allows for higher antigen uptake and a rapid response from immune
cells [Bahi et al., 2002; Kernéis et al., [1997).

Antigen uptake can also occur independently of M cells. Within
the lamina propria, dendritic cells can migrate between cells and ex-
tend dendrites into the lumen and sample antigen from non-pathogenic
bacteria |[Rescigno et al.l [2001; |Rimoldi et al., |2004; Arques et al., 2009].
Having sampled antigen from the lumen, dendritic cells migrate to the
Peyers Patches to induce B cell differentiation into plasma cells. Plasma
cells migrate to the lamina propria where they secrete Immunoglobulin
A (IgA) that is transcytosed across the epithelium via the polymeric Im-
munoglobulin receptor, to decrease microbial contact with the epithelium
and regulate the composition of the microbiota [Macpherson et al., 2000].

Both enterocytes and dendritic cells express Major Histocompatibility
Complexes (MHC) I and II, that process internal and external antigens
respectively, and present the MHC-associated peptides to T cells. Dend-
ritic cells have been shown to prime IELs via [IFNy production (|[Moretto
et al., 2007]) and are responsible for controlling tolerogenic or activat-
ing T cell effector responses following MHC presentation |Laffont and
Powrie, 2009]. Tolerance describes the unresponsive nature of the im-
mune system towards the microbiota and self antigens, and a breakdown
in tolerance can lead to disorders of the GI tract such as Inflammatory
Bowel Disease (IBD) [Weiner et al., [2011].

1.1.3 Structure and cells of the small intestine

Epithelial cells are derived from pluripotent stem cells in the base of
the crypts that, by asymmetric division, produce one daughter cell and
one stem cell [Marshman et al., [2002; Potten and Loeffler, 1990]. Most
daughter cells migrate upwards along the crypt and becoming increas-
ingly differentiated towards the villus. Differentiated cells have a specific
function within the small intestine and these include Paneth cells, goblet
cells and entero-endrocrine cells which are embedded within a single layer
of enterocytes (Figure [L.1]).

The 4 - 16 stem cells in each crypt divide every 12 - 32 hours, and with

enterocytes surviving for 2 - 3 days in the small intestine in a process that
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is responsive to the microbiota, they are constantly shed at the tip of the
villi as they are forced upwards [Savage et all 1981 Marshman et al.,
2002; [Potten and Loeffler, 1990|. The crypt contains approximately 250
- 350 cells of which approximately 150 proliferate twice a day [Potten
and Loeffler] 1990; [Watson et al.l 2005]. Within each villus there are
approximately 3500 cells that are derived from 2 or 3 individual crypts
[Potten and Loeffler, (1990].

Entero-endocrine cells secrete peptide hormones such as gastric inhib-
itory polypeptide, substance P and glucagon like peptide 1, and contrib-
ute to the regulation of lipid absorption, gastric emptying, glycemia, cell
proliferation and cell migration |[Mellitzer et al., |2010]. Goblet cells are
characterised by the presence of large vacuoles which contain mucin. Mu-
cin along with other innate defence molecules are secreted from these cells
to form the glycocalyx mucus layer that can be up to 150um thick within
the small intestine [Johansson et al.l 2008]. Paneth cells are found at the
base of the crypts and can live up to 70 days |[Ouellette, |2010; (Gordon and
Hermiston), [1994]. They are characterised by large dense granules which
contain anti-microbial proteins including defensins, angiogenin, cryptdins
and lysozyme [Ouellette, 2010]. Anti-microbial proteins regulate micro-
bial colonisation in the GI tract, alter the composition of microbiota
present and, most importantly, kill pathogens [Vaishnava et al., 2008|.

The single layer of enterocytes accounts for 95% of cells within the
GI tract and express microvilli projections on their apical surface (brush
border), which contributes to the high absorptive ability of the cells [Yu
and Yang, 2009]. They are tall, columnar polarised cells approximately
20 - 30um in height, with basally located nuclei [Massey-Harroche, |2000;
MacDonald, 2003; Macpherson and Harris, 2004]. They produce vari-
ous extracellular matrix proteins which may differ in composition along
the crypt-villus axis according to the state of cell differentiation [Hahn
et al. [1987b|. It is generally accepted that the expression of various
microvilli hydrolases such as alkaline phosphatase, sucrase-isomaltase,
lactase, dipeptidylpeptidase IV and aminopeptidase N serve as indic-
ators of cellular differentiation for small intestinal cells grown in culture
[Massey-Harrochel 2000; Beaulieu et al., [1989|. Enterocytes found within
the lower villi and crypts are positive for the proliferation-associated an-
tigen Ki67, whereas enterocytes found within the upper villi are positive
for lactase-phlorizin hydrolase and maltase-glucoamylase |[Pageot et al.,
2000].

In culture, these molecules may not be expressed without extra sup-
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Figure 1.1: Anatomy of the small intestine. Cells are derived from stem cells
in the base of the crypts. Paneth cells migrate downwards, while endocrine, goblet
cells and enterocytes migrate upwards into the villi. All cells, except microfold cells
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pria. Although cells are constantly being shed towards the tip of the villi, barrier
integrity is maintained.
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plementation of cofactors, matrices, non-essential amino acids and other
stimulatory components [He et al., [1993|. Also, cells grown on different
mediums such as collagen, laminin, and fibronectin extracellular matrix
proteins |Rothen-Rutishauser et al., [2000; Sanders and Basson, 2000],
Englebreth-Holm-Swarm sarcoma tumours extracellular matrix proteins
(otherwise known as Matrigel, [Wood et al. [2003]), and a biomatrix
[Hahn et al.| [1987a], differ in degree of polarisation and differentiation
[Simon-Assmann et al., 2007; [Paul et al.| [1993].

It should be noted that the structure and composition of the murine
GI tract and the human GI tract are not identical, and recent publications
have focussed on comparing these differences in order to address their
significance [Haley|, 2003; Mestas and Hughes, 2004]. For example, the
numbers of M cells found in the human GI tract are lower than that
of mice; human neutrophils are a source of defensins in humans but
not mice, although murine Paneth cells secrete 20 types of defensins
whereas human Paneth cells secrete only two types. Murine epithelial
cells express the polymeric IgR receptor which can also bind IgM, whereas
human cells express the IgA receptor. There are also differences within
Immunoglobulin isotype production between species which may cause
different signalling pathways to be transduced in response to microbial
stimulation |[Haley, 2003; Mestas and Hughes, 2004].

1.1.4 Cellular junctions

Epithelial cells are joined together by intercellular junctions (Figure .
Tight junctions are found directly beneath the apical surface of the cells
on the lateral domain, and are linked to the actin cytoskeleton. Tight
junctions form the main barrier between adjacent cells and are discussed
in detail in Section Below the tight junctions are adherens junctions
which link to cytoskeletal microfilaments and consist of calcium depend-
ent proteins that contribute to cell - cell adhesion, through interactions
with one another and with tight junction proteins [Knudsen and Whee-
lockl, [1992; Hinck et al., [1994; [[toh et al.. [1999]. They contain catenins
(such as o, B, y) and cadherins (such as E, N, P) which create a gap of
20nm between cells [Revel and Karnovsky, |1967; Knudsen and Wheelockl,
1992|. Desmosomes, below adherens junctions, interlock adjacent cells
and provide anchorage for intermediate cytoskeletal filaments which gives
tensile strength to the cells [Green and Jones, 1996]. They include pro-
teins such as desmogleins and desmocollins which produce gaps of 25nm

|[Farquhar and Paladel 1963; |Green and Jones, [1996]. Hemidesmosomes
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include integrins and laminin-5 which adhere cells to the extracellular
matrix (for example collagen, laminin, fibronectin and proteoglycans),
and are connected to intermediate filaments of the cytoskeleton |[Gagné
et all 2010; Teller and Beaulieu, 2001; Green and Jones, [1996]. Gap
junctions act as communication channels and are permeable to molecules
smaller than 1kDa which pass between cells via passive diffusion [Kumar
and Gilula, 1996; Farquhar and Palade, [1963|. They maintain a distance
between cells of 1.5 - 2nm, and are composed of connexins which form
complexes with one another to generate a hexamer across the junction,
binding through their extracellular loops that contain three conserved

cysteine residues [Revel and Karnovsky, [1967; [Kumar and Gilula), 1996|.

1.2 Tight junction formation and regulation in the

small intestine

The paracellular movement of molecules between cells accounts for 85%
of all passive migration |Frizzell and Schultz, |1972|, allowing molecules
of 3.6 - 20A (but up to 60A in the crypts of Lieberkiihn) to pass through
the junctions, which are 10nm wide but spaced 18nm from centre-to-
centre |Anderson, 2001 |[Furuse et al.l [1996; Madara and Dharmsath-
aphorn), [1985; Fihn et al., 2000]. This allows molecules up to 20kDa

to pass through the paracellular pathway at bicellular (joining of two
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cells) junctions and 10kDa molecules at tricellular (joining of three cells)
junctions [Krug et al.l 2009]. The reason larger macromolecules cannot
flow through the paracellular pathway is because of tight junction com-
plexes found at the apical pole of epithelial cells [Farquhar and Palade,
1963|. Freeze fracture electron microscopy has been used to show that
tight junctions appear as a network of anastomosing strands and grooves
which form a continuous belt around each cell and restrict the diffu-
sion of water, ions and solutes between cells [Staehelin, 1973|. This is
defined as the gate function, with the belt consisting of transmembrane
domain-containing proteins which are involved in the direct adhesion to
adjacent cells. Cytoplasmic plaque proteins make up the remainder of
the tight junction complex and are involved in scaffolding the transmem-
brane proteins to the actin cytoskeleton and initiating signal transduction
pathways. There are over 50 proteins which make up the tight junction
complex, of which five are the transmembrane domain proteins occludin,
claudins, Junctional Adhesion Molecules (JAM), CoxsackieAdenovirus
Receptor (CAR) and Crumbs3. The remaining proteins are referred to
as cytoplasmic plaque proteins and include adaptors, regulatory proteins
and transcriptional and post-transcriptional regulators.

Another function of tight junctions is to restrict the free flow of mo-
lecules within the apical domain (in contact with the gut lumen) from
mixing with those from the basolateral domain (in contact with the gut

mucosa and connective tissue), and this is defined as the fence function.

1.2.1 Generation of cell polarity

The fence function of tight junction complexes generates ionic and solute
gradients across the cell surface which gives rise to cell polarity. Cell
polarity is regulated in part by the conserved tight junction proteins
Crumbs3 and PARtitioning defective 3 (Par) complexes [Roh et al.l 2003].
Crumbs3 is a transmembrane domain protein with epidermal growth
factor and laminin repeats which accumulate at the apical domain [Makarova
et al., 2003]. Along with Protein Associated with Lin Seven 1 (PALSI),
they stabilise the generation of the apical domain [Bachmann et al., 2001}
Makarova et al., [2003|. Active Rho-GTPase cdc42 binds to Par6 which
in turn increases the affinity of Par6 to bind to atypical protein kinase
C (aPKC) |Garrard et al., 2003]. GTPases are enzymes that bind to
guanosine triphosphate that have a range of functions including signalling
transduction. Calcium is required to activate the adherens junction pro-

tein E-cadherin. E-cadherin and 8 catenin bind to o catenin which links
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the adherens junctions to Zonula-Occludens 1 (ZO-1) and occludin com-
plexes at the tight junctions [Miiller et al.l 2005; Drees et al.. 2005|.
Junctional adhesion molecule (JAM) and adherens junction protein E-
cadherin, are thought to recruit Par3 to the tight junction complex so
that it can bind to Par6-aPKC and cdc42 [Kim et al., [2000; Ebnet et
al.l 2001). PALSI recruits the Par6/Par3/aPKC complex to the apical
domain [Straight et al., 2004] and interacts with PALS-Associated Tight
Junction protein (PATJ) which binds to Zonula-Occludens 3 (ZO-3) [Roh
et al., 2003; Lemmers et al.l 2004} Roh et al., 2002|. Par3 suppresses the
LIM kinase 2-induced phosphorylation of cofilin, an actin-sequestering
protein which stabilises actin filaments to facilitate tight junction as-
sembly |[Chen and Macara, [2006).

The JAM family of proteins associate with cingulin, probably through
the actin cytoskeleton, and binds to ZO-1 through PDZ domains (named
after the three proteins originally identified; Post Synaptic Density Pro-
tein (PSD95), Drosophila disc large tumour suppressor (DIgA), and Zonula
Occludens-1 protein (ZO-1)), and can form homodimers which are thought
to play a role in cell-cell adhesion [Martin-Padura et al., 1998; [Ebnet et
al.l [2000; |Bazzoni et al.. 2000alb; Blasig et al. |2006]. CAR also binds
to ZO-1 and participates in cell adhesion and regulation of paracellular
permeability (Figure |Cohen et al., [2001].

Zonula occludens -1, -2 and -3 are central to the tight junction com-
plex as they link the transmembrane proteins to the actin cytoskeleton
[Itallie et al., |2009]. They have 3 PDZ domains, a src homology do-
main, and a guanylate kinase-like homologue domain and are therefore
MAGUK proteins (Membrane Associated GUanylate Kinase homologue
proteins family). MAGUK proteins have PDZ (PSD95/dlg/Z0O-1), SH3
(src¢ homology 3, consensus motive of SH3 domains), GuK (guanylate
kinase homologue, sequence homology to the GuK domain in guanylate
kinase) domains, acidic and proline rich regions |Gonzalez-Mariscal et al.,
2000]. ZO-1, -2, -3 bind to claudins 1 - 8 via the PDZ domains, which
is considered one mechanism by which claudins cluster at the tight junc-
tion complex [Itoh et al. [1999]. ZO-1 dimerises through PDZ domains to
form homodimers and heterodimers with ZO-2 and ZO-3 [Utepbergenov
et al., |2006; Wittchen et al. [1999).

In a ZO-1 knock out epithelial cell line (murine Eph4 mammary cells),
Umeda et al. 2004, showed that although cells appeared normal in terms
of tight junction formation and cell morphology, observed subtle changes
between parental cells and ZO-1 “/~cells [Umeda et al., [2004]. This in-
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cluded the redundant function of ZO-2 which was expressed at higher
levels in the ZO-17/-cells, the lack of cingulin at the tight junctions, and
the aberrant re-formation of tight junctions [Umeda et al., |2004]. The
delayed formation was later identified to be caused by a lack of SH3 do-
main within ZO-1, showing the importance of MAGUK proteins in tight
junction assembly |[McNeil et al., [2006].

ZONAB (ZO-1 associated nuclear acid binding) protein is a Y-box
transcription factor that normally binds to ZO-1. During cell cycle trans-
itions when ZO-1 expression is low, ZONAB interacts with cell division
kinase 4 which initiates S phase of the cell cycle [Balda et al., 2003|.

1.2.2 Tight junction assembly and disassembly

Tight junction biogenesis commences in response to a number of intra-
cellular triggers including calcium, kinases, protein phosphorylation, ad-
enosine 3’,5'-cyclic monophosphate (cAMP) and phospholipase C [Zhang
et al, [2006; Staddon et al., [1995; Ward et al., 2002, 2003]. Tight junc-
tion disruption can be induced by calcium, cytokines, phosphatases and
pathogens [Nunbhakdi-Craig et al.,[2002; lJepson et al.,|1995; |Al-Sadi and
May, [2007; Ma et al., 2004; Muza-Moons et al., 2004].

The initiation of tight junction biosynthesis following increases in
calcium concentration using the calcium switch model has been widely
employed to investigate tight junction assembly and disassembly. In the
presence of 1.8mM calcium, tight junctions form and cells polarise and
when extracellular calcium is reduced to levels of ~ 5uM, cells become
depolarised and loose cell-cell adhesion [Nigam et al., [1992]|. This ef-
fect can be seen within 15 minutes of calcium withdrawal [Siliciano and
Goodenough| 1988; Riesen et al., 2002|. The actin cytoskeleton is also
important for generating tight junctions and a stable actin microfila-
ment complex is important for the localisation of tight junction pro-
teins such as occludin, phosphorylation of myosin and activation of PKC
[Subramanian et al., 2007; Stuart and Nigam, [1995; Turner et al., 1997;
Gonzalez-Mariscal et al.., [1985].

Tight junction disassembly can be triggered by a number of events,
both as a result of external and internal stimuli often resulting in pro-
tein endocytosis [Ivanov et al., [2004; Shen and Turner, 2005|. For ex-
ample, upon calcium depletion, Rho guanine nucleotide exchange factor-
H1 (GEF-H1), disassociates from microtubules and activates Rho asso-
ciated kinase (ROCK) that leads to acto-myosin contraction via myosin

light chain (MLC) phosphorylation and ultimately, a break down in the
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tight junction complex |[Samarin et al., 2007; /Amano et al., [1996|.

Tight junctions are dynamic in nature and using fluorescence recov-
ery after photobleaching (FRAP) techniques, Shen et al. 2008, were
able to show that 70% of occludin and ZO-1, but only 30% of claudin-
1, was mobile within the complex [Shen et al., |2008]. This occurred
through switching between membrane-associated and intracellular pools
of ZO-1 and diffusion of occludin within the membrane [Shen et al.|
2008]. This demonstrates that tight junctions are fluid and readily re-
spond to changes in their environment as, for example, occludin proteins
can rejoin within one hour [Wong and Gumbiner, [1997]. In the small
intestine, the integrity of the barrier during antigen sampling by dend-
ritic cells and lymphocyte migration (called extravasation) is maintained
[Rescigno et al.l 2001]. This is thought to occur because dendritic cells
and intraepithelial lymphocytes express junctional molecules such as oc-
cludin, claudin-1, JAM, ZO-1, E-cadherin,  catenin, connexin 26 which
may assist in forming new tight junction structures between the epithelial
cells [Rescigno et al.l 2001 Inagaki-Ohara et al., 2005; |Alexander et al.,
1998|. Occludin and E-cadherin are constitutively expressed in IELs, and
at higher levels in y6 than of IELs, with only activated T lymphocytes
expressing occludin [Alexander et al., [1998; Inagaki-Ohara et al., 2005).
Lymphocytes and dendritic cells are recruited to sites of infection by cy-
tokines and chemokines secreted from epithelial cells, that can accelerate
the rate of tight junction assembly through Adenosine Monophosphate-
activated Protein (AMP) kinase activation and localisation of ZO-1 to
the membrane complex [Tang et al., [2010a; Rimoldi et al., [2004]. AMP
kinase is an ATP sensor molecule and can be triggered by cytokines such
as TNFo [Tang et al., 2010a]. Modulation of other immune cells has also
been demonstrated whereby JAM and occludin influence the migration
of neutrophils between cells so that barrier function is not compromised
[Martin-Padura et al., [1998; [Huber et al., 2000].

Cell turnover within the small intestine is of the order of one cell
lost per minute [Potten and Loeffler, [1990]. Therefore the integrity of
the barrier must remain intact in order to cope with such a fast re-
newal rate. Studies have shown that tight junction complexes relocate
along the surface to maintain the functionality of the barrier by extrud-
ing adjacent cells and extending lamellipodia to form tight junctions with
neighbouring cells [Madara), 1990; Watson et al., 2005; Matsuda et al.,
2004]. Phosphorylated MLC Kinase (MLCK), which is associated with

wound healing, was often found at areas of cell shedding [Bullen et al.,
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2006). However, only 9% of extensions have been shown to be positive for
Z0-1 and claudins have been shown to internalise during cell movement,
which suggests that other mechanisms are at play [Watson et al., [2005].
Watson et al. 2009, have identified gaps within the monolayer of the
small and large intestines which is filled with an unknown substance that

contributes to maintaining the barrier function [Watson et al.l [2009].

1.2.3 Methods of determining barrier function

The majority of studies investigating tight junction biology have been
performed with Madin-Darby Canine Kidney (MDCK) cells in which
after 12 - 15 hours in culture, tight junctions are fully formed |Gonzalez-
Mariscal et al., [1985]. There are two strains of MDCK cells which differ
in their ionic conductivity, otherwise referred to as TransEpithelial Elec-
trical Resistance (TEER). TEER is used as an indicator of ion selectivity
and tight junction integrity and differs between cell types. Whereas the
TEER of MDCK I cells can reach 3000 .cm?, the TEER of MDCK II
cells is only 100 Q.cm? [Stevenson et al. [1988]. TEER of Tg4 human
colonic carcinoma epithelial cells can reach 1500 Q.cm? (tight monolay-
ers), while murine small intestinal cells m-ICy exert a TEER of 120
Q.cm? (leaky monolayers) [Madara and Dharmsathaphorn), 1985; Bens
et al., 1996]. TEER within rat jejunum tissue is ~97 .cm? and hu-
man ileum ~186 Q.cm? [Banks et al., 2005|. TEER can be measured
when cells are plated onto permeable supports (Figure , and when
tissues are placed into an Ussing chamber. Both techniques provide a
physiological method of introducing molecules, cells, microbes and drugs
to the apical and/or basolateral compartments as permeable supports
have holes within them to allow cells and other molecules to migrate into
the different compartments [Chin et al., [2008; Sakaguchi et al.. 2002;
Ranaldi et al., [1992; Leonard et al., [2010].

This technique also allows the paracellular permeability of a mono-
layer to be analysed. Permeability through tight junctions is an indica-
tion of pore size and selectivity which is reflected by the degree of leaki-
ness or tightness of a monolayer, with tight junctions being usually cation
selective [Madara and Dharmsathaphorn) [1985;|Claude and Goodenough),
1973]. Mannitol (182kDa, 3.6A), inulin (5.2kDa, 11-15A), and dextran
(4 - 40kDa, 14-45A), are often used to measure permeability. It is gener-
ally believed that the expression profiles of claudins control permeability,
which is dependent on the type and number of claudins found |[Morita et
al., [1999].
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Figure 1.4: Cells grown on inserts can be used to measure TEER and
permeability changes following experimental manipulation.

The claudin multigene family consists of over 20 members, which
have molecular weights of 18 - 27kDa and span the membrane four times
[Morita et al., 1999; Holmes et al.,|2006]. They differ in tissue distribution
with the number of strands seen by freeze fracture thought to represent
the number of claudins present within cells [Sonoda et al., [1999]. Claudin
1 and claudin 2 were shown to induce strand formation in L-transfected
cells (derived from stem cells) and claudin 1 can co-localise with occludin
to strengthen the stability of the complex [Furuse et al [1998]. Furuse et
al. 1998 and 2001, showed that cells expressing claudin 1 exhibited tighter
junctional complexes (that is, less leaky to dextran molecules), compared
to cells expressing claudin 2, which provides evidence that claudins can
dictate the permeability of the monolayer |Furuse et al.l 1998, 2001].
Furthermore, the switch from claudin 1 to claudin 2 expression revealed
that claudin 2 creates cation permeable channels [Amasheh et al., 2002).

Claudins have two extracellular loops that differ in their C-terminus
but always end with a Y-V motif which interacts with PDZ domains
of other proteins [Itoh et al., [1999; Morita et al. [1999] and can interact
within and between isoforms [Furuse et al. [1999; Ttallie et al., [2011]. The
first extracellular loop, which contains signature residues W-GLW-C-C,
is involved in selective permeability of the tight junctions whereas the
second loop contributes to cell-cell adhesion [Anderson and Itallie, 2009;
Chiba et al., 2008].

The distribution of claudins varies along the GI tract, along the villus-
crypt gradient and within individual cells, which is unlike occludin and
JAM proteins that are consistently expressed throughout the intestine
|[Holmes et al., 2006|. Claudins 2, 3, 7 and 12 are highly expressed in
the ileum |Fujita et al. 2006]. Claudin 2 is expressed specifically in the
apical domain of crypt and villi cells [Escaffit et al., 2005; Rahner et al.,
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2001], claudin 3 and 7 expressed along the crypt-villus axis on all surface
domains (especially the basolateral domain for claudin 7), claudin 8 at
the basolateral domain, and claudin 12 and 15 on the apical domain of
the villus [Fujita et al., 2006|. Claudin 4 is expressed in the dome region
of the follicle associated epithelium, and at high levels on the basolat-
eral domains of the villi [Tamagawa et al. |2003; Rahner et al. 2001].
The promoter for the claudin 4 gene is similar to the sucrose isomaltase
promoter, (a marker of small intestinal epithelial cell differentiation) [Es-
caffit et al. 2005]. Claudin 8 expression increases along the intestinal
tract, with claudin 15 showing the opposite profile [Holmes et al., [2006].
All these changes are thought to contribute to changes in permeability to
different ions and solutes to maximise absorption along the GI tract. This
is coupled with a change in pore size along the crypt-villi axis whereby
small pores are present in the villus, and larger, but less accessible, ones

present nearer the crypts [Fihn et al.; [2000].

1.2.4 Diseases associated with tight junctions

Many diseases and disorders have been associated with losses in tight
junction proteins and their protein signalling complexes [Furuse, [2009;
Takehara et al., 2009]. Claudin 15 deficient mice have enlarged intestines
associated with increased villi and decreased ionic conductance |[Tamura
et al.| 2008|, while mutations in claudin 16 causes hypomagnesemia hy-
percalciuria syndrome in humans [Simon et al.,|1999]. Some claudins have
been associated with carcinogenesis as reviewed by |Turksen and Troy,
2011]. For example, increased expression of claudin 3 and claudin 4 have
been detected in human ovarian cancer cells, where they are present in a
phosphorylated state [D’Souza et al., 2005, 2007], and claudin 7 mRNA
is downregulated in human colorectal carcinogenesis |Bornholdt et al.,
2011]. Increased occludin proteosome-mediated degradation has been
demonstrated to occur in human irritable bowel syndrome |Coéffier et
al.l 2010).

Pathogens have been shown to affect epithelial barrier function. For
example, reovirus infects the GI tract through M cells, which gives the
virus access to the basolateral domain of enterocytes. Here, reovirus
binds to JAM and causes signal transduction cascades to induce NFxB
activation and apoptosis (as shown using human epithelial cells [Barton et
al.l [2001]). Another bacteria which infects via the basolateral domain is
Listeria monocytogenes which infects at the top of intestinal villi, taking

advantage of cell shedding events where E-cadherin may be temporarily
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exposed to the lumen (as shown using MDCK cells |[Pentecost et al.,
2006]). Binding to E-cadherin activates tyrosine phosphorylation and
ubiquitination of the adherens junction protein, which activates clathrin-
mediated endocytosis (as shown using human epithelial cells [Bonazzi et
al., [2008]).

IBD is a common disorder of the GI tract affecting 1 - 2 per 1,000
people across North America and Europe |[Cosnes et al.,[2011]. Two forms
of IBD are Crohn’s Disease (CD) and Ulcerative Colitis (UC) which af-
fect the GI tract in different ways. CD affects across the entire length of
the gut, but especially the terminal ileum, whereas UC affects the rectum
and mucosal layers of the intestines resulting in mass inflammation and
loss of water and solutes. There are many triggers that can lead to IBD
onset which can be both environmental and genetic, with a dysregulation
in the immune response to intestinal bacteria also thought to contribute
to this phenomenon in humans |Ogura et al., 2001; Frank et al., 2007;
Lam), 1993]. Loss of occludin, claudin 5, claudin 8, JAM-A and ZO-1,
but enhancement of claudin 2, at the tight junctions has been implicated
in barrier dysfunction associated with patients suffering from active IBD
[Gassler et al., 2001; Kucharzik et al., 2001} Zeissig et al., 2007 [Vetrano
et al., 2008]. Claudin 2 upregulation has also been observed in apoptotic
cells, indicating a dysregulation of tight junctions which is correlated
with decreases in tight junction strands, TEER and increased permeab-
ility in active disease |Zeissig et al., [2007; Bojarski et al., 2004|. During
inflammation, cytokines are secreted and polymorphonuclear leukocytes
are recruited to sites of infection. This process disrupts barrier function
resulting in decreased TEER and increased permeability in cultured epi-
thelial cells [Nash et al., [1987|. Permeability increases are thought to
be caused in part by the proinflammatory cytokine TNFo which signals
through mitogen activated protein kinase (MAPK) to activate NF-xB,
which increases the activity of the MLCK promoter that leads to micro-
filament contraction and inhibition or downregulation of tight junction
associated proteins [Patrick et al., 2006; Ma et al., 2004; Boivin et al.,
2009; Ye et al., [2006].
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1.3 Occludin

1.3.1 Occludin family of proteins

The family of MARVEL (Myelin And lymphocyte and Related proteins
for VEsicle trafficking and membrane Link [Sanchez-Pulido et al., 2002])
domain-containing proteins found within tight junctions are MarvelD3,
tricellulin and occludin. They have four transmembrane domains with
intracellular N- and C- termini and are concentrated in cholesterol-rich
domains |Sanchez-Pulido et al. 2002]. The MARVEL domain within
the C-terminus of occludin, MarvelD3 and tricellulin is conserved across
vertebrate species and the occludin family of proteins are mainly found
within epithelium especially the stomach, kidney, liver and lung [Raleigh
et al.; 2010|. In a comprehensive study, Raleigh et al. 2010, showed that
MarvelD3, tricellulin and occludin possessed both unique and redund-
ant functions within tight junctions [Raleigh et al. 2010|. Here, they
demonstrated that while occludin specifically concentrates at bicellular
junctions, tricellulin is normally specific to tricellular junctions and does
not co-immunoprecipiate with occludin, whereas MarvelD3 is found at
both bicellular and tricellular junctions, and co-immunoprecipitates with
tricellulin |[Raleigh et al.; 2010; Tkenouchi et al., 2008, 2005; [Steed et al.,
2009]. In addition Raleigh et al. 2010 found that upon tight junction
formation, occludin trafficked from the cytoplasm to the tight junction
complex before MarvelD3 and tricellulin. They also showed that the
binding site to cytosolic plaque protein ZO-1 differed between occludin
and tricellulin, and that MarvelD3 and tricellulin responded differently
to TNFo compared to occludin. This data support the notion of distinct
functions of these proteins |Raleigh et al.l [2010].

1.3.1.1 MarvelD3

MarvelD3 was identified by Steed et al. 2010, as being a 40kDa protein
with a shorter C-terminus than tricellulin and occludin, and has two
known splice variants which result from translation of either exon 3 or 4
[Steed et al..|2009]. MarvelD3 only appears to be expressed in vertebrates
and the isoforms only expressed in mammalian species. The protein
is approximately 40% conserved between mammalian species and the

function of MarvelD3 is currently unknown.
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1.3.1.2 Tricellulin

Tricellulin was originally identified by Ikenouchi et al. 2005, and mi-
grates on Sodium Dodecyl Sulfate PolyAcrylamide Gel Electrophoresis
(SDS-PAGE) gels as multiple protein bands between 66 - 72kDa sug-
gesting that tricellulin is a phosphoprotein [Ikenouchi et al., 2005]. The
protein sequence of tricellulin is relatively conserved between mammalian
species (approximately 85% for mammals and 65% for birds and amphi-
bians) and both tricellulin and occludin are found in tandem on murine
chromosome 13 and have conserved C termini, suggesting they could have
arisen as a result of gene duplication |[Tkenouchi et al.l [2005]. In contrast
to Raleigh et al. 2010, Westphal et al. 2010, showed that tricellulin forms
heteromers with occludin and dimerises with itself [Westphal et al., 2010;
Raleigh et al.l [2010]. Reasons for these apparent discrepancies could be
related to different cell types or methods of immunoprecipitation. Iken-
ouchi et al. 2005, determined that tricellulin plays a role in TEER and
permeability regulation and has functions within bicellular junctions as
well [Tkenouchi et al.,|2005; Krug et al., [2009|. It has been shown that the
C-terminus targets tricellulin to bicellular junctions and the N-terminus
targets to tricellular junctions during tight junction synthesis [Westphal
et al.; 2010]. Upon occludin recruitment to the tight junction, tricellulin
relocates to tricellular junctions. Furthermore, when occludin expression
was suppressed using RNA interference, tricellulin is expressed at bicel-
lular junctions and this partially restores barrier function |Ikenouchi et
al., [2008].

Tricellulin deficiency has been associated with loss of hearing in hu-
mans and four mutations within the C-terminus have been reported in
humans |Riazuddin et al., 2006]. These mutations prevent ZO-1 from
binding and are thought to represent crucial interactions to the cytoskel-

eton within the inner ear.

1.3.1.3 Occludin

Occludin was the first integral membrane protein of the tight junctions
to be identified. Originally purified from chick liver by Furuse et al. in
1993, occludin is predicted to have four transmembrane domains with
two extracellular loops, and an intracellular N- and C-terminus, with a
molecular weight of ~65kDa [Furuse et al., [1993]. The first extracellular
loop contains many glycine and tyrosine resides (60%) with the second

extracellular loop containing many tyrosine residues (18%) which are
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thought to provide flexibility within the extracellular structure of the
protein, to allow for dimerisation to occludin on adjacent cells [[tallie
and Anderson) [1997; McCaffrey et al., 2008]. Occludin is found in a
wide range of species and is highly conserved between canines, murines
and humans (90%), but only 50% identical within the chicken and rat-
kangeroo species [Ando-Akatsuka et al.,[1996]. Occludin is expressed in a
wide variety of epithelial tissue including the brain, heart, kidney, testes,
stomach, kidney, jejunum, colon, lymph nodes and the lung [Kimura et
all [1997; Raleigh et al., [2010; Muresan et al., [2000].

1.3.2 Occludin variants

To date, three occludin variants have been described. Occludin 1B is
found in different mammalian species and derives from the insertion of an
exon resulting in translation of a longer protein sequence which migrates
on SDS-PAGE gels as a 70kDa band [Muresan et al., 2000|. Differences
arise within the N-terminus where the first 17 amino acids are replaced
with a 56 amino acid sequence in the isoform. Occludin 1B is expressed
alongside occludin and has the same cellular distribution [Muresan et al.,
2000].

Occludin TM4" isoform lacks a 162bp sequence encoding the fourth
transmembrane domain which causes the C-terminus to become extracel-
lular [Ghassemifar et al. [2002]. This alternative splice variant is present
in human and monkey cells but has not been detected in murine or canine
cells. This 58kDa isoform is expressed at low levels alongside the 65kDa-
occludin and may play a role in sub-confluent monolayers |Ghassemifar
et al., 2002]. Confluency refers to the number of cells present, where a
confluent monolayer represents 100% cell coverage over the substrate. A
similar isoform has also been identified by Mankertz et al. 2002, who
described both isoforms to be present in the cytoplasm of human cells
[Mankertz et al., 2002].

A deletion in exon 9 (encoding a sequence within the C-terminus)
represents another occludin splice variant detected in human cells [Gu et
al 2008]. Gu et al. 2008, provided evidence to suggest that the sequence
within exon 9 is important for activating apoptotic pathways, as the
variant isoform was not seen to affect levels of BAX and Bel-2 genes [Gu
et al., |2008|. This isoform prevented occludin from becoming associated
with the membrane suggesting that the 44 amino acid sequence within

exon 9 directs occludin to the membrane |Gu et al., 2008].
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1.3.3 Occludin regulation
1.3.3.1 Promoter

The existence of multiple occludin isoforms led Mankertz et al. 2000,
2002, and Gu et al. 2008, to investigate the properties of the occludin
promoter. They concluded that two promoters exist of which one is si-
lenced by methylation within the CpG island region |Gu et al., 2008;
Mankertz et al., 2000, 2002|. CpG islands are common within promoters
and represent cytosine-guanine residues held together by phosphodiester
bonds [Saxonov et al., 2006]. Epigenetic silencing of occludin was also
demonstrated by Osanai et al. 2006, who provided evidence that occludin
suppression by methylation prevented apoptosis and led to the develop-
ment of carcinomas [Osanai et al., 2006]. The occludin promoters are
also regulated by heat shock factor-1 (HSF-1), TNFa and IFNy, showing
that innate molecules and proinflammatory cytokines directly influence
the expression of tight junction proteins and alter the integrity of the
epithelial barrier [Mankertz et al., [2000; Dokladny et al., 2008|.

1.3.3.2 Ubiquitination

E2 ubiquitin-protein ligase UBC4 and the E3 ubiquitin-protein ligase Itch
target occludin for ubiquitination at the N-terminus in sertoli and kidney
epithelial cells [Traweger et al.l [2002; |Lui and Lee, 2005|. Itch is a mem-
ber of the HECT domain-containing subfamily of E3 ubiquitin-protein
ligases that contains WW domains. WW domains represent two con-
served tryptophan residues which are approximately 20 - 23 amino acids
apart, and bind to proline rich domains [Sudol et al.; [1995|. Traweger et
al. 2002, demonstrated that two of the four WW domains within Itch
interact with occludin and that Itch can target both cytoplasmic and
membrane bound occludin for degradation [Traweger et al.l [2002].

The addition of Vascular Endothelial Growth Factor (VEGF) to cells
also induces endocytosis and subsequent ubiquitination of phosphorylated
occludin by Itch [Murakami et al., 2009).

E3 ubiquitin-protein ligase Nedd4-2 targets occludin for ubiquitina-
tion at the C-terminus in kidney epithelial cells [Raikwar et al., |[2010]. It
was also found that overexpression of Nedd4-2 resulted in a decrease in
TEER and increase in permeability which shows that occludin is involved
in the development of tight junction barrier formation in the collecting
duct. Similar findings were also described using proteosome inhibitors

suggesting that occludin can be regulated by proteosome mediated de-
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gradation, which has also been reported for other adhesion proteins such
as connexin and § catenin [Raikwar et al., [2010; Traweger et al., |2002;
Aberle et al.,[1997; Musil et al.;[2000]. Changes in phosphorylation status
of a protein can change its conformation which induces signals to recruit
degradation pathways [Fuchs et al. [1998]. As the function of occludin
is heavily dependent on hyperphosphorylation, this may represent an

important pathway in the regulation of occludin.

1.3.3.3 Turnover and Recycling

The turnover rate of occludin in gastrointestinal epithelial cells differs
between reports, but most describe the half-life of occludin to be between
1.5 - 2 hours, although others estimate 6.5 hours |[Traweger et al., 2002;
Guo et al.; 2005; Raikwar et al.l [2010; [Marchiando et al.; 2010|. Discrep-
ancies could be due to differences in experimental design, although this
range is similar to that of connexin [Musil et al., 2000]. The half-life of oc-
cludin can be increased by inhibiting proteosome mediated degradation,
or decreased by starving cells of polyamines [Guo et al., 2005]. Degrada-
tion of occludin has been shown to increase in polyamine deficient cells,
where the half-life was reduced to 75 minutes [Guo et al.l 2005]. Al-
though the protein levels were altered there were no changes in mRNA
levels, implying that regulation of occludin is predominantly at the post-
transcriptional level. However, levels of occludin mRNA and other tight
junction proteins can be suppressed by the transcriptional repressor Snail
[Ohkubo and Ozawaj, 2004]|. Snail triggers the epithelial-mesenchymal
(undifferentiated connective tissue) transition pathway whereby loss of E-
cadherin and occludin result in disassembly of junctions to allow for cell
movement [Ohkubo and Ozawa, 2004|. The transcription factor Hedge-
hog, activates Snail, and this pathway has also been implicated in brain
tumorigenesis [Chou et al., 2010]. Transforming growth factor B (TGEB)
also induces epithelial-mesenchymal transition and it has been shown
that occludin plays a role in recruiting TGFp to the cell surface [Kojima
et al., |2008; Barrios-Rodiles et al., |2005].

Occludin recycling is governed by endocytic pathways. Endocytosis is
the process that involves invagination of the plasma membrane to engulf
material from the plasma membrane. Tight junction proteins are then
trafficked to late endosomes for degradation, or recycling endosomes to
be returned to the plasma membrane [Utech et al., 2010]. Endocytosis
of occludin can occur by clathrin mediated, caveolin mediated or mi-

cropinocytosis pathways.
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The Rab family of proteins are small G proteins that are involved
in vesicle transport pathways. They act as molecular switches which
transition between GDP-GTP bound forms [Terai et al., 2006|]. When
MICAL-L2 (molecule interacting with CasL-like 2, also known as junc-
tional Rab13-binding protein) binds to the GTP form of Rab13, it causes
Rabl3 to link to the actin cytoskeleton, becoming one of the cytosolic
plaque proteins of the tight junction complex [Terai et al., [2006]. Here,
it functions to continuously recycle occludin back to the membrane when
occludin is endocytosed from the membrane in a clathrin dependent man-
ner |[Morimoto et al., 2005]. During cell polarisation, actinin 4 recruits
the MICAL-L2/Rab13 complex to tight junctions and associates it with
F-actin [Nakatsuji et al., 2008|. Actinin 4 complexes with clathrin heavy
chain and dynamin, which are also part of endocytic pathways [Hara et
al.l [2007]. Actinin 4 may have protein transport functions both at the
membrane and golgi complex, as molecules such as galectin can also be
found within actinin 4 transfected cells [Hara et al. 2007]. Pathogens
use endocytic pathways as a mechanism of infection and are therefore
an important pathway to consider for therapeutic targets [Veiga et al.,
2007].

Dynamin is also involved in caveolin-mediated endocytosis of occludin
as shown in cells treated with latrunculin A, an inducer of actin depoly-
mersiation [Shen and Turner, [2005]. Endocytosis was seen to occur in a
caveolin I and dynamin IT dependent mechanism and this was associated
with a loss in TEER [Shen and Turner, |2005].

Caveolin mediated endocytosis of occludin can be initiated by my-
osin light chain kinase (MLCK) activation following TNFa stimulation
[Marchiando et al., 2010|. This endocytosis was dependent on dynamin
and cholesterol-rich domains. Occludin deficient cells may also have lower
levels of caveolin associated with lipid rafts suggesting that occludin may
play a role in tight junction remodelling in response to extracellular stim-
uli [Ttallie et al., 2010]. The inhibition of TNFa-induced endocytosis of
occludin prevented loss of water from the lumen, providing evidence that
occludin has a functional role in maintaining barrier integrity within the
GI tract [Marchiando et al. 2010]. NFxB has been shown to lead to
TNFo-induced increases in permeability in epithelial cells and has been
implicated as a causal factor towards the pathogenesis of IBD [Ma et al.,
2004; (Tang et al., 2010b]. TNFa leads to activation of PKCa, which in
turn phosphorylates p115RhoGEF that activates RhoA-induced increases

in occludin phosphorylation and F-actin rearrangements |[Samarin et al.)
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2007; Peng et al., 2011].

Micropinocytosis has been observed in cells exposed to IFNy and
results in occludin being targeted to recycling endosomes that also con-
tain Rab4, Rab11 and actin coated vacuoles derived from apical plasma
membrane |[Bruewer et al.l [2005; Utech et al. 2005|. This alteration
in occludin may be triggered by IFNvy-activation of phosphoinositide 3-
kinase (PI3K)/Akt pathways which activates NFxB signalling, and/or
through Rho-induced ROCK activation which leads to endocytosis via
myosin II-induced contraction |[Boivin et al. 2009; |[Utech et al.l 2005;
Bruewer et al., 2005]. This, together with TNFa induced endocytosis of
occludin, shows that proinflammatory cytokines can affect occludin sig-

nalling and molecules responsible for disrupting barrier integrity in the
GI tract [Itallie et al., 2010].

1.3.4 Binding partners and functions of occludin

Unlike other tight junction proteins, the function of occludin has not been
defined. Numerous studies have shown that occludin has a role in TEER
and permeability, but this appears to be cell type and experimental design

dependent.

1.3.4.1 Functions of occludin

The potential roles of occludin have been investigated at cellular, tissue,

organ and whole organism levels.

Cellular level Occludin has been implicated to be important during
the transition of cells as well as cell migration [Du et al. 2010; |Ohkubo
and Ozawal, 2004]. Occludin was found to be crucial for recruiting the
aPKC-Par3/PATJ polarity complex towards the leading edge of migrat-
ory cells [Du et al., 2010]. Upon occludin tyrosine phosphorylation p85q,
the regulatory subunit of PI3K, is recruited to the migratory cell edge
which initiates PI3K and Racl activation, and the formation of lamel-
lipodia [Du et al.l 2010]. Polyamines are thought to be central for co-
ordinating cell migratory signals and they also affect myosin II distribu-
tion |Rao et al. 1999]. Myosin II is located within actin arcs that form
within the lamellipodia and may interact with occludin |[Burnette et al.,
2011]. Lamellipodia are present during the expulsion of cells from the
villus tip where the tight junctional barrier must remain intact to pre-

vent, opportunistic infection, so proteins such as occludin that are found
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at the leading edge are thought to play an important role in this process
[Watson et al., [2005; Marchiando et al.,|2011]. In a cancerous phenotype,
the expression of occludin abolishes cell motility and appears to prevent
tumour development and promote apoptosis [Osanai et al., 2006).

In concordance with this theory, cell extrusion following apoptosis
can occur as a result of occludin signalling [Beeman et al.l 2009; Yu et
al.l 2005; (Osanai et al., [2006]. By overexpressing occludin in cancerous
cell lines, Osanai et al. 2006, observed increases in apoptotic sensitiv-
ity, a process which was not seen when occludin was silenced |Osanai
et al., 2006]. The authors demonstrated that a 44 amino acid sequence
within the C-terminus of occludin was responsible for these signals. Fur-
thermore, the transcriptional suppression of occludin by Slug has also
been attributed to the progression of cancer invasiveness through lack
of cell apoptosis |[Kurrey et al., 2005]. Together, Slug and Snail induce
epithelial-mesenchymal transitions, block the cell cycle and inhibit ap-
optosis [Vega et al., 2004]. Yu et al. 2005, showed that in occludin”/-
monolayers, apoptotic cells could not be extruded [Yu et al., 2005]. These
cells also failed to generate Rho-GTP. Rho-G'TPases are members of the
Ras family and are involved in many cell processes including organisa-
tion of the actin cytoskeleton and tight junctions |[Gopalakrishnan et al.,
1998; [Samarin et al., 2007]. They switch between GTP-GDP forms via
regulation by guanine nucleotide exchange factors and GTPase activat-
ing proteins |Benais-Pont et al., 2003]. RhoA signalling increases the
levels of occludin phosphorylation and may trigger the assembly and dis-
assembly of tight junctions |Gopalakrishnan et al. 1998} [Yamamoto et
al.l 2008]. Recently, it has been shown that TNFeo-induced activation of
PKCua phosphorylates p115RhoGEF which activates RhoA [Peng et al.,
2011]. This could represent a mechanism by which occludin is affected

at the protein level by proinflammatory cytokines.

Tissue level: occludin overexpression Several groups have overex-
pressed chicken occludin in MDCK II cells and showed that an increase
in the number of tight junction strands correlated with an increase of
occludin at the surface, and an increased TEER and permeability [Ital-
lie et al., [2010; Balda et al., [1996; McCarthy et al., 1996]. In addition,
when chicken occludin was overexpressed in insect cells, multilamellar
structures were seen in the cytoplasm |[Furuse et al., [1996]. Therefore,
occludin was considered to have a functional role in the tight junction

complex.
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Tissue level: occludin reduction When occludin alleles were made
inoperative in murine embryonic stem cells, tight junctions still formed
and an effective cell barrier was still evident. This suggests that tight
junctions are able to function without occludin, which is probably due
to redundant functions among other proteins for example, tricellulin and
MarvelD3, that are also associated with the complex [Saitou et al., [199§].

Several groups have reduced occludin levels in MDCK 1T cells and
show different results in terms of TEER and permeability. Reduction
of occludin generally had little effect on TEER, but as each study was
carried out using different cells, parameters and techniques, this is per-
haps not surprising [Itallie et al., 2010; Yu et al. 2005; Balda et al.,
2000; |Al-Sadi et al., 2011; [Huber et al., 2000]. However, changes in per-
meability were more varied. In the absence of occludin, permeability to
non charged solutes or mannitol was not altered compared to parental
cells [Itallie et al., 2010; [Huber et al., 2000], but there was an increase
in permeability toward monovalent organic cations and macromolecular
molecules [Yu et al., 2005; |Al-Sadi et al., 2011]. When deletions within
the extracellular loops (ECLs) were made, occludin no longer associated
with the membrane and caused a decrease in permeability to mannitol
[Balda et al., 2000]. Although each study was not identical in design
or procedure, the results suggest that occludin probably contributes in-
directly to permeability and changes seen may be a result of decreased

occludin within the tight junctions.

Organ level In occludin deficient mice, tight junction formation ap-
peared normal and other associated proteins were still expressed at the
membrane. Within the intestine, TEER was comparable to wild type
mice and permeability was not affected [Saitou et al., [2000; Schulzke et
al.l 2005]. However, there was a lack of parietal cells and loss of acid secre-
tion within the gastric corpus [Saitou et al., 2000 Schulzke et al., [2005].
This has a major impact on the acidity of the mucosa causing hypochlo-
rhydria. Interestingly, Sonic Hedgehog is expressed in the gastric corpus
and regulates the secretion of gastric acid in parietal cells [Waghray et al.,
2010|. The proinflammatory cytokine IL-103 has been shown to suppress
Sonic Hedgehog expression by preventing increases in intracellular cal-
cium levels [Waghray et al., [2010]. IL-18 has also been shown to increase
hyperphosphorylation of occludin which suggests that occludin could be
upregulated at the tight junctional complex [Yamamoto et al.;|2004]. The

transcription factors Snail and Slug are induced as downstream targets
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of Sonic Hedgehog and as described earlier, they act to repress occludin
expression [Li et al., 2006 Fendrich et al.. 2007|. This could provide a
link between the lack of gastric acid secretion in occludin negative mice
as in the presence of IL-13, Sonic Hedgehog would be inhibited, which
may suppress the functions of Snail and Slug to act towards occludin.
The increase in hyperphosphorylation could therefore stimulate the re-
lease of acid secretion. However, in a different study, IL-13 was shown to
decrease occludin expression both at the mRNA and protein level, after
48 hours of exposure [Al-Sadi and Mal 2007]. Differences could be due to
variations in cell type or exposure to IL-13, but could also indicate activ-
ation of different downstream pathways. For example, increased levels of
occludin phosphorylation were seen after activation of PI3K, whereas de-
creases in occludin expression occurred following MLCK-induced NKxB
activation [Yamamoto et al., 2004; |Al-Sadi et al., [2008|.

Whole organism One of the most interesting studies on determining
the functions of occludin was conducted by Saitou et al. 2000 [Saitou
et al.l 2000]. The generation of occludin deficient mice revealed a range
of phenotypes affecting different organs. For example, calcification of
the brain, thinner bones, abnormal striated ducts and testicular atrophy
in older mice were observed, which affected overall growth of the mice
[Saitou et al. 2000]. Furthermore, males were sterile and occludin de-
ficient females failed to suckle their young [Saitou et al., [2000]. These
results demonstrate a role of occludin in development at the whole or-

ganism level.

Therefore, occludin plays roles in the initiation of polarisation and dif-
ferentiation of a monolayer; is a molecule that may be central to repairing
damage to the epithelial barrier, initiates signalling cascades in response
to internal (expulsion of cells from the villi) and external (pathogenic)

stimuli and contributes towards the development and function of organs.

1.3.4.2 Roles and functions of occludin

Many studies have shown that different parts of the occludin protein have

different and overlapping functions, and mediate interactions with other

molecules (Figure [1.5]).

N-terminus Huber et al. 2000, demonstrated multiple domains of

occludin are necessary for controlling neutrophil transmigration (move-
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ment between epithelial cells) [Huber et al., 2000]. Modification within
the N-terminus of occludin increases the rate of transmigration of neut-
rophils without affecting TEER or permeability, while mutations within
the first extracellular loop of occludin result in decreased permeability
and transmigration of neutrophils [Huber et al., 2000]. Mutations within
the C-terminus did not affect neutrophil movement through the paracel-
lular pathway, but did increase TEER and permeability. The authors
also suggest that the N-terminus is functionally relevant in maintaining
occludin at the tight junction complex.

The transmigration of neutrophils was shown to increase upon ex-
posure to IFNy |[Colgan et al., [1993|. As IFNy internalises occludin, this
could imply that the N-terminus reacts to this proinflammatory cytokine.
Consequently, the downregulation of occludin and increased neutrophil
transmigration has been associated with the pathology of inflammatory
bowel disease [Kucharzik et al., [2001].

Extracellular loops The extracellular loops of occludin are relatively
uncharged and have a high tyrosine and glycine residue content that
are thought to provide flexibility and an interlocking ability |Gorodeski,
2006; Senes et al., [2001; |Aoki et al., [1997]. These loops consist of a helix
motif, a calcium binding domain, and a residual loop segment which are
hydrophilic in the absence of calcium, and hydrophobic in the presence
of calcium [Gorodeski, 2006|. Gorodeski hypothesised that when cal-
cium binds to the extracellular loops, a conformational change may occur
which contributes to the sealing of the paracellular pathway |Gorodeski,
2006). A cell adhesion recognition site has been identified within ECL2
which is considered to aid in cell-cell adhesion [Blaschuk et al., 2002|.
Nusrat et al. 2005, demonstrated that an ECL2 peptide could form com-
plexes with the surface of Tg4 cells and ECL1 can self-associate within
the cell [Nusrat et al.l 2005].

The initial observation that occludin could generate adhesive proper-
ties in cells that lacked tight junction complexes sparked off investigations
into the functional roles of the extracellular loops [Itallie and Anderson,
1997|. The first study to investigate the effects on barrier function of
the extracellular loops was carried out by Wong and Gumbiner, 1997
[Wong and Gumbiner, [1997]. They showed that a synthetic ECL2 pep-
tide was responsible for decreasing TEER and increasing permeability of
A6 Xenopus kidney cells, and provided evidence to suggest that ECL2

controls the resealing of tight junctions through regulating the turnover
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of occludin [Wong and Gumbiner, 1997]. This was achieved without
disruption to other tight junction proteins implicating an independent
control mechanism of occludin [Wong and Gumbiner, 1997]. In Eph4
mammary epithelial cells, ECL2 peptides also affect cell morphology and
B catenin localisation [Vietor et al., 2001]. This suggests that in different
cell types, occludin may have different functions.

Other studies have also reported that ECL2 can regulate localisation
to the tight junctions using MDCK cells, murine CSG epithelial cells,
human Tgy cells and occludin-null Rat-1 fibroblasts [Medina et al., 2000
Balda et al.l 2000; Bamforth et al., |1999; Nusrat et al., 2005|. However,
Balda et al. 2000, also found that ECL1 was important for occludin in-
corporation into the plasma membrane, and that both ECL1 and ECL2
mutants prevented interactions with ZO-1 [Balda et al. [2000]. It has
been suggested that ECL1 may be more involved in recovery of occludin
(recycling) to the tight junctions, following disruption [Lacaz-Vieira et
all [1999]. Discrepancies between studies could be due to the differences
in residues that were deleted within the loops, cells used or the type of
system employed to introduce the mutated occludin in the cells [Med-
ina et al., 2000]. With a view to generating therapeutic modulation of
tight junctions using synthetic peptides to the ECLs of human occludin,
Tavelin et al. 2003, also found that the N-terminus of ECL1 was more
important in controlling permeability [Tavelin et al. 2003|.

Overall, these studies show that transmembrane domain proteins and
extracellular loops are critical for stabilising occludin in the membrane

and contributing to regulating permeability.

Oligomerisation Occludin forms homodimers and oligomers which
can reach up to molecular weights of 300kDa [McCaffrey et al., 2007].
Within the transmembrane and extracellular domains, cysteine residues
can be found which bind through disulphide links to create dimers and
oligomers that function to seal the paracellular pathway |[McCaffrey et
all 2008; Walter et al.. 2009a]. Disruption of these bonds can cause
conformational changes which increases the proportion of occludin as-
sociated within higher density membrane domains from lipid rafts [Mc-
Caffrey et al.l 2008]. McCaffrey et al. 2008, 2009, propose that the
cysteine residues within ECL2 covalently bind to ECL2 on adjacent cell
occludin, the cysteine residues within the first and second transmem-
brane domains bind occludin within a cell and the two cysteines found in
the C-terminus may also bind each other [McCaffrey et al. 2008, 2009;
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Walter et al., 2009b]. Within the C-terminus, dimerisation is thought to
occur in a coiled-coil domain [Nusrat et al.,|2000; Blasig et al.,[2006]. The
observation that C-terminal-truncated occludin can still be found within
the tight junction complex confirms that binding of occludin molecules
may occur elsewhere [Matter and Balda), [1998; (Chen et al., [1997]. Non-
covalent bonds towards the edge of occludin dimers could be available to
bind to proteins within the actin cytoskeleton and be subjected to con-
formational changes that may, for example, result from phosphorylation
[McCaffrey et al., [2009]. This provides a mechanism by which occludin
molecules can interlock with each other both within the cytoplasm and

the external plasma membrane.

C-terminus Upon tight junction formation, occludin trafficks from the
cytoplasm to the basolateral domain before complexing with the tight
junctions, and this basolateral signal comes from within the C-terminus
[Matter and Baldal [1998|. From the lateral membrane, occludin may
become associated with cytosolic plaque proteins of the tight junctions
such as ZO-1 [Furuse et al.l |1994]. Phosphorylation of occludin could
also contribute to relocation to the tight junction complex [Sheth et al.,
2000.

The crystal structure of the highly conserved distal C-terminus (hu-
man residues 416-522) has been solved [Li et al., 2005]. The structure
consists of three a-helices which form two anti-parallel coiled-coil loops
with an N-terminal loop [Li et al., |2005|. Occludin binds from within the
coiled-coil region (murine residues 455-473) of the C-terminus to the SH3-
hinge-GuK region of ZO-1 (murine residues 606-618 and 759-766). The
binding occurs through helical and ionic interactions and it is predicted
that the positive lysine residues on the o-helices of occludin govern the
binding to ZO-1 [Schmidt et al.l 2004} Li et al., 2005|. It has since been
found that o catenin and occludin bind to the same domain within ZO-1
and are predicted to form a four-helix bundle containing occludin or «
catenin dimers, with ZO-1 dimers [Miiller et al., 2005]. The dimerisation
of these proteins was suggested to contribute to the stability of the tight
junction complex [Miiller et al., |2005]. The mutation of residue serine
490 prevented these interactions which were thought to be because of
changes in charge distribution within the coiled-coil region [Sundstrom
et al., 2009]. This mechanism could also explain how tight junctions
become disrupted.

Li et al. 2005, stated that all known protein binding sites of occludin
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are within the distal region of the C-terminus of occludin, with all known
phosphorylation sites found in the proximal region [Li et al., 2005]. This
led them to suggest that the proximal region regulates binding activities
within the distal domain [Li et al., 2005].

A number of molecules have been shown to bind within the coiled-
coil domain of occludin including cingulin, connexin 26, connexin 32,
c-Yes, the regulatory subunit of PI 3-kinase (p85), PKC-C and ZO-3
[Nusrat et al., 2000} [Kojima et al. [1999: Haskins et al., 1998; Cordenonsi
et al., 1999; Sheth et al.| [2003; |Jain et al.. 2011]. Other proteins have
been shown to co-localise and bind with occludin via the C-terminus,
such as JAM, cingulin, junction enriched associated protein and vesicle-
associated protein 33 [Bazzoni et al.l 2000b; Cordenonsi et al., 1999;
Nishimura et al., 2002; |[Lapierre et al.;[1999|]. These co-localisations occur
either directly, or indirectly via interactions with ZO-1 [Bazzoni et al.,
2000b].

1.3.5 Occludin phosphorylation

Occludin has a lower molecular weight in cells that are non-polarised and
non-differentiated (=65 - 68kDa in MDCK cells), compared to those that
are polarised and differentiated where tight junctions have formed (=70 -
82kDa in MDCK cells) [Wong, |1997; [Sakakibara et al., [1997]. This change
in molecular weight appears to be due to phosphorylation, indicating that
occludin location and functionality depends on its phosphorylation status
[Wong, [1997]. Wong 1997, suggested that phosphorylation of occludin
may act to stabilise the protein at the tight junctions and allow interac-
tions within the C-terminus [Wong, 1997]. Occludin is phosphorylated
on serine and threonine residues at lower molecular weights, but exclus-
ively hyperphosphorylated on serine residues in higher molecular weights
|[Farshori and Kachar, |1999|. Sakakibara et al. 1997, found that these
species corresponded to cytoplasmic or basolateral (detergent soluble)
and tight junction associated (detergent insoluble) occludin, respectively
[Sakakibara et al., 1997].

Murine occludin contains 34 serine/threonine and 17 tyrosine residues
within the C-terminus, and to date a number of kinases have been iden-
tified which phosphorylate these residues (Figure .

Casein Kinase le phosphorylates amino acids 265 - 318 of human
occludin [McKenzie et al., 2006]. Phosphorylation increased when the
last 48 amino acids of occludin were removed from the C-terminus which

supports the observation that protein-protein interactions occur in the
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distal region and phosphorylation in the proximal region [McKenzie et al.,
2006; Li et al., 2005|. Casein Kinase 2 phosphorylates murine residues 328
- 439 with threonine 403 and serine 407 being likely candidates in brain
cells [Smales et al., [2003]. In Xenopus laevis embryos, Casein Kinase 2
is predicted to phosphorylate threonine 375 and serine 379 |Cordenonsi
et al., [1999).

p34°4¢2 and phospholipase Cy have also been shown to phosphorylate
occludin [Cordenonsi et al., [1999; Ward et al., 2002|. Phospholipase
Cy activates PKC by hydrolysing phosphatidylinositol 4,5-bisphosphate
into inositol 1,4,5-triphosphate which increases calcium levels and di-
acylglycerol (DAG) |[Ward et al., 2002]. Other activators of PKC have
been shown to phosphorylate occludin such as phorbol 12-myristate 13-
acetate and 1,2-dioctanoylglycerol, which phosphorylate occludin at mur-
ine residue serine 338 |Andreeva et al. |2001], and PKCrn which phos-
phorylates human residues threonines 403 and 404 [Suzuki et al., 2009).
Here, phosphorylation resulted in localisation at the tight junction com-
plex and increased barrier integrity, but for Phospholipase Cy hyper-
phosphorylation was associated with impaired barrier function [Ward
et al, 2002]. This suggests that PKC may exert multiple effects on
occludin that regulate the protein following different stimuli. Further-
more, the phorbol ester, 12-0-tetraecanoylphorbol-13-acetate, activates
PKCu to translocate from the cytoplasm to the tight junction complex,
which is associated with a decrease in threonine phosphorylation of oc-
cludin [Clarke et al., 2000]. PKCa could inhibit the activity of PKCn,
as decreased threonine phosphorylation of occludin was observed follow-
ing knockdown of PKCn [Suzuki et al.| [2009]. Recently, PKCC has been
shown to phosphorylate occludin on threonine residues 424 and 438 which
contributes to tight junction assembly in epithelial cells [Jain et al.| 2011].

In endothelial cells, VEGF phosphorylates serine residue 490 (hu-
man occludin) and causes an increase in permeability within 10 minutes
[Sundstrom et al. [2009; |Antonetti et al.| [1999|. Tyrosine phosphoryla-
tion of ZO-1 was also seen when cells were treated with VEGF and lead
to the dissociation from occludin. Occludin is trafficked into early and
late endosomes and subsequently ubiquitinated by Itch [Murakami et al.,
2009)].

Tyrosine phosphorylation of occludin has also been studied. For ex-
ample, it was shown that oxidative stress marker c-src binds to and phos-
phorylates occludin on human tyrosine residues 398 and 402, preventing
occludin from binding to ZO-1, ZO-2 and ZO-3 [Kale et al.,[2003; Elias et
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al.l [2009]. Additionally, p85 interaction with occludin increases following
oxidative stress, resulting in increased permeability [Sheth et al.l 2003|.
Epidermal growth factor prevents the disruption of occludin following
oxidative stress induced by hydrogen peroxide, via activation of extra-
cellular signal related kinase which binds to the C-terminus of occludin
[Basuroy et al., 2006|. However, tyrosine phosphorylation of occludin
has also been implicated in tight junction assembly and barrier function
[Chen et al., 2000, 2002a]. This could suggest that tyrosine phosphoryla-
tion of occludin has varying functions within different cell types following
different stimuli.

Protein phosphatases PP2A and PP1 have been shown to interact
directly with the C-terminus of occludin where PP2A dephosphorylates
occludin at threonine residues and PP1 at serine residues [Seth et al.|
2007). Na-K-ATPase inhibits the activity of PP2A and prevents de-
phosphorylation of occludin [Rajasekaran et al., |2007]. Na-K-ATPase
also binds to PLCy1 suggesting that it contributes to occludin regula-
tion. |Rajasekaran et al. 2007|. These findings indicate that threonine
and tyrosine phosphorylation are important for occludin assembly at the
tight junction complex, and serine phosphorylation is important for the
stability and interactions with other proteins at the tight junction com-
plex. Deficiencies in occludin phosphorylation and oligomeric assembly
in the blood brain barrier have been suggested to lead to the onset of hyp-
oxia, hyperalgesia and multiple sclerosis as a result of increased barrier
permeability [Morgan et al., 2007; McCaffrey et al., 2009, 2008|.

1.4 Toxoplasma gondii

Tozxoplasma gondii (T. gondii) was first identified in 1908 in the African
rodent Ctenodoactylus gundi and has since been found to infect virtually
all animals [Sukthana) 2006; [Weiss and Dubey, 2009]. Tt is estimated
that over one third of the human population is infected, although preval-
ence varies between countries [Sukthana), 2006; Weiss and Dubey], 2009].
T. gondii is an obligate intracellular parasite of the phylum Apicomplexa
which includes Plasmodium, Cryptosporidium, Neospora and Fimeria. T.
gondii has a complex life cycle in which only members of the felidae fam-
ily can host the sexual phase and release oocysts containing sporozoites
into the environment |Hill and Dubey, 2002; |[Elmore et al. 2010]. There
are three dominant clonal lineages of T. gondii present in Europe, North

America and Africa and are 98 - 99% identical in terms of nucleotide
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sequence. These are called Type I (for example RH and GT1), which
are highly virulent and migratory in terms of tissue dissemination; Type
IT (for example ME49) which are less virulent and migratory, but more
likely to activate a robust immune response and convert to bradyzoites,
and is the most common lineage found in nature; and Type IIT (for ex-
ample VEG) which are less virulent than I and II and less migratory
[Howe et al., |1997; Velmurugan et al., |2008|. Expansion of the common
three dominant lineages coincides with the domestication of the cat and
changes in human agricultural practices 10,000 years ago [Su et al.l 2003].
Multiple infections of different strains can result in the production of a
large number of recombinant and atypical forms, which are highly preval-
ent in South America where ancient/exotic strains such as COUG, MAS
and CAST are also found [Lindstrom et al., 2008; Dubey et al. 2011}
Sibley et al., [2009].

1.4.1 Life cycle

Humans and other animals become infected through congenital transmis-
sion, transfusion and transplantation of infected blood and organs, inges-
tion of contaminated water and undercooked meat containing bradyzoite
cysts, the slow replicating form, and ingestion of contaminated soil con-
taining sporozoites (Figure |[Kijlstra and Jongert} 2008; Derouin et
al., [2008].

When individuals of the feline family become infected with 7. gondis,
the bradyzoites or sporozoites are released into the small intestine and
multiply by schizogony (multiple nuclei and cytoplasm divisions) to pro-
duce merozoites [Dubey et al. 1998]. This is thought to initiate the
sexual phase of the life cycle whereby gametogenesis leads to the rup-
ture of infected epithelial cells. The oocysts are shed in the feline faeces
and sporulation occurs in the environment within five days |[Dubey et
all [1998]. The oocysts can survive and remain highly infectious in the
environment for many years [Black and Boothroyd} 2000].

Bradyzoites and sporozoites released from oocysts infect cells in the
small intestine where they convert to the fast replicating and highly invas-
ive tachyzoite. Asexual replication takes place by endodyogeny whereby
two daughter cells form within one parasite [Sheffield and Melton, 1968].
Tachyzoites disseminate throughout the body and reside in long lasting
tissues and organs such as the muscle and brain. Here, due to pressure
from the immune system, parasites convert back into the bradyzoite form

and remain dormant in cysts which are invisible to immune attack, un-
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Figure 1.6: The life cycle of T. gondii. Sporozoites (generated in the felidae gut)
and bradyzoites are ingested by animals. Conversion to tachyzoites leads to activation
of the immune system and dissemination throughout the body. Once tachyzoites reach
long lasting tissues they convert back to bradyzoites to establish a chronic infection.
Reactivation occurs following immune suppression and results in inflammation.

til reactivation [Scharton-Kersten et al., [1996]. Reactivation can occur
following host stresses such as illness and causes clinical symptoms such
as encephalitis and chorioretinitis. The infection of 7. gondii occurs at
an impressive speed, taking less than 40 seconds to infect a cell in the
small intestine, to being present in the lamina propria after one hour,
transported to lymph nodes after two hours, conversion to tachyzoites
after 18 hours, and reaching the brain within six days of initial contact
with the host [Buzoni-Gatel et all [1999; Courret et al., 2006; Morisaki
et al.,|1995; [Dubeyl [1997; Hirai et al.,|1966|. Parasites infect towards the
distal half of the intestine and only tachyzoites are thought to migrate
through the body and infect the brain and muscles, where they convert
to bradyzoites and form a non-immunogenic cyst [Dubey, 1998a, |1997].

With the exception of the immunocompromised and pregnant women,
Toxoplasma gondii causes a relatively asymptomatic infection in humans
and animals of typical fever-like symptoms. During pregnancy in mice,
T cell responses and levels of IFNy are suppressed allowing T. gondii to
take advantage which can result in death of the host following a primary
infection [Shirahata et al., 1992]. The parasite can cross the murine
placenta and as a result, infect and replicate inside the unborn foetus
as the immune system is too immature to respond, causing fatality if a
new infection occurs within the first trimester of pregnancy [Roberts and

Alexander}, |1992]. This congenital transmission is thought to cause the
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same pathology in humans as it does in sheep, the latter of which is a
large scale problem for farmers in economic terms, as reviewed by Dubey,
2009 [Dubey, [2009].

T. gondii is one of the most common secondary opportunistic infec-
tions to occur in immunocompromised people where reduced numbers of
T cells results in mass systemic inflammation and pathology |Nissapat-
ornl 2009]. Reactivation of T. gondii from cysts to tachyzoites can also
cause loss of vision and fatal encephalitis [Weiss and Dubeyl 2009].

In addition, the effects of a chronic infection have been shown to
influence behaviour in immunocompetent hosts as infected rats are at-
tracted towards cat odours, and show decreased learning potential and
increased levels of dopamine [Stibbs, 1985; Berdoy et al., 2000; Webster,
2001]. Dopamine is an important neurotransmitter for controlling move-
ment, mood, memory and thought, which may explain the changes in
conscientiousness, sensitivity and sociability observed in infected indi-
viduals |Flegr, 2007]. Studies have shown that infection with 7. gondii
makes humans more susceptible to car accidents probably because of
delayed reaction times caused by the altered dopamine levels [Flegr et
al 2002], and might possibly be a causal factor in the onset of Schizo-
phrenia [Yolken et al., [2009].

Interconversion between stages results from changes in temperature,
pH, chemical stress and stress from the immune system, and can occur
spontaneously [Soéte et al., [1994; |Jerome et al., [1998]. The surface of
T. gondii is covered in glycosylphosphatidylinositol (GPI)-anchored pro-
teins which include surface antigen (SAG) 1, and SAG1l-related sequences
[Manger et al., 1998]. SAG1 is the most abundant protein in tachyzoites
and contains 12 conserved cysteine residues that are thought to main-
tain secondary structure |[Burg et al.| |1988; Manger et al. 1998|. SAG1
is thought to contribute to virulence as the virulent RH strain expresses
fours times the mRNA levels compared to the avirulent NTE strain [Win-
deck and Gross, [1996|. Furthermore, SAG1 antibodies prevent invasion
in different cell types indicating its importance in adherence to the cell
surface [Mineo et al., [1993|. Tachyzoites and bradyzoites both express
SAG3 and dense granule proteins 1 - 7 whereas bradyzoites exclusively
express the SAGl-related sequence bradyzoite specific recombinant 4,
and bradyzoite antigen 1 (BAG1), which has homology to small heat
shock proteins (HSP) [Manger et al., 1998].

Morphologically, tachyzoites and bradyzoites look similar although

tachyzoites have a central nuclei, few microneme proteins and rhoptry
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proteins, but numerous dense granules (secreted from specialised organ-
elles from the apical cytoplasmic complex), whereas bradyzoites have a
basally located nucleus, many microneme and rhoptry proteins, but few

dense granules [Dubey et al., [1998|.

1.4.2 Invasion strategies of T. gondi:

Individual 7. gondii parasites either infect enterocytes of the small in-
testine, or migrate between them. To date, it is not known whether
parasites that infect enterocytes can exit through the basal domain be-
fore replication occurs although invasion of cells decreases once they be-
come polarised, suggesting that receptors for invasion are located on the
lateral or basal domains [Velge-Roussel et al., 2001|. Parasites that move
between cells have been shown to do so without affecting the integrity
of the monolayer, but upregulate adhesion proteins such as intercellular
adhesion molecule-1 (ICAM-1) [Barragan et al., 2005|. Additionally, mi-
gration occurs more in Type I strains than Type II and III, which is one
factor used to define virulence [Barragan and Sibley, 2002]. It is probable
that given Type I can survive outside cells longer than Type II or III,
these parasites are capable of migrating between cells independently, as
well as in immune cells [Saeij et al., 2005; |Aliberti et al., |2003].

T. gondii preferentially attaches and invades enterocytes within the
villi of the small intestine that are in mid-S phase of the cell cycle, during
the upregulation of surface receptors [Dubey et al., 1998; Grimwood et
al [1996]. Tt has also been shown that T. gondii influences the cell cycle
to remain in S phase by deregulating molecules such as cyclin E1, cyclin
dependent kinase 4 (CDK4) and CDK6 |Molestina et al.l 2008]. Once
inside the cells, parasites remain below the cell surface above the nuc-
leus within a parasitophorous vacuole, and may replicate six hours after
infection [Woodmansee, 2003} [Jerome et al., [1998; [Sasono and Smith)
1998].

1.4.2.1 Attachment and parasite movement

To date, only a few cell surface receptors involved in T. gondiz invasion
have been identified. For example, it has been shown that T. gondii can
attach via GPI-anchored proteins such as SAG1, to host glucosamine
receptors [Mineo et al., 1993, and via laminin binding to 31 integrin re-
ceptor aff1 on host macrophage, fibroblasts and ovarian cells [Furtado

et al., [1992bjal. GPIs from T. gondii can also bind to galectin-like mo-
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lecules on the cells surface |Debierre-Grockiego et al. [2010]. Galectins
are involved in the formation of the microneme MIC1-MIC6 protein com-
plex which is secreted during infection [Saouros et al., 2005]. Sulfated
glycosaminoglycans (GAGs) also mediate binding to host cells as demon-
strated by the addition of soluble GAGs (heparin, heparin sulfate and
chondroitin sulfate A), GAG deficient cells and enzymatic treatment of
GAGs |Carruthers et al.l 2000]. These treatments resulted in decreased
binding, attachment and parasite motility and showed that GAGs (in
particular O-sulfated GAGs), which are expressed on many cells, repres-
ent one class of receptors that T. gondii targets for invasion [Carruthers
et al., [2000]. SAG3 mediates binding to heparin sulfated proteoglycans
[Jacquet et all [2001], and sialic acid residues on host cells may also be
important for parasite binding and invasion [Monteiro et al., [1998].

Following attachment, the parasite reorientates itself so that the ap-
ical cytoskeletal complex (which is made of a tubulin polymer and called
a conoid) is in contact with the host membrane (Figure |Carruthers
and Boothroyd, |[2007; Hu et al., 2002|. The parasite moves into the cell by
conoid extension in an anterior to posterior fashion using an actin-myosin
motor (gliding motility) [Hakansson et all, |L999; Pezzella-D’Alessandro
et al., [2001; Dobrowolski and Sibleyl, (1996} [Dobrowolski et al., [1997; [Hirai
et al., 1966]. Gliding motility includes three forms of movement; circular
gliding, describing an anti-clockwise movement of the parasite from a
fixed point; helical gliding, describing rotation along a longitudinal axis
when the parasite is horizontal which results in a flipping movement; and
twirling, where the parasite is vertical and rotates around a fixed point
at one end [Hirai et al [1966; Hakansson et al. [1999).

Actin polymerisation is essential for parasite motility to occur and
actin filaments must be expressed in a polarised manner to initiate direc-
ted gliding motility into cells [Wetzel et al., 2003]. Actin polymerisation
within the host may also assist in internalisation and establishment of
the moving junction during invasion [Gonzalez et al., 2009]. Myosin
light chain kinase induces the contraction of myosin through calmodulin-
dependent increases in calcium levels within the parasite, and to initiate
microneme binding |Pezzella-D’Alessandro et al., 2001]. This process
shows that active penetration of the parasite is required for invasion to
occur and is different to phagocytosis as no membrane ruffling occurs.
In addition, microfilaments are not reorganised during active penetra-
tion, the opposite of which is true during phagocytosis [Hirai et al., 1966;
Morisaki et al., [1995]. Butcher and Denkers, 2002, also demonstrated
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Figure 1.7: Invasion process of T. gondii. (1) Following initial engagement with
the cell surface through molecules such as SAG1, parasites reorientate and attach
(2). As invasion commences, microneme proteins are secreted and a moving junction
forms to stabilise interactions between the parasite and cell (3). Rhoptries (green)
are secreted from the parasite during penetration which locate on the parasitophorous
vacuole, or are secreted into the host cytoplasm (4, 5). Internalisation of the parasite
(6) leads to completion of the parasitophorous vacuole and dense granule proteins are
secreted that maintain parasite growth and replication within the cell (7). The apical
complex containing micronemes, rhoptries, dense granules and the motor complex is
depicted in the bottom left corner. Figure taken from Carruthers and Boothroyd,
2007 |Carruthers and Boothroyd, |2007].
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that active penetration is necessary to induce an immune response by
macrophages, providing further evidence that invasion is an active pro-
cess instigated by live parasites [Butcher and Denkers, [2002|. Although
T. gondii actively invades cells, host dynamin (a GTPase involved in
vesicle transport), endocytosis pathways and membrane tubule forma-
tion are also necessary for the parasite to internalise, as inhibition of

Dynasore-treated cells prevents invasion by 80% |Caldas et al., [2009].

1.4.2.2 Invasion

Micronemes Following increases in parasite intracellular calcium, mi-
croneme proteins such as apical membrane antigen 1 (AMAT1) are secreted
from the apical complex which aid in attachment to the host membrane
|[Alexander et al. 2005; |Lovett and Sibley, 2003} |Carruthers and Sib-
ley, 1999]. Impairment of AMA1 signalling causes decreased invasion,
providing evidence that these molecules are important for host-parasite
cell surface interactions [Alexander et al., 2005]. Microneme proteins are
homologues of vertebrate adhesive proteins and contain thrombospondin
type I repeats, integrin-like domains, epidermal growth factor-like do-
mains and lectin-like domains suggesting they bind to cell surface re-
ceptors [Meissner et al. [2002; [Saouros et all [2005; [Fourmaux et al.,
1996; Wan et al., 1997]. Microneme proteins such as the MIC2-M2AP
complex, are involved in invasion and motility and directly participate
in host cell binding. MIC2 has been shown to immunoprecipitate with
ICAM-1, possibly indicating transmigration could occur following this
interaction |[Barragan et al.; [2005; [Huynh et al., 2003|. MIC6 and MICS8
act as escorts for other MIC protein complexes [Meissner et al. 2002|
through binding to cytoskeletal molecules such as adolase, to provide
a gateway between the actin-mysoin motor and the cell surface [Zheng
et al.l [2009]. MIC4 is complexed with MIC1 and MIC6, and contains
cysteine residues that form disulphide bonds within six conserved apple
domains |Brecht et al., |2001|. Binding to cells indicates that MIC1 and
MIC4 proteins act as a bridge between the parasite and host cells [Brecht
et al., |2001; Fourmaux et al., [1996].

Rhoptries Rhoptry proteins derive either from the neck (RON) or the
bulbous (ROP) part of the rhoptries, and are another type of specialised
organelle containing approximately 40 proteins [Bradley et al., 2005|.
AMAT1 complexes with rhoptry neck proteins RON2, RON4 and Ts4705,
and RON2 attaches to the moving junction via AMA1 |[Lamarque et al.,
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2011]. This complex binds and integrates with the host membrane and
thereby providing a gateway for secreted RON4, RON5 and RONS8 to
commence formation of the parasitophorous vacuole, progressively elim-
inating host proteins from the invaginated surface [Alexander et al., 2005;
Straub et al., [2009; Lamarque et al., 2011]. RONS8 also adheres to an as
yet unidentified cell cytoskeletal molecule [Straub et al., 2009]. Straub et
al, 2011 recently demonstrated that RONS8 contributes to virulence and
is required for attachment and invasion as deficient parasites were less
able to do so, in addition to not binding the cell cytoskeletal molecules
[Straub et al., 2011].

ROP18 is associated with the PPV has active serine/threonine kinase
activity and is involved in controlling parasite replication [Hajj et al.,
2007]. ROP18 shows high sequence divergence between strains which
correlates to high Type I virulence [Taylor et al., 2006]. RON16 is also a
serine/threonine kinase that enters the cell nucleus where it induces vari-
able levels of IL-12 secretion from macrophages, depending on the strain
of T. gondii [Saeij et al., 2007]. Rabll and Toxophilin have also been
identified to be rhoptry proteins [Bradley et al.. 2005]. Rabll controls
cholesterol recycling while Toxophilin binds to parasite G-actin and may
play a role in assisting the actin-myosin motor during invasion [Holtta-
Vuori et al., 2002; Poupel et al., 2000]. Parasite protein phosphatases
have been identified that translocate to the cell nucleus upon infection
to act on rhoptry proteins or host proteins [Gilbert et al.l 2007; Jan et
al.l 2009; Delorme et al., 2002|. This suggests that phosphorylation and
dephosphorylation events are important during invasion and growth of
T. gondii inside cells [Jan et al., [2009].

Dense Granules Rhoptry proteins associate with dense granule pro-
teins which play a role in maintaining the parasitophorous vacuole for
intracellular parasite replication [Nam)| [2009]. For example, RON2 and
RON¢4 are present with dense granule protein GRA 7, which is involved in
parasite nutrient acquisition, and is essential for lipid-microtubule form-
ation around the PPV [Coppens et al., 2006; Dunn et al., [2008].

Moving junction and formation of the Parasitophorous Vacu-
ole The enclosure of the moving junction correlates with a change in
conductance within the host cell but without altering the integrity of
the membrane |[Suss-Toby et al., |1996]. The parasitophorous vacuole

(PPV) derives initially from host cell membrane invagination as part of
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the moving junction that forms during invasion, and remains connected
to the host via fibrous and tubular material which is used as a gateway
for accessing host cell nutrients [Schatten and Ris|, 2004]. The vacuole
membrane contains parasite derived molecules such as dense granule pro-
teins, rhoptries, ubiquitin ligases, kinases and superoxide dismutases, and
is permeable to molecules up to ~1.9kDa [Martin et al.l [2007; |Schwab et
al.l [1994; Pacheco-Soares and Souza, 1998|. Host GPI-anchored proteins
and cholesterol are present but host transmembrane proteins and pro-
tein complexes are thought to be excluded over time so that the vacuole
remains undetected by phagosomes, lysosomes and the immune system
[Mordue et al., 1999; Straub et al., [2009|. The PPV induces alterations
in the host cytoskeleton through microtubule rearrangements, which are
involved in intracellular vesicle trafficking, and associates with y-tubulin
and intermediate filaments such as vimentin [Walker et al., 2008; Halonen
and Weidner, (1994].

Egression Following invasion, T. gondii prevents cells from undergoing
apoptosis by inhibiting the production of reactive oxygen species and pro-
apoptotic molecules such as Bas and caspases, by blocking p38 MAPK
pathways and enhancing anti-apoptotic molecules such as Bcl2 [Choi et
al 2011). However, decreases in host cell potassium levels, or increased
death receptor ligation due to cell stresses such as nutrient depletion
or irreversible cell expansion, can cause T. gondii to increase calcium
levels via activation of Phospholipase C [Moudy et al., 2001]. Parasites
then secrete perforin-like proteins in a calcium dependent manner, which
creates pores in the membrane and releases them from the PPV and the
cell [Kafsack et al., 2009; Persson et al., [2007].

1.4.3 Immune responses to T. gondi

Upon exposure to T. gondii, intestinal epithelial cells, intraepithelial
lymphocytes, natural killer cells, macrophages and dendritic cells all re-
spond to and activate immune responses towards the parasite, which is
crucial in controlling the outcome of infection [Ronet et al. 2005; Buzoni-
Gatel et al.) 2001} [1999; Ju et al., 2009; [Hou et al., 2011} [Lepage et al.,
1998|. The SAGI1 protein on tachyzoites has been shown to be largely
responsible for generating a robust immune response, although dense
granule protein GRA15 can also activate the immune system via NFxB
in Type II parasites, illustrating that multiple molecules are probably

involved in the immune response to 7. gondii infection [Rachinel et al.,
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2004; Rosowski et al., 2011].

T. gondui is recognised by TLR2 and TLR9 expressed on epithelial
and immune cells, and the TLR11-UNC93B1 protein complex expressed
by dendritic cells (not present in humans), which binds to parasite actin-
binding protein profilin (Figure [Yarovinsky et al., 2005 Pifer et al.,
2011; Minus et al., 2006; |Ju et al., [2009; Mun et al., 2003|. These TLRs
activate myeloid differentiation factor 88-induced secretion of Ty1 proin-
flammatory cytokines such as IL-1, IL-8, IL-12, IL-18 and IFNy, of which
the early secretion of IL-12 from dendritic cells plays a critical role in con-
trolling gastrointestinal pathology caused by T. gondii [Hou et al., 2011}
Ju et al.| [2009]. Within 30 minutes of infection, IFN-inducible GTPases
(also termed immunity-related GTPases or IRGs) act upon the PPV to
create pores within the membrane, resulting in both parasite death and
cell necrosis [Zhao et al., |2009]. However, as IRGs are not present in
humans, other mechanisms to kill intracellular parasites are employed
which include IFNy-induced production of nitric oxide, reactive oxygen
species and tryptophan degradation, that inhibits parasite growth within
macrophages and activates stage conversion [Pfefferkorn, 1984; Bohne et
all [1994]. However, ROP18 can bind to IRGs to prevent destruction and
promote survival within macrophages [Fentress et al., [2010]. In addition,
T. gondii has been shown to inhibit the production of proinflammatory
cytokines and nitric oxide in macrophages by preventing translocation
of NF-xB to the nucleus [Butcher et al., [2001; (Guillermo and DaMatta,
2004]. Nod2 signalling is also required to prompt an efficient T cell re-
sponse against 7. gondii, as deficient mice are unable to produce sufficient
levels of IL-2 that drives T cell expansion [Shaw et al.l [2009].

Infected epithelial cells activate MAPK and NFxB signalling path-
ways and secrete cytokines and chemokines such as Macrophage Inhibit-
ory Protein (MIP) -1a and MIP-1p, IL-8, and monocyte chemoattractant
protein-1 (MCP-1) which recruit IELs, neutrophils and macrophages, re-
spectively |[Denney et al., [1999; |Ju et al., 2009; [Luangsay et al. 2003;
Mennechet et al.l 2002]. This recruitment is essential in preventing a
high parasite burden, as for example, mice that are deficient in IL-17
are more susceptible to infection than wild type mice due to a lack of
neutrophil activation from natural killer cells [Passos et al., 2010; [Kelly
et al., 2005).

Neutrophils secrete soluble factors such as chemokine ligand 5 (CCL5),
IL-12 and TNFa which attract natural killer cells and activate dendritic
cells and IELs [Bennouna et al., 2003; Khan et al., 2006; Luangsay et
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Cyclophilin-18 recruits CCR5 dendritic cells
Profilin recognised by TLR11 on dendritic cells

|

Toxoplasma gondii

Epithelial cell secretion of IL-8 and MCP-1 MyD88 activation and secretion of IL-1, IL-18, IL-12
Recruitment of neutrophils and macrophages T cell activation NK cell activation

IL-10 and Lipoxin A4 production

Production and secretion of TNFa, nitric oxide,

reactive oxygen species and degradation IFNy secretion Perforin secretion
of tryptophan

T.gondii death and/or T.gondii death by IFNy inducible genes
conversion to bradyzoites and breaches in membrane integrity

and/or conversion to bradyzoites

TGFB secretion from IELs

Figure 1.8: Immune response initiated by infection with T. gondii. T.
gondii stimulates the recruitment of dendritic cells by the expression of cyclophilin-18
and activates cells through TLR11. This drives the production of proinflammatory
cytokines such as IL-12 which recruit T cells and activate them to produce IFNvy.
IFNYy leads to parasite death or stage conversion. Epithelial cells also respond to the
parasites by secretion of chemoattractants which recruit neutrophils, natural killer
(NK) cells and macrophages to sites of infection. Production of cytotoxic products
drives the clearance of parasites and infected cells, but increases the probability of
stage conversion. IELs, macrophages and dendritic cells also suppress the immune
response to decrease pathology within the host, by secreting anti-inflammatory mo-
lecules such as IL-10, TGF( and Lipoxin A4.
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al.l 2003]. Binding of CCLS5 to its receptor on dendritic cells and natural
killer cells triggers the production of perforin which kills parasites, but
also I1.-12 which regulates the secretion of IFNy that is necessary for
the activation of antigen-specific and cytotoxic T cells [Yarovinsky et al.,
2008; \Guan et al., 2007; [Parker et al., 1991]. Infected dendritic cells can
also present 7. gondii antigen through MHC class I to recruit cytotoxic
T cells [Gubbels et al. 2005]. The production of IL-7 and IL-15 from T
cells and epithelial cells drives the expansion and survival of CD8 and
v0 T cells, that also results in increased IFNy levels [Lee et all 1999;
Bhadra et al., 2010]. Additionally, IT-7 and IL.-15 have been shown to
upregulate anti-apoptotic protein Bel2 [Bhadra et al., 2010]. Transloca-
tion of NFxB to the nucleus enhances anti-apoptotic molecules and is a
mechanism that 7. gondi: employs to promote survival within the cell, as
IxB, the inhibitory subunit of NFxB, becomes associated with the PPV
following infection [Molestina et al., 2003].

The production of IFNy is critical in controlling parasite burden as
studies have shown that without IFNvy, the host is unable to survive
an acute infection [Scharton-Kersten et al. [1996]. IFNy induces the
conversion of tachyzoites into bradyzoites, preventing the parasite being
targeted by the immune system and thereby establishing the chronic
phase of infection [Scharton-Kersten et al., [1996; |[Bohne et al., [1993].

Parasitic cyclophilin-18 is a mimetic of CCL5 and also binds to its
receptor on dendritic cells, recruiting them to sites of infection, and then
using them in a trojan horse mechanism to disseminate out of the gut
into lymph nodes [Aliberti et al., 2003]. Furthermore, it has been shown
that T. gondii preferentially invades immature dendritic cells and that
infected dendritic cells migrate into lymph nodes at a faster rate than
non-infected cells [Lambert et al.l [2006; McKee et al., 2004]. This in-
creased migratory capacity is strain dependent, favouring type II and
type III lineages over type I which migrate in an extracellular manner
via virulence factors [Lambert et all 2009]. In a similar trojan horse
mechanism, NK cells kill infected dendritic cells by releasing substances
such as perforin, but 7. gondii can use this process to then infect NK
cells and evade the immune system [Persson et al., 2009).

IELs also play an important role during 7. gondii infection as they
have been shown to be both destructive (cells positive for MCP-1 re-
ceptor) and protective (TGF secreting cells) depending on whether para-
sitic load is high or low, respectively [Egan et al., [2009} [2005; Buzoni-
Gatel et al.l|2001},1997]. Up-regulation of the anti-inflammatory molecule
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lipoxin Ay by T. gondii also suppresses the production of dendritic cell-
induced IL-12 and slows down the immune response [Aliberti et al., 2002).
Dendritic cells from mesenteric lymph nodes, primed with T. gondii anti-
gens, also suppress the immune response by the production of TGF3, IL-
10 and IgA |[Dimier-Poisson et al., 2003]. vd IELs protect the epithelium
barrier by preventing the redistribution of tight junction proteins and
changes in occludin phosphorylation, decreasing parasite transmigration
and are involved in establishing long term immunity to 7. gondii infection
|[Buzoni-Gatel et al., [1997; [Lepage et al., [1998; Dalton et al., 2006|. IELs
expressing TCR-Vy7Tappear to be responsible for controlling infection
within the small intestine and TCR-Vy1'IELs for controlling systemic
infection to eliminate infected immune cells that have disseminated out
of the GI tract [Egan et al.l 2005, Dalton et al., 2006|.

1.4.4 Therapies for treatment and prevention of Toxoplasmosis

Drugs used for the treatment of Toxoplasmosis include Spiramycin which
is used during pregnancy for the reduction of congenital transmission,
and Pyrimethamine and Sulfadiazine (with Folinic acid) to prevent nuc-
leic acid synthesis, but are often associated with adverse side effects and
are therefore not a long term solution for the control, or indeed pre-
vention, of T. gondii infection. Molecules up-regulated upon bradyzoite
conversion, such as heat shock proteins have also been targeted for drug
development, and the antibiotic geldanamycin has been shown to pre-
vent stage conversion via inhibition of ATP binding to HSP90 [Bedin et
all [2004]. HSP90 is a heat shock protein and chaperone implicated in
assisting protein folding and assembly of other molecules important for
invasion [Ahn et al., [2003; |[Echeverria et al., 2005].

The most efficient method to prevent Toxoplasmosis is to vaccinate
against it and stimulate cell-mediated immune responses. However, to
date there are no human vaccines for T. gondii, although there is one
commercially available live vaccine, Toxovax, for administration in sheep
to prevent congenital toxoplasmosis [Buxton and Innes, |1995|, and one
experimental live vaccine aimed at reducing oocyst shedding in cats as
the T-263 strain used is unable to produce oocysts |Frenkel et al., [1991].
Toxovax uses the S48 strain which has naturally lost its ability to convert
into bradyzoites and undergo the sexual stage of the life cycle in feline
species [Buxton and Innes, 1995|. If these options were to be practiced
on a large scale across countries, this would undoubtedly reduce the

prevalence of Toxoplasmosis in all humans and animals.
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However, live vaccines carry the risk of reverting into a virulent form
and so the production of dead or knock out strains such as the type II
KUS80 strain with a knock out of the gene encoding de novo pyrimidine
synthesis pathway, created by Fox and Bzik, are also being investigated
for their efficiency as vaccines |[Fox et al., [2011; [Mévélec et al., [2010].

Research into DNA vaccines can also provide a high level of stim-
ulation for cell-mediated immune responses and efforts have focused on
using surface antigens, microneme, rhoptry, and dense granule proteins as
targets in the presence of adjuvants [Martin et al., [2004; Petersen et al.,
1998; [Ismael et al., 2003; Huynh and Carruthers, |2006; Bhopale, 2003].
For example, combinations of microneme proteins MIC1 and MIC4, or
MIC3 used to immunize mice were found to generate high levels of IgG
specific antibodies, increase IFNy and IL-10 production, prolong host
survival and decrease parasite burden in the brain |Lourenco et al., 2006;
Ismael et al., [2003]. The virulence factor ROP16, was shown to trigger
a strong immune response in mice following intramuscular injection and
improved the life expectancy of infected individuals [Yuan et al., 2011|
and a cocktail of GRA1 - GRATY generated proliferation of lymphocytes
and IFNy production in pigs that were intradermally immunised [Jongert
et al., 2008|.

Non-therapeutic solutions to decreasing the prevalence of T. gondii
within the human population include simple awareness of transmission
routes and hygiene techniques which will prevent individuals becoming
infected. Such examples include thorough cooking of meats, washing raw
vegetables before eating, washing hands after the preparation of food and

after gardening.
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1.5 Rationale

T. gondii is a parasite found within all mammals and birds worldwide
that can result in the fatality of immunocompromised people and unborn
foetuses. The parasite causes chronic infections by residing in long lived
tissues such as muscle and the brain where it can alter the behaviour and
perception levels of infected individuals, and be a causal factor for the
onset of psychological disorders such as Schizophrenia |Lafferty, 2006;
Yolken et al., [2009]. Furthermore, the financial burden that T. gondii
infection exerts within the farming industry due to the death of lambs
caused by congenital toxoplasmosis, means that research into prevention
is necessary.

This requires detailed understanding of mechanisms and pathways of
host invasion by T. gondii to prevent chronic infection. T. gondii nor-
mally enters the host through contaminated meat and water consump-
tion. Consequently, the gastrointestinal tract is the point of initial con-
tact between the host and parasite. Mechanisms of invasion through the
GI tract are currently unknown, although studies suggest that the para-
cellular pathway is important for parasite dissemination |[Barragan et al.,
2005). Therefore, investigations into the effects on tight junctions follow-
ing exposure to T. gondii in small intestinal epithelial cells is examined in
this thesis. Findings may contribute to a further understanding of tight
junction regulation and identify novel molecules involved in maintaining
the integrity of gastrointestinal epithelial cell barriers, as well as identify
parasite-derived molecules important during 7. gondii infection in the

small intestine.
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1.6 Hypothesis

In small intestinal epithelial cells, occludin plays an important

role in the invasion and transmigration of T. gondzi:.

1.7 Aims

1. To establish an n vitro system to investigate changes within barrier

function and tight junction complexes.

2. To define T. gondii infection in small intestinal epithelial cells in
terms of barrier function and tight junction complexes, and further

investigate the effects on occludin [Dalton et al.l 2006].

3. To determine if T. gondii can directly interact with occludin and

suggest candidate pathogen-associated molecules.

4. To identify regulators of occludin following 7. gondii infection.

All experiments (with the exception of one) were performed using ta-
chyzoites. This life stage was used as it is the invasive form of the para-
site which disseminates throughout the body to infect multiple tissues.
In this thesis the findings could be transferable to more relevant cell
types such as infection of the brain. However, it must be noted that the
bradyzoites and sporozoites are the infective forms of the parasite which
invade the GI tract. Therefore, caution should be taken in the interpret-
ation of these results although an individual experiment was carried out

using bradyzoites which resulted in similar, but not identical, findings.
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Chapter 2

Materials and Methods

2.1 Commercial Suppliers

A full list of names and addresses of suppliers used can be found in Ap-
pendix [A]l Unless stated otherwise, reagents were obtained from Sigma-
Aldrich (Dorset, UK).

2.2 Secondary Cell lines

All cells and parasites were cultured in 25cm? flasks (Starstedt, Leicester,
UK).

Hs27 Human Foetal Foreskin Fibroblasts (HEFF) were obtained from
the European Collection of Cell Cultures (ECACC, no. 94041901) and
maintained by serial passage in Dulbecco’s Modified Eagle’s Medium
(DMEM, Lonza, Basel, Switzerland), supplemented with 2mmol/L L-
Glutamine and 10% Foetal Bovine Serum (FBS, Biosera, East Sussex,
UK) at 37°C in 5% CO/ 95% air atmosphere.

Murine small intestinal epithelial cells (m-ICgs cells) were kindly
provided by Alain Vandewalle (Inserm U246, Paris, France, |Bens et
al. [1996]) and cultured in 1:1 volume of DMEM:HAM’s F-12 (BioWhit-
tikar/Lonza, Basel, Switzerland), 60nmol /L selenium, 50mmol/L dexa-
methasone, 5ug/ml apo-transferrin, 2mmol/L L-Glutamine, 20mmol/L
N-2-hydroxyethylpiperazine-N’-2-ethanesulfonic acid (HEPES), 5ug/ml
insulin, 1nmol/L tri-iodothyronine, 2% FBS, 3.6g/L D-glucose, 10ng/ml
epithelial growth factor (EGF), at 37°C in 5% CO,/ 95% air atmosphere.
After 10 passages had been reached, cells were discarded and cultures re-
started to prevent changes in cell behaviour, growth and morphology
that are typical with cells maintained in culture. For experimental use,

centrifugation of m-1C., cells was always 260g for 5 minutes.
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Human adenocarcinoma colonic epithelial CaCos cells, and the deriv-
ative clonal cell line, C2BBel, were obtained from the ECACC (86010202)
and American Type Culture Collection (CRIL-2102), respectively. Both
cell lines were grown in 10% FBS in DMEM supplemented with 2mmol /L
L-Glutamine (and also 0.0lmg/ml apo-transferrin for C2BBel cells).
Cells were maintained at 37°C in 10% COs/ 90% air atmosphere.

Murine fibroblast ¥ CRE cells were obtained from the ECACC (no.
94090902) and cultured in DMEM supplemented with 10% FBS and
2mmol/L L-glutamine at 37°C in 5% COy/ 95% air atmosphere.

2.3 Parasite culture

Virulent type 1 strain RH, Tozoplasma gondii tachyzoites that stably ex-
press the tandem yellow fluorescent protein (YFP) were maintained by
continuous passage in confluent monolayers of HFF cells at 37°C in 5%
CO4y/ 95% air atmosphere [Gubbels et al., 2003]. Bradyzoite production
was induced in culture by the high pH shock method as described by
Soete et al. 1996 |Soéte and Dubremetz, [1996]. Supernatent from an
infected monolayer of HFF cells (naturally lysed to approximately 70 -
90%) was collected and centrifuged at 1000g for 15 minutes. The pel-
let was resuspended in 5 - 10mls of bradyzoite induction medium (2%
FBS, 50mM HEPES and 2g/L sodium hydrogen carbonate (pH 8.2) in
Roswell Park Memorial Institute media (RPMI, Lonza)) and added back
onto the remaining HFF monolayer for 48 hours. Bradyzoites were col-
lected from the supernatent by centrifugation at 1000g for 15 minutes.
The conversion from tachyzoites to bradyzoites was checked by means
of fluorescence (bradyzoites were YFP negative |[Egan et al, [2005], nor
expressed the tachyzoite specific surface antigen 1 protein (anti-SAG1
antibody from Abcam, Cambridge, UK)).

2.4 Parasite treatments

Parasites were killed by either the freeze-thaw method or the heat shock
method |[Koshy et al., [2010|. Briefly, parasites were centrifuged at 1000g
for 15 minutes, supernatent discarded and replaced with 1x phosphate
buffered saline (PBS, Oxoid, Basingstoke, UK). Parasites were either
frozen in 1:1 volume of 100% ethanol and dry ice for 5 minutes, before
thawing in a 37°C water bath. This process was repeated three times.

Alternatively, parasites were heated at 65°C for 20 minutes.
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2.5 Parasite Viability

Having been resuspended in PBS, parasites (live or dead) were incubated
with LIVE/DEAD® Fixable Green (488nm excitation) or LIVE/DEAD®
Far Red (633 or 635nm excitation) Dead Cell Stain Kit (Invitrogen) for
10 minutes before centrifuging in 1% Bovine Serum Albumin (BSA) in
PBS. Parasites were then fixed in 2% PFA for 20 minutes, centrifuged
and resuspended in PBS. Samples were run through the FACS Calibur
by Roy Bongaerts (Institute of Food Research, Norwich, UK).

2.6 Invasion and Transmigration Assay

m-ICy cells were plated in a volume of 100pl onto the apical (top) com-
partment of polyethylene terephthalate (PET) cell culture transwell in-
serts (6.5mm diameter, 8um pore size, BD Biosciences, Oxford, UK),
within a 24 well plate (Starstedt), and soaked in 1ml of cell media in the
basal (bottom) compartment. An insert containing just cell media was
used as a blank. Cells were grown at 37°C in 5% CO,/ 95% air atmo-
sphere. After 24 hours, the volume of media in the apical compartment
was adjusted to 500ul. Apical media was replaced every 24 hours and
transepithelial electrical resistance (TEER) was measured every 24 - 48
hours using an Epithelial Tissue Volt Ohmmeter 2 (EVOM2, World Pre-
cision Instruments, (WPI), Stevenage, UK). Basal media was replaced
every 48 hours after a TEER reading was taken. TEER was calculated

using the following equation:

Resistance = (Rg — R;)wr®

where R, is the resistance of cells on the insert, R; is the resistance of
the insert and r is the radius of the insert.

On day 12, TEER was recorded and inserts with confluent, polar-
ised monolayers of cells (indicated by a consistent TEER over time) were
transferred to new 24 well plates with 700ul pre-warmed (at 37°C) cell
media per well (basal compartment). Apical media was replaced with
200ul fresh pre-warmed media. On day 13 TEER was recorded using
an ENDOHM (WPI) that contained 700pl pre-warmed cell media, in
which each insert was placed and allowed to calibrate for 2 minutes be-
fore measuring. These volumes of liquid created equal levels in the apical
and basal compartments to ensure the readings were as accurate as pos-
sible. The insert was then placed back into the 24 well plate. Media
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was removed from the apical compartment and was used to resuspend
pelleted RH-YFP T. gondii tachyzoites or bradyzoites in a volume of
200ul. In some cases, 1000ug/ml 3 - 5kDa FITC-conjugated Dextran
was also added to the apical media, in order to assess changes in per-
meability during infection. Inserts were returned to 37°C in 5% CO,/
95% air atmosphere during infection. TEER was then recorded using the
ENDOHM as before. Apical and basal media were removed and kept for
later analysis of FITC-dextran permeability (Section and numbers
of parasite transmigration (Section [2.10]). Cells were transferred to new
plates and prepared for confocal microscopy following the immunocyto-

chemistry protocol outlined below.

2.7 Immunocytochemistry

Live cells were washed in 1x PBS and fixed at 25°C in either 2% par-
aformaldehyde for 20 minutes, or acetone for 5 minutes followed by 5
minutes in rehydration buffer (1% BSA in PBS). Cells were then per-
meabilised in 0.2% Triton X-100 for 10 minutes and blocked in blocking
buffer (0.2% Triton X-100, 3% BSA, 3% goat serum, 3% fish skin gelatin
in PBS) for 1 hour. All incubations were applied to both the apical and
basal compartments of transwell inserts. Primary antibodies diluted in
blocking buffer were added to the apical compartment, with blocking
buffer maintained on the underside of each insert for 20 hours at 4°C
(Appendix . Controls consisted of either no primary antibody or rel-
evant IgG in place of the primary antibody. Solutions were removed and
cells washed in PBS three times. Secondary and tertiary antibodies were
then added to cells and incubated on a shaker in the dark at 25°C for
1-2 hours, washing in between incubations with 1x PBS. Where different
antibodies were raised in the same species, secondary and tertiary anti-
bodies were applied to one protein before continuing with the other, in
order to avoid non-specific binding. Finally, the PET membrane was ex-
tracted from the insert using a scalpel and placed cell side up onto a glass
microscope slide. A drop of DePeX (BDH, Dorset, UK) or Vectashield
Hard-Set Mounting medium with DAPI (4’,6-diamidino-2-phenylindole,
Vector Labs, Peterborough, UK) was applied to the sample. It was then
covered with a glass coverslip and stored in the dark at 4°C.

To visualise intracellular parasites, cells were grown to confluency on
13mm diameter glass coverslips (BDH). RH-YFP tachyzoites were added

to cells for 2 hours before removing and discarding unattached parasites.
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Cells were briefly washed with PBS and fixed in 2% paraformaldehyde
for 20 minutes. The samples were permeabilised in 0.2% Triton-X 100
for 10 minutes, soaked in Haematoxylin for 1 minute, washed 3 times in
PBS, soaked in Eosin for 1 minute, before rinsing and mounting onto a

microscope slide with DePeX or DAPI mountant.

2.8 Confocal and Fluorescent Microscopy

Cells were viewed using an upright or inverted Zeiss AxioVert 200M mi-
croscope with LSM510 META image analysis software and AxioVision
image viewer. Z stacks were composed of 1um interval sections with the
40x oil objective unless stated otherwise. Rhodamine and Texas Red
fluorochromes were excited by the 543-nm helium neon 1 laser. YFP-RH
T. gondii was captured using the argon 488-nm laser, DAPI and Pacific
Blue by the 405-nm diode laser and Cy5 by the 633-nm helium neon 2
laser. All laser intensities for the same protein-antibody complex were
consistent throughout the duration of sample collection both within and

between experiments.

2.9 Paracellular Permeability

Samples were collected in 1ml eppendorfs and centrifuged at 1000g for
10 minutes using a bench top centrifuge (Eppendorf, Cambridge, UK).
The supernatent was transferred to a new eppendorf and 100yl was used
for fluorescent analysis in black 96 well plates (Matrix Technology Cor-
poration, Wilmslow, UK). The concentration of FITC-dextran was de-
termined from a standard curve. Samples were read using the FLUOstar
OPTIMA microplate reader (excitation 490nm, emission 520nm, BMG
Labtech, Aylesbury, UK).

2.10 Parasite Transmigration

The pellet containing parasites, collected from Section [2.9] was resuspen-
ded in 2% paraformaldehyde for 20 minutes and transferred to 5ml round
bottom FACS falcon tubes (BD Biosciences). Data was acquired with
side scatter trigger for 2 minutes on a low flow speed using a Cytomics
FC500 MPL (Beckman Coulter, High Wycombe, UK) or a FACS Calibur
(BD Biosciences). Detector voltages and threshold settings were adjus-

ted based upon sample blanks and negative controls. For the FC500MP,
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green fluorescence was collected in the FL-1 channel (515nm - 535nm),
yellow fluorescence in the FL-2 channel (568nm - 583nm), orange fluores-
cence collected in the FL-3 channel (615nm - 620nm), red fluorescence in
the FL-4 channel (660nm - 690nm) and far red fluorescence in the FL-5
channel (725nm - 785nm). For the Calibur:- green fluorescence was col-
lected in the FL-1 channel (515nm - 545nm), yellow fluorescence collected
in the FL-2 channel (564nm - 606nm), far red fluorescence in the FL-3
channel (>670nm), and red fluorescence in the FL-4 channel (653nm -
669nm). Quantum dots conjugated to Alexa Fluor 655nm were collected
in the FL-4 channel (653nm - 669nm) at a high flow rate. All parameters
were collected as logarithmic signals. Data was analysed post-collection

using FlowJo version 7.6 (TreeStar).

2.11 Cytokine Bead Array

Cells were grown to confluency on 6 well plates and infected with 7.
gondii tachyzoites for 24 hours. Supernatent was collected and centri-
fuged at 1000g for 15 minutes to remove parasites. The supernatent
was snap frozen in liquid nitrogen and stored at -80°C. Beads from the
Cytometric Bead Array kit (BD Biosciences, 30 Plex Bead Mixture) were
vortexed for 15 seconds and 0.5ul of each capture bead in 24.5ul of assay
diluent was used per reaction. 200yl of thawed supernatent was added
to the bead solution in FACS tubes for 1 hour in the dark at 25°C. After
vortexing for 15 seconds, 0.5ul of Phycoerythrin detection reagent was re-
suspended in 24.5ul assay diluent and this was incubated with the sample,
shaking for 1 hour at 25°C in the dark. lml of wash buffer (1% BSA in
PBS) was added to each tube and centrifuged at 200g for 5 minutes. The
supernatent was carefully removed and replaced with 600ul wash buffer.

Samples were read using the FC500 Flow Cytometer.

2.12 Electron Microscopy

A collagen gel solution (1:1 mixture of bovine derived collagen T gel:cell
media, set for 2 hours at 37°C) was set onto thermanox coverslips. These
coverslips are designed specifically for electron microscopy sample pre-
paration and were placed within a 35mm p-dish (Ibidi, Martinsried, Ger-
many). m-ICgs cells were plated onto the gel and cultured for 8 days
before infecting with RH-YFP T. gondii tachyzoites for 2 hours. Media

was removed and cells were rinsed in PBS before fixing with 3% glut-
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araldehyde (Agar Scientific, Stansted, UK) in 0.1M cacodylate buffer
(pH 7.2) for 2 hours. The fixative was removed and then replaced with
three washes of 0.1M cacodylate buffer. Kathryn Cross and Mary Parker
(Institute of Food Research, Norwich, UK) kindly further prepared the
samples for scanning electron microscopy (SEM) and transmission elec-
tron microscopy (TEM) from this point onwards. The experiments were
carried out once with biological replicates for SEM and TEM.

For TEM, an additional fixing step was applied to the samples using
a 2% aqueous osmium tetroxide solution for 1 hour, before dehydrating
the samples through a series of ethanol solutions (from 10% to 20% to
30%). A lcm? portion of the cell layer was cut and removed from the
coverslip using a razor blade. This portion was then processed through
an additional ethanol dehydration series (40, 50, 60, 70, 80, 90, 3 X
100%). The ethanol was replaced with a 1:2 mix of LR White medium
grade resin (London Resin Company Ltd, London, UK) to 100% ethanol
and incubated on a rotator for 17 hours at 25°C.

This resin was removed and replaced with solutions containing first
a 1:1 and then a 2:1 mix of LR White resin: 100% ethanol and finally a
100% resin was applied to the sample with 4 hours between each change.
The resin solutions were changed twice more with a 100% resin and
incubated for another 4 hours each time. The cell layers were laid flat
in embedding capsules with fresh resin and polymerised for 17 hours at
60°C.

Sections approximately 90nm thick were cut using an ultramicrotome
(Ultracut E, Reichert-Jung, Labquip, Ontario, Canada) with a glass
knife, collected on film/carbon coated copper grids, and stained sequen-
tially with uranyl acetate (saturated in 50% ethanol) and Reynold’s lead
citrate.

For SEM, sections of the supporting dishes were carefully cut away
ensuring that the cell layers remained immersed in buffer. Sections were
dehydrated through a series of ethanol solutions (10, 20, 30, 40, 50, 60, 70,
80, 90, 3x 100%) and critical point dried in a Polaron E3000 critical point
drier using liquid carbon dioxide as the transition fluid. The sections were
mounted such that the cell layers were face up on aluminium SEM stubs
using quick drying condicutive silver paint (Agar Scientific). The samples
were coated with gold in Agar high resolution sputter-coater apparatus.

Samples were visualised using a Zeiss Supra 55 VP FEG SEM, oper-
ating at 3kV (Zeiss).
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2.13 Protein analysis

2.13.1 Protein sample collection

Cell lysates were prepared as follows. Approximately 2 - 3 x 10° m-
ICgo cells can be collected from a confluent monolayer growing on a
25cm? flask for 8 days. To prepare cell lysates for protein analysis, media
was removed and replaced with 1ml of ice-cold PBS. PBS was removed
and replaced with 400ul of ice-cold soluble lysis buffer: 1% Triton X-
100, 100mmol /L NaCl (Fisher Scientific, Loughborough, UK), 25mmol /L
Tris-HCI, pH 7.4, lmmol/L sodium orthovanadate, 5hmmol/L ethylene-
diaminetetraacetic acid (EDTA), 2mmol/L ethyleneglycoltetraacetic acid
(EGTA), 50mmol/L. phenylmethysulfonyl fluoride (PMSF), 25mM so-
dium fluoride, 10x protease inhibitor cocktail and a 15-fold dilution of
phosphatase inhibitor cocktail. Cells were removed from the flask using
a cell scraper (BD Biosciences) and transferred to a pre-chilled eppen-
dorf tube. Cells were lysed 10 times using a 19 gauge needle before
being centrifuged at 16,100g for 10 minutes at 4°C. The supernatent
(soluble, cytoplasmic fraction) was kept on ice while the pellet (insol-
uble, membrane-associated fraction) was prepared. The pellet was resus-
pended vigorously in 300ul of insoluble lysis buffer (soluble lysis buffer
supplemented with 6M urea and 0.5% sodium lauryl sulfate (SDS), with
additional protease and phosphatase inhibitor cocktails), vortexed, son-
icated three times for 30 seconds at 4°C before centrifuging for 5 minutes
at 16,100g. The supernatent (insoluble, membrane associated fraction)
was transferred to a new eppendorf tube and the pellet (mainly contain-
ing DNA) was discarded. An aliquot of fractions were taken for protein
quantification and the remainder was snap frozen in liquid nitrogen.
Protein content was determined using a Bio-Rad DC Protein As-
say Kit according to manufacturers instructions (BioRad Labs, Hemel
Hempstead, UK). Protein standards were established using various con-
centrations of BSA from 0.0825mg/ml to 1.48mg/ml, including a blank
(soluble and insoluble lysis buffer only). Colorimetric measurement was

performed using a microtitre plate reader (SpectraMax Plus384).

2.13.2 Immunoprecipitation and gel electrophoresis

The immunoprecipitation (IP) was carried out according to manufactur-
ers instructions. Briefly, Dynabeads Protein G (Invitrogen) were resus-

pended and for each IP, 50ul (1.5mg) were transferred into an eppendorf
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tube. The tube was placed on a magnet (Invitrogen) to separate the
beads from the solution. Having removed the solution and tube from
the magnet, 4ug of anti-occludin antibody (Invitrogen) in 200ul of PBS
containing 0.02% Tween 20 was added to the beads and rotated at 25°C
for 90 minutes. The tube was then placed back onto the magnet and su-
pernatent removed. The antibody-bead complex was gently washed with
200ul of PBS containing 0.02% Tween 20. The beads were resuspended
with cell lysates in a volume of no less than 200ul and rotated at 25°C for
90 minutes. The tubes were then placed back on the magnet and super-
natent removed. The bead-antibody-protein complex was gently washed
twice with 200ul of PBS, separating the solution from the beads using the
magnet. In order to discard proteins that had bound to the tube wall, the
complex was resuspended in 100ul of PBS and transferred to a new tube.
The beads were separated from the supernatent again, before eluting the
protein in 20yl of 1x RunBlue Lithium Dodecyl Sulfate sample buffer
(LDS, Expedeon, Harston, UK) and 1x dithiothreitol reducer (DTT,
100ug/ml, Expedeon) in double distilled water (ddH,O).

For denaturing gels, samples were added to a mixture of 1x RunBlue
LDS Sample Buffer and 100pg/ml DTT reducer. A constant volume
of sample was prepared in ddH;O. These samples were then heated
to 70°C for 10 minutes before loading onto a precast Sodium Dodecyl
Sulfate PolyAcrylamide GEls (SDS-PAGE, 8%, 10% or 12%, RunBlue,
Expedeon). Equal amounts of protein were used to load in each lane and
samples were run alongside a pre-stained protein molecular marker (10 -
170kDa, Fermentas, St. Leon Rot, Germany), at 150V for 1 - 2 hours in

running buffer according to manufacturers instructions.

2.13.3 Densitometry

Gels were incubated in Coomassie Brilliant Blue stain for 1 hour and
washed in water. Proteins were visualised under white light and photo-
graphed. For purposes of ensuring equal loading across samples, densit-
ometry analysis was performed by Francis Mulholland (Institute of Food
Research). Gels were scanned using a GS-800 scanner and imaged using
Quantity One software (version 4.6.1). Protein bands were aligned across
lanes according to molecular weight, as shown in Appendix [C| and rel-
ative quantities were estimated using the intensity (measured from the
optical density) of each protein band and subtracted from the background

signal from the gel.

73



2.13.4 Mass Spectrometry

For mass spectrometry analysis all sample preparation was performed
by Francis Mulholland. Gels were stained with SYPRO Ruby and pro-
tein bands were extracted from the gel as follows. Samples were washed
twice for 15 minutes in 400mM ABC in Acetronitrile (Fisher Scientific)
and rinsed in acetronitrile for 10 minutes. Samples were air dried before
adding 10mM DTT in 50mM Ammonium Bicarbonate and incubated
for 30 minutes at 60° C using a PCR machine. Liquid was removed
and replaced with 100mM Iodoacetamide in 50mM Ammonium bicar-
bonate Iodoacetamide solution for 30 minutes at 25° C, in the dark.
This step was repeated three times before washing in acetonitrile for 10
minutes. After air drying, 25ug Chymotrypsin in enzyme buffer (20mM
Ammonium Bicarbonate in 1M Calcium Chloride Dihydrate) and 5ug
Trypsin Gold (Promega) in 50mM Acetic Acid in enzyme buffer were
added together at kept at 4° C. Samples were incubated at 37° C for
over three hours in the presence of protease solution and enzyme mix-
ture. Finally, 1% Formic Acid was added to samples and incubated for
10 minutes before freezing.

Samples were acquired through an LTQ OrbiTrap (Thermo Fisher
Scientific), database searches were performed by Alex Jones (Sainsbury
Lab, Norwich, UK), and results were analysed using MASCOT (Matrix

Science) software.

2.13.5 Immunoblotting

For the detection and visualisation of specific proteins, samples were
transferred onto Hybond C+ nitrocellulose membranes (Amersham Bios-
ciences, Little Chalfont, UK) at 100V for 1 hour at 4°C in transfer buffer
(3g ultrapure Tris Base, 14.4g glycine (Fisher Scientific), 200mls meth-
anol (Fisher Scientific), 0.05% SDS and 800mls ddH,0). Membranes were
blocked in 5% BSA in Natt buffer (150mM NaCl, 20mM Tris Base, 0.1%
Tween-20, pH 7.4), shaking for 1 hour at 25°C. Primary antibodies di-
luted in 1% BSA in Natt buffer were applied to a sealed bag with the
membranes inside, to incubate for 24 hours 4°C. Membranes were washed
5 - 6 times for 1 hour in Natt buffer, before incubation with secondary
horseradish peroxidase (HRP) conjugates (Santa Cruz, California, USA)
in 1% BSA in Natt buffer, for 1 hour at 25°C. Membranes were washed
again for 1 hour 5 - 6 times with Natt buffer, before the addition of

1:1 volume of enhanced chemiluminescence substrate (SuperSignal West
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Figure 2.1: pBABEpuro plasmid vector. Map extracted from http://www.
biovisualtech.com/bvplasmid/pBABE-puro.htm

Pico Chemiluminescent substrate (Pierce Chemical Company, Cramling-
ton, UK)) for 5 minutes and developed using a Fluor-S-Multi Imager
(Bio-Rad) and Quantity One software (version 4.5.2).

In order to probe for another protein, membranes were stripped by
incubating in a 1:20 dilution of acetic acid in 1x PBS for 1 hour, pH 2.59.

Before and after stripping, the membrane was washed for 30 minutes in
Natt buffer.

2.14 FLAG-tagged occludin in the pBABEpuro vec-
tor

The retroviral pBABEpuro vector with FLAG-tagged full length mur-
ine occludin was kindly provided by Britta Engelhardt (Theodor Kocher
Institute, University of Bern, Switzerland) [Bamforth et al. [1999]. The
pBABEpuro plasmid is a high copy plasmid and contains genes that
confer resistance to ampicillin and puromycin (Figure .

To amplify the pBABEpuro plasmid vector, it was transformed into
competent DHba Escherichia coli (E. coli) cells (Invitrogen) by incub-
ating on ice for 30 minutes. Bacteria were heat shocked at 42°C for 2
minutes and returned to ice for 5 minutes. Super Optimal broth with
catabolite repression (SOC) media was added for 1 hour and incubated
in an orbital shaker set at 37°C, 225rpm (revolutions per minute). Bac-

teria was grown for 20 hours at 37°C on ampicillin-containing lysogeny
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Figure 2.2: Digestion of FLAG-tagged occludin pBABEpuro plasmid vec-
tor. Following digestion using NgoMIV and Sall restriction enzymes. FLAG-tagged
occludin migrates on a 0.8% agarose gel as a 1.6kbp band. Supercoiled, uncut plasmid
is also present on the gel after staining with ethidium bromide. Image produced by
Mohamed Bencharab (visiting worker in the Institute of Food Research).

broth (LB) agar plates (100ug/ml), and colonies selected and grown in
3 - 5mls of LB media with ampicillin. Using a miniprep kit (Qiagen,
Crawley, UK), DNA was purified according to manufacturers instruc-
tions. The insert size was checked and confirmed by digesting the plas-
mid with NgoMIV and Sall enzymes in Buffer 3 (New England Biolabs,
(NEB) Hitchin, UK) for 1 hour at 37°C (Figure [2.2)). The plasmid vector
is 6774 base pairs (bp) long, and following digestion, releases full length
occludin with the FLAG tag, resulting in a DNA band of 1601bp, leaving
the plasmid vector at 5173bp.

The plasmid sequence was checked and confirmed by The Genome
Analysis Centre (TGAC, Norwich, UK) using Set1F, Set1R, Set2F, Set2R,
Set3F and Set3R primers (Appendix [D] and Appendix [E]).

2.15 Production of recombinant occludin protein frag-

ments

High quality DNA from a large scale preparation kit (Qiagen) of the
FLAG-tagged occludin-pBABEpuro plasmid vector was used as a tem-
plate to amplify different portions of the occludin sequence to create
recombinant protein fragments as described below. These portions were
then ligated into the pET3a vector (a kind gift from Lora Hooper (Wash-
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ington University School of Medicine, Missouri, USA)), which carries an

N-terminal T7eTag®) sequence.

2.15.1 Production of recombinant proteins in E. col:

To generate a fragment containing the extracellular loops 1 and 2 (ECL1
and ECL2) of occludin, (Appendix [F]), the pBABEpuro vector contain-
ing FLAG-tagged occludin was amplified by Polymerase Chain Reac-
tion (PCR) with 5 units of Phusion high fidelity polymerase (New Eng-
land Biolabs), 10mM dNTPs, and 10uM each of the pECL1 forward and
pECL2 reverse primers (Appendix @ using the following protocol: ini-
tial denaturation at 98°C for 30 seconds, 35 cycles each of ten seconds,
denaturation at 98°C for 30 seconds, annealing at 50°C for 30 seconds
and 1 minute extension at 72°C. A final extension step was performed at
72°C for 10 minutes. PCR products were checked on a 2% agarose gel,
before ligating into the pET3a vector using a 1:1 ratio of insert:vector
and the protocol described in Section [2.14] The pET3a vector was di-
gested with BamH1 and Ndel restriction enzymes. DHba F. coli was
transformed and 10 - 20 colonies were screened for the presence of the
inserted occludin fragment within the plasmid.

Having established this, the bacteria were grown in 15mls of LB media
containing ampicillin and large scale DNA purification was performed us-
ing the miniprep kit previously mentioned. Approximately 200ng of plas-
mid DNA was transformed into the competent BL21 Codon Plus (DE3)
RIL strain of E. coli, chosen for expressing the protein and recombinant
fragments due to the presence of a large number of rare tRNAs. Colonies
were picked and plasmids were checked by restriction digest to determine
whether the insert was still the correct size and when confirmed (Figure
, DNA was sent for sequencing using the T7 primers to TGAC (Ap-
pendix @

BL21 cells containing the correct recombinant plasmids were grown
in bmls of LB media supplemented with ampicillin for 20 hours at 37°C
shaking at 225rpm. A 1:100 dilution of culture was sub-cultured in 25mls
of pre-warmed LB media supplemented with 1% glucose in a 250ml con-
ical flask at 37°C and allowed to grow whilst shaking at 250rpm (Scientific
Innova 44, New Brunsuick), until the optical density reached 0.35. Ex-
pression of the heterologous protein fragments was induced by adding
either 4mM of isopropyl-beta-D-thiogalactopyranoside (IPTG), and in-
cubated for a further five hours. IPTG is an activator of the lac operon

and causes an increased rate of the T7 polymerase transcription to oc-
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500 R ECL1-ECL2

Figure 2.3: Insertion of ECL1-ECL2 into pET3a plasmid vector. The insert
was ligated into the pET3a vector using a 1:1 ratio of insert:vector. The pET3a
vector was then digested with BamH1 and Ndel restriction enzymes. ECL1-ECL2
was present at 500bp on a 2% agarose gel after staining with ethidium bromide.

cur. The cultures were transferred to ice-cold 50ml falcon tubes and
centrifuged at 8228g for 10 minutes at 4°C (Eppendorf 5810R centri-
fuge). Supernatent was removed and the pellet was frozen and stored at
-20°C.

2.15.2 Expression of recombinant proteins in E. col:

In view of the subsequent protein purification, the solubility of the het-
erologous protein and protein fragments were checked. A fraction of the
bacterial pellets were resuspended in wash buffer (20mM TrisHCL, pH7.5,
10mM EDTA, pH8, 1% Triton X-100 in MilliQ water) and lysed on ice by
serial sonication impulses at 10 seconds (using a 10 - 11 intensity setting)
each for nine or ten times until the suspension turned clear. The lysed
bacteria were then centrifuged at 10,000g for 10 minutes at 4°C in order
to separate inclusion bodies from membrane-associated and soluble cyto-
plasmic proteins. Supernatents were transferred to a clean eppendorf and
centrifuged at 16,100g for 10 minutes. The second supernatents contained
the soluble cell protein fraction, and the pellets contained the membrane-
associated fraction. Samples from each fraction were run on a 4 - 12%
SDS-PAGE gel (Invitrogen) using 2-(N-morpholino)ethanesulfonic acid
(MES) buffer according to manufacturers instructions, and then stained
with Coomassie Brilliant Blue to detect the location of the recombinant

protein.
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Figure 2.4: Eluted fractions for ECL1-ECL2. A selection of fractions were elec-
trophoresced on a 4 - 12% gradient SDS-PAGE gel which was stained with Coomassie
Brilliant Blue. The size of ECL1-ECL2 was approximately 27kDa, as indicated by
the arrow.

2.15.3 Recombinant protein purification

Recombinant ECL1-ECL2 protein bacterial pellets were resuspended and
pooled together in 25mM TrisHCI, pH7, and sonicated until the solu-
tion became transparent. Using a cationic exchange chromatography SP
Sepharose column, the protein was run through the system following a
wash with 25mM TrisHCI, pH7, and 0.2M NaCl. Forty protein fractions
were eluted in 500ul aliquots with 25mM TrisHCI, pH7, and 0.6M NaCl.
A selection of collected fractions were subjected to gel electrophoresis on
4 - 12% gradient SDS-PAGE gels and subsequently Coomassie Brilliant
Blue-stained for the detection of recombinant protein. Elution of the
heterologous protein or protein fragments was observed after fraction 17,
peaked at fractions 22 and 23 and tailed off by fraction 40 (data not
shown). To check that all the protein had been eluted within the 40
fractions, a final fraction (called wash) was included on the gel. It was
seen that the majority of recombinant protein (=27kDa) was found in
fractions 33 - 40 (Figure[2.4). Fractions 37 - 40 were pooled together and
desalted on a PD-10 column (Amersham Biosciences, Buckinghamshire,
UK). Following protein quantification using a Bradford assay, recombin-
ant fragments were concentrated using a 3000MWCO PES Viva column
(Sartorius, Goettingen, Germany). This column separated the proteins
based on size, excluding any above 30kDa. Proteins were centrifuged
at 12,000g at 25°C for 2 x 15 minutes. Approximately 150yl of purified

protein at a concentration of 780ug/ml was collected and stored at -80°C.
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2.16 Generation of cells with reduced occludin

2.16.1 shRNA treated cells
2.16.1.1 Construction of shRNNA plasmid vector

The pBABEpuro vector backbone was used to express a short hairpin
siRNA (shRNA). The sequence of the ShRNA was described by Yu et al.
2005, (Figure [Yu et al.l 2005]. Restriction enzyme sites for NgoMIV
and BamH1 were added onto the ends of the shRNA sequence.

The pBABEpuro occludin plasmid was reduced in size by removing
occludin with BamH1 and re-ligated using T4 ligase. The shRNA was
then ligated into this intermediate plasmid at a ratio of 1:1000 with T4
ligase for 20 hours at 4°C using restriction enzymes NgoMIV and BamH1
(NEB). In order to compute the ligation reaction, the following equation
was followed:-

vVS;
qi =

Sv

where ¢ = quantity of insert (i) in ng, v = vector, s = size in base
pairs. The quantity of insert required was relative to 50ng of vector.

The shRNA was pre-prepared by adding 1ul of each oligonucleotide to
48ul of annealing buffer (100mM potassium acetate, 30mM HEPES pH
7.4, 2mM magnesium acetate) and amplified by PCR, (95°C for 4 minutes,
70°C for 10 minutes and finally 4°C for 10 minutes). The plasmid was
transformed into competent DH5a E. coli. Colonies were picked and
bacteria grown in LB media containing ampicillin and purified using a
miniprep kit (Qiagen). Plasmid DNA containing the shRNA sequence
were verified by digesting with BamH1 and NgoMIV restrictions enzymes
and the sequence was analysed using Set1F and Set3b primers (Appendix
@. All DNA was amplified by large scale plasmid DNA preparation once
correct sequences had been confirmed (Qiagen, Appendix .

2.16.1.2 Production of retrovirus

In order to transfect m-1C.y cells with the cloning products described
in Section and Section it was necessary to incorporate
the products into a W-CRE cell line. These cells are derived from the
murine NIH 3T3 cell line and have been transformed with the Moloney
murine leukaemia virus [Danos and Mulligan) [1988|. In the presence of

pBABEpuro vector, they generate helper free recombinant retroviruses
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Figure 2.5: shRNA molecule for reducing occludin expression. The struc-
ture of an shRNA is shown in Figure At both ends are sequences for restriction
enzymes BamH1 and NgoMIV, followed by the sense and antisense strands and joined
by the hairpin loop. A short termination sequence is also included. The sequence of
shRNA for reduction of occludin that was incorporated into the pBABE vector was
adapted from Yu et al. 2005, [Yu et al) [2005] (Figure 2.5b). Underlined letters illus-
trate the restriction enzymes while the black letters represent the sense and antisense
strands. Red lettering indicates the hairpin loop. The annealed shRNA oligonuc-
leotide was ligated at a ratio of 1 : 1000 (vector : insert) using BamH1 and NgoMIV.
After staining the 2% agarose gel with ethidium bromide, shRNA was present at

~50bp (Figure [2.5¢).
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without the production of helper virus or transferring the packaging func-
tion to the virus (Health Protection Agency, London, UK). Cells were
washed and trypsinised for 5 minutes before centrifuging at 150g for 5
minutes. Supernatent was discarded and the cells were resuspended in
10mls of W-CRE cell media and plated into a 10cm dish (Greiner Bio-
One, Stonehouse,UK) at a density of 3.2 x 10° cells. Cells were incubated
for 20 hours at 37°C, 5% CO3 and grown until 70 - 90% confluent. Up
to 10pg of DNA was added to 1.5mls of OptiMEM without serum in a
sterile bijou and mixed gently for 5 minutes. In a separate bijou, 36ul
of Lipofectamine™ 2000 (Invitrogen) was added to 1.5mls of OptiMEM
without serum and mixed gently for 5 minutes. The two solutions were
mixed together and allowed to incubate gently shaking at 25°C for 20
minutes, before adding to the W-CRE cells, in a drop-wise fashion. Cells
were incubated at 37°C, 5% CO; for 20 hours before discarding the me-
dia and replacing with an additional supplementation of 1mM of sodium
pyruvate, 1 x non essential amino acids, 1% L-Glutamine, 1% Penicillin
and Streptomycin (Invitrogen), and 1% FBS in W-CRE cell media, for
up to 48 hours at 37°C, 5% CO,. Supernatent containing viral particles
was collected and centrifuged at 1600g for 15 minutes at 4°C, to remove
cell debris. The remaining solution was then filtered using a 0.45um fil-
ter. Virus was either stored in aliquots at -80°C or added directly onto

m-1C9 cells.

2.16.1.3 Stable Cell Line Production

Preparations of virus (up to 2mls of viral prep per well) were added
to m-1Cg cells on 6 well plates in the presence of 0.1ug/ml polybrene
(Hexadimethrine Bromide) for 24 hours at 37°C, 5% CO,. Polybrene
was removed and replaced with normal m-IC. cell media for 24 hours.
Transduced cells were selected for by the addition of 1.5ug/ml of puro-
mycin into the media because at this concentration, puromycin will kill
non-transduced cells within 2 - 6 days of addition. This was confirmed
both by visualisation of cell detachment and TEER, which plummeted
after day 6 (data not shown). Therefore, any transduced cells grown in
the presence of puromycin that were alive 14 days post transfection were
considered to be carrying the virus.

Puromycin was added every other time the media was changed (there-
fore once every 4 days) and after 10 days the concentration of puromycin
was increased to 3ug/ml and added every time the media was changed

thereafter. This gave the cells a chance to survive following transduction,
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and although this may have allowed a small fraction of non-transduced
cells to survive, it was clear the cells would not replicate in the pres-
ence of puromycin. After six weeks of culture, the cells started to reach
confluency and were transferred from a 6 well plate into a 25cm? flask.
Media was changed every 3 - 4 days and replaced with 3ug/ml puromycin
in normal m-IC.s cell media. Cells were tested for the presence of the

FLAG tag or shRNA by western blot analysis and immunofluorescence.

2.16.2 siRNA treated cells

m-1Co cells were cultured in 6 well plates and 13mm coverslips for 24
hours, or on inserts for 11 days. For each transfection, 3ul of siRNA to
murine occludin (0.375ug, containing a mixture of three short target spe-
cific nucleotides (nt), 19 - 25nt in length, Santa Cruz) was added in 100ul
transfection medium (OptiMEM, Invitrogen). 6ul of transfection reagent
(Santa Cruz) was added in 100ul transfection medium and both solutions
incubated for 5 minutes at 25°C. The solution containing the siRNA was
then transferred into the solution containing the transfection reagent and
incubated for a further 20 minutes at 25°C. The cells were rinsed with 1
ml of transfection medium before adding the siRNA-transfection reagent
complex to them, in an additional 800ul transfection medium. The cells
were incubated at 37°C, 5% CO for 6 hours before adding either 1ml (for
6 well plates) or 0.5ml (for inserts) of normal growth medium containing
2x FBS for a further 24 hours. The media was then replaced with normal
growth media for a further 24 hours before the cells were used on day 13.
As a control, cells were transfected with a control scramble siRNA (Santa
Cruz). Cells were tested for reduction of occludin by immunoblotting and

immunofluorescence.

2.17 Bioinformatics

The murine protein sequence of occludin was used to search for poten-
tial binding proteins within the 7. gondii database [[] using the default
settings for parameter limitations (Expectation value 10, Maximum de-
scriptions 50, Maximum alignments 50, low complexity filter). Proteins
were BLASTed against the VT1, ME49 and VEG genomes. Proteins
identified were aligned with occludin using the EMBOSS Pairwise Align-
ment Algorithmg?]

thttp: / /www.toxodb.org
Zhttp://wuw.ebi.ac.uk/Tools/emboss/align/index.html
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2.18 Statistical Analysis

Error bars on all graphs presented in this thesis represent the standard
error of the mean. All data was assessed for normal distribution using the
Kolmogarov-Smirnoff test and for homogeneity of variance by the Levene
test. For parametric data, either an independent ¢ test, a paired ¢ test, or
a one way ANOVA was carried out. For non-parametric data the Mann-
Whitney U test, the Kruskal-Wallis test, or the Wilcoxon Signed Rank
test was used. Post-hoc analyses were carried out using the LSD test.
Data was analysed using the Student Package for the Social Sciences
Software (SPSS, version 19). P values of less than 0.05 were considered
significant. Any data points that were more than two or more standard
deviations away from the mean were considered outliers and disregarded

from the analyses.
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Chapter 3

Optimisation of a cell culture model for
investigating interactions between epi-
thelial cell tight junctions and Toxo-

plasma gondii

3.1 Introduction

Dalton et al. 2006, reported that infection by 7. gondii caused a redistri-
bution of claudin 3, occludin and ZO-1 in mice that were deficient in the
T-cell receptor VY77 subset of intraepithelial lymphocytes [Dalton et al.,
2006]. This thesis extends current knowledge on the effects of occludin
following T. gondii infection, using an in vitro epithelial cell model.

There are three main ways to culture epithelial cells in vitro. These
are by using primary cells, secondary cells or immortalised cells. Primary
cells are derived directly from an organism and retain most, if not all,
the functions of the original cell type, but are generally not sustainable
in culture as the cells eventually die. Secondary cells are derived from
explants of an organism and given the right culture conditions can survive
for a prolonged period of time. However, they too may lose some of their
functions and will eventually die. Immortalised cells can be derived from
either primary or secondary cells that have been transformed usually by
a viral oncogene such as the human papillomovirus (for example [Ryan
et al., [1994]), the epstein-barr virus (for example [Amoli et al., 2008]),
and the large T-antigen of simian virus 40 (SV40, for example [Gluzman)
1981; Whitehead et al., |1993]). Cell lines derived from cancer patients
will have been transformed by unknown aetiologies.

SV40 works by inactivating Senescence-6 (SEN-6), p53 and Retino-

blastoma genes, which regulate senescence [Resnick-Silverman et al., 1991}
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Banga et al., [1997]. These cells continue to grow in vitro under the right
culture conditions but due to their very nature, tend to loose characterist-
ics of their normal cellular counterparts. However, to study epithelial cell
biology, stable cell lines are always preferred and although will be some-
what different to n wvivo cells, immortalised cell lines currently provide
the best model.

Small intestinal cell lines Two rodent immortalised cell lines derived
from the small intestine that are currently used and reported in the
literature are the IEC-6 rat cell line and the m-IC,; murine cell line
[Quaroni et al., [1979; Bens et al., [1996].

Intestinal epithelial cells -6 (IEC-6) cells were extracted from different
areas of the intestine by scraping the intestinal mucosa and collecting
crypt and villus cells [Quaroni et al., 1979]. All four epithelial cell types of
the small intestine could be identified from cells that had grown in contact
with mesenchymal factors |[Quaroni et al., [1979; Kedinger et al., [1998].
Being non-transformed cells, they offer advantages over immortalised cell
lines such as CaCos in studying early cellular differentiation events and
remain non-differentiated when cultured in the absence of mesenchymal
factors [Wood et al.l 2003]. They have been used to investigate changes
in the replication of T. gondii in the presence of IFN y [Dimier and Bout,
1993].

Murine intestinal cells, clone 12 (m-IC2) cells were created by Bens
et al. 1996, who used the SV40 T-antigen for generation of this trans-
immortalised cell line [Bens et al. 1996]. Cells were derived from the
lower part of the intestinal villus within the duodenum and jejunum, from
20 day old foetuses of L-type pyruvate kinase (L-PK)/TAgl transgenic
mice. The SV40 T-antigen is under the regulatory control of the 5’ L-type
pyruvate kinase gene, the expression of which is activated by D-glucose
|[Lefrangois-Martinez et al., 1994|, and provides the cells an opportunity
to become partially differentiated in culture under the right conditions
[Bens et al., |1996]. This partial polarisation and differentiation state is
representative of the cells found along the lower crypt-villus axis showing
that in culture, the cells remain similar to when they were first extracted
from the mice. However, they do express a defined apical membrane with
short microvilli and villin, as well as ZO-1 and desmosomes. They are
reported to accumulate sucrase isomaltase in their cytoplasm, express
the polymeric Immunoglobulin receptor and Cystic Fibrosis Transmem-

brane conductance Regulator (CETR) CI” channel, which confirms their
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crypt like phenotype |Bens et al., [1996]. Furthermore, m-IC. cells may
retain the ability to produce Paneth cells, staining positive for o-L-fucose
glycoconjugates. In culture, the cells are reported to grow rapidly with
a doubling time of 30 hours, and are fairly homogeneous in shape. They
form a confluent monolayer, which is not flat but contains domes where
the cells grow on top of each other. Bens et al. 1996, report that when
the cells were grown on cell culture inserts they reach a transepithelial
electrical resistance (TEER) of approximately 120Q.cm? and are imper-
meable to *H inulin after 6 hours of addition [Bens et al., [1996]. The
cell culture media is supplemented with various hormones, cofactors and
growth factors to achieve the characteristics described. These include
D-glucose for the activation of the L-PK gene; insulin to absorb glucose;
tri-iodothreonine to increase metabolic rate stimulate protein synthesis
and glycogen breakdown; transferrin for iron binding via plasma gly-
coproteins; selenium which acts as a cofactor for reducing anti-oxidant
enxymes; and dexamethasone which acts as an anti-inflammatory to
stress responses.

To date only a few reports have been published that use the m-ICp
cell line. Of these, their response to LPS and infection of Helicobacter
hepaticus and T. gondii have been investigated |Sterzenbach et al., [2007;
Mennechet et al., |2002; Hornef et al., 2003|. These pathogen studies
focussed on cellular responses via toll like receptors (TLRs) and interac-
tions with lamina propria CD4" T lymphocytes in m-ICg, cells, respect-
ively [Sterzenbach et al. 2007; [Mennechet et al., |2002|. Both reports
indicate that the cells are capable of producing and responding to vari-
ous cytokines and other immune stimuli. Furthermore, they have been
used to compare the rate of passage of botulinum toxin through small
intestinal epithelial cells against that of the colonic epithelium [Couesnon
et al 2008]. m-IC. cells have been studied to determine the degree of
virulence between different strains of Salmonella enterica subspecies; as
a model for infection of Salmonella and rotavirus infection in the GI tract
[Macartney et al.l [2000; [Suar et al. 2006]. These studies were all carried
out using different substrates as the cells were cultured on inserts, 24 well
plates or collagen I-coated plates, demonstrating that they can be used
in a range of different applications. m-IC.y cells have also been used
in co-culture systems with lymphocytes derived from Peyers Patches to
induce M cell development during a temperature shift; and bone marrow
derived dendritic cells to investigate signalling pathways in the presence
of enteric bacteria [Bahi et al., 2002 |[Zoumpopoulou et al., 2009|. This
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provides additional evidence that these enterocytes are functional in an

i vitro system.

The m-1C,5 cells were chosen as a model of small intestinal epithelial
cells in this thesis. This is because although the IEC-6 cell line is the most
popular choice of small intestinal models, the cells are unresponsive to
certain stimuli and differentiation of the cells seems difficult to achieve
in normal cell culture systems [Quaroni et al., 1999]. They are also
derived from the rat, making the cell line not compatible with original
findings that this thesis is based upon [Dalton et al., 2006]. The m-1C,
cells, being trans-immortalised in the way they are, means that the cells
maintain a differentiated state even when proliferating, providing a more
physiological in vitro model for studying cells found along the crypt-villus
axis [Bens et al., [1996].

To our knowledge, no study has yet reported any further information
on the distribution of tight junction proteins (other than ZO-1), or adher-
ens junction proteins within the m-IC, cell line and, with the exception
of the original paper, there is little information regarding cellular polar-
isation and differentiation when they are cultured on different substrates.
However, the reports listed above clearly show the cells are responsive to
infection, and that they are capable of being infected by T. gondui.

The first point of contact 7. gondii has with its host is the small
intestine although it is also capable of infecting the colon [Kowalik et
al.l [2004]. Murine colonic cell lines tend to be very specific to their
required purpose and were therefore not a viable option for this study
[Brattain et al [1980; |[Kanaya et al., |2008|. Use of the human CaCoy cell
line is well established within the field of cell culture, especially with ion
transport studies [Ning et al.,[2010; Roberts et al., 2010; Lau et al., [2011].
The cells derive from a colonic adenocarcinoma and are widely used for
investigating intestinal cell biology. They exhibit a highly heterogenous
phenotype displaying mixed characteristics of colonic and small intestinal
enterocytes. The C2BBel cell line is a derivative of the CaCos line that
was selected for exclusive expression of villin on the apical membrane,
and are considered to be more similar to the cells found in the small
intestine than the colon [Peterson and Mooseker, [1992|. For the purpose
of this thesis, these cell lines were used to determine the reproducibility of
results obtained from the m-1C. cells that have not been as extensively

used as colonic epithelial cells.
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3.2 Results

Initial characterisation was performed in order to develop the optimal
conditions for investigating tight junction dynamics during infection by
T. gondii, by testing a variety of growth substrates for developing a

polarised and differentiated m-IC. cell monolayer.

3.2.1 Characterisation of tight junction expression in m-IC,

cells grown on different substrates

The cells were grown on a number of substrates including glass, plastic,
matrices and PET membranes, and tested for their ability to express

tight junction and adherens junction proteins.

3.2.1.1 m-IC.; cells express adherens junction and tight junc-

tion proteins when grown on glass coverslips

Plating cells onto glass coverslips is a simple and efficient way of ob-
taining a confluent monolayer in a short space of time. When cells were
plated at a density of more than 1 x 10° per ml onto 13mm circular glass
coverslips, they reached confluency (100% cell coverage over the covers-
lip) after 24 hours. Figure shows that cells were partially polarised,
expressed the adherens junction protein {3 catenin at the lateral junctions,
occludin at the membrane and in the cytoplasm, and carbohydrates N-
acetylglucosamine and galactosyl (8-1,3) N-acetylgalactosamine (referred
to as surface carbohydrates from this point onwards) on the lateral and
apical surfaces. However, the cells did not survive for more than four
days, and were only 10pm in depth, whereas small intestinal epithelial
cells in vivo are approximately 20 - 30pm in depth [Massey-Harroche,
2000].

3.2.1.2 Cells are cuboid and polarised when cultured with an

extracellular matrix complex

m-IC. cells were plated onto either a collagen I and fibronectin matrix
(1:1 ratio) or a collagen I gel, within a 6 well dish. After eight days, mor-
phology and tight junction protein expression was assessed. Rationale for
choice of extracellular matrix is based on the fact that these proteins are
naturally found in cells of the small intestine |[Rothen-Rutishauser et al.|
2000]. This enabled a increased rate of adherence to the substrate and
decreased the time required to reach a differentiated state (Figure [3.2).
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Figure 3.1: Morphology of m-IC.2 cells grown on glass coverslips. Cells
were plated onto coverslips, fixed with 2% paraformaldehyde (PFA), and stained for
cellular proteins. {3 catenin is shown in green (A), occludin in red (C), and surface
carbohydrates labelled in blue (B). Merged images are shown in D. (A-D) represent
XY plane images (where the Z-axis is perpendicular to the substrate) and (A’-D’)
represents XZ plane images. Scale bar = 20pm.



Figure 3.2: Cell morphology of m-IC_» cells grown with extracellular mat-
rix molecules. Cells were cultured for 8 days on either a collagen I and fibronectin
matrix, or a collagen I gel and analysed by SEM (A and B) and TEM (C-E). (A)
Magnification 3000x, scale bar 10um; (B) magnification 8000%, scale bar 2um. The
black solid line represents an example of a cell outline. Using TEM, tight junctions
(TJ) and the paracellular pathway (P) are visible, as are microvilli (MV) on the ap-
ical (Ap) surface, and basally located nuclei (N). The extracellular matrix can also be
seen (Bm). (C) Magnification 1100x, scale bar 2um; (D) magnification 2100x, scale
bar 2pm; (E) magnification 3500, scale bar 500nm.

These substrates also allow there to be a substance between the basal
membrane of the cells and the plastic dish, creating a more physiological
system.

After eight days of culture, cells were confluent and a tight monolayer
had formed with visible cell junctions (Figure . Microvilli were seen

on the apical surface of the cells, and the nuclei basally located, which

are all indicators the cells have become polarised [Wakabayashi et al.,

2007]. Cells survived for up to 10 days on these extracellular matrices
before they begin to detach and die.

Cells cultured in the presence of extracellular matrices expressed
defined (3 catenin staining at the lateral membrane, clear apically loc-
ated carbohydrates and apically located occludin (Figure . Cells
were approximately 15pm in depth. This substrate increased the poten-

tial for the m-I1C cells to form a polarised and differentiated monolayer
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Figure 3.3: Protein expression of m-IC.; cells grown with extracellular
matrix molecules. Cells were grown on a collagen and fibronectin matrix or a
collagen gel for 8 days. Cells were fixed with acetone and stained for 8 catenin (green,
A), surface carbohydrates (blue, B) and occludin (red, C). Z stack images are shown
in A’-D’. Scale bar 20pm.

that was embedded within an extracellular matrix. As occludin appeared
to be only expressed on the apical domain and not concentrated at the
tight junctions, the cell conditions were still not optimal for evaluating

occludin regulation.

3.2.1.3 Cells cultured on plastic form dome-like structures

m-IC,, cells plated at a density of 2 x 10° cells reached confluency on a
plastic substrate, within 48 hours (Figure . This is indicative of a
high numbers of cells adhering to the substrate, and /or rapid replication.
They also possessed the capacity to form dome like structures within the

monolayer (light areas), which represent the apparent crypt-like pheno-
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type as described by Bens et al. 1996, and observed by Paul et al. 1993,
when using a rat small intestinal cell line (Figure [Bens et al., 1996}
Paul et al., 1993]. Cell recovery was typically 2 - 2.5 x 10° cells, from a
25cm? flask eight days after plating. The amount of occludin increased
in both the soluble (cytoplasmic) and insoluble (membrane-associated)
fractions over time and was most prominent around day 9 - 21 (Figure
3.4Db)).

When other tight junction proteins were analysed, claudin 2 was
found to be associated with the membrane fraction, claudin 4 was ex-
pressed in both the cytoplasm and the membrane, but claudin 7 was only
detected at low levels in both fractions (Figure [3.4d). ZO-1 was mainly
found within the cytoplasm, but was also associated with the membrane
fraction. Occludin was present in both the cytoplasmic and membrane-
associated fractions. The shift in molecular weight in the membrane-
associated fraction of occludin was predicted due to the increased phos-
phorylation status when present at the tight junctions [Wong, |1997]. B
catenin was also present in both the cytoplasm and membrane-associated

fractions.

3.2.1.4 Cells cultured on transparent polyethylene terephthal-
ate (PET) tissue culture inserts are optimal for study-

ing barrier function and tight junction proteins.

Culturing cells on a collagen base provided some depth underneath the
monolayer. However, as the occludin distribution was not optimal at
the tight junctions, and barrier function would be difficult to quantify,
a different approach was investigated. Bens et al. 1996, grew cells on
a collagen-coated semi-permeable transparent filter with a pore size of
0.4pm |Bens et al [1996]. However, as these cells will be used in this
thesis for infection with 7. gondii, which is approximately 2pm by 7pm,
a pore size large enough to accommodate transmigration of parasites was
required |[Swedlow et al., [2002]. Therefore, cells were grown on PET in-
serts with a pore size of 8ym. In this thesis, coating the insert membrane
with collagen was not seen to improve cell monolayer integrity or levels of
polarisation and differentiation (data not shown), and was not included
in subsequent experiments.

After six days, plating at a density of 5.5 4 3.5 x 10° cells, a conflu-
ent monolayer had formed, and after 14 days, domes had also formed,

indicated by the darker patches of cells seen in Figure [3.5
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Figure 3.4: Characterisation of m-IC.s cells cultured on plastic surfaces.
Cells were plated on 6 well dishes or 25cm? cell culture flasks. Figure shows cells
after two (left) and eight (right) days of culture on 6 well dishes. Arrows indicate
examples of cell doming. Magnification 10x, scale bar 50pm. Cells cultured on 25cm?
flasks for 3 - 21 days were analysed by immunoblotting for the presence of occludin
(Figure [3.4b)). The expression of claudin -2, -4, -7, ZO-1, occludin and {3 catenin in
the cytoplasmic (C) and membrane associated (M) fractions were also tested (Figure
3.4cf).
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Figure 3.5: m-IC; cells cultured on PET inserts. Cells were grown for 14
days and analysed by light microscopy. Insert pores were visible as distinct circles
(white arrows). Black arrows represent dome formation. Magnification on left 10x,
on right 20x. Scale bar = 100um. Images taken by Mary Parker (Institute of Food
Research, Norwich, UK).

3.2.2 Characterisation of cells on PET inserts

Having established the ability of m-IC.j5 cells to grow on PET inserts,
it was important to determine the optimal time post-seeding to use the
cells. Barrier function was determined by measuring transepithelial elec-
trical resistance (TEER), permeability and the expression of tight junc-
tion proteins [Anderson and Itallie, |2009; Al-Sadi and Ma, 2007]. The

expression of occludin at the tight junctional complex was imperative for

the purposes of this study.

3.2.2.1 The expression of tight junction and adherens junction

proteins in cells cultured on PET inserts

Approximately 9 x 10° cells were cultured on inserts for either 4, 8 or
13 days. An established homogeneous monolayer was observed after 13
days of plating, coinciding with localisation of occludin to tight junctions
and lateral localisation of  catenin (Figure .

Confirmation of specific immunofluorescent staining was performed
using negative isotype controls in place of the primary antibody (Figure
57).

By day 13 the cells were approximately 14um in depth and were
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Figure 3.6: Expression of occludin and (3 catenin in cells cultured on inserts
for 4 - 13 days. Cells were cultured on inserts for either 4 days (A,D,G), 8 days
(B,E,H) or 13 days (C,F,I). Cells were fixed with 2% PFA and stained with antibodies
specific for occludin (red, A,B,C) and B catenin (green, D,E,F), and analysed by
confocal microscopy. Merged images are shown in G,H, and I. A - I represents images
in XY planes, and A’ - I’ represents images from XZ planes. Scale bar = 20um.

Figure 3.7: Negative controls for occludin and 3 catenin. Negative controls
for occludin (red, rabbit IgG) and B catenin (green, mouse IgG). Controls for other
tight junction proteins also revealed minimal background staining (data not shown).
Scale bar = 20pm.
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Figure 3.8: Doming of m-IC.; cells cultured on PET inserts. Cells were
cultured for 13 day, fixed with 2% PFA and stained for occludin (red, A’), surface
carbohydrates (blue, B’) and [ catenin (green, C’). Individual XZ planes are shown
and the merged image is shown in ABC’. A merged XY image illustrating a dome like
structure is depicted in (D). Scale bar 20um.

cuboid in shape. Cell depth increased to approximately 20um where
dome-like structures were evident (Figure . A confluent monolayer
was still present within these structures.

Other tight junctional proteins (claudin 2, claudin 4, ZO-1) were
analysed to determine their expression profile on the PET substrate.
Claudin 2 and ZO-1 were present in both the cytoplasm and the mem-
brane, whereas claudin 4 was concentrated at the membrane (Figure[3.9).

A B C

s
—i — O —

Figure 3.9: Expression of tight junction proteins in cells cultured on PET
inserts. Claudin 2 (A), claudin 4 (B) and ZO-1 (C) were visualised by confocal
microscopy. White lines highlight a cell outline. Circular-like objects where staining
is intensive, is non-specific and highlights the positions of the pores (Appendix .
Scale bar = 20pm.
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3.2.2.2 Tight junctions and adherens junctions in human colonic

epithelial cells

As a comparison, immortalised colonic epithelial cell lines CaCo, and
C2BBel were plated onto 8ym PET inserts and cultured for 16 days.
These additional cell lines were used to test that any effects seen from
m-I1C,jo cells were similar to colonic derived cell lines. Both colonic cell
lines show occludin localisation at the tight junctions and 3 catenin at the
lateral membrane, using surface carbohydrate markers as an indicator of
the apical membrane (Figure [3.10).

3.2.2.3 DMembrane integrity of small intestinal and colonic cell

lines on PET inserts

Tight junctions form an efficient barrier between the apical and basolat-
eral domains. TEER and permeability (using a 3kDa FITC-dextran mo-
lecule) were assessed as measures of barrier function.

Approximately 7 x 10° cells were plated onto 8pm PET inserts and
cultured for up to 17 days. TEER was recorded every 24 - 48 hours.
Intra- and inter-experimental variation was low (Figure 3.11a). TEER
gradually increased from 20€Q.cm? to 120Q.cm? before declining after day
16 as the cells detached from the insert membrane and died. This matches
values obtained in other studies [Bens et al., |1996]. TEER was highest
between day 10 and 14. Each time point represented data from 20 - 245
inserts over 3 - 14 experiments, with the exception of day 14 onwards.
These data represent only one insert, as following on from results seen in
Figure |3.4b| and Figure [3.6] occludin was expressed at higher levels after
9 days at the tight junction complex and therefore it was not considered
necessary to extend cell culture on inserts for more than 13 days.

On day 13, cells were counted using a haemocytometer (2.3 x 10°, n
= 4) or from an estimate of cells per field of view by confocal microscopy
(1.2 x 10°). Numbers equated to approximately 30% of the original cell
number plated. As a comparison, 2.65 x 10° C2BBel cells were counted
after 13 days of culture (55.8% of original number added).

The permeability of the monolayer was measured by the amount of
FITC-dextran present in the basal compartment after two hours of ad-
dition to the apical compartment. A blank insert was used as a control
to determine the maximum amount of dextran that could leak through
the insert membrane, which was approximately 4.6%. In the presence of
cells this was reduced to 0.3%. Approximately 15.5% of FITC-dextran
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Figure 3.10: Junctional protein staining in CaCos cells and C2BBel cells.
CaCos cells (left hand panel) and C2BBel cells (right hand panel) were cultured on
inserts and fixed with acetone. Cells were stained for occludin (red, A, E), 8 catenin
(green, C, G), and surface carbohydrates (blue, B, F). Merged images shown in D
and H. A - H shows cells in the XY plane, A’ - H’ shows cells in the XZ plane. Scale
bar = 20um.
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was associated with or absorbed by the cells, or within the membrane
itself (Figure [3.11D).

TEER was also measured every 48 hours in CaCo2 and C2BBel hu-
man colonic epithelial cells (Figure . TEER increased more rapidly
in CaCoy cells and C2BBel cells compared to m-ICy cells. After 16
days both colonic cell lines reached a TEER of 450 Q.cm?, nearly 4 times
higher than m-IC., cells. These figures match the numbers expected
from the supplier.

C2BBel cells were permeable to 0.2% of total FITC-dextran following
2 hours of addition (data not shown).

All three cell lines produce a resistant, selectively impermeable mono-
layer after 13 days of culture on PET inserts, with colonic cells generating

a tighter barrier compared to m-IC, cells.

3.2.3 Calcium withdrawal decreases TEER and disrupts the

m-IC.> cell monolayer

Calcium is required for the formation and development of tight junc-
tions [Nigam et al, |1992|. Calcium withdrawal and subsequent addition
(known as the calcium switch method) is a widely used technique to dis-
rupt tight junctions and was used in this study as an indicator of the
responsiveness of cells to stimuli [Nigam et al., 1992]. In order to de-
termine whether changes in TEER and permeability could be detected,
cells were cultured on PET inserts for 12 days before replacing normal
m-I1C¢s cell media with calcium-free DMEM (Invitrogen) supplemented
with 2% FBS, L-glutamine and HEPES, for 24 hours.
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Figure 3.11: Assessment of barrier function in m-IC.2 cells cultured on
PET inserts. TEER was recorded every day for 17 days. Within an experiment
(left), and between experiments, TEER is similar between inserts. Data represents
an experiment with biological replicates (left) and 15 independent experiments each
with biological replicates (with the exception of day 14 onwards, right).
Permeability was measured by the amount of 3kDa FITC-dextran that could be found
in the basal compartment after 2 hours of addition to the apical compartment. Results
represent data from 7 independent experiments.
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Figure 3.12: Comparative analysis of TEER in m-IC.> cells, CaCos cells
and C2BBel cells. TEER was recorded every 48 hours after plating the cells. Data
represents one experiment with biological replicates.
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Figure 3.13: Calcium withdrawal negatively affects barrier function in m-
IC.2 cells. Cells were cultured on inserts (A) or coverslips (B-C). Calcium was
removed from the media and effects on TEER, occludin (red) § catenin (green) and
surface carbohydrates (blue) were assessed. Change in TEER, is shown as the dif-
ference before and after treatments. Data represents an experiment for (A) and 4
independent experiments for (B-C). Scale bar 20pm.

As expected, TEER significantly decreased after calcium withdrawal,
by 48.5% over 24 hours, in contrast to cells in media containing calcium,
whose TEER increased by 10% (P<0.001, Figure [3.13)). Cells cultured
on PET inserts for 24 hours in calcium-free media did not survive the im-
munofluorescent staining protocol. However, an example of how cells on
coverslips were affected by removing calcium from the media is illustrated
in Figure |3.13]

These results show that the cell culture insert system is capable of
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detecting changes in TEER and permeability following treatment.

3.3 Discussion

An in vitro assay was developed to use in this thesis for the infection of
epithelial cells by 7. gondii. Barrier integrity was measured by TEER
and permeability, and polarisation and differentiation of cells measured
by the expression of junctional proteins.

To date, the use of m-IC.y cells has been mainly limited to invest-
igations in the response to pathogenic stimuli, with a focus on cellular
immune responses. Since the tight junctions have not yet been char-
acterised in this cell line, it was necessary to do so whilst determining
the optimal growth conditions for promoting polarisation and differenti-
ation of the cells. Results presented here show that the cells are capable
of growing on glass coverslips, collagen I and fibronectin matrix or gel,
plastic and PET substrates, with an increasing degree of polarisation
and differentiation respectively. Optimal growth occurred on plastic and
PET membranes, where the cells survived for up to 21 and 16 days,
respectively.

On glass coverslips the cells expressed lateral $ catenin and apical
surface carbohydrates (N-acetylglucosamine and galactosyl (-1,3) N-
acetylgalactosamine), indicating that initial stages of polarisation had
occurred. The staining of occludin was not concentrated to the tight
junctions and the cells were vertically thin. However, this substrate was
used for measuring changes in invasion rates by 7. gondii, as it provided

the most feasible method of calculating infection of m-1C., cells (Table

51).

‘ Substrate ‘ Experiment ‘ Method ‘ Chapter ‘
Glass coverslips Proportion of infected cells H&E 4,5
Collagen/ Location of parasites within and Electron and confocal 4,5
fibronectin gel/ between cells microscopy
matrix
Plastic Quantification of changes in Immunoblotting, 4,5, 6
occludin distribution following immunoprecipitation

infection, occludin-binding partners and mass spectrometry

PET Location of parasites, visualisation Confocal and 4,5, 6
of tight junction proteins, fluorescent microscopy,
measurements of barrier function TEER and FACS

Table 3.1: Summary of different substrates used for experiments through-
out this thesis.
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A more defined monolayer was achieved by culturing the cells on
either a collagen I and fibronectin matrix, or a collagen I gel. This
provided a basement membrane for the cells to adhere to and for the
purposes of this study, would provide a medium for transmigrating para-
sites to enter. This monolayer produced polarised cells, as indicated by
the lateral staining of § catenin and the apical staining of surface carbo-
hydrates, tight junction formation, a basal nucleus and microvilli on the
apical surface. Occludin was apically located although not concentrated
at the tight junctional complex, suggesting that the cells were not fully
differentiated. This substrate was chosen for electron microscopy ana-
lysis because it provided the most efficient method to prepare the cells
for visualisation (Table [3.1).

Cells cultured on plastic often formed dome-like structures, possibly
mimicking crypt-like formations. The cells expressed a variety of selected
tight junction proteins and their location in the membrane-associated
fraction provides evidence of cellular polarisation and differentiation.
This substrate was used for investigating quantitative changes to junc-
tional protein location in cytoplasmic and membrane-associated regions,
upon T. gondii infection (Table [3.1)).

PET cell culture inserts offered the most accessible method for provid-
ing a luminal domain, where substances can be added to the apical side
of a monolayer, and a mucosal domain, where substances can be detec-
ted from the basal side of a monolayer (and vice versa) [Wakabayashi
et al., 2007]. To determine when the cells were polarised, differentiated,
and expressing tight junctional proteins, TEER and permeability were
measured as indicators of ionic conductivity and molecular flux through
the paracellular pathway, in combination with immunofluorescence. By
day 13, cells were homogeneous in morphology, cuboid in shape and ap-
proximately 14um in depth. Permeability to 3kDa sugar was low and the
cells exerted a stable TEER across the PET membrane indicating that
the epithelial barrier was functional and intact.

Polarisation was progressive, whereby the expression of  catenin at
the lateral junctions increased from day 4 to 13. By day 13, the expres-
sion of occludin was found at both the tight junction complex and in the
cytoplasm. To visualise junctional proteins, cells were fixed with either
acetone or 2% PFA, each of which resulted in different staining pat-
terns (Appendix . Fixation with acetone enhances the visual degree
of membrane-associated occludin and fixing with PFA shows a higher

degree of nuclear and cytoplasmic occludin in addition, which could be
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non-specific staining. PFA cross-links proteins during fixation and pre-
serves structure, but decreases antigenicity which could account for the
increased cytoplasmic staining. Differences in immunofluorescent stain-
ing according to fixative have been observed and discussed by Matter and
Balda, 2003 [Matter and Balda, 2003]. The reason that both methods
were employed in this thesis was because YFP-fluorescent signals associ-
ated with the T. gondii strain used in this study, were lost with acetone
but retained with PFA fixation (Appendix [H]).

The cell number after 13 days of culture was surprisingly low com-
pared to the original number of cells added. This may be due to several
reasons, one of which is that although every care was taken to add the
cells directly onto the membrane, light microscopy images revealed that
cells could grow up the sides of the insert, probably in preference to the
plastic over the PET. Additionally, cells were able to grow on the un-
derside of membranes after migration through the insert pores, although
these cells never became confluent or polarised (data not shown). The
low number could also suggest that cells did not replicate to a high ex-
tent and a large number of cells may not have initially adhered to the
membrane. After 48 hours of plating, the media was changed, with non-
adherent cells being discarded at this point.

Expression of claudin 2, claudin 4 and ZO-1 showed that the tight
junction complex is fully developed on inserts by day 13. Claudin 2 is
involved in the formation of cation-selective channels, whereas claudin 4
decreases cation selectivity, being a channel to chloride ions and a barrier
to sodium ions [Amasheh et al.; 2002; Chiba et al.,|2008|. These proteins
are expressed along the crypt-villus axis in a gradient like fashion [Chiba
et al., 2008|. Claudin 7 has similar functions to claudin 2 and although
it is expressed along the crypt - villus axis, its involvement in colorectal
tumour genesis suggests a more important role in the colon than the small
intestine, which may explain the low levels in m-IC, cells [Darido et al.,
2008; Bornholdt et al., 2011} [Fujita et al., [2006]. ZO-1 is a cytoplasmic
plaque protein and links occludin to the tight junctional complex [McNeil
et al. 2006|. Claudin 2, claudin 4 and ZO-1 are all located at the tight
junctional complex in m-IC, cells.

Having determined the parameters of cell culture on inserts, a calcium
switch method was used to check the responsivity of the cells. The lack
of calcium in the media destroyed tight junctions, depolarised cells and
resulted in detachment from the insert membrane. The extent of calcium

withdrawal was visualised by confocal microscopy, showing complete in-
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ternalisation of occludin and (3 catenin. Therefore, the insert culture
system was deemed functional and suitable for use in subsequent stud-
ies to evaluate the effects of T. gondii on tight junction barrier function
(Table 3.1)).

This chapter represents a first attempt to characterise different tight
junction proteins in the m-IC. cell line.
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Chapter 4

Infection of small intestinal epithelial

cells with Toxoplasma gondit

4.1 Introduction

Toxoplasma gondii is an obligate intracellular parasite that has the ability
to infect all cell types [Carruthers and Boothroyd, 2007; Lei et al., [2005].
Most natural infections occur following consumption of contaminated
food or water. Thus the first point of contact between the parasite and
the host is the gastrointestinal tract. Previous evidence has shown that
the parasite can pass through the cells of the small intestine using a range
of different mechanisms. The first is via active penetration of a host cell
[Morisaki et al., [1995|, the second via the paracellular pathway |[Barragan
et al.l 2005] and the third by using localised mucosal immune cells such
as dendritic cells, in a trojan horse-like mechanism [Lambert et al., 2006].

Although the process of invasion that 7. gondii employs to infect
a cell has been previously documented [Morisaki et al. [1995], it is not
clear from the literature whether or not tachyzoites are capable of ex-
iting intestinal epithelial cells from the basolateral membrane following
short term infection (that is, before parasite replication). Sporozoites
and bradyzoites have been shown to leave host cells without lysing them,
and infect neighbouring cells, suggesting that invasion via the lateral
membrane is possible [Speer et al., [1997: Dzierszinski et al., 2004].

Of all the proteins involved in the junctions of the paracellular path-
way, only claudin 3, ZO-1, ICAM-1 and occludin have been studied in
regards to T. gondii infection. ZO-1 remained unchanged but an upreg-
ulation of ICAM-1 was observed in MDCK II cells following infection
[Barragan et al., 2005]. In mice that lacked the TCR-Vy7" subset of in-
traepithelial lymphocytes (IELs), a redistribution of claudin 3, occludin
and ZO-1 occurred following infection by T. gondii [Dalton et al., 2006).
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The trojan horse mechanism suggests that as immune cells, such as
dendritic cells, sample the environment for foreign antigen, they become
more susceptible to T. gondii infection. Furthermore, the parasites may
increase the migration of these cells into the proximity of the lumen, in
order for this opportunistic infection to occur |Bierly et al.| 2008; Lambert
et al., |2006]. The parasites would then be trafficked to the lymph nodes
and hence succeed in quick dissemination from the small intestine.

The ability of T. gondii to infect any nucleated mammalian cell is a
property that makes the parasite an attractive model for investigating
how cells respond to pathogens. Previous work by Dalton et al. 2006,
suggested a protective role for localised y6 ilELs in the small intestine as
in their absence, the small intestinal epithelial barrier was compromised
when exposed to T. gondii [Dalton et al., [2006]. Furthermore, occludin
location and phosphorylation was altered. Following on from this work
in the murine model, this thesis set out to enhance knowledge and un-
derstanding of these observations in wvitro, in order to identify the nature

of occludin disruption in small intestinal epithelial cells.

4.2 Results

The infection mechanisms of T. gondiz in epithelial cells derived from
the small intestine were investigated with a specific view to identifying
effects on tight junction physiology using m-IC, cells as a model of small

intestinal epithelial cells.

4.2.1 Determination of infection kinetics in m-IC_» cells

Parasites are present in the lamina propria after one hour of infection
by oral gavage in vivo, indicating dissemination out of the GI tract oc-
curs quickly [Dalton et al.l 2006]. To determine the optimum length of
infection to use for further studies in vitro, parasites were added for vari-
ous time periods to cells cultured on inserts. The number of parasites
that were associated with the cells increased over time although after
six hours, no differences in the proportion of infected cells were observed
(data not shown). Additionally, cells could be infected by more than one
parasite, as illustrated in Figure [£.1] and cell monolayers remained alive
after 24 hours exposure to the parasites. However, for the in vitro studies,
an infection time of 2 hours was chosen to detect changes in tight junc-
tion physiology as disturbances within the epithelial barrier can occur

rapidly following stimulation [Siliciano and Goodenough, [1988; Dalton
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Figure 4.1: Parasite infection of epithelial cells after six hours. Cells were
analysed for the expression of surface carbohydrates (blue) and occludin (red). Arrows
indicate examples of cells with more than one intracellular parasite, as viewed from
an XY plane. Scale bar 20um. B’, C’, and BC’ represent a cell infected with four
parasites, as viewed from an XZ plane. Co-localisation of parasites and occludin
appear yellow. Scale bar 10um.

et al., 2006; Antonetti et al., 1999|, and was also when many parasites
were associated with the cells, as visualised by confocal microscopy.

In order to determine the proportion of infected cells, cells were grown
on glass coverslips, as it proved difficult to calculate the numbers of
infected cells grown on inserts. Media was temporarily removed from the
cells to resuspend the parasites, before replacing and allowing infection to
occur for two hours. Cells were counter-stained with Haemotoxylin and
Eosin and the presence of a parasitophorous vacuole, indicated by a white
halo around a parasite, was used as a marker for infection (highlighted
by the arrows in Figure . Infection rates were calculated to be
between 8.5% and 21.6%, which is comparable to figures reported in the
literature [Dimier and Bout}, 1993; Kowalik et al.. [2004]. The ratio of
cells to parasites made no difference to the proportion of cells infected
and overall, the number of infecting parasites with regards to the original
number added, was in the order of 0.1%. This value is likely to be an

underestimate, due to the difficulties encountered in obtaining the data.

4.2.2 Cells secrete chemokines following 7. gondi: infection

The production of cytokines and chemokines from epithelial cells is re-
cognised as an important factor in controlling 7' gondii infection [Miller
et al.,; 2009]. Therefore, to check that the cells were responding in the

presence of parasites, a cytokine and chemokine analysis was carried out.
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Figure 4.2: T. gondii infected 13% of cells following two hours exposure.
Cells were cultured on glass coverslips for 48 hours and infected with T. gondii for
two hours. Intracellular parasites were identified by the presence of a parasitophorous
vacuole, as indicated by black arrows, and illustrated in the magnified image (bottom
right hand corner). Scale bar = 20um. The percentage of infection was calculated to
be 15.05 £ 6.55. Data represents six independent experiments.

Previous studies have shown that the m-IC.y cells are capable of se-

creting a wide range of cytokines and chemokines |[Zoumpopoulou et al.|
. IFNy, I1-6, IL-10, 1L-12, TNFo, KC (Keratinocyte Chemoattract-
ant, the murine homologue of IL-8), MCP-1 (Monocyte Chemoattract-
ant Protein-1), MIP-1a and MIP-13 were tested following infection for
24 hours, although only TL-10, KC and MCP-1 were detected.

A slight increase in IL-10 was observed, but KC and MCP-1 were
significantly increased following exposure to both live and dead parasites
(P<0.001, Figure . The concentration of KC produced by cells ex-

posed to live parasites was 13 times higher compared to the control (no

parasites), and 5 times higher for dead parasites. The concentration of
MCP-1 production was 2.7 times higher compared to the control for live
parasites and 2 times for dead parasites. These results were comparable
to those previously reported in the literature, although only for the pres-
ence of live parasites [Ju et al., |2009; Mennechet et al., 2002; Denney et

>'

4.2.3 Parasites cluster around cellular junctions

Parasites have been detected in the lamina propria of mice within one

hour of infection [Dalton et al., 2006|. This rapid dissemination suggests

that T. gondii exploits the paracellular pathway to enter the mucosa. The

ability of parasites to transmigrate through the paracellular pathway in
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Figure 4.3: Cells respond to T. gondii by secretion of KC and MCP-1.
Cells were cultured in 6 well dishes for three to five days. Approximately 1.5 x 10°
live or dead (killed by freeze thawing or heat shock) parasites, were added to the
cells for 24 hours. Media was collected and analysed for the secretion of cytokines
and chemokines using a cytokine bead array kit (BD Biosciences). Data represents 3
independent experiments with biological replicates.

111



vitro was therefore tested.
Cells cultured on inserts were infected with ~1.5 x 10° parasites and
following two hours of infection, parasites were often found to be in close

proximity to the lateral junctions of cells (Figure 4.4]).

Having established that the parasites localised to junctions, it was
necessary to assess their ability to transmigrate through the cells, via the
paracellular pathway. Evidence collected using both immunofluorescence
and electron microscopy techniques showed that parasites could be found
between cell boundaries and underneath an intact cell monolayer (Figure
. With cell culture inserts, it was possible to count the number of
parasites that transmigrate through the monolayer, using their YFP-
fluorescent signal as a means of distinguishing them by flow cytometry.
The numbers of transmigrating parasites increased up to two hours of
addition to the cells, but did not increase thereafter (Figure [4.6)).

Overall, approximately 0.3% of parasite inoculum transmigrated into
the basal compartment, with a range of 0.04 - 1.4% over 16 independent
experiments. This equated to approximately 1,700 parasites. As a meas-
ure of maximum parasite numbers that could migrate through the pores,
a blank insert was used and showed that this was on average 7.7%, with

a range from 1 - 20%.

4.2.4 Epithelial barrier function was not affected by T. gondi:

The ability of the parasites to transmigrate through the paracellular
pathway suggests they may affect the integrity of the epithelial cell bar-
rier. Therefore, the transepithelial electrical resistance (TEER) and per-
meability were measured following 2 hours exposure to parasites. As a
control, cells received just media. After 2 hours, a slight but signific-
ant decrease in TEER was always observed in the controls (P = 0.008),
whereas for infected samples, three experiments showed an increase in
TEER, three showed a decrease, and for one experiment TEER was not
altered (Figure . Therefore, when comparing the average change in
TEER across all experiments, there was no significant difference between
control and infected samples (P = 0.279).

To detect changes in paracellular permeability following exposure to
T. gondii, FITC-dextran (molecular weight 3 - 5kDa) was added to the
apical compartment along with the parasites. Apical and basal media
were measured and quantified by fluorescence. The permeability of the

cell monolayer was not affected by the presence of T. gondii (P = 0.391).
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Figure 4.5: Parasites can penetrate the paracellular pathway. Cells were
cultured on a collagen T gel for eight days before infecting with T. gondii. A YFP-
fluorescent parasite (green) between two cells is shown by (3 catenin (red) highlighting
the lateral membrane of cells and surface carbohydrates (blue) outlining the mem-
brane (top image). Scale bar = 20 pm. Further evidence for use of a paracellular
route by parasites (P) can also be seen by transmission electron microscopy where
A is the apical domain of cells, TJ is the tight junction complex and BL marks the
basolateral domain (middle panel). Scale bar = 500 nm, magnification 6500x. Para-
sites were found underneath the cell monolayer (B, basal domain) embedded within
the collagen gel (CG) (bottom image, highlighted by the arrow). Also marked are
a nucleus (N) and the paracellular pathway (PP). Electron microscopy images were
taken by Kathryn Cross. Scale bar = 2um, magnification 1700x.
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Figure 4.6: Parasites transmigration increases with time. Parasites that had
transmigrated through the cells into the basal compartment were counted by flow
cytometry. Numbers of parasites detected increased with time (A). Parasites were
counted in the basal compartment by collecting samples positive for YFP-fluorescence
within the FL-1 channel (B). Background autofluorescence of cells and/or media is
represented in (C). Data represents one of two independent experiments.
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These findings agree with data presented in the literature |[Barragan
et al., 2005].

A time-course of infection was also performed for which there were
no detectable changes in either resistance or permeability between non-
infected and infected cells at 30 minutes, 6 hours or 24 hours (data not
shown). Additionally, the number of parasites added to the apical com-
partment did not make a difference to TEER or permeability (data not

shown).

4.2.5 T. gondu affects the cellular distribution of occludin

Following infection, the effects on individual tight junction proteins were
assessed by immunofluorescence. It was found that the distribution of
occludin was dramatically altered in the presence of T. gondii with a de-
crease of occludin from the tight junction complex to a more intracellular-
apical location (Figure [4.8).

To examine the kinetics of occludin redistribution, a time-course of
infection was performed (Figure [4.9). After 30 minutes, subtle changes
were seen in expression whereby occludin appeared more concentrated
at tricellular junctions compared with the control. Additionally, slight
aggregation of the protein was also observed. After 2 hours the changes
in occludin redistribution were more apparent, becoming more apically
distributed within the cytoplasm. Following 6 hours of infection, the pres-
ence of occludin at the tight junction complex was fractured compared to
the control, and was found increasingly in the cytoplasm. After 24 hours
this phenomena was even more profound. To rule out the possibility
that antibody complexes were binding to the parasites, immunocyto-
chemistry was performed on the parasites alone. There was no evidence
of non-specific occludin staining with the parasites for the primary, sec-
ondary or tertiary antibodies (data not shown, anti-occludin antibodies
are shown in Appendix [B]).

As it was not easy to quantify changes in occludin distribution by
microscopy, cell lysates were analysed for the presence of occludin in
the cytoplasmic fraction (soluble) and the membrane-associated fraction
(insoluble) by immunoblotting. After 30 minutes of infection, both the
cytoplasmic and membrane-associated fractions of occludin decreased in
concentration, compared to non-infected samples. However after 6 hours,
there was an increase in cytoplasmic occludin, but a further decrease in
membrane-associated occludin (Figure [£.10). After 24 hours, an elev-

ated level of cytoplasmic occludin and a depressed level of membrane-
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Figure 4.7: The integrity of the epithelial barrier was not affected by T.
gondii. Approximately 6.5 x 10° cells were plated on 8pm PET inserts and cultured
for 13 days. Approximately 2.3 x 10° parasites were added with dextran to the cells
and TEER was measured before and after the addition of parasites. TEER (top)
and permeability (bottom) were not altered in cells following 2 hours exposure to
T. gondii. Data represents results from 7 independent experiments with biological
replicates. Permeability was measured by the amount of FITC-dextran that was
present in the basal compartment following addition to the apical compartment. Data
represents 3 independent experiments with biological replicates.
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Figure 4.8: Occludin was affected by T. gondii. Cells were cultured on PET
inserts and infected with parasites for 2 hours, fixed with 2% PFA and stained with
anti-occludin antibodies (red). (A) Cells without parasites and cells with parasites
(B, green). Co-localisation results in yellow staining. Z stacks are illustrated in (A’,
B’). Arrows represent occludin expression at the tight junctions. Scale bar = 20pm.
Images are typical of those collected over 16 independent experiments.

associated occludin was observed.

These data provide evidence that occludin distribution and levels of
protein expression are affected by T. gondii, even though the patterns
are not identical to the immunofluorescent results. Overall, cytoplasmic
occludin increases 6 hours post infection, while membrane-associated oc-
cludin decreases.

A further occludin species of approximately 45kDa was visible in the
cytoplasmic fraction after 6 hours of infection, which may correspond to
a degradation product, or cleavage of occludin, and similar results have
been observed following infection with other pathogens [Lytton et al.,
2005; Wu et al., [2000].

Occludin is a phospho-protein whose function is governed by levels
of phosphorylation [Sakakibara et al.l |1997; Farshori and Kachar], 1999).
The phosphorylation status of occludin in m-IC, cells proved extremely
difficult to quantify by immunoblotting. Preliminary data suggested that
there was a decrease in phosphorylated serine residues after 6 hours of
infection in the membrane-associated fraction and an increase in the cyto-
plasmic fraction, compared to the control (data not shown). These results
match the expression profile of occludin seen in Figure .10} In order to
amplify the levels of phosphorylated occludin detectable by immunoblot-
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Figure 4.10: Occludin quantification by immunoblotting. Cells cultured on
plastic for eight days were infected with T. gondii for varying amounts of time. Lysates
were processed for SDS-PAGE, loading equal concentrations of protein per lane. One
gel was stained with coomassive (for densitometry analysis, conducted by Francis
Mulholland) and the other was immunoblotted for occludin (left). Occludin protein
bands were normalised by densitometry analysis and quantified using the optical
density of band intensity. Cytoplasmic occludin (C, 62kDa) and membrane-associated
occludin (M, 65kDa) were compared against the control, where no parasites were
added. Arrow points to a degraded or cleavage product of occludin at ~50kDa. Data
represents one of four independent experiments.

ting, an immunoprecipitation of occludin was carried out. Unfortunately,
this did not increase the phosphorylation signal. Cell lysates analysed
by mass spectrometry revealed a phosphorylated residue within the C-
terminus, which indicates that phospho-peptide mapping may prove use-
ful for detecting occludin phosphorylation in future studies (data not

shown).

4.2.6 T. gondir does not affect other junctional proteins

To determine whether or not other junctional proteins were affected by

T. gondii, cells were analysed for the expression of claudin 2, claudin 4,
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Z0-1 and B catenin. The distribution of these proteins was not altered
when compared to cells without 7. gondii after 2 and 6 hours of infec-
tion, although there may be a slight increase in cytoplasmic claudin 2
expression following 6 hours of infection (Figure Figure [£.12)). This

is more likely to be an indirect effect following 7. gondii infection.

4.2.7 T. gondit co-localises with occludin

Having established that occludin was the only tight junction protein af-
fected by T. gondii, the parasite was also found to co-localise with the
protein (Figure and Figure[£.14)). After 2 hours of exposure to para-
sites, occludin (shown in red) appeared to be concentrated at one end of
the parasite prior to invasion, suggesting a role in the generation of the
moving junction (A - D). After becoming intracellular, the co-localisation
with occludin appeared across the surface of the parasite (A - D, G - 1).

Although the cells were fixed at the time of imaging, it is possible to
speculate a route of parasite movement from images in Figure [£.13] As
parasites cluster around the cell edges (E) they co-localise with occludin.
Parasite movement between cells, leads to occludin displacement (F), and
once the parasite becomes intracellular, occludin is present on the entire
surface of the parasite (G). The fate of paracellularly located T. gondii
was difficult to conclude from fixed samples, but did occur, as confirmed
by flow cytometry analysis.

Following 24 hours of infection, the proportion of intracellular oc-
cludin and amount of co-localisation with 7. gondii was far greater than
in control cells (Figure , implying that this association between host
and parasite was not just a strategy for entering the cells, but that oc-
cludin may have a role in formation and maintenance of the parasito-

phorous vacuole.

4.2.8 Live imaging of parasite infection in m-1C., cells

The ability to track parasite movements in real time provides a solution
to the problem of interpreting images from fixed samples to distinguish
the routes of entry used by 7. gondii to infect and transmigrate through
cells. Therefore, a live invasion assay was performed. Cells were cultured
on a collagen I and fibronectin matrix for 8 days before staining, whilst
still alive, for occludin using an antibody that recognises the extracellular
domains (red, Figure [4.15), and surface carbohydrates (blue). Parasites

were then added to the cells and the dish containing the sample was
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Figure 4.15: Occludin staining in live cells. Cells were grown on a collagen I
and fibronectin matrix for 8 days and stained, whilst still alive, for occludin (red, A)
and surface carbohydrates (blue, B). Merged images are shown in (C). A - C represent
XY images and A’ - C’ represent XZ images. Scale bar = 20um.

placed onto a confocal microscopy stage to record the infection in real
time. Although it was possible to visualise occludin, the interaction
between antibody and protein was not stable as after one hour the levels
of immunofluorescence faded and the resolution of occludin-labelled cells
decreased. Therefore it was not a useful system to use for identifying the
passage of T. gondii during infection and requires further optimisation.

However, as the YFP signal from the parasites was stable, it was
possible to observe their movements with the cells, as illustrated in Figure
The images show parasites near the cell edge (A) and the parasites
re-orientating themselves after contact with the cells (B), possibly in
preparation to invade. There were examples of parasites passing between
cells (C) and typical gliding motility of T. gondii when interacting with
the apical domain was observed, where parasites appeared to move across
the cells in a diagonal fashion (D) [Hakansson et al., [1999).

4.2.9 Parasites themselves are required to alter the distribu-

tion of occludin

During the invasion of cells, T. gondii secretes many proteins. Therefore
it was necessary to determine whether parasites were required to affect oc-
cludin, or whether a secreted product acted upon occludin. Conditioned
media taken from parasite cultures was filtered (0.2um filter) to remove
parasites, and added to the cells. There were no changes in TEER or per-
meability following addition of conditioned media and more importantly,
there were no observed changes in the distribution of occludin (Figure
[£.17). This suggests that the parasites themselves are required to alter

occludin and that the interactions occur on the surface of the parasite.
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Figure 4.16: Movements of parasites amongst cells. Cells were labelled with
surface carbohydrates (blue) and infected with parasites (green) for 2 hours. (A)
arrows indicate parasites along cell edges. Images show parasite re-orientation (B),
parasite movement between cells (C) and parasite movement along the apical domain
(D). Scale bar 10ym (B, C), 20um (A, D).

cell media parasite media

.
——— =

Figure 4.17: Conditioned media does not affect occludin distribution. Cells
were incubated with normal cell media or parasite conditioned media for 2 hours before
fixing with acetone and staining for occludin. A and B represent XY fields of view,
A’ and B’ represent XZ fields of view. Images are representative of five independent
experiments.
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Figure 4.18: Dead parasites have no effect on the distribution of occludin.
Cells were exposed to either no parasites (A, A’), live parasites (B, B’) or dead
parasites (C, C’), (XY, XZ planes). Images are representative of two independent
experiments.

4.2.10 Live parasites are required to cause the redistribution

of occludin

As conditioned media had no effect on occludin, it was likely that para-
sites were required to induce alterations of occludin. To determine whether
molecules on the surface of T. gondii are sufficient to cause occludin re-
distribution, live or dead parasites were added to cells. Parasites were
killed by either freeze-thaw or heat shock method [Koshy et al., 2010].
Parasite death was confirmed by the failure to induce HFF cell lysis after
14 days culture, in parallel to the shift in a YFP positive population seen
with flow cytometry (Appendix |J]).

Following addition of dead parasites to cells, no changes were identi-
fied in terms of barrier function, and parasites were not detected in the
basal compartment following 2 hours of addition to the apical domain
as expected |Barragan et al., [2005; Morisaki et al., [1995]. Furthermore,
there was no evidence to suggest that the cellular location of occludin
had been drastically altered (Figure [4.18)). Therefore it was concluded
that live parasites were required for occludin redistribution. This sug-
gests that following attachment with a parasite surface molecule, there
is either an increased expression of this/these molecule(s), as a minor
change in occludin aggregation was seen with dead parasites (killed by
heating), or that a secreted parasite product may then act upon occludin.
For example, these could be microneme, rhoptry or dense granule derived
proteins which increase in expression following parasite attachment to the

cell surface.
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4.2.11 Bradyzoites altered permeability and occludin distri-

bution

All the experiments described above were carried out with tachyzoites.
However, it is most likely that during a natural infection, bradyzoites
will be the life stage of the parasite that comes into contact with the
small intestine, although it is known that tachyzoites can survive the
acidic stomach to then infect the GI tract [Dalton et al., [2006; Egan et
al.l [2005; Dubeyl, 1998b; |Camossi et al., [2011]. However, bradyzoites are
difficult to maintain in culture as conversion to tachyzoites occurs after
15 - 18 hours of infection in vitro and in vivo respectively [Dubey, 1997].

To determine whether bradyzoites also affect occludin in the same
way as tachyzoites, cells were infected with bradyzoites. Bradyzoites
were induced by the pH shock method described by Soete et al. 1994,
and tested by staining for SAG1 which is expressed only by tachyzoites
[Soéte et al., [1994]. Also, upon induction, the YFP signal was rapidly
photobleached in bradyzoites compared to tachyzoites, and was used as
a further indication that the parasite population had been converted.

Cells were infected with either 1.5x10° tachyzoites or 2x 103 bradyzoites
and cellular TEER, permeability and parasite transmigration were in-
vestigated. Less bradyzoites were added than tachyzoites according to
methods published in the literature [Dalton et al., [2006; Dubeyl 1998b|.

There was no overall difference between tachyzoite and bradyzoite ef-
fects on TEER of the monolayer (Figure[£.19)), but there was a significant
difference in permeability after 2 hours of infection, with the monolayer
being more leaky to dextran in the presence of bradyzoites (P = <0.05,
Figure. This appeared to be a transient effect, as after 6 hours there
were no differences compared to the control (no parasites). It should be
noted that these results were collected from only one experiment.

It was difficult to calculate the numbers of bradyzoites that had trans-
migrated through the monolayer using flow cytometry, because the YFP
signal was lost. However, by phase contrast microscopy using a haemo-
cytometer, after 30 minutes of infection, 5 times as many bradyzoites
were counted in the basal compartment compared to tachyzoites (Figure
. After 2 hours, the percentage of bradyzoites had not considerably
altered, but double the amount of tachyzoites were detected. Follow-
ing 6 hours of infection, numbers in both populations had appeared to
decrease. These results suggest that bradyzoites may transmigrate at

a faster rate than tachyzoites, and that maximum numbers of parasites
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Figure 4.19: TEER was not altered when cells were exposed to bradyzoites.
Either media alone, tachyzoites or bradyzoites were added to cells and TEER was
recorded after 30 minutes, 2 and 6 hours infection. Data represents an experiment
with biological replicates (except for media alone where n = 1).
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Figure 4.20: Permeability was increased by infection with bradyzoites.
Either media alone, tachyzoites or bradyzoites were added to cells and permeability
measured after 30 minutes, 2 and 6 hours infection. Data represents an experiment
with biological replicates (except for media alone where n = 1).
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Figure 4.21: Bradyzoites transmigrate at a higher rate compared to ta-
chyzoites. Cells were infected with either bradyzoites or tachyzoites and parasites
that had migrated into the basal compartment were counted using a haemocytometer.
Data represents one experiment.

transmigrating across the epithelial barrier was achieved within 2 hours.
Decreased numbers after 6 hours could be due to parasite lysis or death,
invasion through the basal domain, or experimental error.

As tachyzoites affected the cellular distribution of occludin, it was in-
triguing to see whether or not bradyzoites exerted the same effects. Cells
were stained for occludin following infection and Figure [£.22] illustrates
that over time, the distribution of occludin became increasingly altered
by bradyzoites. Therefore the life stage of the parasite was irrelevant to
the effects that the parasite exerts on occludin. The effects on occludin
following exposure to bradyzoites after 2 hours appeared to concentrate
occludin to the lateral membrane rather than becoming more cytoplas-
mic as seen with tachyzoites. This may be due to membrane ruffling

during bradyzoite invasion [Sasono and Smith) 1998|.

4.2.12 Occludin in colonic cells is altered by T. gondi:

Human colonic cell lines (CaCo, and C2BBel) were tested for changes
in epithelial barrier function following infection with tachyzoites, and it
was found that like m-ICgy cells, TEER was not altered by the pres-
ence of T. gondii, but permeability was significantly altered (P = 0.001,
Figure . Here, the cells appeared to respond to infection by decreas-
ing the amount of paracellular flux within the monolayer. In terms of
transmigrating parasites, less than 0.01% were accounted for in the basal
compartment. This was 10 times less compared to the m-1C.jy cells, and
supports the decrease found in paracellular permeability. Changes in
ionic transport in the colonic cell line HT29/B6, were also reported by
Kowalik et al. 2004, although they also showed an increase in TEER of
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Figure 4.23: Permeability, but not TEER, was altered by T. gondi: in hu-
man colonic C2BBel cells. TEER was calculated such that no changes before and
after incubation would equal 100%. An increase in TEER would therefore give a value
of >100%, and any decreases being shown as <100%. Data represents one experiment
with biological replicates. Dextran was measured from the basal compartment of cell
inserts.

the monolayer following a 5 hour infection of T. gondii [Kowalik et al.,
2004].

In colonic cells, occludin was also altered by T. gondii, becoming more
localised along the apical and lateral membranes, but not increasing in

concentration within the cytoplasm (Figure [4.24)).

4.3 Discussion

In this chapter, the effects of T. gondii infection were analysed by assess-
ing the integrity and functionality of the epithelial barrier by measuring
TEER, paracellular permeability and effects on individual tight junc-

tion proteins. It was found that the distribution of occludin, but not
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Figure 4.24: Occludin in colonic cell lines was also affected by T. gondii.
Cells were plated onto inserts and infected with tachyzoites for 2 hours. A - D show
XY images of cells stained for occludin (red) and A’ - D’ show XZ sections. Images
represent data from 1 experiment with replicates. Scale bar = 20um.
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other junctional proteins tested, was altered in the presence of T. gondii
tachyzoites and bradyzoites. There was no change in resistance or per-
meability of the monolayer suggesting that T. gondii tachyzoites do not

disrupt the integrity of the barrier function.

4.3.1 Kinetics of T. gondi: infection in m-ICj; cells

Data presented in this chapter were obtained using a 5 : 1 ratio of para-
sites to cells and on average resulted in a 13% infection rate. Similar
ratios and infection rates have been used in other studies where 7. gondii
has been chosen for infection of epithelial cells (Table [£.1). Variations
in infection rates may be accounted for due to the strain of tachyzoite
used, the compactness of the monolayer, or the cell cycle phase of the
monolayer |Grimwood et al.l [1996; Radke et al., [2001]. In this thesis, it
was found that cell number was only 30% of the original number added
to the inserts. Additionally, for any given population of T. gondii, it was
found that 30% were either dead or not expressing YFP (Appendix ,
and so it could be that the 5 : 1 ratio of parasites to cells is underestim-
ated. Taking this into account, the ratio may be as high as 8 : 1. This
would also affect the percentage of infection and transmigration, which

could therefore be higher than calculated.

Parasites Cells P:C Infectivity References
P) (©)
RH m-IC2 5:1 13% This thesis
RH m-I1C1» 2: 1 50% [Mennechet et al| 2002] |
RH IEC-6 511 17% [Dimier and Bout| [1993] |
ME49 MODE-K | 3:1 NR [Gopal et all 2011] |
BK HT29/B6 | 3:1 | 30-35% [Kowalik et all[2004] |

Table 4.1: Infection of T. gondii in different cell lines. For every cell, 2 - 5
parasites were added for 2 hours (except BK where infection was for 1 hour). NR -
not, reported.

In this chapter, it was found that more tachyzoites transmigrated
through the monolayer (0.32%) than infected the cells (0.13%), suggest-
ing that the preferred route of entry into the mucosa may be via the
paracellular pathway. The cell monolayer was routinely checked and
verified for confluency by measuring TEER, assessing permeability and
by microscopic examination to rule out the possibility of a breach in in-
tegrity before infection. Parasites were often found between cells and
beneath an intact monolayer, as assessed by confocal analysis, electron

microscopy and flow cytometry.
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4.3.2 Cellular responses following exposure to T. gondii

Having established that transmigration occurs through the paracellular
pathway, changes in epithelial cell barrier were sought. Variations and
fluctuations within TEER in non-infected cells can be mainly attrib-
uted to experimental error. TEER was measured using an ENDOHM
which required each insert to be removed from a well and placed into
the device. This will inevitably have altered conductance, but all inserts
were treated in the same way and extra measures were taken to ensure
as minimal disruption as possible. As in other studies, the TEER and
the permeability remained unchanged following exposure to tachyzoites
[Barragan et al. 2005|, and remained unaltered when using different ra-
tios of parasites to cells, and varying exposure times. Previous studies
have illustrated that the stimulation of cells by lipopolysaccharide (LPS)
did not lead to the detection of changes in TEER, which was considered
to be a result of simultaneous proinflammatory and anti-inflammatory
responses [Leonard et al., 2010]. Additionally, changes in ionic conduct-
ivity within a few cells would be masked by the overall conductivity of
the monolayer. This may explain the variation in TEER fluctuations
between experiments presented in this chapter.

However, significant differences were observed with permeability, in-
creasing in the presence of bradyzoites in m-IC,j5 cells, and decreasing in
the presence of tachyzoites in C2BBel cells. These results suggest that
bradyzoites do not affect barrier function in the same way as tachyzoites,
and that colonic cells are more resistant to infection than small intestinal
cells. The increase in lateral localisation of occludin in colonic cells may
indicate the role of occludin in regulating macromolecular flux [Al-Sadi et
all [2011]. The data also shows that the assay was responsive to changes
in cells following treatment.

It was considered important to check that the small intestinal cells
were responding to the presence of parasites in terms of cytokine and
chemokine secretion. Although many other cytokines and chemokines
are normally secreted following T. gondii infection [Hou et al., [2011; .Ju
et al., 2009], only the levels of KC and MCP-1 were tested in this thesis,
both of which were significantly upregulated following infection. This is
a well documented response to infection by 7. gondii and the increased
production of KC and MCP-1 in the media following 24 hours infection
time was expected |Luangsay et al., 2003]. Luangsay et al. 2003, iden-
tified the basal secretion of MCP-1 which acted as a chemoattractant
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towards the recruitment of IELs. Evidence from Egan et al. 2009, sug-
gests that depending on the initial parasite burden, the IELs, in response
to MCP-1 interacting with its CCR2 ligand, are capable of influencing
the pathogenesis of ileitis [Egan et al. 2009]. Secretion of KC (murine
homologue to IL-8 in humans) following T. gondii exposure has also been
reported by Ju et al. 2009, in the human embryonic intestinal epithelial
cell line Henle 407, and Denney et al. 1999, in human HeLa cells [Ju
et all 2009; Denney et al., [1999]. It is thought that the secretion of
these and other molecules from epithelial cells drives the recruitment of
immune cells such as TELs to protect the cells from further damage and
reduce the numbers of transmigrating parasites |[Dalton et al., 2006].

It was interesting to observe that the cells were still responsive to the
presence of dead parasites, although not to the same degree as with live
parasites. These finding were not in agreement with Denney et al. 1999,
who confirmed that live parasites were required to elicit a response from
epithelial cells to secrete the chemoattractant IL-8 [Denney et al., 1999).
They used fragments of dead T. gondii by sonicating parasite lysates, in-
stead of using whole parasites, killed by heating or freezing as described
in this chapter, which could explain the differences observed. Dead para-
sites did not invade the cells and did not transmigrate as they require
an active actin-motor complex to infect and move [Morisaki et al., [1995;
Hakansson et al., 1999]. They too had no effect on barrier function and
did not appear to affect any of the junctional proteins tested, although
subtle effects were observed with occludin. This could represent a sur-
face parasite molecule that is upregulated upon attachment to the host
cell which then interacts with occludin, inducing changes in expression.
As no evidence was found to suggest that the parasites were secreting a
product (from studies using conditioned media) that affected occludin,
it was concluded that whole live parasites were required to induce these
changes. Secretion following attachment may have altered occludin dis-

tribution, but was not specifically tested in this thesis.

4.3.3 Effects on tight junctions following T. gondi: infection
by tachyzoites

Dissemination from the gastrointestinal tract is imperative for T. gondii
to generate a chronic infection within its host. The observation that
transmigration was possible led to investigations into interactions between
T. gondii and the cells. Firstly, it was evident that the parasites clustered

around the edges of cells. Observing parasites between cells was not con-

137



sidered to be entirely due to gravity because live parasites are highly
motile [Hakansson et al.l [1999]. This was because parasites were seen, by
live imaging, to actively sample the monolayer, moving across the cells
as they did so. One image taken from a time-lapse video revealed two
parasites underneath the apical domain but perpendicular to the junc-
tions, indicating that the parasites are capable of infection through the
lateral domain, and has been previously suggested |Velge-Roussel et al.,
2001; Barragan et al., 2005].

This phenomenon was predicted to affect tight junction physiology.
A decision was taken to look at the following tight junction proteins:
occludin, because of original observations made by Dalton et al. 2006;
claudin 2 and claudin 4, because they had not been previously examined,
and ZO-1 because this had been evaluated previously and is an important
cytosolic plaque protein of the tight junctional complex [Dalton et al.,
2006; Barragan et al., [2005]. The adherens junction protein, 3 catenin
was also tested because levels of the adherens junction protein ICAM-1
have been shown to change in the presence of T. gondii |[Barragan et al.,
2005)|.

From the results outlined in this chapter, only occludin was altered
by T. gondii, both by tachyzoites and bradyzoites. The distribution
of occludin was drastically modified following infection, with changes
identified as early as 30 minutes post-exposure. As originally described
by Dalton et al. 2006, results in this chapter demonstrate that there was
a shift in occludin expression from the tight junctional complex towards
a cytoplasmic, apical location after exposure, followed by a substantial
increase in concentration within the cytoplasm 24 hours later [Dalton et
al.l 2006). This shows that the data collected in wvitro supports those
collected from in vivo experiments, justifying the use of m-1C.5 cells as
a suitable model for small intestinal epithelial cells.

Following two hours post-infection, not only was it evident that T.
gondii was co-localising with occludin, but did so in a polarised manner.
It can be predicted that as the parasite re-orientates in preparation for
infection, the moving junction that forms as the parasite makes contact
with the cell involves occludin, a theory which has not yet been proposed
or reported in the literature. Co-localisation remains after 24 hours of
infection and at this point occludin appears to completely engulf indi-
vidual parasites, which may be acting as a mask against the cells defence
strategies. The parasitophorous vacuole that forms around an intracel-

lular parasite is one that reveals a network of fibrous material between
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host and parasite, although identification of interacting proteins has yet
to be confirmed [Schatten and Ris, 2004; Mordue et al., [1999]. It may
therefore be speculated that occludin and occludin-interacting protein
complexes, may be associated with this vacuole.

Degradation products of occludin seen in this study were of a sim-
ilar size to that seen following metalloproteinase-induced degradation
which suggests that 7. gondii may secrete similar products which regu-
late occludin [Wachtel et al., [1999]. No changes in cellular distribution
of claudin 2, claudin 4, ZO-1 and [ catenin were observed following 2
hours of infection by tachyzoites, although after 6 hours a slight increase
in cytoplasmic-associated claudin 2 was observed. This could represent
a secondary effect following the redistribution of occludin [Raleigh et al.|
2011].

To confirm that the changes in occludin were a primary effect from
T. gondii tachyzoites, rather than a consequence, a live invasion assay
was attempted. This would also clarify whether occludin was more im-
portant for invasion or transmigration of parasites. Unfortunately this
proved unsuccessful by staining live cells with antibodies to occludin.
To overcome the technical difficulties of staining live cells for occludin,
the production of a cell line expressing a stably fluorescent occludin was
initiated. This would provide a method to visualise live cells without
the need for immunofluorescent protocols. However, this was also un-
successful. Alternative approaches could include the use of established
fluorescent-occludin cell lines, although there are currently no murine
small intestinal cell lines that express this property [Marchiando et al.,
2010|.

4.3.4 Effects of bradyzoites on epithelial cells

As bradyzoites and sporozoites (the latter of which is not used in this
thesis) are the two life stages that naturally infect the host, it was im-
portant to consider their infection mechanisms and effects on the small
intestinal epithelial barrier. However, as they are difficult to maintain
in culture, the experiments described in this thesis were all performed
with tachyzoites (with the exception of one experiment), which can also
infect the GI tract. However, the tachyzoites are the life stage which
disseminate out of the gut and through the body to reside in tissues such
as the muscle and brain. As tight junction proteins, especially occludin,
are found in a number of different cells, the tachyzoite infection studies

are of higher relevance to these cell types and may have implications for
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the infiltration of T. gondii through the blood-brain and blood-testes
barriers.

As previously mentioned, the addition of bradyzoites to cells resulted
in the monolayer becoming more permeable to dextran. Further stud-
ies could include investigations into the effects on the claudin family of
proteins that regulate permeability, following bradyzoite exposure. The
results suggested that a higher proportion of bradyzoites transmigrated
into the basal compartment and that the rate of transmigration was more
rapid, compared to tachyzoites. The percentage of transmigration in this
experiment are not comparable to other experiments within this chapter
as they were estimated from counting via a haemocytometer, in which
autofluorescence was not an issue, and parasites were easily identified,
compared to flow cytometry. However, these visual counts are not as ac-
curate as those collected using flow cytometry. Despite this, it was clear
from this study that bradyzoites were capable of crossing the epithelial
cell barrier via the paracellular pathway.

Bradyzoites affected occludin in a different way to that of tachyzoites
as they induced a lateral redistribution of occludin possibly for movement
through the paracellular pathway, whereas tachyzoites induce a cytoplas-
mic redistribution of occludin for invasion of cells. The invasion rates of
bradyzoites were not calculated in this study, but may provide inform-
ation as to which life stage preferentially invades and/or transmigrates
in small intestinal epithelial cells. Furthermore, as bradyzoites were not
visualised by confocal microscopy due to the lack of YFP fluorescence,
antibodies to bradyzoite specific molecules would confirm whether they

co-localise with occludin.

4.3.5 Effects of T. gondii on colonic epithelial cells

Occludin in human colonic cell lines was also affected by 7. gondii, but
in a slightly different way to that of murine small intestinal cells. Here,
occludin appeared more evenly distributed across the lateral membrane
compared to non-infected cells. As the permeability was altered following
infection, it was conceivable that subtle differences exist in how various
cell types respond to infection. The decrease in transmigratory parasites
was reflected in the decrease in permeability. As the primary point of
contact would be the small intestine in vivo, the numbers of invasive and

transmigratory parasites was therefore expected to be lower.
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4.4 Conclusions

This chapter has provided evidence to show that Toxoplasma gondii ta-
chyzoites can alter the distribution and co-localise with occludin, whilst
retaining the integrity of the epithelial cell barrier, as measured by TEER
and permeability. Bradyzoites also affected occludin in a similar way to
tachyzoites, but may have a transient effect on permeability, suggesting
that the mechanisms of entry into cells and transmigration between cells
could be different between life stages. Additional evidence to support the
finding that occludin is an important protein during 7. gondii infection
would be provided by comparing to cells that lack occludin, the results
of which are described in Chapter 5. Co-localisation of occludin suggests

binding of parasite surface molecules and is discussed in Chapter 6.
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Chapter 5

Reduction of occludin expression in

m-I1C.o cells

5.1 Introduction

The role of occludin is currently undefined. Previous studies have sug-
gested occludin plays a role in development at both the cellular level
and the tissue level [Saitou et al., 2000; Schulzke et al., 2005; Balda et
al., 2000]. In order to determine the function of a protein, absence of
the protein itself may provide evidence to ascertain various roles. It is
possible to suppress a protein by mutating its gene or by eliminating the
levels of protein expression using short hairpin RNAs (shRNA) or small
interfering RNAs (siRNA). Mice and cells with mutated or deleted oc-
cludin have been created and the findings and implications of these were
discussed in Chapter 1, Section [[.3.4]

RNA interference is a naturally occurring process in most eukaryotic
organisms whereby small RNA transcripts bind to complementary re-
gions in mRNA transcripts causing them to be silenced. This provides
a post-transcriptional mechanism to regulate RNA expression within a
cell. Double stranded RNA is processed into shorter strands about 20 -
25 nucleotides in length by the RNase III family nuclease enzyme Dicer.
These strands are referred to as siRNAs which unwind as they are in-
corporated into the RNA-induced silencing complex, before binding to
the mRNA complementary strand and preventing translation through
cleavage [Hannon and Rossi, 2004]. The addition of siRNA is now a
routine method and involves transfecting cells with often commercially
available siRNA sequences. However, this method only suppresses pro-
tein expression transiently as its effect is progressively lost through cell
division.

A more stable method is the use of sShRNA which can be delivered by
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a viral vector that incorporates itself into the DNA of the cell and will
therefore be present during all subsequent cell divisions |[Paddison et al.,
2002; Hannon and Rossi, 2004).

To date only a few studies have been published describing the effects
of occludin suppression using RNA interference in epithelial cells. Yu et
al. 2005, proposed that in the absence of occludin, the actin cytoskeleton
is unable to reorganise in response to Rho signalling (a protein involved
in cell motility) [Yu et al 2005]. They also found that occludin may be
involved in the apoptotic pathway, observing fewer apoptotic cells being
released from the monolayer compared to the control. This was thought
to increase the risk of developing a malignant phenotype, a phenomenon
which was also described by Saitou et al. 1998 [Saitou et al., |1998} [Yu
et al) [2005]. In fact, Osanai et al. 2006, came to the same conclu-
sion, providing evidence that occludin acts as a tumour suppressor gene
in cancerous cells [Osanai et al., 2006]. These researchers used epigen-
etic silencing to prevent occludin expression in a number of carcinoma
cell lines |[Osanai et al., [2006]. Other studies showed that although epi-
thelial kidney cells appeared to express normal tight junction strands and
TEER, there were subtle differences in permeability following occludin
suppression, whereby higher amounts of monovalent organic cations were
able to pass through the paracellular pathway, and in parallel, identified
changes to members of the claudin family [Yu et al., [2005].

To understand the function of occludin in small intestinal epithelial
cells, and to investigate further the relationship between T. gondii and
occludin during infection of m-I1C.j5 cells, cell lines were developed with
reduced amounts of occludin using both siRNA (transient) and shRNA
(permanent) approaches. The siRNA approach consisted of three target-
specific oligonucleotides from Santa Cruz Biotechnology. The shRNA
approach used the retroviral vector pBABEpuro, to deliver the shRNA
because of its ability to produce high viral titres [Morgenstern and Land,
1990]. The shRNA in the pBABEpuro vector is under the control of
the Moloney murine leukaemia virus (Mo MuLV) Long Terminal Repeat
(LTR) promoter, and when incorporated into an env mutated cell line
(referred to as the WCRE packaging cell line, derived from NIH-3T3
cells), has the ability to produce Mo MuLV virus particles containing
the occludin-specific sShRNA |[Morgenstern and Land} 1990; Danos and
Mulligan), [1988|. These could then be delivered into m-ICg, cells for

reduction of occludin expression.
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5.2 Results

5.2.1 Transduction of m-IC.;» cells with shRNA virus

In order to generate a stable cell line that would have reduced expression
of occludin, a small hairpin RNA (shRNA) was integrated into genomic
DNA using a retroviral approach. The shRNA sequence was obtained
from Yu et al. 2005, and created with NgoMIV and BamH]1 restriction
enzyme sites at the 5 and 3’ termini [Yu et al.l 2005]. m-ICy cells
were transduced with the pBABEpuro shRNA Moloney murine leuk-
aemia virus and positive cells selected by the addition of 3ug/ml puro-
mycin. After seven weeks of culture, there were enough cells to expand
the line further. Puromycin selection was maintained throughout the
duration of cell culture. Two individual preparations of virus were made
and added separately to m-ICq cells. For one set of cells (Figure [5.1D),
although they replicated, they never reached confluency and instead grew
on top of one another. This is not uncommon as although not for trans-
duction, the formation of multi-layered colonies following transfection
has previously been reported [Vietor et al., 2001]. However, these cells
were not used as the purpose of this study was to investigate T. gondii
infection within a confluent monolayer of cells. Although they may have
represented cells where levels of occludin were reduced, they may have
been affected in other ways during transduction. The second set of cells
(Figure 5.1C) formed a confluent monolayer after 9 days of culture. This

cell preparation was used for the studies outlined below.

5.2.2 Occludin reduction by shRNA was not stable

Transduced cells were analysed for occludin expression by immunoblot-
ting and immunofluorescence. A reduction of 50% was achieved for the
cytoplasmic fraction of occludin and a 35% reduction for the membrane-
associated fraction, compared to parental cells (Figure and Figure
. The distribution of claudin 2, claudin 4 and 3 catenin were not sig-
nificantly altered in shRNA-treated cells (Figure and Figure ,
although cell morphology was different compared to parental cells.
However, following four successive passages, more occludin was present
in the reduced cell line compared to parental cells (Figure and Fig-
ure . This analysis shows that the down-regulation of occludin by
the pBABEpuro retrovirus was not stable, limiting the number of exper-

iments that could be performed.
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Figure 5.1: shRNA treated cells. m-IC., cells containing shRNA-pBABEpuro
were grown on 25cm? cell culture flasks. Confluent parental cells are shown in (A).
shRNA-pBABEpuro cells after 2 days of culture are shown in (B). Images are repres-
entative of cells from two separate transduction experiments. (B) After 9 days, only
one of these transductions resulted in confluent cells (C), while the other did not (D).
Cells shown were of early cultures. Magnification = 20x. Scale bar = 50um.
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Figure 5.2: Reduced occludin levels in shRINA treated cells. Parental and
shRNA-treated cells were grown on 25cm? flasks for 8 days and tested for levels of
occludin. Early cultures of cells (A) were compared to late cultures of cells (B) by
densitometry analysis of immunoblots. Data represents 2 independent experiments
for each culture.

All subsequent experiments using the shRNA cells described below
were carried out on early cultures which retained a 35 - 50% reduction
of occludin, and in parallel, an alternative strategy for RNA interference

was adopted to support data obtained from infection of sShRNA cells.

5.2.3 Occludin reduction by siRNA was stable

To determine the level of suppression using siRNA, approximately 3 x 10°
m-IC cells were grown to 80% confluency on 6 well dishes and trans-
fected with either small interfering RNA (siRNA) specific to occludin,
non-specific scramble RNA (scRNA, used as a control) or nothing (media
alone). Cell lysates were collected and tested for levels of occludin after

48 hours. siRNA decreased the cytoplasmic fraction of occludin by 54%

146



A

Occludin Surface carbohydrates Merge

B Claudin 2 Claudin 4

Figure 5.3: Tight junction protein expression in shRNA-treated cells. Cells
from early cultures were plated onto coverslips were stained for occludin (red) and
surface carbohydrates (blue). Expression levels of occludin are reduced (A) compared
to Figure (B) Expression of other tight junction proteins was still apparent. Scale
bar 20um.

— —

Figure 5.4: shRINA treated cells reverted in progressive cell cultures. Par-
ental cells (A) and late cultures of shRNA-treated cells (B) were stained for occludin.
Scale bar 20um.
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compared to the non-transfected cells, whereas for scRNA-transfected
cells, levels only changed by <1% (Figure [5.5a)). siRNA did not appear
to affect the membrane-associated fraction of occludin compared to the
control (Figure . Occludin reduction was further analysed by im-
munofluorescence after 2 days of treatment, from cells that had grown
on inserts for 11 days. Unlike the immunoblots, it was seen that both
the cytoplasmic and membrane-associated fractions were decreased after
siRNA treatment compared to control cells.

In a separate experiment, reduction of occludin following transfection
was apparent after 6 hours, 3 days and 6 days in the cytoplasmic fraction,
being decreased by 61%, 53% and 56% respectively. However, the amount
of membrane-associated occludin increased during this time from 29%,
54% to 168% with respect to when media-alone was added as a control.

Together, the data suggested that the siRNA was efficient for reducing

occludin levels in m-1Cg, cells.

5.2.4 Barrier function in shRNA but not siRNA-treated cells,

was reduced compared to parental cells

To test whether siRNA-treated cells had any effects on barrier function,
TEER, permeability and the distribution of other tight junction proteins
were analysed.

Confluent cells transduced with shRNA viral particles and transfected
with siRNA cells were evaluated for their ability to form a tight and
resistant monolayer. siRNA and scRNA were added on day 11 to parent
cells and this had no effect on TEER or permeability on subsequent
days (Figure and Figure [5.8D). The addition of siRNA also made
no significant difference to the distribution of claudin 2, claudin 4, ZO-1
or B catenin (Figure . Therefore, although occludin expression was
reduced, there were no apparent effects on barrier function or expression
of other tight junctional proteins.

However, the TEER of shRNA-pBABEpuro transduced cells was ap-
proximately one third compared to parental and siRNA cells (Figure .
The TEER of these cells did not increase at any time-point after plating
and were 400 times more permeable than parental cells (Figure ,
suggesting that they did not completely polarise or differentiate. This
was either as a direct result of occludin reduction, or due to the method

by which the cell line was generated.
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Figure 5.5: Characterisation of siRNA effects in m-IC,s cells. Either normal
media, siRNA or scRNA were added to cells grown on plastic for 6 days and inserts
for 11 days. Cells were fixed with 2% PFA and stained for occludin on day 13. Levels
of occludin reduction were tested after 2 days of siRNA transfection by immunoblot-
ting and immunofluorescence. Reduction was analysed against occludin expression
in parental cells and scRNA-treated cells after 48 hours (A). The reduction was also
tested after 6 hours, 3 days and 6 days of treatment (B). Results show densitometry
data from one experiment. (C) The distribution of occludin in siRNA treated cells
was also visualised by immunofluorescence after 48 hours of treatment. Scale bar =
20um.
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Figure 5.6: Comparison of TEER in parental and occludin-reduced cells.
TEER was recorded every 24 hours on cell culture inserts. Data represents an exper-
iment with biological replicates.

5.2.5 Infection of occludin-reduced cells by T. gondiz

Further understanding of the role that occludin has in maintaining and
developing the tight junction complex can be sought by infection studies.
In the gastrointestinal tract, it is unclear as to whether or not altered
levels of occludin are a cause or a consequence that will ultimately lead
to gastrointestinal-associated diseases or disorders |Ciccocioppo et al.,
2006; [Friswell et al.l 2010; Gassler et al.. 2001]. Therefore, one method
to determine whether or not the decrease in occludin provides a protective
mechanism to the barrier, is to use a model organism that is known to
infect the small intestine such as 7. gondi:, which has been shown to alter
and associate with occludin distribution (Chapter 4 and [Dalton et al.|
2006]). The use of a both a permanent (shRNA) and transient (siRNA)
system to compare the effects of decreased occludin expression following

exposure to 1. gondii, was employed.

5.2.5.1 TEER was not affected by T. gondi: in occludin-reduced

cells

Having established from data presented in this thesis that 7. gondii in-
teracts with occludin during infection, an attempt to identify differences
in barrier function in the absence of occludin during infection was invest-
igated. On inserts, ShRNA cells and siRNA-treated cells were infected
for 2 hours with tachyzoites.

TEER was similar between cells prior to the addition of T. gondii
although over the course of the experiment TEER dropped slightly in
all cells, probably due to the disturbances that were caused whilst per-
forming the experiment itself (Figure , also described in Chapter 4).
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However, the exception was that TEER did not decrease when parental
cells were exposed to 1. gondii, and the difference between the TEER
of parental non-infected and infected cells was therefore significant (P
= 0.04), indicating that the presence of T. gondii may have influenced
TEER in some way. There were no significant changes in TEER between
infected and non-infected siRNA- and scRNA-treated cells (P = >0.05).
This was also true for shRNA cells, although a slight but not significant
difference was seen between infected and non-infected cells (Figure [5.7a).
Overall, TEER was not altered during exposure to 1. gondii in occludin

reduced cells.

5.2.5.2 Permeability was not affected by T. gondi: in occludin-
reduced cells

Changes in the permeability of both shRNA and siRNA-treated cells were
analysed for changes during the presence of T. gondiz. The amount of
FITC-dextran that passed through the shRNA cells was not significantly
different in the presence or absence of tachyzoites (P = >0.5, Figure
. Unlike the shRNA cells, the permeability of the monolayer was not
altered by the addition of siRNA or scRNA (P = >0.2), although there
was also no change in permeability between infected and non-infected
samples (P = >0.6, Figure . These results suggest that occludin
does not appear to have a major role in the maintenance of epithelial

barrier function during infection.

5.2.5.3 Fewer parasites transmigrate through occludin-reduced

cells compared to parental cells.

To determine whether or not the number of parasites capable of trans-
migrating through the cells depended on levels of occludin, parental,
shRNA, siRNA and scRNA-treated cells were exposed to parasites for 2
hours. Apical and basal media was collected and analysed by flow cyto-
metry for YFP-positive populations. In shRNA cells, significantly less
parasites were present in the basal compartment compared to the wild
type cells (P = 0.02, Figure . There was no difference in the numbers
of parasites within the apical domain (P = 0.05, data not shown).

For siRNA-treated cells, significantly lower numbers of parasites were
also detected in the basal compartment compared to parent cells (P =
0.018), even though the numbers of apical parasites were of similar mag-
nitude across all samples (P = >0.3, Figure . Together, 70% of
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Figure 5.7: TEER was not affected by T. gondii in occludin-reduced cells.
Parental and shRNA cells were cultured on inserts for 13 days before infecting with
tachyzoites for 2 hours (A). Data represents one experiment with biological replicates.
(B) Cells were grown on inserts for 11 days before adding treatments. On day 13,
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initial parasites added can be accounted for from the apical and basal
compartments, suggesting that approximately 30% may be associated
with the cell monolayer or the insert membrane. Although more para-
sites were present in the basal compartment in scRNA-treated cells and
less in the apical compartment compared to parent cells, the differences
were not significant (P = 0.071, P = >0.3).

5.2.5.4 The percentage of infection is not altered by reduction

of occludin in cells

The results from Figure suggested that in shRNA and siRNA-treated
cells, more parasites were associated with the cell monolayer compared to
parent cells, as decreased numbers were found in the basal compartment
but no differences were detected in the apical compartment. Therefore,
it was necessary to determine whether or not occludin-reduced cells were
infected at a higher rate compared to parent cells.

Overall, data collected from two - four independent experiments re-
vealed no differences in the percentage of infection between shRNA and
parental cells, and siRNA-treated and parental cells (P = 0.059 and P
= 0.055 respectively, Figure . However results from another exper-
iment did show a significant difference (P = <0.001), where there was
increased infection of siRNA-treated cells. Although there was a con-
siderable amount of variation within and between experiments, it was
concluded that no detectable differences between parental and occludin-

reduced cells were apparent.

5.2.5.5 T. gondit altered occludin distribution in occludin-

reduced cells

To determine whether or not the parasites were affecting residual occludin
in the same way as parent cells, cells were stained for occludin following
infection.

For shRNA cells, similar results to those observed in Chapter 4 were
seen, whereby following exposure to 7. gondii, there was both a loss
of membrane-associated residual-occludin and co-localisation with the
parasite (Figure [5.11]).

For siRNA-treated cells, exposure to T. gondii also lead to a redis-
tribution of residual occludin, similar to those observed in parent and
scRNA-treated cells (Figure [5.12). This suggests that 7. gondii could

still interact with residual occludin implying that the presence of T.
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Figure 5.9: Parasite transmigration in occludin-reduced cells was de-
creased. Parasites were collected from the basal compartment of inserts after 2 hours
of addition to the apical domain, and counted using flow cytometry, gating for YFP
fluorescence (FL-1 positive populations). Basally collected parasites in shRNA cells
are shown in (A), and apical and basally collected parasites in siRNA- and scRNA-
treated cells are shown in (B). Data represents one experiment for shRNA and two
independent experiments for siRNA and scRNA treatments with replicates.
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Figure 5.10: T. gondii infects parental and occludin-reduced cells to the
same degree. Cells were plated onto glass coverslips and cultured for 2 days before
adding siRNA or scRNA. Cells were infected with tachyzoites for 2 hours and counter-
stained using Haematoxylin and Eosin. Between 48 and 73 fields of view were recorded
for each treatment across a data set of three - five independent experiments (shown
in different colours), except sShRNA where data was from 1 experiment.

Pre-infection Post-infection

Figure 5.11: Occludin distribution in shRINA cells was altered by T. gondis.
Cells were stained for occludin (red) following infection. A number of the parasites
appear yellow which indicates co-localisation with occludin. Scale bar 20um.
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Figure 5.12: Redistribution of occludin by T. gondii in siRNA treated cells.
Cells were grown on inserts, infected with parasites (green), fixed with acetone and
stained for occludin (red). Data is representative of four independent experiments.
Scale bar 20um.

gondii may have increased the amount of membrane-associated occludin
in siRNA-treated cells.

5.2.5.6 Other junctional proteins were unaffected in occludin-

reduced cells during T. gondi: infection

Previous work demonstrated that 7. gondiz did not affect other proteins
in parent cells (Chapter 4). To confirm that T. gondii did not affect other
proteins in occludin-reduced cells, the distribution of claudin 2, claudin
4, Z0-1 and [ catenin were analysed. As mentioned previously, there
were no changes in the distribution of junctional proteins in occludin-
reduced cells was observed in non-infected siRNA-treated cells (Figure
. There were also no changes in the distribution of junctional pro-
teins following infection, with the exception of claudin 4, where, following
infection in siRNA-treated cells, there was a decrease in expression levels.
The distribution of 3 catenin within shRNA cells was not also not
significantly altered when exposed to T. gondii (Figure .
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Figure 5.14: B catenin in shRNA cells was not altered by T. gondii. Cells
with reduced occludin (A) were infected with T. gondii (B) and the distribution of
catenin visualised. Scale bar 20um.

5.3 Discussion

5.3.1 Barrier function in occludin-reduced cells

In this chapter, occludin protein expression was reduced in cells using
siRNA and shRNA. To date, there is only one other report where m-
ICg2 cells have been transduced with a virus to deliver DNA, showing
that this method of delivery can be used in this cell line |Lecollinet et
al.l [2006]. The infection of cells with reduced occludin resulted in de-
creased transmigration of 1. gondii. This could suggest that T. gondii
uses occludin as a mechanism to enter the basal compartment via the
paracellular pathway.

Currently, there are very few publications where occludin expression
has been reduced in epithelial cell lines. Saitou et al. 1998, used homo-
logous recombination to create occludin deficient embryonic stem cells
[Saitou et al.l [1998]. They concluded that the cells were still capable of
forming tight junction strands and appeared to still function to create an
effective barrier, with differentiation and polarisation appearing normal.
Itallie et al. 2010, also demonstrated no changes in TEER or permeab-
ility following knock-down of occludin in MDCK II cells, which did not
lead to alterations in the distribution of other junctional proteins [Itallie
et al., 2010]. However, Al-Sadi et al. 2011, observed an increase in per-
meability of the monolayer to macromolecules such as 10kDa and 70kDa
dextran following occludin suppression [Al-Sadi et al., 2011]. Findings
presented in this chapter for siRNA-treated cells, although in a different
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cell type, are in agreement with the results published by Saitou et al.
1998 and Itallie et al. 2010 [Saitou et al.l |1998; Itallie et al., [2010].

In this chapter, the siRNA reduction method was not 100% efficient
and only had a significant impact on the cytoplasmic fraction of occludin
as occludin was still present at the tight junction complex. This may be
due to membrane-associated recycling of occludin which would not be af-
fected by the siRNA, or non-silenced mRNA that would still be translated
into protein, which may account for the increase in membrane-associated
occludin over time. The transient approach was specific to occludin and
did not alter the ability of the cells to maintain barrier function, as neither
TEER or permeability were altered by the treatment. In addition, the
reduction was sustained for a sufficient amount of time to perform infec-
tion experiments. However, TEER and permeability in shRNA cells were
considerably lower compared to parent cells. In addition, shRNA cells
were smaller in depth and not homogeneous in appearance, suggesting
that cell polarisation had occurred to a lesser extent. The possibility that
occludin may contribute to developing a transepithelial electrical resist-
ance should not be ignored and has been demonstrated in overexpression
studies using MDCK cells |[Balda et al., 1996].

The shRNA approach proved to not be a viable long-term option,
for which there are a number of possible explanations. Transduction
rates of m-1Cgy cells with the shRNA was not high, possibly due to a
low viral titre or inefficient transduction. Unfortunately, the few cells
that survived the puromycin selection took a long time to grow (two
months) which may be due to inhibitory effects that puromycin has on
cell growth, as others studies suggest that following transduction, cells
can be used within three weeks |[Osanai et al.,[2006]. Attempts to decrease
the selective pressure of this treatment were carried out by removing the
puromycin for two days and then reintroducing it into the media. This
seemed to allow replication to occur as cell colonies started to form.

Noel et al. 1994, and Henning et al. 1995, reported the use of the
IEC-6 rat small intestinal cell line to optimise gene transfer protocols
that could be eventually transferred into in vivo models [Noel et al.,
1994; Henning, 1995|. In these studies, they suggest a number of reasons
why transduction efficiency may be low and provide various options to
overcome these obstacles. For example, they suggested that the multiple
infection of epithelial cells from successive collections of viral culture
could increase transfection efficiency. This was not attempted in this

thesis, but successive concentrations of viral cultures were added to dif-
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ferent transduced cells, although this did not appear to make a significant
difference. Noel et al. 1994, and Henning et al. 1995, also report that un-
diluted viral culture was inhibitory to transduction efficiency, although
in this thesis, it was only the non-diluted viral culture which resulted in
a few cells surviving after puromycin selection and hence presumed to
be infected with the virus. Noel et al. 1994, and Henning et al. 1995,
suggested the use of B-galactosidase for testing viral titre, as cells that
had been transduced could be visualised without exposure to chemicals
such as puromycin. If the study was to be repeated, these suggestions
could be incorporated into the methodology.

It has been demonstrated that the timing of viral transduction of
epithelial cells was crucial to the success of the transduction, in that
the cells need to be actively dividing to express the optimum amount of
retroviral receptor on their surface, because differentiated cells are known
to express reduced levels of the receptor [Henning, 1995; Lecollinet et al.,
2006; Miller et al., 1990|. The level of retroviral receptor expression is also
known to decrease along the crypt-villus axis [Henning, [1995; Lecollinet
et al., 2006]. This makes the m-ICjy cells an ideal cell line to use for this
procedure, as they are derived from cells found in the base of the villus
and maintain a crypt-like, partially differentiated phenotype [Bens et al.,
1996.

shRNA treated cells that did reach confluency were never completely
void of occludin. However, the reduction was not permanent and the cells
eventually expressed levels of occludin similar to non-transduced cells.
Surprisingly these cells could still survive in the presence of puromycin
which suggested several things. Firstly, expression of the pBABEpuro
promoter was not strong enough to maintain the dampening of occludin
protein expression. Secondly, the integration of DNA into the chromo-
some did not occur at a suitable place and therefore altered the stability
of the cells development and capacity for the DNA to remain intact.
Thirdly, some cells may have become resistant to puromycin and rep-
licated. This phenomenon has been reported before and is thought to
be due to increases in cell density and reaching the stationary phase of
the cell cycle [Cass, [1972]. Puromycin works by inhibiting translation
and as the cells became more confluent, the uptake of puromycin may
have decreased which in turn may have increased the chances of the cells
becoming resistant.

The siRNA transient model was more successful in its ability to re-

duce occludin and did not have adverse effects on differentiation or po-
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larisation, as measured by TEER and permeability. However, further
optimisation of the protocol should be considered. For example, addi-
tion of the siRNA to cells could be performed at an earlier time point,
when cells grown on inserts are not confluent (day 5). This may result in
a higher occludin-reduction as non-confluent cells are more easily trans-
fected and there would be sufficient time for occludin already present, to
degrade before the cells were used for infection assays. However, as the
function of occludin during the development of a confluent monolayer
are not defined, it was decided to add siRNA on day 11 of culture, on
inserts, to ensure that a monolayer with an effective barrier was estab-
lished prior to addition of T. gondii. However, it would be interesting
to determine whether transfection of cells with occludin specific siRNA
at earlier time-points had an effect on differentiation and polarisation,
as observed when using the shRNA approach. This may shed light on
occludin function in small intestinal epithelial cells during polarisation
and differentiation.

The expression of claudin 2, claudin 4, ZO-1 and [ catenin were sim-
ilar in siRNA-treated compared to parental cells, and still expressed at
the membrane in shRNA cells. This shows that these proteins were
functional at the tight junction complex. Following occludin reduction,
previous reports have shown an increase in claudin 4 expression [Yu et
al 2005], and an increase in claudin 2 expression [Al-Sadi et al.l 2011],
suggesting that possible redundancy functions or association with these
claudins and occludin [Yu et al. 2005; Balda et al., [2000]. Watson et
al. 2001, suggested that tight junctions contained proteins that regulate
a non-restrictive channel that is permeable to macromolecules and anti-
gens, and a restrictive channel that is permeable to molecules less than
4A [Watson et al) 2001]. Data from subsequent experiments suggested
that occludin may indeed play a role in the non-restrictive channels, while
claudins play a role in the restrictive channels [Watson et al., 2001} [Yu
et al., [2005; |Al-Sadi et all) [2011]. Claudin 4 overexpression leads to an
increase in TEER through charge selectivity changes in the transcellu-
lar pathway whereas claudin 2 has been shown to directly contribute to
the number of tight junction pores [[tallie et al., 2001} [2008|. Therefore,
had the occludin-reduced cells been cultured for a longer period of time,
changes in claudin expression may have been seen, and if not, the discrep-
ancies may be due to experimental differences or functions of individual

tight junction proteins in various cell types.
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5.3.2 Infection of occludin-reduced cells with T. gondi:

Despite the limitations mentioned above, cells with experimentally re-
duced expression of occludin were used to investigate changes in barrier
function during infection by T. gondii, following on from the observations
made in the previous chapter.

In both occludin reduction systems, the presence of T. gondii did
not alter TEER or permeability. Furthermore, redistribution of residual
occludin was still observed following infection, and no other junctional
protein was affected, with the exception of claudin 4 whose expression in
siRNA-treated cells, were suppressed upon exposure to 1. gondii. This
may represent secondary effects following the reduction of occludin.

However, this chapter revealed that the numbers of transmigrating
parasites in the occludin-reduced cells was up to 10 fold lower compared
to the parental cells. Considering that occludin was not 100% reduced in
either system, this was a surprising result, as it suggests that the parasites
are sensitive to changes in the levels of both membrane-associated and
cytoplasmic occludin, and that the presence of this protein may play an
important role in the ability of the parasite to migrate between cells.
In addition, it was not expected that transmigration in shRNA cells
would lead to decreased numbers of basal parasites, as the cells were 400
times leakier compared to parental cells. These results strongly suggest
that occludin is required for transmigration of T. gondii. Previous work
carried out in a murine model has shown that intraepithelial lymphocytes
(IELs) protect against changes in occludin distribution and decrease the
number of disseminating parasites [Dalton et al., 2006|. It could therefore
be assumed that in the in witro model, where there are no immune-
enterocyte interactions, occludin is available to interact with 7. gondui,
becoming altered in distribution and subsequently providing a gateway
that allows the parasite to gain access to the basolateral domain. Further
studies should be performed to include a co-culture of immune cells such
as ilELs to ascertain whether they are responsible for decreasing the basal
parasite burden.

It was intriguing to observe no overall increase in the number of infec-
ted cells between parental and siRNA-treated cells. It could be expected
that if there was a decreased number of transmigrating parasites, there
may be a higher proportion infecting to compensate. However, using
the current methodology this was not observed, although the numbers of

parasites collected from the apical and basal compartments after 2 hours

163



was lower in parental cells compared to siRNA-treated cells suggesting
that more parasites were associated with the monolayer in parental cells
compared to siRNA-treated cells. On reflection, a better method could be
employed for further studies in calculating infection, as coverslips do not
produce the optimum conditions for cell polarisation and differentiation.
Here, the levels of infection were nearly 14 times lower than transmi-
gration for parental cells, and only 4.86 times lower for siRNA treated
cells. The low infection rate observed could represent dead parasites, a
heterogenous population of 7. gondii in which given any population of
T. gondii, only a certain number are capable of infecting cells, unsuitable
conditions for infection (cells grown on coverslips), or an underestimate of
actual infection. Alternatively, changes within caveolin-dependent lipid
rafts as a result of reduced occludin may affect cell surface signalling
molecules that are involved in the invasion process by T. gondii |Ital-
lie et al., 2010]. Overall, the data provides evidence that the preferred
route of invasion is through the paracellular pathway and lends further
support that tight junction proteins such as occludin may acting as a
gateway-transport mechanism for the parasite.

Scramble RNA was used as a control for transfection and unexpec-
tedly, this treatment appeared to slightly increase permeability, numbers
of transmigrating parasites, and the percentage of infection by 7. gondu.
Although this unusual result has occurred, it has done so using exactly
the same techniques that were employed for delivering the siRNA, making
the results following siRNA treatment more convincing towards exerting
a real effect on transmigration of 7. gondii. It follows that any increase
in permeability would result in an increased number of parasites coun-
ted in the basal compartment, and actually provides an additional test
of the systems sensitivity to detect changes. Most importantly, no ma-
jor changes were detected in other junctional proteins following scRNA,
siRNA, or shRNA treatments in the presence or absence of T. gondii.
This suggested that the siRNA and shRNA were specific and the method
of delivery did not significantly alter the expression or location of these
proteins.

Finally, the fact that both the transient and permanent suppression
of occludin has resulted in the same findings, provides further evidence
that both systems were sufficient to use for defining the importance of
occludin during T. gondii infection.

It should be noted that the data obtained from this study must be

interpreted with caution as the levels of occludin were only partially
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altered following siRNA and shRNA treatment. Further suppression of
occludin may have altered both barrier function and the integrity of
the tight junction complex, which may have given rise to differences in
results. However, it is also therefore interesting to see that only a partial

reduction of occludin has profound effects on transmigration of 1. gondis.

5.4 Conclusions

Attempts to generate occludin-reduced cells were partially successful but
further optimisation is required. Nevertheless, results from these experi-
ments suggest that delivery of siRNA by transfection reagents is the best
method for reducing occludin expression in m-I1C.s cells. In differenti-
ated and polarised m-1C.5 cells, the use of siRNA to target occludin did
not appear to affect barrier resistance or permeability implying that oc-
cludin does not play a key role in maintaining these functions, although
the reduction of occludin did impact on the number of transmigrating
parasites. However, as the suppression was not 100% effective, it cannot
be concluded that occludin has no effect on barrier function. Previous
evidence demonstrating co-localisation between occludin and 7. gondis,
and the findings presented in this chapter, suggest that T. gondii may
harness occludin to facilitate efficient transmigration between epithelial
cells. It could be predicted that the over-expression of occludin would
increase the numbers of basally located parasites, and it would be inter-
esting to determine the effects of reduced and over-expressed occludin on

bradyzoite transmigration levels.
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Chapter 6

Occludin interacting proteins within

m-I1C.» cells and T. gondii

6.1 Introduction

Although it is accepted that T. gondii can infect many different cells,
molecules on both the parasite surface and host cell surface involved
during the process of infection remain to be identified |[Lei et al., 2005].
However, they are considered to be present on a wide range of cells and be
relatively conserved and abundant proteins, to allow infection of any cell
type [Furtado et al.,[1992bja; Dubey et al., 1998} Lei et al., [2005|. To date,
the following receptors and ligands have been recognised in this process:
in human foreskin fibroblasts and Chinese hamster ovary cells, laminin
on 1. gondii was found to mediate binding to the 1 integrin receptor,
o6B1 [Furtado et al., 1992b|; the interactions of microneme proteins to
host cells during infection is thought to be important as the surface-
associated microneme proteins MIC2 and MIC3 from 7. gondii can bind
to cells |Carruthers et al., 1999; |Garcia-Réguet et al., 2000; [Huynh et
al [2003]; and Barragan et al. 2005, demonstrated that binding of MIC2
could occur through ICAM-1 in MDCK cells [Barragan et al.l 2005].

The tachyzoite surface contains glycosylphosphatidylinositol (GPI)
4-anchored proteins |Lekutis et al., |2001] and Debierre-Grockiego et al.
2010, provided evidence that galactin-3, which is upregulated during 7.
gondii infection |Bernardes et al., 2006], binds to GPI anchored proteins
[Debierre-Grockiego et al. 2010|. Lectins on the surface of the parasite
have also been implicated in host cell binding, and have been found to
interact with sulfated polysaccharides and sulfated proteoglycans that
are commonly found on the surface of cells and are considered important
for parasite interactions |Ortega-Barria and Boothroyd, [1999; Lourenco
et al., 2001} (Carruthers et al.| [2000].
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Binding partners of occludin that have been identified include ZO-1,
Z0-2 and ZO-3 [Furuse et al., [1994; Kale et al.,|2003; |Li et al., [2005]. Ad-
ditionally, proteins that co-localise with occludin at the membrane, such
as Vesicle-Associated Membrane Protein of 33kDa (VAP-33), Junction-
Enriched and Associated Protein (JEAP) and the Coxsackie Adenov-
irus Receptor-like Membrane protein (CLMP), have also been described
|[Lapierre et al., [1999; Nishimura et al., [2002; Raschperger et al.l [2004].
Other interacting proteins of occludin include kinases and phosphatases
such as Phosphatidylinositol 3-Kinase, atypical Protein Kinase C, Casein
Kinase le, Casein Kinase 2, Extracellular signal-Related Kinase (ERK),
Protein Phosphatase 2A and Protein Phosphatase 1 |[Basuroy et al., 2006;
Du et al., 2010; [Seth et al.l 2007; |Clarke et al.l 2000; |McKenzie et al.
2006 [Andreeva et al., 2001].

In this thesis, evidence has been presented to show that occludin may
be involved during the process of T. gondii transmigration of epithelial
cells. Not only was the cellular expression of occludin altered, but para-
site co-localisation suggests that 7. gondiz may bind occludin, which
could also play a role in the formation and maintenance of the para-
sitophorous vacuole. Therefore, recombinant occludin fragments were
generated to test T. gondii interactions and infected cell lysates were

analysed for the identification of interacting molecules.

6.2 Results

6.2.1 T. gonduz binds to the extracellular loops of occludin

Using a flow cytometry based assay, recombinant occludin fragments were

generated and incubated with parasites to confirm binding.

6.2.1.1 Generation of recombinant occludin fragments

As the extracellular loops (ECLs) of occludin bind each other on adjacent
cells (JGorodeski, 2006; McCaffrey et al., 2008|), it was thought that this
part of the molecule is most likely to be in contact and therefore interact
with T. gondii. Therefore, a fragment was generated that included the
sequence from ECL1 to the end of the ECL2 (referred to as ECL1-ECL2).

The DNA sequence was amplified from FLAG-tagged occludin within
a pBABEpuro plasmid vector, using the pECL1F and pECL2R primers
(see Appendix @ DNA was inserted into a pET3a plasmid vector and

recombinant protein produced from large scale cultures of BL21 E.col:.
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Figure 6.1: Recombinant ECL1-ECL2 was found in the cytoplasm of bac-
terial cultures. Induced or non-induced bacteria cultures, using 4mM IPTG were
lysed and analysed for the production of recombinant protein on coomassie-stained
gels. The lysates were separated into cytoplasmic fractions (C) and membrane-
associated and inclusion body fractions (M/I), with (4) or without (-) IPTG in-
duction.

Recombinant ECL1-ECL2 was highly expressed in the cytoplasmic
fraction from BL21 E.coli lysates (Figure . Protein was also present
in the membrane-associated and inclusion body fraction in the absence
of IPTG induction, although to a lesser extent compared to the cyto-
plasmic fraction. Therefore, the soluble fraction was used as a source of
recombinant protein.

After protein purification, recombinant fragments were immunoblot-
ted to confirm reactivity with anti-occludin antibodies recognising the
extracellular loops of occludin, specifically the ECL2 region. Recombin-
ant ECL1-ECL2 was 27kDa in size and possible dimerisation may have
occurred as protein bands were also found at 35kDa (Figure [6.2).

6.2.1.2 Binding assay with T. gondiz and recombinant ECL1-
ECL2

To test whether or not ECL1-ECL2 and 7. gondii interact, a binding
experiment was performed. Using a flow cytometry based assay, para-
sites fixed with 2% PFA were incubated with recombinant protein and
fluorescently-labelled secondary antibodies were added to detect parasite-
protein complexes. As controls, parasites were incubated with either pro-
tein or antibodies alone. Non-specific binding was reduced by adding 1%

BSA to the parasite suspension.
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Figure 6.2: Recombinant ECL1-ECL2. Purified recombinant protein was re-
solved using a 4 - 12% SDS-PAGE gel and either stained with Coommassie Brilliant
Blue (left) or immunoblotted and probed with an anti-occludin antibody that recog-
nises the extracellular loops of occludin (right). The monomeric protein was detect-
able at 27kDa (arrow). Potential dimers were also detected at 35kDa, and possibly a
degraded, cleaved or partial-protein product at 15kDa. The protein molecular marker
is shown on the left hand side.
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Figure 6.3: T. gondii binds to the extracellular loops of occludin. Ap-
proximately 5.5 x 10° fixed parasites were incubated in PBS supplemented with 1%
BSA for 15 minutes, before adding recombinant ECL1-ECL2 fragments (8ug/ml).
An anti-occludin antibody was added to the mixture, followed by secondary antibody
(Quantum dots conjugated to Alexa Fluor 655nm, Invitrogen). After one minute, and
two minutes, samples were acquired by flow cytometry (A). The increase in fluores-
cence detected upon ECL1-ECL2 addition is depicted in (B). Controls showed that
the shift in fluorescence was due to binding of the protein and not to the antibodies
(C). Data was corrected for background fluorescence of Quantum dots Alexa Fluor
655nm. This experiment was performed and analysed by Roy Bongaerts (Institute of
Food Research, Norwich, UK).
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The presence of recombinant ECL1-ECL2 occludin increased fluores-
cence following incubation with an antibody-complex (Figure . After
two minutes of incubation, the specific fluorescent signal increased fur-
ther, consistent with a continuation of binding events. A fluorescent
signal was not observed with 7. gondii in the absence of protein nor
with incubation with antibodies alone. Due to technical reasons, it was
only possible to perform this experiment once in the time available. Al-
though only a preliminary experiment, the data suggests that T. gondii
can bind to the extracellular loops of occludin. Separate ECL-1 and ECL-
2 occludin fragments have been generated and will be used to determine

which extracellular loop governs the binding to 7. gondis.

6.2.2 Immunoprecipitation

To identify molecules that bind and interact with occludin during 7.
gondii infection, immunoprecipitations (IP) and bioinformatic searches

were performed.

6.2.2.1 Immunoprecipitation following 7. gondi: infection

To find potential cellular and parasite-derived binding partners of oc-
cludin, anti-occludin IPs of 7. gondii infected (2 hours and 6 hours) and
non-infected cells were performed. Protein bands of between 55 - 230kDa
were extracted from SYPRO Ruby stained gels (Figure, and prepared
for sequence identification by mass spectrometry analysis (performed by
Francis Mulholland, Institute of Food Research, Norwich, UK).

The molecules listed from MASCOT software following mass spectro-
metry analysis were condensed according to the following criteria: only
molecules that had two or more peptide matches and molecules over the
95% probability for significance value were included (indicated by the
peptide score and calculated within MASCOT) and peptides which re-
cognised heavy and light chain regions of antibodies were ignored as these
most likely came from the antibody used for the IP.

Molecules were categorised into those associated with the cytoskel-
eton such as myosin, actin and keratin and microtubule-related proteins
such as tubulin; protein regulators for example kinases, ubiquitination
proteins, chaperones, protein folding-associated molecules; general pro-
teins involved in cell metabolism such as ATPases, glycolysis-associated
proteins; molecules involved in stress responses like heat shock proteins

and protein disulphide isomerases; T. gondii derived proteins and un-
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Figure 6.4: Protein identification following an occludin IP from infected
cell lysates. Occludin was precipitated from cell lysates that were non-infected (N)
or infected with T. gondii (for 2 or 6 hours), using an anti-occludin antibody and
resolved by SDS-PAGE. Precipitate containing antibody alone (no cell lysates) was
used as a control (Ab). The large SYPRO Ruby stained band at 55kDa included
the antibody and the band at 70kDa contained occludin. Other protein bands were
extracted for identification of possible binding partners (arrows). The experiment was
repeated twice.
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characterised proteins (those without database annotations).

Within these criteria, molecules were then listed according to how
significant they were in terms of peptide coverage over the entire se-
quence and prevalence within the sample. The higher the score, the more
likely the identified molecule was a true result. A selection of molecules
that were identified are shown in Table with the full list provided
in Appendix Molecules associated with ATP, glycolysis and general
cell metabolism have not been included for analysis within this chapter.
Table lists molecules from highest to lowest numbers of peptide hits
within functional categories and length of infection.

Molecules in Table are of interest for further study as functions
consistent with occludin regulation was found. Although not all peptides
were checked against the T. gondii genome, it was assumed that the
majority of molecules listed were derived from murine cells. However, six
T. gondii derived proteins were identified from cells infected for 2 hours,
which are considered as key findings. These were a protein disulphide
isomerase (TGME49 011680), Rhoptry protein 18 (TGME49 005250),
a subtilase family protein (TGME49_004050), a CELF protein (named
after CUG-binding protein and Embryonically lethal abnormal vision
(ELAV)-type RNA binding protein 3 [Ladd et al. [2001]) (TGME49
121500), HSP70 (TGME49 051780) and HSP90 (TGME49 08830).

The implications of specific molecules on occludin regulation during
infection by T. gondii, are discussed in Section

6.2.3 Bioinformatics
6.2.3.1 Potential binding partners of occludin from T. gondi:

Using a complementary approach to find potential molecules that interact
with occludin, the sequence of murine occludin was BLASTed against
the T. gondii genome [[| This database is designed such that sequence
homology to a molecule is initially searched within the ME49 strain of
T. gondii, and if none are found, the GT1 and VEG strains are searched.
For every profile within the database, homologues are given for the other
strains, but are generally not reported in this thesis.

As T. gondii was shown to bind to the extracellular loops of occludin,
it was assumed that the interacting protein on the parasite surface may

possess a degree of sequence similarity. Therefore, the occludin sequence
from ECL1-ECL2 was BLASTed. This search revealed seven T. gondii

thttp:/ /www.toxodb.org
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Function | Accession Annotation Infection | Peptide | Protein |Pred. Size|Obs. Size
Number (hours) hits Score (kDa) (kDa)
CM Q4FJZ2 Karyopherin (Importin) a 6 0 2 66 60.31 70
CM Q1PG84 pBK1 2 3 92 52.25 70
CM Q3U517 Apoptosis inhibitor 5 2 2 45 57.09 70
CM D3Z0M9 Dead box helicase family 6 2 41 95.78 120
CR P63038 60 kDa heat shock protein, mitochondrial 0 3 138 61.09 70
CR P27773 Protein disulfide-isomerase A3 0 3 47 57.10 70
CR P63017 Heat shock 70 kDa protein 2 10 220 71.06 70
CR B6KDQ4 Heat shock protein 70 2 10 213 73.29 70
CR B6K8NO Heat shock protein 70 2 8 185 73.38 70
CR A2AUF6 Heat shock 70kD protein 5 (Glucose-regulated protein) 2 6 200 72.49 70
CR P27773 Protein disulfide-isomerase A3 2 6 181 57.10 70
CR P63038 60 kDa heat shock protein, mitochondrial 2 4 169 61.09 70
CR Q71LX8 Heat shock protein 90 a 2 3 55 83.57 100
CR Q71LX8 Heat shock protein 90 a 6 15 284 83.57 100
CR P07901 Heat shock protein 90 a 6 14 243 85.13 100
CR A4QPD6 Phospholipase A2, activating protein 6 4 112 88.59 100
CR BE6KKAS Heat shock protein 90 6 3 76 82.28 100
CY B6KJIM2 Membrane skeletal protein IMC1 2 7 87 70.35 100
CY B6KM69 Myosin A 2 3 44 93.89 100
CcY Q62418 Drebrin-like protein 2 2 76 48.96 55
CY B2RRX1 B actin 2 2 67 42.05 70
CY B2RRX1 B actin 2 2 67 42.05 55
CY Q3TWG5 Dynein cytoplasmic 1 light intermediate chain 1 2 2 65 56.86 70
CY Q8VvDD5 Myosin-9 Cellular myosin heavy chain, type A 6 22 697 227.43 230
CY Q8VvDD5 Myosin-9 Cellular myosin heavy chain, type A 6 21 544 227.43 200
CY Q7TPR4 a-actinin-1 6 19 561 103.63 120
CcY P57780 a-actinin-4 F-actin cross-linking protein 6 15 385 105.37 120
CcY Q8VDD5 Myosin-9 Cellular myosin heavy chain, type A 6 9 265 227.43 120
CcY P21271 Myosin-Vb 6 7 180 212.09 230
CcY Q3UH59 Myosin, heavy polypeptide 10, non-muscle 6 6 125 23433 200
CcY Q8VvDD5 Myosin-9 Cellular myosin heavy chain, type A 6 5 128 227.43 100
CY B8JKO3 Myosin Va 6 2 92 216.70 230
CY B2RRX1 B actin 6 2 84 42.05 100
CY B2RRX1 B actin 6 2 73 42.05 120
CY B1AQZ2 Kinesin family member 3A 6 2 61 82.98 100
CY B2RRE2 Myosin 19 Protein 6 2 51 233.02 200
PR P80315 T-complex protein 1 subunit & 0 3 62 58.54 70
PR B1AT36 Proteasome (Prosome, macropain) 26S subunit, non-ATPase 0 2 68 50.94 55
PR 055222 Integrin-linked protein kinase 0 2 55 51.85 55
PR Q542X7 Chaperonin subunit 2 () 2 5 159 57.78 55
PR P11983 T-complex protein 1 subunit a 2 5 157 60.87 70
PR Q3TII3 Elongation factor 1-a 2 4 175 50.41 55
PR QIWVM1 Rac GTPase-activating protein 1 2 4 145 70.86 70
PR Q3TIIO T-complex protein 1 subunit & 2 4 17 58.56 70
PR Q5NCU1 Ras-GTPase-activating protein SH3-domain binding protein 1 2 4 50 51.85 70
PR P50396 Rab GDP dissociation inhibitor a 2 3 53 51.06 55
PR B6KJR5 Ubiquitin associated domain-containing protein 2 2 121 208.30 100
PR Q9JMA1 Ubiquitin carboxyl-terminal hydrolase 14 2 2 88 56.42 70
PR Q542X7 Chaperonin subunit 2 (8) 2 2 71 57.78 55
PR A2BH28 Ubiquitin-like 1 (Sentrin) activating enzyme E1B 2 2 48 71.21 100
PR Q3TML6 Eukaryotic translation initiation factor 2, subunit 3 2 2 42 51.60 55
PR B2MWM9 Calreticulin 2 2 33 48.14 55
PR Q5SXR6 Clathrin, heavy polypeptide (Hc) 6 24 784 193.63 200
PR Q6PEEG Adaptor protein complex AP-2, a 2 subunit 6 5 115 104.85 120
PR Q3T9Y4 Coatomer protein complex, subunit 8 1 6 5 102 108.14 120
PR Q5SXR6 Clathrin, heavy polypeptide (Hc) 6 4 120 193.63 120
PR A2BH28 Ubiquitin-like 1 (Sentrin) activating enzyme E1B 6 3 116 71.21 100
PR B1ASH6 Rho guanine nucleotide exchange factor (GEF) 16 6 3 108 80.67 100
PR Q8CIJ3 Eukaryotic translation initiation factor 3 subunit B 6 3 71 110.11 120
PR B1AXN9 Ribosomal protein S6 kinase polypeptide 3 6 2 88 80.96 100
PR 055029 Coatomer subunit B 6 2 55 103.24 120
PR Q5SWR1 Adaptor-related protein complex 2, B 1 subunit 6 2 40 106.57 120
PR A5XDA7 ROCK?2 splice variant 6 2 37 167.80 200
TG B6KKA5 Heat shock protein 90 2 6 156 82.28 100
TG B6KHU4 Heat shock protein 70 2 6 139 78.54 70
TG B9PUS53 Subtilase family protein 2 4 82 85.79 100
TG Q2PAY2 Rhoptry protein 18 2 3 92 62.70 55
TG B9Q331 CELF family protein 2 2 36 50.94 55
TG BBKTXO Protein disulfide isomerase 2 2 33 52.80 55

Table 6.1: Selected proteins identified by Mass Spectrometry following
IPs. Non-infected and infected cell lysates were precipitated for occludin and re-
solved by gel electrophoresis. Murine and T. gondii databases were searched by Alex
Jones (Sainsbury Laboratory, Norwich, UK) using a peptide mass tolerance of 15ppm
and a fragment mass tolerance of 0.6Da within MASCOT (Matrix Science) software.
Numbers of peptide matches are shown along with peptide scores (only significant
proteins are shown, and scores indicate logarithmic probabilities towards identity
or extensive homology to known proteins). Predicted sizes are based on database
searches and observed sizes represent the molecular weight according to the SYPRO
Ruby stained gel. CM - cell metabolism, CR - cell response proteins, CY - cytoskeletal
and microtubule-related, PR - protein regulators, TG - T. gondii derived. Proteins
include data obtained from two independent IPs.
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proteins (Table [6.2). As it is currently unknown if both extracellular
loops are involved in binding with 7. gondii, separate BLAST searches
against ECL1 and ECL2 were performed. These revealed five proteins
for each ECL, all of which were different from those found from the
combined ECL1-ECL2 search. It was concluded in Chapter 4 that con-
ditioned parasite media containing secreted proteins had no effect on
occludin and that live parasites were required to induce effects on oc-
cludin. This is consistent with a transmembrane-domain containing mo-
lecule being involved in binding to occludin. Of the 17 proteins revealed
from these searches, 8 were transmembrane domain-containing proteins.
These proteins were then aligned with occludin (Table .

Multiple products from 7. gondii may interact with occludin, espe-
cially following infection where the C-terminus of occludin would also
be accessible to the parasite and its secreted products. Therefore, fur-
ther BLAST searches were performed, this time against the C-terminus,
as well as the full length sequence of murine occludin. This search re-
vealed 19 proteins of which five aligned to residues within ECL2, and one
within the intracellular loop (Table . Eight proteins were annotated
as conserved hypothetical proteins and were therefore grouped together.

On average, T. gondii proteins against full length occludin were ap-
proximately 17% identical and 33% similar to occludin. These sim-
ilarities were mainly within the C-terminus of occludin, although the
zinc finger FYVE domain-containing protein, myosin F (TgMyoF), the
Hsc70/Hsp90-organising protein and the dense granule protein 5 pre-
cursor aligned to residues within ECL2 (Figure [6.3). The DEAD/DEAH
box helicase protein aligned to residues within the whole sequence length
of occludin and was also identified from the IPs. This suggests that the
criteria used to search for potential interacting partners using bioinform-
atics were valid.

BLASTing T. gondii against ECL1 resulted in five T. gondii proteins
that aligned with a higher sequence identity and similarity compared
to the other searches. The alignments were concentrated around, but
not exclusive to, the repetitive glycine-tyrosine residues of occludin. For
example, one protein aligned with residues WDR-YG at the beginning
of ECL1. This protein also aligned with ECL2 sequences (YLY-Y) which
is a highly conserved sequence in mammals, and Blaschuk et al. 2002,
have described the motif as an occludin cell-adhesion recognition (CAR)
sequence [Blaschuk et al., 2002].

BLASTing with ECL2 highlighted a vesicle-associated membrane pro-

174



“Ky1reqiuats 10 A919Uept aduenbos [v409 Jo adejuadiod e se pajusserder are (£3wiqoydoIpAy 10 o31eyHd
Buroepe JMOYIIM SOSURYD PIOR OUTUWIR O} 9IOTM) SONPISOI JR[IWIS PUR SONPISAI [Rd1IUP] (Y UL (AW IN) 1SoM TRINIS[OW Y} PUR UMOT[S dIR SPIR OUIUR JO Ioqunu
o1} Jo smilog ul sutejord jo y)dueT "(QINI) POISI ode SUrRWOop JO SIOQUINU pue ‘pojy3IysIy oIe SUIRWOp JURIUIDWSURI) OARY Jel) SUIJOI] ‘OSIMIOYIO Poe)s
sso[un - N, UM popodeld are surejoid [[y -eseqejep oy} ul pepraoid 9so1[) 0) SUIPIOIIR 9IoM SUOIJRIOUUR UDJOI] ‘SonFo[ouioy upuoh *J I10] PoyDIeds olom
9[NO9[OW UTPNII0 91} JO Sired JULIPIP JSUTeSR SOYIIROG *SO[NIS[OW GE PO[BIASI SONF0O[OUIOY UIPN[ID0 10§ swiouad 1puob -7, oyl SurLSvId :2°9 °2[qeL

137 9¢ 8'€T 91T z uiaj04d [ed13y30dAy paniasuod 09500 T19 Z103+1103

43 44 6€T ozt 0 uiajoud [ea3ayiodAy paniasuod 0STELO TLOD 103+17103

1€ 0z S'vT 9€T € T 3uNngns 3se30npaJ apixods ) uiwen 09.6%0 Z103+1103

8¢ 12 S'8TT | 90TT 0 uia30.d |ea3ayiodAy pansasuod 0TTTEO 2103+17103

€€ 81 SLT 8S¢ v uaj04d [ea133y30dAY panIasuod 06€020 Z103+1103

8€ 0z 9'0€T | 8LIT (43 uia30.4d Buuiejuod urewop Ajjwey paydied 0£8060 2103+1103

8¢ 87 0'€er | 8vie 0 aseunj-g dleydsoyd-p-|jousouljApiieydsoyd 0v€LZ0 T1D 2123+1103

S€ 6C ST 9€T 0 [eA YNY} 0T0£60 [4F]

v 91 0's¢ 12¢ € (£dWVA) £- uia101d BueIqWIBW PaleIIOSSE B|IISIA 0STS20 93N [4 0}

€€ 12 €08 1372 0 asesajsuesy JAuduados yNYI 018880 TL9 [4oF]

9€ 8T ¥'ST (444 4 (TY¥3Y) T uA104d |EA3LIIBL WINNJ13B djwse|dopud 00€T60 [4 0}

6€ 9¢ v'LT LST 0 uia30.d |ean3aylodAy 020960 2103

T 44 6°LT 1414 0 ¥ 9dA) eydje 1ungns swoseajoud 00S6€0 1103

w LE €65 14 0 w1040s| 3se1dyIuAs YNy} |AuejejAusyd 079790 TLD 1103

Ly w 0'st (0]34 0 €V u19101d0o3jaNUOqL JES|INU SNOBUSS0IRIBY 0T9%90 1103

LY LE 0'€T 91T 4 uaj04d [ea133Y30dAY panIasuod 0SS9TT 103

142 6€ 6'€T 91T (4 uaj0.d [eanayiodAy paniasuod 065180 1103

62 LT 6'9ST | vS¥T 0 asedl|ay xoq Hy3a/aviaa 025670 T19 ua304d d]0YMm

9t ST ¥'91¢ €561 0 ua304d (J0ANSL) 4 uisoAw 0£88L0 snuIwWIR} D - 2103

[43 81 €€9 59§ 0 urajo.d Bulisiuesio-06dsH/0LISH 0zTeso snuIwIS} J - 2103

€€ 8T 765 8€S 0 u1930.d 3ulUIEIUOI UBWOP JAAS 498Ul duIZ 0TZT¥0 93IA| snuiwiai D - 2103

1€ LT 0'€tl (014 0 Josunda.d g uie3o.d 3|nue.s asuap 0£8L€0 TLO|  shulwild-73|

43 6T L1T 16T 0 ura104d 32e4NS 910201 W 0L66£0 snuiwJe} )

o€ 9T €8T 0ov9T 0 c_wuo\_n uoI11eSUIPUOD BWOSOWO0JYI 0LTTEO snuiwligl D

514 91 1'60T 786 0 urewop anAjeled ‘asejeydsoyd utsroud Ajdlyioads jenp 005120 snuIwJ} )

43 LT 1°09S L18Y 0 urajoud uoisnpul adAy v eain “4eadad utaioud 088ZT0 snuIWI} )

TE 9T 968 18 0 c_quLQ >_n..twmmm awososdnu 090950 snuiwial )

0€~ ST~ - - 0 sua10.4d |eanaylodAy pansasuod Auew snulwua} )
(%) Ayepiwis | (%) Avnusp) eqy ee ASojowoy

9ouanbag ouanbag MIN y8ual | anl ula10.4d Jo uoneloUUY Jaquinu g| uipnP20

175



tein similar to a protein identified from immunoprecipitates as this pro-
tein has been annotated as VAMP in the VEG strain, but a disulphide
isomerase within GT1 strain.

The putative vitamin K epoxide reductase subunit 1 protein was the
only protein that aligned with the two cysteine residues within ECL2.
This protein could interact with occludin through disulphide bonds.

Although there was not enough time or resources to investigate these
findings in further details, the results from the searches offer a starting

point for future work.

6.3 Discussion

Results presented in this thesis have illustrated that T. gondii appears
to co-localise with occludin. In this chapter, evidence has been provided
to confirm these interactions by illustrating binding to the extracellular
loops of occludin.

To search for occludin binding partners two complementary approaches
were used which revealed a number of potential candidates molecules that

were both cellular and parasite derived.

6.3.1 Immunoprecipitation

To identify cellular proteins that might interact with and regulate oc-
cludin, IPs were performed to both concentrate the protein and detect
occludin-protein complexes. Gel electrophoresis of cell lysates revealed
a number of protein species ranging from 50 - 230kDa. Although oc-
cludin was detected within a 70kDa species, it was not present in large
quantities, although previous studies have shown that occludin does not
efficiently stain with SYPRO Ruby which may explain its relatively low
appearance within the analysis [Li et al., [2005]. However, as samples
were immunoblotted in parallel to those sent for mass spectrometry ana-
lysis, confirmation that the IP extracted occludin from the lysates was
provided. Future experiments would involve entire gel lane digestion,
or a sample solution digest using multi-dimensional protein identifica-
tion technology (MudPIT) for Mass Spectrometry analysis. To rule out
non-specific binding of proteins, an immunoprecipitation of cell lysates
and magnetic beads, in the absence of anti-occludin antibody, should be

included in future experiments.
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6.3.1.1 Products from T. gondi:

Following two hours of infection, six T. gondii proteins were detected
from the immunoprecipitates. These were a subtilase family protein,
CELF protein, a disulphide isomerase, rhoptry protein 18 (ROP18), and

two heat shock proteins.

Subtilase family protein Subtilases are serine proteases important
for protein-processing during infection. TgSUB1 is a GPI-anchored pro-
tein found in the micronemes that localises at the parasite surface after
microneme secretion, whereas TgSUB2 is a rhoptry protein maturase
[Lagal et al.l 2010; Miller et al., 2003]. The presence of this protein in
the lysates suggests that a serine protease subtilase complex may inter-
act with occludin. This interaction may lead to degradation of occludin,
such as that observed in Figure 4.10, and could be caused by a molecule

such as a serine protease subtilase [Wachtel et al., [1999).

CELF protein CELF proteins contain RNA recognition-motif domains
that are involved in the regulation of alternative splicing, but little is
known about T. gondii derived CELF |Ladd et al., 2001].

Disulphide isomerases Protein disulphide isomerases catalyse, re-
duce and isomerise disulphide bonds between cysteine residues during
protein folding. The formation of disulphide bonds via cysteine residues
has been reported to play a role in the invasion of epithelial cells by other
pathogens |Davis et al.,[2002|. In addition to this role, studies have shown
that disulphide isomerases may represent important cell-parasite interac-
tions during infection by Neospora caninum and have been observed to be
present on cell surfaces [Naguleswaran et al.. [2005; Turano et al., 2002].
Antibodies to T. gondii specific disulphide isomerase have been detected
in human tears, revealing a role in the immune response to the pathogen
[Meek et al.,|2002a,b|. This could be an important molecule for affecting
occludin during T. gondii invasion and further investigations into the in-
teractions between occludin and disulphide isomerase are required. This
could be achieved using recombinant occludin fragments to perform IPs
with lysates from T. gondii. Fluorescent microscopy could also confirm
the expression profile of disulphide isomerases during infection to see if

co-localisation occurs with occludin.
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ROP18 Occludin is a protein that can be hyperphosphorylated on ser-
ine/threonine residues [Wong, [1997]. ROP18 is present on the surface
of the parasitophorous vacuole and has serine/threonine kinase activity
[Hajj et al., [2007]. A primary function of ROP18 is to increase the mul-
tiplication rate of T. gondii once invasion has taken place and therefore
may be an important virulence factor [Saeij et al., 2006; Taylor et al.,
2006). As occludin was shown to remain associated with T. gondii up to
24 hours after infection (Figure , ROP18 may bind to occludin as
part of the parasite moving junction, and continue to interact with it after
the parasitophorous vacuole has formed. Confocal microscopy could con-
firm this and phosphorylation of occludin by recombinant ROP18 would

confirm whether or not ROP18 plays a role in the regulation of occludin.

Heat shock proteins Heat shock proteins 70 (HSP70) and HSP90
proteins from the immunoprecipitates were derived from both the cells
and the parasites. HSP70 from 7. gondii is an anti-apoptotic chaperone
that is considered to be a danger signal, inhibiting the production of nitric
oxide from macrophages and increasing parasite replication (|[Mun et al.,
2000; Hwang et al.| 2010]), while HSP90 is important for invasion and
intracellular proliferation of T. gondii [Ahn et al., 2003|. Both HSP70
and HSP90 are involved in stage conversion [Echeverria et al., 20055 Weiss
et al., |1998|. There presence suggests that occludin interactions with 7.

gondii may play a role in parasite survival.

6.3.1.2 Other molecules

Kinases Within the immunoprecipitates, integrin-linked protein kinase
(non-infected cells), ribosomal protein S6 kinase and Rho-associated,
coiled-coil containing protein kinase 2 (ROCK2) were detected. Integ-
rin protein kinases are serine/threonine kinases involved in regulating
cell adhesion to the extracellular matrix [Wu et al., 1998]. Ribosomal
protein S6 kinase has a wide range of functions including cell cycle reg-
ulation, regulating gene and protein expression, phosphorylating small
GTPases and acting as a substrate for ERK |Frodin and Gammeltoft,
1999]. ERK has been shown to bind to the C-terminus of occludin, pre-
venting its disruption within the tight junction and ribosomal S6 kinase
may therefore be part of a complex which affects the function of occludin
following stress signals [Basuroy et al., 2006|. ROCK2 can regulate the
activity of ribosomal S6 kinase, phosphorylate myosin light chain kinase,
and bind to RhoA and RhoC [Pelosi et al., [2007; Riento and Ridley,

179



2003]. This suggests that through binding to RhoA, ROCK2 may influ-
ence the phosphorylation state of occludin. Furthermore, ROCK2 leads
to the suppression of Racl activation that induces lamellipodia forma-
tion and cell migration, in which occludin also plays a role [Marchiando
et al., [2011]. These results indicate that ROCK2 may be involved in an
occludin protein complex which following infection, may be upregulated
to support plasma membrane changes to accommodate the formation of

the moving junction.

Cytoskeletal molecules Other proteins which are known to regulate
tight junctions and interact with occludin include the Rho guanine nucle-
otide exchange factor 16 and Rac/Rab/Ras GTPases that were also iden-
tified from the IPs [Jou et al., [1998]. Associated with the cytoskeleton,
many myosins, actins and keratins were found as well as microtubule and
microfilament derived proteins such as tubulin, debrin and dynein. This
provides evidence to suggest that an increased level of occludin may be
present at the tight junction complex and therefore associated with the

cytoskeleton following infection.

Cellular response molecules Anti-apoptotic signal pathways may be
activated by T. gondii during infection and upregulate proteins such as
anti-apoptotic inhibitor 5 (Api5), a molecule of which was identified from
the IPs [Morris et al., [2006).

Protein disulphide isomerases can be found on the cell surface as well
as in the endoplasmic reticulum where they assist in protein synthesis
and correct folding [Mandel et al., [1993; Gilbert, |1997]. Inside the en-
doplasmic reticulum, protein disulphide isomerases act as chaperones to
TAP (transporter associated with antigen processing)-translocated pep-
tides that bind to MHC-1 molecules |[Lammert et al. 1997]. On the
cell surface, they can contribute to thiol redox stability, influencing the
ability of nitric oxide to diffuse into a cell [Zai et al.l [1999]. Thiol di-
sulphide exchange within occludin oligomers has been documented and
therefore could influence occludin dynamics and movement within the
tight junction complex |[McCaffrey et al., 2008|.

HSP70 is also involved in antigen presentation in immune cells, trans-
porting MHC class 1 associated peptides to the surface for T cell recogni-
tion |Castelli et al.; 2001]. This could indicate that occludin has a role in
antigen recognition pathways perhaps by stabilising interactions between

the plasma membrane and the cytoskeleton. Furthermore, the induction
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of heat stress has previously been found to increase the levels of occludin
expression both at the mRNA and the protein level and are thought to
protect against breaches within the intestinal barrier |[Dokladny et al.,
2008|]. This would provide a mechanism by which T. gondii crosses the
epithelial barrier without affecting its integrity, suggesting that upreg-
ulation of occludin may function to buffer transient changes within the
paracellular pathway. As dendritic cells, which express occludin |[Res-
cigno et al.; [2001], can pass freely between cells moving from a basal to
apical direction, it could be that 7. gondii has developed a similar tech-
nique to move from the apical to the basal domain of cells, and activates

pathways such as heat stress to achieve this strategy.

Recycling molecules A number of recycling, endocytic-related and
degradation-mediated molecules were found in the immunoprecipitates,
indicating occludin turnover has been altered during infection by T.
gondii. Examples of molecules found include chaperones and protein
assembly molecules such as HSP70 and HSP90, and actinin 4 which is
known to recruit occludin to the tight junction complex via MICAL-L2
[Nakatsuji et al.,2008|. This implies that new or recycled occludin could
be transported to the membrane during infection. In addition, clath-
rin, coatomer subunits, adaptor protein complexes and phospholipase A2
were also detected from the precipitates which are involved in endocyt-
osis and recycling of proteins [de Figueiredo et al., [1998|. Consistent with
these findings, the presence of a degraded species of occludin was found
in immunoblots of infected cells (Figure could have been caused
by ubiquitination, possible from ubiquitin-like 1 enzymes that were also
found in the IPs.

6.3.2 T. gondi binds to occludin

Initial contact with occludin is likely to be via the extracellular loops and
as confirmed in this chapter, 7. gondii can bind to this region of occludin.
Following attachment and interaction with occludin, other proteins may
be secreted from the parasite such as those found in the immunoprecip-
itates. However, T. gondii may also be acting on occludin via the in-
tracellular N- and C-termini. In addition to the extracellular domains,
BLAST searches against the C-terminus of occludin were also performed
and revealed a dual specificity protein phosphatase and dense granule

protein 5, which may regulate occludin once invasion has occurred.
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6.3.3 Bioinformatics

To limit the search for T. gondii derived molecules that could potentially
bind to occludin, a bioinformatics approach was used.

The occludin sequence is most conserved within the coiled-coil region
of the C-terminus and extracellular loop 2 [Ando-Akatsuka et al., 1996].
Occludin can form dimers and oligomers both at the C-terminus and the
extracellular loops, via disulphide bonds generated by cysteine residues
[McCaffrey et al., 2007, 2008; Blasig et al. 2006; Nusrat et al., 2000,
2005; Ttallie and Anderson, 1997]. Therefore an assumption was made to
suggest that pathogen proteins may have similar residue sequences and
consequently a similar structure to that of occludin for binding to occur.

The structure of occludin has only been described within the distal
part of the C-terminus and a predicted structure for ECL2 can be made
using software such as ESyPred3D |[Li et al.l [2005]. Within the T gondii
genome there are many uncharacterised proteins of unknown structures.
For these reasons, the analyses of potential binding candidate proteins

was based on sequence similarity alone.

6.3.3.1 Homology to full length occludin

Searching the genome for proteins that aligned with full length occludin
revealed a T. gondii nucleosome assembly protein (NAP), a chromosome
condensation protein and an Hsc70/HSP90 organising protein which acts
as a chaperone for other proteins [Echeverria et al., 2010]. NAP is highly
conserved across species and is known to bind histones during nucle-
osome assembly, regulates transcription, regulates the cell cycle by con-
trolling mitotic events, and interacts with the importin family protein
karyopherin [Altman and Kellogg, 1997; |Shikama et al., 2000; Miyaj]i-
Yamaguchi et al., [2003].

Also identified was an M protein repeat, viral A type inclusion protein
which is involved in parasite replication and virulence |Gubbels et al.,
2006|, and a dual specificity protein phosphatase that could potentially
alter the phosphorylation status of occludin. These proteins are plausible
candidates for interacting with occludin.

The FYVE zinc finger domain-containing protein showed similarity
to parts of the ECL2-C-terminus of occludin. FYVE domains bind to
zinc and are themselves rich in cysteine residues |Gillooly et al., 2001].
The function of mammalian FYVE proteins have not been described,

but they are thought to be involved in membrane trafficking to and from
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endosomes, signal transduction, regulation of the cytoskeleton, and some
phosphatases contain FYVE domains |Gillooly et al. [2001]. Therefore it
is feasible that in T. gondii, these proteins may alter cytoskeletal prop-
erties of the cell via interactions with occludin. As the FYVE proteins
express cysteine residues which are accessible for binding, this protein
may interact with the cysteine residues on ECL2 of occludin and com-
pete with the disulphide bonds between occludin on adjacent cells. This

could be tested by co-precipitating recombinant occludin and 7. gondii.

6.3.3.2 Homology to the extracellular loops of occludin

It was assumed that the proteins from T. gondii would initially interact
with external residues of occludin and would therefore be surface proteins
themselves. This was confirmed using a recombinant ECL1-ECL2 frag-
ment, T. gondii bound to the extracellular loops of occludin. Homology
to ECL1 was highest in all searches although alignment with cysteine
residues within ECL2 suggests that both loops may be important in the
binding of occludin to T. gondis.

A proteosome subunit o type 4 protein partially aligned with ECL1
and ECL2. The YLYHY motif has been described previously as a CAR
sequence whereby peptides blocked aggregation in occludin expressing
fibroblasts and increased permeability |Blaschuk et al.| [2002]. Addition-
ally, the protein aligns with the second cysteine residue on ECL2 which is
thought to be involved in occludin dimerisation [McCaffrey et al., 2008|,
providing further support that this protein may interact with occludin,
by possibly inducing endocytic recycling and /or degradation.

Vesicle-associated membrane protein (VAMP) aligned with ECL2.
VAP-33 has been shown to co-localise with occludin at the tight junction
complex and may play a role in the delivery of occludin to the mem-
brane [Lapierre et al.l [1999]. This protein is therefore a candidate for an
occludin-interacting protein and was found within the IPs from the VEG
strain. However, the equivalent protein within the GT1 strain is an-
notated as a disulphide isomerase (and in the ME49 strain is annotated
as a hypothetical protein). This is of particular interest as disulphide
isomerases from both T. gondii and cells were detected in IPs. This
lends further support to the validity of the criteria used to conduct the
bioinformatic searches.

One protein that aligned against sequences within ECL1-ECL2 pos-
sesses hedgehog receptor activity. Activation of the hedgehog pathway

leads to increased expression of the transcription factor Snail, another
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zinc finger domain containing protein [Li et al., 2006]. This is known to
decrease expression of claudin 1, occludin, ZO-1 and E-cadherin suggest-
ing that this is another feasible candidate molecule for interacting with
occludin [Ohkubo and Ozawa, [2004].

6.3.3.3 Transmembrane domain containing molecules from T'.

gondii that have homology to occludin

Having identified 17 proteins from 7. gondii against a BLAST of the
extracellular domains of occludin, the search was narrowed down to in-
clude only transmembrane domain-containing proteins. This identified
seven proteins: four conserved hypothetical proteins with either two or
four transmembrane domains; a patched family-containing protein; a re-
trieval endoplasmic reticulin 1 protein, and a putative vitamin K epoxide
reductase subunit 1 protein (VKERs1). VKERs] aligned to both of the
cysteines found in ECL2 as well as one cysteine residue in ECL1. VKER
reduces vitamin K after oxidation of glutamic acid, is involved in main-
taining an anti-oxidative state to promote cell survival and has a role in
angiogenesis [Westhofen et al., 2011;|Goodstadt and Ponting, 2004; (Wang
et al, 2005]. As T. gondiiis known to minimise the amount of oxidative
stress during infection, expression of an anti-oxidant such as VKER could
be a potential candidate protein for this pathway [Choi et al.,[2011]|. Four
cysteines and either a serine or threonine residue has been implicated as
the active site of this protein which acts by reducing disulphide bonds
[Goodstadt and Ponting, 2004]. The binding of cysteine residues on oc-
cludin dimers may therefore be disrupted by this reductase. This could
alter the functionality of occludin, as multiple domains of occludin have
various roles which alter its presence at the tight junction complex [Balda;
et al., 2000; Nusrat et al., |2005]. Again, co-IPs and binding assays with
recombinant proteins could be performed to confirm any interactions. It
is possible that this protein may possess other functions and properties
that have not yet been identified that could influence changes within

occludin.

6.3.4 Future work

The generation of separate ECL1 and ECL2 proteins would reveal which
ECL is responsible for T. gondii binding. A recombinant occludin C-
terminus fragment could also be used to look at cytoplasmic protein

interactions following incubation with 7. gondii. Further evidence for
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binding could involve the addition of recombinant occludin fragments
to cell media along with the parasites. This would show if competitive
inhibition between parasites and recombinant occludin prevents changes
in the distribution of cellular occludin, in a similar way as seen in the
presence of IELs [Inagaki-Ohara et al., 2006; [Dalton et al., [2006].

As a complementary approach, recombinant occludin fragments could
be used to co-IP T. gondii lysates. This experiment would allow only
T. gondii interacting proteins to be analysed for binding partners of
occludin. From these results, proteins identified from the mass spectro-
meter could be purified and added to recombinant occludin fragments
to confirm interactions. Individual residues that govern binding could
be identified by the introduction of site-specific mutations within the
recombinant proteins.

The proteins identified from the bioinformatic searches that match
the results from the IP could be purified and incubated with recombinant
occludin fragments to test for binding ability. Their expression profile
within 7. gondit during infection would also provide valuable information
to determine whether they are important for extracellular binding to
occludin or following invasion of a cell.

To examine potential candidate occludin binding proteins, priority
could be given to those identified in both experimental approaches that
are T. gondii derived proteins. These were disulphide isomerases (para-
site and cell derived), HSPs, myosins, ribonucleoproteins, DEAD box
helicases and tRNA-derived molecules (Table [6.4).

Cellular-derived kinases such as ROCK2 could be investigated for
their ability to directly phosphorylate occludin. Occludin turnover and
recycling pathways could be investigated to determine how T. gondii
affects the half-life of occludin. Proteins containing transmembrane do-
mains that were identified from the bioinformatic searches could be ana-
lysed for interactions with the extracellular loops of occludin and pro-
teins without transmembrane domains could be analysed for interactions
within the C-terminus. This would provide information on primary and
secondary effects on occludin which could also shed light on occludin
regulation pathways. Site directed mutations within 7. gondii products
or parasites deficient in candidate interacting molecules would confirm
binding to occludin and identify any effects in transmigration and/or in-
vasion. However, it is recognised that limiting searches to include only
sequence similarity will not identify all molecules involved in the disrup-

tion of occludin by 7. gondii.
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6.4 Conclusions

T. gondit binds to the extracellular loops of occludin and six T. gondii-
derived proteins have been identified that may interact with occludin
following IP analysis. Additional proteins have been proposed that could
interact with occludin from bioinformatic searches which leaves scope
for further work to test these proteins by purification, binding experi-
ments and co-IPs with cells and recombinant occludin fragments. These
techniques would all provide a more comprehensive answer than ana-
lyses based on sequence identity alone from bioinformatic searches. The
proteins identified from this work may be used in research for the devel-

opment of therapeutic targets for preventing 7. gondii invasion.
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Chapter 7

Discussion

In this thesis, data has been provided to illustrate that Toxoplasma gondii
interacts with epithelial tight junction complexes via the extracellular
loops of occludin and that these interactions are important for the dis-
semination of T. gondii. Co-localisation with intracellular occludin dur-
ing infection may represent occludin as a host cell receptor for invasion

and formation of the moving junction.

7.1 The impact of T. gondii on m-IC_» cells

T. gondii is thought to infect the host by dissemination from the GI tract
via the paracellular pathway [Barragan et al., 2005]. In this thesis, infec-
tion of m-I1C, cells with 7. gondii was analysed using cell culture inserts
which allow epithelial barrier function to be assessed and transmigrating
parasites to be detected and quantified. It was found that cells were
polarised with fully formed tight junctions by day 13 (Chapter 3) and
all subsequent infections on inserts were carried out at this time point,
which is similar to previously described reports using these cells [Bahi et
al.l 2002; Mennechet et al., 2002].

Exposure of cells to tachyzoites revealed that neither TEER nor per-
meability to 3kDa dextran were affected, showing that the integrity of
the epithelial barrier remained intact despite parasites clustering around
the edges of cells. Additionally, the distribution of junctional proteins
claudin 4, ZO-1 and B catenin were unaltered although slight variations in
claudin 2 distribution were observed six hours post-infection. Tachyzoites
are highly replicating and invasive but it is the bradyzoites, the slow
cyst-forming stage, which have been mostly associated with natural in-
fections |Black and Boothroyd, 2000]. Unlike tachyzoites, a change in per-
meability was detected with bradyzoites, but TEER remained unaltered
(Chapter 4). Although this experiment was only performed once, it sup-
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ports suggestions that the mechanisms of infection between tachyzoites
and bradyzoites may be different [Tomavo et al) 1991]. Changes in
permeability can result from changes within the claudin family of pro-
teins |Takehara et al. 2009], but have not yet been investigated during
bradyzoite infection, with the exception of a report by Dalton et al. 2006,
who observed a decrease in claudin 3 expression in mice lacking the TCR-
VY77 subset of IELs [Dalton et al., 2006]. However, tachyzoites of Neo-
spora caninum (N. caninum) have been shown to infect cells at a faster
rate compared to bradyzoites [Vonlaufen et al.l 2004], although a compar-
ison between different life stages on transmigration rates have not been
reported. Bradyzoites contain different surface antigens to tachyzoites
and because the parasites are capable of infecting any nucleated cell, it is
probable that there are multiple antigens and proteins the parasites use
to infect different cells, as demonstrated by Vonlaufen et al. 2004, with
N. caninum [Vonlaufen et al., 2004].

In m-IC.y cells, numbers of transmigrating tachyzoites were more
than 2.5 fold higher compared to the number of intracellular parasites
following two hours of infection. This suggests that the favoured route of
infection is via the paracellular pathway, although it remains to be seen
as to whether the parasites can also infect from the basal domain as well

as the apical or lateral domains.

7.2 Effects on the distribution of occludin by T. gondii

Data presented in this thesis suggests that occludin does not play a role
in maintaining the integrity of the epithelial barrier when small intestinal
epithelial cells were challenged with T. gondii. In cells where occludin
expression had been experimentally reduced, no changes in TEER or
permeability were detected compared to infected and non-infected cells
(Chapter 5). However, the cellular expression of occludin was dramatic-
ally affected by both tachyzoites and bradyzoites (Chapter 4). Occludin
appeared more aggregated and less specific to the tight junction complex
with exposure to tachyzoites, although with bradyzoites, occludin ap-
peared more concentrated at the lateral membrane. This may represent
different routes of infection, where bradyzoites are more migratory than
tachyzoites, which supports the preliminary data that suggests transmi-
gration occurs five fold more with bradyzoites compared to tachyzoites
(Chapter 4). The effects on occludin appeared to be primary rather than

secondary because the parasites were seen to co-localise and bind to the
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protein (Chapter 4 and Chapter 6). Additional evidence for primary ef-
fects would be through identification of changes in occludin phosphoryla-
tion, which can be observed within 15 minutes post treatment [Antonetti
et al., [1999|, but this was difficult to test with m-IC.; cells. Secondary
effects as a result of other proteins affected within the actin cytoskeleton
in response to pathogenic stimuli, would cause a cascade of disruption
through the tight junction complex that might affect occludin, but co-
localisation may not occur [Nusrat et al.; 2001}; |Canil et al., [1993: Francis
et al., |1992; Jepson et al.l 1995].

Changes in the expression profile of occludin in cells following expos-
ure to T. gondii did not correlate with the proportion of infected cells,
demonstrating that infected cells may secrete a substance that acts upon
neighbouring cells (paracrine signalling). This has has been reported in
cells exposed for example, to Listeria monocytogenes, Shigella flexneri
and T. gondii |[Kasper et al., 2010; Dolowschiak et al., 2010]. Possible
secreted products include cytokines such as TNFo, IL-1a and IL-13 and
chemokines such as IL-8 and colony stimulating factor-1 [Molestina et al.,
2003; Denney et al., [1999; (Corre et al.l [1999|. In support of this theory
MCP-1 and IL-8 were secreted by cells exposed to both live and dead
parasites (Chapter 4).

Alternatively, T. gondii secretes products that may trigger signalling
cascades from neighbouring cells. Although conditioned media had no ef-
fect on occludin, attachment with the parasite itself may be necessary for
secreted products such as microneme and rhoptry-derived proteins, to act
upon occludin. Discrepancies between occludin expression from immun-
ofluorescence and immunoblotting data could also be explained by this
phenomena, whereby immunofluorescence shows whether individual and
neighbouring cells are affected by T. gondii, but immunoblotting results
would mask these localised effects, especially as only 13% of cells were
found to be infected. Additionally, as dephosphorylation of hyperphos-
phorylated occludin may remain in the membrane-associated fraction of
cell lysates, this difference would be masked using immunoblotting tech-
niques. Using phospho-peptide mapping techniques, mass spectrometry

would be able to confirm levels of, and residues that are, phosphorylated.

T. gondii has mechanisms to prevent cell death upon infection, en-
abling it to replicate and eventually disperse within the host [Goebel et
all [2001]. After 24 hours of infection in wvitro, cells contained multiple

parasites, that often clustered around the nucleus (Chapter 4). Interest-
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ingly, the parasites appeared to remain associated with occludin. Upon
entering cells, a parasitophorous vacuole (PPV) forms and eventually
host proteins are excluded from the PPV membrane, although currently
unidentified host fibrous material may remain [Mordue et al.,|1999; Schat-
ten and Ris, 2004]. Based on results presented in this thesis, occludin
could be one such PPV protein and may represent a method that 7.
gondit uses to manipulate host cell metabolism, particularly as occludin
plays a role in apoptosis [Yu et al. [2005]. Control of host molecules at
the PPV membrane have also been described for IxB which increases
NFxB-induced activation of anti-apoptotic molecules |[Molestina et al.,
2003]. Furthermore, data presented in Chapter 6 shows the presence
of both cellular and parasite derived HSP70 following immunoprecipit-
ation of occludin from lysates of infected cells. HSP70-mediated anti-
apoptosis following 7. gondii infection leads to upregulation of Bcl-2
but also TLR4-dependent phospholipase A2 production [Hwang et al.,
2010; Fang et al., 2008]. Phospholipase A2 was also found in the IPs and
functions to hydrolyse bonds between arachidonic acid and lysophosphol-
ipids. Arachidonic acid is a precursor of inflammatory mediators such as
prostaglandins and platelet activating factor [Fang et al., [2008].

The evidence presented in Chapter 6 suggests that T. gondii binds to
the extracellular loops of occludin. In vivo, this interaction may compete
with ilELs as they express occludin and therefore possibly bind to cellular
occludin, providing a protective function against infection by maintaining
barrier integrity and decreasing dissemination of pathogens such as T.
gondii [Dalton et al.| 2006; |Lepage et al.| [1998; |Alexander et al., [1998]. In
their absence, parasites would be free to bind occludin and move between
cells, as seen in vitro. A similar hypothesis was presented by Inagaki-
Ohara et al. 2006, for Eimeria vermiformis where the authors suggested
that during infection, disruption of occludin and E-cadherin were only
seen in epithelial cells and not TELs [Inagaki-Ohara et al., [2006]. Sub-
sequent, experiments to visualise invasion and transmigration using real
time imaging with cells that express fluorescently-labelled occludin and
co-cultured in the presence of IELs should confirm the direct interactions
with occludin and answer these questions.

Live imaging would also confirm the route of entry into cells as T.
gondii may be able to invade both from the apical and basolateral do-
mains. Shigella flexneri and reovirus infect epithelial cells from the
basolateral membrane via prior invasion of M cells, but can also pen-

etrate the tight junction complex to gain access to the lateral domain
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[Mounier et al., [1992; |Sakaguchi et al., |2002; Barton et al., 2001]. In
doing so, occludin, claudins and ZO-1 are disrupted resulting in breaches
in barrier function [Sakaguchi et al., 2002].

Overall, this thesis implies that occludin is more important for trans-
migration of T. gondii than for invasion of cells, and evidence to support
this was presented in Chapter 5 whereby the reduction of cellular oc-
cludin following siRNA /shRNA treatment decreased transmigration 10
fold without affecting the numbers of infected cells. As the levels of oc-
cludin were only decreased by 50% following siRNA treatment, this was
a surprising result because it was expected that half the concentration
of occludin would result in half (or 2 fold) the number of transmigrating
parasites. This suggests that the presence of occludin at the tight junc-
tion complex plays a role in the dissemination of the parasite into the
mucosal layer by using occludin in a trojan horse manner. Alternatively,
the reduced occludin levels in siRNA /shRNA treated cells could have af-
fected the structure of the tight junction complex in terms of paracellular
macromolecular flux, which is in part regulated by occludin, and thereby
affecting transmigration rates, but was not tested in this thesis [Al-Sadi
et al., 2011].

The absence of altered proportions of infected cells where occludin
had been reduced was also intriguing because intracellular T. gondii re-
mained associated with residual occludin in these cells, further support-
ing suggestions that it plays a role in the generation and maintenance
of PPV signalling pathways. Occludin may require N-linked glycosyla-
tion to traffic to the membrane, and could become glypiated, allow-
ing the molecule to remain associated with a PPV that gradually ex-
cludes host proteins but retains GPI-anchored proteins [Gut et al., 1998;
Mordue et al.,|1999]. The change in transmigration, but not the infection
rate of occludin-reduced cells, does not rule out the possibility that 7.
gondii binds to occludin in order to infect cells, as it is generally accep-
ted that multiple proteins and receptors govern this process [Furtado et
all [1992bja |Carruthers et al.l 2000; Mineo et al., [1993]. Moreover, the
similarity of tricellulin and MarvelD3 could suggest that T. gondii uses

multiple occludin-family proteins to enter cells [Raleigh et al., 2010].
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7.3 Disruption of occludin following T. gondii infec-

tion

Changes observed in occludin levels following exposure to T. gondii may
be due to altered transcription, translation and/or endocytic/recycling
pathways. Alterations in mRNA stability or changes in ribosomal re-
cruitment rates may account for mRNA disruption, although previous
studies have found that occludin expression is controlled by translation
and turnover rates more so than by mRNA levels |[Raleigh et al., 2010].
Further work using real time-polymerase chain reaction (RT-PCR) would
be required to confirm any effects on mRNA. Other pathogens have been
shown to alter occludin mRNA, such as the related pathogens Eimeria
vermiformis and Plasmodium falciparum, which suggests that T. gondii
could also regulate the mRNA of tight junction proteins [Susomboon et
al.l 2006; Inagaki-Ohara et al., [2006].

A detrimental effect on occludin mRNA has also been demonstrated
by rotavirus infection in CaCos cells [Beau et al., [2007]. Rotavirus also
induced a decrease in the amount of non-phosphorylated occludin which
was concluded to be dependent on Protein Kinase A signalling [Beau et
al.l 2007]. Rotavirus surface protein VP8 affects TEER and permeability
in MDCK cells, resulting in localisation of occludin on the lateral mem-
brane. As the VP8 protein expresses a degree of similarity to that of the
extracellular loops of occludin and claudins, the authors postulated that
rotavirus could be using occludin to enter the cells. Data obtained from
infection with 7. gondii in this thesis and other experimental work using
recombinant occludin peptides supports this hypothesis, where binding to
extracellular loops causes internalisation of occludin, and possibly other
interacting proteins [Nava et al.; 2004; Lacaz-Vieira et al., [1999].

Alternatively, T. gondii could affect the rate of occludin endocytosis
and recycling. Vesicle-associated proteins (clathrin, GTPases), chap-
erones and ubiquitin-associated proteins as well as myosins and actin
related molecules were identified from the occludin immunoprecipitates
following infection (Chapter 6). These molecules favour the endocyt-
osis hypothesis, but others identified from the IPs such as RhoGEF16,
HSP60 and T-complex protein subunits suggest recycling and synthesis
of occludin may occur in parallel. Previous studies have shown that pep-
tides of ECL1 and ECL2 increase the rate of occludin turnover and as 7.
gondii was found to bind the extracellular loops (Chapter 6), it is pos-

sible that endocytosis of occludin may occur following interactions with
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the parasite [Wong and Gumbiner, |1997; |Lacaz-Vieira et al., 1999]. This
could also explain why after 24 hours of infection, the concentration of
cellular occludin was higher compared to non-infected cells (Chapter 4).
Previous studies report that the integrity of the microtubules and mi-
crofilaments are important in maintaining occludin motility, and there-
fore the presence of myosins, ROCK2 and clathrin molecular complexes
(which are also found in cell shedding and wound healing pathways)
in occludin immunoprecipitates, could represent protective mechanisms
such as the expulsion of infected cells [Subramanian et al., 2007; Mar-
chiando et al., 20115 [Yin and Yu, [2008]. Myosin 9 (also called non-
muscle heavy chain ITA) and myosin 10 (also called non-muscle heavy
chain 1IB) function to connect the acto-myosin cytoskeleton with micro-
tubules (via kinesin) to stabilise cell migratory capacity [Even-Ram et
al.l 2007]. As myosin 9 and kinesin were found in the IPs, it is probable
that occludin plays a role in these pathways. Together, this indicates
a possible homeostatic role of occludin in preventing changes to tight
junction complexes in the GI tract, which T. gondii may manipulate.
Furthermore, HSP90 (also detected from IPs of infected cells) inhibition
leads to decreased leukocyte adhesion, inhibition of proinflammatory cy-
tokines, barrier breakdown and decreased tyrosine phosphorylation of
occludin and ZO-1 |Poulaki et al., 2007; Kale et al., 2003; Elias et al.,
2009]. This suggests that internalisation of occludin following infection
by T. gondii may be caused by increased tyrosine phosphorylation. As
previously mentioned, phospho-analysis of m-IC., cells proved difficult
but through concentrating occludin using an IP technique, this may be
possible in future studies.

An increased rate of recycling is thought to be a common mechanism
in pathogen invasion |Veiga et al., 2007|. For example, Hepatitis C virus
enters hepatocytes by binding to claudin 6, claudin 9, the first extracellu-
lar loop of claudin 1 and the second extracellular loop of occludin, which
caused endocytosis of occludin in a dynamin II dependent mechanism
[Liu et al., |2010; |Zheng et al.l 2007; Evans et al., 2007]. Dynamin is a
GTPase which plays a role in clathrin dependent endocytosis [Caldas et
al.l 2009]. The critical motif within the second extracellular loop of oc-
cludin contains two conserved cysteine residues that are thought to form
disulphide bridges [Michta et al., [2010]. Binding of pathogen-derived
molecules to ECL2 may disrupt these bonds and therefore providing a
mechanism of entry into the cell. The identification of parasite-derived

Vitamin K epoxide reductase and protein disulphide isomerases from the
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bioinformatic searches and IPs strongly suggests that disulphide bonds
may be involved in this interaction.

Studies have shown that occludin, ZO-1, JAM-A, 8 catenin, N-cadherin
and [ actin co-immunoprecipitate with dynamin IT in the blood testes
barrier and in hepatocytes |Lie et al.l 2006; Liu et al.,|2010]. The authors
suggested that dynamin II facilitates dis-engagement of the tight junc-
tion complex with the adherens junctional complex to avoid disruption of
the barrier during cell movement [Lie et al. [2006]. This mechanism may
explain how T. gondii avoids alterations in barrier integrity as parasite-
derived dynamin is known to be involved in the invasion of cells which
may include interactions with occludin and ICAM-1 |Caldas et al., 2009;
Barragan et al.l [2005].

The upregulation of ICAM-1 on MDCK 1T cells following infection
from T. gondii supports the notion that the parasites are transmigrating
through the paracellular pathway |[Barragan et al., [2005; Tkenouchi et
al 2008]. Although no changes within the adherens junctional protein
B catenin was detected following infection (Chapter 4), it suggests that
T. gondii can affect specific proteins within specific junctions in order to
cross the epithelium. ICAM-1 is expressed on leukocytes and endothelial
cells and binding to its ligand (leukocyte function-associated antigen-1)
activates leukocyte transmigration via actin-cytoskeletal rearrangements
|[Etienne-Manneville et al., |2000; Marlin and Springer, [1987]. It could be
predicted that T. gondii uses occludin to enter the paracellular pathway
and then recruits adherens molecules such as ICAM-1 to the surface to
continue movement through the paracellular space. In doing so, this
would initiate signalling cascades to recruit lymphocytes providing the
parasites with an opportunity to infect immune cells and use them as a
transport vehicle for reaching the lymph nodes. This mechanism would
not require changes in the epithelial barrier function and so the integrity
of the monolayer remains intact.

Other pathogens such as the Coxsackie virus can enter epithelial cells
via a caveolar and macropinocytosis mechanism, and appears to require
occludin to be present for invasion to occur [Coyne et al., [2007]. This is
interesting as although no differences in numbers of cells infected were
identified in occludin-reduced cells, transmigration was decreased, further
supporting evidence to suggest that occludin is required for transmigra-

tion, but possibly supplementary for invasion.
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7.4 A range of junctional proteins are affected by

pathogens

During infection many pathogens exert multiple effects on cells making
it difficult to identify roles that individual proteins play in maintaining
the epithelial barrier (Table [7.1). Permeability and TEER are often
altered (although not observed in T. gondii infection), probably due to
reorganisations of the actin cytoskeleton, which indirectly affect tight
junction proteins. As there are over 50 proteins involved in the tight
junction complex, redundancy probably exists and each protein may have
multiple functions. For example, occludin expression is required in order
to expel apoptotic cells from the monolayer but is also important for
driving protein polarity complexes during cell migration [Yu et al., 2005;
Du et al.| |2010]. Pathogens could exploit these mechanisms by targeting
occludin to induce changes in cell survival and migration to gain access
to the basolateral domain [Beeman et al.l 2009].

There are a number of pathogens that induce occludin redistribu-
tion and degradation (Table . Astrovirus, Campylobacter jejuni and
Enteropathogenic Escherichia coli (EPEC) affect membrane-associated
occludin, in addition to inducing changes within the actin cytoskeleton
which increases permeability and decreases TEER [Beltinger et al., 2008;
Chen et al., 2006; Moser et al., 2007; Simonovic et al., 2000]. In addi-
tion to affecting occludin, Campylobacter jejuni infection also alters other
junctional proteins, increasing claudin 1 expression and decreasing JAM1
expression |Beltinger et al., 2008; Chen et al.l 2006|, while EPEC affects
the interactions between occludin, ZO-1 and claudin 1 [Muza-Moons et
all 2004]. EPEC was also seen to induce dephosphorylation of occludin
by a serine/threonine phosphatase [Muza-Moons et al., [2004].

Salmonella enterica serovar Typhimurium causes a redistribution of
Z0-1 and occludin without affecting total cellular concentration of oc-
cludin [Boyle et al.l 2006; Jepson et al., [1995|. Secreted effectors of S.
Typhimurium such as SopB, SopE, SopE2, SipA, were found to affect
the tight junctions via Rho family GTPase activation, causing a decrease
in TEER and increase in permeability [Boyle et al., [2006} Jepson et al.,
1995]. The Rho family of proteins are small GTP binding proteins and
are cytoplasmic plaque proteins of the tight junctions |[Benais-Pont et
al.l 2003; [Hall, 1998]. They are activated by guanylate exchange factors
and can alter the actin cytoskeleton [Yu et al. 2005; Benais-Pont et

al.l 2003]. They have also been implicated in the regulation of occludin
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whereby occludin phosphorylation is dependent on Rho signalling and in
the absence of occludin, Rho signalling cascades are impaired [Yamamoto
et al, [2008; [Yu et al, [2005; Gopalakrishnan et al., [1998]. Rho guanine
nucleotide exchange factor 16 was identified from immunoprecipitates in
Chapter 6, further supporting existing evidence of interactions between
occludin and the Rho protein family, and suggesting that 7. gondii may
also affect cellular GTPase activity.

Clostridium difficile toxin affects occludin, ZO-1 and ZO-2 [Nusrat et
al [2001]. This was again associated with a decrease in TEER, increased
permeability and rearrangements within the actin cytoskeleton. Occludin
was found to be linked to caveolin-1 raft-like domains, which also suggests
Rho protein involvement [Nusrat et al., 2001]. Clostridium perfringens
enterotoxin bound to the extracellular loop of claudin 3, degraded both
claudin 3 and claudin 4 and complexed with occludin [Singh et al., 2000;
Sonoda et al.. 1999; [Fujita et al., 2000]. The fact that Clostridium per-
fringens can bind to claudin 3 and results in its degradation, and that 7.
gondii binds to occludin and results in a degradation product (as presen-
ted in Chapter 4), suggests that similar mechanisms exist between some

pathogens in targeting tight junction proteins for methods of infection.

7.5 Degradation of occludin by pathogens

Metalloproteinases (MMPs) are endopeptidases that degrade extracellu-
lar matrix proteins and cleave cell surface receptors. MMP-mediated de-
gradation of occludin resulting in a 50kDa fragment has been previously
reported and the redistribution of occludin is similar to that observed
in this thesis following exposure to T. gondii [Wachtel et al., 1999|. In
addition, after six hours of infection, a ~45kDa occludin product was
observed in the cytoplasmic fraction by SDS-PAGE (Chapter 4), and
similar products have been observed with exposure to other pathogens.
This suggests that T. gondii may produce metalloproteinases such as
MMP2 and MMP9 that degrade occludin [Munoz et al., 2009).
Occludin degradation has been observed in mast cells and epithelial
cells following infection by various pathogens for example, Helicobacter
pylori, Trichinella spiralis and Vibrio cholerae [McDermott et al., 2003;
Wu et al., 1996, 2000; [Lytton et al., 2005|. A serine or cysteine protease
was responsible for the degradation caused by Trichinella spiralis, and
a zinc-containing metalloprotease (cytotoxin haemagglutinin/protease)

was responsible for the degradation seen in Vibrio cholerae infection [Mc-
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Dermott et al., 2003; Wu et al., [1996] 2000|. Previous protease-induced
degradation has been shown to occur with the dust mite allergen Der p
1 cysteine peptidase [Wan et al., 2000], highlighting the importance of
studying cysteine proteases in future studies with 7. gondii as they may
be important virulence factors. It was therefore interesting to find a sub-
tilase serine protease protein within the immunoprecipitates of infected
cells which may warrant further investigation (Chapter 6).

Following Vibrio cholerae infection, degradation of occludin extracel-
lular domains was observed [Wu et al., 2000]. It was speculated by Wu et
al. 1996 and 2000, that changes within the extracellular domains could
cause conformational changes within the protein, leading to intracellular
signal transduction, affecting ZO-1 binding and therefore indirectly al-
tering the organisation of the actin cytoskeleton [Wu et al.l 1996, [2000].
Lytton et al. 2005, provided evidence to show that degraded occludin,
following infection by Helicobacter pylori, was a product of protease cleav-
age and suggested that occludin recycling was disrupted [Lytton et al.,
2005]. Additionally, the authors observed that degraded occludin was
only seen within the epithelial cells and not in immune cells (Jurkat T
cells). This finding is in agreement with other reports stating that im-
mune cells expressing tight junction proteins are unaltered by pathogenic
stimuli, and further supporting the hypothesis of their protective func-
tion [Dalton et al.l [2006; [Lepage et al., [1998; Inagaki-Ohara et al., [2006].
Therefore, it is possible that T. gondii also causes a degradation of oc-
cludin from epithelial cells, through protease cleavage. The involvement
of cysteine and serine proteases during 1. gondii infection has been pre-
viously implicated in microneme and rhoptry secretion, gliding motility
and cellular invasion [Teo et al., 2007; |Conseil et al. [1999; Que et al.,
2002; Miller et al., 2003]. The presence of a subtilase family protein
within occludin immunoprecipitates therefore supports evidence that 7.
gondii may cleave occludin upon invasion.

A more comprehensive analysis of products present within immun-
oprecipitates of infected cells may have revealed the presence of other
proteases. Additionally, it would be useful to evaluate the potential of
specific protease inhibitors to target both attachment and penetration of
the cell during infection, to ascertain the effects on occludin degradation

products.
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7.6 Potential binding partners of occludin from T.

gondii-derived proteins

The rhoptry proteins are considered crucial for achieving invasion, as
demonstrated recently in studies with RONS8 [Straub et al., [2011]. The
moving junction that forms during invasion is heavily dependent on these
proteins and because occludin is associated with the parasite both ex-
tracellularly and intracellularly, it was speculated that rhoptry proteins
may drive this interaction. Consistent with this, ROP18 was found
within the immunoprecipitates, as reported in Chapter 6. ROPI18 is
a serine/threonine kinase that could alter phosphorylation levels, and
therefore the cellular expression of occludin. ROP18 binds to immunity-
related GTPases, and acts within an anti-apoptotic pathway to prevent
parasite clearance in macrophages [Fentress et al., 2010]. Further work
to confirm the interactions between ROP18 and occludin would involve
investigating the effects on invasion and transmigration in parasites with
specific rthoptry protein deletions or mutations, and analyses of immun-
oprecipitates that are designed to favour the detection of 7. gondii as-
sociated proteins instead of host proteins. For example, this could be
achieved by using recombinant occludin fragments such as ECL1-ECL2.
It would also be interesting to see whether or not the differing levels
of ROP18 between parasite strains correlates to differences in occludin
redistribution |Taylor et al., [2006].

Following bioinformatics, where the 7. gondii database was searched
for sequence similarity to the extracellular loops of occludin, alignments
were made with 22 molecules. Potential candidates were based on the
presence of disulphide bonds within the extracellular loops of occludin,
which provides a mechanism for like-to-like binding. Vitamin K epoxide
reductase aligned to residues within the extracellular loops of occludin,
which provides a candidate protein for these interactions. As occludin
was associated with intracellular 7. gondii, endocytosis and recycling
pathways were predicted to play a role in the redistribution of occludin.
It was therefore interesting to detect vesicle-associated membrane protein
7 and endoplasmic reticulum retrieval protein 1 from the bioinformatic
searches. In addition, of the proteins known to be secreted during 7.
gondii infection (micronemes, rhoptries, dense granules), dense granule
protein 5 was detected.

However, as occludin was associated with 7. gondii following invasion,

interactions with the N- and C-termini may also occur, although sequence
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similarity is less likely to be an effective method of screening in this case.
Nevertheless, bioinformatic searches did reveal a dual specificity protein
phosphatase which may act upon serine/threonine or tyrosine residues
within the C-terminus of occludin (PhospMotif_finder [).

Overlapping results from the bioinformatic searches and data ob-
tained from the IP studies, in addition to information from the literature,
suggests that the theoretical searches were valid and may prove useful
in focussing the search for identification of T.gondii binding partners to

occludin.

7.7 Proposed model of infection by T. gondii in m-
I1C.2 cells

Based on the results presented in thesis, the following model of infection
is proposed (Figure [7.1).

Tight junction complexes include transmembrane proteins (occludin
and claudins) and cytoplasmic plaque proteins (ZO-1) which link to the
cytoskeleton. Occludin is represented as a 4-transmembrane domain-
containing protein with 2 extracellular loops, a short N-terminus and
longer C-terminus ﬂ It is not currently known whether ECLs bind like-
to-like or if ECL1 binds to ECL2. Adherens junctions are also present
on the lateral domain (B catenin). There is a pool of junctional proteins
within the cytoplasm and as the cells become polarised, the nucleus is
situated toward the basal domain.

(A) T. gondiiinfection commences with cellular contact and adhesion.
As the parasites move paracellularly, surface proteins are altered and a
polarised anterior forms (dark brown).

(B) An occludin binding molecule, represented by a hypothetical 6
transmembrane domain protein with 3 extracellular loops, is upregulated
on the parasite surface (light brown). This has been drawn differently to
occludin to highlight that the T. gondii interacting molecule(s) may not
be identical in size or shape.

(C) Occludin dimers are disrupted by the presence of T. gondii, pos-
sibly by disulphide isomerases, causing neighbouring occludin interac-
tions on adjacent cells, to break. Extracellular loops are then free to bind
to an interacting molecule on the parasite surface. Changes in conforma-

tion or phosphorylation status of occludin may send intracellular signals

http://www.hprd.org
’http://wuw.zonapse.net/occludin
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to recruit additional occludin to the membrane, induce/destroy oligo-
merisation, and lead to endocytosis and recycling (by clathrin-mediated
vesicles, or vesicle-associated membrane proteins for example). At this
point, parasites either transmigrate (D) or infect the cell (E).

(D) Transmigration initiates intracellular signalling cascades to re-
cruit host occludin to the membrane which assists in parasite binding and
movement. This may be through changes at the mRNA and/or trans-
lation level. As the parasites move through the paracellular pathway,
occludin molecules detach and are degraded (by ubiquitin-like enzymes,
black arrows) or disordered (blue arrows, by disulphide isomerases or
Vitamin K epoxide reductase for example). As a consequence, dimers
and oligomers disassemble within the cytoplasm causing an apical ag-
gregation of the protein (occludin becomes apically located within the
cytoplasm such that it appears underneath microvilli on the cell surface,
also depicted in (E)). Endocytic and/or recycling processes to occludin
would be activated and the cytoskeleton may be altered (for example
through myosin 9, myosin 10, GTPase disturbances). The upregulation
of adherens junctional proteins such as I[CAM-1 may also assist in lateral
migration of 1. gondii.

(E) Invasion of cells forms a moving junction and a parasitophorous
vacuole (purple). Occludin may represent a receptor for parasite entry
and assist in microneme (subtilase family proteins) and rhoptry protein
(ROP18) secretion into the cell.

Occludin (and possibly the corresponding binding molecules of T.
gondii) may be eliminated from the PPV as the parasite surface changes
in protein/antigen expression (for example HSP70, HSP90) to promote
survival. This would also result in higher than normal concentrations of
cytoplasmic occludin, which may include degraded occludin fragments.
Alternatively, occludin remains associated with the PPV and provides a
communication channel between the host and parasite for nutrients and
metabolites, or prevents cellular-driven occludin signalling pathways that
may result in apoptosis. Following invasion, the presence of occludin at
the tight junction complex may increase over time as recycling pathways

are activated.

7.8 Unanswered questions

What are the cellular molecules that regulate occludin?

Kinases were identified from the immunoprecipitates that may be
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Figure 7.1: Invasion of small intestinal epithelial cells by T. gondii. (A)
Tight junction complexes before infection. (B) T. gondii adheres to the apical domain
and associates with the paracellular pathway. (C) T. gondii interacts with occludin.
(D) Parasites use occludin to move between cells. (E) T. gondii is coated with occludin
upon cell entry. Blue arrows indicate disruption to occludin complexes and black
arrows represent degradation of occludin molecules. T. gondii interacting molecules
to cellular occludin (black) are shown in brown and the parasitophorous vacuole in
purple.
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involved in the regulation of occludin including ROCK2, which phos-
phorylates serine/threonine residues and represents a candidate kinase
to investigate in more detail. This kinase is found in 7. gondii as
well as murine cells and could alter the phosphorylation status of oc-
cludin. To determine this, in vitro kinase assays with recombinant oc-
cludin fragments could be performed, measuring ATP/GTP consump-
tion or ADP/GDP accumulation, or via radio-labelling of ATP/GTP.
A dual specificity protein phosphatase was identified from bioinformatic
searches and could regulate occludin by dephosphorylating the hyper-
phosphorylated species at the tight junctions. To determine which spe-
cific residues are phosphorylated or dephosphorylated in the presence of
kinases or phosphatases, mass spectrometry analysis could be employed
using peptide mass fingerprinting techniques in a similar manner de-
scribed by Smales et al. 2003, when they identified casein kinase 2 as an
occludin kinase [Smales et al., [2003].

Changes in the expression of molecules that immunoprecipitate with
occludin following infection over time would be interesting to analyse.
For example o actinin 1 and 4, detected from the immunoprecipitates in
Chapter 6, could be involved in recycling of occludin from the membrane,
possibly as a result of occludin dephosphorylation. Parallel changes in
expression between proteins may indicate complexes and pathways that
are involved. However, conformational changes within occludin could also
account for these differences [McKenzie et al., 2006|. The binding of oc-
cludin to T. gondii might be predicted to induce conformational changes
within the C-terminus of occludin, which would initiate cascades of sig-
nal transduction that result in the internalisation of a parasite-protein
multi-complex. In order to test this, mutations or truncations of residues
and peptides within the C-terminus of occludin could be generated, that

would inhibit intracellular signalling pathways, following infection.

Which residues within occludin are crucial for T. gondii binding?

This thesis has shown that 7. gondii binds to the extracellular loops
of occludin. Separate recombinant ECL-1 and ECL-2 fragments would
address which loops govern these interactions and site-directed muta-
genesis within the recombinant fragments would identify the residues
important for binding. This may also focus the search for potential T.
gondii-derived molecules that interact with occludin that are based on
sequence similarity, or conserved residues within a binding motif. Ad-

ditionally, recombinant C-terminus occludin fragments could be used to
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investigate interacting partners once the parasite has become internal-
ised within the cell, as the presence of ROP18 and subtilase-like proteins
from the IPs suggests that additional binding proteins may be acting
upon occludin.

Further experiments to confirm that occludin is essential during 7.
gondit infection would involve the incubation of occludin recombinant
fragments to the cell media upon infection in competitive inhibition ex-
periments. It could be predicted that cellular occludin would be altered
to a lesser degree, perhaps resulting in decreased transmigration. On
the contrary, the overexpression of occludin in cells would be predicted
to cause an increased number of transmigrating parasites detected in
the basal compartment, although from the current results it is difficult
to predict how this may affect the proportion of cellular invasion by T.
gondii.

As the disruption of occludin did not result in a change in epithelial
barrier function through 7. gondii binding, it could be possible to use
peptides against the same sequence of occludin as a target for therapeutic
intervention. This possibility stems from previous suggestions using oc-
cludin and claudin mimetic peptides to temporarily disrupt the barrier
for drug delivery |[Mrsny et al., [2008; Tavelin et al., [2003]. This may be
less toxic to cells than conventional methods and has been reviewed by
Deli, 2009 |Deli, [2009].

Which products in T. gondii bind and act upon occludin?

To identify binding partners of occludin it would be necessary to look
at molecular expression profiles on the surface of T. gondii during in-
fection. Any products identified could then be imaged by fluorescent
microscopy using specifically raised antibodies to determine localisation
within the parasite. It was suggested that the initial interacting molecule
is probably not secreted by the parasite and it was predicted that they
are most likely surface molecules that are upregulated during infection as
in the presence of dead parasites, only slight changes in occludin distribu-
tion were observed. A number of candidate proteins were identified from
the bioinformatic searches and further work could include investigations
into the potential of these proteins to interact with occludin. Proteins
highlighted from the search contained cysteine residues which may in-
teract with the conserved cysteine residues on the ECL2 of occludin.
Additionally, some proteins were highlighted that are already known to

associate with occludin. A protein disulphide isomerase/ VAMP molecule
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was detected from the infected immunoprecipitates and as T. gondii ex-
presses these proteins, it is possible that the isomerase could act upon
the extracellular domains of occludin to form a complex between itself
and cellular occludin, via disulphide bonds. This would allow the para-
site to attach to the host cell surface. Mutations and deletions of T.
gondii candidate molecules would confirm whether they are crucial in
transmigration and/or invasion of cells.

Immunoprecipitations between T. gondii and recombinant occludin
fragments may also reveal binding partners although physical attach-
ment to cells may be required for occludin binding molecules to become
upregulated.

The effects on kinases and phosphatases during infection could reveal
important information on the mechanisms of occludin regulation and as-
sist in defining a function for the protein. Kinase assays and kinome

analyses could be performed to assess this.

Are there differences between parasites that infect versus parasites that
transmigrate epithelial cells in terms of surface protein expression?

It would be interesting to determine whether or not within a popu-
lation of parasites, different receptors, surface antigens and proteins are
expressed upon contact with cells. Are there parasites within a popula-
tion that can only invade cells or only transmigrate? It could be predicted
that the parasites which infect cells, replicate, cause cell lysis and con-
sequently spread to other cells within the GI tract, sustain only an acute
infection. However, it is the parasites that disseminate via the paracel-
lular pathway and are rapidly transported to lymph nodes and out of
the GI tract, which establish a chronic infection. A comparison of pro-
tein expression from immunoprecipitations of parasites that infect versus
those that transmigrate would reveal potential candidates to investigate
further. This study may also illustrate differences between strains of T.
gondii and could highlight novel virulence factors. Furthermore, microar-
rays and RT-PCR may be carried out to detect changes at the mRNA

level.

Is the degree of bradyzoite transmigration affected in occludin-reduced

cells?

3New data obtained after submission of this thesis reveals the presence of MIC3,
type 1 rhoptry protein 5B and GRA6 following T. gondii incubation with cells or
recombinant ECL1-ECL2 occludin.
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As the host is most likely to be infected by bradyzoites or sporozo-
ites, it would be necessary to determine whether bradyzoites co-localise
with occludin. As a higher proportion of bradyzoites were detected in
the basal compartment compared to tachyzoites, it would be expected
that in occludin-reduced cells, transmigration would also be impaired.
This could confirm the importance of occludin for parasite dissemination
from the GI tract. In addition, confirmation that the binding partners
of occludin from T. gondii are expressed in all three life stages of the
parasite would provide information on the importance of and conserva-
tion of the interactions. It is accepted that T. gondii probably interacts
with multiple proteins to infect virtually all cell types and so it is plaus-
ible to conclude that mechanisms of infection and therefore the binding
molecules on bradyzoites and sporozoites may be different to that of ta-

chyzoites.

Are there differences in the interactions of occludin between parasite
strains?

Differences in expression profiles of occludin interacting molecules
may be apparent between strains of 1. gondi: which may relate to vir-
ulence and degree of dissemination within the host. It could be predicted
that virulent strains which disseminate at a faster rate compared to avir-
ulent strains, may express higher concentrations of occludin interacting

molecules on their surface compared to avirulent strains.
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7.9 Concluding remarks

In summary, this thesis has demonstrated that occludin is directly af-
fected by T. gondii exposure and that binding of the extracellular loops
to the parasite could govern the redistribution of occludin observed in
small intestinal epithelial cells. It is proposed that T. gondii uses oc-
cludin as a mechanism to transmigrate through the paracellular pathway,
without impinging on the integrity of the epithelial cell barrier. Poten-
tial candidate proteins from T. gondii that may interact with occludin
have been identified following immunoprecipitations of infected cell lys-
ates and from bioinformatic searches. These experiments also revealed
cellular candidate proteins that may play a role in the regulation of oc-
cludin during infection. In addition, occludin could represent a T. gondii
receptor for cell invasion which is important in the formation and survival
of T. gondii within the parasitophorous vacuole.

Therefore, occludin has been shown to play an important role in the
transmigration of 7. gondiz and may also assist in the invasion and in-

tracellular survival of T. gondi.
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Appendix A

Commercial Suppliers

Abcam

330 Cambridge Science Park

Cambridge
CB4 0FL
UK

Agar Scientific Limited
Unit 7, M11 Buisness Link
Parsonage Lane

Stansted

Essex

CM24 8GF

American Type Tissue
Collection

PO Box 1549

Manassas VA 20108

Applied Biosystems
Lingley House

120 Birthwood Boulevard
Warrington

WA3 7QH

BD Biosciences
The Danby Building
Edmund Halley Road
Oxford Science Park
Oxford

0X4 4DQ

BDH Laboratory Supplies

Poole
Dorset
BH15 1TD

Bio-Rad

BioRad House
Maxted Road
Hemel Hempstead
Hertfordshire
HP2 7DX

Biosera

1 Acorn House

The Broyle

Ringmer

East Sussex BN8 5NN

Bitplane Scientific Solutions
Bitplane AG

Badenerstrasse 682

CH-8048

Zurich

Switzerland

BMG Labtech Ltd
PO BOX 73
Aylesbury

Bucks

HP20 2QJ

Carl Zeiss Ltd

PO Box 78
Woodfield Road
Welwyn Garden City
Hertfordshire

AL7 1LU

Caltag Medsystems
Whiteleaf Business Centre
11 Little Balmer
Buckingham

MK18 1TF

Cell Signalling Technology Inc
3 Trask Lane

Danvers

MA 01923

Danahar Corporation

2099 Pennysylvania Avenue NW
Washington DC 20006

Dako UK Ltd

Cambridge House

St Thomas Place, Ely
Cambridgeshire

CB7 4EX



Eppendorf UK Limited
Endurance House Vision Park
Histon

Cambridge

CB24 9ZR

Expedeon Ltd
Unit 1A Button End
Harston
Cambridgeshire
CB22 7GX

Fermentas GmbH
Opelstrasse 9

68789 St. Leon Rot
Germany

FisherScientific
Bishop Meadow Road
Loughborough
Leistershire

LE11 5RG

GE Healthcare UK Ltd
(Amersham Biosciences)
Amersham Place

Little Chalfont
Buckinghamshire

HP7 9NA

Greiner BioOne

Unit 5

Stroudwater Buisness Park
Brunel Way

Stonehouse

Gloucesteshire
GL10 3SX

Health Protection Agency
7th Floor

Holborn Gate

330 High Holborn

London

WC1V 7PP

IBIDI GmbH
Am Klopferspitz 19

D-82152 Martinsried (Munchen)

Germany

Insight Biotechnology Ltd
2nd Floor Titan Court

3 Bishop Square

Hatfield

AL10 9NA

Invitrogen Ltd
Inchinnan Buisness Park
3 Foundation Drive
Paisley

PA4 9RF
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JacksonImmunoResearch
(via Statech Scientific Ltd)

7 Acorn Buisness Centre
Oaksdrive

Newmarket

Suffolk

CB8 7SY

Labequip Ltd
170 Shields Court
Unit 2

Markham
Ontario

Canada

L3R 9T5

London Resin Co Ltd
273-287 Regent Street London
London

W1B 2HA

Lonza Group Ltd
Muenchensteinerstrasse 38
CH - 4002 Basel
Switzerland

Matrix Corporation Technology
Deanway Buisness Centre

Wilmslow Road

Wilmslow

Cheshire

SK9 3HW

Mbolecular Devices
1311 Orleans Drive
Sunnyvale

CA 94089-1136

USA

New England Biolabs (UK) Ltd
75/77 Knowl Piece

Wilbury Way

Hitchin

Hertfordshire

SG4 0TY

Nunc
(supplied through ThermoScientific)

Oxoid Ltd
Wade Road
Basingstoke
Hampshire

RG24 8PW

PerkinElmer Ltd
940 Winter Street
Waltham
Massachusetts
02451, USA



Pierce Chemical Company
(ThermoFisherScientific)
Perbio Science UK Ltd

Unit 9

Ately Way

North Nelson Industrial Estate
Cramlington

Northumberland

NE23 1WA

Promega Ltd

Delta House

Southampton Science Park
Hampshire

Southampton

SO16 7NS

Qiagen
Qiagen House
Fleming Way
Crawley
West Sussex
RH10 9NQ

Reichert Microscope Services
3362 Walden Ave

Depew

New York

14043, USA

Sartorius AG

Weender Landstrasse 94-108
D-37075

Goettingen

Germany

SantaCruz Biotechnology
2145 Delaware Avenue
SantaCruz

CA-95060

USA
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Sarstedt Ltd
68 Boston Road
Beaumont Leys

Leicester
LE4 1AW

Scientific Laboratory Supplies
Ltd (Whatmann)

Wilford Industrial Estate
Ruddington Lane

Nottingham

NG11 7EP

Sigma Aldrich
The Old Brickyard
New Road
Gillingham

Dorset

SP8 4XT

Vector Laboratories Ltd
2 Accent Park

Bakewell Road

Orton Southgate
Peterborough

PE2 6XS

VWR International Ltd
Hunter Boulevard

Magna Park

Lutterworth

Leicestershire

LE17 4XN

World Precision Instruments
Ltd

Astonbury Farm Business Centre
Stevenage

Hertfordshire

SG2 7TEG



Appendix B

List of Antibodies used for Immunoflu-

orescence

Primary Antibody

Secondary and Tertiary
Antibody

10pg/ml Rabbit anti-occludin
(Zymed, Invitrogen, Paisley, UK)

20ug/ml biotin-XX goat anti-rabbit
IgG; 1ug/ml Streptavidin pacific
blue conjugate (Invitrogen)

0.5ug/ml Mouse anti-B catenin (BD
Biosciences)

3ug/ml Cyb conjugated goat
anti-mouse IgG (Jackson
Immunoresearch (Suffolk, UK))

5ug/ml Mouse anti-claudin 2
(Zymed, Invitrogen)

3ug/ml Cyb conjugated goat
anti-mouse IgG (Jackson
ImmunoResearch)

5ug/ml Mouse anti claudin 4
conjugated to Alexa Fluor 594
(Invitrogen)

2ug/ml Rat anti-ZO-1 (Santa Cruz)

2ug/ml goat anti-rat texas red
(Caltag (Buckingham, UK))

20ug/ml each of Rhodamine Wheat
Germ and Peanut Agglutinin
(Vector Labs)

10ug/ml Rabbit IgG (Vector Labs)

0.5ug/ml or bug/ml Mouse IgG
Tricolour (Caltag)

2ug/ml Rat IgG2a conjugated to
FITC (Caltag)
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Appendix C

Densitometry
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Figure C.1: An example of protein bands on an SDS-PAGE gel that were
analysed using densitometry. (A) Cell lysates were subjected to gel electrophore-
sis, the gel stained with Coomassie Brilliant Blue and protein bands were detected
and aligned between lanes using QuantityOne software (performed by Francis Mul-
holland, Institute of Food Research, Norwich, UK). Optical density was plotted such
that corresponding bands across lanes overlapped in relative frequency (B).
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Appendix D

List of primers

Description MName Sequence of primer
pBABE shRMA and FLAG-occludin sequencing| Set 1 Forward (F) CCTCOGCCTCCTCTTOTTOC
pBABE FLAG-occludin sequencing Set 1 Reverse (R} CCGCCGATACCTCCGATACC
pBABE FLAG-occludin sequencing Set 2 F GGEGCTCTTTGGAGGAAGCT
pBABE FLAG-occludin sequencing Set 2R CCGTTTCACTTACCGTTCGC
pBABE FLAG-occludin sequencing Set3F CCCCAATGTTGAAGAGT GGG
pBABE FLAG-occludin sequencing Set 3R GGGGTCGTCCGTCTTCATACG
pBABE shRNA sequencing set 3 Rb GGAACTGGGCGGAGTTAGGGG
ECL 1 occludin pECLL F GGACATCATATGGCTTCCACACTTGCTTGGGACAGAG
ECL 2 occludin pECL2Z R CCAGTAGGATCCCTACTCCTGGGGATCAACCAC
PET3a-occludin sequencing T7F TAATACGACTCACTATAGGG
PET3a-occludin sequencing T7 R GCTAGTTATTGCTCAGCGG

Table D.1: List of primers used for generating PCR products and sequenc-
ing
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Appendix E

Plasmid Map for pBABEpuro plasmid
vector containing FLAG-tagged occludin

FLAG - 1364
linker - 1391
5' occludin - 1400

FLAG-occludin in pBABEpuro

6774 bp

3' occludin - 2965

Figure E.1: Plasmid map of FLAG-tagged occludin in the pBABEpuro
vector
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™ SetlR - 1748
|~ Set3F - 2304
[ Set2R - 2378

|~ Set2F - 1680

| — SetlF - 1243
'— FLAG - 1364
| |— Set3R - 3052
| [ Set3Rb - 3126

E

Sites of Primers in pBABEpuro
6774 bp

GC% in 16 bp blocks

14 22 30 38 46 55 |63 71 [Nan e

Figure E.2: Primers used for sequencing of FLAG-tagged occludin in
PBABEpuro

430 440 450 460 470 480 490 500 510
cov b b e brrrabevr b by b b b b b b b b b bl
CTCTAGGCGCCGGCCGGATCTACCATGGACTACAAAGACGATGACGACAAGCTATCAGCCATGTCCGTGAGGCCTTTTGARAGTC

pBabe-occF1R.abl (11>822) €— | CTCTAGGCGCCGGCCGGATCTACCATGGACTACAAAGACGATGACGACAAGCTATCAGCCATGTCCGTGAGGCCTTTTGARAGT!
pBabe-occF1F.abl (8>887) =3 | CTCTAGGCGCCGGCCGGATCTACCATGGACTACARAGACGATGACGACARAGCTATCAGCCATGTCCGTGAGGCCTTTTGARAGT!
Exp Full Length.SEQ(1>1650)— 5GCCGGATCTACCATGGACTACAAAGACGATGACGACAAGCTATCAGCCATGTCCGTGAGGCCTTTTGAAAGT!

520 530 540 55 60 570 580 590
\\\\‘\\\\|\\\\‘\\\\|||\\‘\\\\‘lll\‘\\\\‘\lll‘\\\\‘\\ll‘\\\\‘\\\\‘\\\\‘\\\\|\\\\‘\\\||
CACCTCCTTACAGACCTGATGAATTCARACCCARTCACTATGCACCAAGTAATGACATGTATGGCGGAGAGATGCATGTCCGGCC
pBabe-occF1R.abl (11>822) €— | CACCTCCTTACAGACCTGATGAATTCARACCCAATCACTATGCACCARGTAATGACATGTATGGCGGAGAL. "GCATG"CCCSC
pBabe-occF1F.abl (8>887) —> | CACCTCCTTACAGACCTGATGAATTCAAACCCAATCAI TGCACCAAGTAATGACATGTATGGCGGAGAG, CATGTCCGG!

Exp Full Length.SEQ(1>1650)— CACCfCCTfACAGACCTGAfGAAfTCAAACCEZ—\AfCACTATGCACCAAGTAATGACAfGTATGGCGGAGAGAfGCATGfCCGGC

‘U 61 L‘ | uz‘" TU éL ) b%b‘ L bDu z’:?‘D ) balC

GATGCTCT’“TCAGCCACCq ACTCTTTT ATCC AACATGAAA TCTTCACTT CTA"AAAT ACC "GCC’“CCAC GGTGATC

pBabe-occF1R.abl (11>822) €— | GATGCTCICTCAGCCAGCGTIACTCTTTTITATCCGGAAGATGAAATTCTTCACTICTACARATGGACGTCGCCCCCAGGGGTGAT!
pBabe-occF1F.abl (8>887) —> | GATGCTCTCTCAGCCAGCGTACTCTTTTTATCCGGAAGATGARATTCTTCACTTCTACARATGGACGTCGCCCCCAGGGGTGAT!
Exp Full Length.SEQ(1>1650)=> | GATGCTCTICTCAGCCAGCGTIACTCTTTITATCCGGAAGATGAAATTCTTCACTICTACARATGGACGTCGCCCCCAGGGGTGAT!
690 00 710 720 730 740 750 60
wwww\wwwwlwwwwMwwwlllww\wwww\lllw\wwww\w|||\wwww\wwll\wwww\wHw\uu\uuluu\uul
CGGATCCTGTCTATGCTCATTATTGTGATGTGCATCGCCAT: TGCCTGTGTGGCTTCCACACTIGCTTGGGACAGAGGCTATG
pBabe-occF1R.abl (11>822) - CCCA'CCTGTCTA'GCTCA'TAT'GTCA'GTCCA'CCC"ATA",TGC"'GTC—TGGCTTCCACA?TTC—CTTC-C-GACAC-AGGCTAT
pBabe-occF1F.abl (8>887) —> | CGGATCCTGTCTATGCTCATTATTIGTGATGTIGCAT TGTGTGGCTTCCACACTIG GGGACAGAGGCTAT!
Exp Full Length.SEQ(1>1650)=> | CGGATCCTGTCTATGCTCATTATTGTGATGTGCAT CCC"ATA TTGCCTGTGTGGCTTCCACACTTGCTTGGGACAGAGGCTAT!
770 780 790 800 810 820 830 840 850
e e b bee e b b b b b b b b e b e b P b Py ]
GGACAGGGCTCTTTGGAGGAAGCCTAAACTACCCTTATAGTGGCTTTGGCTACGGAGGTGGCTATGGAGGCGGCTATGGAGGCTA
pBabe-occF1R.abl(11>822) €— | GGACAGGGCTCTTTGGAGGAAGCCTAAACTACCCTTATAGTGGCT——GG—
pBabe-occF1F.abl (8>887) —> | GGACAGGGCTCTITIGGAGGAAGCCTAAACTACCC _TATAGTC—GCTTTGGCTACGGAGGTGGC"ATGGAGGCGGCTATGGAGGC"A

Exp Full Length.SEQ(1>1650)—> | GGACAGGGCTCTTTIGGAGGAAGCCTAARCTACCCTTATAGTGGCTTTGGCTACGGAGGTGGCTATGGAGGCGGCTATGGAGGT!
pBabe-occF2F.abl (18>802) b d CTTTGGCTACGGAGGTGGCTATGGAGGCGGCTATGGAGGCTA

W R TS PR B AU S TS s R TGS ST B AT TS eSO
TGGCTATGGCTATGGOGEATATACAGACCCARGAGCAGCCARAGGCTTCCTGTTGGCCATGECAGCCTTCTGCTTCATCGCTTCC
pBabe-occFLF.abl (8>887) TGGCIATGGCTATGGCGGATATACAGACCCARGAGCAGCCABAGGCTICCTGITGGCCATGGCAGCCTICTGCTTCATCGCTTC
Exp Full Length.SEQ(1>1650)— | TGGCTATGGCTATGGCGGATATACAGACCCAAGAGCAGCCAAAGGCTTCCTGTTGGCCATGGCAGCCTTCTGCTTC CTTC!
pBabe-0CCF2F.abl (18>802) =3 | TGGCTATGGCTATGGCGGATATACAGACCCAAGAGCAGCCABAGGCTTCCTIGTTGGCCATGGCAGCCTICTGCTTCATCGCTTIC

l

240 950 260 970 280 990 1000 1010 1020
I T I S T I I B T Y A I A A AN ARl I i |

TTAGTAATATTTGTIGACCAGTGTTATARGATCTGGAATGTCCAGGACARGAAGATATTACTTGATCGTGATCATAGTCAGCGC

pBabe-occF1F.abl (8>887) b d GATCATAGTCAGCGC
Exp Full Length.SEQ(1>1650)— AATATTTGTGACCAGTGTTATAAGATCTGGAATGTCCAGGACAAGAAGATATTACTTGATCGTGATCATAGTCAGCGCTA
pBabe-occF2F.abl (18>802) — | TTAGTAATATTTGTIGACCAGTGTTATARGATCTGGAATGTCCAGGACAAGRAAGATATTACTTGATCGTGATCATAGTCAGCGCTE
) | ) lOI4O ) 10‘50 ) 10‘60 ) 10‘70 ) 10‘80 ) 10‘90 L AL |
TCCTGGGCATCATGGTGTTTATTGCCACGATCGTGTACATAATGGGAGTGAACCCGACGGCCCAGGCTTCTGGATCTATGTACG
pBabe-occF1F.abl (8>887) g TGGGCATCATGGTGTTTATTGCCACGATCGTGTACATAATGGGAGTGAACCCGACGGCCCAGGCTTCTGGATCTATGTACG

Exp Full Length.SEQ(1>1650)—> | TCCTGGGCATCATGGTGTTTATTGCCACGATCGIGTACATAATGGGAGTGAACCCGACGGCCCAGGCTTCTGGATCTATGTACG
pBabe-occF2F.abl (18>802) —> | TCCTGGGCATCATGGTG ATTGCCACGATCGTGTACATAATGGGAGTGAACCCGACGGCCCAGGCTTICTGGATCTATGTACG!
lll[] llZU 1130 ll4U 1150 1160 1170 1180 1190

e e b e b b b b e b b e b b e P e P [y IHHMH:I
CTCA"ACA,ATA ATGATC,GCAACCAG TTTAT ACTC"TGCAJGTAC GGT TACGTGGATCAAT ATTTJTATCA TACT:

pBabe-occF1F.abl (8>887) CTCACAGATATATATGATCIGCAACCAGTTITATACTCCTGGAGGTACTGGTCTCTACGTGGATCAATATTTGTATCACTACTGT]
Exp Full Length.SEQ(1>1650)—> | CTCACAGATATATATGATCTGCAACCAGTTTTATACTCCTGGAGGTACTGGT TACGTGGATCAATATTTGTATCACTACTGT]
pBabe-occF2F.abl (18>802) = | CTCACAGATATATATGATCIGCAACCAGTTTITATACTCCTGGAGGTACTGGTCTCTACGTGGATCAATATTTGTATCACTACTG]]

!
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GATCCCCAGGAGGCTATAGCCATTGTCCTGGGGTTCAT! GATTATCCTJGCT AATCATCTTTTTIGCTGTGA

pBabe—occF1F.abl (8>887) — [ GTGGIIGATCCCCAGGAGGCIATAGCCATIGICCIGGGGTICATGATIATCGIG
Exp Full Length.SEQ(1>1650)=> CCCAGGAGGCTATAGCCATTGTCCTGGGGTTCATGATTATCGTGGCTTTTGC
pBabe—occF2F.abl (18>802) — GATCCCCAGGAGGCTATAGCCATTGTCCTGGGGTTCATGATTATCGTGGCTITTGC
g0 120 1300 1310 1320 1330 1340 1350 1360
ARACCCGAAGAAAGATGCATCCGTATGATAAGTCCARTATT TTGTGGGATAAGGAACACATTTATGAT GAACAGCCCCCCARTGT
Exp Full Length.SEQ(1>1650)— | AAACCCGAAGAAAGAIGGATCGGIAIGATAAGICCAATATITIGIGGGATAAGGAACACAT T IATGAT GAACAGCCCCCCAALG
pBabe-occF2F.abl (18>802) b d ARARCCCGRARGRARAAGATGGATCGGTATGATAAGTCCARATATTTTGTGGGATAAGGRAACACATTTATGATGAACAGCCCCCCAATG
[ 1370 1380 1300 1400 1410 1430 1430 1400
TGARGAGTGGGTTARARATGTGTCTGCAGGCACACAGGACATGCCTCCACCCCCATCTGACTATGCGGARAGAGT TGACAGTCC,
Exp Full Length.SEQ(1>1650)— [ TGAAGAGIGGGTTAAAAATGIGTCIGCAGGCACACAGGACATGCCTCCACCCCCATCTGACTATGCGGARAGAGTTGACAGTCC]
pBabe-occF2F.abl (18>802)  — | TGARGAGTGGGTTAAAAATGTGTCTGCAGGCACACAGGACATGCCTCCACCCCCATCTGACTATGCGGARAGAGTTGACAGTCC
pBabe-occF3F.abl (11>830) = CGGRAA-GAGTTGA-AGICCR
pBabe-occF3R.abl (12>704)  4— AAGAGTTGACAGTCC
1450 1460 1470 1480 1490 1500 1510 1520 1530
IS E T N N R T N T N N |
ATGGCCTACTCCTCCAATGGCAAAGTGAATGGCARGCGATCATACCCAGAGT CTTTCTATAAGTCARCACCTCTGGTGCCTGAAG
Exp Full Length.SEQ(1>1650)=> | ATGGCCTACTCCICCAATGGCAAAGTGAATGGCAAGCGATCATACCCAGAGICTITCTATAAGICAACACCICTGGTGCCTIGAR]
pBabe-occF2F.abl (185802)  => | ATGGCCTACTCCTCCAATGGCAAAGTGAATGGCAAGCGATCATACCCAGAGTCTITCTATAAGTCARCACCTCTGGTGCCTGAAG
pBabe-occF3F.abl (11>830) — | ATGGCCTACTCCTCCAATGGCAAAGTGAATGGCAAGCGATCATACCCAGAGTCTTTCTATAAGTCAACACCTCTGGTGCCTGARG
pBabe-0ccF3R.abl (125704)  ¢— | ATGGCCTACTCCTCCAATGGCAAAGTGAATGGCAAGCGATCATACCCAGAGTCTITGCATAAGTCARCACCTATGGTGCGTGAAG
‘ s40  1sso 150 1570 1580 1580 1600 1610
TGGCCCAGGAGATTCCTCTGACCTTGAGTGTGGATGACTTCAGGCAGCCTCGGTACAGCAGCARTGGTAACCTAGAGACACC
pBabe-occF3R.abl (12>704) -— ‘ TGGCCCAGGAGATTCCTCTGACCTTGAGTGTGGATGAATTCAGGCAGCCTCGGTACAGCAGCAATGGTAACCTAGAGACACC
1620 1630 1640 1650 1660 1670 1680 1690 1700
NI n L s lve e e b by P ol oy Pl I NI B
T ARRAGGGCTCCCACGARGGEGARAGCAGGARAGGCARGAGGACGGACCCTGAC CACTAT GAARCAGACTAC ACCA\ AGGTGGG
Exp Full Length.SEQ(1>1650)— | TARRAGGGCICCCACGAAGGGGARAGCAGGAAAGGGCARGAGGACGGACCCIGACCACTATGARACAGACTACACGACAGGTGG!
pBabs-occF3F.abl (11>830) —3 | TARRAGGGCTCCCACGAAGGGGARAGCAGGAAAGGGCAAGAGGACGGACCCTGACCACTATGARACAGACTACACGACAGGTGE
pBabe-occF3R.abl (12>704) «— TRRARAGGGCTCCCAAGAAGGGGARAGCAGGAAAGGGCAAGAGGACGGACCATGATCCCTATGRARACAGRAATACALGACAGGTGG!
[ Imo 1720 1730 1740 1780 1760 1770 1780
GAGTCCTGCGAGGAGCTGGAGGAGGACTGGGTCAGGGAATATCCACCTATCACTT CAGAT CAACAAAGACAACT CTACAAGAGAA
Exp Full Length.SEQ(1>1650)— [ GAGICCTGCGAGGAGCTGGAGGAGGACTGGGTCAGGGAATATCCACCTATCACTICAGATCARCARAGACAACT CTACAAGAGAY
pBabe-occF3F.abl (11>830) —3 | GAGTCCTGCGAGGAGCTGGAGGAGGACTGGGTCAGGGAATATCCACCTATCACTTCAGATCARCARAGACAACT CTACAAGAGAA
pBabe-occF3R.abl (12>704) €= | GAGTCCTGGGAGGAGCTGGAGGAGGATTGGGTCAGGGAATATCCACCTCTCACTTCAGATCAACAAAGACAACTATACAAGAGAN
1790 1800 1810 1820 1830 1840 1850 1860 1870
vl b b b b b b b by b b b b b b ea b |
ATTTTGATGCAGGTCTGCAGGAGTATAAGAGCTTACAGGCAGARCTAGACGACGT CAATAAAGAGCTCTCTCGTCTAGATAARGA
Exp Full Length.SEQ(1>1650)=> | ATTTIGAIGCAGGICIGCAGGAGIATARGAGCTIACAGGCAGRACTAGACGACGT CARTARAGAGCICICICGICTAGATARAGH
pBabe—occF3F.abl (11>830) — ATGCAGGTCTGCAGGAGTATAAGAGCTTACAGGCAGAACTAGACGACGTCAATAAAGAGCTCTCTCGTCTAGATARAGH
pBabe—occF3R.abl (12>704) €= | ATTITGATGCAGGTCTGCAGGAGTATAAGAGETTACAGGCAGAACTAGACGACGTCAATARAGAGCTCTICTCGTCTAGATARAGH
| | | 1 | 1 | Ll | 9\20 | Ll | il | | |
GCTGGATGACTACAGAGAGGAGAGTGAAGAGTACATGCCTGCTGCTGATGAATATAATAGACTAAAGCARGTTAAGGGATCTGCA
Exp Full Length.SEQ(1>1650)— | GCIGGAIGACIACAGAGAGGAGAGIGAAGAGIACATGGCIGCIGCIGATGAATATARTAGACTARAGCAAG
pBabe-occF3F.abl (11>830) = | GCTGGATGACTACAGAGAGGAGAGTGAAGAGTACATGGCTGCTGCTGAT
pBabe—occF3R.abl (12>704)  ¢— | GATGGAAGACTACAGAGAGGAGAGTGAAGAGTACATGGCTGCTCATGATGAATATAATAGATTAAAGCAAGTTAAGGGATCTCL
1960 1970 1980 1990 2000 2010 2020 2030 2040
sl b b b b ey \wwww\wwww\llww\wwll\wwww\wHw\lwu\ulw\uu\uu\
GATTATAAAAGTAAGAGGAATTACTGCAAGCAGTTGAAGAGCAAATTATCGCACATCAAGAGGATGGT GGGAGATTATGACAGAC
Exp Full Length.SEQ(1>1650)— [ GATTATARAAGTAAGAGGAATTACIGCAAGCAGT IGARGAGCAAAT TATCGCACATCAAGAGGATGGT GGGAGAT TATGACAGA
pBabe-occF3F.abl (11>830)  =—> | GATTATAARAGTAAGAGGAATTACTGCAAGCAGTTGAAGAGCARATTATCGCACATCARGAGGATGGTGGGAGATTATGACAGA
pBabs-occF3R.abl (12>704)  — | GATTATAAAAGTAAGAGGAATTACTGCAAGCAGTTGAAGAGCAAATTATCGCACATCAAGAGGATGGTGGGAGATTATGACAGA
| 2080 2080
GGARACCTT. AGAqAGATCCCACT G
Exp Full Length.SEQ(1>1650)— [ GGAAACCTTAGAGAGATGCCAGTITGCA
pBabe-occF3F.abl (11>830)  — | GGARACCTTAGAGAGATGCCAGTTGCA
pBabe-occF3R.abl (12>704) €= | GGARACCTTAGAGAGATGCCAGTTGCA

Figure E.3: Sequence of FLAG-tagged occludin in pBABEpuro. DNA se-
quences were prepared and sent to TGAC for sequencing. The expected sequence was
aligned to the sequence obtained from the plasmid vector DNA (top lines) using the
primers shown. Differences are highlighted in red.
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Appendix F

Recombinant occludin fragments

T7 terminal - 477

T7 promoter - 1115

Pet3a+ECL1-ECL2

5084 bp

Figure F.1: Pet3a+ECL1-ECL2 plasmid map
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3.:) 360

AT P ST RN b
TATA' CATATGGCTTCCACACTTCC!
«— [ TAAGRAGGAGATATACACATATGGCTTCCACAC
— | TAACAAGGAGATATACACATATGGCTTCCACACT
-

TAAGAAGGAG:

E3TTR_919 AO4.abl(l6>88
E3TT7F_919 B04.abl(24>812
exp ECL-1to ECL-2

GCCTAAACT|
GAGGAAGCCTARACT|
CTCTTTGGAGGRAAGCCTARACT

450

E3TTR_519 A04.abl(16>8
E3T7F_919_B04.abl(2 45812
exp ECL-1Fo0 ECL-2.SEQ (1>

ACCCTTATAGTGGCTTTGGCTACGGAGGT G
CTTATAGT TTTGGCTACGGAGGTG!

\l\""
m

CTTCTG! LTT CATCH lmTTL'JTTAIwTAATATTTCleALLAIwTCTTATAP
TTCTGCTTCATCC TCCTTAGTAATATTTGTGACCAGTGTTATAN

E3T7R_919 R04.abl(16>883) — “TGGGCATCR
E?T7F 919 B04.abl(24>812) b d CAAGAAGATATTACTIGATCGTIGATCATAGTCAGCGCTATCCTGGGCATCA
exp ECL-1F0 ECL- 2.8EQ(1>466)— lwATLTI:[JAATh CCAGGACAAGAAGATATTACTTGATCGTGATCATAGTCAGCGCTATCCTGGGCATCATGGTGTTTAT! CZ'CP
720 . 730 7£|_ 0 . 7.? 0

GA! TCTGGATCTATGTACGGCTCACAGATATATATGATCTGCAAC
E3TTR_919_RA04. letlo>ud ) - CG CCCGACG CAGGCTTCTGGATCTATGTACGGCTCACAGATATATATGATCTGCAAC
E'\T7F 919 B04.abl(24>812) —_ SATCGTGTACATAATG AACCCGACGGCCCAGGCTTCTGGATCTATGTACGGCTCACAGATATATATGATCTGCAAC
exp ECL-1to E,L—_,,_EQ(1>L_ 66)=—> GATCGTGTACATAATGGGAGTGAACCT CCCAGGCTTCTGEATCTATGTACGGCTCACAGATATATATGATCTGCRACH

E3TTR_%1%_R04.abl 110)553) €¢— | AGTTTTATACTCCTGGAGGTACTGGTCTCT,
E?T7F 919 _BO04. Libl (2 2) — | AGTTTTATACTCCTGGAGGTACTGGTCTCTACG
exp ECL-1to ECL-2. LEQ 1>466)—) AGTTTTATACTCCTGGAGGTACTGGTCTCTACG

TLAATATTTVTAT'.AZTA'.T\_TI TVCTThATC’
GATCAATATTTGTATCACTACTGTGTGGTTGATCCCCAGG

ACCGCTGAGCAATAACTAGCATAACC

%00 91
1

CCLLTLT

E3TTR_919_A04.abl(16>88
E3T7F_919 B04.abl (24>812

CGAAAG-AAGC

— 5
—> | CCGGCTGCTAACAAAGCCCGAAAGGAAGCTGAGTTGGCTGCTGCCACCGCTGAGCAATAACTAGCATAACCCCTTGGGGCCTC TI

GTCGCCATGATCGCGTA
TTTTTGCTGARAGGAGGAACTATATCCGGATATCCACAGGACGGGTGTGGTC ATI:ATU_«ZT:TA

930 940 95 96 970
....|....|....|....|....|....|....|. Ligaglyy

AAACGGGTCTTGAGGGGTTTTTTGCTGARAGGAGGAACTATATCCGGATATCCAC,
E3T7F_919 B04.abl(24>812) —> | AAACGGGTCTTGAGGE

Figure F.2: Sequence of ECL1+ECL2. The DNA sequence of ECL1-ECL2 was
amplified from the FLAG-tagged occludin pBABEpuro vector and inserted into a
Pet3a plasmid vector. The sequence was verified at TGAC and confirmed a 100%
identity match between observed (top and middle) and expected (bottom) sequences,
using T7F and T7R primers.
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Appendix G

Plasmid Map for pBABEpuro plasmid

vector containing shRNA

| -~ SetlR - 1333
' shRNA - 1349

|- ™ se3RD - 1410

|LTR approxl |psi plus pacigag turn

shRNA in pBABEpuro
5195 bp

GC*% in 12 bp blocks

& (16 25 33 M 50 58 [ e6 |75 83 e

(a) Primers for stRNA

2 210 2 230 250 26
sl b e b b by e el by

CTTTCCACACCCTAACTGACACACAT’ AT ATCCAAAAAGTGAAGAGTA
CTTTCCACACCCTAACTGACACACAT :I

180

CAGGGTCGACT!
CAGGGTCGACT!

ShRNA SetlF.abl(1>379) ¢é— [ C

ShRNA b.abl (10>659)—> | CTGGGGAGCCTG CTTTCCACACCCTAACTGACACACATTC
Exp shRNA.SEQ(1>58) — caaaaagtgaagagtsg
270 280 290 00 0 20 330 340 350
Lo b ben o b b Lo Lo Loy vl b b b b by b Ly
CATGGCT CTCTTGAAGCAGCCATGTACTCTT! 3y CCTAGAGAAGG: GGATCGAGGCGG
AGGAT!

CCTAGAGAAGG!

1F.abl (1»>379) ¢€— | CATGGCT!
CCTAGAGAAGGE

3Rb.abl (10>659)—> [ CATGGCT
LSEQ(1>58) | _catgget

AGGATCG.

(b) Sequence of shRNA in pBABEpuro. The expected sequence was aligned to the
sequence obtained from the plasmid vector (top lines) using the primers shown.

Figure G.1: shRNA in pBABEpuro

220



Appendix H

Comparison between fixation methods

Figure H.1: Comparison between fixation with 2% PFA and acetone. Cells
and parasites were fixed with either 2% paraformaldehyde (A and C) or acetone (B
and D). Cells were stained for occludin (red) and YFP T.gondii are shown in green.
PFA shows a higher background of occludin staining which is also present in the
nucleus, and the parasites are also clear to see. Acetone emphasises the membrane
bound occludin staining, but destroys the ability to visualise the parasites. The
images are from different inserts within an experiment. Scale bar represents 20um.
Magnification 40x.



Appendix I

Cell culture inserts

—

Figure I.1: FITC-dextran stained pores on the cell culture insert. Pores can
be seen as green circles on the membrane. The green staining could be FITC-dextran
which has become associated with the pores. Tests were carried out to confirm that
this did not make a difference to TEER measurements from the cells.
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Appendix J

Comparisons between live and dead par-

asites

Live Dead

10° 107
102
5 ]
<L 5 g
L o 10 0
o 3 3
[Z] (2}
o
10° 10 3 Dead
E 98.27% Red+
1 2.20%
T T T T T ]l) T r1 T 12 T ,
10° 10' 10° 10° 10 10 10 10
Red (fl4, 660nm-690nm) Red (fl4, 660nm-690nm)
10° 4 - 10° 4
10° 10° -
q) H ] 5
c § 1 ]
(@] o 10 o ]
e} 8 3 3
UV @ @
o 0
< 10" Dead J
3 38.31% Red+ E 95.38% Red+
6.66% ] 10.15%
LAAAY | T T T T LRAb | LA | T T T
0 1 2 3
10 10 10 10 10 10 10° 10
Red (fl4, 660nm-690nm) Red (fl4, 660nm-690nm)

Figure J.1: Comparison between fixation methods and composition of a
parasite population. A live/dead fixable red dye was added to live or dead parasites
for 10 minutes. The parasites were fixed in either 2% PFA or acetone. The results
confirm that the parasites were killed by freezing and heating, and that in any given
population ~ 70% of parasites are alive. Red gating shows aggregates of parasites.
Data represents 1 of 2 independent experiments.
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Appendix K

Mass spectrometry data

Non infected and infected cell lysates were precipitated for occludin and
subjected to gel electrophoresis. Murine and 7. gondii databases were
searched by Alex Jones (Sainsbury Laboratory, Norwich, UK) using a
peptide mass tolerance of 15ppm and a fragment mass tolerance of 0.6 Da
within MASCOT (Matrix Science) software. Number of peptide matches
are shown along with peptide scores (only significant proteins are shown,
and scores indicate logarithmic probablilites towards identity or extensive
homology to known proteins). CM - cell metabolism, CR - cell response
proteins, CY - cytoskeletal and microtubule-related, PR - protein regu-
lators, TG - T. gondii derived. Proteins include data obtained from two

independent immunoprecipitations.
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