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A Schanuel property for exponentially transcendental powers

Martin Bays, Jonathan Kirby and A. J. Wilkie

Abstract

We prove the analogue of Schanuel’s conjecture for raising to the power of an exponentially
transcendental real number. All but countably many real numbers are exponentially transcen-
dental. We also give a more general result for several powers in a context which encompasses the
complex case.

1. Introduction

We prove a Schanuel property for raising to a real power as follows.

Theorem 1.1. Let λ ∈ R be exponentially transcendental, and let y1, . . . , yn ∈ R>0 be
multiplicatively independent. Then

td(y1, . . . , yn, yλ
1 , . . . , yλ

n/λ) ! n.

Here and later, td(X/Y ) denotes the transcendence degree of the field extension
Q(X,Y )/Q(Y ) for subsets X and Y of the ambient field, in this case R. To say that y1, . . . , yn

are multiplicatively independent means that if m1, . . . ,mn ∈ Z and
∏

ymi
i = 1, then mi = 0

for each i. We will write y for the tuple (y1, . . . , yn), and also for example ey for (ey1 , . . . , eyn)
and yλ for (yλ

1 , . . . , yλ
n). The usual exponential function exp : R → R makes the reals into an

exponential field, formally a field of characteristic zero equipped with a homomorphism from its
additive to multiplicative groups. In any exponential field 〈F ; +, ·, exp〉, we say that an element
x ∈ F is exponentially algebraic in F if and only if there is n ∈ N, x = (x1, . . . , xn) ∈ Fn,
and exponential polynomials f1, . . . , fn ∈ Z[X, eX ] such that x = x1, fi(x, ex) = 0 for each
i = 1, . . . , n, and the determinant of the Jacobian matrix





∂f1

∂X1
· · · ∂f1

∂Xn

...
. . .

...
∂fn

∂X1
· · · ∂fn

∂Xn





is nonzero at x. If x is not exponentially algebraic in F we say it is exponentially transcendental
in F . More generally, for a subset A of F , we can define the notion of x being exponentially
algebraic over A with the same definition except that the fi can have coefficients from A.
For example, any algebraic number is exponentially algebraic, taking n = 1 and f1 to be its
minimal polynomial. It is easy to see that e and π are exponentially algebraic. Observe that
the non-vanishing of the Jacobian in the reals means that x is an isolated zero of the system of
equations, and hence all but countably many real numbers are exponentially transcendental.

Received 10 November 2008; revised 4 January 2010; published online 4 August 2010.

2000 Mathematics Subject Classification 11J91, (03C64).

The second author was supported by EPSRC fellowship EP/D065747/1.



918 MARTIN BAYS, JONATHAN KIRBY AND A. J. WILKIE

Thus a consequence of Theorem 1.1 is that the numbers λ, λλ, λλ2
, λλ3

, . . . are algebraically
independent for all but countably many λ, although, unfortunately, one does not know any
explicit λ for which this is true.

This paper contains a complete proof of Theorem 1.1, assuming only some knowledge of
o-minimality from the reader (and using a theorem of Ax). The paper [3] of the second author
develops the theory of exponential algebraicity in an arbitrary exponential field, and, using
that, we can prove a more general theorem.

Theorem 1.2. Let F be any exponential field, let λ ∈ F be exponentially transcendental,
and let x ∈ Fn be such that exp(x) is multiplicatively independent. Then

td(exp(x), exp(λx)/λ) ! n.

Theorem 1.1 follows from 1.2 by taking xi = log yi.
We define the exponential algebraic closure ecl(A) of a subset A of F to be the set of x ∈ F

that are exponentially algebraic over A. In [3] it is shown that ecl is a pregeometry in any
exponential field, and hence we have notions of dimension and independence. We also prove
a general Schanuel property for raising to several independent powers, which uses a slightly
subtle notion of relative linear dimension. For any subfield K of F , we can think of F as a
K-vector space. For subsets X, Y of F , consider the K-linear subspaces 〈XY 〉K and 〈Y 〉K of F
generated by X ∪ Y and Y , respectively. We define ldimK(X/Y ) to be the K-linear dimension
of the quotient K-vector space 〈XY 〉K / 〈Y 〉K .

Theorem 1.3. Let F be any exponential field, let ker be the kernel of its exponential map,
let C be an ecl-closed subfield of F, and let λ be an m-tuple which is exponentially algebraically
independent over C. Then for any tuple z from F :

td(exp(z)/C, λ) + ldimQ(λ)(z/ ker) − ldimQ(z/ ker) ! 0.

The reader who is interested only in the real case may ignore all the references to [3]. On
the other hand, the reader who is unfamiliar with o-minimality may prefer to ignore that part
of this paper and instead refer to the algebraic proof of Proposition 2.1 in [3].

2. A Schanuel property for exponentiation

We need the following relative Schanuel property for exponentiation itself.

Proposition 2.1. Let F be an exponential field and let λ ∈ Fm be exponentially
algebraically independent. Let B ⊆ F be such that B ∪ λ is a basis for F with respect to
the pregeometry ecl. Let C = ecl(B). Then for any z ∈ Fn,

td(λ, z, exp(λ), exp(z)/C) − ldimQ(λ, z/C) ! m.

Proof. Theorem 1.2 of [3] states that td(λ, z, exp(λ), exp(z)/C) − ldimQ(λ, z/C) is at least
the dimension of the (m + n)-tuple (λ, z) over C with respect to the pregeometry ecl. Since λ
is ecl-independent over C by assumption, this dimension is at least m.

We give a more direct proof of Proposition 2.1 in the real case. Firstly, by Theorem 4.2 of
[2], a real number x is in the exponential algebraic closure ecl(A) of a subset A of R if and only
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if it lies in the definable closure of A in the structure Rexp = 〈R; +, ·, exp〉. Definable closure is
always a pregeometry in an o-minimal field, so ecl is a pregeometry on Rexp.

For each i = 1, . . . , m, let Ki = ecl(B ∪ λ ! λi), so C =
⋂m

i=1 Ki. Then for each i, λi /∈ Ki,
but for each a ∈ R there is a function θ : R → R, definable in Rexp with parameters from Ki,
such that θ(λi) = a. By o-minimality of Rexp, θ is differentiable at all but finitely many x ∈ R,
and hence this exceptional set is contained in Ki. Thus θ is differentiable on an open interval
containing λi. Suppose that ψ : R → R is another such function with ψ(λi) = a. Again by o-
minimality, the boundary of the set {x ∈ R | ψ(x) = θ(x)} is finite and contained in Ki, so θ
and ψ agree on an open interval containing λi. It follows that there is a well-defined function ∂i :
R → R which sends a to (dθ/dx)(λi), where θ is any function definable in Rexp with parameters
from Ki such that θ(λi) = a. It is straightforward to check that ∂i is a derivation on the field
R, with field of constants Ki. Furthermore, we also clearly have that ∂i(exp(a)) = ∂i(a) exp(a)
for any a ∈ R, and that ∂i(λj) = δij , the Kronecker delta.

By Ax’s Theorem [1, Theorem 3], td(λ, z, exp(λ), exp(z)/C) − ldimQ(λ, z/C) is at least the
rank of the matrix




∂1z1 · · · ∂1zn ∂1λ1 · · · ∂1λm

...
...

...
...

∂mz1 · · · ∂mzn ∂mλ1 · · · ∂mλm





which is m since the right half is just the m × m identity matrix. That completes the proof of
Proposition 2.1 in the real case. The general case works the same way, but a different and much
more involved argument is used in [3] to produce the derivations ∂i without using o-minimality.

3. Linear disjointness

The other key ingredient in the proofs is the concept of linear disjointness. We briefly recall
the definition and some basic properties.

Definition 3.1. Let F be a field, and let K, L and E be subfields of F with E ⊆ K ∩ L.
Then K is linearly disjoint from L over E, written K⊥EL, if and only if every tuple k of
elements of K that is E-linearly independent is also L-linearly independent.

Lemma 3.2. Linear disjointness has the following basic properties:

(i) K⊥EL if and only if L⊥EK;
(ii) K⊥EL if and only if for any tuple l from L, ldimK(l) = ldimE(l);
(iii) if k is algebraically independent over L, then E(k)⊥EL.

Proof. (i) and (ii) are straightforward and (iii) is Proposition VIII 3.3 of [4].

Lemma 3.3. Suppose K⊥EL. Then for any tuple x from F and any subset A ⊆ L,

ldimK(x/L) − ldimE(x/L) " ldimK(x/A) − ldimE(x/A).

Proof. Let l ∈ L be a finite tuple such that ldimK(x/lA) = ldimK(x/L) and ldimE(x/lA) =
ldimE(x/L).
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Now:

ldimK(x/A) − ldimK(x/lA) = ldimK(l/A) − ldimK(l/xA) (by the addition formula)
= ldimE(l/A) − ldimK(l/xA) (by Lemma 3.2(ii))
! ldimE(l/A) − ldimE(l/xA)
= ldimE(x/A) − ldimE(x/lA) (by the addition formula).

4. Proofs of the main theorems

Proof of Theorem 1.3. By Proposition 2.1, for any tuple z from F we have:

td(z, exp(z), λ, exp(λ)/C) − ldimQ(z, λ/C) ! m.

Expanding using the addition formula gives

td(λ/C) + td(z/C, λ) + td(exp(z)/C, λ, z)
+ td(exp(λ)/C, λ, z, exp(z)) − ldimQ(λ/C, z) − ldimQ(z/C) ! m.

Since λ is algebraically independent over C, we have td(λ/C) = m, and we deduce

td(z/C, λ) + td(exp(z)/C, λ) + td(exp(λ)/C, exp(z))
− ldimQ(λ/C, z) − ldimQ(z/C) ! 0. (4.1)

We also have:

td(exp(λ)/C, exp(z)) " ldimQ(λ/C, z) (4.2)

because if λ1, . . . , λt form a Q-linear basis for λ over (C, z), then for i > t, exp(λi) is in the
algebraic closure of (C, exp(z), exp(λ1), . . . , exp(λt)). A similar argument shows

td(z/C, λ) " ldimQ(λ)(z/C) (4.3)

since if zi is in the Q(λ)-linear span of (z1, . . . , zt, C) then zi is in the algebraic closure of
(C, λ, z1, . . . , zt).

Combining (4.1) with (4.2) and (4.3) gives

td(exp(z)/C, λ) + ldimQ(λ)(z/C) − ldimQ(z/C) ! 0.

By Lemma 3.2(iii), Q(λ) is linearly disjoint from C over Q. Also ker ⊆ ecl(∅) ⊆ C, so, by
Lemma 3.3,

td(exp(z)/C, λ) + ldimQ(λ)(z/ ker) − ldimQ(z/ ker) ! 0

as required.

Proof of Theorem 1.2. By Theorem 1.3, taking z = (x, λx),

td(exp(x), exp(λx)/λ) ! ldimQ(x, λx/ ker) − ldimQ(λ)(x, λx/ ker)
= ldimQ(x/ ker) + ldimQ(λx/x, ker) − ldimQ(λ)(x/ ker)
= n + ldimQ(λx/x, ker) − ldimQ(λ)(x/ ker).

Thus it suffices to prove that ldimQ(λx/x, ker) ! ldimQ(λ)(x/ ker). Let k be a finite tuple
from ker such that ldimQ(λx/x, ker) = ldimQ(λx/x, k) and ldimQ(λ)(x/ ker) = ldimQ(λ)(x/k).

Let A0 :=
〈
λx, k

〉
Q. Then ldimQ(λx, k/x, λ−1k) = ldimQ(A0/A0 ∩ λ−1A0). Inductively

define Ai+1 := Ai ∩ λ−1Ai for i ∈ N. Suppose for some i that Ai+1 = Ai. Then multiplication
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by λ induces a Q-linear automorphism of Ai. It follows that for any f(λ) ∈ Q[λ], multiplication
by f(λ) is a Q-linear endomorphism of Ai. This endomorphism has trivial kernel because f(λ)
is not a zero divisor of the field (unless f(λ) = 0), and Ai is finite-dimensional, so it is invertible.
Its inverse must be multiplication by f(λ)−1, and hence Ai is a Q(λ)-vector space. Since λ is
transcendental, ldimQ Q(λ) is infinite, so Ai = {0}. So ldimQ Ai+1 < ldimQ Ai unless Ai = {0}.
Thus for some N ∈ N we have AN = {0}.

For each i we have a chain of subspaces Ai+1 ⊆ Ai+1 + λAi+1 ⊆ Ai, so

ldimQ(Ai/Ai+1) = ldimQ(Ai/Ai+1 + λAi+1) + ldimQ(Ai+1 + λAi+1/Ai+1)
= ldimQ(Ai/Ai+1 + λAi+1) + ldimQ(λAi+1/Ai+1 ∩ λAi+1)
= ldimQ(Ai/Ai+1 + λAi+1) + ldimQ(λAi+1/λAi+2)
= ldimQ(Ai/Ai+1 + λAi+1) + ldimQ(Ai+1/Ai+2).

Thus inductively we obtain

ldimQ(A0/A1) =
N∑

i=0

ldimQ(Ai/Ai+1 + λAi+1).

Now for each i,

ldimQ(Ai/Ai+1 + λAi+1) ! ldimQ(λ)(Ai/Ai+1 + λAi+1) = ldimQ(λ)(Ai/Ai+1),

hence

ldimQ(A0/A1) !
N∑

i=0

ldimQ(λ)(Ai/Ai+1) = ldimQ(λ)(A0),

that is, However,

ldimQ(λx, k/x, λ−1k) ! ldimQ(λ)(x, λ−1k). (4.4)

But

ldimQ(λ)(x, λ−1k) = ldimQ(λ)(x, k) = ldimQ(λ)(x/k) + ldimQ(λ)(k) (4.5)

and

ldimQ(λx, k/x, λ−1k) " ldimQ(λx, k/x)
= ldimQ(λx/k, x) + ldimQ(k/x)
" ldimQ(λx/k, x) + ldimQ(k)
= ldimQ(λx/k, x) + ldimQ(λ)(k), (4.6)

the last line holding by Lemma 3.2(ii), since Q(λ)⊥QC and k ⊆ ker ⊆ C.
Putting together (4.4), (4.5), and (4.6) gives ldimQ(λx/x, ker) ! ldimQ(λ)(x/ ker) as

required.

References

1. J. Ax, ‘On Schanuel’s conjectures’, Ann. of Math. (2) 93 (1971) 252–268.
2. G. O. Jones and A. J. Wilkie, ‘Locally polynomially bounded structures’, Bull. Lond. Math. Soc. 40 (2008)

239–248.
3. J. Kirby, ‘Exponential algebraicity in exponential fields’, Bull. Lond. Math. Soc. 42 (2010) 879–890.
4. S. Lang, Algebra (Addison-Wesley, Reading, MA, 1993).



922 EXPONENTIALLY TRANSCENDENTAL POWERS

Martin Bays and Jonathan Kirby
Mathematical Institute
University of Oxford
24–29 St Giles’
Oxford
OX1 3LB
United Kingdom

Jonathan Kirby
Current address:
School of Mathematics
University of East Anglia
Norwich
NR4 7TJ
United Kingdom

jonathan.kirby@uea.ac.uk

A.J. Wilkie
School of Mathematics
University of Manchester
Oxford Road
Manchester
M13 9PL
United Kingdom


	1. Introduction
	2. A Schanuel property for exponentiation
	3. Linear disjointness
	4. Proofs of the main theorems
	References

