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Abstract 

Autophagy is activated in cells during nutrient deprivation and results in the formation of 

small double-membrane vesicles, known as autophagosomes. Autophagosomes deliver cytoplasmic 

contents to lysosomes for degradation. This provides a short term supply of amino acids that 

maintain cellular processes during starvation. Autophagosomes form following activation of the class 

III PI 3-kinase (Vps34), and translocation of the autophagy protein LC3 from the cytosol to the 

limiting membrane of the autophagosome. Autophagy can be visualised by following the 

redistribution of diffuse LC3 to small dots or ‘LC3 puncta’ in the cytoplasm. Interestingly, recent work 

has provided evidence for another pathway of LC3 translocation where LC3 becomes incorporated 

into large perinuclear tubulo-vesicular autophagosomes (TVAs). This thesis demonstrates that the 

formation of TVAs is triggered by the presence of non-viral DNA delivery vectors which include 

cationic liposomes frequently used for transfection. 

In this study I have compared starvation-induced autophagosomes to TVAs. TVAs were 

induced by incubating cells with cationic liposomes. Live cell imaging experiments showed that TVAs 

formed from small LC3 positive punctae which became tubulated, and moved in a microtubule-

dependent manner towards the perinuclear region of the cell. Incubation of cells with cationic 

liposomes impaired fusion of LC3 positive TVAs with lysosomes and slowed degradation and 

recycling of LC3. The TVAs therefore remained in the cytoplasm for prolonged periods. In common 

with starvation-induced autophagosomes, TVAs recruited lipidated LC3 and required Atg5 for their 

formation; however unlike autophagosomes they formed in absence of starvation. The TVAs were 

insensitive to wortmannin, and the knock-down of beclin-1, indicating that TVAs did not require the 

PI 3-kinase complex signalling.  

TVA formation was prevented when clathrin-mediated endocytosis (CME) was inhibited, 

either by dominant negative Rab5 or by pharmacological inhibitors such as dynasore and 

chlorpromazine.  These results indicted a role for the CME in TVA formation. 

In conclusion, this thesis shows that TVA formation results from an overlap between 

autophagy and CME. The hypothesis that ‘the autophagy pathway senses cationic liposomes 

entering cells via CME and forms modified autophagosomes that differ in composition, morphology 

and longevity to starvation-induced autophagosomes’ is discussed.   
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AMP – adenosine monophosphate 

AMPK – AMP activated kinase 

ATG/Atg – autophagy gene/protein 

ATP – adenosine triphosphate 
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1.1 Aims of the Study –  

 Autophagy is a conserved pathway which plays a role in the supply of nutrients 

during starvation which is important for cell survival. There is recent evidence to support a 

role for autophagy in the innate immune response as it is activated during viral and non-viral 

entry into cell. There is evidence emerging from Gao et al (2008) that nanomaterials 

including non-viral DNA delivery vectors can activate autophagy. Cationic liposomes that are 

for transfection which activate autophagy produce autophagosomes that are 

morphologically different to starvation-induced autophagosomes.    

The aims of this study –  

→ To determine which markers can be use to indicate the induction of canonical 

autophagy in response to starvation, and characterisation of autophagic response 

using both fluorescence microscopy and Western blot analysis. 

→ To establish which non-viral gene delivery vectors activate autophagy, using the 

above markers to monitor induction, and to characterise this response with respect 

to the canonical autophagic pathway. 

→ To compare non-viral vector to other cellular responses to determine if they overlap 

with the autophagy pathway in producing a response. 

→ To learn the mechanism by which non-viral gene delivery vectors enter cells and 

activate autophagy using pharmacological inhibitors to prevent cellular uptake to 

determine which route plays a role in entry and to see if this affects the response to 

the non-viral gene delivery vectors.  

 

The introduction will illustrate canonical autophagy, and discuss the specifics of its 

activation, the signalling pathway and the formation of autophagosomes. Following this, 

the introduction will move into nanotheranostics, an area with increasing interest for 

using nanoparticles to imaging, diagnose and treat patients with various pathologies. 

This section will highlight how autophagy can be activated by a number of these 

particles and the importance of understanding its role.  
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Chapter 1 – Introduction: 

1.2 Autophagy - 

Autophagy is a catabolic process in which proteins and organelles are sequestered 

for degradation in lysosomes. It is conserved through from simple eukaryotes such as yeast 

to higher eukaryotes such as humans where it has developed multiple functions. Cells have 

a basal level of autophagy however autophagy increases dramatically following a number of 

intra- and extracellular stimuli such as nutrient deprivation, accumulation of mis-folded 

proteins, damaged organelles and oxidative stress (Yorimitsu and Klionsky 2005). Three 

forms of autophagy are described as macroautophagy, microautophagy and chaperone-

mediated autophagy. Macroautophagy, commonly referred to as autophagy, is the subject 

of this study, involves the formation of double membrane vesicles known as 

autophagosomes which fuse with lysosomes (figure 1.1).   

 

Figure 1.1 – the formation of autophagosomes and fusion with lysosomes 

This pathway is triggered by a number of stimuli including starvation; resulting in digestion 

of the contents of the autophagic vesicle or autophagosome, and generates amino acids to 

counteract the effects of nutrient deprivation. In contrast, microautophagy occurs when the 

lysosomal membrane sequentially invaginates and sequesters portions of the cytoplasm for 

degradation (Kunz et al 2004). Chaperone-mediated autophagy also takes place at the 

Endosome Lysosome

Phagophore Autophagosome

Amphisome

Autolysosome
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lysosomal membrane and requires chaperone proteins which interact with targeting 

sequences on cargo proteins in order for them to translocate across the lysosome 

membrane (Bandyopadhyay et al 2009). There is also growing evidence for autophagy 

involvement as an innate immune response in higher eukaryotes, whereby the process may 

have originally been implicated as a stress response to nutrient depravation, it has now 

evolved for the removal of invading pathogens and selective degradation of protein 

aggregates. 

1.2.1 Origins and the Production of the Autophagosome Membrane -  

 Autophagy is a dynamic process involving a number of steps and numerous 

components. Genes implicated in autophagy are denoted ATG and their proteins are named 

using Atg for autophagy-related (Klionsky et al 2003, Klionsky 2005; Mizushima 2007). To 

date at least 30 genes involved in the different stages of autophagy have been identified 

from yeast genetic screens and many homologues have been identified in higher eukaryotic 

organisms where the autophagy pathway has developed multifaceted functions and 

overlaps with other pathways such as the ubiquitin-proteasome system, endocytosis and 

apoptosis. Autophagy has been intensively studied in yeast and much of its mechanics and 

signalling components have been identified in this system. A major challenge has been 

determining the origin of the autophagosome membrane in mammalian systems. The first 

electron microscopy (EM) studies from Dunn concluded that the membranes must be 

derived from pre-existing structures such as the ER (Dunn 1990a and b). This is supported by 

more recent electron tomography studies showing that the ER forms a scaffold, or cradle, 

for the growing autophagosome membrane (Axe et al 2008, Hayashi-Nishino et al 2009). 

Another paper by Hailey et al (2010) shows the mitochondria as a source for 

autophagosome membrane, suggesting this organelle contributes as much as the ER 

membrane to autophagosome formation. Similarly, inhibition of endocytosis has a 

detrimental effect on autophagy, reducing the number of autophagosomes; suggesting that 

the plasma membrane may provide membrane for autophagosomes (Ravikumar et al 2010). 

The contribution of membranes from several organelles to the phagophore need not be 

mutually exclusive; it is possible that depending on the conditions and the stimulus, they 

may all contribute to the formation of autophagosomes. It is possible that different stimuli 

will activate formation of autophagosomes from different sources, and this will also 
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determine the cargo which is sequestered. The current model proposed for the formation of 

autophagosomes from the ER is the ‘cradle model’ (Hayashi-Nishino et al 2009, Matsunga et 

al 2010). See figure 1.2 below. The induction of autophagy and the subsequent deformation 

of the ER membrane is due to the localisation of a number of autophagy proteins to the site, 

and begins with the recruitments of Atg14, and Atg6 also known as beclin-1 which is part of 

a PI(3)-kinase complex. It is the localisation of a PI(3)K complex to specific sites at the ER and 

an increase in PI(3)P production which recruits lipid binding proteins containing Fab 1, YOTB, 

Vac 1 (vesicle transport protein), and EEA1 (FYVE) domains such as double FYVE-containing 

protein 1 (DFCP1) and WD-repeat protein interacting with phosphoinositides (WIPI) (Atg18) 

to provide a scaffold for assembly of further Atg proteins.  

 

 

Figure 1.2 – Formation of Autophagsomes at the ER – (modified from Tooze and Yoshimori 2010) - induction 

of autophagy results in a localisation of the PI 3-kinase complex to specific sites at the ER and an increase in 

PI(3)P production which recruits DFCP1 and WIPI proteins to provide a scaffold for further Atg proteins to 

assemble (A). The formation of the isolation membrane and subsequent elongation is supported by the ER, 

and the formation of the omegasome. Once closure of the membrane has occurred the autophagosome can 

leave and traffic through the cytoplasm.  
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During nutrient depletion amino acid levels fall in the cytoplasm and this signals a 

starvation signal which will result in Atg14 localisation to the ER, recruiting the PI 3-kinase 

complex. Atg14 is an essential protein as part of the PI 3-K complex interacting with beclin-

1, and localises this complex to the phagophore site for the localised generation of PI(3)P 

(Matsunaga et al 2010). The generation of PI(3)P will recruit proteins containing FVYE 

domain such as WIPI and DFCP-1 to the ER. This results in a fragment of the ER cisternae 

surrounds a portion of the cytoplasm. The isolation membrane (IM) then extends from the 

structure enriched in PI(3)P as it is cupped between the ER membranes. The machinery 

which closes the isolation membrane and results in the detachment of the autophagosomes 

is not yet known (Tooze and Yoshmori 2010). The elucidation of the membrane source of 

the autophagosomes in higher eukaryotes has illustrated that they have multiple site for 

autophagosomes formation termed sites for isolation membrane (IM) formation, whereas in 

yeast there are distinct site for the pre-autophagosome structure (PAS) to form (Orsi et al 

2010). 

1.2.2 The Core Sets of Proteins Required for Autophagy - 

Autophagosome formation requires three core sets of proteins – a 

phosphatidylinositol 3-kinase (PI 3-K) complex; the ubiquitin-like protein (Ubl) system; and 

Atg9 and its recycling system (Klionsky 2005; Xie and Klionsky 2007). The PI 3-K complex, as 

described above, consists of beclin-1, Vsp34 (type III PI 3-kinase) and Vsp150. This complex 

is key in orchestrating the nucleation of other autophagy proteins to the site of phagophore 

formation by localised PI(3)P production.  

The majority of the studies have been carried out in yeast to identify all the 

autophagy proteins, and in mammalian cells the homologs are currently being identified. 

The Ubl systems produces the Atg5-Atg12-Atg16 complex, and conjugates LC3/Atg8 to 

phosphatidylinositol (PE). Atg16 has a coiled-coil domain with a high degree of conservation 

of the essential residues that are crucial for autophagy (Fujita et al 2008). Whereas in higher 

eukaryotes Atg16L1 has addition domains known as WD40 domains at the C terminus and 

their function is currently unknown. It is possible that these domains confer other functions 

to Atg16L1, for example, in a recent paper by Ravikumar et al (2010), Atg16L1 is shown to 

localise to the cell membrane and participate in endocytosis. The coiled-coil domain of 
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Atg16L1 has a fundamental role during autophagosome formation and forms a larger 

complex with the smaller Atg5-Atg12 complex. Firstly, Atg12 is activated by Atg7 and then is 

transferred to the E2-like Atg10 and is subsequently covalently linked to Atg5. The Atg12-

Atg5 interacts non-covalently with Atg16L1 and this complex mainly resides on the outer 

side of the membrane as it expands (Mizushima et al 1998, Xie and Klionsky 2007). Atg16L1 

can also form non-covalent interactions with itself to form tetramers; it is possible that this 

is the scaffold that supports the formation and the expansion of the isolation membrane 

from the ER. Another important role for Atg16L1 is the correct localisation of Atg8, termed 

LC3 in mammalian cells.  

LC3 is commonly used as a marker for autophagy as it associates with the inner and 

outer membranes of the autophagosome during formation and remains associated through 

to degradation in lysosomes. The LC3 which is on the inner membrane is degraded following 

fusion with lysosomes, and the LC3 that is on the outer leaflet is recycled. In humans, there 

are three families of Atg8-like proteins and these are known as microtubule-associated 

protein 1 light chain 3 (MAP1LC3 or LC3), GABARAP ( -aminobutyric-acid-type-A (GABAA) 

receptor-associated protein) and GATE-16 (Golgi-associated ATPase enhancer of 16 kDa). All 

of the Atg8 homologs undergo lipidation generating a lipidated form, known as LC3-II, and 

then move from the cytosol to the autophagosome membrane. The exact function of 

GABARAP and GATE-16 are currently being investigated and are thought to play a role 

downstream in autophagosome maturation rather than during formation (Weidberg et al 

2010). LC3 has been found to exist in three isotypes known as LC3A, LC3B and LC3C, all of 

which participate in autophagy.  

LC3 was originally described as a microtubule-associated protein and is synthesised 

in the pro-form where it rapidly becomes cleaved and forms a pool of cytosolic protein 

known as the LC3-I form, during autophagy activation it becomes cleaved at glycine 120 and 

lipidated with phosphatidylethanolamine (PE), forming LC3-II which can now associate with 

the isolation membrane. The process of conjugation requires a second set of ubiquitin-like 

proteins (figure 1.3B). Firstly, LC3 is cleaved by the Atg4 protease at its C terminus to expose 

a glycine residue at position 120. The E1-like activating enzyme Atg7 allows transfer of LC3 

to Atg3 and then conjugation of LC3 to PE (Kabeya et al 2000).  
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Membrane expansion results in sequestration of cytosol, and/or organelles and 

damaged proteins, and eventually leads to closure of the membrane, and the fully formed 

vesicle will move away from the ER (Axe et al 2009). At this point LC3 remains associated 

with the autophagosome and the other Atg proteins involved in autophagosome formation 

are released.  

 

Figure 1.3 – The two ubiquitin-like (Ubl) conjugation systems involved in the formation of the 

autophagosome – (A) – LC3 is cleaved by Atg4 to expose a glycine residue which is conjugated to the E1-like 

Atg7 via a thioester link. Following this, LC3 is transferred to Atg3, an E2-like enzyme then conjugated to a PE 

molecule. (B) – a similar process occurs when Atg12 is activated and conjugated to Atg7 and Atg10. Following 

this, Atg12 is conjugated to Atg5 to form a complex, which then associates non-covalently with Atg16. This 

complex provides support and scaffolding for the forming autophagosome.  

A number of autophagy proteins are recruited to the phagophore because they bind 

PI(3)P through FYVE domains. This includes DFCP1, Atg18 (WIPI-1/2), Atg20 and Atg24. The 

precise function of DFCP1 is currently unknown however; it contains two FYVE domains and 
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can be used as a marker for sites of autophagosome formation. Similarly, Atg18, termed 

WIPI in mammals can be used as a marker for induction of autophagy. Interestingly, a paper 

by Polson et al (2010) showed that WIPI-2 is recruited to autophagosomes in a PI(3)P 

dependent manner, however an interaction with another protein is responsible for 

anchoring it to the membranes.  

 

Figure 1.4 – Formation of the Phagophore – the localisation of Atg proteins to the PAS during autophagy 

induction includes the Atg12-Atg5-Atg16 and LC3 to the expanding membrane. Atg9 is thought to deliver lipids 

for the membrane to expand, and its cycling includes Atg2 and Atg18 at the PAS and Atg11, Atg23 and Atg27 to 

the membrane.  

Many studies describe the formation of a ‘pre-autophagosome structure’ or 

‘phagophore assembly site’ (PAS) in yeast (Figure 1.4).  PAS may be analogous to the 

isolation membrane seen in higher eukaryotes. In common with mammalian cells formation 

of PAS involves the Atg12-Atg5:Atg16 complex, lipidation of LC3/Atg8 and recruitment of 

LC3/Atg8 II to membranes. Yeast genetic screens have identified further proteins involved 

including Atg20 and Atg24. Further work is required to determine their roles in autophagy 

(He and Klionsky 2010). Atg9 is the only transmembrane Atg protein and has been shown to 

localise to the PAS, where it is thought to deliver lipids (He et al 2008, Young et al 2006).  

Transport of proteins to the PAS involves Atg11, Atg23 and Atg27, and retrieval depends on 

Atg1 kinase:Atg13 complex as well as Atg2 and Atg18, and retrieval of Atg9 recycling 
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pathway is necessary for autophagosome formation, as illustrated in figure 1.4 (Xie and 

Klionsky 2007, Young et al 2006, He et al 2009). 

1.2.3 Recycling of LC3 -  

Once the autophagosome is formed, it traffics through the cytoplasm via 

microtubules to fuse with lysosomes. To prevent the movement of autophagosomes on 

microtubules, cells can be incubated with nocodazole, this prevents the tubulin subunits 

from polymerising and forming tubes. Atg4 is the cysteine protease which is responsible for 

the initial cleavage of LC3 to allow lipidation.  Atg4 is also responsible for the cleavage of the 

PE conjugate from LC3 and release from the autophagosomes membrane and recycling for 

further rounds of lipidation (Noda et al 2009). There are 4 mammalian homologs of Atg4, 

and Atg4B has the broad specificity for LC3 and its mammalian paralogs GATE-16 and 

GABARAP. The active site consists of catalytic triad Cys74, His 280 and Asp278 residues, and 

the protease deficient mutant Atg4BC74A or Atg4BC74S prevent the formation of 

autophagosomes (Fujita et al 2008). Atg4 is required at both the initial stage and the end 

stage of autophagy following interactions with the lysosomes.  

1.2.4 mTOR the Master Regulator of Autophagy Signaling - 

The sections above described how the isolation membrane and autophagosome are 

formed. The next section describes how this process is activated in response to starvation. 

One of the key regulators of autophagy is the target of rapamycin (TOR) kinase. Mammalian 

TOR kinase (mTOR) is a serine/threonine kinase that plays a central role in many complex 

cell signalling pathways which regulate cell growth, cell cycle, protein translation and 

autophagy (Pattingre et al 2008, Weichhart and Saemann 2009). TOR is found in two 

evolutionarily conserved complexes - mTORC1 and mTORC2. mTORC1 consists of mTOR and 

regulatory associated protein of mTOR (raptor). The mTORC1 complex incorporates signals 

from nutrients and hormones and promotes protein translation through the 

phosphorylation of the downstream effectors S6 kinase (S6K) and eIF4E-BP1. mTORC1 

inhibits autophagy through phosphorylation of Atg13. mTORC2 contains the rapamycin-

insensitive companion of mTOR (rictor) and participates in regulation of assembly of the 

cytoskeleton (Inoki and Guan 2006, Pattigre et al 2008). mTORC1 is inhibited by rapamycin, 

and therefore activates autophagy. Another inhibitor, known as Torin1 is a second 
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generation inhibitor of mTOR with specificity for mTORC1 (Thoreen et al 2009). Torin1 is an 

ATP-competitive inhibitor of mTOR, whereas rapamycin binds to a hydrophobic pocket and 

prevents mTORC1 complex formation. There is also evidence that mTOR inhibits bulk 

endocytosis and can promote endocytic degradation of proteins to supply nutrients during 

starvation (Hennig et al 2006). Similarly mutants of the Rab5 protein that impair early 

endosome transport and also early to late endosome maturation also have an inhibitory 

effect on mTOR (Flinn et al 2010). There is increasing evidence emerging that mTOR has a 

role in the endocytic pathway, as well as being a key regulator of autophagy and protein 

translation.  

 

Figure 1.5 – mTOR regulation of Atg1-Atg13-Atg17 complex during nutrient-rich and starvation conditions. 

 In nutrient rich conditions amino acid levels in cells are high and phosphorylation of 

Atg13 by mTORC1 prevents an interaction with Atg1 (figure 1.5). During starvation amino 

acid levels drop, mTOR is inhibited allowing the formation of an Atg13-Atg1-Atg17 complex 

(see figure 1.4 above). This results in activation of Atg1, promoting its auto-kinase activity 

and phosphorylation of Atg13. Atg1 also inhibits mTOR as a negative feedback loop (Chang 

and Neufeld 2009, Chan and Tooze 2009). Atg1 localises to the PAS and is crucial in the 

recruitment of other key autophagy proteins as discussed above. In mammalian systems 

there are five isoforms of Atg1 known as Unc-like kinases (Ulk) 1-5(Chan and Tooze 2009). 

Similarly, Ulk-Atg13 have been found to interact with (focal adhesion kinase family 

interacting protein of 200 kDa (FIP200) which although has no sequence homology, is 
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thought to be the mammalian counterpart of Atg17, and it is the Ulk-mAtg13-FIP200 

complex which is required in mammalian cells for autophagosome formation (Hara et al 

2009, Ganley et al 2009). Recent evidence by two groups has further highlighted mTOR 

regulation of Ulk-1. Kim et al (2011) have shown the mTOR directly phosphorylates Ulk-1 

and prevented it from interaction with AMPK. Phosphorylation of Ulk-1 by AMPK is on 

different serine residues, and this activates Ulk-1 and allows it to form the complex with 

Atg13 and FIP200 (Kim et al 2011, Hsu et al 2011). 

1.2.5 Upstream and Downstream Effectors of mTOR - 

A number of stimuli, such loss of nutrients, insulin and growth factors trigger 

signalling pathways that converge to either activate or inhibit mTOR. The insulin receptor, 

for example, activates phosphoinositide 3-kinases (PI 3-Ks), Akt (PKB) and Rheb proteins 

leading to increased mTOR activity and inhibition of autophagy (Manning and Cantley 2003). 

The localisation of mTOR has been discussed in many papers, and evidence suggests it can 

localise to the ER, Golgi, late endosomes and most recently to the lysosome membranes (Liu 

and Zheng 2007). Sancak et al (2010) demonstrated that mTOR in the presence of amino 

acids will redistribute to Rab7 positive structures in the perinuclear region. The upstream 

effectors TSC2 and Rheb are localised endosome membranes, and this localisation is 

important in mTOR activity. Sancak et al (2010) showed that the Ras-related GTPases (Rag 

GTPases) A-D and another protein complex known as the Ragulator are important regulators 

of mTORC1. During nutrient rich conditions the Ragulator complex induces redistribution of 

mTOR and Rag GTPases to the late endosomes and lysosomes (Kim et al 2009, Sancak et al 

2008 and 2010). There is also recent evidence from Yu et al (2010) to demonstrate that 

mTOR is important in controlling the reformation of lysosomes once they have fused with 

autophagosomes (see below). 

Other regulators of autophagy include insulin and cellular energy levels which 

depend on the ratio of ADP to ATP. Insulin signals through the insulin receptor increasing 

the uptake of glucose for glycogen synthesis and generates PI(3,4,5)P3 which inhibits the 

TSC1/2 complex, activating Rheb and mTOR thus inhibiting autophagy.  
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Figure 1.6 – Insulin and AMPK Regulation of mTOR – stimulation of the insulin receptor and the IRS generates 

the production of PIP3 by PI3K which activates PDK1. PDK1 phosphorylates and activates Akt which 

phosphorylates TSC2 preventing its inhibitory effects on Rheb. Rheb activates mTOR which inhibits autophagy. 

High levels of AMP or calcium will activate AMPK which activates TSC1/2 complex which inhibits Rheb and 

mTOR, thus activating autophagy.  

AMP-activated protein kinase (AMPK) monitors cellular energy levels by sensing the 

AMP:ATP ratio. AMPK phosphorylates raptor and also TSC2, both of these have an inhibitory 

effect on Rheb, and thus mTOR. Similarly, AMPK can dircctly phosphorylates Atg1/Ulk-1 and 

activate autophagy (Kim et al 2011). The upstream control of AMPK is through the kinase 

LKB1, and also through the CamKK2 which is regulated by calcium flux. One of the 

downstream targets of AMPK is the transcription factor FoxO which also promotes the 

induction of autophagy, and is linked to longevity in both Drosophila and Rhesus monkeys 

(Greer et al 2009). Overall it is not just nutrient levels which impact on the induction of 

autophagy but also cellular energy levels and when these are low, autophagy is activated. 

Both of these pathways converge on mTOR to decrease unnecessary energy consumption 

and protein synthesis to conserve and increase cell survival in times of stress. 

Beclin-1, the mammalian homolog of Atg6, is an important regulator of autophagy 

and apoptosis. Under nutrient rich conditions, autophagy is inhibited due to beclin-1 binding 

to Bcl-2 family members. However, during starvation, the Bcl-2 proteins can become 
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phosphorylated by kinases such as JNK and no longer bind beclin-1, allowing autophagy to 

occur (Wei el al 2008). There may also be competitive binding with other BH3 domain 

proteins which prevents Bcl-2 binding to beclin-1, and there is growing evidence that 

activation of other pathways can regulate this interaction. Once beclin-1 is free from Bcl-2 

interactions it can bind to other proteins such as UVRAG, Ambra-1, Atg14L or Rubicon to 

regulate autophagy (Itakura et al 2008, Matsunaga et al 2009, Zhong et al 2009). The 

multiple beclin-1:Vsp34 complexes that can be formed highlight the complexity of 

regulation of autophagy. UVRAG (UV irradiation resistance-associated gene) and Atg14L 

binding is mutually exclusive and evidence suggests that both are involved in the early 

stages of autophagosome formation. UVRAG also functions independently of beclin-1 

binding; it has been shown to induce Rab7 activity which functions in endocytic trafficking 

events, and is also required for autophagosome maturation. Rubicon has been shown to 

bind to the beclin-1 complexes containing UVRAG and this inhibits autophagosome 

maturation (Matsunaga et al 2009, Zhong et al 2009). The central role of the core beclin-1 

complex is to regulate autophagy, and through different binding partners it is possible to 

have opposing effects. Similarly, interaction with different partners may also connect and 

regulate the complex to other cellular trafficking pathways such as apoptosis. Beclin-1 is a 

key player in autophagy regulation and during viral infection appears to be the common 

target protein.  

1.3 Other Cellular Pathways of Degradation – The Proteasome 

There are two ways to degrade cellular constituents in higher eukaryotes such as 

mammals; these are the fusion of autophagosomes with lysosomes, as previously discussed, 

and through the ubiquitin-proteasome system (UPS) (Klionsky and Emr 2000, Huang and 

Klionsky 2002). The proteasome is a compartmentalized structure, consisting of a 20S 

central core unit and two 19S cap units at either end, with its enzymatic activities embedded 

inside the central chamber (Alberts et al. 2002, Korolchuk et al 2010). As a result the 

degradative capacity is confined to partially denatured protein substrates that can access its 

proteolytic subunits, whereas autophagic vesicle can form and capture any portion of the 

cytoplasm. However between the two pathways all misfolded or damaged component can 

be removed from the cell. Initially due to the diversity of the pathways there was thought to 

be no communication, however recent evidence has highlighted the cross-talk between 
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them (Korolchuk et al 2010). Proteins destined for the proteasome are tagged with 

ubiquitin, a 76 amino acid  molecule by undergoing a series of reactions through enzymes 

known as E1 (ubiquitin activating enzyme), E2 (ubiquitin conjugating enzyme) and E3 

(ubiquitin protein ligase) which conjugate the ubiquitin to the protein,  much like the 

conjugation of LC3 to the lipid component phosphatidylethanolamine (PE). Different 

combination of E2 and E3 allow the recognition of specific signals in the targeted protein 

(Myung et al 2001).  

Ubiquitin can be ubiquitinylated in different ways due the presence of a number of 

lysine residues in the molecule, and depending on the position of ubiquitin, different 

conformations of chain can be formed (Fushman and Walker 2010). A protein targeted for 

degradation maybe mono-ubiquitinated, multi-monoubiquitinated or poly-ubiquitinated. 

Also the ubiquitin molecule contains 7 different lysine residues that can be ubiquitinated 

(Wong and Cuervo 2010). The canonical chain is through polyubiquitination of the K48 

residues, and this is a signal for degradation through the proteasome. However, the other 

non-canonical chains through the other residues such K63, are thought to have other 

functions, such as signalling for degradation by autophagy (Korolchuk et al 2010, Wong and 

Cuervo 2010). There is a growing amount of evidence that inhibition of UPS leads to 

activation of autophagy, which compensates for the loss of the pathway, however the loss 

of autophagy leads to a decrease of UPS degradation (Ding et al 2007). The evidence 

suggests it is due to the molecule known as p62, also known as sequestersome 1, which is 

bound to the proteins destined for degradation (Korolchuk et al 2009). It is this molecule 

which links autophagy and the UPS. p62 has the ability to bind to ubiquitin through its 

ubiquitin-associated (UBA) domain and is incorporated into protein aggregates seen during 

various disease pathologies (Seibenhener et al 2004). p62 binds to ubiquitinated proteins 

and directs them to the autophagosome through an association to LC3. p62 and its cargo 

will be incorporated into the autophagosome, however it is not crucial for the formation 

(Pankiv et al 2007, Shvets et al 2008). p62 was identified as a scaffold protein for signalling 

networks including atypical protein kinase C (PKC) and NF-κB. Although it has a role in 

autophagy it can still signal through these pathways, and may serve to link autophagy to 

them. Similarly, other molecules similar in structure to p62 have been identified such as 

neighbour of BRCA1 gene 1 (NBR1) and nuclear dot protein 52 (NDP52) (Kirkin et al 2009). 
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These also have LC3-interacting regions (LIRs) and there is growing evidence these 

participate as cargo receptors targeting specific organelles and pathogens for degradation 

through autophagy. Despite the additional roles of p62 in other cellular activities, it can be 

used to monitor the activation of autophagy. In other words increased turnover of p62 is an 

indicator of activation of autophagy. Clearly, p62, NBR1 and NDP52 play a role in cargo 

selectivity and targeting to autophagosomes, however, further work is required to detail 

their roles. 

1.4 Endocytosis, the Endomembrane System and Autophagy –  

 Endocytosis is the cellular uptake of materials and liquids across the plasma 

membrane and this can occur in a number of ways such as clathrin-mediated or caveolae- 

termed endosome. Most endosomes have the same destination as an autophagosome and 

that is fusion with lysosomes where the contents are degraded. There is evidence to suggest 

an overlap of the endocytic pathway and the autophagy pathway, and some of the Rab 

GTPases that are involved in regulation of endocytosis are also important for autophagy.  

 It has become increasingly clear from the various studies that cells have a number of 

different mechanisms by which they can ingest materials from the extracellular 

environment. Clathrin-mediated endocytosis (CME) is the best characterised endocytic 

pathway as clathrin is conserved throughout tissues and also across different species (Young 

2007, Edeling et al 2006). Clathrin and associated adapter proteins (APs) are required for the 

formation of clathrin-coated pits (CCPs) on the cytoplasmic side of the plasma membrame. 

There have been a number of APs discovered, some of which have more specialised roles 

than others such as AP-3 and AP-4, and the two best characterised is AP-1 and AP-2. AP-1 is 

involved in forming clathrin coats for transport for the trans-Golgi network (TGN) whereas 

AP-2 is involved with transport from the plasma membrane. 

 The process begins with the nucleation of clathrin, and its adapter proteins, AP-2, at 

the surface of the plasma membrane where it binds and begins to form a clathrin-coated pit 

(CCPs). This region of the plasma membrane recruits receptors and bound ligands which will 

invaginate. The pits continue to grow in size to 60-90 nm diameter and bud inwards into the 

cytoplasm (Huang et al 1999). Scission of the vesicle from the plasma membrane requires a 

GTPase known as dynamin, which binds around the neck of the CCP, and through GTP 



Page | 29  
 

hydrolysis removes the CCP from the plasma membrane, producing a clathrin-coated vesicle 

(CCVs) free in the cytoplasm. The process also includes cooperation with the actin 

cytoskeletal components which provide the momentum to move the CCPs and CCVs away 

from the plasma membrane into the cell (Edeling et al 2006, Doherty and McMahon 2009). 

CCVs exist for a very short period before the clathrin and the accessory proteins are 

removed, allowing the vesicles to fuse with early endosomes and begin trafficking through 

the cell. Removal of the clathrin coat involves heat shock cognate 70 kDa (Hsc70) and 

auxilin. As well as removing the coat, the accessory proteins must be removed, and this is 

done through phosphorylation of the AP complex (Kirchhausen 2000, Young 2007). Clathrin 

is important in not only vesicle transport from the plasma membrane but also in the 

intracellular traffic of vesicles from the trans-Golgi and endosomes, and it is not the only 

coat protein which is important is forming vesicles. Other coat proteins include COP-I and 

COP-II protein coats. COPI complex has been shown to function in both anterograde and 

retrograde transport of the Golgi complex, and also in early endosome formation (Razi et al 

2009) 

Sorting of molecules can occur in early endosomes, and some of these have tubular 

extension, where molecules are packed and transported back to the plasma membrane 

(Doherty and McMahon 2009). The maturation of early endosomes into late endosomes 

means they lose their tubular nature and also become increasingly acidic through the 

pathway. Evidence suggest that microtubules play a role in the maturation of early 

endosomes to late endosomes, and also the acidification of the vesicles by the vacuolar 

ATPases (V-ATPases) is required (Bayer et al 1998). Inhibition of microtubules using 

nocodazole, prevents not only the movement of early endosomes but also the localisation 

of late endosomes and lysosomes. Maturation of endosomes is also important for receptor-

mediated endocytosis, whereby specific ligands, such as the iron-carrying molecule 

transferrin and its receptor, bind at the cell surface and are taken-up into CCVs which enter 

the endocytic pathway. The maturation of the early endosome to late endosome, and 

subsequent lowering of the luminal pH means the iron can dissociate from transferrin, now 

known as apotransferrin, and both receptor with ligand bound are recycled back to the 

plasma membrane. The fusion of endosomes with other vesicles is regulated by the Rab 

GTPases which switch between an active GTP-bound state and an inactive the GDP bound 
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state. Fusion of early endosomes requires Rab5 proteins. Rab5 is recruited to membranes by 

Rabex5, guanine exchange factor (GEF) which also recruites Vsp34 to produce PI(3)P and 

subsequent recruitment of other Rab5 effectors (Poteryaev et al 2010).  A key effector of 

Rab5 is early-endosomal autoantigen (EEA-1) which is known to bind to early endsomes in a 

PI(3)P dependent manner and mediated fusion (Simonsen et al 1998). Rab5 is also 

important in autophagy because its depletion decreases the number of autophagosomes 

formed (Ravikumar et al 2008). Fusion of early endosomes and late endosomes requires 

Rab7. Interestingly, expression of a dominant negative Rab7 causes accumulation of LC3-

positive vesicles in the cytoplasm (Gutierrez et al 2004) suggesting that Rab7 is important 

for autophagosome maturation and fusion with lysosomes. 

The overlap between the endocytic pathway and autophagy is becoming increasingly 

evident from studies by Razi et al (2009) and Ravikumar et al (2010). It is thought that late 

endosomes and multivesicular bodies fuse with autophagosomes as part of autophagosome 

maturation. Razi et al (2009) show that depletion of the COP-I α, β, and β’ subunits hinder 

the maturation of autophagosomes and leads to an accumulation of not only 

autophagosomes but also p62-positive structures indicating a block in autophagy. Similarly 

there was also a block in CME, as seen through a block in transferrin up-take after COP-I 

depletion. This highlights that autophagosomes fuse with early endosomes and the block in 

early endosome formation also effects autophagosomes maturation.  

1.5 Lysosome Biogenesis 

Lysosomes are important degradative organelles inside cells and up until recently it 

was generally believed they were the endpoint of endocytic and autophagy pathways. A 

recent study by Yu et al (2010) demonstrated that one aspect of lysosome biogenesis occurs 

after fusion of autophagosomes with lysosomes. During starvation mTOR is initially inhibited 

as amino acid levels drop in the cells. Autophagy is activated and this delivers proteins to 

the lysosome for degradation. Passage of amino acids from the lysosome into the cytoplasm 

activates mTOR. This reactivation correlates with the formation of tubular membranes 

extending from the surface of lysosomes. Many of the lysosomes appear docked with LC3 

positive autophagosomes 4 hours post-starvation and at 8 hours post-starvation tubules 

positive for LAMP1, but negative for LC3 are present in the cytoplasm. The new tubules 



Page | 31  
 

pinch off to form new vesicles called proto-lysosomes, which mature to form lysosomes 

however these structures are not acidic, and require further maturation before they can 

function as lysosomes. This process is termed autophagic lysosome recovery (ALS) and is 

important for the regeneration of the lysosome (Yu et al 2010). 

1.6 Cationic Liposomes, Nanoparticle, and Nanotheranostics –  

 The delivery of nanomaterials into cells for imaging or therapeutics use is a growing 

area of interest. The entry route of nanomaterials into cells is endocytosis, and as previous 

discussed there is an overlap between endocytosis and autophagy. Non-viral DNA delivery 

vectors also use endocytosis for cell entry; however these must escape before degradation 

in lysosomes in order for transfection to occur. The role of autophagy in the cellular 

processing of these molecules is important to determine, and in understanding how 

seemingly inert nanomaterials can active this pathway. 

There are a number of different ways to introduce a plasmid containing a gene of 

interest into cells; these include the classical method of using calcium phosphate and 

diethylaminoethyl-dextran (DEAE-dextran) and also the newly developed cationic 

liposomes, dendrimers and PEI methods. The method of using HEPES-buffered saline, 

containing phosphate ions, with a calcium chloride solution will form a calcium phosphate 

precipitate composed of the positive calcium ions and negative phosphate ions, and this will 

also cause the DNA to precipitate. This precipitate can then be added to a range of cells type 

and will be taken up by cells through a poorly understood endocytic mechanism (Jordan and 

Wurm 2004). However the size of the precipitate and amount of DNA incorporated can vary 

in each transfection. Similarly DEAE-dextran has been used for transfections for the ability 

to replicate transfection conditions. This molecule is positively charged and can form a 

complex with DNA, and entry into cells is through endocytosis (Sambrook and Russell 2000). 

Following this, cationic liposomes have been used to transfect plasmid DNA into a range of 

cell lines since their introduction by Felgner et al 1987. A range of different composition and 

types are commercially available, and many of these include the addition of the helper lipid 

dioleoyl phosphatidylethanolamine (DOPE) to improve transfection efficiency. DOPE affects 

the packing properties of the cationic lipid and improves membrane fluidity in liposome 

formation (Zuhorn et al 2002). On addition to an aqueous environment the hydrophobic 
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lipid chain will form multi-lamellar liposomes, with the polar head group interacting with the 

aqueous environment. The negative charge of DNA will interact with the cationic liposomes, 

and thus be incorporated into the structures on formation. The complex of DNA-liposome is 

known as a lipoplex, and entry of liposomes into cells is through clathrin-mediated 

endocytosis (CME) (Rejman et al 2005). Once inside the endosome the cationic lipid 

interacts and forms neutral charge pairs with the anionic endosomal membrane, releasing 

the DNA in the endosome (Xu and Szoka 1996, Hafez et al 2001). The presence of DOPE will 

aid in inducing a change in phase of the lipid from lamellar to the inverted hexagonal phase, 

which essentially flips the endosomal membrane inside out and allowing the release of the 

DNA into the cytoplasm (Tresset 2009). The theory of the “flip-flop” mechanism is illustrated 

in figure below. The progression of lipoplexes through the endocytic pathway, if they do not 

escape, will lead to their destruction when the endosomes fuse with lysosomes and are 

degraded (Medina-Kauwe et al 2005).  

 Following the requirement of the development of non-viral gene delivery methods 

to use in diagnostics and also in therapeutics, other cationic and anionic molecules have 

been explored including polyethylenimine (PEI) and dendrimers. PEI is a cationic molecule 

that will form polymers that incorporate the DNA in a complex known as a polyplex which is 

then taken up by cells. In contrast to liposomes, evidence suggests that these polyplexes 

enter cells through caveolin-mediated rather than clathrin-mediated endocytosis (Rejman et 

al 2005). The polyplex escape from the endosome relies on the PEI proton buffering capacity 

and the “proton sponge effect”. PEI can become protonated inside the endosome and 

results in endosomal uptake of protons and chloride ions, and the end result is the osmotic 

swelling of the endosome. This causes the vesicle to swell and rupture, thus releasing its 

contents into the cytoplasm. The other advantage of PEI is that the vesicles that results from 

caveolar endocytosis do not fuse with lysosomes (Rejman et al 2005, Won et al 2009).  
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Figure 1.7 – Mechanism of DNA Escape into the Cytoplasm from Cationic Non-Viral Vectors – (A) – 1. Cationic 

liposomes (red membrane) enter through clathrin-mediated endocytosis into anionic endosomes (black 

membrane), 2. These will form charge pairs releasing the DNA. 3. The presence of DOPE (not shown) inverts 

the membrane causing a “flip flop” allowing release of DNA into the cytoplasm. (B) – the PEI/DNA polyplex 

(red) will enter cells through caveolae-mediated endocytosis. The PEI will become protonated, and result in 

the osmotic swelling of the vesicle which results in rupture and release of DNA. 

 PEI is not the only cationic molecule which has been developed for transfection 

methods, dendrimers have also been extensively examined in their ability as non-viral gene 

delivery vectors. Dendrimers are commercially available and the most popular available is 

based on a core of ethylenediamine which branch to form the aminoamide branches, 

termed Starburst PAMAM dendrimers  (Kukowska-Latallo et al 1996). The positive charge of 

surface of the dendrimers allows them to interact with negatively charged DNA and thus 

developed for use as a transfection reagent. However, data by Li et al (2009) illustrates that 

the cationic properties, not the anionic generation of dendrimers, also increase their toxicity 

and reduce cell viability, and an activation of autophagy is seen from LC3 rearrangement 

and the presence of double membrane vesicle in the cytoplasm of cells treated with the 

cationic generations. Similarly, quantum dots (QDs) which are used in fluorescent imaging 

for their intrinsic fluorescence and small size have been found to activate autophagy. 
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Figure 1.8 – Generations (G) of Dendrimer Molecules – cationic and anionic dendrimer molecules are 

available for transfection of DNA into cells, and the defined increase in size and shape arises from additional 

conjugation of polymers to the core and branches of each generation (Li et al 2009). 

In a paper by Seleverstov et al (2006) the data indicates that incubation with small 

QDs activated autophagy, and these were rapidly cleared from the cell. With the increase 

use of nanoparticles such as liposomes, dendrimers and QDs in diagnostics and therapeutics 

it is essential to correctly understand the mechanisms by which they affect cells, and also 

the cellular events which are activated during incubation with them. Whilst not all effects 

are detrimental to cell viability it is important to understand any undesired side effects they 

might have in cellular and in vivo to prevent unwanted consequences. It is clear from the 

recent data that whilst non-viral gene delivery vectors are the best choice in terms of low 

immunogenicity, they require investigation to understand how cells may respond to them, 

and they are not inert as previously once thought.  
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Chapter 2 - Materials and Methods 

 

2.1 Tissue Culture Media, Reagents and Buffers 

All media solutions and reagents were purchased from Invitrogen (Paisley, UK) and all 

chemical compounds were purchased from Sigma (Dorset, UK) unless otherwise stated.  

2.1.1 Cell Lines –  

African green monkey kidney epithelial cells or Vero cells (ECACC 84113001), human 

embryonic kidney epithelial 293 cells or HEK 293 cells (ECACC 85120602), human cervix 

carcinoma (HeLa) cells (ECACC 96112022) and Chinese Hamster Ovary cells or CHO cells 

(ECACC 85051005), were obtained from European Collection of Cell Cultures (ECACC) 

(Porton Down, UK).  

The CHO cell line stably expressing the plasmid eGFP-LC3 (CHO-LC3) and the mutant CHO 

cell line expressing GFP-LC3G120A (CHO GFP-LC3G120A) were a kind gift from Dr Zvulun 

Elazar of the Weizmann Institute of Science, as described in Fass et al 2006. The stable HEK 

293 cell line expressing the eGFP-LC3 plasmid was a kind gift from Sharon Tooze of Cancer 

Research UK, London Research Institute, as described in Kochl et al 2006. MEF wild-type 

(WT) and MEF Atg 5-/- cell lines were a kind gift from Noboru Mizushima of Tokyo Medical 

and Dental University, as described in Mizushima et al 2001. HEK 293 cells stably expressing 

the double FYVE domain-containing protein 1 (DFCP1) were a kind gift from Nicholas 

Ktistakis, as described in Axe et al 2008. All cells were grown in stated media below at 37oC 

and 5% CO2. 

2.1.2 Tissue Culture Media -  

Unless stated all cells were cultured in Dulbecco’s Modified Eagles Media (DMEM) with 

GlutaMAX supplemented with 10% foetal calf serum (FCS) and 1% (100 units/μl) penicillin-

streptomycin (p/s). FCS was purchased from Biosera (Sussex, UK). Additional supplements 

for culturing HEK 293 and HEK 293 GFP-LC3 in DMEM were 100x non-essential amino acids 

(NEAA) and 100 mM sodium pyruvate, final concentrations for culturing were 1x and 1 mM 

respectively. Minimum essential media Eagle with alpha modification (MEM-α) containing 
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10% FCS and 1% p/s was used to culture CHO eGFP-LC3 and CHO eGFP-LC3 G120A stable cell 

lines. Opti-MEM reduced serum with GlutaMAX, was used for all transfections and for cell 

culture in the POC chamber. Hank’s Balanced Salt Solution (HBSS) was used as a starvation 

media (Sigma, Dorset). 

2.1.3 Tissue Culture Additives – 

The following table shows the final working concentrations for the compounds which were 

added to Opti-MEM, stocks were prepared in DMSO unless otherwise stated –  

 

Compound name Final Concentration 

Bafilomycin A1 100 nM 

Cycloheximide 20 μg/ml 

E64d 

Nocodazole 

Pepstatin A 

30 µM 

5 µM 

150 µM 

Puromycin  (in dH2O) 10 μM 

Sodium arsenate (in dH2O) 5 μg/ml 

Wortmannin 100 nM 

 

Table 2.1 – the final concentration of additive used in cell culture 

2.1.4 DNA plasmids - 

The tdTomato-p62 plasmid was a kind gift from Terje Johansen, as described in Bjorkoy et al 

2005. GFP, RFP-tagged or dsRed Rab proteins wild-type and dominant negatives (DN) were 

purchase from Addgene (Cambridge MA, USA). The mCherry-tagged construct TIA-1 were a 

kind gift from T. Eisinger-Mathason University of Virginia, as described in Eisinger-Mathason 

et al (2008).  
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2.1.5 Antibodies and Fluorescent Dyes - 

Rabbit anti-LC3b was purchased from Sigma (Dorset, UK). Guinea pig anti-p62 was 

purchased Progen (Heidelberg, Germany). Anti-ubiquitin mouse monoclonal antibody, clone 

FK2, was purchased from BioMol (Exeter, UK). Monoclonal antibodies to the cytoskeleton α-

tubulin (clone B512), γ-tubulin (clone GTU-88) and vimentin (clone V9) purchased from 

Sigma, were used as directed see table 2.2 below. Alexafluor 350 nm, 488 nm and 594 nm 

were used 1:500 from Invitrogen (Paisley, UK). 

 

Antibody Name Clone Working Dilution Company 

Rabbit anti-LC3 - 1:1000 Sigma (L7543) 

Guinea Pig anti-p62 - 1:100 Progen Biotechnik (GP62-N) 

Mouse anti-β actin AC-15 1:20,000 Sigma (A5441) 

Mouse anti-LAMP1 UH1 1:2 Hybridomas - DSHB University of Iowa  

Rabbit anti-Atg5 - 1:1000 Cell Signalling (2630) 

Rabbit anti-beclin-1 - 1:1000 Cell Signalling (3738) 

Mouse anti-α tubulin B512 1:1000 Sigma (T5168) 

Mouse anti-γ tubulin GTU-88 1:500 Sigma (T6557) 

Mouse anti-vimentin V9 1:1000 Sigma (V6630) 

Mouse anti-ubiquitin FK2 1:500 BioMol (PW8810-0500) 

Rabbit anti-β COP - 1:500 See Rouiller et al (1998) J Virol 72:2373 

Rabbit anti-ERp60 - 1:500 As above 

Rabbit anti-TGN 46 - 1:500 AbD Serotec (AHP1586) 

Rabbit anti-mannosidase II - 1:500 AbCam (ab12277) 

Mouse anti-EEA1 14 1:200 BD Bioscience (610457) 

Mouse anti-clathrin 23 1:200 BD Biosciences (610499) 

 

Table 2.2 – Working Dilutions for Antibodies used for Immunofluorescence and Western Blot 

Transferrin AlexaFluor 594 conjugate was purchased from Invitrogen, and cells were pre-

incubated in 5 µg/ml in Opti-MEM for 30 minutes prior to experimentation. For lipid staining 

Nile red was used, purchased from Sigma (Dorset, UK). Cell nuclei were stained with 4',6-

diamidino-2-phenylindole (DAPI) or Hoechst 33258 dye from Sigma (Dorset, UK) in PBS for 
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working concentrations of 10 µg/ml. All coverslips were mounted onto glass slides using 

Fluoromount G (Cambridge Biosciences, Cambridge, UK) and stored at 4oC. 

 

2.2 Methods 

2.2.1 Transfection Methods –  

Cells cultured on glass coverslips, or in plates for transfections and immunofluoresence at 

37oC and 5% CO2 in the appropriate media for 24 hours prior to transfection. Transfections 

were carried out for 6 hours before changing media. Cells seeded at the following densities 

according to plate growth area, see table 2.3. Transfections were carried out in OptiMEM 

media with either Transfast (Promega, Southampton, UK), Lipofectamine (Invitrogen), 

JetPRIME and INTERFERin (Autogen Bioclear, Wiltshire, UK), Nanojuice (Merck Chemicals, 

Nottingham, UK), Fugene (Roche Applied Bioscience, West Sussex, UK), HiPerFect (Qiagen, 

West Sussex, UK), TurboFect (Fermentas Life Science, York, UK), DharmaFect (Dharmacon, 

Lafayette, CO) or calcium phosphate (CaPO4
-) (Sigma). Transfection protocol volumes stated 

for 24 well plates, scaled up or down depending on culture vessel. Cells were washed twice 

in Opti-MEM prior to transfection, and transfection mix was replaced with fresh media after 

6 hours. In cases where transfection reagent alone was used, the volumes were made up 

with Opti-MEM.  

Culture Vessel Growth Size (cm2) Cell Density (Per Well) Plating Media (ml) Relative Area 

48 well plate 1 10,000 0.2 0.5x 

24 well plate 2 20,000 0.4 1x 

12 well plate 3.8 50,000 1 2x 

6 well plate 9.5 250,000 2 5x 

6 cm dish 21 300,000 3 10x 

 

Table 2.3 – Cell Densities for Different Culture Plates For Transfections 

2.2.1.1 Transfast Transfection – per well of 24 well plate - 0.5 µg DNA diluted in 200 µl Opti-

MEM, followed by 1.5 µl of Transfast reagent and mixed gently, left to incubate at room 
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temperature before placing on cells. After 1 hour, 100 µl of complete media added to each 

well. 

2.2.1.2 Lipofectamine Transfection – cells seeded in antibiotic-free media prior to 

transfection. In a tube 2 µl Lipofectamine in 50 µl Opti-MEM, and incubated at room 

temperature for 5 minutes before adding to a tube containing 0.8 µg DNA in 50 µl Opti-

MEM and then incubated at room temperature for a further 20 minutes before adding to 

500 µl antibiotic free media.  

2.2.1.3 Calcium Phosphate Transfection – transfection carried out in complete media, 

changed prior to addition of the transfection mix. In one tube 5 µg DNA, 49 µl sterile water 

and 6 µl 2.5 M CaCl2 which was added to bubbled 60 µl 2x HEPES buffered saline (HeBS), and 

incubated at room temperature for 20 minutes before addition of 30 µl dropwise to each 

well. Glycerol shock was required for some plasmid expression, per well – 20 µl 50% (w/v) 

glycerol, 50 µl 2x HeBS and 30 µl sterile water. Cells shocked for 2 minutes and washed 

twice in PBS before fresh complete media added.  

2.2.1.4 JetPRIME Transfection – 0.5 µg DNA into 50 µl JetPRIME buffer, mixed gently and 

added 1 µl JetPRIME, vortex briefly, spin down and incubate at room temperature for 10 

minutes before adding to 500 µl complete media.  

2.2.1.5 Fugene HD Transfection Protocol – 0.5 µg DNA and 1.25 µl Fugene HD diluted and 

mixed in 25 µl Opti-MEM, incubated at room temperature for 15 minutes before added to 

475 µl complete media.   

2.2.1.6 Nanojuice Transfection – cells seeded in antibiotic-free media prior to transfection. 

In 100 µl Opti-MEM, 1 µl NanoJuice core reagent and 0.5 µl booster was added, and 

incubated for 5 minutes before 0.5 µg DNA was added. The transfection mix was left for 15 

minutes at room temperature before adding to the cells dropwise. After 1 hours 100 µl 

media with serum, no antibiotics, was added. 

2.2.1.7 TurboFect Transfection – 1 µg DNA and 2 µl of TurboFect was added to 100 µl Opti-

MEM and incubated for 20 minutes at room temperature before adding dropwise to 500 µl 

complete media.  
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2.2.2 siRNA Transfections –  

HeLa cells were seeded and cultured overnight in antibiotic-free media, and media was 

replaced with fresh prior to transfection. All siRNA oligomers were pre-designed and 

purchased from Dharmacon (Lafayette, CO), the sequences as described in table 2.4 and 2.5 

below. 

siRNA Oligo Oligo Sequence 

J004374-07 GGCAUUAUCCAAUUGGUUU 

J004374-08 GCAGAACCAUACUAUUUGC 

J004374-09 UGACAGAUUUGACCAGUUU 

J004374-10 ACAAAGAUGUGCUUCGAGA 

Table 2.4 – Sequences of siRNA targeting Atg5 mRNA 

 

siRNA Oligo Oligo Sequence 

J055895-05 CUAAGGAGUUGCCGUUAUA 

J055895-06 GAGAGGAGCCAUUUAUUGA 

J055895-07 GGGAGUAUAGUGAGUUUAA 

J055895-08 GGACAAAAGCGCUCAAGUU 

Table 2.5 – Sequences of siRNA targeting beclin-1 mRNA 

The siRNA was reconstituted in siRNA buffer to a stock solution of 20 µM. This was further 

diluted in Opti-MEM for a working concentration of 2 µM and the final concentration of 

siRNA per well was 100 nM. The siRNA oligos were transfected into cells using 

Lipofectamine 2000, following the manufacturer’s guidelines for siRNA transfections. 

Lipofectamine siRNA Transfection – cells were 50-60% confluency at time of transfection. 

For 12 well format, 50 µl siRNA was added to 50 µl Opti-MEM, incubated for 5 minutes 

before gently mixing with 2 µl Lipofectamine in 50 µl Opti-MEM and incubated further for 

20 minutes before adding to 800 µl antibiotic-free media on the cells. 
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2.2.3 Microscopy and Immunofluorescence - 

2.2.3.1 Live Cell Imaging - 

Before entering the sterile POC chamber for the live cell imaging, the 40 mm coverslips were 

washed in PBS, secured in the chamber and 2 mls media was added. The cells were then 

place into the microscope stage, incubated at 37oC and 5% CO2 for the duration of the 

experiment. 

2.2.3.2 Paraformaldehyde Fixation – Cells were fixed in 4% PFA for 15 minutes and washed 

twice in PBS before blocking for 10 minutes in 30% goat quench solution, and then 

permeabilised for 30 minutes in 30% goat quench solution with 0.2% Triton-X 100. Primary 

antibody incubation was 1 hour and secondary antibody incubation was 40 mins, with 3x 5 

minutes washes in-between. Cells were DAPI stained for 15 minutes and mounted using 

Fluoromount G.  

2.2.3.3 Methanol Fixation - Cells were fixed in 100% methanol for 5 minutes and blocked for 

30 minutes in 30% goat quench solution. Antibodies were diluted in blocking buffer and 

primary antibody incubation was 1 hour and secondary antibody incubation was 40 mins, 

with 3x 5 minutes washes in between. Cells were DAPI stained for 15 minutes and mounted 

using Fluoromount G. For cytoskeletal antibodies, cells were fixed in methanol with 10% 

MES buffer for 5 minutes, and blocked and stained as above. For the details regarding 

concentrations of the different antibodies see the above table 2.1. 

2.2.3.4 Immunofluorescence with anti-LC3b (Sigma) - Cells were fixed in 100% methanol for 

5 minutes and blocked for 10 minutes in 2% BSA in PBS solution. Antibodies were diluted in 

blocking buffer and primary antibody incubation (1:1000) was 1 hour and secondary 

antibody incubation was 40 mins, with 3x 5 minutes washes in-between with 2% BSA in PBS 

solution. Cells were DAPI stained for 15 minutes and mounted using Fluoromount G 

2.2.3.5 Nile Red Staining - to increase lipid storage and lipid droplet formation, CHO eGFP-

LC3 cells were cultured in complete media supplemented with 1x oleic acid (stock solution 

100x Sigma) for 24 hours prior to fixation. Following treatment, cells were fixed in 4% PFA as 

usual. Stock solution of Nile Red prepared in 150 mM NaCl at 1 mg/ml, diluted in dH2O to a 

working solution of 0.1 µg/ml. Cells were incubated with 500 µl of the working solution per 
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well in 24 well plate, for 10 minutes in the dark. Coverslips were washed again with 1x PBS 

and mounted onto coverslips. 

2.2.3.6 Filter Sets and Microscopes - 

Live cell images were obtained on a Zeiss inverted microscope at x40 magnification. All fixed 

cell images were obtained at x63 magnification on a Zeiss Axioplan 2 microscope unless 

otherwise stated. Images were analysed and deconvolved using the Axioplan software 

version 4.7.1.  

Filter Set (Zeiss) Ex. Wavelength (nm) Em. Wavelength (nm) 

15  546 590 

25  400, 495, 570 460, 530, 625 

38 470 525 

43  545 605 

49 365 445 

 

Table 2.6 – excitation and emission wavelength ranges of filter sets  

 

2.2.4 Western Blot Analysis -  

Cells were lysed in hot SDS buffer, scraped and pipetted into a clean tube and stored at -

20oC. Samples were allowed to defrost on ice, sonicated and assayed using the BCA kit 

according to manufacturer’s instruction and then the appropriate volumes were incubated 

for 3 minutes at 95oC in sample preparation buffer before loading.  

2.2.4.1 BioRad SDS-PAGE System -  

Gels were prepared at 12% or 15% acrylamide as described in table 2.6 below. Gels were 

washed and run at 70-80 V until the samples reached the resolving gel then ran at 100 volts 

until reaching the near bottom of the gel. Gels were semi-dry blotted for 15 minutes at 25 

volts or two gels for 30 minutes at 25 volts. Membrane washed and blocked in 5% Marvel 

TBST for 30 minutes followed further washing in TBST. Primary antibody in 5% Marvel TBST, 
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left overnight at 4oC shaking. Subsequent washing, incubation with secondary antibody for 1 

hour before developing using the X-Ograph. 

2.2.4.2 Invitrogen X-Cell NuPAGE System – Precast gels were washed and prepared 

according to manufacturer’s instructions. Gels run in 1x MES buffer at 200 V for 35 minutes 

before semi-dry blotted for 15 minutes at 25 V or 30 minutes at 25 V. Membrane washed 

and blocked in 5% Marvel TBST for 30 minutes followed further washing in TBST. Primary 

antibody in 5% Marvel TBST, left overnight at 4oC shaking. Subsequent washing, incubation 

with secondary antibody for 1 hour before developing.  

Development of HRP-tagged antibodies (Jackson ImmunoResearch Laboratories, West 

Grove, PA, USA) was carried out using SuperSignal West Pico chemiluminescent substrate 

(Pierce, Rockford IL), incubating the blots for the 5 minutes in the solutions and subsequent 

development in the X-Ograph Imager using x-ray film to capture the signal. Imaging of infra-

red tagged antibodies (LI-COR Biosciences UK, Cambridge UK) on the Odyssey machine (LI-

COR Biosciences) and associated imaging software. To enable subsequent blotting with 

another primary antibody, the membrane could be stripped of antibodies by incubating the 

membrane in 1x Reblot solution (Millipore, Watford, UK) for 15 minutes at room 

temperature. After this the membrane was washed, blocked, probed and developed as 

described above.   

2.2.4.3 Gel and Buffer Compositions for Western Blot Analysis 

Cell lysis buffer for all cell lysates:  200 μl 10% SDS and 1 ml 0.5 M Tris, pH 6.8 in 8.8ml dH2O 

Sterile 1x phosphate buffered saline (PBS) prepared from 10x stock – 80g NaCl, 2g KCl, 26.8g 

Na2HPO4 and 2.4g KH2PO4 in 1 litre H2O. 

Running buffer and transfer buffer prepare at 1x concentration from a 10x stock – 10x 

running buffer pH 8.3 (30 g Tris base, 140 g glycine, 10 g SDS in 1 litre) and 10x transfer 

buffer pH 9.2 (390 mM Glycine, 480 mM Tris, 0.3% SDS). Blocking in 5% Marvel solution – 5g 

powered milk in water and washing in 1x TBS 0.5% Tween (1 ml Tween 20 in 1 litre 1x TBS 

(6.05g Tris and 8.76g NaCl in distilled water)) 
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Preparation of 12% gel and 15% gel – 30% acryl-bisacrylamide and TEMED were purchased 

from BioRad (Hemel Hempstead, UK). Ammonium persulphate – 1 mg dissolved in 1 ml, 10% 

SDS – 100 g SDS dissolved in 1 litre and 1.5 M Tris – 182 g dissolved in 1 litre distilled water 

and pH adjusted accordingly. 

Reagent Resolving Gel Volume (ml) 12% or 15% Stacking Gel Volume (ml) 

H2O 1.6 or 1.1 0.68 

30% acryl-bisacrylamide mix 2.0 or 2.5 0.17 

1.5 M Tris (pH 8.8) 1.3 - 

1.5 M Tris (pH 6.8) - 0.13 

10% SDS 0.05 0.01 

10% ammonium persulphate 0.05 0.01 

TEMED 0.002 0.001 

 

Table 2.7 – Volumes of Solution required for 10% or 12% gels in Western Blot analysis 
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Chapter 3 – Assays for Autophagy 

 

3.1 Aims  

The aims of this chapter are to describe the assays which will be used to study 

autophagy. The proteins of interest are LC3, the mammalian homolog of Atg8, and p62 

which is also known as sequestersome 1 (SQSM1).  

 

3.2 Introduction 

Autophagy is the process of cellular degradation in which double membrane vesicles 

form, engulfing portions of the cytoplasm and fuse with lysosomes. Many of the autophagy 

(Atg) proteins involved in the formation of the autophagosome associate with the 

expanding membrane in the early steps. However they dissociate after autophagosome 

closure and are not incorporated into the fully formed autophagosome. One protein known 

as Atg8 or LC3 remains associated with the autophagosome membrane through to 

degradation in the lysosome, and this can be used to follow vesicle maturation. LC3 plays a 

vital role in the formation and the maturation of the autophagosome (Kirisako et al 1999, 

Kabeya et al 2000). LC3 has a cytoplasmic distribution in normal growth conditions, and 

undergoes rapid redistribution to punctuate structures during starvation. These LC3 

‘punctae’ indicate recruitment of LC3 to autophagosome membranes (Kabeya et al 2000) 

and can be studied using GFP fused to the N-terminus of LC3 or by immunostaining of 

endogenous LC3. Translocation to the autophagosome membrane requires conjugation of 

phosphatidylethanolamine (PE) molecule to the C terminus of LC3. The attachment site for 

PE to LC3 is generated by the Atg4 protease which cleaves at Arg119 to expose Gly120. The 

glycine binds to Atg7 and is subsequently transferred to Atg3 before its final conjugation to 

PE, as illustrated in figure 3.1 below. Importantly, conversion of LC3-I to LC3-II results in a 

more rapid migration on SDS-PAGE gels which can be detected by Western blot. 
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Figure 3.0 – the process of LC3 lipidation which changes the localisation of LC3 during autophagy. 

The Atg12-Atg5-Atg16 conjugate (Atg16 complex) plays an important role in 

localising LC3 on the membrane for the forming autophagosome. In support of this, in the 

Atg5-/- cells LC3 is not recruited to autophagosome membranes and over expression of 

Atg12 or Atg16 inhibits autophagosome formation (Fujita et al 2008, Mizushima et al 1998 

and 2001). Once the membrane closes and a complete double membrane forms, then the 

Atg16L complex dissociates and the autophagosome continues on route to the lysosomes, 

LC3 remains with the membrane and can be used as a marker for the formation and 

progression of autophagosomes.   

 Sequestersome 1/p62 can also be used as a marker for autophagy. p62 binds to 

ubiquitinated proteins through the ubiquitin-associated (UBA) domain and directs them to 

the autophagosome by binding to LC3. p62 and its cargo is incorporated into the 

autophagosome; however p62 is not crucial for the formation of autophagosomes (Pankiv et 

al 2007, Shvets et al 2008). Despite the additional roles of p62 in other cellular activities, it 

can be used to monitor the activation of autophagy through binding to LC3 and subsequent 

degradation in lysosomes. In other words increased turnover of p62 is an indicator of 

activation of autophagy.  
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3.3 Results 

 

Figure 3.1 – Starvation Reorganises LC3 but not LC3 G120A to Autophagosomes - CHO cells stably expressing 

eGFP-LC3 (top panels, green) or the mutant eGFP-LC3 G120A (bottom panels, green) were cultured overnight 

in full nutrient media on glass coverslips. Cells were maintained in nutrient media (left panels) or starved (right 

panels) for 4 hours before fixation. Nuclei were stained with DAPI (blue).  Bar is 10 μm.  
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Figure 3.2 – Time Course of LC3 and p62 Redistribution after Induction of Autophagy – CHO cells stably expressing 

eGFP-LC3 (top panels, green) were starved in HBSS then fixed at time points stated. MEF cells (bottom panels) were 

starved for 4 hours prior to fixation and stained with anti-p62 antibodies (red) and the nuclei with DAPI (blue). Bar is 

10 μm.  

 

Figure 3.3 – Autophagy Results in the Colocalisation of LC3 and p62 to autophagosomes – MEF cells (top 

panels) were starved for 4 hours prior to fixation and stained with anti-LC3 (green) and anti-p62 (red). CHO 

cells stably expressing eGFP-LC3 (bottom panels, green) were transiently transfected using calcium phosphate 

with a plasmid expressing p62-tomato (red).  24 hours after transfection cells were starved for 4 hours. Cells 

were fixed and the nuclei stained with DAPI (blue). Bar is 10 μm.  
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Figure 3.4 – Increase of LC3-II Following Starvation and the Recovery After Feeding – (A) MEF cells were 

grown in complete media (control), or incubated HBSS for 1, 4 or 8 hours (starvation).  In separate experiments 

MEF cells were starved for 1 hour and allowed to recover for 3 or 7 hours in full nutrient media (recovery). Cell 

lysates were separated by SDS-PAGE and levels of LC3 and β actin determined by Western blot. Secondary 

antibodies were detected using infra-red light at 680nm (β-actin) and 800nm (LC3). (B) LC3-II signal normalised 

to β-actin using the Odyssey software.  
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3.3.1 Use of LC3 and p62 to Determine Induction of Autophagy 

A stable CHO cell line expressing a chimeric form of LC3, eGFP-LC3, allows for the 

distribution of LC3 to be followed using the inherent fluorescence of the GFP molecule. 

Figure 3.1 shows that LC3 has a diffuse cytoplasmic distribution in control nutrient rich 

media and on induction of autophagy, following replacement of media with starvation 

media, the GFP-LC3 signal becomes punctate. The small LC3 ‘puncta’ represent 

autophagosomes and indicated the activation of autophagy. In the bottom panels of 3.1, 

CHO cells stably expressing the mutant LC3, eGFP-LC3 G120A, where the glycine residue is 

replaced with an alanine and therefore cannot be conjugated to the PE molecule. In these 

cells there is no change in distribution of LC3 in starvation media compared to the controls 

media. In both conditions the LC3 remains cytoplasmic. 

Figure 3.2 shows analysis of LC3 punctae can change due to the progression of the 

pathway over an eight hour time course.  The number of LC3 vesicles will increased between 

1 and 4 hours and reached a peak with a slight decrease can be seen by 8 hours. LC3 

punctae were concentrated closer to the perinuclear region at 8 hours. Similar results were 

recorded for p62 (figure 3.2) with a cytoplasmic distribution at 1 hour, followed by a small 

number of punctate vesicles at 4 hours and 8 hours.  The experiment was repeated using 

MEF cells. Endogenous LC3 and p62 and the fluorescently tagged proteins showed similar 

changes in distribution on induction of autophagy and double labelling experiments showed 

colocalisation of p62 and LC3. 

3.3.2 Lipidation of LC3 and Degradation of p62 Can Be Monitored Using Western Blots 

The lipidation of LC3 results in faster migration on a SDS-PAGE gel. The fast migrating 

form known as LC3-II can be detected as a separate band at 14 kDa compared to the 16 kDa 

unlipidated form (LC3-I). The faster migration of LC3-II is thought to be due to the negative 

charge of the PE molecule. During starvation levels of LC3-II increase, but then LC3-II is 

delivered to lysosomes and degraded. This complicates interpretation of Western bots and 

makes it difficult to use LC3-II levels as an absolute indicator of autophagy. A semi-

quantative assay is possible by comparing the levels of cellular LC3-II relative to actin. In the 

Western blots of figure 3.4 LC3-I and LC3-II are seen at 16 and 14kDa respectively in control 

cells, due to basal autophagy. The levels of both forms of LC3 increased after 4 hours 
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Figure 3.5 – Decrease in the Levels of p62 After Activation of Autophagy – (A) MEF cells were incubated HBSS 

for 4 or 8 hours then lysed.  Cell lysates were separated by SDS-PAGE and levels of LC3 and β actin determined 

by Western blot. Secondary antibodies were detected using infra-red light at 680nm (β-actin) and 800nm 

(LC3). (B) p62 signal normalised to β-actin using the Odyssey software.  
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Figure 3.6 – Redistribution of cytoplasmic LC3 to Punctate Autophagosomes in Cell Lines from Different 

Species After Activation of Autophagy – Cells were cultured overnight on glass coverslips, and were left 

untreated in full media (top panels) or starved for 4 hours prior to fixation and immunostaining for 

endogenous LC3 (green) in MEF and Vero cells.  LC3 was detected in the HEK 293 cells from the natural 

fluorescence of GFP (green). Nuclei were stained with DAPI (blue). Bar is 10 μm.  
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Figure 3.7 – The Increase in LC3-II in Response to Autophagy in Different Cell Lines – (A) Cells were grown in  

full nutrient media (C, control), or starved in HBSS for 4 hours (H, HBSS).  Cells lysates were separated by SDS-

PAGE and analysed by Western blot using anti-LC3 and anti-β actin. Secondary antibodies were detected using 

infra-red light at 680nm (β-actin) and 800nm (LC3). (B) LC3 signal normalised to β-actin using the Odyssey 

software. 
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following transfer to HBSS and declined at 8 hours. Densitometric analysis of bands after 

adjustment for gel loading is shown in panel B. The ratio of LC3-II to actin increased at 4 

hours indicating an overall increase in LC3-II, and then declined. In a separate experiment 

cells were starved for 1 hour and then allowed to recover in complete media. Again the ratio 

of LC3-II to actin was high after starvation and then declined during recovery. A gradual 

decrease in the levels of LC3-II can be seen between 3 and 7 hours possibly due to the 

delivery and degradation in lysosomes. The levels of p62 can be used to monitor the 

induction of autophagy (Bjorkoy et al 2005) since autophagy results in degradation of p62 in 

lysosomes (figure 3.5). In this experiment induction of autophagy for 8 hours resulted in a 

slight fall in p62 levels of p62 in comparison to the control level in full media. This is further 

highlighted by figure 3.9 shown later. 

3.3.3 Induction of Autophagy in Different Cell Lines 

 Autophagy is a conserved response in eukaryotic organisms. The distribution of LC3 

used to assess autophagy in different mammalian cells lines in subsequent experiments is 

shown in figures 3.6 and 3.7. In MEF and Vero cells, the LC3 was identified by 

immunostaining of endogenous LC3 rather that following eGFP-LC3. As seen with the CHO 

cells expressing eGFP-LC3, the unlipidated LC3 staining was predominantly cytoplasmic in all 

cell lines grown in nutrient media. There were some LC3 punctae in Vero cells suggesting 

there may be a higher level of basal autophagy in these cells. LC3 punctae were distributed 

through-out the cytoplasm when the cells were starved in HBSS. LC3 processing was 

analysed by Western blots of the unstarved control and starved cells (figure 3.7). The cells 

showed different levels of basal LC3-II on the Western blot. There was no obvious relative 

increase in LC3-II over LC3-I. The LC3-II levels were therefore normalised to actin to 

generate the bar cart in panel B. During 4 hours of starvation, the 293 GFP-LC3 cells have a 

large increase in the amount of LC3-II in comparison to the other cell lines. The CHO GFP-

LC3 and HeLa show an increase in LC3-II under starved conditions. The Vero cells showed a 

slight decrease and this correlates with the LC3 punctae seen by fluorescence. In conclusion 

it looks as if different cells have different levels of basal autophagy depending on their own 

cellular metabolism, highlighted by the different LC3 levels on the western blot. This makes 

LC3-II processing difficult to use as an assay for activation of autophagy, the results are  
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Figure 3.8 -  Inactivation of Lysosomal Degradation Results in Accumulation of LC3 - CHO cells stably 

expressing eGFP-LC3 (green) were cultured overnight on coverslips and then starved in HBSS for 8 hours 

without (top panels) or with bafilomycin (bottom panels) and then fixed. Cells were stained with anti-LAMP1 

(red) and the nuclei with DAPI (blue). Bar is 10 μm.  
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Figure 3.9 – Effect of bafilomycin on levels of LC3-II and p62 during Autophagy (A) HeLa cells were cultured in 

complete nutrient media or starved in HBSS for 4 hours (HBSS), or HBSS with 100 nM bafilomycin A1.  Cell 

lysates were separated by SDS-PAGE and analysed by Western blot using anti-LC3 and anti-β actin. Secondary 

antibodies were detected using infra-red light at 680nm (β-actin) and 800nm (LC3).  (B) LC3 and p62 signals 

normalised to β-actin using the Odyssey software.  
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Figure 3.10 – Comparison of the Inhibitory Effects of Bafilomycin and Wortmannin on Autophagy - CHO cells 

stably expressing eGFP-LC3 (green) were grown on coverslips for 24 hours.  Cells were then starved in HBSS in 

the presence of 100 nM bafilomycin A1 (top panels) or 10 nM wortmannin (bottom panels). Cells were then 

fixed at 1, 4 or 8 hours.  Cells incubated with bafilomycin (top panels) were subsequently counter stained for 

LAMP1 (red) Bar is 10 μm.  
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easier to interpret when LC3-II bands were normalised to β-actin levels in each cell type 

rather than to LC3-I levels. 

3.3.4 Autophagosomes Fusion with Lysosomes 

The transfer of autophagosomes to lysosomes was studied in figure 3.8. The CHO 

cells stably expressing eGFP-LC3 were starved for 8 hours and autophagosomes followed by 

the distribution of LC3 formed LC3 punctae and lysosomes were identified using the 

lysosomal marker LAMP1. The top panel shows that many eGFP punctae which localised 

near to the lysosomes but there were few double positive structures in the merged image. 

GFP is not stable in acidic conditions and therefore will not be stable inside the lysosomes 

(Kimura et al 2007). Bafilomycin A1 is an inhibitor of the vacuolar ATPase that delivers H+ to 

the lysosomes prevents the acidification of the lysosomes, and hence proteolysis. When 

cells were incubated with bafilomycin during starvation eGFP-LC3 punctae were observed 

inside the swollen lysosomes indicating fusion of autophagosomes and lysosomes. The GFP 

signal is retained as the lysosome is no longer able to acidify. Use of bafilomycin A1 to 

determine the autophagy flux is important mechanistically to see if autophagosome 

production is increased or if degradation in lysosomes is inhibited. If the end point of the 

flux is inhibited, then incubation with bafilomycin A1 will not yield any differences in LC3-II 

on a Western, or the number of LC3 puntae. However, if the stimulus increased the number 

of autophagosomes, then a larger LC3-II band is seen on a Western blot and increased 

number of puntae. This is an important assay to use for determining how a stimulus can 

affect autophagy.  

Cell incubated with bafilomycin A1 were analysed by Western blot.  Consistent with 

the immunofluorescence study (figure 3.9), bafilomycin A1 increases the levels of LC3-II, by 

decreasing degradation in lysosomes. Similarly the degradation of p62 is hindered and this 

also accumulates in the cytoplasm, and can be seen by an intense band running between 

the 50 and 72 kDa standards.  

3.3.5 Inhibitors of Autophagy 

Figure 3.10 compared the effects of bafilomycin A1 and wortmannin, a PI-3 kinase 

inhibitor, on autophagy. As recorded above bafilomycin A1 inhibited the degradation of LC3 
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in lysosomes. LC3 punctae first appeared at one hour when they were separate from LAMP1 

positive lysosomes. Cells observed at 4 and 8 hours showed LC3 signals inside the lysosomes 

indicating fused autophagosomes with lysosomes, however as the GFP signal is retained.  In 

contrast, in the presence of wortmannin, cells did not form LC3 punctae in response to 

starvation and LC3 remained in the cytoplasm.  

 

3.4 Discussion 

 The aim of this chapter has been to describe standard assays of autophagy and show 

that these can be carried out in cell lines used in subsequent studies. Autophagy was 

monitored using the proteins LC3 and p62 as markers for induction and progression to 

fusion with lysosomes. The results also showed that autophagy can be inhibited by the 

incubation with wortmannin, and bafilomycin A1 can be used to prevent the degradation of 

LC3 in lysosomes.  

The use of LC3 and p62 as markers in this study highlighted that both proteins can be 

used to examine the process as they localise the autophagosomes. LC3 is a useful protein to 

use to measure autophagy.  The formation of LC3 punctae can be monitored by microscopy 

as its location changes within the cell, and correlated with addition of PE to produce LC3-II 

which can be measured independently on a Western blot. Cells expressing the form of LC3 

carrying the G120A mutation, which prevented addition of PE, can be used as an additional 

control. A change in the amino acid sequence can prevent the lipidation and hence the 

formation of autophagosomes. A stable cell line is also an important tool, as autophagy is a 

response which can be induced by a number of stress stimuli, which include starvation. It is 

important to have the cells in the least stress conditions prior to experimentation in order to 

achieve accurate results. Kuma et al (2007) have, for example reported LC3 incorporation 

into protein aggregates independently of autophagy causing doubts as to autophagy 

induction (Korkhov 2009). Although these aggregates are particularly large and localised to 

the perinuclear region of the cell they are not characteristic of autophagosomes. It is noted 

that other methods to validate autophagy are required such as immunoblots also have to be 

interpreted carefully. The levels of LC3-I and LC3-II are detected using specific anti-LC3 

antibodies; however, it is possible that the antibody will recognise the LC3-II form more than 
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the LC3-I due to unmasking of epitopes during the autophagy (Mizushima and Yoshimori 

2007). For this reason, the normalisation of LC3-II to actin provides a more accurate 

indication of autophagy than the ratio of total levels of LC3, LC3-I and LC3-II (Tanida et al 

2005). The levels of LC3-I and LC3-II can, as seen in this study, vary between cell types 

depending on cellular metabolism and basal autophagy which may also yield results that are 

difficult to interpret (Tanida et al 2005).  

With the rising interest in autophagy alternative markers to LC3 are being developed 

to verify the induction of autophagy. Whilst many of the autophagy (Atg) proteins are 

removed after the closure of the autophagosomal membrane, p62 can be used in parallel 

with LC3. The data presented in this study indicates that p62 localises to the 

autophagosomes during autophagy, and a decrease in the levels of p62 can be used as an 

indicator of autophagy induction because p62 is degraded following fusion with the 

lysosomes. It is important to study the levels and location of endogenous p62 in parallel to 

studies of fluorescently-tagged p62. Transient expression of a fluorescent-tagged p62 can 

lead to the formation of inclusion bodies rather than autophagosomes (Bjorkoy et al 2005, 

Pankiv et al 2007). However, caution must be employed as p62 is not crucial for the 

formation of the autophagosome. When used in tandem with other methods it provides a 

useful tool to monitor autophagy.  

In summary, these studies on LC3 and p62 indicated that both proteins can be used 

to follow the induction and the progression of autophagy to fusion with lysosomes, and also 

that this process can be inhibited using bafilomycin A1 or wortmannin. 
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Chapter 4 – The Formation of Large Tubulo-Vesicular Autophagosomes 

(TVAs) and the Comparison to Autophagic Components 

 

4.1 Aims – 

The aims of this chapter are to describe the nature of the large tubulo-vesicular 

autophagosomes (TVAs) that formed when cells are incubated with cationic liposomes, and 

also to compare these structures to typical autophagosomes formed following starvation. 

The principal marker used to define the large tubulo-vesicular structure is LC3, and the 

study also aims to establish if other autophagy proteins are activated or required during the 

formation of these structures. 

 

4.2 Introduction 

 During experiments in the previous chapter it was noted that cationic liposomes 

commonly used as transfection reagents resulted in the formation of novel 

autophagosomes. Generally, autophagosomes are double membrane vesicles 300-900 nm in 

diameter. This can vary between different cell lines and tissues. However a well-defined 

change in the location of LC3 is always seen during autophagy where cytoplasmic LC3 moves 

punctate structures distributed throughout the cytoplasm as previously discussed 

(Mizushima et al 1998). Originally, autophagy was described as a cellular response to lack of 

nutrients, however, many recent examples have highlighted that autophagy can adapt to 

new challenges. Interestingly, a recent study by Nishida et al (2009) has provided an 

example of non-canonical autophagy, whereby a knock-out or loss of function mutations in 

the key autophagy proteins Atg5 and Atg7 reveal Atg5/Atg7 independent pathways. These 

Atg5/Atg7 independent pathways are still PI 3-kinase dependent and they have a functional 

role in higher eukaryotes. Similarly, Zhou et al (2011) has shown a Vps34-independent form 

of autophagy that exists in neurons, yet this type of autophagy still depends on Atg7 for LC3 

punctae to form. Emerging in the literature is evidence for non-canonical autophagy 

pathways and how they play a role in cellular survival and adaptation when canonical 

autophagy cannot function.  
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The experiments at the start of this thesis work showed that autophagosomes 

formed following DNA transfection using cationic liposomes. During the same period, papers 

appeared in the literature (Gao et al 2008, Sarkar et al 2009) that confirmed the non-viral 

DNA delivery vectors such as cationic liposomes and calcium phosphate precipitates, 

previously thought inert, could induce autophagy. Liposomes are formed when a lipid in an 

aqueous environment generates single or multi-lamellar structures, and cationic liposomes 

are used to deliver DNA to cells. The positive charge of the lipids allows incorporation of the 

negatively charged DNA into the liposomes see figure 3.1 below.  

 

Figure 4.0 – (A) the arrangement of lipid in a liposome – the hydrophobic tail and the polar head group of the 

lipid will arrange so the head group is in contact with the aqueous environment whilst the chains form a 

aqueous-free layer (B) fusion with cellular membranes – cationic lipid bilayers will fuse with endocytic vesicle 

membranes and result in the release of DNA (adapted from Medina-Kauwe et al 2005). 

Commercially, there are a number of liposomes available that vary in composition, 

many of which have the neutral helper lipid DOPE to improve transfection efficiency. DOPE 

affects the packing properties of the cationic lipid and improves membrane fluidity in 

liposome formation (Zuhorn et al 2002). Liposomes enter the cell through endocytosis and 

fuse with the endosome membrane to release the DNA into the cytoplasm, as shown above. 

Viral vectors such as the lentivirus or adenovirus vectors which can be used as an alternative 

to liposomes can potentially activate other cellular and innate immunity during the delivery 
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of DNA to cells (Kufe et al 2003, Tresset 2009). This can lead to undesired side effects or 

cellular responses to the viral vectors.  

In this chapter, the autophagosomes generated by cationic liposomes are compared 

with autophagosomes formed during starvation. Autophagy is monitored by following LC3 

redistribution. The studies also investigate the role played by beclin-1 and Atg5. Beclin-1 is 

part of the PI 3-kinase: Vps34 complex involved in the initiation of autophagy, and DFCP1 

will be used as a marker for the generation of PI (3)P required for autophagy. Atg5 functions 

as a complex with Atg12 and Atg16 to provide support for the forming autophagosome, and 

to ensure correct lipidation of LC3. 
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4.3 Results 

 

Figure 4.1 – Cells Incubated with Cationic Liposomes Rearrange eGFP-LC3 into Large Perinuclear Structures - 

CHO cells stably expressing eGFP-LC3 were cultured overnight on glass coverslips. Cells were starved by 

incubation in HBSS (top panels) or incubated with the cationic transfection reagent Transfast (bottom panels) 

for the indicated times and then fixed. At 8 hours, cells were washed, and fed in complete media overnight. 

These cells were fixed at 24 hours post incubation. Nuclei were stained with DAPI (blue).  Bar is 10 μm.   

 

Figure 4.2 – Tubulo-Vesicular Autophagosomes (TVAs) Remained in the Cytoplasm for at Least 48 hours - 

CHO cells stably expressing eGFP-LC3 were cultured overnight on glass coverslips and processed as described 

for figure 4.1. Cells were incubated with Transfast for 8 hours and allowed to recover for 24 hours (A) or 48 

hours (B) before fixation, and stained the nuclei with DAPI (blue).  Bar is 10 μm.  

24 hours recovery 
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Reagent  Rearrangement of LC3 Type  

Transfast    Liposome-based  

Lipofectamine    Liposome-based  

Nanojuice    Liposome-based  

HiPerfect    Liposome-based  

Fugene HD    Non-Liposome  

Turbofect   Non-Liposome 

JetPrime 
 

Interferin 

 
  
  

Non-Liposome 
 

Non-Liposome 

Calcium Phosphate    Non-Liposome  

 

Table 4.1 – Incubation with a Variety of Liposomes Generated Tubulo-Vesicular Autophagosomes (TVAs) - 

CHO cells stably expressing eGFP-LC3 were cultured overnight on glass coverslips. Cells were incubated with 

the transfection reagents stated in the table for 4 hours before fixation, and analysed using fluorescence 

microscopy to monitor LC3 distribution.  

 

Figure 4.3 – Formation of Tubulo-vesicular Autophagosomes (TVAs) in Different Cell Lines - HeLa cells, MEF 

cells or Vero cells were cultured overnight on glass coverslips. Cells were incubated with Transfast for 4 hours 

before fixation. Cells were then stained with anti-LC3b bodies to detect endogenous LC3 and the nuclei were 

stained with DAPI (blue). LC3 was visualised using secondary antibodies conjugated to Alexa 488 (green). Bar is 

10 μm. 
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Figure 4.4 – Increase of LC3-I Processing Following Starvation or Incubation with Cationic Liposomes – (A) 

MEF cells were cultured in complete nutrient media (control), or starved by transfer to HBSS, or incubated 

with Transfast transfection reagent.  Cells lysates generated at the indicated times were separated by SDS 

PAGE and analysed by Western blot using antibodies recognising LC3 or β actin.  Secondary antibodies were 

detected detection using infra-red light at 680nm (β-actin) and 800nm (LC3). (B) Densitometry of the LC3-II 

signal which was normalised to β-actin using the Odyssey software.  
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Figure 4.5 – The Formation of Tubulo-Vesicular Autophagosomes (TVAs) in Response to Cationic Liposomes - 

CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips overnight prior to placing in a POC 

chamber and incubated in Transfast in OptiMEM for a further 2 hours whilst imaging. Bar is 2 μm. 

 

Figure 4.6 – New Tubulo-Vesicular Autophagosomes (TVAs) are Incorporated into Pre-Existing Structures - 

CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips overnight prior to incubating in 

Transfast in OptiMEM for a further 4 hours, imaging at the time point stated. Bars are 5 and 10 μm 

respectively. White arrows show TVA incorporation into pre-existing LC3-positive structure. 
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Figure  4.7 – Tubulo-Vesicular Autophagosome (TVAs) Formation Does Not Require Ongoing Protein 

Synthesis- CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips overnight prior to placing in 

a POC chamber and incubated in Transfast in OptiMEM and in the presence of 20μg/ml cyclohexmide for a 

further 2 hours, imaging at the time point stated. Bar is 10 μm. White arrows show the formation of TVAs from 

punctate vesicles and tubular elements. 

 

 

Figure 4.8 – Dynamic Tubules Extending  from the  Tubulo-Vesicular Autophagosomes (TVAs) Do Not Require 

Ongoing Protein Synthesis- CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips overnight 

prior to placing in a POC chamber and incubated in Transfast in OptiMEM in the presence of 20μg/ml 

cyclohexmide for a further 6 hours, imaging at the time point stated. Bar is 10 μm. White arrows indicate 

connecting TVAs, and the dynamic tubules which extend outwards. 
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Figure 4.9 – Role of Microtubules in the Formation of Tubulo-Vesicular Autophagosomes (TVAs) - CHO cells 

stably expressing eGFP-LC3 (green) were incubated in completed media (A) or pre-treated with 5μM 

nocodazole for 30 mins (B) before addition of Transfast. Cells were incubated for a further 4 hours in OptiMEM 

before fixation in methanol/MES solution. Cells were stained using an antibodies against α tubulin (Alexafluor 

594, red) and nuclei were stained with DAPI (blue). Bar is 10 μm.  
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4.3.1 Cationic Liposomes Induce the Formation of Large LC3-Positive Perinuclear Structures - 

 Autophagy was monitored by following the formation of LC3 punctae as discussed 

previously in chapter 3. The top panels in figure 4.1, showed this change in LC3 distribution 

over time during starvation, using the stable CHO cell line expressing eGFP-LC3. When cells 

were fed at 8 hours, and allowed to recover for 24 hours the eGFP-LC3 signal had returned 

to a cytoplasmic distribution. Incubation of the same cell line with the transfection reagent 

Transfast induced a different rearrangement of LC3 into large perinuclear structures. This 

novel rearrangement of LC3 was induced in almost the entire population of cells and, in 

contrast to LC3 punctae induced by starvation, large LC3 positive structures remained in the 

cytoplasm for a substantial period. In spite of an overnight recovery in complete media, the 

large LC3 positive structures could still be detected in some cells (figure 4.2) at 48 hours. 

The experiment was repeated with a number of different transfection reagents including 

liposomes and non-liposome based formulations (table 4.1), and all of the reagents tested 

induced a similar redistribution of LC3 to perinuclear structures. This response was not 

restricted to eGFP-tagged LC3. Figure 4.3 shows endogenous LC3 staining in human (HeLa), 

mouse (MEF) and monkey (Vero) cells following incubation with Transfast. HEK 293 stably 

expressing GFP-LC3 (data not shown) also showed the same response. Similarly, LC3-II 

production is increased following starvation, and also incubation with liposomes, as shown 

in figure 4.4. The Western blot show the levels of endogenous LC3 increased with starvation 

over an 8 hour time course, and also increased further when incubated with the 

transfection reagent Transfast. 

4.3.2 Large LC3-positive Perinuclear Structures form Tubular and Vesicular Intermediates -  

 In order to determine how these large LC3 positive structures form in the cytoplasm, 

CHO stably expressing eGFP-LC3 were imaged in real time by live cell microscopy. At the 

early time points monitored over the first hour (figure 4.5 panels A) a number of small eGFP-

positive vesicles appeared at 30 minutes which formed a network of tubular structures that 

collapsed back towards the nucleus between 40 and 53 minutes, as highlighted by the white 

arrows. In figure 4.5, panels B, a similar process occurred whereby vesicles, indicated by the 

white arrows, were present at 20 minutes and tubular structures appeared at 42 minutes 
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which collapsed into large perinuclear at 51 minutes. The structures have both tubular and 

vesicular components and will be referred to as tubulo-vesicular autophagosomes (TVAs).  

 Figure 4.6 monitored the dynamics of pre-existing TVAs in the cytoplasm, in panels 

A, a ring-like structure, indicated by the white arrow, appeared next to the TVA at 30 

minutes which became incorporated into the large TVA at 45 minutes. Similarly panel B 

shows cells 2 hours post incubation with Transfast. Two large TVAs, highlighted by the two 

white arrows, are connected by a tubule which extended towards the structure on the right, 

the two then moved close to each other and concentrate in the perinuclear region. 

4.3.3 The TVAs Recruit Pre-Synthesised LC3 and Require Intact Microtubules for Tubular 

Structures  

 The experiment shown in figure 4.7 investigates whether TVAs are maintained by a 

continuous supply of LC3. The experiment used cycloheximide to inhibit new protein 

synthesis and only the pre-existing pool of LC3 protein can be used for LC3 processing and 

incorporation into TVAs. As before small vesicles were seen within 35 minutes and at 55 

minutes a larger structure appeared as indicated by the white arrow. This developed further 

into TVA at 2 hours indicating that TVAs can be formed from small vesicles through 

incorporation of pre-existing LC3. In figure 4.8 CHO eGFP-LC3 cells were incubated with 

Transfast in the presence of cycloheximide for 6 hours. As seen in the control experiments 

long tubules extended outwards in both directions from the centre of the structure, and 

eventually retracted back to the central structure. Taken together the results showed that 

TVA formation and tubulo-vesicular dynamics did not require continuous delivery of newly-

synthesised LC3 from the cytoplasm.  

 The results suggested that TVAs form from the fusion of smaller eGFP-LC3 positive 

vesicles which are transported to the perinuclear region of the cell. It is possible that the 

tubular structures which extended from the centre of the TVAs are transported along 

components of the cytoskeleton, whilst remaining attached to the central structures. To 

determine if microtubules play a role in either the formation of the central structure or the 

tube-like elements, the experiments were repeated in the presence of nocodazole, a  
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Figure 4.10 – Inhibitors of Lysosome Function Prevent the Formation of Tubulo-Vesicular Autophagosomes 

(TVAs) – HEK 293 cells stably expressing eGFP-LC3 (green) were grown on coverslips overnight prior to 

incubation.  (A) HEK 293 cells were incubated with 100 nM bafilomycin A1 in either complete nutrient medium 

as control, HBSS or with Transfast in OptiMEM. Cells were fixed at 4 hours and nuclei stained with DAPI (blue). 

MEF cells (B) were grown on coverslips overnight and incubated for 4 hours with Transfast in OptiMEM the 

presence of 150 µM pepstatin A, 30 µM E64d or both 150 µM pepstatin A, 30 µM E64d. Cells were fixed and 

stained using an anti-LC3 antibody (Alexafluor 488, green) and the nuclei stained with DAPI.  Bar is 10 μm. 
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complete media for 4 hours (B- left panel) or with torin-1 and Transfast (B – right panel) for 4 hours. Cells were 

fixed and the nuclei stained with DAPI (blue). Bar is 10 μm. 

 

 

Figure 4.12 – Recruitment of LC3 to 

Tubulo-Vesicular Autophagosomes 

(TVAs) Requires Lipidation of LC3 - 

CHO cells stably expressing the 

mutant eGFP-LC3G120A were 

cultured overnight on glass 

coverslips.  Cells were incubated in 

complete nutrient media (control) 

starved by transfer to HBSS (HBSS), 

or incubated with calcium phosphate 

(CaPO4) or Transfast for 4 hours 

before fixation. Nuclei were stained 

with DAPI (blue). Bar is 10 μm.  

 

Figure 4.11 – Induction of 

Autophagy by Starvation or with 

Torin-1 Does Not Prevent Tubulo-

Vesicular Autophagosomes (TVAs) 

Formation - CHO cells stably 

expressing eGFP-LC3 (green) were 

cultured overnight on coverslips. 

Cells were subsequently pre-

incubated in HBSS for 1 hour 

followed by incubation with 

Transfast for a further 3 hours (A – 

left panel) or were incubated 

simultaneously in HBSS containing 

Transfast for 4 hours (A – right 

panel). In panels B, cells were 

incubated with 250 nM torin-1 in 
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Figure 4.13 – Formation of Tubulo-Vesicular Autophagosomes (TVAs) requires Atg5 - HeLa cells were 

transfected with oligonucleotides siRNA specific for Atg5 using Lipofectamine 2000 and were further cultured 

and assayed at the time points stated to determine level of Atg5 knock-down. (Panel B) Control cells (left) or 

cells incubated with siRNA for Atg5 for 72 hours (Atg5 siRNA) were starved by transfer to HBSS media (top of 

panel) or incubated with Transfast (bottom of panel) for 4 hours prior to fixation in 100% methanol.  Cells were 

stained using antibodies specific for LC3 (green) and the nuclei with DAPI (blue). Bar is 10 μm. Cell lysates were 

separated by SDS-PAGE and analysed by Western blot using antibodies specific for Atg5, or β-actin followed by 

a chemiluminescent detection with a secondary antibodies conjugated to HRP. (Panel C) Densitometric 

analysis of Western blots was used to calculate Atg5 expression normalised to actin.  
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Figure 4.14 – Atg16L1 Is Partially Recruited During Tubulo-Vesicular Autophagosomes (TVAs) Formation – 

HEK-293 stably expressing GFP-LC3 (green) were cultured overnight on coverslips prior to incubation with 

Transfast in OptiMEM. Cells were subsequently fixed at 30 minutes and 60 minutes, and stained with anti-

Atg16L1 antibody (red) and the nuclei with DAPI (blue). White arrows indicate the central TVA structure, whilst 

the arrow heads indicate Atg16L1 positive vesicles. Bar is 10 μm.  
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microtubule depolymerisation drug. Figure 4.9A shows the distribution of microtubules in 

CHO eGFP-LC3 cells which have been incubated with Transfast. Intact microtubules (red) are 

clearly visible, as are the tubular elements containing GFP-LC3 extending from the TVA. 

Following treatment with nocodazole (panel B) intact microtubules were lost, and there 

were still several large LC3-positive structures. The structures showed loss of 

interconnecting tubules and were less concentrated in the perinuclear region. The result 

showed that formation of large vesicular structures containing LC3 structures does not 

require intact microtubules; however the accumulation of TVAs in the perinuclear region 

and the formation of the tubular elements was dependent on microtubules. 

4.3.4 Inhibition of Lysosome Function with Bafilomycin A, E64d and Pepstatin A Prevented 

the Formation of TVAs - 

 Studies on canonical autophagy show that autophagosomes formed in response to 

starvation fuse with lysosomes resulting in degradation of LC3. Degradation of LC3 can be 

stopped with bafilomycin A1 which raises lysosomal pH by preventing acidification by 

inhibiting vacuolar-type H+ ATPase (V-ATPases). In figure 4.10, HEK 293 cells expressing 

eGFP-LC3 were incubated with bafilomycin A1. In control cells LC3-positive autophagosomes 

were visible in the cytoplasm even in complete media. These most likely represented 

autophagosomes generated through basal autophagy. When the cells were starved in the 

presence of bafilomycin A1 large numbers of GFP-LC3 punctae were seen in the cytoplasm. 

Interestingly, when bafilomycin was added to cells incubated with Transfast the TVAs failed 

to form. Instead small GFP-positive vesicles accumulated in the cytoplasm, similar to cells 

which have been starved. Similarly, other compounds such as E64d and pepstatin which 

inhibit the degradative function of lysosomes had a similar effect.  When added either alone 

or together they prevented the formation of TVAs (figure 4.10C). Taken together these 

results indicated that formation of the large TVAs in the perinuclear region required 

functional lysosomes that are able to degrade substrates. 

Figure 4.11 shows CHO eGFP-LC3 incubated with Transfast in starvation media and 

also in the presence of torin-1. Torin-1 activates the autophagy pathway through inhibition 

of the mTORC1 complex. Autophagy stimulation can occur prior to incubation with 

liposomes in starvation media alone (A – left panel), or during incubation in starvation 
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media and liposomes (A – right panel) and both the TVAs and the punctate autophagosomes 

formed and indicated that no competition between the formation of the structures. This 

was also true with torin-1, in control cells punctate autophagosomes formed (B-left panel). 

Incubation with Transfast and torin-1 in OptiMEM (B – right panel) also formed TVAs and 

punctate structures. 

4.3.5 Recruitment of LC3 in TVAs Requires LC3-II Processing Atg5 and Atg16 

 The previous results showed that LC3 is redistributed in response to incubation with 

transfection reagents. The next experiments were conducted to see if recruitment of LC3 to 

TVAs required LC3 processing and attachment of PE. To determine if LC3 processing from 

the LC3-I to LC3-II was required for the formation of TVAs, CHO cells stably expressing the 

mutant form of LC3 which cannot be lipidated, GFP-LC3G120A, were incubated with either 

calcium phosphate precipitate or Transfast. Figure 4.12 shows that the mutation prevented 

incorporation of GFP-LC3 into autophagosomes during starvation (HBSS) or following 

incubation with calcium phosphate or Transfast.  

 The requirement of Atg5 in TVA formation was assessed by silencing of Atg5 with a 

mix of three Atg5 specific siRNA oligonucleotides. Panel A of figure 4.13 shows that after day 

three of silencing, cells were unable to produce GFP-LC3 punctae in response to starvation 

or TVAs following incubation with Transfast.  The level of knock-down was assessed through 

Western blots using Atg5 specific antibodies the level of Atg5 detected in the sample was 

reduced to 10% of the control (panels B and C).  The experiment was repeated using MEF 

cells from Atg 5-/- mice and again cells were unable to form TVAs (data not shown). This 

indicates that Atg5 is required for the formation of TVAs. 

 Similarly, as Atg5 forms a complex with Atg12 and Atg16L1, the localisation of 

Atg16L1 was investigated. In starvation condition, Atg16L1 formed distinct punctae 

throughout the cytoplasm, some of which were positive for LC3 (data not shown). In figure 

4.14 panels A, Atg16L1 positive, LC3-positive puncta are formed at 30 minutes post-

incubation with cationic liposomes, and at 60 minutes these have formed larger TVAs. There 

was not complete colocalisation of Atg16L1 with LC3, suggesting that although recruitment 

of Atg16L1 to TVAs is seen it was a transient association. Similarly, in panels B, the central 

structure of the TVA was positive for Atg16L1, but the tubular extension were not. There  
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Figure  4.15 – Wortmannin Inhibits the Formation of Autophagosomes but Not Tubulo-Vesicular 

Autophagosomes (TVAs) - CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips for 24 hours 

prior to incubation with 10 nM wortmannin in either HBSS or with Transfast in OptiMEM. Cells were fixed and 

nuclei stained with DAPI (blue) Bar is 10 μm.  
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Figure 4.16 – siRNA Knock-Down of Beclin-1 Did Not Prevent the Formation Tubulo-Vesicular 

Autophagosomes (TVAs)  – HeLa cells were transfected with siRNA oligos specific for beclin-1 using 

Lipofectamine 2000 and were further cultured and assayed at the time points stated to determine level of 

knock-down. (A) Coverslips were treated with siRNA for beclin-1 for 72 hours prior to fixation in 100% 

methanol and stained with anti-LC3 (green) and the nuclei with DAPI (blue). Bar is 10 μm. (B) Western blot of 

cell lysates from beclin-1 silencing, as show in A, were ran on a 12% gel and blotted for anti-beclin-1 followed 

by a chemiluminescent detection with a secondary HRP conjugate. (C) The percentage of protein knock-down 

after transfection with siRNA which has been normalised to actin. 
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Figure 4.17 – Control siRNA Transfection with Non-Targeting (NT) Did Not Interfere with LC3 Localisation – 

HeLa cells were transfected with NT siRNA oligos Lipofectamine 2000 and were further cultured for 72 hours 

followed by fixation. Coverslips were stained with anti-LC3 (green) and the nuclei with DAPI (blue). Bar is 10 

μm.  

 

 

 

Figure 4.18 – DFCP1, a PI(3)P binding protein, Is Recruited During Autophagosome Formation But Not During 

Tubulo-Vesicular Autophagosomes (TVAs) Formation – HEK-293 stably expressing the plasmid containing 

GFP-DFCP1 (green) were cultured overnight on coverslips prior to 2 hours in HBSS (A) or with Tranfast 

transfection reagent in OptiMEM (B). Cells were subsequently fixed and stained with anti-LC3 antibody (red) 

and the nuclei with DAPI (blue). Bar is 10 μm.  
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Figure 4.19 – WIPI-2 is Recruited During Tubulo-Vesicular Autophagosomes (TVAs) Formation and During 

Incubation with Wortmannin – Vero cells were cultured overnight on coverslips prior to 1 hour incubation 

with Tranfast cationic liposomes in OptiMEM (A). Vero cells in (B) were pre-treated for 30 minutes with 10 nM 

wortmannin, prior to 1 hour incubation with Transfast in OptiMEM. Cells were subsequently fixed and stained 

with anti-LC3 antibody (green) and anti-WIPI-2 (red) and the nuclei with DAPI (blue). Bar is 10 μm. 
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were, however, some Atg16L1 vesicles close to the LC3-positive tubule, as indicated by the 

arrow heads, indicating a possible role in their formation.  

4.3.6 The Formation of TVAs Does Not Require PI-3 Kinase - 

 To determine if PI-3 kinase signalling was required for the generation of the TVAs, 

cells were incubated with wortmannin which is an inhibitor of PI-3 kinase signalling. Figure 

4.15 compares the effect of wortmannin on the response of CHO eGFP-LC3 cells to 

starvation or cationic liposomes. The top panels show that wortmannin prevents formation 

of LC3 punctae in response to starvation. The bottom panels show that wortmannin does 

not prevent the formation of TVAs. TVAs were present in the cytoplasm at 1 hour after 

addition of liposomes and remained at 4 and 8 hours. This indicated that the formation of 

TVAs did not require PI-3 kinase signalling. To investigate if beclin-1, a component of the PI-

3 kinase core machinery in autophagosome formation, was required for TVA formation, 

silencing of beclin-1 was performed with a mix of three specific siRNA oligos. The level of 

knock-down was assessed as described before, through Western blots, and the response of 

cells to starvation was used to determine if silencing prevented formation of eGFP-LC3 

punctae. Figure 4.16C shows that protein levels were reduced to 20% after three days, and 

panel A shows that small number of eGFP-LC3 punctae still formed. The knock-down of 

beclin-1 reduced autophagosome formation but was not sufficient to completely prevent 

autophagy in response to starvation. Knock-down of beclin-1 did not have any noticeable 

effects on TVA formation. As a control to confirm that the process of siRNA transfection was 

not redistributing LC3 or prevented it from its normal function, the process of siRNA 

transfection was repeated with non-targeted (NT) siRNA, which had no homology to any 

mammalian mRNA was used, as shown in figure 4.17. The panels showed a normal 

cytoplasmic distribution under normal growth media, redistribution to punctate structures 

in HBSS and the formation of TVAs when incubated with liposomes. This indicated that the 

process was not interfering with LC3 localisation or redistribution. 

 Figure 4.18 investigated if generation of PI(3)P occurring during TVA formation. A 

HEK 293 cell line stably expressing a marker for PI(3)P generation known a double-FYVE 

(Fab1, YOTB, Vac 1 and EEA1) containing protein-1 (GFP-DFCP1) was used. Panel A shows 

cells starved with HBSS and counterstained in red for endogenous LC3 positive punctae 
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formed after one hour and some colocalise with GFP-DFCP1, as highlighted by the white 

square region of interest. Studies by Axe et al (2008) have shown that the population of 

green only punctae (GFP-DFCP1) represent omegasomes formed from the ER following 

activation of PI 3-kinase activity.  Double positive structures represent omegasomes that 

have recruited LC3 while red only vesicles (endogenous LC3) are mature autophagosomes 

that have left the site of formation after phagophore closure. Panel B shows cells 1 hour 

after incubation with Transfast. The TVAs formed as seen by the rearrangement of 

endogenous LC3 (red) in the perinuclear region, however there was no localisation of GFP-

DFCP1 to these structures. Some DFCP1 vesicles were formed in the cells however the 

majority remained spread through the cytoplasm and were not recruited to perinuclear 

structures. Given this, and the previous data with wortmannin, it can be concluded that TVA 

formation was PI 3-kinase independent.  

 Similarly, another protein that is recruited to the site of autophagosome formation 

in a PI(3)P dependent manner is WD repeat domain phosphoinositide-interacting protein 2 

(WIPI-2). During autophagy induction, this formed distinct punctae in the cytoplasm, some 

of which colocalised with LC3 (data not shown). The inhibition of PI-3 kinase Vps34 with 

wortmannin prevented either WIPI-2 or LC3 positive punctae from forming (data not 

shown). An approach was taken to see if WIPI-2 is recruited to TVA formation, and if this can 

be prevented by incubation with wortmannin. As indicated by figure 4.19 panels A, WIPI-2 is 

recruited to the central structure of TVAs, but not the tubules. In the presence of 

wortmannin, panels B, WIPI-2 is still present on TVAs, indicating that generation of PI(3)P is 

not necessary for its attachment to LC3-positive structures generated in response to cationic 

liposomes.   

4.3.7 p62 is Recruited to TVAs 

An alternative marker to LC3 used to identify autophagy is p62 and this binds LC3 

and becomes localised to the autophagosomes during starvation as shown in chapter 3 

figure 3.3. The next experiment investigated if p62 redistributed to TVAs formed in the 

presence of cationic liposomes (Figure 14.20). Panel A follows immunostaining of 

endogenous p62 in MEF cells over time following the addition of Transfast. Panel B 

compares the distribution of endogenous LC3 and p62 in the TVAs. Cationic liposomes 
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caused p62 to be recruited to TVAs labelled with LC3. Recruitment of p62 to 

autophagosomes in response to starvation resulted in the degradation of p62. Western 

blots were therefore performed to see if recruitment of p62 to TVAs in response to cationic 

liposomes also caused degradation of p62. Figure 4.20C shows that the levels of p62 

increased after one hour of starvation but then decreased over 8 hours. Levels of p62 

increased following incubation with Transfast and remained high suggesting that 

incorporation into TVAs does not result in degradation through autophagy. p62 is known to 

interact with ubiquitin and can be incorporated into autophagosomes. The presence of 

ubiquitin in TVAs was examined and the distribution of ubiquitin is shown in figure 4.21 in 

both control cells in complete media, and those incubated with Transfast.  It was not 

possible to see a signal for ubiquitin or TVA in cells in normal growth conditions figure 

4.21A). Interestingly, during incubation with Transfast (4.21B), the central structure of the 

TVA was positive for ubiquitin, however ubiquitin was excluded from the tubular elements. 

4.3.8 Increase in the Size of Lysosomes During Incubation with Liposomes 

 Autophagosomes fuse with lysosomes and the content is degraded. eGFP is not 

stable in acidic conditions and the GFP signal is lost when autophagosomes and/or 

lysosomes acidify. The relationship between TVAs and lysosomes was investigated by 

immunostaining for LAMP1.  At 24 hours post incubation with Transfast (figure 4.22A), a 

large TVA structure formed in the perinuclear region of the cell. This cell also had a number 

of larger LAMP1-positive lysosomes, as indicated by the white arrows. These lysosomes 

were larger than lysosomes in the neighbouring cells which did not have TVAs. Panel B 

shows 48 hours post-incubation. At this time TVAs are reduced in number and fragments 

indicated by LC3-positive vesicles were seen associated with LAMP positive structures. 

Interestingly, all the cells with TVA LC3 positive fragments showed pronounced swelling of 

lysosomes. 
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Figure 4.20 – Recruitment of p62 to Tubulo-Vesicular Autophagosomes (TVAs) During Incubation with 

Liposomes and Colocalisation with LC3 - MEF cells were cultured overnight on glass coverslips. Cells were 

incubated with Transfast for the time points stated before fixation (A), and stained using an anti-p62 antibody 

(red) and the nuclei with DAPI (blue).  MEF cells were treated as above, and fixed at 4 hours (B) and stained 

using an anti-LC3 (green) and anti-p62 (red). Bar is 10 μm. 293 eGFP-LC3 cells were incubated with Transfast 

for the time points stated before lysis (C) ran on a 12% gel and blotted for anti-p62 followed by a 

chemiluminescent detection with a secondary HRP conjugate. Blots were stripped and subsequently reblotted 

for β-actin. 
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Figure 4.21 – The Centres of Tubulo-Vesicular Autophagosomes (TVAs) Contain Ubiquitin but Ubiquitin is 

Excluded from the Tubules - CHO cells stably expressing eGFP-LC3 (green) were in full media (A) or treated 

Transfast (B) for 4 hours before fixation. Cells were stained using an anti-ubiquitin (red). Bar is 10 μm.  
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Figure  4.22 – Delayed Degradation of Tubulo-Vesicular Autophagosomes (TVAs) in Lysosomes Results in 

Swelling of Lysosomes - CHO cells stably expressing eGFP-LC3 (green) were grown on coverslips for 24 hours 

prior to incubation with Transfast in OptiMEM for 8 hours. Cells were washed and the media replaced with 

complete media at 8 hours. Cells were fixed at 24 hours (A) and 48 hours (B) post-incubation with Transfast 

and stained with an anti-LAMP1 antibody (red) and the nuclei stained with DAPI (blue) Bar is 10 μm.  
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4.4 Discussion  

This chapter has demonstrated that incubation of cells with non-viral DNA delivery 

vectors such as cationic liposomes induced the redistribution of LC3 into large tubular-

vesicular autophagosomes (TVAs). Initial visualisation of the morphology of the TVAs 

indicated they are much larger than the punctate autophagosomes seen during starvation, 

and also the TVAs rapidly changed shape over time. Observations at early times after 

addition of cationic liposomes showed that these large tubulo-vesicular structures formed 

from small punctate vesicles that resembled canonical autophagosomes. However, we also 

identified a network of tubular structures that were not usually seen during autophagosome 

formation in response to starvation. TVAs were induced by a number of different 

transfection reagents indicating perhaps an innate response to non-viral DNA vectors.  

The TVAs are dynamic and contained tubular elements which extended and 

retracted from central structures. The formation of TVAs was not affected by cycloheximide, 

and TVAs can form from pre-existing pools of LC3. Large structures could be observed to 

form by fusion of smaller structures, possibly involving connections involving tubules. 

Interestingly, the recruitment of GFP-LC3 to small early TVAs was unaffected by treatment 

with nocodazole and did not require intact microtubules. However, the tubular elements 

and accumulation at the perinuclear region was blocked by nocodazole indicating a role for 

microtubule transport and microtubule motor proteins such as dynein and kinesin. LC3 was 

originally identified as a protein that co-precipitates with the microtubule-associated 

proteins 1A and 1B (MAPs) which associate with microtubules and facilitate stability (Kabeya 

et al 2000). Autophagosome movement and the fusion with lysosomes is dependent on an 

intact microtubule network (Kimura et al 2008). It is possible that TVAs used the same 

mechanism of transport to move inside cells.   

The TVAs recruited LC3 but they were not rapidly degraded by autophagy as they 

remained in the cytoplasm for up to 48 hours after formation. Generally the number of 

autophagosomes formed in response to starvation peaks between three to four hours and 

then numbers decrease as they fuse with lysosomes, and disappear (Mitchener et al 1976). 

The number of large TVAs in each cell was generally much lower than the number of 

autophagosomes generated by starvation, and at the later stages this is reduced to one 
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large perinuclear TVA. The reason for the large size is due to any new LC3 positive structures 

are incorporated into the pre-existing TVAs, and this might be a cellular response to 

sequester excessive aggregation of proteins into one region to do less damage to the cell. 

Recent studies into the nature and behaviour of liposomes in different environments has 

revealed a number of different morphologies the liposomes can take. Zidovska et al look at 

the differences in shape liposomes take in different pH and salt conditions, at pH 4 

tubulation and multilamellar vesicles can form (Zidovska et al 2009). The change in pH 

during the trafficking of liposomes through the endocytic and/or the autophagy pathway 

might possibly result in the formation of the tubulo-vesicular structures that are positive for 

LC3 due to fusion of autophagosomes with endosome components to form amphisomes.  

 

Figure 4.23 – Model of Increasing Acidification of Endolysosomal Vesicles Results in Cationic Liposome 

Tubulation  

It is possible that the fusion of autophagosomes with late endosomes would lower 

the pH of the vesicle containing the liposomes and result in their tubulation. These 

tubulated structures could alter the morphology of autophagosomes and result in their 
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tubulation, and hinder attempts at degradation, as shown in figure 4.23. This would also 

account for the recruitment of LC3 to the TVAs.   

Canonical autophagy is regulated by the class III PI-3 kinase, Vps34 and beclin-1. This 

complex phosphorylates phosphoinositol (PI) to form phosphoinositol 3-phosphate (PI(3)P) 

to nucleate the components required for autophagosome formation. Beclin-1 is an 

important regulator of this complex and plays an important role in the induction of 

autophagy. Experiments tested if beclin-1 and class III PI 3-kinase activity was required for 

the formation of TVAs.  Interestingly, reduction of beclin-1 levels by siRNA silencing, and the 

use of wortmannin to block class III PI 3-kinase activity inhibited the formation of starvation-

induced autophagosomes, but was unable to inhibit TVA formation. Recent studies show 

recruitment of Vps34-beclin-1 complex to the ER at the start of autophagosome formation 

(Axe et al 2008, Hayashi-Nishino et al 2009). Localised production of PI(3)P in the ER recruits 

DFCP1 and WIPI-2 which binds PI(3)P through FYVE domains.  This means that sites of PI(3)P 

production can be visualised by redistribution of GFP-DFCP1 and WIPI-2 to punctae after 

starvation. However, when cells expressing GFP-DFCP1 were incubated with cationic 

liposomes the GFP-DFCP1 remained largely cytoplasmic. WIPI-2 did redistribute to punctae 

and to the larger TVAs in response to cationic liposomes. However, in the presence of 

wortmannin WIPI-2 was still localised to TVAs. This suggests again that TVAs do not require 

PI(3)P. It is, however, possible that generation of the PI(3)P for the development of TVAs 

may have a very rapid turnover and may not have been captured at the time point the cells 

were fixed. However, given the previous data set with the beclin-1 silencing and the 

wortmannin treatment it is likely that the TVAs do not use beclin-1 or the PI-3 kinase 

complex in the formation of the TVAs. Interestingly, it is thought the pool of PI(3)P recruits 

WIPI-2 to the forming membrane, but another protein is responsible for anchoring it there 

(Polson et al 2010). There is also evidence that WIPI-2 has a role in the lipidation of LC3 

during autophagosome formation. During incubation with wortmannin where PI(3)P 

production cannot occur, WIPI-2 is still localised to TVAs. The data presented here reveals 

that perhaps an interaction with LC3 during the lipidation step may be responsible for the 

incorporation of WIPI-2 into TVAs.  

There is recent evidence that there are PI(3)P independent routes to generate 

autophagosomes. VopQ is a type III secreted effector protein that is secreted into cells 
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during Vibrio parahaemolytics infection and induces a PI-3 kinase independent 

rearrangement of LC3 to the perinuclear region of cells (Burdette et al 2009).  Similar results 

were reported in MCF-7 cells in response to resveratrol, where neither beclin-1 nor Vps34 

were required for generation of autophagosomes (Scarlatti et al 2008). Both illustrate 

emerging roles for non-canonical autophagy in higher eukaryotes. 

Activation of PI-3 kinase during starvation leads to the recruitment of the Atg5-

Atg12-Atg16 complex to the pre-autophagosomal membrane and processing of LC3-I to LC3-

II. During autophagosome formation the autophagy components Atg5, Atg12, Atg16L form a 

complex which is important for the location of LC3 to the membrane and also the 

maturation of the autophagosome (Hanada et al 2007). The lipidated LC3 (LC3-II) localises to 

a growing cup-shaped isolation membrane which closes to form a double membrane vesicle 

that fuses with lysosomes. The role played by Atg5 and LC3 lipidation in TVA formation was 

investigated using Atg5 silencing, Atg5-/- knock-out MEF cells and cells expressing eGFP-

LC3G120A a mutant form of LC3 which cannot be lipidated. Silencing resulted in 90% knock-

down of Atg5 in cells and this was sufficient to stop formation of autophagosomes during 

starvation.  The loss of Atg5 also prevented the formation of TVAs. TVAs were also unable to 

recruit the G120A mutant of LC3. Taken together the results suggest that the recruitment of 

LC3 to TVAs is independent of PI-3 kinase activation but nevertheless required Atg5, most 

likely as part of the Atg5-Atg12-Atg16 complex and lipidation of the C-terminus of LC3.  

The TVAs were much larger and longer-lived than autophagosomes induced by 

starvation.  This could be explained if LC3-positive autophagosomes generated by cationic 

liposomes were resistant to degradation in lysosomes.  LC3-positive autophagosomes would 

be drawn into close proximity with lysosomes by microtubule motor proteins and since they 

are not consumed by lysosomes they would be able to fuse with one another. The synthesis 

and recycling of lysosomes after fusion with autophagosomes is fundamental to autophagy. 

This is evident following incubation with bafilomycin A1 which inhibits lysosomal proteolysis 

and causes accumulation of autophagosomes in the cytoplasm. The effect of disrupting 

lysosome function on TVAs was therefore investigated. Surprisingly, TVAs did not form in 

cells incubated with bafilomycin A1, instead LC3 punctae were seen, much like 

autophagosomes generated during starvation. Bafilomycin A1 blocks the vacuolar ATPases 

that lead to the acidification of lysosomes.  The result suggests that TVA formation needs 
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lysosomal acidification and/or active proteases within the organelle. Interestingly, both 

E64d and pepstatin A also prevented the formation of TVAs suggesting that formation of 

TVAs requires lysosomal proteolysis. The swelling of lysosomes observed following 

incubation with cationic liposomes also suggested that the transfection reagents may 

impede lysosome function.  

A recent study by Yu et al (2010) has studied the mechanism of recycling of lysosome 

and autophagosome components after fusion of autophagosomes with lysosomes. Many 

lysosomes are consumed during autophagy because they form autolysosomes. Yu et al 

(2010) show that the lysosomal membrane tubulates in response to protein degradation in 

the lumen of the lysosome, as highlighted by figure 4.24.  The tubules pinch off to form new 

vesicles called proto-lysosomes, which mature to form lysosomes. This process, which is 

termed autophagic lysosome reformation (ALR), is regulated by the mTOR kinase.  It is 

thought that the TOR kinase can sense amino acids leaving the lysosome and activation of 

mTOR inhibits autophagy and promotes tubule formation to restore a full complement of 

lysosomes.  

 

Figure 4.24 – Autophagic Lysosome Reformation (ALR) – during autophagy when autophagosomes fuse with 

lysosomes to form autolysosomes, the lysosomes must regenerate in order to degrade further material. 

Lysosome reformation occurs when mTOR which is initially inhibited during activation of autophagy and is 

relocalised to the lysosome by the Ragulator complex, senses the release of nutrients from lysosomes and 

becomes reactivated. This causes the tubulation of the autolysosome membrane (A) which pinch off (B) and 

mature (C) to become functional lysosomes, adapted from Yu et al (2010).  
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Yu et al (2010) show that at 4 hours post-starvation lysosomes and autophagosomes 

fuse to generate large LAMP1 and LC3 positive autolysosomes. At 8 hours post-starvation 

the large lysosomes generate LAMP1 positive tubules, whilst the LC3 signal remains with the 

vesicles and eventually returns to the cytoplasm. Our results showed that formation of TVAs 

also required degradation of protein in lysosomes making it possible that TVA formation is 

in some way linked to ALS and TOR signalling. Cationic liposomes also generated swollen 

lysosomes suggesting disruption of lysosome homeostasis with possibly a block in the 

formation of tubules. The role of TOR signalling was tested by adding torin1 to cells 

incubated with cationic liposomes however this did not prevent formation of TVAs. This 

results suggested mTOR independent mechanism for the tubulation. Further studies would 

be required to determine the location and activation of mTOR during TVA formation. It is 

possible the cationic liposomes are activating mTOR and causing a premature tubulation 

event. However, this does not explain the result from using torin-1 which inhibited the 

mTORC1 complex. During incubation with torin-1 and Transfast the TVAs still formed in the 

cytoplasm.  

 In this study the formation of tubulo-vesicular autophagosomes (TVAs) was 

investigated during the incubation of cells with a range of transfection available. The 

characterisation of these structures with respect to standard autophagosomes was also 

demonstrated some difficulty arose during the silencing of beclin-1 yet other techniques 

were used to verify the results. Similarly, silencing of Atg5 illustrated these structures are 

dependent on Atg5 for their formation. The investigation was largely based on using LC3 

and p62 as markers for the structure, further investigation is required to see if other 

components are incorporated in the formation of TVAs. 
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Chapter 5 – Comparison of TVAs to Other Perinuclear Structures  

 

5.1 Aims –  

Tubulo-vesicular autophagosomes (TVAs) are clearly different from autophagosomes 

formed in response to starvation.  The aim of this chapter is to compare the TVAs to other 

cellular structures induced by different types of stress that have been associated with LC3 

and/or autophagy such as protein aggregates, dendritic cell aggresome-like 

structures/aggresome-like structures (DALIS/ALIS), lipid droplets and stress granules (SGs). 

 

5.2 Introduction –  

5.2.1 Lipid Droplets - 

Autophagy is known to play a role in lipid metabolism and recent data indicate LC3 is 

associated with the formation of lipid droplets in cells during proliferation (Ohsaki et al 

2006, Shibata et al 2009, 2010). Lipid droplets (LDs) are sites of lipid storage which are 

formed when lipids are in excess and can be used later as an energy store. Generally, excess 

fatty acids and cholesterol are stored as triacylglycerol and cholesterol esters, and can be 

released in a regulated manner as free fatty acids the fate of which depends on the cell 

energy requirements (Ducharme and Bickel 2008). LDs are the main cellular pool of lipids for 

energy storage and membrane synthesis. Specialised adipose tissue and adipocytes 

predominantly use this type of storage; however, non-specialised cell types can also store 

lipids in this way. LDs are composed of neutral lipid cores with a phospholipid monolayer, 

and are thought to emerge from a site in the ER, as depicted in figure 5.1 below. Research 

shows that knock-down of Atg7 or LC3 results in a reduction of triacylglycerol, and hence 

the formation of lipid droplets. LC3 forms large perinuclear structures in adipocytes during 

lipid droplet formation (Shibata et al 2010). Cationic liposomes are made from lipids making 

it possible that the additional uptake of lipid following fusion with liposomes could be 

promoting increased lipid storage and in the process recruiting LC3 to the site. 
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5.2.2 Aggresomes - 

Aggresomes are formed when mis-folded or damaged proteins are not removed 

from the cell and begin to accumulate due to the degradative machinery being 

overwhelmed. As a part of a cytoprotective mechanism, the cell directs the protein 

aggregates to the perinuclear region of the cell via microtubules where they accumulate and 

increase in size if degradation does not occur, see figure 5.1 (Kopito 2000). Aggresomes 

contain proteins tagged with ubiquitin for degradation in the proteasome. Protein 

aggregates are, however, difficult to degrade and can overload the proteasomes and 

therefore remain in the cytoplasm. Vimentin is an intermediate filament which forms part of 

the cytoskeleton. During aggresome formation vimentin has been known to collapse and 

form a cage around the aggresome, to sequester protein aggregates and protect the cell 

from further damage (Garcia-Mata et al 1999).  Ubiquitinated proteins are recognised by 

p62/seqestersome 1 which binds LC3, and these can be incorporated into autophagosomes, 

for degradation inside lysosomes. 
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Figure 5.0 – Formation of LDs, ALIS and aggresomes in the perinuclear region of the cell – LDs derived from 

the ER use microtubules for transport within the cell and can be removed by autophagy. Puromycin-induced 

formation of DRiPs results in ALIS formation which are removed by autophagy (Szeto et al 2006). Aggresomes 

form as a result of improper protein translation and an accumulation of mis-folded proteins, the large 

perinuclear structures will have vimentin collapse around them.  

5.2.3 DALIS/ALIS - 

A similar structure which was first identified in dendritic cells (DC) is termed DC 

aggresome-like structure (DALIS) which forms during DC maturation. DALIS stores defective 

ribosomal products (DRiPs) that are formed during times of cellular stress. DRiPs are non-

functional proteins which contain errors due to premature termination during translation, 

wrong or deletion of amino acids, and/or they could be formed due to mis-folding of the 

protein. Therefore DRiPs are removed from the cell by tagging with ubiquitin and directed 

to the proteasome (Pierre 2005). DALIS can be induced by incubation with puromycin which 

causes premature chain termination during translation. Szeto et al (2006) showed that 

puromycin can induce DALIS-like inclusions in non-professional APC and called these 

structures ALIS. DALIS and ALIS are not dependent on either microtubules or actin 

cytoskeleton for formation. However, autophagy plays a role in their degradation, and GFP-

LC3 can be recruited to ALIS independently of autophagy. This was demonstrated through 

use of Atg5-/- MEFs and the mutant LC3 G120A, and in both conditions LC3 was recruited to 

ALIS (Herter et al 2005). 

5.2.4 Stress Granules (SGs) -  

Similarly, conditions which trigger a stress response in cells can also arrest 

translation and synthesis of new proteins. As a result the mRNA and proteins involved in 

translation are triaged in to a region known as stress granules (SGs), and the fate of the 

mRNA, whether to continue with translation or degradation, is decided (Kimball et al 2003, 

Anderson and Kedersha 2008). The cell halts unnecessary translation of proteins, and SGs 

form and can play a role in altering cell metabolism for survival. SGs are comprised mainly of 

aggregated mRNA molecules, and also the initiation factors for translation as well as mRNA 

binding proteins for stability, and silencing proteins which includes T cell internal antigen-1 

(TIA-1). TIA-1 and TIAR (TIA-related) are responsible for stress-induced translational arrest 

and aggregate to form SGs (Anderson and Kedersha 2008). Phosphorylation of eIF2α is 
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required for SG formation, and also results in LC3-II formation during the ER unfolded 

protein response (UPR) (Kouroku et al 2007). It is possible that the use of cationic lipids 

could initiate a stress response and/or induce the formation of SGs. The TVAs may represent 

attempts to use autophagy in their removal.  

This chapter investigates the relationship between the perinuclear structures 

mentioned above, and TVAs. Lipid droplets are studied using Nile red which is a lipophilic 

dye that binds intracellular lipids and LDs. Both aggresomes and DALIS/ALIS contain 

ubiquitinated proteins and can be detected using ubiquitin immunostaining. DALIS/ALIS can 

be induced by adding puromycin to cells to cause premature termination of a protein 

translation. Similarly stress granules can be formed in response to sodium arsenate or 

puromycin and detected by following TIA-1 which is a protein that is incorporated into SGs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

Page | 102  
 

5.3 Results –  

 

Figure 5.1 – Distribution of LC3 and Lipid Droplets in Cells Incubated with Cationic Liposomes - CHO cells 

stably expressing eGFP-LC3 (green) were cultured on coverslips for 24 hours with complete nutrient media and 

oleic acid. Cells were remained in complete nutrient media for 4 hours (A) or cells were incubated with 

Transfast in OptiMEM (B) for 4 hours. Cells were then fixed and lipid droplets were stained using Nile Red (red) 

and nuclei stained with DAPI (blue). Bar is 10 μm.  
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Figure 5.2 – The Intermediate Filament Vimentin Does Not Form a Cage Around Tubulo-Vesicular 

Autophagosomes (TVAs) - CHO cells stably expressing eGFP-LC3 (green) were cultured overnight on coverslips 

and then incubated with Transfast in OptiMEM for 4 hours before fixation in methanol/MES solution (A). Cells 

were stained using an anti bodies against vimentin (red) and nuclei with DAPI (blue). Bar is 10 μm. Panel B 

shows high magnification image of the region of interest outlined by the white square in A, the white arrows 

indicate vimentin filaments and the TVA.  Bar is 2 μm. 
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Figure 5.3 –Tubulo-Vesicular Autophagosomes (TVAs) Do Not Localise to the MTOC - CHO cells stably 

expressing eGFP-LC3 (green) were cultured overnight on coverslips and then incubated with Transfast in 

OptiMEM for 4 hours before fixation in methanol/MES solution (A). Cells were stained using an anti-γ tubulin 

(red) and anti-α tubulin antibody (pseudo-coloured white). Bar is 10 μm.  
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Figure 5.4 – Distribution of aggresome-like intracellular structures (ALIS) and Tubulo-Vesicular 

Autophagosomes (TVAs)  – CHO cells stably expressing eGFP-LC3 (green) were cultured overnight on 

coverslips and then incubated with puromycin (15 µg/ml) to induce DRiPs (Panel A)  cells incubated in nutrient 

media (Panel B) cells incubated with Transfast for 4 hours. Cells were stained using an antibodies against 

ubiquitin (red) and nuclei with DAPI (blue). Bar is 10 μm.  
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Figure 5.5 – Distribution of Stress Granule Marker TIA-1 and Tubulo-Vesicular Autophagosomes (TVAs) - CHO 

cells stably expressing eGFP-LC3 (green) were transfected with a plasmid expressing mRFP-TIA-1 using calcium 

phosphate.  36 hours post-transfection, cells were incubated in full media. (A), with Transfast (B) or with 

sodium arsenate (C) for 2 hours prior to fixation. Bar is 10 μm 
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5.3.1 TVAs induced by Cationic Lipids are not Incorporated into LD Storage Sites –  

Lipid droplets are sites of lipid storage and formed in cells incubated with oleic acid.  

In figure 5.1A CHO cells expressing GFP-LC3 were incubated with oleic acid to induce lipid 

droplets.  Lipid droplets stained with Nile Red (figure 5.1A) were heterogeneous in size with 

some large droplets located close to the nucleus.  The GFP-LC3 signal remained cytoplasmic.  

Oleic acid lipid droplet induction did not therefore induce autophagosome formation and 

LC3 was not recruited to lipid droplets. In figure 5.1B, cells were incubated with oleic acid 

and cationic liposomes.  The lipid droplets were scattered through the cytoplasm and TVAs 

formed in the perinuclear region of the cell, however there was no colocalisation between 

the signals from GFP and Nile Red.  The result showed that TVAs do not recruit lipids 

detected by Nile Red and are not therefore closely related to lipid droplets. 

5.3.2 TVAs Contain Ubiquintated Proteins but are not Related to Aggresomes.  – 

Aggresomes containing ubiquitinated mis-folded proteins are formed at the MTOC 

and can recruit p62. To investigate if TVAs share characteristics with aggresomes, CHO cells 

stably expressing eGFP-LC3 were co-stained with markers for aggresomes which include 

vimentin, location to the MTOC and ubiquitin. In figures 5.2 CHO cells expressing GFP-

tagged LC3 showed the perinuclear rearrangement of LC3 following incubation with 

Transfast. When stained using an antibodies against vimentin, it was difficult to determine if 

there was a cage surrounding the TVAs (figure 5.2). On closer inspection of a region of 

interest (5.2B), the vimentin was displaced and surrounded the TVA, however, it was not 

clear if vimentin had collapsed around the TVA. Aggresomes are transported and localised 

to the microtubule organising centre (MTOC). In figure 5.3, the MTOC is highlighted by the 

white arrow.  TVAs were localised to the perinuclear region, but unlike aggresomes they 

were separate from the MTOC. In a small population of cells the TVA appeared to be in close 

proximity to the MTOC (data not shown).  

5.3.3 TVAs are Distinct from ALIS containing DRiPs and Stress Granules – 

 Defective ribosomal products (DRiPs) are formed in response to puromycin which 

causes premature termination of translation by ribosomes. The resulting DRiPs are 

ubiquitinated for degradation in the proteasome. Accumulation of DRiPs results in the 
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formation of ALIS. Figure 5.4 shows that cells incubated in puromycin formed large 

ubiquitinated structures in the cytoplasm similar to the ALIS described by Szeto et al (2006). 

These structures did not recruit LC3. Incubation with both puromycin and Transfast resulted 

in an increase in the number of ubiquitinated structures, some of which recruited GFP-LC3 

(figure 5.4B). It is likely that the LC3+ Ub+ structures were TVAs. However it was not possible 

to exclude the notion that DRiPs could also be incorporated into TVAs during their formation 

as these were also ubiquitinated.  

Figure 5.5 shows cells incubated with sodium arsenate to induce stress granules. 

Stress granules were identified from the accumulation of mRFP-TIA-1 expressed in the cells 

as a marker. Sodium arsenate induces cellular stress by uncoupling the electron transport 

chain in the production of ATP which results in oxidative stress. Transient transfection of 

mRFP-TIA-1 showed that during normal growth conditions, both TIA-1 and LC3 had a 

cytoplasmic distribution, as in figure 5.5A. During incubation with liposomes, LC3 

redistributed to TVAs, whereas TIA-1 remained cytoplasmic (figure 5.5B). During arsenate 

stress (figure 5.5C), TIA-1 redistributed to stress granules in the perinuclear region of the 

cell, however LC3 remained cytoplasmic. The results show that TVAs do not recruit stress 

granule marker TIA-1 and formed at sites separate from stress granules.   

 

5.4 Discussion -  

The aim of this chapter was to see if TVAs shared properties with other perinuclear 

structures known to recruit LC3 in response to stress. LC3 has been reported to be 

incorporated into LDs (Shibata et al 2010). There was, however, no evidence for 

colocalisation of LC3 with Nile Red staining following incubation of cells with oleic acid, 

suggesting that TVAs are not associated with lipid droplets. LC3 recruitment to LDs reported 

by Shibata et al appeared to be an additional function of the LC3 protein not previously 

observed, and was not involved in the formation of TVAs investigated in this chapter 

(Shibata et al 2010). The methods and time points used to visualise LC3 recruitment to LDs 

was different to those used in this chapter, which could be the reason LC3 did not localise to 

LDs produced using oleic acid. 
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TVAs contained ubiquitinated proteins and p62 and in this way resembled 

aggresomes, however it was not clear if a vimentin cage, which is known to collapse around 

aggresomes, also enclosed the TVAs. Close examination of vimentin showed a ring around 

the TVA, but the remaining vimentin was undisturbed. The results may represent 

displacement of vimentin rather than the collapse towards the centrosome seen during 

aggresome formation. In early work on aggresomes, Johnston et al discuss the 

rearrangement of vimetin into bundles in the perinuclear region, rather than the complete 

collapse of vimentin around the aggresome. However, aggresomes mainly form at the 

MTOC and in most cases TVAs were not localised to the MTOC. In summary it is not possible 

to rule out an association between TVAs and aggresomes, but they are not identical 

structures. It is known that p62 can accumulate in ubiquitin-positive protein aggregates, and 

it interacts with a FYVE domain protein known as Alfy to degrade them via autophagy 

(Clausen et al 2010). From the data presented in this chapter, it is possible that cationic 

liposomes can induce aggresomes formation as a stress response that are degraded via 

autophagy. However, the formation of the tubular extensions indicated these are dynamic 

structures, and these tubular structures are not documented for aggresome formation. 

 Autophagy can be activated through a number of stress stimuli and this led the 

investigation to look at two structures which are form during time of stress called defective 

ribosomal products (DRiPs,), aggresome-like structures (ALIS) and stress granules (SGs). 

These structures can form following invasion of pathogens into cells. Cationic liposome 

entry may follow the pathway of pathogen entry and therefore activate the same cellular 

response. When DRiPs were induced by puromycin cells formed inclusions containing 

ubiquitinated proteins as reported for the formation of ALIS (Szeto et al 2006).  Cationic 

liposomes generated TVA in cells incubated with puromycin and some of these co-localised 

with ubiquitin suggesting association with ALIS.  TVAs can associate with ubiquitinated 

inclusion induced by puromycin but several lines of evidence suggested they were not ALIS. 

In common with TVAs, ALIS are mobile and can fuse with each other but unlike TVAs they 

are rapidly degraded. (Pierre 2005). TVA formation was unaffected by cycloheximide 

whereas the formation of the DRiPs which accumulate to form ALIS is dependent on protein 

synthesis, in contrast TVAs do not require protein synthesis because they are unaffected by 

cycloheximide. ALIS form from DRiPs, and interestingly, they are removed by autophagy, 
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and LC3 can localise to ALIS regardless of Atg5 or lipidation. As discussed in chapter 4, 

knock-down of Atg5 inhibited TVA formation, and LC3-II processing must occur for it to 

localise to TVAs. Taking all the data into consideration from this and the previous chapter, it 

is therefore unlikely that TVAs are formed from DRiPs or that they are ALIS. Lastly, like 

DRiPs, stress granules (SGs) can form during pathogen invasion. Comparison of the TIA-1 

marker which localised to SGs revealed that TVAs did not recruit this marker. Whilst it is true 

that SGs contain many different components, and only one was used in this study, TIA-1 is 

an RNA binding protein. The exclusion of TIA-1 from TVAs suggested they do not contain 

RNA. This further confirmed the DRiPs data and TVAs are not associated with SGs, and are 

unique structures. 

In this study the characterisation of tubulo-vesicular autophagosomes (TVAs) was 

investigated with respect to other perinuclear structures. It is possible from the data 

presented that TVAs could be aggresomes; however the tubular extensions of TVAs make 

this seem an unlikely conclusion. The evidence also suggests TVAs are novel structures that 

form in response to cationic liposomes and do not have the characteristic of LDs, DRiPs, ALIS 

or SGs.  
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Chapter 6 – Role of the Endocytic Pathway in Formation of TVAs 

 

6.1 Aims –  

The aims of this chapter are to determine the role of endocytosis in the formation of 

TVAs by inhibiting this pathway, and also following the fusion of TVAs with endocytic 

vesicles using endocytic Rab GTPases as markers.  

 

6.2 Introduction –  

The entry of molecules in into cells via endocytosis can occur through a number of 

different mechanisms. The most widely understood is clathrin-mediated endocytosis (CME), 

whereby a region of the plasma membrane is deformed to form a pit, which can bud 

inwards and is pinched off from the membrane forming an independent vesicle. This vesicle 

will then traffic through the cell, the contents will either be degraded in lysosomes or it can 

be recycled to the plasma membrane. CME requires a number of different proteins which 

work to provide structure for forming the pit and vesicle. Self assembly of clathrin within 

coated pits facilitates vesicle formation and proteins such as dynamin (Doherty and 

McMahon 2010) pinch vesicles off from the plasma membrane to form early endosomes. 

The trafficking of the vesicle through the cell can also result in the fusion with other vesicles 

such as autophagosomes. Fusion with early/late endosomes and lysosomes is mediated by 

Rab GTPases, and also the ESCRT machinery for autophagosome-multivesicular body (MVBs) 

fusion, (figure 6.0). Rab5 plays an important role in the fusion of early endosomes with 

other endosomes as well as a function in enhance degradation of protein aggregates 

(Ravikumar et al 2008). Rab7 is important for the fusion of late endosomes and 

autophagosomes with lysosomes,  

Endocytic vesicles can also fuse with autophagosomes and the convergence of 

autophagy and the endocytic pathways can occur at different stages and appears to be 

crucial for the maturation of the autophagosomes. Inhibition or over-expression of 

dominant negative Rab7 result in the accumulation of autophagosomes (Gutierrez et al 

2004). Rab5 may play a role in autophagy because dominant negative Rab5 slows 
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degradation of proteins aggregates. Knock-down of β-COP which is involved in Golgi stability 

and early endosome function; also result in the accumulation of autophagosomes (Razi et al 

2009). Clathrin-mediated endocytosis may also play a role during autophagy. A recent study 

by Ravikumar et al (2010) indicates that inhibitors of CME decrease the number of 

autophagosomes formed in the cytoplasm and it is suggested that endocytosis delivers 

membrane from the plasma membrane to autophagosomes and this study also revealed 

that Atg16L1 plays a role in clathrin-mediated endocytosis, and when dynamin is inhibited 

by the drug dynasore, the colocalisation between clathrin and Atg16L1 is increased. The 

proposal is that Atg16L1 function during the formation of very early endosomes, which are 

EEA1-negative, which mature to form early endosomes. 
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Figure 6.0 - Convergence of the autophagic and endocytic pathways – (adapted from Orsi et al 2010) the 

formation of autophagosomes from the ER through to degradation to the lysosomes requires input from other 

endocytic vesicles.  

Previous chapters have shown that cationic liposomes induce TVAs.  Since liposomes 

enter cells using clathrin-mediated endocytosis it is possible that the overlap between 

endocytosis and autophagy may play a role in the formation of TVAs. This chapter seeks to 

determine whether the endocytic pathway plays a role in the formation of TVAs. This will 

involve testing for the presence of endosome marker proteins in TVAs, inhibition of clathrin-

mediated endocytosis with chlorpromazine and dynasore and documenting the effects of 

dominant negative Rab5 and Rab7 GTPases on TVA formation and trafficking. Following the 

trafficking through endosomal compartments marked with ERp60 to detect the ER, β-COP 

and anti-mannosidase II to detect the Golgi apparatus, and also the use of wild-type of 

TVAs.  
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6.3 Results –  

 

Figure 6.1 – TVAs Do Not Colocalise with Markers for the ER or the Golgi Complex – CHO cells stably 

expressing eGFP-LC3 (green, top two rows), or HEK 293 stably expressing eGFP-LC3 (bottom two rows)were 

cultured overnight on coverslips. Following this, cells were incubated with Transfast for 4 hours prior to 

fixation. Cells were stained using either an anti-β COP or anti-ERp60 antibody (top 2 rows, red), or for anti-

mannosidase II or anti-TGN38 (bottom 2 rows, red) and nuclei with DAPI (blue). Bar is 5 μm.  
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Figure 6.2 – Rab5 WT Partially Colocalised with TVAs - CHO cells stably expressing eGFP-LC3 (green) were 

transfected with a plasmid containing mRFP-Rab5 WT in complete media. 36 hours post-transfection cells 

were either left in full media (A) or incubated in Transfast for 4 hours (B). Region of interest is highlighted by 

the white square (C). Bar is 10 μm. 

 

Figure 6.3 – Rab5 Dominant Negative Mutant Does Not Prevent Formation of Autophagosomes - CHO cells 

stably expressing eGFP-LC3 (green) were transfected with a plasmid containing mRFP-Rab5 WT (A) or dsRed-

Rab5 DN (B) in complete media. 36 hours post-transfection cells were then starved in HBSS for 4 hours (B). The 

white arrows highlight cells not expressing the Rab5 construct. Bar is 10 μm. 
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Figure 6.4 – Rab5 DN Prevents the Formation of TVAs – CHO cells stably expressing eGFP-LC3 (green) were 

transfected with a plasmid containing DsRed-Rab5 DN. 36 hours post-transfection cells were either left in full 

media (A) or incubated in Transfast for 4 hours (B). DAPI was used for the nuclei stain (blue). Bar is 10 μm. The 

white arrow indicates a cell expressing the Ds-Red-Rab5 DN. (C) Frequency (%) of TVA formation in cells with 

or without expression of Rab5 DN construct; values are the mean +/- standard error bar.  

 

 

 

 

C 
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6.3.1 Endomembrane System - 

To determine if other organelles in the endomembrane system contributed to the 

formation of TVAs, cell stably expressing eGFP-LC3 were stained with markers for the ER, 

Golgi and trans-Golgi network (TGN). The ER had a fine network throughout the cytoplasm 

and was found to be undisturbed by the large formations (figure 6.1). There was no 

colocalisation with the ER luminal marker ERp57 and LC3-positive TVA. Similarly, the 

mannosidase II and β-COP localised to the luminal space and outside the Golgi respectively 

and revealed the Golgi is not disturbed in the formation of TVAs. In some cases, the TVA 

appeared to be localised above the Golgi as in figure 6.1 yet this did not disrupt its location. 

Lastly, figure 6.1 (bottom panels) showed a normal distribution of TGN which did not 

colocalise with LC3 in the formation of TVAs. 

6.3.2 Role of Rab 5 in formation of TVAs – 

Endocytic trafficking through the cell requires a number of Rab proteins which are 

important in distinct steps. Rab5 is a marker for early endosomes and may also be required 

for formation of autophagosomes. Figure 6.2 shows CHO cells expressing GFP-LC3 and wild 

type Rab5 fused to red fluorescent protein (mRFP) (A) or GFP-LC3 and dominant negative 

Rab5 (DN) as a dsRed fusion (B). Cells were starved in HBSS to induce autophagy and wild 

type Rab5 and DN Rab5 were located to vesicles throughout the cytoplasm. Induction of 

autophagy induced LC3 punctae but these did not colocalise with the Rab5. Similarly Rab5 

DN did not prevent the formation of autophagosomes. During incubation with Transfast 

(figure 6.3) induced TVAs in the perinuclear region of the cell, there was also an 

accumulation of Rab5 in the perinuclear region, some of which partially colocalised with the 

LC3. The region of interest is shown (C); the white arrow highlights the colocalisation of LC3 

and Rab5. Similarly the cytoplasmic distribution of Rab5 was noticeably more vacuolar in 

places but the vacuoles were negative for LC3. The experiment was repeated in the 

presence of DN Rab5. Cells expressing DN Rab5 were unable to generate TVAs in response 

to cationic liposomes but many small GFP-positive vesicles were in the cytoplasm. This was 

quantified by looking at a number of cells which had TVA formation; of the total number of 

cells counted this was 30% of the population. From this, none of those were expressing the 

Rab5 DN construct, indicating this prevented the TVA formation.  
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Figure 6.5 – Rab7 WT Did Not Colocalise to TVAs – MEF cells were transfected with a plasmid containing 

mRFP-Rab7 WT. 36 hours post-transfection cells were further incubated in complete media (A) or in OptiMEM 

containing Transfast for 4 hours before fixation (B). Cells were subsequently stained using an anti-LC3 antibody 

(green) and DAPI was used for the nuclei stain (blue). Bar is 10 μm.  

 

Figure 6.6 - Rab7 DN Did Not Prevents the Formation of TVAs – MEF cells were transfected with a plasmid 

containing GFP-Rab7 DN (pseudo-coloured red). 36 hours post-transfection cells were further incubated in full 

media (A) or in OptiMEM containing Transfast for 4 hours before fixation (B). Cells were subsequently stained 

using an anti-LC3 antibody (green) and DAPI was used for the nuclei stain (blue). Bar is 10 μm. White arrows 

points to a TVA in the perinuclear region of the cell. 
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Figure 6.7 – Chlorpromazine Prevents Internalisation of Transferrin and the Formation of TVAs – MEFs were 

incubated in either complete media (control), with 50 µM chlorpromazine (chlorpromazine) or with Transfast 

and 50µM chlorpromazine (chlorpromazine + TF) for 1 hour prior to fixation. All sample also contained 5 µg/ml 

transferrin for the duration of the experiment. Cell nuclei were stained with DAPI (blue). Bar is 10 μm. White 

arrows highlight the distribution of transferrin inside the cell. 
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Figure 6.8 – Dynasore Prevents Internalisation of Transferrin and the Formation of TVAs – HEK 293 cells 

stably expressing eGFP-LC3 were incubated in either complete media (control), with 80 µM dynasore 

(dynasore) or with Transfast and 80 µM dynasore (dynasore + TF) for 1 hour prior to fixation. All sample also 

contained 5 µg/ml transferrin for the duration of the experiment. Cell nuclei were stained with DAPI (blue). Bar 

is 10 μm. White arrows highlight the distribution of transferrin inside the cell. 
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Figure 6.9 – Partial Colocalisation of Clathrin with Peripheral TVAs and No Colocalisation with EEA1 – HEK 

293 cells stably expressing eGFP-LC3 were incubated in with for 4 hours prior to fixation. Cells were stained for 

anti-clathrin (A) or anti-EEA1 (B) and the nuclei were stained with DAPI (blue). Bar is 10 μm (A and B).  
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6.3.3 Role of Rab7 in the Formation of TVAs – 

CHO cells expressing GFP-LC3 and Rab7 fused to RFP are shown in figure 6.5.  Cells 

were either starved to induce autophagy (panel A) or incubated with cationic liposomes 

(panel B).  Following this, expression of a plasmid contain mRFP-Rab7 in cells showed a 

cytoplasmic distribution and Rab7 concentrated in the perinuclear region (figure 6.5), and a 

cytoplasmic LC3 localisation. Incubation with Transfast induced TVAs.  The majority of the 

Rab7 was in the perinuclear region, however the TVAs did not colocalise with Rab7. The 

experiment was repeated using DN Rab, the Rab7 DN protein was concentrated around the 

nucleus and distributed thorough the cytoplasm distribution (figure 6.6A) but did not 

prevent the formation of TVAs (figure 6.6B). The experiments were carried out in both MEF 

and CHO eGFP-LC3 cell lines and confirmed that a functional Rab5 is required for the 

formation of TVAs, however Rab7 does not play a role.  

6.3.4 Role played by Clathrin-Mediated Endocytosis during the Formation of TVAs  

Chlorpromazine inhibits the formation of clathrin-coated pits (CCPs) at the plasma 

membrane (Wang et al 1993). Dynasore inhibits dynamin, a GTPase that is responsible for 

the scission of CCPs to form clathrin-coated vesicles (CCVs) and thus transport into the cell is 

halted (Macia et al 2006). The effects of chlorpromazine on endocytosis of fluorescent 

transferrin (red) are shown in figure 6.7. Under control, conditions, transferrin is taken up by 

endocytosis and accumulates in the perinuclear region, as highlighted by the white arrows. 

Chlorpromazine prevented the uptake of transferrin and the cells are negative for red 

fluorescence (middle panels of figure 6.8). The effects of chlorpromazine on TVA formation 

in response to Transfast is shown in the lower panels. Chlorpromazine prevented 

redistribution of LC3 which remained distributed through the cytoplasm. Membrane blebs 

containing fluorescent transferrin were seen outside the cells, the nature of these structures 

is unknown. The experiments were repeated using dynasore to inhibit dynamin. Figure 6.9 

showed that dynasore prevented perinuclear accumulation of transferring and caused the 

accumulation of the transferrin at the surface of the cell, highlighted by the white arrow. 

The nature of these localised concentrations of transferring are unknown. Importantly, 

incubation of cells with cationic liposomes in the presence of dynasore also prevented the 

formation of TVAs. These experiments indicate that CME is required for the formation of 

TVAs. 
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To investigate if clathrin played a role in the formation of TVAs, HEK 293 cells stably 

expressing eGFP-LC3 were incubated with Transfast and stained for clathrin (Figure 6.9A). In 

the majority of the cells the perinuclear TVAs were not colocalised with clathrin, however, in 

TVAs that were closer to the cell periphery (arrow) there was a partial colocalisation with 

clathrin. To determine if peripheral TVAs fuse with early endosomes, cells were stained for 

an early endosome antigen (EEA1). However the EEA1 and TVAs were separate structures 

and there was no colocalisation between LC3 and EEA1. 

6.4 Discussion - 

Rab GTPase function was used in order to investigate the role of the endocytic 

pathway in the formation of the TVAs; both the inhibition of CME and the Rab GTPases was 

used to dissect which compartments would contribute. Liposomes are known to enter cells 

through clathrin-mediated endocytosis as shown in this chapter which correlates with the 

data presented by Rejman et al 2005. The results of this chapter show that formation of 

TVAs required clathrin mediated endocytosis and Rab5. In addition peripheral TVAs 

recruited clathrin and Rab5 was located to some areas within the TVA. In the study by 

Rejman et al, transfection efficiency was used as a measure of liposome entry into cells.   

They show that inhibition of CME by both chlorpromazine and potassium depletion 

decreased the rate of transfection efficiency, suggesting that CME s the major route of entry 

of cationic liposomes. This appears specific because incubation with a inhibitors of caveolae-

mediated endocytosis inhibitor did not further decrease transfection efficiency. The route 

for cationic liposomes into cells is largely through CME, however, it is not clear if the 

liposomes remain inside endosome or are delivered to the cytoplasm. In this chapter it was 

shown that TVAs formation is dependent on CME and TVAs partially colocalised with 

clathrin.  This suggests that TVA formation may be a consequence of endocytosis of cationic 

liposomes.  Even so there was no colocalisation with EEA1. It is possible the cationic 

liposomes escape the endosomes before fusion with early endosomes. The role of EEA1 is to 

tether vesicles and aid in the fusion with early endosomes, and it is a Rab5 effector protein. 

EEA1 has a FYVE domain in which it binds to endosomes in a PI (3)P dependent manner, and 

interact with GTP-bound Rab5 (Simonsen et al 1998). Since Rab5 was shown to be 

important in the formation of TVAs, it is surprising that EEA1 is not also recruited. The data 

presented here shows that although TVA formation is Rab5-dependent it does not recruit 
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the effector protein EEA1, as shown in figure 6.9. One possibility is that liposomes are 

released into the cytoplasm before or during fusion with early endosomes, and are then 

engulfed by autophagosomes.    

 

Figure 6.10 – The formation of TVA following clathrin-mediated endocytosis 

Data present in this chapter also show that TVA formation does not require Rab7 

and Rab 7 is not recruited to TVAs.  Rab7 is required for endosome fusion with lysosomes 

and for autophagosome:lysosome fusion (Gutierrez et al 2004). This result correlates with 

the data in the previous chapter showing lack or severe delay of fusion of TVAs with 

lysosomes. 
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Interestingly, previous work has shown that Rab5 participates in the early steps of 

autophagy coordinating the conjugation of Atg5 to Atg12 (Ravikumar et al 2008). It was 

possible that the DN Rab5 may have inhibited TVA formation through a direct effect on 

Atg5-12 conjugation.  However in the cell system used in this current study, it was not 

possible to demonstrate inhibition of autophagosome formation in response to starvation 

by DN Rab5. In the same cells DN Rab5 inhibited TVA formation and it is concluded that this 

is because DN Rab5 is inhibiting endocytosis. In summary, the data presented in this chapter 

reveal a role for clathrin-mediated endocytosis in the formation of TVAs. This could be the 

delivery of liposomes into the cytoplasm, or endosomes containing liposomes which fuse 

with autophagosomes, further research on this would be required. Also demonstrated was a 

role for clathrin in the peripheral TVAs, and a role for Rab5 in their formation.  
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Chapter 7 – General Discussion –  

7.1 Summary -  

This thesis has studied the formation of tubulo-vesicular autophagosomes (TVAs) in 

response to the cationic liposomes commonly used as non-viral DNA delivery vectors.  

Experiments also showed that TVAs were formed in response to calcium phosphate 

precipitates and cationic liposomes which are used routinely as transfection reagents to 

deliver plasmids into cells for protein expression. Parallel work in the Pirbright Laboratories 

(see appendix) has shown that TVAs are produced when cells are incubated with Foot and 

Mouth Disease virus (FMDV) empty capsids, or UV-inactivated FMDV. It is possible that TVAs 

form following activation of a common cell signalling pathway and this will be discussed 

later (figure 7.1). TVAs are classed as autophagosomes because they show several 

similarities to autophagosomes generated in response to starvation. TVA formation is 

dependent on Atg5, involves conjugation of LC3 to PE and redistribution of LC3 from the 

cytoplasm to membranes. TVAs induced by cationic liposomes were, however, different 

from autophagosomes in several ways. They formed independently of starvation, and did 

not appear to require class III PI 3-kinase or beclin-1. TVAs were highly heterogeneous 

structures containing vesicles and tubules enriched with LC3 which concentrated close to 

the nucleus, and compared with autophagosomes, they were relatively long-lived. TVA 

formation was also highly dependent on endocytic pathways, and required on-going 

proteolysis in lysosomes. TVAs were also separate and distinct from other perinuclear 

stress-induced structures such as aggresomes or ALIS that recruit LC3.  

 

7.2 Model for Formation of Tubulo-Vesicular Autophagosomes –  

 Cationic liposomes are known to enter cells through clathrin-mediated endocytosis 

(CME).  The results show that TVAs required endocytosis and that there was a transient 

association with early endosome marker rab5. This suggests that endocytosis is an 

important step in the formation of TVAs (figure 7.1). Time lapse images show that the first 

vesicles containing LC3 formed in response to the liposomes resemble the LC3 punctae 

generated by starvation.  This suggests that endocytosis of liposomes, or liposomes released 
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into the cytoplasm, may activate autophagy (steps 1-2a and 2b). Activation of autophagy by 

liposomes was however independent of both class III PI 3-kinase activity and starvation so 

the signalling mechanism remains unknown. The small LC3-punctae, generated by 

liposomes could then engulf liposomes (step 2b), or fuse with endosomes containing 

liposomes (step 3), and then fuse together to form large heterogeneous vesicles. This 

requires intact microtubules suggesting that LC3 punctae induced by liposomes are drawn 

together by microtubule motor proteins (steps 4 and 5).  

 

Figure 7.1 - Model for Formation of TVAs Following Incubation with Liposomes 

Large heterogeneous vesicles then generate tubular extensions and networks (step 

5) and these again required intact microtubules. The TVAs accumulate close to the nucleus 

and remained in cells for up to 48 hours (step 6). The lack of degradation of LC3 during this 

time suggested a block in fusion with lysosomes. This was supported by studies showing 

slowed degradation of p62 and accumulation of ubiquitinated proteins. Interestingly, 
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inhibition of lysosome acidification using bafilomycin A1 or the protease inhibitor E64d 

prevented formation of TVAs, suggesting that acidified late endosomes and/or lysosomes 

play a role in TVA formation and stability (step 7). At the later stages, 8 hours post formation 

onwards, less tubule-like extensions were generated from the central structures, and the 

lysosomes swell, some of the TVAs colocalise with LAMP1-positive structures indicating a 

slow delivery of LC3 to lysosomes. 

7.2.1 - Overlap between Endocytosis and Autophagy -  

Recent studies show that Atg16L1 may play a role at the very early stages of 

endocytosis at the plasma membrane (Ravikumar et al 2010). Atg16L1 binds clathrin, and 

inhibition of dynamin to stabilise clathrin-coated pits during endocytosis increases 

colocalisation between Atg16L1 and clathrin.  Furthermore, knock-down of clathrin heavy 

chain, AP2 and epsin-1 slow endocytosis and decrease the number of autophagosomes 

formed in response to starvation (Ravikumar et al 2010). The data presented in this thesis 

show that TVA formation requires endocytosis and activation of autophagy via Atg5. 

Recruitment of Atg16 to sites of liposome endocytosis could seed autophagosome 

formation. 
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Figure 7.2 – The Involvement of Atg16L1 in Endocytosis of Liposomes During TVA Formation – (adapted from 

Ravikumar et al 2010) - Atg16L1 binds clathrin and forms early Atg16L1 positive precursors during endocytosis 

of cationic liposomes. Clathrin coated vesicles (CCV) form from the plasma membrane which mature into EEA-

1-positive endosomes. Atg16L1-positive precursors may aid in autophagosome formation, and recruits LC3 to 

the phagosome which matures to form autophagosome. These autophagosome, as described in figure 7.1, 

fuse and become larger TVAs. 

7.2.2 - Alternative pathways for tubule formation - 

The tubulation of TVAs is a dynamic and novel characteristic which sets them apart 

from typical autophagosomes. Tubule formation required intact microtubules suggesting 

they may be formed from vesicles by microtubule motor proteins (figure 7.1). There are 

however a number of proteins that are involved in membrane tubulation during 

endocytosis. These proteins contain BAR, F-BAR, ENTH or ANTH domains (Kutateladze 2010) 

which bind to different phosphoinositol intermediates and/or integral proteins in 

membranes to induce membrane curvature and tubulation. An example includes the epsin-

1 protein which contains an ENTH domain, is required for cationic liposome endocytosis, 

(Zuhorn et al 2002) and plays a role in CME (McMahon and Gallop 2005). The role of epsin-1 

in CME is to stabilise and aid in the formation of clathrin-coated pits which bud off from the 

plasma membrane (Ford et al 2002). Epsin-1 can bind to PI(4,5)P2 in the plasma membrane 

through the ENTH domain which inserts into the membrane to induce membrane curvature 

during pit formation. The binding of the ENTH domain is dependent on acidic pH. It is clear 

that prevention of acidification of lysosomes with bafilomycin presents TVA formation, it is 

possible that bafilomycin prevents tubule formation by inhibiting binding of the Epsin-1 

ENTH domain. TVAs contain ubiquitinated material and the presence of an ubiquitin-

interacting motif (UIM) in epsin-1 would allow it to recognise ubiquitinated cargoes (Hom et 

al 2007). In the presence of PI(4,5)P2 in the membrane to bind the ENTH domain could again 

cause membrane deformation and tubulation during TVA acidification.  

7.3 Comparison of Thesis with Published Data on TVAs – 

7.3.1 Formation of TVAs in Response to Cationic Liposomes    

The data presented by Man et al argues that cationic lipids induce genuine 

autophagy through a PI-3 kinase independent mechanism. The paper studies DOTAP alone, 
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and not the helper lipid DOPE, and DOTAP induces autophagy in cells through LC3 

aggregation and conversion to LC3-II. These aggregates colocalise with Lysotracker, and 

partially with Mitotracker, indicating functional autophagosomes (Man et al 2010). Given 

recent data on the origin of the autophagosome membrane it is possible that both 

organelles contribute to the formation. Man et al also show the formation of 

autophagosomes by DOTAP in the presence of 3-methyladenine (3-MA). This thesis shows 

that TVAs induced by cationic lipids are PI-3 kinase and beclin-1 independent, as they form 

in the presence of wortmannin and beclin-1 knock-down respectively. Similarly, in 

concurrence with Man et al, the data from the thesis also demonstrates that TVAs form 

through an mTOR independent pathway, as they still form in the presence of the inhibitor 

torin-1. Man et al did not explore the formation of TVAs from small punctae to large 

heterogenous structures containing vesicles and tubules as explored in this thesis using live 

cell imaging. This data presented in this thesis has illustrated a role for microtubules in 

trafficking punctae to the larger structures that accumulate in the perinuclear region of the 

cell. 

7.3.2 - The Formation of TVAs in Response to Calcium Phosphate Precipitates (CPP) - 

At the start of this thesis work by Gao et al demonstrated that calcium phosphate 

precipitates (CPP) will produce large LC3-positive aggregates in a dose-dependent manner 

(Gao et al 2008). Calcium phosphate is a classical method for transfection but TVA formation 

does not require DNA to be incorporated into the precipitate, incubation with calcium 

phosphate precipitate in the absence of DNA will rearrange LC3 indicating an increase in the 

production of autophagosomes. Autophagosome formation by CPP was verified by electron 

microscopy showing formation of increased numbers of double-membraned vesicles. 

Moreover, recruitment of LC3 required processing by Atg4 and exposure of Gly 120 at the 

terminus of LC3 for addition of PE, and activation by CPP was inhibited by wortmannin and 

silencing of beclin-1. CPP also induced degradation of GFP-LC3 and p62 indicating fusion 

with lysosomes resulting in a decline in autophagosomes numbers to control levels at 24 

hours. Increased autophagic flux in response to CPP was verified using the tandem mRFP-

GFP-LC3 probe which generated large numbers of red punctae (indicating autolysosomes) in 

response to CPP.  The formation of LC3 punctae was blocked when calcium was chelated 

suggesting that autophagy was activated by calcium entering the cell.    



 

Page | 133  
 

Sakar et al (2009) followed up on this work and confirmed that CPP increases the 

number of autophagosomes at the early time points.  However, continuous exposure to CPP 

for 24 hours caused a block in autophagosome:lysosome fusion. This was indicated by 

reduced degradation of p62 or mutant Huntington aggregates, less conversion of mRFP-

GFP-LC3 to red punctae and accumulation of large autophagosomes. It was also confirmed 

that CPP induced autophagy was dependent on Atg5 and lipidation of LC3, which again 

agrees with the data presented in this thesis. 

In the most recent paper by Gao et al (2010) TVAs were immunopurified from lysates 

taken from cells starved to induce autophagy or incubated with CPP. The authors 

demonstrate the formation of TVAs during starvation; however CPP induced a stronger 

response. This is the first paper to describe the formation of tubulovesicular 

autophagosomes in response to starvation, yet the majority of the data presented used CPP 

as the stimulus. The immunopurified vesicles were examined by electron microscopy and 

revealed heterogeneous ultrastructure with individual vesicles, and vesicles with tubules 

attached. This was consistent with their fluorescence images showing that 60-70% of LC3 

positive structures were individual vesicles, 20-30% were vesicles with tubules attached and 

the remainder were tubules.  Proteomic analysis showed the presence of Atg5, Atg16L1 and 

Atg5-Atg12 involved in early processes of isolation membrane and phagophore formation. 

The presence of LC3-II, Atg9 and p62 confirmed the relationship with mature 

autophagosomes. Levels of beclin-1 and Vps34 were low but UVRAG was present. 

Autophagosomes formed by CPP also contained endocytic markers Rab4, Rab5 and Rab7, 

however, clathrin and Rab5 effector proteins EEA-1 and Rabaptin-5 were absent.  Analysis of 

the entire TVA proteome showed a further 100 proteins, with 40%  originating from Golgi, 

ER and mitochondrial membranes, but a clear link between these proteins and known 

autophagy pathways was not clear.      

7.3.3 Comparison of TVAs Formed by CPP with Those Formed by Cationic Liposomes -  

The TVAs generated by CPP were broadly similar in morphology to those induced by 

cationic liposomes. As reported in this thesis TVAs generated by CPP were transient 

structures and survived for 8 hours but were short lived compared with the 24 hours seen 

for TVAs induced by cationic liposomes. A role for clathrin-mediated endocytosis and 
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endocytic Rab proteins in the formation of TVAs by CPP has not been tested but the 

presence of endocytic markers such as Rab4, Rab5 and Rab7 suggests that endosomes may 

provide membranes for TVAs.  One difference for CPP TVAs is the presence of Rab7, which 

was absent from TVAs induced by cationic liposomes.  In agreement with work in this thesis 

p62 was concentrated in the interior of the vesicular component of the TVA, but was also 

found in tubular extensions. The signalling mechanism by which CPP induced autophagy was 

not investigated however, it appears from preliminary experiments using inhibitors cited in 

the paper (Gao et al 2008) that it is independent of the calcium activate kinase CaMKKβ. 

A combination of fluorescence images, time lapse microscopy and electron 

micrographs allowed Gao et al (2010) to construct a model for the formation of TVAs.  Most 

pathways involve the bending of tubule-like membranes to enclose cytoplasm that could 

bud from the tubules to generate double-membraned vesicles (figure), alternatively, 

membranes could invaginate inwards into the swollen head of TVAs.  Gao et al did not study 

the role of microtubules or lysosome acidification and proteolysis in TVA formation in 

response to CPP, and did not explain how these processes would be essential for formation 

of tubules and/or conversion to double membrane vesicles.           

7.3.4 Possible Cell Signalling Pathways Activated by Cationic Liposomes -  

Interestingly, the formation of autophagosomes during starvation is dependent on 

the generation of PI(3)P by Vsp34 which localises to ER membranes in the beclin-1 complex 

with Atg14, and results in the recruitment of FYVE-domain containing protein such as WIPI 

to induce the formation of the autophagosome (Hayashi-Nishino 2009). The TVAs in this 

thesis formed in the presence of wortmannin, a class III PI 3-kinase inhibitor, suggesting PI 3-

kinase independent mechanism. A recent report by Nishida et al illustrates that in Atg5-/- 

and Atg7-/- cells there is an alternative form of autophagy where the Golgi and the TGN play 

a role in forming double-membrane vesicles. Although independent of Atg5 or Atg7, these 

vesicles are still dependent on PI 3-kinases and Rab9 which also play a role in canonical 

autophagy (Nishida et al 2009). Other examples include the PI 3-kinase and beclin-1 

independent pathway involved during Vibrio parahaemolytics infection, and also following 

resveratrol treatment (Scarlatti et al 2008, Burdette et al 2009). The incubation with cationic 

liposomes may trigger one of the alternative routes and result in the formation of TVAs. 
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Data presented by Ouali et al (2007) show that cationic liposomes containing DiC14-

amidine, DOTAP, DDAB and lipofectamine raise intracellular calcium during the first hour of 

being added to cells. The calcium appeared to be released from the ER Ca2+ store since the 

rise in calcium can be inhibited by thapsigargin which inhibits the ER Ca2+ ATPase and 

U73122 an inhibitor of phopholipase C and prevents production of inositol 1,4,5-

triphosphate. Release of calcium was dependent on the positive charge of the cationic lipid 

head group. Data from work with cationic liposomes in this thesis show that the cationic 

liposomes used did not produce a change in intracellular calcium (see appendix). Cationic 

lipids show large structural diversity and can activate a range of cellular pathways.  Cationic 

lipids, such as DiC14-amidine, that resemble bacterial lipopolysaccharide activate Toll-like 

receptor 4 and can signal through MyD88 and NF-kB (Lonez et al 2009).  Most cationic lipids 

including DOTAP and lipofectamine are not recognised by TLR4 but activate MAPK pathways 

involving ERK1/2, JNK and p38, and this can lead to a diagnostic up-regulation of 

CD80/CD86. These lipids may bind CD14 and lipopolysaccharide binding protein (LBP). By 

using inhibitors of the ERK1/2, JNK and p38 is would be possible to determine if these 

signalling components play a role in the formation of TVAs.  

Cell entry of cationic liposomes may also be mediated by β1 integrins (Zuhorn et al 

2007) since uptake of liposomes containing DOPE can be reduced by antibodies that block 

β1 integrins and β1 integrin silencing, but is not reduced by antibodies blocking E-cadherin 

or an RGD peptide that blocks αv integrin. Integrin binding followed by clustering 

interactions normally involved in cell adhesion, would activate protein kinase C and trigger 

release of Ca2+ from the ER Ca2+ store and/or activate MAP kinase pathways such as ERK1/2.  

cationic liposomes.  Their ability to cluster would allow negatively charged domains in the 

β1 integrin to bind repeatedly to positive head groups on the liposome in a manner 

analogous to the binding and uptake of viral particles with repeating structures generated 

by the assembly of capsid proteins. FMDV is known to enter cells using integrin receptors, 

and collaboration with Pirbright has indicated that empty capsids also form TVAs. It is 

possible that cationic liposomes use a similar entry mechanism as viruses, and these early 

upstream events are key in TVA formation.                
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 7.4 Other Nano-materials which Activate Autophagy - 

Small molecules such as liposomes, are included in the nanoparticle family, are not 

the only molecules to be reported to induce autophagy. Autophagy is activated during 

incubation with nanoparticles such as quantum dots (QDs), which are increasingly used to 

label cells due to their improved fluorescence intensity and stability inside a cellular 

environments. As shown in figure 7.3, QDs are composed of a semi-conductor core usually 

of cadmium selenite or indium phosphide, and for biological imaging consist of a shell of 

zinc sulphate. The shell can also have other biocompatible molecules conjugated to it such 

as small ligands and antibodies for cell surface interactions and also peptides for 

intracellular localisation (Zhou and Ghosh 2007). However, Seleverstov et al (2006) reported 

that it is the size of the nanoparticles, not the composition which induces autophagy. The 

data suggests that the larger QDs activates autophagy, and results in a large perinuclear 

aggregate of LC3 during incubation with QDs (Seleverstov et al 2006).  

 

Figure 7.3 – Different nanoparticles that activate autophagy – (A) QDs, dendrimers and gold nanoparticles 

(Au) (B) QDs fluorescence depends on size (C) fullerene and carbon nanotubes. 

There have also been other reports of carbon nanotubes, dendrimers and gold 

nanoparticles activating autophagy, monitored by increased production in LC3-II (Li et al 
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2010, Li et al 2009, Yamawaki and Iwai 2006).  There is a possibility that there is a generic 

cellular response to the nanoparticles which are delivered into the cytoplasm, and 

autophagy is activated as part of an innate defence mechanism much like when pathogens 

such as bacteria and viruses invade. The overlaps between the endocytic pathway and 

autophagy allows for thorough monitoring of all pathways delivering contents into the 

cytoplasm.  

With the development nanotheranostics, the use of nanomaterials in therapeutics 

and as diagnostic tools, there is an increasing use of liposomes aiding in treatments and 

delivery of drugs. Many of the current therapeutic agents for cancer which are intravenously 

delivered have poor pharmacokinetics and unsuitable distribution in the body (Lammers et 

al 2010). Liposomes can also be used in MRI diagnostics with a magnetic molecule 

conjugated to their surface or encapsulated during formation, in addition with specific 

ligand conjugation to the liposome surface to target specific tissues (Strijkers et al 2010). 

The in vivo application of lipsosomes in anti-cancer therapies, as well as diagnostic tool for 

MRI scans illustrates a wider application than cell culture as DNA delivery vector. However, 

given the data presented in this thesis and emerging evidence from the literature it is clear 

that liposomes, as well as other nanoparticles are activating other cellular pathways that 

may have beneficial or potentially harmful effects. Further investigation into the activation 

and biological processing of nanoparticles, particularly in vivo, are required to determine the 

eventual cellular effects and outcomes.   
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Figure A – Calcium Phosphate Induced Formation of TVAs - CHO cells stably expressing eGFP-LC3 were 

incubated with calcium phosphate transfection reagent for 1 hour, 4 hours and 8 hours prior to fixation (top 

panels). Calcium phosphate was removed at 8 hours and the cells were allowed to recover (24 hours fed), 

additionally following this recovery, cells were also starved (24 hours starved). Cells were fixed and nuclei 

stained with DAPI (blue). Bar is 5 μm.  
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Figure B – Measuring Calcium Signalling During Formation of TVAs - For measurement of [Ca
2+

]i, CHO cells 

were loaded with 2·5 µM fura-2/AM for 60 min at 37 °C, and then washed free of extracellular dye. 

Experiments were carried out at 37°C using a heated stage (Medical Systems, USA) while perfusing (~1 

mL/min) using a peristaltic pump. Pairs of fluorescence images at 340 nm and 380 nm were obtained using a 

fast-scanning monochromator (Kinetic Imaging, UK) every 5 secs on a Nikon Diaphot 200 microscope at x40. 

At indicated times the perfusion medium was changed by using a two-way, switchable valve adding the 

transfection reagent.  For analysis, cells were outlined and the background-subtracted, mean fluorescence 

intensity was measured at each wavelength. The ratio of the 340-nm-excited fluorescence divided by the 

380-nm-excited fluorescence was calculated for each time-point and plotted against time. 
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Figure C – Calcium Phosphate Induced Formation of TVAs in the Presence of Autophagy Inhibitors and 

Calcium Chelators - CHO cells stably expressing eGFP-LC3 were pre-incubated with either 100 nM 

wortmannin or 100 nM bafilomycin A1 (top panels) for 30 minutes, or with 3 mM EGTA for 15 minutes or 40 

μM BAPTA-AM for 40 minutes (bottom panels). Cells were subsequently incubated with calcium phosphate 

transfection reagent for 4 hours prior to fixation). Cells were fixed and nuclei stained with DAPI (blue). Bar is 5 

μm.  
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Figure D – Cowpea Mosaic Virus (CPMV) Induced Formation of TVAs - CHO cells stably expressing eGFP-LC3 

were incubated with CMPV for 8 hours prior to fixation. Cells were subsequently fixed and CPMV was 

visualised by staining for the capsid protein (red). Bar is 5 μm. A Z-stack through the cell (panels A) shows a 

TVA in the top bottom focus plane (indicated in B) and the immunofluorescence from the capsid in a higher 

focal plane. The white arrow (panels A) indicates the central TVA structure colocalised with the capsid for 

CPMV.  
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Figure E – Fluorescently Conjugated Cowpea Mosaic Virus (CPMV) and Empty Virus-like Particles (eVLP) 

Induced Formation of TVAs - CHO cells stably expressing eGFP-LC3 were incubated with the fluorescently 

labelled Dyelight-conjugated (red) CPMV and eVLP for 2 hours prior to fixation. Cells were subsequently fixed 

and nuclei stained with DAPI (blue). The ROI shows a TVA formed in the perinuclear region of the cell. Bar is 5 

μm. 
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Figure E – Redistribution of GFP-LC3 in response to FMDV Infection, UV inactivated virus and Empty Capsids 

– (adapted from Berryman et al 2011) – Cho cells stably expressing GFP-LC3 were incubated for increasing 

times with FMDV virus (panels A i-iv). Higher magnification images (v-viii) show LC3 redistribution (green) and 

FMDV non-structural protein 3A (red) detected using antibody 2C2. Nuclei are stained with DAPI (blue). Bar is 

30 μm (i-iv) and 10 μm (v-viii). LC3 redistribution is also seen when CHO cells stably expressing GFP-LC3 are 

incubated with UV-inactivated virus and empty FMDV type capsids (panel B) for 2 hours. Bar is 10 μm.  

 

 



 

 
 

 

 
 

 

 
Table F – Chemical Name (if known) and Description of the Commercially Available Cationic Liposomes for Transfection Used to Study the Formation of TVAs 

 

Generic Name Chemical Name Helper Lipid Company Notes 

Transfast N,N [bis (2-hydroxyethyl)-N-methyl-N-[2,3-
di(tetradecanoyloxy) propyl] ammonium 

iodide 

DOPE Promega Cationic lipid 

Lipofectamine 2,3-dioleyloxy-N-
[2(sperminecarboxamido)ethyl]-N,N-

dimethyl-1-propanaminium trifluoroacetate 
(DOSPA) 

DOPE Invitrogen Cationic lipid 

HiPerfect based on dioctadecyl glycyl spermine (DOGS) - Qiagen Cationic lipid 

Fugene HD - - Roche Non-liposomal transfection reagent  based on a proprietary 
blend of lipids and other components 

Turbofect based on PEI - “Proton-sponge” buffers 
endosomal pH 

- Fermentas Proprietary non-immunogenic cationic polymer 

Nanojuice based on dendrimers - Merck Mixture uses Priostar® dendrimers with a proven 
polycationic liposomal formulation 

JetPRIME based on PEI and cationic lipids - PolyPlus 
Transfection 

Mixture using the best lipids followed by proton sponge 
mediated endosomal escape 

INTERFERin - - PolyPlus 
Transfection 

- 

NBD-DOTAP 1-oleoyl-2-[6-[(7-nitro-2-1,3-benzoxadiazol-
4-yl)amino]hexanoyl]-3-trimethylammonium 

propane 

DOPE Avanti Lipids Cationic lipid conjugate to nitrobenzoxadiazole (NBD) 
fluorophore 
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