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ABSTRACT 

Sulfur is an indispensable macronutrient for all organisms. Plants take up sulfate from the 

soil and assimilate it into a range of essential compounds. ATP sulfurylase (ATPS) occupies 

a central position in plant sulfur metabolism as it catalyzes the first step of both primary 

and secondary sulfate assimilation. Despite its central position in the pathway, little is 

known about the contribution of ATPS to the control of sulfur metabolism. Four ATPS 

isoforms are present in Arabidopsis thaliana, yet their individual functions are unknown. 

The aim of this thesis was thus to assess the role of ATPS in regulation of sulfur 

metabolism and to contribute to better understanding of function of individual ATPS 

isoforms. Exploration of tissue specific expressions and responses of these four isoforms 

to environmental cues revealed extensive differences between the isoforms. The ATPS 

transcripts are targeted by a microRNA, miR395, which itself is induced by the SULFUR 

LIMITATION 1 (SLIM1) transcription factor in response to sulfur deficiency. Dissection of 

sulfur deficiency response exposed interplay between SLIM1 and miR395 in the 

modification of individual ATPS gene expression. Moreover, miR395 induction was shown 

to increase translocation of sulfate from root-to-shoot, ensuring sufficient sulfate supply 

where most needed for assimilation. A further role of miR395 in fine-tuning demand-

driven regulation of ATPS under normal sulfur supply was revealed through systematic 

analysis of miR395 and its targets. Analysis of regulation of glucosinolate biosynthesis by 

two groups of R2R3-MYB transcription factors revealed that ATPS isoforms ATPS1 and 

ATPS3 are targets of these transcription factors. The two groups of MYB factors activated 

ATPS1 and ATPS3 differently, demonstrating that ATPS is an integral part of the 

glucosinolate biosynthesis regulatory network. The results presented in this thesis 

support the importance of the four individual ATPS isoforms, and increase our 

understanding of regulatory mechanisms for sulfate assimilation. 
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1. GENERAL INTRODUCTION 

1.1. Plant nutrition 

Animals are heterotrophs that require the ingestion of other organisms to obtain their 

nutrients. Plants, on the other hand, are autotrophic and thus able to assimilate nutrients 

from the environment around them. The non-mineral nutrients - hydrogen, oxygen, and 

carbon - are converted into sugars during photosynthesis, but there are also thirteen 

mineral nutrients essential to plants, that must be acquired from the soil. Six of these 

essential minerals are necessary in larger quantities and hence considered 

macronutrients: nitrogen, potassium, calcium, magnesium, phosphorus, and last but not 

least sulfur. In a world in which demands on agriculture are constantly growing, changing, 

and diversifying, improved comprehension of plant nutrient assimilation systems 

undeniably impacts on human life. The output of plant nutrition research can often be 

applied directly to improve growing and breeding methods for crop plants. Alternatively, 

genetic engineering promises to deliver plants with increased nutrient assimilation 

capacity and better nutrient use efficiency, with the potential to reduce fertilizer and 

pesticide use, increase crop yield, and improve the crop nutritional value for the 

consumer. Not only could such traits increase food quality and crop yield, but also lower 

expenses for farmers and reduce environmental damage.  

 

1.2. Sulfur nutrition 

Sulfur is an essential element for all organisms. Animals have dietary requirements for 

organic sulfur compounds, such as methionine, which they obtain through the 

consumption of other organisms (Fukagawa, 2006). In contrast, plants, as well as most 

bacteria and fungi, use inorganic sulfate as their major sulfur source. In addition to sulfate, 

plants are able to supplement their sulfur supplies with reduced sulfur forms absorbed 



2 

 

from the atmosphere, such as sulfur dioxide and hydrogen sulfide (Leustek et al., 2000; 

Durenkamp and De Kok, 2004). In plants, sulfur is found in reduced form in sulfur amino 

acids, peptides and proteins, iron-sulfur clusters, lipoic acid and other sulfur-containing 

metabolites and coenzymes/cofactors. It is also found in an oxidized state in many 

compounds, including sulfated proteins, sulfated hormones (e.g. phytosulfokine; PSK), 

polysaccharides and lipids. Sulfur is often central to the biological function of these 

compounds. Disulfide bonds created between the sulfur containing amino acids cysteine 

and methionine are vital for protein structure, stability, and regulation. Sulfur also plays a 

critical role in the catalytic or electrochemical functions of coenzymes and other 

biomolecules. Glutathione, a major product of the sulfate assimilation pathway, is a key 

component in the maintenance of cell redox homeostasis and the removal of reactive 

oxygen species (Leustek et al., 2000; Hawkesford and De Kok, 2006; Kopriva, 2006). The 

reactivity of the nucleophilic thiol group makes cysteine, methionine, glutathione, 

coenzyme A and vitamins such as biotin, lipoic acid and thiamine very versatile molecules 

in intermediary metabolism (Hell et al., 2002). Other sulfur containing compounds, such as 

the sulfur-rich secondary metabolites, the glucosinolates, function in defence against biotic 

stress caused by herbivore and pathogen attack (Halkier and Gershenzon, 2006). 

Glucosinolates in crops from the Brassicales order, and alkyl cysteine sulfoxides in Allium 

vegetables, are responsible for the distinctive smell and taste of these economically 

important species (McCallum et al., 2005; Halkier and Gershenzon, 2006). 

 

Sulfur deficiency has become an increasing problem for agricultural crops over the last 

few decades due to the combined effects of intensive farming methods, high yield crop 

varieties, decreased incidental application of sulfur in fertilisers, and declining 

atmospheric sulfur deposition (McGrath et al., 1999). Available sulfur in the soils of 

agricultural land now lies well below the recommended levels for cereal and oilseed crops. 

McGrath et al. (1996) predicted deficiency problems for all crops, but particularly oilseed 
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rape, due to its higher sulfur requirement. Sulfur deficiency can cause reduced crop yield, 

quality, and nutritional value, and increased disease susceptibility. Sulfur limiting 

conditions during early plant development have been shown to have detrimental effects 

on carbon assimilation, partly due to reduced synthesis and activity of Rubisco (Gilbert et 

al., 1997). Some degree of degradation of photosynthetic proteins has been recorded 

under such conditions as well, resulting in reduced chlorophyll and chlorosis of the leaves 

(Burke et al., 1986). In addition, prolonged deprivation generally results in changes of 

shoot/root biomass partitioning in favor of root production. These effects can have 

significant consequences on the yield of many crops (Buchner et al., 2004). Sulfur 

deficiency in wheat reduces the breadmaking quality due to a switch from the 

accumulation of sulfur-rich proteins to the synthesis and accumulation of sulfur-poor 

storage proteins (Zhao et al., 1996; McGrath et al., 1999). In addition, baked products 

using flour derived from sulfur-deprived wheat contain higher levels of toxic acrylamide 

(Muttucumaru et al., 2006). In barley, not only the yield but also the malting quality of the 

grain is reduced by sulfur deficiency (Zhao et al., 2006). Many sulfur containing 

phytochemicals have added nutritional value to the consumer, including isothiocyanates 

and glucosinolates thought to prevent cancer (Shapiro et al., 2001; Verkerk et al., 2009). 

Levels of these plant secondary metabolites are also reduced during sulfur deficiency 

(Hirai et al., 2003; Nikiforova et al., 2003). The availability of sulfur to plants is modified 

by interactions with other nutrients, mainly nitrogen and phosphorus. Thus, improved 

understanding of the mechanisms and control of sulfate assimilation is fundamental to 

improving sulfur nutrition of crop plants. 

 

1.3. Sulfate assimilation in Arabidopsis 

Assimilatory sulfate reduction occurs in various chemotrophic bacteria and fungi and in 

photosynthetic organisms but is missing in animals and most prokaryotic and eukaryotic 
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obligate parasites. Although the reactions of sulfate assimilation are essentially invariant 

throughout the organisms in which the pathway is present, high variability is seen among 

the structures of corresponding enzymes and the sizes of gene families in different 

organisms. This thesis is concerned with sulfate assimilation in the model plant species 

Arabidopsis thaliana.  

 

Anionic sulfate (SO4
2-), a chemically stable and therefore relatively unreactive sulfur-

compound, is the major sulfur source utilized by plants. It is taken up by active transport 

into the roots, from which it can be redistributed to wherever it is required (Hawkesford, 

2004). The first step of sulfate assimilation is the adenylation of sulfate to produce 

adenosine 5’ phosphosulfate (APS), an activation reaction catalysed by ATP sulfurylase 

(ATPS; EC 2.7.7.4) in the presence of ATP (Figure 1.1). The pathway subsequently 

branches into primary and secondary metabolism. In primary assimilation, APS is reduced 

by APS reductase (APR; EC 1.8.4.9) to sulfite, which is further reduced to sulfide in a 

reaction catalyzed by sulfite reductase (SiR; EC 1.8.7.1). Sulfide is then incorporated into 

0-acetylserine (OAS) to form cysteine, a reaction catalyzed by 0-acetylserine (thiol) lyase 

(OASTL; EC 2.5.1.47). Cysteine acts as a precursor or donor of reduced sulfur for many 

sulfur containing compounds, including methionine and glutathione. In the secondary 

assimilation pathway APS can be phosphorylated by APS kinase (APK; EC 2.7.1.25) to 

produce 3’-phosphoadenosine 5’-phosphosulfate (PAPS), a donor of activated sulfate for 

numerous sulfur secondary metabolites, such as glucosinolates. The sulfation of these 

secondary metabolites is catalyzed by a group of sulfotransferases (SOTs; EC 2.8.2.-; 

Leustek et al., 2000; Kopriva, 2006). As a catalyst for the first step of both primary and 

secondary assimilation ATPS is a prime candidate for further investigation. 

 



 

Figure 1.1 Scheme of the major steps of plant sulfate assimilation pathway

Numbers represent enzymes as follows: [1] sulfate transporter; [2] ATP sulfurylase; [3] APS 

reductase; [4] sulfite reductase; [5] serine acetyltransferase; [6] 

glutamylcysteine synthetase; [8] glutathione synthetase; [9]

Dotted lines represent hypothesi

 

Multi-gene families of most sulfate assimilation enzymes have been identified i

flowering plants (Table 

substantially across species. The phylogenetic tree

Scheme of the major steps of plant sulfate assimilation pathway

Numbers represent enzymes as follows: [1] sulfate transporter; [2] ATP sulfurylase; [3] APS 

reductase; [4] sulfite reductase; [5] serine acetyltransferase; [6] O-acetylserine (thiol) lyase; [7] γ

glutamylcysteine synthetase; [8] glutathione synthetase; [9] APS kinase; [10] sulfotransferase. 

Dotted lines represent hypothesized pathways. 

gene families of most sulfate assimilation enzymes have been identified i

Table 1.1). The sequence conservation of these genes can vary 

substantially across species. The phylogenetic trees for the sulfate

5 

 
Scheme of the major steps of plant sulfate assimilation pathway.  

Numbers represent enzymes as follows: [1] sulfate transporter; [2] ATP sulfurylase; [3] APS 

acetylserine (thiol) lyase; [7] γ-

APS kinase; [10] sulfotransferase. 

gene families of most sulfate assimilation enzymes have been identified in many 

of these genes can vary 

ate assimilation enzymes 
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are often very complex and the origins of the many plant genes, for example that of ATP 

sulfurylase, remain unclear (Patron et al., 2008). In Arabidopsis, the exceptions to this are 

SiR and the glutathione synthesis enzymes for which only a single gene copy has been 

identified (Kopriva et al., 2009). The biochemical characteristics of the sulfate assimilation 

proteins are well understood, and some of the gene families encoding these proteins have 

been systematically dissected. However, in many cases relatively little is known about the 

functions of the individual family members. The degree of specificity or functional 

redundancy of the individual isoforms remains to be deciphered. This is particularly true 

for the ATPS gene family. 

 

  
A. 

thaliana 

O. 

sativa 

S. 

bicolor 

P. 

trichocarpa 

P. 

patens 

S. 

moellendorffii 

C. 

reinhardtii 

T. 

pseudonana 

E. 

huxleyi 

SULTR 14 13 9 15 7 7 5 2 5 

ATPS 4 2 2 4 2 1 2 2 2 

APK 4 3 3 3 4 4 1 2 2 

APR 3 2 1 2 1 + 1a 1 + 1a 1 2a 1a 

SiR 1 2 1 3 3 1 2 1 2 

OASTL 9 9 6 10 3 4 3 3 11 

SAT 5 5 3 5 5 3 2 3 3 

Table 1.1 Genes of sulfate assimilation in sequenced plant and algal genomes 

The number of genes was determined in Kopriva et al. (2009). 
a APR-B type of APS reductase 

 

1.4. Sulfate transporters 

Sulfate is actively transported from the soil into the cells of the roots. The genomes of 

plants, as well as of many algae, encode both high- and low-affinity sulfate transporter 

systems localized in plasma membranes which mediate H+/SO4
2- co-transport 

(Hawkesford, 2003; Buchner et al., 2004; Takahashi, 2010). These transporters are 

responsible for uptake of sulfate from the rhizosphere and its translocation from source to 

sink tissues. The first sulfate transporter cDNAs were cloned from the tropical legume 

Stylosanthes hamata (Smith et al., 1995). Multiple sulfate transporters have been identified 
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and characterised since (Cherest et al., 1997; Smith et al., 1997; Takahashi et al., 2000; 

Vidmar et al., 2000; Yoshimoto et al., 2002; Yoshimoto et al., 2003). Completion of the 

Arabidopsis genome sequencing project has enabled the identification of a large sulfate 

transporter gene family (The Arabidopsis Genome Initiative, 2000). This multi-gene family 

has fourteen members, which have been subdivided into four closely related groups as 

well as a fifth more diverse, but clearly related group (Table 1.2; Aravind and Koonin, 

2000; Hawkesford, 2003). It has become apparent that the transporters within the 

individual groups are related not only by their sequences but also by their functions. Most 

knowledge about the function of these transporters has been obtained using Arabidopsis. 

 

Name AGI code localisation function 

Group 1 (high-affinity) 
 SULTR1;1 At4g08620 root hairs, epidermal and cortex cells, lateral root cap S uptake from rhizosphere 

SULTR1;2 At1g78000 root hairs, epidermal and cortex cells, guard cells S uptake from rhizosphere 

SULTR1;3 At1g22150 phloem companion cells in cotyledons and roots Long-distance translocation? 

Group 2 (low-affinity) 
  

SULTR2;1 At5g10180 xylem parenchyma cells, root pericycle, leaf phloem endogenous translocation 

SULTR2;2 At1g77990 root phloem and leaf vascular bundle sheath cells endogenous translocation 

Group 3 (low-affinity) 
  

SULTR3;1 At3g51900 - endogenous translocation? 

SULTR3;2 At4g02700 - endogenous translocation? 

SULTR3;3 At1g23090 - endogenous translocation? 

SULTR3;4 At3g15990 - endogenous translocation? 

SULTR3;5 At5g19600 xylem parenchyma and pericycle cells in roots endogenous translocation? 

Group 4 (low-affinity) 
  

SULTR4;1 At5g13550 tonoplast membrane efflux from vacuole to cytoplasm 

SULTR4;2 At3g12520 tonoplast membrane efflux from vacuole to cytoplasm 

Group 5 (unknown) 
  

SULTR5;1 At1g80310 - 
 

SULTR5;2 At2g25680 
 

high-affinity molybdate transporter 

Table 1.2 The sulfate transporter gene family - localisation and function. 
 

Primary uptake of sulfate into the roots is mediated by two Group one sulfate 

transporters, SULTR1;1 and SULTR1;2, which facilitate high-affinity sulfate uptake in 

micromolar concentrations. These two transporters are co-localized in the root tip and 

root endodermis, including root hairs and cells of the cortex (Takahashi et al., 2000). A 
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third member of the Group one transporter family in Arabidopsis, SULTR1;3, is localized 

in the phloem companion cells of cotyledons and roots, where it is thought to mediate 

long-distance translocation (Yoshimoto et al., 2003). Following initial uptake into the root 

epidermis, internal distribution of sulfate through the vasculature and cell-to-cell 

symplastic movement are required to ensure adequate sulfate supply to all organs and cell 

types. The endogenous translocation of sulfate from roots to leaves is facilitated in part by 

a pair of Group two low-affinity transporters: SULTR2;1 and SULTR2;2. SULTR2;1 is 

expressed in the xylem parenchyma of both roots and leaves, the root pericycle, and the 

leaf phloem. SULTR2;2 on the other hand is expressed in the root phloem and leaf vascular 

bundle sheath cells (Takahashi et al., 2000). More recent evidence has revealed that 

SULTR2;1 may also be involved in the redistribution of sulfate from older to younger 

leaves (Liang et al., 2010). Despite being the largest group, containing five members, the 

role of the Group three transporters is yet to be uncovered. Early experiments indicated 

that SULTR3;1 – 3;3 were leaf expressed (Takahashi et al., 2000). However, Kataoka et al. 

(2004a) showed that one group member, SULTR3;5, is co-expressed with SULTR2;1 in the 

roots. Although sulfate uptake could not be detected with SULTR3;5 alone in a yeast 

expression system, cells co-expressing both SULTR3;5 and SULTR2;1 showed considerably 

higher sulfate uptake capacity that those expressing SULTR2;1 alone (Kataoka et al., 

2004a). Due to the co-expression with SULTR2;1, SULTR3;5 is hypothesized to be involved 

in root-to-shoot translocation. Surprisingly, Group three transporters have been identified 

as essential for efficient nitrogen fixation in Lotus japonicas root nodules (Krusell et al., 

2005). In the cells, a large sulfur reserve accumulates as sulfate in the vacuoles (Kaiser et 

al., 1989). Two Group four transporters have been localized to the tonoplast membrane 

and shown to facilitate efflux of sulfate from the vacuole to the cytoplasm (Kataoka et al., 

2004b). Recently, a function for SULTR4;1 in determining the sulfate content of seeds was 

revealed (Zuber et al., 2010). The role of the two Group five transporters remains to be 
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established, though recently SULTR5;2 was identified as having activity of a high-affinity 

molybdate transporter (Tomatsu et al., 2007; Baxter et al., 2008). 

 

The sulfate transporters have a C-terminal extension designated as the STAS domain 

(Sulfate Transporter Anti-Sigma) that protrudes into the cytosol, and has significant 

similarity to bacterial anti-sigma factor antagonists (Aravind et al., 2002; Shibagaki and 

Grossman, 2004, 2006). Investigation of the SULTR1;1 and SULTR1;2 STAS domains 

revealed they are essential for plasma membrane localization of the transporters, as well 

as affecting their stability and catalytic properties (Shibagaki and Grossman, 2004, 2006). 

More recently, these authors revealed that the STAS domains of SULTR1;1 and SULTR1;2 

interact with OASTL. In the case of SULTR1;2, this interaction has a negative regulatory 

effect on the transporter activity (Shibagaki and Grossman, 2010). 

 

1.5. Activation of sulfate by ATPS 

Sulfate has a low oxidation/reduction potential compared to other cellular reductants. 

Therefore, the first step in sulfate assimilation requires the ATP-dependent activation of 

inorganic sulfate to APS. In APS sulfate is linked to a phosphate residue by a high energy 

anhydride bond, consuming ATP and releasing pyrophosphate:  

 

 SO4
2- + MgATP ↔ APS + MgPPi  

 

This reaction is catalyzed by ATPS (ATP:sulfate adenylyl transferase; Schmidt and Jager, 

1992; Leyh, 1993). As a catalyst for the first step of assimilation, and the only step 

common to both primary and secondary sulfate assimilation pathways, ATPS is a prime 

candidate for investigation of regulation of the pathway. 
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In plants, ATPS is a homotetramer of 52-54 kDa polypeptides (Murillo and Leustek, 1995). 

In comparison, bacterial ATPS consists of four heterodimers created from 35 kDa CysD 

and 53 kDa CysN subunits (Figure 1.2; Leyh et al., 1988). The ATPS enzyme is not very 

efficient and the equilibrium for the forwards reaction is thermodynamically unfavorable. 

To keep the reaction moving in the forwards direction and prevent conversion of APS to 

sulfate requires the quick and efficient removal of products (Leyh, 1993). This is facilitated 

by the rapid conversion of APS into further intermediary metabolites of the assimilation 

pathway - sulfite and PAPS - and by removal of the pyrophosphate by inorganic 

pyrophosphatase. Different organisms achieved this by different mechanisms: Fungi, 

metazoa, and some bacteria contain a PAPS synthase protein that is a fusion of ATPS and 

APK domains for the direct activation of sulfate to PAPS (Figure 1.2; Kurima et al., 1999; 

MacRae et al., 2001; Gay et al., 2009). In addition, it was shown that ATPS and APR from 

onion (Allium cepa) form protein-protein complexes in vitro, suggesting that substrate 

channelling might also occur in plants (Cumming et al., 2007).  

 

Recently, Patron et al. (2008) used phylogenetic analysis to dissect the origin of ATPS 

genes in photosynthetic organisms. There is high sequence identity amongst the plant 

ATPS genes. Surprisingly, plant ATPS genes are more closely related to ATPS from animals 

than to those in green algae, illustrating the complexity of the evolution of plant ATPS 

(Patron et al., 2008). Interestingly, many eukaryotic microalgae, e.g. diatoms and 

haptophytes, possess both ATPS isoforms similar to plants and to green algae (Kopriva et 

al., 2008; Patron et al., 2008). The plant/animal-like isoform in Thalassiosira pseudonana 

and Emiliania huxleyi is fused to both an APK domain and a domain similar to inorganic 

pyrophosphatase (Figure 1.2). This fusion protein thus probably synthesizes APS much 

more efficiently, since the coupling of sulfate adenylation with pyrophosphate hydrolysis 

is physically linked (Kopriva et al., 2009).  

 



 

Figure 1.2 Isoforms and fusions of ATPS in different organisms

The plant/animal-like ATPS isoform is represented in this figure by a dark green box, while the 
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AGI code Name Alternative names Gene length Amino acid length Reference 

 At3g22890 ATPS1 APS1 1898 bp 416 aa  Leustek et al., 1994 

 At1g19920 ATPS2 APS2/ASA1 1823 bp 420 aa  Logan et al., 1996 

 At4g14680 ATPS3 APS3 1860 bp 416 aa  Murillo and Leustek, 1995 

 At5g43780  ATPS4 APS4 1850 bp 429 aa  Hatzfeld et al., 2000 

Table 1.3 The Arabidopsis ATPS gene family  
 

The presence of multiple ATPS isoforms in plants seems to be physiologically relevant, 

since ATPS activity is present in both the plastids and the cytosol (Lunn et al., 1990; Rotte 

and Leustek, 2000). In both spinach (Spinacia oleracea) and potato (Solanum tuberosum) 

one plastidic isoform and one cytosolic isoform have been identified (Lunn et al., 1990; 

Renosto et al., 1993; Klonus et al., 1994). In spinach, ~80% of total ATPS activity was 

found in the chloroplast fraction, suggesting this is the major isoform (Lunn et al., 1990). 

However, in other species, the distinction between cytosolic and plastidic isoforms is less 

clear. Rice (Oryza sativa), poplar, and Arabidopsis ATPS genes encode proteins with 

putative plastid targeting peptides (Leustek et al., 1994; Murillo and Leustek, 1995; 

Hatzfeld et al., 2000). In these species, the identity of the corresponding cytosolic and 

plastidic isoforms is thus not known. Moreover, the function of the cytosolic activity 

remains to be discerned. In cell fractionation studies, Rotte and Leustek (2000) 

determined that ATPS was active in both cell compartments in Arabidopsis. However, only 

targeting of the full ATPS1 and ATPS4 proteins to the plastids has been experimentally 

confirmed (Leustek et al., 1994; Hatzfeld et al., 2000), and the isoform responsible for 

cytosolic activity remains elusive. Hatzfeld et al. (2000) hypothesized that a truncated 

ATPS2 protein could be synthesized, as the ATPS2 gene encodes four methionine codons 

upstream of the enzyme’s active site. Initiation of translation at two of these sites would 

result in a truncated protein, lacking the N-terminus transit peptide, and would therefore 

remain in the cytosol. One hypothesized mechanism for this truncation involved 

transcription initiation or RNA processing such that a shorter mRNA is produced. The 

stalling point of this theory was that only a single ATPS2 mRNA species consistent with the 
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full length transcript had been identified (Logan et al., 1996). An alternative mechanism 

would be through the initiation of translation at multiple initiation sites on a single 

transcript. Substantial experimental evidence to verify either of these theories is still to be 

presented. Although other sulfate assimilation enzymes have been shown to have cytosolic 

isoforms, the exclusively plastidic localization of APR and SiR activities indicates that 

sulfate reduction can only occur in this compartment. This raises the question of the role 

of cytosolic ATPS. A recent publication identified a cytosolic form of the APK enzyme, 

APK3, responsible for provision of PAPS for secondary metabolism (Mugford et al., 2009). 

Hence, cytosolic ATPS activity might function in the provision of activated sulfate for PAPS 

synthesis. However, as Arabidopsis mutants lacking cytosolic APK are perfectly viable and 

do not show any phenotypic alterations, the true role of cytosolic ATPS activity remains to 

be determined. 

 

1.6. Primary sulfate assimilation 

In the reductive part of the pathway, APS is reduced to sulfide via the intermediate sulfite. 

This two-step reaction occurs exclusively in plastids. In plants, the first step is the two-

electron glutathione-dependant reduction of APS to sulfite and AMP, which is catalyzed by 

APR (GutierrezMarcos et al., 1996; Setya et al., 1996; Bick and Leustek, 1998; Suter et al., 

2000; Kopriva and Koprivova, 2004). The plant APR genes encode proteins with three 

distinct domains: an N-terminal plastid targeting peptide, an APR domain, and a C-

terminal thioredoxin domain (Bick et al., 1998). The enzyme binds an [4Fe-4S]2+ cluster as 

the cofactor (Kopriva et al., 2001; Kopriva et al., 2002). However, the genomes of several 

basal plants, Physcomitrella patens, Marchantia polymorpha, and S. moellendorffii all 

contain an APR isoform, designated APR-B, that resembles the bacterial PAPS reductase 

and is thus able to reduce PAPS (Kopriva et al., 2007; Wiedemann et al., 2007; Patron et al., 

2008).  



14 

 

 

The three Arabidopsis APR genes have homologous sequences and are generally regulated 

similarly (Kopriva and Koprivova, 2004). Therefore, the gene family may exhibit some 

degree of functional redundancy. This is particularly true of APR1 and APR3 which share 

the highest sequence similarities and have been co-regulated in all studies so far. On the 

other hand, APR2 responds differently to these two genes in response to several hormone 

treatments (Koprivova et al., 2008). Promoter analysis revealed a similar expression of all 

three APR isoforms in most tissues. However, distinct differences were obvious, 

suggesting that the individual APR isoforms may have specific functions (Kopriva et al., 

2009). Recently, mutants lacking APR1 or APR2 transcripts were reported to be viable and 

did not display any phenotypes in the absence of stress. While inactivation of APR1 

reduced total APR activity by only 20%, APR2 inactivation reduced activity by 80%, 

showing that it is the major isoform (Loudet et al., 2007; Kopriva et al., 2009). Indeed, a 

QTL analysis identified APR2 as responsible for differences in sulfate accumulation 

between the two Arabidopsis ecotypes Bay-0 and Shahdara. The difference between the 

ecotypes was mapped to a single nucleotide polymorphism in the thioredoxin active site 

leading to almost complete inactivation of the enzyme in Shahdara ecotype (Loudet et al., 

2007). 

 

In the second reductive step of primary assimilation, catalyzed by SiR, a further six 

electrons are donated to sulfite, producing sulfide. In plants ferredoxin acts as the electron 

donor (Krueger and Siegel, 1982a). In Arabidopsis SiR is encoded by the only single-copy 

gene in primary sulfate assimilation, while rice, poplar, and P. patens genomes encode 

multiple copies (Kopriva et al., 2009). Though only encoded by a single gene in the 

Arabidopsis genome, SiR does have a close paralogue in plants. Nitrite reductase (NiR), 

which catalyzes the equivalent reduction step in the nitrate assimilation pathway - 

reduction of nitrite to ammonium - has a similar structure, sequence and reaction 
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mechanism, and shares 19% identity at the amino acid level (Krueger and Siegel, 1982b; 

Crane et al., 1995; Swamy et al., 2005; Patron et al., 2008). Indeed, SiR and NiR are both 

able to accept either sulfite or nitrite as a substrate, albeit with differing affinities (Schmidt 

and Jager, 1992; Nakayama et al., 2000). Plant SiR is a plastid-localized enzyme formed 

from two 65 kDa subunits, and contains both a siroheme and [4Fe-4S]2+ cluster as 

prosthetic groups (Krueger and Siegel, 1982a; Nakayama et al., 2000). According to 

microarray data, it is expressed uniformly in nearly all tissue types (Khan et al., 2010). 

Few studies have reported regulation of SiR, except induction at the mRNA level in 

response to OAS, and reduction in mRNA, but not activity, in response to SO2 (Koprivova et 

al., 2000b; Brychkova et al., 2007). Nonetheless, in Arabidopsis SiR activity is essential for 

growth and development (Khan et al., 2010). Thus, the hypothesis that activity is usually 

maintained in excess to ensure the further metabolism of toxic sulfite may well be true 

(Leustek et al., 2000; Kopriva, 2006). 

 

1.7. Cysteine synthesis 

Following sulfate reduction, cysteine is formed by the incorporation of the sulfide into the 

amino acid precursor, OAS. This reaction is catalyzed by two enzymes. Serine acetyl 

transferase (SAT) catalyzes the formation of OAS by transferring the acetyl moiety from 

acetyl-Coenzyme-A to L-serine. Subsequently, the acetyl moiety is replaced with sulfide to 

form cysteine in a reaction catalyzed by OASTL (Hell et al., 2002; Kopriva, 2006). The two 

enzymes form a cysteine synthase complex, composed of homohexameric SAT and 

homodimeric OASTL enzymes (Bogdanova and Hell, 1997; Wirtz et al., 2001; Berkowitz et 

al., 2002; Campanini et al., 2005; Kumaran and Jez, 2007; Feldman-Salit et al., 2009). The 

assembly of the subunits regulates their activity. SAT is activated in complex with OASTL, 

whereas OASTL is active only in the free form (Droux et al., 1998; Berkowitz et al., 2002). 

The ratio of OASTL to SAT in plastids is 300:1, so the majority of OASTL is in the free form. 
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The binding of the subunits in the complex is regulated by the substrate availabilities. The 

presence of sulfide promotes complex formation, while OAS excess disrupts it (Bogdanova 

and Hell, 1997; Droux et al., 1998; Wirtz et al., 2004). SAT is also susceptible to feedback 

inhibition by cysteine (Saito et al., 1995). This mechanism enables rapid fine regulation of 

cysteine synthesis by the availability of the reaction substrates, complementary to 

transcriptional regulation. 

 

In contrast to sulfate reduction which occurs exclusively in plastids, the final steps of 

cysteine synthesis take place in all three major compartments of the plant cell: cytosol, 

plastids and mitochondria (Kawashima et al., 2005; Heeg et al., 2008). In higher plants, 

both SAT and OASTL are encoded by small multi-gene families (Table 1.1; Kopriva et al., 

2009). In the Arabidopsis genome, SAT is encoded by five genes, all of which are expressed 

in the vascular tissues of both roots and leaves (Noji et al., 1998; Howarth et al., 2003; 

Kawashima et al., 2005). Although the five SAT enzymes are targeted to different 

compartments and their enzymatic properties and sensitivity to cysteine inhibition differ 

substantially from each other, there appears to be functional redundancy within the gene 

family as each of the isoforms alone can support plant growth (Noji et al., 1998; 

Kawashima et al., 2005; Watanabe et al., 2008b). However, the mitochondrial form seems 

to play the most important role in provision of OAS for cysteine synthesis (Haas et al., 

2008). OASTL belongs to a β-substituted alanine synthase (BSAS) family in the large 

pyridoxalphosphate-binding enzyme superfamily (Hatzfeld et al., 2000; Watanabe et al., 

2008a). The Arabidopsis BSAS gene family contains nine members, five of which encode 

isoforms displaying OASTL activity and one which encodes a β-cyano-alanine synthase 

(CASase). The remaining three, less abundant, OASTL-like isoforms have received less 

attention, yet recently BSAS4;3 was demonstrated to have cysteine desulfhydrase activity, 

and was designated DES1 (Alvarez et al., 2010). The cytosolic BSAS1;1/OASTL A1 isoform 

contributes the most to cysteine production in both leaves and roots, while mitochondrial 



17 

 

BSAS2;2/OASTL C contributes substantially to root cysteine production (Watanabe et al., 

2008a). However, despite obvious differences between the family members, functional 

redundancy is clearly present amongst the family, as null mutant lines were all viable 

(Heeg et al., 2008; Watanabe et al., 2008a). 

 

Cysteine is the terminal metabolite of the sulfate assimilation pathway. However, cellular 

levels of cysteine are low and stable, due to its role as a mediator between primary 

assimilation and provision of reduced sulfur for further metabolism to methionine, 

glutathione and various other sulfur compounds (Hell et al., 2002).  

 

1.8. Methionine synthesis 

Methionine is important in multiple processes including as a component of proteins, in the 

initiation of mRNA translation and as a substrate for synthesis of further methionine 

compounds (Hesse et al., 2004). Humans are unable to synthesize methionine. Thus it is an 

essential amino acid requirement in the human diet. In plants methionine is synthesised 

from cysteine in three steps. Firstly, at the branching point of threonine and methionine 

synthesis cysteine and O-phosphohomoserine (OPH) are condensed to form cystathionine 

in a reaction catalysed by cystathionine γ-synthase (CgS). Subsequently, cystathione is 

converted to homocysteine and then to methionine by the enzymes CgS cystathionine β-

lyase (CbL), and methionine synthase (MS), respectively (Hesse and Hoefgen, 2003). While 

methionine is essential for protein synthesis, the majority is further metabolised to 

methionine derivatives such as S-adenosylmethionine (SAM) and S-methylmethionine 

(SMM). SAM plays a vital role as a methyl-group donor and as a precursor for ethylene 

(ET), polyamines, vitamin B1 and the osmoprotectant 3-dimethylsulfoniopropionate 

(Amir et al., 2002), whereas SMM is the major form in which reduced sulfur is transported 

in the phloem in some plant species (Bourgis et al., 1999). 
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1.9. Glutathione synthesis 

The tripeptide glutathione is an important thiol compound in many eukaryotic cells as 

well as in many bacteria, and is considered as the major product of the sulfate assimilation 

pathway. It is involved in the maintenance of cell redox homeostasis, especially in 

response to oxidative stress caused by reactive oxygen species (ROS), where it is a central 

component in the ascorbate/glutathione cycle (May et al., 1998; Noctor and Foyer, 1998). 

Oxidative stress is caused in plants in response to multiple environmental stresses 

including high light intensity, salinity, drought, low temperature, or biotic stress such as 

pathogen attack (Rausch and Wachter, 2005; Kopriva, 2006). In addition, glutathione 

conjugates with secondary metabolites and xenobiotics via glutathione transferases 

(Marrs, 1996; Wagner et al., 2002; Dixon et al., 2010), and is the substrate for synthesis of 

phytochelatins which are involved in the detoxification of heavy metals (Cobbett and 

Goldsbrough, 2002). Glutathione is also important in the regulation of developmental 

processes in the root meristem and during flowering, probably due to its effect on redox 

homeostasis (SanchezFernandez et al., 1997; Ogawa, 2004; Espunya et al., 2006; Wang et 

al., 2009; Koprivova et al., 2010). 

 

Biosynthesis of glutathione from cysteine takes place in two steps. Firstly, γ-glutamyl-

cysteine synthetase (γ-ECS or GSH1) catalyzes the formation of γ-glutamylcysteine (γ-EC) 

from cysteine and glutamate. In the second step, glutathione is produced when glutathione 

synthetase (GSHS or GSH2) attaches glycine onto the C-terminal site of γ-EC. In 

Arabidopsis both enzymes are encoded by single genes, but whereas GSH1 is exclusively 

located in plastids, GSH2 is dually targeted to plastids and the cytosol from a single gene 

(Wachter et al., 2005). In contrast, other plant species possess multiple copies of the 

glutathione synthesis genes and exhibit γ-ECS activity in both the cytosol and plastids 

(Hell and Bergmann, 1990; Kopriva, 2006). Although sulfate can be transported in its 

anionic form in both the xylem and phloem, glutathione and SMM are the major sulfur 
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compounds found in the phloem sap and are thus responsible for long-distance transport 

of reduced sulfur (Bourgis et al., 1999). Furthermore, glutathione translocated in the 

phloem is thought to be a long-distance signal of sulfur status in vascular plants 

(Lappartient et al., 1999).  

 

1.10. Secondary sulfate assimilation 

Following sulfate activation by ATPS there is a branching point in the assimilatory 

pathway. Instead of entering the reductive assimilation pathway APS can be 

phosphorylated to produce PAPS in a reaction catalyzed by APK. PAPS acts as a sulfur 

donor for numerous sulfation reactions. APK forms part of the primary sulfate assimilation 

in yeast, fungi, and many bacteria, since these organisms reduce PAPS instead of APS 

(Kopriva and Koprivova, 2004). Plants possess multi-gene APK families with high 

sequence conservation between species (Table 1.1; Kopriva et al., 2008; Patron et al., 

2008). Despite the high sequence similarity, a clear separation of plastid and cytosol 

targeted isoforms is seen. In Arabidopsis, three of the four encoded APK isoforms, APK1, 

APK2, and APK4, are targeted to the plastids, while APK3 remains in the cytosol (Mugford 

et al., 2009). Systematic analysis of single knock-out mutants revealed that loss of function 

of an individual APK gene has no effect on the plant, suggesting at least partial redundancy 

in function. However, in an apk1 apk2 double mutant, the loss of these two isoforms has a 

marked effect on plant growth and ability to sulfate secondary metabolites (Mugford et al., 

2009). Thus it seems that APK1 and APK2 are the major isoforms, and that APK is 

essential for the synthesis of sulfated secondary compounds and plant growth. 

Furthermore, whilst APK1 alone was sufficient to maintain normal glucosinolate levels 

and growth, triple mutants in which only APK3 or APK4 remain functional revealed 

similar phenotypes to the apk1 apk2 double mutant. Interestingly, an apk1 apk3 apk4 
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triple mutant in which only the APK2 isoform should be functional was not viable and the 

combined mutations are hypothesized to be pollen lethal (Mugford et al., 2010). 

 

Sulfation of numerous secondary metabolites, including glucosinolates and sulfated 

peptides, is catalyzed by SOT. The SOT enzymes require PAPS as the sulfur donor and a 

free hydroxyl group of a suitable acceptor compound. Higher eukaryotes have large SOT 

gene families due to the diversity of biological compounds undergoing sulfation. In 

Arabidopsis, 18 members have been identified to date (Klein and Papenbrock, 2004). 

Examples of compounds modified via sulfation are glucosinolates, brassinosteroids, 

flavanol and flavones, hydroxyjasmonates, choline, gallic acid glucoside, peptides, and 

extracellular polysaccharides. Thus, sulfation is important in regulation of plant growth 

and development and in stress defense. However, with the exception of a few individuals, 

substrate specificities of the majority of SOTs remain unknown (Klein and Papenbrock, 

2004). Group seven SOTs are the best characterized group. This group encodes three 

cytosolic enzymes, SOT16 – 18, responsible for the sulfation of desulfoglucosinolates 

(Klein et al., 2006). 

 

1.11. Regulation of sulfate assimilation 

Due to the wide range of sulfur compounds and the importance of their functions as well 

as the cytotoxicity of sulfite and sulfide, intermediates of sulfate assimilation, the 

metabolic pathways must be tightly regulated. Understanding the regulation of sulfur 

metabolism in plants will help to breed or engineer superior varieties with improved 

sulfur use efficiency. Therefore, substantial effort has been invested in characterizing the 

regulatory mechanisms, especially in the model organism Arabidopsis (Kopriva, 2006). As 

the first step of sulfate assimilation, conversion of sulfate to APS by ATPS was initially 

hypothesized as likely to be the control step of the pathway. However, briefly after its 
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discovery APR was identified as the key point of regulation of the primary sulfate 

assimilation pathway. Flux analysis in Arabidopsis root cultures indicated that between 

70% and 90% of the total control of the assimilatory pathway was exerted by APR 

(Vauclare et al., 2002). As a result, the importance of ATPS both in its own right, since it is 

the only metabolic step common to primary and secondary sulfur metabolism, and as a 

regulatory step is not reflected in the bias of published research and much remains to be 

discovered about this enzyme.  

 

As nutrient availability is not uniform in the environment, plants must have robust 

physiological flexibility in their response to nutrient deficiency. Many physiological 

studies as well as microarray analyses in Arabidopsis have shown that sulfur limitation 

induces sulfate uptake and assimilation, whilst secondary processes, such as glucosinolate 

biosynthesis, are repressed (Hirai et al., 2003; Nikiforova et al., 2003). A considerable 

contribution to sulfur deficiency response is through the regulation of sulfate uptake and 

translocation by transporters, a process that is dependent upon the plant’s sulfur 

requirements and the external availability of sulfate.  Thus, the mRNA for high affinity 

transporter SULTR1;1 is strongly accumulated during sulfur limitation, while ubiquitously 

expressed SULTR1;2 and SULTR1;3 are moderately up-regulated in response to sulfur 

starvation (Smith et al., 1997; Yoshimoto et al., 2002; Yoshimoto et al., 2003). The 

regulation of SULTR2;1 is more complex, as transcript levels decrease in the leaves but 

increase in the roots during sulfur limitation (Takahashi et al., 2000). Recently, this 

regulation was attributed in part to a sulfate inducible microRNA species, miR395 (Jones-

Rhoades and Bartel, 2004; Allen et al., 2005; Kawashima et al., 2009). SULTR2;2 is induced 

only following long term sulfur deprivation (Takahashi et al., 2000). Both group four 

family members are responsive to sulfur limiting conditions increasing the efflux of 

vacuolar sulfate to enhance its availability for assimilation (Kataoka et al., 2004b).  
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Sulfur deficiency not only affects the sulfate transporters, but also other aspects of the 

sulfate assimilation pathway (Leustek et al., 2000; Kopriva, 2006). While there have never 

been any doubts that APR activity and mRNA levels are strongly up-regulated by sulfur 

deficiency (Setya et al., 1996), contrasting results concerning ATPS can be found in the 

literature. Initial experiments revealed that unlike in micro-organisms (Marzluf, 1997; 

Thomas and SurdinKerjan, 1997) two days of sulfur starvation did not cause changes in 

Arabidopsis ATPS gene expression (Logan et al., 1996; Takahashi et al., 1997; Hatzfeld et 

al., 2000). In contrast, in tobacco cells ATPS activity was up-regulated following just four 

hours of sulfur starvation leading to a hypothesis of a post-transcriptional regulatory 

mechanism (Hatzfeld et al., 1998). Further post-translational regulation has been 

suggested by Logan et al. (1996), who hypothesized a model involving structural 

interactions between sulfate transporters and ATPS. This would indicate not only that 

ATPS may be regulated by the rate of sulfate transport but also that it may regulate uptake 

rates. The situation became more complicated when the miRNA, miR395, was discovered 

which targets and cleaves the mRNAs of ATPS1 and ATPS4 and is inducible by sulfur 

starvation (Jones-Rhoades and Bartel, 2004; Kawashima et al., 2009). miR395 also targets 

the low-affinity sulfate transporter, SULTR2;1, responsible for endogenous transport 

(Allen et al., 2005; Kawashima et al., 2009). The induction of miR395 by sulfur deficiency 

and the post-translational repression of the ATPS and SULTR gene products that would be 

expected to result are counterintuitive to the demand driven regulation of the pathway 

and conflict with previous reports of increased activity and transcript levels of the targets 

(Lappartient et al., 1999; Takahashi et al., 2000).  

 

The coordinated regulation of the entire sulfur metabolism network by sulfur deficiency 

has been well characterized. However, only recently the first transcriptional regulator of 

the sulfur response was identified using a genetic screen (Maruyama-Nakashita et al., 

2006). A mutant was isolated with reduced sulfur response of the GFP reporter fused to 
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the SULTR1;2 promoter and was accordingly designated sulfur limitation1 (slim1). The 

mutation was mapped to a point mutation in the ETHYLENE-INSENSITIVE3-LIKE (EIL) 

family transcription factor EIL3 (SLIM1). Mutant slim1 plants exhibited reduced internal 

sulfate levels even under sulfur-sufficient conditions and were compromised in their 

ability to maintain normal thiol levels, which was attributed to a de-regulation of multiple 

sulfate assimilation genes (Maruyama-Nakashita et al., 2006). However, expression 

analysis revealed that a subset of genes responsive to sulfur starvation is not regulated by 

SLIM1, most notably the genes encoding APR isoforms. The SLIM1 transcription factor was 

also shown to be responsible for induction of miR395 under sulfur limiting conditions 

(Kawashima et al., 2009). 

 

Not only is the sulfate assimilation pathway regulated by sulfur deficiency but also more 

generally by the demand for reduced sulfur. Reduced forms of sulfur, such as glutathione, 

cysteine and H2S exert feedback control on gene transcription and enzyme activities, 

limiting sulfate uptake and assimilation (Lappartient et al., 1999; Westerman et al., 2000). 

On the other hand, reduced levels of these compounds cause de-repression of the 

pathway. Again, sulfate uptake and APR are the components most highly regulated by 

these conditions, although some contribution of ATPS regulation has also been suggested 

(Lappartient et al., 1999; Vauclare et al., 2002). Feeding experiments with cysteine and 

glutathione indicated repression of both APR transcript and activity, while disruption of 

glutathione synthesis by buthionine sulfoximine (BSO), an inhibitor of GSH1, relieved the 

repression, indicating that regulation was most likely through the action of glutathione 

(Vauclare et al., 2002). 

 

Apart from thiols other metabolites are known to affect plant sulfate assimilation. The best 

known example is the precursor of cysteine, O-acetylserine. As well as being a limiting 

factor for cysteine synthesis and causing disassociation of the cysteine synthase complex, 
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OAS is a potent signal of sulfur status. OAS accumulates during sulfur deficiency as it 

cannot be further metabolized to cysteine. In Arabidopsis, microarray analysis revealed 

that exogenous OAS application triggers a response similar to the response to sulfur 

limitation (Hirai et al., 2003). OAS dramatically increases flux through sulfate assimilation 

by induction of mRNA accumulation for many sulfate assimilation genes (Koprivova et al., 

2000b; Berkowitz et al., 2002; Hirai et al., 2003; Hirai et al., 2005). Group one and two 

sulfate transporters as well as ATPS3 and APR2, were among the genes shown to be tightly 

correlated to OAS levels. However, the role of OAS as a signal of sulfur deficiency is 

controversial as in some reports the increase in sulfate uptake preceded the accumulation 

of OAS (Hopkins et al., 2005). 

 

Sulfate assimilation is also regulated by various environmental conditions. It has long been 

known that cysteine synthesis is under regulation of light (Schmidt and Trebst, 1969). 

Plants grown in the light accumulated APK, SiR, OASTL and SAT mRNA to several times the 

levels in plants grown in the dark (Hell, 1997). In maize, both ATPS and APR activity 

undergo a diurnal rhythm (Kocsy et al., 1997). The first systematic analysis of light 

regulation of sulfate assimilation was carried out by Kopriva et al. (1999), and reported on 

the light responsive diurnal fluctuations of APR activity and transcript levels. Feeding with 

sucrose produced similar responses in APR, revealing an interaction between sulfate 

assimilation and carbon metabolism (Kopriva et al., 1999). Later Hesse et al. (2003) 

revealed that protein levels of ATPS, APR, and SiR all decreased following 38 hours of 

darkness while OASTL activity increased. The strongest decrease was detected in APR 

protein accumulation, which was also shown to be induced by glucose addition (Hesse et 

al., 2003). CO2 levels also affect sulfate assimilation, as APR activity is strongly diminished 

in a CO2 free atmosphere (Kopriva et al., 2002). Following more severe sulfur starvation, 

photosynthetic processes are also compromised, suggesting further interactions between 

the two assimilatory pathways (Reuveny et al., 1980; Brunold and Suter, 1990; Gilbert et 
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al., 1997). Sulfate assimilation is also linked with nitrogen assimilation, as limitation of one 

element diminishes uptake and assimilation of the other (reviewed in Kopriva, 2006). 

 

Indications of a substantial contribution of phytohormones to the control of sulfate 

assimilation have been emerging in the past decade. Glutathione levels increase upon 

treatment with abscisic acid (ABA) and salicylic acid (SA; Fodor et al., 1997a; Jiang and 

Zhang, 2001). A few studies have linked indole-3-acetic acid (IAA), the most abundant 

auxin species, to sulfur deficiency response. Kutz et al. (2002) described the induction of 

nitrilase 3 (NIT3), a gene involved in IAA biosynthesis, by both sulfate starvation and OAS 

treatment. The role of the increased auxin production appears to be modulation of the root 

system architechture (Kutz et al., 2002). Cytokinins may also play an important role in the 

sulfur deficiency response (Dan et al., 2007). Previously, cytokinins have been shown to be 

involved in regulation of both nitrogen assimilation (Collier et al., 2003; Maruyama-

Nakashita et al., 2004) and phosphate uptake (Martin et al., 2000). Additionally, the 

expression of high-affinity sulfate transporters was repressed in response to cytokinin 

treatment, suggesting a more general regulatory role for cytokinins in nutrient uptake and 

assimilation (Maruyama-Nakashita et al., 2004). Treatment of Arabidopsis with zeatin 

caused an increase in mRNA levels of APR1 and the low-affinity sulfate transporter, 

SULTR2;2, thus promoting assimilation and transport of sulfate within the plants (Ohkama 

et al., 2002). Recently, Koprivova et al. (2008) dissected the role of hormone signaling in 

the response of APR to salt stress. Increases in the transcript levels of all three Arabidopsis 

APR isoforms were detected following salt stress. The transcriptional response was not 

reliant upon signaling by ABA, SA, ET, jasmonic acid (JA), cytokinin or auxin signaling; 

however, changes in APR activity were. Gibberellic acid (GA) signaling was essential for 

the transcriptional response (Koprivova et al., 2008). Jasmonate (JA and methyl 

jasmonate; MeJa) biosynthesis genes are amongst those induced by sulfur starvation 

(Hirai et al., 2003; Jost et al., 2005). Jasmonate signaling plays a role in regulation of both 
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primary assimilation and the biosynthesis of secondary metabolites, such as 

glucosinolates. While sulfate transport is not affected by jasmonate signaling, most genes 

of primary assimilation are jasmonate responsive, including all four ATPS genes (Jost et al., 

2005; Sasaki-Sekimoto et al., 2005). 
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1.12. Open questions and aims of this thesis 

Following the sequencing of the Arabidopsis genome all the sulfate assimilation genes 

could be identified leading to the discovery of multi-gene families for most steps of the 

pathway. Some of the gene families have since been systematically analyzed with 

interesting results, such as the differential compartmentalization of the pathway. 

However, ATPS has received relatively little attention despite its central position at the 

entry point of sulfate into the assimilation pathway. There are three major questions 

about ATPS which remain to be answered:  

 

(1) Varying degrees of isoform specificity and functional redundancy have been reported 

in the multi-gene SULTR, APR, APK, SAT, and OASTL families of Arabidopsis, but the roles 

of the individual ATPS isoforms are yet to be characterized.  

 

(2) Although regulation of the sulfate assimilation pathway has been extensively surveyed, 

regulation of APR has been the focus of many of these studies, and much remains to be 

discovered about the regulation of the ATPS genes, especially with respect to miR395.  

 

(3) Recently, substantial progress has been made in understanding the mechanisms of 

compartmentalization and reasons for the separate localization of different processes. 

However, the identity and function of cytosolic ATPS activity still remains unknown.  

 

In this thesis, I report the use of a range of analytical techniques to address these three 

outstanding questions. 
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2. CHARACTERISATION OF THE FOUR ATPS ISOFORMS IN 

ARABIDOPSIS THALIANA  

2.1. INTRODUCTION 

In recent years, large scale -omics-based approaches and the development of tools for 

analysis of their output have provided an effective method for investigation of molecular 

pathways in model systems. Large and comprehensive datasets from high-throughput 

microarray experiments have been published in online databases, such as NASCArrays 

(Craigon et al., 2004). Web-based bio-computational tools, such as Genevestigator, provide 

various possibilities for the analysis of such data. The ease with which this data can be 

analysed can facilitate rapid functional analysis of genes, and indicate directions for 

detailed biochemical analysis. This chapter describes the use of a selection of web-based 

tools, in combination with biochemical and molecular techniques, to determine what 

degree of specificity exists within the Arabidopsis ATPS gene family, and investigate 

potential functions and regulatory aspects of the four isoforms.  



 

2.2. MATERIALS AND METHODS

2.2.1. Accession numbers

Sequence data for the Arabidopsis ATPS genes can be found in the GenBank database 

under the following AGI IDs: At3g22890 (

(ATPS3); At5g43780 (

 

2.2.2. Plant material and growth conditions 

Arabidopsis thaliana 

otherwise stated. Three homozygous ATPS T

(GABI850C05), atps2

transposon insertion mutant in the No

Yoshimoto, RIKEN institute, Japan (

specific to the experiment, and, after 

a controlled environment chamber at 22°C under 16

 

Figure 2.1 ATPS T-DNA insertion and transposon mutant lines

Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

and exons respectively. Arrow heads point to the site of the 

transposon (atps4) insertion.

MATERIALS AND METHODS 

Accession numbers 

Sequence data for the Arabidopsis ATPS genes can be found in the GenBank database 

under the following AGI IDs: At3g22890 (ATPS1); At1g19920 (

); At5g43780 (ATPS4). 

Plant material and growth conditions  

 ecotype Col-0 was used as wild-type for all experiments unless 

otherwise stated. Three homozygous ATPS T-DNA insertion mutation lines, 

atps2 (SAIL775D12), atps3 (Salk037918), and an 

transposon insertion mutant in the No-0 background were kindly provided by Naoko 

Yoshimoto, RIKEN institute, Japan (Figure 2.1). Seeds were planted on plates of media 

specific to the experiment, and, after 4 d at 4°C in the dark, plants were grown 

a controlled environment chamber at 22°C under 16-h-light/8-h-dark cycles.

DNA insertion and transposon mutant lines 
Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

and exons respectively. Arrow heads point to the site of the T-DNA (atps1

) insertion. 
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Sequence data for the Arabidopsis ATPS genes can be found in the GenBank database 

); At1g19920 (ATPS2); At4g14680 

type for all experiments unless 

DNA insertion mutation lines, atps1 

(Salk037918), and an atps4 RIKEN Ac/Ds 

0 background were kindly provided by Naoko 

). Seeds were planted on plates of media 

4 d at 4°C in the dark, plants were grown vertically in 

dark cycles. 

 

Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

atps1, atps2, and atps3) or 
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2.2.3. eFP browser 

The Electronic Fluorescent Pictographic (eFP) tool from the Bio-Array Resource for Plant 

Functional Genomics was used for visualisation of Arabidopsis thaliana ATPS1 – 4 gene 

expression data from the Affymetrix ATH1 GeneChip (www.bar.utoronto.ca; Winter et al., 

2007). For this study, the gene expression map of Arabidopsis development (Schmid et al., 

2005), and the root spatiotemporal map (Brady et al., 2007) were searched using the AGI 

ID of the four ATPS genes. The data was visualised in absolute mode, with a signal 

threshold of maximum 1000. 

 

2.2.4. Cloning of promoters of ATPS genes 

Reporter constructs for expression analysis of ATPS promoters were created as follows: 

The promoter regions of the ATPS genes (taken as the intergenic region upstream of the 

ATG) were amplified using specific primers containing attB sites for Gateway® cloning 

(Hartley et al., 2000). PCR was carried out on genomic DNA prepared from Arabidopsis 

thaliana (ecotype Col-0), using the Easy-A High-Fidelity PCR Cloning Enzyme (Agilent). 

Subsequently, the PCR-amplified fragments were cloned into pCR-XL-TOPO (Invitrogen) 

and fully sequenced. For primer sequences and promoter lengths, see Table 2.1. The 

promoter fragments were then subcloned into the Gateway® pDONR207 vector using the 

Gateway® BP clonase enzyme mix (Invitrogen) and verified by sequencing. The entry 

clone and the binary plant transformation vector pKGWFS7 (kindly provided by Prof. 

Doonan, John Innes Centre; Karimi et al., 2002), were used for LR recombination to clone 

the promoters into the destination vector, resulting in translational fusions with the GUS 

(beta-glucoronidase) reporter gene (Figure 2.2). The resulting binary plasmids were 

transformed to Agrobacterium tumefaciens GV3101 (pMP90; Koncz and Schell, 1986) by 

the freeze-thaw method (Hoefgen and Willmitzer, 1988). Wild-type Arabidopsis plants 

were transformed using the floral dip method (Clough and Bent, 1998). Transgenic lines 



 

were selected on plates of 

salts (Murashige and Skoog, 1962)

supplemented with 50 mg 

insertion, T2 lines displaying a

polinated and homozygos

resistance. For each constru

 

Gene Forward primer (5’

ATPS1 aaaaagcaggc

ATPS2 aaaaagcaggct

ATPS3 aaaaagcaggct

ATPS4 aaaaagcaggc

Table 2.1 Sequences of primers used for cloning of ATPS promoters. 

Forward and reverse primers contain the attB1 and attB2 sites (underlined), respectively, for 

Gateway cloning. The red text indicates the promoter template sequence.

 

Figure 2.2 Gateway destination vector pKGWFS7

The ATPS promoters were translationally fused with the 

the pKGWFS7 vector through recombination at the attR sites (underlined in red).

were selected on plates of 0.8% agarose media containing 4.41 g l-1

(Murashige and Skoog, 1962), and 3% sucrose, adjusted to pH 5.8 using NaOH, and 

supplemented with 50 mg l-1 kanamycin sulfate. To ensure the presence of a single 

T2 lines displaying a 3:1 segregation ratio in kanamycin resistance were self

omozygosity of the T3 generation was determined by 100% kanamycin 

resistance. For each construct, progeny from three independent lines were 

Forward primer (5’-3’) Reverse primer (5’-3’) 

aaaaagcaggcctcggagaatcggcgtgac agaaagctgggtctgttgaaggttttgttaggcta

aaaaagcaggctcccagcagaagctgtcatgtgt agaaagctgggtcgaatcttgttgaagatagctac

aaaaagcaggctcctcctcattacacatagatacac agaaagctgggtctgaagaaggagaatcgaaaaca

aaaaagcaggcgcatgtgtgtgtgtttaattgg agaaagctgggtctgaaggcagattaatttgcttc

Sequences of primers used for cloning of ATPS promoters.  

Forward and reverse primers contain the attB1 and attB2 sites (underlined), respectively, for 

Gateway cloning. The red text indicates the promoter template sequence. 

destination vector pKGWFS7 
The ATPS promoters were translationally fused with the GUS reporter gene (highlighted in blue) in 

the pKGWFS7 vector through recombination at the attR sites (underlined in red).
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1 Murashige and Skoog 

, and 3% sucrose, adjusted to pH 5.8 using NaOH, and 

To ensure the presence of a single 

in kanamycin resistance were self-

determined by 100% kanamycin 

three independent lines were analyzed. 

Promoter length 

tgttgaaggttttgttaggcta   5057 bp 

gttgaagatagctac 2390 bp 

tgaagaaggagaatcgaaaaca 2393 bp 

tgaaggcagattaatttgcttc 4878 bp 

Forward and reverse primers contain the attB1 and attB2 sites (underlined), respectively, for 

 

reporter gene (highlighted in blue) in 

the pKGWFS7 vector through recombination at the attR sites (underlined in red). 
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2.2.5. Histochemical staining of GUS 

Transgenic lines expressing the four ATPSPRO::GUS fusions were grown on agarose media 

in the absence of kanamycin. Plants were harvested after 4, 7, 14 and 21 days in the case of 

the ATPS1PRO::GUS, ATPS3PRO::GUS and ATPS4PRO::GUS lines, and after 3, 7, 14 and 21 days in 

the case of ATPS2PRO::GUS plants. GUS activity was visualised by staining in 500 µl of 1 mg 

ml-1 5-Bromo-4-chloro-3-indolyl β-D-glucuronide sodium salt (X-GlucA; Sigma) in buffer 

containing 100 mM NaH2PO4 pH7.0, 10 mM EDTA, 3 mM potassium ferrocyanide (II), 0.5 

mM potassium ferricyanide (III), and 0.1% (v/v) Triton X-100. The tissues were vacuum-

infiltrated for 10 min, and staining reactions were allowed to proceed for 2 – 3 hrs at 37°C. 

Subsequently, the reaction was stopped and the chlorophyll removed by soaking in 70% 

ethanol.  

 

2.2.6. Microscopy and imaging of GUS 

Staining of GUS was visualised under an ECLIPSE E800 microscope (Nikon) coupled to a 

Pixera Pro 600ES camera.  

 

2.2.7. HPLC analysis of low molecular weight thiols  

The low molecular weight thiols, cysteine and glutathione, were analysed as described by 

Koprivova et al. (2008). Col-0, atps1, atps2, atps3, No (Ac), No (Ds), and atps4 plants were 

grown vertically for 10 days on 0.8% agarose plates containing Murashige and Skoog 

medium supplemented with 1% sucrose, 0.55 mM myo-Inositol,  30 µM glycine, 4 µM 

nicotinic acid, 2.5 µM pyridoxine hydrochloride, 0.3 µM thiamine hydrochloride, adjusted 

to pH 5.7 with KOH. 20-30 mg of leaf material was ground in liquid nitrogen and extracted 

in 10-fold volume of 0.1 M HCl. To remove cell debris, the extract was centrifuged at 

13,000 rpm for 10 min, and 25 µl of the supernatant neutralized by 25 µl of 0.1 M NaOH. 

To reduce disulfides, the neutralized extract was incubated for 15 min at 37°C with 1 µl of 
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100 mM dithiothreitol. Subsequently, 35 μl water, 10 μl 1 M Tris pH 8.0, and 5 μl of 100 

mM monobromobimane (Thiolyte® MB, Calbiochem) were added and derivatization of 

thiols was allowed to proceed for 15 min at 37°C in the dark. The reaction was stopped 

and the conjugates stabilized by the addition of 100 μl of 9% acetic acid. Bimane 

conjugates were separated by HPLC (SpherisorbTM ODS2, 250 x 4.6 mm, 5 µm, Waters) 

using 10% (v/v) methanol, 0.25% (v/v) acetic acid (pH 9.3) as solvent A and 90% (v/v) 

methanol, 0.25% (v/v) acetic acid (pH 9.3) as solvent B. The elution protocol employed a 

linear gradient from 96 to 82% A in B within 20 min, with a constant flow rate of 1 ml min-

1. Bimane derivates were detected fluorimetrically (474 detector, Waters) with excitation 

at 390 nm and emission at 480 nm.  

 

2.2.8. Determination of flux through sulfate assimilation 

The flux through sulfate assimilation was measured as incorporation of 35S from [35S] 

sulfate to thiols and proteins essentially as described in Kopriva et al. (1999) and Vauclare 

et al. (2002). Plants were grown as above. 10-day old seedlings were transferred into 24-

well plates containing 2 ml of nutrient solution (Table 2.2) adjusted to sulfate 

concentration of 0.2 mM and supplemented with 6.0 μCi [35S]sulfate (Hartmann Analytic) 

to a specific activity of 994 kBq nmol sulfate-1 for experiments with Col-0, atps1, atps2, and 

atps3, and with 5.7 μCi [35S]sulfate to a specific activity of 907 kBq nmol sulfate-1 for 

experiments with No-0 (Ac) and No-0 (Ds) lines. Subsequently, plants were incubated in 

the light for 4 hours. After incubation, the seedlings were washed 3 times with 2 ml of cold 

non-radioactive nutrient solution, carefully blotted with paper tissue, weighed, 

transferred into 1.5 ml tubes, and frozen in liquid nitrogen. The plant tissue was extracted 

1:10 (w/V) in 0.1 M HCl. To determine sulfate uptake, 10 μl of the extract were added to 1 

ml of Optiphase HiSafe3 scintillation cocktail (Perkin Elmer) and the radioactivity was 

measured in a scintillation counter (Beckmann).  
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To measure 35S incorporation into proteins, total proteins were precipitated from 100 μl of 

the extract with 25 μl 100% trichloroacetic acid (TCA) as described in Kopriva et al. 

(1999). After 15 min on ice the precipitate was collected by centrifugation, washed once in 

100 μl 1% TCA and once in 200 μl EtOH and dissolved in 100 μl 0.1 M NaOH. The 

radioactivity was determined after addition of 1 ml scintillation cocktail in scintillation 

counter (Beckmann). 

 

Component final concentration 

Macro elements 

 
Ca(NO3) 4H2O 1.5mM 

KNO3 1mM 

KH2PO4 0.75mM 

Fe-EDTA 100uM 

MgSO4 7H2O 0.2mM 

MgCl2 0.55mM 

Micro elements  

 
MnCl2 4H2O 10 µM 

H3BO3 50 µM 

ZnCl2 1.75 µM 

CuCl2 2H2O 0.5 µM 

Na2MoO4 0.8 µM 

KI 1 µM 

CoCl2 0.1 µM 

Table 2.2 Nutrient media composition for flux analysis 
 

To determine the radioactivity in thiols, 100 μl of the extract was mixed with 100 μl 0.1 M 

NaOH and 2 μl 0.1M DTT and incubated in the dark at 37°C for 15 min. Afterwards, 23 μl of 

1M Tris pH 8.0 and 10 μl 100 mM monobromobimane was added, mixed and incubated in  

the dark at 37°C for 15 min. 22.5 μl 50% acetic acid was added, mixed and centrifuged for 

15 min at maximum speed. 200 μl of the solution was transferred into HPLC vials. 

Standard thiol analysis was performed as described previously (Chapter 2.2.7) with an 

injection volume of 100 μl. The HPLC was connected to a fraction collector and fractions of 
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0.8 ml were collected in 6 ml scintillation vials. The radioactivity in these fractions was 

determined in a scintillation counter after addition of 2 ml scintillation solution.  

 

2.2.9. ATPS expression responses in Genevestigator 

ATPS gene expression heat maps were created using the Genevestigator V2 Meta-Analyzer 

tool (http://www.genevestigator.ethz.ch/at/; Zimmermann et al., 2005). The ‘Stress 

Response’ option was used to explore publicly available transcriptome data from the 

AtGenExpress global stress (Kilian et al., 2007) and hormone (Goda et al., 2008) data sets, 

using the default settings. The global stress experimental set-up provided measurements 

of transcript levels from shoot and root tissue from eighteen day old seedlings, at seven 

time-points within twenty-four hours of the stress treatment (Kilian et al., 2007). The 

experimental design for hormone treatments differs in that measurements were made in 

seven day-old seedlings at three time-points, 30 min, 1 hr, and 3 hr. Shoots and roots were 

not separated (Goda et al., 2008). Calculated averages of all data from a single treatment 

were compared and represented as a ratio of change in expression between the treatment 

and control (Zimmermann et al., 2004; Zimmermann et al., 2005). Thus, the heat map 

indicates a general up- or down-regulation. 

 

2.2.10. Light treatment  

Wild-type seeds were planted on 0.9% agarose media containing 4.3 g l-1 Murashige and 

Skoog salts (Murashige and Skoog, 1962), 1% sucrose, 0.5 g l-1 MES, 0.55 mM myo-Inositol, 

4 µM nicotinic acid, 2.5 µM pyridoxine hydrochloride, 0.3 µM thiamine hydrochloride, 

adjusted to pH 5.7 using KOH. Following 4 days at 4°C in the dark, seedlings were grown 

for 10 days under standard light conditions. Control plants were maintained in darkness 

for a further hour. For the light treatment, seedlings were re-illuminated for an hour. 
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Whole seedlings were harvested in three biological replicates for transcript analysis, and 

immediately frozen in liquid nitrogen. 

 

2.2.11. RNA extraction and expression analysis 

For expression analysis of the four ATPS genes, total RNA was isolated from seedlings by 

phenol:chloroform:isoamylalcohol (25:24:1) extraction and LiCl precipitation (Sambrook 

et al., 1989) and re-purified using an RNeasy Plant Mini Kit (Qiagen, 

http://www.qiagen.com/) including the DNase treatment. Transcript levels were analysed 

by real-time quantitative RT-PCR (qPCR), using the fluorescent intercalating dye SYBR 

Green (Applied Biosystems) in a DNA engine OPTICON2 continuous fluorescence detector 

(Bio-Rad). The extracted RNA was reverse-transcribed into cDNA, using SuperScriptII 

Reverse Transcriptase (Invitrogen) according to the manufacturer’s instructions. 

Subsequently, the cDNA was used as a template for qPCR with gene-specific primers 

(Table 2.3). The Arabidopsis TIP41 gene was used as a standard for all measurements. 

Relative quantification of expression levels was performed using the comparative Ct 

method (manufacturer's instructions, bulletin 2, Applied Biosystems). At least three 

independent RNA preparations from independently grown plants were analyzed with 

three technical replicates for the qPCR. 

 

Gene AGI code Forward primer (5’-3’) Reverse primer (5’-3’) 

TIP41 At4g34270 gtgaaaactgttggagagaagca tcaactggataccctttcgc 

ATPS1 At3g22890 cactcggaggtttcatgagag agacgtagcgagttaaaatgaagag 

ATPS2 At1g19920 gatcttgagtgggttcatgtgat ctcatcttctctcatgaacccttt 

ATPS3 At4g14680 tgggtttatgagggaatctgag gacccatcatcgagattcaac 

ATPS4 At5g43780 caaaggtttcatgagacagtcag gagccggaacgagttaaaatg 

Table 2.3 Gene specific primers for expression analysis 
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2.2.12. Expression Angler 

To discover which genes are co-expressed with the different ATPS isoforms, the 

Expression Angler tool from The Bio-Array Resource for Arabidopsis Functional Genomics 

was used (BAR; www.bar.utoronto.ca; Toufighi et al., 2005). Existing microarray data 

were compared to a chosen query gene, and Pearson correlation coefficients calculated to 

identify genes with similar expression and response patterns. Parameters were set to 

return hits with a correlation coefficient of 0.6 or higher from the AtGenExpress plus - 

extended tissue, global stress (Kilian et al., 2007), and hormone (Goda et al., 2008) 

expression data sets.  
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2.3. RESULTS 

2.3.1. Tissue specific expression of ATPS  

To determine whether the four Arabidopsis ATPS isoforms may have distinct functions, 

we investigated their tissue specific expression. If the individual ATPS isoforms have 

different mechanisms of regulation, they can be expected to exhibit different 

transcriptional expression patterns. To investigate the tissue-specific expression of the 

four ATPS genes in silico, we used the Arabidopsis electronic fluorescent pictographic 

(eFP) browser (Winter et al., 2007), from the Bio-Array Resource for Arabidopsis 

Functional Genomics (BAR) tool suite (http://bar.utoronto.ca/). This tool enables the user 

to explore the available microarray data, by producing a comprehensive visualisation of 

gene expression from Arabidopsis, as represented on the Affymetrix ATH1 GeneChip. 

Absolute expression mode was used to investigate expression of the four ATPS genes in 

the developmental series (Figure 2.3; (Schmid et al., 2005). The output showed clearly 

differential expression patterning specific to each isoform.  

 

Expression of ATPS1 was detected in all tissues, and the signal level was considerably 

higher than that of the other three ATPS genes, indicating that ATPS1 might be the major 

ATPS isoform (Figure 2.3A). Its highest expression was observed across all developmental 

stages in the leaves, the main site of sulfate assimilation (Leustek et al., 2000). A 

comparatively lower level of expression was measured in the later stages of flower 

development. In the seeds, a peak in ATPS1 expression was seen during the early stages of 

embryogenesis, followed by a drop then a gradual increase until the emergence of green 

cotyledons. In contrast to ATPS1, transcript levels of ATPS2 were much lower, though 

expression was detected in most tissues and developmental stages (Figure 2.3B). ATPS2 

was consistently expressed in the shoot apex, throughout vegetative, transition, and 

inflorescence stages. In the leaves, ATPS2 was expressed at most development stages, with 
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the exceptions of leaf two and senescent leaves. Expression was detected in the flowers, 

but decreased in later stages of floral development, when expression was retained only in 

the sepals and carpels. In seeds ATPS2 expression was reduced to undetectable levels 

following the onset of embryogenesis. Similarly to ATPS1, expression of ATPS3 was 

maximal in the vegetative tissue - especially the vegetative shoot apex, the hypocotyl and 

the leaves - and was scarcely detectable in either flowers or seeds (Figure 2.3C). 

Coinciding with the decreased ATPS2 mRNA levels described previously, a peak in ATPS3 

expression was measured in leaf two. Subsequently, expression declined to a minimum in 

senescent leaves. ATPS4 expression was restricted to a few specific developmental stages, 

during which transcript levels were comparable to those of ATPS1 (Figure 2.3D). 

Particularly high expression was detected in cauline and senescent leaves, in mature 

flowers - with the exception of the pedicel and carpels, and during the heart stage of 

embryogenesis. In the rosette leaves, ATPS4 was expressed at slightly higher levels 

through the mid-developmental stages, but then decreased again. 

 



 

Figure 2.3 Arabidopsis eFP browser developmental series

Images of ATPS1 (A), 

developmental stages produced using absolute mode in the eFP browser at the BAR 

(www.bar.utoronto.ca; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 

displayed in the lower left hand corner of each image.

idopsis eFP browser developmental series 
, ATPS2 (B), ATPS3 (C), and ATPS4 (D) transcript levels at different 

developmental stages produced using absolute mode in the eFP browser at the BAR 

; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 

displayed in the lower left hand corner of each image. 
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transcript levels at different 

developmental stages produced using absolute mode in the eFP browser at the BAR 

; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 



 

 
Figure 2.3 continued 
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As the site of sulfate entry to plants, roots are essential to sulfate assimilation. In the roots, 

the thiol glutathione participates in the regulation of cell division at the apical meristem, 

and is vital for root development (Sanchez-Fernandez et al., 1997; Espunya et al., 2006; 

Koprivova et al., 2010). Therefore, the activation of sulfate by ATPS is also necessary in 

roots. A second function of the eFP browser tool allows the exploration of gene expression 

in roots, representing expression in a gene spatiotemporal map (Brady et al., 2007; 

Cartwright et al., 2009). We employed this function to visualise ATPS transcriptional 

expression patterning in the root (Figure 2.4).  

 



 

Figure 2.4 Arabidopsis eFP browser root spatiotemporal map

Representation of ATPS1

spatiotemporal map produced using absolute mode in the eFP browser at the BAR 

(www.bar.utoronto.ca; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 

displayed in the lower left hand corner.

Arabidopsis eFP browser root spatiotemporal map 

ATPS1 (A), ATPS2 (B), ATPS3 (C), and ATPS4 (D) transcript levels on a root 

spatiotemporal map produced using absolute mode in the eFP browser at the BAR 

; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 

displayed in the lower left hand corner. 
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transcript levels on a root 

spatiotemporal map produced using absolute mode in the eFP browser at the BAR 

; Winter et al., 2007). The threshold maximum was set to 1000. The scale is 



 

Figure 2.4 continued 
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The root gene-expression map revealed that both ATPS1 and ATPS4 were very highly 

expressed, suggesting they are the key players in root sulfate activation (Figure 2.4A + D).  

ATPS2 and ATPS3 were expressed at much lower levels (Figure 2.4B + C). ATPS1 transcript 

levels were highest in the cortex, endodermis and pericycle, though expression was also 

detected in the epidermis, most intensely in the maturation zone. Phloem and xylem 

tissues also indicated relatively high levels of ATPS1 expression, as did the columella 

initials. Though transcript levels were lower, the pattern of ATPS3 expression in the roots 

was very similar to that of ATPS1. The highest ATPS3 expression was detected in the 

pericycle, cells of the quiescent centre, and columella initials, with expression also 

detected in the cortex and endodermis. ATPS2 was the lowest expressed ATPS isoform in 

the roots, and showed a very different pattern to the other three. Expression was 

concentrated to the vasculature of the root meristematic zone, expanding into the 

elongation zone. In young tissue, ATPS2 was expressed in the cortex, pericycle, xylem, and 

phloem companion cells. This pattern was maintained in mature roots, but at a much 

reduced level of expression. ATPS4 was also expressed in the cortex and phloem pole 

pericycle, and to a lesser degree in the endodermis, phloem and xylem cells. However, its 

expression increased with tissue age, opposite to that of ATPS2. As a result, ATPS4 

expression was at its highest levels in the maturation zone. Interestingly, higher ATPS4 

transcript levels were measured in the trichoblast cells of the roots than in atrichoblast 

cells, coinciding with a difference in glutathione content between these two cell types 

(Sanchez-Fernandez et al., 1997; Meyer and Fricker, 2000).  

 

To validate the microarray expression data using an independent biochemical approach 

and to further examine the expression of the ATPS genes, we generated transgenic lines 

expressing the uidA (GUS) reporter gene under control of Arabidopsis ATPS1 – 4 

promoters (ATPS1PRO::GUS, ATPS2PRO::GUS, ATPS3PRO::GUS, and ATPS4PRO::GUS, 

respectively). Accordingly, we cloned the promoter fragments into the binary plant 
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transformation vector pKGWFS7, resulting in a translational fusion with the GUS reporter 

gene. The constructs were introduced into wild-type Col-0 Arabidopsis plants, and 

homozygous lines were selected among the kanamycin resistant plants. Wild-type and 

transgenic plants were collected and stained at four developmental stages: 4, 7, 14 and 21 

days in the case of ATPS1PRO::GUS, ATPS3PRO::GUS, and ATPS4PRO::GUS, and at 3, 7, 14 and 21 

days after germination for ATPS2PRO::GUS lines. Three independent lines were grown and 

examined for each construct throughout development. Wild-type controls showed no 

staining (data not shown), and minimal differences were observed between the 

independent lines corresponding to the same construct, so that a single representative line 

from each fusion construct is shown in Figure 2.5– Figure 2.8.  

 

Output from the eFP browser indicated that ATPS1 expression was high in both shoot and 

root tissues. In ATPS1PRO::GUS plants, activity of GUS driven by the ATPS1 promoter was 

also detected in both shoots and roots, at all four developmental stages sampled (Figure 

2.5). Staining of four-day old seedlings revealed high levels of GUS in the vegetative apical 

meristem and hypocotyl, consistent with data represented in the eFP browser. GUS 

expression remained in the vegetative meristem as the seedlings developed, but was 

almost undetectable in the hypocotyl after seven days. From day seven onward, staining of 

GUS was observed in the leaf vasculature, though after fourteen days expression in leaves 

one and two was reduced below detection. As leaf two samples used in the eFP 

developmental map were taken at a single time-point, this level of detail was not available. 

Root expression of ATPS1 promoter driven GUS was observed throughout at four days, 

despite stronger staining in the root meristematic and elongation zones. Higher 

expression in the cortex and endodermis could not be detected, as seen in the eFP 

browser’s depiction of ATPS1 transcript levels. In the primary root, expression decreased 

to non-detectable levels over the first two weeks of development. In contrast, increasing 

expression in cortex and endodermis tissues was detected throughout the lateral roots. 



 

 
 
Figure 2.5 Histochemical staining of ATPS1

ATPS1PRO::GUS seedlings were stained to detect the localisation of GUS activity driven by the ATPS1 

promoter at 4 days (i), 7 days 

expression is shown in leaves (A

– iv and Ci - ii), and lateral roots (

frequency of expression in different tissues, where black indicated the presence of GUS staining as 

observed in a minimum of six plants from three independent lines. 

 

Histochemical staining of ATPS1PRO::GUS seedlings 

seedlings were stained to detect the localisation of GUS activity driven by the ATPS1 

, 7 days (ii), 14 days (iii), and 21 days (iv) post germination. 

expression is shown in leaves (Ai - iv), apical meristem (Ai - ii), hypocotyl (

), and lateral roots (Biv and Ciii - iv). Scale bars = 200 µm. 

xpression in different tissues, where black indicated the presence of GUS staining as 

observed in a minimum of six plants from three independent lines.  
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seedlings were stained to detect the localisation of GUS activity driven by the ATPS1 

post germination. (A – C) GUS 

), hypocotyl (Bi - ii), primary root (Biii 

). Scale bars = 200 µm. (D) Graphs indicate the 

xpression in different tissues, where black indicated the presence of GUS staining as 



 

 

 
Figure 2.6 Histochemical staining of ATPS2

ATPS2PRO::GUS seedlings were stained to detect the localisation of GUS activity driven by the ATPS2 

promoter at 3 days (i), 7 days 

expression is shown in leaves (Ai 

root (Biii - iv and Ci - iv). Scale bars = 200 µm. 

different tissues, where black indicated the presence of GUS staining as observed in a minimu

six plants from three independent lines.

 

Histochemical staining of ATPS2PRO::GUS seedlings 

seedlings were stained to detect the localisation of GUS activity driven by the ATPS2 

, 7 days (ii), 14 days (iii), and 21 days (iv) post germination. 

expression is shown in leaves (Ai - iv), apical meristem (Ai and Bii), hypocotyl (Bi), and primary 

iv). Scale bars = 200 µm. (D) Graphs indicate the frequency of expression in 

different tissues, where black indicated the presence of GUS staining as observed in a minimu

six plants from three independent lines. 
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seedlings were stained to detect the localisation of GUS activity driven by the ATPS2 

post germination. (A – C) GUS 

), apical meristem (Ai and Bii), hypocotyl (Bi), and primary 

Graphs indicate the frequency of expression in 

different tissues, where black indicated the presence of GUS staining as observed in a minimum of 



 

 

 
Figure 2.7 Histochemical staining of ATPS3

ATPS3PRO::GUS seedlings were stained to detect the localisation of GUS activity driven by the ATPS3 

promoter at 4 days (i), 7 days 

expression is shown in leaves (Ai 

(Biii - iv and Ci - iii), and lateral roots (Biii 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 

observed in a minimum of six plants from three independent lines.

 

 

Histochemical staining of ATPS3PRO::GUS seedlings 

seedlings were stained to detect the localisation of GUS activity driven by the ATPS3 

, 7 days (ii), 14 days (iii), and 21 days (iv) post germination. 

expression is shown in leaves (Ai - iv), apical meristem (Ai and Bii), hypocotyl (Bi), primary root 

iii), and lateral roots (Biii - iv and Civ). Scale bars = 200 µm. 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 

nimum of six plants from three independent lines. 
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seedlings were stained to detect the localisation of GUS activity driven by the ATPS3 

post germination. (A – C) GUS 

hypocotyl (Bi), primary root 

iv and Civ). Scale bars = 200 µm. (D) Graphs indicate the 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 



 

 

 
Figure 2.8 Histochemical staining of ATPS4

ATPS4PRO::GUS seedlings were stained to detect the localisation of GUS activity driven by the ATPS4 

promoter at 4 days (i), 7 days 

expression is shown in leaves (Ai 

and Ci - ii), and lateral roots (Biii 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 

observed in a minimum 

 

 

Histochemical staining of ATPS4PRO::GUS seedlings 

seedlings were stained to detect the localisation of GUS activity driven by the ATPS4 

, 7 days (ii), 14 days (iii), and 21 days (iv) post germination. 

expression is shown in leaves (Ai - iv), apical meristem (Ai),  hypocotyl (Bi), primary root (Bii 

ii), and lateral roots (Biii - iv and Ciii-iv). Scale bars = 200 µm. 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 

 of six plants from three independent lines. 
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seedlings were stained to detect the localisation of GUS activity driven by the ATPS4 

post germination. (A – C) GUS 

tyl (Bi), primary root (Bii - iv 

iv). Scale bars = 200 µm. (D) Graphs indicate the 

frequency of expression in different tissues, where black indicated the presence of GUS staining as 
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Contrary to ATPS1, the distribution of GUS activity under control of the ATPS2 promoter 

maintained a similar pattern throughout the first twenty-one days of development (Figure 

2.6). The staining indicated ATPS2 promoter activity both in and surrounding the leaf 

vasculature, in the leaf apical meristem, and in the hypocotyl. Driven by the ATPS2 

promoter, GUS expression in the leaves indicated a similarly even distribution to that of 

ATPS2 mRNA levels shown in the eFP browser. However, obvious discrepancies were seen 

between the root expression patterns from the two approaches. In the root, expression 

was again detected in the vasculature extending into the maturation and elongation zones.  

 

GUS expression in ATPS3PRO::GUS plants was detected in the leaf vasculature of seedlings at 

all developmental stages, consistent with the eFP expression pattern of ATPS3 (Figure 

2.7). Four-day old seedlings showed very weak expression in the early leaf vascular tissue 

and the hypocotyl, which did not extend into the root. However, three days later a strong 

expression of GUS emerged in and surrounding the vasculature of leaves one and two and 

the hypocotyl, extending into the root system. The shoot apex maintained a high level of 

expression throughout the experiment, corresponding to the vegetative meristem-specific 

expression in the eFP browser. Expression in the roots was initially restricted to the 

meristematic zone, with the exception of the root cap. However, seven-day and older 

seedlings also exhibited expression in the root vascular tissue, excluding the elongation 

zone, similar to the spatiotemporal representation of ATPS3 expression in the eFP root 

map. 

 

No GUS expression was observed in the leaves of ATPS4PRO::GUS plants at any of the four 

developmental stages (Figure 2.8). The eFP browser provided evidence of leaf expression 

of ATPS4, but at very low levels, with the exception of cauline and senescent leaves. Strong 

expression was detected in the roots, expanding some way into the hypocotyl, in 

agreement with the microarray data represented in the eFP browser. The root-specific 
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expression appeared concentrated to the cortex, pericycle, stele, and xylem tissues of the 

maturation zone, as transcription levels previously indicated. After seven days of growth, 

quiescent centre-specific expression developed. However, this root tip expression became 

increasingly diffuse after two weeks. 

 

Using two complementary methods, we were able to investigate the expression patterns of 

the four Arabidopsis ATPS genes. We showed that the four ATPS genes are differently 

expressed, suggesting individual and perhaps specific roles. ATPS1 had the highest mRNA 

levels, present across all developmental stages, indicating it may be a pivotal player in 

primary sulfate assimilation. In comparison, ATPS2 and ATPS3 have considerably lower 

transcript levels, and most likely play a secondary role. On the other hand, ATPS4 is 

expressed predominantly in the root, with possible additional functions in sulfate 

activation in the seeds, and during leaf senescence. 

 

2.3.2. Analysis of ATPS mutant lines 

In order to investigate the involvement of the individual ATPS isoforms in primary sulfate 

assimilation, we analysed levels of the thiols cysteine and glutathione in transgenic lines in 

which transcription of one of the four ATPS isoforms had been disrupted. Three T-DNA 

insertion mutation lines, atps1, atps2, and atps3, and a transposon insertion mutant line, 

atps4, were kindly provided by Dr. Yoshimoto, RIKEN institute, Japan. Wild-type and 

mutant lines were grown for ten days before thiol levels were analysed by HPLC in whole 

seedlings. 

 

Cysteine and glutathione levels were not altered from wild-type levels in atps1 or atps4 

seedlings, indicating that under favourable conditions (sufficient sulfate supply and 

absence of environmental stress), the remaining three isoforms are able to maintain 



 

normal levels of reduced sulfur compounds (

seedlings exhibited elevated levels of both cysteine and gl

loss of functionality of either of these isoforms results in reorganisation of the remaining 

isoforms, such that more sulfur is assimilated into primary metabolites. We show in 

Chapter 3 that this increased assimilation in

detrimental to the accumulation of the secondary sulfur compounds, glucosinolates 

(Figure 3.8). Thus, it seems that an increase in the rate of sulfate activation is responsible 

for this increase, rather than redistribution of activated sulfur in the form of APS. 

 

Figure 2.9 Analysis of thiol accumulation in ATPS loss

Cysteine (A) and glutathione 

atps mutants and the appropriate parental lines. The data are presented as the mean ±SD from four 

biological replicates. Asterisks denote values significantly (Student’s t

the Col-0 wild-type for 

from the two parental lines, No (Ac) and No (Ds), respectively.

 

normal levels of reduced sulfur compounds (Figure 2.9). Surprisingly, 

seedlings exhibited elevated levels of both cysteine and glutathione. This suggests that the 

loss of functionality of either of these isoforms results in reorganisation of the remaining 

isoforms, such that more sulfur is assimilated into primary metabolites. We show in 

Chapter 3 that this increased assimilation into reduced sulfur compounds is not 

detrimental to the accumulation of the secondary sulfur compounds, glucosinolates 

). Thus, it seems that an increase in the rate of sulfate activation is responsible 

for this increase, rather than redistribution of activated sulfur in the form of APS. 

Analysis of thiol accumulation in ATPS loss-of-function mutants

and glutathione (B) content was determined in ten-day old seedlings of all four single 

mutants and the appropriate parental lines. The data are presented as the mean ±SD from four 

biological replicates. Asterisks denote values significantly (Student’s t-test; P < 0.05) different from 

type for atps1, atps2, and atps3. For atps4 ‘a’ and ‘b’ denote significant differences 

from the two parental lines, No (Ac) and No (Ds), respectively. 
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utathione. This suggests that the 

loss of functionality of either of these isoforms results in reorganisation of the remaining 

isoforms, such that more sulfur is assimilated into primary metabolites. We show in 

to reduced sulfur compounds is not 

detrimental to the accumulation of the secondary sulfur compounds, glucosinolates 

). Thus, it seems that an increase in the rate of sulfate activation is responsible 

for this increase, rather than redistribution of activated sulfur in the form of APS.  

 
function mutants 

day old seedlings of all four single 

mutants and the appropriate parental lines. The data are presented as the mean ±SD from four 

test; P < 0.05) different from 

‘a’ and ‘b’ denote significant differences 
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The thiol measurements provide an indication of the plants’ ability to maintain metabolite 

levels. However, to further investigate the specific contributions of the ATPS isoforms to 

the rates of sulfate activation and reduction, we analysed the flux of [35S]sulfate through 

the pathway in the mutant lines. Ten-day old seedlings from the four mutant lines were 

exposed to media containing [35S]sulfate for four hours, following which 35S uptake was 

measured. The amount of 35S remaining in the sulfate pool, as well as the flux into the 

cysteine, glutathione and protein fractions were determined as percentages of 35S taken 

up. In spite of the differences in thiol accumulation measured in two of the mutants, 

uptake of 35S was not altered from the wild-type rates in any of the four mutant lines, 

indicating that the action of the sulfate transporters was not affected by demand for 

reduced sulfur due to the disruption of individual ATPS genes (Figure 2.10A). The only 

change detected was an increased uptake in the atps4 transposon insertion mutant line, 

compared to the No (Ds) parental lines. However, the increase was not significant in 

comparison with the No (Ac) parental line.  

 

Although changes in 35S uptake were small, analysis of 35S incorporation into reduced 

sulfur compounds did reveal differences between the mutant lines (Figure 2.10). 

Calculation of the relative values revealed that around 75% of the [35S]sulfate taken up by 

the plants remained in the form of sulfate. Glutathione accounted for around 10% of 

assimilated 35S, whilst cysteine and proteins accounted for 2% and 3% respectively. The 

remaining 10% of the radioactivity will have been incorporated into methionine and its 

derivatives, glucosinolates, and various other sulfur-containing compounds that were not 

measured in these experiments. However, in other experiments it was determined that 

approx. 1% of 35S can be found in methionine and 5% in glucosinolates (B.-R. Lee, S. 

Kopriva, personal communication). Consistent with the findings of the thiol analysis, no 

differences were detected between the flux of sulfur in atps1 and wild-type plants. Thus, 

the loss of ATPS1 function can essentially be compensated by the remaining three 



 

isoforms despite the high expression levels and seemingly central role reported in section 

2.3.1. 

Figure 2.10 Analysis of flux through sulfate assimilation in ATPS loss

Ten-day old seedlings of all four single 

incubated with 0.2 mM [

percentage remaining as sulfate (B) or incorporated into cysteine (C), 

(E) was quantified. Data are presented as means ±SD from four biological replicates. Values for 

atps1, atps2, and atps3

significantly (Student’s t

the two parental lines, No (Ac) and No (Ds), and marked with ‘a’ and ‘b’ respectively to denote 

significant differences.  

 

In agreement with the accumulation of thiols, the analysis showed an incre

through sulfate assimilation in 

glutathione and protein fractions was higher in the mutant lines than in wild

However, no change in incorporation into cysteine was detected. In 

orms despite the high expression levels and seemingly central role reported in section 

Analysis of flux through sulfate assimilation in ATPS loss-of

day old seedlings of all four single atps mutants and the appropriate parental lines were 

incubated with 0.2 mM [35S]sulfate for four hours. Uptake of 35S was measured (A), and the 

percentage remaining as sulfate (B) or incorporated into cysteine (C), glutathione (D) or proteins 

(E) was quantified. Data are presented as means ±SD from four biological replicates. Values for 

atps3 were compared to Col-0 wild-type and marked with asterisks where 

significantly (Student’s t-test; P < 0.05) different. Values for atps4 were compared independently to 

the two parental lines, No (Ac) and No (Ds), and marked with ‘a’ and ‘b’ respectively to denote 

 

In agreement with the accumulation of thiols, the analysis showed an incre

through sulfate assimilation in atps2 and atps3 plants. Incorporation of 

glutathione and protein fractions was higher in the mutant lines than in wild

However, no change in incorporation into cysteine was detected. In 
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of-function mutants 

mutants and the appropriate parental lines were 

S was measured (A), and the 

glutathione (D) or proteins 

(E) was quantified. Data are presented as means ±SD from four biological replicates. Values for 

type and marked with asterisks where 

were compared independently to 

the two parental lines, No (Ac) and No (Ds), and marked with ‘a’ and ‘b’ respectively to denote 

In agreement with the accumulation of thiols, the analysis showed an increase in the flux 

plants. Incorporation of 35S into the 

glutathione and protein fractions was higher in the mutant lines than in wild-type. 

However, no change in incorporation into cysteine was detected. In atps3 plants, the 
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increased rate of sulfate activation and reduction even caused a significant decrease in 35S 

in the sulfate pool. Minimal differences were detected between atps4 and its parental lines 

in the thiol levels and uptake rates. However, increased accumulation of [35S]sulfate was 

detected in the atps4 mutant, accompanied by attenuated incorporation of 35S into 

cysteine, glutathione, and proteins. Hence, ATPS4 is essential for maintaining normal rates 

of sulfur flux through the primary assimilation pathway.  

 

2.3.3. Regulation of ATPS transcript levels 

Products of the sulfate assimilation pathway are known to be involved in defence against 

environmental stresses (reviewed in Rausch and Wachter, 2005). Glutathione is a major 

component of plant response to oxidative stress, heavy metal stress, and is important for 

detoxification of xenobiotics. The capacity for synthesis of glutathione is correlated with 

tolerance to various environmental stresses (Noctor et al., 1998; Kocsy et al., 2001; Ruiz 

and Blumwald, 2002; Mittova et al., 2003; Kocsy et al., 2004a; Kocsy et al., 2004b). 

Glucosinolates, on the other hand, contribute considerably to defence against biotic stress, 

particularly herbivore and pathogen attack (Halkier and Gershenzon, 2006). To better 

understand whether the individual ATPS isoforms have specific roles during 

environmental stress, we investigated, in silico, the transcriptional responses to various 

stimuli. We interrogated the publicly available transcriptome data, using the Meta-

Analyser in the Response Viewer tool from the Genevestigator V2 software suite 

(http://www.genevestigator.ethz.ch/at/; Zimmermann et al., 2005). This tool provided a 

heat map representation of changes in gene-expression of the four Arabidopsis ATPS 

genes in response to environmental stresses ( 

Figure 2.11).  

 



 

 
Figure 2.11 Genevestigator stress responses

Heat map showing the response of the four Arabidopsis ATPS genes following a selection of st

treatments, produced using Genevestigator V2 (

Zimmermann et al., 2005). Black indicates no change from the control group, whereas red and 

green denote up- and down

biotic stress. 

Genevestigator stress responses 

Heat map showing the response of the four Arabidopsis ATPS genes following a selection of st

treatments, produced using Genevestigator V2 (http://www.genevestigator.ethz.ch/at/

Zimmermann et al., 2005). Black indicates no change from the control group, whereas red and 

and down-regulation, respectively. (A) abiotic stress, 
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Heat map showing the response of the four Arabidopsis ATPS genes following a selection of stress 

http://www.genevestigator.ethz.ch/at/; 

Zimmermann et al., 2005). Black indicates no change from the control group, whereas red and 

abiotic stress, (B) light treatment, (C) 
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Sulfate assimilation is regulated in a demand driven manner, with increases in both ATPS 

and APR transcription and activity seen in response to sulfate deprivation (Lappartient 

and Touraine, 1996, 1997; Hirai et al., 2003; Maruyama-Nakashita et al., 2003; Nikiforova 

et al., 2003). Transcript levels of ATPS1 and ATPS3 depicted in the heat map follow this 

demand driven regulation, and are up-regulated during sulfate deprivation ( 

Figure 2.11A). In contrast, ATPS2 and ATPS4 expression is reduced. The assimilation of 

sulfur is also known to be co-ordinately regulated through interactions with the 

metabolism of other nutrients, such as nitrogen and carbon (Kopriva et al., 1999; 

Yamaguchi et al., 1999; Koprivova et al., 2000a; Hesse et al., 2003). For example, APR 

mRNA and activity decrease during periods of nitrogen deficiency (Koprivova et al., 

2000a). Two treatments that simulated nitrogen deprivation both resulted in decreased 

ATPS2 expression, but increased ATPS4 expression ( 

Figure 2.11A). 

 

The toxic metal caesium (Cs) can be easily taken up by Arabidopsis roots in competition 

with potassium (K). Sahr et al. (2005) showed that K levels are negatively correlated to Cs 

levels, and implicated the ATPS genes in the response to Cs accumulation. Transcriptional 

responses from treatment with Cs, and from K-deprivation, were similar, with a decrease 

in ATPS2 and ATPS3 mRNA levels following both treatments, but different effects on ATPS4 

mRNA accumulation. ATPS1 did not respond to either treatment ( 

Figure 2.11A). Accumulation of Cs interferes with internal K ions, influencing the osmotic 

balance in the plant (Ghosh et al., 1993). Thus, it is intuitive that osmotic stress also causes 

the same transcriptional response of the ATPS genes as Cs ( 

Figure 2.11A). The sulfate assimilation pathway is known to respond to treatments 

causing osmotic and oxidative stress (Bick et al., 2001; Sahr et al., 2005; Koprivova et al., 

2008; Queval et al., 2009; Yoshida et al., 2009). Treatments inducing osmotic stress 
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(drought, salt, mannitol), and those mimicking oxidative stress (oxidative, H2O2), caused 

similar responses in transcript levels of the ATPS genes. All of these treatments resulted in 

raised ATPS1 and ATPS3 transcript levels. The two oxidative stress treatments also caused 

a decrease in ATPS4 transcription. Treatments directly increasing demand for glutathione, 

such as sulfur deprivation, osmotic, and oxidative stress, consistently induced ATPS1 and 

ATPS3 transcription, indicating they may be involved in the demand-driven regulation of 

sulfate assimilation. Interestingly, all nutrient, osmotic, and oxidative stress treatments 

resulted in decreased ATPS2 levels. 

 

Biotic stresses from fungal, bacterial, and insect pathogens prompt a multitude of defence 

responses in plants (Dixon, 2001). In Arabidopsis, these responses include accumulation 

and metabolism of glucosinolates, amongst others (Bednarek et al., 2009; Clay et al., 2009; 

Burow et al., 2010). Hence, up-regulation of sulfate assimilation is vital to plant survival 

during biotic stress. Though expression of all four genes was regulated by the majority of 

biotic stress treatments represented in the Genevestigator data, the responses varied 

greatly ( 

Figure 2.11B). The fungal moulds Botrytis cinerea and Phytophthora infestans as well as 

the generalist aphid Myzus persicae are all known to induce a glucosinolate response in 

Arabidopsis (Zimmerli et al., 2004; Mewis et al., 2006; Kim and Jander, 2007; Rowe et al., 

2010). These four pathogens caused an increase in expression of either ATPS1 or ATPS3, 

or both. Mechanical wounding and exogenous application of MeJa are also able to induce 

glucosinolate biosynthesis (Mikkelsen et al., 2003; Jost et al., 2005; Sasaki-Sekimoto et al., 

2005). Both treatments also elicited a rise in ATPS1 and ATPS3 transcript levels. SA and ET 

are also involved in regulation of glucosinolate biosynthesis (Mikkelsen et al., 2003), but, 

whilst SA increased ATPS1 mRNA levels, ET application did not affect transcription of 

either ATPS1 or ATPS3. Thus, these two isoforms appear to be central to pathogen and 

herbivore response, as well as glutathione synthesis as shown in Figure 2.3.9A. As 
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previously observed in response to nutrient, osmotic, and oxidative stresses, ATPS2 levels 

were decreased in the majority of treatments. However, ATPS4 transcript levels rose in 

response to infestation by half of the biotic stresses tested.  

 

It has long been known that sulfate assimilation is stimulated by light (Schmidt and Trebst, 

1969), and that ATPS and APR activities are light induced in maize and Lemna minor 

(Passera et al., 1989; Neuenschwander et al., 1991). The Genevestigator Response Viewer 

presents microarray data from a series of experiments in which seedlings were exposed to 

different light conditions following four days in the dark. Shoot material was used for the 

microarray analysis, explaining the lack of response seen in transcript levels of the 

predominantly root expressed ATPS4. However, leaf expressed ATPS3 was not altered by 

any of the seven light conditions. Response to light was seen predominantly in the ATPS1 

and ATPS2 genes. ATPS1 transcript levels decreased following transfer of seedlings to blue, 

far red, and UV-AB light conditions. In contrast to the consistent down-regulation of ATPS2 

in response to abiotic and biotic stresses, re-illumination by any form of light resulted in 

an accumulation of ATPS2 transcript, indicating that transcription of this gene is light-

responsive. Glucose is also able to induce APR activity (Kopriva et al., 2002; Hesse et al., 

2003). The Response Viewer indicated that ATPS1, ATPS2, and ATPS3 transcripts also 

increase in response to glucose. 

 

Together with experimental data in other species (Passera et al., 1989; Neuenschwander 

et al., 1991), the results described above from the Genevestigator and Expression Angler 

tools provide evidence for a regulation of ATPS transcription by light in Arabidopsis. The 

key point of regulation appears to be ATPS2 transcription, with some regulation of ATPS1 

transcription. To test this hypothesis experimentally, we used qPCR to measure the steady 

state levels of ATPS transcripts following light induction treatment. Ten-day old 

Arabidopsis seedlings were kept in the dark for 38 hours, after which half of them 
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transcription reported by Genevestigator in light conditions. It has to be noted that the 
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Figure 2.12 Transcript levels of ATPS isoforms following re

Quantitative RT-PCR was carried out on RNA isolated from ten

subjected to 38 hours in the dark, followed by a further hour dark for the control group (dark) or 1 

hour of re-illumination for the treatment group (light). Prime

were used. The mRNA levels were compared to 

Results are presented as means ±SD from three independent RNA preparations. Significant 

(Student’s t-test; P < 0.05) diffe

done by Anna Koprivova, John Innes Centre, UK.

 

A second possibility to investigate potential functions of the ATPS isoforms 

through the exploration of genes co

web-based data-mining tool Expression Angler from BAR tool suite 

Toufighi et al., 2005)

correlation coefficients and thus i

response to different growth conditions, to a chosen query gene. Using this function, 

information was gathered on genes with expression profiles similar to those of the four 

Arabidopsis ATPS genes. Param

coefficient (R-value) between 0.6 and 1.0 (1.0 being a perfect correlation) from the 

AtGenExpress tissue PLUS, global stress and hormone response databases 

2007; Goda et al., 2008)

remained in the dark (control), and half were re-illuminated for 60 min. A clear increase 

ATPS2 mRNA levels, whilst levels of ATPS1

transcription remained the same (Figure 2.12). This confirms the activation of 

transcription reported by Genevestigator in light conditions. It has to be noted that the 

same treatment results in 2-8-fold induction of APS reductase transcripts.

Transcript levels of ATPS isoforms following re-illumination

PCR was carried out on RNA isolated from ten-day old seedlings that had been 

subjected to 38 hours in the dark, followed by a further hour dark for the control group (dark) or 1 

illumination for the treatment group (light). Primers specific to the four ATPS isoforms 

were used. The mRNA levels were compared to TIP41 and levels in wild-type plants were set to 1. 

Results are presented as means ±SD from three independent RNA preparations. Significant 

test; P < 0.05) difference from the control group is denoted by an asterisk.

done by Anna Koprivova, John Innes Centre, UK. 

A second possibility to investigate potential functions of the ATPS isoforms 

through the exploration of genes co-expressed with the ATPS genes, for example using the 

mining tool Expression Angler from BAR tool suite 

, 2005). This tool uses existing microarray data to calculate Pearson 

correlation coefficients and thus identifies genes with similar expression patterns, in 

response to different growth conditions, to a chosen query gene. Using this function, 

information was gathered on genes with expression profiles similar to those of the four 

Arabidopsis ATPS genes. Parameters were set to return hits with a Pearson correlation 

value) between 0.6 and 1.0 (1.0 being a perfect correlation) from the 

AtGenExpress tissue PLUS, global stress and hormone response databases 

, 2008). The highest numbers of expression-correlated genes were 
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transcription reported by Genevestigator in light conditions. It has to be noted that the 

fold induction of APS reductase transcripts. 
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eters were set to return hits with a Pearson correlation 

value) between 0.6 and 1.0 (1.0 being a perfect correlation) from the 

AtGenExpress tissue PLUS, global stress and hormone response databases (Kilian et al., 

correlated genes were 



 

returned from the stress database, in particular when using 

genes (Figure 2.13). In contrast, the tissue and hormone databases returned far fewer 

genes with similar profiles. Notably, in response to hormone treatment

expressed with the highest number of genes of the four ATPS genes.

selected genes of interest

Supplemental Tables 2.1

 

Figure 2.13 Gene totals from Expression Angler analysis

Three databases were searched using the Expression Angler tool 

al., 2005) for genes with expression patterns correlating (Pearsons c

to the four ATPS genes. Total number of correlating genes returned from the Tissue PLUS (red), 

Stress (yellow), and Hormone (green) databases are represented in the graph, with the raw values 

indicated in the table below.

 

The expression angler analysis revealed that 

highly correlated to each other in both the hormone and tissue PLUS databases (R

were 0.741 and 0.660 respectively), confirming observations made of the Genevestigator 

Response Viewer results. 

returned from the stress database, in particular when using ATPS2

). In contrast, the tissue and hormone databases returned far fewer 

genes with similar profiles. Notably, in response to hormone treatment

expressed with the highest number of genes of the four ATPS genes.

selected genes of interest, including any mentioned in the text

2.1 – 2.4. 

Gene totals from Expression Angler analysis 

Three databases were searched using the Expression Angler tool (www.bar.utoronto.ca; Toufighi

for genes with expression patterns correlating (Pearsons correlation coefficient; R > 0.6) 

to the four ATPS genes. Total number of correlating genes returned from the Tissue PLUS (red), 

Stress (yellow), and Hormone (green) databases are represented in the graph, with the raw values 

indicated in the table below. 

The expression angler analysis revealed that ATPS1 and ATPS3 expression patterns were 

highly correlated to each other in both the hormone and tissue PLUS databases (R

were 0.741 and 0.660 respectively), confirming observations made of the Genevestigator 

Response Viewer results. ATPS1 and ATPS3 both showed a representation of key genes of 
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ATPS2 and ATPS4 as enquiry 

). In contrast, the tissue and hormone databases returned far fewer 

genes with similar profiles. Notably, in response to hormone treatments, ATPS2 was co-

expressed with the highest number of genes of the four ATPS genes. A formatted list of 

, including any mentioned in the text can be found in 

 

(www.bar.utoronto.ca; Toufighi et 

orrelation coefficient; R > 0.6) 

to the four ATPS genes. Total number of correlating genes returned from the Tissue PLUS (red), 

Stress (yellow), and Hormone (green) databases are represented in the graph, with the raw values 

expression patterns were 

highly correlated to each other in both the hormone and tissue PLUS databases (R-values 

were 0.741 and 0.660 respectively), confirming observations made of the Genevestigator 

representation of key genes of 
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primary sulfate assimilation among the co-expressed genes, including APR1 and APR3, 

consistent with the earlier hypothesis that both genes are central to primary assimilation. 

Surprisingly, ATPS2 and ATPS4 transcriptional responses did not correlate with many 

primary sulfate assimilation genes, with the exception of a few sulfate transporters and 

cysteine synthase genes, almost exclusively in the stress dataset. When interrogating the 

stress dataset, multiple genes involved in methionine and glutathione metabolism were 

identified, such as glutathione transferases, methionine and cysteine aminopeptidases, 

and genes involved in SAM cycling. Interestingly, the number of glutathione transferases 

was exceptionally high when using ATPS4 as the query gene.  

 

Sulfate and nitrate assimilation pathways are known to be coupled in their regulation 

(Koprivova et al., 2000a); hence, it is no surprise that genes involved in nitrate 

assimilation were repeatedly observed to have correlating expression patterns to the 

ATPS genes. These included many of the key genes: nitrate transporters, nitrate and nitrite 

reductases, asparagine synthetases, glutamate synthases, glutamine synthetases, 

glutamate dehydrogenases, and PEP carboxylases. Co-expression of the ATPS genes with 

nitrate assimilation genes was primarily in response to stress, with the exception of 

ATPS3, the expression of which did not appear correlated with nitrate assimilation. 

 

Stress responses of ATPS1, ATPS2, and especially ATPS4 correlated to SOT genes involved 

in the sulfation of secondary sulfur compounds, such as glucosinolates, revealing potential 

roles for these genes in secondary metabolism. A large number of genes involved in 

glucosinolate biosynthesis were identified as sharing similar tissue expression patterns as 

ATPS1, consistent with links between ATPS1 expression and glucosinolate biosynthesis 

drawn in the Genevestigator analysis. A range of glucosinolate genes shared hormone 

response patterns with ATPS3, and fewer with ATPS1, suggesting these two isoforms may 

function in glucosinolate response. Surprisingly, despite the previous implication of ATPS3 
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in glucosinolate biosynthesis, its tissue expression pattern only correlated to those of 

three glucosinolate genes. The Genevestigator representation of ATPS2 expression 

indicated it was decreased in many stress treatments that might be expected to elicit a 

glucosinolate response. A contradiction is seen in the Expression Angler results, which 

calculated a strong correlation between ATPS2 response patterns, and those of multiple 

glucosinolate network genes in response to both stress and hormone treatments, 

signifying a potential role for ATPS2 in the induction of these defence compounds. The 

discrepancy between outputs from the two tools may be due to averaging of responses in 

Genevestigator, which is not exercised in the Expression Angler calculations. Only under 

stress conditions were low numbers of glucosinolate biosynthesis genes found to correlate 

to ATPS4 expression. Hence, the input of this root specific isoform into glucosinolate 

production is probably negligible. Hormone synthesis, regulation, and response factors 

were identified as co-expressed with ATPS3 and ATPS4 genes under stress conditions. The 

majority of these genes co-regulated with ATPS3 were either JA or ET responsive 

elements, thus providing further evidence for a role of ATPS3 in hormone signalling for 

glucosinolate biosynthesis response. Hormone response genes co-regulated with ATPS4 

were primarily auxin response factors, suggesting alternative hormone regulation of this 

isoform compared with ATPS3. 

 

Response heat maps viewed using Genevestigator showed that ATPS1 and ATPS2 

expression is regulated by various light re-illumination treatments. Expression Angler co-

expression data indicated that these two genes were regulated similarly to a remarkably 

large number of genes involved in photosynthesis. This implies that both ATPS1 and 

ATPS2 play a role in the regulation of primary sulfate assimilation by light, and may thus 

provide coordinated regulation of sulfate and carbon nutrient assimilation pathways. 
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Combining results from both the Genevestigator Response Viewer, and the BAR 

Expression Angler tools, a number of hypotheses can be drawn. Evidence suggests that 

ATPS1 transcription is regulated by demand for either reduced sulfur compounds or for 

the pathogen defence compounds, glucosinolates. Though ATPS3 expression patterns were 

very similar to those of ATPS1, and showed induction in connection with glucosinolate 

response, the main mode of regulation appears to be through JA and ET hormone 

signalling. Expression of ATPS2 is down-regulated in response to multiple stresses, yet is 

co-expressed with a number of glucosinolate genes under stress conditions, suggesting it 

may play some part in the provision of activated sulfate for such sulfur containing 

secondary compounds. The links between ATPS and glucosinolates will be investigated in 

detail in chapter 3. In addition, ATPS2 appears to be the main point of control for light 

regulation.  
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2.4. DISCUSSION 

2.4.1 The four ATPS isoforms are differentially expressed 

Leaves are the main site of sulfate assimilation, and have the highest demand for reduced 

sulfur. In photosynthetic tissues, sulfate assimilation is intrinsically linked to carbon 

assimilation (Kopriva et al., 1999). We showed that three of the four ATPS isoforms, 

ATPS1 – 3, are expressed in cells surrounding the vasculature at most stages of leaf 

development, and that all four ATPS isoforms are expressed in the roots, predominantly 

also around the vasculature (Figure 2.3– 8). During sulfur assimilation sulfate is taken up 

into the roots and transported to various organs through the xylem stream for use or 

storage in the vacuole (Leustek and Saito, 1999). Stored sulfate and sulfur metabolites can 

be loaded into the phloem for remobilisation to sink organs (Yoshimoto et al., 2003). 

Therefore, expression of ATPS around the vasculature may allow quick and efficient 

activation of sulfate at the site of transport from the xylem or phloem.  

 

Coinciding with the expression of ATPS genes, APK, catalysing the first committed step of 

secondary sulfur assimilation, was also found to be expressed surrounding the vasculature 

in both leaves and roots (Mugford et al., 2009). As glucosinolates are found in and around 

the mid-vein and outer lamina (Shroff et al., 2008), and myrosinase is localized to special 

myrosin cells of the phloem parenchyma and in the guard cells (Andreasson et al., 2001; 

Thangstad et al., 2004; Barth and Jander, 2006), the expression of both ATPS and APK is at 

the site of glucosinolate accumulation and metabolism. A further similarity is seen in the 

tissue specific expression of ATPS4 and APK2 which are both present in the root quiescent 

centre, though the role of this specific expression is unknown. In situ RNA hybridization 

indicated that the tissue specific expression of APR in the roots of maize plants was 

predominantly in the exodermis of root tips, with significantly lower signal in the mature 

roots (Kopriva et al., 2001). In Arabidopsis, the three APR isoforms show different 
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expression patterns in the root tip: APR1 is expressed throughout the root, similar to 

ATPS1 expression in the primary root during early development and later in lateral roots. 

APR2 is expressed in the mature root tissue but not the root tip, and APR3 is expressed in a 

small cluster of cells in the root tip, similar to distribution of ATPS3 and ATPS4 (Kopriva et 

al., 2009).  

 

Glutathione and glutaredoxin systems are involved in a variety of processes, including 

response to oxidative stress caused by adverse environmental conditions such as 

pathogen attack (Noctor et al., 1998; Kocsy et al., 2001; Ruiz and Blumwald, 2002; Mittova 

et al., 2003; Kocsy et al., 2004a; Kocsy et al., 2004b; Rausch and Wachter, 2005; Wang et 

al., 2009). Glutathione can directly reduce peroxides, but functions mainly in the reduction 

of dehydroascorbate which is vital for regeneration of the primary ROS scavenger 

ascorbate (Rouhier et al., 2008). Glutathione is essential for the maintenance of cellular 

redox status, and may be involved in the regulation of plant developmental processes, for 

example affecting root growth (Sanchez-Fernandez et al., 1997; Espunya et al., 2006; 

Koprivova et al., 2010). Wang et al. (2009) describe the role of glutaredoxin in petal and 

anther initiation and differentiation and cell proliferation rates. A strong correlation has 

also been described between glutathione levels and the proliferative capacity of cells in 

the apical meristem of the Arabidopsis root (Sanchez-Fernandez et al., 1997). Root 

glutathione levels are highest in the outermost root cap, lateral root cap, and cells closer to 

the apical meristem (Fricker et al., 2000). We have shown that all four ATPS isoforms 

display specific patterns in the root tip, and thus may contribute to site specific production 

of glutathione in these tissues. ATPS4 is predominantly expressed in the root system, and 

according to the eFP browser, ATPS4 mRNA accumulates preferentially in the trichoblasts 

rather than atrichoblasts. A similar accumulation of glutathione in trichoblast cells has 

been reported (Meyer and Fricker, 2000), and may contribute to regulation of root hair 

establishment (Sanchez-Fernandez et al., 1997).  
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SOTs have been implicated in the regulation of hormones and flavonoids by sulfation, 

especially in flower and seed development (Rouleau et al., 1999; Gidda and Varin, 2006). 

Expression of ATPS1 and ATPS4 in both flower and seed tissues may indicate they function 

in this regulation of development. Increased ATPS1 and ATPS4 expression during early 

seed development might boost glutathione biosynthesis in the embryo, as glutathione is 

essential for the successful maturation of Arabidopsis seeds (Cairns et al., 2006). Seeds are 

also known to be a sink for the sulfur-rich secondary metabolites, glucosinolates (Brown 

et al., 2003). 

 

2.4.2 ATPS mutants have altered sulfur flux through primary assimilation 

Differences between the expression patterns of the ATPS isoforms suggests that they 

might be differently regulated, and thus have individual functions. However, we observed 

no negative effects on thiol levels in knock-out mutants, in which a single ATPS gene has 

been disrupted, indicating potential for functional redundancy between the four genes. In 

addition, flux of sulfur through primary assimilation is negatively affected only in the atps4 

loss-of-function mutant. Despite high expression of ATPS1 in all tissues, and its seemingly 

central role in response to environmental stresses (Figure 2.3, -4, and -11), the loss of 

ATPS1 function did not prove detrimental to primary sulfur metabolism in our analysis, 

suggesting some level of redundancy of this isoform (Figure 2.9– 10). However, as will be 

shown in next chapter, the atps1 mutant shows a clear decrease in the accumulation of 

glucosinolates (Figure 3.8), indicating (1) that ATPS1 has low control over the flux through 

primary assimilation, but (2) it is important for the synthesis of secondary sulfur 

compounds. Analysis of sulfate accumulation in three-week old atps1 plants revealed an 

increase in the foliar sulfate pool, though this accumulation was not as strong as that seen 

in ATPS4-RNAi lines (Liang et al., 2010). Since the flux in ten-day old atps1 mutants was 

not different from WT plants, it seems that the ATPS genes are of varying importance at 
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different developmental stages. Interestingly, although we detected no changes in thiol 

levels in the atps4 mutant, decreased flux of sulfur through primary assimilation reveals 

that this mutant does indeed have a reduced rate of sulfate activation, corroborated by 

accumulation of sulfate in ATPS4-RNAi lines (Liang et al., 2010). In contrast, the loss of 

ATPS2 or ATPS3 function actually increases thiol accumulation, and flux of sulfur through 

the primary assimilation pathway. One possible explanation for this is that a compensating 

increase of the remaining ATPS genes enables more efficient activation of sulfate for 

primary assimilation. As both atps2 and atps3 display a similar increase in primary 

assimilation, presumably the effect follows induction of either ATPS1 or ATPS4. 

Surprisingly, however, the work of Liang et al. (2010) revealed that triple atps1 atps3 

ATPS4-RNAi mutants can survive, indicating that ATPS2 alone can maintain adequate 

levels of sulfate assimilation for plant survival. In addition, sulfate accumulation in this 

triple mutant doesn’t exceed that in the ATPS4-RNAi line (Liang et al., 2010), supporting 

our findings that ATPS4 has the biggest influence on sulfur flux through the primary 

assimilation pathway. 

 

2.4.3 The ATPS genes are involved in coordinated regulation of nutrient 

assimilation 

Many aspects of the sulfate assimilation pathway are regulated in a demand driven 

manner.  In particular, transcript levels of all three APR genes are increased in response to 

sulfur starvation and some evidence exists for increased ATPS activity (Lappartient and 

Touraine, 1996, 1997; Hirai et al., 2003; Maruyama-Nakashita et al., 2003; Nikiforova et 

al., 2003). Information from Genevestigator indicated that demand driven regulation may 

extend to mRNA levels of ATPS1 and ATPS3. However, ATPS2 and ATPS4 appear to be 

regulated in an opposite manner. As both ATPS1 and ATPS4 are targeted by sulfur 

starvation-induced miR395, the regulatory networks appear to be very complex. In 
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Chapter 4 we have dissected the regulation of ATPS in response to sulfur demand, and the 

role played by miR395 in this regulation.  

 

Demand for sulfur is strongly influenced by both carbon and nitrogen assimilatory rates 

(reviewed in Kopriva and Rennenberg, 2004). We have shown that this coordinated 

regulation extends to the ATPS genes. The cellular components cysteine and glutathione 

originate from three of the most important metabolic pathways in plants: photosynthesis, 

nitrogen assimilation, and sulfur assimilation (Kopriva and Rennenberg, 2004). Whilst 

APR transcription and enzyme activity is strongly repressed during nitrogen deficiency 

(Yamaguchi et al., 1999; Koprivova et al., 2000a), the response of ATPS is somewhat less 

clear. Koprivova et al. (2000a) reported no changes in ATPS1 transcript levels in response 

to nitrogen deficiency in Arabidopsis, consistent with the response to low N treatments 

displayed in Genevestigator ( 

Figure 2.11). However, repression of ATPS3 transcript levels in Arabidopsis plants grown 

on medium lacking a nitrogen source indicated that this isoform is regulated in response 

to nitrogen status (Yamaguchi et al., 1999). The strongest evidence for coordination of 

ATPS regulation with nitrogen assimilation was shown in a correlation between ATPS 

activity and nitrate in cultured tobacco cells (Reuveny et al., 1980). Microarray analysis of 

nitrogen deficient plants showed that ATPS2 transcription is indeed down-regulated in 

response to the decreased demand for reduced sulfur, but that ATPS1 and ATPS3 mRNA 

levels are not regulated ( 

Figure 2.11). Co-expression analysis of ATPS2 revealed a high number of nitrogen 

assimilation genes shared similar stress and hormone responses (Supplemental Table 

2.2). ATPS1 expression was also correlated to nitrogen assimilation genes, especially 

under stress conditions, indicating this isoform may indeed have some level of 

coordinated regulation with nitrogen assimilation. Interestingly, ATPS4 was up-regulated 
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in response to nitrogen deficiency treatments and shared expression with a number of 

nitrogen assimilation genes in response to stress. ATPS4 is predominantly root expressed 

and as such may be involved in the provision of glutathione for root growth and 

morphological changes (Sanchez-Fernandez et al., 1997; Espunya et al., 2006; Koprivova et 

al., 2010).  

 

ATPS activity undergoes diurnal fluctuations in the leaves of C4 maize, with increases in 

activity after the transition from dark to light (Ghisi et al., 1987; Passera et al., 1989; Kocsy 

et al., 1997). ATPS activity has also been shown to be light responsive in Lemna minor 

(Neuenschwander et al., 1991). In Arabidopsis, a reduction in ATPS activity is seen 

following 38 hour incubation in the darkness, compared with plants maintained in light 

conditions (Hesse et al., 2003). However, studies of sulfate assimilation regulation by 

carbon status have focussed for the most part on APR. Activity of APR exhibits a diurnal 

rhythm and transcription of all three APR genes responds to light, glucose, and sucrose 

(Kopriva et al., 1999; Hesse et al., 2003). Analysis of microarray data showed that ATPS2 is 

the isoform responsible for up-regulation of ATPS activity in response to light ( 

Figure 2.11). This finding was confirmed by qPCR analysis of seedlings re-illuminated after 

38 hours darkness (Figure 2.12). In addition, ATPS1 transcript levels were repressed by 

blue, far red, and UV light, but up-regulated by glucose. Therefore, it appears that ATPS1 

does respond to carbon assimilation, but is sensitive to specific light sources. Expression 

of ATPS1 and ATPS2 was correlated to an exceptionally high number of genes involved in 

light harvesting and carbon metabolism processes (Supplemental Tables 2.1 and 2.2), 

providing further evidence that ATPS1 and ATPS2 are the key isoforms responsible for 

light regulation of ATPS activity. While ATPS3 transcription is not induced by light 

treatments, it increases following addition of glucose, possibly indicating some capability 

for response to carbon metabolism. However, ATPS3 transcript levels do not respond 

directly to light stimuli. Nitrogen and carbon assimilation are both under circadian 
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regulation. Thus, the regulation of ATPS and APR by light synchronizes sulfate assimilation 

with these nutrient assimilation pathways. An additional link between sulfur metabolism 

and photosynthesis is provided by the role of glutathione in the protection of Photosystem 

II from light-induced damage (photoinhibition) by ROS (Ding et al., 2009; Yin et al., 2010). 

 

Several genes for components of sulfate assimilation are known to be up-regulated in 

response to both osmotic and oxidative stresses, causing increases in glutathione contents 

(Bick et al., 2001; Sahr et al., 2005; Koprivova et al., 2008; Queval et al., 2009; Yoshida et 

al., 2009). We showed that a variety of treatments causing both osmotic and oxidative 

stress regulate the ATPS genes, mostly resulting in increased transcription of ATPS1 and 

ATPS3. Potassium deficiency also causes an alteration of the plant osmotic potential (Hafsi 

et al., 2010), producing a potential requirement for glutathione. In addition, potassium 

deficiency has recently been shown to result in the accumulation of glucosinolates in 

Arabidopsis (Troufflard et al., 2010). Hence, it is surprising to see a repression of ATPS2 - 4 

transcript levels in response to this nutrient stress. Site specific responses, not detected in 

the global measurements used in this analysis, may be the reason for the lack of response 

detected. By reducing the internal K levels Cs can also alter the plant osmotic potential and 

elicit osmotic stress responses (Sahr et al., 2005). Cs toxicity and K nutrition are intricately 

linked, as Cs acts as a competitive inhibitor of K-channels (White and Broadley, 2000; Zhu 

and Smolders, 2000). However, treatment with Cs caused an increase in ATPS4 

transcription. As Cs accumulation results in the production of ROS and the activation of 

anti-oxidative defence systems, including increased glutathione (Ghosh et al., 1993), the 

increase in ATPS4 mRNA may be through a different signalling pathway. A common 

feature of many environmental stresses, including osmotic stress, is the generation of ROS. 

The main mechanism for defence against cell damage by ROS is the ascorbate-glutathione 

cycle (Noctor and Foyer, 1998). Therefore, glutathione synthesis is induced by a number 

of stress conditions (Noctor et al., 1998; Ruiz and Blumwald, 2002; Mittova et al., 2003; 
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Koprivova et al., 2008). Up-regulation of APR enables the increase in glutathione levels in 

response to both salt stress and treatment with H2O2 (Koprivova et al., 2008). The 

Genevestigator results show that this induction of APR transcription is accompanied by 

increases in ATPS1 and ATPS3 mRNA levels. 

 

2.4.4 Links between ATPS and glucosinolate synthesis 

The data mining tools indicated a tight link of ATPS1 and ATPS3 with glucosinolate 

synthesis. This was confirmed by a detailed analysis described and discussed in the next 

chapter.  
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Supplemental Table 2.1 ATPS1 Expression Angler gene list.  

A representative selection of genes with expression patterns correlating (Pearsons correlation 

coefficient; R > 0.6) to those of ATPS1, as calculated using the Expression Angler tool 

(www.bar.utoronto.ca; Toufighi et al., 2005).  

 

AGI-ID Name activity 
r-value to 

Bait database 

BAIT 
    

At3g22890 ATPS1 ATP sulfurylase 1.000 - 

     
Primary sulfate assimilation (14) 

  
At5g10180 SULTR2;1 sulfate transporter 0.693 tissue 

   

0.665 stress 

   

0.617 hormone 

At1g23090 SULTR3;3 sulfate transporter 0.607 stress 

At5g13550 SULTR4;1 sulfate transporter 0.695 hormone 

At4g14680 ATPS3 ATP sulfurylase 0.660 tissue 

   

0.741 hormone 

At4g04610 APR1 APS reductase 0.731 hormone 

At4g21990 APR3 APS reductase 0.649 hormone 

At5g04590 SiR sulfite reductase 0.751 tissue 

At1g55920 SAT2;1 serine acetyl transferase 0.627 hormone 

At4g14880 OASTL A1 O-acetylserine (thiol) lyase 0.612 tissue 

At2g43750 OASTL B O-acetylserine (thiol) lyase 0.653 stress 

At3g61440 BSAS3;1/CYS C1 O-acetylserine (thiol) lyase 0.710 stress 

   

0.622 tissue 

At5g28030 OASTL-like/DES1 Cysteine desulfhydrase 0.611 stress 

At5g27380 GSHS/GSH2 glutathione synthetase 0.755 hormone 

At3g01120 CgS cystathione γ-synthase 0.631 tissue 

     
Other sulfur metabolism (15) 

   
At2g03750 SOT11 sulfotransferase 0.624 stress 

At5g66040 ST16 sulfurtransferase 0.739 tissue 

At1g08490 CPNIFS cysteine desulfurase 0.665 stress 

At4g37040 MAP1D methionine aminopeptidase 0.602 stress 

At4g21830 MSRB7 methionine sulfoxide reductase 0.637 hormone 

At4g39460 SAMT1 S-adenosylmethionine transmembrane transporter 0.621 stress 

At3g25570 - adenosylmethionine decarboxylase 0.670 stress 

At3g54660 GR2 glutathione reductase 0.680 stress 

At2g25080 GPX1 glutathione peroxidase 0.617 stress 

At4g31870 GPX7 glutathione peroxidase 0.667 stress 

At5g57040 - lactoylglutathione lyase 0.672 tissue 

At1g67280 - lactoylglutathione lyase 0.627 tissue 
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At2g30870 GSTF10 glutathione S-transferase 0.602 hormone 

At1g27130 GSTU13 glutathione S-transferase 0.745 hormone 

At1g78370 GSTU20 glutathione S-transferase 0.705 stress 

     
Glucosinolate biosynthesis (22) 

  
At4g39940 APK2 APS kinase 0.733 tissue 

   

0.631 stress 

At4g39940 APK2 APS kinase 0.658 hormone 

At2g20610 SUR1 C-S lyase 0.724 tissue 

   

0.601 stress 

Aliphatic glucosinolate biosynthesis (16) 

  
At1g18590 SOT17 glucosinolate sulfotransferase 0.702 tissue 

   

0.604 hormone 

At1g74090 SOT18 glucosinolate sulfotransferase 0.673 tissue 

At5g07690 MYB29 R2R3-type MYB transcription factor 0.663 stress 

At3g49680 BCAT3 branched-chain aminotransferase 0.674 stress 

At3g19710 BCAT4 branched-chain aminotransferase 0.753 tissue 

At5g23010 MAM1 methylthioalkylmalate synthase 0.787 tissue 

   

0.634 stress 

At1g16400 CYP79F2 cytochrome P450 0.681 tissue 

At4g13770 CYP83A1 cytochrome P450 0.763 tissue 

At1g65860 FMO GS-OX1 flavin-monooxygenase glucosinolate s-oxygenase 0.668 tissue 

   

0.680 stress 

At1g62560 FMO GS-OX3 flavin-monooxygenase glucosinolate s-oxygenase 0.619 tissue 

   

0.639 stress 

At1g12140 FMO GS-OX5 flavin-monooxygenase glucosinolate s-oxygenase 0.605 tissue 

At4g12030 BAT5 bile acid:sodium symporter 0.619 tissue 

At3g58990 IPMI1 isopropylmalate isomerase  0.687 tissue 

At2g43100 IPMI2 isopropylmalate isomerase  0.658 tissue 

At4g13430 IIL1 methylthioalkylmalate isomerase 0.711 tissue 

At1g31180 IPMDH1 3-isopropylmalate dehydrogenase 0.665 tissue 

Indolic glucosinolate biosynthesis (3) 

  
At5g05730 ASA1 anthranilate synthase alpha subunit 0.663 hormone 

At5g17990 TRP1 anthranilate phosphoribosyltransferase 0.718 hormone 

At1g24100 UGT74B1 UDP-glycosyltransferase 0.652 tissue 

     
Nitrogen assimilation (6) 

   
At2g26690 NTP2 nitrate transporter 0.655 tissue 

At3g21670 NTP3 nitrate transporter 0.636 stress 

At1g37130 NR2 nitrate reductase 0.671 tissue 

At5g35630 GLN2 glutamine synthetase 0.648 stress 
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At1g23310 GGAT1 L-alanine:2-oxoglutarate aminotransferase 0.661 stress 

At5g47970 - nitrogen regulation family protein 0.635 stress 

     
Photosynthesis (65) 

   
AtCg00350 PSAA photosystem I subunit 0.630 stress 

At4g02770 PSAD1 photosystem I subunit 0.661 stress 

At1g31330 PSAF photosystem I subunit 0.649 stress 

At1g55670 PSAG photosystem I subunit 0.641 stress 

At3g16140 PSAH1 photosystem I subunit 0.655 stress 

At1g52230 PSAH2 photosystem I subunit 0.665 stress 

AtCg00510 PSAI photosystem I subunit 0.612 stress 

AtCg00630 PSAJ photosystem I subunit 0.621 stress 

At1g30380 PSAK photosystem I subunit 0.656 stress 

At4g12800 PSAL photosystem I subunit 0.647 stress 

At1g08380 PSAO photosystem I subunit 0.659 stress 

At2g46820 PSAP photosystem I subunit 0.671 stress 

AtCg00280 PSBC photosystem II subunit 0.638 stress 

AtCg00270 PSBD photosystem II subunit 0.604 stress 

AtCg00580 PSBE photosystem II subunit 0.636 tissue 

   

0.618 stress 

AtCg00570 PSBF photosystem II subunit 0.642 stress 

AtCg00710 PSBH photosystem II subunit 0.624 stress 

AtCg00080 PSBI photosystem II subunit 0.604 stress 

AtCg00550 PSBJ photosystem II subunit 0.643 tissue 

   

0.624 stress 

AtCg00070 PSBK photosystem II subunit 0.645 stress 

AtCg00560 PSBL photosystem II subunit 0.623 stress 

AtCg00700 PSBN photosystem II subunit 0.616 stress 

At5g66570 PSBO1 photosystem II subunit 0.601 tissue 

   

0.652 stress 

At3g50820 PSBO2 photosystem II subunit 0.658 stress 

At1g06680 PSBP1 photosystem II subunit 0.653 stress 

At4g05180 PSBQ2 photosystem II subunit 0.642 stress 

At1g79040 PSBR photosystem II subunit 0.652 stress 

At1g44575 PSBS photosystem II subunit 0.706 stress 

At3g21055 PSBTN photosystem II subunit 0.618 stress 

At2g30570 PSBW photosystem II subunit 0.661 stress 

At2g06520 PSBX photosystem II subunit 0.653 stress 

At4g28660 PSB28 photosystem II subunit 0.623 stress 

At1g51400 - photosystem II protein 0.647 stress 

At1g03600 - photosystem II protein 0.635 stress 
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At4g15510 - photosystem II protein 0.602 stress 

At3g54890 LHCA1 light harvesting complex/chlorophyll binding protein 0.656 stress 

At3g61470 LHCA2 light harvesting complex/chlorophyll binding protein 0.638 stress 

At1g61520 LHCA3 light harvesting complex/chlorophyll binding protein 0.668 stress 

At3g47470 LHCA4 light harvesting complex/chlorophyll binding protein 0.662 stress 

At1g45474 LHCA5 light harvesting complex/chlorophyll binding protein 0.634 stress 

At1g19150 LHCA6 light harvesting complex/chlorophyll binding protein 0.617 stress 

At1g29910 LHCB1.2 light harvesting complex/chlorophyll binding protein 0.667 stress 

At2g34420 LHCB1.5 light harvesting complex/chlorophyll binding protein 0.654 stress 

At2g05070 LHCB2.2 light harvesting complex/chlorophyll binding protein 0.669 stress 

At3g27690 LHCB2.4 light harvesting complex/chlorophyll binding protein 0.668 stress 

At5g54270 LHCB3 light harvesting complex/chlorophyll binding protein 0.679 stress 

At5g01530 LHCB4.1 light harvesting complex/chlorophyll binding protein 0.665 stress 

At3g08940 LHCB4.2 light harvesting complex/chlorophyll binding protein 0.672 stress 

At4g10340 LHCB5 light harvesting complex/chlorophyll binding protein 0.668 stress 

At1g15820 LHCB6 light harvesting complex/chlorophyll binding protein 0.673 stress 

At1g76570 - chlorophyll A-B binding 0.671 stress 

At3g24430 HCF101 high chlorophyll fluorescence phenotype 0.640 stress 

At3g17040 HCF107 high chlorophyll fluorescence phenotype 0.662 stress 

At5g23120 HCF136 high chlorophyll fluorescence phenotype 0.634 stress 

At4g37200 HCF164 high chlorophyll fluorescence phenotype 0.619 stress 

At1g16720 HCF173 high chlorophyll fluorescence phenotype 0.673 stress 

At4g08920 CRY1 cryptochrome 0.602 tissue 

At5g52570 BCH2 beta-carotene hydroxylase 0.635 stress 

At2g20570 GLK1 transcription factor 0.603 stress 

At5g38660 APE1 acclimation of photosynthesis to environment 0.637 stress 

   

0.639 hormone 

At5g46110 APE2 acclimation of photosynthesis to environment 0.606 tissue 

   

0.665 stress 

At3g59060 PIF5 phytochrome interacting factor 0.624 tissue 

   

0.670 stress 

   

0.630 hormone 

At4g03280 PETC electron transporter 0.656 stress 

At1g09340 CSP41B chloroplast RNA binding 0.667 stress 

At1g02910 LPA1 low PSII accumulation 0.604 stress 

     
Hormone synthesis/signaling (5) 

  
At3g44300 NIT2 indole-3-acetonitrile nitrilase 0.686 tissue 

At5g22300 NIT4 indole-3-acetonitrile nitrilase 0.703 stress 

At3g25760 AOC1 allene-oxide cyclase 0.698 hormone 

At1g19640 JMT jasmonate O-methyltransferase 0.662 stress 
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At1g04240 SHY2 transcription factor 0.665 tissue 
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Supplemental Table 2.2 ATPS2 Expression Angler gene list.  

A representative selection of genes with expression patterns correlating (Pearsons correlation 

coefficient; R > 0.6) to those of ATPS2, as calculated using the Expression Angler tool 

(www.bar.utoronto.ca; Toufighi et al., 2005).  

 

AGI-ID Name activity 
r-value to 

Bait database 

BAIT 
    

At1g19920 ATPS2 ATP sulfurylase 1.000 - 

     
Primary sulfate assimilation (8) 

  
At5g10180 SULTR2;1 sulfate transporter 0.660 stress 

At1g77990 SULTR2;2 sulfate transporter 0.804 stress 

At1g23090 SULTR3;3 sulfate transporter 0.682 stress 

At2g43750 OASTL B O-acetylserine (thiol) lyase 0.750 stress 

At3g61440 BSAS3;1/CYS C1 O-acetylserine (thiol) lyase 0.744 stress 

At5g28030 OASTL-like/DES1 Cysteine desulfhydrase 0.688 stress 

At3g01120 CgS cystathione γ-synthase 0.734 stress 

At3g03780 MS2 methionine synthase 0.619 hormone 

     
Other sulfur metabolism (14) 

   
At2g03750 SOT11 sulfotransferase 0.732 stress 

At4g33030 SQD1 sulfotransferase 0.675 stress 

At1g08490 CPNIFS cysteine desulfurase 0.712 stress 

At2g27420 - cysteine proteinase 0.696 stress 

At5g06290 2CPB 2-cysteine peroxiredoxin 0.704 stress 

At4g37040 MAP1D methionine aminopeptidase 0.838 stress 

At4g39460 SAMT1 S-adenosylmethionine transmembrane transporter 0.669 stress 

At3g54660 GR2 glutathione reductase 0.710 stress 

At2g25080 GPX1 glutathione peroxidase 0.635 stress 

At1g67280 - lactoylglutathione lyase 0.675 stress 

At1g10360 GSTU18 glutathione S-transferase 0.710 stress 

At1g78370 GSTU20 glutathione S-transferase 0.785 stress 

   

0.717 hormone 

At5g44000 

 

glutathione S-transferase 0.686 stress 

At1g31170 SRX sulfiredoxin 0.698 stress 

     
Glucosinolate biosynthesis (16) 

  
At4g03070 AOP1 2-oxoglutarate-dependent dioxygenase 0.702 

 
Aliphatic glucosinolate biosynthesis (14) 

  
At1g74090 SOT18 glucosinolate sulfotransferase 0.741 hormone 

At5g61420 MYB28 R2R3-type MYB transcription factor 0.794 stress 

   

0.799 hormone 
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At5g07690 MYB29 R2R3-type MYB transcription factor 0.686 stress 

At3g49680 BCAT3 branched-chain aminotransferase 0.810 stress 

   

0.738 hormone 

At3g19710 BCAT4 branched-chain aminotransferase 0.712 hormone 

At5g23010 MAM1 methylthioalkylmalate synthase 0.608 hormone 

At5g23020 MAM3 methylthioalkylmalate synthase 0.703 hormone 

At4g13770 CYP83A1 cytochrome P450 0.710 stress 

   

0.761 hormone 

At1g65860 FMO GS-OX1 flavin-monooxygenase glucosinolate s-oxygenase 0.701 stress 

At1g62560 FMO GS-OX3 flavin-monooxygenase glucosinolate s-oxygenase 0.727 stress 

At4g12030 BAT5 bile acid:sodium symporter 0.754 hormone 

At3g58990 IPMI1 isopropylmalate isomerase  0.707 hormone 

At2g43100 IPMI2 isopropylmalate isomerase  0.731 hormone 

At1g31180 IPMDH1 methylthioalkylmalate isomerase 0.734 hormone 

Indolic glucosinolate biosynthesis (1) 

  
At4g24670 TAR2 tryptophan aminotransferase 0.640 stress 

     
Nitrogen assimilation (9) 

   
At1g32450 NRT1.5 nitrate transporter 0.729 hormone 

At3g21670 NTP3 nitrate transporter 0.674 stress 

At1g64780 AMT1.2 ammonium transporter 0.678 hormone 

At2g15620 NIR1 nitrite reductase 0.610 hormone 

At5g04140 GLS1 ferredoxin dependant glutamate synthase 0.831 stress 

   

0.624 hormone 

At5g35630 GLN2 glutamine synthetase 0.777 stress 

At1g23310 GGAT1 L-alanine:2-oxoglutarate aminotransferase 0.759 stress 

At5g65010 ASN2 asparagine synthetase 0.864 stress 

   

0.627 hormone 

At5g47970 - nitrogen regulation family protein 0.674 stress 

     
Photosynthesis (51) 

   
At4g02770 PSAD1 photosystem I subunit 0.689 stress 

   

0.642 hormone 

At2g20260 PSAE2 photosystem I subunit 0.604 stress 

   

0.609 hormone 

At1g31330 PSAF photosystem I subunit 0.689 stress 

At1g55670 PSAG photosystem I subunit 0.688 stress 

At1g52230 PSAH photosystem I subunit 0.700 stress 

AtCg00510 PSAI photosystem I subunit 0.643 stress 

   

0.622 hormone 

AtCg00630 PSAJ photosystem I subunit 0.685 stress 
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At1g30380 PSAK photosystem I subunit 0.704 stress 

At1g08380 PSAO photosystem I subunit 0.684 stress 

At2g46820 PSAP photosystem I subunit 0.714 stress 

AtCg00570 PSBF photosystem II subunit 0.647 stress 

AtCg00710 PSBH photosystem II subunit 0.658 stress 

   

0.617 hormone 

AtCg00080 PSBI photosystem II subunit 0.669 stress 

AtCg00550 PSBJ photosystem II subunit 0.656 stress 

AtCg00070 PSBK photosystem II subunit 0.669 stress 

AtCg00560 PSBL photosystem II subunit 0.649 stress 

   

0.657 hormone 

AtCg00220 PSBM photosystem II subunit 0.680 stress 

At5g66570 PSBO1 photosystem II subunit 0.685 stress 

At3g50820 PSBO2 photosystem II subunit 0.735 stress 

At1g06680 PSBP photosystem II subunit 0.700 stress 

At4g05180 PSBQ2 photosystem II subunit 0.669 stress 

At2g30570 PSBW photosystem II subunit 0.676 stress 

At2g06520 PSBX photosystem II subunit 0.710 stress 

At4g28660 PSB28 photosystem II subunit 0.885 stress 

   

0.671 hormone 

At1g03600 - photosystem II protein 0.713 stress 

At1g05385 - photosystem II protein 0.603 stress 

At1g51400 - photosystem II protein 0.647 stress 

At4g15510 - photosystem II protein 0.772 hormone 

At3g61470 LHCA2 light harvesting complex/chlorophyll binding protein 0.685 stress 

At1g61520 LHCA3 light harvesting complex/chlorophyll binding protein 0.667 stress 

At3g47470 LHCA4 light harvesting complex/chlorophyll binding protein 0.608 stress 

At1g19150 LHCA6 light harvesting complex/chlorophyll binding protein 0.815 stress 

At1g29910 LHCB1.2 light harvesting complex/chlorophyll binding protein 0.664 stress 

At5g01530 LHCB4.1 light harvesting complex/chlorophyll binding protein 0.680 stress 

At3g08940 LHCB4.2 light harvesting complex/chlorophyll binding protein 0.604 stress 

At2g40100 LHCB4.3 light harvesting complex/chlorophyll binding protein 0.881 stress 

At4g10340 LHCB5 light harvesting complex/chlorophyll binding protein 0.689 stress 

At1g15820 LHCB6 light harvesting complex/chlorophyll binding protein 0.665 stress 

At3g17040 HCF107 high chlorophyll fluorescence phenotype 0.685 stress 

   

0.657 hormone 

At5g36170 HCF109 high chlorophyll fluorescence phenotype 0.751 stress 

At3g09650 HCF152 high chlorophyll fluorescence phenotype 0.669 stress 

At4g31560 HCF153 high chlorophyll fluorescence phenotype 0.705 stress 

At4g37200 HCF164 high chlorophyll fluorescence phenotype 0.694 stress 

At1g16720 HCF173 high chlorophyll fluorescence phenotype 0.757 stress 
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At2g18790 PHYB phytochrome B 0.628 stress 

At2g47590 PHR2 photolyase 0.813 stress 

At3g45780 PHOT1 phototropin 0.615 stress 

At2g20570 GLK1 transcription factor 0.691 stress 

At2g42610 LSH10 light sensitive hypocotyls 0.612 stress 

At1g02910 LPA1 low PSII accumulation 0.771 stress 

At5g18660 PCB2 pale-green and chlorophyll B reduced 0.610 hormone 

     
Hormone synthesis/signaling (1) 

  
At3g44300 NIT2 indole-3-acetonitrile nitrilase 0.675 stress 
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Supplemental Table 2.3 ATPS3 Expression Angler gene list.  

A representative selection of genes with expression patterns correlating (Pearsons correlation 

coefficient; R > 0.6) to those of ATPS3, as calculated using the Expression Angler tool 

(www.bar.utoronto.ca; Toufighi et al., 2005).  

 

AGI-ID Name activity 
r-value to 

Bait database 

BAIT 
    

At4g14680 ATPS3 ATP sulfurylase 1.000 

 

     
Primary sulfate assimilation (6) 

  
At5g10180 SULTR2;1 sulfate transporter 0.612 tissue 

At5g13550 SULTR4;1 sulfate transporter 0.792 hormone 

At3g22890 ATPS1 ATP sulfurylase 0.660 tissue 

   

0.741 hormone 

At4g04610 APR1 APS reductase 0.713 stress 

   

0.658 hormone 

At4g21990 APR3 APS reductase 0.755 stress 

At5g27380 GSHS/GSH2 glutathione synthetase 0.744 hormone 

     
Other sulfur metabolism (11) 

   
At3g22740 HMT3 homocysteine S-methyltransferase 0.642 hormone 

At4g21830 MSRB7 methionine sulfoxide reductase 0.798 hormone 

At4g21850 MSRB9 methionine sulfoxide reductase 0.664 hormone 

At4g11280 ACS6 SAM methylthioadenosine-lyase 0.691 stress 

At1g47990 ACS8 SAM methylthioadenosine-lyase 0.615 stress 

At4g37770 ACS8 SAM methylthioadenosine-lyase 0.673 stress 

At2g29440 GSTU6 glutathione S-transferase 0.667 hormone 

At1g69930 GSTU11 glutathione S-transferase 0.792 stress 

At5g48850 SDI1 sulfur deficiency induced 0.786 stress 

At3g49580 LSU1 response to low sulfur 0.719 stress 

At5g24660 LSU2 response to low sulfur 0.698 stress 

     
Glucosinolate biosynthesis (15) 

  
At2g14750 APK1 APS kinase 0.804 hormone 

At4g39940 APK2 APS kinase 0.625 tissue 

   

0.880 hormone 

At2g20610 SUR1 C-S lyase 0.727 hormone 

Aliphatic glucosinolate biosynthesis (3) 

  
At1g18590 SOT17 glucosinolate sulfotransferase 0.712 hormone 

At5g23010 MAM1 methylthioalkylmalate synthase 0.670 tissue 

At1g65860 FMO GS-OX1 flavin-monooxygenase glucosinolate s-oxygenase 0.680 hormone 

Indolic glucosinolate biosynthesis (9) 
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At3g54640 TRP3 tryptophan synthase 0.601 hormone 

At1g74100 SOT16 glucosinolate sulfotransferase 0.684 hormone 

At1g32640 MYC2 transcription factor 0.839 stress 

   

0.685 hormone 

At1g18570 MYB51 R2R3-type MYB transcription factor 0.679 stress 

At5g05730 ASA1 anthranilate synthase alpha subunit 0.815 hormone 

At4g39950 CYP79B2 cytochrome P450 0.700 hormone 

At2g22330 CYP79B3 cytochrome P450 0.662 hormone 

At4g31500 CYP83B1 cytochrome P450 0.626 hormone 

At1g24100 UGT74B1 UDP-glycosyltransferase 0.782 hormone 

     
Nitrogen assimilation (2) 

   
At1g37130 NR2 nitrate reductase 0.622 tissue 

At5g65010 ASN2 asparagine synthetase 0.642 tissue 

     
Hormone synthesis/signaling (25) 

  
At5g42650 AOS allene oxide synthase (jasmonate biosynthesis) 0.755 hormone 

At3g25760 AOC1 allene oxide cyclase (jasmonate biosynthesis) 0.748 hormone 

At3g25780 AOC3 allene oxide cyclase (jasmonate biosynthesis) 0.682 stress 

At2g24850 TAT3 tyrosine aminotransferase (jasmonate responsive) 0.726 hormone 

At1g19180 JAZ1 jasmonate ZIM-domain protein 0.645 stress 

   

0.740 hormone 

At1g74950 JAZ2 jasmonate ZIM-domain protein 0.771 stress 

   

0.690 hormone 

At3g17860 JAZ3 jasmonate ZIM-domain protein 0.623 hormone 

At1g17380 JAZ5 jasmonate ZIM-domain protein 0.884 stress 

   

0.642 hormone 

At1g72450 JAZ6 jasmonate ZIM-domain protein 0.759 hormone 

At1g30135 JAZ8 jasmonate ZIM-domain protein 0.624 hormone 

At1g70700 JAZ9 jasmonate ZIM-domain protein 0.751 hormone 

At5g13220 JAZ10 jasmonate ZIM-domain protein 0.796 stress 

   

0.734 hormone 

At3g23240 ERF ethylene responsive binding factor 0.781 stress 

At4g17500 ERF ethylene responsive binding factor 0.767 stress 

At5g47220 ERF2 ethylene responsive binding factor 0.828 stress 

At4g17490 ERF6 ethylene responsive binding factor 0.770 stress 

At2g44840 ERF13 ethylene responsive binding factor 0.843 stress 

At5g61600 ERF104 ethylene responsive binding factor 0.641 stress 

At3g23230 - ethylene responsive binding factor 0.856 stress 

At3g15540 IAA19 indole-3-acetonitrile inducible transcription factor 0.709 stress 

At3g62100 IAA30 indole-3-acetonitrile inducible transcription factor 0.764 stress 



86 

 

At1g04240 SHY2 indole-3-acetonitrile inducible transcription factor 0.659 tissue 

At1g51760 IAR indole-3-acetonitrile resistant 0.798 hormone 

At2g46510 AIB abscisic acid inducible 0.712 stress 

   

0.652 hormone 

At3g50750 BEH1 brassinosteroid signalling positive regulator 0.608 tissue 

      0.608 tissue 
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Supplemental Table 2.3 ATPS4 Expression Angler gene list.  

A representative selection of genes with expression patterns correlating (Pearsons correlation 

coefficient; R > 0.6) to those of ATPS4, as calculated using the Expression Angler tool 

(www.bar.utoronto.ca; Toufighi et al., 2005).  

 

AGI-ID Name activity 
r-value to 

Bait database 

BAIT 
    

At5g43780 ATPS4 ATP sulfurylase 1 

 

     
Primary sulfate assimilation (4) 

  
At1g78000 SULTR1;2 sulfate transporter 0.827 stress 

At5g56760 SAT1;1 serine acetyltransferase 0.754 stress 

At3g59760 OASTL C O-acetylserine (thiol) lyase 0.656 stress 

At3g22460 OASTL A1 O-acetylserine (thiol) lyase 0.806 stress 

     
Other sulfur metabolism (46) 

   
At5g43690 SOT1 sulfotransferase 0.819 stress 

At3g45070 SOT5 sulfotransferase 0.702 stress 

At1g13420 SOT8 brassinosteroid sulfotransferase 0.622 stress 

At1g13430 SOT9 brassinosteroid sulfotransferase 0.748 stress 

At5g66170 ST18 sulfurtransferase 0.704 stress 

At5g46340 - O-acetyltransferase-related 0.772 stress 

At4g36880 CP1 cysteine proteinase 0.748 stress 

At5g43060 - cysteine proteinase 0.928 stress 

At3g48350 - cysteine proteinase 0.72 hormone 

At5g05110 - cysteine proteinase inhibitor 0.768 tissue 

At4g35350 XCP1 xylem cysteine peptidase 0.818 stress 

At5g63910 FCLY farnesylcysteine lyase 0.674 stress 

At1g67810 SUFE2 cysteine desulfurase activation 0.681 stress 

At3g25900 HMT1 homocysteine S-methyltransferase 0.689 stress 

At3g63250 HMT2 homocysteine S-methyltransferase 0.795 stress 

At4g13940 SAHH1 S-adenosyl-L-homocysteine hydrolase 0.772 stress 

At2g45240 MAP1A methionine aminopeptidase 0.81 stress 

At2g44180 MAP2A methionine aminopeptidase 0.82 stress 

At3g59990 MAP2B methionine aminopeptidase 0.775 stress 

At5g07460 MSRA2 methionine sulfoxide reductase 0.724 tissue 

At5g07470 MSRA3 methionine sulfoxide reductase 0.728 stress 

At4g04830 MSRB5 methionine sulfoxide reductase 0.673 stress 

At4g29840 MTO2 methionine over-accumulator 0.62 stress 

At1g02500 SAM1 S-adenosylmethionine synthetase 0.747 stress 

At4g01850 SAM2 S-adenosylmethionine synthetase 0.837 stress 

At5g38020 - S-adenosyl-L-methionine:carboxyl methyltransferase 0.659 stress 
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At5g37990 - S-adenosylmethionine-dependent methyltransferase 0.65 stress 

At4g29210 GGT4 glutathione gamma-glutamylcysteinyltransferase 0.724 stress 

At1g03980 PCS2 phytochelatin synthase 0.717 stress 

At2g43350 GPX3 glutathione peroxidase 0.691 stress 

At3g63080 GPX5 glutathione peroxidase 0.779 stress 

At1g15380 - lactoylglutathione lyase 0.896 stress 

At1g02950 GSTF4 glutathione S-transferase 0.851 stress 

At2g30870 GSTF10 glutathione S-transferase 0.642 stress 

At5g17220 GSTF12 glutathione S-transferase 0.613 hormone 

At1g49860 GSTF14 glutathione S-transferase 0.733 stress 

At5g41220 GSTT3 glutathione S-transferase 0.754 stress 

At2g29490 GSTU1 glutathione S-transferase 0.746 stress 

At2g29420 GSTU7 glutathione S-transferase 0.779 stress 

At3g09270 GSTU8 glutathione S-transferase 0.799 stress 

   

0.708 hormone 

At1g27140 GSTU14 glutathione S-transferase 0.729 stress 

At1g10370 GSTU17 glutathione S-transferase 0.72 hormone 

At1g78360 GSTU21 glutathione S-transferase 0.782 stress 

At1g78340 GSTU22 glutathione S-transferase 0.627 stress 

At1g17190 GSTU26 glutathione S-transferase 0.745 stress 

At2g02390 GSTZ1 glutathione S-transferase 0.848 stress 

     
Glucosinolate biosynthesis (3) 

  
Aliphatic glucosinolate biosynthesis (3) 

  
At5g23020 MAM3 methylthioalkylmalate synthase 0.745 stress 

Indolic glucosinolate biosynthesis (9) 

  
At5g60890 MYB34 R2R3-type MYB transcription factor 0.674 stress 

At1g74080 MYB122 R2R3-type MYB transcription factor 0.641 stress 

     
Nitrogen assimilation (9) 

   
At1g32450 NRT1.5 nitrate transporter 0.856 stress 

At1g69850 NRT1.2 nitrate transporter 0.734 stress 

At1g53310 PEPC1 phosphoenolpyruvate carboxylase 0.823 stress 

At3g14940 PEPC3 phosphoenolpyruvate carboxylase 0.843 stress 

At5g53460 GLT1 NADH dependant glutamate synthase 0.84 stress 

At2g41220 GLU2 ferredoxin dependant glutamate synthase 0.909 stress 

At5g18170 GDH1 glutamate dehydrogenase 0.812 stress 

At5g07440 GDH2 glutamate dehydrogenase 0.843 stress 

At1g62800 ASP4 aspartate aminotransferase 0.834 stress 

     
Photosynthesis (1) 
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At1g78815 LSH7 light sensitive hypocotyls 0.662 tissue 

     
Hormone synthesis/signaling (35) 

  
At1g13280 AOC4 allene oxide cyclase (jasmonate biosynthesis) 0.653 stress 

At3g44320 NIT3 indole-3-acetonitrile nitrilase 0.832 stress 

At5g20960 AAO1 indole-3-acetaldehyde oxidase 0.924 stress 

At3g02260 ASA1 polar auxin transport 0.741 stress 

At5g01240 LAX1 auxin influx carrier 0.607 tissue 

At4g27260 GH3.5 indole-3-acetonitrile-amido synthase 0.607 stress 

At1g28130 GH3.17 indole-3-acetonitrile-amido synthase 0.696 hormone 

At5g56650 ILL1 indole-3-acetonitrile-amino acid hydrolase 0.746 stress 

At5g54140 ILL3 indole-3-acetonitrile-amino acid hydrolase 0.859 stress 

At5g65670 IAA9 indole-3-acetonitrile inducible transcription factor 0.854 stress 

At4g28640 IAA11 indole-3-acetonitrile inducible transcription factor 0.629 tissue 

At2g33310 IAA13 indole-3-acetonitrile inducible transcription factor 0.76 tissue 

   

0.674 stress 

At1g19220 IAA22 indole-3-acetonitrile inducible transcription factor 0.683 tissue 

At3g16500 IAA26 indole-3-acetonitrile inducible transcription factor 0.68 tissue 

At4g29080 IAA27 indole-3-acetonitrile inducible transcription factor 0.747 tissue 

At5g25890 IAA28 indole-3-acetonitrile inducible transcription factor 0.646 tissue 

   

0.852 stress 

At1g17350 - indole-3-acetonitrile inducible transcription factor 0.785 stress 

At1g19850 ARF5 indole-3-acetonitrile inducible transcription factor 0.641 stress 

At5g20730 ARF7 indole-3-acetonitrile inducible transcription factor 0.659 stress 

At4g23980 ARF9 indole-3-acetonitrile inducible transcription factor 0.656 stress 

At4g30080 ARF16 indole-3-acetonitrile inducible transcription factor 0.843 stress 

At1g19220 ARF indole-3-acetonitrile inducible transcription factor 0.709 stress 

At4g29080 ARF indole-3-acetonitrile inducible transcription factor 0.707 stress 

At5g47530 - auxin-responsive protein 0.633 stress 

At3g02875 ILR1 indole-3-acetonitrile-leucine resistant 0.705 stress 

At2g38120 AUX1 auxin resisitant 0.619 tissue 

At1g05180 AXR1 auxin resisitant 0.773 stress 

At1g54990 AXR4 auxin resisitant 0.781 stress 

At1g80680 SAR3 suppressor of auxin resistance 0.657 stress 

At1g16540 ABA3 molybdopterin cofactor sulfurase (ABA biosynthesis) 0.793 stress 

At1g49720 ABF1 abscisic acid responsive element 0.611 tissue 

At5g48870 SAD1 abscisic acid sensitive 0.627 stress 

At5g13680 ABO1 abscisic acid sensitive 0.615 stress 

At1g55870 AHG2 abscisic acid sensitive 0.614 stress 

At2g40940 ERS1 ethylene response sensor 0.815 stress 
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3. ATPS GENES ARE ESSENTIAL FOR GLUCOSINOLATE 

BIOSYNTHESIS 

 

3.1.  INTRODUCTION 

Glucosinolates are sulfur-rich, amino-acid derived secondary metabolites involved in 

defence against biotic stress in plants of the order Brassicaceae (Fahey et al., 2001; Halkier 

and Gershenzon, 2006). The final step in the biosynthesis of glucosinolates, the sulfation of 

desulfo-glucosinolate precursors, is important for the function of glucosinolates (Ratzka et 

al., 2002). Biosynthesis of glucosinolates is induced in response to attack by a range of 

herbivores, and pathogens (Mewis et al., 2006; Bednarek et al., 2009; Clay et al., 2009). 

This response is mediated at least in part through hormone responses. Therefore, a 

number of studies have investigated the effect of hormone treatments on glucosinolate 

levels, revealing that jasmonates, SA, and ET interact to regulate production of these plant 

defence compounds (Schenk et al., 2000; Glazebrook et al., 2003; Mikkelsen et al., 2003; 

Mewis et al., 2005; Sasaki-Sekimoto et al., 2005). In particular, MeJa has been shown to 

regulate several processes in glucosinolate biosynthesis, including genes of primary 

sulfate assimilation (Jost et al., 2005). Glucosinolate synthesis is regulated by jasmonates 

through the action of a group of R2R3-MYB transcription factors (Gigolashvili et al., 2007a; 

Gigolashvili et al., 2007b; Gigolashvili et al., 2008). 

 

The efficiency of the glucosinolate response during herbivore or pathogen attack is 

dependent upon the coordinated up-regulation of the relevant steps of biosynthesis. 

Glucosinolate biosynthesis is regulated by a complex network of transcription factors 

(Celenza et al., 2005; Levy et al., 2005; Maruyama-Nakashita et al., 2006; Skirycz et al., 
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2006; Gigolashvili et al., 2007a; Gigolashvili et al., 2007b; Hirai et al., 2007; Sønderby et al., 

2007; Gigolashvili et al., 2008; Malitsky et al., 2008). The best characterised of these 

belong to the R2R3-MYB family, and are responsible for the coordinated up-regulation of 

multiple glucosinolate genes (Celenza et al., 2005; Hirai et al., 2007; Sønderby et al., 2007). 

The MYB factors can be divided into two groups, controlling biosynthesis of either 

aliphatic or indolic glucosinolates at multiple levels (Figure 3.1.1; Gigolashvili et al., 2007a; 

Gigolashvili et al., 2007b; Sønderby et al., 2007; Gigolashvili et al., 2008). The first group, 

MYB28, MYB76, and MYB29, alternatively named high aliphatic glucosinolate (HAG) 1-3, 

respectively, is involved in the control of aliphatic glucosinolate biosynthesis (Gigolashvili 

et al., 2007b; Hirai et al., 2007; Sønderby et al., 2007; Gigolashvili et al., 2008). The second 

group, consisting of MYB51, MYB122, and MYB34, otherwise known as high indolic 

glucosinolate (HIG)-1, -2, and -3 (also named ATR1), respectively, control the biosynthesis 

of indolic glucosinolates (Celenza et al., 2005; Gigolashvili et al., 2007a). 

 

 
Figure 3.1 Phylogenetic tree of the six group 12 MYB factors 

The two clades are highlighted. Phylogenetic tree taken from Gigolashvili et al. (2007a) 

 

During sulfur deficiency, a number of genes involved in glucosinolate biosynthesis are 

negatively regulated, whilst others, such as myrosinases, sulfate transporters, and 

nitrilases, involved in the remobilization of the sulfur stored in glucosinolates are up-

regulated (Kutz et al., 2002; Maruyama-Nakashita et al., 2003; Hirai et al., 2004; Nikiforova 

et al., 2005; Falk et al., 2007; Schonhof et al., 2007). The SLIM1 transcription factor, a 

Sub-group 12

Indolic

Aliphatic

Sub-group 12

Indolic

Aliphatic
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Indolic
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central regulator in sulfur response, is at least partially responsible for these changes 

(Maruyama-Nakashita et al., 2006), showing that regulation of sulfate assimilation and 

glucosinolate biosynthesis is tightly coordinated. Recently, the importance of this 

coordinated regulation was compounded through the discovery that two APK isoforms, 

APK1 and APK2, are essential for the production of sulfated secondary metabolites, 

including glucosinolates (Mugford et al., 2009). Large scale transcriptomics projects have 

shown that the glucosinolate MYB factors may regulate genes of primary sulfate 

assimilation including these two APK genes, and more surprisingly, ATPS1 and ATPS3 

genes, (Sønderby et al., 2007; Malitsky et al., 2008). Further, analysis of public microarray 

data using the Expression Angler tool provided evidence for a link between the ATPS 

genes and glucosinolate biosynthesis (Chapter 2, discussed in this chapter). Therefore, we 

investigated the role of the ATPS genes in the provision of activated sulfur for 

glucosinolate sulfation reactions. We provide direct evidence that the ATPS genes are 

indeed regulated by the glucosinolate MYB factors, and are thus part of the glucosinolate 

biosynthesis network.  
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3.2.  MATERIALS AND METHODS 

3.2.1. Plant Material and Growth Conditions 

A. thaliana ecotype Col-0 was used as the wild-type for all experiments unless otherwise 

stated. The MYB factor gain-of-function and loss-of-function mutants were kindly provided 

by Tamara Gigolashvili, University of Cologne, Germany (for list of mutants see Table 3.1). 

The construction and selection of the MYB factor transgenic plants was described 

previously (Gigolashvili et al., 2007a; 2007b; 2008). For expression analysis by qPCR, 

biochemical analysis, and measurement of thiols and glucosinolates, wild-type Col-0 and 

the MYB transgenic plants were grown in soil in a controlled environment room under 

short-day conditions (8 h light, 16 h dark) at 22–25°C and 40% humidity. The MYB28-

RNAi line used accumulated ca. 20% of WT transcript levels. 

 

    Gain-of-function Loss-of-function   

Gene AGI code Line Name Line Name Reference 

MYB28 

(HAG1) 
At5g61420 Pro35S:MYB28-15 MYB28_ox MYB28-RNAi-10 

MYB28-

RNAi 
Gigolashvili et al., 2007b 

MYB76 

(HAG2) 
At5g07700 Pro35S:MYB76-23 MYB76_ox SALK_N55242 

myb76 

(hag2) 
Gigolashvili et al., 2008 

MYB29 

(HAG3) 
At5g07690 Pro35S:MYB29-6 MYB29_ox GK_040H12 

myb29 

(hag3) 
Gigolashvili et al., 2008 

MYB51 

(HIG1) 
At1g18570 HIG1-1D MYB51_ox GK_228B12 

myb51 

(hig1-1) 
Gigolashvili et al., 2007a 

MYB122 

(HIG2) 
At1g74080 Pro35S:MYB122-11 MYB122_ox SALK_039228 myb122 

Gigolashvili et al., 2007a; 

Gigolashvili unpublished 

MYB34 

(HIG3) 
At5g60890 Pro35S:ATR1-17 MYB34_ox WisDSLox424F3 myb34 

Gigolashvili et al., 2007a; 

Gigolashvili unpublished 

Table 3.1 Transgenic MYB lines used in this study 

 

For glucosinolate analysis in ATPS loss-of-function mutants Col-0 and the three ATPS T-

DNA insertion mutants, atps1, atps2 and atps3-1 were grown on soil in a controlled 

environment chamber under a 10-h-light/14-h-dark short-day cycle, at a constant 

temperature of 22°C, 60% relative humidity and light intensity of 160µmol m-2 s-1. 
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3.2.2. Cloning of Promoters of ATPS Genes 

To generate reporter constructs for the trans-activation assay, the promoter regions of the 

ATPS genes [5 kbp (ATPS1 and ATPS4) and 2.5 kbp (ATPS2 and ATPS3) upstream of the 

ATG] were amplified from genomic DNA of A. thaliana and cloned into the Gateway entry 

vector pDONR207 as described in Chapter 2.2.4. The promoter sequences were then 

subcloned into the binary plant transformation vector pGWB3i resulting in translational 

fusions with the GUS reporter gene. The fragments were fully sequenced to confirm their 

identity. As effectors, the constructs Pro35S:MYB28, Pro35S:MYB76, Pro35S:MYB29, 

Pro35S:MYB51, Pro35S:MYB122, and Pro35S:MYB34 were used as described previously 

(Gigolashvili et al., 2007a; Gigolashvili et al., 2007b; Gigolashvili et al., 2008). 

 

3.2.3. Trans-activation Assay Cell Culture 

An Arabidopsis Col-0 root cell suspension culture was grown for the trans-activation 

assays in 50 ml A. thaliana (AT) medium (4.3 g l−1 MS basal salt media (Duchefa), 1 mg l−1 

2,4-dichlorophenoxyacetic acid (2,4-D), 4 ml of vitamin B5 mixture (Sigma) and 30 g l−1 

sucrose, pH 5.8). Suspension cell culture was diluted weekly to 1 : 4 or 1 : 5 with fresh AT 

media and gently agitated at 150 rpm in the dark at 22°C (Hartmann et al., 1998). 

 

3.2.4. Trans-activation Assays 

The reporter and effector constructs were used to transform the supervirulent 

Agrobacterium strain LBA4404.pBBR1MCS.virGN54D (kindly provided by Dr Memelink, 

University of Leiden, Netherlands). For transient expression assays in the cell culture, 

Agrobacteria containing the effector constructs, the anti-silencing 19-K protein or one of 

the reporter constructs were taken from fresh yeast extract broth (YEB) plates, grown 

overnight, and resuspended in 1 ml AT medium. The Agrobacteria were mixed in a 1 : 1 : 1 

ratio, and 75 µl of this suspension was added to 3 ml cultured A. thaliana root cells. The 
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transfected cell cultures were then grown for 3–5 or 7 days in the dark. To stain for GUS 

expression, cells were treated with 500 µl X-Glc staining solution (50 mM NaH2PO4, pH 7.0, 

1 mM X-Gluc) for 1 hr to overnight at 37°C without shaking (Berger et al., 2007). 

 

3.2.5. RNA Extraction and Expression Analysis 

Expression of the four ATPS genes was analysed by real-time qPCR. Total RNA was 

isolated from 5-week old rosette leaves using TRIsure (Bioline, Luckenwalde, Germany), 

and cDNA produced by reverse transcription using the FirstStrand cDNA Synthesis SSII kit 

(Bioline) according to the manufacturer's instructions. Subsequently, the cDNA was used 

as a template for qPCR with gene-specific primers (for primer sequences see Table 3.2). 

The Arabidopsis ACTIN2 gene was used as a reference. qPCR was performed using the 

SYBR Green master mix (Applied Biosystems), according to the manufacturer's 

instructions, in a GeneAmp 5700 sequence detection system (Applied Biosystems, 

Darmstadt, Germany). The Ct, defined as the PCR cycle at which a statistically significant 

increase of reporter fluorescence is detected, was used as a measure of the transcript level 

of the target gene. Relative quantification of expression levels was performed using the 

comparative Ct method (manufacturer's instructions, bulletin 2, Applied Biosystems). 

Three independent RNA preparations from independently grown plants were analyzed 

with two technical replicates for the qPCR. 

 

Gene AGI number Forward primer (5’-3’) Reverse primer (5’-3’) 

ACTIN2 At3g18780 atggaagctgctggaatccac ttgctcatacggtcagcgatg 

ATPS1 At3g22890 cccgccagacggttttatgt acttctggtagtctaccattaccgc 

ATPS2 At1g19920 cagatcctcttacgtttctcacatca ggttggtgaaagaggatggttttg 

ATPS3 At4g14680 gagagaacccaccagatggattta tccggttagtgtcaaactgtcgtag 

ATPS4 At5g43780 ttcttcagcagcagccatcg acgagaagcatgatggttatgga 

Table 3.2 Gene specific primers for quantitative RT-PCR analysis of ATPS 
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3.2.6. ATPS Activity Assay 

ATPS activity was measured in the reverse reaction as APS and pyrophosphate-dependent 

formation of ATP (Figure 3.2.1; Cumming et al., 2007). Total protein was isolated from 5-

week old rosette leaves by homogenization in 1:20 (w/v) of 50 mM Na/K phosphate buffer 

pH 8.0 supplemented with 30 mM Na2SO3, 0.5 mM 5’-AMP, and 10 mM DTE. The extract 

was centrifuged for 30 sec at 2,000 rpm to remove cell debris, and the protein 

concentration was determined by Bio-Rad protein assay with bovine serum albumin as a 

standard.  

 

 

Figure 3.2 Reaction equation of the ATPS activity assay 
 

To measure activity, 40 µl of protein extract was mixed with 230 µl of reaction mix (for 

composition see Table 3.3) in a flat bottom 96 well polystyrene microplate (Greiner Bio-

One).  

 

Concentration Component (abbr.) Volume/230 µl 

- dH2O 152.5 µl 

1 M 2-amino-2-(hydroxymethyl)-1,3-propanediol (Tris) - HCl, pH 8.0 15 µl 

100 mM Magnesium chloride (MgCl2) 15 µl 

100 mM D-Glucose  15 µl 

6 mM β-Nicotinamide adenine dinucleotide hydrate (NAD+) 15 µl 

3.75 mM Adenosine 5′-phosphosulfate sodium salt (APS) 7.5 µl 

1 u µl-1 Hexokinase from Saccharomyces cerevisiae, Type III (HK) 5 µl 

1 u µl-1 Glucose-6-phosphate dehydrogenase (G-6-PDH) 5 µl 

Table 3.3 Composition of reaction mix for ATPS activity assay 
 

Glucose + ATP Glucose-6-

phosphate

6-phosphoglucono-δ-lactone

PPi + APS SO4
2-

NAD NADH ABS340nm

Hexokinase

Glucose-6-phosphate dehydrogenase

ATPS

Glucose + ATP Glucose-6-

phosphate

6-phosphoglucono-δ-lactone

PPi + APS SO4
2-PPi + APS SO4
2-

NAD NADH ABS340nm

Hexokinase

Glucose-6-phosphate dehydrogenase

ATPS



 

NADH production was measured at 340 nm using a 

spectrophotometer. Background absorbance was measured for 3 min before the reaction 

was initiated by the addition of 30 µl 10 mM sodium pyrophosphate. Progress of the 

reaction was then measured for a further 3 min at 340 nm. 

min-1 mg-1 from three biological replicates. 

 

3.2.7. HPLC Analysis of Low Molecular Weight Thiols 

The low molecular weight thiols, cysteine and glutathione, were extracted from 20

of leaf material and analysed as described 

 

3.2.8. Screening of T

Homozygous atps1 T-DNA insertion mutant seeds, line GABI850C05, were kindly donated 

by Naoko Yoshimoto, RIKEN institute, Japan (for further details see Chapter 2.2.2). An 

atps2 T-DNA insertion mutant

(SAIL775D12) and an individual 

Figure 3.3; SAIL312A08) were o

selected by PCR. All three mutant lines were in the Col

Arabidopsis thaliana.  

 

 
Figure 3.3 atps3-1 T-DNA insertion line

Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

and exons respectively. The large black arrow head indicates the position of the 

insertion. The T-DNA insertion site of the 

 

NADH production was measured at 340 nm using a SpectraMax 340PC

spectrophotometer. Background absorbance was measured for 3 min before the reaction 

was initiated by the addition of 30 µl 10 mM sodium pyrophosphate. Progress of the 

reaction was then measured for a further 3 min at 340 nm. Activity was calculated as nmol 

from three biological replicates.  

HPLC Analysis of Low Molecular Weight Thiols  

The low molecular weight thiols, cysteine and glutathione, were extracted from 20

of leaf material and analysed as described in Chapter 2.2.7.  

Screening of T-DNA Insertion Mutants 

DNA insertion mutant seeds, line GABI850C05, were kindly donated 

by Naoko Yoshimoto, RIKEN institute, Japan (for further details see Chapter 2.2.2). An 

DNA insertion mutant line identical to that described in Chapter 2.2.2 

(SAIL775D12) and an individual atps3 mutant line designated atps3

; SAIL312A08) were obtained from the NASC and homozygous lines were 

selected by PCR. All three mutant lines were in the Col-0 ecotype background of 

 

DNA insertion line 

Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

and exons respectively. The large black arrow head indicates the position of the 

DNA insertion site of the atps3 mutant used in Chapter 2 is depicted in grey.
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SpectraMax 340PC384 microplate 

spectrophotometer. Background absorbance was measured for 3 min before the reaction 

was initiated by the addition of 30 µl 10 mM sodium pyrophosphate. Progress of the 

Activity was calculated as nmol 

The low molecular weight thiols, cysteine and glutathione, were extracted from 20-30 mg 

DNA insertion mutant seeds, line GABI850C05, were kindly donated 

by Naoko Yoshimoto, RIKEN institute, Japan (for further details see Chapter 2.2.2). An 

line identical to that described in Chapter 2.2.2 

atps3-1 ( 

btained from the NASC and homozygous lines were 

0 ecotype background of 

 

Grey lines represent the untranslated region, while black lines and blue boxes represent introns 

and exons respectively. The large black arrow head indicates the position of the atps3-1 T-DNA 

mutant used in Chapter 2 is depicted in grey. 
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The putative mutants were grown on soil in a standard glass house. Homozygous mutants 

were identified using the LBb1 primer and an appropriate gene-specific primer (Table 

3.4). Crude DNA extractions were prepared from young rosette leaves by homogenisation 

in 400 µl extraction buffer (200 mM Tris-HCl, pH 7.5, 250 mM NaCl, 25mM EDTA and 0.5% 

SDS). Samples were vortexed for 10 sec and spun at 13,000 rpm for 5 min. The 

supernatant (300 µl) was mixed 1:1 with isopropanol in a fresh tube. Samples were 

vortexed briefly and spun at 13,000 rpm for 5 min. Pellets were washed in 70% ethanol, 

dried, and re-suspended in 100 µl sterile dH2O. PCR amplification was carried out on 2.5 µl 

of crude extract in a 25 µl reaction using GoTaq Flexi DNA Polymerase (Promega) in 

accordance with the manufacturer’s instructions.  

 

Name Sequence 

LBb1 gcgtggaccgcttgctgcaact 

ATPS3 Fw ggttgggctagtcctcttcg  

ATPS2 Fw tctcaatttggtctataaacg  

Table 3.4 Gene specific primers used in screening for homozygous mutants 
 

To verify the absence of ATPS transcripts in the T-DNA lines, total RNA was isolated from 

young leaves by phenol:chloroform:isoamylalcohol (25:24:1) extraction and LiCl 

precipitation (Chapter 2.2.12; Sambrook et al., 1989). To produce the cDNA template, 

aliquots of 500 ng RNA were reverse transcribed using SuperScriptII Reverse 

Transcriptase (Invitrogen) according to the manufacturer’s instructions. PCR was carried 

out using 1 µl cDNA template with GoTaq Flexi DNA Polymerase in a 25 ml reaction 

volume with primers specific to the individual genes and 34 amplification cycles. 

 

3.2.8 Glucosinolate Analysis 

Quantification of the glucosinolates was carried out according to the protocol described by 

Burow et al. (2006). Glucosinolates were extracted from 20-30 mg of ground freeze-dried 

leaf material with 1.5 ml hot 70% methanol (v:v) for 45 min at 70°C with occasional 
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mixing. 0.05 µmol of Sinigrin were added as an internal standard. After cooling, the extract 

was centrifuged at 4,000 rpm for 5 min to remove cell debris. 1 ml of the supernatant was 

loaded onto columns of DEAE Sephadex (Sigma) and the columns were washed twice with 

dH2O and twice with 0.02 M sodium acetate. Bound intact glucosinolates were desulfated 

with 60 U of sulfatase (Sigma) overnight. After elution from the column with 1.25 ml dH2O, 

desulfo-glucosinolates were separated by reverse-phase HPLC. Quantification was by UV 

absorption at 229 nm and was calculated as in Equation 1, relative to the internal standard 

and using response factors (Table 3.5) in accordance with the International Standard: Part 

1 (1992). Identity of intact glucosinolates in the plant extracts was confirmed by liquid 

chromatography–mass spectrometry on a Bruker Esquire 6000 ion trap mass 

spectrometer (Bruker Daltonics). 

 

 

 Ag   x   n   x   Kg   =   µmol g-1 DW 

   As        m 

 

Equation 1 Glucosinolate calculation: ‘Ag’ is the peak corresponding to the desulfo-glucosinolate; 

‘As’ is the peak area corresponding to desulfosinigrin; ‘Kg’ is the response factor of the desulfo-

glucosinolate; ‘m’ is the mass in grams of the sample; and ‘n’ is the quantity, in micromoles, of 

internal standard added. 

 

 

  Glucosinolate Response factor 

Aliphatic 

3MSOP 1.07 

4MSOB 1.07 

5MSOP 1.07 

6MSOH 1.00 

7MSOH 1.00 

8MSOO 1.00 

4MTB 1.00 

   

Indolic 

I3M 0.29 

4MOI3M 1.00 

1MOI3M 1.00 

4OHI3M 0.28 

Table 3.5 Glucosinolate response factors 
The response factors used in this study were taken from the International Standard: Part 1 (1992). 

Where unknown, the response factor has been set at 1.00. 
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3.2.9 Determination of flux through sulfate assimilation 

The flux through sulfate assimilation was measured as incorporation of 35S from 

[35S]sulfate to thiols and proteins essentially as described in Chapter 2.2.8. Col-0, 

MYB51_ox, and myb51 plants were grown for 14 days on vertical MS-phytogel plates. The 

plants were transferred into 24-well plates containing 2 ml of MS nutrient solution 

adjusted to sulfate concentration of 0.2 mM and supplemented with 5.6 μCi [35S]sulfate 

(Hartmann Analytic) to specific activity of 1,860 kBq (nmol sulfate)-1 and incubated in 

light for 4 hours. After incubation the seedlings were washed 3 times with 2 ml of non-

radioactive nutrient solution, carefully blotted with paper tissue, weighed, transferred into 

1.5 ml tubes, and frozen in liquid nitrogen. Plant tissue was extracted 1:10 (w/V) in 0.1 M 

HCl. Ten μl of the extract were added to 1 ml of Optiphase HiSafe3 scintillation cocktail 

(Perkin Elmer) and the radioactivity was measured in a scintillation counter (Beckmann) 

to determine sulfate uptake. The incorporation of 35S into thiols and proteins was 

measured as described in Chapter 2.2.8. 
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3.3. 3.3 RESULTS 

3.3.1. Regulation of ATPS by the glucosinolate MYB factors 

To test the hypothesis that the glucosinolate MYB transcription factors have the potential 

to activate the ATPS genes in Arabidopsis, we used a co-transformation assay developed 

by Berger et al. (2007). Arabidopsis cell cultures were co-transformed with constructs 

expressing the uidA (GUS) reporter gene under control of the four ATPS promoters, and 

constructs expressing the six MYB transcription factors. Histochemical staining of GUS in 

the transformed cells revealed activation of the ATPS1 and ATPS3 promoters by all six 

MYB factors (Figure 3.4). However, the strength of the activation was not equal for all the 

MYB factors. The ATPS1 promoter was more strongly activated by MYB28, MYB76 and 

MYB29, the aliphatic glucosinolate transcription factors. The opposite was true for the 

ATPS3 promoter, which was more strongly activated by MYB51, MYB122 and MYB34, the 

indolic glucosinolate transcription factors. No GUS staining was detected in cells 

expressing the reporter gene under control of the ATPS2 or ATPS4 promoters, indicating 

that they are not activated by the MYB factors, or that activation is below the detection 

level of the assay.  

 

The trans-activation assay showed that the six MYB factors are capable of activating the 

ATPS1 and ATPS3 promoters. In order to understand the biological significance of these 

interactions in vivo, we used qPCR to investigate the steady-state mRNA levels of the four 

ATPS genes in the leaves of transgenic plants constitutively overexpressing the MYB 

factors (see Table 3.1 for a list of transgenic lines; (Gigolashvili et al., 2007a; 2007b; 2008). 

In comparison with the wild-type, qPCR analysis of these lines indicated 17x, 110x and 7x 

higher transcript accumulation of the overexpressed gene in the leaves of MYB28_ox, 

MYB76_ox, and MYB29_ox plants respectively. MYB51_ox, MYB122_ox, and MYB34_ox 

lines showed 40-, 8- and 26-fold increases in the relevant transcripts, respectively.  



 

 

Figure 3.4 Transactivation assay

The promoters of all four ATPS isoforms were fused to the 

thaliana Col-0 cells were inoculated with the supervirulent 

LBA4404.pBBR1MCS.virGN54D containing either only the reporter construct (No TF) or the 

reporter construct and, in addition, 

activation of a promoter by an effector.

Germany where Ruslan Yatusevich

 

ATPS1 and ATPS3 transcript levels increased substantially in all six MYB overexpressing 

lines (Figure 3.5 A + B). However, 

those of ATPS3 in transgenic lines overexpressing the aliphatic MYB factors. The opposite 

was true in lines overexpressing the indolic MYB factors, where a greater increase was 

seen in ATPS3 transcript accumulation. This is in agreement with the results of the trans

activation assay, which showed higher activation of the 

MYB factors and the 

accumulation of ATPS1

mRNA levels in MYB76_ox, MYB122_ox and MYB34_ox. A small increase in 

transcript accumulation was also detected in the indolic MYB factor overexpression lines, 

MYB51_ox, MYB122_ox, and MYB34_ox. 

 

Transactivation assay of the ATPS promoters with MYB transcription factors.

The promoters of all four ATPS isoforms were fused to the uidA (GUS) reporter gene. Cultured 

0 cells were inoculated with the supervirulent 

LBA4404.pBBR1MCS.virGN54D containing either only the reporter construct (No TF) or the 

reporter construct and, in addition, Pro35S:MYB effector constructs. GUS staining indicates 

activation of a promoter by an effector. Constructs were provided to the Flügge laboratory, Cologne, 

Ruslan Yatusevich carried out the transactivation assay. 

transcript levels increased substantially in all six MYB overexpressing 

A + B). However, ATPS1 transcripts accumulated to higher levels than 

in transgenic lines overexpressing the aliphatic MYB factors. The opposite 

was true in lines overexpressing the indolic MYB factors, where a greater increase was 

transcript accumulation. This is in agreement with the results of the trans

ivation assay, which showed higher activation of the ATPS1 promoter by the aliphatic 

MYB factors and the ATPS3 promoter by the indolic MYB factors. In addition to the 

ATPS1 and ATPS3 mRNA, very slight increases were detected in 

evels in MYB76_ox, MYB122_ox and MYB34_ox. A small increase in 

transcript accumulation was also detected in the indolic MYB factor overexpression lines, 

MYB51_ox, MYB122_ox, and MYB34_ox.  
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of the ATPS promoters with MYB transcription factors. 

) reporter gene. Cultured A. 

0 cells were inoculated with the supervirulent Agrobacterium strain 

LBA4404.pBBR1MCS.virGN54D containing either only the reporter construct (No TF) or the 

effector constructs. GUS staining indicates trans-

Flügge laboratory, Cologne, 

transcript levels increased substantially in all six MYB overexpressing 

transcripts accumulated to higher levels than 

in transgenic lines overexpressing the aliphatic MYB factors. The opposite 

was true in lines overexpressing the indolic MYB factors, where a greater increase was 

transcript accumulation. This is in agreement with the results of the trans-

promoter by the aliphatic 

promoter by the indolic MYB factors. In addition to the 

mRNA, very slight increases were detected in ATPS2 

evels in MYB76_ox, MYB122_ox and MYB34_ox. A small increase in ATPS4 

transcript accumulation was also detected in the indolic MYB factor overexpression lines, 



 

Figure 3.5 ATPS transcript levels in MYB transgenic plants.

Transcript levels of ATPS isoforms in plants 

regulation of aliphatic glucosinolates, 
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transgenic lines (Figure 3.6C). However, glutathione levels were altered in two of the lines 

(Figure 3.6D): In MYB28_ox plants, glutathione levels were decreased, whilst in myb51 

they were increased.  

 

Plants overexpressing or disrupted in the MYB51 gene showed alterations in ATPS 

transcript levels and activity. To assess the biological significance of these changes, we 

determined the flux through the sulfate assimilation pathway in both MYB51_ox and 

myb51 plants, by feeding 14-day old seedlings with [35S]sulfate. Uptake of [35S]sulfate was 

increased in myb51 plants (Figure 3.7A). The measurements of flux through primary 

sulfate assimilation identified a small, but significant, increase in the proportion of [35S] 

sulfate that was incorporated into thiols in MYB51_ox plants. Additionally, a more 

substantial increase in incorporation into proteins was seen in the same plants (Figure 

Figure 3.7B + C). Despite the increased uptake in myb51 plants, the relative incorporation 

of [35S] into thiols and proteins did not vary significantly from the wild-type. 

3.3.3.  Disruption of ATPS genes affects glucosinolate biosynthesis 

We have shown evidence that both the ATPS1 and ATPS3 genes are regulated by the six 

glucosinolate MYB transcription factors. Hence, we can hypothesise that ATPS1 and ATPS3 

are important for glucosinolate biosynthesis. To test this hypothesis, we analysed the 

glucosinolate contents of rosette leaves of 5-week old atps1 and atps3-1 T-DNA insertion 

lines. As the trans-activation assay could not detect activation of the ATPS2 promoter by 

the MYB factors, and only very moderate changes in transcript level were detected in the 

MYB mutant lines, we also measured glucosinolates in the atps2 insertion mutation line 

for comparison. The analysis of glucosinolates in atps1 plants revealed that there was 

indeed a decrease in the total glucosinolate content compared with wild-type plants 

(Figure 3.8A). This decrease was caused by the decrease in accumulation of aliphatic 

glucosinolates. Investigation of the individual glucosinolates revealed that three individual 
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either, with the exception of an increase in the indolic glucosinolat

ylmethyl glucosinolate (1MOI3M; 

Figure 3.7 Flux through sulfate 
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[35S]sulfate. The rate of [

(glutathione and cysteine) 

the uptake. Data are presented as means ± SD from 3 biological replicates. Values marked with an 

asterisk are significantly different (Student’s t

aliphatic glucosinolates, 5-methylsulfinylpentyl-GL (5MSOP), 6-methylsulfinylhexyl

methylthiobutyl-GL (4MTB), were decreased. However, levels of one 

indolic glucosinolate, 4-methoxyindol-3-ylmethyl-GL (4MOI3M), were also significantly 

plants, no changes were detected in the total levels of either aliphatic 

or indolic glucosinolates, nor in the levels of individual glucosinolates measured (

B). Surprisingly, no changes were detected in the glucosinolate levels in 

either, with the exception of an increase in the indolic glucosinolat

ylmethyl glucosinolate (1MOI3M; Figure 3.8C).  

Flux through sulfate assimilation. 
week old seedlings of Col-0, MYB51_ox, and myb51 were incubated for 4 h with 0.2 mM 

S]sulfate. The rate of [35S]sulfate uptake was measured (A), and incorporation into thiols 

(glutathione and cysteine) (B), and proteins (C) was quantified, and calculated as a percentage of 

the uptake. Data are presented as means ± SD from 3 biological replicates. Values marked with an 

asterisk are significantly different (Student’s t-test; p<0.05). 
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(4MTB), were decreased. However, levels of one 

(4MOI3M), were also significantly 

plants, no changes were detected in the total levels of either aliphatic 

or indolic glucosinolates, nor in the levels of individual glucosinolates measured (Figure 

B). Surprisingly, no changes were detected in the glucosinolate levels in atps3 plants 

either, with the exception of an increase in the indolic glucosinolate, 1-methoxyindol-3-

 

were incubated for 4 h with 0.2 mM 

, and incorporation into thiols 

d, and calculated as a percentage of 

the uptake. Data are presented as means ± SD from 3 biological replicates. Values marked with an 



 

 

Figure 3.8 Glucosinolate measurements in atps1 (A), atps2 (B) and atps3

 

Glucosinolate measurements in atps1 (A), atps2 (B) and atps3-1 (C) knock-out mutants. 
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3.4. DISCUSSION 

3.4.1. Links between ATPS and glucosinolate synthesis 

Analysis of available microarray data indicated a strong link between the ATPS genes and 

glucosinolate biosynthesis (Chapter 2). In this chapter, we revealed that ATPS1 and ATPS3 

are regulated by the R2R3-type MYB factors controlling glucosinolate biosynthesis, and 

are thus part of the glucosinolate regulatory network. Co-expression analysis indicated 

that the expression patterns of the ATPS genes, especially ATPS1, ATPS2, and ATPS3, 

correlate to those of numerous glucosinolate biosynthesis genes. In particular, ATPS1 and 

ATPS2 are co-expressed with genes of the aliphatic glucosinolate biosynthesis pathway, 

whilst ATPS3 expression correlates with multiple gene of the indolic glucosinolate 

biosynthesis pathway (Supplemental Tables 2.1-2.4). Thus, we hypothesised that the ATPS 

genes may be regulated together with the glucosinolate genes in response to herbivore 

and pathogen attack, perhaps with specificity towards either the aliphatic or indolic 

pathways. In response to various treatments known to affect glucosinolate biosynthesis, 

ATPS2 transcript levels decreased, so the link between the response of this isoform and 

glucosinolate response does not seem to be very strong. In contrast, ATPS1 and ATPS3 

transcript levels were increased by almost all treatments eliciting a glucosinolate 

response. 

 

Glucosinolate response to both phloem-feeding and chewing herbivorous insects is well 

characterised (Mewis et al., 2005; Mewis et al., 2006; Kim and Jander, 2007; Kuśnierczyk 

et al., 2007). Broad-spectrum anti-fungal defence was also recently attributed to the 

activation of the indolic glucosinolates by the myrosinase enzyme, PEN2 (Bednarek et al., 

2009). The generalist, phloem feeding aphid, Myzus persicae, elicits a glucosinolate 

response that includes up-regulation of both aliphatic and indolic glucosinolates (Mewis et 

al., 2005; Mewis et al., 2006; Kim and Jander, 2007; Kuśnierczyk et al., 2007). Microarray 
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analysis revealed an increase in ATPS1 transcript levels in response to M. persicae 

infestation ( 

Figure 2.11). In agreement with these results, ATPS1 and ATPS3 transcript levels increased 

in response to mechanical wounding. Mechanical wounding of plant leaves, as a method of 

mimicking tissue damage caused by chewing insects, is known to cause increased 

accumulation of both aliphatic and indolic glucosinolates (Mikkelsen et al., 2003).  

 

Infection of Arabidopsis with the oomycete Phytophthora brassicae increased 4-

methyoxyindol-3-ylmethyl-GL (4MOI3M) whilst levels of its precursor, indole-3-ylmethyl 

glucosinolate (I3M), decreased (Bednarek et al., 2009; Schlaeppi et al., 2010). In contrast, 

the necrotrophic fungus, Botrytis cinerea, caused a decrease in aliphatic GL biosynthesis 

genes, including the three aliphatic MYB factors, MYB28, MYB29, and MYB76 (Consonni et 

al., 2010). Thus, glucosinolate response to fungal pathogens most likely differs specific to 

the species. However, both Phytophthora infestans, and B. cinerea infection resulted in the 

same increase in transcript levels of ATPS1 and ATPS3, but surprisingly also ATPS4. 

Although this increase in ATPS mRNA levels could be involved in the glucosinolate 

response to these pathogens, other defence mechanisms may also require up-regulation of 

ATPS. For example, the tripeptide, glutathione, is required for wound-induced resistance 

to B. cinerea (Chassot et al., 2008). Moreover, numerous glutathione-S-transferases are 

induced by this fungal pathogen (Consonni et al., 2010), and a role for glutathione 

conjugation in anti-fungal defence has been hypothesised (Bednarek et al., 2009). Thus, 

though the plant defence strategy may differ dependent upon the pathogen, both P. 

infestans, and B. cinerea increase sulfur requirement, which appears to be met, at least in 

part, by increased transcription of ATPS1, ATPS3, and ATPS4 genes. 

 

Plant defence is regulated by multiple signal transduction pathways, involving the 

hormones SA, ET, and jasmonates. Mikkelsen et al. (2003) have shown that the 
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involvement of these hormones in plant defence extends to the regulation of glucosinolate 

biosynthesis. The authors revealed that JA causes an up-regulation of glucosinolates, but 

that JA and ET act synergistically to direct this response to indolic glucosinolates under 

certain conditions. In contrast, SA plays a role in the inhibition of glucosinolate 

biosynthesis (Mikkelsen et al., 2003). Perhaps the best characterised hormone regulation 

of glucosinolate biosynthesis and sulfur metabolism is that of the jasmonate derivative, 

MeJa (Xiang and Oliver, 1998; Harada et al., 2000; Mikkelsen et al., 2003; Jost et al., 2005; 

Sasaki-Sekimoto et al., 2005; Gigolashvili et al., 2007a; Gigolashvili et al., 2007b; 

Gigolashvili et al., 2008). Microarray analyses have also implicated the ATPS genes in the 

response to MeJa (Jost et al., 2005; Sasaki-Sekimoto et al., 2005). Indeed, we saw increases 

in transcript levels of ATPS1 and ATPS3 following MeJa treatment. The response of ATPS3 

was particularly strong, further supporting a preferential involvement with indolic 

glucosinolate biosynthesis as these seem to be the group that are predominantly induced 

by MeJa (Jost et al., 2005; Sasaki-Sekimoto et al., 2005). No direct effect of ET alone on 

glucosinolate accumulation has been detected, although it acts in synergy with JA in the 

regulation of indolic glucosinolate response (Mikkelsen et al., 2003). In this context, the 

lack of response in ATPS1 or ATPS3 mRNA levels to ET treatment is in keeping with 

glucosinolate regulation. Considering the negative regulation of glucosinolate biosynthesis 

by SA, it is surprising to see an increase in ATPS1 mRNA levels in response to this 

hormone. However, SA signalling also regulates other pathogen response mechanisms, 

including the production and metabolism of glutathione (Fodor et al., 1997b; Mou et al., 

2003). 

 

The glucosinolate MYB transcription factors were amongst the glucosinolate genes 

expressed in correlation with the ATPS genes. Moreover, the MYB factors are regulated by 

the stress treatments described above. Mechanical wounding induces all three aliphatic 

MYB factors, as well as the indolic regulator, MYB51 (Gigolashvili et al., 2007a; Gigolashvili 
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et al., 2007b; Gigolashvili et al., 2008). MeJa, on the other hand, causes activation of two 

indolic factors, MYB34 and MYB122, and one aliphatic glucosinolate, MYB29, and SA down-

regulates MYB28 and MYB29 expression (Gigolashvili et al., 2007a; Gigolashvili et al., 

2007b; Gigolashvili et al., 2008). Thus, the response of the ATPS genes to these treatments 

may be affected by the MYB factors. Indeed, recent microarray analyses have implicated 

ATPS in the glucosinolate response, by revealing a potential for activation of some ATPS 

genes by the MYB factors regulating core glucosinolate biosynthesis (Sønderby et al., 

2007; Malitsky et al., 2008).  

 

3.4.2. ATPS is part of the glucosinolate biosynthesis regulatory network 

Despite the importance of the sulfate group for glucosinolate function, interactions 

between glucosinolate biosynthesis and sulfate assimilation have not been investigated, 

with the exception of a couple of simple plant nutrition studies (Jost et al., 2005; Falk et al., 

2007; Schonhof et al., 2007). However, ATPS function has been linked to response to both 

abiotic and biotic stresses (Heiss et al., 1999; Rausch and Wachter, 2005). Following the 

exposure of further links between ATPS and glucosinolate biosynthesis from the analysis 

of available microarray data, we provided direct evidence that two ATPS genes, ATPS1 and 

ATPS3, are regulated differentially by the glucosinolate MYB factors. Both trans-activation 

assays and the analysis of lines over-expressing the individual MYB factors indicated 

activation of both ATPS1 and ATPS3 by all six MYB factors (Figure 3.4– 5). However, ATPS1 

appeared to be more strongly activated by the aliphatic MYB factors, whilst the indolic 

factors activated ATPS3 more strongly. These differences between the activation of ATPS1 

and ATPS3 were more pronounced in the trans-activation assay than in transgenic plants, 

suggesting other unknown factors may modulate the binding of the MYB factors to the 

ATPS promoters in planta. Analysis of ATPS2 and ATPS4 transcript levels in the MYB 

transgenic lines showed minimal changes, and thus could not confirm the involvement of 

these two genes in glucosinolate biosynthesis. Moreover, the decrease in ATPS2 transcript 
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levels in response to various environmental stress treatments suggests that ATPS2 does 

not function in defence response ( 

Figure 2.11). Recently published work from our group revealed that the second step in the 

production of PAPS, catalysed by APK, is also up-regulated through the induction of APK1 

and APK2 transcripts by the group 12 MYBs (Yatusevich et al., 2010). Interestingly, an 

increased transcription of the three APR genes in response to all six MYB factors was also 

revealed. Therefore, genes involved in PAPS synthesis as well as primary sulfate 

assimilation are part of the glucosinolate biosynthesis network.  

 

3.4.3. The glucosinolate MYB factors affect primary sulfate assimilation 

Activation of sulfate by ATPS is the only step common to both primary and secondary 

sulfur metabolism, such that APR and APK sit at a branching point in the assimilation 

pathway. We have shown that changes in the MYB factor transcript levels not only affect 

glucosinolate accumulation, but also sulfate uptake, reduction, and incorporation into 

products of primary assimilation (Figure 3.6– 7). Transgenic plants in which MYB28 was 

over-expressed or silenced did not appear to be strongly affected in their ability to reduce 

sulfur, despite the induction of ATPS and APR transcripts (Figure 3.3.3; Yatusevich et al., 

2010). However, a slight decrease in glutathione levels in 35S:MYB28 plants indicates that 

over-expression of this gene does indeed compromise primary assimilation, and that 

MYB28 preferentially channels sulfur toward synthesis of glucosinolates. This is perhaps 

due to the ability of MYB28 to activate the other two aliphatic glucosinolate MYB factors, 

MYB29 and MYB76 (Gigolashvili et al., 2008), causing cascading activation of glucosinolate 

biosynthesis genes to the detriment of primary assimilation.  

 

In contrast to MYB28 transgenic lines, MYB51 over-expressing plants and myb51 mutants 

both showed increased ATPS activity compared with wild-type levels. Increases in APR 
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activity have also been detected in both transgenic lines (Yatusevich et al., 2010). We 

describe two mechanisms by which MYB51 could affect primary sulfur assimilation: Direct 

regulation by MYB51, and indirect regulation due to increased requirement for alternative 

defence. Although MYB51 over-expressing plants showed increased flux through sulfate 

assimilation, consistent with the up-regulation of both ATPS and APR activity, this did not 

translate into elevated thiol levels. Combined with the increased glucosinolate 

accumulation in the MYB51 over-expressing plants, increased flux indicates that MYB51 

may up-regulate both primary and secondary sulfur assimilation. Methionine, a product of 

primary sulfur assimilation, is a precursor for aliphatic glucosinolates (Fahey et al., 2001; 

Halkier and Gershenzon, 2006). In addition, glutathione is the source of sulfur for 

synthesis of the core glucosinolate structures. Hence, increased sulfur reduction is 

necessary for glucosinolate production.  

 

MYB51 is the major MYB factor responsible for regulating the biosynthesis of indolic 

glucosinolates in rosette leaves (Gigolashvili et al., 2009). A loss-of-function mutation in 

the MYB51 gene results in a decrease of both aliphatic and indolic glucosinolates in rosette 

leaves (Gigolashvili et al., 2007a). Thus, increased sulfate uptake and glutathione 

accumulation, as well as increased activity of ATPS and APR, in the myb51 mutant (Figure 

3.3.3; Yatusevich et al., 2010) may illustrate an up-regulation of alternative defence 

strategies. Indeed, apk1 apk2 plants that are impaired in their ability to produce sulfated 

glucosinolates also accumulate glutathione (Mugford et al., 2009). 

 

3.4.4. ATPS1 is important for glucosinolate biosynthesis 

We have provided various forms of evidence that ATPS1 and ATPS3 can both be activated 

by the glucosinolate MYB factors and are thus part of the glucosinolate biosynthesis 

regulatory network. To better understand the contribution of these two to glucosinolate 

biosynthesis, we investigated the glucosinolate profiles of the atps1 and atps3 loss-of-
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function mutants. This analysis revealed that ATPS1 is important for the synthesis of 

sulfated aliphatic glucosinolates, as atps1 mutant plants showed a 20% reduction in total 

glucosinolates. Consistent with the higher involvement of ATPS1 in biosynthesis of 

aliphatic glucosinolates, this reduction resulted predominantly from a similar decrease in 

aliphatic glucosinolate levels. As aliphatic glucosinolates are the major group in vegetative 

rosettes (Brown et al., 2003), this decrease could have a considerable effect on the 

mutants defence capacity. Interestingly, levels of the indolic glucosinolate 4MOI3M were 

also reduced in atps1 plants, confirming that ATPS1 also has some involvement in indolic 

glucosinolate production. In contrast to ATPS1, the loss of ATPS3 function in atps3 mutants 

surprisingly had no effect on glucosinolate accumulation, revealing a certain degree of 

functional redundancy. However, this compensation may not be sufficient under stress 

conditions. Despite co-expression with numerous glucosinolate genes, ATPS2 does not 

seem to contribute to the production of glucosinolates, a supposition conclusion that is 

compounded by a wild-type glucosinolate profile in the atps2 mutant. 

 

3.4.5. Conclusions 

ATPS1 and ATPS3 are the main isoforms involved in the provision of activated sulfate for 

PAPS production, and are regulated by the glucosinolate MYB factors. However, this 

regulation is unequal revealing a principal role for ATPS1 in aliphatic and ATPS3 in indolic 

glucosinolate production. However, ATPS1 is the major ATPS isoform involved in 

glucosinolate biosynthesis and is able to maintain glucosinolate levels in the absence of 

ATPS3. Thus, ATPS is an integral part of the glucosinolate biosynthesis regulatory 

network. Moreover, we have shown that the MYB factors not only affect assimilation of 

sulfur into glucosinolates by up-regulating PAPS production, but also the primary 

assimilation pathway which provides substrates required in the synthesis of 

glucosinolates. 
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4.  REGULATION OF SULFATE ASSIMILATION BY MIR395 

4.1. INTRODUCTION 

Despite the careful study of physiological responses to sulfate starvation in plants, little is 

understood about the mechanisms of regulation during this environmental stress. 

Accumulation of OAS is thought to signal demand for sulfur during sulfate deprivation in 

Arabidopsis, while accumulation of cysteine and glutathione indicate a reduced demand 

(Kopriva, 2006). Thus far, however, the SLIM1 transcription factor is the only identified 

central regulator of sulfur response and metabolism, regulating expression of sulfate 

transporters from several families, as well as other genes involved in sulfate starvation. 

However, the induction of APR in response to sulfate starvation is not compromised in 

slim1 mutants, so that this cannot be the only element involved in regulation of the sulfate 

assimilation pathway during sulfur limiting conditions (Maruyama-Nakashita et al., 2006).  

 

Recently, another player potentially involved in response to sulfur starvation has been 

identified, miR395. MiRNAs are a highly conserved class of small non-coding RNAs, 

involved in post-transcriptional regulation of gene expression (Carrington and Ambros, 

2003; Bartel, 2004). MiRNAs negatively regulate transcripts by targeting them for 

cleavage or translational repression (Reinhart et al., 2002; Carrington and Ambros, 2003; 

Bartel, 2004). In plants, miRNAs play a well documented role in developmental processes, 

through regulation of transcription factors. More recently, a number of plant miRNAs were 

shown to be involved in physiological responses to environmental stresses (Sunkar and 

Zhu, 2004; Bari et al., 2006; Chiou et al., 2006). Amongst the stress-induced miRNAs 

identified, a number were involved in the regulation of nutrient acquisition and 

metabolism: miR399, involved in phosphate deficiency response (Fujii et al., 2005); 
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miR398, involved in copper homeostasis (Yamasaki et al., 2007; 2009), nitrate-responsive 

miR393, involved in regulation of root system architecture (Vidal et al., 2010), and 

miR395, involved in sulfur response (Jones-Rhoades and Bartel, 2004; Kawashima et al., 

2009). Computational analysis of the Arabidopsis genome predicted that miR395 targets 

both the low-affinity sulfate transporter, SULTR2;1, and three of the four ATPS genes 

(Jones-Rhoades and Bartel, 2004). 5’ RACE experiments have confirmed that the mRNAs of 

ATPS1 and ATPS4, and of SULTR2;1 are indeed targeted for cleavage by miR395 (Jones-

Rhoades and Bartel, 2004; Allen et al., 2005; Kawashima et al., 2009). Targeting of ATPS3 

mRNA by miR395 was also predicted, but in 5’-RACE experiments cleavage of ATPS3 

mRNA could not be confirmed in roots, and only in less than 50% of cases in the leaves 

(Kawashima et al., 2009). Hence, in this study we have considered ATPS3 not to be a target 

of miR395. The accumulation of miR395 is strongly induced by sulfate starvation, 

presenting additional evidence for its involvement in the sulfate assimilation regulatory 

network, or more specifically in regulation of the plants response to sulfur deficiency. 

However, this induction of miR395 seems counter-intuitive, as ATPS is the first enzyme in 

a pathway which is in fact up-regulated under sulfur starvation. Therefore, a detailed 

analysis of the regulation of miR395 and its targets is necessary to understand the 

contribution of the miRNA to the sulfate starvation response. 

 

Recently, Kawashima et al. (2009) showed that the induction of miR395 following sulfur 

starvation is dependent upon the SLIM1 transcription factor. In addition, the authors 

described how the SULTR2;1 target is not simply down-regulated by miR395 in response 

to sulfur limiting conditions. Whilst transcript levels of SULTR2;1 change very little in the 

leaves of sulfur starved plants, in the roots the mRNA accumulation actually increases 

despite the elevated miR395 levels. Because the cell-specific expression patterns of 

miR395 and SULTR2;1 are not identical, the role of miR395 appears to be to limit 

expression of SULTR2;1 to the xylem cells (Kawashima et al., 2009). Very little is known 
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about the role of miR395 in regulating its other targets, ATPS1 and ATPS4 and the 

consequences for ATPS enzyme activity. Here we describe the regulation of the ATPS 

targets by miR395, examining changes in both mRNA levels, and activity in response to 

sulfur starvation. We show that miR395 an integral part of the sulfur assimilation 

regulatory network, using a number of treatments to investigate demand-driven 

regulation. Using the slim1-1 mutant, we investigate the interplay between SLIM1 and 

miR395 during sulfate deficiency. 
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4.2. MATERIALS AND METHODS 

4.2.1. Plant material and growth conditions 

In this study, wild-type (wt) Arabidopsis thaliana (ecotype Col-0), and the mutants slim1-1 

(Maruyama-Nakashita et al., 2006) and atps2 (see Chapter 3.2.8) were used. Unless 

otherwise stated, plants were grown for two weeks on vertical plates with GM-agarose 

medium (Fujiwara et al., 1992; Table 4.2.1) at 22°C under 16-h-light/8-h-dark cycles. After 

two weeks, the seedlings were transferred to fresh GM plates (control) or treatment plates 

for further four days. Sulfur deficient media (S0) was made in accordance with Kawashima 

et al. (2009), using low EEO agarose with <0.15% sulfate ions (Sigma A5093), and by 

exchanging all sulfate salts for chlorides (Table 4.2). For the treatment conditions, plants 

were transferred to GM plates supplemented with 1mM OAS, 1.25mM BSO or 1mM 

cysteine. 

 

Component Final conc. 

Agar 0.8 % (w/v) 

MS Saltsa 0.43 % (w/v) 

MES hydrate 4 mM 

Thiamine hydroxide 30 nM 

Pyridoxine hydrochloride 40 nM 

Nicotinic acid 40 nM 

a Murashige and Skoog (1962)  
Table 4.1 Composition of GM media 

 

4.2.2. HPLC analysis of low molecular weight thiols  

See Chapter 2.2.7.  
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Component Final conc. 

Low EEO Agar  0.9 % (w/v) 

MES hydrate 4 mM 

Thiamine hydroxide 30 nM 

Pyridoxine hydrochloride 40 nM 

Nicotinic acid 40 nM 

  

Substitution of MS salts  

Ammonium nitrate 20 mM 

Potassium Nitrate 20 mM 

Calcium chloride dihydrate 3 mM 

Magnesium chloride 6-hydrate (replacing magnesium sulfate) 1.5 mM 

Potassium phosphate anhydrous 1.25 mM 

Boric acid 100 nM 

Potassium iodide 5 nM 

Cobalt chloride 0.2 nM 

Copper chloride dihydrate (replacing copper sulfate pentahydrate) 0.1 nM 

Manganese chloride tetrahydrate (replacing manganese sulfate monohydrate) 100 nM 

Molybdic acid sodium salt dihydrate 1 nM 

Zinc chloride (replacing zinc sulfate heptahydrate) 30 nM 

Iron (III) chloride hexahydrate (replacing ferrous sulfate heptahydrate) 100 nM 

EDTA disodium salt dihydrate 100 nM 

Table 4.2 Nutrient components and concentrations for S0 media. 

 

4.2.3. RNA isolation and expression analysis 

For analysis of expression of sulfate assimilation genes, and GFP, total RNA was isolated 

from leaves and roots, or whole seedlings, respectively, DNAse treated, and reverse-

transcribed into cDNA, as described in Chapter 2.2.11. The expression of ATPS1-4, APR1-3, 

SULTR2;1, and GFP genes was analysed by qPCR, using gene-specific primers (for primer 

sequences see Table 4.3). The Arabidopsis TIP41 gene was used as a standard for ATPS1-4 

and SULTR2;1 measurements, whilst the UBC gene was used for APR1-3 measurements. 

For GFP expression analysis, the TIP41 gene was used as a standard, with the primers 

TIP41-A Fw and TIP41-A Rv. Relative quantification of expression levels was performed 

using the comparative Ct method (manufacturer's instructions, bulletin 2, Applied 
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Biosystems). At least three biologically independent RNA preparations were analyzed with 

three technical replicates. 

 

Gene AGI code Forward primer (5’-3’) Reverse primer (5’-3’) 

TIP41 At4g34270 gtgaaaactgttggagagaagca tcaactggataccctttcgc 

UBC At5g25760 ctgcgactcagggaatcttc ttgtgccattgaattgaacc 

ATPS1 At3g22890 cactcggaggtttcatgagag agacgtagcgagttaaaatgaagag 

ATPS2 At1g19920 gatcttgagtgggttcatgtgat ctcatcttctctcatgaacccttt 

ATPS3 At4g14680 tgggtttatgagggaatctgag gacccatcatcgagattcaac 

ATPS4 At5g43780 caaaggtttcatgagacagtcag gagccggaacgagttaaaatg 

SULTR2;1 At5g10180 cagagagttttgaatctctctcacatc ccatctggatcatgtgtgttg 

APR1 At4g04610 cgatcaagtatccgtcgtagaag ggacaagattcaagaacgaagtc 

APR2 At1g62180 aaaagagctccacgggctat cgacatgagtgaatcaacatctc 

APR3 At4g21990 ccaatcaagtatccatcagagaag ccgaacaagattcaagaaagatg 

sGFP N/A agtgcttcagccgctaccc ccctcgaacttcacctcgg 

TIP41-A At4g34270 gaactggctgacaatggagtg atcaactctcagccaaaatcg 

Table 4.3 Primer sequences for qPCR expression analysis 

 

For the detection of miR395, total RNA was extracted from Arabidopsis shoot and root 

tissues using the TRIZOL reagent (Invitrogen). 15 – 20μg of total RNA was loaded per lane 

and resolved on a 15% denaturing polyacrylamide gel. The transfer and carbodiimide-

mediated cross-linking of RNA to Hybond-NX was performed according to Pall et al. 

(2007). The membranes were labelled with a DNA oligonucleotide probe complementary 

to the miR395 sequence - GAGTTCCCCCAAACACTTCAG - that was end-labelled with γ-32P-

ATP using T4 polynucleotide kinase (Invitrogen). Blots were hybridised overnight at 37°C 

in ULTRAhyb-Oligo hybridisation buffer (Ambion), washed two times with 0.2x SSC and 

0.1x SDS for 30 min at 37°C and the membranes were exposed to the phosphoimager. 

Membranes were then stripped in boiling water for 2 min, and exposed for 2 days to 

ensure all bands had been removed. Following this treatment, the membrane was re-

probed with a U6 oligonucleotide: 5’-GCTAATCTTCTCTGTATCGTTCC-3’. 
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4.2.4. Protein extraction 

Leaves and roots were separated and homogenized 1:20 (w/v) in 50 mM Na/K phosphate 

buffer pH 8 supplemented with 30 mM Na2SO3, 0.5 mM 5’-AMP, and 10 mM DTE and the 

extract was centrifuged for 30 sec at 2,000 rpm to remove cell debris. The protein 

concentration in the extracts was determined by Bio-Rad protein assay with bovine serum 

albumin as a standard.  

 

4.2.5. Enzyme assays 

APR activity was measured in the supernatants of the crude protein extracts as the 

production of [35S]sulfite, assayed as acid volatile radioactivity formed from [35S]APS and 

DTE (Brunold and Suter, 1990): 

 

[35S]APS + 2GSH → AMP + [35S]SO3
2- + GSSG 

 

 The reaction assay (Table 4.4) was mixed in a lid-less 1.5 ml Eppendorf tube, and 

incubated at 37°C for 30 min. The reaction was stopped by the addition of 100 µl 1M 

Na2SO3, and the assay tubes were transferred to 20 ml scintillation vials containing 1 ml 

1M triethanolamine (TEA). Scintillation vial lids were quickly closed following addition of 

200 µl 1M H2SO4 to the assay tubes, which caused the production of radioactive SO2 

(typically 0.02 kBq per reaction), to be absorbed by TEA. This step was incubated 

overnight. Subsequently, the assay tubes were removed, and their bottoms washed with 

200 µl H2O into the scintillation vial. 3 ml of scintillation cocktail was added to the vials, 

well mixed, and radioactivity (cpm) was measured in scintillation counter. APR activity 

(nmol min-1 mg-1 protein) was calculated as in Equation 4.2.1. 
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Component Amount 

1 M Tris / HCl pH9 25 µl 

2 M MgSO4 100 µl 

0.2 M DTE 10 µl 

3.75 mM [35S]APS (specific activity 1 kBq / 10 µl) 5 µl 

H2O  100 µl (85 µl) 

Extract 10 µl (25 µl) 

Table 4.4 APR reaction assay composition. Amounts in parentheses are for root samples. 
 

 

 

APR activity �nmol min�� mg�� protein�   �     
37.5 � ���

��� !"  �  �#$%&  �  '(  � 30
 

Equation 4.2.1 Calculation of APR activity. cpmAPS is the specific activity of APS, Cprot is the protein 

concentration in the extract (mg/ml), and VE is the volume of extract used in the assay (ml). 

 

ATPS activity was determined by a coupled assay based on APS and pyrophosphate-

dependent formation of ATP (Cumming et al., 2007), as described in Chapter 3.2.6. 

 

4.2.6. 4.2.6 Creation of GFP constructs and transgenic plants 

The chimeric gene construct of the ATPS1 promoter and sGFP for plant transformation was 

created by Naoko Yoshimoto, RIKEN institute, Japan as follows: Oligonucleotide primers, 

ATPS1-prom-FXh and ATPS1-prom-RBm (Table 4.5) were used to amplify genomic DNA 

fragments from the 5’- promoter region, 3020 bp upstream of the translational initiation 

site, and terminated just after the translational initiation site of ATPS1. PCR was 

performed on genomic DNA prepared from Arabidopsis Col-0 ecotype using KOD plus 

DNA polymerase (Toyobo). The resultant PCR-amplified fragment was cloned into pCR-

Blunt II-TOPO (Invitrogen) and fully sequenced. The XhoI-BamHI fragment of ATPS1 

promoter was inserted between SalI and BamHI site of the promoter-less GFP binary 

plasmid, pBI-GFP (Figure 4.2.1A; Mugford et al., 2009).  
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Primer Name Primer sequence 

ATPS1-prom-FXh ctcgagtaaggatcatcgtaagatttagc 

ATPS1-prom-RBm ggatcccattgttgaaggttttgttag 

ATPS1-prom-FBm ggatcctaaggatcatcgtaagatttagc 

ATPS1-CDSnostop-RNco ccatggacaccggaaccacttctggtagtc 

Table 4.5 Primer sequences for creation of GFP constructs 

 

For creation of the ATPS1::ATPS1:sGFP fusion gene construct, oligonucleotide primers 

ATPS1-prom-FBm and ATPS1-CDSnostop-RNco (Table 4.2.5) were used to amplify DNA 

fragments starting from the 5’-promoter region, 3020 bp upstream of the translational 

initiation site, and terminating just before the ATPS1 translational stop site. PCR was 

performed on Col-0 genomic DNA using KOD plus DNA polymerase (Toyobo) and the PCR-

amplified fragment was cloned into the pCR-Blunt II-TOPO vector (Invitrogen) and fully 

sequenced. The BamHI-NcoI fragment of ATPS1 gene and the NcoI-EcoRI fragment of 

pTH2 (Chiu et al., 1996) containing the fusion gene cassette of the sGFP(S65T) and the 

nopaline synthase terminator (NOSter) were ligated (Figure 4.1A). The resultant BamHI-

EcoRI fragment of the ATPS1::ATPS1:GFP:NOSter fusion cassette was placed into the 

position of β-glucuronidase gene and the NOSter in the binary plasmid, pBI101 (Figure 

4.1B; Clontech). The resulting binary plasmids were transformed into Agrobacterium 

tumefaciens GV3101 (pMP90; Koncz and Schell, 1986) by the freeze-thaw method 

(Hoefgen and Willmitzer, 1988). Col-0 plants were transformed according to the floral dip 

method (Clough and Bent, 1998). Transgenic plants were selected on GM agar media 

(Valvekens et al., 1988) containing 50 mg L-1 kanamycin sulfate. Kanamycin-resistant T2 

progenies were used for the analysis. 

 



 

Figure 4.1 Vector constructs
 (A) T-DNA inserts for creation of ATPS

pBI101 vector map. GUS and NOSterm. (

plasmid, and replaced with the GFP fusions. Restriction sites used in the cloning process are 

highlighted in red. 

 

4.2.7. Microscopy and imaging of GFP

Fluorescence of ATPS1:GFP

visualised using a Leica MZFLIII stereomicroscope coupled to a Nikon Coolpix 990 camera 

or a Zeiss LSM 510 confocal microscope with 488 nm/530 nm excitation/emission light 

for GFP. In preparation fo

propidium iodide to stain the cell walls.

 

Vector constructs 
DNA inserts for creation of ATPSPRO::GFP (top) and ATPSPRO::ATPS:GFP (bottom) plasmids. (B) 

pBI101 vector map. GUS and NOSterm. (struck through in red) were removed from the original 

plasmid, and replaced with the GFP fusions. Restriction sites used in the cloning process are 

Microscopy and imaging of GFP 

Fluorescence of ATPS1:GFP or GFP expressed under control of the 

visualised using a Leica MZFLIII stereomicroscope coupled to a Nikon Coolpix 990 camera 

or a Zeiss LSM 510 confocal microscope with 488 nm/530 nm excitation/emission light 

for GFP. In preparation for confocal microscopy, seedlings were mounted in 10 µl/ml of 

propidium iodide to stain the cell walls. 
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::ATPS:GFP (bottom) plasmids. (B) 

struck through in red) were removed from the original 

plasmid, and replaced with the GFP fusions. Restriction sites used in the cloning process are 

or GFP expressed under control of the ATPS1 promoter was 

visualised using a Leica MZFLIII stereomicroscope coupled to a Nikon Coolpix 990 camera 

or a Zeiss LSM 510 confocal microscope with 488 nm/530 nm excitation/emission light 

r confocal microscopy, seedlings were mounted in 10 µl/ml of 
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4.2.8. Determination of flux through sulfate assimilation 

The flux through sulfate assimilation was measured as incorporation of 35S from [35S] 

sulfate to thiols and proteins essentially as described in Chapter 2.2.8. Plants were grown 

on vertical GM plates for 10 days, before transfer to either GM plates (control) or S0 plates 

(treatment) for a further 4 days. Subsequently, the plants were transferred into 48-well 

plates, with the roots submerged in 1 ml of GM nutrient solution adjusted to sulfate 

concentration of 0.2 mM and supplemented with 5.0 μCi [35S]sulfate (Hartmann Analytic) 

to specific activity of 1,114 kBq nmol sulfate -1 and incubated in light for 4 hours. After the 

incubation the seedlings were washed 3 times with 1 ml of cold nonradioactive nutrient 

solution and carefully blotted with paper tissue. Roots and shoots were separated, 

weighed, transferred into 1.5 ml tubes, and frozen in liquid nitrogen. The plant tissue was 

extracted 1:10 (w/V) in 0.1 M HCl, and the radioactivity in sulfate, cysteine, glutathione 

and protein was determined as in Chapter 2.2.8.  
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4.3. RESULTS 

4.3.1. miR395 and ATPS during sulfate deficiency 

To better understand the role of miR395 in the regulation of the sulfate assimilation 

pathway, we dissected the effects of sulfur starvation on the miRNA and its targets. Col-0 

seedlings were grown on plates with normal (GM) media for two weeks and then 

transferred to either GM (control) or no sulfate (S0) media and grown for a further four 

days. The response of miR395 and its targets to this sulfate starvation treatment were 

analysed in roots and shoots separately (Figure 4.2).  

 

In order to determine the effect of sulfate deficiency on sulfate assimilation, we carried out 

HPLC analysis of cysteine and glutathione, two major products of the assimilation 

pathway. As expected, sulfate deficiency caused significant decreases in both cysteine and 

glutathione, though this response was mostly limited to the shoots (Figure 4.2A+B). As 

expected, APR transcript levels increased in shoot material and to a lesser degree in root 

material (Figure 4.3.1C; Hirai et al., 2003; Nikiforova et al., 2003). In the shoots, increases 

in APR transcript levels did not translate to increases in APR enzyme activity; however, a 

large increase in activity was measured in the roots in response to sulfate deficiency 

(Figure 4.2D). 



 

 
Figure 4.2 Effect of sulfate 

Arabidopsis Col-0 plants were grown on growth media containing 1500 µM sulphate (GM) for two 

weeks and then transferred to either GM or media lacking a sulfur source (S0) and grown for a 

further four days. Shoot and root material was harvested separately. 

means ± SD from at least three independent biological replicates. Values marked with an asterisk 

are significantly (Student's t

glutathione levels were determined by HPLC. 

and subjected to quantitative RT

levels were compared to 

activity was measured in protein extracts from root and shoot tissue. 

miR395 carried out by Cintia Kawashima, University of East Anglia, UK

were stripped and re-probed 

to the four ATPS genes and 

using TIP41 as a reference gene. The levels in plants grown on GM are set to 1.  

measured in protein extracts from root and shoot tissue of six individual biological replicates.

Effect of sulfate deficiency on miR395 and sulfate assimilation.

0 plants were grown on growth media containing 1500 µM sulphate (GM) for two 

weeks and then transferred to either GM or media lacking a sulfur source (S0) and grown for a 

ot and root material was harvested separately. Results are presented as 

means ± SD from at least three independent biological replicates. Values marked with an asterisk 

are significantly (Student's t-test; p ≤ 0.05) different from control plants. 

glutathione levels were determined by HPLC. C RNA was isolated from roots and shoots separately 

and subjected to quantitative RT-PCR with primers specific to the three 

levels were compared to UBC and the levels in plants grown on GM are set to 1. 

activity was measured in protein extracts from root and shoot tissue. E Northern blot analysis of 

carried out by Cintia Kawashima, University of East Anglia, UK. For control, the membranes 

probed with a U6-specific probe. Quantitative RT-PCR with primers specific 

genes and SULTR2;1 was carried out on the RNA isolated from

as a reference gene. The levels in plants grown on GM are set to 1.  

measured in protein extracts from root and shoot tissue of six individual biological replicates.
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deficiency on miR395 and sulfate assimilation. 

0 plants were grown on growth media containing 1500 µM sulphate (GM) for two 

weeks and then transferred to either GM or media lacking a sulfur source (S0) and grown for a 

Results are presented as 

means ± SD from at least three independent biological replicates. Values marked with an asterisk 

0.05) different from control plants. A Cysteine and B 

RNA was isolated from roots and shoots separately 

PCR with primers specific to the three APR genes. The mRNA 

n GM are set to 1. D APR enzyme 

Northern blot analysis of 

. For control, the membranes 

PCR with primers specific 

was carried out on the RNA isolated from F shoot and G root, 

as a reference gene. The levels in plants grown on GM are set to 1.  H ATPS activity was 

measured in protein extracts from root and shoot tissue of six individual biological replicates.  
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Northern blot analysis confirmed the induction of miR395 under sulfate deficiency, as has 

been previously reported (Figure 4.3.1E; Jones-Rhoades and Bartel, 2004; Kawashima et 

al., 2009). This induction was considerably stronger in the roots than in the leaves. 

Analysis of ATPS mRNA levels by qPCR revealed a complex relationship between sulfur 

starvation and ATPS expression patterns. While activation of miR395 is weaker in shoot 

tissue than that in roots, there is a decrease in the transcript levels of two of the three 

targets in the shoots (Figure 4.2F): ATPS4 and SULTR2;1 transcript levels were reduced 

under sulfate deficient conditions, presumably in response to increased miR395 levels; 

however, no changes were detected in ATPS1 mRNA accumulation. Transcript levels of the 

non-targeted ATPS2 and ATPS3 also remained unaltered. The picture in the roots is quite 

different (Figure 4.2 G). Transcript levels of ATPS4 showed a strong down-regulation 

similar to that in shoots. However, SULTR2;1 transcript levels increased around 10 fold as 

was described in Kawashima et al. (2009). As in shoots, ATPS1 and ATPS2 transcript levels 

remained unaltered in root tissue, but ATPS3 mRNA levels were 4-fold increased. ATPS 

activity was slightly but significantly reduced in both sulfate starved leaves.  

 

Despite strong induction of miR395, no change was seen in ATPS1 mRNA levels. This may 

be due to separate compartmentalisation of the microRNA and its target, as has been 

shown to be the case for SULTR2;1 (Kawashima et al., 2009). An alternative hypothesis is 

that an increase in ATPS transcription counters the cleavage directed by miR395. To test 

this second hypothesis, we exposed transgenic lines expressing GFP (ATPS1PRO::GFP), or an 

ATPS1:GFP fusion (ATPS1PRO::ATPS1:GFP), under the control of the ATPS1 promoter, to 

sulfate starvation. These transgenic lines were grown, as previously, for two weeks on GM 

media, before transfer to fresh GM plates (control) or S0 plates for four days. This allowed 

in vivo investigation of ATPS1 transcriptional regulation both with and without the 

influence of miR395, as ATPS1PRO::GFP would only detect promoter regulation, but the 

ATPS1:GFP fusion would be targeted by miR395. At least three independent lines were 



 

analysed by fluorescence microscopy, from both the control and sul

Two lines from each construct are shown in 

wild-type plants. In sulfate

increase in GFP fluorescence, confirming an activation of the ATPS1 promoter under 

sulfate deficient conditions. However, lines expressing the miR395

fusion under control of the same promoter sh

analysis of GFP transcript levels confirmed that there was indeed a significant increase in 

GFP transcript in ATPS1

slight decrease of the 

Figure 4.3 Sulfate deficiency

Fluorescence microscopy images of seedlings grown on growth media containing 1500 μM sulfate 

(GM) for two weeks and then transferred to either GM 

grown for a further four days. 

ATPS1::ATPS1:GFP line 1g4; 

isolated from the transgenic seedlings and subjected to quantitative 

to GFP. Transcript levels were compared to 

No GFP was detected in Col

biological replicates. Values marked w

different from GM controls.

analysed by fluorescence microscopy, from both the control and sul

Two lines from each construct are shown in Figure 4.3. No fluorescence was detected in 

type plants. In sulfate-starved ATPS1PRO::GFP plants, there was indeed a strong 

increase in GFP fluorescence, confirming an activation of the ATPS1 promoter under 

sulfate deficient conditions. However, lines expressing the miR395

fusion under control of the same promoter showed no increase in GFP fluorescence. qPCR 

transcript levels confirmed that there was indeed a significant increase in 

ATPS1PRO::GFP plants; however, ATPS1PRO::ATPS1:GFP

GFP transcript (Figure 4.3K). 

Sulfate deficiency up-regulates GFP expression driven by the ATPS1 promoter.

Fluorescence microscopy images of seedlings grown on growth media containing 1500 μM sulfate 

(GM) for two weeks and then transferred to either GM (A-E) or S0 media lacking sulfate 

grown for a further four days. A,F Col-0; B,G ATPS1::GFP line 1p1; C,H ATPS1::GFP line 1p2; 

ATPS1::ATPS1:GFP line 1g4; E,J ATPS1::ATPS1:GFP line 1g10. Scale bars = 2 mm 

isolated from the transgenic seedlings and subjected to quantitative RT-PCR with primers specific 

Transcript levels were compared to TIP41 and the levels in plants grown on GM was set to 1. 

was detected in Col-0. Results are presented as means ± SD from three independent 

biological replicates. Values marked with an asterisk are significantly (Student's t

different from GM controls. 
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analysed by fluorescence microscopy, from both the control and sulfate-starved plants. 

. No fluorescence was detected in 

plants, there was indeed a strong 

increase in GFP fluorescence, confirming an activation of the ATPS1 promoter under 

sulfate deficient conditions. However, lines expressing the miR395-targeted ATPS1:GFP 

owed no increase in GFP fluorescence. qPCR 

transcript levels confirmed that there was indeed a significant increase in 

::ATPS1:GFP plants showed a 

 
regulates GFP expression driven by the ATPS1 promoter. 

Fluorescence microscopy images of seedlings grown on growth media containing 1500 μM sulfate 

or S0 media lacking sulfate (F-J) and 

ATPS1::GFP line 1p2; D,I 
ATPS1::ATPS1:GFP line 1g10. Scale bars = 2 mm K RNA was 

PCR with primers specific 

and the levels in plants grown on GM was set to 1. 

0. Results are presented as means ± SD from three independent 

ith an asterisk are significantly (Student's t-test; p ≤ 0.05) 



 

Further investigation of the 

change in the distribution of GFP in the root tip of the S

control conditions, GFP fluorescence was localised predominantly to the quiescent centre, 

with some fluorescence extending into the c

starvation, the localisation pattern was disrupted, as expression of ATPS1:GFP became 

more evenly distributed throughout all parts of the root tip and meristematic zone.

 

Figure 4.4 Sulfate deficiency alters ATPS1 expression patterns in the root tip.

Confocal microscopy images of seedling root tips from two independent 

lines grown on growth media containing 1500 μM sulfate (GM) for two weeks and then transferred 

to either GM (A+B) or S0 media lacking sulfate 

= 100 µm. 

 

 

ATPS2 is the only ATPS isoform not predicted to b

have a different role during sulfate deficiency and complement the effects of miR395 on 

the other isoforms. Therefore, we investigated the effect of the four day sulfate starvation 

on the atps2 T-DNA insertion mutant line to see whether miR395 regulation of ATPS is 

affected by the loss of ATPS2 function. Although miR395 was still induced by sulfate 

starvation in atps2, the induction was less pronounced than in wild

4.5A). Under control conditions, ATPS activity was lower in the leaves of the 

Further investigation of the ATPS1PRO::ATPS1:GFP lines by confocal microscopy revealed a 

change in the distribution of GFP in the root tip of the S-starved plants (

control conditions, GFP fluorescence was localised predominantly to the quiescent centre, 

with some fluorescence extending into the columella and cortex cells. Following sulfate 

starvation, the localisation pattern was disrupted, as expression of ATPS1:GFP became 

more evenly distributed throughout all parts of the root tip and meristematic zone.

Sulfate deficiency alters ATPS1 expression patterns in the root tip.

Confocal microscopy images of seedling root tips from two independent 

lines grown on growth media containing 1500 μM sulfate (GM) for two weeks and then transferred 

or S0 media lacking sulfate (C+D) and grown for a further four days. Scale bars 

ATPS2 is the only ATPS isoform not predicted to be targeted by miR395. As such, it may 

have a different role during sulfate deficiency and complement the effects of miR395 on 

the other isoforms. Therefore, we investigated the effect of the four day sulfate starvation 

DNA insertion mutant line to see whether miR395 regulation of ATPS is 

affected by the loss of ATPS2 function. Although miR395 was still induced by sulfate 

, the induction was less pronounced than in wild

A). Under control conditions, ATPS activity was lower in the leaves of the 
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lines by confocal microscopy revealed a 

starved plants (Figure 4.4). Under 

control conditions, GFP fluorescence was localised predominantly to the quiescent centre, 

olumella and cortex cells. Following sulfate 

starvation, the localisation pattern was disrupted, as expression of ATPS1:GFP became 

more evenly distributed throughout all parts of the root tip and meristematic zone. 

 
Sulfate deficiency alters ATPS1 expression patterns in the root tip.  

Confocal microscopy images of seedling root tips from two independent ATPS1PRO::ATPS1:GFP 

lines grown on growth media containing 1500 μM sulfate (GM) for two weeks and then transferred 

and grown for a further four days. Scale bars 

e targeted by miR395. As such, it may 

have a different role during sulfate deficiency and complement the effects of miR395 on 

the other isoforms. Therefore, we investigated the effect of the four day sulfate starvation 

DNA insertion mutant line to see whether miR395 regulation of ATPS is 

affected by the loss of ATPS2 function. Although miR395 was still induced by sulfate 

, the induction was less pronounced than in wild-type plants (Figure 

A). Under control conditions, ATPS activity was lower in the leaves of the atps2 mutant 



 

than in those of wild

sulfate starvation, ATPS activity decreased in the leaves of sulfate

similar extent as in WT (

 

Figure 4.5 Analysis of miR395 in the aps2 T

Arabidopsis Col-0 and 

containing 1500 µM sulphate (GM) for two weeks and then transferred to either GM or media 

lacking a sulfur source (S0) and grown for a further four days. 

was carried out by Cintia Kawashima, University of East Anglia, UK 

and shoots. For control, the membranes were stripped and re

ATPS activity was measured in protein extracts from root and shoot tissue.

means ± SD of at least three independent biological replicates. Values marked with an asterisk are 

significantly (Student's t

 

  

4.3.2. Regulation of miR395 by OAS

Since OAS treatment has been shown to mimic the effects of sulfate deficiency, we tested 

whether OAS may also be a signal for the up

seedlings were transferred to plates containing either no sulfate, or normal sulfate lev

supplemented with 1mM OAS. Northern blot analysis of miR395 levels indicated that after 

than in those of wild-type. However, despite the lower accumulation of

sulfate starvation, ATPS activity decreased in the leaves of sulfate

similar extent as in WT (Figure 4.5B). 

Analysis of miR395 in the aps2 T-DNA mutant line 

0 and atps2 loss-of-function mutant plants were grown on growth media 

containing 1500 µM sulphate (GM) for two weeks and then transferred to either GM or media 

lacking a sulfur source (S0) and grown for a further four days. A Northern blot analysis of miR395 

by Cintia Kawashima, University of East Anglia, UK on RNA extracted from roots 

and shoots. For control, the membranes were stripped and re-probed with a U6

ATPS activity was measured in protein extracts from root and shoot tissue.

means ± SD of at least three independent biological replicates. Values marked with an asterisk are 

significantly (Student's t-test; p ≤ 0.05) different from control plants. 

Regulation of miR395 by OAS 

Since OAS treatment has been shown to mimic the effects of sulfate deficiency, we tested 

whether OAS may also be a signal for the up-regulation of miR395. Two week old 

seedlings were transferred to plates containing either no sulfate, or normal sulfate lev

supplemented with 1mM OAS. Northern blot analysis of miR395 levels indicated that after 
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type. However, despite the lower accumulation of miR395 under 

sulfate starvation, ATPS activity decreased in the leaves of sulfate-starved atps2 to a 

 

function mutant plants were grown on growth media 

containing 1500 µM sulphate (GM) for two weeks and then transferred to either GM or media 

Northern blot analysis of miR395 

on RNA extracted from roots 

probed with a U6-specific probe. B 

ATPS activity was measured in protein extracts from root and shoot tissue. Results are presented as 

means ± SD of at least three independent biological replicates. Values marked with an asterisk are 

Since OAS treatment has been shown to mimic the effects of sulfate deficiency, we tested 

regulation of miR395. Two week old 

seedlings were transferred to plates containing either no sulfate, or normal sulfate levels, 

supplemented with 1mM OAS. Northern blot analysis of miR395 levels indicated that after 



 

two days of treatment, OAS indeed caused an increase in miR395 levels, though this 

induction was not as strong as that seen under sulfate deficiency (

Figure 4.6). The induction of miR395 by OAS was much stronger in roots than in leaves.

 

 
Figure 4.6 OAS regulation of miR395.

Col-0 was grown for two weeks on growth media (GM) before transfer for two days on either 

standard GM, S0 media lacking sulfate, or GM supplemented with 1 mM 

Northern blot was carried out by Cintia Kawashima, Un

from the roots and shoots, and subjected to northern blot analysis of miR395. Membranes were 

stripped and re-probed with a U6

 

For further analysis of miR395 and its targets under t

samples were collected after four days of OAS treatment. HPLC analysis of the thiols 

detected increases in both cysteine and glutathione in the roots, consistent with the up

regulation of the sulfate assimilation pathway by

changes in thiol levels were detected in the leaves, suggesting the response is root specific. 

As expected, transcripts for all three APR isoforms were increased, though ag

response was limited to the roots (

significantly, but surprisingly, a decrease in acti

treatment (Figure 4.7D).

two days of treatment, OAS indeed caused an increase in miR395 levels, though this 

induction was not as strong as that seen under sulfate deficiency ( 

). The induction of miR395 by OAS was much stronger in roots than in leaves.

regulation of miR395.  
0 was grown for two weeks on growth media (GM) before transfer for two days on either 

standard GM, S0 media lacking sulfate, or GM supplemented with 1 mM 

Northern blot was carried out by Cintia Kawashima, University of East Anglia, UK. 

from the roots and shoots, and subjected to northern blot analysis of miR395. Membranes were 

probed with a U6-specific probe as a control. 

For further analysis of miR395 and its targets under the OAS treatment, root and shoot 

samples were collected after four days of OAS treatment. HPLC analysis of the thiols 

detected increases in both cysteine and glutathione in the roots, consistent with the up

regulation of the sulfate assimilation pathway by OAS (Figure 4.

changes in thiol levels were detected in the leaves, suggesting the response is root specific. 

As expected, transcripts for all three APR isoforms were increased, though ag

response was limited to the roots (Figure 4.7C). APR activity in the roots did not change 

significantly, but surprisingly, a decrease in activity was seen in the leaves following OAS 

D). 
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two days of treatment, OAS indeed caused an increase in miR395 levels, though this 

). The induction of miR395 by OAS was much stronger in roots than in leaves. 

 

0 was grown for two weeks on growth media (GM) before transfer for two days on either 

standard GM, S0 media lacking sulfate, or GM supplemented with 1 mM O-acetylserine (OAS). 

iversity of East Anglia, UK. RNA was isolated 

from the roots and shoots, and subjected to northern blot analysis of miR395. Membranes were 

he OAS treatment, root and shoot 

samples were collected after four days of OAS treatment. HPLC analysis of the thiols 

detected increases in both cysteine and glutathione in the roots, consistent with the up-

.7A + B). However, no 

changes in thiol levels were detected in the leaves, suggesting the response is root specific. 

As expected, transcripts for all three APR isoforms were increased, though again this 

C). APR activity in the roots did not change 

vity was seen in the leaves following OAS 



 

Figure 4.7 Analysis of miR395 and 

Col-0 was grown for two weeks on growth media (GM) before transfer for four days on either 

standard GM or GM supplemented with 1 mM 

levels were determined by HPLC. 

subjected to quantitative RT

were compared to UBC 

was measured in protein extracts from root and shoot tissue. 

was carried out by Cintia Kawashima, University of East Anglia, UK

were stripped and re-probed with a U6

to the four ATPS genes and 

using TIP41 as a reference gene. The levels in plants grown on GM are set to 1.  

measured in protein extracts from root and shoot tissue of six individual biological replicates.

Results are presented as means ± SD from three independent biological replicates. Values marked 

with an asterisk are significantly (Student'

Analysis of miR395 and its targets following OAS feeding.  
0 was grown for two weeks on growth media (GM) before transfer for four days on either 

standard GM or GM supplemented with 1 mM O-acetylserine (OAS). A Cysteine and 

levels were determined by HPLC. C RNA was isolated from roots and shoots separately and 

subjected to quantitative RT-PCR with primers specific to the three APR 

UBC and the levels in plants grown on GM are set to 1. 

protein extracts from root and shoot tissue. E Northern blot analysis of miR395

was carried out by Cintia Kawashima, University of East Anglia, UK. For control, the membranes 

probed with a U6-specific probe. Quantitative RT-PCR with pr

genes and SULTR2;1 was carried out on the RNA isolated from

as a reference gene. The levels in plants grown on GM are set to 1.  

measured in protein extracts from root and shoot tissue of six individual biological replicates.

Results are presented as means ± SD from three independent biological replicates. Values marked 

with an asterisk are significantly (Student's t-test; p ≤ 0.05) different from control plants.
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0 was grown for two weeks on growth media (GM) before transfer for four days on either 

Cysteine and B glutathione 

was isolated from roots and shoots separately and 

APR genes. The mRNA levels 

the levels in plants grown on GM are set to 1. D APR enzyme activity 

Northern blot analysis of miR395 

. For control, the membranes 

PCR with primers specific 

was carried out on the RNA isolated from F shoot and G root, 

as a reference gene. The levels in plants grown on GM are set to 1.  H ATPS activity was 

measured in protein extracts from root and shoot tissue of six individual biological replicates. 

Results are presented as means ± SD from three independent biological replicates. Values marked 

0.05) different from control plants. 
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Northern blot analysis confirmed that miR395 levels, induced by the increase in OAS 

levels, remained high after four days of treatment (Figure 4.7E). There were few changes 

in ATPS transcript levels in response to OAS in the shoot; except for a slight decrease in the 

mRNA levels of ATPS1 (Figure 4.7F). No changes were detected in SULTR2;1 mRNA levels 

in the leaves, but in root tissue they were greatly elevated, as under sulfate deficiency 

(Figure 4.7G). In contrast to shoot material, there was a small but significant increase in 

ATPS1 transcript levels in roots, contrary to the expected decrease due to miR395 action. 

There were no other changes in ATPS transcript levels despite the substantial up-

regulation of miR395. ATPS activity remained unaltered by the changes in miR395 levels 

and ATPS transcript levels (Figure 4.7H).  

 

4.3.3. miR395 involvement in demand-driven regulation of sulfate assimilation 

Accumulation of compounds containing reduced sulfur, such as glutathione and cysteine, 

is known to cause a strong decrease in sulfate uptake and assimilation. Glutathione 

negatively regulates multiple components of the assimilation pathway, including APR and 

ATPS (Brunold and Schmidt, 1978; Lappartient et al., 1999). On the other hand, low 

glutathione levels represent a demand for reduced sulfur and the pathway is up-regulated. 

For example, buthionine sulfoximine (BSO) inhibits the first enzyme of glutathione 

synthesis, GSH1, causing a depletion of glutathione, and hence a strong up-regulation of 

sulfate uptake and assimilation (Lappartient et al., 1999; Hartmann et al., 2004). To 

investigate the effect of glutathione depletion on miR395 and its targets, we exposed two 

week old seedlings to BSO for four days. Glutathione concentration was decreased both in 

shoots and roots upon BSO treatment, while cysteine accumulated in the leaves but was 

not affected in roots (Figure 4.8A + B). Despite significant decreases in glutathione levels, 

APR transcript accumulation only increased slightly in the roots, and not at all in the 

leaves (Figure 4.8C).  



 

Figure 4.8 Analysis of miR395

After growing for two weeks on growth media (GM), Col

four days on either standard GM or GM treated with 1.25 mM buthionine sulfoximine (BSO) to 

inhibit GSH production. 

isolated from roots and shoots separately and subjected to quantitative RT

specific to the three APR 

grown on GM are set to 1. 

shoot tissue. E Northern blot analysis of miR395

East Anglia, UK. For control, the membr

Quantitative RT-PCR with primers specific to the four 

the RNA isolated from 
grown on GM are set to 1.  

tissue of six individual biological replicates.

independent biological replicates. Values marked with an asterisk are

p ≤ 0.05) different from control plants.

Analysis of miR395 and its targets following disruption of GSH production.

After growing for two weeks on growth media (GM), Col-0 seedlings were transferred for a further 

four days on either standard GM or GM treated with 1.25 mM buthionine sulfoximine (BSO) to 

production. A Cysteine and B glutathione levels were determined by HPLC. 

isolated from roots and shoots separately and subjected to quantitative RT

APR genes. The mRNA levels were compared to UBC 

grown on GM are set to 1. D APR enzyme activity was measured in protein extracts from root and 

Northern blot analysis of miR395 was carried out by Cintia Kawashima, University of 

. For control, the membranes were stripped and re-probed with a U6

PCR with primers specific to the four ATPS genes and SULTR2;1

 F shoot and G root, using TIP41 as a reference gene. The levels in plants 

n on GM are set to 1.  H ATPS activity was measured in protein extracts from root and shoot 

tissue of six individual biological replicates. Results are presented as means ± SD from three 

independent biological replicates. Values marked with an asterisk are significantly (Student's t

0.05) different from control plants. 
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and its targets following disruption of GSH production. 
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four days on either standard GM or GM treated with 1.25 mM buthionine sulfoximine (BSO) to 

glutathione levels were determined by HPLC. C RNA was 

isolated from roots and shoots separately and subjected to quantitative RT-PCR with primers 
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APR enzyme activity was measured in protein extracts from root and 

was carried out by Cintia Kawashima, University of 
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Nonetheless, the small increase in transcript levels in the roots led to a substantial 

increase in APR activity (Figure 4.8D). The BSO treatment did not affect APR activity in the 

leaves. 

 

While northern blot analysis did not reveal any changes in miR395 levels in leaves in 

response to BSO treatment, its accumulation was decreased in the roots, consistent with 

the expected up-regulation of sulfate assimilation (Figure 4.8E). However, despite the 

decrease in miR395 levels, no corresponding increase in levels of any of the target mRNA 

was detected. On the contrary, ATPS1 mRNA levels decreased in both roots and leaves, as 

did those of the non-targeted ATPS2 (Figure 4.8F + G). A reduction was also seen in ATPS3 

transcript levels in the leaves. No change was observed in either ATPS4 or SULTR2;1 

transcripts. Despite the decrease in levels of multiple ATPS transcripts, ATPS activity was 

higher in the roots of BSO treated plants (Figure 4.8H). 

 

In contrast to the BSO treatment, cysteine represses the sulfate assimilation pathway. Four 

day exposure of seedlings to external cysteine indeed increased internal cysteine levels in 

both root and leaf tissue (Figure 4.9A). In addition, glutathione levels doubled in root 

tissue (Figure 4.9B). In response to these changes in thiols, transcripts of all three APR 

genes were decreased in both root and leaf (Figure 4.9C). The decreases in transcript 

levels, however, led to a reduction of APR activity in roots only (Figure 4.9D). 

 

In accord with the reduction of miR395 levels following BSO treatment, northern blot 

analysis showed an induction of miR395 in both the leaves and roots of plants treated 

with cysteine (Figure 4.9E). Despite this accumulation of the microRNA, no changes were 

detected in the transcript levels of any of the targets, nor in the non-targeted ATPS2, in 

either root or shoot material (Figure 4.9F + G). ATPS activity showed no change in either 

shoot or root tissue of treated plants, in agreement with the lack of response of the mRNA 

levels (Figure 4.9H). 

 



 

Figure 4.9 Analysis of miR395 and its targets following cysteine treatment

Col-0 seedlings were grown on growth media (GM) for 

GM supplemented with 1mM cysteine, for a further 4 days. 

were determined by HPLC. 

quantitative RT-PCR with p

to UBC and the levels in plants grown on GM are set to 1. 

protein extracts from root and shoot tissue. 

Cintia Kawashima, University of East Anglia, UK

probed with a U6-specific probe.

and SULTR2;1 was carried out on the RNA isolated from

reference gene. The levels in plants grown on GM are set to 1.  

protein extracts from root and shoot tissue of six individual biological replicat

presented as means ± SD from five independent biological replicates. Values marked with an 

asterisk are significantly (Student's t

 

Analysis of miR395 and its targets following cysteine treatment

0 seedlings were grown on growth media (GM) for two weeks, before transfer to either

GM supplemented with 1mM cysteine, for a further 4 days. A Cysteine and 

were determined by HPLC. C RNA was isolated from roots and shoots separately and subjected to 

PCR with primers specific to the three APR genes. The mRNA levels were compared 

the levels in plants grown on GM are set to 1. D APR enzyme activity was measured in 

protein extracts from root and shoot tissue. E Northern blot analysis of miR395

Cintia Kawashima, University of East Anglia, UK. For control, the membranes were stripped and re

specific probe. Quantitative RT-PCR with primers specific to the four 

was carried out on the RNA isolated from F shoot and G
reference gene. The levels in plants grown on GM are set to 1.  H ATPS activity was measured in 

protein extracts from root and shoot tissue of six individual biological replicat

presented as means ± SD from five independent biological replicates. Values marked with an 

asterisk are significantly (Student's t-test; p ≤ 0.05) different from wild-type plants.
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Analysis of miR395 and its targets following cysteine treatment 
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genes. The mRNA levels were compared 
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type plants. 
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4.3.4. Contribution of SLIM1 to regulation of miR395 and its targets by sulfur 

deficiency 

Kawashima et al., (2009) showed that the up-regulation of miR395 by sulfate deficiency is 

greatly diminished in slim1-1 mutants, suggesting that the SLIM1 transcription factor 

regulates miR395 in sulfate starvation conditions. Thus, analysis of slim1-1 mutants 

should help to reveal the role of miR395 in regulation of ATPS by sulfur starvation, as the 

miRNA contribution to such regulation will be negligible. Col-0 and slim1-1 seedlings were 

exposed to four days of sulfate starvation, as previously described. Root and shoot tissue 

was collected separately. Northern blot analysis showed a strongly reduced response of 

miR395 to sulfate starvation in slim1-1 in agreement with the results of Kawashima et al. 

(2009; Figure 4.3.9A). 

 

APR transcript accumulation during sulfur starvation is regulated in a SLIM1 independent 

manner (Maruyama-Nakashita et al., 2006). However, a detailed analysis revealed changes 

in the response of APR transcript levels and activity to sulfur starvation in slim1-1 

compared to the wild-type. In Col-0, sulfate starvation resulted in an up-regulation, 

predominantly in the root tissue, of all three APR transcripts. Constitutive levels of APR in 

the slim1-1 mutant were higher that the wild-type levels, yet in both roots and leaves of 

slim1-1 plants, the APR sulfur-starvation response was much stronger (Figure 4.10B). In 

the roots of slim1-1 plants, the control levels of APR transcripts were slightly higher than 

those of the wild-type, and under sulfate starvation, the APR mRNA levels were up-

regulated to higher levels than in the wild-type, though not to the same degree as in the 

leaves (Figure 4.10C). In agreement with the changes in transcript levels, APR activity in 

wild-type Col-0 remained the same in shoots, and increased in roots (Figure 4.10D). In 

contrast, in slim1-1 APR activity increased four-fold in the leaves, but little change was 

seen in the roots. The APR activity in slim1-1 was significantly lower than in the wild-type 

under control conditions. 



 

Figure 4.10 Regulation of miR395, ATPS, and APR by sulfate starvation in slim1

Col-0 and slim1-1 were grown on growth media containing 1500 μM sulfate (GM) for two weeks 

and then transferred and grown for a further four days on either GM or media lacking a sulfur 

source (S0). A Northern blot analysis of miR395

Anglia, UK. The membranes were stripped and re

Transcript levels were measured by quantitative RT

isoforms in RNA isolated from 

levels in control plants grown on GM set to 1. 

slim1-1 protein extracts. Quantitative RT

SULTR2;1 was carried out on t

measured in Col-0 and 

independent biological replicates. Values marked with an asterisk are significantly (Student's t

p ≤ 0.05) different from Col

significantly different between plants grown on GM and S0.

Regulation of miR395, ATPS, and APR by sulfate starvation in slim1

were grown on growth media containing 1500 μM sulfate (GM) for two weeks 

and then transferred and grown for a further four days on either GM or media lacking a sulfur 

Northern blot analysis of miR395 was carried out by Siqi Huang, University

. The membranes were stripped and re-probed with a U6-specific probe as a control. 

Transcript levels were measured by quantitative RT-PCR with primers specific to the three 

isoforms in RNA isolated from B shoots and C roots. Transcript levels were compared to 

levels in control plants grown on GM set to 1. D Regulation of APR enzyme activity in Col

protein extracts. Quantitative RT-PCR with primers specific to the four 

was carried out on the RNA isolated from E shoot and F root. 

0 and slim1-1 protein extracts. Results are presented as means ± SD from three 

independent biological replicates. Values marked with an asterisk are significantly (Student's t

0.05) different from Col-0 plants grown on GM media. Slim1-1 

significantly different between plants grown on GM and S0. 
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Regulation of miR395, ATPS, and APR by sulfate starvation in slim1-1 mutant. 

were grown on growth media containing 1500 μM sulfate (GM) for two weeks 
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Previously it has been shown, that the usual sulfate-starvation transcriptional response of 

SULTR2;1 is disrupted in the slim1 mutant, most likely due to changes in miR395 

expression (Kawashima et al., 2009). In agreement with this report, SULTR2;1 transcript 

levels were increased in the leaves of sulfate-starved slim1-1, compared with the down-

regulation observed in wild-type plants (Figure 4.10E). In roots, accumulation of SULTR2;1 

transcript in sulfate deficient slim1-1 far exceeded that seen in the wild-type (Figure 

4.10F). ATPS1 transcript levels remained similar across both genotypes and treatments, 

though there was a trend of a slight decrease under sulfate starvation in both wild-type 

and the mutant. In contrast, regulation of transcript levels of ATPS3 and ATPS4 was 

disrupted in the slim1-1 mutant. In leaves, sulfate starvation did not elicit a change in 

ATPS3 transcription. However, in slim1-1 a decrease in transcript level was measured. In 

the roots, the up-regulation of ATPS3 mRNA levels was not observed in the mutant. While 

ATPS4 transcript levels were greatly reduced in both leaves and roots of Col-0 under 

sulfate starvation, this reduction was strongly attenuated in slim1-1. Elevated 

accumulation of ATPS2 mRNA was seen in slim1-1. Nonetheless, transcript levels 

decreased in both wild-type and slim1-1 seedlings in response to sulfate starvation. The 

response of ATPS activity to sulfate starvation was the same in slim1-1 as that seen in 

wild-type plants: A small decrease in activity was detected (Figure 4.10G). However, ATPS 

activity levels in both leaves and roots were significantly lower in the slim1-1 mutant than 

in Col-0 under both control and sulfur-deficient conditions. 

 

Mutants impaired in SLIM1 expression are altered in their response to sulfate starvation 

(Maruyama-Nakashita et al., 2006). We investigated the levels of thiols in seedlings that 

had undergone sulfur starvation treatment for four days. Cysteine and glutathione levels 

were reduced by sulfur deficiency in roots or shoots of both Col-0 and slim1-1 (Figure 

Figure 4.11). However, slim1-1 plants had lower basal levels of cysteine in both the leaves 

and roots. Glutathione levels were lower in slim1-1 leaves under normal conditions, but 



 

were maintained at normal levels in the roots. These findings correspond to the results of 

Maruyama-Nakashita et al. 

 

Figure 4.11 Levels of thiols in Col

Wild-type and slim1-1 plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur

Cysteine and glutathione levels were determined

presented as means ± SD from three independent biological replicates. Asterisks denote values

significantly (Student's t

samples marked ‘a’ are significantly different between

 

In order to gain a better insight into the roles that SLIM1 and miR395 play in the control of 

sulfate assimilation under sulfur limited conditions, we determined the flux of 

the sulfate assimilation pathway. Two wee

four days of sulfur starvation, following which their roots were exposed to [

four hours. First, we determined the rate of relocation of sulfate from root to shoot (

4.12A). Whilst Col-0 plants exhibited a higher rate of relocation of sulfate to the leaves 

following sulfur starvation, 

the leaves. Next we investigated the flux of 

pathway into reduced sulfur compounds (proteins, cysteine, and glutathione). In the 

were maintained at normal levels in the roots. These findings correspond to the results of 

Nakashita et al. (2006), despite differences in experimental set

Levels of thiols in Col-0 and slim1-1 following sulfur deficiency

plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur

Cysteine and glutathione levels were determined in shoots (A-B) and roots 

presented as means ± SD from three independent biological replicates. Asterisks denote values

significantly (Student's t-test; p ≤ 0.05) different from Col-0 plants grown on GM media. 

samples marked ‘a’ are significantly different between plants grown on GM and S0.

In order to gain a better insight into the roles that SLIM1 and miR395 play in the control of 

sulfate assimilation under sulfur limited conditions, we determined the flux of 

the sulfate assimilation pathway. Two week old Col-0 and slim1-1

four days of sulfur starvation, following which their roots were exposed to [

four hours. First, we determined the rate of relocation of sulfate from root to shoot (

0 plants exhibited a higher rate of relocation of sulfate to the leaves 

following sulfur starvation, slim1-1 plants showed a decrease in sulfate accumulation in 

we investigated the flux of 35S through the primary sulfate assimilation 

pathway into reduced sulfur compounds (proteins, cysteine, and glutathione). In the 
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were maintained at normal levels in the roots. These findings correspond to the results of 

, despite differences in experimental set-up. 

 
1 following sulfur deficiency 

plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur-free media (S0). 

and roots (C-D). The data are 

presented as means ± SD from three independent biological replicates. Asterisks denote values 

0 plants grown on GM media. Slim1-1 

plants grown on GM and S0. 

In order to gain a better insight into the roles that SLIM1 and miR395 play in the control of 

sulfate assimilation under sulfur limited conditions, we determined the flux of 35S through 

1 seedlings underwent 

four days of sulfur starvation, following which their roots were exposed to [35S]sulfate for 

four hours. First, we determined the rate of relocation of sulfate from root to shoot (Figure 

0 plants exhibited a higher rate of relocation of sulfate to the leaves 

plants showed a decrease in sulfate accumulation in 

S through the primary sulfate assimilation 

pathway into reduced sulfur compounds (proteins, cysteine, and glutathione). In the 



 

leaves of Col-0 plants, flux of sulfate through the pathway was increased by sulfate 

deficiency, whereas in 

 

Figure 4.12 Measurement of 

Wild-type and slim1-1 plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur

seedlings were incubated

sulfate concentration of 0.2 mM and supplemented with 5.0 

was harvested separately, and the flux was determined as incorporation of 

thiols and proteins. A Translocation of 

shoots. C Flux through the pathway in the roots. 

independent biological replicates. 

p ≤ 0.05) different from Col

significantly different between plants grown on GM and S0.

0 plants, flux of sulfate through the pathway was increased by sulfate 

whereas in slim1-1 sulfur starvation caused no change (Figure 

 
Measurement of sulfate flux in Col-0 and slim1-1 

plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur

seedlings were incubated for four hours with their roots submerged in nutrient solution adjusted to 

sulfate concentration of 0.2 mM and supplemented with 5.0 μCi [35S]sulfate. Shoot and root material 

was harvested separately, and the flux was determined as incorporation of 

Translocation of 35S from roots to shoots. B Flux through the pathway in the 

Flux through the pathway in the roots. The data are presented as means ± SD from three 

independent biological replicates. Values marked with an asterisk are significantly (Student's t

0.05) different from Col-0 plants grown on GM media. Slim1-1 samples marked ‘a’ are 

significantly different between plants grown on GM and S0. 
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0 plants, flux of sulfate through the pathway was increased by sulfate 

Figure 4.12B).  

plants were grown on growth media with a sulfate concentration of 1500 μM 

(GM) for ten days before transfer for a further four days to either GM or sulfur-free media (S0). The 

for four hours with their roots submerged in nutrient solution adjusted to 

S]sulfate. Shoot and root material 

was harvested separately, and the flux was determined as incorporation of 35S from [35S] sulfate to 

Flux through the pathway in the 

The data are presented as means ± SD from three 

Values marked with an asterisk are significantly (Student's t-test; 

samples marked ‘a’ are 
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No difference in sulfur flux was detected in the roots of sulfur starved Col-0 seedling. 

However, a slight increase in flux was measured in the roots of slim1-1 plants, following 

sulfur starvation (Figure 4.12C). Thus, the relocation of sulfate from root to shoot under 

sulfur limited conditions appears disrupted in the slim1-1 mutant, allowing increased 

assimilation in the roots only. 
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4.4. DISCUSSION 

4.4.1. Induction of miR395 regulates ATPS during sulfur starvation 

Jones-Rhoades and Bartel (2004) showed that a decrease in ATPS1 transcript accompany 

the induction of miR395 levels following long-term sulfur deficiency. We have revealed 

that despite the accumulation of miR395 during sulfur starvation, the two ATPS targets 

are not regulated in the same manner as expected (Figure 4.2): ATPS4 mRNA levels 

decrease, whilst levels of ATPS1 stay the same. An increased accumulation of ATPS3 

transcript was detected, supporting the theory that it may not be targeted. Similar results 

were reported recently following ten days sulfur starvation experiments by Liang et al. 

(2010), who recorded a decrease in ATPS4, a small increase in ATPS1, and a larger increase 

in ATPS3 transcript levels. Therefore, it seems that miR395 repression plays a role in 

various mechanisms to regulate the accumulation of its targets.  

 

Transcript levels of ATPS4 decrease in both root and shoot tissue during sulfur starvation, 

consistent with regulation by miR395. As ATPS4 is predominantly root expressed (Chapter 

2), this may act to reduce sulfate activation rates in roots in preference of transport of 

sulfate to the leaves (Figure 2.8). In contrast to previous studies in which decreases in 

ATPS1 transcript levels were observed (Jones-Rhoades and Bartel, 2004; Liang et al., 

2010), we did not detect any change in ATPS1 transcript levels in either leaves or roots in 

response to sulfur deficiency. It is worth noting that both previous studies report on 

ATPS1 response to induction of miR395 following long-term (10 – 14 days) sulfur 

deficiency treatment on low sulfur media, whereas we used a relatively short-term (4 day) 

treatment. The extended period of sulfur limitation may be the cause of the additional 

regulation of ATPS1 transcript accumulation detected in these studies. In line with our 

results, down-regulation of ATPS4 transcription, but not of ATPS1 transcription, has 

consistently been shown in microarray analyses of sulfur starvation response (Hirai et al., 
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2003; Maruyama-Nakashita et al., 2003; Nikiforova et al., 2003; 2006). Analysis of 

ATPS1PRO::GFP lines revealed that increased promoter activity enhances ATPS1 

transcription, thus counteracting the cleavage by miR395 (Figure 4.3). The proposed 

antagonistic regulation of ATPS1 seems over-complicated for simple maintenance of 

transcript levels. As transcript levels were measured in whole roots or shoots, we 

hypothesised that the role of this complex regulatory mechanism may be to alter the 

tissue- or cell-specific expression of ATPS1. Indeed, we saw differences in the root tip 

expression pattern of ATPS1:GFP under control of the ATPS1 promoter (Figure 4.4). This is 

in keeping with the function of many characterised miRNAs which orchestrate specific 

alterations in target expression patterning (for examples see Kidner and Martienssen, 

2004; Parry et al., 2009; Marin et al., 2010).  

 

Due to lack of direct evidence confirming miR395-directed cleavage of ATPS3 transcripts, 

we have considered this gene as non-targeted. During sulfur deficiency, ATPS3 mRNA 

levels increase, positively correlating to the induction of miR395 contrary to the pattern 

that might be expected if ATPS3 were a target of miR395 (Figure 4.3.1; Liang et al., 2010). 

However, similar positive temporal correlation of the target mRNA and miRNA levels has 

been observed previously, for example between miR171 and SCARECROW (Llave et al., 

2002), between miR159 and MYB33 (Achard et al., 2004), and between miR395 and 

SULTR2;1 (Kawashima et al., 2009). Recent analysis revealed repression of ATPS3 

transcript accumulation in plants constitutively over-expressing miR395 under the 35S 

promoter (Liang et al., 2010). An almost complete spatial separation of ATPS3 and miR395 

expression could explain the low cleavage of the transcript detected (Kawashima et al., 

2009). Constitutive over-expression of miR395 could cause the expression of the miRNA in 

the same tissue as ATPS3, with this contact leading to its repression by transcript cleavage. 

Thus, the status of ATPS3 as a target of miR395 remains to be substantiated. 
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ATPS2 is the only ATPS isoform that was not predicted to be targeted by miR395. 

Consistent with this, transcript levels of ATPS2 are not affected by sulfate deficiency in 

either roots or leaves in Figure 4.2. Thus, ATPS2 may function to maintain a basal level of 

ATPS activity during periods of sulfur deprivation. In support of this hypothesis, we 

observed nearly half the wild-type levels of ATPS activity in seedlings of the atps2 loss-of-

function mutant, suggesting that the contribution of ATPS2 to total activity is considerable 

(Figure 4.5). Therefore, preservation of ATPS2 levels might buffer the effect of changes in 

the other ATPS isoforms. Induction of miR395 was not as strong in atps2 plants as in the 

wild-type, suggesting that there may be negative feedback regulation of miR395 (Figure 

4.5). Both cysteine and glutathione are known to be involved in feedback regulation of 

sulfate assimilation, particularly affecting APR activity (Kopriva, 2006). However, 

accumulation of these thiols actually increased in atps2 plants indicating that in this case a 

different mechanism must be involved (Chapter 2, Figure 2.9). As SLIM1 induces miR395 

expression during sulfur deficiency (Kawashima et al., 2009), the reduced response of 

miR395 in atps2 plants may be due to alterations in the level of this transcription factor.  

 

Contrary to the demand-driven regulation of sulfate assimilation that has been previously 

reported (Reuveny et al., 1980; Lappartient et al., 1999), ATPS activity decreases slightly 

in both roots and leaves (Figure 4.2). The effect of substantial decreases in ATPS4 mRNA 

levels are presumably somewhat compensated by the increased ATPS3 mRNA levels. 

Plants respond to sulfur limitation by increasing sulfate uptake and reduction capacity 

through induced transcription of high affinity sulfate transporters and APR (Reuveny et 

al., 1980; Smith, 1980; Takahashi et al., 1997; Hirai et al., 2003; Maruyama-Nakashita et al., 

2003; Nikiforova et al., 2003; 2006). Therefore, as ATPS catalyses the first step of sulfate 

assimilation, down-regulation of ATPS would limit the potential assimilation rate. The 

evidence we have presented indicates that regulation of ATPS during sulfur limitation 



149 

 

functions to alter the distribution of the four ATPS isoforms and redistribute ATPS activity 

in a tissue-specific manner. 

 

4.4.2. SLIM1 and miR395 have distinct functions in sulfur starvation response 

Discovery of SLIM1 marked the first identified transcription factor in the regulation of 

plant sulfur response (Maruyama-Nakashita et al., 2006). Its central role expands to the 

up-regulation of miR395 under sulfur limitation (Kawashima et al., 2009; Figure 4.3.9). 

The analyses presented in this chapter illustrate that SLIM1 exerts two levels of regulation 

on the ATPS genes; by direct transcriptional regulation and through induction of miR395. 

In addition, we suggest that this SLIM1/miR395 mediated regulation is responsible for 

remobilisation of sulfate to the shoots during sulfur deficiency.  

 

Microarray analysis of slim1 mutants following sulfur starvation revealed a loss of ATPS4 

regulation (Maruyama-Nakashita et al., 2006). We confirmed an attenuation of the ATPS4 

transcriptional response, attributed to reduced miR395 levels. The fact that ATPS1 

transcript levels were not altered by sulfur deficiency in the slim1-1 mutants as in wild-

type reveals that SLIM1 is the most likely candidate for activation of the ATPS1 promoter 

in response to sulfur limitation. Regulation of miR395 is interrupted in the slim1-1 mutant 

(Kawashima et al., 2009), allowing a de-repression of ATPS1 which would result in raised 

accumulation of transcripts. However, ATPS1 transcript levels were not increased in the 

mutant, conflicting with the promoter activation identified and leading us to hypothesise 

that SLIM1 itself is responsible for increased transcription. We also revealed that SLIM1 

regulates ATPS3 through comparison of ATPS3 transcriptional response to sulfur 

deficiency in wild-type and slim1-1 plants. The wild-type up-regulation of ATPS3 transcript 

levels following sulfur deficiency is absent in slim1-1 roots. Maruyama-Nakashita et al. 

(2006) showed that GFP expression under control of the SLIM1 promoter is stronger in 
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Arabidopsis roots than in shoots, explaining the root specific response of ATPS3 to sulfur 

deficiency. In Figure 4.10, the analysis of Col-0 under sulfur deficiency revealed a down-

regulation of ATPS2 transcript levels in both shoots and roots that was not detected in 

similar analyses displayed in Figure 4.2. This may be the result of an otherwise undetected 

stress to the plant or fluctuation in light conditions, as this isoform is light responsive 

(Chapter 2); however, all other responses were similar to the initial analysis and the effect 

appears limited to ATPS2 alone. Interestingly, ATPS2 transcript accumulation is 

considerably higher in slim1-1 plants, indicating a de-repression of this gene. ATPS2 mRNA 

is not targeted by miR395, thus in wild-type plants, SLIM1 itself may be responsible for the 

repression of ATPS2. 

 

Despite regulation of multiple aspects of plant sulfur response by SLIM1, the key enzyme 

of primary assimilation, APR is not regulated by this transcription factor (Maruyama-

Nakashita et al., 2006). However, we detected higher accumulation of APR transcripts in 

the slim1-1 mutant, as well as increased sensitivity to sulfur starvation. Slim1 mutants are 

unable to accumulate wild-type levels of cysteine and glutathione, most likely due to a 

decrease in sulfate uptake (Figure 4.2.10; Maruyama-Nakashita et al., 2006). Hence, the 

increase in APR transcript levels might be due to this decline in thiols rather than the 

direct action of SLIM1. APR activity, on the other hand, is greatly reduced in the slim1-1 

mutant, though in leaves activity is restored to wild-type levels during sulfur starvation. 

This uncoupling of APR transcript accumulation and activity is similar to that reported in 

response to salt and hormone treatments (Koprivova et al., 2008). Together with the 

analysis of ATPS regulation by miR395 and SLIM1, this SLIM1-independent regulation of 

APR indicates the involvement of further, as yet unidentified, factors in the regulation of 

sulfur starvation response.  
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Response to sulfur starvation is disrupted in the slim1-1 mutant, including regulation of 

miR395, ATPS, and multiple other genes involved in sulfate assimilation (Figure 4.3.9; 

Maruyama-Nakashita et al., 2006; Kawashima et al., 2009). As SLIM1 has such a central 

role in sulfur-starvation response, the regulation of flux through sulfate assimilation might 

be altered in the slim1-1 mutant (Figure 4.12). APR contributes a major portion of the 

control of flux in sulfate assimilation (Vauclare et al., 2002; Scheerer et al., 2010), but is 

not regulated by SLIM1 (Maruyama-Nakashita et al., 2006). APR activity was induced by 

sulfur starvation in both Col-0 and slim1-1. Therefore, flux could be expected to increase in 

slim1-1 plants also. Indeed, flux was increased in both genotypes, but interestingly in a 

tissue-specific manner. In Col-0 increased flux occurred in leaves, whereas in slim1-1 

mutants a smaller increase was in the roots. Complementary to the tissue specific changes 

in sulfate reduction rates during sulfur starvation, translocation of sulfate appears to be 

disrupted in the slim1-1 mutant. At normal sulfur supply, the same amount of sulfate was 

transported from the roots to the shoots in both Col-0 and slim1-1. However, differences 

were seen following sulfur starvation, with a large increase in transport to the shoots in 

Col-0, but a significant decrease in slim1-1. Thus, it seems that SLIM1 is not only 

responsible for increased sulfate uptake in the roots of sulfur deficient plants, but also the 

internal re-distribution of sulfate from roots to shoots. SULTR2;1 is hypothesised to be 

restricted to the xylem parenchyma by the action of miR395 following sulfur deficiency 

(Kawashima et al., 2009), which is consistent with a role in the translocation of sulfate to 

the leaves. Recently, further analysis of miR395 revealed that it regulates the translocation 

of sulfate between leaves by targeting SULTR2;1 (Liang et al., 2010). Therefore, we 

propose that increased translocation of sulfate to the leaves during sulfur starvation is 

mediated by SLIM1 through the action of miR395. An alternative hypothesis might be that 

root-to-shoot transport is reduced in slim1-1 mutants due to an inability to induce the 

vacuolar exporters, SULTR4;1 and SULTR4;2 (Kataoka et al., 2004b; Maruyama-Nakashita 

et al., 2006). 
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4.4.3. miR395 is involved in general regulation of sulfate assimilation 

Our data clearly show that miR395 functions beyond sulfur starvation response, and is an 

integral part of the regulatory circuits of the sulfate assimilation pathway (Figure 4.7 – 

10). Sulfur limitation is the most highly studied environmental condition regulating sulfur 

assimilation. However, the pathway is also regulated by other environmental stresses and 

sulfur metabolites (Davidian and Kopriva, 2010). Accumulation of the cysteine precursor, 

OAS, indicates a demand for reduced sulfur, and the pathway has been shown to be 

regulated accordingly. Consistent with the ability of OAS to mimic sulfur deficiency (Hirai 

et al., 2003; 2005), the response of miR395 to OAS treatment was similar to that seen in 

sulfur-starved plants. miR395 accumulated in root tissues, although the induction was not 

as was not as strong as in response to sulfur deficiency ( 

Figure 4.6). In agreement with results from Hirai et al. (2003), treatment with OAS 

resulted in higher cysteine and glutathione levels in the roots only (Figure 4.7). The root 

specificity of the OAS response, including accumulation of APR transcripts, as well as 

induction of miR395, may indicate a limited ability of the plant to transport OAS to the 

shoots. Despite induction of miR395 by OAS treatment, regulation of the targets differed 

from that seen in response to sulfur starvation. As miR395 levels are not increased in the 

leaves, the lack of target response is intuitive. However, the increased miR395 in the roots 

fails to down-regulate ATPS4 expression, whilst ATPS1 and SULTR2;1 mRNA levels both 

increased. These responses can be attributed to the lower accumulation of miR395 

compared with the sulfur starvation response. Interestingly, ATPS3 transcript levels are 

not up-regulated by OAS treatment, or any further treatments used in this study (Figure 

4.7– 9), demonstrating that this is a sulfur starvation response, and is not dependent upon 

demand for reduced sulfur. In agreement with the reduced effect on transcript levels, 
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overall ATPS activity levels are not altered by OAS application. This does not exclude the 

possibility that the localisation of that activity is altered in response to OAS.  

 

Inhibition of glutathione biosynthesis by BSO results in an up-regulation of sulfate uptake 

and assimilation due to the increased demand for reduced sulfur (Lappartient et al., 1999; 

Hartmann et al., 2004). Conversely, external application of glutathione provides negative 

regulation of ATPS activity (Lappartient et al., 1999). Feedback inhibition of APR activity 

was also observed following feeding with cysteine and glutathione (Vauclare et al., 2002). 

We dissected the effects of glutathione and cysteine on miR395 regulation to reveal that 

miR395 functions in this demand-driven regulation of sulfur assimilation (Figure 4.8– 9), 

except in response to sulfur deficiency. BSO and cysteine treatments caused repression 

and induction of miR395, respectively, in agreement with the concept of demand-driven 

regulation of sulfur assimilation. However, both treatments resulted in uncoupling of the 

ATPS target responses from the miR395 regulation: BSO caused decreases in mRNA levels 

of ATPS1 and ATPS3, and the non-targeted ATPS2, whereas no transcriptional changes 

were observed following cysteine application. Surprisingly, despite the decreased 

transcript levels following BSO treatment, ATPS activity was increased, providing evidence 

of post-translational regulation of the ATPS enzyme. A similar uncoupling of APR activity 

and transcript levels has been described in response to salt stress (Koprivova et al., 2008).  

 

Comparison of the changes in thiol accumulation and the response of miR395 identified a 

positive correlation between glutathione and miR395 levels in the four treatments 

investigated (Figure 4.13). Therefore, we propose that miR395 is part of the demand-

driven regulation of sulfate assimilation, signalled by glutathione through an unknown 

mechanism. The response to sulfur starvation appears to be an exception, as decreases in 

glutathione coincide with induction of miR395. Presumably, SLIM1-regulation of miR395 

is able to over-ride the glutathione-dependent regulation. The Arabidopsis genome 
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encodes six MIR395 loci, MIR395a – f producing two mature miR395 species (Kawashima 

et al., 2009). The expression patterns of the six genes differ in the degree and localisation 

of their activation by sulfur deprivation (Kawashima et al., 2009). Thus, variation in the 

expression response of these individual MIR395 genes to glutathione and SLIM1 may 

result in the contrasting regulation revealed. 

 

 cy
st

e
in

e
 

g
lu

ta
th

io
n

e
 

m
iR

3
9

5
 

+BSO       

+Cys       

+OAS       

S0       

Figure 4.13 Heat map 
Heat map showing regulation of the thiols, cysteine and glutathione, and miR395 regulation under the 

four treatments used. Treatments are listed on the left and the component measured is indicated 

across the top. Red indicates an increase in levels compared with no treatment controls. Green 

indicates a decrease. 

 

4.4.4. MicroRNA regulation of plant nutrition 

We have shown that miR395 is a central component in the regulation of sulfate 

assimilation, and plays a critical role in partitioning of sulfate between the shoots and 

roots. The initial targets identified for miRNAs were transcription factors involved in 

developmental processes (Llave et al., 2002; Rhoades et al., 2002); however, miRNA 

species involved in response to environmental stresses, including nutrient stress, were 

identified shortly after (Jones-Rhoades and Bartel, 2004; Sunkar and Zhu, 2004; Fujii et al., 

2005; Ruiz-Ferrer and Voinnet, 2009). Pant et al. (2008) identified as many as 20 miRNAs 

that respond to nitrogen or phosphate deficiency. To date, the two most notable examples 

of nutrient responsive miRNAs are miR399 which is induced by phosphate starvation 

(Fujii et al., 2005), and miR398 which acts during copper deficiency (Yamasaki et al., 2007; 

2009). Many of the nutrient responsive miRNAs identified, including miR395, have been 
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detected in the phloem sap of Brassica napus, indicating a role in long distance signalling 

of nutrient status (Buhtz et al., 2010).  

 

The phosphate starvation induced miR399 is the best characterised nutrient responsive 

miRNA (Fujii et al., 2005; Aung et al., 2006; Chiou et al., 2006; Franco-Zorrilla et al., 2007; 

Pant et al., 2008). During phosphate deficiency, miR399 is induced by PHOSPHATE 

STARVATION RESPONSE 1 (PHR1), a MYB transcription factor responsible for regulating a 

subset of phosphate responsive genes (Rubio et al., 2001; Franco-Zorrilla et al., 2004; Bari 

et al., 2006). miR399 represses the PHO2 (UBC24) gene encoding an ubiquitin-conjugating 

E2 enzyme 24 (Aung et al., 2006), resulting in increased phosphate uptake and 

translocation to the shoots as well as remobilisation of phosphate between old and young 

leaves (Figure 4.4.2; Chiou et al., 2006). Thus, miR399 functions as a long-distance signal 

of leaf phosphate status through its transport to root tissues in the phloem (Lin et al., 

2008; Pant et al., 2008; Buhtz et al., 2010). Similar to the up-regulation of miR399 by PHR1 

during phosphate deficiency, miR395 is induced by the SLIM1 transcription factor in 

response to sulfate starvation (Figure 4.4.2; Kawashima et al., 2009). During sulfur 

limitation, SLIM1 increases sulfate uptake, whilst APR is induced by an unknown SLIM1-

independent mechanism (Maruyama-Nakashita et al., 2006), resulting in increased flux 

through sulfate assimilation in the shoots. In addition, SULTR2;1 expression is limited to 

the xylem parenchyma cells through the action of SLIM1 induced miR395, resulting in 

increased translocation of sulfate to the shoots. The synergistic actions of SLIM1 and 

miR395 maintain ATPS transcript levels at an optimal level to meet the increased sulfate 

reduction rate. Shoot-to-root transport in the phloem is essential for the function of 

miR399 (Pant et al., 2008; Buhtz et al., 2010), and accordingly, miR399 has only been 

identified in vascular plants (http://www.mirbase.org). Although miR395 has also been 

detected in the phloem sap of Brassica napus (Buhtz et al., 2010) the role of this phloem 

expression is not clear. Similarly, the origin of miR395 function in regulation of shoot-to-
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root sulfate translocation is unclear considering miR395 is not only conserved in vascular 

plants, but also in the moss, P. patens, (Fattash et al., 2007). Therefore its original function 

may have been the regulation of sulfate assimilation, and a role in long-distance signalling 

may have evolved as a secondary function. 

 

4.4.5. Conclusions 

In this chapter we have discussed the regulation of ATPS at multiple levels – 

transcriptional regulation by SLIM1 and other unknown factors, post-transcriptional 

regulation by miR395, and possibly post-translational regulation. This complex regulation 

causing subtle changes in ATPS activity is consistent with the pivotal role of the enzyme. 

Sulfate acquired from soil through the roots is uploaded into the xylem, and then moves to 

apoplastic continuum and symplast, which brings sulfate to sink organs or tissues. 

Reduction occurs in plastids, or sulfate is stored in vacuoles (Buchner et al., 2004). As 

sulfate is the major form in which sulfur is transported around the plant, the site of its 

activation is critical for the provision of reduced sulfur compounds, and secondary sulfur 

metabolites, to the tissues that require them. We have demonstrated a role for miR395 

and SLIM1 in limiting expression of ATPS and SULTR2;1 to specific tissues, and the 

importance of this regulation for remobilisation and allocation of sulfate. Therefore, I 

propose that specificity of tissue, cell, and potentially also compartmental expression of 

ATPS is not only important for its function, but is also fundamental to regulation of sulfate 

assimilation.  

 



 

Figure 4.14 Comparison of miR395 and miR399 function

A Under normal pho

deficiency in shoots activates PHR1 which induces miR399 expression. The miRNA is then 

transported to roots where it inhibits PHO2. This relieves the inhibition of phosphate 

uptake and phosphate 

SLIM1 and miR395 maintain levels of 

assimilation of sulfate into organic sulfur

which directly induces root sulfate transporters to increase sulfate uptake. 

induced by sulfur limitation independently of SLIM1. S

miR395 which limits expression of 

translocation to the shoots and inhibiting shoot

inhibits ATPS4 transcript levels and together with SLIM

increased flux through the sulfate assimilation pathway achieved by SLIM1

induction of APR. The phloem transport of miR395 is indicated by arrow and its unknown 

function by a question mark.

 

 

Comparison of miR395 and miR399 function 
Under normal phosphate (Pi) supply PHO2 inhibits phosphate uptake. Phosphate 

deficiency in shoots activates PHR1 which induces miR399 expression. The miRNA is then 

transported to roots where it inhibits PHO2. This relieves the inhibition of phosphate 

uptake and phosphate is translocated to the shoots. B Under normal sulfate (SO

SLIM1 and miR395 maintain levels of ATPS1 and ATPS4 transcripts for optimal 

assimilation of sulfate into organic sulfur-compounds. Sulfur limitation activates SLIM1 

which directly induces root sulfate transporters to increase sulfate uptake. 

induced by sulfur limitation independently of SLIM1. SLIM1 induces accumulation of 

miR395 which limits expression of SULTR2;1 to xylem parenchyma, thus enhancing sulfate 

translocation to the shoots and inhibiting shoot-to-root transport in phloem. miR395 

transcript levels and together with SLIM1 regulates ATPS to allow 

increased flux through the sulfate assimilation pathway achieved by SLIM1

induction of APR. The phloem transport of miR395 is indicated by arrow and its unknown 

function by a question mark. 
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sphate (Pi) supply PHO2 inhibits phosphate uptake. Phosphate 

deficiency in shoots activates PHR1 which induces miR399 expression. The miRNA is then 

transported to roots where it inhibits PHO2. This relieves the inhibition of phosphate 

Under normal sulfate (SO4
2-) supply 

transcripts for optimal 

compounds. Sulfur limitation activates SLIM1 

which directly induces root sulfate transporters to increase sulfate uptake. SULTR2;1 is 

LIM1 induces accumulation of 

to xylem parenchyma, thus enhancing sulfate 

root transport in phloem. miR395 

1 regulates ATPS to allow 

increased flux through the sulfate assimilation pathway achieved by SLIM1-independent 

induction of APR. The phloem transport of miR395 is indicated by arrow and its unknown 
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5. GENERAL DISCUSSION 

The aim of the work presented in this thesis was to address key questions surrounding the 

roles and regulation of sulfate activation by ATPS in higher plants. Bioinformatic, 

biochemical, and molecular techniques were applied in the model species, Arabidopsis, to 

investigate isoform specificity and regulation of the four ATPS isoforms and to search for 

clues to the role of cytosolic ATPS activity. This section reviews to what extent these aims 

have been achieved and how the findings advance our understanding of sulfate 

assimilation in vascular plants. 

 

5.1. Importance of cytosolic ATPS 

The subcellular compartmentalization of the sulfate assimilation pathway is somewhat of 

an enigma (Figure 5.1). In Arabidopsis, while sulfate reduction occurs exclusively in 

plastids, recent efforts to understand the role of compartment-specific isoforms of SAT 

and OASTL have revealed that mitochondria are the major site of OAS synthesis (Haas et 

al., 2008), but that most cysteine is produced in the cytosol (Heeg et al., 2008). Similarly, 

while γ-EC is formed exclusively in plastids, glutathione can be produced in both plastids 

and the cytosol (Wachter et al., 2005). This separation of different steps of the pathway 

indicates a substantial amount of transport of intermediates between compartments. 

Adding a further level of complexity, PAPS can be produced in both the cytosol and 

plastids as ATPS and APK are present in both compartments (Rotte and Leustek, 2000; 

Mugford et al., 2009). Although experimental evidence is still lacking to confirm which 

ATPS isoform is responsible for cytosolic activity, the ATPS2 isoform is favoured for the 

role (Rotte and Leustek, 2000). Cytosolic ATPS activity is considered to play a role in PAPS 

production for sulfation of secondary metabolism since APK is present in both plastids and 
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the cytosol (Mugford et al., 2009) and since sulfotransferases, e.g. SOT16, SOT17 and 

SOT18, which transfer sulfate from PAPS to desulfoglucosinolates, are restricted in their 

expression to the cytosol (Klein et al., 2006). However, none of the analyses presented in 

this thesis uncovered a link between ATPS2 and secondary metabolism, suggesting that 

either ATPS2 is not dually-targeted as hypothesised or that the cytosolic ATPS has other 

unknown functions. Indeed, the importance of cytosolic PAPS production is questionable, 

since mutants lacking cytosolic APK were able to maintain wild-type levels of sulfated 

glucosinolates (Mugford et al., 2009). Therefore, PAPS must be readily transported from 

plastids to the cytosol. Consistent with these results, cytosolic ATPS activity is not 

essential in the absence of stress, considering none of the four ATPS loss-of-function 

mutants exhibited obvious biological phenotypes. As cytosolic PAPS production does not 

appear to be a crucial process in Arabidopsis and cytosolic ATPS activity is the result of 

dual targeting of one (or more) of four isoforms, it may prove difficult to dissect the role of 

cytosolic ATPS activity. It is, however, possible that redundancy of cytosolic sulfate 

activation in Arabidopsis is species specific and may not arise in plant species whose 

genomes encode just two ATPS isoforms, clearly targeted to the plastid and cytosol. 

Therefore, concentrating further efforts to understand the role of cytosolic ATPS activity 

on such species might help to provide some clarification. 

 



 

 

Figure 5.1 Subcellular compartmentalization of the sulfate assimilation pathway in 

Arabidopsis. 
Components in red are restricted to a single cellular 

orange are produced principally in the compartment in which they are shown. Pathways in grey are 

potentially redundant. Broken arrows indicate hypothesized inter
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Subcellular compartmentalization of the sulfate assimilation pathway in 

compartment. Compounds highlighted in 

orange are produced principally in the compartment in which they are shown. Pathways in grey are 

compartment transport. 
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5.2.  Regulation of the ATPS isoforms 

ATPS is part of sulfate assimilation and is regulated by the demand-driven regulatory 

network, which still remains to be characterised (Reuveny et al., 1980; Lappartient et al., 

1999; Takahashi et al., 2000). However, during sulfur deficiency two of the four 

Arabidopsis ATPS mRNAs are targeted and cleaved by miR395, as well as the transcript 

for low affinity sulfate transporter SULTR2;1 (Jones-Rhoades and Bartel, 2004; Allen et al., 

2005; Kawashima et al., 2009). Chapter 4 described how the four ATPS genes respond 

differently to sulfur deficiency at the transcript level due to regulation by SLIM1 and 

miR395 (Figure 5.2). ATPS2 and ATPS3 transcripts are not targeted by miR395, but while 

the first appears to be suppressed by SLIM1, the latter is activated. Both ATPS1 and ATPS4 

are targets of miR395, yet are oppositely regulated in response to sulfur starvation. ATPS4 

transcript levels decrease due to canonical regulation by miR395; however, the regulation 

of ATPS1 is more complex. We ascertained that increased transcription of ATPS1 mediated 

by SLIM1 acts in synergy with miR395 cleavage to maintain overall transcript levels. The 

result may be a modification of ATPS1 tissue-specific expression. We showed that miR395 

levels are correlated to glutathione content in the tissues and that miR395 functions 

beyond sulfur deficiency response as an integral part of the demand-driven regulation of 

the reductive sulfate assimilation pathway. Recent analysis in Brassica napus showed that 

miR395 is also induced by treatment with cadmium (Huang et al., 2010), revealing a 

potential new role for miR395 regulation of the ATPS genes in response to this heavy 

metal stress, but fitting in with the concept of general demand-driven regulation. 

 



 

 

Figure 5.2 Regulation of the Arabidopsis ATPS genes during sulfur deficiency

Green and red arrows indicate positive and negative regulation respectively, as described in the 

work presented in this thesis. Up
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Our analysis revealed that miR395 induction leads to increased xylem translocation of 
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cleavage was hypothesised to restrict SULTR2;1 expression to the xylem parenchyma 

(Kawashima et al., 2009). Hence, miR395 regulation of SULTR2;1 appears to reduce 

uptake of sulfate into root tissues from the phloem, while up-regulation of SULTR2;1 in the 

xylem parenchyma increases  xylem loading of sulfate, resulting in net increase in 

oots to shoots. Further to this root-to-shoot translocation, miR395 is 

proposed to enable redistribution of sulfate from older to younger leaves 

. In addition to the substantial evidence provided for a role of miR395 in regulation 

of long distance translocation of sulfate, miR395 has been identified in the phloem 

suggesting it may act as a long-distance signalling (Buhtz et al., 2010)

the phloem transport remains unclear. The conservation of miR395 throughout plant 

evolution is extensive, pointing towards an indispensable role for miR395. Target 

prediction of miR395 in the vascular plant species Oryza sativa

Solanum lycospersicum, Sorghum bicolour, and Brassica napus revealed that both ATPS and 

a low affinity sulfate transporter are targeted, whereas in Populus trichocarpa
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and Vitis vinifera only ATPS genes are predicted to be targeted (Huang et al., 2010; Liang et 

al., 2010). A single miR395 species has also been identified in the moss Physcomitrella 

patens (Fattash et al., 2007). In contrast, the miR399, which regulates the response to 

phosphate deficiency and is dependent in its function on phloem transport (Pant et al., 

2008) is not present in Physcomitrella. Therefore, the original function of miR395 must 

have been regulation of sulfate assimilation independent from the long-distance transport, 

which may have developed as a secondary role. 

 

Glucosinolate biosynthesis is centrally regulated by six MYB factors. MYB28, MYB29, and 

MYB76 control aliphatic glucosinolate biosynthesis, while MYB34, MYB51, and MYB122 

control the indolic biosynthesis pathway (Celenza et al., 2005; Gigolashvili et al., 2007a; 

2007b; 2008; Malitsky et al., 2008). ATPS activity is required in PAPS synthesis for the 

final step in the synthesis of glucosinolate core structure. Chapter 3 describes differential 

regulation of ATPS1 and ATPS3 by the MYB factors as summarised in Figure 5.3. These 

data were published recently together with research revealing that the APR and APK 

multi-gene families are regulated uniformly by the glucosinolate MYB factors (Yatusevich 

et al., 2010). Thus, the genes of primary assimilation are co-ordinately regulated with 

genes of glucosinolate biosynthesis. PAPS synthesis has been shown to be limiting for the 

synthesis of glucosinolates (Mugford et al., 2009). The regulation of ATPS1 and ATPS3 was 

distinct from that of APR and APK as the aliphatic and indolic MYB factors regulated the 

ATPS isoforms with a different strength. Therefore, ATPS provides a newly identified point 

of regulation for glucosinolate biosynthesis. Until now, the SLIM1 transcription factor was 

the only transcriptional regulator of sulfate assimilation to be identified (Maruyama-

Nakashita et al., 2006). Through our analysis, six novel transcription factors have been 

added to the sulfate assimilation regulatory network.  



 

 

Figure 5.3 Glucosinolate biosynthetic network. 

The aliphatic and indolic glucosinolate biosynthesis from methionine and chorismate is outlined, 

together with PAPS synthesis. Steps representing regulation by the MYB factors are shown i

(MYB28/MYB29/MYB76) and yellow (MYB34/MYB51/MYB122). As described in Chapter 2, 

regulation of the ATPS genes by the MYB factors is emphasized, with the different extent of 

regulation of ATPS1 and 
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together with PAPS synthesis. Steps representing regulation by the MYB factors are shown i

(MYB28/MYB29/MYB76) and yellow (MYB34/MYB51/MYB122). As described in Chapter 2, 

regulation of the ATPS genes by the MYB factors is emphasized, with the different extent of 

and ATPS3 indicated by the text size.  

 

165 

 

The aliphatic and indolic glucosinolate biosynthesis from methionine and chorismate is outlined, 

together with PAPS synthesis. Steps representing regulation by the MYB factors are shown in green 

(MYB28/MYB29/MYB76) and yellow (MYB34/MYB51/MYB122). As described in Chapter 2, 

regulation of the ATPS genes by the MYB factors is emphasized, with the different extent of 
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5.3. Future directions 

We have revealed that functional specificity exists among the individual Arabidopsis ATPS 

genes. To build on this analysis of the ATPS mutant lines following environmental stress 

could further our understanding of the extent of this specificity. To clarify the degree of 

genetic redundancy within the Arabidopsis ATPS gene family, full systematic analysis of 

double and triple ATPS knock-out lines could be used as in reports on the SAT and APK 

gene families (Watanabe et al., 2008b; Mugford et al., 2009; Mugford et al., 2010). Novel 

regulation of ATPS1 and ATPS3 by the glucosinolate MYB factors was revealed, but 

involvement of ATPS2 in PAPS production for glucosinolate sulfation was not confirmed. 

Glucosinolate analysis in atps1 atps3 double mutants might reveal whether ATPS2 and 

ATPS4 are able to contribute to glucosinolate sulfation or whether this function is specific 

to ATPS1 and ATPS3 alone. A reduced rate of glucosinolate synthesis in atps1 mutant 

plants (Bok-Rye Lee, personal communication) indeed points to as yet neglected strong 

control of glucosinolate synthesis by primary sulfate assimilation and particularly ATPS. 

Similarly, as the atps1 and atps4 single knock-out mutants are the most altered in 

secondary and primary sulfur assimilation respectively, analysis of atps1 atps4 double 

mutants might reveal to what extent ATPS2 and ATPS3 support sulfate assimilation. As 

both ATPS1 and ATPS4 are targeted by miR395, further insights into the role of this 

regulation might be gained in these mutants. We disclosed a role of miR395 regulation in 

the shoot-to-root translocation of sulfate. However, the significance of miR395 phloem 

transport and the functional evolution of miR395 remain to be investigated. As miR395 is 

conserved in the moss P. patens (Fattash et al., 2007) the study of its targets, regulation 

and function in this species may shed some light on the original function of miR395. 

ATPS2 was not regulated by the MYB factors or miR395, nor was it proven to be 

responsible for cytosolic activity. Thus, the identity of the cytosolic ATPS isoform remains 

to be revealed. The characterisation of the light regulation of ATPS2 described in chapter 2 
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may aid understanding of the role of ATPS2 in sulfur assimilation. Moreover, such analysis 

will provide further insight into the mechanisms of ATPS regulation.  

 

5.4. Conclusions 

In conclusion, analysis of the four Arabidopsis ATPS isoforms revealed substantial 

differences in the regulation of individual ATPS genes, clearly pointing to specific 

functions. This has been confirmed by the differential regulation by MYB factors 

controlling glucosinolate synthesis. This analysis also firmly put ATPS and other genes of 

sulfate assimilation into the glucosinolate biosynthesis and regulatory network. ATPS 

isoforms are also differentially regulated by the miR395. Analysis of regulation of miR395 

accumulation clearly identified this miRNA as an integral part of demand-driven 

regulation of sulfate assimilation. Whereas a final assignment of specific functions to 

individual ATPS isoforms is still not fully possible, this thesis contributes important data 

to enable this in the foreseeable future.   
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