Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records

Moberg, A., Jones, P. D. ORCID: https://orcid.org/0000-0001-5032-5493, Barriendos, M., Bergström, H., Camuffo, D., Cocheo, C., Davies, T. D., Demarée, G., Martin-Vide, J., Maugeri, M., Rodriguez, R. and Verhoeve, T. (2000) Day-to-day temperature variability trends in 160- to 275-year-long European instrumental records. Journal of Geophysical Research, 105 (D18). pp. 22849-22868. ISSN 0148-0227

Full text not available from this repository. (Request a copy)

Abstract

Day-to-day temperature variability is investigated in eight European series of daily mean temperatures beginning between 1722 and 1833. Eight statistical measures of day-to-day temperature variability are compared. The intramonthly standard deviation of daily temperature anomalies is found to be a good measure. The absolute change in temperature anomaly from one day to the next is sensitive to changes in observational procedures and is suggested as a diagnostic tool for identification of inhomogeneities in instrumental temperature series. Because many changes in observational procedures have taken place, quantitative estimates of trends in day-to-day variability, based on all series, could only be calculated for 1880-1998. A trend analysis over this period indicates an increase by 5% in southwest Europe, 0 to -5% change in the northwest, and a decrease by 5 to 10% in northeast Europe. On a longer time perspective, day-to-day temperature variability in winter, spring, and autumn in northern Europe has decreased over the last 200-250 years. The frequency of extremely cold winter days in northern Europe was lower in the twentieth century than in the eighteenth and nineteenth centuries. Day-to-day temperature variability in winter in northern Europe was negatively correlated with a North Atlantic Oscillation index in the period 1826-1997, but some other factor must also have contributed to the long-term variability decrease. More long daily temperature series, and development of homogenization methods for such data, are needed for an improved knowledge of long-term changes in day-to-day temperature variability.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
University of East Anglia Research Groups/Centres > Theme - ClimateUEA
UEA Research Groups: Faculty of Science > Research Groups > Climatic Research Unit
Faculty of Science > Research Groups > Centre for Ocean and Atmospheric Sciences
University of East Anglia Schools > Faculty of Science > Tyndall Centre for Climate Change Research
Faculty of Science > Research Centres > Tyndall Centre for Climate Change Research
Depositing User: Rosie Cullington
Date Deposited: 20 Jul 2011 11:10
Last Modified: 04 Mar 2024 16:47
URI: https://ueaeprints.uea.ac.uk/id/eprint/33996
DOI: 10.1029/2000JD900300

Actions (login required)

View Item View Item