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Abstract. Oxygen triple isotope measurements can be used
to calculate aquatic gross oxygen production rates. Past stud-
ies have emphasised the appropriate definition of the17O ex-
cess and often used an approximation to derive production
rates from the17O excess. Here, I show that the calculation
can be phrased more consistently and without any approxi-
mations using the relative17O/16O and18O/16O isotope ratio
differences (delta values) directly. I call this the “dual delta
method”. The17O excess is merely a mathematical construct
and the derived production rate is independent of its defini-
tion, provided all calculations are performed with a consis-
tent definition. I focus on the mixed layer, but also show how
time series of triple isotope measurements below the mixed
layer can be used to derive gross production.

In the calculation of mixed layer productivity, I explicitly
include isotopic fractionation during gas invasion and eva-
sion, which requires the oxygen supersaturations to be mea-
sured as well. I also suggest how bubble injection could be
considered in the same mathematical framework. I distin-
guish between concentration steady state and isotopic steady
state and show that only the latter needs to be assumed in the
calculation. It is even possible to derive an estimate of the
net production rate in the mixed layer that is independent of
the assumption of concentration steady state.

I review measurements of the parameters required for the
calculation of gross production rates and show how their sys-
tematic uncertainties as well as the use of different published
calculation methods can cause large variations in the produc-
tion rates for the same underlying isotope ratios. In particu-
lar, the17O excess of dissolved O2 in equilibrium with atmo-
spheric O2 and the17O excess of photosynthetic O2 need to
be re-measured. Because of these uncertainties, all calcula-
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tion parameters should always be fully documented and the
measured relative isotope ratio differences as well as the oxy-
gen supersaturation should be permanently archived, so that
improved measurements of the calculation parameters can be
used to retrospectively improve production rates.

1 Introduction

Luz et al. (1999) first suggested that the triple-isotope com-
position of atmospheric oxygen (O2) could be used as a
tracer of biological productivity. They showed that photosyn-
thetic O2 has a small, but measurable excess of the oxygen
isotope17O with respect to atmospheric O2, after normalisa-
tion for 18O/16O isotope ratio differences. The magnitude of
the 17O excess (171) depends on the chosen normalisation,
which is meant to account for so-called mass-dependent iso-
tope fractionation (see Sect. 2.2).

It is clear that stratospheric isotope exchange reactions be-
tween ozone (O3) and carbon dioxide (CO2) are responsible
for an enhanced17O isotope transfer over and above a mass-
dependent relationship with18O (Yung et al., 1991, 1997).
Specifically, the relative17O/16O isotope ratio difference of
stratospheric CO2 to tropospheric CO2 is about 1.7 times that
of the 18O/16O isotope ratio difference (L̈ammerzahl et al.,
2002), significantly higher than the factor of 0.516±0.015
expected for many mass-dependent fractionation processes
(Kaiser, 2008). Since O2 is the source of the oxygen atoms
in the short-lived O3 molecule, this leads to corresponding
17O depletion in atmospheric O2.

In the aquatic realm, the relative isotope ratio difference
between atmospheric and photosynthetic oxygen can be used
to calculate gross oxygen production in the mixed layer, us-
ing the gas exchange rate as a “timekeeper”. Based on the
simplified budget by Luz and Barkan (2000), the following
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1794 J. Kaiser: Consistent calculation of aquatic gross production

equation should hold for the ratio (g) between gross O2 pro-
duction (P ′) and gross oxygen influx from the atmosphere
(kcsat), wherek is the gas exchange coefficient andcsat the
saturation concentration of O2:

g ≡
P ′

kcsat
=

171−
171sat

171P−171
(1)

171, 171satand171P refer to the17O excess of dissolved O2,
dissolved O2 in equilibrium with the atmosphere and pho-
tosynthetic oxygen, respectively. The prime symbol distin-
guishes area-based rates (P ′) from volume-based rates (P ).
The mathematical treatment in the following is framed in
terms of volume-based rates. They can be converted to area-
based rates by multiplication by the depth interval for which
they are calculated, e.g. the mixed-layer depth for mixed-
layer production rates.

Equation (1) has been used in numerous studies to calcu-
late gross O2 production rates (e.g. Sarma et al., 2005, 2006a,
2008; Juranek and Quay, 2005; Stanley et al., 2010; Luz
and Barkan, 2005, 2009). Usually, statistical uncertainties
in the measurement of171 and in the calculation ofk from
wind speeds are cited as main contributors to the overall un-
certainty inP ′, which may be between 15 % (Stanley et al.,
2010) and 40 % (Quay et al., 2010; Reuer et al., 2007). To
eliminate the uncertainty introduced byk, I focus here on the
calculation of the dimensionless gross production variableg,
which is independent ofk.

The advantage of the oxygen triple isotope technique over
18O/16O isotope ratio measurements in determining produc-
tion is that the calculated rates are independent of the respi-
ratory isotope effect that is not well known and that would
otherwise lead to significant uncertainties (Hendricks et al.,
2004; Quay et al., 1993; Venkiteswaran et al., 2008). If
implemented correctly, the additional information from the
17O/16O isotope ratio measurement allows elimination of the
respiratory isotope effect from the production calculation.

However, different studies have used different definitions
of 171, without appropriately adjusting171sat and 171P.
The use of different definitions of171 means that the same
measurements will give different results forg, causing sys-
tematic uncertainty.

Moreover, in an effort for a more rigorous derivation of
Eq. (1), Hendricks et al. (2004) demonstrated that calcula-
tions ofg based on this equation were in error. The authors
solved the exact equations iteratively, making assumptions
for certain parameters and using the biological oxygen su-
persaturation1(O2/Ar) (Kaiser et al., 2005) as additional
constraint. Specifically, the ratio of1(O2/Ar) andg was as-
sumed to be equivalent to the ratio of net (N) to gross oxygen
production, i.e.f = N /P = (P – R)/P =1(O2/Ar)/g, where
R stands for respiration. The same iterative approach was
adopted in subsequent studies (Hendricks et al., 2005; Reuer
et al., 2007; Juranek and Quay, 2010; Quay et al., 2010).
Quay et al. (2010) and Juranek and Quay (2010) stated that
the iterative approach gave on average 10 % higher values

for g than Eq. (1), without exploring the underlying reasons.
None of these iterative calculations considered the effect of
inconsistent171 definitions and the uncertainty in the input
parameters used in the calculation ofg.

The main goal of the present study is to explore the sys-
tematic uncertainty in the calculation ofg from triple iso-
tope measurements in dissolved O2. This will take into ac-
count methodological differences between past studies and
the uncertainty in parameters required for the calculation.
The scope of the study is limited to these aspects and neither
extends to the mass-spectrometric measurement uncertainty
in 171, nor to the uncertainty in the gas exchange coefficient
k, nor other systematic errors of the triple oxygen method
such as the neglect of horizontal and vertical transport.

I first compare different definitions of the oxygen iso-
tope excess171 (Sect. 2), followed by a derivation of so-
lutions to mass balance equations for dissolved O2 and its
isotopologues in systems without (Sects. 3.1 to 3.4) and with
(Sect. 3.5) gas exchange. These equations are derived with-
out approximations to contrast them with previously pub-
lished versions. I also show thatg can be derived from
triple isotope measurements without recourse to iterative so-
lutions or assumptions with respect tof (Sect. 4). Then I
assess the systematic uncertainty due to the input parameters
(Sect. 6.1). This is followed by a comparison ofg values cal-
culated by different published methods from a range of syn-
thetic data (Sect. 6.2). I will make suggestions with respect
to which input parameters need to be constrained better, to
reduce systematic uncertainties in the calculation ofg. I also
show how environmental data can help constrain these pa-
rameters (Sect. 6.3). All uncertainties stated here represent
one standard deviation of the mean. Typesetting conventions
would require all physical quantities to be in italics. How-
ever, for technical reasons this was not possible for the capi-
tal Greek delta designating the triple isotope excess171.

2 Notation, definitions and units

2.1 Notation

Isotope ratio differences (δ values) of a sample relative to a
reference are defined as follows

δ(sample/reference) ≡
r(sample)

r(reference)
−1 (2)

with the solidus ( / ) separating the species of interest in nu-
merator and denominator on the right hand side of the equa-
tion.

Using the oxygen isotopes17O and16O as an example,
the isotope-amount ratior (or, shorter, the isotope ratio) is
defined as

r(17O/16O) ≡
n(17O)

n(16O)
(3)

wheren stands for the amount of substance.
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Accordingly, one would have to writeδ(sample/reference,
17O/16O) to fully characterise the correspondingδ value,
which is impracticable for more lengthy mathematical ex-
pressions.

For clarity and simplicity, I therefore use a notation where
only the minor isotope is listed as a left superscript index (just
like in nuclide notation), with the species of interest given as
a right subscript index, e.g.17δsample/reference.

It is common practice to use atmospheric oxygen (“Air-
O2”) as reference material for dissolved O2 in aquatic sys-
tems. The use of atmospheric oxygen as international mea-
surement standard has been endorsed by the Commission
on Isotopic Abundances and Atomic Weights (Wieser and
Berglund, 2009), a commission under the Inorganic Division
of the International Union of Pure and Applied Chemistry
(IUPAC). When Air-O2 is the reference in the following, I
will also omit it from the quantity symbol, e.g.17δsample.

Finally, when the sample of concern is dissolved O2 in wa-
ter, the corresponding index is also omitted from the quantity
symbol, e.g.17δ.

2.2 Quantification of deviations from mass-dependent
isotope ratio relationships

As discussed by Kaiser et al. (2004), deviations from mass-
dependent isotope ratio relationships have been defined using
four functional relationships between17δ and18δ.

171†
≡

17δ−κ18δ (Thiemens et al., 1995) (4)

171‡
≡ 1+

17δ−(1+
18δ)λ (Farquhar et al., 1998) (5)

171∗
≡

1+
17δ

(1+18δ)λ
(Miller et al., 2002) (6)

171#
≡ ln(1+

17δ)−λ ln(1+
18δ) (Angert et al., 2003) (7)

Superscript indices such as “†” have been added to distin-
guish between different171 definitions. I do not make a dis-
tinction between the symbols1(17O),117O and171 by way
of definition.

The coefficientsκ and λ are meant to reflect the “ex-
pected” mass-dependent isotope fractionation, but strictly
speaking their choice is entirely arbitrary, as these are merely
definitions. Generally,κ andλ may be derived from empiri-
cal relationships, e.g.κ = 0.515 in the case of a study on N2O
(Cliff and Thiemens, 1997) orλ = 0.5279 for meteoric wa-
ters (Barkan and Luz, 2007), or may be based on theoretical
predictions (Young et al., 2002; Kaiser, 2008).

The designation of171 values as “isotope anomalies” may
be misleading, especially when the171 values are small,
because non-zero171 values might just be due to the way
they were defined. More neutral terms such as “17O ex-
cess” (Kaiser et al. 2003; Angert et al., 2004; Barkan and

Luz, 2007) and “17O balance” (Kaiser, 2008) have been sug-
gested. “17O excess” has been adopted most widely and I
will use this term here for171 values.

From a theoretical point of view, Eq. (6) is the most sat-
isfactory because it obeys the basic isotope delta “addition
theorems”, e.g.δA/C = δA/B + δB/C + δA/CδB/C. However,
Eq. (4) also has merits because of its mathematical simplicity
and ease of use with mass-balance and mixing calculations.

In the case of gross oxygen production calculations,
Eq. (4) withκ = 0.521 was used initially (Luz and Barkan,
2000; Luz et al., 1999), but following publication of the
paper by Angert et al. (2003), Eq. (7) was adopted with
λ = 0.516 (Hendricks et al., 2004, 2005; Reuer et al., 2007;
Juranek and Quay, 2005) orλ = 0.518 (Sarma et al., 2005,
2006a, 2008; Stanley et al., 2010; Luz and Barkan, 2005,
2009; Quay et al., 2010; Juranek and Quay, 2010).

Per se, none of the definitions or coefficients is better or
worse than others – all of them are merely mathematical con-
structs. However, different definitions give different171 val-
ues for the same underlying17δ-18δ pairs. Any subsequent
calculations or manipulations have to bear this in mind and
follow a consistent mathematical treatment. Moreover, any
171 value should not be cited in isolation, i.e. not without
its definition and, crucially, not without the corresponding
18δ and/or17δ values. These caveats have not always been
followed in the past, which, as we will see below, is partly
responsible for differentg values obtained for the same171

values, depending on the calculation method.
For the mathematical treatment of the budget equations in

the present paper I choose Eq. (4) because it simplifies the
discussion. Unless required for clarity, I drop the index †
from 171†. I adoptκ = 0.5179, based on the weighted aver-
age ratio between the17O/16O and18O/16O isotope fraction-
ations during respiration (Sect. 5.1) so that

171 ≡
17 δ−0.517918δ (8)

If a coefficient other than 0.5179 is used, I will indicate
this explicitly, e.g.171(κ = 0.521), corresponds to Eq. (8),
but with the coefficient 0.521.

2.3 Units

The 17O isotope excess (171) of O2 in the atmosphere and
aquatic environment is always less than 10−3. The measure-
ment precision is usually between 1× 10−6 and 8× 10−6.
171 values of O2 are therefore conveniently expressed in
multiples of 10−6, for which Luz et al. (1999) used the sym-
bol “per meg”, following a similar practice adopted for gas
delta values related to O2/N2 ratios (Keeling et al., 1998).
The same symbol was also chosen by subsequent studies on
oxygen triple isotopes.

However, “per meg” appears to be an awkward replace-
ment for the symbol “ppm” (short for “parts per million”).
The symbol “ppm” has traditionally been used to represent
the value 10−6 and has been recognised by the SI system
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(Bureau International des Poids et Mesures (BIPM), 2006).
The symbol “per meg” has no such recognition. Therefore, I
will use the symbol ppm with171 values. For otherδ values
and isotope fractionations (designated with the symbolε),
I will use multiples of 10−3, abbreviated ‰ (short for “per
mill” or “parts per thousand”).

3 Budget calculations

In the following, I give a consistent mathematical treatment
of isotope budgets in increasing order of complexity, with
a view to derive gross oxygen production (P) and to gain
an understanding of how uncertainties in the calculations pa-
rameters can affectP . Firstly, I discuss respiration and pro-
duction on their own, then the combination of both processes,
in general and under isotopic steady-state conditions, and fi-
nally explain how both processes can be combined with dif-
fusive and bubble-mediated gas exchange.

Extensive properties (such as rates and concentrations)
without an index refer to the isotope16O only. They can
be related to the total value (sum over all isotopes) using the
reference isotope ratios (rr) andδ values. For example, the
16O production (16P = P) is related to the total production
(Ptotal) via the following relationship:

P =
16P =

Ptotal

1+17rr(1+17δP)+18rr(1+18δP)
(9)

Since 17rr ≈ 0.000387, 18rr = 0.002053 (Kaiser, 2008),
17δP� 1 and18δP� 1, P ≈ Ptotal. The correction fromP to
Ptotal is less than 0.25 % and therefore negligibly small com-
pared with other uncertainties that enter into the calculation
of P from triple isotope measurements.

3.1 Respiration only

One of the simplest budgets comprises respiration only. It
has the mass balance equation

dc

dt
= −R (10)

The concentration of the major isotope16O is represented
by the symbolc. The16O respiration (R) is assumed to be
of zeroth order, i.e. independent of the oxygen concentration
(Bender, 1990).

The corresponding equation for17O is

d17c

dt
= −

17R (11)

The ratio between17R and R =
16 R is assumed to follow

the isotope distribution in dissolved O2, but modified by a
respiratory isotope effect17εR (Bender, 1990):

17R

R
= (1+

17εR)
17c

c
(12)

Substituting this into Eq. (11) and usingδ notation (omitting
the index “17” fromδ) gives

dc(1+δ)rr

dt
= −R(1+δ)rr(1+εR) (13)

The derivative is expanded and the constantrr cancelled on
both sides:

(1+δ)
dc

dt
+c

dδ

dt
= −R(1+δ)(1+εR) (14)

Equation (10) is substituted into the preceding equation to
give

c
dδ

dt
= −(1+δ)RεR (15)

and

dδ

1+δ
= −RεR

dt

c
= εR

dc

c
(16)

which can be integrated to the well-known Rayleigh fraction-
ation equation:

δ = (1+δ0)

(
c

c0

)εR

−1 (17)

As pointed out by Angert et al. (2003), the resulting171#

value is

171#
= ln (1+

17δ0)−λln (1+
18δ0)+

17εRln (c/c0)

−λ18εRln (c/c0) =
171#

0+(17εR−λ18εR)ln (c/c0) (18)

With λ set equal to the ratio of the17O/16O and18O/16O
isotope fractionations (γ R), i.e.

λ = γR =

17εR
18εR

, (19)

we obtain171#
=

171#
0, i.e. 171# is not changed by respira-

tion.
This led Angert et al. (2003) and Luz and Barkan (2005) to

suggest that a171 definition following Eq. (7) withλ = γ R
would be more appropriate than others because it removes
the influence of the respiratory isotope effect on the measured
17O excess. However, this assertion fails when production is
included in the oxygen budget, as shown in Sects. 3.2 and
3.3.

3.2 Production only

An oxygen budget that includes production, but not respira-
tion, is given by

dc

dt
= P (20)

with the corresponding isotopic relationship

(1+δ)
dc

dt
+c

dδ

dt
= P(1+δP) (21)
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Combining the two equations gives

c
dδ

dt
= P(δP−δ) ⇔ c

dδ

dc
= δP−δ (22)

which can be integrated to

δ =

(
1−

c0

c

)
δP+

c0

c
δ0 (23)

In this case, there is no simple relationship between ln (1
+ 17δ) and ln (1 +18δ) that would single out Eq. (7) over
other possible definitions of the17O excess, no matter what
λ value is chosen. However, Eq. (4) allows writing down a
straightforward relationship between the corresponding17O
excesses:

171 =

(
1−

c0

c

)
171P+

c0

c

1710 (24)

This shows that as the concentrationc increases due to pro-
duction, the influence of the initial composition (1710) de-
creases and171 approaches171P asymptotically.

3.3 Production and respiration

The following budget equation combines production and res-
piration:

dc

dt
= P −R (25)

This equation can be readily integrated to give the concentra-
tion c:

c = c0+(P −R)t = c0(1+Pf t/c0) (26)

with the ratio of net to gross productionf = N /P = (P–
R)/P .

The corresponding equation for the minor isotope is

(1+δ)
dc

dt
+c

dδ

dt
= P(1+δP)−R(1+δ)(1+εR) (27)

and combination of the equations for major and minor iso-
topes gives

c
dδ

dt
= P(δP−δ)−R(1+δ)εR (28)

This can be integrated to

δ =
PδP−RεR
P+RεR

[
1−

(
c
c0

) P+RεR
P−R

]
+δ0

(
c
c0

) P+RεR
P−R

=
PδP−RεR
P+RεR

[
1−

(
1+

Pf t
c0

) P+RεR
P−R

]
+δ0

(
1+

Pf t
c0

) P+RεR
P−R

(29)

for P 6= R (and thereforef 6= 0) and to

δ =
δP−εR

1+εR

[
1−e

P(1+εR)

c
t
]
+δ0e

P(1+εR)

c
t (30)

for P = R (and thereforef = 0). There is no simple rela-
tionship between ln (1 +17δ) and ln (1 +18δ) or 17δ and18δ

that would single out a certain definition of171 over other
possible definitions.

3.4 Isotopic steady state between production and
respiration

The casedδ/dt= 0 corresponds to “isotopic steady state”.
Then, for any combination ofP and R, it follows from
Eq. (28)

δS=
δP−(1−f )εR

1+(1−f )εR
(31)

Isotopic steady state can be attained even when the concen-
trations vary (i.e. ifP 6= R and thereforef 6= 0). In partic-
ular, for t → ∞, theδ value attained according to Eqs. (29)
and (30) is equal toδS. However, the concentration may still
increase or decrease according to Eq. (26).

The steady-state17O isotope excess could be defined with
λ = ln [1 + (1 –f )17εR]/ln [1 + (1–f )18εR] so that

171#
S= ln (1+

17δP)−λln (1+
18δP)− ln

[
1+(1−f )17εR

]
+λln

[
1+(1−f )18εR

]
=

171#
P (32)

Thus, with a choice ofλ appropriate for a certain value of
f , it may be possible to argue that the corresponding171#

definition is preferable because the respiration isotope effect
does not appear in171#

S. Obviously, this is a misleading con-
clusion, since the value off is usually not known. Note that
the value of171#

P would also depend on the value adopted
for f if this “tuned” value ofλ was adopted in the definition
of the17O excess.

Luz and Barkan (2005) argued that the global biosphere
could be considered in steady state (P = R, and therefore
f = 0) and that a171# definition withλ = ln (1 + 17εR)/ln (1
+ 18εR) would be the most suitable in this case because171#

S
would always be equal to171#

P, independent of the respira-
tion fractionation. This is in contrast to their suggestion that
λ =

17εR/18εR, should be chosen in other cases (see Sect. 3.1)
and confirms the notion that there is no definition of the17O
excess that is inherently “better” than others and that it is
essentially possible to adopt any definition.

The fact that the17O excess in isotopic steady state is de-
pendent on thef ratio has important consequences for the
triple isotope technique because it means that the17O ex-
cess is not only influenced by production and gas exchange,
but also by respiration. This was recognised by Hendricks et
al. (2004) who adopted an iterative approach to deriveg. A
simpler approach to deriveg is shown in Sect. 4.2.1.

To illustrate the effect of f on the steady-
state 17O excess, I use a numerical example with
λ = κ = γ R =

17εR/18εR = 0.5179, 18εR = −20 ‰, 18δP=

−23.323 ‰ and17δP= −11.902 ‰. This corresponds to
171#

P= 249 ppm. The resulting steady-state171#
S and171S

values as a function of the net to gross production ratiof are
shown in Fig. 1. Even without the effect of gas exchange, the
17O excess varies. In particular,171#

S is only equal to171#
P

for f = 1. This means that any budget calculation involving
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Fig. 1. Effect of the net to gross production ratiof on the
steady-state17O excess defined by Eq. (7), i.e.171#, and Eq. (4)
i.e. 171, with λ = κ = γ R =

17εR/18εR = 0.5179,18εR = −20 ‰,
18δP= −23.323 ‰ and17δP= −11.902 ‰. The steady-stateδ val-
ues used to calculate the steady-state17O excess have been calcu-
lated according to Eq. (31).

triple oxygen isotopes cannot rely on the17O excess alone,
but has to consider the underlying17δ and 18δ values (see
Sect. 5.2).

3.5 Production, respiration and gas exchange

I now consider production and respiration together with dif-
fusive gas exchange; the model generally adopted for gross
oxygen production calculations from triple oxygen isotopes.
A similar mass balance equation was used by Hendricks et
al. (2004), but the latter study did not consider the influence
of isotopic fractionation during oxygen invasion from and
evasion to the atmosphere. Following Luz et al. (2002), I in-
clude these fractionations here explicitly. I also show how the
model could be extended to include bubble injection, which
was mentioned but apparently disregarded in the gross pro-
duction calculations of Stanley et al. (2010).

The mass balance equation for the major isotope (without
bubble injection) is

dc

dt
= P −R−νmix (c−csat) (33)

where the gas exchange frequency of the mixed layer is the
ratio of gas exchange coefficient and mixed layer depth, i.e.
νmix = k/zmix.

The corresponding equation for the minor isotope is

(1+δ)
dc

dt
+c

dδ

dt
= P (1+δP)−R (1+δ) (1+εR)

−νmix [c(1+δ) (1+εE)+csat (1+εI)] (34)

whereεE andεI are the isotopic fractionations during evasion
and invasion, respectively. The combination of both equa-
tions gives

c
dδ

dt
= P (δP−δ)−R (1+δ)εR−νmixc (1+δ)εE

+νmixcsat (εI −δ) (35)

Substitutingf = (P – R)/P , g = P /(νmixcsat) and the super-
saturations = c/csat – 1 gives

1+s

νmix

dδ

dt
= g (δP−δ)−g (1−f ) (1+δ)εR

−(1+s) (1+δ)εE+εI −δ (36)

This can be re-arranged to isolate theδ value:

δ =
g [δP−(1−f )εR]−(1+s)εE+εI −

1+s
νmix

dδ
dt

1+g [1+(1−f )εR]+(1+s)εE
(37)

The isotopic fractionations during evasion and invasion are
related via theδ value of dissolved oxygen at saturation,δsat,
such that 1 +δsat= (1 +εI)/(1 +εE). With εE = 0 we recover
from Eq. (36) the corresponding equation of Hendricks et
al. (2004):

1+s

νmix

dδ

dt
= g (δP−δ)−g (1−f ) (1+δ)εR+δsat−δ (38)

In Sect. 4.2, I discuss how Eq. (36) can be used to deriveg.
Bubble-mediated transfer can contribute to air-sea ex-

change. Usually, two bubble transfer mechanisms are dis-
tinguished: bubble injection due to complete dissolution of
small bubbles and bubble exchange due to partial dissolution
of larger bubbles, with bubble exchange contributing only 0
to 10 % to the total bubble flux (Stanley et al., 2009). It is
relatively straightforward to include bubble injection in the
O2 mass balance. The smaller contribution from bubble ex-
change is neglected here, but could be treated in a mathemat-
ically similar way to diffusive gas exchange. The amended
mass balance equation is:

dc

dt
= P −R−νmix (c−csat)+Finjχ (39)

whereFinj is the air injection flux andχ is the mixing ratio
of atmospheric O2. Since theδ values are expressed relative
to atmospheric O2, the corresponding mass balance equation
for the minor isotope (Eq. 36) has the same additional term
Finjχ . This gives

1+s

νmix

dδ

dt
= g (δP−δ)−g (1−f ) (1+δ)εR

−(1+s) (1+δ)εE+εI −δ−
Finjχ

νmixcsat
δ (40)
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and

δ =
g [δP−(1−f )εR]−(1+s)εE+εI −

1+s
νmix

dδ
dt

1+g [1+(1−f )εR]+(1+s)εE+
Finjχ

νmixcsat

(41)

4 Calculation of gross production rates

In this section, I explain how the mass balance equations de-
rived in Sects. 3.3 and 3.5 are used to compute gross oxygen
production below and within the mixed layer.

4.1 Production below the mixed layer

Disregarding vertical and horizontal transport, oxygen below
the mixed layer is only influenced by production and respira-
tion (Eq. 28). By measuring temporal changes in the isotope
composition of dissolved O2, it is possible to determine gross
production (Luz and Barkan, 2009). The corresponding two
budget equations for17O/16O and18O/16O isotope ratios are
combined to eliminateR and to computeP :

P = c

1
1+17δ

d17δ
dt

−γR
1

1+18δ

d18δ
dt

17δP−17δ

1+17δ
−γR

18δP−18δ

1+18δ

(42)

with γ R =
17εR/18εR. Using171 = 17δ – κ18δ, this equation

can also be re-written as

P = c

d171
dt

+

(
1+

17δ

1+18δ
γR−κ

)
d18δ
dt

171P−171+

(
1+17δ

1+18δ
γR−κ

)
(18δP−18δ)

(43)

Compare this with the approximation given by Luz and
Barkan (2009) in their Eq. (5) (re-written for a single depth
and corrected for two errors in the numerator – the index of
their second term should be “in” – here replaced by index “0”
– and the third term should be subtracted rather than added):

P =
c171−c0

1710−
1
2(c−c0)(

171+
1710)

1t
[

171P−
1
2(171+1710)

]
=

1
2(c+c0)(

171−
1710)

1t
[

171P−
1
2(171+1710)

] (44)

which can be written in non-discretised form,

P =
1

171P−171

(
dc171

dt
−

171
dc

dt

)
=

c

171P−171

d171

dt
(45)

In other words, the approximate solution only agrees with
the exact solution in Eq. (43) ifκ =γ R (1 + 17δ) / (1 + 18δ).
Since17δ � 1 and18δ � 1, the approximate solution will of-
ten be sufficiently precise if we chooseκ =γ R. However,
there does not appear to be any advantage in using the ap-
proximate solution because17δ and 18δ are available any-
way and used to compute171. I therefore suggest choosing
Eq. (42) to computeP based on oxygen triple isotope mea-
surements below the mixed layer.

4.2 Production within the mixed layer

In the mixed layer, we have to consider production, respira-
tion and gas exchange in the oxygen budget (again, neglect-
ing horizontal and vertical transport). In principle,18δ or 17δ

alone would be sufficient to deriveg from Eq. (36):

g =
(1+s)εE (1+δ)−εI +δ+

1+s
νmix

dδ
dt

δP−δ−(1−f )εR (1+δ)
(46)

This equation requires the temporal trend in the isotopic
composition,dδ/dt, to be known. Often, the temporal trend is
neglected because it is small. This allows calculatingg based
on the analysis of the oxygen triple isotope composition of a
single sample. Then, we have

g =
(1+s)εE(1+δ)−εI +δ

δP−δ−(1−f )εR(1+δ)
(47)

Note that concentration steady state, i.e.dc /dt= 0, is not re-
quired.

Most parameters (εE, εI , δP) and variables (s, δ) can be
measured with sufficient precision to calculateg. However,
εR is often not sufficiently well-constrained to give precise
results forg (Quay et al., 1993). Moreover,f has to be es-
timated froms andg via f = s/g (Hendricks et al., 2004),
which can introduce additional uncertainties, because the re-
lationshipf = s/g is derived from assumingdc/dt= 0 and
thereforeP–R = sνmixcsat, cf. Eq. (33).

4.2.1 Direct calculation of g from17δ, 18δ and O2
supersaturation s

Just as for production below the mixed layer, oxygen triple
isotopes allow elimination ofεR. Based on the17O and18O
equivalents of Eq. (47) we obtain

g =

(1+s)(17εE−γR
18εE)−

17εI−
17δ

1+17δ
+γR

18εI−
18δ

1+18δ
17δP−17δ

1+17δ
−γR

18δP−18δ

1+18δ

(48)

whereγ R =
17εR/18εR. EliminatingεR has also removed the

(1–f ) term because it always appears as a product withεR.
UsingεE = (εI − δsat) / (1 + δsat), this can be written as

g =

1+
17εI

1+17δsat

17δ−17δsat
1+17δ

−γR
1+

18εI
1+18δsat

18δ−18δsat
1+18δ

−s
(

17εI−
17δsat

1+17δsat
−γR

18εI−
18δsat

1+18δsat

)
17δP−17δ

1+17δ
−γR

18δP−18δ

1+18δ

(49)

Equations (48) or (49) allow calculatingg based on mea-
surements of17δ, 18δ and the O2 supersaturations. For O2
concentrations near saturation (| s | � 1), the influence of the
supersaturations on the calculated value ofg is only small.
I call this the “dual delta method” because it uses the indi-
vidual17δ and18δ values rather than the triple isotope excess
(171) to deriveg.
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This calculation method also offers a route to determine
f that is independent of the assumptiondc/dt= 0 (concentra-
tion steady state). Rearranging Eq. (47) gives

f = 1−
1

εR

{
δP−δ

1+δ
+

1

g

[
εI −δ

1+δ
−(1+s)εE

]}
(50)

Either the17δ or 18δ values can be used to computef ; both
give identical results. However, smallf values will be sub-
ject to the relatively large uncertainty inεR. For example,
for f = 0.1, a 10 % relative uncertainty inεR would translate
into about 100 % relative uncertainty inf .

To make the link to the approximate solution given by Luz
and Barkan (2000) as shown in Eq. (1), I write Eq. (48) using
171 notation. With171 = 17δ – κ18δ, I obtain

g =

171−(17εI−κ18εI)+(1+s)(1+
17δ)(17εE−γ 18

R εE)+
(
κ−

1+
17δ

1+18δ
γR

)
(18δ−18εI)

171P−171+

(
κ−

1+17δ

1+18δ
γR

)
(18δP−18δ)

(51)

If κ = γ R(1 + 17δ)/(1 + 18δ), 17εE =
18εE = 0, 17εI =

17δsat
and18εI =

18δsat, we recover the approximate solution given
by Luz and Barkan (2000), see Eq. (1). Since17δ � 1 and
18δ � 1, the approximate solution will often be sufficiently
precise ifκ = γ R is chosen. However, larger errors would re-
sult if 171# was chosen instead of171 with λ = γ R because
of the non-linearity of the171# definition (see also Sect. 6.2).

4.2.2 Iterative calculation ofg from 171 and O2
supersaturation s

With the additional assumption of concentration steady state,
i.e. dc/dt= 0 (and therefores = gf ), it is possible to deter-
mine g based on only two variables, for example,171 and
s. This corresponds to the iterative approach used by Hen-
dricks et al. (2004). In this case,18δ is calculated using the
following equation derived from Eq. (37) and an initial guess
for g:

δ =
gδP−(g−s)εR−(1+s)εE+εI

g+(g−s)εR+(1+s)εE+1
(52)

Then,17δ is derived from171 and 18δ and an improved
value ofg is calculated via Eq. (48). All steps are repeated
until g converges. If the assumptiondc/dt= 0 is valid, this
approach gives the same result as Eq. (48). However, since
the use of Eq. (48) has fewer caveats and since17δ and18δ

values are available anyway, the use of Eq. (48) is preferable.
Often, it is argued that instead of the oxygen su-

persaturation s, the biological supersaturationsbio =

1(O2/Ar) = [c(O2)/c(Ar)]/[ csat(O2)/csat(Ar)] – 1 should be
used to calculateg because it correctss for physical pro-
cesses such as bubble-mediated gas transfer. While the va-
lidity of this argument was rigorously demonstrated for net
production (Kaiser et al., 2005), it is not clear that it also
applies for gross production. In particular, bubble injection
influences theδ values in a different way than diffusive gas
exchange (see Sect. 3.5), which makes the use ofsbio inap-
propriate. For the present study, I will disregard the influence

of bubble processes, not least becauseg values calculated ac-
cording to Eq. (48) are not very sensitive tos (for | s | � 1,
as commonly found in the surface ocean). In contrast, the
iterative approach is affected to a larger degree by the choice
betweens andsbio (see also Sect. 6.3).

4.2.3 Non-steady state conditions – calculation of gas
exchange coefficients

For completeness, I would like to mention how the “dual
delta” calculation method based on17δ and18δ can be used
for non-steady state conditions. This requires the disequilib-
rium terms,dδ/dt, to be measured. The corresponding equa-
tion to calculateg is derived from Eq. (46):

g=

(1+s)(17εE−γR
18εE)−

17εI−
17δ

1+17δ
+γR

18εI−
18δ

1+18δ
+

1+s
νmix

(
1

1+17δ

d17δ
dt

−
γR

1+18δ

d18δ
dt

)
17δP−17δ

1+17δ
−γR

18δP−18δ

1+18δ

(53)

The dual delta method is also suitable for the calculation
of the gas exchange coefficientk based on the diurnal cycle
of oxygen triple isotopes (Sarma et al., 2010). This approach
assumes thatg is zero during the night. Measurements of
17δ and18δ throughout the night can then be used to derivek

according to

k = zmix

1
1+17δ

d17δ
dt

−
γR

1+18δ

d18δ
dt

1
1+s

(
17εI−

17δ

1+17δ
−γR

18εI−
18δ

1+18δ

)
−17εE+γ 18

R εE

(54)

5 Input parameters

In this section I review the parameters that are required to cal-
culateg andf according to Eqs. (48) and (50). Table 2 gives
an overview of the parameters used and their ranges. They
will be used to estimate the systematic uncertainty ing. I
focus on parameters appropriate for the marine mixed layer
because this is where the oxygen triple isotope technique has
found the widest application. However, with appropriate ad-
justments of the parameters, the same technique can also be
used for freshwater environments (Luz and Barkan, 2009).

5.1 Respiration: 18εR, 17εR, γ R

The ratioγ R =
17εR/18εR has been measured for individual

oxygen consumption pathways, single species and commu-
nity cultures (Luz and Barkan, 2005; Helman et al., 2005;
Angert et al., 2003). Luz and Barkan (2005) derived a
weighted average value ofγ R = 0.5179±0.0006 from these
studies and I adopt this value here. For consistency, I also
set κ ≡ 0.5179 in the171 definition (Eq. 8). Some oxy-
gen consumption reactions were found to haveγ R values
outside this range. For example, the Mehler reaction was
shown to haveγ R = 0.526±0.002 in isolated pea thylakoids
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andγ R = 0.497±0.004 in aSynechocystisspecies, indicat-
ing different reaction mechanisms in plants and cyanobacte-
ria (Helman et al., 2005). However, in most natural phyto-
plankton communities the Mehler reaction does not play a
role and I do not consider it here.

For the respiration fractionation18εR, a large range from
−6 ‰ for fish and human respiration to−24 ‰ for the al-
ternative respiratory pathway (AOX) has been reported (Luz
and Barkan, 2005; Helman et al., 2005). For the purposes
of the present study, I use18εR = (−20± 4) ‰, which is
more representative of values reported for marine commu-
nities: (−22±3) ‰ in the Southern Ocean (Hendricks et al.,
2004), (−21±2) ‰ in the Equatorial Pacific (Hendricks et
al., 2005), (−22±6) ‰ in the subarctic Pacific (Quay et al.,
1993) and (−20±3) ‰ for different marine organisms (Kid-
don et al., 1993).

5.2 Photosynthesis:18δP, 17δP, 18εP, 17εP

Photosynthesis involves little isotope fractionation. The iso-
topic composition of the produced O2 is therefore close to
that of the source water. The reported18O/16O fraction-
ations (18εP) are in the range−0.06 to +0.62 ‰ (Guy et
al., 1993; Helman et al., 2005), with most measurements
around +0.50 ‰, corresponding to an isotopic enrichment of
the produced O2 (inverse isotope effect). For the purposes of
the present study, I assume18εP= (0.50±0.50) ‰.17εP can
be inferred from the17O excess measurements of Helman
et al. (2005), which gives17εP= (0.27±0.27) ‰, assuming
that their reported17O excess is defined according to Eq. (7)
with λ = 0.518. The resulting171 value with respect to the
source water would therefore be (9±9) ppm. Even if Hel-
man et al. (2005) had adopted a different171 definition than
assumed here, this would most likely not lead to a significant
change in171 because18εP is so small.

The 17δ and18δ values of Vienna Standard Mean Ocean
Water (VSMOW) have been measured as (−11.94±0.01) ‰
and (−23.32±0.02) ‰ with respect to Air-O2 (Barkan and
Luz, 2005). The corresponding171 value derived from the
data reported by Barkan and Luz (2005) is (145± 9 ppm).
Taken into account the photosynthetic isotope effect,18δP
should therefore be (−22.83± 0.50) ‰ and 17δP should
be (−11.67± 0.27) ‰. This corresponds to171P= (155±

13) ppm. However, Luz and Barkan (2010) have shown
that ocean waters are depleted in17O by (5±1) ppm with re-
spect to VSMOW. The expected171P value for marine pho-
tosynthesis is therefore (150±13) ppm or, using a frequently
used definition of the17O excess,171#

P (λ = 0.518)= (221±
14) ppm.

A similar calculation could be done for freshwaters. For
example, for a freshwater with18δ(H2O)= −6 ‰, 171P is
expected to be (89±13) ppm, based on the meteoric water
line, ln[1+17δ(H2O)] = (0.5280±0.0001) ln[1+18δ(H2O)] +
(33±3) ppm (Luz and Barkan, 2010).

The value of171P= (150± 13) ppm derived for marine
photosynthetic O2 disagrees with the17O excess of (249±
15) ppm reported by Luz and Barkan (2000) for photosyn-
thetic O2, which has been adopted by all subsequent stud-
ies of gross oxygen production using the triple isotope tech-
nique. To understand the disagreement, I will now look into
how the value of 249 ppm was obtained, bearing in mind that
in the year 2000, none of the triple isotope studies referred to
in the previous paragraph had been published yet.

Luz and Barkan (2000) measured the171 value of
O2 produced by cultures of the planktonic algaNan-
nochloropsisand the coralAcropora, which gave on average
171P(κ = 0.521)= (249± 15) ppm. All subsequent studies
using the triple isotope technique have adopted this value,
even though they used different definitions of the17O ex-
cess. This leads to inconsistent results as shown in Sect. 6.2.
Unfortunately, Luz and Barkan (2000) did not give the17δ

or 18δ values corresponding to their reported17O excess, so
that it is impossible to recalculate the17O excess using other
definitions, without making some assumptions.

As shown in Sect. 3.4, the steady-stateδS and171S val-
ues depend onf and the171S value measured forf = 0
will generally not agree with171P. For example, forf = 0,
18δP= −22.83 ‰ and18εR = −13.8 ‰ reported forAcrop-
ora (Luz and Barkan, 2005), I find18δS= −9.66 ‰. Based
on 171(κ = 0.521)= (252±5) ppm (Luz and Barkan, 2000)
andγ R = 0.519 (Luz and Barkan, 2005) reported forAcro-
pora, this gives171S= 224 ppm forf = 0. In contrast, the
inferred171P value forf = 1 is 175 ppm.

The important aspect to notice here is the large difference
between the steady-state171S value for f = 0 and 171P
(for f = 1), cf. Fig. 1. 171S value would only agree with
171P for an appropriately “tuned” definition of the17O ex-
cess (see Sect. 3.4). Coincidentally, in the case ofAcrop-
ora, 171#

S(λ = 0.518)= 236 ppm forf = 0 and the inferred
171#

P(λ = 0.518) value is 246 ppm, i.e. they are quite close
to each other. The “tuned”λ value to make them match ex-
actly would be ln (1–0.519× 0.0138)/ln (1–0.0138)= 0.517.
In another coincidence,171#

P(λ = 0.518)= 246 ppm is very
close to 171(κ = 0.521) = 252 ppm reported by Luz and
Barkan (2000), which has been the basis of the average value
of (249±15) ppm for the photosynthetic17O excess used in
all subsequent studies of triple isotope-based gross produc-
tion.

What remains unexplained is the difference between the
171#

P(λ = 0.518)= (221±14) ppm inferred at the beginning
of this section and the value of (246±5) ppm inferred based
on theAcroporaculture (a similar calculation may be possi-
ble for Nannochloropsis, but would have similar uncertain-
ties because of the lacking17δ and18δ values). For the pur-
poses of the present study and for consistency with other
studies using the triple isotope technique, I assume171#

P
(λ = 0.518)= (249±15) ppm. With18δP= −22.83 ‰, this
gives171P= (180±15) ppm. However, I will also explore
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in Sect. 6.1 how the derivedg values would change for
171P= 150 ppm.

5.3 Gas exchange:18εI , 17εI , 18εE, 17εE

The kinetic isotope fractionation during O2 invasion was
measured as18εI = (−2.8±0.2) ‰ (Knox et al., 1992). I am
not aware of any triple oxygen isotope studies of the corre-
sponding17O/16O isotope fractionation and therefore adopt
17εI = (1 + 18εI)

θ – 1, with θ = 0.516±0.015, covering the
theoretically predicted range for mass-dependent isotope ef-
fects (Kaiser, 2008).

The kinetic isotope fractionation during evasion,εE, is cal-
culated fromεI and theδ value of dissolved O2 in equi-
librium with the atmosphere,δsat, according toεE = (εI
– δsat)/(1 + δsat). 18δsat has been reported by Benson
et al. (1979) and I use fit (2) in their Table VIII, i.e.
18δsat= e−0.00072951+0.42696 K/T

−1, whereT is the thermo-
dynamic temperature. The fit is reported to have an uncer-
tainty of 0.017 ‰ for the temperature range from 0 to 60◦C.

Previous studies have neglected isotopic fractionation dur-
ing evasion (i.e.εE = 0) and assumed thatεI = δsat. I will
consider the influence of this assumption on the calculatedg

value in Sect. 6.1.
17δsat is usually not reported directly, but as17O excess

with respect to18δsat. There have been a number of mea-
surements of the17O excess that do not all agree. The pub-
lished data are summarised in Table 1. After adjusting the
values reported in the literature to a single171 definition fol-
lowing Eq. (4) withκ = 0.5179, the171sat values at room
temperature cluster around two values: 17 to 18 ppm (Luz
and Barkan, 2000, 2009; Sarma et al., 2006b; Juranek and
Quay, 2005) and 8 to 9 ppm (Stanley et al., 2010; Reuer et
al., 2007). The measurement of (13±5) ppm by Sarma et
al. (2003) could be reconciled with both values, but has a
high error. As already pointed out by Stanley et al. (2010)
there is no consistent pattern that could explain this, such as
the preparation method (bubbling versus stirring) or the wa-
ter type used. The18δsat values were not reported in all stud-
ies, but mostly agree with those calculated using the param-
eterisation of Benson et al. (1979). One of the studies in the
8 to 9 ppm-cluster found an18δsat value that is about 0.06 ‰
lower than the parameterisation (Reuer et al., 2007); the other
study in the same cluster did not report18δsat (Stanley et al.,
2010). Interestingly, the171sat value derived from Reuer
et al. (2007) for 11◦C (row 4a) is close to that of Luz and
Barkan (2009) for 12◦C (row 5b), even though the same two
studies disagree near room temperature (rows 4b and 5c).

In theory, bubbling should lead to slightly higherδ val-
ues. This is perhaps counter-intuitive because bubble injec-
tion adds O2 with δ = 0, i.e. lower than for dissolved O2 at
saturation, and might therefore be expected to decrease the
δ value of the O2 in the bubbled solution. Bubble exchange
should have a lesser effect and is neglected here.

The reason for the enhancedδ value due to bubble injec-
tion is that bubbling leads to an enhanced O2 concentration
and thus an additional evasion flux. At equilibrium, the bub-
ble flux Finj has to match the diffusive gas exchangeνmix(c

– csat). Using the terminology from Sect. 3.5, we require
Finj = νmixcsats. The correspondingδ value at equilibrium is
given by

δ =
εI −(1+s)εE

Finj
νmixcsat

+(1+s)εE+1
=

εI −(1+s)εE

(1+s)(1+εE)

= δsat+
(δsat−εI)s

(1+s)(1+ε)
(55)

Whether the corresponding171 value is higher or lower than
171satdepends onθ , but fors <2 %, the difference should be
less than 1 ppm. Ifs were greater than 2 %, this would lead
to an enhancement of the18δsat value by more than 0.07 ‰,
which cannot be reconciled with the published data.

Luz and Barkan (2009) have also reported a temper-
ature dependence of the17O excess at saturation, i.e.
171#

sat(λ = 0.518)/ppm= 0.6ϑ /◦C + 1.8. At 24◦C, this gives
171sat= 16 ppm. Since a value of 16 ppm that has been used
for 171sat in most previous studies, I will also adopt it here
for a study of the systematic uncertainty due to the calcula-
tion method ofg. However, I will also test a scenario with
171sat= 8 ppm.

6 Systematic uncertainty of production within the
mixed layer

In this section I evaluate the systematic uncertainties in the
calculation of mixed-layerg values due to the input param-
eters (Sect. 6.1) and the calculation method (Sect. 6.2). The
base case calculation and the evaluation of the uncertainty
due to the input parameters follow Eq. (48). Since the uncer-
tainty in g depends on the values of the parameters as well
as their uncertainty, I phrase this section not in terms of for-
mal error propagation, but rather show the relative deviations
from the base case, for different input parameters and cal-
culation methods. Finally, I use a published data set of triple
oxygen isotope measurements in the Southern Ocean to show
how different calculation methods can affect the calculation
of g in practice (Sect. 6.3). I also demonstrate how concomi-
tant isotope measurements and O2 supersaturation data can
be used to check the consistency of the calculation method
and to potentially improve the input parameters.

6.1 Input parameters

The values of the input parameters used for the base case are
shown in Table 2. The171 values are shown for reference
only, but are not used in the calculations. “Synthetic”17δ

and18δ values are computed for a range ofg andf values
according to Eq. (37), assumingdδ/dt= 0 (isotopic steady

Biogeosciences, 8, 1793–1811, 2011 www.biogeosciences.net/8/1793/2011/



J. Kaiser: Consistent calculation of aquatic gross production 1803

Table 1. Triple oxygen isotope composition of dissolved O2 at saturation with atmospheric air reported in the literature. Most samples were
analysed by headspace equilibration, except row 3b (analysed by membrane extraction).18δ(B) is 18δ at saturation according to Benson et
al. (1979). The last column corresponds to the recalculated17O excess using the definition given by Eq. (8). Uncertainties are±1 standard
error. n = number of measurements. A value in brackets has not been reported and was assumed. A dash (–) means that the corresponding
parameter was not reported.

17O excess (literature)

Value/ 171/ppm
Row Reference Preparation Water ϑ /◦C Definition ppm n 18δ(B)/‰ 18δ/‰ 17δ/‰ (0.5179)

1 Luz and Barkan (2000) bubbling seawater 25171(0.521) 16±2 – 0.703 (0.703) 0.382 18±2
2 Juranek and Quay (2005) stirringa deionised (21) 171#(0.516) 18±3 4 0.722 (0.722) 0.391 17±3
3a Sarma et al. (2003) bubblingb distilled 22 171(0.521) 11±5 10 0.717 0.691 0.371 13±5
3b Sarma et al. (2006b) bubblingb distilled 24 171#(0.518) 17±2 10 0.708 0.717 0.390 18±2
4a Reuer et al. (2007) stirring 35 g l−1 NaCl 11.2 171#(0.516) 7±2 14 0.772 0.792 0.416 6±2
4b Reuer et al. (2007) stirring 35 g l−1 NaCl 24.8 171#(0.516) 9±3 14 0.704 0.642 0.340 8±3
5a Luz and Barkan (2009) bubbling seawater 3.5171#(0.518) 4±1 5 0.814 0.811 0.424 4±1
5b Luz and Barkan (2009) bubbling seawater 12.2171#(0.518) 9±1 5 0.767 0.796 0.421 9±1
5c Luz and Barkan (2009) bubbling seawater 25.0171#(0.518) 17±2 5 0.703 0.722 0.391 17±2
6a Stanley et al. (2010) stirring – (21) 171#(0.518) 8±3 – 0.722 (0.722) 0.382 8±3
6b Stanley et al. (2010) stirring distilled (21) 171#(0.518) 9±2 16 0.722 (0.722) 0.383 9±2

a According to Stanley et al. (2010).
b O. Abe, personal communication (2011).

Table 2. Input parameters used as base case in the calculation ofg (Sect. 6.1) and their uncertainties (Sect. 5). Allδ values are relative to
Air-O2. The171 values are defined as171 =

17δ – 0.517918δ (cf. Eq. 8) and expressed relative to Air-O2. However, they are not needed
for the calculation according to Eq. (48) and are listed for reference only. All values have been adjusted to the same decimal for clarity,
irrespective of their actual uncertainty.

Quantity Symbol Value Unit Uncertainty Reference

triple isotope fractionation ratio, respirationa γ R 0.5179 1 0.0006 Luz and Barkan (2005)
18O/16O fractionation, respiration 18εR −20.000 ‰ 4 Kiddon et al. (1993)
17O/16O fractionation, respiration 17εR −10.358 ‰ calculated from18εR andγ R
isotope delta18O/16O, photosynthetic O2

18δP −22.835 ‰ 0.50 see Sect. 5.2
isotope delta17O/16O, photosynthetic O2

17δP −11.646 ‰ calculated from18δP and171P
17O excess,17O/16O, photosynthetic O2

171P 180 ppm 15 Luz and Barkan (2000), recalculated
isotope delta18O/16O, O2 at saturation 18δsat 0.707 ‰ 0.017 Benson et al. (1979)
isotope delta17O/16O, O2 at saturation 17δsat 0.382 ‰ calculated from18δsatand171sat
17O excess, O2 at saturation 171sat 16 ppm 2 Luz and Barkan (2009)
triple isotope fractionation coefficient, O2 invasionb θ 0.516 1 0.015 estimated
18O/16O fractionation, O2 invasion 18εI −2.800 ‰ 0.2 Knox et al. (1992)
17O/16O fractionation, O2 invasion 17εI −1.446 ‰ calculated from18εI andθ
18O/16O fractionation, O2 evasion 18εE −3.504 ‰ calculated from18εI and18δsat
17O/16O fractionation, O2 evasion 17εE −1.827 ‰ calculated from17εI and17δsat

a γ R =
17εR/18εR.

b θ = ln (1+ 17εI )/ln (1 + 18εI ).

state). The oxygen supersaturations is assumed to corre-
spond to concentration steady state and is calculated from
Eq. (33) withdc/dt= 0, so thats = gf .

These synthetic17δ and 18δ values are then used to de-
rive g according to Eq. (48), with one input parameter at a
time increased or decreased by the corresponding uncertainty
stated in Table 2. Not all parameters listed in Table 2 need

to be considered:18εR and17εR have been eliminated from
Eq. (48) and are therefore irrelevant. The parameters17δP,
17δsat, 17εI , 18εE and17εE are calculated from other values in
Table 2 and are therefore also disregarded.

This leaves the following seven parameters to test how
much their associated uncertainties contribute to systematic
errors ing: γ R, 18δP, 171P, 18εI , θ , 18δsat and 171sat. I
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γR:	  0.5173	  (solid),	  0.5185	  (doCed)	  
18δP:	  –23.32	  ‰	  (solid),	  –22.35	  ‰	  (doCed)	  
17ΔP:	  165	  ppm	  (solid),	  195	  ppm	  (doCed)	  
	  17ΔP:	  150	  ppm	  
18εI:	  –3.0	  ‰	  (solid),	  –2.6	  ‰	  (doCed)	  
εI	  =	  δsat,	  εE	  =	  0	  
θ:	  0.501	  (solid),	  0.531	  (doCed)	  
18δsat:	  0.690	  ‰	  (solid),	  0.724	  ‰	  (doCed)	  
17Δsat:	  14	  ppm	  (solid),	  18	  ppm	  (doCed)	  
17Δsat	  =	  8	  ppm	  

Fig. 2. Relative deviation ofg from the base case (see Table 2) for different parameters in Eq. (48). Panel(a) corresponds tog = 0.4 and a
range off from −1.0 to +1.0 (negative values correspond to net heterotrophy, positive value to net autotrophy). Panel(b) corresponds to
f = 0.1 and range ofg from 0.01 to 10 (logarithmic axis).

also include three special cases as discussed in Sects. 5.2
and 5.3. They correspond to (1)171P= 150 ppm (based on
measurements of the triple oxygen isotope composition of
oceanic waters and the photosynthetic isotope fractionation),
(2) εI = δsat, εE = 0 (the default assumption made in previous
studies) and (3)171sat= 8 ppm (based on measurements by
Reuer et al., 2007 and Stanley et al., 2010).

To cover a large range of environmental conditions, I con-
sider two cohorts of synthetic17δ and18δ values correspond-
ing to (a) “g = 0.4, varyingf ”: a fixedg value of 0.4 withf
varying from−1.0 to +1.0 (givings values from−40 % to
+40 % and171 values from 46 to 71 ppm) and (b) “f = 0.1,
varyingg”: a fixedf value of 0.1 withg varying from 0.01 to
10 (givings values from 0.1 % to 100 % and171 values from
18 to 185 ppm). The range used here is larger than typically
encountered for oceanic mixed layer conditions, for whichf

is more likely to be in the range from−0.1 to +0.4 andg in
the range from 0.01 to 1. However, under certain conditions,
this range may be exceeded and I have therefore chosen to
cover a wider range off andg values. For example, recent
work by Prokopenko et al. (2011) on gross oxygen produc-
tion during a bloom in the coastal Bering Sea has foundf

values up to 1 andg values greater than 1.

I express theg values calculated according to different un-
certainty scenarios in terms of their relative deviation from
the base caseg values. Since the absolute deviations from
the base case scale approximately withg, this means that the
relative deviations for the “g = 0.4, varyingf ” are also rep-
resentative for other values ofg. The results are shown in
Fig. 2.

The systematic uncertainties due to18δP (corresponding
to the18δ value of the source water and the photosynthetic
isotope effect),18εI and18δsat are negligible: the relative de-
viations from the base case are always less than 5 % for18δP
(for an uncertainty of±0.5 ‰), less than 0.5 % for18εI (for
±0.2 ‰), and less than 1.5 % (for±0.017 ‰). Only when
isotopic fractionation during gas evasion is completely ne-
glected (i.e.εI = δsat, εE = 0; the default for previous stud-
ies) do theg values deviate noticeably from the base case.
However, deviations greater than 10 % are only reached for
| f | > 0.5 org >9.

Since171P and171satenter directly into the approximated
calculation ofg according to Eq. (1), it is not surprising
that their uncertainties lead to the largest relative deviations
from the base case and therefore the largest systematic un-
certainty ing. For the “f = 0.1, varyingg” cohort (Fig. 2b),
the relative deviations from the base case exceed 15 % for
g < 0.1 due to the 2 ppm uncertainty in171sat and exceed
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Table 3. Comparison between different calculation methods forg. A dash (–) or values in brackets mean that the corresponding parameters
are not used in the calculation. The “used”17O excess values are used by the different calculation methods. The “implied”17O excess values
are calculated using the definitions adopted by the different calculation methods, based on the listed17δP, 18δP, 17δsat and18δsat values.
Where the calculation method does not require theseδ values, the values for the “best case” in Table 2 have been used for the “implied”17O
excess.

1 2 3 4 5 6 7 8

Luz and Juranek Hendricks Reuer Juranek base case, approx.,
Barkan and Quay Sarma et al. et al. et al. and Quay this this

Parameter Unit (2000) (2005) (2005) (2004) (2007) (2010) paper paper

g calculation Eq. (1) Eq. (1) Eq. (1) iterative iterative iterative Eq. (48) Eq. (1)
Definition 171 (Eq. 4) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171# (Eq. 7) 171 (Eq. 4) 171 (Eq. 4)
λ 1 – 0.516 0.518 0.516 0.516 0.518 – –
κ 1 0.521 – – – – – 0.5179 0.5179
γ R 1 – – – 0.5183 0.5185 0.5180 0.5179 –
18εR ‰ – – – −18.000 −20.000 −20.000 −20.000 –
17εR ‰ – – – −9.329 −10.370 −10.360 −10.358 –
18δP ‰ (−22.835) (−22.835) (−22.835) −22.960 −22.960 −23.247 −22.835 (−22.835)
17δP ‰ (−11.646) (−11.646) (−11.646) −11.668 −11.668 −11.864 −11.646 (−11.646)
18εI ‰ – – – 0.707 0.707 0.707 −2.800 –
17εI ‰ – – – 0.381 0.373 0.382 −1.446 –
θ 1 – – – 0.539 0.527 0.541 0.516 –
18δsat ‰ (0.707) (0.707) (0.707) 0.707 0.707 0.707 0.707 (0.707)
17δsat ‰ (0.382) (0.382) (0.382) 0.381 0.373 0.382 0.382 (0.382)
171P, used ppm 249 – – – – – 180 180
171sat, used ppm 16 – – – – – 16 16
171#

P, used ppm – 249 249 249 249 249 – –
171#

sat, used ppm – 16 16 16 8 16 – –
171P, implied ppm 251 137 182 179 179 178 180 180
171sat, implied ppm 14 17 16 16 8 16 16 16
171#

P, implied ppm 321 205 251 249 249 249 249 249
171#

sat, implied ppm 14 17 16 16 8 16 16 16

15 % forg > 1 due to the 15 ppm uncertainty in171P. For
the “g = 0.4, varyingf ” (Fig. 2a) cohort, the relative devia-
tion in the oceanographically most relevant range off from
−0.1 to +0.4 is less than 15 %. However, for both cohorts,
the relative deviations ing reach 20 % or more for the special
cases (1) (171P= 150 ppm) and (3) (171sat= 8 ppm).

It is perhaps surprising to see the noticeable effect of the
uncertainty inγ R andθ on g, in particular since the value
of γ R = 0.5179 is thought to have an uncertainty of only
±0.0006. The relative deviations due toγ R are not symmet-
ric about thex-axis becauseγ R enters Eq. (48) in both nu-
merator and denominator. For| f | >0.4 org > 1, the relative
deviations ofg from the base case can exceed 15 %; how-
ever, they stay below 15 % for the oceanographically most
relevant ranges off andg. The uncertainty inθ has a partic-
ularly noticeable effect ong for the “g = 0.4, varyingf ” co-
hort (Fig. 2a). This can be explained by looking at Eq. (49),
an equivalent formulation of Eq. (48). The bracketed term
in the numerator of Eq. (49) can be approximated by (θ −

γ R)18εI−
171sat. Therefore, the further away from zero the

O2 supersaturations is, i.e. the further away from zerof is,
and the larger the difference betweenθ and γ R, the more
pronounced the effect ong.

In summary, the evaluation of the uncertainty ing caused
by the input parameters shows that, in principle, these
parameters can be measured to within a range that does
not cause systematic uncertainty>15 % for typical oceanic
mixed layer conditions (−0.1< f < +0.4, 0.01< g <1).
This means that the systematic uncertainty ing would not
contribute more to the overall uncertainty of gross produc-
tion P than the lower end of uncertainty estimates for the
gas exchange coefficientk (Stanley et al., 2010). How-
ever, independent measurements of171P= 150 ppm and
171sat= 8 ppm are not covered by the stated uncertainties in
the input parameters and indicate a need for these parameters
to be re-measured. Also, for more “extreme” values off and
g, the triple oxygen isotope method is significantly impaired
by the uncertainty in the input parameters of the calculation.

6.2 Calculation method

In this section, I evaluate the impact of different calculation
methods on the derived value ofg for the same set of syn-
thetic “measurements” of17δ, 18δ and oxygen supersatura-
tion s used in Sect. 6.1. None of the previously published
works has used the exact input parameters I have adopted
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Sarma	  et	  al.	  (2005)	  
Juranek	  &	  Quay	  (2005)	  
this	  paper,	  approx.	  
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Fig. 3. Relative deviation ofg from the base case for different calculation methods (see Table 3). Panel(a) corresponds tog = 0.4 and a
range off from −1.0 to +1.0 (negative values correspond to net heterotrophy, positive value to net autotrophy). Panel(b) corresponds to
f = 0.1 and range ofg from 0.01 to 10 (logarithmic axis). Black curves correspond to calculation methods based on Eq. (1). Red curves
correspond to iterative methods.

here (Table 2) although two of them are close (Juranek and
Quay, 2010; Quay et al., 2010). I have compiled examples of
different calculation methods from the literature in Table 3.
Even though the same “measurements” were used for all cal-
culation methods, the17O excess values differed, depending
on the definition of the17O excess adopted in the particular
study.

Most studies have used Eq. (1) with171P (or
171#

P) = 249 ppm and171sat (or 171#
sat) = 16 ppm, but vary-

ing coefficients in the definition of171. In none of the
studies were the input parameters adjusted to the definition
adopted for the17O excess. The effect of this is shown in the
bottom rows of columns 1, 2, 3 and 8 in Table 3: for the same
underlying17δP, 18δP, 17δsat and18δsat values, the resulting
“implied” 171P and 171sat values differ by up to 116 ppm
and 3 ppm, respectively.

A few studies have adopted an iterative approach
(Sect. 4.2.2) based on the17O excess and the biological oxy-
gen supersaturationsbio (columns 4 to 6 in Table 3). Dif-
ferentλ values in the definitions of the17O excess and dif-
ferent18δP, 18εR and18δsat values were used (Hendricks et
al., 2004; Reuer et al., 2007; Juranek and Quay, 2010). Be-
cause of this, even studies using essentially the same171#

P
and171#

satvalues give different results forg. The distinction

betweens andsbio is irrelevant for the present set of synthetic
measurements. Iterative method and a calculation based on
Eq. (48) therefore give the same value forg. However, the
distinction betweens andsbio may be relevant for environ-
mental samples, in particular iff values are derived from
the ratio ofg ands in case of the iterative method.

Columns 7 and 8 of Table 3 correspond to the base case
calculation according to Eq. (48) and an approximated cal-
culation following Eq. (1), with171P and171satand the171

definition made consistent with the base case.
Figure 3 illustrates the relative difference betweeng cal-

culated by the different methods and the base case. For
a large range of underlyingf and g values, theg values
calculated according to Eq. (1) are>25 % below the base
case (Luz and Barkan, 2000; Sarma et al., 2005; Juranek
and Quay, 2005). This is not due to an approximation er-
ror in the derivation of Eq. (1) as illustrated by the rea-
sonable agreement between base case calculation and ap-
proximation if 171P and 171sat parameters consistent with
the base case calculation are used (“this paper, approx.”).
In the case of Luz and Barkan (2000) the difference arises
due to the choice ofκ = 0.521, which does not agree with
γ R = 0.5179± 0.0006. In the case of Sarma et al. (2005)
and Juranek and Quay (2005), more suitableλ values of
0.516 and 0.518 were chosen, which are more suitable for
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the approximated calculation ofg according to Eq. (1). How-
ever, the171#

P and 171#
sat values of 249 ppm and 16 ppm

were not made consistent with this definition. Moreover, in
the latter two studies, Eq. (1) was used in conjunction with
a non-linear definition of the17O excess,171#. This def-
inition was perceived to be more appropriate for the math-
ematical elimination of the respiration from the calculation
(Luz and Barkan, 2005). However, following Sects. 3.4 and
4.2.1,171 is actually a more appropriate definition for ap-
proximated calculations ofg according to Eq. (1).

A better agreement with the base case is found for the iter-
ative calculations according to Hendricks et al. (2004), Reuer
et al. (2007) and Juranek and Quay (2010), with the latter cal-
culation method giving the best agreement, mainly because
the chosenγ R andλ values of 0.518 are closest to the base
case value 0.5179. In case of Hendricks et al. (2004) and
Reuer et al. (2007) the impliedγ R values are 0.5183 and
0.5185 since these studies assume17εR = (1 + 18εR)0.516.
Theseγ R values contribute significantly to the deviation
from the base case, especially for larger value ofg. How-
ever, a combination of other input parameters clearly affect
the derivedg values as well, for example the171sat value of
8 ppm adopted by Reuer et al. (2007).

6.3 Practical example: calculation ofg values in the
Southern Ocean

In this section, I use a dataset of triple oxygen isotope mea-
surements in the Southern Ocean to gauge the effect of using
different calculation methods forg in practice.

The data originate in the Supplementary Information to the
paper by Reuer et al. (2007). From 485 concomitant mea-
surements of17O excess (defined as171#

= ln (1 + 17δ) –
0.516 ln (1 +18δ)) and18δ in mixed-layer dissolved O2 sam-
ples and the biological O2 supersaturationsbio = 1(O2/Ar), I
have first calculated17δ and then used the dual delta method
based on Eq. (48) to deriveg, using the input parame-
ters in Table 2 together with the temperature parameterisa-
tions of 18δsat of Benson et al. (1979) and171 of Luz and
Barkan (2009). I have assumeds = sbio. In Fig. 4, I have
compared the result to theg values based on the calculation
method used in the paper by Reuer et al. (2007). A linear
regression gives a slope of 1.4, indicating an even larger dif-
ference between the two calculation methods than expected
from Fig. 3. This is mainly due to including the temperature
dependence of171 (Luz and Barkan, 2009) as opposed to
using a fixed171 value of 8 ppm (Reuer et al., 2007). At
a seawater temperature of 0◦C, the temperature parameter-
isation gives a171 value of 2 ppm. In contrast, there is no
significant difference between the iterative approach and the
direct calculation ofg based on Eq. (48) provided the same
input parameters are used; a linear regression gives a slope
of 1.0027±0.0004, a y-axis intercept of−0.0008±0.0001
andR2

= 0.9999.
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Fig. 4. Comparison between theg values calculated according to
columns 5 and 7 in Table 3, based on the biological oxygen su-
persaturation1(O2/Ar) and the17δ and 18δ values given in the
Supplement of Reuer et al. (2007). The18δsat values were cal-
culated as a function of temperature (Benson et al., 1979). For
g (this paper), the temperature parameterisation of171sat given
by Luz and Barkan (2009) was used. Forg (Reuer et al., 2007),
171sat= 8 ppm was used. Lines on the plot correspond tog (this
paper)= g (Reuer et al., 2007) (“1:1”) and a linear regression be-
tween bothg values, i.e.g (this paper)= (1.40±0.01) g (Reuer et
al., 2007) +0.014±0.002 (R2

= 0.95).

It was not possible to test the effect of using the O2 super-
saturations instead ofsbio because no data fors were avail-
able. However, it is possible to check the internal consistency
of the data set and input parameters by using Eq. (50) to cal-
culatef and to derivescalc= gf . This check is only possible
for the direct calculation method (Sect. 4.2.1) because the it-
erative calculation assumess = gf (Sect. 4.2.2). If there was
perfect internal consistency, thenscalc should equalsbio.

In practice,scalc follows sbio, but the agreement is not per-
fect (Fig. 5a). There are many reasons that could be responsi-
ble for this mismatch. For example,f is much more sensitive
to the input parameters18εR, 18εI , 18δP etc. thang and asso-
ciated errors propagate toscalc. The effect of changing18εR
and18εI is illustrated in Fig. 5b–d. It appears that a stronger
fractionation during gas invasion of18εI = −8 ‰ may lead
to better agreement betweenscalc andsbio, but this18εI value
disagrees with the measured value of (−2.8±0.2) ‰ (Knox
et al., 1992). Measurement uncertainties in18δ, 17δ andsbio
cause scatter in the plot ofscalc vs. sbio and more funda-
mental assumptions such as neglecting bubble transfer pro-
cesses (Sect. 3.5) affect the overall correlation. In any case,
it appears that there is ample scope to exploit oxygen triple
isotope measurements beyond the mere calculation of gross
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Fig. 5. Comparison between the oxygen supersaturation derived fromscalc= gf , with g and f calculated according to Eqs. (48) and
(50), respectively, and the biological oxygen supersaturationsbio = 1(O2/Ar) given in Reuer al. (2007). The different panels show the
influence of changing different calculation parameters. Panel(a): 18εI = −2.8 ‰,18εR = −20 ‰. Panel(b): 18εI = −8.0 ‰,18εR = −20 ‰.
Panel(c): 18εI = −2.8 ‰,18εR = −22 ‰. Panel(d): 18εI = −8.0 ‰,18εR = −22 ‰.

oxygen production rates. Clearly, in addition to allowing a
more consistent calculation ofg (Sect. 4.2.1), the pairs of
17δ and 18δ values provide a wealth of additional informa-
tion that cannot be subsumed by a single17O excess value
that, after all, is simply a mathematical construct.

7 Conclusions

I have reformulated the calculation of mixed-layer gross oxy-
gen production in terms of relative isotope ratio differences
(17δ and 18δ). This so-called dual delta method is based
on Eq. (48). It avoids mathematical approximations and
iterative solutions and gives an explicit result in terms of
a dimensionless gross oxygen production rateg. In addi-

tion to the parameters identified previously (i.e. the ratio of
17O/16O respiration fractionation to18O/16O respiration frac-
tionation,γ R =

17εR/18εR; the17O excess for photosynthetic
O2, 171P; and the17O excess of O2 in water saturated with
atmospheric O2, 171sat), g also depends (to a lesser extent)
on the18O/16O isotope delta of photosynthetic O2 (18δP), the
18O/16O isotope fractionation during O2 invasion (18εI), the
18O/16O isotope delta of O2 in water saturated with atmo-
spheric O2 (18δsat) and the triple isotope fractionation coeffi-
cient for O2 invasion (θ ). A similar dual-delta approach can
also be used to calculate gross production below the mixed
layer, see Eq. (42).

Prokopenko et al. (2011) also found the approximated cal-
culation of g according to Eq. (1) to be deficient. If171

values are used in the calculation, adoption of a consistent
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171 definition is crucial for the accuracy of the calculation.
In the past,17O excess values based on different171 defini-
tions have often been mixed indiscriminately, which leads to
systematic errors. It is not important which171 definition is
chosen – any single one will do, provided all calculations are
performed consistently. This means essentially keeping track
of at least one isotope delta (e.g.18δ) in addition to171 and a
clear definition of171 whenever it is used. When an approx-
imated calculation ofg based on171 values and Eq. (1) is to
be performed, a linear definition of171 according to Eq. (4)
with κ = γ R should be chosen to minimise errors. However,
since the mass-spectrometric methods used to determine the
oxygen triple isotope composition of dissolved O2, actually
yield 17δ and 18δ rather than the derived quantity171, the
dual-delta calculation method described here seems to be the
preferable approach.

A marginal aspect to the171 definition is the question
about the symbol for the frequently used value of 10−6. The
name “per meg” has been used in the past, but is inconsis-
tent with international metrological practice. I suggest us-
ing the internationally recognised symbol “ppm” (short for
“parts per million”) instead.

Table 2 gives a summary of the input parameters and their
uncertainties used in the calculation ofg. These uncertain-
ties are based on the best single study to have measured the
corresponding parameter. Using a set of synthetic17δ and
18δ measurements, I have evaluated the systematic uncer-
tainty introduced intog by the different input parameters.
The good news is that for the oceanographically most rele-
vant range, the achievable measurement quality is sufficient
to keep the error ing at or below the minimum error estimate
of 15 % for the gas exchange coefficientk, which also enters
into the calculation of the gross oxygen production accord-
ing toP = k/zmix csatg. However, in some cases, other mea-
surements of input parameters exist that are of similar qual-
ity to the best single study, but that are not compatible with
the corresponding uncertainty bands (Fig. 2). For example,
the discussion about the correct171satvalue is on-going (see
Table 1). In case of171P, little experimental detail was pro-
vided with the only reported measurement (Luz and Barkan,
2000) and other measurements from the same group give a
significantly lower value (Sect. 5.2). Both171sat and171P
should be re-measured independently.

Considerable differences can arise from using different in-
put parameters and17O excess definitions, as shown by the
evaluation ofg values based on different calculation methods
(Table 3, Fig. 3). In the absence of an accepted recommen-
dation on which input parameters and calculation method to
use, it will be best to archive the isotope delta values them-
selves (17δ and18δ), together with the oxygen supersatura-
tion s and/or the biological oxygen supersaturationsbio, so
that future methodological improvements can be applied ret-
rospectively to existing measurements. One such improve-
ment may be the inclusion of bubble transfer processes in the
calculation ofg, as shown for bubble injection in Eq. (41).

Another advantage of the calculation method suggested
here is that it is independent of the assumption of concentra-
tion steady state (Eq. 48). Moreover, an estimate of the net
to gross oxygen production ratiof may be derived from iso-
tope measurements and the oxygen supersaturations alone
(Eq. 50). This may be used to check the method for internal
consistency and potentially to derive improved estimates of
the input parameters based on concomitant measurements of
17δ, 18δ ands.
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