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ABSTRACT

Aim: CCR5 is a key receptor for a wide array of human pathologies such as Rheumatoid
Arthritis and HIV-1 infection. The way CCR5 membrane domains composition affects
CCR5 function and the mechanisms involved in CCR5 signalling are not fully
understood yet. This study intends to characterise the signal cascades initiated by CCR5
activation with a special emphasis on understanding the role of cell membranes fluidity
and certain CCR5 downstream proteins.

Methodology: Experiments were performed in CCR5 stably transfected CHO and HEK
cells and in THP-1 cells. Calcium mobilization, cCAMP accumulation and chemotaxis
assays have been used to measure receptor activation. Flow cytometry and
immunocytochemistry were used to measure proteins expression levels. Changes in gene
expression were measured by gRT-PCR and analysis of proteins was conducted by
Western blot. Small interfering RNA sequences were employed to knock down a
specific protein.

Results: CCR5 signalling behaviour upon cholesterol depletion is different depending
on the cell line used. Cholesterol depletion blocks calcium release in CCR5 transfected
cells whereas in THP-1 cells it massively enhances calcium mobilization but blocks
chemotaxis. Interestingly, the change in membrane fluidity by Methyl-B-Cyclodextrin
MCD arrests CCR5 signalling through Gai proteins in both cell systems. Cholesterol
depletion has no effect on the expression and internalisation of the receptor in stably
transfected cells but MCD significantly increases CCR5 levels in THP-1 cells. In
addition, CCRS5 calcium and chemotaxis responses are enhanced by the blockage of
PKC ¢ and o.

Conclusions: This study has highlighted that CCR5 signalling function can be highly
modulated by drugs intended to cure CCR5-independent pathologies. We have shown
that cholesterol modulating drugs and PKC inhibitors can alter CCR5 signalling
pathways. Taken together, the results here described may be relevant for future therapies

targeting this chemokine receptor.
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CHAPTER 1- INTRODUCTION

1.1 G Protein Coupled Receptors

G protein coupled receptors (GPCR) are a large family of proteins expressed in
numerous cells in the human body which share the same basic structural design of seven
transmembrane domains, an extracellular amino-terminal segment and an intracellular
carboxy-terminal tail. As its name indicates, GPCR are receptors coupled to G proteins,
which are guanine nucleotide regulated proteins that transmit the external stimuli to the
cytosol, connecting important signalling pathways (Rosenbaum et al., 2009).

The most commonly used system of classification divides the GPCRs into six
classes: Class A: rhodopsin-like receptors, which includes over 80% of all GPCRs in
humans and has been classified into 19 subgroups (A1-A19) based on a phylogenetic
analysis. It comprises the Rhodopsine, cannabinoid, olfactory, amine, peptide, hormone,
protein and platelet activating receptor-like GPCR (Kumari et al., 2009). Class B:
secretin-like receptors; Class C: metabotropic glutamate receptors; Class D: pheromone
receptors; Class E: cAMP receptors; and Class F: Frizzled/smoothened family, which

represents the smallest class of GPCRs (Horn et al., 2003).

GPCR are a very diverse group of receptors that react to different stimuli, creating
a wide range of cellular responses. Hormones, peptides, growth factors and cytokines are
just some examples of the large number of molecules able to trigger GPCR activation.
Stimulation of GPCR can alter physiological functions as vital as heart rate, white blood

cell activation, and nervous connections (Millar and Newton, 2009).

Although GPCRs only account for 3% of the genes in the human genome
(Fredriksson and Schioth, 2005), around 50% of the drugs that are currently on the
market, target, one way or another, this huge family of transmembrane proteins
(Flower, 1999). This is partly because of the wide range of ligands that bind to these
receptors originating a huge variety of responses. There are about 800 genes in the
human genome coding for GPCRs, half of which code for olfactory receptors that are
responsible for our ability to smell and are not essential for human pathologies
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(Klabunde and Hessler, 2002). Remarkably, only 15% of the considered “essential
GPCR” have been successfully targeted with drugs (Flower, 1999), indicating that a

great deal of research in this area still remains to be completed.

Two examples of GPCRs with a key role in human pathologies are adrenergic
receptors, which control muscle contraction in several organs, and serotonin receptors,
responsible for the mediation of inhibitory and excitatory effects in neurotransmission.
Specifically targeting some types of adrenergic receptor represents one of the major
approaches to treat diseases such as hypertension (Wiysonge et al., 2007), and asthma
(Ortega et al., 2007) whereas serotonin receptors are the target of drugs such as
antidepressants, antipsychotic or antimigraine agents (Carter et al.,, 2009). These
examples illustrate the large variety of responses that can be initiated by one type of
GPCR.

Table 1.1 Example of GPCR used as target of commonly prescribed drugs

Drug name Target receptor Pathology
Salbutamol p2 Adrenergl_c Asthma
receptor (agonist)
B1-Adrenergic receptor .
Atenolol (Antagonist) Hypertension
Angiotesin AT1 receptor .
Losartan (Antagonist) Hypertension
Ranitidine Histamine H2 Stomach
(Antagonist) Ulcer
. p-Opioid receptor SNC
Morphine (Agonist) (Pain)
Muscarinic
Ipatropium receptors Asthma
(Antagonist)
Lekotriene
Montelukast receptor Asthma
(Antagonist)
Serotonin
Sumatriptan (5HT) receptor Migraines
(Agonist)

1.2 Chemokine receptors
Chemokine receptors are a special type of GPCR, characterised by their response
to a series of small peptides called chemokines. Chemokines are small chemotactic

cytokines (8-15 KDa) secreted by a wide number of cells upon certain stimuli
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(Baggiolini et al., 1997). Among the main functions of this family of cytokines are
recruitment of white blood cells to sites of inflammation through rearrangement of the
cell cytoskeleton and stimulation of vital signalling pathways in white blood cells
through chemokine receptors activation (Thelen, 2001). Chemokine receptor coordinate
leukocytes biological activity by directing their movement towards a chemokine
gradient and promoting numerous signalling events required for the important role of
leukocytes in the immune response. Most chemokine receptors are primarily expressed
in leukocytes, the two exceptions being CXCR4, that is also expressed in platelets, and
Duffy (DARC), which is mainly expressed in erythrocytes.

Chemokine receptors belong to class Al and class A2 of GPCR (Murphy et al.,
2000). They are classified by their ability to signal on binding one or more members of
the chemokine superfamily into 18 different types. In order to comprehend chemokine

receptors nomenclature, chemokines classification should be described first.

There are four main subfamilies of chemokines which are classified according to
the number and position of cysteine molecules. The CC chemokines (or B chemokines)
have four cysteines, two of them adjacent; the CXC chemokines (or alpha chemokines)
have four cysteine residues, two of them separated by one amino acid. The third
subfamily comprises the C chemokines (or y chemokines) and they only have two
cysteines which are situated in the N-terminus and the C-terminus. The last group, that
of the CX3C chemokines (or d-chemokines), have four cysteines, two of them separated
by three amino acids (Thelen, 2001).

The majority of chemokine receptors are classified into those binding CXC
chemokines, CXCR1 to CXCR5 or those binding CC chemokines which consists of 9
receptors, CCR1 to CCR9. A further receptor, initially designated D6 binds to CC
chemokines and has thereby been suggested to be termed CCR10, whereas the receptors
CX3CR1 and XCR1 bind to CX3CL1 (fractalkine) and XCL2 (lymphotactin)
chemokines respectively. An additional chemokine receptor, known as the Duffy antigen
receptor for chemokines (DARC) has been shown to bind both CC and CXC
chemokines (Murphy et al., 2000).
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Chemokine receptors are formed of 340-370 amino acids that create seven
transmembrane hydrophobic loops, with an external N-terminal domain and an internal
C-tail domain. All chemokine receptors share the following structural characteristics:
several cysteines residues in all the extracellular domains; a conserved DRYLAVVHA
sequence in the second intracellular loop which seems to be essential for G protein
interaction with the receptor; and a short and positively charged third intracellular loop
which has been found not to be essential for the receptor function (Oppermann, 2004).
The cysteine residues located in the second and third extracellular loops form a disulfide
bridge found in all GPCR. Chemokine receptors form an extra disulfide bond which is
believed to be important for receptor conformation in the membrane and ligand binding
(Baggiolini et al., 1997). Ligand binding occurs through a first interaction with the N-
terminus of the receptor followed by contact with the second extracellular loop,
generally responsible for ligand specificity (Samson et al., 1997).

Chemokine receptors are known to participate in several human pathologies. To
enumerate a few of them: CCR1 and CCR2 receptors play an important part in
inflammatory diseases such as RA or atherosclerosis (Bhat et al.; Conductier et al.;
Pease and Horuk, 2005) whereas CXCR1 and CXCR2 have been involved in psoriasis,
asthma and other skin conditions (Murdoch and Finn, 2000). CCR3, expressed in the
cell surface of eosinophils, Th2 lymphocytes, basophils and mast cells and binding the
chemokines CCL11, CCL24 and CCL26, has been widely linked to the recruitment of
inflammatory cells in allergic conditions (Pease, 2006). Additionally, the chemokine
receptors CCR5 (Azenshtein et al., 2002; Vaday et al., 2006) and CXCR4 (Salcedo and
Oppenheim, 2003) are clearly involved in certain cancers and inflammatory conditions
as well as in facilitating HIV-1 virus entry into macrophages and T cells respectively
(Mosier, 2009). In line with this characteristic of CCR5 and CXCR4, DARC expression
in erythrocytes is required for the entry of plasmodium vivax (p.vivax) and plasmodium
knowlesi (p.knowlesi) into these cells. Individuals that due to a genetic condition that
causes a single G-to-A nucleotide substitution, producing a Gly44Asp substitution in the
polypeptide chain, do not express DARC in erythrocytes, are resistant to these two
parasites (Murdoch and Finn, 2000). Next, the characteristics and functions of CCR5

will be analysed in more detail.

1.3 CC Chemokine receptor 5
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The chemokine receptor 5 (CCR5) is a member of the seven transmembrane G
protein coupled receptor (GPCRs) family. It belongs to class A, the largest of the GPCR
superfamilly classes which shares homology with rhodopsin, to the Al subclass of
GPCR (Horn et al., 2003). CCR5, along with other chemokine receptors, is activated
upon binding to chemokines.

CCRS5 is expressed in T cells, natural killer cells, monocytes, macrophages and
langerhans cells (Murphy et al., 2000). Although CCR5 was initially believed to be only
expressed in these cells, its presence has also been shown in the human brain in a variety
of cell types including microglia, astrocytes, neurons, and vascular endothelial cells
(Lavi et al., 1998). Chemokines binding to CCR5 promote important cellular changes
such as calcium release, cell movement or secretion of different types of cytokines
(Oppermann, 2004). These processes are essential for the body’s immune response and
drive the distribution of effector cells expressing CCR5 to sites of inflammation. There,
upon interaction with antigens, these cells will secrete further CCR5 ligands, attracting
more CCRS5 expressing cells. This inflammation process will, under normal conditions,
lead to infection control. Yet, on other occasions, if the recruitment of cells becomes
excessive, it may lead to numerous pathologies such as Cancer, Rheumatoid Arthritis
(RA), Multiple Sclerosis (MS), Alzheimer’s disease (AD) or transplant rejection as will
be analysed in more detail in this thesis (Ajuebor et al., 2006; Coussens and Werb,
2002).

CCR5 became a key receptor in cell signalling research when found to act as a co-
receptor for the entry of the HIV virus into the cell. This finding was backed up by the
discovery that people expressing a mutant form of the receptor with a 32-base-pair
deletion (CCR5- d32), that is not expressed in the membrane, are highly resistant against
initial infection by HIV-1 (Samson et al., 1996).

1.3.1 Structure

The complete crystal structure of rhodopsin, obtained in 2000 (Palczewski et al.,
2000), was the first three dimensional GPCR crystal structure to be solved and was
subsequently used as a template to elucidate the structural features of CCR5. Recently,
the crystal structures of the ligand-activated human A adenosine receptor, the human
[, adrenergic receptor (2AR) and the avian ;AR as well as the structures of an active
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form of rhodopsin have been obtained (Rosenbaum et al., 2009). More importantly, the
crystal structure of the first chemokine receptor has also been resolved recently. Wu et
al. obtained the X-Ray structure of the chemokine receptor CXCR4 in its active
conformation (see Figure 1.1). These discoveries open new fields of research as they
will allow clarification of the conformational changes occurring upon GPCR stimulation

that, in turn, will help to elucidate signal transmission through G proteins.

Figure 1.1 X-Ray structure of the CXCR4 chemokine receptor in complex with small molecule
antagonist 1T1t. Adapted from Wu et al. by NCB protein database program.PDB ID:30DU. (Wu et
al., 2010).


http://www.rcsb.org/pdb/cgi/explore.cgi?pdbId=3ODU
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Figure 1.2 Two-dimensional structure of the human CCR5 sequence. Membrane topology of CCR5
with the extracellular space at the top and the intracellular space at the bottom. Amino acids shown to be
critical for CCR5 function, such as the extracellular cysteines, the internal serines or the DRYLAVVHA
sequence expressed in the second intracellular loop, are highlighted by filled circles. (Oppermann,
2004).

CCR5 has 352 amino acids, a molecular mass of 40.6 KDa, it is located in the
chromosome 3p21 and possesses all the characteristics of chemokine receptors described
above CCR5 undergoes several posttranslational modifications both in its amino-
terminus and in its carboxyl-terminus: the three tyrosine residues in its N- terminus are
modified by a sulphate group and the serine residues situated close to the amino-
terminus have been shown to be O- glycosylated. These modifications in the
extracellular domain of CCR5 strongly contribute to ligand binding and efficient
signalling (Bannert et al., 2001). Similarly, CCR5’s C-tail undergoes a small number of
key post-translational modifications which are essential for its function. For instance, the

three cysteines in the C-tail are palmitoylated, anchoring the receptor to the plasma
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membrane and thus forming a fourth intracellular loop (see Figure 1.2). A body of
evidence indicates that substitution of these cysteines by alanines abrogates receptor
palmitoylation, phosphorylation, and internalisation (Blanpain et al., 2001; Kraft et al.,
2001). Furthermore, Kraft’s group demonstrated that the two contiguous leucine
residues near the C-tail were largely accountable for receptor endocytosis whilst amino
acids from 308 to 320 in the C terminus were essential for CCR5 coupling to G proteins
(Kraft et al., 2001).

1.3.2 Signalling

CCRS5 signalling pathways encompass a series of processes leading to activation of
numerous molecules which trigger or block important cellular mechanisms. The first
step in CCR5 signalling involves the binding of a chemokine to the N-terminus of the
receptor, producing a change in the conformation of the receptor and the activation of
heterotrimeric G proteins. As a result of CCR5 activation, cells start migrating,

proliferating or transcribing new genes.

1.3.2.1 CCR5 ligands

In 1995, CCL3 (also named MIP-1a), CCL4 (MIP-1B) and CCL5 (RANTES)
chemokines were identified as HIV suppressive factors secreted by CD8+ T
lymphocytes (Cocchi et al., 1995). Following this extraordinary discovery, CCR5 was
identified as the main co-receptor for HIV infection. CCR5 was then classified as the
receptor for the CC chemokines CCL3, CCL4, CCLS5, which are known to act as full
agonists. Yet, CCR5 has also been shown to bind other chemokines such as CCL2,
CCL8, and CCL13 with less affinity and efficacy (Blanpain et al., 1999; Mueller et al.,
2001). Certain chemokines were later shown to block some of the responses initiated by
stimulation of CCR5, providing evidence that the body has a regulatory system to
decrease CCRS activity.
For instance, CCL7 (Blanpain et al., 1999) and CXCL11 (Petkovic et al., 2004) have

been shown to act as CCR5 natural antagonists.

One of the main characteristics of chemokine receptors is their versatility.
Normally, one chemokine receptor can be activated by several different chemokines,
each of which is also able to stimulate more than one chemokine receptor. The ability of

a ligand to cause similar responses through the activation of different chemokine
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receptors explains why, with the exception of CXCR4, chemokine receptors are not
essential for life (Murphy et al., 2000). In this respect, an excellent example of the low
specificity of chemokine receptors can be found in the fact that individuals who are
homozygous for CCR5 delta 32 do not have any cellular dysfunction. In a system where
multiple chemokine receptors are expressed, it is of great utility for the research field
that CCL4 is specific for CCR5 (Murphy et al., 2000) since it allows the characterization

of CCR5-specific pharmacological responses.

Figure 1.3 X-Ray structure of CCL3 (D27A) (A) and CCL4 (B) showing its biological assembly

conformation. Adapted from Ren et al. by the program Protein Data Bank

http://www.pdb.org/pdb/home/home.do. (Conductier et al., 2010).

1.3.2.2 Heterotrimeric G proteins

As their name indicates, GPCR transmit their signal by coupling to heterotrimeric
G proteins. These membrane bound proteins are guanosinetriphosphatases (GTP-ases)
that exist in an inactive GDP-bound form. They comprise a a and a By subunits which
dissociate upon chemokine binding to the receptor. Although 27 Ga subunits, 5 GB and
14 Gy have been identified to date, G proteins are mainly classified into 4 different
groups (Gas, Goi, Gag and Gaiz) depending on the G alpha-subunit involved in the
signalling (Simon et al., 1991).

Gas stimulates the enzyme adenylylcyclase (AC), increasing the concentration of

cAMP in the cytosol. On the other hand, receptor coupling to Ga; produces inhibition of


http://www.pdb.org/pdb/home/home.do
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CAMP production due to AC inhibition (McCudden et al., 2005). As for Gay, it has been
shown to activate PLC (which is described in detail below) whereas Gayz/3 IS involved
in cell migration through cytoskeleton rearrangement and actin reorganization
(Oppermann, 2004; Tanabe et al., 2004). The Ga subunit is composed of two domains: a
nucleotide binding domain with GTPase activity and a o-helical domain. The
combination of both domains forms a pocket for the binding of the guanine nucleotide.
The GTP-ase domain contains three flexible regions which change conformation upon
both GTP binding and hydrolysis. Upon ligand activation of the receptor, GDP is
exchanged by GTP and the latter changes the conformation of these regions, decreasing
the affinity for the GBy subunit and allowing the binding of other intracellular molecules
to the Ga subunit (Lambright et al., 1996). Subsequently, GTP is hydrolysed by the
catalytic subunit of the nucleotide’s binding domain, that promotes the re-association of
Ga with GDP and the Gy subunit. The re-coupling of both subunits terminates the
signalling process due to a loss in affinity for effector molecules (McCudden et al.,
2005).

Go subunit behaviour upon treatment with pertussis toxin (PTX) allows
classification of G proteins as PTX-resistant or PTX-sensitive proteins. PTX catalyses
the ADP ribosylation of a cysteine residue situated at position 4 from the C-terminus of
some Ga subunits (Krueger and Barbieri, 1995). This chemical modification locks the
proteins in their inactive-GDP bound state and thus impairs the activation of
downstream proteins. Almost all members of the Go; family are PTX-sensitive. The rest
of the G proteins, Gos, Gog11 and Gagopns, are not affected by treatment with this toxin
(Fields and Casey, 1997).
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Table 1.2 Characterization of G proteins downstream effectors activation and sensitivity to PTX.
Subfamily Go Signalling PTX —sensitive?

Gz No

Gil
Gi Gi2 AC
Gi3 Yes

GO
Gt

Gs
Gs Golf AC No

G12
Stimulation

G12/1 cell growth/ No
G13 migration

Gq
G11
Gq G14 PLCB No
G15
G16

The Gy subunit contains seven tryptophan-aspartatic acid sequences that repeat
every 40 amino acids forming antiparallel B strands which gives a characteristic “torus-
like structure” (McCudden et al., 2005). This subunit has traditionally been thought to be
only involved in keeping Ga subunit inactive, but recent studies have shown its capacity
to stimulate several signalling pathways. For instance, Gy subunit directly interacts
with and activates PLC (Blank et al 2005, Boyer et al., Chen et al 2005), causing IP3
production and subsequent calcium mobilization. Other studies have shown the ability of
Gpy to activate ERK1/2, JNK, and p38 mitogen-activated protein kinases (MAPKS)
(Aramori et al., 1997b; Obara et al., 2008).

Most notable among proteins able to be activated by Gy is PI3K-y, which is responsible

for the induction of important pathways such as chemotaxis (McCudden et al., 2005).

CCRS5 is mainly known to associate with Ga; and, therefore, all cellular signalling
pathways not related to CAMP inhibition are believed to be activated through the Gy

subunit. However, some recent evidence (Cardaba et al., 2008; Cardaba and Mueller,
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2009; Harmon and Ratner, 2008; Mellado et al., 2001) suggest that CCR5 also induces
its response through Gog11 or Ganz proteins which might share some of the pathways

activated by Gfy.

1.3.2.3 Pathways activated by G proteins
CCRS5 challenge with a chemokine triggers the activation of numerous intracellular
cascades, some of which are independent of G protein activation (Mueller and Strange,
2004b). In this section we have focussed on the processes initiated by the dissociation of

heterotrimeric G proteins.

1.3.2.3.1 Calcium mobilization

Heterotrimeric G proteins can stimulate several effector proteins when in an active
state. Table 1.2 represents the main proteins activated by the different Ga subunits.
Calcium mobilization from intracellular stores upon chemokine receptor stimulation has
been widely used to test the receptiveness of the receptors to different ligands. Three
different pathways that lead to an increase in intracellular calcium mobilization have
been described (Maghazachi, 2000). The first one involves the activation of PLC and
consequent generation of inositol triphosphate (IP3) which releases calcium through the
inositol triphosphate receptor (IP3R). The second pathway releases calcium through
ryanodine receptors (RyR) in response to the formation of the second messenger cyclic
adenosine diphosphate ribose (CADPR) which is produced by Gas proteins activation

from the product nicotinamide adenine dinucleotide (NAD").

The third pathway requires the formation of sphingosine 1 phosphate (S1P) by G
proteins, but the precise mechanisms through which this second messenger induces

calcium release remain uncertain.

It is generally accepted that GPCR which couple to Ga; proteins, like CCRS5,
activate PLC through the Gy subunit (Oppermann, 2004). PLC catalyses the hydrolysis
of phosphatidylinositol 4,5 diphosphate (PIP2) into inositol triphosphate (IP3) and
diacylglicerol (DAG), the former being responsible for calcium release through ER
stores. PIP2 is a membrane phospholipid that plays a central part in cell signalling by
serving as substrate for enzymes like PLC or PI3K; acting as membrane anchor for

many proteins; and helping in cell transport of vesicle exo- and endocytosis and
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accompanying actin cytoskeletal rearrangements (Blazer-Yost and Nofziger, 2005).

There are five classes of PLC isozymes: PLCPB, PLCS, PLCy, PLCeg, and PLCC.
CCRS5 has been mostly shown to signal trough PLCB (Oppermann, 2004). Hallmarks of
PLC family members include a N-terminal pleckstrin homology (PH) domain which
binds the Gy subunit, and EF, X, Y and C2 domains that form the catalytic core for
phosphoinositide hydrolysis (McCudden et al., 2005). Bony et al. found that in cardiac
cells, phosphatidylinositol 3-kinase (PI3-K) was needed for PLC-y activation,
translocation to the membrane and phosphorylation (Bony et al., 2001), linking the IP3
pathway with this important enzyme. The two products of the PLC reaction follow
different pathways: IP3 binds the IP3R releasing calcium from the endoplasmic
reticulum (ER) into the cytosol whereas DAG remains in the membrane and activate
certain isoforms of PKC, which starts other important signalling pathways (Spitaler and
Cantrell, 2004).

In the past few years, the way receptors coupled to Ga; proteins might promote
intracellular calcium responses has become a matter of debate. As explained, Ga,;
proteins have been described as proteins capable of inducing inhibition of the enzyme
AC which does not involve activation of calcium related pathways. Consequently, it has
been hypothesised that GPCR coupled to Go; proteins are able to promote calcium
mobilization by stimulation of the By subunit. As outlined above, this subunit can engage
PLC pathways and promote intracellular calcium mobilization (Blank et al., 1992; Boyer
et al.,, 1992). Further experiments carried out by Cartier et al. (Cartier et al., 2005)
complemented this work by showing that the By subunit had a special PLC-B-binding
region. Furthermore, it is thought that the By subunit binds all its effectors (PLC-B, Ga-
GDP and AC) through the same amino acids, which explains why dissociation of
heterotrimeric G proteins is necessary for all the signalling pathways initiated by G

proteins activation (Ford et al., 1998).

In basal conditions, the cytosolic free calcium concentrations are kept at 100 nM.
However, calcium concentration increases more than tenfold after calcium release from
ER stores (Berridge et al., 2000). This change in calcium concentrations causes
activation of membrane channels called store operated calcium channels (SOCs) through
a mechanism that has been termed capacitative calcium entry (CCE). This high increase

in intracellular calcium concentration is necessary for the ER stores to be filled up again,
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so that the next stimulus can trigger a new calcium flux (Marks, 1997). Changes in
cytosolic calcium levels cause activation of calcium dependent pathways which are basic
for many processes such as cell proliferation, apoptosis, metabolism and gene expression
(Berridge et al., 2000). Rises in intracellular calcium, cause important cellular effects,
including activation of proteins like protein kinase ¢ (PKC), calmodulin, IP3R, and Ca2+
ATP-ases. Similarly, calcium binding to calcium sensor proteins promotes changes in
the activity of several intracellular proteins (Roderick and Cook, 2008). In line with
these data showing the important role of calcium for cellular signalling, it has recently
been learned that in certain cancerous cells, calcium pathways leading to cell
proliferation are over-stimulated. Alternatively, calcium pathways related to apoptosis
are decreased. In this respect, some groups suggest that an increase in cytosolic calcium
due to ER channels activation has apoptotic effects whereas an increase in intracellular
calcium caused by calcium entry through membrane channels would have pro-
proliferative effects (Roderick and Cook, 2008). These data provide perspective on the
significance and versatility of calcium responses, pointing at the importance of

understanding the way CCR5 modulates this signalling pathway.

1.3.2.3.2 Inhibition of cCAMP accumulation
CAMP is an important second messenger produced by stimulation of the enzyme
adenylyl Cyclase (AC). Mammalian ACs comprise a family of 10 members all of which
share a similar structure which encompasses a short variable intracellular N-terminus;
six transmembrane domains; a cytoplasmic domain of 360-390 amino acids; and other
six transmembrane domains followed by another large cytoplasmatic domain of 255-330

amino acids (Sunahara et al., 1996).

cAMP levels are mainly regulated by Gos and Ga; proteins. Yet, other intracellular
elements such as the By subunit, PKA or certain types of PKC have also been reported
to modulate AC (Sunahara et al., 1996). Gos stimulates AC increasing CAMP levels. On
the other hand, Ga; activation is responsible for inhibition of AC and thus for inhibition
of cAMP accumulation in the cell. In accordance with this evidence, CCRS5 activation is
known to be involved in reducing the concentration levels of CAMP (Aramori et al.,
1997a; Cardaba et al., 2008; Oppermann, 2004; Rodriguez-Frade et al., 1999).

CAMP is derived from adenosine triphosphate (ATP) and used for intracellular
signal transduction in many different organisms. Among the main functions of CAMP,
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activation of PKA is one of the most relevant ones. PKA is a serine/threonine kinase
consisting of two catalytic and two regulatory subunits. This enzyme is in a steady state
until cCAMP levels rise and this second messenger binds the CAMP sites in the regulatory
subunits, automatically releasing the catalytic subunits. These subunits subsequently
bring about the phosphorylation of serine/threonine residues of PKA substrates
(Sveshnikov et al., 2002). Among these substrates, PKA phosphorylates a
phosphodiesterase (PDE), an enzyme responsible for the down-regulation of cAMP
levels and consequent PKA inactivation (Baillie and Houslay, 2005; Keravis and
Lugnier, 2010).

PKA is involved in multiple intracellular functions, of which the following are
worth highlighting: modulation of transcription factors (Goldman et al., 1997),
regulation of some members of the MAP kinase family (Torgersen et al., 2002); and
numerous substrates like RhoA (Meiri et al., 2009), IP3R (DeSouza et al., 2002) or
GPCR (Gehret and Hinkle). Interestingly, there is evidence of PKA interaction with
members of the PLC family, linking cAMP and calcium pathways (Benaud et al., 1998;
Yoshida et al., 1996). On account of its versatility, PKA acts as a key modulator of
immune responses, cell growth and cell migration (Torgersen et al., 2002). Considering
the high number and diversity of its substrates, this kinase would be expected to affect
several other cellular processes that are yet to be investigated. On top of this, PKA has
been suggested to play a role in HIV-1 infection given that a reduction in its activation
through cAMP significantly inhibits synthesis of HIV-1-specific DNA without affecting
virus entry (Amella et al., 2005).

1.3.2.3.3 Cytoskeleton rearrangement and cell migration.

One of the main functions of chemokine receptors is to promote cell migration
towards a chemokine gradient. The organised migration of cells following extracellular
signals requires a series of changes in cell morphology which are initiated by
asymmetrical distribution of key intracellular proteins. This initial process is called cell
polarization. It involves transformation of cells from spherical to elongated structures
with a leading edge formed by membrane protrusions and a rear edge (Hirata Terra et
al., 2004). Chemotaxis is initiated by chemokine receptor stimulation but, since these
receptors are homogenously distributed in the membrane, it seems clear that other

mechanisms need to be present to control the direction of the movement (Barber and
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Welch, 2006). There are other key molecules involved in cellular polarization that can
explain why only some parts of the membrane suffer modifications that allow them to

generate movement towards a defined direction.

Chemotactic processes are believed to be initiated by the activation of Ras through
the free GPy subunit of G proteins which binds to PI3Ks promoting its activity
(Freedman et al., 2008). PI3Ks, constitute a lipid kinase family that can be divided into
three different classes, PI3K class I, Il and Ill. Class | PI3Ks are involved in the
formation of PIP3. There are two different subclasses of PI3Ks, the PI3K class I A,
which includes PI3K o B and y and PI3K class I B.

Class-1 PI3Ks are heterodimers composed of a catalytic subunit (p110) and a
regulatory subunit (p85) (Barber and Welch, 2006).

PI3Ks are characterized by their ability to phosphorylate the inositol ring 3’-OH
group in inositol phospholipids. PI3K synthesises PIP3 in the inner membrane from the
membrane lipid PIP2. It is known that PI3K is asymmetrically distributed in the cell
(representing, therefore, the first asymmetrical event occurring during chemotaxis)
allowing its product, PIP3, to accumulate at the leading edge of cells (Ward, 2004). PIP3
accumulation recruits Rho GTP-ases which are the main characters in regulating
cytoskeleton reorganisation; a process needed for cellular chemotaxis (Barber and
Welch, 2006). Small GTPases are monomeric proteins that belong to the family of
GTPases and are similar to the o subunit of heterotrimeric G proteins. Like
heterotrimeric G proteins, small GTPases have an inactive GDP-bound and an active
GTP-bound state which is regulated by upstream proteins (Pertz, 2010). They are
divided into 5 subfamilies: Ras, Rho, Rab, Ran and Arf, the Rho subfamily being the
most studied in cell migration (Kandpal, 2006). Three members of the Rho subfamily of
GTPases, RhoA, Cdc42 and Rac are the best characterised and are especially important
in cell polarity regulation, lamellopodia formation and reorganization of the actin
cytoskeleton (Evers et al., 2000).

Contrary to the recruitment of PI3K to the leading edge of cells, phosphoinositide
phosphatase PTEN (phosphatase and tensin homolog deleted on chromosome 10
protein) and SHIP (SH2-containing inositol 5-phosphatase) are important enzymes

responsible for the catalysis of PIP3 into PIP2, which accumulate at the rear of the cell.
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PTEN activation is potentiated by the action of Rho A, leading to PIP2 accumulation
and the initiation of actin-myosin reorganization events, that eventually will promote

cell contraction at the rear of the cell (Barber and Welch, 2006).

CCRS5 involvement in chemotaxis has been demonstrated on numerous occasions.
For instance, there is evidence showing the co-partition of PI3K and CCR5 to the
leading edge of migrating cells upon stimulation with RANTES (Gomez-Mouton et al.,
2004). Additionally, numerous reports have shown that blockage of PI3K completely
abrogates CCR5-dependent cell migration (Cheung et al., 2009; Huang et al., 2009a;
Shideman et al., 2006). Some examples which support that CCR5 actively participates in
cytoskeleton rearrangement are illustrated by the fact that Rac activation upon CCR5
stimulation is required for actin polymerization and cell migration (Di Marzio et al.,
2005) and by the fact that CCR5 pathways engage Rho A intracellular cascades, clearly
linking CCR5 with actin polymerization and cell movement (Man et al., 2007;

Oppermann, 2004).

In contrast to the well characterised role of PI3K, the signalling cascades linking
PLC with chemotaxis are less understood. A recent study (Chuang et al., 2009) proposes
CCRS5 chemotactic responses to be dependent on PLC activation, yet the mechanism
behind it is completely unknown. Moreover, PLC is apparently critical for the migration
of T cells (Bach et al., 2007) and for the activation of numerous second messengers that
lead to activation of important proteins such as PKC, which is involved in cell migration
in general (Abeyweera et al., 2009; Langlois et al., 2009) and in chemotaxis processes
triggered by CCR5 stimulation in particular (Chuang et al., 2009; Langlois et al., 2009;
Liu et al., 2009). In contrast to the important role of PLC in these cells, PLC is not
required for the migration of neutrophils (Murphy et al., 2000). Putting these results
together, it appears that so far there is not a clear mechanism that links PLC-dependent
pathways with chemotactic processes. This effect might be explained by differences in

the mechanisms leading to cell migration in T cells and neutrophils.

In general terms, whether calcium responses initiated by PLC are required for cell

migration is still a matter of debate.

Other proteins known to play a role in CCR5 induced polymerization are the Focal

Adhesion Kinases (FAKS). This group of proteins are non-receptor tyrosine kinases that
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act as primary regulators during chemotactic processes. FAKs link integrins and
proteoglycans to the actin cytoskeleton, regulating cell migration, proliferation and
differentiation (Schlaepfer and Hunter, 1998). CCR5 activation through HIV or
chemokines has been shown to activate FAKs pathways (Cicala et al., 1999; Mueller et
al., 2002), which raises the possibility of CCR5-dependent cell migration involving
FAKS proteins.

Moreover, CCL3 stimulation of CCRS5 leads to phosphorylation and activation of
RAFTK, one of the newest members of the FAK family, with subsequent activation of
the cytoskeletal protein paxillin (Ganju et al., 1998), which is believed to help in cell

migration processes.

Overall, there is abundant evidence to demonstrate that CCR5 initiates cell
migration in a process that involves activation of PI3K, Rho GTP-ases and FAK

proteins.

1.3.2.3.4 Gene regulation

CCRS5 signalling activates different protein kinases that lead to regulation of
transcription factors involved in gene regulation and cell proliferation. These pathways
are of great importance in cancerous processes where an excess in cell proliferation is a

fundamental element.

CCRS5 can stimulate a number of mitogen activated protein kinases (MAPK)
pathways. These proteins get activated both through stress stimuli as well as pro-
inflammatory cytokines. They are involved in promoting gene regulation, cytokine
secretion, and in inducing cell proliferation or cell survival/apoptotic responses (Huang
et al., 2009b). Among the different types of MAPK, CCR5 has been shown to activate
the ERK1/2, also known as extracellular regulated kinases, the INK/SAPK and the p38
mitogen-activated protein (MAP) kinase (Mettling et al., 2008; Paruch et al., 2007;
Popik and Pitha, 1998; Rahbar et al., 2006; Wong et al., 2001)

CCR5 up-regulation of the JAK-STAT pathway has also been widely documented
(Gomez-Mouton et al., 2004; Mueller and Strange, 2004a; Wong et al., 2001). STAT

proteins or signal transducers and activators of transcription, as its name indicates, are
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proteins that transmit extracellular stimuli to the nucleus. Their activation leads to the
up-regulation of some genes such as the proto-oncogene c-fos (Wong et al., 2001) or the

modulation of the p53 transcriptional activity (Manes et al., 2003).

It is also known that stimulation of RAFKT proteins is implicated in MAPK and JAK
pathways activation in a process initiated by CCR5 (Ganju et al., 1998).

To conclude this section; there is sound evidence of a significant link between
CCRG5 activation and the stimulation of important pathways that predominantly lead to
inflammatory cytokines secretion and cell migration, survival and proliferation (see
Figure 1.4).

GTP IP3 CaZt

DAG

s Cell migration

C-Jun C-Fos
Inflammation

Chemokine and gene expression

Figure 1.4 Schematic representation of some of the signalling pathways activated by CCR5. 1) upon
chemokine binding the Go and Py subunits dissociate and activate different downstream effectors as
indicated by thin arrows. CCRS can activate Go; or PTX-resistant Ga proteins here illustrated by Goy,
Only some of the signalling connections have been indicated. For example DAG and calcium can activate
PKC which is involved in more signalling pathways than just receptor phosphorylation. The question
marks indicate that the exact mechanism leading to activation of JAK-STAT, MAPK (p38 and JNK) and
FAKs upon CCR5 stimulation is not fully understood. 2) CCR5 phosphorylation by PKC and GRK2/3
induces the recruitment of B-Arrestin which sequesters the receptor to the cytosol. B-Arrestin activates
numerous intracellular signalling cascades. CCR5 signalling leads to calcium release, cell migration,

cytokines secretion, induction of gene expression and inflammation.
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1.3.3 CCRS5 desensitisation, internalisation and recycling

GPCR activation by a ligand generates a series of intracellular responses that
prompt important changes in cell functions. In order to prevent these mechanisms from
perpetuating indefinitely and, therefore, enabling the receptor to be reused, GPCR are
desensitised, sequestered to endosomes and taken back to the cell membrane, where they

become functional again.

CCRS5, similarly to other chemokine receptors, is regulated by a desensitisation
mechanism that starts with receptor phosphorylation in its C-terminus which leads to the
binding of a molecule called B-arrestin that stops the signal transduction and promotes
CCRS5 internalisation into early endosomes. There, CCR5 is dephosphorylated to be

recycled back to the plasma membrane (Oppermann, 2004).

CCR5 down modulation has been broadly studied due to its importance in HIV
infection. CCR5 is phosphorylated by protein kinase ¢ (PKC) and G protein coupled
receptor kinases (GRKS) in serine residues of the C-terminus (Huttenrauch et al., 2005).
PKCs are serine/threonine kinases divided into 10 different isozymes represented by 3
families (Newton, 2009) which are stimulated by phorbol esters and intracellular second
messengers. The PKC isoforms involved in CCR5 phosphorylation have not yet been
identified despite their importance in such a key physiologic process such as CCR5
desensitisation. Chapter number 7 will look at the mechanisms initiated by these

enzymes in more detail.

GRKs are also a family of serine/threonine kinases that regulate the
phosphorylation state of GPCRs. There are seven types of GRKs (GRK1-GRK7) from
which only GRK1, GRK2, GRK5 and GRK7 are homogenously distributed in
mammalian tissues (Barki-Harrington and Rockman, 2008). CCR5 is believed to be
desensitized by GRK2 and GRK3 since blockage of these two isoforms with monoclonal
antibodies impairs receptor phosphorylation (Oppermann et al., 1999). In addition to
this, Aramori and co-workers succeeded in demonstrating that GRK2, GRK3, GRK5
and GRK®6 over-expression in HEK.CCR5 cells highly increased CCR5 phosphorylation
upon MIP-1p treatment, this effect being especially evident in GRK2 and GRK3 over-

expressed cells (Aramori et al., 1997a). This finding points again at the special role these
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two isoforms play in CCR5 desensitisation.

GRKSs consist of three different domains, a N-terminal RH (regulators of G-protein
signalling homology) domain, a central kinase domain and a C-terminal domain. Some
reports which focussed on GRK2 provided deep information about its binding
characteristics. It has been demonstrated that the RH domain of GRK2 binds to some Ga.
subunits, whereas the catalytic domain binds to the GPCR and a PH (pleckstrin
homology) domain, situated in the C-terminal domain, binds to the Gy subunit (Barki-
Harrington and Rockman, 2008). Interestingly, while studying the crystal structure of
GRK2 it was found that all three domains are distributed in a way that allows the
simultaneous interaction of each of them with its binding partner. Therefore, it appears
that GRK2 phosphorylates GPCRs and, at the same time, binds and inactivates the o and
By subunits of G proteins (Lodowski et al., 2003).

It is remarkable to note that, whereas PKC phosphorylation requires G protein
activation, GRKs can phosphorylate GPCRs in the presence of PTX, what indicates that
these kinases are able to directly recognise the change in conformation on the receptor
induced by the ligand and proceed to receptor phosphorylation in the absence of G

protein activation (Thelen, 2001).

Of interest, over the past few years, several studies have found novel GRKs-
dependent signalling pathways initiated by the allosteric activation of these kinases by
GPCRs activation (Cant and Pitcher, 2005; Penela et al., 2009; Pitcher et al., 1998).
These discoveries indicate that GRKs have a larger number of functions in the cell than
just GPCRs phosphorylation, some of these functions being responsible for facilitating
cell migration or inflammation processes (Penela et al., 2010).

Serine phosphorylation of the C-terminus of CCRS5 recruits B-arrestin whose
binding to the receptor causes its dissociation from G proteins and consequently stops
signal transduction. There are four different types of B-arrestin proteins in mammals,
divided into visual and non-visual arrestins. The former are arrestins 1 and 4 which are
exclusively expressed in retinal rods and cones. Arrestins 2 and 3 (also termed as -
arrestins 1 and 2) represent the non-visual ones since they are ubiquitously expressed in
mammalian tissues (Barki-Harrington and Rockman, 2008). Arrestins promote receptor

internalisation through the recruitment of the 32 adaptin subunit of the heterotetrameric
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AP-2 adaptor complex through a sequence located between residues 394 and 396 of -
arrestin (Laporte et al., 1999). AP-2 binds to the heavy chain of clathrin proteins and
promotes the formation of clathrin coated vesicles, which are formed by invagination of
the inner part of the plasma membrane with the help of the molecule dynamin (Vila-
Coro et al., 1999). As a result of CCR5 association with these molecules, the receptor is
endocytosed into early endosomes where it gets dephosphorylated.

Then, CCRS5 is returned to the cell surface in a process that is independent of protein

synthesis and late endosomes (Mueller et al., 2002).

B-arrestin was initially characterised as the molecule responsible for the arrest of
GPCR signal transduction. However, in the past few years this molecule has been re-
characterised as being able to bind and activate other proteins (Gurevich and Gurevich,
2006). The complex formed by the receptor, B-arrestin, clathrin proteins and the 2-AP is
called signalosome and has been found to recruit signalling proteins such as ERK1/2,
p38 MAPK, and JNK, thus initiating new signalling pathways (Figure 1.4) (Cottrell et
al., 2009; Cheung et al., 2009; McLaughlin et al., 2006). Arrestins have also been
demonstrated to activate the non-receptor tyrosine kinases c-Src and PI-3K-AKT and
NF-kB pathways (Yang et al., 2009).

Many studies have shown that CCRS internalises through the mechanism
described above, commonly known as clathrin coated pits (Mueller et al., 2002; Signoret
et al., 2005). In addition to internalising through clathrin coated pits, CCR5 has been
suggested to internalise through a different pathway that requires the presence of a
special membrane structure called caveolae. The main arguments to claim the existence
of an alternative internalisation pathway for CCR5 sustain that the receptor co-localises
with Caveolin-1 (Venkatesan et al., 2003), the main protein of caveolae, and that
specific inhibitors of this internalisation pathway can block CCRS5 internalisation
(Mueller et al., 2002). Furthermore, several studies have provided evidence that a CCR5
mutant unable to interact with arrestins, had no internalisation defects. This strongly
supports the ability of CCR5 to follow alternative endocytosis pathways (Kraft et al.,
2001; Venkatesan et al., 2003).

However, there does not seem to be an agreement on the internalisation pathways

followed upon CCR5 activation. Signoret et al. (Signoret et al., 2005) have shown that
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CCRS5 exclusively internalises through a clathrin-dependent pathway. One of their main
arguments to state that CCR5 is recruited to clathrin coated pits is its co-localisation in
endocytic vesicles with the Transfering receptor (a marker of this endocytic pathway)
and with clathrin proteins. This group not only demonstrated that CCR5 internalisation
is via clathrin vesicles but also showed, by using diverse approaches, that CCR5 does
not internalise via caveolae (Signoret et al., 2005). Similarly, optimal CCR5
internalisation processes in HEK.CCR5 cells were shown to require simultaneous
transfection of GRK2 or GRK3 and B-arrestin, excluding the possibility of a high
number of CCR5 molecules requiring Caveolin dependent internalisation pathways
(Aramori et al., 1997a).

1.4 CCRS5 implications in human pathologies

As previously outlined, CCR5 has an important role in different diseases,
including acquired immunodeficiency syndrome (AIDS), cancer and some inflammatory
diseases such as RA, MS or Alzheimer’s disease AD.

In this section, CCR5 participation in these pathologies will be analysed and
special emphasis will be put on how CCR5 signalling and expression may affect these

pathologies.

1.4.1 HIV infection

In 1996, CCR5 (Deng et al., 1996) and CXCR4 (Dimitrov, 1996) were discovered
as the co-receptors for the Human Immunodeficiency Virus type 1 (HIV-1). A decisive
factor that led to this extraordinary discovery was the identification, one year earlier, of
the so called HIV-suppressive factors (HIV-SF): CCL5, CCL3 and CCL4 secreted by
CD8+ cells (Cocchi et al., 1995). HIV-1 needs the receptor CD4 and either CXCR4 or
CCRb5, depending on the phase of the infection, to enter into cells. HIV starts infecting
macrophages through interaction with CD4 and CCR5 (macrophage tropic), being only
in late states of the disease when the virus attacks CD4+ T cells by attaching itself to
CD4 and CXCR4 (T cell tropic) receptors. Entry of the virus into host cells requires the
anchoring of the viral envelop glycoprotein gp120 to CD4 and the N-terminus of CCR5
or CXCR4. This induces changes in the virus conformation that lead to the exposure of
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another envelop glycoprotein called gp4l. Gp41l assists in the fusion between the host
cell and the virus. For instance, the fusion inhibitor drug enfuvirtide works by binding to

gp41 and preventing HIV entry into the cell (Poveda et al., 2005).

CCR5 binding ligands act as antiviral molecules mainly due to their ability to
down regulate the receptor and, to a lesser degree, due to the steric effect they cause by
binding to the receptor which impairs virus binding (Cocchi et al., 1995). Small agonist
molecules like TAK-777 or PSC-RANTES and derivatives were developed in order to
mimic the antiviral effect of chemokines. These inhibitors, which are still under
investigation, interfere with receptor trafficking, thereby inducing long-lasting
intracellular sequestration and blocking its return to the cell surface (Escola et al., 2010;
Este, 2003). More recently, a small molecule which antagonises CCR5, maraviroc, has
been commercialised for the treatment of HIV infection. Maraviroc works by binding to
CCR5 and preventing the binding of gp120 to the receptor. This entry inhibitor is the
first US Food and Drug Administration-approved drug from a new class of antiretroviral
agents which, instead of targeting HIV-1, are aimed at host proteins (MacArthur and
Novak, 2008). Maraviroc, which is only active against macrophage tropic viruses, has

been shown to effectively reduce HIV-1 infection.

Because little resistance to this compound has developed since its
commercialisation, it is considered a key complement to highly active antiretroviral
therapy (HAART) (MacArthur and Novak, 2008; Reuter et al.).

1.4.2 Cancer

CCRS5 signalling is a key aspect in many cancers. CCR5 stimulation can lead to
activation of many pathways involved in cell migration, apoptosis regulation and cell
proliferation. Also, CCR5 signalling helps recruiting white blood cells to increase
inflammation, which in certain conditions has been suggested to play a more important
role in favouring tumour spread than in the fight against the disease (Coussens and
Werb, 2002). The activities of the CCR5 ligand CCL5 are well known to be associated
with several types of cancers which, in turn, introduce the possibility that CCR5 has a
key role on them. For example, CCL5 is expressed in 74% of biopsy sections of breast
carcinoma patients and, more importantly, this percentage increases along with disease

progression (Luboshits et al., 1999). The CCR5-CCL5s axis is also very important for
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prostate cancer progression as CCL5 was shown to induce migration of prostate cancer
cells; the CCR5 antagonist TAK-779 was able to inhibit this process (Vaday et al.,
2005).

Further studies showing CCRS5 contribution to pathological cell migration were
performed in oral cancer cells where Chuang et al. demonstrated that blockage of CCR5
downstream effectors like metalloprotease 9 (MMP-9) or PLC could inhibit cell

migration.

Additionally, they also demonstrated that cells expressing higher levels of CCR5
migrated more aggressively (Chuang et al., 2009).

This is not the first study highlighting the importance of CCR5 in the function of
MMPs. These proteins form a group of zinc-binding proteases that play key roles in
cancer spread by modulating processes like cell differentiation, remodelling of the
extracellular matrix (ECM), vascularisation and cell migration (Chang and Werb, 2001).
Several studies have shown that CCR5 stimulation can induce cancer processes by up-
regulating the expression of MMPs. For instance, the human chondrosarcoma cancer
cells, which present abnormally elevated expression levels of CCR5 and migrate upon
CCL5 stimulation, were shown to present increased levels of MMP-3 upon CCL5
stimulation. Moreover, MMP-3 blockage was shown to inhibit CCL5-induced migration
of these cancer cells (Tang et al., 2009). In addition to this, CCL5 is known to induce
MMP-9 (recognized to promote metastasis processes in breast tumours (Benaud et al.,
1998)) expression levels in breast cancer cells and to elevate vascularity in vitro assays
(Azenshtein et al., 2002).

The invasion of tumour cells is a complex and not completely understood process.
CCRS5 has been clearly demonstrated to play an important part in cancer spread but more
research is needed to fully understand the extent of its effect. The studies outlined above
have discovered a new possible pathway through which CCR5 promotes cancer

metastasis through the engagement of MMP dependent intracellular cascades.
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1.4.3 Other inflammatory diseases

CCRS signalling has been implicated in the progression of pathologies like, RA,
MS and AD, all of which are characterised by an excess of inflammation. These
pathologies have in common that an excess of white blood cell recruitment is highly
related to the worsening of the condition.

RA is a chronic inflammatory disease that affects multiple synovial joints and
which is believed to be caused by an immense infiltration of white blood cells into the
synovial tissues. The concentration of these cells into the joints appears to be essential
for cartilage destruction and induction of all the machinery responsible for tissue
damage characteristic of RA. The chemokine receptors CCR2, CXCR3 and CCR5 are
over expressed in T-cell infiltrates in these inflamed areas, and their blockage has been
associated with an improvement of disease progression (Norii et al.,, 2006). CCR5
ligands, in particular, have been found to be over expressed in synovial tissue of RA
patients, which points to the responsibility this chemokine receptor signalling has on RA
(Desmetz et al., 2007; Norii et al., 2006). Moreover, two recent studies analysed the
effect on RA progression of the 32 bp deletion in the gene of the chemokine receptor,
CCRS5, and found negative association between the expression of this mutant receptor
and the inflammatory response generated during the course of RA (Pokorny et al., 2005;
Rossol et al., 2009). It must be mentioned, however, that contrary to the data just
outlined, other studies found no role for CCR5 in the progression of the disease (Martens
et al.; van Kuijk et al., 2010). Moreover, there is one group actually reporting anti-
inflammatory effects of CCRS5 signalling in RA (Doodes et al., 2009). As a result of
these discrepancies more research should be done to find out the real involvement of

CCRG5 signalling in the inflammation processes associated with RA.

A role for CCR5 in MS has also been broadly studied. CCRS5 is expressed at low
levels in the brain but it has been shown to be induced in certain neurological disorders
like MS, AD or certain viral infections (Cartier et al., 2005). MS is a chronic
demylinising disease of the human central nervous system with a clear inflammatory
component (Szczucinski and Losy, 2007). An excessive number of CCR5 expressing
macrophages and microglia cells are characteristic of MS lesions (Balashov et al., 1999;
Sorensen et al., 1999). More importantly, MS suffering patients have a much higher
percentage of CCR5 expressing T cells in blood than control patients (Szczucinski and
Losy, 2007). It has been shown that these cells migrate toward RANTES and MIP-1
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alpha, chemokines that are highly expressed in MS lesions (Balashov et al., 1999), in
bigger numbers than T cells from healthy patients due to over expression of CCR5 in T
cells from MS patients (Zang et al., 2000).

Bearing in mind these studies it is easy to hypothesise that an enhancement or decrease
in CCR5 signalling may have great influence on the progression of this pathology

through modulation of cell migration towards MS lesions.

Similarly to MS, AD patients also show increased levels of cytokines by activated
microglia (Steinman, 2008). AD is characterised by an increased deposition of amyloid
beta peptide which is generally accompanied by an increased presence of monocytes,
macrophages and T cells in the activated microglial cells in the brain (Man et al., 2007).
The role of CCRS in this disease seems to resemble the one in MS; the promotion of an
excessive recruitment of T cells to the target site, in this case, across the blood brain
barrier (BBB) in a CCR5 and CCR5 ligand dependent manner (Giri et al., 2003; Man et
al., 2007). Further evidence of the importance of CCR5 signalling in AD has been
highlighted in an interesting study showing that CCR5 and MCP-1 alpha expression is
required for amyloid beta induced inflammation, as well as for amyloid beta induction of
transcription factors that lead to an increase in COX-2 expression and, thereby, to

inflammation through the synthesis of prostaglandins (Passos et al., 2009).

To date, there are two drugs in the market that reduce CCR5 signalling. The first
one is the antiviral Maraviroc, which not only prevents HIV from binding the receptor
but also prevents chemokines from doing so, thus blocking CCRS5 signalling pathways
(MacArthur and Novak, 2008). The second group of drugs that have a negative effect on
CCRb5-mediated responses are statins. As it will be explained in Chapter 6, statins are

capable of reducing CCR5 expression and signalling in different cell systems.

This effect is believed to contribute to the pleiotropic effects of statins and to help
in the progression of diseases like atherosclerosis (Kleemann and Kooistra, 2005) or

transplant rejection (Yin et al., 2007) in a cholesterol independent way.

Taking into consideration all these reports, it is not surprising that the use of
statins or other anti-inflammatory drugs is being considered for the treatment of AD as

an approach to reduce the recruitment of white blood cells to active sites. Nevertheless,
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no conclusive results regarding its efficacy have been obtained to date (Sabbagh, 2009;
Tong et al., 2009).

In general terms, it might be stated that an excess of CCR5 stimulation can have
negative effects on the progression of the above described pathologies and, therefore,
medication leading to a reduction of CCR5 signalling could be beneficial. To my
knowledge there is only one condition where the absence of CCR5 in patients
heterozygous for the CCR5 delta32 mutation has been shown negative for the
progression of the disease. This is the case of the infection caused by West Nile virus, a
pathogen that can cause fatal encephalitis in humans and which, apparently, is more

effective in doing so in the absence of CCR5 expression (Glass et al., 2006).

Overall, it is important to bear in mind that modulating CCR5 can affect other
pathologies and treatments which may have important implications for the safety of
CCRb5-blocking agents or other possible drugs modulating CCR5 expression or

signalling.

1.5  Aims and outline of the project

After almost 20 years of intensive research, our knowledge of the mechanisms
involved in CCR5 signalling pathways has largely improved. However, considering its
importance in human physiology, there is still a lot of useful information missing from
these chemokine receptor intracellular pathways. For example, the connections between
CCRG5 stimulation and gene regulation, so important for many cellular processes, are not
crystal clear yet. Besides, the exact mechanisms leading to CCR5-dependent calcium
release and the machinery activated in cell migration upon CCR5 activation are not fully
understood and it is still an open question whether calcium release to the cytosol is
required for other intracellular processes such as chemotaxis. Also, there appears to be,
to a certain degree, a lack of knowledge about the influence of some key intracellular

proteins on CCR5 signal transduction.

The work presented in this thesis aims at conducting a broad analysis of the
signalling characteristics of the chemokine receptor, CCR5, as well as at clarifying the
involvement of several enzymes on CCR5-related intracellular cascades. This study
focuses on analysing CCR5 activation patterns in different cell lines whose normal



|1-46

environment has been modified by different methods, from the inhibition of enzymes
working downstream of the receptor to physical and chemical alteration of CCR5
surroundings. Calcium flux assays, which provide quick information about the
effectiveness of a ligand in activating CCR5’s signalling machinery, have been chosen
as the principal method to measure CCR5 stimulation. Other experiments based on
cAMP accumulation or cell migration have also been required to determine CCR5
activation. In addition to the above assays, techniques such as Western blot, flow
cytometry, fluorescence microscopy, small interfering RNA (siRNA) transfection or RT-
PCR have been essential to complete the study.

Chapter 3 analyses the importance of cellular cholesterol and lipid rafts domains
in the plasma membrane on CCR5 signalling, expression and internalisation. In this
section cells have been treated with different cholesterol modulating agents like the
cholesterol depleting drug MCD, or deprived of some membrane proteins to understand
its effect on CCR5 functions in CCR5 stably transfected CHO and HEK cells.

Chapter 4 aims at comparing the behaviour of CCR5 in stably transfected cells
with its signalling pattern in the monocytic cell line THP-1, naturally expressing CCR5.
Similarly to the previous chapter, great importance is given here to CCR5 activation as
measured by calcium release and cell migration upon changes in cholesterol levels
through the use of MCD.

Chapter 5 looks at the mechanisms involved in calcium release from the ER. It
analyses the role of different ER transmembrane proteins on CCR5-dependent calcium
release through their modulation with agonists/antagonists. The research presented here
also looks at the involvement of an IP3 independent pathway in the calcium signals
initiated by CCR5 stimulation and also studies the importance of acidic vesicles on ER

stores-dependent calcium release.

Chapter 6 investigates the effect of the commonly prescribed drugs statins on
CCR5 signalling. Statins have been shown to affect cellular signalling in a cholesterol
independent manner and in this chapter we examine this possibility by comparing their
effects to those of MCD.

Arguments about the possible consequences of administering statins in certain CCR5-

related pathologies are presented.
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Finally, Chapter 7 looks at the potential involvement on CCR5 activity of PKC
inhibitors, drugs that are being currently studied as new therapeutic targets especially
due to their potential as anticancer agents. Whether PKC desensitisation of CCR5
decreases its signalling response and the PKC isoforms possibly involved in doing so
has been carefully looked into. In line with the research carried out on statins, this study
focuses on understanding CCR5 signalling dependence on PKC enzymes as an approach
to obtain a better understanding of CCR5-induced intracellular cascades but also as a
useful tool to analyse the side effects that potential PKC-derived anticancer drugs could

have in certain conditions where CCR5 is a key element.
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CHAPTER 2- MATERIALS AND METHODS

2.1  Cell culturing

2.1.1 Description of cell lines

2.1.1.1 Chinese Hamster Ovary Cells (CHO)

Chinese hamster ovary (CHO) cells had been transfected with pcDNA3 encoding
CCR5 and selected for stable expression in 10% foetal calf serum (FCS)-Dulbecco
modified Eagle medium (DMEM)—glutamine (2 mM) in the presence of 400 pg/ml
G418. CHO.CCRS5 cells were routinely cultured in complete DMEM (Invitrogen)
(DMEM, 2 mM L-glutamate, 10% foetal calf serum (Invitrogen), 100 U/mL penicillin
100 pg/mL streptomycin (Invitrogen), 1 mM sodium pyruvate (Invitrogen), 100 um
nonessential amino acids (Invitrogen)) supplemented with 400 pg/ml G418.

CHO.CCRS5 cells were chosen for these experiments because they stably express

CCR5 and have been widely used due to its easy culturing.

2.1.1.2 Human Embryonic Kidney Cells (HEK)
Human Embryonic Kidney cells stably transfected with CCR5 (HEK.CCR5) were
a kind gift from British Biotech (Oxford, UK) and were cultured in complete DMEM
(Invitrogen) supplemented with 100 pg/mL hygromycin B.

2.1.1.3 HeLa.RC49 Cells
HeLa.RC49 cells were obtained from D. Kabat (Platt et al., 1998). HI-Rclone of
HeLa-CD4 cells that contains a low amount of CD4 (approximately10* molecules/cell)
had been transfected with the retroviral vector SFF-CCRS5 and susceptibility to infection
by the Ba-L M-tropic HIV-1 isolate was analysed. The clone RC49 was shown to be the
one expressing a higher level of CCR5 membrane receptors. HeLa.RC49 cells were

cultured in complete DMEM (Invitrogen).

2.1.1.4 Acute Monocytic Leukaemia Cell line (THP-1)
THP-1 cell were bought from American Type Culture Collection (ATCC)
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(Teddington, UK) and kept in complete RPMI medium (Invitrogen) [10% foetal calf
serum (Invitrogen), 100 U/mL penicillin 100 pg/mL streptomycin (Invitrogen), 1 mM

sodium pyruvate (Invitrogen), 100 uM nonessential amino acids (Invitrogen)].

THP-1 cells are monocytic cells that naturally express CCR5 as well as other
chemokine receptors and represent a good model for studying CCR5 signalling in a non-

transfected system.

2.1.2 Routine conditions for cell culture

Cells were grown in 75cm? flasks (Corning) at 37C° in a humidified atmosphere of
5% CO2. When cells had reached 70-90 % confluency, cells were removed from the
flask by adding PBS (1.5 mM potassium phosphate monobasic, 3 mM potassium
phosphate dibasic, 150 mM NaCl; pH 7.2) supplemented with 2 mM EDTA and
incubating them for 10 minutes at 37C° and 5% CO2. After this period the cells that
were still attached to the flask surface were obtained by softly shaking the flask. Cells
were centrifuged at 182 g for 5 minutes and the supernatant was removed. The cellular
pellet was resuspended in growth medium and the cell number was determined
microscopically, using a haemocytometer, to be ready for experimenting with them or
re-suspended in medium and seeded into a new flask to be left growing. Cells were
cryopreserved following the next steps: one million cells were resuspended into 1 ml of
10% (v/v) dimethyl sulfoxide (DMSQO) in FCS and transferred into cryotubes which
were first wrapped in tissue and placed at -80 °C overnight before put in liquid nitrogen
(-196 °C) where they could be kept stored for an indefinite period.

2.1.3 Materials and reagents

Chemokines were purchased from PeproTech (Rocky Hill, NJ) with the exception
of CCL3 (D26A), which was generously donated by Lloyd Czaplewski of British
Biotech (Oxford, UK). The form of CCL3 used in the present study, CCL3 (2-70)
(D26A), has a reduced tendency to aggregate and has been reported to retain an identical
affinity to CCL3 (2-70) for CCR5, while its ability to bind the receptor, signal in Ca*
mobilization assays and to induce chemotaxis or thymidine suicide assays was also
unaffected (Hunter et al., 1995), suggesting that it acts similarly to CCL3 (2-70). This
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isoform has been referred to in a previous publications as CCL3 (2-70) (D27A) in
comparison with the full gene sequence for CCL3 (Mueller et al., 2006). In the same
report, it was shown that CCL3 (2-70) and the D/A mutant at position 26/27, however,
signalled with higher potency and efficacy than other CCL3 isoforms. To simplify, in
this study CCL3 (2-70) (D26A) is referred to as CCL3.

The Anti-CCR5 antibody, HEK/1/85a/7a, was produced by a hybridoma cell line
donated by Dr Jane McKeating and was raised against intact CCR5 expressed in CHO
cells. The anti Gag1 antibody (C-19) and the anti-Caveolin-1 antibody and all the PKC
isoforms antibodies were bought from Santa Cruz Biotechnology, (Heidelberg,

Germany).

Secondary antibodies were obtained from Sigma-Aldrich (Poole, United
Kingdom), or Invitrogen. nystatin, filipin, methyl-pB-cyclodextrin (MCD), sucrose,
pertussis toxin (PTX) and cholesterol were purchased from Sigma. Thapsigargin,
lovastatin, simvastatin, caffeine, Ly294002, U73122, mastoparan, rottlerin, Go6976,
CID 755673, GF10923X and 2-APB were purchased from Tocris (Bristol, UK).
Ryanodine and bafilomycin-Al were purchased from Calbiochem (La Jolla, California).

The CCR5 antagonist maraviroc was kindly donated by Pfizer (Sandwich, UK).

Cells were incubated for 30 minutes to 1 hour at 37°C with filipin (5 pg/mL),
sucrose (0.4 M), nystatin (50 pg/mL), MCD (10 mM), cholesterol (2 mM), thapsigargin

(1 uM), caffeine (10 mM), ryanodine (10 uM), bafilomycin-Al (100 uM), Y27632 (10
puM), Ly294002 (20 puM), U73122 (10 pM), mastoparan (10 pM), rottlerin (4 pM),
G06976 (100 nM), CID755673 (400 nM), maraviroc (100 nM), GF109203X (50 nM or
5 uM), PMA (100 nM) and 2-APB (20 uM), Lovastatin was activated prior to its use as
indicated by manufacturer’s instructions. Cells were incubated for 3 days at 37 °C with
lovastatin and simvastatin 10 uM unless stated otherwise and for 2 hours with PTX (1
pg/ml) before the assay was performed. All other materials for cell culture and buffer

composition were bought from Fisher Scientific (Loughborough, UK).
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2.2  Calcium Flux Measurements and analysis

[Ca?*]i was determined using the method developed by Grynkiewicz et al. based
on the use of the Ca®*- sensitive fluorescent dyes (Grynkiewicz et al., 1985). The
membrane permeable derivative of the ratiometric calcium indicator Fura-2, the
acetoxymethylester (AM) form of Fura-2, Fura-2-AM (Sigma-Aldrich) was the dye of
choice. Fura-2-AM was loaded into cells at a final concentration of 2uM.

Figure 2.1 Structure of Fura-2-acetoxymethyl ester, Fura-2-AM. Image obtained from
http://www.chemblink.com/products/108964-32-5.htm.
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Figure 2.2 Intensity of fluorescence of Fura-2-AM plotted versus excitation wavelength for
different calcium concentrations. In the absence of calcium Fura-2-AM maximum excitation
wavelength is at 380 nm (blue peak) whereas at high concentrations of the ion its excitation

wavelength occurs at 340 nm (red peak). The fluorescence intensity is measured at an emission

wavelength of 510 nm. Image obtained from http://www.bphys.uni-linz.ac.at/bioph/res/icg/fura.html.

This assay is based on the property of Fura-2AM to change its fluorescence
emission intensity at 510 nm upon binding to calcium ions. In the absence of calcium
Fura-2-AM maximum fluorescence measured at 510 nm occurs upon excitation at 380
nm whereas at high concentrations of the ion its maximum fluorescence emission at 510

nm occurs upon excitation at 340 nm.

Cells were harvested with 2 mM EDTA/PBS after 5 min incubation at 37 °C and
washed twice in calcium buffer (148 mM NaCl, 5 mM KCI, 2.5 mM CaCl2, 10 mM
Hepes, 1 mM glucose, pH 7.4). The washing step was as follows: cells were
resuspended in calcium buffer, centrifuged at 182 g for 5 minutes in a Fisher Scientific
accuSpin 1R centrifuge and the supernatant was discarded. Cells were next incubated
with 2 uM Fura-2AM (Invitrogen) at 37 °C for 1 hour in the dark. A stock solution of
fura-2-AM was initially made in DMSO to a final concentration of 1 mM and stored at -
20 °C in the dark. Inhibitors were added during the incubation period. Cells were next
washed three times in calcium flux buffer (unless stated otherwise) and re-suspended in
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the same buffer at 2x10° cells/mL. Subsequently 100 pl were pipetted into black
bottomed, 96 well plates (Fisher Scientific, UK) and placed in a plate reader.
Chemokine-induced intracellular calcium mobilisation was determined by
BMGIlabtechFluostar OPTIMA fluorometer (BMG Labtech, Germany). The peak values
of intracellular calcium ion concentration following the chemokine stimulation were
determined by exciting cells successively at 340 nm and 380 nm and measuring the
alternate resulting emission intensities at 510 nm. Samples were exited at 340 and 380
nm with an interval of 1.1 seconds and a ratiometric trace was recorded and plotted into
a graph by calculating the ratio of 340 nm emission over 380 nm emission. In order to
get a value representative of the concentration of intracellular calcium, the average of
measurements prior to chemokine stimulation were subtracted from the maximal

ratiometric measurement recorded after chemokine stimulation.

2.3 Immunocytochemistry

Cells were seeded onto sterile glass square coverslips kept in a six wells plate. In
the case of CHO.CCR5, HEK.CCR5 and HeLa.RCR9 cells, following cell adherence,
cells were maintained in 1.5 ml 5% (v/v) FCS- DMEM medium until 90% confluence.
The medium was removed and replaced with serum free medium prior to the
performance of the experiment. Cells were exposed to experimental treatments as
described in materials and reagents. In the case of THP-1 cells, cells were incubated in
complete RPMI medium until they had reached the adequate concentration and then they
were re-suspended in serum free RPMI and treated with different compounds. Following
treatment, cells followed different procedures depending on the type of stain as

described below.

2.3.1 CCR5 stain

Cells were washed twice with 500 pl cold PBS. The washing step was as follows:
cells were resuspended in PBS, centrifuged at 182 g for 5 minutes in a Fisher Scientific
accuSpin 1R centrifuge and the supernatant was discarded. Next, cells were stained with
the HEK/1/85a/7a antibody for 1 hour at 4°C.
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After this time cells were washed again and incubated with the anti-rat TRITC or FITC

secondary antibody at a concentration 1:1000 at 4°C for 1 h.

Cells were then washed twice in cold PBS, fixed in 4% paraformaldehyde for 10

minutes and mounted in glycerol onto slides.

2.3.2 Gaogstain

For the Goyg: stain, CHO.CCR5 and HEK.CCR5 cells were grown on cover-slips
overnight. Cells were washed twice in 0.1% Triton X-100 for 20 minutes to cause cell
permeabilization and fixed in 100% methanol for 3 minutes at -20°C. Cells were then
incubated for 20 minutes in blocking buffer (5% non-fat dry milk in PBS), washed twice
by resuspending them in PBS and centrifuging them at 182 g for 5 minutes in a Fisher
Scientific accuSpin 1R centrifuge, cells were incubated with the Anti-Gag11 antibody
(C-19) for 1 hour at a final concentration of 2 pg/ml at room temperature. After having
washed twice by resuspending cells in PBS-Triton 0.1% and centrifuging them at 182 g
for 5 minutes in a Fisher Scientific accuSpin 1R centrifuge, the secondary anti-rabbit
FITC antibody was added at 1:250 dilution for 1 h at room temperature. Cells were
consequently washed three times with PBS-Triton 0.1%, once with PBS as previously

explained and mounted onto slides.

Slides were left to dry at room temperature and images were taken using the Zeiss

Axiovision 2 system.

2.3.3 Caveolin stain

For the Caveolin stain, after cells were grown on cover-slips in six wells plate
overnight, cells were fixed in 4% paraformaldehyde, resuspended in PBS and
centrifuged at 182 g for 5 minutes to discard the supernatant. This step was repeated
twice. Cells were next permeabilised by incubation in 1% Triton X-100/2% BSA in PBS
for 10 minutes at room temperature. Cells were then washed twice with cold PBS and
incubated with anti-Caveolin antibody at a concentration of 1:500 for 1 hour at room
temperature, washed twice in cold PBS and incubated with the anti-rabbit FITC

secondary antibody at a concentration of 1:250 and at room temperature for 1 hour. Cells
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were washed three times in PBS and mounted onto slides as before. Slides were left to

dry at room temperature and images were taken using the Zeiss Axiovision 2 system.

2.3.4 PKC Stain

HeLa.RC49 cells were harvested with 2mM EDTA/PBS and washed twice in PBS
and cells were grown on cover-slips overnight. THP-1 cells were placed onto a cover-
slip and left to dry in the laminar flow hood for five minutes. Next, acetone was
carefully added to both HeLa.RC49 and THP-1 cells and cells were placed at -20 °C for
five minutes. After this time cells were washed twice with ice-cold PBS and primary
antibodies specific for the different PKC isoforms were added to the cells and incubated
at 37 °C for 1 h. After 1 hour cells were washed twice in PBS as previously described
and incubated with anti-mouse FITC secondary antibody at 37 °C for 1 h. The nuclei
were stained by the addition of mounting medium with DAPI (fluoro-gel mounting
medium, Interchim). Slides were left to dry at room temperature and images were taken

using an inverted Leica DMII fluorescence microscope



Table 2.1 Primary antibodies used in immunofluorescence
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Antibody Host Manufacturer Dilution/ .
concentration

Anti-CCR5 oI from gJ A

HEK/1/85a/7a Rat Reading Undiluted

Anti-Caveolin Rabbit Santa Cruz 1:500

Anti Gq

(C-19):sc-392 Rabbit Santa Cruz 2ug/ml

Anti PKCa,By

(MC5):sc-80 Mouse Santa Cruz 1:200

Anti PKCa (H7)

sc.8397 Mouse Santa Cruz 1:100

Anti PKCe

(E-50):sc-1681 Mouse Santa Cruz 1:50

Anti-PKC{

(H-1): sc-17781 Mouse Santa Cruz 1:100

Table 2.2 Secondary Antibodies used in immunofluorescence

Antibody Manufacturer Dilution

Anti Rat FITC conjugated 1gG Sigma- Aldrich 1:1000

Anti Rat TRITC conjugated 1gG Sigma- Aldrich 1:200

Anti-Mouse FITC conjugated 1gG Sigma-Aldrich 1:1000

2.4 Flow cytometry analysis

CHO.CCRS5 and HEK.CCR5 were harvested with 2 mM EDTA/PBS and washed
twice in PBS before the primary antibody was added. THP-1 cells were re-suspended in

RPMI medium at a concentration of 2x10° per ml and washed twice; cells were

resuspended in PBS, centrifuged at 182 g for 5 minutes in the Fisher Scientific accuSpin

1R centrifuge and the supernatant was discarded. Cells were then incubated with
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different inhibitors or left untreated (control) as previously described. After washing
twice with PBS, the primary antibody was added. For CCR5 stain, cells were incubated
with undiluted HEK/1/85a/7a stock antibody or left untreated as control for 1 h at 4° C
to prevent internalisation. After this incubation period cells were washed twice in ice-
cold PBS to remove the excess of CCR5 antibody. Cells were then incubated with the
fluorescently labelled secondary antibody (anti-rat FITC) at 1:1000 dilution in fat-
reduced milk powder (Marvel) for 1 h at 4° C, washed three times with ice-cold PBS and
fixed with 4% paraformaldehyde. Receptor expression levels were determined using a
Coulter Elite FACS. Data was analysed using Expo32 software.

2.5 Chemokine inhibition of  forskolin-stimulated cAMP

accumulation

The Promega cAMP-Glo™ assay was used to measure CAMP concentration
within CHO.CCR5 cells. Briefly, the assay created to measure Ga; or Gos activation, is
based on the principle that cyclic AMP (cCAMP) stimulates protein kinase A (PKA)
holoenzyme activity, decreasing, thereby, the available ATP. The assay includes a
luciferase enzyme able to emit light proportionally to ATP formation and it, thus, leads
to decreased light production upon cAMP formation. The bioluminescence produced by

the enzyme is inversely proportional to the amount of CAMP.

Cells were seeded out at 25,000 cells per well in a 96 well plate overnight on poly-
L-lysine treated plates. Cells were next washed twice; cells were resuspended in PBS,
centrifuged at 182 g for 5 minutes in the Fisher Scientific accuSpin 1R centrifuge and
the supernatant was discarded Cells were then incubated with PBS in the presence of
phosphodiesterase inhibitor, 3-isobutyl-1-methylxanthine (1 mM) and inhibitors. Cells
were stimulated with forskolin (10 pM) and varying concentrations of chemokine for 30
min at 37 °C. Cells were then lysed for 15 min and cAMP levels were determined
following the manufacturer's guidelines with a BMG labtechPolarstar luminescence

plate reader (BMG Labtech, Germany).

2.6 Chemotaxis
For chemotaxis experiments, CTX Plates (5um pore plates) (Neuroprobelnc,

USA) were used. The bottom of the plate was blocked by adding 30ul/well of blocking
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buffer (1% BSA in RPMI). THP-1 cells were span down for five minutes at 182 g and
resuspended in working buffer (0.1% BSA in RPMI). Cells were treated with the
required experimental reagents for 30 minutes to 1 hour at 37 °C. Cells were next
washed twice in RPMI medium (resuspended in RPMI, centrifuged at 182 g for 5
minutes in the Fisher Scientific accuSpin 1R centrifuge and the supernatant was
discarded) and resuspended at a concentration of 25 x 10* cells per well. Chemokines
were prepared at different concentrations in working buffer and added to the bottom of
the plate in a volume of 31 ul per well as per manufacturer’s instructions and the
membrane filter was secured on the top. Cells were carefully added in a volume of 20
pl/well with a pipette as per manufacturer’s instructions. The plate was subsequently
incubated in a humidified chamber for 5 hours at 37 °C and 5% CO2. After this period,
the membrane was scrapped with a sheet of paper, separated from the bottom of the
plate and cells that had migrated through the membrane towards the different chemokine
concentrations were counted by re-suspending the solution in the wells and pipetting 10
pl/well into the haemocytometer chamber (Marienfeld, Germany). Data were done in
duplicates and expressed as number of migrating cells as counted in the

haemocytometer.

2.7 Cholesterol assays

2.7.1 Cholesterol modification

For cholesterol depletion two different approaches were used: total cellular
cholesterol was depleted using methyl-p-cyclodextrin (MCD) whereas de novo
cholesterol synthesis was inhibited by treatment with lovastatin or simvastatin, inhibitors
of HMG-CoA reductase. Plasma membrane cholesterol was extracted by MCD. This
molecule is a well-established tool that selectively and quickly extracts cholesterol from
plasma membranes in preference to other lipids. These treatments reduce intracellular
cholesterol without affecting cell viability within the time window selected for the
experiments. Control cells were left untreated. For cholesterol depletion, 10 mM MCD
was incubated with cells for 30 minutes at 37 °C and 5 % CO2. Cholesterol synthesis
inhibition was achieved by incubating cells for 1-3 days with different concentrations of

lovastatin and simvastatin.
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2.7.2 Total cholesterol levels measurement

Changes in cholesterol levels after the addition of different inhibitors were

determined using the Amplex Red cholesterol assay (Invitrogen) according to
manufacturer’s protocol. The Amplex Red Cholesterol Assay Kit offers a simple
fluorometric method for the quantitation of cholesterol using a fluorometer.
This assay is based on an enzyme-coupled reaction that detects both free cholesterol and
cholesteryl esters. Cholesteryl esters are hydrolysed by cholesterol esterase into
cholesterol, which is then oxidized by cholesterol oxidase to produce H,O, and the
corresponding ketone product. The H,O, is then detected by Amplex Red reagent thanks
to the addition of HRP which enables the interaction with a 1:1 stoichiometry between
H.O, and the Amplex Red reagent to produce highly fluorescent resorufin. Cells were
pre-incubated with cholesterol oxidase and horseradish peroxidase and Amplex red for
20 minutes in the absence of light at 37°C and next they were excited at 530-560 nm and
emission fluorescence was detected at 590 nm by BMG labtechPolarstar luminescence
plate reader (BMG Labtech, Germany).

2.8 Small interfering RNA (siRNA) transfection

2.8.1 siRNA optimization technique

HelLa cells were incubated in PBS/EDTA for 10 minutes at 37°C and 5 % CO2,
washed (resuspended in PBS, centrifuged at 182 g for 5 minutes in the Fisher Scientific
accuSpin 1R centrifuge and the supernatant was discarded), re-suspended at 6x10* per
ml and seeded in 125 pl of DMEM medium in a clear bottom 96 wells plate. Next,
different concentrations of transfection reagent and different transfection reagents as
well as different concentrations of sSiRNA negative vector were mixed up as explained
below and gently added to the wells. The Allstarts transfection control we used is a
SIRNA sequence with no homology to any known mammalian gene and which was
fluorescently labelled on the 3° end of the sense strand with rhodamine making it

possible to visualise sSiRNA transfection efficiency.
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2.8.2 siRNA transfection

2.8.2.1 Chemical-based transfection

HelLa cells were incubated in 2 mM PBS/EDTA for 10 minutes at 37 °C, washed,
re-suspended at 1x10° cells per well and were seeded in a 24 wells plate in 500 pl of
DMEM medium and incubated at 37°C and 5 % CO2. Lyophilised siRNA (Caveolin-1
siRNA) was re-suspended in RNase free water (Quiagen) to form a 20 uM concentration
stock solution. For each well: shortly before transfection, SiRNA was diluted into 100 pl
of DMEM medium FCS free at concentrations varying between 1.7 and 60 nM. The
solution was pipetted up and down. Next, 1.5 ul of INTERFErin (Polyplus, France) were
added to the mixture and the solution was vortexed for ten seconds. The eppendorfs
were left at room temperature for 10 minutes to allow the complexes to form and then
100ul were added drop-wise to each well containing the seeded cells. The plate was
gently swirled and incubated at 37° C and 5% CO2 for 48 to 72 hours. After this period,
cells were removed by PBS/EDTA. The same number of cells from each well was

collected and Caveolin-1 expression was analysed by western blot.

Table 2.3 siRNA data
Gene name SiRNA

Target sequence 5-AAGCATCAACTTGCAGAAAGA-3

Caveolin-1 Sense 5"-GCAUCAACUUGCAGAAAGATT-3

Antisense 5"-UCUUUCUGCAAGUUGAUGCTT-3’

2.9 Western Blot

2.9.1 Protein extraction

HelLa.RC49 cells were seeded onto 35 mm culture dishes and maintained until
90% confluency. HeLa.RC49 cells were then incubated in PBS/EDTA at 37°C,
centrifuged at 182 g per 5 minutes and washed twice with ice cold PBS. Cells lysis was

done by re-suspension of the pellet with lysis buffer (Tris-HCI 0.1 M, 20% glycerol,
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10% SDS, pH 7.6) followed by sonication (ten pulses of 3 seconds at 60% amplitude
and 0.8 pulse) or by direct addition of sample buffer (4% SDS, 0.02% bromophenol
blue, 20% glycerol, 10% mercaptopropanodiol, 80 mM Tris, pH 6.8) followed by 5
minutes boiling at 95°C. Whole cell lysates were next centrifuged at 13230 g at 4°C for
10 minutes. The supernatant was then collected and the pellet of cell debris discarded.

2.9.2 Protein quantification

The protein concentration of each lysate was determined using the Protein A280
Method (NanoDropND-1000 UV-Vis Spectrophotometer, Labtech International, UK).
In order to add the same amount of protein to each well, the total concentration of
protein was estimated by measuring absorbance at 280 nm. Although at 280 nm it is
possible that some nucleic acids absorbance is present, this concentration would be the
same in all the samples and, therefore, it would not interfere with the results. 2 ul of total
cells lysate was put in the nanodrop and the total concentration of protein for each
sample was acquired. The same amount of protein was then added to each well by

diluting the cell lysate with the adequate amount of sample buffer.

2.9.2.1 Sample preparation
A certain volume of a 20% (v/v) loading buffer solution (160 mM Tris, 4% (w/v)
Sodium docecylsulphate (SDS), 30% (v/v) glycerol, 0.01% (w/v) bromophenol blue,
12% (v/v) B-mercaptoethanol, pH 6.8) was added to each sample. Protein samples with
loading buffer were heated at 85°C for 5 minutes to ensure complete protein
denaturation and cooled down on ice for 5 minutes. Finally, samples were spun at 13230
g in a Fisher Scientific accuSpin micro centrifuge for 15 minutes.

2.9.3 SDS-PAGE gel electrophoresis

Protein samples together with a broad range protein marker (Bio-Rad, UK) were
loaded onto SDS-PAGE gels for electrophoresis. The running gel layer was prepared at
12% acrylamide (0.67155g Tris/SDS 2% pH 8.8, 13% acrylamide v/v, 0.1% ammonium
persulphate w/v, 0.01% TEMED v/v) and samples were loaded onto a 4.5% acrylamide
stacking gel, (0.1089g Tris/SDS 2% pH 8.8, 4.5% acrylamide v/v, 0.1% ammonium
persulphate w/v, 0.01% TEMED v/v) which allows the proteins to stack together when
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they enter the gel. Samples were then run at a constant voltage of 180 V at room

temperature until the dye front reached the bottom of the gel.

2.9.4 Protein transfer

A nitrocellulose membrane, several filter papers and two sponges were incubated
in transfer buffer solution (25 mM Tris, 192 mM glycine, 10% methanol, pH 8.3) at
room temperature for 15 minutes prior to assembly in a semi-dry transfer blotter (Bio-
Rad, UK). The layers were placed as follows in the base of the transfer blotter: sponge,
filter papers, nitrocellulose membrane, gel, filter papers, and sponge. The proteins were
left to be transferred onto the membrane for 45 minutes at 15 V. Following transfer,
molecular weight marker could be seen on the membranes, indicating protein transfer

was successful.

2.9.5 Immunoblotting and development

The nitrocellulose membrane was next blocked in 0.5% (v/v) Tween-20 in PBS
(PBS-T) with 5% (w/v) fat-reduced milk powder (Marvel) blocking solution for 1 hour
at room temperature with gentle agitation. The blocking solution was then removed and
the membrane was incubated in blocking solution containing the primer antibody at the
adequate dilution (see table 2.4) at 4°C overnight on a rotary wheel. The next morning,
the antibody was removed from the membrane by washing it three times in 0.5% (v/v)
Tween-20 in PBS (PBS-T) for 20 minutes at room temperature with gentle agitation and
the membrane was incubated for one hour with the secondary antibody (see table 2.5).
After this period, the secondary antibody was washed three times in 0.5% (v/v) Tween-
20 in PBS (PBS-T) for 20 minutes at room temperature with gentle agitation. Protein
detection was performed by the addition of the Pierce ECL reagents (ThermoScientific)
according to the manufacturer’s instructions. The ECL reagents were added in the same
proportion, left in the dark for 1 minute at room temperature and then drained with a
clean filter paper and inserted between two layers of cling film inside an X-Ray
Cassette. In the dark, the chemiluminescence film CL-XPosure™ Film (Thermo
Scientific) was placed on the top of the cling film and the cassette was shut. Paper was
left in contact with the cling film allowing the chemiluminescence reaction to happen for
a varying amount of time and then the film was manually developed using Kodak GBX



|2-63

Developer (Sigma Aldrich) according to manufacturer’s instructions.

For the B-actin control, after membrane development, it was recovered from the
cassette, washed twice for 5 minutes in 0.5% (v/v) Tween-20 in PBS (PBS-T) at room
temperature with gentle agitation and then washed for 15 minutes with the stripping blot
plus strong solution (Millipore, California, USA) to remove the antibodies and ECL
reagents from the membrane. After this period, the membrane was washed again in 0.5%
(v/v) Tween-20 in PBS (PBS-T) and was next blocked in 0.5% (v/v) Tween-20 in PBS
(PBS-T) with 5% (w/v) fat-reduced milk powder blocking solution for 1 hour at room
temperature with gentle agitation. Next, the membrane was incubated with the mouse
anti-p-actin antibody at the concentrations indicated in table 2.4 for 1 hour. The antibody
was next removed from the membrane by washing it three times in 0.5% (v/v) Tween-
20 in PBS (PBS-T) at 20 minutes interval and membrane was incubated for one hour
with the secondary antibody (see table 2.5) at room temperature. After this period
secondary antibody was washed three times in 0.5% (v/v) Tween-20 in PBS (PBS-T) at
20 minutes interval. Protein detection was performed by the addition of the pierce ECL
reagents (ThermoScientific, UK) as explained above.



|2-64

Table 2.4 Primary Antibodies used for Western blot experiment

Antibody Host Manufacturer Dilution
Anti-CCRS Mokeatng

HEK/1/85a/7a Rat Reading 1:100
Anti-Caveolin Rabbit Santa Cruz 1:500
Anti-f- Mouse Santa Cruz 1:50000
actin

Table 2.5 Secondary Antibodies used for Western blot experiment

Antibody Host Manufacturer Dilution

Anti-Rat 1gG

HorseradishPeroxidase Rabbit Sigma-Aldrich 1:10000

Anti-Rabbit IgGHorseradish

i Goat Sigma-Aldrich 1:10000
Peroxidase
Anti-Mouse
lgG . |
Horseradish Goat Sigma-Aldrich 1:10000
Peroxidase

2.10 Analysis of gene expression by quantitative real-time

polymerase chain reaction (QRT-PCR)

2.10.1 Cell preparation and RNA extraction

3x10° THP-1 or HeLa.RC49 cells were centrifuged at 182 g for 5 minutes in the
Fisher Scientific accuSpin 1R centrifuge and the pellet was used for RNA extraction
using the RNeasy mini kit (Qiagen) as per manufacturer’s instructions. The RNeasy
technology allows isolating up to 100 ug of RNA longer than 200 nucleotides on a silica
membrane. Briefly, cells were re-suspended in 350 ul of RLT buffer to get disrupted.
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1% 14.3 MpB-meracaptoethanol was added to the lysis buffer shortly before cells were re-
suspended in it. Pellet was homogenized by pipetting the sample up and down a few
times. Next, 1 volume of 70% ethanol, which provides the right binding conditions for
the RNA to bind the membrane, was added to the homogenized lysate and mixed well
by pipetting up and down. Subsequently, 700 ul of this solution were transferred to a
RNeasy spin column placed in a RNAse and DNAse free 2 ml collection tube, and
centrifuged at 10,000 rpm for 15 seconds. The flow-through was discarded. The next
step was to add 700 pl of RW1 buffer to the RNeasy spin column and spin it down for
15 seconds at 10,000 rpm to wash the membrane. The flow through was discarded. The
next step was to wash the membrane twice by adding 500 ul of RPE buffer to the spin
column and centrifuging 15 seconds the first time and 2 minutes the second time. Lastly,
the spin column was carefully transferred to a new 1.5 ml collection tube and 50 pl of
RNase-free water were added to the membrane to elute the RNA. The sample was
centrifuged at 10,000 rpm for 1 min and the eluate from this step was added again to the
column to elute possible RNA left in the membrane. After centrifuging at 10,000 rpm a
last time, the RNA solution obtained was frozen down at -70 °C until cDNA was
formed.

2.10.2 RNA quantification

Total RNA was guantified using Nanodrop 1000 spectrophotometer by adding 1 ul
of the RNA solution to the nanodrop plaque and selecting the program nucleic acid on
the software of the computer. The purity of the sample was determined by analysing the
ratio of absorbance at 280 nm over 260 nm. The closer this value is to 2 the purer the

concentration of the sample RNA.

2.10.3 cDNA Synthesis

50 ng/pl of RNA was employed to synthesize cDNA by using Tagman Reverse
Transcriptase Reagents (Applied Biosystems). 50 ng/ul were added to the right amount
of RNase-free water to get 4.5 ul RNase-free water-RNA per sample. For one sample
2.5ul of MgCly, 1 ul of 10 x RT buffer, 1 pl of dNTP, 0.25 ul of RNase and 0.5 pl of
Random hexamers were added together forming a reaction mixture (see table 2.6). Next,

5,5 ul of the reverse transcription mastermix was added for each sample. Samples were
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run on PTC-100 Peltier Thermal Cycler for 10 minutes at 21°C, 15 minutes at 42°C, 5
minutes at 99 °C and 5 minutes at 4 °C. cDNA was then diluted with 15 pl H,0.

2.10.4 PCR

For PCR, SYBR green (Sigma Aldrich) was used to quantify gene expression
using the Qiagen’s real time PCR cycler, the Rotor-GeneQ, as per manufacturer’s
instructions (Table 2.7). For one reaction, 10 pl SYBR green, 4 ul of H,O and 1ul of
CCRG5 or 18S forward + reverse primers, were pipetted to the special tubes containing
already 5 pl of the diluted cDNA from the cells, which were placed forming a circle in
the Qiagen’s real time PCR cycler. The reaction mixture was then heated for 1 cycle of 2
minutes at 95°C followed by 40 cycles of 15 seconds at 95°C, and 40 seconds at 60°C.
Gene expression was quantified in relation to the house keeping gene 18s and fold
change was calculated from the 0 values.

Table 2.6 RT step. Mastermix for cDNA synthesis

Number of MgCI2 10X RT Random
Samples (25uM) Buffer dNTP RT RNase Hexamers
1 2.5ul 1ul 1ul 0.25ul 0.25ul 0.5l

Table 2.7 PCR-step

Number SYBR green Primers forward +
of samples CDNA PCR Mastermix ddH20 Reverse (5uM)
1 Sul 10 pl 4 ul 1yl

Table 2.8 Genes analysed by RT-PCR and primers used. (Invitrogene)

Gene .
Primer
name
Forward 5°-TGC TAC TCG GGA ATC CTA AAA A-3°
CCR5 , ,
Reverse 5°- AAG AAT TCC TGG AAGGTG TTC A-3
Forward 5°- GCA ATT ATT CCC CAT GAA CG-3’
18s
Reverse 5°- GGG ACT TAA TCA ACG CAA GC-3°
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2.10.4.1 gRT-PCR data and statistical analysis

Results were analysed by the standard curve method. In this method, a standard
curve is first created from an RNA sample of known concentration or an RNA sample
which had been given arbitrary values. This curve is then used as a reference standard
for extrapolating quantitative information for mRNA targets of unknown concentrations.
The RNA used for fabricating this standard curve comes from the same sample than the
one used to measure the target genes. Five standards were created from total cDNA.
Samples were diluted five times following a serial dilution technique so that the more
concentrated standard was given a value 1 and the more diluted one a value 1/16. By
using this method, fold change in the target gene is calculated with the use of a reference
gene. Changes in the average copy number in the experimental sample are divided by
the average copy number in the control sample (reference gene), giving the fold change
in the target gene. Statistical analyses were estimated by performing unpaired, two-tailed
t-test on samples. Significant changes towards control cells are indicated by asterisks (*p
<0.05, **p < 0.01,*** p < 0.001) and were calculated in GraphPad Prism 5.

2.11 General analysis of data

Data were analysed using GraphPad Prism 5 (GraphPad Software, San Diego,
CA). Concentration/response curves for CCL3 in calcium flux assays were fitted by
models assuming a Hill coefficient of 1. Statistical analyses were performed using one-
way ANOVA with Bonferroni's multiple comparison as a post-test or by performing
unpaired, two-tailed t-test on samples if only two parameters were compared. Significant
changes towards control cells are indicated by asterisks (*p < 0.05, **p < 0.01,*** p <

0.001). Similarly, log ECsoand efficacy values were calculated in GraphPad Prism 5.
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CHAPTER 3- CHOLESTEROL IMPORTANCE IN
CCR5 STABLY TRANSFECTED CELLS.

3.1 Introduction

In the past few years cholesterol in the membrane has become a central subject for
research on cell signal transduction due to its importance in the regulation of numerous
intracellular cascades. Cholesterol is a major component of the plasma membrane, being
mostly situated in special regions called lipid rafts. These areas are rich in sphingolipids,
glycosylphosphatidylinositol (GPI)-anchored proteins and prenylated or palmitoylated
signalling molecules like some G protein subunits, GPCR and Caveolins (Pike, 2003).
Lipid rafts have been demonstrated to play an essential role in signal transduction
pathways, as will be explained below, but also in the entry of parasites (Fernandes et al.,
2007; Lin and Rikihisa, 2003), toxins (Abrami et al., 2003; Orlandi and Fishman, 1998),
bacteria (Abrami and van der Goot, 1999) and viruses into the cell (Nguyen and Taub,
2002a; Nguyen and Taub, 2004). They were initially described as areas in the plasma
membrane that present a more ordered and less fluid structure in comparison to its
surroundings and are characterised by their low density and resistance to non-ionic
detergents like Triton X-100 at low temperature. This property allows isolation of lipid
rafts by flotation in a sucrose gradient where they are distributed in the less dense
fractions (Pike, 2003).

The exact role of lipid rafts in cell signalling and trafficking has not been fully
characterised yet. One of the possible functions of lipid rafts has been suggested to be
the compartmentalization of signalling molecules in the plasma membrane. According to
this theory, lipid rafts would promote the accumulation of proteins so that they are more
easily activated by phosphorylation of local kinases and so that they interact among
them, increasing signal transduction (Simons and Toomre, 2000). Several examples of
signalling pathways with different dependence on lipid rafts integrity will be analysed in

this chapter.
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Lipid rafts can be divided into two different groups: planar lipid rafts and caveolae
(Ohkubo and Nakahata, 2007). Planar lipid rafts are cholesterol and sphingolipid rich
regions of the membrane that concentrate numerous signalling proteins and lack the
structural protein Caveolin. In contrast, caveolae gather all the properties of planar lipid
rafts but can also be characterised by the high expression of the integral membrane
protein Caveolin and by their property to form invaginations in the membrane (Williams
and Lisanti, 2004a).

The main function of caveolae is to participate in endocytic pathways which transport
molecules like cholesterol from the cell membrane to Golgi vesicles or other

intracellular organelles, and vice versa (Hansen and Nichols, 2010).
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Figure 3.1 Caveolin-1 structure. a) Forming dimmers in the membrane. b) Schematic structure of

Caveolin topography. From Williams et al. (Williams and Lisanti, 2004a).

Caveolins are 22-24 KDa proteins with a cytosolic N- and C-terminus that are
situated in the cytosolic leaflet of the plasma membrane. The human Caveolin genes
encodes for three different types: Caveolin-1, Caveolin-2 and Caveolin-3 although only
Caveolin-1 has been shown to be essential for maintaining caveolae structure (Williams
and Lisanti, 2004b). Caveolin-1 and Caveolin-2 are expressed in non-muscle and smooth
muscle tissues and, according to Song et al. (Song et al., 1996), the presence of
Caveolin-1 is needed for the expression of Caveolin-2. On the other hand, Caveolin-3 is
only expressed in striated muscle cells (Song et al., 1996). These proteins are
characterised by the expression of phosphorylation and palmitoylation sites as well as an
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oligomerization domain (see Figure 3.1). Tyr 14 is Caveolin’s main phosphorylation
site. This phosphorylation is triggered by many Caveolin activating molecules such as
chemokines (Ge and Pachter, 2004) and is known to be essential for Caveolin

participation in downstream pathways (Grande-Garcia and del Pozo, 2008).

Recent identification of Caveloin-1 as a regulator of several signalling
mechanisms has increased research interest in its interactions with other proteins and
role in the plasma membrane. For example, chemotaxis is highly dependent on Caveolin
owing to its involvement in the activation of Rho GTP-ases-like proteins (Grande-Garcia
and del Pozo, 2008). Caveolin has also recently been described as a tumour suppressor
gene due to its role as a negative regulator of a variety of mitogenic signalling pathways
(Engelman et al., 1998; Zhang et al., 2000). These studies have demonstrated its
involvement in decreasing tumorigenicity, chemotaxis and cell growth. Furthermore,
Zhang and colleagues also showed that Caveolin-1 expression is highly reduced or non-
existent in a metastatic rat mammary adenocarcinoma cell line (MTLn3) and in the
human mammary carcinoma cell lines (MCF-7 and T47D) (Engelman et al., 1998;
Zhang et al., 2000).

In contrast to the above theories, more recent studies show that Caveolin-1 is
positively involved in regulating cell migration, polarization and growth, while having a
tumour promoter activity (Ge and Pachter, 2004; Gonzalez et al., 2004; Grande-Garcia
and del Pozo, 2008; Park and Han, 2009). Consistent with the important role of Caveolin
in cancer, this molecule has been shown to be expressed in many melanoma cell lines,
being largely responsible for its aggressiveness (Felicetti et al., 2009). Further evidence
supporting the theory that Caveolin is important for cancer progression is demonstrated
by recent reports showing Caveolin-1 microvesicles being secreted by different tumours
and correlating with their invasiveness (Tahir et al., 2008; Watanabe et al., 2009). For
example, Caveolin-1 microvesicles can be found at high concentrations in prostate
cancer and have been proposed as a marker for prostate cancer diagnosis (Tahir et al.,
2008; Watanabe et al., 2009).

These studies provide reliable evidence that Caveolin can play opposing roles in
cancer progression. It is then a priority to understand the factors that control Caveolin
signalling mechanisms in order to understand in which circumstances it will act as a

tumour suppression gene and in which it will act as an oncogene.
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One of the characteristics of lipid rafts is that they are so small that they cannot be
seen using a standard light microscope (Simons and Toomre, 2000). However, high
resolution electron microscopy, EM, has been able to resolve caveolae and has allowed
scientists to visualise caveolae disruption upon treatment with certain cholesterol
modifying agents. The most common tools to disrupt lipid rafts are the cholesterol
sequestrating agents filipin and nystatin, the cholesterol depleting agent methyl-p-
cyclodextrin (MCD) and methods that perturb raft stability such as the addition of
exogenous cholesterol, gangliosides or fatty acids (Simons and Toomre, 2000).
Treatment of cells with MCD causes the flattening of the membrane and the destruction

of caveolae which can be reversed by reloading cells with cholesterol (Figure 3.2).

The work in this thesis will focus on cholesterol sequestration and cholesterol
depletion methods. Filipin and nystatin are antibiotics capable of complexing cholesterol
in the plasma membrane. Filipin specifically binds 3-B-hydroxysterols in a 1:1
stoichiometry, forming large aggregates that lie parallel to and in the centre of the lipid
bilayer (de Kruijff and Demel, 1974) whereas nystatin forms sterol dependent ion
channels in the plasma membrane (Bolard, 1986). B-Cyclodextrins are cyclic
oligosaccharides consisting of 7-B (1-4)- glucopyranose units whose external face is
highly hydrophilic and the internal one highly hydrophobic; the latter being able to
capture hydrophobic molecules like cholesterol (Christian et al., 1997). Among the
different types of cyclodextrins available, methyl B-cyclodextrin (MCD), which has been
chemically modified to improve solubility, complex formation and reduce toxicity, has
been demonstrated to be the most efficient one at depleting cellular cholesterol for cell

signalling experiments (Christian et al., 1997).
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Figure 3.2 Micrographs (by electron microscopy [EM]) of the medial smooth muscle cells (SMCs) in tail
arteries. A, Normal caveolae (arrows) are shown in an SMC from a control preparation. Arrow heads
indicate Golgi apparatus; M, mitochondrion; N, nucleus; and F, filaments. B and C, cholesterol-depleted
SMCs are shown. Caveolae are less numerous and, when present, are opened to a variable degree. D,

Normal caveolae are seen after reloading with cholesterol. (Dreja et al., 2002).

Several studies have shown that CCRS5 colocalises with lipid raft markers (Carter
et al., 2009; Manes et al., 1999; Nguyen and Taub, 2002b; Popik et al., 2002), which
leads to the supposition that the receptor is mainly distributed along these special areas
of the membrane. Further evidence for CCR5 expression in lipid raft domains is
supported by this receptor being post translationally palmitoylated, which has been
shown to act as a cue for targeting to these cholesterol rich microdomains in the plasma
membrane (Kraft et al., 2001; Percherancier et al., 2001; Venkatesan et al., 2003).

CCRS5 partitioning to lipid rafts does not mean it locates in caveolae domains. In

the present chapter the role of Caveolin-1 in CCR5 signalling and expression will be
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analysed. Caveolin is known to regulate calcium signalling responses initiated by several
receptors such as muscarinic receptors (Gosens et al., 2007; Kubale et al., 2007; Russo
et al., 2009) and to bind to G proteins subunits modulating their activity. For instance,
Caveolin-1 can promote G protein active conformation (Bhatnagar et al., 2004; Sengupta
et al., 2008) and has also been shown to promote G protein inactive state (Kong et al.,
2007). The factors involved in these opposing roles of Caveolin are yet to be identified.
Considering all the information available regarding the role of caveolin in other
receptors signalling, the lack of data regarding the CCR5-Caveolin relationship becomes

evident.

The role of cholesterol in CCR5 signalling was also studied in detail. Considering
that cholesterol is one of the main components of lipid rafts, it is expected that variations
in its concentration would affect CCRS5 signalling properties. Indeed, CCRS5’s
conformation has been shown to be dependent on membrane cholesterol (Nguyen and
Taub, 2002b). Cholesterol depletion with hydroxypropyl-p-cyclodextrin (BCD) or
cholesterol oxidation with cholesterol oxidase promotes significant conformational
changes that blocks CCL4 binding to the receptor and CCR5 signalling (Nguyen and
Taub, 2003a).

Cholesterol has been shown to be essential for cell polarization and migration of
neutrophils although cholesterol depletion had no effect on early chemoattractant
signalling events such as G-protein activation, intracellular calcium flux or MAPK
activation (Rose et al., 2008). These data show the different dependence on cholesterol
of intracellular pathways activated by chemokine receptors. Understanding CCR5
signalling and internalisation processes are especially interesting for controlling HIV
infection. It has been previously explained that the number of CCR5 receptors in the
plasma membrane is essential for the initial binding of the virus and for HIV entry into
cells (Lin et al.,, 2002). Additionally, some studies agree that CCR5 signalling is
essential for viral replication (Alfano et al., 2000; Alfano et al., 1999; Lin et al., 2006;
Wang and Oppenheim, 1999) although some others argue that CCR5 signalling,
phosphorylation and internalisation processes are independent from HIV infection
(Alkhatib et al., 1997; Amara et al., 2003; Aramori et al., 1997a). Nevertheless, it is
accepted that cholesterol depletion with MCD impairs HIV infection, either due to
alterations on CCR5 membrane expression or to CCR5 signalling inhibition (Carter et
al., 2009; Liao et al., 2001; Manes et al., 2000; Viard et al., 2002; Vidricaire and



|3-74

Tremblay, 2007; Vila-Coro et al., 2000; Weiner et al., 1992).

CCR5 can internalise through clathrin-coated pits and through caveolae (Mueller
et al., 2002). Mueller et al. verified that CCR5 endocytosis was impaired by cells
treatment with chlorpromazine and sucrose, known to block clathrin coated pit
dependent internalisation, and by filipin and nystatin, which are responsible for caveolae
disruption. Other chemokine receptors display the same tendency as CCR5 in terms of
internalisation; CCR4 endocytosis is also dependent on both clathrin coated pits and
caveolae (Mariani et al., 2004). However, there are chemokine receptors that exclusively
internalise using either pathway. For instance, Cav-1 knockdown in astrocytes
expressing CCR2 causes a complete impairment of receptor internalisation (Ge and
Pachter, 2004) providing evidence that CCR2 internalisation is only dependent on
caveolae pathways. On the contrary, the chemokine receptors CXCR1 and CXCR?2 are

just internalised by clathrin coated pits dependent pathways (Rose et al., 2004).

As it has been previously outlined, clathrin coated pits and caveolae inhibitors
have been broadly used to analyse the internalisation pathways of different chemokine
receptors, including CCR5. Nevertheless, the importance of clathrin-dependent
pathways and cholesterol complexation with filipin and nystatin has not been
characterised for CCR5-induced signal transduction. Thus, in this study the influence of
sucrose, chlorpromazine, filipin and nystatin on CCR5-dependent intracellular events
has been analysed. The importance of Caveolin-1 expression on CCR5 signalling has
also been looked at. Also, the cholesterol depleting drug MCD has been used to deplete
cellular cholesterol in order to analyse CCR5-induced calcium release, expression and
internalisation in CCR5 stably transfected cells lacking this important membrane

component.

3.2 Aims

The aim of this chapter is to understand how cholesterol in the membrane as well
as structures like caveolae and clathrin coated pits affect CCR5 signalling and
internalisation. CCR5 induced calcium mobilization from the ER and cAMP assays have
been used as a measure of CCR5 activation. Immunofluorescence and flow cytometry
experiments have been performed to measure CCR5 localization and expression levels.
Finally, cholesterol assays to determine the amount of cholesterol depleted have
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complemented the work. Considering the importance of CCRS5 signalling and regulation
for HIV infection and numerous inflammatory diseases it is clear that a perfect
understanding of CCR5’s environment and the factors that contribute to its stability are

essential for the development of new therapies.

3.3 Results

3.3.1 Cholesterol depletion but not cholesterol complexation
blocks CCL3 induced CCRS5 signalling

3.3.1.1 Changes in intracellular calcium mobilization
Cells stably expressing CCR5 were treated with sucrose, filipin, nystatin and MCD
and CCL3 capacity to induce calcium release was analysed. Intracellular calcium
mobilization is one of the first events to occur after CCR5 stimulation and, therefore,
can be easily used as a system to measure receptor activation. Here we analyse CCRS5’s
ability to release calcium from ER stores in the presence of sucrose, filipin, nystatin and
MCD.

In this chapter, the CCL3 EC50, 100 nM, has been used to perform experiments at

a single concentration of chemokine.

The ability of CHO.CCR5 and HEK.CCR5 to initiate calcium signalling in
response to CCL3 challenge was markedly reduced following treatment with MCD, but
was similar to untreated cells following incubation with nystatin, filipin, or sucrose
(Figure 3.3 and 3.4). The effects of cholesterol sequestration were very similar in both
CHO.CCR5 and HEK.CCRS5 which suggests that effects upon signalling are not cell line
specific and function via a ubiquitous pathway. Repletion of cholesterol after MCD
treatment had some recovering effects on CCR5 induced calcium release as observed in
Figure 3.3 (CHO.CCR5) and Figure 3.4 (HEK.CCR5). Cholesterol depletion by MCD
and cholesterol complexation with filipin and nystatin are known to disrupt caveolae.
Therefore, the fact that cholesterol repletion abrogated the reductive effect on calcium
release that MCD treatment had, and that filipin and nystatin had no effect on calcium
signalling, indicates that the reduction in calcium increase of MCD is mainly due to

cholesterol depletion and not to caveolae disruption. It has been demonstrated that
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filipin, nystatin and sucrose block CCL3-dependent CCRS5 internalisation which
indicates that this receptor is endocytosed through caveolae dependent and independent
pathways (Mueller et al., 2002). However, it seems that these pathways are not needed
for CCRS5 signalling. These findings were reiterated in a similar study into CCR3
signalling and endocytosis (Zimmermann and Rothenberg, 2003). It was shown that
sucrose treatment was able to block receptor internalisation but had no effect on calcium
release. However, this group also demonstrated that sucrose treatment completely
abolished actin polymerization upon CCR3 stimulation, indicating that clathrin-
dependent pathways were needed for some of the downstream signalling events.
Similarly, Li et al. (Li and Nord, 2004) showed that Caveolin disruption with filipin in
proximal tubule cells expressing the CD40 receptor abrogated the signalling
mechanisms normally induced by this receptor. These are, therefore, two examples
where clathrin and caveolae pathways, respectively, were needed not only for receptor
internalisation but for receptor signalling as well. According to the data obtained in this

section it seems that neither of these pathways is required for CCR5-induced signalling.
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Figure 3.3 Changes in intracellular Ca** in CHO.CCRS cells in the presence of inhibitors. The intracellular
calcium ion concentration was determined in CHO.CCR5 cells following stimulation by chemokines as
described in the materials and methods section. Cells were incubated with MCD (10 mM), cholesterol (2
mM), both, filipin (5 pg/ml), nystatin (50 pg/ml) and sucrose (0.4 M) for 1 h before cells were stimulated
with 100 nM CCL3. A) shows single traces in real time in the presence or absence of inhibitors, B) shows
cells pre-treated with different inhibitors or vehicle (control), significant changes to control data are shown
by asterisks (* p < 0.05, *** p <0.001). Data are expressed as fluorescence ratio and represent mean + SEM

from at least four independent experiments. (Cardaba et al., 2008).
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Figure 3.4 Changes in intracellular Ca** in HEK.CCR5 cells in the presence of inhibitors. The
intracellular calcium ion concentration was determined in HEK.CCR5 cells following stimulation by

chemokines as described in the materials and methods section. Cells were incubated with MCD (10 mM),

cholesterol (2 mM), both, filipin (5 pg/ml), nystatin (50 pug/ml) and sucrose (0.4 M) for 1 h before cells
were stimulated with 100 nM CCL3. A) shows single traces in real time in the presence or absence of

inhibitors, B) shows cells pre-treated with different inhibitors or vehicle (control); significant changes to

control data are shown by asterisks (*** p <0.001). Data are expressed as fluorescence ratio and represent

mean + SEM from at least four independent experiments. (Cardaba et al., 2008).



|3-79

The next aim of this chapter was to investigate whether the effect observed upon
MCD treatment was chemokine-dose dependent and its effect on CCL3 potency. Dose
response curves were created in MCD treated HEK.CCR5 cells (Figure 3.5). Figure
shows that MCD treatment decreases LogECs, from -7.59 in control cells to -6.24 in
MCD treated cells without affecting the predicted efficacy (pE) significantly. When
MCD + cholesterol were added to HEK.CCRS5 cells it was found that CCL3 potency
increased the LogECsg to -7.267 but it also lowered CCL3 efficacy.

To investigate whether these results were chemokine dependent, HEK.CCR5
cells were treated with MCD or cholesterol + MCD and stimulated with the chemokines
CCL5, CCL3L1 and the CCRS5 specific ligand CCL4. CCL3L1 is an isoform of CCL3
which has a proline instead of a serine in its N-terminus and has been shown to be much
more potent for CCR5 binding and activation (Mueller et al., 2006). It can be observed
(Figure 3.6) that the three chemokines follow the same trend as CCL3. MCD

significantly blocks calcium release upon CCLS5 and CCL3L1 stimulation.
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Figure 3.5 MCD effects on dose response relationships for release of intracellular Ca2+. The intracellular
calcium ion concentration was determined in HEK.CCR5 cells following stimulation by chemokines as
described in the materials and methods section. Cells were incubated with MCD (10 mM), cholesterol (2
mM) or both for 1 h before cells were stimulated with CCL3 at different concentrations. A) Shows
control cells and MCD treated cells, B) shows control cells and cells treated with MCD plus cholesterol.

Data represent mean + SEM from at least three independent experiments. (Cardaba et al., 2008).
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Figure 3.6 Effect of MCD on release of calcium initiated by a variety of chemokines. The intracellular

calcium ion concentration was determined in HEK.CCR5 cells following stimulation by chemokines as

described in the materials and methods section. Cells were incubated with MCD (10 mM), cholesterol (2

mM) or both for 1 h before cells were stimulated with 100 nM CCL3. Cells were incubated with
different inhibitors for 1 h before stimulation with A) CCL5, B) CCL3L1 or C) CCL4 at 100 nM. Data

are expressed as fluorescence ratio and represent mean + SEM from at least four independent

experiments. Significant changes to control are shown by asterisks (**<0.01). (Cardaba et al., 2008).
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3.3.1.2 Inhibition of cAMP accumulation

CCR5 is mainly coupled to Ga; proteins, which inhibit AC formation of cAMP
(Oppermann, 2004). It has been shown that cholesterol depletion blocks calcium
mobilization, and thereby we now wanted to know whether this effect was due to a
change in the receptor’s conformation, as previously shown by others, and a consequent
alteration of its coupling to Go; proteins. Activation of CCR5 with a ligand reduces
CAMP cellular levels due to inhibition of AC. In this occasion, MCD, nystatin, filipin
and sucrose were used to analyse their effect on inhibition of cAMP accumulation.
Figure 3.7 illustrates that MCD treatment of cells leads to a complete abrogation of
CCL3 blockage of cAMP accumulation. MCD treatment results in a flat line, indicating
no inhibition or activation of forskolin-stimulated cAMP accumulation. This result
indicates that MCD reduces the ability of CCR5 to signal through Go; proteins and, since
coupling to a Gos protein would cause cAMP activation, it also shows that MCD

treatment does not promote the signalling through Gas proteins.

On the contrary, cholesterol complexation with filipin only led to a slight change
in CCL3 potency and nystatin caused a significant reduction of CCL3 potency having no
effect on the efficacy. Interestingly, cholesterol addition had similar effects to nystatin
treatment, shifting the curve to the right and lowering CCL3 potency but not changing
the efficacy of CCL3. Considering these results it seems that, as it happened in calcium
mobilization assays, MCD treatment but not filipin or nystatin treatments, blocks CCR5-
dependent inhibition of AC. Taken together these data show that cholesterol in the
membrane is essential for the normal signalling of CCR5 through Ga; proteins which

results in a reduced calcium mobilization and in inhibition of cAMP formation.
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Figure 3.7 Chemokine inhibition of forskolin-stimulated cAMP accumulation in CHO.CCR5 cells.
CHO.CCRS cells were pre-treated with MCD (10 mM), cholesterol (2 mM), filipin (5 pg/ml) and nystatin
(50 pg/mil) for 1 h before when stated and then stimulated with forskolin and 100 nM CCL3. The Promega
CAMP-Glo™ assay kit was used according to the manufacturer's instructions to measure cAMP
concentrations as described in materials and methods. A) shows control cells and cells treated with filipin
and MCD, respectively, B) shows control cells and cells treated with nystatin, C) shows control cells and
cells treated with cholesterol. Data are mean + SEM from four or more separate experiments performed in
duplicate. (Cardaba et al., 2008).
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3.3.2 Cholesterol depletion with MCD promotes CCR5 signalling
through a PTX-independent G protein.

The results shown above demonstrate that cholesterol depletion with MCD, but not
cholesterol complexation with filipin or nystatin, blocks CCR5 signalling as measured
by calcium release and inhibition of cAMP formation. It is widely accepted that
receptors coupled to Go; proteins like CCR5 stimulate PLC and, therefore, release
calcium to the cytosol through the signalling initiated by the Py subunit. However,
inhibition of forskolin-stimulated cAMP accumulation happens through the activation of
the Go; subunit. In this section the G o subunit responsible for CCRS5 signalling upon
cholesterol depletion has been investigated. While measuring cAMP accumulation
inhibition, Go; activity is being analysed whereas calcium release experiments could
potentially be dependent on any Ga subunit activation. In order to study this further,
cells were treated with PTX for 2 hours and after this time changes in calcium
mobilization were analysed. As shown in Figure 3.8, PTX treatment of HEK.CCRS5 cells
completely inhibits calcium release upon CCL3 stimulation, suggesting an exclusive role
of Ga; in CCR5-dependent calcium release. Interestingly, it was found that MCD
treatment of cells abrogates the inhibitory effect PTX had on calcium release. PTX was
unable to completely block the signalling upon MCD treatment of HEK.CCR5.

It is possible that MCD, by changing the membrane microdomains the receptor is
in, promotes a change in CCR5 conformation and maybe G proteins redistribute in the
membrane, leading to the receptor coupling a different PTX-resistant G protein.
Moreover, the fact that cCAMP accumulation is not increased upon cholesterol depletion

discards the possibility of CCRS coupling a Gas.

Altogether it seems that MCD completely abrogates the blockage of cAMP
accumulation whereas it allows some calcium signalling to occur after treatment of cells
with PTX. It is accepted that CCRS5 can couple to G proteins different from Ga;
(Mueller and Strange, 2004a) and, therefore, it is a possibility that the difference in
signalling observed between the two read-out systems used is due to the measurement of

a different G protein activity in both assays.
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Figure 3.8 Release of intracellular calcium becomes PTX-independent after depletion of cholesterol. The
intracellular calcium ion concentration was determined in HEK.CCRS5 cells following stimulation by
chemokines as described in the materials and methods section. Cells were incubated with PTX (0.1
pg/ml) and MCD (10 mM) for 2 h, when indicated, before cells were stimulated with CCL3. A) shows
single traces in real time in the presence or absence of inhibitors, B) shows cells pre-treated with different
inhibitors or vehicle (control), significant changes to control data are shown mean = SEM from at least
four independent experiments. (Cardaba et al., 2008).

The findings that HEK.CCRS5 cells treated with MCD lead to calcium fluxes
through a PTX-independent G protein and a detailed literature search prompted us to
think that the signal observed after MCD treatment could be due to CCR5 coupling to
Gog. Thus, we wanted to analyse possible variations in Gog expression after MCD
treatment of cells. Fig 3.9 shows that Gag is situated at the edges of the cell and that
neither MCD treatment nor ligand binding interfere with its membrane expression or
location. It is noteworthy that Gag immunofluorescence experiments upon inhibitors
treatments would only allow us to see a possible change in its expression. It is possible
though, that lipid rafts disruption by MCD treatment affects Gayq interactions with other

rafts proteins such as Caveolin or CCR5, inducing a change in the intensity and duration
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of CCRS5 calcium signalling without altering Goq membrane expression.

CHO.CCR5 Control

CHO.CCR5.MCD

~

E

Figure 3.9 Go, stain in CHO.CCRS5 cells. Cells treated with MCD (10 mM for 1 h) or left untreated
(control) were stimulated with CCL3 200 nM for 30 minutes or left untreated. Then cells were then
permeabilized with 0.1% triton x-100 in PBS, fixed in methanol, blocked with 5% non-fat milk in PBS
and incubated with the anti Gag/11 rabbit antibody (C-19). Stain was performed with the secondary anti
rabbit FITC antibody. Pictures were taken using the Zeiss Axiovision 2 system.

3.3.3 Is Caveolin-1 needed for CCR5 signalling?

Similarly to MCD, filipin and nystatin are able to disrupt caveolae. However,
these two inhibitors do not affect caveolae in the same way as MCD (Awasthi-Kalia et
al., 2001). Bearing in mind that filipin and nystatin do not affect CCR5-induced calcium
signalling and MCD does, we hypothesised that different modulation of caveolae
structure may be behind the distinct effects observed. Caveolin-1 is the main component
of caveolae and, therefore, it could be speculated that inhibitors of the caveolae pathway
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would somehow affect the expression and distribution of Caveolin-1. Therefore, the aim
of this section is to determine the role of Caveolin-1 expression on CCR5 signalling. To
start with, the effects of filipin and MCD on Caveolin-1 expression were analysed. It can
be appreciated (Figure 3.9) that filipin disturbs Caveolin-1 organization whereas MCD
does not seem to affect it. Filipin treatment appears to remove all Caveolin-1 from the

plasma membrane redistributing it to other locations in the cytosol.

The results commented above indicate that Caveolin-1 might have an essential role
in CCR5 internalisation since filipin, known to inhibit CCR5 down-regulation,
completely disrupts Caveolin-1 expression. Likewise, MCD treatment was able to block
calcium release and cAMP accumulation inhibition but had no effect on Caveolin-1
expression, indicating a possible independent role for Caveolin-1 in CCR5-related
signalling events. Considering that filipin has no effect on CCR5-induced calcium
release and that it completely removes Caveolin-1 from the plasma membrane, the next
step was to confirm that Caveolin-1 was not needed for CCL3 ability to trigger calcium

release from ER stores.

Small interfering RNA (siRNA) was used to knockdown Caveolin-1 in
HelLa.RC49 cells. Although for most of the experiments done so far HEK.CCR5 and
CHO.CCR5 cells were used, HeLa.RC49 cells were chosen to perform these
experiments because Caveolin-1 siRNA had been validated in this cell line. HeLa.RC49
cells had been previously used to test the effects of MCD on CCR5 induced calcium
release and the same results as in CHO.CCR5 and HEK.CCR5 cells were obtained,

making it suitable for the present experiment.

Figure 3.10 illustrates that a complete knockdown of Caveolin-1 does not affect
CCL3 induced calcium mobilization in HeLa.RC49 cells. These data is consistent with
the fact that filipin, which reduces Caveolin-1 expression does not block calcium
mobilization. On the other hand, MCD, which has been shown not to affect Caveolin-1
distribution or expression, does block calcium responses induced by CCR5 activation.
Taken together the results analysed in this section indicate that removal of Caveolin-1
through filipin treatment or sSiRNA knockdown cannot be linked to a reduction in CCR5
signalling. It seems that alterations in the content of cellular cholesterol or the act of
extracting cholesterol itself are responsible for a decrease in CCR5 signalling and that

Caveolin-1 or caveolae do not play a key part in these processes.
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control . Filipin

Figure 3.10 Effects of inhibitors on Caveolin-1 localisation in the membrane. CHO.CCR5 cells were
grown on coverslips overnight and incubated in medium without serum for 1 h in the presence of 5ug/ml
filipin and 10 mM MCD when indicated. Cells were washed and a stain was performed using anti-
Caveolin-1 antibody and anti-rabbit-FITC. Pictures were taken using the Zeiss Axiovision 2 system. Data

show representative cells. (Cardaba et al., 2008).
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Figure 3.11 Caveolin-1 is not essential for calcium responses upon CCR5 stimulation. HeLa.RCR9 cells
were transiently transfected with siRNA for Caveolin-1 by chemical transfection. After 2 days, Caveolin-
1 expression levels were measured by western blot (A). Figure B shows intracellular calcium mobilization
upon CCL3 stimulation in Caveolin-1 knock-down cells. Data shows mean + SEM of 3 to 5 independent

experiments.

3.34 CCR5 expression and internalisation dependence on

cholesterol

In this chapter MCD’s effect on CCRS signalling has been analysed. MCD reduces
the ability of CCR5 to signal through Go; proteins. However, the effects of MCD on
CCR5 expression and internalisation have not been studied so far. Taking into account
that cholesterol depletion causes an almost complete blockage of CCR5 signalling, it is
important to analyse whether this effect was caused by alterations in CCR5 expression in
the plasma membrane. Thus, the aims of this section were to analyse the number of
CCR5 molecules left in the plasma membrane upon MCD treatment as well as to

determine if the internalisation rate of CCR5 is affected by cholesterol depletion.
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Detection of CCR5 surface expression by immunofluorescence microscopy
(Figure 3.12 A), or antibody labelling followed by flow cytometry (Figure 3.12 B)
showed that MCD treatment of cells does not have significant effects on CCR5
expression. Interestingly, Carter’s group (Carter et al., 2009) have demonstrated that
treatment of macrophages with MCD for 1 hour caused a 100% loss in the number of
CCR5 molecules in the plasma membrane. The reasons behind this lack of agreement
might be related to functional differences between macrophages, CHO.CCR5 and
HEK.CCRS5 cells

The consequences of cholesterol depletion in CCR5 internalisation upon MCD
treatment were next investigated. It appears that MCD affects CCR5 dependent calcium
response independently of caveolae. MCD has been shown to block the formation of
clathrin coated pits vesicles and to inhibit the internalisation of the transferring receptor,
known to internalise exclusively through clathrin-dependent pathways (Rodal et al.,
1999). Similarly, this molecule is widely known to block caveolae dependent
internalisation which seems normal considering the clear effect it has in flattening these
cave-like structures (Feng et al., 2009; Hong et al., 2009). However, when CCR5
internalisation experiments were here performed it was found that MCD treatment of
cells does not alter the endocytosis rate of the receptor. Figure 3.13 shows the effect of
MCD and cholesterol in CCL3 induced CCRS5 internalisation. In MCD treated cells (F),
stimulation with CCL3 causes a loss of receptor expression similar to that observed in
control cells (B). Neither addition of cholesterol on its own nor MCD with cholesterol
have any effect on CCR5 internalisation (B nor H, respectively). These results indicate
that MCD removal of cholesterol is not involved in CCR5 internalisation. The reason
why cholesterol depletion of cells does not affect CCR5 endocytic pathways is
completely unidentified. Cholesterol depletion has been shown to block clathrin coated
pits and caveolae internalisation and since CCR5 uses either endocytic pathway it may
be necessary to perform new internalisation experiments using more accurate methods to
clearly identify if CCR5-endocytosis is dependent on cholesterol. Flow cytometry
experiments would represent a more precise mode of measuring the number of CCR5
molecules left in the plasma membrane upon ligand stimulation in cholesterol depleted

membranes.
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Figure 3.12 CCR5 expression levels are not significantly affected upon cholesterol depletion.
HEK.CCRS5 cells were treated with 10 Mm MCD for 1 h, labelled with the anti. CCR5 HEK/1/85a/7a
antibody and stained with the anti-rat-FITC secondary antibody. A) Shows Immunofluorescence
experiments in HEK.CCR5 cells labelled with the anti. CCR5 HEK/1/85a/7a antibody and stained with
the anti-rat-FITC secondary antibody. B) Flow cytometry analysis of CCR5 expression in HEK.CCR5
cells after MCD treatment for 1 h. Cells were labelled with the anti. CCR5 HEK/1/85a/7a antibody and
stained with the anti-rat-FITC secondary antibody. Pictures were taken using the Zeiss Axiovision 2
system. Data shown represents mean + SEM of at least 3 independent experiments for B and a

representative picture for A.
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Figure 3.13 Effects of inhibitors on CCR5 internalisation. CHO.CCR5 cells were grown on coverslips
overnight, incubated in medium without serum for 1 h in the presence of MCD (10 mM), cholesterol (2
mM), or both inhibitors when indicated, and then incubated with 100 nM chemokines or vehicle control
for 45 min [a) control , b) CCL3 c) cholesterol, d) cholesterol+CCL3, ¢) MCD, f) MCD+CCL3,9)
cholesterol+MCD, h) cholesterol+MCD+CCL3]. Cells were washed and a stain was performed using anti-
CCR5 HEK/1/85a/7a antibody and anti-rat-TRITC. Pictures were taken using the Zeiss Axiovision 2
system. Data show representative cells from three independent experiments with similar findings (Cardaba
et al., 2008).

3.4 Discussion.

Understanding the mechanisms that regulate CCR5 signalling and internalisation
has been considered top priority since this receptor was discovered to be essential for
HIV infection. The involvement of CCR5 in inflammatory diseases like atherosclerosis

or RA is a further reason for studying this receptor’s function.

In the current chapter the role of some compounds involved in the blockage of
CCRS internalisation has been studied in the signal triggered by this receptor. For this,
the effect of inhibitors responsible for the blockage of clathrin coated pits and caveolae-
dependent internalisation pathways have been analysed on intracellular calcium
mobilization initiated by CCR5 activation. To date there are no references in the
literature concerning the effect of these molecules on CCRS5 signal transduction.
Experimental data from this study provides proof that the inhibitors of clathrin-
dependent pathways, sucrose and chlorpromazine, do not interfere with CCR5-induced
calcium release. In addition to these results it has been demonstrated that disruption of
lipid rafts with filipin and nystatin has no effect on CCR5-dependent calcium
mobilization. Interestingly, it has been reported that MCD depletion of cholesterol
significantly reduces the ability of the receptor to produce calcium fluxes, with
cholesterol repletion after MCD treatment able to recover the signal to some extent.
MCD treatment caused a huge reduction of CCL3 potency while it did not affect the
predicted efficacy. Additionally, when ligand specificity was investigated in this study,
it could be determined that the effects observed upon MCD treatment were not
chemokine specific. It was observed that cholesterol depletion-dependent blockage of

CCR5 signalling was also present when CCR5 was challenged with the chemokines
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CCL5 and CCL3-L1.The results presented here are in accordance with previous findings
where cholesterol depletion has been widely reported to cause blockage of chemokine
receptors signal transduction (Monastyrskaya et al., 2005; Nguyen and Taub, 2002b;
Pike and Casey, 2002; Rahangdale et al., 2006).

CCR5 has mainly been shown to signal through Ga; proteins although it has also
been reported to be able to interact with other G proteins (Mueller and Strange, 2004a;
Oppermann, 2004). The present report has confirmed that CCR5-signalling through Go;
increases calcium release and causes inhibition of cAMP formation (Cardaba et al.,
2008). When cells were treated with the cholesterol depleting agent MCD, it became
apparent that cAMP production is neither activated nor blocked by CCR5 stimulation.
These data might indicate that MCD promotes the association of CCRS with a Ga
subunit different from Ga; or Gas, Therefore, it could be suggested that cholesterol
removal induces the coupling of CCRS to Gag1 or Gaios, all of them known not to be

involved in regulating AC (Fields and Casey, 1997).

On the other hand, it is essential to highlight the fact that PTX blocks CCR5
confirms that Gai is not involved but does not necessarily mean that another G protein is.
CCR5 has been shown able to activate Janus Kinase 2 (JAK2) independently of G
proteins (Mueller and Strange, 2004a), which indicates that cholesterol depletion by
MCD could promote G protein-independent pathways. Therefore, further experiments
should be performed to understand the involvement of a PTX-resistant G protein in

cholesterol depleted cells.

In order to confirm a possible CCRS5 signalling through Gagi1 or Gaagizsubunits,
HEK.CCRS5 control and MCD-treated cells were treated with pertussis toxin (PTX), a
toxin that blocks all signalling from Ga;. As was expected, cholesterol depletion
promoted the binding of CCR5 to a PTX independent G protein or causes the activation
of G protein-independent pathways. Numerous studies have shown that cholesterol
depletion could cause the movement of a receptor to a different domain of the plasma
membrane, potentially allowing the coupling to a different G protein (Cuschieri, 2004;
Huang et al., 2007; Xu et al., 2006). However, no studies were found showing CCR5
translocation out of lipid rafts or re-association with a distinct G protein after lipid rafts
disruption. Thus, this might be the first time that cholesterol modulation of the plasma

membrane is believed to interfere with CCR5-G proteins association.
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CCRS5 signalling entirely depends on the type of G protein it couples to. As it has
been mentioned, CCR5 coupling to Go; proteins causes inhibition of cAMP formation
whereas coupling of the receptor to a different G protein does not affect the levels of this
important second messenger. Furthermore, findings obtained in this study indicate that
the association of the receptor with a protein different from Ga; produces weaker
calcium responses than these initiated by CCRSstimulation of Ga; which can obviously
alter many processes in the cell. Altogether these data estimate that modulation of
cholesterol levels might have important consequences in cell signalling initiated by

alterations in the coupling of CCRS5 to its heterotrimeric partner.

Interestingly, it was shown that MCD-dependent effect on calcium mobilization
and cAMP events was not related to a decrease in CCR5 expression in the plasma
membrane. These results indicate that MCD affects some of the pathways involved in
CCRS5 signal transduction without having an influence on the number of molecules

available for ligand activation.

The role of Caveolin-1 on CCR5 signalling has been analysed in this report. As
indicated, caveolae disrupting agents different from MCD did not alter CCR5 signalling,
which gives some indication of the weak role caveolae have on CCR5-dependent signal
transduction. Small interfering RNA (siRNA) represents a more accurate technique to
deplete the plasma membrane from caveolae’s most basic component, Caveolin-1.
Accordingly, siRNA was used to reduce Caveolin-1 levels and study CCR5-dependent
calcium signalling in HeLa.RC49 cells. It was observed that Caveolin-1 siRNA
transfected cells have similar ability to release calcium upon CCL3 stimulation when
compared with cells transfected with the scrambled oligomer sequence.
Immunofluorescence experiments showing that MCD, which is capable of blocking
calcium events, had no apparent effect in Caveolin-1 distribution or expression in the
cell further support this results. Interestingly, filipin, known to disrupt CCR5
internalisation, could remove Caveolin-1 expression from the surface. These findings
suggest that although Caveolin-1 is essential for receptor internalisation, it has a weak

role in CCR5-related signal transduction pathways.

Along the same lines, MCD could be shown not to have any effect in CCL3

induced CCR5 internalisation which once more supports the idea that MCD removal of
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cellular cholesterol might not affect Caveolin-1 expression and, therefore, does not
influence this endocytic pathway. Several studies have shown the importance of
cholesterol for caveolae dependent internalisation pathways (Feng et al., 2009; Hong et
al., 2009). For instance, it has been reported that B-arrestin- and clathrin-dependent
endocytosis require membrane cholesterol for LPA1 lysophosphatidic acid receptors
(Urs et al., 2005). It is also accepted that MCD clearly impairs the formation of chathrin-
coated endocytic vesicles (Rodal et al., 1999). Considering these data, it would be
expected that MCD treatment of cells impaired CCR5 dependent internalisation due to
either pathway. However, the results revealed in this chapter show that CCL3-induced
internalisation of the receptor was not altered by cholesterol depletion. These findings
are based on immunofluorescence experiments where the remaining number of CCR5
receptors upon CCL3 stimulation was resolute by sight, pointing out the need of further
experiments where the exact number of receptor molecules in the cell surface after

CCL3 stimulation in MCD and control cells could be determined.

Also, the fact that cholesterol depletion does not affect Caveolin-1 expression in
the cell membrane, strengthens the possibility that cholesterol depletion changes CCR5
conformation and promoting its interaction with Gag proteins that are stable after

cholesterol depletion due to its binding to Caveolin-1 (Oh and Schnitzer, 2001).

The interest in Caveolin-1 importance in CCRS5 signalling partly lies in the role
Caveolin plays in signal transduction pathways initiated by other receptors. For instance,
it is known that Caveolin determines cell growth and migration by acting as a
scaffolding protein. Ge et al. showed inhibition of MCP-1 induced chemotaxis, receptor
internalisation and calcium signalling of astrocytes when cells were successfully
transfected with Caveolin-1 siRNA (Ge and Pachter, 2004). Besides, an interesting study
reveals that Caveolin-1 is required for optimal calcium responses in human airway
smooth muscle, being this attributed to the fact that caveolae invaginations shorten the
distance between the receptor and the ER, in such a way that the signalling turns more
efficient (Prakash et al., 2007).

In disagreement with these reports, showing a main role for Caveolin-1 on calcium
signalling, the current study does not prove Caveolin-1 to be involved in calcium
mobilization triggered by CCR5 activation. However, there is a possibility that this

protein affects some of the other signalling pathways initiated by CCR5 activation.
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Overall, this report has provided wide evidences that cholesterol plays an essential
role in CCR5 signal transduction while having no apparent effect on its expression or
internalisation. What is more, an increase in membrane fluidity caused by cholesterol
depletion is responsible for the switch of CCR5-association from Ga; to a PTX-
independent G protein or to a G protein-independent pathway which triggers completely

different signalling pathways to the original G protein.

Cholesterol levels in the body change depending on the diet, age and can also be
highly influenced by cholesterol lowering drugs. Hence, the fact that cholesterol content
in membranes can have such a dramatic effect on the signalling of CCR5 by reducing
the amount of calcium released and by diverting its signalling to an AC independent
pathway, could have important repercussions in CCR5-derived cell signalling

mechanisms.
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CHAPTER 4- THE MONOCYTIC CELL LINE

THP-1 NEEDS CHOLESTEROL DEPLETION
FOR OPTIMAL SIGNALLING

4.1 Introduction

Human monocytes have a few characteristics that make them less than ideal for
research purposes. Two of the more important ones are that they are difficult to obtain in
large numbers and when extracted from different patients they do not represent a
homogenous group of cells. Monocytes are derived from haematopoietic stem cells.
Pluripotent stem cells from myeloid stem cells form the colony-forming unit for
granulocytes-monocytes (CFU-GM), which is the precursor of monocytes, macrophages
and granulocytes. CFU-GM differentiates into monoblasts which, in turn, differentiate

into pro-monocytes, the immediate precursors of monocytes (see Figure 4.1).
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Figure 4.1 Haematopoietic cell differentiation. THP-1 cells are in red. Arrows indicate their

differentiation potential. Diagram adapted from Auwerx et al. (Auwerx, 1991).

THP-1 is a human monocytic cell line that was obtained from the peripheral blood
of a 1 year old human male with acute monocytic leukaemia (Tsuchiya et al., 1980).
THP-1 cells are promonocytes that are very similar to human monocytes. They share
with them morphology, secretory products, oncogene expression, membrane antigens
expression and some genes involved in the metabolism of lipid derivatives (Auwerx,
1991). THP-1 cells can be differentiated into macrophages by treatment with the phorbol
ester PMA (Tsuchiya et al., 1980) or with 1,25-dihydroxyvitamin D3 (Schwende et al.,
1996). This process involves a series of morphological and physiological changes in the
cell such as loss of round shape, adherence to the tissue culture plates, nucleus
homogenous shape loss, and increase in phagocytic vacuoles in the cytoplasm (Auwerx,
1991). It is also well known that changes in certain oncogenes expression, essential for
cellular regulation, are brought about by THP-1 differentiation into macrophages
(Gowada et al., 1986). Due to these properties THP-1 cells have been extensively used in
research as a close model to human monocytes (Hiraoka et al., 2004; Tian et al.,
2008;Vaddi and Newton, 1994).
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In addition to its widespread application on monocytes research, THP-1 cells
represent a good model to study the secretion of certain proteins. This cell line has been
shown to secrete cytokines and peptides hormones in a similar manner to macrophages.
The most studied cytokine secreted by THP-1 is IL-1, which is produced upon numerous
stimuli. Other particularities of differentiated THP-1 cells are that they express the same
genes involved in lipid metabolism than macrophages, and share with them the capacity
to be easily loaded up with lipids (Auwerx, 1991). Owing to these characteristics, THP-1
cells become foam cells in the same way that macrophages do in atherosclerotic lesions,
making them an excellent model for the study of cholesterol derived pathologies. This is
something very relevant to the study being described in this chapter since cholesterol
modulation of THP-1 cells will give some indication of how cholesterol loading of

macrophages could affect the signalling properties of these cells.

Atherosclerosis is a complex process with a variable etiology generally initiated by
an excess of oxidised cholesterol formation that damages wall arteries. One of the main
characteristics of this pathology is the recruitment of monocytes and T lymphocytes to
the inflammation site by the chemokines released by damaged endothelial cells. Once in
contact with the lesion cells, monocytes differentiate into macrophages and start
absorbing the excess of cholesterol until they lyse and leave deposits of cholesterol in
the artery (Glass et al., 2006). It is known that chemokine receptors play a key role in
directing both monocytes and T cells to the inflammation site and that artificial
modulation of some of these receptors can regulate the atherosclerotic process (Phillips
et al., 2005). Thus, it is essential to understand how cholesterol modulation affects the
signalling of chemokine receptors in environments where an excess of cholesterol

governs the signalling scene.

THP-1 cells mainly express CCR1, CCR2 (Phillips, Lutz et al. 2005) and CCR5
(Cardaba and Mueller, 2009) chemokine receptors and, therefore, represent a good
model to study how chemokine signalling networks interact in a natural system. Cell
signalling experiments performed in stably transfected cells only expressing one type of
receptor would fail to represent the signalling mechanisms that naturally occur in a
living organism. In the previous chapter two cell lines stably expressing the chemokine
receptor CCR5 were used to study the signalling characteristics of this receptor in
different situations. Special interest was put on how cholesterol modulation altered

CCR5 dependent signal transduction pathways. Now the results obtained with these cell
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lines will be verified in a cell line closely related to human monocytes, endogenously
expressing CCR5. As monocytes are known to accumulate in an environment where
cholesterol levels are often elevated, especially in certain pathologies, this section will
focus on the effects cholesterol modulating drugs have on CCRS5 signal transduction in
the monocytic cell line THP-1.

42  Aim

In the current study THP-1 cells have been used to compare the results obtained
with CHO and HEK cells exogenously expressing CCR5 with a cell line naturally
expressing the receptor. The consequences of lipid rafts disruptions in CCR5-induced
signalling responses like intracellular calcium mobilization and chemotaxis assays will
be investigated. Finally, a possible mechanism through which MCD affects CCR5

signalling in this cell line will be discussed.

4.3 Results

4.3.1 Cholesterol depletion but not complexation increases

intracellular calcium mobilization in THP-1 cells.

Cholesterol is thought to be essential for the correct signalling of many GPCR
(Monastyrskaya et al., 2005; Sooksawate and Simmonds, 2001). CCR5 has also been
demonstrated to need membrane cholesterol to keep the ability to stimulate intracellular
pathways (Cardaba and Mueller, 2009; Nguyen and Taub, 2002b; Nguyen and Taub,
2003a, b)

In the previous chapter it has been shown that cholesterol extraction with MCD
but not cholesterol sequestration with other drugs had an inhibitory effect on CCR5
signalling. In this chapter the effects of lipid raft disruption were investigated in a cell
line that naturally expresses CCR5 as well as other chemokine receptors. Considering
that GPCRs share the intracellular machinery that enables signal transduction, THP-1

cells represents a more physiological system to study chemokine receptors signalling.

In this chapter, CCL3 has been used at a concentration of 200 nM in most of the
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experiments contrary to the 100 nM used in CHO.CCR5 and HEK.CCRS5 cells as the
optimal signalling of THP-1 cells is at higher concentrations than the stably transfected

cells.

When cholesterol was depleted from THP-1 cells and calcium signalling was
analysed surprising results were obtained. CCL3 activation of CCR5 in untreated cells
causes the expected increase in calcium mobilization (Figure 4.2). Interestingly, when
cells were treated with MCD this increase in calcium mobilization was far more
pronounced (Figure 4.2 A, B, C). To assess whether this increase in receptor signalling
was due to caveolae disruption we used the cholesterol sequestering drugs filipin and
nystatin, also known to disrupt lipid rafts and caveolae. Contrary to MCD treatment,
filipin and nystatin only caused a slight increase in calcium mobilization (Figure 4.2 D).
These results indicate that MCD extraction of cholesterol but not cholesterol
complexation by filipin or nystatin is responsible for the increase in intracellular calcium

release.

Dose responses performed in our laboratory indicated that the EC50 of CCL3 in
MCD-treated THP-1 cells was 200 n M. It is important to note that the concentration of
CCL3 used in this chapter doubles the one used in chapter 3, where the EC50 of CCL3
was 100 nM. The reason behind this difference is that MCD-treated THP-1 cells respond
better to higher concentrations of chemokine. Interestingly, the basal signal of THP-1
untreated cells is much lower than that of CHO.CCR5 or HEK.CCRS5 cells, which might

be due to differences in the number of CCR5 molecules expressed on these cell lines.
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Figure 4.2 Changes in intracellular calcium in THP-1 cells in the presence of inhibitors. A) Cells were
treated with MCD and challenged with 200 nM CCL3. B) Shows real traces of THP-1 cells treated with 10
mM MCD and stimulated with 200 nM CCL3. C) Shows concentration response curve for THP-1 cells
treated with 10 mM MCD. D) Cells were treated with filipin (5 pg/ml), nystatin (50 pg/ml) or vehicle
(control) and challenged with different concentrations of CCL3. Significant changes towards control cells
are indicated by asterisks (***p < 0.001). Data are expressed as either changes in fluorescence ratio [340
nm/380 nm], where the basal line before addition of chemokine is subtracted from the peak fluorescence
after addition of chemokine or as percentage of stimulation over basal, where the basal level is normalised
to 100%. Data represent mean = SEM from at least three independent experiments for the bar charts and a

representative tracer for the calcium flux. (Cardaba and Mueller, 2009)

4.3.2 Analysis of cholesterol levels after MCD and filipin

treatment

In order to understand the reasons why MCD but not filipin and nystatin had such
an enhancing effect on signal transduction as measured by calcium release, experiments
measuring the amount of cholesterol left in the membrane after MCD, filipin or nystatin
treatment were performed. An enzymatic assay was used to analyse the total

concentration of cellular cholesterol and it was found that only MCD treatment could
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reduce cellular cholesterol considerably. Whereas MCD depletes 70% of total cellular
cholesterol, filipin does not affect cholesterol concentration at all (Figure 4.3).
Therefore, it can be suggested that THP-1 cells have a higher ability to release calcium
to the cytosol when cholesterol has been moved away from the membrane. MCD and
filipin, both are known to disrupt lipid rafts and, therefore, the fact that these drugs have
different effects on THP-1 signalling points at the possibility that the increase in
signalling observed in cholesterol depleted cells occurs due to the reduced cholesterol
contents and is not related to lipid rafts disruption. Nevertheless, it could also be
considered that MCD, by extracting cholesterol from the cell without forming part of it
like filipin, has a different effect on CCR5-induced calcium signalling. Actually, it has
been reported that MCD-dependent cholesterol depletion causes increases in calcium
release whereas filipin treatment has the opposite effect (Qin et al., 2006) which
supports the different data here obtained in filipin and MCD-treated THP-1 cells.
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Figure 4.3 Effects of MCD and filipin on cholesterol contents in THP-1 cells. Cells were incubated in the
presence of MCD (10 mM) and filipin (5 pg/ml) for 1h prior to cholesterol assay performance. Data
represent mean = SEM from at least three independent experiments. Significant changes towards control
cells are indicated by asterisks ( ***p < 0.001). (Cardaba and Mueller, 2009).
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4.3.3 The effects observed in MCD treated THP-1 cells are
CCRG5 specific and cholesterol dependent.

MCD treatment of cells has a drastic effect on releasing intracellular calcium in
response to CCL3. Considering that a natural increase in cytosolic calcium concentration
triggers many signalling pathways, this vast increase in calcium mobilization could have
important effects in the ability of the cell to transmit certain signals. Consequently, it
was next sought to understand the exact mechanism behind this increase in CCR5
signalling. For this, cells were treated with inhibitors specific for different enzymes
known to be involved in calcium signalling responses activated upon CCR5 activation.
In addition to this, the possibility that signal transduction responses triggered by other
chemokine receptors had a role on the effect here described was also investigated by
stimulating cells with the CCR5-specific chemokine CCL4. With the purpose of
ascertaining that calcium was being released from ER stores due to IP3 production
triggered by CCRS5 activation, the source of calcium origin was looked at as well.
Additionally, the effects of cholesterol loading of THP-1 cells were studied to
understand if the effects of MCD were completely dependent on its ability to deplete

cellular cholesterol.

4.3.3.1 Cholesterol depletion causes increase in intracellular calcium
released from internal stores.

The increase in calcium release upon cholesterol depletion was such that the
question of whether calcium came from ER stores or from the extracellular medium
arose. CCR5 has only been shown to release calcium from internal stores but
considering the massive response obtained, the origin of calcium release upon CCR5
stimulation was investigated. When THP-1 cells were treated with MCD and challenged
with CCL3 in the absence of calcium in the medium (Figure 4.4) it could still be
observed a huge increase in CCR5 activation. This shows that, as expected, MCD
treatment of cells stimulates the release of calcium from intracellular stores and not

calcium entry from the extracellular medium.

These findings have some relevance as they indicate that the effect of cholesterol loss
from the cell is highly related to CCR5 dependent signalling pathways and not to

modifications in plasma membrane channels allowing the entry of extracellular calcium.
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Figure 4.4 The increase in calcium release observed is not dependent on extracellular
calcium. THP-1 cells were treated with 10 mM MCD and stimulated with 200 nM CCL3 in
calcium free buffer. Data represent mean + SEM from at least three independent experiments
for the bar charts and a representative tracer for the calcium flux. Significant changes towards

control cells are indicated by asterisks (***p < 0.001).

4.3.3.2 Does the CCR5 specific chemokine CCL4 also enhance calcium
release?

As it has been previously mentioned, THP-1 cells express CCR5 receptor together
with other chemokine receptors that could potentially signal upon CCL3 stimulation. For
instance the chemokine receptor CCR1 has been shown to be strongly activated upon
CCL3 stimulation (Murphy et al., 2000). In order to understand if the effects observed
upon CCL3 stimulation were exclusively due to CCR5 activation, THP-1 cells were
treated with the CCR5-specific chemokine CCL4 (Murphy et al., 2000). Interestingly it
can be observed (Figure 4.5) that CCL4 induction of CCR5 signalling, although also

increased, is not as pronounced as when the receptor is stimulated by CCL3.

These data suggest that although calcium release responses in THP-1 cholesterol
depleted cells are dependent on CCRS5 signalling, this effect might also be boosted by

other chemokine receptors such as CCR1.
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Figure 4.5 Intracellular calcium release in cholesterol depleted THP-1 cells challenged with 200 nM
CCLA4. Cells were treated with 10 mM MCD or left untreated (vehicle). Data represent mean + SEM from
at least three independent experiments for the bar charts and a representative tracer for the calcium flux.

Significant changes towards control cells are indicated by asterisks (*p < 0.05).

4.3.3.3 MCD-treated THP-1 cells signalling can be blocked with PLC,
P13K and IP3R inhibitors, all enzymes involved in CCR5 signalling.

We next tried to understand whether the effects observed upon cholesterol
depletion were related to CCRS5 signalling by blocking some of the enzymes known to
be involved in CCR5-dependent calcium release. Before studying in depth CCR5
signalling in THP-1 cells, experiments were completed analysing the enzymes involved
in calcium release upon CCRS stimulation in CHO.CCRS5, HelLa.RC49 and HEK.CCR5
cells. We demonstrated that blocking PLC and PI3-K completely abrogate calcium
fluxes initiated by CCR5 (see Figure 4.6 and 4.7). Since PLC is the enzyme responsible
for IP3 production it seems clear that its inhibition should impair any signalling
mechanism dependent on this second messenger. The role of PI3K is less apparent.
However, PLC activation has been shown to be dependent on PI3K activity (Bony,
Roche et al. 2001) and this may explain why PI3K blockage abrogates calcium
signalling. Therefore, these findings provide strong evidence that PLC and PI3K act as a
scaffold that helps transduce CCRS5 signalling. Moreover, the importance of these
enzymes on CCRS5 signalling has been reported previously (Chuang et al., 2009;
Harmon and Ratner, 2008; Huang et al., 2009a; Shideman et al., 2006).

In the next experiment therefore, we used the PLC inhibitor U73122 (Bleasdale et
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al., 1990), the PI3K inhibitor Ly294002 (Vlahos et al., 1994) and 2-APB, an IP3R
antagonist (Bootman et al., 2002) and blocker of store-operated calcium channels
(SOCs) (Iwasaki et al., 2001), to verify that CCR5 signalling is directly involved in the
effect of MCD in THP-1 cells.

Two other inhibitors were added to the ones described above as we thought they
could shed some light on the mechanisms behind calcium signalling increase.
Mastoparan is a peptide toxin obtained from wasp venom that acts as an amphiphilic G
protein activator that binds to the PTX-sensitive proteins G; and G, (Higashijima et al.,
1990; Higashijima et al., 1988). It also binds with high affinity to calmodulin and
inhibits the sarcoplasmic reticulum Ca®*-ATPase (Longland et al., 1999). The exact
effect of mastoparan on chemokine receptors signalling is not clear. It has been shown to
stimulate G proteins activity by promoting GTP binding to the Go; subunit but at the
same time it is known to stimulate the GTP-ase activity of G proteins which would result

in a shorten of the G protein lifespan (Higashijima et al., 1990).

The Rho-kinase inhibitor Y23672 was also used to try to define the mechanism
through which MCD may enhance calcium release in THP-1 cells. Rho-kinases are
important enzymes for actin polymerization and cytoskeleton rearrangement and its
activation has been shown to be dependent on membrane cholesterol levels before (Qin
et al., 2006). Additionally, MCD treatment is known to increase tyrosine-dependent
phosphorylations and the activation of the Ras-ERK MAP kinase pathway (Kabouridis,
2006) which gives some indication of the involvement of ras proteins on MCD-
dependent pathways. Consequently, a Rho-kinase inhibitor was used to analyse if
blocking this enzyme had any effect in MCD-induced increase in calcium signalling.

Figure 4.8 shows that all the inhibitors used but the rho inhibitor Y27632, are able
to abrogate the increasing effect on calcium release upon MCD treatment. These results
indicate that cholesterol depletion increases the ability of the ligand to induce calcium
mobilization through the axis G proteins-PLC-IP3. When rho-kinases (rock) are
blocked, a significant increase in intracellular calcium mobilization can be observed.
The reason why this happened is completely unknown and no reports showing similar

results could be found in the literature.



14-109

Therefore, more research on this subject would be needed to understand how
blockage of rho-kinases (rock) proteins can lead to an increase in calcium release in

cholesterol depleted monocytes.

From this experiment it can be concluded that the enhancement of calcium release
observed in MCD-dependent lipid rafts disrupted cells could be returned to basal levels
by inhibiting PLC, PI3K, by blocking the IP3R or by modulating G proteins
conformation with mastoparan. These results indicate that cholesterol depletion directly
modulate chemokine receptors dependent intracellular cascades. Some studies have
shown that MCD treatment of cells resulted in phosphorylation and activation of PLC
(Kabouridis, 2006) which would support the results obtained in this section. This
increase in PLC activity could directly enhance the amount of calcium released due to an
increase of IP3 formation and there is the possibility that MCD not only promotes the
activation of PLC but also of PI3K or IP3R.
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Figure 4.6 PLC activity is needed for CCR5 dependent calcium signalling. Cells were treated with the
PLC inhibitor 10 uM U73122 for 30 minutes or left untreated (vehicle) and were stimulated with different
concentrations of CCL3. Graph shows calcium flux assay for CHO.CCR5 (A) of HeLa.RC49 (B) cells.
Data represent mean + SEM from at least three independent experiments for the bar charts and a
representative tracer for the calcium flux. Significant changes towards control cells are indicated by
asterisks (*p < 0.05, **p < 0.01).
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Figure 4.7 PI3-K activity is needed for CCR5 dependent calcium signalling. HEK.CCR5 cells were
treated with the P13-K inhibitor Ly294002 (20 uM) for 30 minutes or left untreated (vehicle) and were
stimulated with 200 nM CCL3 prior to performance of a calcium assay. Data represent mean + SEM
from at least three independent experiments for the bar charts and a representative tracer for the calcium

flux. Significant changes towards control cells are indicated by asterisks (***p < 0.001).
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Figure 4.8 Inhibitors of the main enzymes involved in calcium release bring calcium release back to
normal levels after cholesterol depletion. A) THP-1 cells were treated with 10 mM MCD, MCD and the
PLC inhibitor, U73122 (10 uM) or left untreated (control) before cells were stimulated with 200 nM
CCL3. B) THP-1 cells were treated with MCD and MCD plus 2-APB (20 pM), mastoparan (10 pM),
LY294002 (20 uM) and Y27632 (10 uM), before they were challenged with 200nM CCL3. Data

represent mean + SEM from at least three independent experiments for the bar charts and a representative

tracer for the calcium flux. Significant changes towards control cells are indicated by asterisks (*p < 0.05,

**%p) < 0,001).

4.3.3.4 Cholesterol repletion of cells abrogates the increase in signalling.

In this section the possibility that loading cholesterol back to the cell could reverse

the effect of cholesterol depletion was analysed. Cells were treated with MCD, MCD

and cholesterol or left untreated and calcium mobilization upon CCL3 stimulation of the

receptor was measured as before. Figure 4.9 shows that cells treatment with MCD and
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cholesterol brings MCD’s signalling back to basal levels, corroborating the hypothesis

that it is the loss of cellular cholesterol what causes the increase in calcium mobilization.
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Figure 4.9 Cholesterol repletion of cells reverses the increasing effect of MCD on calcium release. A)
THP-1 cells were treated with 10 mM MCD, 2 mM cholesterol or MCD plus cholesterol before receptor
activation with 100 nM CCL3. B) Single calcium traces of THP-1 cells from A. Data represent mean +
SEM from at least three independent experiments for the bar charts and a representative tracer for the
calcium flux. Significant changes towards control cells are indicated by asterisks (*p < 0.05, ***p <
0.001). (Cardaba and Mueller, 2009)

4.3.4 MCD slightly increases CCR5 expression on THP-1 cells.

One of the possibilities considered when a decrease in cholesterol levels was
observed to cause a loss of CCRS5 signalling in CHO.CCR5 and HEK.CCR5 cells was
that MCD, by disrupting lipid rafts, was impairing CCR5 expression in the plasma
membrane. However, when cholesterol was subtracted from CHO.CCR5 and
HEK.CCR5 cells no alterations in receptor expression were observed (chapter 3). Now
the effect of MCD treatment was studied on THP-1 cells to see whether changes in
CCR5 receptor expression could explain the increase in CCRS5 dependent signalling.
CCR5 expression was measured by flow cytometry upon 30 minutes treatment with
MCD. Interestingly, it was found that cholesterol depletion slightly increased CCR5
membrane expression in THP-1 cells (Figure 4.10). Nevertheless, this increase was not
significant and cannot account for the high enhancement of calcium release observed in
THP-1 cells upon cholesterol depletion. It is worth noting that the THP-1 cells used in

this study do not consist of a uniform population of CCR5 expressing cells. As can be
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seen in Figure 4.10 B, THP-1 cells can be divided into a group of cells highly expressing
CCRG5 receptors and a group expressing low amounts of it. This might be due to cells
being in a different maturation or differentiation state. It is actually known that
chemokine receptors expression can vary along the differentiation state of THP-1 cells.
For instance, it was shown that this cell line lost CCR2 expression upon PMA treatment

whereas the levels of CCR1 remained unaltered (Phillips et al., 2005).

A study done by Nguyen et al. (Nguyen and Taub, 2002b) demonstrated that
cholesterol depletion of CEM-NKR-CCR5 cells changed the affinity of the chemokine
CCL4 for CCR5 and they demonstrated that this was due to changes in CCR5 receptor
conformation after cholesterol depletion. It could be hypothesised that this effect is
slightly different in THP-1 cells and cholesterol depletion changes CCR5 conformation
so that it is more easily recognised by the antibody used in this study. Another
possibility would be that lipid rafts disruption increases the number of CCR5 receptors
being recruited to the plasma membrane although considering that CCR5 is specifically
targeted to lipid rafts, this does not seem very likely.
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Figure 4.10 MCD treatment of cells increases CCR5 expression in THP-1 cells. A) Flow cytometry
analysis of HEK.CCR5 and THP-1 cells after treatment with 10 mM MCD for 1 h. Cells were stained
with an anti-CCR5 antibody for 1 h and the corresponding FITC-conjugated secondary antibody for 1h
and analysed using flow cytometry, data represents percentage of Geo Mean fluorescence compared to
vehicle treated (control) cells. B) Shows flow cytometry histograms analysing CCR5 expression on
control THP-1 cells or MCD-treated cells. Data represent mean + SEM from at least three independent
experiments for the bar charts and a representative tracer for the calcium flux. Significant changes
towards control cells are indicated by asterisks (**p < 0.01). (Cardaba and Mueller, 2009).

4.3.5 MCD depletion of cholesterol promotes the coupling of the
receptor to a PTX independent G protein.

In the previous chapter it was demonstrated that cholesterol depletion in
HEK.CCR5 cells causes the coupling of the receptor to a PTX-resistant G protein.
Therefore, the G protein subunit involved in calcium release signalling in THP-1 cells
was also investigated. In normal conditions THP-1 cells seem to couple to Ga; proteins
since treatment of cells with PTX significantly blocks calcium release to the cytosol (see
Figure 4.11). In the next experiments, THP-1 cells were treated with MCD for 30 min,
with PTX for 18 hours or with both substances simultaneously prior to calcium flux
measurements. Figure 4.11 shows that the effect of PTX after 2 hours treatment with the

toxin is abrogated by treatment of cells with MCD. These findings may be interpreted as
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MCD promoting the coupling of CCR5 to a PTX-insensitive G protein. These data could
help clarifying why cholesterol depletion from this cell line causes a big increase in
intracellular calcium mobilization. In HEK.CCR5 cells, the calcium response in
cholesterol depleted cells was still lower than in untreated cells. The fact that in THP-1
cells MCD treatment results in a higher response might be simply due to a more
effective CCR5-PTX-independent-G protein association in cholesterol depleted cells due

to differences between both cell lines that have not been yet characterised.
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Figure 4.11 Effect of MCD on PTX treatment of THP-1 cells. A) Cells were treated with 1 pg/ml PTX or
vehicle for two hours and 10 mM MCD was added 1 h before calcium flux was induced with 100 nM
CCL3. B) Single calcium trace of THP-1 cells treated with PTX and/or MCD before addition of 100 nM
CCL3. Significant changes towards control cells are indicated by asterisks (**p < 0.01). Data show mean
+ SEM of at least 3 experiments in the case of the bar charts and a representative tracer for the calcium
flux. (Cardaba and Mueller, 2009).

4.3.6 Is chemotaxis also increased in cholesterol depleted THP-1

cells?

One of the main roles of chemokine receptors is to direct white blood cells to
inflammation sites following a chemokine gradient. The fact that calcium responses
were so much enhanced in cholesterol depleted THP-1 cells lead to the study of other
signalling responses in this cell line. Special interest was put on cell migration responses

due to the role of CCR5 in chemotaxis in diverse human pathologies. There are
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numerous reports giving evidence that CCR5 directs migration of numerous types of
cancer cells and studies done on rheumatoid arthritis patients show that CCR5 is
involved in the excessive number of immune cells recruited to the synovial tissue. In
addition, CCRS5 has been shown to recruit T cells from the blood and brain barrier and to
cause an excess of inflammation that contributes to the development of diseases such as
Alzheimer disease (Man et al., 2007). Therefore, the aim of this study was to analyse if,
similarly to the increase observed in calcium release responses, CCR5 dependent
chemotaxis in cholesterol depleted THP-1 cells was also over-stimulated. An increase in
this pathway as significant as the increase observed in calcium mobilization could boost

cell migration in situations where it is already excessive.

Currently there are no reports giving evidence of the connection between calcium
release and chemotaxis for CCR5. The chemokine concentration needed to initiate
calcium fluxes is different from the concentration required for optimal cell migration
(Maghazachi and Al-Aoukaty, 1998) which indicates that these processes cannot be
interconnected. However, numerous studies have discovered that both actions have
common upstream enzymes like PLC or PI3K, and this opens the possibility that cell

migration requires previous calcium signalling events.

In this section it could be shown that calcium mobilization and cell migration
responses initiated by CCR5 are not interconnected. Figure 4.12 illustrates that MCD,
far from increasing THP-1 cell migration upon CCL3 exposure, almost completely

abrogates this process.

No studies have been found in the literature reporting that one specific treatment
or stimulus can lead to a dramatic increase in calcium release and to a blockage of
chemotaxis for CCR5 or other chemokine receptors. Therefore, this study provides an
interesting piece of knowledge for further research into how both pathways are

activated.
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Figure 4.12 MCD treatment of THP-1 cells blocks chemotaxis upon treatment with the chemokine
CCL3. THP-1 cells were treated with 10 mM MCD for 30 min or left untreated (control) prior to the
performance of the chemotaxis assay. Data shown represent mean = SEM of 3 independent

experiments.

4.4 Discussion

Membrane lipid microdomains differentially regulate intracellular signalling
events in THP-1 cells, which endogenously express CCR5, and cells exogenously
expressing the receptor. It has been demonstrated that an important loss of cholesterol
promoted by MCD treatment is needed for optimal calcium signalling responses in this
monocytic cell line (Cardaba and Mueller, 2009). On the other hand it has been shown
that chemotaxis processes require intact lipid rafts as shown by the fact that MCD

abrogates cell migration upon CCL3.

There is extensive evidence that MCD affects intracellular signalling pathways in
different ways depending both on the cell type and the signalling mechanism itself. For
example, Tuluc et al. (Tuluc et al., 2003) show that while cholesterol depletion with
MCD in human neutrophils has an inhibitory effect on calcium release induced by the
IL-8 binding to its receptors CXCR1 and CXCR2, this phenomenon has no effect on
calcium release induced by formyl-Met-Leu-Phe (fMLP) binding to the formyl peptide
receptor-like 1 (FPRL1). These data indicate that lipid rafts integrity plays different roles
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depending on the receptor reliance on these microdomains. Consequently, it can be said
that the same cells can trigger varying responses depending on the type of stimuli. In
their study, Tuluc et al. also demonstrated that MCD blocks Erk phosphorylation in
stimulated neutrophils while increasing phosphorylation of p38 MAPK in unstimulated
cells. Altogether, the report of Tuluc and co-workers provides strong evidence about the
differing roles played by cholesterol depletion in the stimulation of distinct receptors in
the same cell line. On the other hand, the research described in this thesis provides
evidence of the same stimuli causing opposite reactions in different cell lines. The fact
that MCD can modulate cellular signalling in an opposite way upon stimulation of a

same receptor in two different cell types has been reported before (Chen et al., 2007).

Chapter 3 has reviewed many studies highlighting an inhibitory role for
cholesterol depletion in GPCRs signalling. Although MCD treatment of cells has
generally been shown to have an inhibitory effect on cell signalling, there are numerous
examples of receptor signalling enhancement brought about by lipid raft disruption. For
instance, stimulation of the epidermal growth factor (EGF) receptor in cholesterol
depleted cells produces a significant increase in MAPK activity and enhances receptor
dimerization and autophosphorylation (Chen and Resh, 2002; Furuchi and Anderson,
1998; Pike and Casey, 2002; Westover et al., 2003). In B cells, MCD treatment also
increases calcium release through the activation of the B cell receptor (BCR) (Awasthi-
Kalia et al., 2001). Another exciting study showing that cholesterol depletion could
activate certain signalling pathways was performed by Kabouridis et al. (Kabouridis,
2006). This group shows that MCD treatment of T cell is responsible for PLC
phosphorylation and recruitment to the membrane as well as for the activation of other

important intracellular pathways.

In this chapter the effect of MCD has been compared to that of filipin, another
lipid raft disrupting agent, to understand whether MCD modulates CCR5 signalling in a
mechanism exclusively dependent on lipid raft disruption or whether there are other
factors involved. It has been demonstrated that filipin treatment slightly increases
calcium release on THP-1 cells and that treatment with this molecule is unable to reduce
total cellular cholesterol. On the contrary, MCD treatment produces a loss of 70% of
total cholesterol, giving an indication that the signal transduction enhancement observed
in cholesterol depleted cells is more likely to be due to a decrease in cholesterol

concentrations than to lipid rafts disruption.
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As it has been outlined, MCD increases calcium release in B cells through
activation of the B cell receptor (BCR) (Awasthi-Kalia et al., 2001). It is of interest to
highlight that the same group also analysed the effects of filipin treatment on calcium
signalling in B cells and demonstrated that it inhibits calcium mobilization. In an attempt
to understand the difference between these two substances, they found that MCD has a
larger capacity to disrupt lipid rafts than filipin. They state that the ability of MCD to
expulse molecules like Ga; and Gy subunits from lipid rafts and to prevent the B cell
receptor from partitioning to these membrane areas plays a major role in the effects
observed. It is important to note that MCD has also been shown to induce Ga; partition
to non-raft microdomains in THP-1 cells (Kabouridis, 2006) which gives an indication
of what could be happening in the present study. Awasthi-Kalia et al. hypothesises that
lipid rafts serve as inhibitory regions for the signalling of the B cell receptor. When in
this study filipin was used to disrupt lipid rafts, only a slight increase in intracellular
calcium mobilization was appreciated, representing another example of MCD and filipin

having different effects on the signalling of a receptor.

The loss of Gfy subunit from lipid rafts reported after MCD treatment (Awasthi-
Kalia et al., 2001) may explain a stop of signal transduction through this subunit.
Considering that calcium fluxes initiated by CCRS coupling to a Ga; protein are
triggered by the Py subunit, it may be expected that, in THP-1 cells, the lack of this
subunit in lipid rafts promotes the coupling of the receptor to a different G protein

subunit.

The situation described above would as well provide an explanation for a
reduction in THP-1 chemotactic responses. It is essential to understand that chemotactic
responses are initiated by the coupling of a chemokine receptor to Go; proteins as shown
by the fact that PTX completely abrogates this response (Thelen, 2001). Consequently,
MCD promotion of CCR5-Ga; dissociation and subsequent coupling of the receptor to a
different G protein would explain the lack of cell migration. However, as it has been
reported above, MCD could be having other effects in the cell, which could be hiding
the dependence of cell migration on calcium release and further experiments should be

done to find out the exact role of MCD on cell migration.

In the current study, it has been shown that cholesterol depletion of THP-1 cells
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might promote the association of CCR5 with a PTX-independent G protein. From this
evidence it could be inferred that the increase in calcium release observed in THP-1 cells
is due to the coupling of the receptor to a Ga subunit which enables a stronger activation
of PLC. In support of this claim, there is evidence that Gag has the ability to stimulate
PLC not only through the By subunit but also through the Ga subunit (Taylor et al.,
1991). This finding would mean double activation of PLC, which is likely to cause
higher levels of IP3 and an enhancement of calcium mobilization from the ER (see
Figure 4.13). Considering that Ga; can only activate PLC through the By subunit, it may
be expected that this new association caused the observed increase in calcium release.
Nevertheless, in chapter 3 it was stated that MCD treatment of CCR5 stably transfected
cell lines caused the association of CCR5 to a PTX resistant G protein, which had a
reduced ability to cause calcium mobilization as compared to untreated cells. A
hypothetical explanation for the differing results is that CCR5 couples to a PTX-
independent G proteins after cholesterol depletion in both cell types but, for unknown
reasons, this coupling would have a reducing effect on CCR5 signalling in CHO.CCR5
and HEK.CCR5,whereas in THP-1 it would cause the observed increase in calcium

release.

It is also important to mention that, as it has been highlighted in Chapter 3, there is
also the possibility that MCD promotes CCR5 signalling through G protein-independent
pathways. Therefore, it cannot be concluded that MCD promotes CCR5 signalling
through a PTX-resistant G protein until this has been proven.

A possible disparity in the amount of cholesterol that these cells present under
basal conditions cannot be ruled out as one of the causes for the different signalling here
observed. It has been reported that THP-1 cells might concentrate high amounts of
cholesterol due to a high uptake and a slow hydrolysis (Kritharides et al., 1998) which
could account for the increase in receptor signalling observed in cholesterol depleted

THP-1 cells but not on other cell types.
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Figure 4.13 Diagram representing a hypothetical signalling mechanism upon cholesterol depletion of
THP-1 cells. MCD promotes the coupling of the receptor to a PTX-resistant G protein such as Gag which
stimulates PLC through the Ga and the GBy subunit. (MCD promotes pathway 2). PLC double activation
produces the second messenger IP3 which releases calcium from ER stores through the IP3R. The
question mark indicates the possibility of other uncharacterised mechanisms being involved in the extra

calcium released upon CCL3 stimulation of cholesterol depleted THP-1 cells.

Another possible scenario would be that under normal conditions in THP-1 cells,
CCRS5 is located in lipid rafts and moves out of them upon ligand stimulation. Thus,
lipid raft disruption by MCD would extra activate the receptor by creating the same
environment conditions than ligand activation. There are numerous studies showing that
ligand stimulation promotes the migration of certain chemokine receptors out of lipid
rafts (Huang et al., 2007; Rybin et al., 2000). Furthermore, some reports claim that
cholesterol in the membrane acts as an inhibitor for the signalling of certain molecules.
This is the case of the B, adrenergic receptor (Rybin et al., 2000) whose signalling is

well activated upon cholesterol depletion.

In the case of CCRS5, its location upon chemokine stimulation has yet to be
investigated. CCR5 is targeted to lipid rafts but it might migrate out of them upon ligand

stimulation. There is a possibility that this happens only in monocytic cells which would
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explain the different effects cholesterol depletion has on CCR5 endogenously and CCR5

artificially expressing cells.

CCR5 forms a heterodimer with the chemokine receptor CCR2. A study
performed by Mellado et al. (Mellado et al., 2001) shows that dimerization of these two
receptors leads to completely different signalling pathways activation compared to when
the receptors were signalling independently from each other. It was demonstrated that
CCR2-CCR5 association promoted signalling responses through the PTX-resistant
protein Gaga1. Along these lines, lipid rafts disruption is believed to cause the loss of
many proteins from these regions, whereas other proteins are not affected. There is a
chance that, contrary to Goj and Gy subunits, Gogs1 IS unaffected by lipid rafts
disruption after MCD treatment. Altogether, these results set out the possibility that lipid
rafts removal in THP-1 cells promotes signalling through a PTX-resistant protein.
Additionally, MCD-induction of CCR5 association with other chemokine receptors like
CCR2 in THP-1 cells cannot be ruled out.

As discussed in the previous chapter, Caveolin-1 does not seem to be involved in
CCR5-dependent signalling in CHO.CCR5 and HEK.CCR5 cells. Nevertheless, the
studies described below show that it might be reasonable to analyse the function of this
key caveolae-structural protein in the enhancement of calcium signalling in THP-1.
Several reports have shown that under basal conditions, Caveolin-1 is associated with
the GDP-bound state of Ga; in lipid rafts in THP-1 cells and other cell systems
(Cuschieri, 2004; Huang et al., 2007; Xu et al., 2006). Of interest, all studies agree that
the association between Caveolin-1 and Go; has inhibitory effects on the signalling
induced by different receptors, which could be reversed by treatment of cells with MCD.
Furthermore, these studies prove that the reason why MCD could abrogate this effect is
that it dramatically reduces the coupling between Caveolin-1 and Ga; leading the latter

to the stimulation of diverse responses initiated by specific ligands.

In this chapter it has been demonstrated that the increase of calcium release
observed in cholesterol depleted THP-1 cells is dependent on PLC, PI3K and IP3R since
inhibition of these molecules abrogates the MCD-dependent increased calcium
signalling. This is very interesting since it excludes the possibility of an unspecific effect
of MCD treatment in THP-1 cells. In addition to this, cholesterol repletion could bring

the excess of signalling caused by MCD back to basal levels. Also, the fact that CCL4
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stimulation of THP-1 cells follows the same trend (although the effect is not as marked
as upon CCL3 stimulation) in CCR5 signalling in cholesterol depleted cells indicates
that CCR5 is directly involved in the phenomenon described. However, the involvement
of other chemokine receptors like CCR1 cannot be discarded since CCL4 causes a less
intense response in calcium mobilization when compared to the more promiscuous
chemokine CCL3.

The present report has found that THP-1 cells might behave differently to other
cell lines upon cholesterol depletion by MCD. Whereas before it was reported that
cholesterol depletion blocks CCR5-induced signalling pathways in CHO.CCRS5,
HEK.CCRS5 cells and HeLa.RC49 cells, it is now demonstrated that the monocytic cells
THP-1 react by highly increasing calcium release to the cytosol upon CCL3 treatment.
Nevertheless, these results might require further experiments in order to understand if
the effects observed among the different cell lines are really opposing. It is interesting to
note that THP-1 cells signal significantly less than the CCR5 stably transfected cell lines
tested and that, also, MCD increases CCR5 expression in these cells. Altogether, these
two characteristics could account for the increase in calcium release observed upon

chemokine stimulation.

Interestingly, other signalling processes like chemotaxis are not increased upon
cholesterol depletion, highlighting a crucial result, the non-dependence of cell migration
on calcium release for CCR5 signalling. This fact has been previously reported for other
cell systems but this is the first time this conclusion has been reached for CCR5. An
interesting study performed in PLCP knock-down mice shows that calcium responses are
suppressed in neutrophils extracted from these animals, whereas chemotaxis processes
are not altered (Thelen, 2001), which indicates that calcium fluxes are not required to

trigger cell migration.

Cholesterol enrichment of cells has negative effects on cell signalling as it reduces
calcium fluxes and cell migration: Nguyen et al. (Nguyen et al., 2004) analysed the
effects of cholesterol enrichment of T cells and found that cholesterol loading blocks
calcium release and chemotactic responses. It is known that T cells get richer in
cholesterol with aging (Douziech et al., 2002; Fulop et al., 2006; Fulop et al., 2001,
Larbi et al., 2004a; Larbi et al., 2004b; Napier et al., 2005) and, therefore, it has been

suggested that this excess in cholesterol may be responsible for the alterations in
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immune responses characteristic of aging. Actually, the same groups also showed that an
increase in cholesterol is responsible for a decrease in certain signalling pathways and

that MCD treatment of these cells could rescue the normal signalling intensity.

On the other hand, cholesterol depletion from cells has generally been shown to
block signalling responses induced by chemokine receptors, and it has been suggested
that there exists an optimal cholesterol concentration able to stabilise lipid raft structure
that should be maintained for correct signalling (Nguyen et al., 2004; Nguyen and Taub,
2004). For instance, Nguyes’s group studied the effect of cholesterol depletion with
MCD on CCRS5 signalling upon stimulation with CCL4. Contrary to the findings here
described, they demonstrated that calcium mobilization is impaired when CEM-NKR-
CCRS5 cells are treated with this cholesterol depleting agent (Nguyen and Taub, 20023,
b). This group demonstrated that the loss in calcium release was due to decrease in
CCL4 binding to the receptor due to changes in CCR5 conformation upon cholesterol

depletion.

We now here suggest that MCD might be affecting the intracellular proteins CCR5
interacts with and, therefore, modulating CCR5-derived signalling pathways. We base
this theory on the fact that PTX is no longer able to block CCR5-induced calcium
release after MCD-treatment. Contrary to Nguyen’s opinion, we have shown that an
optimal concentration of cholesterol is not always required. Here, an almost complete
lack of cholesterol, which is the base of a more fluid membrane, can increase calcium

mobilization upon CCR5 stimulation in THP-1 cells.

The differences between both studies might once more be related to the fact that
Nguyen et al. used CCRb5-transfected T cells whereas we have used THP-1 cells,
naturally expressing the receptor. It is likely that the increase in calcium signalling
observed in THP-1 cells is due to an increase in CCR5 surface expression upon MCD
treatment, which might not occur in CEM-NKR-CCRS5 cells.

These results may be useful for certain pathologies where cholesterol levels are
being artificially modified regardless the effects in chemokine receptors signalling. For
example, the use of statins to lower plasma cholesterol could have important effects in
monocytes signalling pathways. If statins treatment had the same increasing effect on

CCRb5 induced calcium release as MCD, this could have important effects in the immune
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responses of the high percentage of the population that is currently under statins
treatment. Consequently, the effect of statins on CCR5 signalling will be investigated in

detail in this thesis.

The use of MCD as a possible treatment for the altered T cells functions in an
aged population cannot be considered because lipid rafts disruption alters the
localization and signalling of a large number of proteins (Larbi et al., 2004b) and not all
these changes are likely to have a positive effect on T cells-related immune response.
On the other hand, research focusing on MCD is currently going on given that MCD’s
disruption of lipid rafts has been shown to induce apoptosis of cancer cells (Li et al.,
2006Db). This drug has already been suggested as a topical anti-HIV agent (Khanna et
al., 2002) and, considering the data highlighted above, it appears that researchers begin
to weight up its use for other pathologies. The information presented in this study,
especially the two main effects of MCD on THP-1 cells, enhancement of calcium
release and inhibition of cell migration, would need to be carefully measured in the case

that this drug is finally accepted for further trials.

White blood cells increasing calcium-derived signalling pathways or decreasing
their migratory rate in cholesterol poor membranes can have crucial implications
especially considering cholesterol level fluctuations in the body. In humans a rise in
cholesterol serum is likely to occur with aging and certain diseases and this might affect

the signalling behaviour of receptors such as CCR5 in vivo.
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CHAPTER 5 - ANALYSIS OF INTRACELLULAR

CALCIUM CHANNELS. HOW ARE CALCIUM
RESPONSES ORIGINATED?

5.1 Introduction

Being involved in almost all cellular processes that take place in a cell, calcium is
considered one of the most versatile second messengers that exist. It has the important
task of transmitting extracellular information into cells to regulate the way they behave
(Berridge et al., 2000). Thus, intracellular calcium homeostasis should be tightly

regulated in order to avoid the development of unexpected processes.

Calcium regulates key functions on a great number of physiological processes
from birth to death. In mammals the first lot of calcium fluxes occurs during the
fertilisation process and is essential for the embryo to start dividing into daughter cells.
After this initial role, calcium oscillations continue to contribute to cells differentiation
and embryo formation (Berridge et al., 1998). Besides, calcium signalling is crucial for
skeletal, smooth and cardiac muscle contraction and for cell proliferation as shown by
the fact that calcium is in the centre of some of the newest chemotherapy approaches
(Florea and Busselberg, 2009). This ion is also essential for transmitting neuronal
signals and for the processes of learning and memories creation (Berridge, Bootman et
al. 1998). Furthermore, high concentrations of calcium in the cytosol are known to

control cell death and apoptosis (Verkhratsky, 2007) as will be discussed later.

The mechanism connecting CCR5 stimulation with an increase in intracellular
calcium has been explained in the introduction of this thesis (look at introduction for
references). Briefly, CCR5 stimulation promotes the liberation of IP3 from PIP2 by the
action of PLC on PIP2. IP3 binds to its receptor, IP3R, in the ER, what causes calcium
mobilization from stores in the ER. Calcium release from the ER can occur through
stimulation of the IP3R or RyR. This increase in intracellular calcium triggers the
opening of other calcium channels situated in the plasma membrane like voltage-
operated calcium channels (VOCs) in a mechanism called capacitative calcium entry
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(CCE) or store operated calcium entry (SOCE). This process increases even more the
concentration of calcium ions in the cytosol and activates an ER calcium ATP-ase pump
called SERCA which allows the refill of ER stores.

IP; was identified as a product of a membrane inositol lipid able to trigger
important signalling cascades and since then it has been considered the main
intracellular calcium releasing messenger (Berridge and Irvine, 1984). A few years later
the IP3R was found in the ER and classified as a calcium channel and an IP3 binding
transmembrane protein (Streb et al, 1983). The IP3R is composed of 4 subunits similarly
to other calcium channels proteins. The channel region is located in the C terminus of
the receptor whereas the IP3 binding site is located in the N-terminus. Upon IP3 binding,
the receptor suffers important conformational changes that allow the formation of the
pore channel and release calcium into the cytosol by regulating the openness of the
calcium channel (Streb et al, 1983). IP3Rs are stimulated by the second messengers I1P3
and calcium and can be blocked by caffeine (Sei et al., 2001) and heparin (Ehrlich and
Watras, 1988). Many different kinases, PKC among them, can phosphorylate the IP3R.
Actually it is considered that PKC phosphorylation of IP3R could represent a feedback

mechanism in order to stop calcium release processes (Vanderheyden et al., 2009).

RyRs are a second type of receptors that upon certain stimuli open calcium
channels that release calcium to the cytosol. They are formed by four subunits leaving a
channel pore in the middle and are mainly expressed in the Endoplasmic Reticulum (ER)

and in the sarcoplasmic reticulum (SR) membrane (Mackrill, 2010).

There are two main types of RyR, RyR1 and RyR2. RyR 1 is mainly expressed in
the SR terminal cisternae of skeletal muscle and has a key role in muscle contraction.
Some defects in this receptor’s function or conformation are linked with many
pathologies. For instance, it was found that transgenic mice lacking RyR1 died
perinatally due to problems derived from diaphragm contraction (Mickelson, Gallant et
al. 1988). Another common and serious pathology, malignant hyperthermia (MH),

characterised by hyperthermia, an unexplained increased in the amount of expired

Carbon dioxide, muscle rigidity, acidosis and hyperkalemia, is caused by defects in the
gene encoding for RyR1 that creates an imbalance in calcium homeostasis (Mackrill;
Mickelson et al., 1988).
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RyR 2 is expressed at the highest levels in cells from the heart and any defects on
the receptor are associated with arrhythmias and other cardio pathologies (Thomas et
al.2010) as well as with epilepsy and neuron degeneration (Mackrill, 2010; Stutzmann et
al., 2006).

RyRs can be stimulated by ryanodine, by the second messenger cyclic adenosine
diphosphate ribose (CADPR) (Prakash et al., 1998) and by caffeine (Bhat et al., 1997)
and are known to be blocked by high concentrations of ryanodine and ruthenium red
(Ozawa, 2001). The same compound, ryanodine, locks the RyRs at half-open state at
nanomolar concentrations, and fully closes them at micromolar concentration
(Wingertzahn and Ochs, 2001).

In 1990, Wakui et al. analysed the role played by calcium ions in the cytosol in the
stimulation of calcium release from ER stores. According to their experiments, calcium
is able to stimulate calcium release from a calcium channel that is not sensitive to its
blockage by heparin clearly pointing at the RyR (Wakui et al., 1990). It is confusing to
understand the connection between IP3 and RyR receptors. Taking into account Wakui’s
view that calcium release from ER stores only stimulates RyR, would mean that the
calcium released through RyR has no effect on IP3R. Nevertheless, some researchers
have shown that this mechanism does not always occur. Gerasimenko et
al.(Gerasimenko et al., 2003), claim that RyR stimulation dependent calcium signalling
was not affected by modulation of IP3R, which according to them indicates that IP3R

and RyR can be activated independently of each other.

On the other hand, there are studies showing that RyR and IP3R signalling are
interconnected. Cancela et al. (Cancela, Gerasimenko et al. 2000), showed that
inhibition of the ryanodine receptor by high concentrations of ryanodine could block
IP3-dependent calcium release from the IP3R. Similarly, they found that micromolar
concentrations of caffeine, which blocks IP3R, produced complete inhibition of calcium
mobilization upon RyR agonists. According to this study, calcium release due to RyR
inhibition would reduce the amount of calcium released through IP3R and vice versa.
Overall there seems to be a lack of agreement in the mechanisms that link these two

receptors.



|5-129

Table 5.1 Agonists and antagonists of ER and acidic vesicles membrane proteins.
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Ryanodine Ante;l onist and Ochs, 2001)
g (Ozawa, 2001).
(100 uM)
SADPR Agonist gF;glg)ash et al,
Agonist (Dammermann
NAADP and Guse, 2005)
(Bhat et al,
. . 1997)
. Antagonist  Agonist .
Caffeine Sei et al., 2001
(>20mM) (<20 mM) EWakui et al).
1990)

. . (Ehrlich and
Heparin Antagonist Watras, 1988)
:?eléthen'un Antagonist (Ozawa, 2001).

(Thastrup et al.,
Thapsigargin Antagonist 1990)
Bafilomycin Antagonist g;%;u)chl et al.,
v . .
Calcium Agonist? Agonist g\;\gaolgm et al,

ATP-ases, are enzymes that hydrolyse ATP to ADP and produce free energy that
is used to transport different molecules against their concentration gradient (Vangheluwe
et al., 2005). In this chapter two of these ATP-ases will be analysed in more detail. The
ER calcium ATP-ase (SERCA) and the H+ ATP-ase situated in acidic organelles.
SERCA transports calcium ions to the lumen of the ER or sarcoplasmic reticulum (Inesi
et al., 2005) whereas the H+ ATP-ase has the role of keeping a low PH in acidic
organelles (Furuchi et al., 1993).

In 1989 Thapstrup et al. (Thastrup et al., 1990) found the mechanism of action of
thapsigargin, a tumour-promoting molecule, which had been widely used to empty ER
stores. They demonstrated that thapsigargin blocks SERCA and produces the leakage of
calcium from ER stores, emptying them and impairing further stimulation of calcium

channels in this organelle.
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As explained, calcium signalling is essential for a wide array of cellular
mechanisms and alterations on these processes can lead to abnormal conditions. A key
process for calcium homeostasis is the one regulated by the mitochondria, where
calcium released by the ER is normally accepted by this organelle to be later returned to
the ER. However, in situations where the levels of calcium are excessive, the
mitochondrial metabolism becomes altered which can cause the activation of apoptosis

processes (Duchen, 2000)

Compounds directly modifying calcium balance (Luciani et al., 2009; Martikainen
et al., 1991) and many genes encoding for proteins that change intracellular calcium
concentrations (Baffy et al., 1993; Okamoto et al., 2000; Pan et al., 2000) play key roles
in apoptotic processes, highlighting the importance of intracellular calcium responses
upon extracellular stimuli. For instance, Pan et al. (Pan, Damron et al. 2000)
demonstrated that sustained depletion of ER calcium stores through RyR activation led
to apoptosis of RyR transfected CHO cells. Another clear illustration that emptying ER
stores can lead to apoptosis is represented by the inhibition of SERCA with thapsigargin,
which leads to continued release of calcium from ER stores and triggers cellular

programmed cell death (Denmeade and Isaacs, 2005; Sohoel et al., 2006).

In mammalian cells calcium stores are mainly situated in the ER but other
organelles such as the nucleus, mitochondrion or acidic granules such as lysosomes,
endosomes or exocytic vesicles can also serve as calcium reserves (Verkhratsky, 2007).
Actually, it has been shown that in pancreatic acinar cells, IP3 was able to release
calcium not only from the ER but also from acidic stores (Gerasimenko et al., 2006).
Bafilomycin-Al, a macrolide antibiotic isolated from the fermentation of Streptomyces
spp, which selectively inhibits the vacuolar-type proton translocating ATP-ases, was
shown to decrease the amount of calcium ions released upon IP3 stimulation.
Considering that bafilomycin-Al treatment of cells blocks the acidification of acidic
vesicles and prevents any calcium ions from being released from these cellular
compartments (Furuchi et al., 1993), this group concluded that acidic vesicles were used

as calcium stores as well as ER stores.

It is essential to emphasise that the involvements of proteins like RyR, SERCA or
H+ATP-ases in CCR5 signalling has not been studied. There seems to be a lack of

knowledge of the exact mechanism coupling chemokine receptors with intracellular
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calcium responses.

Although IP3 production, binding to IP3R and calcium release to the cytosol upon
ligand binding, are processes generally accepted for all GPCR leading to PLC activation,
so far not many studies have characterised these cascades for CCRS5. In the introduction
of this thesis we have reported that calcium responses could be initiated by the IP3, the
CADPR and the S1P pathways, highlighting the possibility that some of the calcium
fluxes triggered by CCR5 activation could be dependent on cADPR or S1P.

Accordingly, it was demonstrated that RANTES-induced calcium mobilisation
could be partially inhibited by both, molecules blocking RyR and IP3R (Inngjerdingen et
al., 1999), showing a role for both receptors in this chemokine-induced calcium
responses. The authors of this study suggest that Rantes stimulates both, the IP3R and
the cCADPR pathways. The idea that RANTES can evoke calcium signals through the
stimulation of the second messenger cADPR has been demonstrated before (Partida-
Sanchez et al., 2004; Shideman et al., 2006). Therefore, it appears that calcium release
upon CCR5 receptor activation could in part be triggered by cADPR binding to RyR.

This work has intended to analyse how modulation of some of the proteins
involved in the uptake and release of calcium in ER stores with specific inhibitors or
through changes in the fluidity of the ER membrane, could affect CCR5 signalling as
measured by calcium release. In order to understand if CCR5-induced calcium release
was dependent on acidic reserves, the effect of the H+ ATP-ase pump situated in

lysosomes and acidic vesicles was also analysed.

5.2 Aims

Although a few studies have claimed a role for the second messenger cADPR,
calcium responses originated upon CCR5 stimulation are mainly reported to be due to
IP3 binding IP3R. In this thesis we have previously shown that an IP3R antagonist was
able to suppress CCR5 signalling and that extracellular calcium was not needed for
CCR5-induced calcium fluxes, which points at intracellular calcium stores as the source
of this second messenger. Yet, the mechanism responsible for calcium release to the
cytosol through the IP3R upon CCRS5 stimulation may be influenced by other factors
that have not been characterised. Therefore, the aim of this chapter is to study in detail
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how modulation of other membrane proteins situated near the IP3R affect its activation.
Special interest has been put on studying these processes in cholesterol depleted THP-1
cells, seeking to understand the unsolved mechanism leading to the increase in calcium

signalling in THP-1 cells lacking cholesterol described in the preceding chapter.

5.3 Result

5.3.1 CCRb5-induced calcium responses come from ER stores.

In the first experiment we have determined the origin of calcium mobilization.
HEK.CCR5, CHO.CCR5 and THP-1 cells were treated with the SERCA inhibitor
thapsigargin before measuring calcium mobilization. Thapsigargin only blocks
responses coming from the ER and, therefore, this experiment would provide
information about the possible implication of other organelles in the calcium fluxes
observed upon CCR5 stimulation. Figure 5.1 shows that 30 minutes treatment of cells
with thapsigargin was enough to block calcium signalling upon CCL3 stimulation in the
three cell lines studied, indicating that CCR5-dependent calcium release has its origins

in ER stores.
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Figure 5.1 Thapsigargin treatment blocks calcium mobilisation. CHO.CCR5, HEK.CCR5 and THP-1 cells
treated with 1uM of TG or left untreated (control) and were stimulated with CCL3 200 nM and calcium
flux was measured. Significant changes towards control cells are indicated by asterisks (***p < 0.001). The

points plotted are the mean and SEM of 3-5 independent experiments.

5.3.2 Stimulation of RyR leads to an increase in IP3R activity

upon CCL3 stimulation.

RyR can release calcium to the cytosol upon stimulation with different
compounds. Caffeine and ryanodine have been shown to act as agonists of this receptor.
Caffeine can act as an IP3R antagonist at high concentrations or as RyR agonist at low
concentration (Bhat et al., 1997; Sei et al., 2001).

Here, how stimulation of RyR by caffeine could affect IPs-induced calcium release
in HEK.CCR5, CHO.CCR5 and THP-1 cells was analysed. It can be observed that
caffeine increased calcium release in CCR5-stimulated CHO.CCR5 (Figure 5.2 A) and
HEK.CCR5 cells (Figure 5.2 B). This indicates that either calcium released from RyR
stimulates the IP3R consequently increasing calcium mobilization or that CCL3 activate
RyR and, therefore, an agonist of this receptor enhances the response. Nevertheless, it
can be appreciated that caffeine has a different effect in THP-1 cells (Figure 5.2 C) than
in CHO.CCR5 or HEK.CCRS5 cells. Whereas caffeine significantly increases calcium
signalling responses in CHO.CCR5 and HEK.CCRS5 cells confirming its role as a RyR

agonist, it reduces them in THP-1 cells, suggesting that in this cell line caffeine works
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by blocking IP3R, maybe due to a higher affinity of this molecule for the IP3R in THP-1
cells. The different ability of caffeine in promoting calcium release raises the possibility
that there may be a slight variance in the function of IP3R and RyR among these cell

lines.
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Figure 5.2 Effects of RyR stimulation with 10 mM caffeine prior to 200 nM CCL3 addition to the
CHO.CCRS5 (A), HEK.CCR5 (B) and THP-1 cells (C). Cells were pre-treated with caffeine for 30
minutes. In B, HEK.CCR5 cells were also treated with 10 mM MCD and MCD plus caffeine for 30
min prior to chemokine challenge of the receptor. Significant changes from control cells are indicated
by asterisks (*p < 0.05, **p < 0.01). The points plotted are the mean and SEM of 3-5 independent

experiments.

To ascertain that THP-1 behaviour upon RyR stimulation was different from the
effect observed in stably transfected cells, low concentrations of ryanodine, another RyR
agonist, were next used to observe the consequences of RyR stimulation on IP3R-
dependent signalling. We could observe that, contrary to the effects of caffeine on THP-
1 cells, ryanodine stimulation of RyR significantly increased intracellular calcium

mobilization through CCRS stimulation in all cell lines used (Figure 5.3).
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Figure 5.3 Effects of RyR stimulation with 10 uM ryanodine prior to 200 nM CCL3 addition to cells.
A) Shows bar chart of HEK.CCR5 cells treated with ryanodine 10 uM or left untreated. B) Shows real
traces of calcium flux in HEK.CCR5 cells. C) Shows THP-1 cells. D) Shows CHO.CCR5 cells.
Significant changes towards control cells are indicated by asterisks (*p < 0.05). The points plotted are
the mean and S.E.M of 3-5 independent experiments for the bar chart and a representative trace of at

least 3 independent experiments for the real time calcium traces. (Cardaba and Mueller, 2009).

Interestingly, ryanodine enhances CCR5 signalling in stably transfected cells and
in THP-1 cells which indicates that stimulation of RyR has a positive effect in the
response triggered by CCRS5 activation. We suggest that part of the calcium signalling
observed upon CCL3 activation of the receptor is due to the generation of second

messengers able to activate not only IP3R but also RyR.

5.3.3 Blockage of lysosomes H+ ATP-ase increases calcium

release.

Although thapsigargin’s complete blockage of calcium release upon CCRS
stimulation clearly pointed at ER stores as the source of calcium, another proton pump
inhibitor was tried to rule out the possibility that other organelles were also involved in

calcium mobilization. The proton pump situated in lysosomes and acidic vesicles and
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responsible for keeping an acidic environment, was next targeted with bafilomycin-Al, a
macrolide antibiotic derived from Streptomyces griseus which serves as a proton pump
blocker (Furuchi et al., 1993). Blockage of this pump alters calcium responses coming
from acidic stores. However, as Figure 5.4 shows, when we treated CHO.CCR5 cells
with bafilomycin-Al1 and stimulated them with a CCR5 ligand, a significant

enhancement on calcium occurred.
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Figure 5.4 Blockage of the H+ATP-ase of acidic granules in CHO.CCR5 cells produces an increase in
intracellular calcium mobilization. Cells were treated with 100 uM bafilomycin and stimulated with 200
nM CCL3. Graph shows changes in fluorescence ratio [340 nm/380 nm]. Significant changes towards

control cells are indicated by asterisks (*p < 0.05). Data represent mean = SEM from at least three

5.3.4 Effect of cholesterol depletion of THP-1 cells in ER calcium

channels.

In this chapter we have shown how modulating some receptors and pumps in the
ER membrane and in the lysosomes membrane can affect CCR5-dependent calcium
release. In this next set of experiments it is sought to investigate whether the same
effects can be observed in the calcium responses occurring in cholesterol depleted THP-
1 cells. With this purpose, THP-1 cells were treated with MCD and subsequently treated
with thapsigargin, caffeine, ryanodine or bafilomycin-Al. Special attention was put on
understanding if any of these molecules were behind the ability of these cells to increase

its signal responses upon CCR5 activation in the absence of cholesterol.
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5.3.4.1 Cholesterol depletion of THP-1 cells abrogates the inhibitory effect
of thapsigargin in calcium release.
Here THP-1 cells were treated with MCD and with MCD and thapsigargin to
investigate if the unexpected effects in calcium signalling observed in cholesterol
depleted cells (Chapter 4) were related to changes in intracellular calcium channels.

Thapsigargin was expected to block calcium release as it had been observed
before. Nevertheless, it could be appreciated that thapsigargin treatment of THP-1 cells
lacking cellular cholesterol was unable to reduce calcium mobilization upon CCR5
treatment (Figure 5.5 A and B). In an attempt to understand thapsigargin’s effect in
MCD-treated THP-1 cells, the experiment was repeated in calcium free serum to exclude
the possibility that MCD in the presence of thapsigargin was promoting calcium entry
from the extracellular medium. Indeed, the same results were obtained (Figure 5.5 D)
when a calcium free buffer was used, indicating that calcium origin was the intracellular
stores and that somehow, thapsigargin was not able to block SERCA after cholesterol
depletion. Additionally, the same data was obtained when the CCR5-specific chemokine
CCL4 was used to trigger calcium responses (Figure 5.5 C), highlighting the CCR5-

specificity of this process.

It is interesting to observe that thapsigargin’s capacity to block the calcium ATP-
ase, SERCA, is lost in cholesterol depleted membranes. This could be due to calcium
being released from different calcium stores in the absence of cholesterol or what is
more likely, due to changes in SERCA pump conformation in a more fluid membrane
which would alter its affinity for this inhibitory molecule as shown by the lack of effect
of thapsigargin. Nevertheless, since not enough data has been obtained regarding this
mechanism, only a hypothesis can be made.
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Figure 5.5 Increases in membrane fluidity abrogate the effect of thapsigargin. THP-1 cells were treated
with 10 mM MCD, 1 uM thapsigargin or both, and stimulated with 200 nM CCL3 (A, B and D) or CCL4
(C). B shows calcium single traces and D shows cells treated in calcium free medium. Data are expressed
as either changes in fluorescence ratio [340 nm/380 nm] where the basal before addition of chemokine is
subtracted from peak fluorescence after addition of chemokine or as percentage of stimulation over basal
where the basal level is normalised to 100%. Significant changes towards control cells are indicated by
asterisks (**p < 0.01, ***p < 0.001). Data represent mean + SEM from at least three independent
experiments for the bar charts and a representative tracer for the calcium flux data. (Cardaba and Mueller,
2009).

5.3.4.2 Blockage of the lysosomes H+ ATP-ase and stimulation of the RyR
drastically enhances the previously amplified calcium response in MCD-treated
THP-1 cells.

Due to the results obtained in thapsigargin treated cells, our next aim was to study
MCD’s effect on another proton pump situated in vacuoles and other acidic vesicles to
see if this protein was also altered by cholesterol depletion. This pump can be blocked
by treatment with bafilomycin-Al. As Figure 5.6 shows, bafilomycin treatment of cells
produced a huge increase in the already increased response observed in MCD treated
cells. Overall, it can be appreciated how simultaneous treatment of MCD and
bafilomycin-Al increases THP-1 cells response to CCL3 stimulation around 8-fold. The

mechanism used by bafilomycin-Al to increase calcium release from intracellular stores
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is not understood.

In order to investigate this further, another ER membrane protein was analysed.
Cholesterol was next depleted of THP-1 cells and the effect of RyR activators was
measured. As it can be observed in Figure 5.7, caffeine and ryanodine treatment of
cholesterol depleted THP-1 enhanced even further the amount of intracellular calcium
mobilization, pointing once more at the possibility that CCR5 activation stimulates RyR.
We suggest that modification of SERCA pump and RyR conformation or function could
partly explain the increase in CCR5 signalling observed in THP-1 cholesterol depleted

cell.
On the whole these results show that cholesterol depletion does not only change

the plasma membrane composition but also alters other intracellular membranes like the

ER or the lysosomes membranes having important effects in cell signalling.
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Figure 5.6 Blockage of the acidification process of acidic granules further stimulates calcium release
in MCD treated THP-1 cells. THP-1 cells were treated 10 mM MCD or MCD plus 100 puM
Bafilomycin for 30 minutes and challenged with 200nM CCL3. Subsequently intracellular calcium
concentrations changes were measured. Significant changes towards control cells are indicated by
asterisks (*p < 0.05, **p < 0.01). Data represent mean = SEM from at least three independent

experiments.
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Figure 5.7 Caffeine and ryanodine drastically stimulate calcium signalling in cholesterol depleted cells.
THP-1 cells were treated with MCD (10 mM) and then further stimulated with the ryanodine receptor
agonist caffeine (10 mM) and ryanodine (10puM) prior to 200 nM CCL3 stimulation. B and D show real
traces for a representative experiment of A and D. Data are expressed as either changes in fluorescence
ratio [340 nm/380 nm] where the basal before addition of chemokine is subtracted from peak fluorescence
after addition of chemokine or as percentage of stimulation over basal where the basal level is normalised
to 100%. Data represent mean + SEM from at least three independent experiments for the bar charts.
Significant changes towards control cells are indicated by asterisks (*p < 0.05, **p < 0.01, ***p < 0.001).
(Cardaba and Mueller, 2009).

5.4 Discussion

In this chapter the mechanisms through which CCR5 induces calcium release have
been investigated focussing on the possible interactions among IP3R and other ER
calcium regulatory membrane proteins. Up to date it is still not clear how calcium
responses are affected by the modulation of the different ER membrane proteins in
chemokine receptors signalling. It is generally accepted that CCR5-dependent activation
of the By subunits of G proteins activates PLC and causes the production of the second

messenger IP3, which binds to the IP3R, producing calcium release from ER stores.

However, the ER membrane has other calcium dependent proteins that may have an

effect on the stimulation of IP3R.
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Characterising the interactions among ER calcium dependent proteins may provide
new perspectives on its role in CCR5 signalling and especially on the possibility that
calcium signalling is differently regulated inTHP-1 and CCR5 transfected cells. Hence,
the first aim of this chapter was to analyse the relation between the IP3R, the RyR and
the SERCA pump, all of them situated in the ER membrane in CCR5 stably transfected
and in THP-1 cells. A further aim was to understand if cholesterol depletion with MCD
in THP-1 cells modulated the conformation or function any of these proteins which
could somehow explain an increase in intracellular calcium mobilization upon CCR5

stimulation only in this cell line.

As explained in the introduction of this chapter, many studies have analysed the
possible interaction between signals stimulating calcium release from the IP3R and the
RyR but no studies focussing on this area have been performed for CCR5 signalling.
Although it is generally accepted that the calcium fluxes produced upon CCR5
stimulation only activate the IP3R, there are reports showing that cCADPR pathways
activated by the CCRS5 ligand CCL5 also take part in inducing calcium responses.
Besides, there is the possibility that under physiological conditions stimulation or
blockage of IP3R’s neighbour receptors or proteins have an important effect on CCR5

signalling.

We initiated the results section of this chapter by analysing the effect of SERCA
blockage on CCRS5 signalling. To our knowledge, only one study performed in rat
microglia has previously shown that CCR5 calcium responses can be blocked by
thapsigargin (Boddeke et al., 1999). In accordance with this group, in the experiments
here presented, we demonstrated that IP3-evoked flow of calcium into the cytosol has its
origin in ER stores since, as expected, thapsigargin treatment of cells has a blocking

effect in CCRS5 induced calcium fluxes in all cell lines used.

Further evidences that calcium comes from internal stores are highlighted by the fact
that the observed signalling was not affected by removal of extracellular calcium.

We could also prove that CCR5-induced calcium release could be potentiated by
cells treatment with drugs like caffeine and ryanodine, both able to stimulate RyR
dependent calcium release. These data suggest that either CCR5-induced calcium
responses through IP3R are dependent on the open state of the RyR or that CCR5-

dependent calcium signalling involves direct stimulation of the RyR as has been
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reported before (Cancela et al., 2000; Partida-Sanchez et al., 2004; Shideman et al.,
2006). Interestingly, we could also show that caffeine treatment of cells, contrary to its
effect on CHO.CCR5 and HEK.CCRS5 cells, did not activate calcium fluxes in THP-1
cells. On the other hand ryanodine stimulation of the RyR enhanced calcium responses
triggered by CCRS5 stimulation in all cell lines studies, which could be explained by the
property of caffeine to block IP3R. The fact that caffeine treatment of cells increases
IP3R dependent calcium release only in CHO.CCR5 and HEK.CCRG5 cells highlights the
possibility of a difference in RyR conformation or function between CCR5 stably

transfected cells and THP-1 cells.

In the present study, the possibility that CCR5 had the ability to release calcium
from other organelles different from the ER was considered. We have shown that CCR5-
induced calcium release was enhanced in all cell lines when bafilomycin-Al, a blocker
of the H+ ATP-ase situated in acidic organelles, was used. A reduction of calcium
signalling would have indicated that part of the response originated upon CCR5
stimulation was originated in acidic calcium reserves. However no explanation could be
found for a bafilomycin-dependent increase in the amount of intracellular calcium

liberation upon CCR5 stimulation.

Remarkably, we have demonstrated that in THP-1 cells, MCD treatment can
reverse the blocking effect that thapsigargin has on calcium release upon CCR5
activation (Cardaba and Mueller, 2009). This may be the first time a study has shown
that cholesterol depletion might have an effect on proteins located in internal organelles.
Considering that membrane cholesterol depletion by MCD has been broadly used as a
tool to study the dependence on lipid rafts of numerous signalling molecules, these

results might provide new insights into the mechanisms behind it.

Furthermore, the results here presented may be important for studies focussed on
thapsigargin as a chemotherapeutic agent. Thapsigargin is currently under investigation
for the treatment of slow progression cancers like prostate cancer (Jakobsen et al., 2001;
Legrand et al., 2001; O'Neill et al., 2006). Normal chemotherapy is not effective for
these type of cancers due to their low proliferative rate and, therefore, new approaches
are being investigated with drugs inducing programmed cell death like thapsigargin. The
data provided in this study have shown that cholesterol modulation of the membrane can

affect the ability of thapsigargin to block SERCA pump in the monocytic cell line THP-
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1. In the case that thapsigargin derivatives are finally approved for prostate cancer
treatment, the study of how cholesterol fluctuations could affect its function should be
further analysed on prostate cells, especially taking into account that cholesterol

modulation drugs are commonly prescribed nowadays.

It is worth noting that not only thapsigargin but also MCD is in the spotlight for
new therapies. Topical application of MCD has been considered for the prevention of
HIV infection and other sexual transmitted diseases (Hughes et al., 2007; Hanna et al.,
2002) and also as a co-therapeutic agent in the treatment of certain types of cancers. Of
note, numerous tumours have been shown to be sensitive to MCD treatment (Fedida-
Metula et al., 2008; Li et al., 2006b). Li’s group demonstrated that cancerous cells in
breast and prostate cancer patients express more lipid rafts that healthy cells and that
MCD-induced raft disruption could be directly linked with apoptosis of cancerous cells.
Furthermore, MCD is widely used as an effective tool to deliver drugs into cells. For
instance, some recent studies (Yadav et al., 2009; Yallapu et al.) showed that curcumin
anticancerous and anti-inflammatory effects were highly increased when it was
encapsulated into the MCD cavity. These reports point at the possibility of MCD being
used as a drug for human use in the future and highlight the need for a better
understanding of its effect on calcium release processes involving ER transmembrane

proteins such as SERCA pump.

The work here presented points out some differences between stably transfected
cell lines and THP-1 cells. It is possible that the ER membrane of monocytic cell lines
is slightly different to that of CHO.CCR5 and HEK.CCR5 cells, which could explain
differences in the conformation of ER membrane embedded proteins making them more

or less sensitive to certain compounds.

The fact that cholesterol depletion produced such a big increase in intracellular
calcium mobilization in thapsigargin-treated THP-1 cells was totally unexpected. It is
known that MCD is a cell permeable molecule able to deplete cholesterol from different
cellular compartments and affect their function (Ziolkowski et al.). Therefore, the effect
cholesterol depletion had on calcium release from ER stores, through RyR and IP3R,
and acidic organelles was analysed. Curiously, we found that cholesterol depletion not
only abrogated the effect caffeine had on calcium mobilization on untreated THP-1 cells

but it also increased calcium release in caffeine treated cells to a further extent than in
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MCD-only treated cells. Furthermore, the effect of MCD in THP-1 cells was also
increased when cells were treated with ryanodine. Importantly, calcium does not come
from the extracellular medium since when the experiment was repeated in a calcium
free buffer, the same results were obtained. These data could indicate that MCD, by
changing cholesterol concentration from the ER membrane, alters the conformation of
some of the proteins resident on it. It could be hypothesised then that a more fluid ER
membrane increases the open probability of both, RyR and IP3R while also alters the
function of SERCA pump. Cholesterol depletion could be altering IP3R and RyR
conformation so that ryanodine potentiates the effect of MCD and caffeine passes from

blocking the former in normal conditions to activate the latter in MCD treated THP-1.

However, as it has been demonstrated in chapter 4, the IP3R antagonist 2-APB
blocked calcium mobilization from the ER in cholesterol depleted THP-1 cells. These
findings might represent the different properties of two IP3R antagonists when binding
IP3R. We hypothesise that for unknown reasons caffeine does not block IP3R in an ER

fluid membrane whereas 2-APB does.

Similarly to what was observed after ryanodine treatment, the vacuoles and other
acidic granules H+ ATP-ase inhibitor bafilomycin-Alwhich had no effect on THP-1
untreated cells, highly increased calcium release in cholesterol depleted THP-1 cells. It
is difficult to understand the mechanism through which Bafilomycin produces such an

enhancement in calcium release.

One possibility is that MCD treatment also affects acidic granules membranes so

that in the presence of bafilomycin-Alsomehow CCRS5 signalling gets potentiated.

It is worth mentioning that a study performed in macrophages treated with
bafilomycin-Al, showed a reduced cholesterol efflux from lysosomes to other
organelles, probably due to the inactivation of the H+ proton pump (Furuchi et al.,
1993). This research has some importance since it may mean that cholesterol extraction
with MCD would, in bafilomycin-Al untreated cells, be replenished to some extent
with lysosomal cholesterol. However, in this case, due to bafilomycin-Al inhibition of
this process, less cholesterol would be transferred to the membrane after MCD
treatment and thus a higher response would be observed in THP-1 cells after CCL3

stimulation.
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Essentially, it is known that ER membrane is specially low in cholesterol which
makes it more fluid, thinner and more leaky than the plasma membrane (Vangheluwe et
al., 2005). Thapsigargin inhibits SERCA by widening the calcium binding site of the
enzyme, meaning that only steric factors are involved (Lee, 2002). It has also been
shown that cholesterol overload of cells could result in SERCA inhibition (Vangheluwe
et al., 2005). Our data could fit in well with these experiments since we could only
observe an increase in SERCA activity upon thapsigargin stimulation of THP-1 cells
after MCD treatment. It could be speculated that if lipid composition and distribution in
the membrane can alter proteins conformation affecting its function (Lee, 2004), it is
possible that cholesterol extraction by MCD, by making ER membrane even more fluid

results in SERCA conformational changes that makes it thapsigargin insensitive.

An interesting study performed by Huang et al. analysed the effects of cholesterol
feeding of rabbits on cardiac function. They reported that Ca2+-ATPase (SERCA)-2
MRNA levels were reduced within few days after cholesterol feeding was started.
Considering this interesting result, it could be argued that since an increase in
cholesterol caused a reduction in the mRNA levels of the Ca2+-ATPase (SERCA)-2,
cholesterol reduction could have opposite effects and increase SERCA levels in THP-1
cells. An increase on the number of SERCA molecules in THP-1 cells could account for
the null effect thapsigargin had on these cells upon MCD treatment. However, if this
was the case, there is still the need to find out why this effect only occurs in THP-1

cells.

Further research is needed to understand the effect of cholesterol depletion on ER
transmembrane proteins in THP-1 cells. We suggest that cholesterol depletion in the
monocytic cell line THP-1 alters the ER membrane probably changing proteins
conformations and this may increase the affinity of some ligands for their receptor (as
can be observed in the case of ryanodine or caffeine) whereas it would reduce the

affinity of some antagonists for its receptors (case of thapsigargin on SERCA pumps).

The results analysed in this study could be useful for future research experiments
focused on lipid raft disruption. In this thesis | have named several studies focussing on
MCD treatment to study the importance of membrane integrity in calcium responses
initiated by many receptors. The results that CCR5 stimulation causes calcium fluxes by

activation of IP3R and RyR are quite novel. We consider that these data need further
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investigations to understand the mechanisms that link CCR5 signalling with the

production of second messengers able to activate RyR.

As far as we are concerned, this is the first study showing that that MCD treatment
may be altering the conformation and function of RyR, IP3R or SERCA pumps. This
new study may be useful for future investigations aiming at understanding calcium
response events since the possible effect of cholesterol depletion on internal
transmembrane proteins here described, may also be present in other cell systems and

should be taken into consideration.
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CHAPTER 6 - THE PLEIOTROPIC EFECTS OF

STATINS ON CCRS5 SIGNALLING, EXPRESSION
AND INTERNALISATION.

6.1 Introduction

Atherosclerosis is a major risk factor for many different conditions which on a
whole are known as cardiovascular disease (CVD) (Glass and Witztum, 2001). This
pathology is considered one of the main problems in developed countries. For instance,
in the United States, CVD was the direct cause in 37.3% and a contributing cause in
58% of all US deaths (Hoyert et al., 2005). This disease, considered a chronic
inflammatory process, involves the thickening of a wall artery due to the deposition of
cholesterol and white blood cells, which can eventually cause thrombosis events,
myocardial infarction and stroke (Goldstein, 2007). There are numerous risk factors
known to increase the chances of developing this condition (Glass and Witztum, 2001).
They can be classified into factors with a significant genetic component and
environmental factors. Among the first type, other conditions like diabetes mellitus,
obesity, hypertension, metabolic syndrome or an increase in the levels of low density
lipoprotein (LDL), typical from people suffering from familial hypercholesterolemia
(FH), are known to be of great importance. Environmental risk factors include a high fat
diet, smoking, lack of exercise and some infectious agents known to trigger the initial
artery damage (Kol and Santini, 2004). Although more than one condition seems to be
required to trigger the disease, an excess in the amount of serum cholesterol is believed

to be the leading cause that drives atherosclerosis development in humans.

Statins were discovered in 1971 by a group working on the research of microbial
metabolites which reduced the endogenous synthesis of cholesterol with the aim to treat
diseases characterized by an excess in this lipid (Endo, 2004). The first statin discovered
was mevastatin, which was shown to effectively reduce levels of LDL-cholesterol in
humans. After this first drug, other statins, with a stronger activity and reduced side
effects like lovastatin, pravastatin and simvastatin were approved for use in humans

(Endo, 2004). In the next few years these drugs were shown to effectively treat
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hypercholesterolemia. Only recently it has been confirmed that treatment with statins is

effective in the treatment of atherosclerosis (Nissen et al., 2006).

It is estimated that more than thirty million people are undergoing statin treatment
(Kleemann and Kooistra, 2005). These drugs work by inhibiting the rate-limiting
enzyme involved in the synthesis of cholesterol, the HMGCOA-reductase. Since only
one third of total body’s cholesterol reserves come from the diet (Liao and Laufs, 2005),
inhibiting de novo synthesis of cholesterol results in an effective therapy to reduce
hypercholesterolemia and other associated pathologies. The mechanism of action of
these cholesterol lowering drugs is very complex and involves several pathways to be
added to the widely known pathway leading to cholesterol synthesis. For instance,
statins work in a dual way inhibiting the production of cholesterol and promoting its
clearance from the bloodstream. The characteristics responsible for this extra effect are
the sterol regulatory element binding proteins (SREBP) (see Figure 6.1). These proteins
are essential transcription factors which regulate cholesterol synthesis by activating or
blocking the enzymes involved in this pathway and also regulates the synthesis of the
LDL-R. When cholesterol biosynthesis is blocked by statins, SREBP gets activated and
increases the synthesis of LDL-R which in turn accelerates cholesterol uptake in the
liver. This cholesterol removal by LDL-R is considered to highly contribute to the

cholesterol reducing effects of statins (Kleemann and Kooistra, 2005).
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Figure 6.1. Cholesterol biosynthesis pathway and role of isoprenoids on some essential proteins. Sterol
regulatory element binding proteins (SREBPs) regulate the activity of HMG-CoA and other enzymes
implicated in the synthesis of cholesterol as well as the expression of the low density lipoprotein receptor
(LDLR). Diagram shows that blockage of HMG-CoA produces the inhibition of isoprenoid intermediates,
impairing posttranslational isoprenylation of key signalling molecules. Diagram from Kleemann et al.
(Kleemann and Kooistra, 2005).

In the last few years these cholesterol lowering drugs have been reported to have
some pleiotropic effects which could be responsible for a great variety of positive
physiological responses upon statins treatment. Some of these cholesterol unrelated
effects are believed to occur due to the blockage of the complex mevalonate pathway.
HMG-CoA reductase catalyses the second step in the synthesis of cholesterol.

Cholesterol biosynthesis is composed of nine steps, being the middle ones important for
the formation of isoprenoid intermediates which are required for the normal functioning

of numerous signalling molecules such as Rho, Racl or Ras (see Figure 6.1)
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Prenylation involves the transfer of prenyl groups (3-methyl-2-buten-1-yl) to
proteins to facilitate its attachment to cell membranes. Two types of prenyl groups,
farnesyl pyrophosphate (FPP) and geranylgeranyl pyrophosphate (GGPP), are known to
be attached to cytoplasmic proteins at the C-terminal domain (Magee and Seabra, 2003).
Rho proteins are small GTP-ases that need to be prenylated to be transported to the
plasma membrane where they can get activated and trigger their biological action.
Consequently, blocking HMG-CoA reductase impairs key isoprenylation processes
leading to the accumulation of inactive small GTP-ases in the cytosol (Liao and Laufs,
2005).

Of note, the y subunit of G proteins, iS also prenylated and needs this
posttranslational modification to be able to reach the plasma membrane (Dietrich et al.,
1996; Kisselev et al., 1994;Maltese, 1990).

In the past few years, statins have been demonstrated to be important in the
treatment of numerous ‘“cholesterol-non-related pathologies”. Statins have been
confirmed to reduce infection of HIV-1 virus (del Real et al., 2004; Nabatov et al.,
2007), to be a possible therapy for multiple sclerosis (MS) (Kuipers et al., 2006) and to
be a useful tool to fight the inflammation component of several diseases (Maher et al.,
2009). For instance, statins reduce the pro-inflammatory properties of T cells (Blank et
al., 2007; Weitz-Schmidt, 2002; Weitz-Schmidt et al., 2001) and inhibit the production
of pro-inflammatory cytokines by different cell lines (Grip et al., 2000). Likewise,
statins have been shown to reduce the expression of several immunoregulatory
molecules such as MHC-II (Kuipers et al., 2005), CCR5 or CCR2 (Fujino et al., 2006;
Nabatov et al., 2007; Veillard et al., 2006; Yin et al., 2007) and to block the chemotaxis
processes of many cell types (Kuipers et al., 2006; Pozo et al., 2006).

It is believed that all these effects are caused not only by the ability of statins to
deplete cholesterol but also by their ability to block the isoprenylation of key signalling
proteins. Actually, the antiviral effect of statins has been attributed to the down-
regulation of Rho activity through inhibition of geranylgeranylation and not to a
reduction in cholesterol levels. Besides, Nabatov et al. confirmed that the ability of
statins to block HIV-1 R5 infection was greatly due to the down-regulation of CCR5

receptors in the plasma membrane.
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It is of interest for the current study that statins are also known to have the ability
to disrupt lipid rafts (Blank et al., 2007; Hillyard et al., 2004) causing the loss of cell
surface expression of many signalling molecules (Kuipers et al., 2005). These studies
provided some valuable information since many of the processes leading to
inflammation start in these membrane microdomains and its disruption could account for
some of the anti-inflammatory effects of these drugs. Treatment of U937 cells with
fluvastatin caused a substantial reduction in the association of the raft proteins LAT and
Lyn with these membrane domains (Hillyard et al., 2004). This group also demonstra
that lipid raft disruption was exclusively due to cholesterol inhibition since the use of

inhibitors of prenylation was not able to prevent lipid rafts disruption.

Altogether, cholesterol synthesis blockage seems to be involved in inflammatory
processes that are highly related to some of the pathways initiated by CCR5. The data
provided above gives enough information to speculate that treatment of cells with statins
could modulate CCR5 signalling through cholesterol reduction, impairment of the y
subunit of G proteins to reach the plasma membrane and transduce the signal, and to
disruption of lipid rafts.

Statins treatment has previously been shown to reduce cell migration towards
CCL5 and CCL3 (Kuipers et al., 2006) but no studies have analysed the effect of this
cholesterol inhibiting drugs on CCR5-dependent calcium release. Hence, this effect will
be investigated. In the current chapter, almost all experiments were performed in
CHO.CCR5, HelLa RC49, HEK.CCR5 and THP-1 cells with very similar results.
However, for simplicity reasons only the results from HEK.CCR5 and THP-1 cells are
shown. Western blot and RT-PCR experiments were only performed in Hela.RCR9 and
THP-1 cells.

6.2 Aim

It has been observed in previous chapters that cholesterol depletion can have very
different effects in CCR5 signalling depending on the cell line studied. In this chapter
cholesterol synthesis inhibition by statins was studied on CCR5-induced calcium release
and CCR5 expression levels in stably transfected cells and in the monocytic cell line
THP-1. Special emphasis has been put on comparing the findings here presented with
the results obtained in cholesterol depleted THP-1 cells.
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6.3 Results

6.3.1 Lovastatin reduces intracellular calcium mobilization in all

cell lines studied

The first aim of this chapter was to analyse if blockage of cholesterol synthesis
with statins had similar effects in the cell lines studied as cholesterol depletion with
MCD. Therefore, cells were treated with varying concentrations of lovastatin for 3 days
as indicated in materials and methods and stimulated with the chemokine CCL3 prior to
the measurement of calcium mobilization. We decided to incubate cells in the presence
of statins for 3 days as that is the protocol followed in most of the papers cited in this

chapter since it seems to be the most efficient method for this concentration of statins.

These experiments show that treatment of cells with lovastatin blocks CCR5-
dependent calcium release in all cell lines studied: HEK.CCR5 (Figure 6.2 A and B),
THP-1cells (Figure 6.2 C and D) and CHO.CCR5 (Figure 6.3).

Interestingly, whereas lovastatin treatment has the same effect in both cell lines
showed, MCD in combination with lovastatin treatment has different effects in
HEK.CCR5 and THP-1 cells. Figure 6.2 A and B show that MCD blocks even further
the response of CCR5 upon CCL3 stimulation in HEK.CCR5 cells.

However, when THP-1 cells were treated with MCD and lovastatin, MCD rescued the
signalling capacity of CCR5 in lovastatin treated cells (Figure 6.2 C and D).

Lovastatin effects on CCR5 signalling were next verified by the use of
simvastatin, another statin with very similar characteristics to lovastatin. Both are pro-
drugs, derived from fungi, highly lipophilic and with comparable potencies (Blum,
1994).

Simvastatin treatment of cells had the same effects as lovastatin in the ability to
interfere with calcium release triggered by CCR5 stimulation. Figure 6.4 and Figure 6.5
show that in HeLa.RC49 and THP-1 cells, respectively, treated with simvastatin for 3
days, a lower calcium response upon CCR5 stimulation was triggered than in control

cells.
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Figure 6.2 Lovastatin blocks calcium mobilization. HEK.CCRS cells (A and B) and THP-1 cells (C and
D).Cell were treated with 10 uM lovastatin for three days, 10 mM MCD for 1 h, both, or left untreated
before stimulation with 100 nM CCL3. Data represent mean + SEM from at least three independent
experiments for the bar charts and a representative tracer for the calcium flux. Significant changes towards
control cells are indicated by asterisks (*p < 0.05, **p < 0.01). (Cardaba and Mueller, 2009).
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Figure 6.3 Lovastatin effect on CCR5-dependent calcium mobilization in CHO.CCRS5 cells. Cells were
treated with 30 UM lovastatin for three days before stimulation with 100 nM CCL3. Data represent mean
+ SEM from at least three independent experiments for the bar charts and a representative tracer for the
calcium flux. Significant changes towards control cells are indicated by asterisks (*p < 0.05). (Cardaba
and Mueller, 2009).
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Figure 6.4 Simvastatin reduction of intracellular calcium mobilization in HeLa.RC49 cells. Cells were
treated with simvastatin for 3 days and stimulated with CCL3. Data represent mean + SEM from at least
three independent experiments. Significant changes towards control cells are indicated by asterisks (**p <
0.01).
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Figure 6.5 Simvastatin reduces calcium responses in THP-1 cells. THP-1 cells were treated with
simvastatin for 3 days prior to stimulation with 200 nM CCL3. Data represent mean = SEM from at least
three independent experiments. Significant changes towards control cells are indicated by asterisks (**p <
0.01). (Cardaba and Mueller, 2009).
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6.3.2 Lovastatin decreases cellular cholesterol by 30 %

MCD was previously shown to deplete around 70% of total cellular cholesterol. It
is now hypothesised that one of the reasons why the effects of MCD are so different
from those observed after lovastatin treatment may be due to differences in the amount
of cellular cholesterol both drugs are able to deplete. Therefore, the next step was to
analyse to what extent blockage of HMG-CoA reductase reduced total cholesterol. As
shown in Figure 6.6, lovastatin treatment was able to decrease a maximum of 40% of
total cellular cholesterol. However, the concentration of lovastatin used in this study, 10
UM, could only deplete cholesterol by 20%. This assay was performed in THP-1 cells
(A) and HEK.CCRS5 cells (B) and in both cell types similar results were observed.

The effects of simvastatin on cellular cholesterol were also studied. It can be seen
(Figure 6.7) that 10 uM simvastatin treatment of THP-1 cells, which is the concentration
used in calcium flux assays, depleted total cellular cholesterol by 40% (*p < 0.05).

These results are not very clarifying and do not help understanding the differences
in THP-1 signalling upon treatment with statins or MCD. As expected, lovastatin
treatment of THP-1 cells reduces cellular cholesterol in a concentration dependent
manner (Figure 6.6 A) but it also reduces CCR5-dependent calcium response. However,
since MCD produced a massive loss of cholesterol and caused an immense increase of
calcium mobilization in a cholesterol dependent way, we suggest that lovastatin must
have other effects on the cell independent of cholesterol blockage responsible for the

reduction in CCR5 signalling.
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Figure 6.6 Quantification of total cellular cholesterol levels after lovastatin treatment. THP-1 cells (A) or
HEK.CCRS5 cells (B) were treated with different concentrations of lovastatin and total cholesterol was
measured using the Amplex Red cholesterol assay as described in materials and methods. Data represent
mean £ SEM from at least three independent experiments. Significant changes towards control cells are
indicated by asterisks ( **p < 0.01). (Cardaba and Mueller, 2009).
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Figure 6.7 Quantification of total cellular cholesterol levels after simvastatin treatment. THP-1 cells were
treated with different concentrations of simvastatin and total cholesterol was measured using the Amplex
Red cholesterol assay as described in materials and methods. Data represent mean + SEM from at least
three independent experiments. Significant changes towards control cells are indicated by asterisks (*p <
0.05, **p < 0.01). (Cardaba and Mueller, 2009).
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6.3.3 Lovastatin treatment of cells reduces CCR5 surface

expression.

The results observed in HEK.CCR5 cells (Figure 6.2 A and B) show that
cholesterol synthesis inhibition reduces CCR5 signalling in these cells, which was in
congruence with previous data obtained from MCD-treated CHO.CCR5 and HEK.CCR5
cells. The main purpose of the next set of experiments was to try to understand why
lovastatin did not cause an increase in calcium mobilization in THP-1 cells similar to the
one observed upon MCD treatment. MCD appears to cause blockage of CCR5 signalling
in CCR5 stably transfected cells without altering its membrane expression [chapter 3
(Cardaba et al., 2008)]. Here, the effect of lovastatin on CCR5 membrane expression in
HEK.CCRS5 cells and THP-1 cells was analysed by flow cytometry. Figure 6.8 illustrates
that lovastatin causes a significant reduction in the membrane expression levels of CCR5
both, in HEK.CCR5 and THP-1 cells whereas MCD does not alter it (Figure 6.8 B). The
effects of lovastatin were stronger in HEK.CCR5 cells where the loss of CCR5
molecules reached 70% versus the 50% achieved by lovastatin treatment in THP-1 cells.
These findings might indicate the different capacity of these two cell lines to deal with
cholesterol synthesis and transport to the membrane.
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Figure 6.8 Lovastatin reduces CCR5 expression in HEK.CCR5 and THP-1 cells. Cells were treated with
10 pM lovastatin for 3 days or 10 mM MCD for 30 minutes. Next, cells were incubated for 1h with anti-
CCRS5 antibody followed by FITC-conjugated secondary antibody. A) Shows CCR5 expression levels as
measured by flow cytometry represented by mean = SEM from at least three independent experiments. B)
Histogram overlay showing flow cytometry analysis from HEK.CCR5 cells treated with 10 mM MCD, 10
UM lovastatin or left untreated. Significant changes from control cells are indicated by asterisks (***p <
0.01). (Cardaba et al., 2008).
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6.3.4 Effects of lovastatin on CCR5 mRNA and protein

expression levels

In the previous section we have reported that treatment of stably transfected cells
and THP-1 cells with lovastatin causes a reduction in the number of CCRS5 receptors in

the cell membrane.

This result is in accordance with many other studies showing the effects of statins
on chemokine receptors (Fujino et al., 2006; Han et al., 2005; Veillard et al., 2006;Yin et
al., 2007). Most of these studies confirmed a reduction in the mRNA levels of CCR5 and
CCR2 receptors. However, the fact that, in this study, less CCR5 molecules are found in
the plasma membrane does not necessarily mean that there is a reduction in CCR5
MRNA. There is the possibility that upon statin treatment CCRS5 is abnormally held in
the cytosol but its mRNA and protein levels are kept at normal levels. Another
possibility would be that mMRNA levels are unchanged but there is a defect at protein
levels. In order to find out the source of the reduction of CCR5 molecules in the

membrane as measured by flow cytometry, RT-PCR experiments were next performed.

Normalization of RT-PCR experiments requires an endogenous control to account
for differences in the amount of total RNA in each sample. The expression of the
reference gene should not vary in the tissue or cell line used and should be stable in
response to an experimental treatment. GAPDH and p-actin were shown to be
unsuccessful for these experiments due to the ability of lovastatin to significantly alter
their expression. 18S has been found to be one of the most stable genes by the geNorm
method before (Radreau et al., 2009). Accordingly, it could be shown that 18S
expression levels were not altered by statins treatment and was, therefore, a good

reference gene.

Lovastatin 10 uM was used to treat the cells during 3 days and then CCR5 mRNA
levels were analysed. Figure 6.9 shows that CCR5 mRNA levels are increased in the two
cell lines used. This increase was 2.5-fold in THP-1 cells (A) and around 9-fold (*p <
0.05) in HeLa RC49 cells (B).
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Figure 6.9 Shows lovastatin-induced fold-changes in the target gene when compared to 18S reference
gene. CCR5 mRNA folds change from THP-1 cells (A) and HeLa.RCR9 cells (B) treated with different
concentrations of lovastatin or left untreated. Data represent mean £ SEM from at least three independent

experiments. Significant changes towards control cells are indicated by asterisks (*p < 0.05).

Since the results obtained here did not explain a reduction on CCR5 membrane
expression levels it was next sought to examine the protein levels of the receptor to see
if inhibition of the mevalonate pathway had any effect on them. Two cell lines,
HeLa.RC49 and THP-1 cells were used to perform western blots to determine CCR5
protein levels upon lovastatin treatment. Interestingly, it was found that CCR5 levels
were reduced in both cell lines as can be appreciated in figure 6.10 when compared to

the normalising protein B-actin.
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Figure 6.10. CCR5 is down-regulated in THP-1 cells (A) and HeLa.RC49 cells (B) in response to

lovastatin treatment. Protein levels were examined by western blot and compared to the normalising

CCR5

p-actin

protein B-actin. Experiment shows a film representative of two independent experiments the case of THP-

1 and a single experiment in the case of HeLa.RC49 cells.

6.4 Discussion

In this chapter the effect of statins on different cell lines expressing CCR5 has
been analysed. It had previously been shown that MCD-dependent cholesterol depletion
had opposite effects in THP-1 cells and in CCR5 stably transfected cells. MCD-induced
cholesterol depletion but not filipin or nystatin treatment caused a huge increase in the
amount of calcium being released from ER stores in a CCRb5-activation dependent
manner in THP-1 cells. On the contrary, MCD completely blocked calcium responses in
HEK.CCR5, CHO.CCR5 and HeLa.RC49 cells. It was hypothesised that the differences
in signalling among these cell lines upon cholesterol depletion may be due to different
cholesterol levels requirement for optimal signalling. Therefore, blockage of cholesterol
synthesis with statins, which represents another approach to study how cholesterol
modulation alters CCR5 signalling in the different cell lines studied, was next used.
Since both treatments are widely known to reduce the amount of total cholesterol in the
cell it was expected to observe a decrease in CCR5-induced calcium release in stably
transfected cells and a massive increase in calcium mobilization upon CCL3 treatment in
the monocytic cell line. Accordingly, when CCR5 stably transfected cells were treated
with 10puM of lovastatin, an almost complete inhibition on calcium release was
observed. Nevertheless, a similar reduction on CCR5 signalling was obtained after

statins treatment of THP-1 cells.
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These findings were completely unexpected and led to investigate possible reasons why

lovastatin could block CCR5 signalling in the monocytic cell line.

Results from this chapter have shown that MCD treatment in combination with
lovastatin treatment in THP-1 cells was able to recover CCR5-dependent calcium
signalling. These different effects of MCD and statins in THP-1 cells clearly highlight
the cholesterol independent effect of statins in some biological responses. It could be
argued that, as shown above, MCD has a much stronger capacity of depleting membrane
cholesterol than lovastatin, which could account for the distinct responses observed. The
concentration of lovastatin used in these experiments, 10 uM, is only able to deplete
about 20% of cellular cholesterol whereas MCD treatment caused 70% of cholesterol

loss. However, this does not explain the opposite effects exerted by both drugs.

These findings were completely unpredicted and led to investigate a possible cause
why statins could inhibit CCR5-dependent calcium release. Chemokine receptors have
been previously shown to be down-regulated from the plasma membrane upon statins
treatment. Thus, possible alterations in CCR5 membrane expression upon lovastatin
treatment were studied next. Accordingly, flow cytometry experiments showed a
reduction in the number of CCR5 receptors in the plasma membrane. This finding
clearly indicates that statins effects on CCR5-dependent calcium response could be due
to a reduction on the number of CCR5 molecules in the plasma membrane able to

interact with the ligand.

The decrease on CCR5 membrane expression was further analysed by studying
CCRS protein levels and CCR5 mRNA levels in HeLa.RC49 and THP-1 cells. The fact
that the number of CCR5 molecules in the plasma membrane is diminished could
indicate a lack of receptors reaching the plasma membrane or a reduction on the
synthesis of the receptor. In order to understand this, CCR5 mRNA levels and CCR5
protein levels were analysed by RT-PCR and western blot respectively. It could be
observed that while CCR5 protein levels were considerably reduced, CCR5 mRNA
levels were increased, especially in lovastatin treated HeLa.RC49 cells. These findings
might represent a sort of compensation mechanism through which cells, in an attempt to
recuperate  CCR5 receptors in the plasma membrane increase CCR5 synthesis
mechanisms. The reason why CCR5 protein levels are reduced upon statins treatment

remains unknown. Although this is not the first time that statins have been shown to
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reduce the expression of chemokine receptors, in this chapter the reduction of CCR5
expression in the membrane has been linked to a reduction in CCR5 protein levels but
not to a reduction in MRNA levels as in the other studies. For instance, statins showed to
reduce CCR2, CCR5 and its respective chemokines CCL2 and CCL5 mRNA levels on
monocytes (Fujino et al., 2006; Han et al., 2005). Similarly, patients with hyperlipidemia
treated with statins were shown to experience a reduction in CCR5 and CCL5 mRNA
levels after only 1.5 months of statins treatment (Li et al., 2006a). Statins were also
shown to reduce mRNA levels of CCL2, CCL3,CCL4 and the chemokine receptors
CCR1, CCR2, CCR4 and CCRS in endothelial cells and macrophages (Veillard et al.,
2006). Veillard’s group tried to find a link between the pleiotropic effects of statins and
the reduction in the CCR2 and CCR5 mRNA levels. They associated the blockage of the
prenylation processes with an increase in the transcription levels of Oct-1, a
transcriptional repressor able to down-regulate CCR2 and CCR5 expression levels.
Nevertheless, considering that CCR5 mRNA levels were significantly increased in the
examples here provided, it seems that statins effects on these cells are not related to the
transcriptional repressor Oct-1. Another possibility is that Rho-activation impairment by
statins alters lipid rafts formation and, therefore, affects the number of CCR5 receptors
in these microdomains. However, once more, this does not explain the reduction in
CCRS5 protein levels or why lipid rafts disruption with MCD has opposite effects in
THP-1 cells. Thus, the reasons behind this reduction in CCR5 expression by statins
remains unknown and further investigations should be done in order to understand the

exact mechanism behind it.

CCR2 and CCRS receptors play an important role in atherosclerosis (Boring et al.,
1998; Potteaux et al., 2006; Veillard et al., 2004; Zernecke et al., 2006). These receptors
are known to induce the recruitment of monocytes to the damaged endothelium upon
endothelial cells secretion of chemokines such as CCL2 or CCL5. A good example of
this is represented by mice deficient in CCL2 or CCR5, who showed a better prognosis
in atherosclerosis development clearly influenced by a reduction in monocytes
chemotaxis and adhesion (Boring et al., 1998).

Overall, it seems that statins-dependent reduction of chemokine receptors and
chemokines levels might represent one of the bases of the anti-inflammatory effects of

this popular drug.
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Altogether, this study provides further evidence that statins treatment, by reducing
CCR5 signalling can contribute to the recovery and prevention of atherosclerosis and
other inflammatory disease. The differences between MCD and statins effects in CCR5
signalling indicate that the inhibitory effects of statins on CCR5 signal transduction
cannot be exclusively due to a decrease in cholesterol levels or lipid rafts disruption.
Hence this study agrees with previous ones that statins have the ability to greatly alter

biological responses independently of cholesterol.
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CHAPTER 7- IMPORTANCE OF PKC ON CCR5
SIGNALLING

7.1 Introduction

GPCR expression can be up-regulated or down-regulated according to body’s
need. CCR5 can undergo two different types of phosphorylation that will lead to
receptor internalisation (Pollok-Kopp et al., 2003). The first one is called homologous
desensitisation and it is carried out by G protein-coupled receptor kinases (GRKs) when
the receptor is occupied by a ligand (Pitcher et al., 1998). The second type of receptor
phosphorylation is called heterologous desensitisation and takes place in the absence of
ligand or at least is not completely dependent on its binding to the receptor. The enzyme
involved in this desensitisation is protein kinase ¢ (PKC) and its activation with PMA or
through intracellular second messengers can cause receptor phosphorylation in the
absence of ligand binding. It is interesting to note that PKCs can also be involved in

homologous desensitisation due to their ability to activate GRKs (Chuang et al., 1996).

CCR5 contains serine and threonine residues which are the target of both GRK
and PKC. These enzymes specifically phosphorylate these residues making it possible to
differentiate which enzyme is responsible for receptor desensitisation in each case. Ser-
337 is exclusively phosphorylated by PKC whereas Ser-349 is phosphorylated by
GRK2/3 after ligand stimulation of CCR5. A study using phospho-sitespecific
antibodies (Pollok-Kopp et al., 2003) demonstrated that Ser-337 was phosphorylated at
lower concentrations of agonist and about 4 times quicker than Ser-349. Accordingly,
PKC inhibitors are able to block CCR5 desensitisation coming from heterologous
stimulation (Le et al., 2001; Li et al., 2001). Therefore, it seems that PKC is involved in
CCR5 desensitisation upon stimulation with other receptors ligands due to cross-talk

between CCR5 and this other chemokine receptor.

CCR5 forms heterodimers with the C5aR and, interestingly, it was found that
stimulation of C5aR was able to promote CCR5 internalisation not only in a PKC

dependent (heterologous) manner but also in a GRKs dependent (homologous) form.
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These findings cast doubt on PKCs and GRKSs exclusively acting in heterologous and
homologous desensitisation respectively. Indeed, we now suggest that CCL3 binding to
CCR5, apart from triggering homologous desensitisation of the receptor through GRKSs,
is also likely to promote PKC dependent desensitisation of the receptor through the
stimulation of intracellular pathways. In congruence with this hypothesis, it was shown
that CCL5 stimulation of CCR5 was able to promote phosphorylation in Ser-337
(Pollok-Kopp et al., 2003).

Another big difference between these two types of receptor desensitisation can be
understood after treatment of cells with pertussis toxin. This molecule only blocks PKC
dependent phosphorylation of CCR5 whereas it has no effect on GRKs dependent
phosphorylation of the receptor, demonstrating that activation of G proteins is not
needed for homologous or agonist-specific CCR5 phosphorylation (Pollok-Kopp et al.,
2003). It seems that both, homologous and heterologous desensitisation can be initiated
by ligand binding to the receptor but, whereas the first one occurs exclusively due to

ligand binding, the latter is initiated by intracellular second messengers.

Regulatory Domain Catalytic domain
]l [
1 L} ] 1

Classicalor Ci1A C1A ___( C2 S/T - Kinase =
conventional

PKCa, PKCR and B3I, PKCy

Novel .D— C1A Ci1A S/T-Kinase =

PKC8, PKCH, PKCg, PKCn

Atypical = PB1 Cc1 S/T - Kinase =

PKCg, PKC1/ A

Figure 7.1 Diagram of the primary structures of the different isoforms of PKC enzymes. The N-terminus
includes a C1 domain which is different among the different members of the family, a C2 domain which is
not present in atypical PKCs and a PB1 domain, only present in atypical isoforms. All members share the
catalytic domain which contains an ATP binding domain, a substrate binding domain as well as the
phosphotransfer sites. Scheme adapted from S. Corbalan-Garcia, J.C. Gdmez-Fernandez / Biochimica et
BiophysicaActa 1761 (2006) 633-654 (Corbalan-Garcia and Gomez-Fernandez, 2006).

There are at least 10 different isoforms of PKC. They are divided in 3 groups: the
classical PKCs (cPKCs or calcium and DAG dependent: a, BI, BII, and y), novel PKCs
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(nPKCs or calcium independent: 8, € , , and 0) and the atypical PKCs (aPKCs or
calcium and DAG independent: ¢, 1.) (Millar and Newton, 2009). The common structure
of PKCs include a N-terminal regulatory domain, activated by the second messengers
above described and a C-terminal catalytic domain, which has the ATP binding site and
is responsible for the kinase activity of the enzyme (Corbalan-Garcia and Gomez-
Fernandez, 2006).To date, the isoforms/isoforms implicated in CCR5 phosphorylation

have not been reported.

In the past years PKC modulators have become very important compounds. It is
now known that PKC activators can be useful against HIV infection due to their
property to reactivate latent virus and down-modulate CCR5 and CXCR4 receptors
(Bedoya et al., 2009). Additionally, some studies present PKC inhibitors as effective
drugs against HIV infection since they have been shown to stop the virus replication
cycle (Kruth et al., 2005). Considering that PKC is a key enzyme in up-regulating HIV
transcription through regulating NF-xp and MAPK signalling pathways (Kagnoff and
Roebuck, 1999; Yang and Gabuzda, 1999) it makes sense that blocking this enzyme
would inhibit HIV infection. It seems that the use of PKC inhibitors could be beneficial
in order to stop viral replication and the use of PKC activators would be helpful to stop
viral latency and down-modulate CCR5 and CXCR4. Thus, a combination of both drugs
at the correct period of the infection along with conventional HAART therapy might
represent a new option for HIV treatment.

On the other side, PKC inhibitors are on the trial to be used as anti-cancer drugs
(Faivre et al., 2006; Mackay and Twelves, 2007). PKC is activated by tumour promoting
phorbol esters which necessarily connects this enzyme with tumour progression.
Additionally, increased PKC levels have been found in several malignancies where this
enzyme has also been shown to have a central role in cell growth, differentiation and
angiogenesis (Ali et al., 2009). For example the PKC inhibitor enzastaurin (Ly317615)
is in phase | study and so far it has been shown to induce apoptosis and suppress cell
proliferation in a wide range of tumour cell lines (Mackay and Twelves, 2007). If this
drug successfully passes all the clinical trials it would be a key issue to study the way it
interacts with some other signalling pathways. Very few studies have analysed how PKC
modulators affect CCR5 signalling and due to the role of this enzyme in desensitising
CCR5 it would be expected that PKC significantly modulated chemokine receptor

dependent intracellular responses.
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CCRS5 stimulation can activate PKC through DAG production and calcium release
and this activation is thought to be important for terminating calcium release stimulated
by IP3 production. When IP3 binds the IP3R and raises intracellular calcium, it is known
that PKC stimulation can lead to phosphorylation and de-activation of both, IP3R and
CCR5 (Van Rossum and Patterson, 2009). Considering these effects it would be
assumed that PKC inhibition increases calcium release to the cytosol as a result of CCR5
and IP3R over-stimulation. Accordingly, some reports show how inhibitors for the
classical forms of PKC stimulate calcium release in other GPCR (Deshpande et al.,
2007; Manes et al., 2003). Furthermore, GRKSs are known to be involved in regulating
CCRG5 signalling. Patients with rheumatoid arthritis (RA), have levels of GRK2 reduced
by 50% which might indicate that GRK is involved in cell migration to inflammation
sites in RA. A study done in T cells stablished that a reduction of GRK2 highly
increased chemotaxis upon CCL4 stimulation of T cells (Vroon et al., 2004). As
previously explained, CCR5 signal transduction has been related to inflammatory
diseases like RA, MS or cancer. Therefore, the fact that PKC inhibitors could potentially
be used for cancer therapy but could at the same time activate CCR5 induced signalling
pathways represent a danger associated to the possible beneficial effect they could have
as anti-cancer drugs. In addition, it is known that CCR5 stimulation by chemokines can
contribute to cancer growth and spread (Azenshtein et al., 2002; Huang et al.,
2009a;Manes et al., 2003). However, it has not been established whether the biological
response activated through CCRS5 stimulation in the tumour microenvironment only help
cancer progression or host antitumor response and cancer regression as well.
Considering the literature, it is likely that chemokine receptors play a role in both
mechanisms depending on other cellular factors (Coussens and Werb, 2002). In any
case, a better characterization of how modulating PKC activity can influence CCR5
signalling would be very useful for understanding these chemokine receptors signal

transduction networks.

7.2 Aim

PKC-dependent signalling pathways are being intensively investigated due to the
role PKC plays in cancer progression and other diseases. The fact that this enzyme has
been shown to be involved in CCR5 phosphorylation and desensitisation highlights the
possibility that altering PKC activity might have an important effect on CCR5
signalling. Nevertheless no studies have focus on understanding the connection between
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these two important kinases. In this chapter, the way specific PKC inhibitors modify

CCR5-dependent calcium release and chemotactic pathways have been analysed.

7.3 RESULTS
7.3.1 PKC-dependent regulation of GPCR-mediated calcium

release

In this chapter, the effects of modulating PKC activity have been analyzed.
Specific inhibitors for each type of PKC isoforms have been used and it has been found
that they have different effects on CCR5 signalling. The inhibitor GF109203X can be
used as a general PKC inhibitor when added at micromolar concentrations and as a
classical PKC inhibitor when added at nanomolar concentration (Toullec et al., 1991).
Cells treatment with high concentrations of the drug (5 uM) where it inhibits PKC a, B,
o, ¢ and (, significantly increases calcium release in Hela.RC49 (Figure 7.2),
CHO.CCRS5 cells (Figure 7.3 A) and HEK.CCR5 cells (Figure 7.4). The CCL3 dose
response curves performed in CHO.CCRS cells indicates that GF109203X causes a
slight decrease in CCL3 potency but augments 2.5-fold the predicted efficacy of the
chemokine. These findings confirmed the hypothesis that probably, through a reduction
in CCR5 phosphorylation, blocking PKC activity would increase the time and efficiency
of CCR5 coupling to G proteins. The specific CCR5 antagonist maraviroc was able to
abrogate the effect of GF109203X in HeLa.RC49 cells (Figure 7.2), indicating that this
increase in calcium signalling was directly caused by CCR5 stimulation. In order to
corroborate this theory, the effect of a PKC activator was analysed in CCR5 induced
calcium release. It was suggested that since inhibition of PKC could stimulate
intracellular calcium mobilization upon CCL3 treatment, stimulating PKC activity with
PMA would further phosphorylate CCR5 and, therefore, reduce its signalling. CCL3
dose response curves were created for control CHO.CCRS5 cells and cells treated with
PMA. As expected, PMA treatment of cells blocks CCR5-induced calcium release.
PMA treatment of CHO.CCRS5 cells produces a decrease of the LogECs, from -6.67 to -
2.73, having also a marked effect on predicted efficacy (Figure 7.5).
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Figure 7.2 General inhibition of PKC causes increases in CCR5 calcium signalling in HeLa RC49 cells.
Cells were treated with 5 pM GF109203X, GF109203X and 100 nM maraviroc for 30 minutes or left
untreated (control) and stimulated with 100 nM CCL3. Calcium release was measured as previously
described. Data represent mean + SEM from at least three independent experiments. Significant changes

towards control cells are indicated by asterisks (* p < 0.05, ** p < 0.01).

Remarkably, it was found that treatment of cells with GF109203X at 50 nM,
where it only blocks the classical PKC isoforms o and I, slightly reduces the predicted
efficacy and increases the LogECsy from -7.18 to -7.45, not having overall a dramatic
effect on CCR5-induced calcium release (see figure 7.3 B). These data indicate that
novel or atypical isoforms of PKC are most likely responsible for the enhancement in

CCR5-dependent calcium release.
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Figure 7.3 General inhibition of PKC increases calcium release whereas blockage of classical PKC
isoforms does not. CHO.CCR5 cells were treated with GF109203X (5 puM for A and 50 nM for B) and
stimulated with different concentrations of CCL3. Data represent mean + SEM from at least three
independent experiments. Significant changes towards control cells are indicated by asterisks (** p <
0.01).
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Figure 7.4 General inhibition of PKC causes increases in CCR5 calcium signalling in HEK.CCR5 cells.
Cells were treated with 5 uM GF109203X for 30 minutes, stimulated with 100 nM CCL3 and calcium
release was measured as previously described. Data represent mean + SEM from at least three independent

experiments. Significant changes towards control cells are indicated by asterisks (** p < 0.01).
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Figure 7.5 Activation of PKC causes a reduction of CCR5 activation upon ligand treatment. CHO.CCR5

cells treated with 100 nM PMA for 30 minutes, stimulated with different concentrations of CCL3 and

calcium fluxes were measured. Data represent £ SEM from at least three independent experiments.

7.3.1.1 Effects of classical isoforms of PKC inhibitors on CCR5 calcium

release.

In the previous section it has been shown that there is a significant possibility that
inhibiting novel and atypical isoforms of PKC could increase the effect chemokines
have on CCR5. Thus, it was next sought to focus on which PKC isoforms were involved
in CCR5-mediated calcium release. The PKC inhibitor Go6976, specific for the classical
isoforms of the PKC enzyme, was next used to verify the results obtained with low
concentrations of GF109203X. Surprisingly, this time the results were opposite to those
observed after pre-treatment of the cells with 50nM of the general inhibitor GF10923X.
Thirty minutes pre-treatment of cells with Go6976 significantly blocked calcium release
upon CCL3 stimulation in HeLa.RC49 cells (Figure 7.6). In order to understand why
this inhibitor had opposite effects to GF109203X, CCR5 expression after incubation of
cells with Go6976 was measured by flow cytometry. Thirty minutes incubation with

G06976 had no effect on CCR5 surface expression (Figure 7.7).
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Figure 7.6 Go6976 blocks calcium release induced by CCR5 stimulation. Figure shows HeLa RCR9 cells
treated with the 100 nM Go06976 and stimulated with 200 nM CCL3 (A) or with increasing concentrations
of the chemokine (B). Data represent mean + SEM from at least three independent experiments.

Significant changes towards control cells are indicated by asterisks (* p < 0.05).
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Figure 7.7 Flow cytometry analysis of CCR5 expression. HeLa RC49 cells were treated with the classical
PKC inhibitor Go6976 at a concentration of 100 nM for 30 minutes and stained with an anti-CCR5
antibody and a FITC-conjugated secondary antibody. A) Shows a representative histogram B) Shows

mean + SEM from 2 independent experiments.
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7.3.1.2 Effects of the novel PKC inhibitor rottlerin on calcium signalling
Rottlerin is a PKC inhibitor with specificity for PKC3, with an ECsy of 3-6 uM
(Gschwendt et al., 1994). This inhibitor was then used to analyse the role of PKCd on
CCRS5 induced calcium release. As can be observed in Figure 7.8, rottlerin has similar
effects on CCR5 signalling than the PKC classical inhibitor Go6976.
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Figure 7.8 Rottlerin has an inhibitory effect in CCR5 dependent calcium release. HelLa cells were
treated with rottlerin (4 uM) or left untreated (vehicle) and stimulated with 200 nM CCL3 (A) or
with increasing concentrations of chemokine (B and C). Data represent mean + SEM from at least
three independent experiments. Significant changes towards control cells are indicated by asterisks
(*** p < 0.001).
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7.3.1.3 Is there a role for PKCpu in CCR5 induced calcium release?
PKCy, also named PKD-1 is as an atypical isoform of PKC which was isolated in
1994 and was one of the last PKC isoforms to be discovered (Johannes et al., 1994).
Interestingly, the inhibitors Go6976 and Rottlerin can also block PKD-1 (McEneaney et
al., 2008). Therefore, we investigated whether the reason why Go6976 and Rottlerin
blocked calcium release and GF10923X did not, was due to the ability of the two latter
to block PKD-1.

The PKD-1 inhibitor CID755673 is only specific for this isoform at nanomolar
concentrations whereas it has been demonstrated to block other PKC isoforms and to
have PKD-1 independent effects at micromolar concentrations (Johannes et al., 1994;
Torres-Marquez et al.). Consequently, CID755673 was used at nanomolar

concentrations to ensure the effects observed were exclusively due to PKD-1 inhibition.

We could demonstrate that blockage of PKD-1 did not affect CCR5 signalling in
CHO.CCRS5 (Figure 7.9 A) and THP-1 cells (Figure 7.9 B).
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Figure 7.9 Effects of the PKD-1 inhibitor in CCR5-dependent calcium release. CCL3 dose-response
curves when cells were treated with the PKD-1 inhibitor CID755673(400 nM) for 30 minutes or left
untreated as control in CHO.CCR5 (A) and THP-1 (B) cells respectively. Data represent mean + SEM

from at least three independent experiments.

7.3.2 Are PKC inhibitors affecting ER stores?

The results observed with the classical PKC inhibitor Go6976 and the PKC
inhibitor rottlerin had no logical explanation. The fact that a general inhibitor like
GF10923X used at a concentration where it blocks all PKC isoforms causes such an
increase in CCR5-dependent calcium release meant that some PKC isoforms are
involved in desensitizing the receptor or are somehow involved in modulating
intracellular pathways leading to calcium release. Since no reports have been found
proving the latter and it is known that PKC phosphorylates CCR5, it was hypothesised
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that the increase in signalling observed upon GF10923X 5 uM was due to blockage of

receptor desensitisation.

It was next intended to understand the reason why treatment of cells with Go6976
and rottlerin could have such a remarkable effect in CCR5 signalling. A possible
explanation for this reduction in calcium release had been considered to be a reduction
in CCR5 surface expression but it was shown that Go6976 treatment of cells had no
effect on it. Another possibility was that these two drugs had an effect on ER stores
impairing calcium release in a PKC independent manner. To analyse this last option,
cells were treated with Go6976 or rottlerin for 30 minutes and stimulated with
thapsigargin, known to empty ER stores through calcium leakage (Thastrup et al., 1990)
It was found that Go6976 and rottlerin (see Figure 7.10 and 7.11 respectively) both had
the ability to block calcium release induced by the thapsigargin blockage of SERCA.
G06976 was shown to block calcium release induced by TG 1 uM and 1.5 uM in THP-1
cells (Figure 7.10). Likewise, rottlerin inhibited TG-dependent calcium mobilization in
HeLa.RC49 cells (Figure 7.11 A and B) and THP-1 cells (Figure 7.11 C and D). This
unforeseen effect of Go6976 and rottlerin in ER membrane proteins could easily explain
the lack of calcium response triggered by CCL3 in the presence of these drugs. To
ascertain that emptying ER stores was responsible for the effects observed, cells were
next treated with 5 uM of the general inhibitor GF10923X and stimulated with TG.
Interestingly, it could be shown that treatment of cells with this compound did not block
TG-induced calcium response, which is in accordance with the increase in calcium
release observed in cells treated with this drug and stimulated with CCL3 (Figure 7.12).
It is important to note that GF10923X slightly increased calcium release upon
chemokine activation which leaves open the possibility that this PKC inhibitor increases
calcium release independently of PKC blockage and not due to inhibition of CCR5

desensitisation as has been suggested.

Nevertheless, the increase in the release of calcium observed upon TG injection was not
as significant as the increase observed upon CCL3 stimulation which indicates that there
must be an additional factor accounting for this increase and this must be CCR5 and
PKC dependent.

Taken together the data gathered so far provide some indications that inhibition of

certain PKC isoforms could promote a longer activation of heterotrimeric G proteins by
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CCR5. However, in this section it has been shown that targeting the PKC isoform y or
PKC classical isoforms with Go6976 did not provide any valuable information due to
the PKC independent effects of these inhibitors, which makes it difficult to assess its
importance on CCR5-dependent signalling. Consequently, the next set of experiments
will focus on analysing the role of the different PKC isoforms on CCR5-dependent cell
migration of THP-1 cells. It is expected that cell migration experiments will provide a

better understanding of the role PKC plays in CCR5 signalling.
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Figure 7.10 Go6976 empties ER stores. THP-1 cells were treated with 100 nM G06976 for 30 minutes or
left untreated (control) and were stimulated with 1 or 1.5 uM of thapsigargin (TG). Figure A illustrates
data representative for 3-5 independent experiments and B shows single traces of calcium mobilization.
Data represent mean + SEM from at least three independent experiments. Significant changes towards

control cells are indicated by asterisks (*** p < 0.001).
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Figure 7.11 Effect of rottlerin on thapsigargin (TG) stimulation of Hela (A and B) and THP-1 cells (C
and D). Cells were treated with 4 uM rottlerin for 30 minutes and stimulated with 1uM TG as
indicated, and calcium release in rottlerin and control-treated cells was measured. Data represent mean
+ SEM. from at least three independent experiments in A and C and single traces for B and D.

Significant changes towards control cells are indicated by asterisks (* p < 0.05, ** p < 0.01).
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Figure 7.12 The general inhibitor GF109203X does not empty ER stores. A) Shows the effects of
thapsigargin on calcium release in HelLa cells pre-treated with GF109203X (5 uM) or vehicle
(control) for half an hour. Data represent mean = SEM from at least three independent experiments in

A and single traces in real time for B.
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The experiments performed so far indicate that PKC ¢, y or {, are the isoforms
involved in increasing CCR5 activity as measured by intracellular calcium mobilization.
It was next investigated which of these isoforms were expressed in the cell lines used in
these experiments to rule out the involvement in CCR5 desensitisation of any PKC
isoforms not found. Western blot experiments indicated that PKCa and PKCC were the
most abundant isoforms in HeLa.RC49 and in THP-1 cells (see Figure 7.13). The band
for PKCe in THP-1 cells comes up at a lower level than the other isoforms found. There
Is a possibility that this protein, contrary to other PKC isoforms, gets cleaved or
degraded while performing the experiment. HeLa cells seem to express less
concentrations of this isoform and in this case, PKC ¢ seemed to appear at the right level
(80 KDa) (Figure 7.13).

PKC E ¢ offy a E ¢ afy
80 KD

PKC ¢

THP-1 Hela

Figure 7.13 PKC isoforms expression in THP-1and HeLa RC49 cells. PKC isoforms were detected by
the use of specific antibodies able to specifically recognise PKCC, PKCg, the PKC isoforms afiy or PKCa,
followed by treatment with a secondary anti-mouse HRP-conjugated antibody. Picture is representative of

at least 3 independent experiments.

Immunofluorescence experiments shown in Figure 7.14 illustrate the expression of
different PKC isoforms in HeLa.RC49 and THP-1 cells respectively. It can be
appreciated that these cell lines express the classical PKC isoform o and the novel PKC
isoform ¢ in the case of HeLa RC49 cells and the classical PKC isoform a, the novel
PKC isoform ¢ and the atypical PKC isoform ( in the case of THP-1 cells. For unknown
reasons PKC{ isoform could not be detected in HeLa.RC49 through
immunofluorescence experiments but it was perfectly isolated by western blot

experiments.
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Figure 7.14.PKC isoforms expression in HeLa and THP-1 cells. Pictures illustrate cells treated with primary,
secondary antibodies and Dapi, primary and secondary antibodies, only secondary antibody or only Dapi as
indicated. Cells were let to dry on coverslips for a few minutes, lysed with acetone, washed and stained for
PKCa and PKCst in the case of HeLa.RC49 cells and PKCa, PKCe and PKC( in the case of THP-1 with specific
antibodies for these isoforms followed by treatment with anti-mouse-FITC secondary antibody. Dapi stain was

included in the mounting solution.

These data verify that PKC &, y or {, could potentially be involved in desensitising
CCRS5 since the three isoforms could be detected in HeLa.RC49 and THP-1 cells.
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7.3.3 PKC involvement in chemotaxis: Independence between

calcium flux and cell migration events

It has been shown above that Go6976 and rottlerin inhibitors are not a good choice
for analysing the effect of PKC blockage in calcium signalling due to their property to
deplete intracellular stores. The unexpected effects of these two inhibitors hinder the
understanding of the role these PKC isoforms have on calcium signalling. However, the
effects observed upon 50nM GF109203X treatment provide enough information about
the role of classical isoforms of PKC. Consequently, it seemed clear that another method
should be used to know PKC & involvement in CCRS signalling. Thereby, chemotaxis
assays were next used to test whether any PKC isoforms are capable of regulating THP-
1 cells migration. Figure 7.15 and 7.16 show that THP-1 cells migrate towards CCL3 in

a concentration dependent manner.

Here it can be observed that pre-incubation of the cells with GF109203X at 50nM
does not affect the migration of THP-1 cells (Figure 7.15 A) whereas pre-incubation of
cells with GF109203X at 5 puM (Figure 7.15 B) produced a significant increase in the
number of cells migrating towards CCL3. These findings are in accordance with the
data obtained when analysing calcium mobilization and indicate once more that some

non-classical PKC isoforms are involved in desensitising CCR5.

When the effects of Go6976 and rottlerin were studied it was appreciated that
rottlerin has no effect on cell migration whereas Go6976 slightly increases chemotaxis
(see figure 7.16 A and B respectively). These results are very interesting since they
provide good evidence of independence between calcium release and chemotaxis.
Go06976 and rottlerin completely empty calcium stores but they do not block cell
migration which clearly indicates that chemotaxis processes induced by CCR5 do not
require previous calcium fluxes. In order to study this further, the effects of the U73122
inhibitor on THP-1 cells migration was studied. PLC is the enzyme responsible for the
formation of IP3 and its blockage is widely known to block calcium release. Here it
could be shown that PLC inhibition abrogated cell migration (Figure 7.16 B). The effect

of PLC inhibitor would have been attributed to its property to block calcium fluxes.



|7-186

However, given that it is now known that calcium release and chemotaxis are
independent from each other in CCR5 signalling in THP-1 cells, the mechanism through

which PLC blockage inhibits cell migration remains completely unknown.

The last experiment performed in this chapter, once more indicates that CCR5 is

likely to be dependent on PKC to interrupt its coupling to heterotrimeric G proteins.

Figure 7.17 shows that PKC activation with PMA significantly blocks cell
migration which is in accordance with the theory that over stimulation of this enzyme

would promote CCR5 internalisation and, therefore, decrease its intracellular signalling

responses.
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Figure 7.15 Chemokine-induced chemotaxis of THP-1 cells is increased by inhibition of all PKC isoforms
but not affected by inhibition of classical PKC isoforms. A) THP-1 cells were assayed for chemotaxis in
the absence (basal) or presence of CCL3 at different concentrations and with or without pretreatment with
GF109203X (50 nM). B) Shows bar charts were cells were treated with 5uM GF109203X or left
untreated, stimulated with 1 nM CCL3 or left un-stimulated. Data represent mean + S.E.M. of duplicate
determinations from three independent experiments. Significant changes towards control cells are
indicated by asterisks (***p < 0.001).
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Figure 7.16 Chemokine-induced chemotaxis of THP-1 cells is not affected by treatment with rottlerin. A)
THP-1 cells were assayed for chemotaxis in the absence (basal) or presence of CCL3 at different
concentrations and with or without pre-treatment with rottlerin. B) THP-1 cells migration towards 1 nM
CCL3 in the presence of the inhibitors Go6967 (100 nM) and U73122 (10 uM) for 30 minutes. Data
represent mean = S.E.M. of duplicate determinations from three independent experiments. Significant
changes towards control cells are indicated by asterisks (** p < 0.01).
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Figure 7.17 Chemokine-induced chemotaxis of THP-1 cells is blocked by a PKC activator. A) THP-1
cells were assayed for chemotaxis in the absence (basal) or presence of 1 nM CCL3 and with or without
pre-treatment with PMA (100 Nm). Data represent mean + S.E.M. of duplicate determinations from three
independent experiments. Significant changes towards control cells are indicated by asterisks (**p <
0.01).
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7.4 Discussion

After stimulation by a ligand, CCR5 gets desensitized thorough a process that
starts with phosphorylation of its C terminus by PKCs and GRKs. PKC has been shown
to play an essential role in cancer cells and in the last few years different PKC inhibitors
have passed the first tests to become anticancer drugs. We have hypothesized that since
PKC is involved in promoting CCRS5 internalisation, PKC inhibitors might increase the
time CCRS5 is in contact with G proteins, therefore, increasing receptor signalling, which
could have negative effects in pathologies where CCR5 signalling is considered to have

negative effects.

Therefore, the main purpose of this chapter was to identify whether some of the PKC
inhibitors currently under clinical investigation could have any stimulatory effects on
CCRb5 signalling.

We have shown that cells treatment with the general PKC inhibitor GF10923X at
high concentrations causes a significant increase in calcium mobilization from ER
stores. Also, we have shown that this increase could be reduced with the specific CCR5
inhibitor maraviroc, indicating that GF10923X’s effect is directly related to an excess of
CCR5 signalling. Interestingly, the same inhibitor used at concentrations where it
blocked PKC o and B had no effect on the release of calcium induced by CCRS

stimulation.

When other PKC isoforms were investigated, it was found that the PKC inhibitors
Go06976 and rottlerin, inhibitors of ¢cPKC and PKCy respectively, highly reduced
calcium release upon CCL3 stimulation without altering CCR5 expression levels.
However, we could show that these two inhibitors had the extra effect of depleting ER
stores. Unfortunately, this meant that this approach was not adequate to measure if

calcium release was affected by CCR5 desensitisation via these PKC isoforms.

The effect of PKD-1 on CCR5 signalling was also investigated in case this enzyme

was responsible for CCR5 desensitisation.

Nevertheless, treatment of cells with the specific PKD-1 inhibitor CID755673
showed no alteration of calcium fluxes in any of the cell lines studied.

Altogether these results point at PKC g, y or (, as the isoforms involved in increasing
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CCRS5 activity as measured by intracellular calcium mobilization.

The use of PKC inhibitors to measure CCR5 activation through the release of
calcium was shown to be inadequate due to the side-effects of some of the PKC
inhibitors. Nevertheless, it seemed clear that inhibition of atypical or novel PKC
isoforms could be responsible for enhancement of CCRS5 activation. Hence, a different

way of measuring receptor activity upon PKC inhibition was next employed.

When chemotaxis assays were used to complement the data obtained with calcium
signalling, it was shown that similarly to them, general blockage of all PKC isoforms
with GF10923X caused an enhancement of cell migration. On the other hand, blockage
of cPKC isoforms with low concentrations of GF10923X or of PKC y with rottlerin had
no effect on chemotaxis which suggests that CCR5 desensitisation is triggered by PKC ¢

or (.

It is not the first time the theory that inhibiting PKC can have stimulatory effects
in receptors signalling has been studied. In 2007 Deshpande et al. demonstrated that
PKC inhibition enhanced signalling pathways such as calcium flux, contraction of
airway smooth muscle or cell migration and chemokine production in monocytic cells in
response to Leucotriene D4 stimulation of cysteinyl leukotriene type 1 receptor
(CysLT1R) (Deshpande et al., 2007). In 2004 Vroom et al. (Vroon et al., 2004) found
that in T cells from mice that were heterozygous for deletion of the GRK2 gene
(GRK2+/-mice), CCR5 signalling was highly increased. This group had previously
shown that in patients with RA the levels of GRK2 were reduced by 50% and thereby
they suggest that a reduction of GRK2 might be one of the main causes why CCR5 is a
key element in the inflammation that accompanies or causes this inflammatory disease.
Additionally, it has been proposed that in RA patients the levels of PKC ( and € were
reduced as compared to controls (Zini et al., 2008). Interestingly, it was also shown that
PKC ( isoform was down-regulated when cells were treated with inflammatory
cytokines like TNF-o or IL-1B, which provides more evidence that in inflammatory
conditions, the fact that some PKC isoforms get down-regulated worsens the
circumstances. Consequently, taking into account that GRK and PKC have a similar role
in desensitizing CCRS5, it could be expected that a reduction in PKC activity affects
CCRG5 signalling in a similar way to down regulation of GRK2. In the experiments here

performed it has been demonstrated that inhibition of PKC { and/or ¢ is responsible for
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an increase in calcium flux and chemotaxis upon receptor stimulation being thus
hypothesised that CCR5 over-activity due to a reduction in PKC ( and € could have a
key role in RA and be of vital relevance for numerous autoimmune and inflammatory

diseases.

CCR5 can stimulate cell migration through a mechanism that is not fully
understood. This ability is especially important in certain types of cancer where CCR5 is
one of the main characters implicated in stimulating cell migration and tumour
metastasis. Numerous studies have shown that ligand binding to CCR5 results in cell
movement in a mechanism dependent on actin mobilization and PI3K recruitment to the
leading edge of cells (Cheung et al., 2009; Gomez-Mouton et al., 2004). However, the
mechanism through which CCR5 promotes cell migration is not clear. A recent report
shows that oral cancer cells migrate upon CCL5 stimulation through a mechanism
involving PLC, PKCy, NF-kf and the matrix metalloproteinase 9 (MM-9). This group
strongly prove that the axis CCL5/CCR5 is responsible for cell migration since the use
of siRNA against CCR5 highly reduced chemotaxis. Additionally, they could prove that
cell migration increased in a CCL5 concentration dependent manner which once more
highlights the key role of CCR5 in cell migration of oral cancer cells. In their
experiments, treatment of cells with general PKC inhibitors such as GF109203X as well
as an inhibitor specific for PKCy, resulted in a decrease of cell migration, giving this
isoform a special role in CCR5- chemotaxis pathway (Chuang et al., 2009). Also, a
study performed on HIV-infected macrophages demonstrated that viral-induced cell
migration through CCR5 binding could be blocked by PKC inhibition (Kanmogne et al.,
2007). These studies suggest that in some cases, CCR5-induced cell migration is
dependent on PKC activity. Additionally, several studies have reported the importance
of PKCs for cell migration through other chemokine receptors. For instance, it was
demonstrated that PKCa is essential for cell migration and tumour growth progression of
Ishikawa endometrial adenocarcinoma cells (Haughian et al., 2009). Likewise, two
nteresting papers reported that in T lymphoblastoid leukaemia cells and eosinophils,
(Alfano and Poli, 2001; Cronshaw et al., 2006), chemotaxis was blocked with rottlerin,

indicating that PKC y was needed for cell migration.

Contrary to these reports, in this chapter we have shown that inhibition of PKC ¢
and ( causes increases in cell migration whereas blockage of the other isoforms of the

enzyme has no effects in CCR5 induced chemotaxis.



|7-191

Thus, it is reasoned that enhancement of cell migration is due to blockage of receptor
desensitisation highlighting that in this signalling system, PKC is not likely to be one of

the G-proteins downstream effectors required for cell migration.

The importance of these findings depends on whether CCR5 requires PKC activity
to transduce cell migration or not. If the use of PKC inhibitors could stimulate cell
migration through an increase in CCR5 signalling but at the same time this migration
process was impaired by the inhibition of PKC-dependent intracellular cascades, the
outcome would not signify an enhancement in cell migration and the use of PKC
inhibitors would thus represent a possible new therapeutic area. However, it appears that
PKC isoforms are not required for CCR5-induced cell migration and, therefore, the
blockage of the isoforms responsible for CCR5 desensitisation increases cell migration
due to a stronger CCR5 activation.

The content of this chapter is significant as this might be the first study showing
that Go6976 and rottlerin have a PKC independent effect responsible for a reduction in
calcium signalling due to ER stores depletion. Bearing in mind the high interest that is
being put on these molecules due to PKC indisputable role in certain cancers, the fact
they can alter signal transduction pathways through calcium modification should be
taken into consideration. Besides, researchers have widely used these compounds when
studying the role of PKC in numerous signalling pathways without considering the
PKC-independent effect described in this work. This could lead to incorrect results
where the real cause for the action observed could be ER stores calcium depletion and
not PKC inhibition. These unexpected data have also provided evidence of an important
matter, the non-relation between calcium mobilization from the ER and the chemotaxis
process. To date, there is no information (excluding our results presented in Chapter 4)
about the connection between calcium release and chemotaxis for CCR5. There are a
few examples in the literature on this subject for other GPCR. For instance, chemotaxis
responses of T cells were impaired in PLC knock-out mice when compared with wild-
type mice (Bach et al., 2007). Also, when these experiments were repeated and calcium
was chelated using a pharmacological approach, chemotaxis was blocked resembling the
results obtained in PLC knock-out mice which indicates that calcium release is needed
for T cell migration. However, a different study (Cronshaw et al., 2006) demonstrated
that in the CEM leukemic T cell line and human Th2 cells, chemotaxis was dependent

on PLC but not on calcium release from ER stores. Furthermore, a different group
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stablished that PLC was not needed for cell migration of neutrophils (Murphy et al.,
2000). Interestingly, we have now demonstrated that the role for PLC in chemotaxis is
not linked with a need for calcium release since although PLC was required for cell
migration, calcium mobilization was not. Hence, it could be stated that there is not a rule
for the link between calcium release and chemotaxis among different cell systems or
different GPCR. It is possible that second messengers produced by PLC play a key role

in cell migration in certain cell types but not in others.

To conclude, at the beginning of this work it was hypothesised that an increase in
CCRS5 signalling caused by PKC inhibition could be dangerous especially due to a
possible increase in cell migration which could potentially contribute to worsening
pathological processes such as RA, MS or cancer. Accordingly, it has been shown that
inhibition of certain isoforms of PKC, most likely PKC ¢ or {, stimulates CCR5-

mediated calcium release and cell migration of THP-1 cells.
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CHAPTER 8- FINAL DISCUSSION

In this thesis we have characterised six key points regarding CCRS5 signalling

pattern:

I.  CCR5 signalling has different dependence on cholesterol in CCR5 stably
transfected cells and in the monocytic cell line THP-1. Whereas cholesterol
depletion with MCD abrogates CCR5 signalling in the former, it causes a
massive enhancement of intracellular calcium mobilization in the latter.

I1.  Cholesterol depletion promotes the signalling of CCR5 through a PTX-resistant
G protein.

1. In CCR5 transfected cells, caveolae integrity is not required for CCR5 signalling.
IV.  Calcium signalling and chemotaxis processes stimulated by CCR5 in THP-1
cells are independent from each other.

V.  CCRS5 might initiate CADPR-dependent calcium signalling pathways

VI.  Inhibiting PKC ¢ and { increases CCR5 signalling: role for these PKC isoforms
on CCR5 phosphorylation?

This report has focussed on understanding the mechanisms activated by the
binding of a chemokine to CCRS5. It is accepted that CCR5 is coupled to Go; proteins
and that CCRS5 activation induces calcium release responses through Gpy-dependent
activation of PLC. The Ga; subunit is known to inhibit the enzyme AC and, therefore, to
cause inhibition of cCAMP accumulation. All these processes have been demonstrated in
the present study. It has also been shown that CCRS5’s ability to transduce intracellular
signals is not exclusively due to its coupling to Go; proteins since MCD treatment of all
cell types studied promoted the coupling of the receptor to a PTX-independent G
protein. These results are in accordance with those performed by Mueller et al. where
they confirmed association of CCRS with Gag (Mueller and Strange, 2004a) and with
studies showing that CCR5-CCR2 heterodimers signal through Gog (Mellado et al.,
2001). The use of MCD to disrupt lipid rafts in CCR5 transfected cells demonstrated that
these cells require membrane cholesterol to produce calcium signalling through CCRS.
However, we could confirm that caveolae integrity was not essential for CCR5

dependent calcium signalling as shown by the fact that Caveolin-1 siRNA did not affect
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CCR5’s ability to evoke calcium fluxes. This hypothesis was confirmed by the findings
that filipin, which we could show to disrupt Caveolin-1 expression in the membrane, did

not affect calcium signalling initiated by CCR5.

This work has also revealed interesting data regarding the different effects that
the cholesterol depleting drug, MCD, and cholesterol inhibiting drugs, statins, have on
CCR5 signalling. While MCD and statins, both reduce CCR5-induced signalling
pathways in stably transfected cells, it has been shown that MCD highly increases
calcium release in THP-1 cells whereas statins block this signalling. Furthermore, it has
been demonstrated that both treatments lead to a reduction of cellular cholesterol and,
therefore, we hypothesise that the differences observed between them is necessarily due
to a pleiotropic effect of one or both of these drugs. When cholesterol was loaded back
to MCD-treated cells it could be observed that CCR5-induced increase in calcium
release was returned back to normal. These data indicate that statins might have an extra
effect independent of cholesterol reduction which causes inhibition of CCRS5 signalling.
Indeed, it was shown that statins could reduce CCR5 membrane expression which
would, along with other possible effects such as inhibition of G Py prenylation, account
for the reduction in calcium responses observed. Altogether these data provide evidence
that support the idea that the anti-inflammatory properties of statins are not exclusively

related to cholesterol depletion.

We have been taken by surprise by the fact that THP-1 cells lacking cellular
cholesterol are able to increase calcium signalling upon CCR5 stimulation dramatically.
This increase in calcium release has been related to the capacity of MCD to alter the
conformation of ER and acidic vesicles calcium regulating proteins. Additionally, the
CCR5 enhanced calcium signalling has been demonstrated to be dependent on proteins
that act downstream of CCR5 such as PI3K, PLC or IP3R, clearly linking the improved
calcium responses observed in a cholesterol depleted system with CCR5 activation.
However, although some hypothesis have been made in the course of the thesis, the
mechanisms behind THP-1 cells behaviour upon CCR5 activation in the absence of
cellular cholesterol are far from being understood. The properties of CCR5 calcium
responses were looked at in more detail by analysing the role of RyR on CCR5-induced
calcium signal transduction. Interestingly, we found that stimulation of RyR with
caffeine and ryanodine highly stimulated CCRS5 signalling in CCR5 stably transfected
cells and especially in THP-1 cholesterol depleted cells. Although there is a possibility
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that changing the open state of RyR could stimulate IP3R probably due to an increase in
the amount of cytosolic calcium in the proximities of IP3R, we guess that this
enhancement in signalling is more likely to be due to the uncharacterised ability of
CCR5 to promote the formation of the RyR agonist, CADPR from the intracellular
messenger NAD™ The ability of RANTES to induce calcium signalling in a mechanism
involving cADRP has been demonstrated before (Partida-Sanchez et al., 2004;
Shideman et al., 2006). We suggest that CCR5 dependent calcium signalling may be
dependent not only on the known pathway requiring IP3 formation through the action of
PLC but also on the generation of the second messenger cCADPR through a pathway still

not characterised.

In our opinion, a necessary next step in this area would be to understand what
other intracellular pathways are stimulated by cholesterol depletion due to the increase
of calcium mobilization to the cytosol. Since CCR5-induced calcium release could be
implicated in many immune responses, including secretion (Logan et al., 2003) and gene
expression (Crabtree and Olson, 2002), a perfect understanding of these signalling
mechanisms in monocytes lacking a big percentage of cholesterol, might represent an
interesting and unexplored research area. One of the main concerns upon an excessive
signalling of certain chemokine receptors would be an excessive migration towards a
chemokine gradient which could worsen chemokine-receptors-associated pathologies.
For instance, CCR5 expression has been linked with an excess of cell migration in some
cancerous processes like breast cancer, prostate cancer or colon cancer, as we have
previously explained. Likewise, CCR5-dependent cell migration has been confirmed to
play a role in AD and other neurological pathologies as well as in RA. Therefore, in the
present work it was studied whether the increase observed in calcium release upon
CCR5 stimulation in cholesterol depleted THP-1 cells also implicated an excess in
chemotactic processes. Gomez-Moutons’ group showed that, during chemotaxis, CCR5
localised to the leading edge of lipid rafts along with PI3K and that these processes were
abrogated by cholesterol depletion with MCD (Gomez-Mouton et al., 2004). In
accordance with these results, we have shown that THP-1 cells treatment with MCD
impeded cell migration towards different concentrations of CCL3, being to our
knowledge the first time that independence of calcium release and chemotactic processes
have been discovered for CCRS5. It appears that increasing THP-1 cell’s membrane
fluidity causes a drastic increase in the amount of calcium released to the cytosol and a

clear reduction in cell migration upon a CCL3 gradient. Independence between calcium



|8-196

release and chemotaxis has also been reported as a result of experiments performed with
PKC inhibitors. We could demonstrate that even if the PKC inhibitors Go6976 and
rottlerin depleted ER stores abrogating calcium fluxes in a PKC-independent manner,
when these inhibitors were used to study chemotactic processes, these were significantly
enhanced. These findings, along with the ones previously explained, clearly discriminate

between calcium mobilization and chemotactic responses initiated by CCR5.

Chemokine receptors stimulation with one single chemokine can trigger
numerous signalling pathways. For instance, CCL3 stimulation of CCR5 can produce
calcium fluxes (Cardaba et al., 2008; Cardaba and Mueller, 2009), inhibition of cCAMP
accumulation (Cardaba et al., 2008), MAPK and FAK stimulation (Ganju et al., 1998) as
well as cell migration (Desmetz et al., 2007; Gomez-Mouton et al., 2004). Two different
studies showed that CCR5 stimulation could lead to Goj-dependent calcium release and
Ga;—independent Janus kinase 2 (JAK2) stimulation, giving some insights into how a
single chemokine can activate two different pathways simultaneously (Mueller and
Strange, 2004a; Wong et al., 2001). Likewise it is possible that, as we have observed
and has been previously suggested (Maghazachi and Al-Aoukaty, 1998), CCR5 activates

calcium release and chemotaxis through two independent pathways.

Another interesting research area that has been approached in this thesis
relates to the study of PKC inhibitors as potential future anticancerous agents. The proof
that PKC-related pathways were over-stimulated in several cancers made researchers
study the possibility of targeting PKC to develop new therapies. In this work we
hypothesise that since PKC was involved in CCR5 desensitisation, its blockage may
increase some of the signalling pathways activated by CCR5. We have shown that,
according to our hypothesis, general blockage of PKC isoforms significantly increases
CCR5 calcium responses and that PKC ¢ and ( inhibition caused an increase in the
amount of cells migrating towards CCL3 which suggests, for the first time, a role in
CCR5 phosphorylation for these two PKC isoforms. Further work should be able to
confirm whether CCR5 is directly phosphorylated by PKC & and { upon ligand
stimulation. We report that blockage of PKC ¢ and { may aggravate conditions where
CCR5-induced signalling has a negative role due to an increase in CCR5 calcium

responses and cell migration.
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One of the main points that has been tried to put forward in this research has
been that CCR5 overstimulation or increase in signalling could be detrimental in certain
conditions. It is well known that CCR5 stimulation can activate MAPKSs and Jak-STAT
pathways (Mueller and Strange, 2004b; Paruch et al., 2007; Popik and Pitha, 1998)
which can lead to cell proliferation and to the secretion of pro-inflammatory cytokines
like TNF-o and IL-1B (Sun et al., 2009). We conclude that an excessive signalling
through CCR5 could have negative repercussions due to its pro-inflammatory actions.
Furthermore, CCR5 interaction with CCL5 has shown antiapoptotic properties in mouse
Macrophages (Tyner et al., 2005) and CCRS signalling is clearly linked to an increase
of chemotaxis through PI3K (Gomez-Mouton et al., 2004), what can lead to pathological

cell migration as previously mentioned.

On the other hand it is also essential to highlight that CCR5 signalling
reduction through statins treatment or through cholesterol depletion in CCR5 stably
transfected cells, in the case of calcium release, or THP-1 cells, in the case of
chemotaxis, might have positive effects in diseases where an excess on CCR5 signalling
may be detrimental. There is a possibility that statins anti-inflammatory effects, which
are currently under investigation for the treatment of patients with RA (Full and
Monaco, 2010; Steffens and Mach, 2004), are partly due to a reduction in CCR5

signalling.

To sum up, this study has characterised in depth some of the intracellular
cascades initiated by CCR5. It has also provided new data regarding how the ability of
CCR5 to stimulate important cellular responses can be modulated by different
treatments. Interestingly, we have shown that some of the current or future therapies
may strongly influence the properties of this chemokine receptor and have recommended
further investigations in the area in order to ascertain their save use in some pathological

conditions.
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Figure 8.1 Diagram showing some the main pathways suggested to be activated upon
CCRS5 stimulation in this thesis. Thick lines point towards signalling mechanisms that
are widely known to occur whereas thinner lines designate important processes that have
been demonstrated to take place in this work. Numbers in yellow circles and red arrows
refer to the 3 possible pathways that CCR5 stimulation could activate to generate the
intracellular responses observed in this work. Further research should be done to better

understand these signalling mechanisms.
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8.1 FUTURE DIRECTIONS

This thesis has focussed on analysing the signalling mechanisms of CCR5. Different
hypothesis have been made but many of these theories could be confirmed if further
experiments were performed. The next few lines reefer to the work that could be done to

better understand the mechanisms here proposed.

1. It has been proposed that MCD induces the coupling of CCR5 to PTX-resistant
G proteins. However, this idea should be further analysed in order to exclude that other
G protein-independent mechanisms are involved. Experiments where G «g/12-13
isoforms are blocked using siRNA technology, dominant negative forms of this protein,
or targeting the RGS domain of G og102-13 With the RGS domain of GRK2, which
specifically interacts with Gaq family members, will allow elucidation of whether a

PTX-resistant G protein is responsible for the signalling observed in MCD-treated cells.

2. The effect of statins and Caveolin-1 siRNA on the association of CCR5 with G
proteins should also be studied in more detail. Statins and Caveolin-1 knockdown are
known to affect the composition of the plasma membrane and more specifically, that of
lipid rafts. Therefore, understanding if, similarly to MCD treatment, they affect CCR5-
Gai coupling, is a pending task. The use of PTX in statins-treated and Caveolin-1 siRNA
transfected cells will allow the characterization of these processes. In this case also,
studying CCR5 activation of other signalling pathways which do not require G proteins

signalling is highly appealing.

3. It seems clear that the role of the different PKC isoforms on CCR5 signalling
should be investigated further. Experiments using phosphosite-specific antibodies in
PKC ¢ and { knockdown cells would provide valuable information about the role of
these isoforms on CCR5 phosphorylation. Furthermore, the use of siRNA to knock
down PKC ¢ and { should be used to measure the effect on calcium release and cell
migration upon chemokine stimulation. These two experiments, in combination with the
data exposed in this work should give a clear indication of the importance of PKC ¢ and

€ on CCRS5 desensitization and signalling.
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