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ABSTRACT 

i 

Abstract: 
 

The main aim was to investigate the cell-wall cross-links in Chinese water 

chestnut (CWC), in particular ferulic-acid-containing phenolic-polysaccharide 

cross-links.  The secondary aims were: to understand the gross composition of 

CWC cell walls from the parenchyma, epidermis and sub-epidermis tissues of 

the corm and the role of cell-wall composition in the plant’s physiology, and to 

determine whether CWC contained higher oligomers of ferulic acid.  Cell-wall 

composition was investigated using a range of chemical analyses including 

alkali phenolic extraction and methylation analysis.  Chemical and biochemical 

methods were evaluated for their ability to produce oligosaccharide fragments 

attached to ferulic acid species.  Mild acid hydrolysis followed by column 

chromatography using Biogel P-2 was the method chosen.  LC-MS was used to 

identify compounds of interest. 

 

The compositions of the epidermal tissues differed particularly in the proportions 

of lignin and cellulose present.  The relative amounts and proportions of the 

phenolics varied considerably, possibly indicating their functions in the different 

tissues.  A multitude of phenolics were detected, a number of which now have 

detailed UV information recorded about them.  The LC-MS results indicate that 

trimers and tetramers of ferulic acid are present, and provide some degree of 

structural information for the trimers. A reasonable level of solubilisation was 

achieved with mild acid hydrolysis, releasing ~70% of the arabinose, xylose and 

galactose present into the supernatant.  LC-MS indicated that multiple species 

containing ferulic acid or diferulic acids linked to one or more pentose sugars 

are present in the TFA hydrolysate and Biogel P-2 fractions, indicating that 

ferulic acid and diferulic acid are linked to cell-wall sugars in CWC as in many 

other monocots.  Trimers and tetramers of ferulic acid were detected in a non-

maize substrate for the first time, implying the possibility of higher oligomers of 

ferulic acid being present naturally in a wide range of cell walls. 
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1 Introduction: 
 

Cells are the basic building blocks of all multicellular organisms.  They can 

differentiate themselves to produce a vast array of specialised cells capable of 

forming the tissues required for all the organs found in plants and animals. 

 

1.1 Plant cells 

 

The main differences between plant and animal cells are: plant cells have a 

defined cell wall, primarily made up of cellulose; plant cells contain a vacuole in 

addition to the cytoplasm; plant cells, that are capable of photosynthesis, 

contain chloroplasts which contain the photosynthetic pigment chlorophyll 

(Figure 1). 

 

 

Figure 1: Features of a typical plant cell, based on Lack and Evans (2001). 

 

1.1.1 Structures in plant cells 

 

The plasma membrane surrounds the cytoplasm, an aqueous fluid called 

cytosol in which the organelles are situated.  A matrix of actin microfibrils and 
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tubulin microtubules facilitates the support and movement of the organelles 

within the cell.  The nucleus contains most of the cell’s genetic information in 

the form of DNA and is surrounded by the nuclear envelope.  The mitochondria 

and chloroplasts also contain some genetic information.  The vacuole is a 

storage organelle that is also involved in osmotic regulation, particularly 

maintaining cell turgor.  It may occupy up to 90% of the cell volume, it contains 

solutes dissolved in water, and is bounded by a membrane called the tonoplast.  

The system of membranes found within the cell is termed the endomembrane 

system, and this includes the nuclear envelope, the endoplasmic reticulum and 

the Golgi apparatus.  The endomembrane system is involved with the synthesis 

and transport of materials within the cell.  The chloroplasts (often found in the 

leaves and stems only) contain the chlorophyll necessary for photosynthesis.  

The mitochondria generate adenosine triphosphate (ATP) from stored food 

reserves, which is then used in many of the metabolic processes of the cell 

(Lack and Evans, 2001).  The peroxisomes are small organelles that break 

down organic molecules by oxidation, producing hydrogen peroxide in the 

process.  The hydrogen peroxide is then converted to water and oxygen.  Plant 

cell walls are described in depth in Section §1.2. 

 

Plant tissues are made up from cells with a common function, either one type of 

cell (simple tissues) or a collection of different cell types (complex tissues).  The 

three main types of plant tissue are: ground, dermal and vascular; and they 

contain cells that may differ from the idealised version shown in Figure 1 to a 

greater or lesser extent.  The ground tissues contribute to the structural strength 

and function of the plant.  Parenchyma tissue is the most abundant type of 

ground tissue in the plant, forming the bulk of the leaves, roots and stems.  The 

cells in parenchyma have thin flexible walls and large vacuoles, which often act 

as storage for food reserves or water.  Sclerenchyma tissue is made up of dead 

cells, with lignified secondary walls, in organs that have completed their lateral 

growth.  These cells are either very long, thin fibres which occur singly or in 

strands and bundles; or are irregularly shaped, often branched sclereids, which 

also appear singly or in groups.  It is small groups of sclereids scattered 

throughout the parenchyma of pears (Pyrus) that gives pears their characteristic 

gritty texture.  The cells that make up the protective outer covering of an organ 
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form a dermal tissue known as the epidermis.  These cells are usually 

parenchyma or parenchyma-like cells that form a complete covering to protect 

the organ from pathogens and mechanical damage.  There are two types of 

vascular tissue, xylem and phloem.  Xylem generally carries water and water-

soluble minerals from the plant roots to the growing shoots.  Phloem carries 

sugars and amino acids from sites of synthesis or storage, to sites of storage or 

use as required (Lack and Evans, 2001). 

 

1.2 Plant cell walls 

 

Plant cell walls are deposited in a series of layers.  The earliest layers are 

deposited during cell division, so the layer formed first adjoins the cell wall of 

the neighbouring cell and further layers are then deposited between this first 

layer and the plasma membrane.  The first layer is the middle lamella, which is 

found in the middle of the double wall formed by two adjacent cells.  The middle 

lamella is the remains of the cell plate that was laid down during cell division; 

because the cell plate is stretched during cell growth the middle lamella is 

extremely thin and is thicker at the cell corners.  The second layer deposited is 

the primary cell wall.  The primary cell wall is synthesised continuously while the 

cell is still growing, so it generally maintains a constant thickness in the range 

0.1 - 1.0 µm (Cosgrove, 2005).  Most cells only have these first two layers; 

however, some go on to develop a secondary cell wall when they begin to 

differentiate.  This secondary wall is generally thicker than the primary cell wall 

and can vary considerably between different cell types.  All the wall layers are 

made up of two phases: a microfibrillar phase and a matrix phase.  

Plasmodesmata penetrate the cell wall, through which the cytoplasmic matrices 

of adjacent cells are connected. 

 

The microfibrillar phase is relatively homogeneous in composition, being mainly 

cellulose with a high degree of crystallinity.  This phase can be seen under an 

electron microscope (Carpita and Gibeaut, 1993).  The matrix phase is non-

crystalline, extremely chemically complex, and appears to be featureless under 

an electron microscope.  The main constituents of the matrix phase are: 
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pectins, hemicelluloses, proteins and phenolics (Figure 2).  The relative 

amounts of these constituents vary depending on the part of the wall, the type 

of cell, the species and possibly even the stage in the cell cycle. 

 

 

Figure 2: Simplified cell-wall structure diagram, from Waldron and Faulds (2007). 

 

In general dicots have about equal proportions of cellulose, hemicellulose and 

pectin, but in monocots, pectin is normally present in significantly lower 

amounts (Ishii, 1997).  As well as the variations in the polysaccharide 

composition of cell walls between species, there are also variations in the 

detailed structure of the polymers themselves. 

 

1.2.1 Cellulose microfibrils 

 

Cellulose microfibrils are extremely long, thin structures made of ~36 β-1,4-

glucan chains, aligned along the length of the microfibril (Weber et al., 1995).  

They are synthesised from uridine diphosphoglucose (UDPG) and guanosine 

diphosphoglucose (GDPG) by UDPG- and GDPG-utilising cellulose synthases 

(EC 2.4.1.12 and 2.4.1.29).  Each cellulose synthase molecule aggregates with 

five others to form a complex, and then the complexes form a rosette with six-

fold symmetry.  The rosettes bridge the plasma membrane and are positioned 

Pectin 

Cellulose 

microfibrils 

Hemicelluloses 

Structural 

proteins 
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to align with the underlying pattern of microtubules (Burk and Ye, 2002).  The 

cellulose synthase rosettes create a number of cellulose chains at the same 

time, which then form the microfibrils (Lack and Evans, 2001).  The cellulose 

molecules form a (para) crystalline lattice held together with intramolecular and 

intermolecular hydrogen bonds.  The microfibrils of hydrated cell walls have 

been imaged using Atomic Force Microscopy (AFM) by Kirby et al (1996), see 

Figure 3.  The AFM image shows the microfibrils in a laminated structure where 

the different layers appear to have a “crossed” orientation (Emons and Mulder, 

2000), similar to that shown in Figure 2.  The microfibrils are separated from 

and connected to each other by the matrix phase, predominantly the pectin and 

hemicellulose components. 

 

Figure 3: AFM error-signal-mode image of hydrated Chinese water chestnut cell wall 

(false colour), from Kirby et al (1996). 

 

1.2.2 Pectin 

 

Wall polysaccharides other than cellulose are synthesised in the Golgi and 

delivered to the wall via secretory vesicles (Weber et al., 1995). 

 

Pectins are traditionally classified as the fraction removed from the cell wall by a 

hot, aqueous solution of a chelating agent or hot, dilute acid (Brett and Waldron, 

1996).  Pectins contain polysaccharides made up of predominantly galacturonic 

acid, rhamnose, arabinose and galactose.  They are generally found in the 
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middle lamella and primary walls of dicotyledonous plants and in smaller 

amounts in some monocotyledonous plants.  Commonly identified pectins 

include: 

 

Homogalacturonans (HG) - α1,4-linked galacturonic acid backbone, which may 

be partially esterified. 

 

Rhamnogalacturonan I (RG I) – α1,4-linked galacturonic acid and α1,2-linked 

rhamnose backbone with long chains of 1,5-linked arabinose and 1,4-linked 

galactose as side chains. 

 

Rhamnogalacturonan II (RG II) – a complex structure of galacturonic acid, 

rhamnose, arabinose and galactose in the ratio 10:7:5:5, with small amounts of 

the rare sugars, such as aceric acid, apiose and 3-deoxy-manno-octulosonic 

acid (KDO). 

 

Arabinan – α1,5-linked arabinose backbone with single arabinose residues 

attached at C2 or C3 as side chains. 

 

Galactan – β1,4-linked galactose backbone. 

 

[4)-α-GalA-(1]n 

[4)-α-GalA-(12)-α-Rha-(1]n 

         4 

          

[5)-α-Ara-(15)-α-Ara-(1]n 

    2     3 

          

    1     1 

-Ara   -Ara 

[4)--Gal-(1]n 
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Arabinogalactan I (AG I) – β1,4-linked galactose backbone with short α1,5-

linked arabinose side chains. 

 

Arabinogalactan II (AG II) – β1,3-linked and β1,6-linked galactose backbone 

with multiple branches, β1,3-linked arabinose is present on the outer chains. 

 

Rhamnogalacturonan II was first isolated and characterised from suspension-

cultured sycamore cell walls (Darvill et al., 1978) and subsequently identified in 

onion (Ishii, 1982). 

 

Sugar beet pectins are primarily RG I and arabinan (Bonnin et al., 2002; 

Levigne et al., 2002; Levigne et al., 2004a).  Japanese quince pectins consist of 

arabinans, highly methylated HG and rhamnogalacturonans (Thomas et al., 

2003). 

 

Under certain conditions, pectins form gels.  The naturally-occurring pectins in 

fruit cell walls cause jams and jellies to thicken (May, 2000; Voragen et al., 

1995), but they are also used for textural control in fruit products, dairy 

products, desserts, soft drinks and pharmaceuticals (May, 1990). 

 

1.2.3 Hemicelluloses 

 

Hemicelluloses are usually strongly bound to the cellulose microfibrils by 

hydrogen bonds, so generally they can only be removed by relatively 

concentrated alkali solutions after the removal of pectin.  The type of 

hemicellulose present varies greatly between different cell types and species 

(Brett and Waldron, 1996).  Commonly identified hemicelluloses include: 

 

[4)--Gal-(1]n 

    3 

     

    1 

-Ara 
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Mannans – β1,4-linked mannose backbone. 

 

 

(Gluco)mannans – β1,4-linked glucose and mannose backbone (with single 

galactose residues as side chains in gymnosperms). 

 

 

(Galactogluco)mannans – β1,4-linked glucose and mannose backbone with 

galactose attached by α(1-6) bonds as side chains.  Galactoglucomannans 

containing very little glucose act as storage polysaccharides in the cell walls of 

some seeds (e.g. lupin) (Brett and Waldron, 1996). 

 

 

(Glucurono)mannans – α1,4-linked mannose and β1,2-linked glucuronic acid 

backbone with galactose or arabinose attached to C6 or C3 of mannose 

respectively. 

 

(Arabino)xylans (AX) – β1,4-linked xylose backbone with acetyl esters and 

arabinose attached at C2 or C3 of xylose, and 4-O-methylglucuronic acid 

attached at C2 of xylose. 

 

 

[4)-β-Man-(1]n 

[4)-β-Man-(14)-β-Man-(1]n 

         6 

          

         1 

     α-Gal 

[4)-β-Man-(12)-β-GlcA-(1]n 

     3        6 

              

[4)-β-Man-(14)-β-Man-(14)-β-Glc-(1]n 
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Mixed-linkage glucans – β1,3-linked and β1,4-linked glucose backbone. 

 

Callose – β1,3-linked glucose backbone. 

 

 

Xyloglucan (XG) – β1,4-linked glucose backbone with xylose attached at C6, 

sometimes further substituted by Fuc α(1-2) Gal β(1-2) or Ara (1-2). 

 

[4)-β-Xyl-(14)-β-Xyl-(1]n 

    2    3 

         

    1    1 

4-O-Me-β-GlcA α-Ara 

[4)-β-Glc-(14)-β-Glc-(14)-β-Glc-(14)-β-Glc-(1]n 

    6    6 

         

    1    1 

 α-Xyl  α-Xyl 

   2 

      

     1 

   β-Gal 

     2 

      

     1 

   α-Fuc 

[3)-β-Glc-(14)-β-Glc-(14)-β-Glc-(1]n 

[3)-β-Glc-(1]n 
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Xyloglucan is the major hemicellulose of dicot primary walls, at ~20% of the 

primary cell wall, whereas in monocots it is a relatively minor component at ~1-

5% (Fry, 1988).  Redgwell and Selvendran (1986) found xyloglucan in onion, 

which showed structural features in common with the xyloglucans of 

dicotyledonous plants.  Carrot cell wall hemicelluloses consist of xylan, mannan 

and xyloglucan (Massiot et al., 1988).  Maize cell wall hemicelluloses consist of 

glucuronoarabinoxylan, mixed-linkage glucan, xyloglucan and glucomannan 

(Carpita et al., 2001). 

 

1.2.4 Phenolic compounds 

 

Phenolics are a group of compounds which have one or more hydroxyl groups 

directly attached to a benzene ring (Shahidi and Naczk, 2004).  They can be 

divided into different categories dependent on the number of phenol subunits 

they contain (Robbins, 2003) and further separated according to their structure 

(Liu, 2004): 

 

 Simple phenolics – one phenol subunit 

o Hydroxybenzoic acids and aldehydes (Gallic acid, vanillin etc) 

o Hydroxycinnamic acids (Ferulic, caffeic, sinapic and p-coumaric 

acid) 

 Polyphenols – at least two phenol subunits, which are further split into: 

o Flavonoids (Figure 4) – two phenol subunits  

 Flavonols (Quercetin, Kaempferol etc) 

 Flavones (Apigenin, Chrysin, Luteolin) 

 Flavanols (Catechin, Epicatechin etc) 

 Flavanones (Eriodictyol, Hesperitin, Naringenin) 

 Anthocyanidins (Cyanidin, Pelargonidin, Delphinidin etc) 

 Isoflavonoids (Genistein, Daidzein etc) 

o Stilbenes (Resveratrol etc) 

o Coumarins (Umbelliferone etc) 

o Tannins – three or more phenol subunits 
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Figure 4: General structures of flavonoids. 

 

Only the simple phenols, particularly the hydroxycinnamic acids, and lignin will 

be discussed here. 

 

Ferulic acid is often esterified to arabinose and galactose in pectins (Fry, 1983; 

Ralet et al., 2005).  In species with low levels of pectin, ferulic acid may be 

linked to the arabinose in arabinoxylans (Ishii, 1997) or the xylose in 

xyloglucans (Ishii et al., 1990).  In arabinoxylans, p-Coumaric acid is also 

esterified to arabinose.  Further discussion on the exact positions at which 

polysaccharides are feruloylated and coumaroylated can be found in Chapter 6.  

The feruloylation of polysaccharides occurs by feruloylation of UDP-arabinose 

immediately before polysaccharide synthesis or by feruloylation of the newly 

synthesised chain in the Golgi (Fry, 1987; Myton and Fry, 1994; Obel et al., 

2003). 

 

There are two mechanisms by which ferulic acids can be dimerised, 

photochemical and radical dimerisation.  Photochemical dimerisation of p-

coumaric acid and/or ferulic acid under UV light forms cyclobutane derivatives 

(Hanley et al., 1993), which are present in secondary rather than primary cell 

walls (Hartley and Morrison, 1991).  The radical mechanism forms 

dehydrodimers of ferulic acid.  The radical mechanism is the predominant one 

(Bunzel et al., 2004), and it is therefore the dehydrodimers that are focussed on 

in this study. 
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The simple phenolics and precursors for lignin are produced via the 

phenylpropanoid pathway from phenylalanine and tyrosine.  Ferulic acid is 

generally the most abundant simple phenolic in cell walls. 

 

Geissmann and Neukom (1971) showed that, in the presence of peroxidase 

activity and hydrogen peroxide, two ferulic acid units (esterified to 

polysaccharides) form a covalent cross-link. 

 

Initially the 5,5’-DiFA was the only ferulic acid dimer found (Hartley and Jones, 

1976), but subsequent studies suggested that the radical coupling of ferulic acid 

should produce a whole range of diferulic acids, with the 8,5’-DiFA (BF) 

predominating (Ralph et al., 1992), and this was shown to be the case by Ralph 

et al (1994).  The 8-O-4’-DiFA tends to predominate in grasses (Ralph et al., 

1994), but the predominant dimer is 5,5’-DiFA in barley bran (Renger and 

Steinhart, 2000), 8-O-4’-DiFA in chufa (Parker et al., 2000) and 8,5’-DiFA (BF) 

in sugar beet (Micard et al., 1997a).  The diferulic acids found in plant cell walls, 

including the less frequently reported 4-O-5’-DiFA (Bunzel et al., 2000),  

8,5’-DiFA (decarboxylated) and 8,8’-DiFA (tetrahydrofuran) (Grabber et al., 

2000), are shown in Figure 5.  The 8,5’-DiFA (DC) has probably been 

overlooked in MS-based studies as it is not a true dimer, having lost CO2, and 

hence has a molecular weight 44 units lower than the usual 386 at 342.  The 

8,8’-DiFA (THF) may also have been missed as it incorporates an additional 

water molecule after radical coupling (Bunzel et al., 2004), and hence has a 

molecular weight of 404. 

 

Dimerisation of ferulic acid esterified to polysaccharides occurs mostly in the 

protoplasm of suspension-cultured maize cells, but may occur in the cell wall 

when H2O2 levels increase due to pathogenesis (Fry et al., 2000).  In wheat cell 

suspension cultures it appears that only the 8,5’-DiFA is formed 

intraprotoplasmically with the other dimers being formed in the cell wall (Obel et 

al., 2003). 
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Figure 5: Chemical structures of diferulic acids identified in plant-cell walls. 

 

As there appeared to be no reason why the dimers could not undergo radical 

coupling themselves, higher oligomers of ferulic acid were hypothesised to be 

possible.  Ward et al (2001) generated trimers of ferulic acid (TriFA) enzymically 

in vitro and trimers and higher oligomers of ferulic acid were implied by 

radiolabelling studies carried out in planta by Fry et al (2003). 

 

The first trimer to be identified was extracted from maize bran and was the 

5,5’/8-O-4’-TriFA, published almost simultaneously by Bunzel et al (2003a) and 

Rouau et al (2003).  Subsequently more trimers were discovered in maize bran 

(Figure 6): 
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 8-O-4’/8,5’-TriFA (Bunzel et al., 2005) 

 8-O-4’/8-O-4’-TriFA and 8-O-4’/8,8’(AT)-TriFA (Funk et al., 2005), 

 8,8’(THF)/5,5’-TriFA and 8,5’/5,5’-TriFA (Bunzel et al., 2006) 

 

 

Figure 6: Chemical structures of triferulic acids discovered in maize-cell walls. 

 

Theoretically there are at least 19 possible TriFAs, so there are more to be 

discovered (Ralph et al., 2004). 

 

Recently, two tetramers of ferulic acid (TetraFA) have been isolated from maize 

bran by Bunzel et al (2006): 4-O-8’/5,5’/8-O-4’-TetraFA and 4-O-8’/5,5’/8,5’-

TetraFA (Figure 7). 

 

Other phenolic compounds of interest when discussing plant cell walls are: p-

coumaric acid, sinapic acid and lignins.  p-Coumaric acid is generally abundant 

in the cell walls of cereal stems (Faulds and Williamson, 1999).  p-Coumaric 

acid is esterified at the O-5 position of arabinose in arabinoxylans of barley 

straw (Mueller-Harvey et al., 1986), coastal Bermuda grass (Borneman et al., 

1990), bamboo shoots (Ishii et al., 1990) and maize bran (Allerdings et al., 

2006).  There is no evidence that p-coumaric acid undergoes radical coupling 
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reactions itself (Iiyama et al., 1994), but it may take part in radical transfer to 

sinapyl alcohol, allowing the incorporation of sinapyl alcohol into lignin, even 

though sinapyl alcohol is a poor substrate for cell-wall peroxidases (Ralph et al., 

2004). 

 

 

Figure 7: Chemical structures of tetraferulic acids discovered in maize-cell walls. 

 

Sinapic acid has also been found to form dimers with itself (8,8) and ferulic acid 

(8,8, 8,5 and 8-O-4) in cereals and therefore may have a similar influence on 

cell-wall structure to that of the DiFAs (Bunzel et al., 2003b), although no 

evidence of sinapic acid being esterified to polysaccharides has been found 

(Bunzel et al., 2004). 

 

Lignin is a phenolic polymer laid down after cell elongation has ceased.  The 

precursors are p-coumaryl, coniferyl and sinapyl alcohols, which become  

p-hydroxyphenyl (H), guaiacyl propane (G) and syringyl (S) subunits linked by a 

variety of bonds in the polymer.  The type of lignin produced depends on the 

ratio of precursors, for instance: in gymnosperms, lignin contains mainly 

guaiacyl propane or syringyl subunits; in dicotyledonous angiosperms it 
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contains guaiacyl propane and syringyl subunits; and in monocotyledonous 

angiosperms, all three subunits are present (Seigler, 1998).  The polymerisation 

of lignin is a radical-coupling process mediated by peroxidases; as this is a 

purely chemical process which proteins or enzymes are not controlling, there is 

no defined primary structure to lignin (Ralph et al., 2004).  Growth ceases in 

fully lignified cells, and as the lignin forms an effective barrier to nutrients and 

pathogens, lignified cells soon die, but they provide good protection to the rest 

of the plant and provide structural support.  Primary cell walls do not contain 

lignin, but secondary cell walls contain 5–25% lignin (Bidlack et al., 1992). 

 

Monomeric ferulic acid etherified to lignin is also esterified to arabinoxylans in 

wheat internodes, thus proving that ferulates cross-link lignin and 

polysaccharides (Iiyama et al., 1990).  In contrast, p-coumaric acid does not 

cross-link lignin and polysaccharides (Iiyama et al., 1994).  The interactions 

between ferulic, diferulic and p-coumaric acids and lignin were thought to 

prevent cell-wall elongation (Fry, 1979), but cessation of growth in tall fescue 

leaf blades and maize internodes occurs before the maximum accumulation of 

ferulic and p-coumaric acid.  In fact, the accretion of ferulate, diferulates and  

p-coumarate continued after growth ended, continuing into secondary wall 

formation in tall fescue leaf blades and maize internodes (Iiyama et al., 1994; 

MacAdam and Grabber, 2002).  Esters of ferulic acid are etherified to lignin 

after wall growth ceases and therefore this process does not affect cell-wall 

elongation (Iiyama et al., 1994). 

 

1.2.5 Proteins 

 

The cell walls of Arabidopsis are believed to contain at least 500 proteins, with 

the possibility that there are up to 2000 (Jamet et al., 2006).  Most of the cell 

wall proteins are glycosylated (Brett and Waldron, 1996).  The majority also 

contain an unusual amino acid, hydroxyproline, which is not found in most 

protoplasmic proteins.  The role of proteins in the cell wall is difficult to study 

due to problems in extracting them.  The two main groups are structural 

proteins and cell-wall enzymes (Jamet et al., 2006), the latter of which will be 
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discussed in Section §1.2.6.  Type I walls contain between 1 and 20% protein, 

dependent on the specific tissue, whereas Type II walls contain ~0.5% (Fry, 

1988). 

 

Structural proteins: 

 Arabinogalactan proteins (AGP) – 90-98% sugar  

 Extensin – ~50% sugar 

 Glycine-rich proteins – ~70% glycine in a repetitive primary 

structure; important in plant vascular systems and wound healing 

 Proline-rich proteins – 0-20% sugar; contain proline-proline amino 

acid repeats; involved in plant development and nodule formation 

 Proline-rich AGP-like protein 

 

The backbone of extensin is a highly basic polypeptide of Mr ~40000, consisting 

of mainly hydroxyproline, with significant amounts of serine, lysine, tyrosine and 

sometimes histidine.  The hydroxyprolyl residues are glycosylated by 

arabinotriose or arabinotetraose and the seryl residues by galactose.  Extensin 

is insoluble in conventional protein solvents, including salt solutions, detergents, 

phenol/acetic acid/water and cold aqueous acids and alkalis. 

 

 

Figure 8: Formation of isodityrosine, based on McNeil et al (1984). 
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The extensin units covalently attach to the protein backbones of other 

proteins/extensins to form an interlocking network, as shown by Mort and 

Lamport (1977) who used hydrogen fluoride to remove all the cell wall 

carbohydrate, including that covalently attached to extensin, and still did not 

release extensin.  The linkage proposed for the covalent linkage between 

extensin molecules is isodityrosine (Figure 8), as mildly acidified NaClO2 

solubilises extensin by breaking phenolic linkages, but not peptide bonds 

(McNeil et al., 1984). 

 

Arabinogalactan proteins are 2-10% protein; the protein is acidic and contains 

hydroxyproline, serine, alanine and glycine amino acids.  The carbohydrate 

chains contain galactose, arabinose, rhamnose, mannose, galacturonic and/or 

glucuronic acids, and have a relatively high degree of polymerization (McNeil et 

al., 1984).  They are involved in cell-cell interactions and plant defence. 

 

Expansins are pH-dependent wall-loosening proteins; they are activated as the 

wall becomes more acidic.  Expansins are capable of wall loosening without the 

assistance of other enzymes or proteins and the addition of exogenous 

expansin rapidly stimulates cell growth.  Expansin treatment does not reduce 

the strength of the cell wall, even while it is expanding.  No enzymic activity that 

can account for its action on the wall has been found in expansins, so it is 

believed to act by disrupting the non-covalent bonds between wall 

polysaccharides.  Expansin action enhances cellulose degradation by cellulases 

(Cosgrove, 2005). 

 

1.2.6 Enzymes 

 

There are a wide range of enzymes in the cell wall; however, their function in 

the wall is still to be elucidated in some cases: 

 

 Glycoside hydrolases (EC category 3.2.1) 

o Cellulase (EC 3.2.1.4) 

o Polygalacturonase (EC 3.2.1.15) 
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o β-glucosidase (EC 3.2.1.21) 

o β-galactosidase (EC 3.2.1.23) 

o β-xylosidase (EC 3.2.1.37 or 3.2.1.32) 

o α-galactosidase (EC 3.2.1.22) 

o xylanase (EC 3.2.1.8) 

 Esterases and lyases (EC categories 3.1 and 4) 

o Pectin methylesterase (EC 3.1.1.11) 

o Acid phosphatase (EC 3.1.3.2) 

o Feruloyl esterase (EC 3.1.1.73) 

o Acetyl esterase (EC 3.1.1.72) 

 Transglycosylases 

o Xyloglucan:xyloglucosyl transferase (EC 2.4.1.207) 

 Peroxidases (EC 1.11.1.7) 

 Malate dehydrogenase (1.1.1.37) 

 Proteases (EC category 3.4) 

 

Xyloglucan:xyloglucosyl transferase, otherwise known as xyloglucan 

endotransglycosylase (XET) or xyloglucan endotransglucosylase/hydrolase 

(XTH), has some transglycosylase activity in addition to hydrolase activity, 

allowing it to sever the xyloglucan backbone and connect it to either another 

xyloglucan chain or water (Cosgrove, 1999; Takeda et al., 2002). 

 

Cellulase may cause wall loosening by releasing xyloglucans trapped in the 

non-crystalline regions of cellulose microfibrils (Cosgrove, 2005) 

 

Peroxidases produce the H2O2 required for the oxidative coupling of cell wall 

components.  They produce the H2O2 required to dimerise ferulic acid (linking 

polysaccharide chains), and tyrosine (linking extensins).  They require Ca2+ and 

are inhibited by low pH (Fry, 1986).  Peroxidase extracted from horseradish is 

commonly used in experiments when the formation of ferulic acid dimers (and 

higher oligomers) is desired (Oudgenoeg et al., 2002). 
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1.2.7 Structural relationships between polysaccharides in primary 
cell walls 

 

There are a number of different theories about the precise interplay between the 

microfibrillar and matrix phases in primary cell walls; these are discussed in 

detail below and also in the review by Cosgrove (2001).  Some of the models 

specify axes along which the components lie (Figure 9). 

 

Figure 9: Definition of axes used in cell-wall models. 

 

The “Keegstra and Albersheim” model (Keegstra et al., 1973) is based on 

suspension-cultured sycamore cell walls.  It has xyloglucan tightly bound to 

cellulose by hydrogen bonds and the reducing ends of xyloglucan are covalently 

attached to the galactan side chains of rhamnogalacturonan (which could form 

a stable network between microfibrils directly).  A covalent linkage between 

pectic polysaccharides and the arabinogalactans of AGPs was also included 

due to the experimental evidence.  Cell wall extension is proposed to be 

possible by creep of the xyloglucan chains along the cellulose microfibrils.  This 

model went out of favour as the linkage between pectin and xyloglucan could 

not be confirmed (Darvill et al., 1980).  It has been revived since, as small 

amounts of xyloglucan-pectin complexes have been found in suspension-

cultured rose cells (Thompson and Fry, 2000), as well as xylan-pectin 

complexes in asparagus (Waldron and Selvendran, 1992), pectin-xylan-

xyloglucan complexes in cauliflower (Femenia et al., 1999a) and xylan-

xyloglucan in olive pulp (Coimbra et al., 1995). 

 

Longitudinal 

Transverse 

Radial 
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The “Fry” model proposes that xyloglucans and arabinoxylans are hydrogen-

bonded to cellulose and RG I is esterified to cellulose.  The arabinoxylans are 

linked, through diferulic acid, to each other, as are the RG I polymers.  

Arabinogalactan is covalently linked to RG I, with calcium bridges forming 

between stretches of homogalacturonan.  Other ionic bonds between acidic 

homogalacturonan and basic extensin were proposed, primarily that 

homogalacturonan stretches of RG I are enclosed in loops of extensin (Fry, 

1986). 

 

McCann and Roberts proposed a three-dimensional model (McCann et al., 

1992), based on onion cell walls, which considered scale as well as bonding 

(the “improved tethered network” model).  The primary cell wall was ~75 nm 

thick, the middle lamella ~20 nm thick and the microfibrils ~10 nm in diameter, 

allowing only four layers of parallel microfibrils.  Microfibrils are cross-linked and 

separated by hemicellulose (xyloglucan) chains ~10-20 nm in length.  Ester-

linked pectins are embedded within the cellulose-xyloglucan framework, but are 

independent of it, and extend into the middle lamella.  The middle lamella 

pectins are less esterified than those in the rest of the wall, so they are able to 

form Ca2+ cross-links.  The pectins can be removed without affecting the 

structural integrity of the cellulose/hemicellulose network, although some 

galactan is associated with the microfibrils even after extraction in 4 M KOH.  

The pectins seem to regulate cell wall porosity and adopt a precise 

conformation in the cell wall (McCann et al., 1992).  The work of McCann (1990) 

and Whitney et al (1995) provided evidence for xyloglucan spanning the 

distance between microfibrils. 

 

The “multicoat” model of Talbott and Ray (1982) involves the microfibrils being 

successively coated with hemicellulose and pectin, which connect the 

microfibrils by virtue of their non-covalent attractions.  The symmetry of 

xyloglucan and cellulose is such that they both have an extended two-fold helix 

conformation in their crystalline forms and so can associate non-covalently 

(Gardner and Blackwel, 1974; Ogawa et al., 1990).  However, the arabinoxylans 

have an extended three-fold helix conformation, so there is not a favourable 

association between them and cellulose, at least not for the highly substituted 
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arabinoxylans (Yui et al., 1995).  Xylans and less highly substituted 

arabinoxylans may be capable of associating with cellulose (McNeil et al., 1975; 

Saulnier et al., 2007). 

 

The “warp-weft” model of Lamport and Epstein (1983) includes the xyloglucan 

linking the microfibrils, but gives a central role to protein cross-links.  The 

cellulose microfibrils (warp) are enclosed by isodityrosine-coupled extensin 

molecules (weft).  The “warp-weft” model is inappropriate for onion cell walls 

due to the low proportion of cell wall protein (McCann et al., 1990) and this may 

be true of other similar species. 

 

The “Carpita and Gibeaut” model (Carpita and Gibeaut, 1993) is actually two 

slightly different models that account for the differences between species; they 

defined Type I cell walls to be those of dicots and most non-graminaceous 

monocots and Type II cell walls to be those of the Gramineae.  The Type I 

model has xyloglucan chains hydrogen-bonded to the surface of the cellulose 

microfibrils and woven together by their hydrogen bonds with each other, cross-

linking the microfibrils.  The cellulose/xyloglucan layer is then sandwiched 

between layers of covalently linked polygalacturonan (PGA) and 

rhamnogalacturonan I.  The PGA is condensed by Ca2+ cross-linking, or in 

some species by formation of diferulic acid linkages between ferulic acid 

monomers ester-linked to separate polysaccharide chains   In the Type II 

model, a small amount of xyloglucan binds to the cellulose microfibrils, but was 

thought to not connect the microfibrils as they do in the Type I model.  Type II 

walls also tend to have low levels of pectin, although RG I and PGA were still 

envisaged to form a longitudinal layer.  The main connection between 

microfibrils is achieved by glucuronoarabinoxylans, which hydrogen bond to the 

microfibrils and to each other where there is little substitution of the 

polysaccharide.  As a substantial amount of the non-cellulosic polymers are not 

removed by treatment with alkali the phenolic cross-linkages are thought to 

wrap around the cellulose-xyloglucan-GAX interaction sites, preventing their 

removal.  They also considered how cell wall growth and growth cessation 

might be achieved in the two models.  In the Type I model xyloglucans are 

severed allowing microfibrils to separate; expansion is halted by incorporation of 
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extensin radially.  In the Type II model, mixed-linkage glucans are synthesised 

during expansion and take on a similar role to the xyloglucans of the Type I 

wall; expansion is halted somewhat by threonine-rich proteins and more 

significantly by esterified and etherified phenolic acids, at which point the mixed-

linkage glucans are no longer load-bearing. 

 

Unlignified Type II cell walls have glucuronoarabinoxylans and mixed-linkage 

glucans as their main non-cellulosic cell-wall polysaccharides, with pectic 

polysaccharides and xyloglucans in smaller amounts.  Unlignified Type I cell 

walls have large amounts of pectic polysaccharides, with smaller amounts of 

xyloglucans.  Some monocots have cell wall compositions that are intermediate 

between these two extremes; they tend to be the species that have ferulic acid 

esters in their cell walls, for instance, pineapple (Smith and Harris, 1995). 

 

Although xyloglucan binds strongly to cellulose in vitro (Valent and Albersheim, 

1974), the models that suggest that the only interaction between cellulose and 

xyloglucan is hydrogen-bonding probably need to be amended, as there is now 

evidence that xyloglucan is partly interwoven in the amorphous regions of 

cellulose, rather than just bound to the surface (Baba et al., 1994).  The 

evidence for this is that concentrated alkali (that makes the microfibrils swell) is 

required to release xyloglucan, whereas mild alkali that prevents the hydrogen-

bonding of xyloglucan to cellulose does not release xyloglucan.  In addition, 

when treatment with concentrated alkali or an endoglucanase is used, virtually 

no xyloglucan can be detected by an antibody designed for the purpose, but 

there are still small lengths (Mr 9200, 15 nm) of xyloglucan that can be released 

(Baba et al., 1994).  This means a modification to this model is required as the 

proposed method for expansion is unlikely to be possible. 

 

Extracellular cross-linking of xylan and xyloglucan chains, by oxidative coupling 

of phenolics, has been demonstrated in maize cell-suspension cultures (Kerr 

and Fry, 2004).  Modelling the feasibility of intramolecular diferulate formation in 

grass walls indicated that linkages between ferulates on the same arabinoxylan 

chain were only possible if the arabinoxylan relaxes its conformation (Hatfield 

and Ralph, 1999), implying that linkages are formed intermolecularly. 
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Sugar beet pectins are feruloylated and can be caused to gel by oxidative 

cross-linking (Iiyama et al., 1994).  Sugar beet contains diferulic acids and 

therefore it is assumed that cross-linking of pectins occurs in vivo (Wende et al., 

1999). 

 

1.2.8 Cell walls and growth regulation 

 

Although many have tried to determine the mechanism by which cell elongation 

is made possible by alterations to the cell wall, it has proven extremely difficult.  

Cell wall elongation is pH-dependent, and decreasing pH increases the growth 

rate.  There is some degree of control over the pH of the cell wall and many of 

the tropisms, such as phototropism, are produced in this way.  The following are 

interesting results related to cell wall growth. 

 Xyloglucan oligosaccharides show inhibitory effects on auxin-stimulated 

growth of pea (McDougall and Fry, 1988). 

 Feruloyl oligosaccharides inhibited auxin-stimulated growth of rice (Ishii, 

1997). 

 

1.2.9 Cell walls and defence 

 

Plant cell walls offer two types of defence for the plant as a whole: a passive 

mechanism and an active defence mechanism. 

 

As a passive defence mechanism, cell walls provide a physical barrier between 

pathogens and the plant cell contents.  The walls of surface cells may be 

strengthened by the deposition of lignin or silica, which will not only make it 

more difficult for pathogenic organisms to access the cell contents, but will deter 

foraging animals, by making digestion more difficult.  The outer cell wall of 

endodermal cells may contain suberin, a layer of fatty acids ester-linked to 

dicarboxylic acids and phenolics.  Epidermal cells may have a layer of cutin, a 

polymer of long-chain fatty acids held together by ester linkages, above the 
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primary wall layer.  Cutin and suberin are both hydrophobic, allowing the plant 

to shed water and any associated microbes. 

 

Pathogens attempting to penetrate the walls of their host must secrete a range 

of cell-wall degrading enzymes.  As part of the plant’s active defence 

mechanism, the cell walls are capable of reacting to the attack.  The enzymes 

used by pathogens to break down the polysaccharides in the cell wall produce 

oligosaccharides that can act as signalling molecules.  The cell wall can 

respond to these signalling molecules in a range of ways: by depositing more 

lignin and/or cellulose in the cell wall around the attack site (making the wall 

more difficult to penetrate) (Iiyama et al., 1994), releasing proteins to inhibit the 

action of the pathogenic enzymes (Albersheim and Anderson, 1971; Juge, 

2006) or using enzymes as a counter-attack against the pathogen (Cline and 

Albersheim, 1981).  The oligosaccharide signals may also induce the 

neighbouring cells to defend themselves. 

 

Phenolic acids have a range of properties that may help the plant defend itself: 

 They are astringent, especially in combination (Shahidi and Naczk, 

2004), and therefore would deter foraging herbivores 

 Sinapic, p-coumaric and ferulic acids can inhibit mycelium growth of 

Fusarium oxysporum, and they also inhibit the various cell-wall 

degrading enzymes secreted by F. oxysporum when it attacks date palm 

(El Modafar and El Boustani, 2001) 

 During a pathogen-induced oxidative burst, which may involve 

extracellular H2O2 production, increased coupling of ferulic acid would 

occur in the cell walls (Fry et al., 2000), increasing the degree of cross-

linking and reducing degradability 

 Synthesis of feruloyltyramine in response to wounding restricts the 

enzymic dissolution of cell-wall polymers (Pearce et al., 1998) 

 Inactivation of plant viruses (Sridhar et al., 1979) 

 

Presumably a combination of these factors makes ferulic acid a significant 

factor in the resistance of wheat against wheat midge (Abdel-Aal et al., 2001). 
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The defence mechanisms of plants exert their influence in agriculture, 

biodiversity and food production.  For instance, increasing the level of 

polysaccharide cross-linking reduces the digestibility of plant cells in the 

ruminant gut – a major factor in the economically important production of milk 

and beef.  It reduces further if the cross-linking is between lignin and 

polysaccharides (Grabber et al., 1996; Ralph et al., 1996). 

 

1.2.10 Cell walls and health 

 

Cell walls are the main source of fibre in the human diet.  Dietary fibre is defined 

as “all the polysaccharides and lignin in the diet that are not digested by the 

endogenous secretions of the human digestive tract” (Selvendran, 1991).  Low 

intake of foods containing dietary fibre, such as fruit, vegetables and cereals, 

can contribute to constipation, diverticular disease, colorectal cancer, coronary 

heart disease, diabetes and obesity (Selvendran, 1991).  These negative effects 

may also be due to a lack of other compounds, such as antioxidants, that are 

also present in these foods. 

 

Primary wall polysaccharides have been shown to bind heavy metals (Tahiri et 

al., 2000; 2002), regulate serum cholesterol (Terpstra et al., 2002) and stimulate 

the immune system (Yu et al., 2001).  Also, many phenolics are known to have 

one or more of the following beneficial activities: antioxidant, antimicrobial, 

antimutagenic (Ferguson et al., 2003), anti-inflammatory, anticarcinogenic, 

cholesterol-lowering and prevention of thrombosis and atherosclerosis (Ou and 

Kwok, 2004). 

 

Hydroxycinnamic acids, and an extract containing hydroxycinnamic acids 

obtained by the saponification of the cell walls of wheat coleoptiles, have been 

shown to have antimutagenic properties in a simple bacterial model (Ferguson 

et al., 2003).  Assuming this can be applied to humans, this may provide an 

explanation as to why diets high in fibre, and hence hydroxycinnamic acids, 

tend to protect people from cancer of the bowel and digestive tract.  Ferulic acid 
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forms a resonance-stabilized phenoxy radical, which scavenges a range of free 

radicals.  It also increases the activity of enzymes responsible for scavenging 

free radicals and inhibits enzymes that catalyse the production of free radicals 

(Kayahara 2000).  Ferulic acid (and other phenolic acids) esterified to cell-wall 

polymers cannot be absorbed in the human gut in this form, but there are 

microbial esterases present in the intestine that can release them (Andreasen et 

al., 2001a; Kroon et al., 1997) in a form which can then be absorbed 

(Andreasen et al., 2001b).  Ferulic acid is subsequently excreted as the free 

form or conjugated to glucuronide in the urine (Chesson et al., 1999; Choudhury 

et al., 1999). 

 

Diferulic acids are more effective inhibitors of lipid peroxidation and better 

scavengers of free radicals than ferulic acid on a molar basis (Garcia-Conesa et 

al., 1997).  As with ferulic acid, diferulic acids bound to cell walls are not 

absorbed directly by humans; however it has been shown in rats that free 

diferulic acids are absorbed in the intestine (Andreasen et al., 2001b).  Caco-2 

cells (a cancer cell line that differentiates into enterocyte-like cells similar to 

those in the small intestine) have the ability to de-esterify model DiFA-diester 

substrates, particularly the 8-O-4’-DiFA diester (Kern et al., 2003).  Increasing 

the concentration of ferulic acid and diferulic acid does not affect the 

degradation of nonlignified cell wall by human intestinal microbes (Funk et al., 

2007). 

 

1.3 Studying the cell-wall matrix 

 

There are many approaches taken for studying the wall matrix and they 

generally utilise whole tissue or purified cell-wall material.  The different 

approaches are described below. 

 

1.3.1 Microscope-based investigations 

 

The distribution of phenolics in whole tissue can be visualised using UV 

microscopy (ferulic acid fluoresces blue); and simple chemical treatments, such 
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as dilute ammonium hydroxide, can induce more intense pH dependent 

autofluorescence (ferulic acid autofluoresces green).  Studies on monocots 

show that some subclasses and families are more likely to contain high levels of 

phenolics than others.  For instance, the subclass Commelinales and the 

families Philydraceae, Pontederiaceae and Haemodoraceae have relatively 

high levels (Harris and Hartley, 1980).  Even very low levels of ferulic acid (>88 

µg/mg) can be detected by pH-dependent autofluorescence (Carnachan and 

Harris, 2000).  Other histochemical stains can be used: 

 

 Alcian blue stains pectin blue 

 Ruthenium red stains pectin red 

 Sudan 7B stains suberin pink/red 

 Fluorol yellow 088 gives a yellow fluorescence with suberin under UV 

light 

 Dimethoxybenzaldehyde stains condensed tannins red 

 Naturestoffreagenz A gives a yellow fluorescence with flavonoids under 

UV light 

 Reactive oxygen species give a deep-brown reaction product with H2O2 

(Gunawardena et al., 2007) 

 Phloroglucinol-HCl stains lignin red (Carnachan and Harris, 2000) 

 Toluidine blue O stains polychromatically; lignin stains green or blue-

green and rhamnogalacturonans stain pink or purple (Carnachan and 

Harris, 2000) 

 Sirofluor, a chemical found in aniline blue, gives a yellow fluorescence 

with callose (Stone et al., 1984) 

 Calcofluor stains cellulose blue (Roberts, 2001) 

 

The distribution of matrix polymers has been investigated using electron 

microscopy and immunocytochemistry in potatoes (Parker et al., 2001) and 

peas (Pisum sativum L. cv Avola) (McCartney and Knox, 2002).  There are a 

number of monoclonal (mAb) and polyclonal (pAb) antibodies that have been 

used for this purpose; most of them are specific for a particular polysaccharide 

or protein epitope; and these are listed in Figure 10: 
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Probe Type Recognised epitope References 

LM1 Mab Extensin (Smallwood et al., 1995) 

LM2 Mab AGP (Smallwood et al., 1996) 

LM5 Mab (1→4)-β-D-galactan (Jones et al., 1997) 

LM6 Mab (1→5)-α-L-arabinan (Willats et al., 1998) 

LM7 Mab Randomly methylated HG (Clausen et al., 2003) 

LM8 Mab Xylogalacturonan (Willats et al., 2004) 

LM9 Mab Feruloylated (1→4)-β-D-galactan (Clausen et al., 2004) 

LM10 Mab Unsubstituted or low-substituted xylans (McCartney et al., 2005) 

LM11 Mab Wheat arabinoxylans and LM10 epitope (McCartney et al., 2005) 

CCRC-M1 Mab α-(1→2)-Fuc residue on XG (Kremer et al., 2004) 

CCRC-M7 Mab Arabinosylated (1→6)-β-galactan (Steffan et al., 1995) 

JIM4 Mab β-D-GlcA-(1,3)-α-D-GalA-(1,2)-α-L-Rha of AGP (Stacey et al., 1990) 

(Yates et al., 1996) 

JIM5 Mab Low-methylated HG (Willats et al., 2000) 

JIM7 Mab Highly methylated HG (Willats et al., 2000) 

JIM8 Mab Carbohydrate portion of AGP (Samaj et al., 1998) 

JIM11 Mab Extensin (Smallwood et al., 1994) 

JIM12 Mab Extensin (Smallwood et al., 1994) 

JIM13 Mab β-D-GlcA-(1,3)-α-D-GalA-(1,2)-α-L-Rha of AGP (Knox et al., 1991) 

(Yates et al., 1996) 

Anti X1 Pab (1→4)-β-linked Xyl regions and Ara substituted regions 

of AX 

(Guillon et al., 2004) 

Anti X3 Pab (1→4)-β-linked Xyl regions of AX (Guillon et al., 2004) 

PAM1 Phage display mAb De-esterified and unsubstituted GalA of HG (Willats et al., 1999) 

5-O-Fer-Ara Pab 5-O-(trans-feruloyl)-L-Ara (Phillipe et al., 2007) 

 

Figure 10: Antibodies used in microscope investigations of plant-cell walls, and the 

epitopes they bind to. 

 

1.3.2 Chemical investigations 

 

The cell contents can interfere with chemical investigations, so they are usually 

removed to give relatively pure samples of cell wall.  The cell walls of 

monocotyledonous green asparagus (Asparagus officinalis L. cv. Franklin) 

(Rodríguez-Arcos et al., 2004), Chinese water chestnut (Eleocharis dulcis) 
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parenchyma (Parr et al., 1996), carrot (Daucus carota cv. Amstrong) (Ng et al., 

1998), potato (Solanum tuberosum cv. Cara) (Parker et al., 2001) and chufa 

(Cyperus esculentus L.) (Parker et al., 2000) have been studied in this way.  

There are a number of methods for extracting specific components of the cell 

wall and these are normally analysed in a quantitative manner.  For sugars, the 

main method involves analysis of hydrolysed carbohydrates, which can be 

augmented by analysis of their linkages.  Analysis of phenolics is usually carried 

out after extraction in alkali.  Lignin can be quantified using the Klason lignin 

method.  More complex analytical methods, such as thioacidolysis cleavage 

and nitrobenzene oxidative cleavage, allow the different subunits of lignin to be 

identified. 

 

1.3.3 Enzyme-based investigations 

 

Much of the work on the linkages between ferulic acid and cell-wall 

polysaccharides has been done using a sub-class of the carboxylic acid 

esterases called feruloyl esterases (FAE) (E.C. 3.1.1.73) (Crepin et al., 2004).  

They were first detected by Deobald and Crawford (1987) in extracellular 

enzyme preparations from Streptomyces viridosporus.  As more FAEs were 

discovered, Crepin et al separated them into four distinct classes (A, B, C and 

D) based on substrate utilisation and primary sequence identities (Crepin et al., 

2004).  Depending on the substrate, enzymes have variable success rates at 

degrading plant cell walls.  In monocots, such as wheat bran, the FAE needs to 

be combined with a xylanase to facilitate release of ferulic acid from the 

arabinoxylan (Faulds and Williamson, 1995).  Often in dicots containing ferulic 

acid, such as sugar beet, a combination of FAE and α-L-arabinofuranosidase is 

required to get a reasonable release of sugars and/or phenolics when 

compared to an alkali extraction, where the ferulic acid-pectin ester link is 

saponified relatively easily.  The presence of a xylanase/pectinase enhances 

the degradation of the polysaccharide matrix by giving FAEs access to their 

substrate.  The FAE classes A and D release DiFAs linked to polysaccharides 

(Crepin et al., 2004). 
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Enzymic release of ferulic acid is the preferred method of extraction as it can 

then be used as a feedstock for other biocatalytic conversions, the results of 

which can be defined as “natural” products.  Ferulic acid can be used to 

produce vanillin, an economically important chemical in the food, 

pharmaceutical and cosmetic industries (Topakas et al., 2007). 

 

1.3.4 Mechanical analysis 

 

Cell walls are important in the perception of food when it is consumed, as the 

strength of the cell walls and the adhesion of adjacent cell walls to one another 

influences the toughness of food.  The tendency of the cells to either rupture or 

detach from each other when stress is applied will affect the juiciness and 

texture of the food in the mouth (Figure 11). 

 

Figure 11: Cell rupture (left) and cell separation (right), based on Brett and Waldron 

(1996). 

 

Studies on the effects of heating, storage and phenolic extraction on the 

strength of plant tissues have been done.  For most plants, heating and storage 

decrease the cell adhesion and weaken the tissues, for example potato 

(Waldron et al., 1997).  Chinese water chestnut tensile strength is increased 
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slightly by heating (Waldron et al., 1997), but is decreased by alkali extraction of 

phenolics, in particular in 1 M NaOH, when 8,8’-DiFA (AT) is removed, 

indicating this may form part of a key phenolic-polysaccharide linkage (Parker et 

al., 2003). 

 

1.4 Chinese water chestnut 

 

Chinese water chestnut (Eleocharis dulcis (Burman f.) Trin ex Henschel) is a 

plant in the family Cyperaceae.  It grows naturally, and by cultivation, in many 

parts of Asia, and recently small-scale cultivation has started in Australia and 

the USA.  The inedible leaves grow to between 1 and 1.5 metres high and are 

used in some countries to produce mats (Klok et al., 2002).  The Chinese water 

chestnut (CWC) corms are oblate spheres, of diameter 3-4 cm, with a dark 

brown skin and a ring of leaf-bases around the apex (Figure 12). 

 

 

Figure 12: Chinese water-chestnut corms (left) and a sprouting corm (right). 

 

The edible part of the corm consists of thin-walled parenchyma cells containing 

starch granules, interspersed with vascular strands (Parker and Waldron, 1995).  

CWC is widely known to retain a crisp texture when cooked and this has been 

shown mechanically by three separate groups (Loh and Breene, 1981; Mudahar 

and Jen, 1991; Parker et al., 2003).  They grow in paddy-like ponds, and are 

therefore beset by a wide range of pathogenic organisms, protection from which 
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is provided by the outer epidermis.  Apart from damage due to animal feeding, 

growing CWC appears to be susceptible to only a few pathogens such as rust 

(Uromyces sp.), stem blight (Cylindrosporium eleocharidis) and water-chestnut 

wilt caused by a specific Fusarium oxysporum (Midmore, 1997).  They are 

easily damaged during harvest, however, giving saprophytic fungi and bacteria 

access to the inner tissue. 

 

CWC leaves have transverse septa 2-3 mm apart, but only every third/fourth 

one is usually complete.  All plants require oxygen for efficient cellular 

respiration, and the water-saturated soils in which CWC grow force the plants to 

cope with anoxic conditions around the underground organs.  Oxygen diffuses 

10 000 times slower through liquid water than through air, so cellular respiration 

quickly depletes the available oxygen, leading to anoxia and a large decrease in 

plant nutrient availability.  It also allows the build-up of anaerobic soil microbes.  

Plants deal with anoxic conditions by facilitating transport of oxygen from the 

atmosphere to underground or underwater organs.  Aerenchyma cells provide 

pathways for oxygen and carbon dioxide throughout the plant.  Movement 

through aerenchyma may be through diffusion and/or pressurised convection.  

These mechanisms are important for growth and productivity in plants such as 

rice (and presumably CWC). 

 

1.4.1 Studies of CWC cell walls 

 

The microscopic investigation of CWC (Eleocharis dulcis) parenchyma has 

included light, UV and electron microscopy (Parker and Waldron, 1995); these 

included studies that used 50 mM KOH at 100°C for 30 min to separate CWC 

cells, but allowed the predominance of phenolics at the perimeters of the cell 

faces to be visualised (Figure 13).  Atomic force microscopy studies have 

shown the lamellar structure of microfibrils in the cell walls of CWC (Figure 3, 

§1.2.1). 

 

Chemical analyses have generally been restricted to the phenolic acid (alkali-

releasable), neutral sugar and uronic acid content of CWC parenchyma cell 
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walls (Parker and Waldron, 1995; Parr et al., 1996).  The neutral sugars were 

mainly glucose, indicating the presence of cellulose, and arabinose and xylose, 

implying the presence of arabinoxylan (Parker and Waldron, 1995).  The alkali-

releasable phenolics were mainly ferulic and coumaric acid, plus six of the nine 

known diferulic acids (Figure 5, §1.2.4) (Parr et al., 1996). 

 

 

Figure 13: CWC cell in alkali, showing concentration of phenolics at the edges of the cell 

faces, visualised by UV microscopy, from Parker and Waldron (1995). 

 

Mechanical testing has shown that CWC does not lose mechanical strength 

when thermally treated.  The changes to the carbohydrate structure during 

thermal treatment do not result in cell separation, even though the pectins in 

CWC are degraded in the same way as those in potato, which does undergo 

cell separation under the same conditions (Brett and Waldron, 1996).  The 

phenolic composition may explain the thermal properties of CWC, as treating 

CWC with increasing concentrations of alkali does induce cell separation of 

CWC parenchyma (Parker et al., 2003).  Parker et al (2003) also tested various 

chemical and enzymic treatments for their ability to cause cell separation. 
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 Concentrated hot acid induces cell separation and reduces pH-

dependent autofluorescence (PDA) 

 Weak hot acid also induces cell separation after a longer reaction time, 

but retains PDA. 

 Chelating agents (hot or cold) did not induce cell separation. 

 Concentrated alkali (hot or cold) induced cell separation and removed 

PDA. 

 Treatment with endoxylanase induced cell separation and PDA was 
retained. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 14: Provisional cell-wall model of CWC parenchyma at the interface of two cells 

(Cellulose is green, AX is blue, pectin is pink, diferulic acid cross-links are purple). 
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From these results, it can be assumed that xylans are a key component of CWC 

cell-cell adhesion, as apparently are diferulic acids, but not calcium-containing 

pectins.  If the cell walls of CWC are consistent with the Type II cell wall then 

the xylans are arabinoxylans, and they are hydrogen-bonded to the cellulose 

microfibrils.  The high concentration of ferulic and diferulic acids implies that 

these may cross-link the arabinoxylans, therefore breaking the arabinoxylan 

backbone, or de-esterifying (di)ferulic acids with alkali will cause cell separation.  

These results have been incorporated into a provisional cell-wall diagram 

(Figure 14). 

 

To incorporate the heterogeneity of the cell wall with regards to the distribution 

of phenolics on the cell surface, the provisional wall model is presented in three 

sections, one rich in arabinoxylan and ferulic acid (load-bearing edges of cell 

faces), one rich in pectin (non-load-bearing cell faces), and one where the two 

are superimposed as they might be in a transitional region.  The arabinoxylans 

are hydrogen-bonded to the surface of the cellulose microfibrils.  The pectins 

form a separate network not connected to the microfibrils or arabinoxylans. 

 

1.5 Analytical theory 

 

1.5.1 Gas-chromatography (GC) theory 

 

Gas chromatography is used to quantify cell wall sugars, as the derivatisation 

required to make them volatile is relatively quick and simple and gives 

quantitative results. 

 

A schematic of a gas chromatograph is shown in Figure 15.  Gas 

chromatography involves injection of a vaporised sample onto the head of a 

chromatographic column.  Elution of the sample is achieved due to the flow of 

an inert gaseous mobile phase such as nitrogen or helium.  As the mobile 

phase is inert it does not interact with the molecules of the analyte; it only 

transports the analyte through the column.  The choice of mobile phase 

depends to an extent on the detector used and upon economics.  Nitrogen is 
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cheaper than helium, but tends to give slower analyses, as the separating 

efficiency of nitrogen is worse than helium at high flow rates (Sheffield Hallam 

University, 2004). 

 

 

Figure 15: Schematic of a gas chromatograph, based on Skoog et al (1996). 

 

Gas chromatography is based upon the partition of the analyte between a 

gaseous mobile phase and a liquid phase immobilised on the surface of an inert 

solid.  Samples need to be introduced to the column as quickly as possible to 

maintain good resolution. 

 

A common detector used in gas chromatography is the flame ionisation detector 

(FID).  It pyrolyses the molecules in a hydrogen/air flame, releasing ions and 

electrons that conduct electricity through the flame.  A potential of a few 

hundred volts is applied between the point of ignition and a collector electrode, 

the resulting current is amplified and measured.  The FID responds to the 

number of carbon atoms entering the detector per unit time so it is a mass flow 

detector.  It is popular because it has a linear response range of 107 and 

detects most organic compounds.  One drawback of the FID is that the sample 

is destroyed in the process. 
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Gas chromatography can also be used to analyse phenolics, but this requires 

silylation to make them volatile; HPLC, which is preferred (described in Section 

§1.5.2), allows for identification by their UV spectra. 

 

1.5.2 High performance liquid chromatography (HPLC) theory 

 

 

Figure 16: Schematic of a high-performance liquid chromatograph, based on Skoog et al 

(1996). 

 

The vast majority of the research community use reverse-phase HPLC to 

analyse phenolics (Robbins, 2003).  A schematic of a HPLC system is shown in 

Figure 16.  In reverse-phase HPLC, the stationary phase consists of silica with 

n-alkyl chains (normally C18 or C8) covalently bound to their surface, and the 

mobile phase is an aqueous/water-miscible elution mixture e.g. water and 

methanol, water and acetonitrile; this results in the most hydrophilic compounds 

eluting first.  Much of the HPLC system is required for the correct regulation of 

the solvent composition and flow rate. 
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Three detectors commonly used with HPLC Detectors are UV diode-array 

detectors (DAD), refractive-index detectors (RI) and mass-spectrometer 

detectors (MS).  Diode-array detectors require light from a broad-spectrum light 

source to be shone through the sample.  The light that is not absorbed by the 

sample is detected by an array of photosensitive diodes that detect the intensity 

of a particular wavelength of light, which is then recorded by a computer.  The 

spectra produced are often characteristic of the compound that produced them, 

aiding identification.  Refractive-index detectors detect the change in refractive 

index between the sample and a suitable reference material; they are sensitive 

to external environment changes, but are useful for detecting non-ionic and 

non-light absorbing/fluorescing compounds.  Mass spectrometry is described in 

detail in Section §1.5.3. 

 

1.5.3 Mass spectrometry (MS) theory 

 

A mass spectrometer produces ions from a sample and separates them 

according to their mass-to-charge ratio.  The process of ionisation usually 

produces molecular and fragment ions giving an indication of molecular weight 

and structural information that may help with identification.  There are a number 

of methods for ionisation, and the method used depends on the type of 

compound being analysed. 

 

 Electron impact (EI) – volatile samples 

 Chemical ionisation (CI) – volatile samples 

 Fast atom bombardment (FAB) – involatile or high molecular weight 

samples 

 Electrospray ionisation (ESI) – involatile or high molecular weight 

samples 

 Matrix-assisted laser desorption ionisation (MALDI) – involatile or high 

molecular weight samples 

 



 

INTRODUCTION 

41 

The ions are accelerated by applying a voltage to them, and then passed into a 

mass analyser.  There are a number of mass analysers available, although they 

generally work by exploiting the properties of ion behaviour in magnetic and/or 

electric fields (a magnetic-sector mass analyser is shown in Figure 17.  As the 

ions have different mass-to-charge ratios (m/z), they will be deflected by 

different amounts in a magnetic/electric field.  With the field at a specific 

strength, only ions with suitable m/z will reach the detector.  If the magnetic field 

is increased, ions with higher m/z will reach the detector.  The detector monitors 

the ion current, which it magnifies and transmits to the data analysis software.  

The data is presented as intensity against m/z. 

 

Figure 17: Schematic of a magnetic-sector mass spectrometer. 

 

The ionisation method commonly used to analyse the phenolics as they come 

off the HPLC column is electrospray ionisation (ESI).  ESI is regarded as a 

“soft” ionisation method as it does not fragment the analyte significantly.  A 

solution of the analyte (10-4-10-5 molar) is sprayed through a capillary needle 

held at a potential of 2-3.5 kV at 10-1000 µl/min, producing a spray of charged 

droplets at atmospheric pressure.  The spray passes through a staged pumping 
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system during which the droplets shrink due to solvent evaporation, releasing 

charged molecules.  These charged molecules are then mass-analysed by the 

mass spectrometer.  ESI is particularly useful for large molecules, as with this 

method they acquire multiple charges, bringing them within the mass/charge 

ratio range of conventional mass spectrometers.  ESI is also useful for smaller, 

highly charged, thermally labile compounds (Mellon, 2000).  ESI can be used to 

produce positive or negative ions.  The positive ions are normally adducts of the 

analyte with hydrogen, sodium or potassium.  Instead of a magnetic-sector 

mass analyser, the mass spectrometers used had a triple quadrupole or time-

of-flight (ToF) mass analyser.  The quadrupole mass analyser is more 

complicated than the magnetic-sector mass analyser, but it works along similar 

principles.  The ToF mass analyser uses the principle that each ion is imparted 

with the same amount of energy, so heavier ions travel more slowly than lighter 

ions, and therefore measuring the time taken to travel a certain distance can 

provide the m/z of an ion. 

 

1.6 Aims of investigation 

 

The aims of this investigation were as follows: 

 

1.6.1 Cell walls in different tissues of CWC 

 

Renard et al (1999) found different ratios of ferulic acid to dimers in different 

tissues of quinoa and suggested this may be due to their different roles.  There 

have also been differences in the proportions of diferulic acid isomers present in 

the tissues of sugar beet (Wende 2000).  Parker et al (2000) found that the 

parenchyma cell wall of chufa, another Cyperaceae, had ferulic acid as the 

predominant phenolic, whereas in the epidermis p-coumaric acid was 

predominant.  The sugar content also differed considerably.  The differences in 

gross composition of CWC cell walls from three different tissues of the corm: 

the white, edible parenchyma; the brown outermost layer of epidermis; and the 

sub-epidermal layer of vascular tissue, were investigated and their likely roles in 

the plant’s physiology put forward. 
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1.6.2 Cell wall cross-links 

 

The cell wall cross-links in CWC have been inferred, but not properly 

elucidated; therefore, this investigation focussed on extracting phenolic-

polysaccharide fragments and characterising them to see if they were similar to 

those already seen in the Amaranthaceae (feruloylation at the O-2 position of 

Ara residues in arabinans and/or O-5 position of Gal residues in galactans) or 

the Poaceae (feruloylation at the O-5 position of Ara residues in arabinoxylans) 

(Ishii, 1997).  In particular, the 8,8’-DiFA (AT) was of interest as previous 

research had implicated it in the thermal stability of CWC mechanical properties 

(Parker et al., 2003). 

 

1.6.3 Higher oligomers of ferulic acid 

 

As other investigators had shown at the beginning of this investigation (Bunzel 

et al., 2003a; Rouau et al., 2003), that higher oligomers of ferulic acid were 

present in vivo, the presence of trimers and tetramers was anticipated.  Finding 

higher oligomers of ferulic acid in CWC would show that they are not restricted 

to maize or even the Poaceae.  Assuming trimers were found, it was hoped that 

their molecular structures could be elucidated by NMR. 
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2 General Materials and Methods: 
 

All reagents, unless otherwise stated, were of analytical grade. 

 

2.1 Source of materials 

 

Fresh CWC (Eleocharis dulcis var. unknown) were obtained from local 

suppliers.  The fresh CWC are generally vacuum-packed at source and 

refrigerated at 4°C during transport and presale storage.  The CWC were 

peeled and chopped into cubes, roughly 1 cm to a side, removing any diseased 

areas as they were encountered.  The pieces of peel, including tops and 

bottoms, were kept separate from the parenchyma pieces.  The peel and 

parenchyma were frozen in separate vacuum flasks using liquid nitrogen; they 

were then stored at -20°C until needed. 

 

All the methods presented in this chapter were based on standard methods 

developed and validated over a period of ten years on a number of different 

plant species. 

 

2.2 Preparation of cell-wall material (CWM) 

 

There are many ways of preparing cell-wall material, which have been 

compared in a paper by Renard (2005), but none of the methods described was 

exactly the same as that described below.  Based on the findings of Parr et al 

(1997) that the sodium dodecyl sulfate (SDS) method gave more reproducible 

results, the following method was adapted from the methods described by Fry 

(1988) and Brett and Waldron (1996). 

 

Two batches of cell wall material were prepared from CWC parenchyma using 

the method given below for the following amounts of material: Batch 1 ~400 g 

frozen fresh weight (4 preparations); Batch 2 ~3,100 g frozen fresh weight (29 
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preparations).  The fresh corms were purchased separately from different 

suppliers. 

 

2.2.1 Preparation of parenchyma-cell-wall material 

 

Approximately 100 g of CWC parenchyma was blended using a Waring blender 

(330 W, Fisher) in 200 ml of 1.5% SDS containing 5 mM Na2S2O5 (Appendix A) 

in 2-5 bursts of 30 s until all large lumps had been broken down.  Further 

homogenization was carried out using an Ystral Homogenizer (Ystral GmbH) on 

power level 3 (500 W, 16000 rpm) for 6 minutes.  Drops of octanol were added 

as required to reduce foaming.  The homogenate was filtered through a 100-µm 

nylon mesh (VWR) and washed with 100 ml 0.5% SDS solution containing  

3 mM Na2S2O5.  The excess liquid was squeezed from the residue, which was 

transferred to a beaker.  Any remaining residue was washed off the mesh using 

200 ml 0.5% SDS solution (as before) into the beaker.  The suspension was 

filtered through the mesh again, washing with 100 ml 0.5% SDS solution.  

Excess liquid was squeezed out of the residue, which was transferred to a 1 L 

ceramic ball mill.  The residue was washed into the ball mill with ~180 ml 0.5% 

SDS solution, so the tops of the ceramic balls were just showing above the 

surface.  The ball mill was run at 60 rpm for 1 hr at 4°C.  The contents of the 

ball mill were sieved and washed with deionised water into a metal beaker.  

Unwanted particles of epidermis were decanted off.  The cell-wall mixture was 

filtered through a 100-µm mesh, washing with 1 L of deionised water.  A small 

sample of cell-wall mixture was tested for starch by staining with I2/KI solution 

(see Appendix A) and examining it under a microscope, at which point there 

were usually still some starch granules trapped in cells that had been ruptured.  

The mesh was washed with ~1 L of deionised water into a metal beaker then 

homogenised with an Ystral Homogenizer on power level 2 (500 W, 13000 rpm) 

for 3 minutes to release the starch granules.  The mixture was filtered again 

through the 100-µm mesh and washed with deionised water (~6 L) until no 

starch was visible under the microscope.  The majority of the excess liquid was 

squeezed out of the residue, which then stuck together in clumps.  The residue 
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was transferred to a plastic bottle with ~70 ml deionised water and frozen  

(-20°C). 

 

2.2.2 Preparation of epidermis-cell-wall materials 

 

The CWC peel from Batch 1 (3 preparations) was used to produce CWM using 

the above method, although they were blended using a Waring blender for 4 

bursts of 30 s.  Once the samples had been ball milled, they were carefully 

decanted to separate the dark brown outer layer of skin (the epidermis), from 

the light brown inner layer of epidermis (sub-epidermis), which were called the 

ECWM and SECWM samples respectively, and the residual parenchyma (not 

used).  The samples of epidermis and sub-epidermis were frozen (-20°C) in 

deionised water.  The frozen samples of epidermis were defrosted and 

combined, as were the sub-epidermis samples.  They were homogenised with 

an Ystral Homogenizer on power level 2 for 3 minutes to release the starch 

granules.  They were then filtered through a 70-µm nylon mesh and washed 

with deionised water (2-8 litres) until no starch granules were observed under 

the microscope.  The CWM was redispersed in deionised water and frozen  

(-20°C). 

 

To obtain dry CWM, the suspensions (Batch 1/Batch 2) were defrosted and 

filtered through a 70-µm nylon mesh (different mesh used for each tissue to 

prevent cross contamination) and washed with 250/2000 ml ethanol (BDH).  

The solid was redispersed in 300/500 ml of ethanol and filtered again through 

the 70-µm mesh.  It was then washed with 400/500 ml ethanol and 150/500 ml 

of acetone (Fisher).  The filter was then turned out onto a suitable dish and left 

to dry overnight in a fume cupboard, lightly covered with a piece of perforated 

aluminium foil to prevent contamination.  The dry CWM tended to form loosely-

associated clumps.  During the alcohol washing, the epidermis and sub-

epidermis samples released a yellow-coloured compound, which was probably 

chlorogenic acid.  Dry CWMs were stored in sealed jars at room temperature. 
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2.3 Total phenolic extraction 

 

Triplicate samples of CWM (4.8-5.2 mg) from each of the three tissues were 

accurately weighed into screw-cap glass culture tubes.  1 ml of de-oxygenated, 

nitrogen-flushed 4 M sodium hydroxide solution was added to each tube; these 

were then over-flushed with nitrogen (to prevent oxidation) and mixed.  The 

tubes were wrapped in foil to exclude light, reducing cis/trans isomerisation 

(Hartley and Jones, 1975; Kahnt, 1967), and agitated for 24 hr on a rotary tube 

mixer.  The samples were centrifuged (Mistral 2000 centrifuge) three times at 

1000 rpm for 5 min to sediment out the solids and 0.6 ml of the supernatant was 

pipetted into clean culture tubes.  The supernatant was quite brightly coloured, 

as shown in Figure 18, so to ensure there was sufficient solvent for the 

phenolics the volume of NaOH was increased to 4 ml in later CWM analyses. 

 

Figure 18: Phenolic extract colours before acidifying; parenchyma (left), epidermis 

(centre), sub-epidermis (right). 

 

To these tubes 50 µl of trans-cinnamic acid solution was added as an internal 

standard.  The solutions were then acidified by dropwise addition of conc. 

hydrochloric acid (37%, Riedel de Haën) until the pH fell to 2, tested by taking 

Epidermis Parenchyma Sub-epidermis 
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very small aliquots and spotting them onto pH paper.  The tubes were mixed 

well to make sure the neutralisation was complete.  The aqueous phase was 

then extracted three times with ethyl acetate (Riedel de Haën, HPLC grade),  

3 ml, centrifuging for three minutes at 200 rpm to separate the layers.  The ethyl 

acetate extracts were combined in a clean culture tube.  The ethyl acetate was 

evaporated to dryness using a sample concentrator (Techne) set at 40°C, under 

a flow of N2.  The dry samples were redissolved in 1 ml methanol:water  

(50:50 v:v).  200 µl of the samples were filtered through a 0.2 µm PVDF filter 

into a “yellow” Chromacol vial. 

 

The samples were analysed on the HPLC using the method set up for simple 

phenolics, the main parameters of which are described in Appendix B.  Solvent 

A was acetonitrile:methanol:water (40:40:20 v:v:v) and Solvent B was 10% (v/v) 

acetonitrile in water, both containing 70 µl/L TFA.  The solvent flow was set to  

1 ml/min, and the initial solvent composition of 10% A and 90% B was held for 

0.5 min, over 25 min the composition was changed linearly to 75% A and 25% 

B, the composition was further changed to 100% A linearly over 5 min, finally an 

exponential gradient of -3 returned the solvent composition to 10% A, 90% B 

over 10 min and this composition was held for 2 min. 

 

2.4 Sequential phenolic extraction 

 

The sequential phenolic extraction was carried out in much the same way as 

the total phenolic extraction, but with the following differences.  Larger samples 

of 10-12 mg CWM (Batch 1) were used.  Four different concentrations of 

sodium hydroxide solution were used for the extractions, 0.1 M, 1 M, 2 M and  

4 M.  The extractions were carried out in order, on Batch 1 CWM samples, 

under the following conditions: (i) 4 ml, 0.1 M NaOH, 1 hr; (ii) 4 ml, 0.1M NaOH, 

24 hr; (iii) 4 ml, 1 M NaOH, 24 hr; (iv) 4 ml, 2 M NaOH, 24 hr and (v) 4 ml, 4 M 

NaOH, 24 hr.  All NaOH solutions were made with de-oxygenated deionised 

water.  Between each extraction the samples were centrifuged at 1000-2500 

rpm for 5-20 min until the solids sedimented sufficiently to remove the majority 

of the supernatant, which was pipetted into clean culture tubes.  To these tubes 
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50 µl of trans-cinnamic acid solution was added as an internal standard.  The 

solutions were then treated in the same way as the total phenolic extraction 

samples.  Occasionally, the ethyl acetate extractions produced a stable layer of 

foam above the water/ethyl acetate interface; this was reduced in volume by 

gentle swirling, which allowed most of the ethyl acetate fraction to be removed. 

 

The experiment was also carried out on ~10 mg of PCWM (Batch 2) under the 

following conditions: (i) 4 ml, 0.1 M NaOH, 1 hr; (ii) 4 ml, 0.1M NaOH, 24 hr; (iii) 

4 ml, 1 M NaOH, 24 hr and (iv) 4 ml, 2 M NaOH, 24 hr, (v) 4 ml, 4M NaOH,  

24 hr.  For comparison, separate total phenolic extractions over 24 hr or 4 days 

were also carried out.  The extracts were treated as above. 

 

HPLC was carried out on the sequentially extracted samples in the same way 

as on the total phenolic extracts. 

 

2.5 HPLC-MS analysis 

 

Reverse-phase HPLC followed by positive-ESI MS (and negative ESI MS in 

some cases) was performed on samples of CWM (~20 mg) extracted in 0.1 M 

NaOH (8 ml) for 24 hr.  The samples were analysed on a Jasco 1500 series 

HPLC system with a Micromass Quattro II detector operated by Fred Mellon.  

The HPLC column and method were the same as that used in the phenolic 

extractions. 

 

2.6 Klason lignin 

 

Lignin analysis was carried out by Zara Merali using the method adapted from 

Theander and Westerlund (1986) described in Merali et al (2007).  Duplicate 

samples of CWM (~50 mg) were dispersed in 0.75 ml of 72% (w/w) H2SO4 for  

3 hr at room temperature.  The samples were diluted with 9.0 ml deionised 

water and incubated for 2.5 hr in an oven at 100°C.  The samples were filtered 

through pre-weighed sintered glass funnels (10 mm diameter, Fisher Scientific) 
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under vacuum to recover the insoluble residue.  The residue was washed three 

times with water (<40°C) until it was free of acid.  The glass funnels (with 

residues) were dried at 50°C in an oven until a constant weight was obtained.  

Klason lignin was calculated gravimetrically as follows: 

 

Lignin (%) = ((W1-W2) x 100)/S 

 

where: 

W1 = weight of glass filter + dried residue 

W2 = weight of glass filter 

S = weight of initial sample 

 

2.7 Neutral sugars 

 

Triplicate samples (2-4 mg) of CWM (Batch 1) from the three tissue types were 

weighed into clean screw cap culture tubes.  To each tube was added 200 µl of 

72% (w/w) H2SO4, in which the samples were left to stand at room temperature 

for 3 hours, with occasional mixing.  The samples were then put on ice while  

2.2 ml of deionised water was added to each tube to dilute the acid to 1 M 

concentration.  Each tube was shaken thoroughly and put in a hotblock (Griffin) 

at 100-110°C for one hour.  From each sample, 0.5 ml was removed to a 

microtube tube and frozen at -20°C for later use in determining the uronic acid 

composition.  The remaining samples were put back into the hotblock at 100-

110°C for a further 1.5 hr.  The samples were allowed to cool, and then 200 µl 

of 1 mg/ml 2-deoxyglucose solution (2-DOG) was added to each tube to act as 

an internal standard.  From these samples 1 ml was transferred to clean culture 

tubes, which had 300 µl of 25% (w/w) NH3 solution added.  The tubes were 

mixed and small aliquots of the solutions were tested to check they were alkali, 

typically pH 8-9.  The samples were incubated with 100 µl of 5% (w/w) NH3 

containing 150 mg/ml of NaBH4 for 1 hr at 30°C in a water bath.  The samples 

were put on ice and 200 µl of glacial acetic acid (Riedel de Haën) was added 

and mixed in.  300 µl of the resulting solution was transferred to a clean culture 

tube and cooled on ice while 450 µl of 1-methylimidazole (Sigma) and 3 ml of 
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acetic anhydride were added.  The samples were mixed and incubated at 30°C 

for 30 min in a water bath, before cooling on ice again.  Each tube had 3.5 ml of 

deionised water and 3 ml of dichloromethane (Fluka) added before shaking 

vigorously and leaving to separate.  The lower organic layer was removed by 

teat pipette to a clean culture tube.  The aqueous layer was extracted with a 

further 2 ml of dichloromethane and the organic layer combined with the 

previous extract.  The dichloromethane extract was extracted twice with 3 ml of 

deionised water, keeping and combining the dichloromethane layer from each.  

The dichloromethane was evaporated until only a viscous film of alditol acetates 

remained, using a sample concentrator (Techne) set at 40°C, under N2.  The 

samples were then redissolved in 1 ml of acetone (Fisher), 0.1 ml of these 

solutions were transferred to “yellow” Chromacol vials ready for analysis. 

 

Stock solutions of the following sugars were made up in 25 ml volumetric flasks 

to a concentration of 1 mg/ml with deionised water: rhamnose, fucose, 

arabinose, xylose, mannose, galactose and glucose.  The standard solutions 

were made up by combining 0, 100, 200, 300 or 400 µl of each of these stock 

solutions.  Deionised water and 72% (w/w) H2SO4 were added to the stock 

solution mixtures to give a final H2SO4 concentration of 1 M. 

 

To each sugar standard, 200 µl of 1 mg/ml 2-deoxyglucose solution (2-DOG) 

was added as an internal standard.  Samples of these sugar standards, 1 ml, 

were treated the same way as the CWM samples from and including the point 

at which 300 µl of 25% (w/w) NH3 was added, to provide a standard curve for 

the GC, and give response factors for each sugar. 

 

A further hydrolysis of the CWM sugars was carried out using 1 M H2SO4 to 

determine the amount of non-cellulosic sugars.  Triplicate samples (2-3 mg) of 

CWM from the three tissue types were weighed into clean screw-cap culture 

tubes.  Deionised water (2.2 ml) was added to each tube before 200 µl of 72% 

(w/w) H2SO4 was also added, to give a final H2SO4 concentration of 1 M.  The 

samples were then incubated at 100-110°C for 2.5 hr and the experiment 

continued from the equivalent point in the 72% (w/w) H2SO4 hydrolysis. 
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All the alditol acetates produced were run on the GC using the method for 

sugars analysis set out in Appendix C.  The quantification used the calculations 

from Sawardeker et al (1965). 

 

2.8 Uronic acids 

 

The uronic acid samples kept back from the neutral sugars analysis were 

diluted with 2 ml of deionised water, to give a total volume of 2.5 ml.  Standard 

solutions (5, 15, 25 and 35 µg/ml) of glucuronic acid were made up.  Four 

screw-cap culture tubes per sample/standard were acid-washed, rinsed and 

dried.  The tubes were cooled in ice and cold water.  To each tube, 1.2 ml of 

sulfuric acid reagent (Appendix A) and 0.2 ml of sample/standard were added 

before being vortexed and placed back in ice and cold water.  The tubes were 

sealed and heated in a hotblock (Techne) at 100-110°C for 10 min.  The tubes 

were cooled in ice and cold water, checking that they were completely cold 

before proceeding.  To three tubes of each set of four was added 20 µl of 0.15%  

m-phenyl phenol in 0.5% NaOH to 3 of 4 replicates.  The last tube of each set 

had 20 µl of 0.5% NaOH added as a control.  The tubes were vortexed for a 

count of ten, and then put in a light-proof box to exclude light from the tubes.  

After 40 min (parenchyma and epidermis samples) or 55 min (sub-epidermis 

samples) in the dark, 0.2 ml of each sample/standard was transferred to the 

wells in a plate for the plate reader.  Standards had been out of the dark for 

approximately two hours by the time the absorbance was measured.  Standards 

were used on both plates used.  The plate reader measured the absorbance at 

490 nm. 

 

2.9 Methylation analysis of carbohydrate linkages 

 

Three variations on the methylation method were used: the NaOH method, the 

lithium dimsyl method, and the lithium dimsyl method with a carboxyl reduction 

step.  This analysis was done three separate times either personally or with the 

help of Andrew Jay and not all methods were carried out on all occasions. 
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2.9.1 NaOH-catalysed methylation analysis 

 

The method of Nunes and Coimbra (2001) was modified for this part of the 

methylation analysis.  Triplicate samples (3.5-5 mg) of PCWM and SECWM 

were weighed accurately into small screw cap vials (ECWM was not finely 

divided enough to be worth attempting).  A starch control (0.9 mg) and a blank 

were also run to identify any contaminants.  1 ml of anhydrous dimethyl 

sulfoxide (DMSO), which had been stored over activated molecular sieve 

particles and tested for water using calcium hydride, was added to each vial.  

The vials were sealed with a PTFE-lined septum.  The septa were pierced using 

short needles, and then the vials were put into a vacuum manifold.  The 

samples were twice degassed for about 5 minutes and then flushed with N2.  

The needles were removed and the vials heated for 40 min at 90°C by standing 

them on a hotblock at 90°C.  The samples were sonicated for 1 hr at room 

temperature.  The samples were stored overnight at room temperature, and 

then sonicated at room temperature for a further 1 hr 35 min.  Sodium hydroxide 

pellets were ground to a powder using a cleaned and dried Janke & Kunkel A10 

mill (180 W, 20000rpm).  As much sodium hydroxide as possible was collected 

into a sealed vial before it started to absorb water.  Approximately 0.25 g of 

sodium hydroxide powder was added to each vial.  The vials were sealed and 

degassed for 1 hr (short needles through septa to vent gas), and then flushed 

with N2.  The samples were sonicated at room temperature for 1 hr and then 

stored at 4°C for 30 min until they froze solid.  1 ml of methyl iodide was added 

to each sample using a “bent” needle, while the vials were vented as before.  

The samples were shaken until they had melted and mixed thoroughly with the 

methyl iodide, and then stored overnight (~20 hr) at 4°C.  To each sample 2 ml 

of deionised water and 200 µl of glacial acetic acid were added.  The vials were 

shaken until well mixed.  The methyl iodide was removed by bubbling N2 

through the solution while the vials were standing on a hotblock at 40°C.  Sep 

Pak tC18 mini columns were preconditioned by sucking through 5 ml 

acetonitrile and 5 ml deionised water under vacuum (Figure 19).  Deionised 

water (5 ml) was added to each sample, and then the samples were transferred 
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to the syringe barrels and sucked through.  Deionised water (2 x 5 ml) was 

added to the syringe barrels and sucked through; the contents of the tubes 

below were discarded, removing excess reagents and unwanted products, such 

as DMSO, NaI, NaOAc and MeOH (Mort et al., 1983).  5 ml of methanol and  

5 ml of methanol:acetonitrile (50:50 v:v) were sucked through the columns to 

elute the methylated polysaccharides. 

 

Figure 19: Configuration for separation of methylated polysaccharides during linkage 

analysis by methylation. 

 

The tubes were then sealed and stored for 4 days at 4°C.  The samples  

were transferred to 50 ml round-bottomed flasks.  Sets of five flasks were 

evaporated at the same time using a five-way connector and a rotary 

evaporator, at a temperature of 50°C.  The dry samples were redissolved in 

chloroform:methanol (50:50 v:v), and transferred to screw-cap culture tubes, 

rinsing the flask once with chloroform:methanol.  The samples were partly dried 

down in a sample concentrator at 40°C with N2 before being stored at 4°C 

overnight.  The remainder of the samples were dried down as before.  The 

hydrolysis and acetylation were as described in Section §2.9.6. 
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2.9.2 Production of lithium dimsyl catalyst 

 

The following method was used to produce the lithium dimsyl reagent to be 

used as the catalyst for the methylation.  The method was that of Blakeney and 

Stone (1985).  All the glassware was dried at high temperature in an oven and 

flushed with argon once assembled, to ensure it was free of water.  Using a 

glass syringe, 80 ml of DMSO (stored over activated molecular sieves) was 

transferred to a 3-necked, 500 ml RBF (with magnetic stirrer bar) under an 

argon atmosphere.  A 150 ml pressure-compensating dropping funnel was fitted 

to the flask, and the whole system purged with argon three times.  Cold butyl 

lithium (1.6 M in hexane, 100 ml) was transferred by reagent transfer tube to the 

dropping funnel (Figure 20) and added to the DMSO solution, with stirring, over 

10 min. 

 

 

 

 

 

 

 

 

 

 

 

Figure 20: Transferring butyl lithium to dropping funnel. 

 

The reaction warmed the solution to 40°C.  The solution became cloudy, and 

then cleared to give a pale-yellow solution.  The solution was stirred for a total 

of 30 min, and continuous purging with argon removed the evolved butane and 

hexane.  A brown glass bottle (sure-seal type) was oven-dried and purged with 

argon.  Once the upper layer of hexane was gone, the dimsyl solution was 

transferred (using the glass syringe previously used for the DMSO) to the bottle, 
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which was sealed with a rubber septum; this was covered in foil and double 

contained for storage in the freezer. 

 

2.9.3 Samples and initial preparation for lithium dimsyl-catalysed 

methylation 

 

A blank tube and an acetan polysaccharide were used as controls.  The acetan 

had been produced in-house from Acetobacter xylinium (potassium salt, freeze-

dried) and had a defined structure (MacCormick et al., 1993; Ojinnaka et al., 

1996).  The controls and samples, one each of PCWM Batches 1 and 2, were 

dispersed in dry DMSO (1 ml) under argon by heating at 90°C for 1 hr, then 

sonicating at 20°C for 2 hr.  They were methylated using lithium dimsyl catalyst 

as described below (§2.9.4); then the methylated samples were divided into 

two, one portion to be carboxyl-reduced (§2.9.5), the other not, before being 

hydrolysed and acetylated (§2.9.6). 

 

2.9.4 Lithium dimsyl-catalysed methylation reaction 

 

Lithium dimsyl catalyst (200 µl) was added to the samples using a 1 ml syringe 

(with Teflon plunger) and then they were left to stand for 10 minutes.  The 

samples were stored in the freezer overnight, before adding 1 ml of methyl 

iodide to the frozen samples, using a 1 ml syringe.  The samples were mixed 

until homogeneous and all frozen material had melted, before being stored over 

4 nights at 4°C.  Deionised water (2 ml) and acetic acid (200 µl) were added, 

and then argon was bubbled gently through the solution to remove excess 

methyl iodide at 42°C.  Deionised water was added (3 ml), and then the solution 

was washed into prepared dialysis tubing (MWCO 12-14000 Da) using more 

water.  Samples were dialysed against 5 litres of deionised water overnight, with 

one change of water after 1-2 hr.  The contents of each dialysis tube were 

transferred to 50 ml round-bottomed flasks and evaporated to dryness before 

being redissolved in 2 ml of chloroform:methanol (1:1 v:v) and filtered through a 

plug of GF paper in a glass pipette into a sovirel tube.  The RBF was rinsed with 



 

MATERIALS AND METHODS 

57 

2 ml more of chloroform:methanol (1:1 v:v), which was also filtered.  The 

sample was split between two tubes, and was then dried down under N2 at 

40°C.  One from each set was dried in an evacuated desiccator over CaO to be 

used in the carboxyl reduction. 

 

2.9.5 Carboxyl reduction 

 

The carboxyl reduction allows the detection of uronic acids, separate from their 

neutral equivalents, hence providing more structural information about the 

polysaccharides.  The carboxyl reduction step needs to be done after the 

methylation of the polysaccharide and before the acid hydrolysis.  Lithium 

triethylborodeuteride (LiBD(C2H5)3) is used as a molar solution in 

tetrahydrofuran to reduce the methyl esters of the carboxyl groups on uronic 

acids in methylated polysaccharides.  They are reduced to di-deuterio-labelled 

alcohols (unmethylated) at the C-6 of the sugar residues. 

 

The samples that had been dried in a desiccator had 8 ml of LiBD(C2H5)3 

solution added, using a clean, dry gas-tight syringe with Teflon barrel and “Luer-

lok” fitting with needle.  The air space above the samples was quickly flushed 

with argon and the tubes sealed before incubating at 64°C for 4-6 hours.  

Having cooled overnight, ethanol was added dropwise with cautious mixing, and 

then the samples were left overnight, unsealed to evolve hydrogen.  Each 

sample was poured into a 25 ml beaker, and 8 ml ethanol, 3 ml water and 2 ml 

of 20% phosphoric acid (H3PO4) were added.  Back neutralisation required the 

addition of ~1 g of Na2CO3 and 2 ml water.  The supernatant was decanted into 

a 3 cm sintered glass funnel (no. 3) under suction to a 100 ml Buchner flask.  

The beaker was rinsed with a further 10 ml of ethanol and 3 x 10 ml of 

chloroform:methanol (1:1 v:v).  The filtrate was transferred to a round-bottomed 

flask and evaporated to dryness at 50°C, then redissolved in 2 x 2 ml 

chloroform:methanol (1:1 v:v).  The solution was filtered through a plug of GF 

paper in a glass pipette, into a Sovirel tube, in which it was dried down under N2 

at 40°C (Redgewell and Selvendran, 1986). 
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2.9.6 Hydrolysis and acetylation 

 

The method of Nunes and Coimbra (2001) was modified for this part of the 

methylation analysis.  The carboxyl-reduced and unreduced samples had 1 ml 

of 2 M trifluoroacetic acid (TFA) added, the tubes were sealed, gently mixed 

and heated at 121°C for 1 hr in order for the hydrolysis to occur.  The samples 

were evaporated until dry (~1 hr) at 40°C under N2.  Two drops of 35% 

ammonia was added to each tube, followed by 100 µl of 5% (w/w) NH3 

containing 150 mg/ml of NaBD4, before heating for 1 hr at 30°C.  The samples 

were put on ice and 200 µl of glacial acetic acid (Riedel de Haën) was added to 

neutralise the alkali.  The samples were acetylated by adding 450 µl of  

1-methylimidazole (Sigma) and 3 ml of acetic anhydride and incubating at 30°C 

for 30 min, before cooling on ice.  Each tube had 3-4 ml of deionised water and 

3 ml of dichloromethane (Fluka) added before shaking vigorously and leaving to 

separate.  The tubes were centrifuged at 100 rpm for 1 min to separate the 

layers.  The lower organic layer, containing the partially methylated alditol 

acetates, was removed by Pasteur pipette to a clean tube.  The aqueous layer 

was extracted with a further 2 ml of dichloromethane.  The combined organic 

layers were evaporated at 40°C, under a flow of N2, until only a viscous film 

remained.  The samples were then redissolved in 0.5 ml of acetone (Fisher).  

The samples were transferred to two “yellow” Chromacol vials (0.15 ml per 

sample), ready for analysis by GC and GC-MS.  Standards were prepared by 

purposely undermethylating monosaccharides by the NaOH method, without 

the sonication steps.  The GC and GC-MS (Agilent 5973 Mass Selective 

Detector) were set up to run the same GC method, which is given in Appendix 

D, where the mass spectrometry parameters are also listed.  The GC-MS was 

operated by John Eagles. 

 

2.10 Microscopy 

 

Mary Parker carried out light microscopy of the CWC parenchyma, epidermis 

and sub-epidermis.  Transverse sections of the epidermis of CWC were cut by 

hand and photographed unstained under visible light, and under UV light at pH 
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9.6 (20 mM NH4OH) using a Leitz Ortholux II fluorescence microscope.  The 

microscope was fitted with an HBO 50W mercury arc lamp and an exciter and 

barrier filter combination with transmissions of 340-380 nm and >430 nm, 

respectively. 

 

2.11 Vortex-induced cell separation (VICS) 

 

Samples of fresh parenchyma (5 mm cubes) and epidermis (7 mm diameter 

circles, with or without the sub-epidermal layer) were tested in 3 ml of the 

following solutions: i) Water, ii) 0.5 M H2SO4, iii) 0.05 M TFA, iv) 1 M TFA,  

v) 1 M NaOH, vi) 4 M NaOH; for either 3 hr at 100°C, 24 hr at room temperature 

or 72 hr at room temperature.  Each tube contained two pieces of material.  The 

tubes were vortexed for 30 s and shaken vigorously for a count of 10.  

Observations were taken of the state of the plant material and scored as shown 

below. 

 

VICS Scores: 

0 No apparent change 

1 Original pieces still apparently whole, tiny pieces floating in solution 

2 Original pieces substantially whole, small pieces floating in solution 

3 Original pieces broken into a number of pieces 

4 Original pieces completely broken up, but not into individual cells 

5 Most cells separated from others 

 

The colour, opacity and physical properties of the surrounding liquor were 

observed. 

 

2.12 Sequential extraction 

 

The sequential extraction was different to the sequential phenolic extraction, 

and had three main stages, as outlined below. 
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2.12.1 CDTA extraction 

 

The CDTA solution was prepared by mixing 0.48 g of Na2S2O5 and 9.1 g of 

CDTA (Na+ salt, Sigma) in 400 ml deionised water (to give final concentrations 

of 5 and 50 mM respectively).  NaOH solution (2 M) was added dropwise, 

bringing the pH back up to 7.  As the pH increased the CDTA dissolved.  The 

solution was then made up to 500 ml with deionised water.  PCWM (2 g, Batch 

2) was extracted with 250 ml of 50mM CDTA at room temperature (~20°C) for  

6 hr.  The suspension was filtered through GF/C under vacuum and the residue 

washed with additional deionised water.  The filtrate was frozen at -20°C.  The 

residue was treated further with 250 ml of 50 mM CDTA for 2 hr, the residue 

and filtrate separated as above and the filtrate frozen. 

 

2.12.2 Na2CO3 extraction 

 

The residue was sequentially extracted with 250 ml of 50 mM Na2CO3 

(containing 20 mM NaBH4) at 4°C for 18 hr, then at room temperature (~20°C) 

for 2 hr.  The suspensions were filtered as above and the filtrates neutralised 

with 4 M acetic acid to prevent further reaction.  The filtrates were frozen and 

the residue extracted further as described below. 

 

2.12.3 KOH extraction 

 

The residue was extracted in 250 ml of degassed 0.5 M, 1 M and 4 M KOH 

containing 20 mM NaBH4 at room temperature for 2 hr.  The KOH suspensions 

were centrifuged at 15000g for 10 min at 18°C in a Beckmann Avanti J-20 

centrifuge using polypropylene copolymer (PPCO) centrifuge bottles.  The 

supernatants were filtered as above and neutralised before being frozen.  The 

KOH supernatants were concentrated by rotary evaporation at 50°C, and then 

dialysed against deionised water.  The dialysed supernatants were frozen, and 

then the supernatants and final residue were freeze-dried. 
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3 Characterisation of Cell Walls of Chinese Water 
Chestnut: 

 

Phenolics of CWC parenchyma-cell walls have been studied previously by Parr 

et al (1996), but not the epidermal tissues, which one would expect to contain 

greater quantities of phenolics because they are coloured and in closer contact 

with the waterlogged environment of a paddy field. 

 

Cell-wall polysaccharides were investigated for the three tissues of CWC; 

parenchyma (PCWM), epidermis (ECWM) and sub-epidermis (SECWM), in 

order to verify the previous work done on CWC parenchyma by Parr et al (1996) 

and extend this to the other tissues.  The neutral sugars and total uronic acid 

contents were quantified and their linkage patterns investigated to determine 

the types of polysaccharide present.  As CWC is a monocotyledon, one might 

expect it to have a similar polysaccharide composition to that of other 

monocotyledons. 

 

3.1 Methods 

 

Neutral sugars, uronic acids, phenolics and Klason lignin were quantified as 

described in Chapter 2.  Linkage analysis was also carried out as described in 

Chapter 2.  All analyses were carried out on Batch 1 CWM unless otherwise 

stated. 

 

3.2 Results 

 

The yields of purified cell-wall material from the frozen parenchyma, epidermis 

and sub-epidermis tissues were 5.7, 8.3 and 17.3 g/kg frozen tissue 

respectively.  This is a little low in respect to the parenchyma, but probably just 

reflects inexperience with the method, as the yield for Batch 2 of parenchyma 

was 9.6 g/kg frozen tissue. 
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3.2.1 Phenolic composition 

 

Total phenolic extraction 

 

The HPLC showed that the three tissue types had distinct differences in 

composition; this can be seen in the raw chromatograms shown in Figures 21-

23. 
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Figure 21: Raw chromatogram for total phenolic extraction of PCWM. 
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Figure 22: Raw chromatogram for total phenolic extraction of ECWM. 
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Figure 23: Raw chromatogram for total phenolic extraction of SECWM. 

The peak at retention time (Rt) ~25 min is the internal standard, trans-cinnamic 

acid.  The peaks at Rt = 15.0, 15.8, 16.1, 16.8, 17.0, 20.3 and 22.5 min are 

trans-p-coumaric acid, trans-ferulic acid, cis-p-coumaric acid, 8,5’-DiFA,  

cis-ferulic acid, 5,5’-DiFA and 8-O-4’-DiFA respectively.  When quantified using 

the response factors from Waldron et al (1996), the PCWM, ECWM and 

SECWM yielded 12.3, 32.4 and 21.7 µg/mg respectively.  The phenolic 

compositions of the three tissues are shown in Figure 24. 
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Figure 24: Calculated yields of the phenolic components extracted from the CWM of the 

three CWC tissues (errors are standard deviations of three determinations). 
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The epidermis contains by far the most phenolics and the parenchyma contains 

the least.  In PCWM, the yield of phenolics is virtually the same as that found 

previously by Parr et al (1996), with relatively low levels of p-coumaric acid; but 

the percentage of ferulic acid as cis-ferulic acid (~36%) is much higher, and the 

absolute amount of ferulic acid is slightly lower here than previously reported.  

Other monomeric phenolics were also released in small amounts.  The diferulic 

acids represented the greatest proportion of the phenolics present in PCWM 

indicating that diferulic acid cross-links may be particularly important in CWC 

parenchyma, but perhaps less so in the epidermis and sub-epidermis (Figure 

25). 

 

 PCWM  ECWM  SECWM 

 µg/mg Wt%  µg/mg Wt%  µg/mg Wt% 

Ferulic acids 4.87 39.63  10.96 33.85  9.79 45.05 

Diferulic acids 6.84 55.68  5.44 16.81  8.06 37.11 

p-Coumaric acids 0.33 2.67  12.85 39.71  3.38 15.54 

Other phenolics 0.25 2.02  3.12 9.63  0.50 2.31 

Total known phenolics 12.29   32.37   21.73  

Total unknown phenolics 0.48 3.94  2.17 6.69  0.94 4.34 

 

Figure 25: Table showing varying proportions of phenolics in different tissues. 

 

In ECWM, trans-p-coumaric acid is the predominant phenolic and is present in 

greater amounts than any other phenolic in any of the tissues.  In general 

SECWM was intermediate between the two tissues, both in yield of total 

phenolics and the proportions of ferulic acids, diferulic acids and p-coumaric 

acids.  Such a marked compositional difference presumably has a significant 

effect on the cell wall, although as p-coumaric acid usually does not form 

dehydrodimers, it is possible it is attached to lignin, as the vascular SECWM 

also had elevated levels.  Of the ferulic acids, approximately 57%, 30% and 

44% were diferulic acids in the PCWM, ECWM and SECWM respectively.  The 

8-O-4’-DiFA was the predominant diferulic acid in all the tissues, which agrees 

with data from chufa, the other Cyperaceae that has been analysed for 
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phenolics (Parker et al., 2000).  The 8,8’-DiFA was detected in SECWM only, 

and then only in very small amounts (Figure 26).  The ECWM had the highest 

amount of 8,8’-DiFA (AT) of the three tissues, and also significantly lower levels 

of 5,5’-DiFA and 8,5’-DiFA (BF). 

 

 PCWM  ECWM  SECWM 

  µg/mg Wt%  µg/mg Wt%  µg/mg Wt% 

8,8'-DiFA (AT) 1.03 15.01  1.28 23.58  0.98 12.21 

8,8'-DiFA 0.00 0.00  0.00 0.00  0.05 0.62 

8,5'-DiFA 0.97 14.22  0.82 15.05  1.23 15.25 

5,5'-DiFA 0.84 12.31  0.35 6.47  1.15 14.22 

8-O-4'-DiFA 2.92 42.72  2.23 41.03  3.64 45.20 

8,5'-DiFA (BF) 1.08 15.73  0.36 6.54  1.01 12.50 

 

Figure 26: Comparison of the diferulic acid composition in CWC tissues. 

 

Sequential phenolic extraction 

 

The sequential phenolic extraction produced a range of coloured supernatants 

(Figure 27), most of which became colourless on addition of acid: 

 

 0.1 M 1 hr 0.1 M 24 hr 1 M 24 hr 2 M 24 hr 4 M 24 hr 

PCWM Colourless Very pale green Very pale green Very pale green Colourless 

ECWM Mid orange Mid brown Mid brown Pale orange Pale orange 

SECWM Pale yellow Pale brown Pale brown Pale yellow Pale yellow 

 

Figure 27: Observations of supernatants from CWC tissues during sequential phenolic 

extraction. 

 

The sequential phenolic extraction results show there are significant differences 

between the three tissues (Figure 28).  The ECWM released 28.5 µg/mg, 

compared to the SECWM (21.4 µg/mg) and the PCWM (13.7 µg/mg), which 

were broadly similar to the total phenolic extraction values. 
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Figure 28: Calculated yields of the phenolic components sequentially extracted from 

PCWM (top), ECWM (middle) and SECWM (bottom) (errors are standard deviations of 

three determinations). 
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The sequential phenolic extractions showed a greater variety of unknown 

phenolics than the total phenolic extraction, probably due to the larger samples 

used; generally these unknown phenolics are at low concentrations and they 

are further described in Chapter 4. 

 

The largest portion of trans-ferulic acid in PCWM was released in the 0.1 M 1 hr 

treatment; however in the ECWM and SECWM, the largest portion was 

released in the 0.1 M 24 hr treatment.  The amount of trans-ferulic acid released 

in the 0.1 M 1 hr treatment seemed to be fairly stable between tissues.  These 

results may indicate the differences in structure of the cell walls themselves or 

perhaps the ester linkage of the ferulic acid to polysaccharide chains.  A 

comparable pattern could be observed for 5,5’-DiFA, 8-O-4’-DiFA and 8,5’-DiFA 

(BF), where they were extracted from the PCWM and SECWM in the greatest 

proportion in the 0.1 M 1 hr extraction, whereas in ECWM, it was in the 0.1 M 

24 hr extraction.  The proportion of trans-p-coumaric acid released was similar 

in the 0.1 M 24 hr and 1 M 24 hr extractions, indicating that the bonds holding  

p-coumaric acids in the wall are more alkali-stable than for ferulic acid.  The 

small amounts of 8,8’-DiFA were not released until the 1 M 24 hr extraction and 

therefore may indicate a minor role for 8,8’-DiFA in cell adhesion. 

 

Other monomeric phenolics were also released, particularly from ECWM.  As 

some were released by the higher concentrations of alkali, they are presumably 

esterified into the cell wall.  Presumably this esterification is via their alcohol 

groups to carboxylic acids in the cell wall as suggested by Weber et al (1995). 

 

While the overall amounts of phenolics released by the total and sequential 

phenolic extraction methods were broadly similar, the degree of extraction is not 

consistent across all the components (Figure 29).  In PCWM, vanillic acid,  

8,8’-DiFA (AT), cis-p-coumaric acid, 8,5’-DiFA and cis-ferulic acid were not 

extracted as well by the sequential phenolic extraction as by the total phenolic 

extraction, whereas for trans-ferulic acid and 5,5’-DiFA the opposite was true. 
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Figure 29: Percentage of phenolics released by sequential phenolic extraction compared 

to total phenolic extraction yields for parenchyma, epidermis and sub-epidermis. PCWM 

(top), ECWM (middle) and SECWM (bottom). 
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In ECWM, Unknown B, p-hydroxybenzaldehyde, cis-p-coumaric acid, 8,5’-DiFA, 

cis-ferulic acid and Unknown G were not extracted as well by the sequential 

phenolic extraction as by the total phenolic extraction, whereas more of 

Unknown A, 5,5’-DiFA and 8,5’-DiFA (BF) were extracted.  In SECWM, 

Unknown B, 8,8’-DiFA (AT), cis-p-coumaric acid, 8,5’-DiFA and cis-ferulic acid 

were extracted more by the total phenolic extraction, whereas Unknown A, 

vanillin, 8,8’-DiFA and 5,5’-DiFA were extracted more by the sequential phenolic 

extraction. 

 

The greater than 100% extraction of components by the sequential phenolic 

extraction may be due to the CWM being in alkali for a longer period of time in 

the sequential extraction, which may allow extraction of less accessible 

components.  The less than 100% extraction of components by sequential 

phenolic extraction is most likely to be due to decomposition. 

 

HPLC-MS analysis 

 

Preliminary results from the HPLC-MS analysis are given for specific 

compounds in Figure 30.  Assignments have been made on the basis of the 

quasimolecular ion masses, such as M+H, M+Na and characteristic 

fragmentation ions.  An m/z=387 (M+H)+ indicates a diferulic acid, an m/z=579 

(M+H)+ indicates a triferulic acid. 

 

Two triferulic acids (TriFA) were identified at Rt=20.6 and 23.1 min.  The first 

trimer was indicated by peaks at m/z=543 (M-2H2O+H)+, 561 (M-H2O+H)+, 387 

(DiFA+H)+ in positive ESI, and m/z=577 (M-H)- in negative ESI.  The second 

trimer was indicated by peaks at m/z=543 (M-2H2O+H)+, 561 (M-H2O+H)+, 579 

(M+H)+, 593 (M-H2O+MeOH)+, 369 (DiFA-H2O)+, 193 (FA-H)+, in positive ESI 

and m/z=577 (M-H)- in negative ESI.  Accurate-mass HPLC-MS was carried out 

on more concentrated samples and the results are given in Section §8.4. 
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Retention time (min) m/z Identity 

11.4 123 (M+H)+ p-Hydroxybenzaldehyde 

12.2 153 (M+H)+ Vanillin 

12.7 165 (M+H)+, 147 (M-H2O+H)+, 206 (M+ACN+H)+ trans-p-Coumaric acid 

13.4 195 (M+H)+, 177 (M-H2O+H)+, 236 (M+ACN+H)+ trans-Ferulic acid 

13.5 165 (M+H)+ cis-p-Coumaric acid 

14.5 195 (M+H)+ cis-Ferulic acid 

21.9 131 (M-H2O+H)+, 149 (M+H)+, 190 (M+ACN+H)+ trans-Cinnamic acid 

14.4 387 (M+H)+, 369 (M-H2O+H)+ 8,5’-DiFA 

20.0 369 (M-H2O+H)+, 387 (M+H)+, 193 (FA–H)+, 351 (M-2H2O+H)+ 8-O-4’-DiFA 

20.6 351 (M-2H2O+H)+, 387 (M+H)+, 343, 325, 369 (M-H2O+H)+ 8,5’-DiFA (BF) 

 

Figure 30: Retention times and identifying ions for positive ESI analysis of 1 M NaOH,  

24 hr alkali extractions. 

 

Klason Lignin 

 

The yield of lignin relative to dry weight of CWM was 2.4% for PCWM, 16.7% 

for ECWM and 13.4% for SECWM.  This is to be expected as the small amount 

of vascular tissue would account for the low yield in the PCWM, and the greater 

amount of vascular tissue in the SECWM and secondary cell wall in the ECWM 

would account for their higher values.  These results are quite similar to those of 

Chufa (Cyperus esculentus), another member of the Cyperaceae, where the 

Klason lignin for PCWM and ECWM was <2% and >20% respectively (Parker et 

al., 2000).  As will be described in Section §3.2.3, lignin was not observed under 

the microscope. 

 

If ferulic acid is esterified/etherified to lignin, the presence of lignin in the 

epidermal and sub-epidermal tissues may have reduced the ability for alkali 

extraction to remove all the phenolics from the CWM (Lozovaya et al., 1999; 

Sun et al., 2001).  Sun et al (2001) have put forward a method for removing the 

additional esterified phenolics from lignins solubilised during the alkali 

extraction.  The amount of ferulic acid found to be esterified to lignin was 

significant in grasses (18-33%), and almost half (44-48%) of the p-coumaric 

acid was esterified to lignin, meaning the amounts described here of the two 
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major phenolics may be significantly higher, particularly in the epidermal 

tissues. 

 

3.2.2 Carbohydrate composition 

 

Neutral sugars 

 

The sugar composition of the CWM is shown in Figures 31 and 32.  The 

parenchyma, epidermis and sub-epidermis CWMs contained 820, 615 and  

697 µg/mg of neutral sugars (anhydro-sugars) respectively.  Most of the glucose 

is cellulosic, shown by the low level of glucose released by the 1 M H2SO4 

hydrolysis (Figure 32). 

 

By subtraction of the 1 M H2SO4 glucose value from the 72% (w/w) H2SO4 

glucose value, the yield of cellulose from the parenchyma, epidermis and sub-

epidermis CWM was 482, 274 and 357 µg/mg respectively (Figure 33). 
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Figure 31: Results of 72% (w/w) H2SO4 hydrolysis of CWM (Batch 1) (errors are standard 

deviation of three determinations). 
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Figure 32: Results of 1 M H2SO4 hydrolysis of CWM (Batch 1) (errors are standard 

deviations of three determinations). 

 

 µg carbohydrate / mg CWM 

 PCWM ECWM SECWM 

 Sugar 

72% (w/w) 

H2SO4 

1 M 

H2SO4 Difference 

72% (w/w) 

H2SO4 

1 M 

H2SO4 Difference 

72% (w/w) 

H2SO4 

1 M 

H2SO4 Difference 

Rhamnose 4.8 2.8 2.0 5.1 2.1 3.1 3.0 2.8 0.2 

Fucose 3.5 4.1 -0.6 1.6 2.0 -0.3 2.6 3.7 -1.1 

Arabinose 94.3 93.6 0.6 76.7 77.5 -0.8 96.0 104.7 -8.7 

Xylose 159.9 149.3 10.5 223.2 216.8 6.4 174.2 169.1 5.1 

Mannose 4.8 1.9 2.9 3.2 1.6 1.6 4.1 2.1 1.9 

Galactose 42.3 39.1 3.2 14.4 13.7 0.8 34.0 37.2 -3.3 

Glucose 510.6 28.8 481.8 290.8 16.4 274.4 383.5 26.2 357.2 

 

Figure 33: Table showing the differences between the sugars hydrolysed by 72% (w/w) 

and 1 M H2SO4 in µg/mg. 

 

The SECWM seems to have less cellulose than one might expect for a sample 

mostly made up of vascular tissues, which would usually have secondary cell 

walls, and therefore a higher cellulose content (McNeil et al., 1984), but perhaps 

it is the parenchyma that is unusual.  The parenchyma, epidermis and sub-

epidermis CWM contained 320, 330 and 346 µg/mg of non-cellulosic 
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carbohydrate respectively.  As can be seen in Figure 33, the composition of the 

carbohydrates varied significantly between the different tissues.  The 

parenchyma had a larger proportion of glucose than the parenchyma or 

epidermis, but it also had less xylose.  The epidermis had significantly more 

xylose than the other tissues, but less glucose and galactose.  The sub-

epidermis sample generally had intermediate amounts apart from arabinose, 

which was present in slightly greater amounts than in the other tissues.  The low 

level of mannose in all three tissues implied that there were very few, if any, 

mannans, glucomannans or galactomannans in the CWC.  Xylans, arabinans, 

arabinoxylans and xyloglucans were likely to be more abundant cell-wall 

polysaccharides. 

 

The epidermis of the locule lining of pineapple, another sub-tropical monocot, 

contained a similar mol% of each sugar as the epidermis of CWC, whereas the 

parenchyma was fairly similar bar the proportion of glucose, which was 

significantly higher in CWC than in pineapple (Smith and Harris, 1995).  The cell 

walls of chufa parenchyma have a broadly similar composition to PCWM, but 

the amount of arabinose is higher and the amount of glucose is lower in chufa.  

The cell walls of the chufa epidermis had a similar composition to those of 

ECWM, but the amounts of arabinose and glucose were lower in chufa (Parker 

et al., 2000). 

 

Uronic acids 

 

The average amounts of uronic acid in parenchyma, epidermis and sub-

epidermis were 124, 78 and 88 µg/mg of CWM respectively (raw data in 

Appendix E).  The errors for the epidermis and sub-epidermis samples were 

quite large; this may have been due to the variation of particle size in these 

tissues.  No distinction between galacturonic and glucuronic acids could be 

made using this method; therefore the uronic acid could have come from 

rhamnogalacturonan, homogalacturonan or glucuronoarabinoxylan. 
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The overall mol% of neutral sugars and uronic acids in the tissues are given in 

Figure 34, in which the results are also compared to those of a previous study 

(Parr et al., 1996). 

 

72% (w/w) H2SO4 Mol% CWM 

 PCWM ECWM SECWM Parr et al PCWM 

Rhamnose 0.59 0.81 0.44 0.30 

Fucose 0.39 0.23 0.34 0.53 

Arabinose 11.78 12.31 14.11 11.79 

Xylose 19.74 35.43 25.28 27.51 

Mannose 0.58 0.50 0.58 0.51 

Galactose 4.22 1.85 3.99 4.81 

Glucose 51.07 37.37 45.03 48.25 

Uronic acids  11.62 11.49 10.24 6.31 

 

Figure 34: Comparison of carbohydrate composition to reference values (uronic acids 

measured as GlcA equivalents). 

 

Comparison of the data to previously published results for PCWM shows 

reasonable agreement with those of Parr et al (1996), apart from the xylose and 

uronic acid components, where xylose was lower and uronic acids higher than 

those previously reported. 

 

Linkage analysis 

 

The partially methylated alditol acetates (PMAAs) were identified by their mass 

spectra and their calculated relative retention times (to myo-inositol, 1,4-Glc or a 

phthalate contaminant).  They were quantified using the peak areas obtained on 

the GC and the response factors of Sweet et al (1975).  As the peaks 

sometimes co-eluted ((1→4)-linked Xyl, (1→2)-linked Xyl and terminal Gal  

(t-Gal) co-eluted and (1→3,4)-linked Xyl and (1→4)-linked Gal co-eluted) the 

proportion of each linkage was estimated from the mass spectrum.  The results 

of methylation analysis can never be considered to be more than semi-

quantitative for whole cell walls, as they tend not to be fully soluble in DMSO.  

The differences in susceptibility to hydrolysis of the different glycosidic bonds 
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means there is always a compromise to be achieved on reaction time (Fry, 

1988). 

 

  PCWM (Batch 1)  PCWM (Batch 2) 

  NaOH Lithium dimsyl Lithium dimsyl *  Lithium dimsyl Lithium dimsyl * 

SUGAR LINKAGE Mol% Mol% Mol%  Mol% Mol% 

Rha (1-2) 0.51 0.00 0.00  0.00 0.00 

Rha (1-2,4) 0.45 0.00 0.00  0.00 0.00 

Fuc t- 0.00 0.41 0.00  0.00 0.00 

Ara-f t- 3.49 0.49 2.87  1.72 1.80 

Ara-f (1-3) 0.49 0.00 0.00  0.00 0.00 

Ara-f (1-5) 2.27 1.15 2.44  0.00 1.96 

Xyl t- 6.78 5.96 5.18  6.51 5.55 

Xyl (1-4) 2.75 3.34 3.22  2.63 1.90 

Xyl (1-2) 1.78 1.60 1.48  1.55 1.73 

Xyl (1-3,4) 2.04 3.78 5.32  2.09 0.95 

Man (1-4) 3.08 1.23 0.66  1.85 0.00 

Gal t- 2.73 1.51 1.90  1.51 3.98 

Gal (1-4) 0.68 1.01 0.69  0.63 0.37 

Gal (1-2) 0.00 0.35 0.00  0.00 0.00 

Gal (1-2,4) 0.70 0.00 0.00  0.00 0.00 

Gal(A) (1-4) 0.00 0.00 5.39  0.00 7.02 

Gal(A) (1-2,4) 0.00 0.00 0.75  0.00 0.00 

Glc t- 1.47 0.00 0.00  1.99 0.00 

Glc (1-4) 61.53 55.67 52.50  55.69 54.09 

Glc (1-4,6) 7.63 12.13 12.34  13.46 13.81 

Glc (1-3,4) 0.80 7.96 3.36  7.28 3.32 

Glc (1-3,4,6) 0.42 2.08 0.74  1.74 0.61 

Glc (1-2,4,6) 0.27 0.80 0.75  0.66 0.72 

Glc unmeth. 0.15 0.53 0.42  0.68 2.20 

  100.00 100.00 100.00  100.00 100.00 

* carboxyl reduction was carried out, t- indicates a terminal sugar residue, -f indicates a furanose ring structure, unmeth. 

indicates sugar was not methylated (Residues accounted for in interpretation, partially accounted for, not accounted for, 

accounted for by undermethylation.) 

Figure 35: Methylation-analysis data for PCWM. 

 

Figure 35 gives the methylation data for PCWM.  The three sets of Batch 1 

values should be comparable in terms of their initial composition, but as the 

analyses were made using three different methods, the following differences 
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indicate presumed differences in the reaction kinetics/thermodynamics and/or 

separation methods.  For instance, the lithium dimsyl-catalysed samples 

showed no rhamnose present, less arabinose was detected and the glucose 

seemed to suffer more from undermethylation.  Fucose and galactose were 

present, whereas with the NaOH-catalysed samples no fucose or galactose was 

detected.  The use of Sep-Pak cartridges or dialysis may have affected the 

composition detected if the oligosaccharides that were removed during dialysis, 

but not Sep-Pak elution, were of a particular type.  The tendency for uronic 

acids to undergo β-elimination was minimised by having one addition of methyl 

iodide, and that at as low a temperature as possible, but was probably not 

negated completely. 

 

Comparing the two batches of PCWM, the PMAAs present in larger amounts, 

such as (1→4) and (1→4,6)-linked Glc, show reasonably close agreement, but 

some of the others do not.  There is a systematic difference between the 

carboxyl-reduced samples and their non-reduced equivalents, the former 

allowing the detection of (1→4)-linked GalA (and in Batch 1, some  

(1→2,4)-linked GalA) along with more arabinose, but less mannose, galactose 

and highly linked glucose, indicating a lower incidence of undermethylation than 

with the lithium dimsyl method alone. 

 

In both the non-reduced and reduced methods, Batch 1 had a higher total area 

than Batch 2, so these results are probably more reliable, as it appears more 

sample was injected on the column. 

 

Taking into account the 72% (w/w) and 1 M H2SO4 results, which are probably 

more accurate than the methylation analysis results, an estimated 50 mol% of 

cell wall polysaccharide is cellulose, leaving 11.5 mol% of (1→4)-linked Glc in 

other polysaccharides. 

 

Adding this remaining (1→4)-linked Glc (11.5 mol%) to t-Xyl (6.8 mol%) and 

(1→4,6)-linked Glc (7.6 mol%), t-Fuc (0.4 mol%), (1→2)-linked Gal (0.4 mol%) 

and (1→2)-linked Xyl (0.4 mol%) results in approximately 27 mol% of 

xyloglucan.  By including at least one residue of each of the above types (plus 
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two t-Glc) the minimum degree of polymerisation of xyloglucan was estimated to 

be 77 (33:18:21:1:1:1:2).  The percentage of branching points as inferred from 

the ratio of t-Xyl residues to total non-cellulosic (1→4)-linked and (1→4,6)-

linked Glc residues is ~35%.  The amount of xyloglucan is particularly high for a 

monocot, and would be considered quite high for a Type I wall (Fry, 1988).  

Using the system of O’Neill and York (O'Neill and York, 2003) the repeating 

units might be XXGG and XGGG, with some XFGG, which is more similar to 

other Poales, such as maize than anything else described.  The other possibility 

is a mixture of XXGGG and XXFGG.  Perhaps the high levels of xyloglucan in 

the cell wall could be due to it being used as storage carbohydrate, as it is in 

nasturtium seeds and tamarind (Waldron and Faulds, 2007). 

 

Glucuronoxylans would usually be indicated by the (1→4)-linked Xyl, but the 

lack of glucuronic acid precludes this interpretation (Femenia et al., 1999b); 

instead t-Ara, (1→4)-linked and (1→3,4)-linked Xyl indicate arabinoxylans  

(~7 mol%).  By including at least one of each residue and two t-Xyl residues the 

degree of polymerisation of arabinoxylan was estimated to be 29 (8:11:8:2), 

which is probably lower than the reality.  The percentage of branching points as 

inferred from the ratio of (1→3,4)-linked Xyl residues to (1→4)-linked and 

(1→3,4)-linked Xyl residues is ~43% 

 

The proportions of GalA, Rha, Ara and Gal suggest two possible structural 

configurations.  The first, assumes that the polysaccharide is RG I with 

significantly more GalA residues than Rha residues in the backbone, and long, 

predominantly Ara and Gal side chains.  Alternatively, there may be sections of 

the polysaccharide that are predominantly homogalacturonan interspersed with 

sections of RG I.  The sum of (1→2)-linked and (1→2,4)-linked Rha, (1→4)-

linked GalA, (1→5)-linked Ara and (1→4)-linked Gal indicates ~9.3 mol% of  

RG I/HG.  The degree of polymerisation of this polymer was estimated to be 

~207 (11:10:119:50:15:2), indicating the complexity of the polymer.  The 

percentage of branching points as inferred from the ratio of (1→2,4)-linked Rha 

residues to (1→2)-linked and (1→2,4)-linked Rha and (1→4)-linked GalA 

residues is ~7%, with approximately half of the rhamnose residues substituted. 
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Glucomannan is indicated by (1→4)-linked Man residues, and including 

sufficient (1→4)-linked Glc to give a 2:1 Man:Glc ratio indicates ~4.5 mol% is 

present.  Glucomannan is the main hemicellulose polymer in the secondary 

wall, one type of glucomannan (Man:Glc is 1.6:1) is found in the corms of 

Amorphophallus species, as a carbohydrate reserve (Waldron and Faulds, 

2007), and the same could be true for CWC. 

 

A lack of (1→3)-linked Glc indicates there are no mixed linkage glucans or 

callose present, as would be expected for a non-Graminaceous monocot 

(McNeil et al., 1984).  A lack of (1→3)-linked Gal indicates there are no AG II 

polysaccharides present and therefore, as AG II is generally associated with 

arabinogalactan proteins, there are unlikely to be any AGPs in the cell walls 

(Waldron and Faulds, 2007).  A lack of glucuronic acid rules out 

glucuronomannans. 

 

In vivo acetylation of (1→4)-linked Glc at C3 may produce (1→3,4)-linked Glc 

residues under mild methylation conditions (Ryden and Selvendran, 1990).  The 

(1→3,4)-linked Glc residues may also have been produced by 

undermethylation, thought to be responsible for the improbable (1→3,4,6)-

linked, (1→2,4,6)-linked and (1→2,3,4,6)-linked Glc residues.  

Undermethylation is probably due to steric crowding within the cellulose 

microfibrils. 

 

The presence of only (1→3,4) Xyl and not (1→2,4) Xyl branching points in the 

arabinoxylan implies it is more like those of the Gramineae (i.e. Oat spelt), but 

essentially the opposite of birchwood and larchwood xylans, which have only 

(1→2,4) Xyl branching points (Waldron and Faulds, 2007). 

 

Onion has a significant proportion of xyloglucan in the cell wall, indicating it is 

more similar to dicotyledon parenchyma tissue than grass mesophyll 

(Redgewell and Selvendran, 1986); the same can now be said of CWC PCWM. 

 

Methylation of the other tissues was also carried out.  The SECWM underwent 

methylation with NaOH catalysis at the same time as the PCWM did; however 
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the lithium dimsyl experiments on ECWM and SECWM were carried out 

separately from the previous lithium dimsyl experiments on PCWM. 

 

  SECWM  ECWM 

  NaOH Lithium dimsyl Lithium dimsyl *  Lithium dimsyl Lithium dimsyl * 

SUGAR LINKAGE Mol% Mol% Mol%  Mol% Mol% 

Rha (1-2) - - -  - - 

Fuc t- 0.31 - -  0.36 - 

Ara-f t- 4.42 6.88 0.76  4.57 5.72 

Ara-f (1-3) - 0.00 0.71  0.82 8.62 

Ara-f (1-5) 2.36 1.85 2.47  1.19 4.56 

Ara-p t- - - -  0.15 - 

Xyl t- 5.62 - 0.48  5.80 4.10 

Xyl (1-4) 7.88 43.54 5.18  18.48 32.94 

Xyl (1-3,4) 2.22 - 2.90  4.99 14.12 

Xyl (1-2,4) - 5.11 0.68  0.95 2.11 

Xyl unmeth. 0.57 0.96 2.04  0.61 3.57 

Man t- 3.41 - -  - - 

Man (1-4) - 1.50 -  1.37 - 

Gal t- 2.57 - -  0.36 1.63 

Gal (1-6) - 0.38 -  0.22 - 

Gal (1-4) 3.04 - -  - - 

Gal (1-4,6) - - -  0.11 - 

Gal (1-3,6) - - -  0.20 - 

Gal (1-2,4) 0.91 - -  - - 

Gal unmeth. - 0.74 13.21  - - 

Glc t- 1.51 1.11 -  0.59 - 

Glc (1-4) 55.67 29.37 2.12  49.60 14.11 

Glc (1-4,6) 6.67 3.12 0.53  6.89 3.22 

Glc (1-3,4) 1.00 0.91 -  - - 

Glc (1-2,4) - 0.99 -  1.10 - 

Glc (1-3,4,6) 0.76 0.33 -  0.80 - 

Glc (1-2,4,6) 0.50 0.50 -  0.41 - 

Glc unmeth. 0.50 2.70 68.92  0.43 - 

Glc(A) (1-4,6)      5.28 

  100 100 100  100 100 

* indicates samples were carboxyl reduced.  t- indicates a terminal sugar residue.  -f indicates a furanose ring. 

-p indicates a pyranose ring, unmeth. indicates sugar was not methylated 

 

Figure 36: Methylation-analysis data for ECWM and SECWM. 
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The CWMs were cryo-milled to a fine powder and ethanol washed to remove 

the cell contents.  Solubility in DMSO was an issue with these samples, 

resulting in extreme undermethylation, so only the SECWM NaOH treatment 

and the ECWM lithium dimsyl treatment will be discussed.  The results are 

given in Figure 36. 

 

An estimated 27 mol% of ECWM and 35 mol% of SECWM is cellulose, leaving 

23 mol% and 20 mol% of (1→4)-linked Glc respectively for xyloglucan and 

glucomannan.  The linkages represented imply the presence of xyloglucan, 

arabinoxylan, RG I and glucomannan.  The proportion of xyloglucan seems to 

be reasonably consistent, but the proportion of arabinoxylan is higher in the 

ECWM, although the degree of branching seems to be conserved. 

 

Carrot has the following polysaccharides, starting with the greatest, 

rhamnogalacturonan, cellulose (~25%), (1→4)-linked galactan, (1→5)-linked 

arabinan, (1→4)-linked xylan, (1→4)-linked mannan, and xyloglucan (Massiot et 

al., 1988).  As the main polysaccharide is rhamnogalacturonan, it is not 

particularly similar to CWC parenchyma.  The cell walls of suspension cultured 

sycamore cells have 23% cellulose, 21% xyloglucan, 16% rhamnogalacturonan, 

10% arabinan, 8% galactan, 2% arabinogalactan and 10% hydroxyproline-rich 

protein with 9% oligo-arabinosides attached to hydroxyproline (Talmadge et al., 

1973).  The three main polysaccharides are the same as for CWC, but 

arabinoxylans are missing, which is probably an important component of CWC 

cell walls, so neither of these well studied systems is a good example to use for 

CWC. 

 

Solubility of the CWMs may have been improved by using CWM stored as a 

frozen suspension rather than the dried material used in this instance 

(Redgewell and Selvendran, 1986).  Preliminary methylations as described by 

Harris et al (Harris et al., 1984) could also have been employed, but this would 

not have been suitable for the samples undergoing carboxyl reduction as uronic 

acid containing polysaccharides would be degraded by β-elimination. 
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The ratio of arabinose to xylose for arabinoxylans that bind to cellulose is 0.44 

(22% branching), for arabinoxylans that do not bind to cellulose the ratio is 1.38 

(65% branching, half of which are doubly branched) (McNeil et al., 1975).  The 

ratio of arabinose to xylose is 0.42 in CWC parenchyma.  Highly substituted 

xylans are more likely to be flexible enough to support intramolecular formation 

of dimers (Hatfield 1999), but PCWM arabinoxylans have an intermediate 

degree of substitution, which may hinder the formation of dimers extracellularly, 

but not intraprotoplasmically. 

 

3.2.3 Microscopy 

 

CWC flesh has been shown previously to autofluoresce under alkali conditions 

(Brett and Waldron, 1996), but again these investigations did not include the 

skin.  Figure 37a shows the morphology and natural pigmentation of the CWC 

epidermis.  Figure 37b shows the yellow/green autofluorescence of the 

parenchyma cell walls at pH 9.6, the outer cortex cell walls are turquoise 

indicating the presence of ferulic acid, the vascular bundles that serve the buds 

and scales on the surface in the skin are blue indicating the presence of lignin. 

 

 

Figure 37: CWC sections illuminated by visible light (a); and UV light at pH 9.6 (b) (scale 

bar is 100 µm). 

 

The autofluorescence seems to taper out towards the surface.  This is unlikely 

to be due to a lack of phenolics, as the total and sequential extractions of 

phenolics showed the epidermis contained more than the parenchyma.  This 

(a) (b) 
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lack of fluorescence could be due to a high concentration of pigment 

compounds stopping the incident light from reaching the phenolics, or by 

blocking the emission of fluoresced light. 

 

3.2.4 Vortex-induced cell separation (VICS) 

 

The results of the VICS tests are given in Figure 38.  The degree of cell 

separation and the state of the surrounding liquor were observed. 

 

Room temperature 24 hr 

 Parenchyma  Whole epidermis  Outer epidermis 

 Liquor observations  VICS  Liquor observations  VICS  Liquor observations  VICS 

Water Colourless, cloudy  0.5  Red/orange *  1.0  Colourless, clear  1.0 

0.5 M H2SO4 Colourless, cloudy  0.5  Colourless, clear  0.5  Colourless, clear  1.0 

0.05 M TFA Colourless, cloudy  1.5  Colourless, clear  0.5  Colourless, clear  0.5 

1 M TFA Colourless, cloudier  0.5  Colourless, cloudy  0.5  Colourless, clear  1.0 

1 M NaOH Pale yellow  0.5  Red/orange  0.0  Yellow  0.5 

4 M NaOH Pale yellow, gelled  2.0  Red/orange  0.0  Yellow/orange  0.5 

Room temperature 72 hr 

 Liquor observations  VICS  Liquor observations  VICS  Liquor observations  VICS 

Water Colourless, cloudy  0.5  Colourless, clear  0.5  Colourless, clear  0.5 

0.5 M H2SO4 Colourless, cloudy  1.0  Colourless, clear  0.5  Colourless, clear  0.5 

0.05 M TFA Colourless, cloudy  1.5  Colourless, clear  0.5  Colourless, clear  0.5 

1 M TFA Colourless, cloudier  0.5  Colourless, cloudy  0.5  Colourless, clear  1.0 

1 M NaOH Pale yellow  1.5  Brown  2.0  Orange  0.5 

4 M NaOH Pale yellow  1.5  Red/brown  2.5  Orange  0.5 

100°C 3 hr 

 Liquor observations  VICS  Liquor observations  VICS  Liquor observations  VICS 

Water Colourless, cloudy  1.0  Pale brown, clear  0.0  Pale yellow  0.5 

0.5 M H2SO4 Yellow, cloudy  4.5  Pale orange/brown  1.0  Very pale yellow  1.0 

0.05 M TFA Colourless, cloudy  1.5  Pale yellow  0.5  Pale yellow  1.0 

1 M TFA Yellow/green  4.5  Pale orange, cloudy  1.5  Pale yellow  1.5 

1 M NaOH Yellow/green  4.0  Dark brown  3.0  Orange  3.0 

4 M NaOH Yellow/green, gelled  4.0  Dark brown  2.5  Orange  2.5 

* Possible contamination with NaOH 

Figure 38: VICS scores and liquor observations for different storage conditions. 
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Parenchyma was generally more susceptible to VICS than the epidermal 

tissues, and was particularly susceptible to the 100°C treatments, four of which 

produced VICS scores indicating the tissues were severely disrupted, but not to 

the point of complete cell separation.  The epidermal tissues gave almost 

identical results to each other under each condition (within 0.5 of each other), 

apart from prolonged exposure to concentrated alkali, in which whole epidermis 

seems to have fared slightly worse. 

 

The gelling of the liquor in two of the three 4 M NaOH tubes containing 

parenchyma tissue can be explained by the presence of starch on the surface 

of the fresh material, as CWC flour is used to thicken soups in oriental cuisine.  

However, the involvement of cell wall phenolics may be indicated by it 

happening only in concentrated alkali. 

 

The results presented here agree with those in a previous investigation (Parker 

and Waldron, 1995) for the concentrated hot acid treatments (0.5 M H2SO4 or  

1 M TFA, 100 °C, 30 min) resulted in complete VICS, however the dilute acid 

treatment was not as effective in this instance as before.  The previous 

experiments were done in triplicate, which probably reduced any errors 

attributable to natural variation, but a limited amount of fresh material was 

available. 

 

3.3 Discussion 

 

Due to the different demands placed on the three tissues of the CWC corms, 

differences in their cell wall compositions were studied. 

 

3.3.1 Comparison of tissue types 

 

The tissue types have been compared in terms of their overall composition, and 

their polysaccharide and phenolic composition. 
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Overall composition 

 

The compositions of the tissues of CWC are given in Figure 39.  The 

parenchyma cell wall is almost completely accounted for (within experimental 

error).  The higher proportion of unidentified components in the epidermal and 

sub-epidermal CWM is probably due to it being less finely divided than the 

PCWM, reducing the ability of the various chemicals to act on the materials.  

There is also the possibility that there are significant amounts of protein and/or 

ash, but the difference is so large that it would seem unlikely. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 39: Comparison of the composition of the different tissues of CWC. 

 

Brett and Waldron (1996) have presented some generalised cell-wall 

compositions for the primary walls of fruits and vegetables, cereal endosperm 

and cereal bran.  PCWM is probably most similar to their fruit and vegetable 
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example in composition, although it does have more cellulose, less pectin and 

some lignin (protein was not quantified).  ECWM and SECWM could not really 

be compared to the general examples because the lignin component indicates 

they are secondary cell walls 

 

The variation in cellulose may indicate that in the secondary walls lignin is 

taking more of a structural role, meaning less cellulose is needed. 

 

The non-cellulosic polysaccharides seem to be fairly consistent between the 

tissues, although there is a slight reduction in the more lignified tissues, which 

may indicate that the non-cellulosic polysaccharides are not removed when 

lignification occurs, but they are a smaller proportion because of the addition of 

lignin. 

 

Polysaccharides 

 

The hemicelluloses in CWC parenchyma were thought to be predominantly 

arabinoxylans, but this investigation has shown that xyloglucan predominates, 

with some arabinoxylan and a small amount of glucomannan.  The pectin 

component is rhamnogalacturonan I, probably with some homogalacturonan 

domains distributed throughout the chain.  Rhamnogalacturonan II is found in 

most cell walls, making it likely that it is present in small amounts in CWC cell 

wall, although it was not detected.  The hemicelluloses in CWC epidermis and 

sub-epidermis are similar, although the proportion of arabinoxylan is increased 

in the ECWM, although there was more difficulty in the experimental analyses 

for these tissues, particularly ECWM.  The cell walls of chufa have a broadly 

similar composition: for the parenchyma, chufa has higher amounts of 

arabinose and lower amounts of glucose, whereas for the epidermis, chufa has 

lower amounts of arabinose and glucose (Parker et al., 2000). 

 

Phenolics 

 

As CWC epidermis has such high levels of phenolics, p-coumaric acid in 

particular, there may be an important physiological role for them in this tissue.  
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This seems to agree with the theory of Wende et al (2000) that phenolics might 

protect cells against damage by pathogens and/or soil abrasion.  The increased 

levels of p-coumaric acid in the epidermis tissues in tandem with the higher 

lignin content agrees with the idea that p-coumaric acid is often associated with 

lignin.  Ferulic acid, in monomeric and dimeric form, is associated with the 

poorly lignified parenchyma tissue.  The dimers are probably involved in 

interpolymeric cross-linking, probably of arabinoxylan and/or xyloglucan.  The 

highest amount of dimers was found in the SECWM, as this is vascular tissue; 

perhaps more dimers are necessary to maintain cell adhesion in order to 

counteract the additional forces produced by osmotic pressure. 

 

The presence of high amounts of ferulic acid (and other phenolics) may inhibit 

the growth of the fungus Fusarium oxysporum (Lattanzio et al., 1994), one of 

the known pathogens of CWC. 

 

3.3.2 Implications for CWC parenchyma-cell-wall structure 

 

As previously observed with onions (Mankarios et al., 1980), the cell walls of 

CWC are more similar to those of the dicotyledons than the Gramineae.  The 

methylation data imply that arabinoxylan, which would have been expected to 

be the predominant hemicellulose, is actually not as prevalent as xyloglucan.  

The implications for the structure of the cell wall could be important (Figure 40), 

as this implies that there are essentially two layers of CWC cell wall, an inner 

layer that has a high degree of interaction between xyloglucan and cellulose, 

and an outer layer (including the middle lamella) that contains arabinoxylan and 

the phenolics attached as suggested previously. 

 

Arabinoxylans are more abundant at the interface between cells and cell 

corners in wheat (Guillon et al., 2004; Saulnier et al., 2007), illustrating that 

different wall polysaccharides can be concentrated in defined domains of the 

cell wall (Roberts, 2001).  As the phenolics have been shown to be 

concentrated at the cell corners in CWC (Parker and Waldron, 1995), it is likely 

that feruloylated arabinoxylans are concentrated at the cell corners of CWC. 
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The pectin appears to have a few long branches (not indicated in the diagram), 

which may allow it to form a three dimensional network that interlocks with the 

cellulose microfibrils, but does not actually connect to it directly.  The linkages 

between pectin molecules, or between pectin and arabinoxylan, have not been 

investigated and are therefore not implied in the diagram. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 40: Cell-wall model of CWC parenchyma at the interface of two cells.  XG is the 

major hemicellulose, the proportion of AX has been reduced.  (Cellulose is green, XG is 

black, AX is blue, diferulic cross-links are purple, and pectin is pink) 

 

Profiling data for the unidentified phenolics are given in Chapter 4, and the 

trimers extractable in sufficient quantities are more fully characterised in 

Chapter 8. 
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4 Profiling of Unidentified Phenolics: 
 

The chromatographic profiles of the CWM phenolics are extremely complex and 

so in Chapter 3 only the identified phenolics were quantified.  In this chapter the 

unidentified phenolics from CWM will be discussed. 

 

Ralph et al (2000) have said that many plant cell wall components are still to be 

identified and this was found to be the case in Chinese water chestnut.  As well 

as the well-documented phenolics described in Section §3.2.1, a number of 

unidentified compounds were discernible in the HPLC chromatograms.  These 

compounds had UV spectra that were similar to the known phenolics.  The total 

phenolic extraction produced seven unknowns (A-G), the first sequential 

phenolic extraction increased this number to eleven (H-K) and the second 

sequential phenolic extraction gave a total of 89 UV spectra (both known and 

unknown).  Although these compounds are probably present in extremely small 

quantities, there is no way of knowing how important they are as part of the cell 

wall structure; after all, years ago, phenolics as a group were not regarded as 

being present in large enough quantities to make a difference to cell-wall 

properties, and so were not quantified as a matter of course, as they are now. 

 

4.1 Attributes of unknown phenolics 

 

Without extensive experimentation these phenolics cannot be identified, but 

their properties can be catalogued in order to make subsequent assignment 

easier, which should allow one to go back to the data once the required 

identification work is carried out.  For each unidentified compound four 

attributes were recorded: 

 Retention time 

 Relative retention time 

 UV maxima and minima 

 Spectrum shape group 
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4.1.1 Retention time 

 

In general, as retention time increases, the molecules get larger, meaning that 

hydroxybenzoic acids and aldehydes are followed by hydroxycinnamic acids, 

then by dehydrodimers, then presumably by dehydrotrimers etc (although there 

is considerable overlap). 

 

4.1.2 Relative retention time (RRT) 

 

Relative retention time is the retention time of a peak relative to that of an 

internal standard, which can aid identification because it should be reproducible 

between runs, assuming the same solvent gradient and column are used. 

 

4.1.3 UV maxima and minima 

 

The UV chromatogram is produced at just one wavelength (280 nm), but the 

DAD detects and records the spectrum from 200 to 360 nm.  Examining the 

spectrum of a compound can allow measurement of the wavelengths at which 

the absorption is at a maximum or minimum.  These wavelengths can be 

compared to literature values and to each other to indicate their degree of 

conjugation, for example the absorption maxima of benzene, benzoic acid and 

cinnamic acid in water are 203.5, 230 and 273 nm respectively, showing the 

absorption maxima increasing as conjugation increases. 

 

4.1.4 Spectrum shape group 

 

The shape of the spectrum may give some indication of similarities in the 

molecular structure to known components.  The known molecules have been 

split into eight groups in terms of their general spectra; the unknowns will then 

be assigned to the closest group.  The representative spectra shapes are 
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shown in Figure 41, and examples of how the spectra shape groupings are 

applied to known phenolics are given in Figure 42. 

 

 

 

 

 

Figure 41: Representative spectra shapes. 

 

Compound RT (min) RRT Spectrum shape group Max (nm) Min (nm) 

Protocatechuic acid 7.7 0.30 3 260/294 236/281 

p-OH benzoic acid 11.3 0.44 1 255 225 

p-OH phenyl acetic acid 11.7 0.46 4 221/276 251 

Vanillic acid 12.3 0.48 3 261/291 236/281 

p-OH benzaldehyde 14.1 0.55 1 285 240 

Vanillin 15.3 0.59 2 279/310 250/296 

trans-p-Coumaric acid 16.1 0.63 5 225/310 249 

8,8'-DiFA (AT)   7 246/335 273 

trans-Ferulic acid 16.9 0.66 6 236/324 262 

cis-p-Coumaric acid   1 300 257 

8,5'-DiFA   5 324 266 

cis-Ferulic acid 18.1 0.70 5 314 261 

5,5'-DiFA   5 246/325 273 

8-O-4'-DiFA   6 235/327 260 

8,5'-DiFA (BF)   5 324 265 

trans-Cinnamic acid 25.7 1.00 1 214/277 233 

 

Figure 42: Example of attributes of known phenolics (RRT relative to trans-cinnamic acid 

in standard mixture). 

 

Compound Spectrum shape group Max (nm) Min (nm) Reference 

8-O-4’/8,5’-TriFA 5 217/235/317 210/224/260 (Bunzel et al., 2005) 

5,5’/8-O-4’(H2O)-TriFA 6 317 265 (Bunzel et al., 2005) 

8-O-4’/8,5’-TriFA 5 217/240/319 210/225/267 (Bunzel et al., 2003a) 

8-O-4’/8-O-4’-TriFA 6 320 260 (Funk et al., 2005) 

8,8’(AT)/8-O-4’-TriFA 6 240/325 265 (Funk et al., 2005) 

Figure 43: Attributes of known triferulic acids. 
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Some UV spectra have been produced for trimers of ferulic acid (Bunzel et al., 

2003a; Bunzel et al., 2005; Funk et al., 2005) and their attributes are given in 

Figure 43  Their spectra shapes have similarities to those of trans-ferulic acid 

and cis-ferulic acid. 

 

4.2 Unknown phenolics from total phenolic extraction 

 

In the total phenolic extraction samples seven unknown phenolics were 

detected at Rt = 6.9, 9.4, 13.9, 14.5, 14.7, 16.3 and 25.5 min; these were 

defined by their spectra, as shown in Figure 44, and Unknown Phenolic F was 

subsequently identified as 8,8’-DiFA (and included in the quantifications in 

Chapter 3). 
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Figure 44: Absorbance spectra for Unknown Phenolics A-G. 

 

Unknown Phenolic A Unknown Phenolic B Unknown Phenolic C 

Unknown Phenolic D Unknown Phenolic E Unknown Phenolic F 

Unknown Phenolic G 
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The attributes of Unknown Phenolics A-G are tabulated in Figure 45.  Unknown 

Phenolics B and G do not easily fit into one particular category.  Unknown 

Phenolic G may be a triferulic acid, as it elutes quite late in the run and has a 

spectrum not that dissimilar to the diferulates. 

 

Compound RT (min) RRT Spectrum shape group Max (nm) Min (nm) 

Unknown Phenolic A 6.9 0.28 1 292 248 

Unknown Phenolic B 9.4 0.38 1 or 3 226/281/311 218/249/307 

Unknown Phenolic C 13.9 0.56 3 218/273/302 211/239/295 

Unknown Phenolic D 14.5 0.58 1 311 258 

Unknown Phenolic E 14.7 0.59 2 284/325 265/305 

Unknown Phenolic F (8,8’-DiFA) 16.3 0.65 6 333 265 

Unknown Phenolic G 25.5 1.02 2 or 6 290/321 259/304 

 

Figure 45: Attributes of Unknown Phenolics A-G from total phenolic extraction. 
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Figure 46: Relative abundance of unknown phenolics released by total phenolic 

extraction from PCWM, ECWM and SECWM (errors are standard deviations of three 

determinations). 

 

An indication of their relative abundance is given in Figure 46.  The calculations 

used an assumed molecular weight of 150 for Unknown Phenolics A-E, and a 

response factor of 0.33 for all the unknown phenolics.  For Unknown Phenolic G 
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the assumed molecular weight was 386.36, as it was likely that it had a higher 

molecular weight.  The ECWM contains significantly more of these unknown 

phenolics, as it did with the known phenolics, indicating that all phenolics may 

have an important role to play in the epidermis. 

 

4.3 Unknown phenolics from sequential phenolic extraction 

 

The first sequential phenolic extraction procedure extracted a greater number of 

unknown phenolics than the total phenolic extraction, probably due to the 

greater amount of starting material used (and possibly the greater volume of 

NaOH solution).  As with the total phenolic extraction, an indication of their 

relative abundance is given in Figure 47. 

 

It appears that there are essentially two groups of unknown phenolics: Unknown 

Phenolics E, H, I and K, that are apparently totally removed in the least 

aggressive alkali treatment; and Unknown Phenolics A, B, D and G, that seem 

to have significant resistance to alkali.  The attributes of the new Unknown 

Phenolics H-K are tabulated in Figure 48. 
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Figure 47: Relative abundance of unknown phenolics released by sequential phenolic 

extraction (PCWM (previous page), ECWM (top) and SECWM (bottom), errors are 

standard deviations of three determinations). 
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Compound RT (min) RRT Spectrum shape group Max (nm) Min (nm) 

Unknown Phenolic H 14.7 0.63 8 270 233/301 

Unknown Phenolic I 15.6 0.66 8 262 287 

Unknown Phenolic J 16.4 0.70 8 254/310 285/320 

Unknown Phenolic K 17.7 0.75 8 260/297 285/315 

 

Figure 48: Attributes of Unknown Phenolics H-K. 

 

In the sequential phenolic extraction, Unknown Phenolic G was indicated to be 

a mixture rather than a pure compound; one of these compounds was indicated 

to be a triferulic acid by LC-MS, see Section § 3.2.1. 

 

4.4 Unknown phenolics from further sequential phenolic 

extraction 

 

A final experiment which included 0.1 M 1 hr (triplicate data analysis), 0.1 M  

24 hr, 1 M 24 hr, 2 M 24 hr, 4 M 24 hr, 4 M 24 hr (total) and 4 M 4 days (total) 

extractions yielded 89 phenolics, 75 of which were unknown phenolics.  In order 

to give them unique identifiers the labelling of all the phenolics was changed to 

a numbering system (Appendix F).  Twelve of the phenolics appeared in eight 

or nine of the data analyses; some were known phenolics, such as p-coumaric 

acid or trans-ferulic acid and some were Unknown Phenolics (3, 6, 48 and 52).  

These unknown phenolics had areas greater than 1% of that for trans-ferulic 

acid in the chromatogram for the 4 M 24 hr total phenolic extraction, indicating 

they may be significant.  Interestingly, Unknown Phenolics 19 and 46 had 

spectra similar to 8,8’-DiFA (AT), suggesting there may be other phenolics that 

share its unusual molecular structure.  Unknown Phenolics 43 and 88 had 

unusual spectra that were included in Spectra Group 8. 
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4.5 Summary 

 

A thorough survey of CWC parenchyma cell wall phenolics has been carried out 

and sufficient information recorded about each compound to enable 

identification, and possibly quantification, in the future.  Selected samples were 

analysed by LC-MS and the results are given in Chapter 8. 

 



 

SEQUENTIAL EXTRACTION 

97 

5 Characterisation of Cell-Wall Polymers in 
Parenchyma of Chinese Water Chestnut: 

 

The sequential extraction of cell-wall polymers should help to test the 

hypothesis about the cell wall structure of CWC, by giving fractions of 

polysaccharides that can be analysed to determine if their structure agrees with 

that suggested. 

 

The traditional sequential extraction involves the following steps (Redgewell and 

Selvendran, 1986; Selvendran and O'Neill, 1987): 

 

 2 M Imidazole, pH 7, 20°C – Imidazole removes very weakly bound 

pectic polysaccharides held in the wall by Ca2+ only. 

 50 mM CDTA (cyclohexane-trans-1,2-diamine-N,N,N’,N’-tetraacetate, 

Na+ salt), pH 6, 20°C – CDTA is a chelating agent which is thought to 

solubilise pectic polysaccharides held in place by Ca2+ ions. 

 50 mM Na2CO3, 1°C and 20°C – Na2CO3 removes pectic 

polysaccharides by hydrolysis of weak ester cross-links.  Pectic 

polysaccharides are prone to -elimination reactions at higher 

temperatures, so low temperatures are used first.  NaBH4 is used to 

prevent step-wise peeling of sugar units from the reducing terminus of 

polysaccharides, by reducing the reducing carbonyl group to an alcohol. 

 KOH, 20°C – Increasing concentrations of alkali are used in sequence, 

usually 0.5 M, 1 M and 4 M.  The 0.5 M KOH extracts any remaining 

pectin.  1 M KOH extracts different hemicelluloses, such as 

arabinoxylans.  4 M KOH extracts xyloglucans, and combining 4 M KOH 

with 3-4% boric acid extracts glucomannans. 

 

5.1 Methods 

 

Previous sequential extractions of PCWM indicated that only a small proportion 

of the sugars present were extracted before the 0.5 M KOH stage (Ng and 
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Waldron, 2004); therefore, although CDTA and Na2CO3 extractions were carried 

out, only the KOH fractions were dialysed, quantified and analysed further 

(Figure 49).  The KOH fractions and the final residue had their sugar and 

phenolic content measured and linkage analysis carried out.  Batch 2 PCWM 

was used for the experiments in this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 49: Sequential extraction procedure. 

 

5.1.1 Analysis of extracts and residue 

 

The residue and three KOH extracts were analysed for neutral sugars, uronic 

acids and phenolics as usual (~0.5 mg).  They were also analysed by LC-MS 

(~5 mg of extracts, ~50 mg of residue) in an attempt to produce samples for  

LC-SPE and subsequent NMR analysis as described in Chapter 9.  The 

extracts were also dissolved in 50:50 (v:v) MeOH:water and injected directly 

onto the LC-MS. 
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5.2 Results 

 

The yields for the KOH extracts and residue are given in Figure 50.  It appears 

that the CDTA and Na2CO3 treatments extracted ~20% of the cell wall material, 

assuming experimental error is minimal. 

 

 Weight (g) Yield % 

PCWM 2.001  

0.5 M KOH 0.051 2.5 

1.0 M KOH 0.056 2.8 

4.0 M KOH 0.297 14.8 

Residue 1.174 58.7 

Total 1.578 78.9 

 

Figure 50: Yields for KOH extracts and residue from sequential extraction. 

 

The 4.0 M KOH treatment extracted significantly more than 0.5 or 1.0 M KOH, 

presumably because a considerable proportion of PCWM is xyloglucan and this 

is not usually extracted until the 4 M KOH stage, as strong alkali is required to 

swell the cellulose microfibrils and release the xyloglucan. 

 

5.2.1 Carbohydrate composition 

 

The carbohydrate compositions of the sequential-extraction extracts and 

residue are given in Figure 51. 

 

This initial interpretation assumes that arabinose comes from arabinoxylan or 

arabinan side chains of rhamnogalacturonan I; xylose comes from 

arabinoxylans and xyloglucan; glucose comes from xyloglucan; and galactose 

and uronics come from rhamnogalacturonan I. 

 

Arabinoxylan and pectin are removed in all the extractions, and it is difficult to 

determine the exact proportions from the simple sugars analysis.  Some 
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xyloglucan is present in all the extracts; ~5.5, 5 and 30 mol% of the total 

polysaccharide extracted is removed by 0.5, 1.0 and 4.0 M KOH, respectively.  

This is what would be expected if the xyloglucan is trapped within the cellulose 

microfibrils.  In the residue there is still some xyloglucan and pectin, and maybe 

a little arabinoxylan, associated with the cellulose microfibrils.  The methylation 

analysis should help determine which polysaccharides are extracted at which 

alkali concentration. 
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Figure 51: Carbohydrate composition of extracts and residue from sequential extraction. 

 

5.2.2 Linkage analysis 

 

Methylation analysis was carried out using the lithium dimsyl catalyst, with 

carboxyl reduction, on 3.5-4.5 mg samples of the extracts and residue; the 

results of which are given in Figure 52.  Unfortunately the total mol% values for 

each sugar do not compare favourably with the sugars analysis and the 

proportion of apparently unmethylated sugars is excessive.  The sugars were 

probably unmethylated because of the inability of the reagents to access the 

polysaccharides.  This may have been caused by aggregation of the 

polysaccharide chains when they were freeze-dried.  Because of the high 

proportion of unmetylated sugars stoichiometry has not been taken into account 

in the interpretation of the results. 
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    0.5 M KOH extract 1.0 M KOH extract 4.0 M KOH extract Residue 

SUGAR LINKAGE Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* 

Rha (1-2)      0.32   

Fuc t- 0.19    1.22 1.04   

Ara-f t- 24.03 24.73  3.65 18.88 6.82 1.68 1.18 

Ara-f (1-3) 4.85 5.14  2.94 4.30 3.49   

Ara-f (1-2) 1.07 1.34    0.43   

Ara-f (1-5) 2.58 2.53  3.75 2.84 0.46   

Ara-p t- 0.08    0.18    

Ara-p (1-3,4) 0.63    0.42 1.29   

Ara-p Unmeth. 3.56   6.00     

Xyl t- 4.12 4.46  2.19 15.30 7.31 0.91  

Xyl (1-4) 22.56 29.42 6.97 12.99 2.17 18.13 1.96  

Xyl (1-2)    0.00  3.95   

Xyl (1-3,4) 26.78 5.85  7.93 23.90 27.25 1.86 2.35 

Xyl (1-2,4) 3.65 4.79  1.40     

Xyl Unmeth.  4.17  1.07 1.98 2.90   

Man (1-4)  0.53   4.56 3.01   

Gal t- 2.36 1.16  0.51 5.05 1.10 1.34  

Gal (1-2)  1.17  0.45  3.61  0.33 

Gal (1-3) 0.11 0.35       

Gal (1-6)  0.60    0.21   

Gal (1-2,3) 0.19        

Gal (1-4,6) 0.17    0.45    

Gal (1-3,6) 0.93 0.98       

Gal (1-3,4,6) 0.15        

Gal Unmeth.  0.55 7.23 7.26   9.97 32.65 

Gal(A) (1-6)      0.13   

Gal(A) (1-3,4,6)      0.64   

Glc t-     0.34    

Glc (1-4) 0.49   1.04 6.59 4.59 2.04  

Glc (1-4,6) 0.78 1.60  1.86 10.41 5.88   

Glc (1-3,4) 0.18    0.48 0.32   

Glc (1-2,4) 0.11    0.46 1.08   

Glc (1-3,4,6) 0.11     0.64   

Glc (1-2,4,6) 0.07    0.47 0.47   

Glc (1-2,3,6) 0.02        

Glc Unmeth. 0.23  85.81 41.02  1.46 80.25 63.49 

Figure 52: Linkage analysis of sequential-extraction extracts and residue. 
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    0.5 M KOH 1.0 M KOH 4.0 M KOH Residue 

SUGAR LINKAGE Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* Li dimsyl Li dimsyl* 

Glc(A) (1-6)  6.54  2.01     

Glc(A) (1-4,6)  1.79  3.94  3.00   

Glc(A) (1-2,4,6)  2.30    0.47   

* carboxyl reduction was carried out, t- indicates a terminal sugar residue, -f and –p indicate furanose or pyranose ring 

structures where both were detected, unmeth. indicates sugar was not methylated 

Figure 52b: Linkage analysis of sequential-extraction extracts and residue (continued). 

 

0.5 M KOH extract 

 

Terminal arabinose and (1→4), (1→3,4) and (1→2,4)-linked xylose indicates 

the majority of the polysaccharide released are arabinoxylans.  Terminal xylose, 

(1→4) and (1→4,6)-linked glucose indicates a very small proportion of 

xyloglucan was released.  The uronic acids released were identified as (1→4), 

(1→4,6) and (1→2,4,6)-linked glucuronic acid; this does not agree with the 

linkage analysis for the PCWM, where the uronic acid present was identified as 

(1→4)-linked galacturonic acid.  The difference may be due to difficulties in 

interpreting the GC-MS results.  Some arabinan-containing pectin was probably 

present in this extract. 

 

1.0 M KOH extract 

 

Both the analyses for the 1.0 M KOH extracts have high levels of unmethylated 

sugars, which affect the mol% values for the other sugar residues.  Terminal 

arabinose, (1→4) and (1→3,4)-linked xylose indicates that again the majority of 

the extracted polysaccharides are arabinoxylans.  Terminal xylose, and (1→4) 

and (1→4,6)-linked glucose indicate that a small amount of xyloglucan was also 

released.  Pectin is indicated to be in this extract by (1→5)-linked arabinose. 

 

4.0 M KOH extract 

 

Terminal arabinose, (1→4) and (1→3,4)-linked xylose indicates that again the 

majority of the extracted polysaccharides are arabinoxylans, although they are 

more branched than those of the previous extracts.  Terminal xylose, and (1→4) 
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and (1→4,6)-linked glucose indicate that a significant amount of xyloglucan was 

released; the (1→2)-linked galactose may also derive from xyloglucan.  

Glucomannan is also released in this fraction, indicated by the (1→4)-linked 

mannose residues.  Pectin is indicated to be in this extract by (1→5)-linked 

arabinose. 

 

Residue 

 

Terminal arabinose and (1→3,4)-linked xylose indicate that there were still 

small amounts of arabinoxylans present.  Terminal xylose may indicate that a 

small amount of xyloglucan was also present.  The undermethylation of 

cellulose was acute in the residue, presumably because the microfibrils had no 

matrix polysaccharides holding them apart and preventing hydrogen bonding. 

 

5.2.3 Phenolic composition 
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Figure 53: Phenolics in sequential extracts and residue from sequential extraction. 

 

The 0.5 M KOH released the greatest amount of phenolics of the three 

extractions, including significant amounts of 8-O-4’-DiFA (Figure 53).  The 1.0 M 
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KOH released a greater amount of 8,8’-DiFA (AT), 8,8’-DiFA and Unknown 

Phenolic 89 than the 0.5 M KOH extraction, with 8,8’-DiFA (AT) being the most 

prevalent; this may be due to these phenolics having more stable ester bonds to 

their respective polysaccharides, or because they are partially protected by the 

polysaccharides removed by previous extractions. 

 

The 4.0 M KOH extract contained relatively small amounts of phenolics, but 

8,8’-DiFA (AT) was present in the greatest amounts, suggesting that its linkages 

to polysaccharides are more resistant to alkali than those of the other phenolics.  

The sequential extraction residue released trans-ferulic and trans-p-coumaric 

acid only.  It would seem that the residue, which should have been fully 

extracted by the previous treatments, yields more phenolics when treated with  

4 M NaOH, this has been observed previously in brewers’ spent grain, wheat 

bran and asparagus, (Mandalari et al., 2005; Rodríguez-Arcos et al., 2004). 

 

5.3 Discussion 

 

At least 80% of the parenchyma cell wall is stable in CDTA and Na2CO3.  The 

residue provides ~59% of the yield, which is quite close to the value of 48% for 

cellulose, but does indicate that some other polysaccharides are also present.  

The arabinoxylan that is present is preferentially extracted in the lower 

concentrations of KOH, whereas xyloglucan is removed at higher 

concentrations. 

 

These results agree with the hypothesis that xyloglucans do not just hydrogen-

bond to the surface of the microfibrils, but are trapped within them, and can only 

be released by swelling of the microfibrils in concentrated alkali (Baba et al., 

1994).  The arabinoxylans that are extracted by 4.0 M KOH are held in the wall 

by a mechanism that is not disrupted until the 4.0 M KOH extraction; the 

mechanism could be the physical entanglement with xyloglucan, or alkali-stable 

covalent cross-links to xyloglucan.  It appears that not only the 8,8’-DiFA (AT), 

but also the 8,8’-DiFA could have a role in this mechanism, as these were the 

only dimers removed by the 4.0 M KOH.  Perhaps they form a few key linkages 
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that make the difference between the polysaccharides being soluble or 

insoluble.  The linkages across the middle lamella, which are probably the  

8,8’-DiFA (AT), are responsible for cell adhesion, but may break in 1.0 M KOH 

due to being more exposed. 

 

The methylation analysis should be repeated; preferably on samples that have 

not been freeze-dried, to reduce undermethylation due to aggregation.  It may 

be better to use the NaOH method, which seems to be more reliable. 
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6 Development and Evaluation of Biochemical 
Methods of Cell-Wall Disassembly: 

 

Pectins in the cell walls of the dicotyledonous Amaranthaceae species, such as 

sugar beet (Clausen et al., 2004; Colquhoun et al., 1994; Rombouts and 

Thibault, 1986), spinach (Fry, 1982; Ishii and Tobita, 1993) and quinoa (Renard 

et al., 1999), have been found to be feruloylated at O-2 and/or O-5 of Ara 

residues in the arabinan chains, or O-6 of Gal residues in the galactan chains, 

in the side chains of homogalacturonan and rhamnogalacturonan (Micard et al., 

1997b; Ralet et al., 2005).  Heteroxylans in the cell walls of monocotyledonous 

species such as wheat (Saulnier et al., 2007; Smith and Hartley, 1983), barley 

(Gubler et al., 1985) and pineapple (Smith and Harris, 2001) are feruloylated at 

O-5 of Ara residues or GlcA residues.  Feruloylated xyloglucan (O-4 of xylose 

feruloylated) has been found in bamboo shoots by Ishii et al (1990).  Ishii (1997) 

reviewed all the phenolic polysaccharides that had been produced up to that 

date.  Since then a number of feruloylated (but not p-coumaroylated) 

polysaccharides have been discovered. 

 

The ability of ferulic acid dimers to cross-link polysaccharides was first proved 

by Ishii (1991) who isolated and characterized a 5,5’-DiFA esterified to two 

arabinoxylan trisaccharides.  Ferulic acid dimers that are connected to 

oligosaccharides at both ends have been isolated from maize bran, specifically 

Ara-5,5’-DiFA-Ara, Xyl-Ara-5,5’-DiFA-Ara and Ara-8-O-4’-DiFA-Ara, using mild 

acid hydrolysis (Allerdings et al., 2005; Saulnier et al., 1999) and from sugar 

beet, specifically Ara-Ara-8-O-4’-DiFA-Ara-Ara, using enzyme digestion 

(Levigne et al., 2004b).  Even a small number of these dimers, forming 

extracellularly, could significantly affect the mechanical properties of the cell 

walls by increasing the Mw of the polysaccharides significantly and creating a 

three dimensional network (Saulnier et al., 2007). 

 

In order to expand our understanding of CWC cell wall structure, fragments of 

polysaccharide, esterified with ferulic acid and its dimers, need to be produced.  

Of particular interest is the 8,8’-DiFA (AT), due to its proposed role in cell 
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adhesion (Parker, 2000).  The preferred method to achieve this is enzyme 

digestion, as with foreknowledge of the activities present in the formulations, 

there is some degree of control as to which linkages are broken.  This chapter 

details the preliminary work for the enzyme digestion method. 

 

6.1 Enzyme preparations 

 

Three enzyme preparations were tested: T. viride xylanase – a pure xylanase; 

Ultraflo (Humicola insolens) - a mixture of β-glucanase and xylanase, with small 

amounts of cellulase, pentosanase, arabinanase, feruloyl esterase and 

hemicellulase activity; Driselase (Basidiomycetes) – a mixture of laminarinase, 

xylanase and cellulase (from Sigma-Aldrich data sheet), with no feruloyl 

esterase activity. 

 

6.2 Methods 

 

Fry (1982) noted that Driselase contained phenolic contaminants, so the 

Driselase powder was partially purified as described by him, with a few slight 

modifications.  1 g of Driselase powder was dissolved in 10 ml of sodium 

acetate buffer (50 mM pH 5.0) at 4°C for 2 hr.  The resulting suspension was 

centrifuged at 13,000 rpm, 4°C for 15 min to remove solid material.  The 

supernatant was collected and combined, and the pellet resuspended in buffer 

twice followed by centrifugation as above to ensure that all of the enzyme was 

transferred.  The volume of supernatant was measured and sufficient 

(NH4)2SO4 added to give a 75% saturated solution, before mixing at 4°C for  

2 hr.  The suspension was centrifuged as above and the supernatant discarded.  

The pellet was resuspended in 75% saturated (NH4)2SO4 twice and centrifuged 

as above.  The resulting pellet was dissolved in 28 ml of water, and then 2.5 ml 

aliquots eluted on pre-prepared PD-10 columns using 3.5 ml of water.  The 

solution had 3.016 g of glycerol added per ml of solution before freezing at  

-20°C.  All Driselase used in the experiments described in this chapter was 

purified in this way. 
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Enzyme preparations were added (33.5 µl of T. viride xylanase, 450 µl of 

Ultraflo and 2 ml of Driselase) to ~50 mg of PCWM (Batch 2) and 100 ml of 

0.02% (w/v) NaN3, incubated and agitated at 37°C for 48 hr, with a second 

addition of enzyme after 24 hr.  The enzymes were denatured by boiling.  The 

residue was separated from the liquor by filtration (0.45 µm cellulose acetate) 

and both the residue and supernatant were freeze-dried.  They were then 

treated as shown in Figure 54. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 54:  Experimental scheme for enzyme digestions. 

 

PCWM (50mg) 

Enzyme digestions 

T. viride xylanase Driselase Ultraflo 

Supernatant 0 and Residue 

Residue: Phenolics and sugars Supernatant 0 split in two 

Supernatant 3: Aqueous fraction 

containing sugars and oligosaccharides 

with attached phenolics 

Supernatant 2: Ethyl 

acetate fraction analysed by 

HPLC to quantify free 

phenolics 

Sugars and alkali extraction of phenolics 

Dissolved in water, acidified and partitioned against ethyl acetate 

Supernatant 1: Alkali 

extraction and sugars 



 

BIOCHEMICAL DECONSTRUCTION 

109 

6.3 Yields 

 

The yields of residue and Supernatant 0 are given in Figure 55.  Ultraflo and 

Driselase solubilised between 85-95% of the PCWM, whereas T. viride 

xylanase only solubilised ~6%.  The weight of enzyme added was not known, 

so the weight of residue plus the weight of supernatant was higher than the 

original weight of PCWM. 

 

  PCWM (mg) Residue (mg) Supernatant 0 (mg) Total recovered (mg) 

T. viride 1 49.6 46.5 32.2 78.7 

T. viride 2 49.4 46.1 31.3 77.4 

Ultraflo 1 49.0 3.3 488.0 491.3 

Ultraflo 2 50.7 5.9 416.0 421.9 

Driselase 1 50.4 7.5 219.5 227.0 

Driselase 2 49.8 5.7 226.6 232.3 

 

Figure 55: Yields from preliminary enzyme digestion. 

 

6.4 Analysis of residues and supernatants 

 

6.4.1 Sugar composition 

 

The sugar composition of the residue was measured using the 72% (w/w)-

H2SO4 hydrolysis method and for Supernatants 1 and 3 using the  

1 M-hydrolysis method outlined in Section §2.7.  Uronic acids were not 

measured.  The results given in Figure 56 show that, consistent with the low 

degree of solubilisation achieved by T. viride xylanase, the composition of the 

residue barely changed.  Driselase reduced the amount of glucose significantly, 

and that of arabinose, xylose and galactose slightly.  Ultraflo significantly 

reduced all the major cell wall sugars.  The results for Supernatant 1 (Figure 57) 

are inconsistent with expectations, in that the results indicate that Ultraflo 

released more glucose than was present in the first place; and also, 
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examination of the chromatograms indicated the presence of an unidentified 

sugar not usually seen in CWC. 
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Figure 56: Average sugar composition of residues after enzyme digestion, compared to 

PCWM. 
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Figure 57: Average sugar composition of Supernatant 1 from each enzyme digestion (per 

mg of PCWM digested), compared to PCWM. 
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The unexpected discovery that there was more sugar than was originally 

present in the PCWM indicates there are sugars in the Ultraflo enzyme 

preparation, and as this may be true to some extent for all three enzymes, the 

residue data are probably more reliable.  The results for Supernatant 3 (not 

shown) were essentially the same as those for Supernatant 1, except that the 

small amount of rhamnose that was present in the T. viride Supernatant 1 was 

not present in T. viride Supernatant 3. 

 

6.4.2 Phenolic composition 

 

The phenolic composition was measured for the residue and for all four 

supernatants.  The residue and Supernatant 1 had phenolics measured as 

outlined in Section §2.3.  Supernatant 0 was run on the HPLC unprocessed, in 

the hope of finding a spectrum similar to that of the 8,8’-DiFA (AT), which would 

indicate a possible DiFA-polysaccharide fragment.  No such peak was found, 

but as 8,8’-DiFA (AT) is present only in small amounts anyway, it may still have 

been present, but undetectable.  Other peaks were detected, although not 

identified, and Ultraflo released the greater number and amount of these (Figure 

58), indicating, perhaps, the release of fragments attached to other phenolics, 

or possible contamination. 
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Figure 58: Supernatant 0 HPLC results (all peaks unidentified). 
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Supernatant 2 was the ethyl acetate fraction from the partitioning step and 

contained any free phenolics; it was dried down and redissolved in MeOH:water 

(50:50 v:v).  Supernatant 3 was analysed by the usual “total phenolics” method, 

but the volume of supernatant was measured and the concentration of the 

NaOH solution doubled, so that when equal volumes of the two were combined 

a final concentration of 4 M NaOH was achieved.  Supernatant 3 contained 

phenolics still bound to oligosaccharides. 

 

The original PCWM contained 11.6 µg/mg of phenolics; in the residue this was 

reduced by Driselase to 9.9 µg/mg and Ultraflo to 1.7 µg/mg, but increased by 

T. viride xylanase to 14.4 µg/mg (Figure 59). 
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Figure 59: Comparison of phenolics in undigested PCWM and enzyme digest residues 

(values are averages from two digestions). 

 

The numbers in the x-axis labels of Figure 59 refer to unknown phenolics as 

listed in Appendix F.  The T. viride residue had higher amounts of  

p-hydroxybenzaldehyde and cis-ferulic acid than the original material, indicating 

there could be some contamination, or that the xylanase made them more 

accessible to NaOH; however the increase in cis-ferulic acid is similar in size to 

the decrease in trans-ferulic acid and may indicate isomerisation.  The 



 

BIOCHEMICAL DECONSTRUCTION 

113 

Driselase residue had a number of peaks that were higher than the original 

material, particularly cis-ferulic acid and peaks 78, 80 and 89, indicating there 

could be some contamination.  The T. viride xylanase and Driselase do not 

appear to have removed the 8,8’-DiFA (AT) which was one of the main targets 

of this investigation, indicating they may not be the best choice for the digestion. 
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Figure 60: Phenolics in enzyme digest Supernatant 1 (alkali extracted) (errors are 

standard deviations of two replicates from two digestions). 
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Figure 61: Phenolics in enzyme digest Supernatant 2 (free phenolics) (errors are 

standard deviations of two replicates from two digestions). 
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Figure 62: Phenolics in enzyme digest Supernatant 3 (alkali extracted after free phenolics 

removed) (errors are standard deviations of two replicates from two digestions). 

 

The results for Supernatants 1, 2 and 3 are shown in Figures 60-62 and are 

discussed together for each enzyme treatment.  As with Figure 59, the numbers 

in the x-axis labels of Figures 60-62 refer to unknown phenolics as listed in 

Appendix F 

 

T. viride xylanase 

 

The only phenolic that was present at a lower level in the residue than in the 

PCWM and that also appeared in the supernatants was trans-ferulic acid; it 

appears to have been attached to the small amounts of polysaccharide 

released, as there was very little in Supernatant 2, which should have contained 

any free phenolics. 

 

Ultraflo 

 

Most of the phenolics were present at a lower level in the residue than in the 

PCWM and these also appeared in the supernatants, particularly 8,8’-DiFA 

(AT), trans-ferulic acid, cis-ferulic acid, 5,5’-DiFA and 8-O-4’-DiFA.  The data 
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from Supernatants 1 and 3, and the sugars analysis imply that most of these 

phenolics were still attached to arabinoxylan or xyloglucan.  The 8,8’-DiFA (AT) 

was the only phenolic to be released that was not also released in the free form 

(Supernatant 2).  As Ultraflo contains feruloyl esterase activity it is not surprising 

that it released the greatest quantity of free phenolics of the three enzymes. 

 

Driselase 

 

As the total amounts of 8,8’-DiFA (AT), trans-ferulic acid, cis-ferulic acid,  

5,5’-DiFA and 8-O-4’-DiFA were higher than what was in the PCWM originally, it 

is reasonable to assume there was some contamination from the enzyme 

preparation.  The only phenolics that were present at a lower level in the 

residue than in the PCWM and that also appeared in the supernatants were 

trans-ferulic acid and 8-O-4’-DiFA, both of which appear as both free and bound 

phenolics.  However, as there is no known feruloyl esterase activity in 

Driselase, the free phenolics are probably from contaminants in the preparation.  

As the 8,8’-DiFA (AT) was only released by alkali extraction of the supernatants 

and the values are extremely high relative to the PCWM, it may be that 

Driselase contains 8,8’-DiFA (AT) esterified to oligosaccharides.  Wende and 

Fry (1997) have shown previously that even when purified as described, 

Driselase contains some ferulic acid, possibly esterified to sugar residues; 

therefore the enzyme preparation will need further purification if it is to be used 

in the future. 

 

6.5 Releasable phenolics from Ultraflo and purified Driselase 

 

Ultraflo and purified Driselase were analysed for phenolic content to determine 

if they were the source of the additional phenolics detected in the digestions 

(Figure 63). 

 

The phenolics results for Driselase indicated a range of phenolics were present, 

some of which were present in relatively high quantities, and included four 

diferulic acids.  The phenolics results for Ultraflo indicated that, with respect to 
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phenolics, the preparation was free from appreciable contamination, excluding a 

little vanillic and p-coumaric acid, making it suitable for phenolic-based 

analyses. 

 

 Ultraflo  Driselase 

Phenolics Average (µg/ml) S.D.  Average (µg/ml) S.D. 

Phenylacetic acid 0.00 0.00  1.73 0.36 

Vanillic acid 0.64 0.07  0.88 0.04 

p-Hydroxybenzaldehyde 0.00 0.00  1.23 0.19 

Vanillin 0.00 0.00  1.37 0.08 

trans-p-Coumaric acid 0.74 0.08  1.47 0.15 

8,8'-DiFA (AT) 0.00 0.00  7.07 0.67 

trans-Ferulic acid 0.00 0.00  26.29 0.51 

8,5'-DiFA 0.00 0.00  2.91 0.41 

cis-Ferulic acid 0.00 0.00  0.76 0.12 

5,5'-DiFA 0.00 0.00  3.70 1.14 

8-O-4'-DiFA 0.00 0.00  2.44 0.04 

Total 1.38 0.11  46.41 3.01 

 

Figure 63: Phenolics extracted from Ultraflo and purified Driselase by 4 M NaOH. 

 

6.6 Releasable sugars from Ultraflo and purified Driselase 

 

 Ultraflo  Driselase 

Sugars Average (µg/ml) S.D.  Average (µg/ml) S.D. 

Rhamnose 58 1  43 17 

Fucose 38 8  18 6 

Arabinose 490 1  138 42 

Xylose 142 2  139 41 

Mannose 3099 95  415 141 

Galactose 901 10  36 18 

Glucose 96604 883  452 623 

Total 101332   1241  

 

Figure 64: Sugars extracted from Ultraflo and purified Driselase by 72% (w/w) H2SO4. 
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Ultraflo and purified Driselase were analysed for sugar content to determine if 

they were the source of the additional sugars detected in the digestions (Figure 

64).  The sugars results for Driselase were inconsistent, but on average there 

were ~1250 µg/ml, particularly glucose and mannose (~400 µg/ml each).  The 

sugars results for Ultraflo were high (~100 mg/ml), and resulted in the GC 

chromatogram showing overloaded peaks. 

 

As expected from the digestion results glucose was present in the greatest 

amounts.  At least some of the sugars could be covalently attached to the 

enzymes, so the figures above are maximum values.  However, it would 

indicate that neither of these enzyme preparations is suitable for the current 

investigation; even so a number of researchers have used Driselase to produce 

phenolic-oligosaccharides in the past (Bunzel et al., 2002; Levigne et al., 2004a; 

Ralet et al., 1994b).  The manufacturer’s data sheet (Sigma-Aldrich) for 

Driselase states that approximately 15% of the raw powder is protein.  This 

shows that there are significant amounts of other components, which 

presumably include sugars and phenolics.  Studies that have used Driselase, 

without purification, may have been affected by the phenolic contamination 

shown here and quantified by Wende and Fry (1997) as 39.6 nmol saponifiable 

ferulate in 2.5 mg purified Driselase.  Figure 65 lists a selection of references 

that have used Driselase (or a component thereof) to break down plant cell-wall 

polysaccharides, whole CWM or alcohol-insolubule residue (AIR).  For each 

one the type and amount of substrate is given, as is the type of purification of 

Driselase used, and whether enzyme-only controls were included.  The types of 

purification method used have been encoded in Figures 65 and 65b as follows: 

 

 NS – No method specified 

 Supernatant – Raw Driselase powder dissolved in water or buffer, then 

centrifuged, and the resulting supernatant used 

 Fry – The partial purification method described by Fry (1982) or similar 

 Specific – More specific methods designed to isolate a particular enzyme 
activity 
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Reference Substrate 
Purification 

Method 

Resulting 

Driselase 

Reaction 

vol. 

Total 

Substrate 

Total Driselase 

in reaction 
Controls 

(McCleary, 1979) Legume 

galactomannans 

Specific Purified  

β-D-Mannanase 

22 ml 0.1 g 2 ml, 0.4 µkat N 

(Fry, 1982) Spinach CWM Fry Purified powder - 20 mg 0.60% Y 

(Fry, 1983) Spinach CWM Fry Purified powder - 20 mg 0.60% N 

(Hoebler and 

Brillouet, 1984) 

Larchwood xylan Specific Purified xylanase 1.2 ml 6 mg 5-200 µl N 

(Ishii and Hiroi, 1990) Bamboo shoot 

CWM 

Fry 60 mg/ml 

solution 

1 L 20 g 180 mg N 

(Borneman et al., 

1990) 

Bermuda grass 

CWM 

Fry 9.2 mg protein 

/ml solution 

102 ml 5 g 18.4 mg protein N 

(Ishii and Tobita, 

1993) 

Spinach leaf 

CWM 

Fry 60 mg/ml 

solution 

1 L 20 g 180 mg N 

(Ralet et al., 1994b) Sugar beet pulp 

AIR 

Supernatant 10 mg protein /ml 

solution 

10 ml 100 mg 10 mg protein N 

(Ralet et al., 1994b) Sugar beet pulp 

AIR 

Supernatant 1 g protein /L 

solution 

1 L 10 g 1 g protein N 

(Colquhoun et al., 

1994) 

Sugar beet pulp 

AIR 

Supernatant 1 g protein /L 

solution 

1 L 10 g 1 g protein N 

(Ralet et al., 1994a) Sugar beet pulp 

AIR 

Supernatant 1 mg/ml solution 1 L 10 g 1 g* N 

(Ralet et al., 1994a) Wheat bran Supernatant 1 mg/ml solution 1 L 10 g 1 g* N 

(Wende and Fry, 

1997) 

Fescue AIR Fry Purified powder 10 ml 200 mg 50 mg Y 

(Smith and Harris, 

2001) 

Pineapple Fry 11.9 mg protein 

/ml solution 

1 ml 10 mg 0.238 mg Y 

(Bunzel et al., 2002) Wild rice IDF NS Raw powder 900 ml 10 g 1 g N 

(Gardner et al., 2002) Arabidopsis AIR Fry 0.5% solution - 10 mg 1.25 µg N 

(Clausen et al., 2004) Wheat/Sugar 

beet 

Supernatant 1 g protein /L 

solution 

- 10 g 1 g protein N 

(Levigne et al., 

2004a) 

Sugar beet CWM NS Raw powder 1 L 10 g 1 g N 

(Encina and Fry, 

2005) 

Maize AIR Fry Purified powder 1 ml* 20 mg* 1% N 

(Ralet et al., 2005) Sugar beet CWM Supernatant Supernatant from 

67.8 mg/ml 

- <10 g* 9.5 ml N 

Figure 65: Table of selected enzyme-digestion conditions for other researchers. 
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Reference Substrate 
Purification 

Method 

Resulting 

Driselase 

Reaction 

vol. 

Total 

Substrate 

Total Driselase 

in reaction 
Controls 

(Ardiansyah et al., 2006) Rice bran NS Raw powder 500 ml <500 g 0.1 mg N 

(Nergard et al., 2006) Polysaccharide 

samples 

Specific Purified  

exo-β-D-(1-3)-

galactanase 

5 ml 5 mg 5 µg, 0.007 U N 

(Tsumuraya et al., 2006) Acacia gum Specific Purified  

exo-β-D-(1-3)-

galactanase 

12 ml 57 mg 1.8 U N 

* Not explicit in text, NS – None specified, Supernatant – Driselase dissolved in water or buffer, then centrifuged, and 

the resulting supernatant used, Fry – The partial purification method of Fry (1982), Specific – More specific methods 

designed to isolate a particular enzyme activity, CWM – Cell Wall Material, AIR – Alcohol Insoluble Residue, IDF – 

Insoluble Dietary Fibre 

 

Figure 65b: Table of selected enzyme-digestion conditions for other researchers 

(continued). 

 

The experiments where a specific enzyme activity has been extracted from 

Driselase should be free of phenolic and sugar contaminants.  In contrast, those 

using raw Driselase are likely to have introduced significant contaminants into 

their reaction, as 85% of the added material was not protein (manufacturer’s 

data sheet).  However, without analysing Driselase powder it is difficult to know 

how problematic the contamination would be.  Dissolving raw Driselase powder 

in water or buffer and centrifuging the resulting suspension yields a brown 

supernatant from which only the insoluble contaminants have been removed.  

The experiments using this method of purification will still have some 

contamination, although less than if raw powder was used.  For those using the 

Fry method of purification the ratio of Driselase to substrate is probably more 

important.  For instance, an estimated 2% of the phenolics would originate from 

Driselase if 4 ml of purified enzyme was used with 1 g of substrate; however 

this figure is based on CWC, so it could be much higher in other plants.  In any 

case, enzyme-only controls appear to be highly recommended when using 

Driselase to produce fragments of feruloylated cell-wall polysaccharides; only 

then can the fragments created be said to have originated from the plant 

material. 
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6.7 Discussion 

 

Driselase would have been the enzyme preparation of choice, due to its high 

degree of solubilisation of the material and lack of FAE activity, but as it was 

contaminated with the very phenolics that were of most interest, it was deemed 

unsuitable.  Ultraflo was also unsuitable due to the apparent contamination from 

sugars and its ability to release esterified phenolics.  As the T. viride xylanase 

was poor at solubilising the material there was no choice but to resort to mild 

acid hydrolysis, as described in Chapter 7. 

 

For those wishing to use Driselase for future studies a possible method for 

avoiding the phenolic contamination problem would be to purify out the 

individual activities and recombine them to give a clean preparation with known 

activity.  The isolation of an exo-β-(1→3)-D-galactanase and an exo-cellulase 

(Kanda et al., 1978; Tsumuraya et al., 2006) from Driselase has already been 

achieved. 
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7 Development, Evaluation and Exploitation of 
Chemical Methods of Cell-Wall Disassembly: 

 

The aim of these experiments was to elucidate the nature of the phenolic-

polysaccharide associations, particularly those which cross-link polysaccharide 

chains.  This included determining which phenolics are esterified to 

polysaccharides, and whether they cross-link polysaccharide chains, particularly 

the 8,8’-DiFA (AT) that is thought to be so important for cell adhesion in CWC 

(Parker, 2000). 

 

As enzyme digestion was not suitable for this, due to the contamination of the 

enzyme preparations with sugars and phenolics (see Chapter 6), a chemical 

method was chosen, even though chemical methods are less specific.  The 

method chosen to produce the phenolic-polysaccharide fragments from CWC 

PCWM was mild acid hydrolysis with 0.05 M TFA, which has been used to 

produce phenolic-polysaccharide fragments in the past (Allerdings et al., 2005; 

Allerdings et al., 2006; Funk et al., 2005; Saulnier et al., 1999). 

 

7.1 Methods 

 

As multiple hydrolyses were carried out and numerous sub-fractions were 

produced, a flow diagram has been produced as a guide to the various 

treatments (Figure 66). 

 

Fragments were produced by mild acid hydrolysis of ~1 g PCWM (Batch 2) 

using 100 ml of 0.05 M TFA at 100°C for 3 hr.  These conditions were chosen 

by refering to kinetic experiments done by Saulnier et al (1995) that showed that 

a 3 hr hydrolysis gave the best balance between hydrolysing the sugars and 

leaving the phenolics esterified to sugars.  The mixture was cooled and filtered 

through a 0.45 µm PTFE membrane filter under vacuum (the filter was 

moistened with ethanol first).  The residue was washed with 2 x 100 ml of water, 

combining the washings with the original filtrate, and then frozen.  The TFA was 
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removed from the hydrolysate by repeated evaporation in a rotary evaporator at 

45-47°C with extra water.  The TFA was considered to have been removed 

when the hydrolysate pH was stable at 4 and no vinegar smell was detected.  A 

film accumulated on the inside of the round-bottomed flask, but it could not be 

removed with water, so some loss must have occurred. 

 

 

 
Colour coding indicates the original hydrolysis 
Underlines indicate which Biogel P-2 runs were combined (eg Peaks “1”, “4”, “6”, “7” and “10” come from runs 4-6). 

 

Figure 66: TFA-hydrolysis fraction guide. 

 

CWC CWM 

TFA Hydrolysis 

Residue 1, 2 and 3 

TFA extraction 1, 2 and 3 

TFA Raw Hydrolysate 

80% EtOH Precipitation 

TFA Hydrolysate 1, 2 and 3 TFA Precipitate 1, 2 and 3 

UV Peak 1 

UV Peak 2 

UV Peak 3 

UV Peak 4 

Separation on Biogel P-2 Column 

(Runs: 1, 2, 3, 4, 5, 6, 7, 8) 

Non-UV fractions 

Peaks “1” and “2” 

Peaks “4” and “5” 

Peaks “6” and “3” 

Peaks “7” and “8” 

Peaks “11”, “10” and “9” 
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7.1.1 Ethanol precipitation 

 

The volume of hydrolysate was measured and sufficient absolute ethanol added 

to produce a final concentration of 80% ethanol.  The solution was stirred at 4°C 

for 25 hr, to remove the larger polysaccharides by precipitation (Fry, 1988).  The 

suspension was filtered through a 0.45 µm PTFE membrane filter under 

vacuum and washed with 50 ml of 80% ethanol.  The residue was frozen and 

freeze-dried on the membrane filter to reduce losses.  The filtrate was rotary 

evaporated at 41°C until the volume had reduced to a few millilitres.  A small 

portion of the filtrate was removed and freeze-dried for use in the analyses, the 

remainder was frozen. 

 

7.1.2 Characterisation of residues and supernatants 

 

Figure 67 gives the yields of residue, hydrolysate/supernatant and precipitate 

for the TFA hydrolyses.  It appears the yields improved with practice. 

 

 Hydrolysis 1 Hydrolysis 2 Hydrolysis 3 

Starting material (g) 1.004 1.019 1.837 

Residue (g) 0.563 0.566 1.090 

Hydrolysate (g) 0.263a 0.043b 0.101b 

Ethanol precipitate (g) 0.080 0.314 0.611 

Yield (%) 82.3 90.6 98.1 

a before ethanol precipitation, b after ethanol precipitation 

 

Figure 67: Yields of residue, hydrolysate and ethanol precipitate from TFA hydrolyses. 

 

Sugars 

 

The residue (~4 mg), supernatant (~1 mg) and precipitate (~3.5 mg) from 

Hydrolysis 1 were analysed for sugars using the 1 M H2SO4 method described 

in Section §2.7. 
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The residue had a high proportion of xylans and xyloglucan, with perhaps some 

galactans also remaining (Figure 68).  The supernatant had mostly arabinoxylan 

and some galactan (probably removed from RG I).  The precipitate had pectin 

(RG I), some xyloglucan and a high proportion of xylans. 
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Figure 68: 1 M H2SO4 sugars results for the residue, supernatant and ethanol precipitate 

from TFA Hydrolysis 1 (values are averages from two determinations). 

 

The residue (~0.5 mg), supernatant (~1 mg) and precipitate (~3.5 mg) from 

Hydrolyses 2 and 3 were analysed for sugars using the 72% (w/w) H2SO4 

method from Section §2.7.  The residues had a higher proportion of cellulose 

than the starting material, but there were also some xyloglucans and probably a 

small amount of pectin (Figure 69).  The precipitates contained pectin (RG I) 

and xylans, with a little xyloglucan. 

 

The supernatant contained mostly arabinoxylan and some galactan (probably 

removed from RG I).  It appears that the arabinose sidechains were hydrolysed 

from arabinoxylan, releasing the xylans from the wall; the long xylan chains 

were then precipitated by ethanol along with the pectin.  The polysaccharides 
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remaining in solution were short oligosaccharides of arabinoxylan and galactan, 

possibly esterified to ferulic acids. 
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Figure 69: 72% (w/w) H2SO4 sugars results for the residue, supernatant and ethanol 

precipitate from TFA Hydrolyses 2 and 3 (uronic acids measured as GlcA equivalents). 

 

Phenolics 

 

The residue (~5 mg), supernatant (~1.5 mg) and precipitate (~4 mg) were 

analysed for phenolics using the total phenolic extraction method described in 

Section §2.3, but using 2 ml, not 1 ml, of 4 M NaOH.  Ferulic acid was the 

predominant phenolic in the residue and supernatant from TFA Hydrolysis 1 

(Figure 70) and in all three samples from TFA Hydrolyses 2 and 3 (Figure 71).  

In Precipitate 1 there were about equal amounts of trans-ferulic acid and 8-O-4’-

DiFA.  The 8,8’-DiFA (AT) was only detected in the residue of Hydrolysis 1, 
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probably due to using only a small sample of supernatant.  The 8,8’-DiFA (AT) 

was present in all the samples from TFA Hydrolyses 2 and 3. 
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Figure 70: Phenolics in residue, precipitate and supernatant of TFA Hydrolysis 1 (values 

are averages of two (residue and supernatant) or three (precipitate) determinations). 
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Figure 71: Phenolics in residue, precipitate and supernatants of TFA Hydrolyses 2 and 3. 
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The supernatants contained a complex mixture of known phenolics, so the 

separation on Biogel-P2 would hopefully be the stage at which the phenolic-

polysaccharide fragments would begin to be purified. 

 

7.1.3 Separation of supernatant components by column 

chromatography 

 

The supernatant was defrosted and made up to 2 ml (Hydrolysis 1) or 5 ml 

(Hydrolysis 2) with deionised water, and applied to a column (2.6 cm x 90 cm) 

filled with Biogel P-2 in aliquots of 200 or 500 µl.  Due to dead volumes in the 

syringe filters and sample loops, only 1.2 or 2.5 ml was actually injected onto 

the column.  The significant increase in back pressure experienced when 

injecting the solution onto the column showed that at least some of the material 

was not in solution as the filter was getting blocked.  Elution was with deionised 

water at 0.42 ml/min, monitoring was by UV detector at 280 nm (see Appendix 

G for original chromatograms).  An automated fraction collector was used to 

collect a set number of fractions for a set time each (Figure 72).  A total of eight 

runs were carried out, three from the first TFA hydrolysis, five from the second 

TFA hydrolysis and none from the third. 

 

 Run 1 Run 2 Run 3 Run 4 Run 5 Run 6 Run 7 Run 8 

Supernatant vol (ml) 0.2 0.5 0.5 0.5 0.5 0.5 0.5 0.5 

Fraction vol (ml) 14.7 7.35 7.35 8.4 8.4 8.4 8.4 8.4 

Fraction time (min) 35 17.5 17.5 20 20 20 20 20 

No. of fractions 42 84 84 95 95 95 95 95 

Total run time (min) 1470 1470 1470 1900 1900 1900 1900 1900 

Total run time (hr) 24.5 24.5 24.5 31.7 31.7 31.7 31.7 31.7 

 

Figure 72: Volumes of supernatant applied and fractions collected for Biogel P-2 runs. 
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7.2 Analysis of chromatography fractions to identify peaks and 

guide fraction recombination 

 

Individual fractions did not contain enough phenolic-polysaccharide for the 

structural determination analyses, so the fractions were analysed to determine 

which fractions should be combined with each other. 

 

7.2.1 UV absorption at 214, 280, 320 and 350 nm 

 

Absorbances were measured using quartz cuvettes and a spectrophotometer 

fitted with a cell changer.  Initially every fraction was analysed, in later runs only 

the fractions collected during a peak, as indicated by the FPLC UV detector, 

were analysed.  After each set of samples the cuvettes were rinsed with distilled 

water and 100% ethanol and left to dry. 

 

7.2.2 Phenol-H2SO4 total sugars assay 

 

This method was scaled down from the original put forward by Dubois et al 

(1956) for use on a microplate scale.  In acid-washed culture tubes, 80 µl of 

sample/glucose standard was combined with 2 µl of 80% (w/v) phenol solution 

and 200 µl of 96% (w/v) H2SO4.  To ensure the reaction went to completion, the 

samples were vortexed and heated at 100°C for 10 min, and then cooled in an 

ice bath (Masuko et al., 2005).  The absorbance of 200 µl of the resulting 

solutions was measured at 490 nm using a Molecular Devices microplate 

reader (Sunnyvale, California).  This method is not quantitative when a mixture 

of sugars is being analysed due to the variation in colour response between 

different sugars. 
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7.2.3 Folin-Ciocalteu total phenolic assay 

 

In 1.5 ml microtubes, 625 µl of sample/ferulic acid standard was combined with 

625 µl of Folin-Ciocalteu reagent (diluted to 1.0 N acid from supplied 2.0 N acid 

solution; Sigma-Aldrich, Dorset, UK).  The samples were incubated at room 

temperature for 3 min, 125 µl of saturated Na2CO3 solution was added, and 

then the samples were incubated at room temperature for 1 hr.  The microtubes 

were centrifuged (Heraeus Biofuge Fresco; Thermo Scientific, Waltham. 

Massachusetts) at 13000 rpm for 5 min to sediment any precipitate, and then 

the absorbance of 200 µl of supernatant was measured at 750 nm, using a 

microplate reader.  This method measures the reducing capacity of a sample 

and is therefore not specific for phenol groups; it is less suitable for complex 

samples (Huang et al., 2005), particularly those containing protein, as the 

procedure was developed from a protein assay (Singleton et al., 1998).  

However, in these samples, it is unlikely that there are significant amounts of 

interfering compounds. 

 

7.2.4 Results for Run 1 

 

Measurements of total sugars, total phenolics and absorbance at 280 nm were 

compared for all fractions of Run 1 (Figure 73).  Some of the sugar peaks were 

not coincident with a phenolic peak, implying that the phenolics were only 

attached to certain oligosaccharides. 

 

Fractions (7-9, 21 and 23-26) were selected for 1 M H2SO4 sugars analysis; the 

results showed that only arabinose, xylose and galactose were present (Figure 

74).  Fraction 9 appeared to contain no sugar whatsoever.  Of the fractions that 

did contain sugars, Fractions 7, 8 and 21 contained only xylose, Fraction 23 

contained xylose and galactose, Fraction 26 contained arabinose and xylose 

and Fractions 24 and 25 contained all three sugars. 
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Figure 73: Comparison of total phenolics, total sugars and absorbance data for Run 1 

(total phenolics as ferulic acid equivalents x10, total sugars as xylose equivalents). 
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Figure 74: 1 M H2SO4 sugars results for selected fractions from Run 1 (values are 

averages from two determinations). 
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Selected Fractions (8-10, 14, 25-27, 33 and 35) had phenolics analysis carried 

out; the results showed that p-hydroxybenzaldehyde was the predominant 

phenolic detected; however the errors for p-hydroxybenzaldehyde were very 

large, implying that it came from an external source (Figure 75).  Cis and trans-

ferulic acid were found in Fractions 8, 9, 14, 25 and 26.  Diferulic acids were 

found in Fractions 8 and 9.  Vanillin was found in Fractions 9, 10 and 27. 
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Figure 75: Phenolics results for selected fractions from Run 1 (values are averages of 

two determinations). 

 

The phenolics and sugars results were not consistent, so were of little help 

when trying to decide which fractions to combine, so the absorbance 

measurements were used. 

 

7.2.5 Results of absorbance measurements 

 

The graphs of the absorbance at 320 nm for the fractions from Runs 4-6 are 

shown in Figure 76.  The graphs of the absorbances at 214, 280 and 350 nm 

were very similar graphs to that for 320 nm. 
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The fractions with an absorbance above 0.025 (UV Peak 1), 0.110 (UV Peak 2), 

0.044 (UV Peak 3) and 0.030 A (UV Peak 4) at 320 nm were combined into two 

sets of four “Peaks”, one set from Runs 4-6 and one set from Runs 7 and 8 (for 

full details of which fractions were combined see the colour-coded spreadsheet 

in Appendix H). 
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Figure 76: Absorbance of Biogel P-2 fractions at 320 nm (Runs 4-8). 

 

These combined fractions will be referred to as Peaks 1-8 and the fractions that 

were not UV-fluorescent are Peaks 9-11 (the numbering of these peaks is not 

intuitive; please refer to Figure 66 for details).  All Peaks were concentrated 

under vacuum and then freeze-dried.  The freeze-dried samples were removed 

and weighed (Set b), but a relatively large amount adhered to the round-

bottomed flasks they had been freeze-dried in, so the flasks were rinsed with 

small volumes of water, transferred to small vials and then freeze-dried again 

(Set a).  The yields were greatest for the non-UV Peaks 9-11.  Peaks 1 and 2 

gave the next greatest yield, followed by Peaks 4 and 5. 
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7.3 Characterisation of peaks 

 

Analysis of some of the peaks was hampered by the sticky texture and small 

amount of sample.  Because the samples were sticky they had to be weighed 

directly into culture tubes, meaning the balance did not register the small 

masses accurately; this necessitated the use of mol% rather than µg/mg for the 

reporting of the results.  The peaks were analysed for phenolic and sugar 

content, and by methylation analysis, but the standard methods were scaled 

down due to sample size. 

 

7.3.1 Thin-layer chromatography 

 

Thin-layer chromatography (TLC) was carried out on 20 x 20 cm aluminium-

backed silica-gel (60 F254) plates using chloroform:acetic acid (99.8%):water 

(6:7:1 v:v:v) as eluent and Marshal’s reagent as developer (Figure 77).  

Marshal’s reagent was produced by boiling 200 ml EtOH, 20 ml conc. H2SO4 

and 1.8 g N-(1-naphthyl)ethylenediamine dihydrochloride together; the resulting 

solution was mixed carefully and stored in a dark place (Bounias, 1980). 

 

Figure 77: Diagram of TLC-plate layout. 
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The standards used were: Glc, Man, Ara and GalA or GlcA (10 mM) and a 

mixture of xylose, xylobiose, xylotriose, xylotetraose and xylopentose (40 mM) 

combined in the ratio (5:4:3:2:1) to give a final concentration of 8 mM.  The 

plates were eluted for 2 x 6 hr and then allowed to dry before developer was 

applied in one smooth movement.  The plate was allowed to drip dry for a few 

minutes before developing the colour in an oven at 95-105°C for 5-10 min. The 

plate was removed at the point at which there was some colour distinction 

between the hexoses and pentoses.  Developed plates were then scanned in 

colour at 600 dpi.  The freshness of the developer made a significant difference 

to the quality of the resulting TLC; the developer had been freshly made in 

Figure 78 resulting in stronger colours and clearer spots than if old developer 

was used (not shown).  When fresh developer was used there were obvious 

differences in colour between the uronic acids (orange/brown), hexoses 

(pink/purple) and pentoses (blue/purple). 

 

Figure 78: TLC plate showing standards, combined peaks and residues from the second 

TFA hydrolysis, with perceived spots marked in pencil. 

10   Man GlcA   Gal    Glc   Ara   Xyl1-5   1       2       3      4       5       6       7      8       9     Xyl1-5  Ara  Glc  Gal  GlcA   Man    11  EP Hyd 
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Peaks 1, 2, 4 and 5 appeared to contain relatively high-molecular-weight 

polysaccharides, which judging from the colours of the spots, were probably 

predominantly pentoses.  Peaks 3, 6, 7 and 8 gave no detectable spots, but 

they had very low yields generally.  Peaks 9, 10 and 11 appeared to have high 

concentrations of sugars and a number of different sugar residues; as these 

were the combined non-UV fractions, there were obviously a lot of 

oligosaccharides that did not have a phenolic attached to them. 

 

7.3.2 Carbohydrate composition and linkage analysis of peaks 

 

The sugar composition (72% (w/w) H2SO4) of the peaks was analysed, and the 

results are given in Figure 79.  The data are organised so that the two peak 

samples that came from the same UV peak across Runs 4 to 8 are adjacent to 

each other.  The sugars of Peaks 1 and 2 were essentially xylose, with a little 

arabinose.  The sugars for Peaks 4 and 5 were a mixture of xylose, arabinose, 

galactose and glucose.  The sugars for Peaks 3 and 6 were a mixture of 

arabinose, glucose, xylose, galactose and rhamnose.  The sugars for Peaks 7 

and 8 were mainly arabinose and glucose, with some galactose, xylose and 

rhamnose.  The sugars for Peaks 9, 10 and 11 were arabinose, xylose and 

galactose. 
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Figure 79: Sugars results for Peaks 1-11 (Set b – larger of the two samples retrieved for 

each peak, see §7.2.5 for explanation). 
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Methylation analysis of the peaks was done using the lithium dimsyl method 

with carboxyl reduction and the results are presented in Figures 80 and 81. 

 

Peak 2 contained xylans, but it also contained some galacturonic acid, even 

though the majority of the pectins were precipitated in 80% ethanol.  Peaks 4 

and 5 consisted of xylan, galactan and xyloglucan and possibly some arabinan.  

Peaks 3 and 6 consisted of arabinoxylan, xyloglucan and possibly some 

arabinan.  Peaks 7 and 8 contained (arabino)xylans and possibly some 

xyloglucan. 

  Peak 4 Peak 4* Peak 6 Peak 6* Peak 7 Peak 7* 

SUGAR LINKAGE Mol% Mol% Mol% Mol% Mol% Mol% 

Fuc t-     0.2  

Ara-f t-     5.9  

Ara-f (1-3)     0.8  

Ara-f (1-5)  5.9   1.0  

Ara-p unmeth.    11.7 0.4  

Xyl t- 9.7 4.0   3.2  

Xyl (1-4) 44.0 35.6 18.6 13.0 7.2 58.7 

Xyl (1-3,4)     58.4  

Xyl (1-2,4)     0.4  

Xyl unmeth.    24.8 0.5  

Man (1-4)     0.3  

Gal t- 4.1   0.4 0.1 8.9 

Gal (1-6)  2.5     

Gal (1-4) 25.3 27.4     

Gal (1-4,6) 8.4 7.0     

Gal (1-3,6)     0.1  

Gal unmeth.  3.7   1.9  

Glc (1-4) 4.2 5.4 49.9  1.1  

Glc (1-4,6) 4.3    2.3  

Glc unmeth.  8.5 31.5 50.2 16.2 32.5 

* carboxyl reduction was carried out, t- indicates a terminal sugar residue, -f indicates a furanose ring 

structure, -p indicates a pyranose ring structure, unmeth. indicates sugar was not methylated 

 

Figure 80: Methylation-analysis data for Peaks 4, 6 and 7. 
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Although arabinose is present in all the samples according to the sugars 

analysis, it does not appear to be present to the same extent in the methylation 

analysis.  As ferulic acid is usually esterified to arabinose, perhaps it is 

interfering with the methylation reaction (Ishii, 1997). 

 

  Peak 2 Peak 2* Peak 5 Peak 5* Peak 3 Peak 3* Peak 8 Peak 8* 

SUGAR LINKAGE Mol% Mol% Mol% Mol% Mol% Mol% Mol% Mol% 

Fuc t-     0.5    

Ara-f t- 0.9    11.1    

Ara-f (1-3)     1.5    

Ara-f (1-5) 0.9  1.2 1.2 4.2    

Ara-p unmeth.     0.9    

Xyl t- 12.3 3.8 3.6 5.5 6.4  12.6  

Xyl (1-4) 76.3 55.4 51.0 42.3 16.9 5.4 62.7 18.2 

Xyl (1-3) 0.6   1.3     

Xyl (1-3,4) 3.7 7.4   11.8  2.0  

Xyl (1-2,4) 2.8 6.5  1.4   0.9  

Xyl unmeth. 1.1 5.5  3.3 0.9    

Man (1-4)     0.8    

Gal t-   1.7 1.4 0.4   1.4 

Gal (1-6) 0.3  1.8 0.9     

Gal (1-4)   22.9 25.7 0.2  1.4  

Gal (1-2)  3.6   0.2    

Gal (1-4,6)   7.6 6.1 0.5    

Gal unmeth.    3.4 3.6 15.9   

GalA (1-4)  11.4       

GalA (1-4,6)  2.4       

Glc (1-4) 0.3  3.6 2.0 2.1    

Glc (1-4,6) 0.4 1.4 5.1 3.6 4.4    

Glc (1-2,4)   0.2      

Glc unmeth. 0.6 2.6 1.3 2.0 33.8 78.7 20.5 80.4 

* carboxyl reduction was carried out, t- indicates a terminal sugar residue, -f indicates a furanose ring structure, -p 

indicates a pyranose ring structure, unmeth. indicates sugar was not methylated 

 

Figure 81: Methylation-analysis data for Peaks 2, 5, 3 and 8. 
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7.3.3 Phenolic composition 

 

Comparing the phenolic acid data for equivalent peaks, the data are generally 

consistent (Figure 82).  Occasionally, the phenolics present in lower 

concentrations were not detected in both equivalent peaks; this may have been 

due to the small sample size.  trans-Ferulic acid was always present and  

8,8’-DiFA (AT) and 8-O-4’ DiFA were also detected in most of the peaks. 
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Figure 82: Phenolics in Peaks 1-11 (Set b – larger of the two samples retrieved for each 

peak, see §7.2.5 for explanation). 

 

Peaks 1 and 2 probably have ferulic acid, 8-O-4’-DiFA, 8,5’-DiFA (BF) and  

8,8’-DiFA (AT) esterified via single arabinose residues to xylan 

oligosaccharides.  Peaks 4 and 5 may have ferulic acid, dimers and possibly 

vanillic acid esterified to oligosaccharides of xylan, galactan and xyloglucan via 

arabinose.  Peaks 3 and 6 contained ferulic acid and 8,8’-DiFA (AT), possibly 

esterified to oligosaccharides of arabinoxylan, xyloglucan and arabinan.  Peaks 

7 and 8 contained ferulic acid and 8,8’-DiFA (AT), possibly esterified to 

oligosaccharides of arabinoxylan. 
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7.4 LC-MS to detect phenolic-polysaccharide linkages 

 

All of the fraction samples and a sample of TFA Hydrolysate 3 were dissolved in 

methanol:water (50:50 v:v) and run directly on the HPLC-MS (MicroToF).  

Residue 3 (~50 mg) and Precipitate 3 (~76 mg) were extracted in 10 and  

15.2 ml of 4 M NaOH respectively, using a scaled-up version of the usual total 

phenolic extraction method from Section §2.3.  Accurate-mass analysis was 

carried out on the MicroToF LC-MS as described in Section §8.3.2.  It was 

hoped that purified samples of phenolic-oligosaccharides would be produced for 

NMR analysis; however there were problems with collection of the components 

after HPLC separation and these are described in Section §8.3.3. 

 

7.4.1 Alkali extract of TFA/80%-ethanol precipitate 

 

The chromatogram for the TFA/80%-ethanol precipitate showed an apparent 

plethora of ferulic acid trimers, when the m/z=579 ions were extracted (Figure 

83).  On careful inspection, using the accurate masses, not all of them were 

triferulic acids. 

 

Figure 83: Total-ion and extracted-ion (m/z=579) chromatograms for TFA/80%-ethanol 

Precipitate 3, showing the large number of possible triferulic acids. 
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The TFA precipitate had a particularly clear 8,8’-DiFA (AT) spectrum (Figure 

100, §8.4.4) because the trans-p-coumaric acid was not solubilised to the same 

degree as the ferulic acids.  At least one tetramer and three trimers of ferulic 

acid were identified; their spectra are given in Section §8.4.4.  One of the 

trimers elutes with 8,5’-DiFA and cis-ferulic acid, and so care should be taken, 

when assessing chromatograms, that the UV spectrum of a peak at the right 

relative retention time is the correct one. 

 

7.4.2 TFA Hydrolysate 3 

 

Figure 84 gives mass-spectrometric data for ferulic acid-arabinobiose and 

ferulic acid-galactobiose, to which the MS data from the hydrolysate and peaks 

were compared.  The TIC and UV chromatograms of TFA-Hydrolysate 3 are 

shown in Figure 85.  Assuming the pentoses indicated are all arabinose, three 

ferulic acid-arabinose fragments, one ferulic acid-arabinobiose fragment and six 

diferulic acid-arabinose fragments were detected in the hydrolysate (Figure 86).  

Interestingly there is no sign of any p-coumaric acid-pentose or DiFA-hexose 

fragments. 

 

Compound Characteristic Ions Molecular weight Molecular formula Reference 

FA-Ara-Ara 481 (M+Na)+ 

459 (M+H)+,  

497 (M+K)+,  

309 (M-pentose)+,  

177 (M-2 x pentose)+ 

458.1424 C20H26O12 (Ishii and Tobita, 1993) 

FA-Gal-Gal 541 (M+Na)+,  

519 (M+H)+,  

557 (M+K)+,  

339 (M-hexose)+,  

177 (M-2 x hexose)+ 

518.1636 C22H30O14 (Ishii and Tobita, 1993) 

Figure 84: MS data for some ferulic acid-polysaccharide fragments. 
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Figure 85: Total-ion and UV chromatograms for TFA-Hydrolysate 3. 

 

Compound Retention time Masses Molecular formula Molecular weight 

Ferulic acid-Ara 8.955 177, 309 C15H18O8 326.1002 

Ferulic acid-Ara-Ara 10.571 177, 309, 327, 441, 459, 481 C20H26O12 458.1424 

Ferulic acid-Ara 11.251 309, 177, 327, 349 C15H18O8 326.1002 

Ferulic acid-Ara 11.681 309, 177, 353 C15H18O8 326.1002 

DiFA-Ara 17.199 501, 541, 519 C25H26O12 518.1424 

DiFA-Ara 18.109 391, 501, 519, 369, 177 C25H26O12 518.1424 

DiFA-Ara 18.311 309, 177, 327, 441, 459, 481 C25H26O12 518.1424 

DiFA-Ara 18.461 385, 403, 519, 501, 541, 177 C25H26O12 518.1424 

DiFA-Ara 18.986 501, 519, 309 C25H26O12 518.1424 

DiFA-Ara 19.517 301, 501, 519 C25H26O12 518.1424 

Figure 86: The diferulic acid-arabinose fragments detected in TFA-Hydrolysate 3. 

 

7.4.3 Alkali extract of TFA Residue 3 

 

The total-ion and UV chromatograms for the TFA-Residue-3 alkali extract are 

given in Figure 87; the extracted-ion (m/z=579) chromatogram (Figure 88) 

showed a possible six triferulic acids.  Analysis of the accurate mass ions 
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confirmed peaks for trans-ferulic acid, trans-p-coumaric acid, 8,8’-DiFA (AT),  

8-O-4’-DiFA and one TriFA. 

 

Figure 87: Total-ion and UV chromatograms for TFA-Residue-3 alkali extract. 

 

 

Figure 88: UV and extracted-ion (m/z=579) chromatograms for TFA-Residue-3 alkali 

extract. 
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7.4.4 Biogel P-2 chromatography peaks 

 

Ferulic acids esterified to oligosaccharides were identified using the same 

fragmentation ions as those presented in Figure 86.  Where pentoses were 

indicated by the fragmentation patterns, it has been assumed that they are 

arabinose.  Of the Biogel P-2 peaks, Peaks 1, 2, 4 and 5 did not contain any 

detectable ferulic acid esterified to polysaccharides.  Peaks 3, 6, 7 and 8 did 

contain ferulic acids: Peak 3 contained two ferulic acid-arabinobiose fragments 

(Mw = 458.1); Peak 6 contained two ferulic acid-arabinobiose fragments (Mw = 

458.1) and a ferulic acid-arabinose fragment (Mw = 326.1); Peak 7 contained 

four ferulic acid-arabinose fragments (Mw = 326.1) and Peak 8 contained two 

ferulic acid-arabinobiose fragments (Mw = 458.1) and three ferulic acid-

arabinose fragments (Mw = 326.1). 

 

7.5 Discussion 

 

The results of the vortex-induced cell separation (VICS) in 0.05 M TFA, as 

described in Section §3.2.4, indicated that the conditions used here for the 

digestion were not sufficient to produce significant cell separation.  This may 

indicate that a more concentrated solution would have been more effective at 

producing the phenolic-polysaccharide fragments of interest.  Looking at the 

VICS data, changing the length and temperature of the digestion may not make 

any difference; so changing the concentration of TFA is the next logical step.  In 

future this could be tested by carrying out further VICS experiments.  A two-step 

TFA hydrolysis of CWM, using 0.05 M TFA initially and 0.1 M TFA on the  

0.05 M TFA hydrolysate, as described by Ralet et al (2005) could be employed, 

as there was a significant amount of polysaccharide precipitated by ethanol, 

indicating that not all the sugar was in the ideal size range for separation.  A  

0.1 M TFA hydrolysis could also be used on the ethanol precipitate and/or the 

residue. 
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The mass-spectrometric data indicated that there were a range of ferulic acid-

polysaccharide linkages detected in the hydrolysate and Peaks 3, 6, 7 and 8.  

There were also six diferulic acid-arabinose fragments detected in the 

hydrolysate, but not the peaks. 

 

Bunzel et al (2008) have recently shown that the 8,8’-DiFA (AT) is esterified to 

arabinose (Figure 89).  They extracted 4.1 mg from 80 g of insoluble maize-

bran fibre, so the amounts used in these experiments were therefore one or two 

orders of magnitude too small for this linkage to be identified. 

 

 

Figure 89: Structure of Ara-8,8’-DiFA (AT)-Ara as extracted from maize bran by Bunzel et 

al (2008). 
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8 MS and NMR of Selected Components of Chinese 
Water Chestnut Cell Walls: 

 

The aim of the work in this chapter was to get the structural information via 

accurate mass spectrometry and NMR to determine the phenolic-

polysaccharide linkages present in CWC cell walls and also to find and identify 

any higher oligomers of ferulic acid that may be present.  In particular, the  

8,8’-DiFA (AT) esterified to polysaccharide was sought in order to prove that 

CWC contained this linkage, lending support to the hypothesis that it plays a 

key part in the thermal stability of CWC mechanical properties (Parker et al., 

2003).  Finding higher oligomers of ferulic acid in CWC would show that they 

are not restricted to maize or even the Poaceae.  Assuming trimers were found 

by MS, it was hoped that their molecular structures could be elucidated by 

NMR. 

 

8.1 Solid-phase-extraction theory 

 

Solid-phase extraction of peaks resulting from liquid chromatography of a 

complex mixture is a relatively new technique that has allowed Exarchou et al to 

analyse in detail the secondary metabolites of oregano (Exarchou et al., 2003).  

The main advantages of this method are: 

 The elution solvent can be different from the NMR solvent as the elution 

solvent is evaporated off before addition of the NMR solvent, reducing the 

volume of deuterated solvents required and allowing the most suitable solvents 

to be used for both stages. 

 Samples are concentrated as the volume of solvent required to elute the 

sample from the cartridge is often less than was used to apply it; the 

concentration can be further increased by using the same cartridges on multiple 

runs of the same sample, giving a substantial increase in sensitivity. 

 

Although this is a new technique there has been a rapid take-up of the 

technology for studying crude alcohol extracts from plants (Christophoridou et 
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al., 2007; Exarchou et al., 2003; Wang et al., 2003).  This appears to be the first 

study that has focused on cell-wall components. 

 

8.2 Nuclear magnetic resonance (NMR) theory 

 

Nuclear Magnetic Resonance (NMR) uses the magnetic properties of particular 

nuclei to give structural information about the molecule in question.  Some 

nuclei have a nuclear spin (I) and the presence of a spin makes these nuclei 

behave like tiny bar magnets.  Nuclei with an odd mass number have nuclear 

spins that are multiples of ½.  In an applied magnetic field the nuclear magnets 

can align themselves in 2I + 1 ways.  Both 1H and 13C have spins of ½; they can 

therefore only have two alignments, one aligned with the applied field (low 

energy) and one opposed to it (high energy).  When a radio-frequency signal is 

applied to the system at the natural frequency at which they turn in the magnetic 

field, some of the nuclei are promoted from the low-energy state to the high-

energy state.  The frequencies are dependent on the size of the magnetic field, 

so for greater resolution powerful superconducting magnets cooled with liquid 

helium are used, allowing the higher operational frequencies (200-750 MHz) 

found in modern machines.  Fourier-transform (FT)-style data acquisition gives 

a good signal to noise ratio from one pulse and is therefore quicker than the 

traditional continuous-wave (CW) method.  Using the FT method allows the 

results from multiple pulses to be added together, further improving the signal to 

noise ratio; this is particularly useful for 13C experiments.  It is necessary to use 

solvents that do not contain 1H; D2O, CCl4, and CDCl3 are commonly used, and 

the choice is generally determined by the solubility of the target compound. 

 

There are three main pieces of data for each NMR peak: 

The area under the peak (integration) gives an indication of how many atoms 

are in that particular environment; this is particularly useful for proton spectra.  

The chemical shift (δ) is a field-independent measure of this phenomenon 

defined by the difference between the peak frequency and the frequency of the 

internal standard, TMS (tetramethylsilane), in Hz, divided by the operating 

frequency in MHz.  It is expressed as fractions of the applied field in parts per 
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million (ppm).  Chemical shift is plotted from right to left with the maximum 

values being 10 (for 1H) and 200 (for 13C).  Minute differences in the magnetic 

environment of each nucleus, due to variations in electron density, slightly affect 

the frequency at which the nucleus comes into resonance, so each chemically 

distinct atom will give a separate peak in the spectrum.  Nuclei in a high-

electron-density region experience a field that is slightly weaker than those in a 

low-electron-density region, so bonding to an electronegative atom would shift 

the peak to the left, as it would withdraw electrons.  The presence of π bonds 

and benzene rings can also significantly affect the chemical shift.  A proton has 

two possible spin states, so a 13C atom bonded to a proton will experience two 

slightly different magnetic fields.  There is a very small energy difference 

between these two states, so they are essentially equally likely; this gives rise to 

a doublet peak as the two states have slightly different resonance frequencies.  

The separation between the two peaks is called the coupling constant, J; when 

there is only one bond between the carbon and hydrogen, it is properly labelled 

as 1JCH.  If there were two protons, they would both split the peak twice, giving 

four peaks, but as the coupling constant is the same, two of the peaks overlap 

to give the central peak, which has double the intensity of the other two.  Three 

protons would give four peaks with the intensity ratio 1:3:3:1.  Similarly, four 

protons would give five peaks with the intensity ratio 1:4:6:4:1.  Proton-

decoupled 13C spectra have this effect cancelled by irradiating the sample with 

a strong signal covering the frequencies normally used for measuring proton 

spectra.  The coupling constant can provide useful structural information in 

proton spectra, as the size of the coupling constant can give an indication of 

how the protons are linked to each other. 

 

8.3 Methods 

 

8.3.1 Scale-up of phenolic extraction of CWM 

 

To get a good result from the NMR experiments approximately 1 mg of the pure 

compound is required.  From previous experiments it was clear that a large 
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amount of CWM would need to be extracted in order to get the required 

amount. 

 

PCWM (1.91 g, Batch 2), ECWM (1.54 g, Batch 1) and SECWM (1.89 g,  

Batch 1) were measured into 1 L conical flasks and mixed with degassed 4 M 

NaOH to give a final concentration of 5 mg CWM per ml of solution (this is the 

same as the initial total phenolic extraction).  They were wrapped in foil and 

extracted for 24 hr.  Solutions were filtered through GFC and 200 µl of trans-

cinnamic acid was added, before the solutions were acidified with concentrated 

HCl.  The acidified solutions were then extracted against 3 x 200 ml ethyl 

acetate.  The ethyl acetate fractions were evaporated under vacuum at 40°C in 

a rotary evaporator and redissolved in 1.5 ml (ECWM) or 1 ml (PCWM and 

SECWM) MeOH:water (50:50 v:v). 

 

8.3.2 LC-MS experiments 

 

Reverse-phase HPLC combined with UV and ESI MS was carried out on the 

scaled-up alkali extracts of CWM.  This was done in collaboration with Mark 

Philo.  The HPLC system (Agilent Binary HP1100) was connected via a Bruker 

NMR-MS interface to an Agilent G1315B DAD detector, a Bruker Daltonics 

MicroToF and a Prospekt 2 solid-phase-extraction interface and dispenser.  The 

HPLC column and method were the same as that used in the phenolic 

extractions.  After the HPLC separation the outflow was split 1:20 (MS:UV) to 

avoid overloading the MS.  The MS parameters are listed in Appendix I.  Hystar 

3.2, Hystar Postprocessing and AMDIS software were used to analyse the data.  

Internal calibration was provided by sodium formate at the beginning and end of 

each run.  Both positive and negative ionisations were tested initially, but 

positive ionisation gave better results, so all the samples were tested in positive 

mode. 
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8.3.3 NMR experiments 

 

Peaks of interest were identified from the MS and UV data of the samples.  The 

samples containing interesting peaks were run again and the real-time UV and 

total-ion chromatograms were used to select peaks for collection manually 

(Figure 90).  The peaks were collected on Hysphere GP 10-12 µm cartridges.  

The Hysphere GP cartridges were chosen for this experiment as they contain a 

good generic sorbent, which also has good elution efficiency (Bert Ooms et al., 

2000).  After the cartridges were dried with dry N2, they were eluted using  

140 µl of deuterated acetonitrile (99.8%d, Cambridge Isotope Laboratories), 

transferred to 1.5 ml microtubes and frozen in a dry nitrogen atmosphere at  

–20°C to reduce contamination with protons until the NMR was available. 

 

 

 

Figure 90: Example chromatogram showing manual peak collection of three peaks (1C12, 

1D1, 1D2) and one blank (1D3). 
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Ian Colquhoun and Laetitia Shintu carried out the NMR experiments on a 

Bruker Avance NMR spectrometer, operating at 600.13 MHz for 1H and 

equipped with a cryoprobe.  Samples were transferred to 2 mm o.d. NMR tubes 

(Bruker MATCH system) and proton NMR was used to assess the viability of 

the collected samples for the full suite of NMR experiments (see Appendix J for 

details).  Unfortunately it appears that none of the collected samples was 

present in sufficient quantity to get an unambiguous NMR spectrum.  Figure 91 

has the spectrum for a blank sample, taken from an apparently empty section of 

a standard run, and for a putatively identified ferulic acid-arabinose fragment.  

The spectra are very similar to each other, implying that there was some 

contamination from somewhere.  As the cartridges had not been used 

previously, the contamination cannot come from them, so the likeliest answer is 

that the compounds were adsorbing to the tubing used in the transfer 

processes. 

 

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 ppm

FA Ara

blk

 

Figure 91: NMR spectra of blank and putatively-identified FA-Ara. 
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In addition it appears that not as much sample as possible was eluted onto the 

cartridges due to a timing error.  The image of the UV peak appearing on the 

screen was used to determine when to start and stop collecting peaks; 

however, there is a delay-time built into the system to account for the transit 

time from the detector to the SPE unit.  This time was set incorrectly and so 

some of the peak was not collected. 

 

8.4 Molecules indicated by MS 

 

For each sample, extracted-ion chromatograms were produced for the predicted 

fragment ions 165, 177, 195, 369, 387 and 579.  Internal calibration (HPC 

calibration) was carried out using the sodium formate internal calibrant at either 

end of the chromatogram to correct the accurate molecular mass values (Figure 

92). 

 

Figure 92: Example of HPC calibration using sodium formate as calibrant. 
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Selected peaks were averaged and background subtracted, and the accurate 

molecular masses indicated compared to theoretical values generated from the 

likely formulae.  Figure 93 shows a typical analysis for ferulic acid.  The 

program automatically includes carbon, hydrogen, nitrogen and oxygen in its 

predictions; nitrogen was excluded as the compounds of interest do not contain 

nitrogen; sodium was included, so that any quasimolecular M+Na+ ions were 

detected.  A 15 mDa error was generally used to limit the formulae produced, 

but for some of the samples the calibration was unsuccessful due to a software 

error, in which case it was increased to 30 mDa. 

 

Figure 93: Example of generated molecular formulae for ferulic acid. 

 

8.4.1 PCWM alkali extract 

 

Although the UV chromatogram for the PCWM extract seemed reasonably 

similar to those recorded previously, the TIC chromatogram seemed very 
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messy and only a few recognisable peaks were found (Figure 94).  Therefore 

many of the spectra for the dimers and trimers of ferulic acid that follow are 

taken from the ECWM-, SECWM- and TFA-precipitate alkali-extract 

chromatograms.  The compounds that were detected and identified are listed in 

Figure 95.  Notably none of the dimers was identified; this was a problem with 

the sample, as a repeat of the run produced the same result. 

 

 

Figure 94: Total-ion and UV chromatograms of PCWM alkali extract. 

 

Retention time (min) Characteristic ions Identity Molecular formula Molecular weight 

9.6 169.0442 (M+H)+ Vanillic acid C8H8O4 168.0423 

12.6 153.0501 (M+H)+ Vanillin C8H8O3 152.0473 

13.1 165.0509 (M+H)+ trans-p-Coumaric acid C9H8O3 164.0473 

13.9 177.0464 (M-H2O+H)+, 

195.0532 (M+H)+ 

trans-Ferulic acid C10H10O4 194.0579 

 

Figure 95: Compounds detected by accurate-mass MS in PCWM. 
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8.4.2 SECWM alkali extract 

 

Figure 96 shows the UV and TIC chromatograms for the SECWM alkali extract.  

As well as the six usual dimers, two possible trimers and a tetramer were 

detected in the SECWM (Figure 97). 

 

Figure 96: Total-ion and UV chromatograms for SECWM alkali extract. 

 

Retention time (min) Characteristic ions Identity Molecular formula Molecular weight 

9.7 169.0405 (M+H)+ Vanillic acid C8H8O4 168.0423 

12.6 153.0512 (M+H)+ Vanillin C8H8O3 152.0473 

13.1 165.0515 (M+H)+,  

147.0405 (M-H2O+H)+,  

187.0270 (M+Na)+ 

trans-p-Coumaric 

acid 

C9H8O3 164.0473 

13.5 341.0976,  

369.0938 (M-H2O+H)+,  

387.1136 (M+H)+,  

409.0879 (M+Na)+,  

773.2012 (Mx2-H)+ 

8,8'-DiFA (AT) C20H18O8 386.1002 

Figure 97: Compounds detected by accurate-mass MS in SECWM. 
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Retention time (min) Characteristic ions Identity Molecular formula Molecular weight 

13.9 195.0532 (M+H)+,  

177.0470 (M-H2O+H)+,  

217.0340 (M+Na)+ 

trans-Ferulic acid C10H10O4 194.0579 

14.4 387.1042 (M+H)+,  

195.0541 (FA +H)+,  

177.0476 (FA-H2O+H)+,  

369.0927 (M-H2O+H)+ 

8,8'-DiFA C20H18O8 386.1002 

15.0 387.1035 (M+H)+,  

369.0927 (M-H2O+H)+,  

409.0875 (M+Na)+,  

773.2011 (Mx2-H)+ 

8,5'-DiFA C20H18O8 386.1002 

15.0 195.0532 (M+H)+,  

177.0470 (M-H2O+H)+,  

217.0336 (M+Na)+ 

cis-Ferulic acid C10H10O4 194.0579 

15.1 579 (M+H)+,  

601 (M+Na)+ 

Trimer? C30H26O12 578.1424 

17.5 561.1351 (M-H2O+H)+,  

579.1432 (M+H)+,  

387.1010 (DiFA+H)+ 

Trimer? C30H26O12 578.1424 

18.4 387.1035 (M+H)+,  

369.0920 (M-H2O+H)+,  

773.2002 (Mx2-H)+, 

409.0871 (M+Na)+ 

5,5'-DiFA C20H18O8 386.1002 

20.6 387.1042 (M+H)+,  

369.0933 (M-H2O+H)+,  

193.0389 (FA-H)+,  

409.0876 (M+Na)+,  

773.2021 (Mx2-H)+ 

8-O-4’-DiFA C20H18O8 386.1002 

21.3 561.1325 (M-H2O+H)+,  

579.1295 (M+H)+,  

387.1062 (M+H)+,  

369.0822 (M-H2O+H)+,  

601.1163 (M+Na)+,  

409.1001 (M+Na)+ 

8,5’-DiFA (BF)  

+ Trimer? 

C20H18O8 

C30H26O12 

386.1002 

578.1424 

23.761 771.1951 (M+H)+,  

595.1751 (C31H31O12)+,  

367.0766 (DiFA-H)+ 

Tetramer? C40H34O16 770.1847 

 

Figure 97b: Compounds detected by accurate-mass MS in SECWM (continued). 
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8.4.3 ECWM alkali extract 

 

The column was somewhat overloaded by the ECWM sample.  The overloading 

was identified by the poor peak shape in the UV chromatogram shown in Figure 

98. 

 

 

 

Figure 98: Total-ion and UV chromatograms for ECWM alkali extract. 

 

A number of phenolics were detected and these are listed in Figure 99 with their 

identifying ions; these included four trimers and some unidentified dimers. 
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Retention time /min Characteristic ions Identity Molecular formula Molecular weight 

9.793 169 Vanillic acid C8H8O4 168.0423 

12.850 165, 147 trans-p-Coumaric acid C9H8O3 164.0473 

13.823 177, 195 trans-Ferulic acid C10H10O4 194.0579 

13.518 341, 369, 387, 409, 773 8,8'-DiFA (AT) C20H18O8 386.1002 

14.548 369, 401, 387, 341  8,8'-DiFA C20H18O8 386.1002 

14.997 387, 369, 773 8,5'-DiFA C20H18O8 386.1002 

15.185 177, 195 cis-Ferulic acid C10H10O4 194.0579 

15.435 387, 341, 401, 369, 419 DiFA ? C20H18O8 386.1002 

17.039 579, 561, 595, 543 Trimer? C30H26O12 578.1424 

17.627 369, 341, 387, 401 5,5'-DiFA C20H18O8 386.1002 

17.419 561, 579, 595, 611 Trimer? C30H26O12 578.1424 

17.489 495, 579, 561, 595, 543 Trimer? C30H26O12 578.1424 

18.601 387, 369, 773 8-O-4 Dimer C20H18O8 386.1002 

19.175 373, 341, 419, 579, 613, 

595, 385, 401 

Trimer? C30H26O12 578.1424 

20.420 387, 369, 479, 773 DiFA ? C20H18O8 386.1002 

21.289 387, 403, 369 DiFA ? C20H18O8 386.1002 

 

Figure 99: Compounds detected by accurate-mass MS in ECWM. 

 

8.4.4 Phenolic dimers and trimers 

 

Some of the dimers have a signal at m/z=773, due to gas-phase dimer 

formation inside the MS.  A true tetramer would have an m/z of 771 due to it 

losing two protons during the oxidative coupling process. 

 

8,8’-DiFA (AT) 

 

The mass spectrum of 8,8’-DiFA (AT) (C20H18O8 Mw 386.36) is shown in Figure 

100.  The identification ions for 8,8’-DiFA (AT) are shown below. 

 341.0986 indicates a formula of C19H17O6, M-CH2O2+H+ ion (ppm error 

9.1) 

 369.0954 indicates a formula of C20H17O7, M+H-H2O
+ ion (ppm error 9.5) 

 387.1060 indicates a formula of C20H19O8, M+H+ ion (ppm error 4.1) 
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 409.0868 indicates a formula of C20H18O8Na, M+Na+ ion (ppm error 9.6) 

 773.1993 indicates a formula of C40H37O16, 2M+H+ ion (ppm error 10.7) 

 

 

Figure 100: Mass spectrum of 8,8'-DiFA (AT) extracted from TFA/80%-ethanol Precipitate 

3. 

 

These data, together with the UV spectrum (not shown) confirmed the presence 

of 8,8’-DiFA (AT).  This spectrum shows the signal for the gas-phase dimer 

formed inside the MS. 

 

5,5’-DiFA 

 

The mass spectrum of 5,5’-DiFA (C20H18O8 Mw 386.36) is shown in Figure 101.  

The identification ions for 5,5’-DiFA are shown below. 

 369.0939 indicates a formula of C20H17O7, M+H-H2O
+ ion (ppm error 7.9) 

 387.1055 indicates a formula of C20H19O8, M+H+ ion (ppm error 4.7) 

 409.0866 indicates a formula of C20H18O8Na, M+Na+ ion (ppm error 0.0) 

 773.1920 indicates a formula of C40H37O16, 2M+H+ ion (ppm error 17.3) 
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Figure 101: Mass spectrum of 5,5'-DiFA extracted from TFA/80%-ethanol Precipitate 3. 

 

8-O-4’-DiFA 

 

Figure 102 shows the mass spectrum of 8-O-4’-DiFA (C20H18O8 Mw 386.36).  

The identification ions for 8-O-4’-DiFA are shown below. 

 193.0364 indicates a formula of C10H9O4 (ppm error 66.1) 

 387.1761 indicates a formula of C20H19O8, M+H+ ion (ppm error 6.9) 

 369.0949 indicates a formula of C20H17O7, M+H-H2O
+ ion (ppm error 8.3) 

 409.0863 indicates a formula of C20H18O8Na, M+Na+ ion (ppm error 0) 

 773.1986 indicates a formula of C40H37O16, 2M+H+ ion (ppm error 13.7) 

 

These data and the UV spectrum (not shown) confirm the presence of 8-O-4’-

DiFA.  The m/z=193 ion is strongly indicative of the 8-O-4 dimer as shown in 

Figure 103.  The gas-phase dimer (m/z=773) is formed inside the MS. 
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Figure 102: Mass spectrum of 8-O-4'-DiFA extracted from TFA/80%-ethanol Precipitate 3. 

 

 

Figure 103: Splitting of 8-O-4'-DiFA to give m/z=193. 

 

The MS data from Section §3.2.1 indicated the presence of trimers in CWC 

CWM; this was confirmed in the SECWM total phenolic extract by LC-MS. 
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Triferulic and tetraferulic acids 

 

To identify the triferulic and tetraferulic acids, the masses of the ions produced 

were compared to those from previously reported trimers and tetramers (Figure 

104). 

Compound Characteristic ions Molecular weight Molecular formula Reference 

8,5’/5,5’-TriFA 601 (M+Na)+,  

617 (M+K)+ 

578.1424 C30H26O12 (Bunzel et al., 2006) 

8,8’(THF)/5,5’-TriFA 619 (M+Na)+,  

635 (M+K)+ 

595.1452 C30H27O13 (Bunzel et al., 2006) 

8-O-4’/5,5’/8-O-4’-TetraFA 793 (M+Na)+,  

809 (M+K)+ 

770.1847 C40H34O16 (Bunzel et al., 2006) 

8-O-4/5,5/8,5 TetraFA 793 (M+Na)+,  

809 (M+K)+ 

770.1847 C40H34O16 (Bunzel et al., 2006) 

 

Figure 104: Masses for triferulic and tetraferulic acids already discovered. 

 

The spectra of a triferulic and three tetraferulic acids are given in Figures 105-

108.  The M+H+ ions should have accurate masses of 579.1503 (C30H27O12) 

and 771.1925 (C40H35O16). 

 

Figure 105: Accurate-mass spectrum of a triferulic acid from TFA/80%-ethanol Precipitate 

3. 
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Figure 106: Accurate-mass spectrum of a tetraferulic acid found in TFA/80%-ethanol 

Precipitate 3. 

 

 

Figure 107: Accurate-mass spectrum of a tetraferulic acid found in TFA/80%-ethanol 

Precipitate 3. 
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Figure 108: Accurate-mass spectrum of a tetraferulic acid found in TFA/80%-ethanol 

Precipitate 3. 

 

8.4.5 Phenolic-polysaccharide linkages 

 

The phenolic-polysaccharide linkages found in the TFA hydrolysate and Biogel 

P-2 peaks are described in detail in Sections §7.4.2 and §7.4.4.  Assuming the 

pentoses indicated by the MS data are all arabinose, three ferulic acid-

arabinose fragments (Mw = 326.1), one ferulic acid-arabinobiose fragment (Mw = 

458.1) and six diferulic acid-arabinose fragments (Mw = 518.1) were detected in 

the hydrolysate (Figure 86, Section §7.4.2).  Interestingly there was no sign of 

any p-coumaric acid-pentose or DiFA-hexose fragments.  The earlier eluting 

peaks did not contain any detectable ferulic acid esterified to polysaccharides, 

however, Peaks 3, 6, 7 and 8 did contain ferulic acids: Peak 3 contained two 

ferulic acid-arabinobiose fragments; Peak 6 contained two ferulic acid-

arabinobiose fragments and a ferulic acid-arabinose fragment; Peak 7 

contained four ferulic acid-arabinose fragments and Peak 8 contained two 

ferulic acid-arabinobiose fragments and three ferulic acid-arabinose fragments. 
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Ferulic acid attached to two pentoses was found in the hydrolysate and Peaks 

3, 6 and 8.  Ferulic acid attached to one pentose was found in the hydrolysate 

and Peaks 6, 7 and 8.  More than one ferulic acid-arabinose peak appeared in 

some samples implying that more than one point of attachment to the pentose 

is present.  The same could be said for the ferulic acid-arabinobiose.  Six 

diferulic acid-arabinose fragments were detected in the hydrolysate; presumably 

this indicates differences in the parent diferulic acid and also the attachment 

point to arabinose. 

 

8.5 Discussion 

 

LC-SPE is a new technique at IFR and these samples were the first to be 

analysed by the technique here.  Unfortunately due to time constraints the 

samples were run without sufficient prior testing of the system, which led to only 

a small proportion of the available compound being captured on the cartridge, 

making the subsequent NMR insufficiently clear in virtually all of the samples 

tested.  Optimisation of the following components of the SPE method should 

give considerably better results: 

 Peak collection delay time – the right delay time will ensure that the 

majority of the peak is collected 

 SPE cartridges – although the Hysphere GP cartridges appear to be 

suitable, it is possible that there are cartridges that are more suitable 

 Multiple trapping – cartridges could be used to collect the same peak 

from multiple HPLC runs to increase the concentration of compound on 

the cartridge 

 Elution solvent – acetonitrile may not be the best solvent for the elution; 

perhaps water or a mixture of deuterated water and methanol/ethanol 

would be more appropriate as that is the solvent mixture used to dissolve 

phenolic standards 

 Transfer tubing adsorption – the tubing could be rinsed more thoroughly 

between transfers, or better solvents may reduce the adsorption 

problem; alternatively a different tubing material may be necessary 
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 Direct transfer to NMR tubes – these samples were not directly 

transferred to the NMR tubes as the tubes were not available at the time 

of transfer, this should reduce any transfer losses to a minimum 

 

Accurate-mass spectra combined with the UV spectra for the 8-O-4’-DiFA,  

5,5’-DiFA and 8,8’-DiFA (AT) has shown that these dimers are present in the 

plant cell walls.  The analysis has also identified trimers and tetramers of ferulic 

acid in CWC cell walls.  Ferulic acid-arabinose and ferulic acid-arabinobiose 

fragments have been confirmed in the hydrolysate and Biogel P-2 peaks; as 

were six diferulic acid-arabinose fragments in the hydrolysate.  This confirms 

that ferulic and diferulic acids are esterified to the polysaccharides of CWC cell 

walls, but they could not be identified due to problems with the solid-phase 

extraction procedure.  Diferulic acid linkages between polysaccharides were not 

implied by these results as no diferulic acid-arabinobiose was detected. 
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9 General Discussion: 
 

The investigation aimed to support the following hypotheses: 

 The compositions of the cell walls of three different tissues of CWC are 

different, reflecting their roles in the plant’s physiology. 

 Phenolics cross-link polysaccharides in the cell walls of CWC.  It was 

hoped that the structure of any phenolic-polysaccharide fragments 

produced could be elucidated. If one was found to contain 8,8’-DiFA (AT) 

it would add weight to the theory that the 8,8’-DiFA (AT) forms the 

linkage responsible for the thermal stability of CWC mechanical 

properties. 

 Higher oligomers of ferulic acid are present in a plant that is not a 

member of the Poaceae. 

 

The general conclusions for these hypotheses are stated below: 

 

9.1 Cell walls in different tissues of CWC 

 

The data presented in Chapter 3 showed that there were significant differences 

between the cell walls of the three different tissues studied (Figure 39, §3.3.1).  

The decrease in cellulose in the secondary cell wall indicates lignin is taking 

more of a structural role.  The non-cellulosic polysaccharides seem to be fairly 

consistent between the tissues.  The hemicelluloses in CWC parenchyma were 

thought to be predominantly arabinoxylans, but in fact it is xyloglucan, with 

some arabinoxylan and a small amount of glucomannan.  The pectin 

component is rhamnogalacturonan I.  The hemicelluloses in CWC epidermis 

and sub-epidermis are similar, although the proportion of arabinoxylan is 

increased in the ECWM. 

 

CWC epidermis had the highest levels of phenolics, p-coumaric acid in 

particular; presumably it has an important physiological role protecting cells 

against damage by pathogens and/or soil abrasion.  The dimers are probably 
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involved in interpolymeric cross-linking, probably of arabinoxylan and/or 

xyloglucan.  The highest amount of dimers was found in the SECWM; as this is 

vascular tissue, perhaps more dimers are necessary to maintain cell adhesion 

in order to counteract the additional forces produced by osmotic pressure.  The 

presence of high amounts of ferulic acid (and other phenolics) may inhibit the 

growth of the fungus Fusarium oxysporum (Lattanzio et al., 1994), one of the 

known pathogens of CWC.  From this information a new model for the structure 

of CWC cell walls was put forward (Figure 40, §3.3.2) 

 

9.2 Characterisation of unknown phenolics 

 

A large number of unknown phenolics are present in the cell walls of CWC; 

although a thorough survey had not been planned initially, it was thought worth 

while in case novel components were identified and therefore could perhaps be 

quantified in the same investigation.  Although sufficient information was not 

available to assign structures to the unknowns, sufficient information was 

recorded about each so that should they be identified in the future, retrospective 

quantification would be possible.  The data are discussed in depth in Chapter 4 

and tabulated in Appendix F. 

 

9.3 Cell wall cross-links 

 

The development and evaluation of biochemical and chemical methods for 

producing phenolic-polysaccharide fragments is presented in Chapters 6 and 7. 

 

Contamination of Driselase with the phenolics and sugars that were under 

investigation prevented its use for producing phenolic-polysaccharide 

fragments; so 0.05 M TFA was used instead.  The mass-spectrometric data 

indicated that there were a range of ferulic acid-polysaccharide linkages 

detected in the hydrolysate and in Peaks 3, 6, 7 and 8.  There were also six 

diferulic acid-arabinose fragments detected in the hydrolysate.  Without the help 

of NMR identification no conclusions could be made about the exact linkages 
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between (di)ferulic acids and the polysaccharides of CWC cell walls.  No  

p-coumaric acid-arabinose fragments or ferulic acid-hexose fragments were 

detected. 

 

Bunzel et al (2008) have isolated Ara-8,8’-DiFA (AT)-Ara in maize bran 

insoluble fibre, proving that it does cross-link polysaccharides.  This discovery 

lends weight to the argument that 8,8’-DiFA (AT) is instrumental in the 

maintenance of cell-cell adhesion put forward by Parker et al (2003).  The 

amounts of CWM used in these experiments were one or two orders of 

magnitude too small for this linkage to be identified, and this is reflected in the 

fact that no compounds with masses that matched diferulic acid-arabinobiose 

were detected. 

 

9.4 Higher oligomers of ferulic acid 

 

The mass spectrometry results given in Chapter 8 indicate that trimers and 

tetramers of ferulic acid are present in CWC cell walls, although which particular 

ones has not been identified.  Theoretically there should be at least 19 possible 

structures (Ralph et al., 2004), and only five have been identified to date 

(Bunzel et al., 2005; Bunzel et al., 2006; Funk et al., 2005).  As adding each 

successive ferulic acid molecule adds to the number of possible structures 

available, there may be huge numbers of ferulic acid oligomers present in plant 

cell walls. 

 

9.5 Limitations 

 

Production of cell-wall material necessitates the breaking of some bonds and 

therefore reduces the amount of information available from this material.  The 

material extracted from the CWM may not give a true picture of the whole, as 

some components may be extracted more easily than others during the 

process. 
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The lack of data available on variety, country of origin, growing and storage 

conditions for the CWC, it having been bought from retail outlets, negates the 

comparison of different batches of CWM.  The major exporters are China, 

Thailand and Taiwan, and these are therefore the likely countries of origin, but 

growing conditions within these countries could vary widely.  It would be 

expected that variety, growing and storage conditions could have a significant 

effect on the cell-wall composition (Lempereur et al., 1997).  The best way to 

get around this issue would be to obtain CWC direct from growers in China, or 

to obtain different varieties, distinguish them genetically, and then grow them 

under controlled conditions. 

 

9.6 Future work 

 

There are a number of experiments that need to be done to continue towards 

the aim of determining which molecules and/or linkages are responsible for the 

crisp texture of Chinese water chestnuts. 

 

9.6.1 Improved TFA hydrolysis methodology 

 

A sequential TFA hydrolysis using increasing concentrations, perhaps 0.01 M, 

0.025 M, 0.05M and 0.1 M TFA could be used to produce a less complex 

mixture of FA-oligosaccharide fragments at each stage, allowing easier 

separation and purification.  This would also give some indication of which 

linkages are most chemically stable when phenolic linkages are involved. 

 

9.6.2 Degradation of cell wall by purified CWC-specific enzymes 

 

As Fusarium oxysporum (together with Geotrichium, Cerastomella paradoxa 

Trichoderma viride, Uromyces sp., Cylindrosporium eleocharidis) (Brecht, 2004) 

is one of the few listed pathogens for CWC, purified enzymes derived from its 

cultures could be characterised with regard to their activities.  These could then 
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be used in two ways: i) to determine which linkages are key to cell-cell adhesion 

in CWC by using particular enzyme treatments to produce significant textural 

changes in the whole tissue, ii) individually, synergistically and sequentially to 

degrade CWC cell walls, to produce phenolic-polysaccharides for further study. 

 

Alternatively, the existing enzyme preparations could be purified to allow 

enzymic degradation without contamination of the resulting supernatants. 

 

9.6.3 Improved LC-SPE methodology 

 

Improvement of the LC-SPE methodology, primarily by ensuring the timing of 

the peak collection has been optimised, and that the solid-phase cartridge and 

elution solvent are the most favourable should ensure that the investigations of 

the previous sections could be put to the best possible use.  Also, the utilisation 

of the multiple-trapping facility should allow sufficient sample for good-quality 

NMR analysis. 

 

9.6.4 Stability of phenolic-polysaccharide linkages in alkali 

 

Alkali extraction of phenolics from CWC may be time-dependent, and a full 

course of time-course experiments will help to optimise the method for 

extracting phenolics and may clarify which diferulic acids are stable in dilute 

alkali regardless of time; allowing better agreement between the loss of 

particular phenolics and reduction in cell adhesion. 

 

9.6.5 Investigations of CWC leaf-cell walls 

 

Little is known about CWC leaf cell walls, although the leaves of CWC are used 

in some cultures for weaving into mats.  In fact there are two ecotypes found in 

Fiji that show a difference in the toughness of their leaves, one has “soft” leaves 

suitable for weaving mats, whilst the other has “hard” leaves which are 
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unsuitable (Klok et al., 2002).  The difference between these leaves is 

presumably on account of the presence of complete septa in place of the 

usually-incomplete septa, due to some genetic abnormality.  As there has been 

very limited genetic analysis carried out on CWC generally, identifying the 

abnormality could present a major challenge.  Microscopy pictures of CWC 

leaves are in Appendix K. 

 

9.6.6 Completion of CWC cell-wall models 

 

To produce a complete picture of CWC parenchyma cell walls, the protein 

content and composition should be studied, as this would give the required 

information to determine the presence of extensin.  Analysis of the proteins 

present would also aid understanding of which other proteins/enzymes are 

present in CWC cell walls and which therefore may be involved in 

polysaccharide formation, alteration and degradation. 

 

Na2CO3 extraction removes methyl esters and phenolic esters, but not acetyl 

esters; therefore both methyl and phenolic esters may be involved in cell 

adhesion (Marry et al., 2006).  Therefore, the degree of in vivo methylation and 

acetylation of the cell-wall polysaccharides of CWC should be measured.  An 

attempt was made to measure acetylation using a commercial testing kit during 

this study, but the results were inconsistent. 

 

As listed in Section §1.3.1, a whole suite of antibodies is available to 

characterise cell walls, and some could be chosen to confirm the positions of 

the arabinoxylan, rhamnogalacturonan and xyloglucan in the cell walls.  They 

could also be used to determine if AGP and extensin are present. 

 

For the epidermis and sub-epidermis cell walls, in addition to the analyses listed 

above, an analysis of the lignin composition would also be required. 
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9.6.7 Alternative methods of polysaccharide analysis 

 

Other methods for depolymerising polysaccharides exist; in particular one 

method from the chemical literature seems to be of interest (Wang et al., 1998).  

It involves acetylating the polysaccharides and then selected conformations of 

β-D-aldosidic linkages present are oxidised by ozone to form esters.  The 

polysaccharides are then cleaved by a nucleophile.  The reaction is strongly 

controlled by stereoelectronic effects and so the reaction rates vary 

considerably with conformation, thus allowing specific linkages to be broken in a 

way similar to that achievable with enzymes.  Although the reference mentioned 

uses purified samples of polysaccharide, there seems to be no reason why this 

could not be used on plant cell walls (or fractions thereof), bar their solubility in 

formamide, which is the suggested solvent for the initial acetylation.  Depending 

on the susceptibility of phenolic esters to ozone this might lead to larger 

oligosaccharide chains linked by diferulic acid bridges being isolated. 

 

9.6.8 Commercial uses for CWC cell-wall information 

 

Fusarium oxysporum enzymes could also be used to break down CWC waste, 

such as the leaves (from harvesting) or epidermis (from canning), to produce a 

liquid preparation rich in phenolics and oligosaccharides, which may yield useful 

components suitable for further processing into high-value products. 

 

Combined harvesting of leaves and corms could produce additional streams of 

income for farming communities.  However harvesting the leaves would 

probably affect the degree to which harvestable corms were produced, as 

corms are usually harvested once the leaves have died back; therefore, using 

the leaves for weaving and eating the corms may be mutually exclusive 

activities. 

 

The unexpected gelling of a few of the solutions during the VICS experiment 

could be usefully investigated, as food-based gels have many uses in the food 

and pharmaceutical industries.  If they do contain relatively high levels of 
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phenolics, however, they could be unpalatable and so unsuitable for food 

applications, but this does not preclude other applications. 
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10 Appendices: 
 

A Solution preparation 

 

0.5% SDS solution: 

10 g of sodium dodecyl sulfate (Sigma) and 1.142 g of sodium metabisulfate 

(Sigma) made up to 2 L with deionised water, mixed very slowly to prevent 

foaming. 

 

1.5% SDS solution: 

30 g of sodium dodecyl sulfate (Sigma) and 1.903 g of sodium metabisulfate 

(Sigma) made up to 2 L with deionised water, mixed very slowly to prevent 

foaming. 

 

KI/I2: 

1.5 g of iodine and 0.5 g of potassium iodide made up to 50 ml with deionised 

water. 

 

Sulfuric acid reagent (25 mM Na2B4O7.10H2O in 96% H2SO4): 

2.385 g Na2B4O7.10H2O made up to 250 ml with 96% H2SO4 (takes at least 1 hr 

to dissolve). 

 

50 mM CDTA: 

0.48 g of Na2S2O5 and 9.1 g of CDTA (Na+ salt, Sigma) dissolved in 400 ml 

deionised water (to give final concentrations of 5 and 50 mM respectively).  

NaOH solution (2 M) was added dropwise, bringing the pH back up to 7.  As the 

pH increased the CDTA dissolved.  The solution was then made up to 500 ml 

with deionised water. 
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B HPLC parameters 

 

Instrument conditions 

Simple phenolics 

 

Instrument control method 

 

Instrument:   Perkin Elmer HPLC-DAD consisting of Quaternary 

LC Pump Model 200Q/410 with LC-235 Diode Array Detector and ISS-200 

Autosampler 

 

Channel parameters 

 

Data will be collected from channel A 

Delay time:   0.00 min 

Run time:   30.00 min 

Sampling rate:  2.4414pts/s 

 

Channel A Channel B 

Signal source LC235C LC235C 

 

Autosampler method 

 

Injection source:  Autosampler 

Injection volume:  40 µl  Flush volume:  1000 µl 

Loop size:   150 µl  Flush speed:   Medium 

Fixed mode:   Off  Flush cycles:   2 

Excess volume:  5 µl  Air cushion:   5 µl 

Sample syringe size: 250 µl  Sample speed:  Medium 

Needle level:   5% 

Inject delay time:  0.00 min 
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Detector parameters 

 

Step  Time  A (nm) B (nm) BWA (nm) BWB (nm) 

1  30.00  280  325  5  5 

 

Min wavelength:  210 nm Spectral threshold:  Normal 

Spectral acquisition mode: Time  Sampling period:  1.6 s 

Start time:   0.1 min End time:   30.00 min 

Lamp off at end of run: No 

 

Pump parameters 

 

Step Time Flow A B 40-40-20 10% Acetonitrile Curve 

0 0.5 1.00 0.0 0.0 10.0   90.0  0.0 

1 25.0 1.00 0.0 0.0 75.0   25.0  1.0 

2 5.0 1.00 0.0 0.0 100.0   0.0  1.0 

3 10.0 1.00 0.0 0.0 10.0   90.0  -3.0 

4 2.0 1.00 0.0 0.0 10.0   90.0  0.0 

 

Ready time:   60.0 min Standby time:  15.0 min 

Standby flow:  0.1 ml/min Solvent saver:  No 

Saver Equ. time:  0.0 min Shutdown:   No 

Min pressure:  200 PSI Max pressure:  3500 PSI 

 

Timed events 

 

There are no timed events in this method 

 

Real-time plot parameters 

 

Pages  Offset (mV) Scale (mV) 

Channel A 1  -30.000 250.000 
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Processing parameters 

 

Bunch factor:   5 points 

Noise threshold:  24 µV 

Area threshold:  122.00 µV 

 

Peak separation criteria 

 

Width ratio:   0.200 

Valley-to-peak ratio:  0.010 

 

Exponential skim criteria 

 

Peak height ratio:  5.000 

Adjusted height ratio: 4.000 

Valley height ratio:  3.000 

 

Baseline timed events 

 

No baseline timed events 
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C GC parameters – sugars analysis 

 

Instrument conditions 

 

Instrument:   Perkin Elmer Autosystem XL 

Column:   RESTEK Rtx-225 

Column length:  30 m x 320 µm internal diameter 

Carrier gas:   Helium 

Flow rate:   2 ml/min 

Split ratio:   1:1 

Temperature:  Gradient 

Injector temperature: 250°C 

Notes:    Split ratio set to 60:1 at 2 minutes, and back to 10:1 

at 10 minutes 

 

Channel parameters 

 

Data will be collected from channel A 

Channel A signal source: DetA 

Analogue output:  INT 

Attenuation:   -6 

Offset:    5.0 mV 

Delay time:   0.00 min 

Run time:   78.00 min 

Sampling rate:  12.5 pts/s 

 

Autosampler method 

 

Injection volume:  1.0 µl  Sample washes:  2 

Injection speed:  NORM Sample pumps:  6 

Viscosity delay:  0  Pre-sequence washes: 0 

Waste vial:   1  Solvent A washes:  6 
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Carrier’s parameters 

 

Carrier A control:  PFlow – He 

Column A length:  30.00m 

Column A diameter:  320 µm 

Vacuum compensation: OFF 

Split control mode:  Ratio 

Set point:   0.0:1 

Initial setpoint:  2.0 ml/min 

Initial hold:   999 min 

 

Valve configuration and settings 

 

Valve 1:   SPLIT ON 

Valves 2-6:   NONE 

 

Detector parameters 

 

Detector A:   FID  Detector B:   NONE 

Range:   1 

Time constant:  200 

Autozero:   ON 

Ref gas flow:   250.0 ml/m 

MKUp gas flow  25.0 ml/m 

 

Heated zones 

 

Injector A:   PSSI  Injector B:   NONE 

Initial set point:  250°C  Injector B setpoint:  OFF 

Initial hold:   999.00 min 

Detector A:   250°C 

Detector B:   0°C 

Auxiliary (NONE):  0°C 
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Oven program 

 

Cryogenics:   OFF 

Initial temperature:  140°C  Maximum temperature: 350°C 

Initial hold:   5.00 min Equilibration time:  2.0 min 

Ramp 1:   2.5°C/min to 210°C, hold for 45 min 

Total run time:  78.00 min 

 

Timed events 

 

SPL1:    set to 60 at 1.00 min 

SPL1:    set to 10 at 10.00 min 

 

Real-time plot parameters 

 

Channel A – Pages:  1 Offset: 0.000 mV Scale: 1000.000 mV 
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D GC parameters – PMAA analysis 

 

Instrument conditions 

 

Instrument:   Perkin Elmer Autosystem XL 

Column:   RESTEK Rtx-225 

Column length:  30m x 320 µm internal diameter 

Carrier gas:   Helium 

Flow rate:   2 ml/min 

Split ratio:   1:1 

Temperature:  Gradient 

Injector temperature: 200°C 

Notes:    Split ratio set to 60:1 at 1 minute, and back to 10:1 at 

10 minutes 

 

Channel parameters 

 

Data will be collected from channel A 

Channel A signal source: DetA 

Analogue output:  INT 

Attenuation:   -6 

Offset:    5.0 mV 

Delay time:   0.00 min 

Run time:   83.89 min 

Sampling rate:  12.5 pts/s 

 

Autosampler method 

 

Injection volume:  1.0 µl  Sample washes:  2 

Injection speed:  NORM Sample pumps:  6 

Viscosity delay:  0  Pre-sequence washes: 0 

Waste vial:   1  Solvent A washes:  6 
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Carrier’s parameters 

 

Carrier A control:  PFlow – He 

Column A length:  30.00m 

Column A diameter:  320 µm 

Vacuum compensation: OFF 

Split control mode:  Ratio 

Set point:   0.0:1 

Initial setpoint:  2.0 ml/min 

Initial hold:   999 min 

 

Valve configuration and settings 

 

Valve 1:   SPLIT ON 

Valves 2-6:   NONE 

 

Detector parameters 

 

Detector A:   FID  Detector B:   NONE 

Range:   1 

Time constant:  200 

Autozero:   ON 

Ref gas flow:   250.0 ml/m 

MKUp gas flow  25.0 ml/m 

 

Heated zones 

 

Injector A:   PSSI  Injector B:   NONE 

Initial set point:  200°C  Injector B setpoint:  OFF 

Initial hold:   999.00 min 

Detector A:   250°C 

Detector B:   0°C 

Auxiliary (NONE):  0°C 
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Oven program 

 

Cryogenics:   OFF 

Initial temperature:  55°C  Maximum temperature: 350°C 

Initial hold:   5.00 min Equilibration time:  2.0 min 

Ramp 1:   45.0°C/min to 140°C, hold for 2.0 min 

Ramp 2:   2.0°C/min to 210°C, hold for 40.0 min 

Total run time:  78.00 min 

 

Timed events 

 

SPL1:    set to 60 at 1.00 min 

SPL1:    set to 10 at 10.00 min 

 

Real time plot parameters 

 

Channel A – Pages:  1 Offset: 0.000 mV Scale: 1000.000 mV 

 

MS parameters 

 

Type     EI 

Source temp   200 deg 

Quad temp   106 deg 

Ion Pol   POS 

MassGain   -156 

MassOffs   -10 

Emission   34.6 

EleEnergy   69.9 

AmuGain   1739 

AmuOffs   136 

Filament   1 

Wid219   -0.016 

DC Pol   NEG 

Repeller   16.55 
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IonFocus   90.2 

HED    ON 

EntLens   1.0 

EntOffs   18.57 

EMVolts   1800 
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E Uronic acid raw data 

 

Below is the table for the uronic acid standards and the resulting calibration 

curves. 

Dilution Stock conc. (mg/ml) 
Concentration  

(mg/0.2ml aliquot) 

Standards Plate 1 

Real absorbance 1 2 3 Mean Control 

0 0.0000 0.0000 0.037 0.038 0.038 0.038 0.038 0.000 

5 1.0052 0.0010 0.054 0.052 0.054 0.053 0.048 0.005 

15 1.0052 0.0030 0.081 0.095 0.078 0.085 0.046 0.039 

25 1.0052 0.0050 0.094 0.124 0.115 0.111 0.042 0.069 

35 1.0052 0.0070 0.130 0.125 0.116 0.124 0.047 0.077 

Dilution Stock conc. (mg/ml) 
Concentration  

(mg/0.2ml aliquot) 

Standards Plate 2 

Real absorbance 1 2 3 Mean Control 

0 0.0000 0.0000 0.037 0.038 0.038 0.038 0.039 -0.001 

5 1.0052 0.0010 0.057 0.050 0.056 0.054 0.046 0.008 

15 1.0052 0.0030 0.079 0.096 0.076 0.084 0.049 0.035 

25 1.0052 0.0050 0.091 0.127 0.118 0.112 0.047 0.065 

35 1.0052 0.0070 0.114 0.125 0.118 0.119 0.052 0.067 

 

Standard curve for plate 1

y = 12.045x - 0.0009

R
2
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Standard curve for plate 2
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Below are the tables containing the raw data for the uronic acid values given in 

Section §3.2.2.  The values given in the main text take into account the fact that 

water is released when the uronic acids are part of a polysaccharide chain. 

Sample 
Sample 

(mg) Concentration (mg/0.2ml aliquot) 

Samples Plate 1 

Real absorbance 1 2 3 Mean Control 

F1 2.0 0.0333 0.132 0.133 0.134 0.133 0.078 0.055 

F2 3.9 0.0650 0.230 0.249 0.239 0.239 0.134 0.105 

F3 3.8 0.0633 0.227 0.214 0.197 0.213 0.111 0.102 

S1 2.4 0.0400 0.128 0.199 0.101 0.143 0.074 0.069 

S2 2.4 0.0400 0.102 0.131 0.109 0.114 0.074 0.040 

S3 3.7 0.0617 0.152 0.135 0.167 0.151 0.087 0.064 

M1 2.6 0.0433 0.166 0.147 0.142 0.152 0.097 0.055 

M2 4.0 0.0667 0.200 0.207 0.210 0.206 0.141 0.065 

M3 3.5 0.0583 0.157 0.177 0.198 0.177 0.115 0.062 

 

Sample Calculated uronics (mg/0.2ml aliquot) Uronics (µg/mg) Average (µg/mg) 

F1 0.0046 139.2 

136.5 F2 0.0088 135.7 

F3 0.0085 134.5 

S1 0.0034 85.9 

86.2 S2 0.0034 84.9 

S3 0.0054 87.8 

M1 0.0044 102.0 

97.4 M2 0.0060 90.5 

M3 0.0058 99.7 
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F Peak list for Unknown Phenolics 

Spectrum 
no. 

Peak identity 
 Std  4 M 24 hr Total phenolic extraction  Average 

RRT 
Peak 
shape 

 Wavelength (nm) 

 RT RRT  RT Area Area relative to tFA   Max Min 

2    0.00  5.78 24108.34 0.37  0.23 5  216/287 242 
3    0.00  6.06 149870.92 2.27  0.24 2  283/309 251/298 
4    0.00  6.52 14408.19 0.22  0.27 4  226/278 255 
5    0.00  7.02 10876.07 0.17  0.28 1  261 224 
6    0.00  7.23 16873.39 0.26  0.29 1  265 225 
7 Protocatechuic acid  7.6936 0.30  nd nd 0.00  nd 3  260/294 236/281 
8    0.00  nd nd 0.00  0.31 1  284 253 
9    0.00  8.20 12186.25 0.18  0.33 1  270 230 

10    0.00  8.43 34431.14 0.52  0.34 6  223/325 264 

11    0.00  8.95 8038.81 0.12  0.36 3  229/279/305 246/300 
12    0.00  nd nd 0.00  0.38 1  251 210 
13 Std unknown 1 (Chlorogenic)  9.9054 0.38  nd nd 0.00  nd 6  239/327 230/265 
14    0.00  9.88 10438.47 0.16  0.39 4  280 262 
15    0.00  10.23 2353.85 0.04  0.41 4  283 258 
16    0.00  nd nd 0.00  0.42 1  255 210/227 
17    0.00  10.94 5224.81 0.08  0.44 1  225/295 260 
18 p-Hydroxybenzoic acid  11.3254 0.44  nd nd 0.00  nd 1  255 225 
19    0.00  11.52 67172.03 1.02  0.46 7  322 260 
20 p-Hydroxy phenyl acetic acid  11.7418 0.46  nd nd 0.00  nd 4  221/276 251 

21    0.00  11.95 25227.03 0.38  0.48 2or6  325 267 
22 left shoulder of vanillic acid  12.0627 0.47  nd nd 0.00  nd 1  314 266 
23 Vanillic acid  12.2948 0.48  11.35 67172.03 1.02  0.47 3  261/291 236/281 
24    0.00  11.76 19387.99 0.29  0.48 4  233/280 268 
25    0.00  nd nd 0.00  0.48 1  240/285 215/274 
26 Std unknown 2 (Caffeic)  12.4723 0.48  12.34 20085.75 0.30  0.49 6  239/325 263 
27 Std unknown 3  13.6123 0.53  nd nd 0.00  nd 1  311 260 
28    0.00  12.66 7812.40 0.12  0.51 3  285/319 260/305 
29    0.00  12.82 4471.91 0.07  0.53 4  225/280 254 
30 p-Hydroxybenzaldehyde (+?)  14.1380 0.55  13.16 27535.49 0.42  0.54 1  285 240 
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Spectrum no. Peak identity  Std  4 M 24 hr Total phenolic extraction  
Average 

RRT 
Peak 
shape 

 Wavelength (nm) 

   RT RRT  RT Area Area relative to tFA     Max Min 

31    0.00  13.32 18401.83 0.28  0.53 6or7  291/330 271/300 
32    0.00  nd nd 0.00  0.54 5  325 270 
33    0.00  13.92 243338.28 3.69  0.56 4  220/277 248 
34    0.00  nd nd 0.00  0.57 2  298/318 266/308 
35 Vanillin  15.2849 0.59  14.21 379186.13 5.75  0.58 2  279/310 250/296 
36    0.00  14.38 nd 0.00  0.58 1  275 241 
37    0.00  14.52 46123.64 0.70  0.59 5  310 260 
38    0.00  14.74 761569.35 11.55  0.59 4  282 259 
39 trans-p-Coumaric acid  16.1109 0.63  14.90 761569.35 11.55  0.61 5  225/310 249 
40    0.00  15.20 225228.75 3.42  0.61 2 or 6  285/322 264/304 

42 8,8’-DiFA (AT)   0.00  15.28 225228.75 3.42  0.62 7  246/335 273 
43    0.00  15.39 225228.75 3.42  0.62 8  280/308 265/293 
44 trans-Ferulic acid  16.9206 0.66  15.70 6591080.75 100.00  0.64 6  236/324 262 
45 cis-p-Coumaric acid   0.00  nd nd 0.00  0.65 1  300 257 
46    0.00  nd nd 0.00  0.67 7  330 270 
47    0.00  16.13 153950.01 2.34  0.65 6  323 264 
48    0.00  16.35 126014.50 1.91  0.67 3  277-284 254-261 
49    0.00  16.58 937493.59 14.22  0.68 5  324 266 
50 cis-Ferulic acid  18.0633 0.70  16.77 819789.21 12.44  0.69 5  314 261 

51    0.00  17.11 88631.17 1.34  0.69 4  280 260 
52    0.00  17.34 84369.19 1.28  0.71 3  286/325 256-265/310 
53    0.00  17.96 27223.32 0.41  0.72 6  254/317 274 
54    0.00  18.10 69768.56 1.06  0.74 3  233/287/320 256/310 
55    0.00  nd nd 0.00  0.74 5  322 275 
56    0.00  18.40 186680.32 2.83  0.73 3  285/323 262/316 
57    0.00  nd nd 0.00  0.75 3  277/319 246/306 
58    0.00  nd nd 0.00  0.75 6  323 270 
59    0.00  18.70 295328.53 4.48  0.75 5  320 273 
60    0.00  18.83 724990.03 11.00  0.76 5  237/320 266 
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Spectrum no. Peak identity 
 Std  4 M 24 hr Total phenolic extraction  Average 

RRT 
Peak 
shape 

 Wavelength (nm) 

 RT RRT  RT Area Area relative to tFA   Max Min 

61    0.00  nd nd 0.00  0.77 5  240/321 271 
62    0.00  18.94 72490.03 1.10  0.77 2  290/320 263/304 
63    0.00  19.11 45359.11 0.69  0.76 2  285/316 265 
64    0.00  19.27 64135.48 0.97  0.77 6  320 265 
65    0.00  19.45 145018.23 2.20  0.77 5  319 266 
66    0.00  nd 139324.42 2.11  0.80 2  286 261 
67    0.00  19.59 nd 0.00  0.79 3  265/301 287 
68 5,5'-DiFA   0.00  19.82 932284.23 14.14  0.80 5  246/325 273 
69 5,5' right shoulder   0.00  nd nd 0.00  0.82 6  322 266 
70 5,5' a   0.00  nd nd 0.00  0.84 6  321 265 

71 5,5' b   0.00  20.31 304981.80 4.63  0.82 6  326 268 
72    0.00  nd nd 0.00  0.82 4  281 266 
73    0.00  20.53 304981.80 4.63  0.82 2  290/320 264/302 
74    0.00  20.83 24876.54 0.38  0.83 2  290/318 271/304 
75    0.00  21.16 211801.38 3.21  0.85 5  316 270 
76    0.00  21.62 76606.88 1.16  0.87 5  322 262 
77 8-O-4'-DiFA   0.00  22.10 1563691.94 23.72  0.89 6  235/327 260 
78 8-O-4' a   0.00  22.38 74347.21 1.13  0.90 5  321 270 
79 8,5'-DiFA (BF)   0.00  22.85 88827.24 1.35  0.92 5  324 265 
80 8,5' BF b   0.00  23.10 519915.50 7.89  0.93 5  325 267 

81    0.00  nd nd 0.00  0.95 6  323 270 
82    0.00  23.64 nd 0.00  0.95 6  322 264 
83    0.00  nd nd 0.00  0.96 6  326 262 
84    0.00  nd nd 0.00  0.98 1  282 263 
85    0.00  nd nd 0.00  0.99 5  224/323 270 
86 trans-Cinnamic acid  25.74 1.00  25.06 3865158.52 58.64  1.00 1  214/277 233 
87    0.00  25.19 374414.95 5.68  1.00 5  234/309 259 
88    0.00  25.63 272496.45 4.13  1.02 8  283 266 
89    0.00  25.85 310012.81 4.70  1.03 2or6  290/325 263/305 
90 Std unknown 4  26.8902 1.04  nd nd 0.00  nd 4  227/278 217/256 
91    0.00  nd nd 0.00  1.04 2  287/321 267/308 
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G Biogel P-2 original chromatograms 

The original UV chromatograms produced during the Biogel P-2 chromatography. 

 

Run 1 

Chart speed 5 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

Chart speed decreased from 5 mm/min to 0.5 mm/min 
during run 

 

Run 2 

Chart speed 0.5 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

UV detector broke down during run 
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Run 4 

Run 3 

Chart speed 0.5 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

Run length extended for Runs 4-8 to prevent loss of 
material at end of run 

 

Run 4 

Chart speed 0.1 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

Supernatant 2 used 
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Run 5 

Run 6 

Run 5 

Chart speed 0.1 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

 

 

Run 6 

Chart speed 0.1 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 
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The chromatograms for Runs 4-8 were more consistent than those for Runs 1-3 because very little time elapsed between the first 

and last runs (26 days), whereas for Runs 1-3 sigificant amounts of time elapsed between the first and last runs (79 days). 

Run 7 

Run 8 

Run 7 

Chart speed 0.1 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 

 

 

Run 8 

Chart speed 0.1 mm/min 

Flow rate 0.42 ml/min 

Fraction time 35 min 

Time constant 10 s 

Absorbance Units 2 
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H Combining fractions from Biogel P-2 

Biogel P-2 Run 4 
numbered universal 

Run 4 
fraction 

Run 5 
fraction 

Run 6 
fraction  

Run 7 numbered 
universal 

Run 7 
fraction 

Run 8 
fraction  

1 1 1 1  1 1 1 Peak 1 

2 2 2 2  2 2 2 Peak 2 

3 3 3 3  3 3 3 Peak 3 

4 4 4 4  4 4 4 Peak 4 

5 5 5 5  5 5 5 Peak 5 

6 6 6 6  6 6 6 Peak 6 

7 7 7 7  7 7 7 Peak 7 

8 8 8 8  8 8 8 Peak 8 

9 9 9 9  9 9 9 Peak 9 

10 10 10 10  10 10 10 Peak 10 

11 11 11 11  11 11 11  

12 12 12 12  12 12 12  

13 13 13 13  13 13 13  

14 14 14 14  14 14 14  

15 15 15 15  15 15 15  

16 16 16 16  16 16 16  

17 17 17 17  17 17 17  

18 18 18 18  18 18 18  

19 19 19 19  19 19 19  

20 20 20 20  20 20 20  

21 21 21 21, 22  21 21 21  

22 22 22 23  22 22 22  

23 23 23 24  23 23 23  

24 24 24 25  24 24 24  

25 25 25 26  25 25 25  

26 26 26 27  26 26 26  

27 27 27 28, 29  27 27 27  

28 28 28 -  28 28 28  

29 29 29 -  29 29 29  

30 30 30 30  30 30 30  

31 31 31 31  31 31 31  

32 32 32 32  32 32 32  

33 33 33 33  33 33 33  

34 34 34 34  34 34 34  

35 35 35 35  35 35 35  

36 36 36 36  36 36 36  

37 37 37 37  37 37 37  

38 38 38 38  38 38 38  

39 39 39 39  39 39 39  

40 40 40 40  40 40 40  

41 41 41 41  41 41 41  

42 42 42 42  42 42 42  

43 43 43 43  43 43 43  

44 44 44 44  44 44 44  

45 45 45 45  45 45 45  

46 46 46 46  46 46 46  

47 47 47 47  47 47 47  
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Biogel P-2 Run 4 
numbered universal 

Run 4 
fraction 

Run 5 
fraction 

Run 6 
fraction  

Run 7 numbered 
universal 

Run 7 
fraction 

Run 8 
fraction  

48 48 48 48  48 48 48 Peak 1 

49 49 49 49  49 49 49 Peak 2 

50 50 50 50  50 50 50 Peak 3 

51 51 51 51  51 51 51 Peak 4 

52 52 52 52  52 52 52 Peak 5 

53 53 53 53  53 53 53 Peak 6 

54 54 54 54  54 54 54 Peak 7 

55 55 55 55  55 55 55 Peak 8 

56 56 56 56  56 56 56 Peak 9 

57 57 57 57  57 57 57 Peak 10 

58 58 58 58  58 58 58  

59 59 59 59  59 59 59  

60 60 60 60  60 60 60  

61 61 61 61  61 61 61  

62 62 62 62  62 62 62  

63 63 63 63  63 63 63  

64 64 64 64  64 64 64  

65 65 65 65  65 65 65  

66 66 66 66, 67  66 66 66  

67 67 67 68, 69  67 67 67  

68 68 68 70  68 68 68  

69 69 69 71  69 69 69  

70 70 70 72  70 70 70  

71 71 71 73  71 71 71  

72 72 72 74  72 72 72  

73 73 73 75  73 73 73  

74 74 74 76  74 74 74  

75 75 75 77  75 75 75  

76 76 76 78  76 76 76  

77 77 77 79  77 77 77  

78 78 78 80  78 78 78  

79 79 79 81  79 79 79  

80 80 80 82  80 80 80  

81 81 81 83  81 81 81  

82 82 82 84  82 82 82  

83 83 83 85  83 83 83  

84 84 84 86  84 84 84  

85 85 85 87  85 85 85  

86 86 86 88  86 86 86  

87 87 87 89  87 87 87  

88 88 88 90  88 88 88  

89 89 89 91  89 89 89  

90 90 90 92  90 90 90  

91 91 91 93  91 91 91  

92 92 92 94  92 92 92  

93 93 93 95  93 93 93  

94 94 94 -  94 94 94  

95 95 95 -  95 95 95  
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I MicroToF parameters 

 

Source: 

End plate offset  -500 V  128 nA 

Capillary   4200 V 6 nA 

Nebulizer   1.0 Bar 1.0 Bar 

Dry gas   7.0 l/min 7.0 l/min 

Dry temp   180°C 

 

Transfer: 

Capillary exit   100.0 V 

Skimmer   33.3 V 

Hexapole 1   21.5 V 

Skimmer 2   24.0 V 

Hexapole 2   23.0 V 

Hexapole RF   120.0 Vpp 

Detector   1000 V 

Lens 1 extraction  20.8 V 

Lens 1 transfer  52.0 µs 

Lens 1 pre puls storage 5.8 µs 

Mass range   50 to 1000 m/z 
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J NMR parameters 

 

PULPROG = lc1pnf2 Bruker pulse program with double solvent 

suppression (H2O + CH3CN) 

TD = 32768 Number of data points 

NS = 4000 Number of scans 

SWH (Hz) = 12019.23 Spectral width 

AQ (s) = 1.3632404 Acquisition time 

D1 = 2.00000000 Delay time 

P1 (µs) = 7.50 90 ° pulse width 
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K Microscopy of CWC leaves 

 

 

Figure 109: Micrographs of Chinese water chestnut leaf-cell walls: a, leaf septum, UV 

light, dark field; b, leaf septum in alkali, UV light, dark field; c, leaf epidermis, UV light, 

bright field; d, leaf epidermis, UV light, dark field; e, transverse section of leaf in alkali, 

bright field; f, transverse section of leaf, UV light, dark field; g, thickened leaf septum in 

alkali, bright field; h, thickened leaf septum in alkali, UV light, dark field. 

A B 

C D 

E F 

G H 
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11 Glossary: 
 

2-DOG: 2-Deoxyglucose 

4-O-5’-DiFA: 4-O-5’ diferulic acid 

5,5’-DiFA: 5,5’ diferulic acid 

8,5’-DiFA: 8,5’ diferulic acid 

8,5’-DiFA (BF): 8,5’ diferulic acid (benzofuran form) 

8,5’-DiFA (DC): 8,5’ diferulic acid (decarboxylated form) 

8,8’-DiFA: 8,8’ diferulic acid 

8,8’-DiFA (AT): 8,5’ diferulic acid (aryltetralin form) 

8,8’-DiFA (THF): 8,8’ diferulic acid (tetrahydrofuran form) 

8-O-4’-DiFA: 8-O-4’ diferulic acid 

ACN: Acetonitrile 

Ara: Arabinose 

CWC: Chinese water chestnut (Eleocharis dulcis) 

CWM: Cell wall material 

DiFA: Diferulic acid 

ECWM: Epidermis cell wall material 

EtOH: Ethanol 

FAE: Feruloyl esterase 

Fuc: Fucose 

Gal: Galactose 

GalA: Galacturonic acid 

GC: Gas chromatography 

Glc: Glucose 

GlcA: Glucuronic acid 

HPLC: High performance liquid chromatography 

IDF: Insoluble dietary fibre 

LC-MS: Liquid chromatography – mass spectrometry 

Man: Mannose 

MeOH: Methanol 

MWCO: Molecular weight cut off 

NMR: Nuclear magnetic resonance 
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PCWM: Parenchyma cell wall material 

PDA: pH dependent autofluorescence 

PGA: Polygalcturonan 

PPCO: Polypropylene copolymer 

Rha: Rhamnose 

SECWM: Secondary epidermis cell wall material 

t-: Terminal sugar residue 

TetraFA: Tetraferulic acid 

TriFA: Triferulic acid 

Xyl: Xylose 
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