Selectivity of calix[4]tubes towards metal ions: A molecular dynamics study

Felix, V., Matthews, S. E. ORCID: https://orcid.org/0000-0001-8821-0851, Beer, P. D. and Drew, M. G. B. (2002) Selectivity of calix[4]tubes towards metal ions: A molecular dynamics study. Physical Chemistry Chemical Physics, 4 (15). pp. 3849-3858. ISSN 1463-9076

Full text not available from this repository. (Request a copy)

Abstract

Molecular dynamics simulations have been carried out on the calix [4] tube, created from two calix [4] arenes joined at their lower rims, with a series of different metal ions. The simulations show that for potassium, for which the tube is highly selective, the ion enters the tube at the upper rim of one calix [4] arene and forms an intermediate complex interacting with the aromatic rings and then proceeds to the centre of the tube, concomitant with a conformational change in the calix [ 4] tube, where it forms bonds to the 8 oxygen atoms. Simulations have been carried out with six other ions. For ions smaller than potassium, e. g. silver, sodium and lithium, the ion proceeds more readily to the centre of the tube while for ions larger than potassium, e. g. thallium, rubidium and caesium, the ion remains in the intermediate position close to the aromatic rings and does not proceed to the centre unless the temperature is raised significantly. However even at 1000 K, the large caesium ion does not proceed to the centre of the tube. Simulations also show how different alkyl substituents at the upper rim of the calix [ 4] arenes affect the movement of the ions. The results of the simulations are consistent with the experimental observations on the selectivity of the calix [4] tube with these different metal ions.

Item Type: Article
Uncontrolled Keywords: design,channel,calixcrowns,cations,receptor,recognition,complexation,potassium
Faculty \ School: Faculty of Science > School of Pharmacy
UEA Research Groups: Faculty of Science > Research Groups > Medicinal Chemistry (former - to 2017)
Faculty of Science > Research Groups > Chemical Biology and Medicinal Chemistry (former - to 2021)
Depositing User: Rachel Smith
Date Deposited: 26 May 2011 11:09
Last Modified: 24 Oct 2022 03:17
URI: https://ueaeprints.uea.ac.uk/id/eprint/31444
DOI: 10.1039/b201569m

Actions (login required)

View Item View Item