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Purpose: The ADAMs (a disintegrin and metalloproteinase) and the ADAMTSs (a disintegrin and metalloproteinase with
thrombospondin-like motifs) are extracellular proteases that mediate cellular interactions and cell signaling via the
modulation of adhesion and the cleavage of cell surface protein ectodomains and extracellular matrix molecules. Gene
expression profiling was undertaken to better understand the role of the ADAM and ADAMTS families in the clear native
human lenses and following surgical injury with particular relevance to posterior capsule opacification.
Methods: To carry out profile analysis, the lens (t=0d) was dissected into three regions; anterior epithelia, equatorial
region, and fiber cells. Capsular bag culture was undertaken as a means of assessing short-term changes (t=6d) and post-
cataractous lens capsular bags (ex vivo) were used to predict long-term changes in ADAM/ADAMTS gene expression.
RNA was isolated and quantitative real-time (TaqMan) reverse transcription-PCR (RT–PCR) performed. Data were
analyzed in terms of cycle threshold number (CT) and also normalized relative to endogenous 18S rRNA.
Results: High expression of ADAM-9, -10, -15, and -17 was detected in all native lens regions. ADAM-15 expression was
a characteristic of the native lens epithelia more than the fibers. Post-surgical injury, lens capsular bags showed a positive
shift in ADAM/ADAMTS expression that was significant for ADAM-9, -15, and ADAMTS-3. Ex vivo capsular bags, with
a long-term post surgical injury period, maintained high expression of ADAM-9 and -10 genes.
Conclusions: The native human lens expresses ADAM and ADAMTS genes that are differentially regulated following
surgical injury. Roles in maintaining cellular adhesion may be of particular importance to native lens tissue integrity and
may be lost in the lens wound healing response following cataract surgery.

The ADAMs (a disintegrin and metalloproteinase) and
the ADAMTSs (a disintegrin and metalloproteinase with
thrombospondin-like motifs) are members of the M12
adamalysin family of the metzincin metalloproteinases,
related to the matrix metalloproteinases (MMPs) [1,2]. They
are highly influential, multifunctional enzymes that regulate
the extracellular microenvironment as well as cell signaling.
In particular, the ADAMs have adhesive properties via their
disintegrin and Cys-rich domains, while those that are active
proteases mediate diverse protein ectodomain shedding
events that liberate and regulate biologically active molecules
at the cell surface [1,2]. The ADAMTS family members have
roles in the processing of procollagen molecules and cleavage
of matrix hyalectans such as aggrecan, brevican and versican,
while ADAMTS-13 is involved in hemostasis as the von
Willebrand factor-cleaving proteinase [3]. Several ADAM/
ADAMTS enzymes have roles in cell differentiation and cell
guidance mechanisms during development [2,3]. The ADAM/
ADAMTSs are thus likely to be relevant to the function of the
normal lens and alterations in their expression may be
significant in lens pathologies, such as posterior capsule
opacification (PCO) [4].
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Up to 34 ADAM orthologs have now been discovered in
many species from vertebrates to Caenorhabditis elegans,
including 19 human ADAMs [5]. ADAM structure comprises
a prodomain and a metalloproteinase domain followed by a
disintegrin domain that has the ability to associate with
integrins [2]. Linked to this are cysteine-rich and EGF-like
domains that attach to a transmembrane domain and
cytoplasmic tail [6,7]. The ADAMTS are structurally
distinguished by the inclusion of often multiple
thrombospondin-like motifs, the lack of the transmembrane
domain which gives them extracellular functions, and also the
lack of the EGF-like domain. Since the discovery of the first
ADAMTS in 1997, 19 human ADAMTS family members
have been described [8,9].

There is limited published research on the role of ADAM/
ADAMTS families in the eye. In the developing chick cornea
ADAM-10 has been linked with cell migration [10] and in the
human cornea ADAMTS-1 interacts with fibulin proteins,
which are ECM components that regulate organ shape [11].
Additionally, a study conducted during chick embryogenesis
localized ADAM-35 (meltrin ε) to epithelial tissues derived
from the surface ectoderm, including the lens placode and
subsequently to the lens vesicles [12].

There are a small number of references that link the
ADAM/ADAMTS with abnormal eye pathology. With
respect to the lens; decreased ADAM-9 expression was
detected in human anterior polar cataractous lenses (also
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referred to as anterior subcapsular cataract; ASC) relative to
clear controls and ADAM-9 expression could be differentially
regulated in BALB/c wild type mouse lens epithelial explants
by culturing with TGFβ [13]. Additionally, lenticular
abnormality in the connective tissue disorder Weill-
Marchesani syndrome has been linked with ADAMTS-10 gene
mutation [14]. Using a proteomic approach, ADAM-19, −21,
and ADAMTS-8 were detected in the anterior lens capsules
of patients with co-existing Exfoliation syndrome (XFS)
[15]. XFS is a major cause of glaucoma in which abnormal
matrix deposits occur in the anterior segment (often in close
relation to the lens) and is associated with cataract [16].

Limited information is available regarding gene
expression in individual human lenses and therefore members
of the ADAM/ADAMTS gene families were selected for study
in the native lens, the wound healing lens and the post-
cataractous lens capsular bag (ex vivo). The genes selected
encode catalytically active ADAMs with a membrane-
anchored metalloproteinase domain containing a catalytic-site
consensus sequence [2]. The selected ADAMTS genes encode
secreted ADAMTS proteins that were identified for their
enzyme substrate specificities and had likely relevance to the
lens. The candidate genes were ADAM-8, -9, -10, -12, -15,
-17, −19, and -28, and the ADAMTS were ADAMTS-1, -2,
-3, and -14.

The emphasis for this study was to report the gene
expression of selected ADAM/ADAMTS in individual human
lenses and so we used techniques that had been previously
developed [17]. ADAM/ADAMTS gene expression patterns
were analyzed in different regions of the same lens that had
undergone; (1) sham cataract surgery in vitro to mimic the in
vivo reality of a cataract operation (t=0), (2) in capsular bags
following sham surgery in vitro that were cultured in
unsupplemented medium for six days (t=6d) and in (3)
capsular bags ex vivo that had previously undergone cataract
surgery before death. The information gained provides
insights into the potential roles of ADAMs/ADAMTSs in both
the intact normal human lens and during wound healing
responses following surgery.

METHODS
Donor lens selection and short-term lens culture: Human
donor eyes were obtained with full ethical permission from
the East Anglian Eye Bank (EAEB) or the Corneal Transplant
Service (Eye Bank, Bristol) after corneo-scleral discs had
been removed for transplantation purposes. The use of human
tissue in the study was in accordance with the provisions of
the Declaration of Helsinki. All eyes were stored in individual
sterile pots in an antibiotic wash medium before use. Regional
dissection for gene expression analysis [17] and capsular bag
culture methods [18] have been published previously.

The following human donor eyes were obtained
postmortem for gene expression analyses: native (t=0) n=3,

age range 74–84 years, mean=79.3 years; for culture (t=6d):
n=3, age range 69–76, mean=73.7; and for analyses of
capsular bags from donors who had previously undergone
cataract surgery (ex vivo): n=3, age range 70–76, mean=73.6.
In the latter case the time between surgery and death was not
known, however there was evidence of PCO in all cases;
notably cells had encroached upon the central posterior
capsule and exhibited fibrotic changes such as matrix
wrinkling and cell aggregation. Native lenses were dissected
into three regions; anterior epithelia, equatorial region and
fibers using published methodology [17], as mentioned.
Briefly, the iris was removed and a circular anterior
epithelium (capsulorhexis) torn away. The lens nucleus was
then released by hydroejection and residual fibers were
carefully sampled using forceps. Finally the lens capsule was
dissected from the zonules.

Capsular bags for short-term culture were secured on to
a sterile PMMA culture dish using six to eight entomological
pins (D1; Watkins and Doncaster Ltd., Kent, UK), inserted
through the edge of the capsular bag to maintain its shape and
were then cultured for six days in unsupplemented Eagle
minimal essential medium (EMEM; Sigma, Dorset, UK). The
capsular bags from donors who had undergone cataract
surgery and intra-ocular lens (IOL) implantation before death
were dissected free from the globe as described and the IOL
was removed. Immediately following preparation each
sample was snap-frozen in liquid nitrogen.
Total RNA extraction and cDNA generation: Total RNA was
extracted from lens tissue and cultured capsular bag samples
according to the manufacturers of the RNeasy micro kits
(Qiagen, West Sussex, UK). In the initial step RLT buffer
(containing β-mercaptoethanol) was added to Eppendorf
tubes containing snap frozen samples. The samples were then
homogenized using an Eppendorf homogenizer and were then
passed through a 20 gauge needle (0.9 mm) and syringe. The
remainder of the protocol was as described by the
manufacturer and included a DNase step. Quality control was
performed to ensure that 28S and 18S rRNA bands were
clearly evident in total RNA samples using an Agilent
Bioanalyzer 2100 (Agilent, West Lothain, UK) and a RNA
6000 Nano labchip. RNA was quantified using a NanoDrop
ND-1000 spectrophotometer (NanoDrop, Wilmington, DE).
For the total of 15 samples analyzed, the ratio of adsorptions
at 260/280 nm ranged from 1.8 to 2.2 (mean=2.0). Where
possible, total RNA was immediately used for cDNA
generation or briefly stored over night at −80 °C. Generation
of cDNA was performed with Superscript II reverse
transcriptase (Invitrogen, Paisley, UK) according to the
reverse transcription (RT) protocols of the manufacturer using
random primers (Promega, Southampton, UK).
Real time PCR: Real time PCR was used to quantitate mRNA
for all genes expressed by native tissue, cultured and ex vivo
capsular bags, relative to endogenous control genes.
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Oligonucleotide primers and fluorescence-labeled probes for
ADAM/ADAMTS genes were designed in house using Primer
Express 1.0 software (Applied Biosystems, Foster City, CA).
The sequences are presented in Table 1. A pre-designed
TaqMan® Gene expression assay was purchased (Applied
Biosystems) for eukaryotic 18S rRNA expression quantitation
(NCBI Reference Sequence [RefSeq] at the time of
publication; X03205.1 and primer probe set ID;
Hs99999901_s1) and used according to the manufacturer’s
instructions.

Assuming 100% efficiency in the RT reactions, either 1
or 5 ng cDNA was used in real-time PCR reactions performed
using a real-time PCR machine (ABI7700; Applied
Biosystems). Reagent-based assays (TaqMan Universal PCR
Master Mix, No AmpErase® UNG; Applied Biosystems)
containing all PCR reagents were employed according to the
manufacturer’s instructions. The amount of amplification
associated with priming from genomic DNA contamination
was evaluated in control RT reactions that contained all
reagents and total RNA sample template without reverse
transcriptase. Conditions for the PCR reaction were; 2 min at
50 °C, 10 min at 95 °C and then 40 cycles, each consisting of
15 s at 95 °C and 1 min at 60 °C. The cycle number at which
amplification entered the exponential phase (raw data cycle
threshold [CT]) was determined and this number was used as
an indicator for the amount of target RNA in each lens tissue
sample analyzed. In qualitative raw data analyses the CT value
was used to classify gene expression as either very high
(CT≤20), high (CT=21–25), moderate (CT=26–30), low
(CT=31–38), or negligible to undetected (CT=39–40). To
determine the relative RNA levels in the lens tissue samples,
standard curves for each primer/probe set were prepared by
using cDNA from one sample and making twofold serial
dilutions covering the range equivalent to 20–0.625 ng RNA
(for 18S analysis the range was from 1 to 0.03125 ng).
Differences in the total amount of RNA present in each sample
were normalized to endogenous 18S rRNA gene expression.
Statistical analysis: To provide multiple group comparison,
statistical analysis was performed using one-way ANOVA
with Tukey’s post-hoc analysis using p≤0.05 to gauge
significance.

RESULTS
ADAM/ADAMTS gene expression determined by CT analysis
in regions of the native human lens: An initial qualitative
analysis of the raw data cycle threshold (CT) values before 18S
rRNA normalization is presented in Figure 1, which shows
the relative gene expression ranges for the selected ADAM/
ADAMTS genes detected in three individual native donors at
t=0. This is a useful basic analysis to compare the relative
expression levels of genes in categories of undetected, low,
moderate, high and very high, which we have previously
validated extensively [21,22]. Using the CT value as a

measure, the majority of the ADAM/ADAMTS genes analyzed
were expressed at the same level in all three lens regions and
were classified as undetected or low, except for ADAMs-9,
-10, -15, and -17. These ADAM family members were in all
cases classified as highly expressed, except for one donor
tissue that expressed moderate levels of ADAM-15 in lens
fibers. Interestingly, expression of ADAMTS-1 and -2 was low
in the anterior epithelia and fiber cells, but was moderate to
high in the equatorial region. ADAMTS-14 was largely
classified as negligible or undetected in the samples tested.
ADAM/ADAMTS gene expression in regions of the native
human lens determined using a relative standard curve: To
provide a measure of the data for the comparison of ADAM/
ADAMTS gene expression between the three lens regions the
data were normalized relative to the level of an endogenous
control gene, 18S rRNA message, in each sample (Figure 2).
There were no statistical differences in gene expression of
ADAM-9, -10, and -17 genes between the regions examined
(Figure 2A). However, regional differences were observed
with ADAM-8 and -15 and a similar distribution pattern for
both was seen (Figure 2A), such that anterior
epithelia>equatorial region>fibers; a reciprocal pattern was
found for ADAM-19 (i.e., where most expression was detected
in the fibers).

ADAMTS-1 and -2 gene expression was highest in the
equatorial region, while the anterior epithelia and fibers had
low expression of ADAMTS-1 and -2 genes (Figure 2B). This
pattern of regional expression was significantly different for
ADAMTS-1 only, however it should be noted that of three
donors analyzed the pattern was consistent. In the case of
ADAMTS-3 and -14 there was no significant difference in gene
expression across the three regions (Figure 2B).
ADAM/ADAMTS gene expression determined by CT analysis
in the wounded human lens: In the qualitative analysis of the
raw data cycle threshold (CT) value, before 18S normalization
(Figure 3), ADAM-12, -19, and ADAMTS-14 showed a
positive shift in gene expression during short-term culture
(t=6d) relative to t=0. The expression of ADAM-12 and -19
increased from low to moderate and ADAMTS-14, which was
negligible/undetected before culture, increased to a low
expression level. The classification of the remaining ADAM/
ADAMTS genes expressed (ADAM-8, -9, -10, -15, -17, -28,
ADAMTS-1, -2, and -3) did not change with short-term culture
relative to t=0.

In ex vivo capsular bags, the gene expression of all
ADAM/ADAMTS candidates was detectable. The majority of
ADAM/ADAMTS were detected at a low level with the
exception of ADAM-9 and -10, which were present at a high
level and ADAM-12, -15, and -17 were moderately expressed.

Comparison of expression in ex vivo capsular bags to t=0
showed that ADAM-8, -9, -10, -19, -28, and ADAMTS-3
remained the same. Several the ADAM/ADAMTS genes
showed an expression differential between ex vivo and t=0
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capsular bags; an increase in ADAM-12 (low elevated to
moderate) and ADAMTS-14 (negligible/undetected elevated
to low) and a decrease in ADAM-15, -17 (high reduced to
moderate), and ADAMTS-1 and -2 (moderate reduced to low)
was detected.

ADAM/ADAMTS gene expression in the wounded human lens
determined using a relative standard curve: The quantitative
analysis of ADAM/ADAMTS gene expression, in which data
were expressed relative to 18S ribosomal control, is shown in
Figure 4. Following surgical trauma, a significant increase in
expression of ADAM-9, -15, and ADAMTS-3/ADAMTS
(ADAM-9, -12, -15, -19, -28, ADAMTS-3, and -14) was
detected in t=6d capsular bags (Figure 4A,B). While only
ADAM-9, -15, and ADAMTS-3 at t=6d reached a statistically

significant difference from t=0. After short-term culture, the
expression of ADAM-10, -12, -19, -28, ADAMTS-2, and -14
remained unchanged from t=0 (Figure 4A,B). A significant
reduction in the expression was detected for ADAMTS-1
(Figure 4B).

In comparison with t=0 capsular bags, the gene
expression of the ex vivo samples was largely unchanged,
except for ADAM-28 and ADAMTS-14 that increased and
ADAMTS-1 and -2 that decreased (Figure 4A,B). Notably,
ADAM-9 gene expression was significantly different from t=0
and was reduced by 50.2%. The change in ADAMTS-1 was
the only statistically significant gene expression differential
detected.

Figure 1. ADAM/ADAMTS gene
expression profiles were classified in
lens regions (donors 1–3). The cycle
threshold number (CT) was used to
classify gene expression as either very
high (CT≤20), high (CT=21–25),
moderate (CT=26–30), low (CT=31–38)
or negligible to undetected (CT=39–40).
Donor information; number: (1–3), sex
(F; female, M; male), age and
ophthalmic history; 1: F, 74, none; 2: M,
84, none; 3: M, 81, none.
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DISCUSSION
Adamalysin gene expression in native lens regions: The
ADAMs are known to modulate cell-cell and cell-matrix
interaction with cell surface adhesion molecules and integrins
through various mechanisms including protein ectodomain
shedding and the adhesive qualities of the disintegrin and Cys-
rich domains. In the mouse lens, the particular importance of
integrin adhesion molecules is demonstrated by the dramatic
lens microphthalmia that occurs in the adult β1 integrin knock
out [23]. Human ADAM-15 in particular contains an RGD
integrin-binding motif [24] and others alternatively contain
sequences such as ECD or DCD [2,25]. The ADAM-15 RGD
motif is involved in adherence to αvβ3 and α5β1 integrins
[26,27]. However, ADAM-15 can additionally bind α9β1

integrins in an RGD-independent mechanism [28], which
indicates the adhesive potential for ADAMs lacking an RGD
motif. Cell contact and adhesion are likely to be functions
common to all lens cells and may account for the high and
consistent expression of particular ADAM genes such as
ADAM-9, −10, −15 and −17 in each of the native human lens
regions determined by the present study. ADAM-9 is a
potential ligand for α6β1 integrin [29] and the α6 and β1
integrin subunit genes are expressed by the human lens
epithelia-derived cell line FHL-124 [30]. Monoclonal
antibodies have detected the β1 subunit expressed by lens
epithelial cells of capsulorhexis specimens removed at
surgery [31] and it is detected at the fiber cell-capsule interface

Figure 2. Quantitative comparison of regional ADAM/ADAMTS gene expression. A: ADAM and B: ADAMTS gene expression in each of the
three regions of the native human lens; anterior epithelia, equatorial region epithelia and fibers. The x-axis represents the gene of interest/18S
expression calculated as mean±SEM. In individual native lens regions significance at p≤0.05 (*) was determined (ANOVA with Tukey's post-
hoc analysis) in that region versus the other two regions of each lens.
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[32]. These observations indicate a potential adhesive role for
ADAM-9 in the lens epithelia and during fiber differentiation.

In keeping with the theme of cell contact and adhesion,
in non-ocular tissues ADAM-10 is implicated in the normal
turnover of cadherin adhesion molecules [33] and in the
shedding of cell surface adhesion proteins such as CD44v6

[10]. Both of these examples are mediated by protein
ectodomain cleavage and are relevant to the maintenance of
native lens compartments. Roles in adhesion via integrin
interactions are similarly reported for ADAM-15 and −17 and
may be involved in maintaining the quiescence of the native
lens epithelia and controlling migration in lens cells. For

Figure 3. ADAM/ADAMTS gene
expression in response to mechanical
trauma. Gene expression profiles were
classified in CBs; at t=0 following in
vitro sham cataract operation (left
panel), at t=6d, following short-term
culture (central panel) and ex vivo after
cataract surgery (right panel). The cycle
threshold number (CT) was used to
classify gene expression as either very
high (CT≤20), high (CT=21–25),
moderate (CT=26–30), low (CT=31–38),
or negligible to undetected (CT=39–40).
Donor information; category (t=0, 6d,
ex vivo), sex (F; female, M; male), age
and ophthalmic history. t=0: F, 74, none;
M, 83, none; M, 81, none. t=6d; M, 76,
none; F, 76, none; M, 69, no info. Ex
vivo; M, 75, bilateral cataract surgery
2001; F, 76, no info; M, 70, no info.
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Figure 4. Quantitative assessment of ADAM/ADAMTS gene expression in response to mechanical trauma. A: ADAM and B: ADAMTS gene
expression analysis in human capsular bags; at t=0 following in vitro sham cataract operation, at t=6d, following short-term culture and ex
vivo after cataract surgery. The y-axis represents the gene of interest/18S expression calculated as mean±SEM * indicates a ignificant difference
in gene expression between groups at p≤0.05 determined by ANOVA with Tukey's post-hoc analysis.
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example, the quantitative data presented in Figure 2 show that
ADAM-15 was significantly expressed by the quiescent
anterior lens epithelia. In airway smooth muscle cells a
recombinant ADAM-15 disintegrin domain construct
prevented PDGF-induced matrix adhesion and migration
through the β1 integrin [34]. Also migration of human lens
epithelial cells induced in culture can be prevented with an
interacting anti-β1 monoclonal antibody [31]. Therefore, an
ADAM-15-β1 integrin interaction may prevent cell migration
of the anterior epithelia. Moreover, in support of an inhibitory
interaction the integrin binding characteristics of ADAM-15
can prevent platelet aggregation [35].

Consistently high ADAM-17 gene expression was
detected in all native lens regions. In vitro, ADAM-17-
mediated adhesion occurs between the disintegrin region (in
an RGD peptide-sensitive interaction) and α5β1 integrin
localized at focal adhesions in sparsely seeded HeLa cell
cultures and cell-cell junctions in confluent cultures [36]. A
further in vitro study demonstrated that ADAM-17 inhibits
migration through α5β1 integrin but not α4β1 [37]. Taken
together, these studies suggest that the expression of differing
integrin receptor subtypes target or modulate ADAM activity
to support roles in cellular adhesion and migration, and in the
lens could play a role in tissue integrity in the samples
investigated.

Of the 4 ADAMTS family members studied,
ADAMTS-1 and ADAMTS-2 were the most abundant and
resided largely in the equatorial region. At the lens equator
multiple processes are occurring, including cell division and
migration and differentiation. These processes continue to
occur throughout life and contribute to the persistent, but
linear increase of human lens growth with age [38-40].
Moreover, injury to the lens, such as a cataract surgery can
provoke enhanced levels of cell proliferation and migration
[40,41]. This increased activity occurs in all ages, but is
greater in the young [41,42]. The promotion of growth
responses following injury contribute greatly to posterior
capsule opacification and explain why it is a major healthcare
problem affecting millions, of largely elderly patients [4]. In
other tissues ADAMTS-1 has been associated with migration
and proliferation. For example, ADAMTS-1 can be detected
in immortalized human corneal fibroblasts [11] and a binding
of a co-factor fibulin-1 promotes aggrecan cleavage [43],
which can regulate migration [11]. It is therefore feasible that
ADAMTS-1 facilitates cell division, migration and
differentiation in the lens.
Adamalysin gene expression in the wounded lens: The short-
term lens wounding stimulus led to a significant increase in
ADAM-9 and -15 gene expression. Among the genes that have
been associated with the wounding response are the epidermal
growth factor receptors (EGFRs). The EGFRs are
transactivated by G-protein-coupled-receptors (GPCRs), in a
mechanism that involves metalloproteinase-dependent

shedding of EGFR ligands, subsequent EGFR activation and
the initiation of downstream cell signaling [44]. For example
in the dermis, EGFR ligands including heparin binding-EGF
(HB-EGF), are proteolytically shed from the cell surface in
response to injury and play leading roles in wound healing,
including increasing cell migration [45,46]. In the anterior
segment, corneal wounding stimulates release of the GPCR
agonist lysophosphatidic acid (LPA), which accelerates
wound healing i.e., cell migration and wound closure through
shedding of HB-EGF and EGFR transactivation [47]. Thus,
ADAM-mediated proteolysis plays an important part in
releasing proteins from the cell surface to modulate their
bioavailability to change cell behavior.

In the lens, there is a lack of research to substantiate the
role of the ADAMs in EGFR ligand shedding and this is an
area that needs addressing. However, the upregulation of the
ADAM proteases has been previously documented in
activated cells of other tissues [48]. ADAM-9 is known to
shed HB-EGF from the cell surface when the cytoplasmic
domain is bound by protein kinase C delta [49]. ADAM-15 is
implicated in EGFR ligand shedding, possibly through EGFR
transactivation [50,51] and catalyzes the shedding of a soluble
E-cadherin fragment that is increased during the progression
of breast cancer [52]. EGFR ligands including HB-EGF are
expressed by the lens epithelial cell line, FHL 124, which is
suggested to better represent a wounded lens cell line (due to
the expression of genes usually associated with vigorously
growing or wounded lens cells) [30]. Moreover, despite the
lack of information regarding ADAM sheddase activity
against EGFR ligands in the lens, the role of the EGF/R
stimulation pathway in lens cells has been under investigation
for some time and the presence of EGF and EGFR is
documented in human lens epithelial cells [53-56]. The EGFR
immunolocalizes to both the quiescent anterior and dividing
equatorial epithelial cells of the native human lens and EGFR
activation by EGF is strongest at the equator [55]. EGFRs are
similarly detectable in activated lens epithelial cells that are
proliferating and migrating following sham surgical injury
and EGFR blockade can decrease the rate of this lens epithelial
cell growth [55]. In other studies EGF treatment has been
shown to promote the migration of human lens epithelial cells
[57]. One can therefore conclude that ADAM-9 and −15,
which are elevated following surgery, may potentially be
involved in the processes that propagate a wound response in
lens cells, which may ultimately lead to the development of
PCO secondary to cataract surgery.

The data generated from long-term samples (ex vivo)
indicate a reduction in ADAM-9 gene expression following
surgical trauma. Interestingly, a down-regulation in
ADAM-9 gene expression has been associated with human
anterior polar cataract or ASC [43]. The α6β1 integrins are
suggested to be potential ADAM-9 receptors [29]. β1
integrins are expressed by lens cells [30-32] and TGF-β1
down-regulates ADAM-9 and the α6 integrin subunit [13,58],
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which highlights that a down-regulation of ADAM-9 could be
involved in a loss of cell-cell contact during the pathogenesis
of anterior sub-capsular cataract (ASC) and potentially also
PCO, as they are phenotypically similar [59,60].

Importantly, ADAM-10 is one of the ADAMs that is
highly expressed in the long-term wounding samples. In
aberrantly activated lens epithelial cells ADAM-10 is likely
to conserve its proteolytic functions for the cell proliferation
and migration that is seen in the development of PCO. In other
tissues, ADAM-10 is associated with aberrant cadherin
processing, which is thought to cause downstream functional
alterations in cell-cell adhesion and β-catenin signaling in the
pathogenesis of disease states such as cancer and Alzheimer
disease [61,62]. The destabilization of cell-cell junctions has
also been associated with cataract in induced animal models
via TGFβ [63] and stress [64]. TGFβ induced E-cadherin
shedding in an ex vivo rat cataract model was attributed to
members of the matrix mettalloproteinases [63]. However,
ADAM-10 could be equally responsible for E-cadherin
shedding and may be involved in the pathogenesis of ASC and
PCO.

Of the ADAMTS family members only ADAMTS-1
expression was significantly changed following injury;
however ADAMTS-2 showed a similar pattern. Following
injury, expression was dramatically reduced; suggesting
ADAMTS-1 is not directly driving a wound-healing response.
Wound-healing responses are associated with enhanced
migration and division and this is typical of events following
cataract surgery [4]. Interestingly, it has been observed that
hormonally stimulated osteoblasts upregulate ADAMTS-1
expression on collagen coated dishes, which is associated with
reduced migration [65]. Therefore, if ADAMTS-1 expression
suppresses migration then the observed reduction in lens cells
following injury is likely to promote migration. This concept
is supported by other studies, which report that low
concentrations of ADAMTS-1 were seen to stimulate
fibroblast migration in healing skin wounds, whereas high
concentrations inhibited migration through sequestration of
fibroblast growth factor [66].

In conclusion, we have provided a robust analysis of
ADAM/ADAMTS gene expression in the normal and wounded
human lens and have described their potential functional
implications. An important unexplored theme is the ability of
TGFβ to regulate ADAM/ADAMTS expression because this
may modulate cellular adhesion for roles in the migration and
proliferation of transdifferentiated lens cells; lens epithelial
cell transdifferentiation is promoted by TGFβ and involved in
PCO development [4,67]. The relationship between, ADAM/
ADAMTS, TGFβ, and PCO therefore warrants further
investigation in the future.
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