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Abstract. The receptivity due to the interaction of an acoustic wave with a body
which has a rounded leading edge and a region of low wall shear is considered.
The body of interest is formed by a line source in a uniform stream. The nose
radius, 7y, of this body is characterised in the theory through a parameter A =
2w, /3Us where w is the frequency of the acoustic wave and Us the mean flow
speed. By comparing asymptotic and numerical results, the receptivity coefficient,
C, is calculated. The receptivity coefficient is seen to decrease dramatically with
a small increase in nose radius, a local rise occurs about A = 0.035 and it then
gradually declines to nearly zero when A = 0.1.

1 Introduction

Receptivity is the process by which external disturbances generate instability
waves in the boundary layer. Regions where receptivity occurs are those that
exhibit rapid streamwise variations in the mean boundary layer flow or sud-
den changes in the surface boundary conditions. In this paper, leading-edge
receptivity to acoustic waves is considered for a body which has a region
of low wall shear close to the leading edge. The flow is assumed to be two-
dimensional, irrotational and with high Reynolds number. The body consid-
ered has a rounded leading edge with continuous surface curvature and tends
to a flat plate and is chosen so that the inviscid slip velocity is known in an-
alytic form. The acoustic wave is considered to have a single frequency and
to be a small perturbation to the free-stream, giving the inviscid slip velocity
as

Us*(s,t) = Ups*(s) +eUq"(s) e ™", (1)

where ¢ < 1.

In the development of the unsteady boundary layer flow there exists two
distinct streamwise regions whose solutions overlap [1,2]. In the first region
the linearised unsteady boundary layer equation (LUBLE) is satisfied and
in the second the motion is governed by the Orr-Sommerfeld equation. In
the overlap region the asymptotic eigensolutions of the LUBLE match onto
the Tollmien-Schlichting waves in the matched asymptotic sense. The lowest
order of these eigensolutions matches onto the spatially growing Tollmien-
Schlichting wave, and the receptivity coefficient, C7, is considered to be this
eigensolution’s coefficient.
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2 Formulation of Equations and Body Geometry

The dimensional boundary layer equations in coordinates (s,n), where s is
measured along the body, and n normal to it, are non-dimensionalised by
introducing the typical velocity, length and time scales which are Uy, Uy /w,
w1 respectively. The stream function 1 is then introduced and following the
process used to determine self-similar equations, it is assumed that ¢ takes
the form ¢ = h(s) ¢(s, N, t) where N = g(s)n. The dimensionless boundary
layer equation then becomes

dne + @ N> + gh (dNONs — ONNDs)

S
1 (6Us U,

ot +Us s

with the usual boundary conditions. To retrieve terms similar to those ap-
pearing in the Blasius’ equation requires setting ¢ = h’. The outer boundary
condition implies gh = Uys and ¢ — 1+ (Ug/Uys) e~ as N — oo. Solving
for g, h gives

9(s) = Ufs{Z/Ufs ds}y~1/? h(s) = {2/Uf5 ds}'/?. (3)

Writing ¢(s, N, t) = ¢1(s, N) +e da(s, N)e " +O(e?), substituting into (2)
gives a nonlinear equation for the steady flow,
P1vnn + G101 vn = f1(s) (0% — 1) + £2(5) (drnd1ns — G1andrs) (4)
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) +g* onNN + g% doNN, (2)

where f1(s)

and a linear equation for the perturbation flow. Comparing the equation for
¢1 with the standard equation governing the evolution of a steady boundary
layer,

Innn + FInn = BE) (f& — 1) + 26 (fnfne — fun fe)

a change of variables needs to occur in (4) such that

12(s) 9 _ 25% = &= k/UfS(s') ds', (6)
0

where k is an arbitrary constant and is chosen to be unity. The function
f1(s) takes on the role of the mean pressure gradient, 5(£). This change of
variables in the equation for ¢ gives the LUBLE,

banny + Pann {01+ 26 d1e} + dan {0 f3(E) —2B(E) b1y — 2 1}

+ 21N + 26 {P1unP2e — PinPane )
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= g UB© =8O - T BO=




Receptivity of a Rounded Leading Edge 3

To construct a body with the properties described in §1, we consider
the flow due to a line source with strength « within a uniform stream. The
non-dimensional complex velocity potential is

Uso Kw
é = Al — Al , h A=—0n. 8
z+ og< " ) + A log(2) where U (8)
A stagnation point occurs at z = —A and the streamlines are given by

¥ =y + Aarg(z). Replacing the stagnation point streamline with a rigid
body gives a body described by @ = —y cot(y/A) where — Ar < y < An. Fig-
ure 1 compares this body of interest (abbreviated to USLS) with a parabola
and a modified super ellipse (MSE), bodies which have been studied experi-
mentally and numerically [2,3]. The non-dimensional nose radius of the body
is r, = 3A/2 with thickness tending to 2Aw. Thus, the parameter A can
be thought of either as an indicator of nose radius or the frequency of the
disturbance. The inviscid slip velocity Uys(s) is known implicitly through y:

2 5in? sin Yz
Ufs (y) = {1 + A yg(y/A) - 4 (;y/A)} ) (9)
ds Y 2\ 1/?
& = {1 + (— cot(y/A) + Zcosecz(y/A)) } . (10)

3 Asymptotic Solutions (§ — o0)

Letting £ = £/A, the steady equation to be solve can be seen to be indepen-
dent of A and thus independent of the free stream disturbance, as required.
The mean pressure gradient 5(€), starts favourable, becomes adverse then
tends to zero far downstream. The effect of this adverse pressure gradient is
to reduce the steady wall shear, however, as seen in figure 2, for this body
it is insufficient to produce boundary layer separation. Far downstream the

wall shear takes the form

_ In _
ounn(&0) ~ P/ {14 1 1) o) (1)
where F' is the Blasius function, o = —1.2023 is found by a solvability condi-
tion through adjoint operators, and the v = 4.711 is found numerically. The
next order term is due to eigensolutions found by Libby & Fox [5].
The asymptotic solution of the LUBLE takes the form

B2 ~ dasi(§,N; A) + > Ci(A) 6ai(€, N3 A), (12)

where ¢og; is a generalisation of the Stokes shear wave, determined locally,
and ¢9; are eigensolutions, analogous to those obtained by Lam & Rott [4]
for the flat plate. These eigensolutions are solutions of (7) with the forcing set
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to zero. To find the eigensolutions’ asymptotic form requires the asymptotic
form of f3 and 3, which is why the slip velocity is required in functional form.

As £ — oo the eigensolutions develop a two-layer behaviour, the inner
layer of width O(¢7'/2) and the main layer of O(1). In the inner layer the
variables G = (26)/2¢y and m = (2¢)}/2N are introduced, and the ith
eigensolution takes the form,

p2i = (26)T 2T O {p; (M) + (2 6)*3/2 @i(M) + ...}, (13)
(9£)3/2 ,
Tz(f) _ )‘2}(3;20) {3 A (i/A) + = } + O(A1‘887£70’387), (14)
(889 —16p? ‘ Spl - 27
e ( 1260 > F” ( 1007 ) ’ (15)

where M = (1 — A/&)m, ¥ = (2a — v — 3), p;(M) is a known function, p;
satisfies Ai’(—p;) = 0, and the eigenvalues \; are found analogous to the flat
plate ([1]) and given by X\; = pi_3/26*”/4. The constants «, 7 are those that
appear in the asymptotic solution of ¢, (11) . The coefficients, C; of the
eigensolutions have to be determined numerically.

4 Numerical Solution

The receptivity coefficient C is found by comparing the numerical solution
of the LUBLE (7) integrated from £ = 0, with the asymptotic form of the
first eigensolution. In this current work, a uniform pulsating stream parallel
to the body is considered thus Uy is set equal to Uy,.

The eigensolutions decay exponentially with distance downstream with
the first eigensolution decaying faster than those of higher order. This situa-
tion can be reversed by moving the calculations into a segment of the complex
plane, such that R(7") > 0. When taking the solution into the complex plane,
a contour must first be chosen in terms of y due to the implicit expression for
the slip velocity. Problems arise in the numerical solution when the steady
wall shear approaches zero. To avoid this difficulty, the contour is taken along
the real axis past the point of minimum wall shear, and then moved into the
complex plane. It is then extended in such a way that the &-contour pro-
gresses into the required segment for exponential growth. In addition, the
complex y-contour must terminate at (Am,0) to ensure that |{] — oo.

Figure 3 shows the absolute value of the receptivity coefficient, Cy, with
change in A. It can be seen that the maximum value of C; for this body occurs
at A = 0 and corresponds to that found for the flat plate. As A increases the
receptivity initially decreases rapidly, with a local rise about A = 0.035, and
then falls off to nearly zero by A = 0.1. As A increases, the accuracy of the
solution gradually reduces.

It was found that a fine spatial resolution of the numerical grid was re-
quired along the real axis (so that information was not lost on the eigensolu-
tions, which decay exponentially for real £), and in particular near the steady
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wall shear minimum. The fine resolution was also necessary when y — A,
as a small change in y in this limit would correspond to a large change in &.

5 Conclusions

The receptivity of a stream-lined body to freestream acoustic disturbances
has been addressed. The body geometry was chosen to be similar to that used
in experimental and numerical studies, but such that the slip velocity could
be determined analytically. The receptivity process involves unsteady forcing
of the boundary layer in the vicinity of the leading edge, and gives rise to
boundary layer disturbances whose wavelengths shorten as they propagate
downstream. It is the eigensolutions of the unsteady solution that provides
this shortening length scale, with one eigensolution matching onto the spa-
tially growing Tollmien-Schlichting disturbance. Here, we choose the coeffi-
cient of that particular eigensolution, C7, as our measure of receptivity.

For the body of interest, a symmetric mean flow with an acoustic wave
propagating parallel to it has been considered. Figure 3 shows the receptivity
coefficient as a function of the parameter A = 2rfw/3U where 7} is di-
mensional nose radius. It is seen that an increase in nose radius decreases the
receptivity coefficient. Work on the parabola ([2]) also demonstrated this, but
with a small rise for very small nose radii which is not seen here. To compare
the results, if A =25/3 where S is the Strouhal number used in [2], then
is the same for both bodies. For the body considered here, the receptivity
coefficient is almost zero at A = 0.1, which corresponds to S = 0.15 where
C1 = 0.57 for the parabola. Thus, this body appears to reduce the receptivity
much faster with increase in nose radius than the parabola.

A larger receptivity coefficient means that transition may be expected
earlier. However, the transition position also depends on the stability charac-
teristics of the steady flow. For a parabolic body the mean pressure gradient
is always favourable, so the boundary layer is stabilised as the nose radius is
increased. For the body of this study (as well as the MSE), the pressure gra-
dient is favourable close to the nose, but adverse further downstream. Thus
the drop in receptivity coefficient as nose radius increases is counteracted by
a decrease in the stability of the boundary layer further downstream.

The experimental results of Saric et al [3] for modified super-ellipses, with
aspect ratios 1:20 and 1:40 correspond to A = 0.006 and A = 0.002. These
values of A are marked on figure 3, however direct comparison of asymptotic
results with experimental results is difficult at the present time due to the
use of different definitions of receptivity.
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Figure 3: Change in receptivity coefficient, C1, with A



