The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study

Evans, Claire, Kadner, Susanne V., Darroch, Louise J., Wilson, William H., Liss, Peter S. and Malin, Gillian (2007) The relative significance of viral lysis and microzooplankton grazing as pathways of dimethylsulfoniopropionate (DMSP) cleavage: An Emiliania huxleyi culture study. Limnology and Oceanography, 52 (3). pp. 1036-1045.

Full text not available from this repository. (Request a copy)

Abstract

Dimethylsulfoniopropionate (DMSP) cleavage was investigated during culture studies of grazing by the microzooplankter Oxyrrhis marina and viral lysis by Emiliania huxleyi virus 86 (EhV-86) on two axenic strains of E. huxleyi. The cleavage products of DMSP, dimethyl sulfide (DMS) and acrylic acid (AA), accumulated during viral infection of both strains, confirming that viral lysis of algae can lead directly to DMSP cleavage. AA and DMS accumulated in parallel with compromised E. huxleyi cells, indicating that DMSP cleavage occurred during the physical disruption of the infected cells. This is in agreement with the hypothesis that DMSP and DMSP lyase ([DL] the enzyme responsible for cleaving DMSP) are segregated in healthy or undamaged cells. During grazing, the concentrations of DMS and AA produced per eaten cell were an order of magnitude higher than the concentrations resulting from cell death caused by viral infection, suggesting that grazing is the quantitatively more significant pathway of DMS production in E. huxleyi. Levels of DL activity decreased in infected cultures to a minimum of 0.00065 fmol cell-1 min -1 as compared with an average of 0.09 fmol cell-1 min-1 in the control cultures, indicating that reduced DL activity in virally infected cells was responsible for the lower levels of DMSP cleavage observed during viral lysis. © 2007, by the American Society of Limnology and Oceanography, Inc.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
Depositing User: Rosie Cullington
Date Deposited: 26 Feb 2011 19:22
Last Modified: 14 May 2019 11:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/25133
DOI: 10.4319/lo.2007.52.3.1036

Actions (login required)

View Item