Impacts of atmospheric anthropogenic nitrogen on the open ocean

Duce, RA, LaRoche, J, Altieri, K, Arrigo, KR, Baker, AR, Capone, DG, Cornell, S, Dentener, F, Galloway, J, Ganeshram, RS, Geider, RJ, Jickells, T, Kuypers, MM, Langlois, R, Liss, PS, Liu, SM, Middelburg, JJ, Moore, CM, Nickovic, S, Oschlies, A, Pedersen, T, Prospero, J, Schlitzer, R, Seitzinger, S, Sorensen, LL, Uematsu, M, Ulloa, O, Voss, M, Ward, B and Zamora, L (2008) Impacts of atmospheric anthropogenic nitrogen on the open ocean. Science, 320 (5878). pp. 893-897. ISSN 1095-9203

Full text not available from this repository. (Request a copy)

Abstract

A worldwide compilation of atmospheric total phosphorus (TP) and phosphate (PO4) concentration and deposition flux observations are combined with transport model simulations to derive the global distribution of concentrations and deposition fluxes of TP and PO4. Our results suggest that mineral aerosols are the dominant source of TP on a global scale (82%), with primary biogenic particles (12%) and combustion sources (5%) important in nondusty regions. Globally averaged anthropogenic inputs are estimated to be ~5 and 15% for TP and PO4, respectively, and may contribute as much as 50% to the deposition over the oligotrophic ocean where productivity may be phosphorus-limited. There is a net loss of TP from many (but not all) land ecosystems and a net gain of TP by the oceans (560 Gg P a-1). More measurements of atmospheric TP and PO4 will assist in reducing uncertainties in our understanding of the role that atmospheric phosphorus may play in global biogeochemistry.

Item Type: Article
Faculty \ School: Faculty of Science > School of Environmental Sciences
Related URLs:
Depositing User: Rosie Cullington
Date Deposited: 25 Feb 2011 10:49
Last Modified: 07 Dec 2018 10:30
URI: https://ueaeprints.uea.ac.uk/id/eprint/24802
DOI: 10.1029/2008GB003240

Actions (login required)

View Item