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PATHS IN A GRAPH

Johannes Siemons

in a connected graph any two vertices can be joined by a
sequence of edges. This is the definition of connectedness
for graphs. However, how do you find a path joining a given
pair of vertices, and hou do you decide effectively if a graph
is connected ? These are the questions I shall discuss in
this note. The graphs we consider are finite, undirected and
have no loops or multiple edges. A path is a sequence
{v',vi) = e1, {visVva} = €25 ceces (vp.1,v"} = ep of edges
without repetition (of edges: vertices may occur repeatedly).
The vertices v' and v" are the end vertices of the path.

A popular version of this problem is to find the exit in
a maze, We have to distinguish two cases. In the first
instance, imagine that we are actually inside a maze without
knowing its overall design. Here the only solution seems to
be trial and error. A successful route to the exit is very
unlikely to be a path according to our definition, In fact,
the probability to reach the exit on a path is less than 2-€,
where ¢ is the number of intermediate junctions on a path to
the exit (provided that there is only one such path in the
maze). In other words, it is almost impossible to avoid
walking into a cul-de-sac! However, most commonly, maze
puzzles are done with paper and pencil, and the design of the
maze is right in front of your eyes. In this situation, can
you avoid a cul-de-sac? The answer is yes, there is a
construction for a path to the exit!

fadpr 3 set P of edges let V(P) be the set of end vertices
of edges in P, For a vertex v in the graph, let dp(v) be the
number df edges in P that end at v, A cycle is a path that
ends in its initial vertex. Our construction is based upon
the following simple cbservation:



Lemma Let v' and v" be t&o vertices in a graph and
let P be a set of edges such that dp{v') and
dp(v") are odd, while dp(v) is zero or even
for all remaining vertices. Then N
P =P(vty,v") UC, U ... UZCp where P(v',y")
i{s (suitably arranged) a path from v' to v"
while each C; is a cycle that has no vertex
in common with P(v',v").

Proof Let Go, G; ... be the connect2d components of
the subgraph with vertices V(P) and edges P,
As dp(v') is at least 1, v' is a vertex in one
of the Gj, bay in Go. But then also v"
belongs to Go, for otherwise the total degree
sum in Go would be odd, which is impossitle:
In any graph the total degree sum is even,
Therefore Go is a path from v' to v" and the
remaining components are cycles,

How can we effpctively daterm1n7 such a set of edges?
And, secondly, how can we enfure that P does not contaiq
cycles? (From a practical point of view, the second problem
{s less relevant, for if we start our path in v' we will reach
v" without entering any of the cycles Ci)' We shall say that
a set P as in the lemma is shoxf if none of its subsets is a
cycle, Thus a short path from v' to v" is a path where none
of the intermediate vertices is repeated.

We order the vertices of G in some way v ,.., vq and also
order its edges é; reer €pme The graph now can be representsd
by . its incldence matrix I, This is the matrix whose rows are
indexed by vertices and whose columns are indexed by edges,
such that (I), o 15 1 1f e ends at v and (1), o = O otherwise,
A set S of vertices is represented by a O-l-vector S of length
n where (S){ = 1 iff vy belongs to S. In the same way, an
edge set P is represented by a O-l-vector P of length m, The
incidencamatrix associates a vertex vector to any edge vector:
I'Et is a vector of langth n and its i th component is easily
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seen to be dp(vi). Now we reajise that a set P has the prop-
erty of the lemma exactly if P satisfies a linear congruence

modulo 2.
”

Path Constayction: A set P of edges consists of a path
P(v',v") and a numben of cycles disjoint farom P(v',v") i and
onty i£ 1+PY = S modulo 2 where 5 = {v',v").

Thus a patﬁ from v' to v" can be constructed by solving
this linear congqruence, for instance by Gauss elimination.
This is particularly simple in characteristic 2 where we only
- need to add rows and possibly pkrmute rows and columns of I,
Note also that cyecles and unionﬁ of cycles correspond to O-1-
vectors in the kernel of I modulo 2. In order that the graph
is connected, this congruence has to be solvable for any
choice of S. This will be the case if and only if the rank
of 1 is at least n-1 in characteristic 2. However, as each
column of I adds up to 2, the rank will be n-l1l exactly.

~

Therefore, we obtain a critericn for connectedness in a graph.

7he numlen of connecied components in a graph (s the numler of
vertices minus the rank of 1 in charactenistic 2,

Short paths: Now we shall see that I'Et 2 S can be solved in
such'a way that a solution automatically will be short, that
is, P does not contain a cycle. Using Gauss elimination, the
congruence can be transformed into

g b r Y )
10000, ., .0%##x*» [ # P1 51
01000...0*”5000* pz S2
00100...0~*“...l : S
. * pn-la: mod 2
Pn :
000000001 ** %,  , # : :
0O000000000000O0ODO om 0
\ y, . J L J
We now choose pn = Ppryy = ++++ = P = 0 and hence have pj =sj
for i = 1, .eey N-1. 1f P is determined in this way, none of

its subsets can satisfy the homogeneous congruence and there-
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fore P does not involve any cycle. Thus P is a short path
from v' to v". Of course, the above tableau can usually be
achieved in a number of distinct ways. This cog;esponds to
the fact that a short path is unique only if the graph contains

no cycle,

Maximal and Minimal Short Paths: In the above tableau, the
entries sy are calculated from 5 = {v',v"} during the subseq-

uent row operations, The number of sj # 0 is, as we have
seen above, the length ¢(P) of the short path from v! to v",
Therefore, the minimum value obtainable for ¢(P) in any tabl-
eau is the distance from v' to v". As a short path passes
through any vertex at most once, ¢(P) + 1 is the number of
vertices en route, v' and v" included, Thus ¢(P) is at most
n-1, but this may or may not be obtainable in a tableau. For,
if £(P) = n-1, then P passes through all the vertices of the
graph. Such a path is called hamitlitonian, No satisfactory
criteria for the existence of such paths exist for graphs in
qgeneral., In a particular case, however, we notice that
hamiltohian paths correspond to tableaux of the above form in
which s} = 82 = .40 = Sp-1 ° l.

As an example consicder the graph in Fig. 1. It has 6
vertices a,b, «.s..s f, 9 edges 1,2, ...» 9 and its incidence
matrix is the 6x9 matrix I given below, We form the 6x15
matrix (I,Id) where Id is the 6x6 identity matrix.

1234561781789

[ A
a 000100101
b 110000100
¢ [to1001000] _
d |[000011001
e |000000O010
f L0 11110010

FIGURE 1
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On this matrix subseguently Gauss elimination is performed
(allowing permutations of the columns of I) and we obtain

8

1245 36789 .

10000 1100 00100 0]

01000 1110 011000
+ 00100 0011 100000
(I ps) =

00010 0100 000100

00001 0000 000010

Loonoo 0000 111111

In this process at least 1 column permutation has to take

place, e.g, edge B8 has to be included among the first 5 edges.
In the event these are the edges 1,2,4,5,8, This means that
they are the only edges effectively used in the construction,
As no cycle can be formed from them, they automatically build

a 4panning Lree.

p(aae) = {aval
P(a,c) = {4,2,1}
P(a,d) = (4,5}

FIGURE 2

The matrix S in a certain way is a generalised inverse of I,
For a given pair x,y of vertices the path P = P(x,y) with
edges among 1,2,4,5,8 is unique and can immediately be read
_off from I+.E = S*{x,vy}.
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