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1. INTRODUCTION 

A finite incidence structure (S, X, I) consists of finite sets S and X, the points 
and blocks of the structure, where the matrix I defines the incidence of a 
point with a block. In this paper we consider tactical decompositions of 
a structure into point classes and block classes. The interest in tactical 
decompositions stems from the fact that they are generalizations of the orbit 
partitions under the action of a collineation group. Therefore the results in 
this paper apply in particular to groups of automorphisms of a finite structure. 

Let Ps be an arbitrary partition of S and Px an arbitrary partition of X. 
In Theorem 2.3 we construct a refinement (Ps, Px) which is a tactical de- 
composition of the structure. We show that (P*, P*) is unique with respect 
to the minimality of the number of classes in P~ and P*. The algorithm that 
produces this tactical decomposition only uses some elementary linear 
algebra and does not involve automorphisms of the incidence structure. 
This suggests that tactical decompositions might be of particular interest for 
the investigation of rigid structures admitting only the identity collineation. 

In Section 3 we consider structures in which the point cardinality is equal 
to the rank of I. Here we prove, that for a tactical decomposition the block 
partition entirely determines the point classes. Our result (Theorem 3.1) 
contains a number of well-known theorems. If the structure under considera- 
tion is a 2-design, for instance, we obtain a generalization and an independent 
proof of the Dembowski-Parker-Hughes theorem. In the case of the subset 
lattice of a finite set the theorem improves a now classical result by Living- 
stone and Wagner. A similar orbit theorem is obtained for the subspace 
lattice of finite affine and projective geometries. In a forthcoming paper 
[13] I have proved that certain general classes of finite graphs have maximal 
incidence rank. Here we obtain yet another orbit theorem. 

In Section 4, finally, we investigate the relationship between the point 
action and the block action of an automorphism of the structure. Here we 
show that again the block permutation completely determines the action 
on points if the rank of I is the cardinality of S. In Theorem 4.2 we give a 
formula for the number of point orbits of given length in terms of the block 
permutation. 

2. T A C T I C A L  DECOMPOSITIONS 

Let S and X be finite sets and I a (0, 1)-incidence matrix where the rows of I 
are indexed by S and the columns by X. We call the elements of S points and 

Geometriae Dedicata 14 (1983) 87-94. 0046-5755/83/0141 0087501.20. 
Copyright (~ 1983 by D. Reidel Publishing Co., Dordrecht, Holland, and Boston, U.S.A. 



8 8  J O H A N N E S  S I E M O N S  

the elements of X blocks. We s a y ' s  is incident with x', and denote this by 
s I x, in the case that the (s, x)-entry of I is 1. The triple (S, X, I) is called a 
finite incidence structure. 

For a field R of characteristic zero we define the space RS as the vector 
space over R whose basis vectors are the points in S. In a similar way we 
define the block space RX. Two linear maps arise naturally from the incidence 
relation: •- : R X  ~ RS, given by 0-  (x) = •sIx S for all x in X and ~ + : RS --* RX,  
given by 3+(s) = Z ~ x  for all seS. The matrices of ~-  and 0 + (for the bases 
S and X) are, of course, the incidence matrix I and its transpose I t, respectively. 

Let Ps be a partition of S into disjoint classes Ps,1, "", Ps,i, "" and define 
the vector pi in RS as the sum over all points in the class Ps,~" As Ps is a parti- 
tion, the p/s are linearly independent. Hence they form a basis of the subspace 
RP s =(p i [ i  = 1 . . . .  ) of RS which corresponds to the partition Ps" Vice 
versa, we call a subspace of RS a partition space, provided it has a basis 
p~, . . . ,  p~, ... such that the p~ s have the above form for some partition of 
S. It is crucial for our argument and easily verifiable that partitions and 
partition spaces are in one-one  correspondence so that Ps is uniquely 
determined b y  RP s. The partial order relation between two partitions Ps 
and Ps of the point set is given by Ps <<" Ps if and only if every class of Ps 
is a subclass of some class in Ps" We say Ps is finer than or equal to Ps in this 
case. Clearly Ps <~ Ps is equivalent to RP s c_ RPs. 

For a partition Px of the block set into disjoint classes Px 1, "'", Px j . . . .  
the vectors q~ = Z e,~.jx and the partition space RP x = ( q'j[j = 1, ..'. ) c_ 
R X  are defined in the same fashion. In the following we consider pairs 
(Ps, Px) of partitions of S and X respectively. 

D E F I N I T I O N .  A pair (Ps, Px) is a tactical decomposition of the incidence 
structure (S, X, I) provided the following two dual conditions are satisfied: 

T - :  For  any given point s and any j, the number  of blocks in Px,i incident 
with s only depends on the class Ps,~ that contains s. 

T +'  For any given block x and any i, the number  of points in Ps,i incident 
with x only depends on the class Px,j that contains x. 

Tactical decompositions (for which also the term 9eneralized orbits is in 
common use) were first investigated by Dembowski  [5] and are characterized 
by the following invariance conditions: 

P R O P O S I T I O N  2.1. The pair (Ps, Px) satisfies T -  if and only if U(RPx)  
is a subspace of RP s. Similarly, (Ps, Px) satisfies T + if and only if U(RPs)  
is contained in RP x. 

Proof. Let q = Z px x be a basis vector ofRP x and 0-(q) = Zx~px E s i s  = 
• ,J  . , J  . 

v. We arrange this sum into v = Z ~v .s = Z.Z , v .s,(v 6R), using the 
fact that Ps is a partition of S. We observe that v is contained in RP s if and 
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only if v = v s, whenever s and s' belong to the same class. This, on the other 
hand, is equivalent to the condition T - .  The second part  of the proof is 
just the dual of the first. []  

We will use the proposit ion to calculate tactical decompositions. First, 
however, we need the concept of the point partition generated by a subset 
W of RS. 

Let v = Zs~ s v ' s  be any vector in W. We write v uniquely a s  5~iri'Y~kSik 
in such a way that each point in S occurs exactly once among the slk and 
r i ~ % if i ¢ i'. Thus v produces a partition Ps(v) of S with classes {s 1.kIk = 
1,. . .  } . . . . .  {S~,k I k = 1,...  } and so on. If we interpret v as an R-valued function 
on S, the classes of Ps(v) are precisely the level surfaces of v, i.e. the point sets 
where v has constant value r~ (compare also to chapter 10 in Wielandt [14]). 

Now let Ps(W) be the coarsest partition of S for which Ps(v) <<. Ps(W) for all 
y e W .  Let L(W)  denote the partition space R P s ( W  ). The following is an 
immediate consequence of these definitions. 

P R O P O S I T I O N  2.2. Let W ~_ RS  and R P  s some partition space containing 
W. Then W ~_ L (W)  ~_ R P  s and W = L(W)  if and only if  W is a partition space 
itself. 

Subspaces U of R X  define partitions of X and partition spaces L(U) in the 
same way. We can now state the main result of this section. 

T H E O R E M  2.3. Let  ( S , X , I )  be a finite incidence structure and let Ps 
and Px  be partitions of  the points and blocks, respectively. Then there is a unique 
tactical decomposition (P~, P~) with minimal class numbers satisfyin 9 Ps <~ 
P~ ~ Ps and Px  <<" P* <<" Px for any tactical decomposition (Ps, Px) with 
Px <~ P's and Px <~ Px" 

Proof  The tactical decomposition (P~, P*) can be constructed in the 
following fashion. Since Ps <<" P's and Px <<" P'x, we obtain R P  s ~_ O-(RPx) + 

t t t t R P  s ~_ R P  s and R P  x ~_ O+ (RPs) + R P  x ~_ R P  x by Proposit ion 2.1, as (Ps, Px) 
is a tactical decomposition. By Proposit ion 2.2, we also have R P  s ~- 

r t L ( U ( R P x )  + RPs)  ~_ R P  s and R P  x ~_ L((?+(RPs) + RPx)  ~ R P  x. We now 
define Ps ~ by RP~ = L((?-(RPx) + RPs) and P~ by RP~ = L(~+(RPs) + RPx). 
Thus we obtain R p  s _c RP~ _c L(O-(RP~;) + RP~) _c Rp '  s and R P  x ~_ R P  lx_c 
L(~+(RP~) + RP~) ~_ RP'  x as above. Inductively, let Ps and Px be given by 
R P  s' = L(~ - (RPxi-1) + R p  s- 1) and R P  x = L(~ + (RP s- 1) + R p  x- 1), respective- 
ly. In this way, we obtain two ascending chains R P  s ~_ R p  s _c ... _c RUs _ ~ 
• .. ~_ RP'  s and R P  x ~_ RP~ ~_ ... ~_ R P  x ~_ ... ~_ R P  x which become station- 

k k +  ary as all dimensions are finite. Thus, for R P  s = R P  s 1 and R P  xk = R p  xk + ~ we 
conclude O-(Rpkx)~_ Rpks and O+(Rpks)~_ Rpkx. Hence, according to Pro- 

_ k * = Pk x are the partitions of a tactical decomposi- position 2.1, P* - Ps and Px 
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tion. Uniqueness now easily follows from the fact that P~ ~< Ps and Pf; -~. Px 
hold for an arbitrary tactical decomposition finer than or equal to (Ps, Px)" 
This completes the proof. [] 

3. O R B I T  T H E O R E M S  

For any incidence structure, the orbits on points and blocks of an auto- 
morphism group G form a tactical decomposition. We denote point orbits 
by S(G) and block orbits by X(G), where G is an arbitrary group of auto- 
morphisms of the structure. Clearly the partitions Ps = {S} and Px = {X} 
(consisting of one class each) satisfy Ps ~ S(G) and Px <<" X(G). According 
to Theorem 2.3, the tactical refinement (P*, P*) of (Ps, Px) has the property 
P* <<, S(G) and P~ <<, X(G) for any group of automorphisms. I wish to em- 
phasize at this point that this minimal tactical decomposition is obtained 
quite independently of automorphisms. Therefore (P*, P*) and, in particular, 
their class numbers are invariants related to the symmetries of an incidence 
structure which so far have not been examined. The class number ]P* ], for 
instance, is a lower bound for the number of point orbits of all automor- 
phisms. In general, however, one cannot conclude that this bound is attained 
by any automorphism group: in many instances tactical decompositions 
cannot be associated to automorphisms. This fact has already been pointed 
out in Dembowski's paper [5] in the case of projective planes. 

In this section we consider a given tactical decomposition of a finite struc- 
ture and study the relationship between its point and orbit partitions. In 
many geometrical situations the number of point orbits of an automorphism 
group is known to be less than or equal to the number of block orbits. 
The following theorem shows that much more can be proved. 

THEOREM 3.1. Let (S, X, I) be a finite incidence structure and assume that 
the rank of I is equal to the number of points in S. I f  (Ps, Px) is a tactical 
decomposition, then the block partition Px uniquely determines the point 
partition through the relation U ( R P x ) =  RP s. Moreover, the number of 
classes in Ps is given bY]Psi = ] Px] - dim((kern 9-)c~ RPx). 

Proof. By the assumption on the rank of I, the map O + : R S ~ R X  is 
injective. Since 9- and 9 + are adjoint to each other in the standard inner 
products, 9-9 + is injective, and hence is a bijection on RS. If (Ps, Px) is 
a tactical decomposition, by Proposition 2.1, the map 

0+ 0- 
9- 9 + : RP s ~ RP x ~ RP s 

is also a bijection. This implies 9-(RPx) = RP s. 
Hence the point partition is determined by the block partition. Since the 

class numbers are the dimensions of  RPs and RPx, we get IPsl = IPxl- 
dim((kern 9-) c~ RPx). This completes the proof. [] 
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In case that the rank of I is not maximal, the point partition is, in general, 
only partially determined by L(O-(RPx) ) c RPs. The argument here can 
easily be modified to show that lesl IP=l- dim((kern c?-)c~RPx)+ I S I -  
rank I. (This is the content of Theorem 2.1 in Block [2].) The following list, 
however, shows that the condition on the maximality of the rank of I is quite 
general. 

1. Let S be the class of k-element subsets and X the class of/-element sub- 
sets of a set of size n, where k ~< l and k + l ~< n. If incidence is defined by set 
inclusion, the rank of I is IS I- In this case Theorem 3.1 generalizes the theorem 
of Livingstone and Wagner. For reference compare [3], [9] and [13]. 

2. The incidence matrix of a 2-design has point rank. This is the essence 
of Fisher's inequality. Here the second part of Theorem 3.1 contains the 
Dembowski-Parker-Hughes theorem in [5], [7] and [10]. 

3. Affine and projectice spaces: Consider the d-dimensional affine and 
projective spaces AG(d, q) and PG(d, q) over the field of q elements. Let S 
be the collection of e-dimensional and X the collection off-dimensional 
subspaces where the incidence relation is inclusion. Kantor [8] has shown 
that I has maximal rank, and hence rank I = I S I if 0 ~< e < f ~< d - e - 1. 

4. Graphs: Let S be the vertices and X the edges of a finite undirected 
graph without loop edges. The incidence matrix of such a graph has point 
rank if and only if each component contains some cycle of odd length. This 
result is proved in a forthcoming paper [13]. Here Theorem 3.1 is an orbit 
theorem for graphs. 

The point partition of a tactical decomposition does not, in general, 
determine the block partition. A structure, for instance, may have two 
automorphism groups which are both point transitive, but which have 
non-identical orbits on blocks. Some information about Px, however, can 
be ascertained from the fact that L(c3+(RPs) ) ~_ RP x. Thus, if P* is the 
partition belonging to L(~?+(RPs)), then P* <~ Px, regardless of the rank 
of I. 

4. A U T O M O R P H I S M S  

An automorphism of a structure consists of a permutation 9s of S and a 
permutation 9x of X such that incidence is preserved: s ix  if and only if 
9s(S)Igx(X). These permutations extent to linear maps on RS and RX. 
One verifies easily that 9 = (gs, 9x) is an automorphism if and only if O+gs = 
9x~ + or, equivalently, ~-gx =gs ~?-. For convenience the corresponding 
permutation matrices will also be denoted by 9s and 9x. 

THEOREM 4.1. Let (S, X, I) be afinite incidence structure with rank I = IS[ 
and let (gs, 9x) be an automorphism of the structure. Then 9x uniquely deter- 
mines 9s. I f  gx is an arbitrary permutation of X then 9x is the block permuta- 



92 J O H A N N E S  S I E M O N S  

tion of  an automorphism if and only if t?-gxt? is a permutation of S independent 
of the choice oft? as a right inverse oft?-. 

Proof. Since rank  t?- = rank 1 = IS[ by assumpt ion ,  t?- has a right inverse. 
If (gs, gx) is an au tomorph i sm,  U Ox = gst?- implies t?-gxt? = gs for any 
right inverse t? of 0 - .  Hence  gx determines 9s. If  gx is an arb i t ra ry  pe rmuta -  
t ion for which t?-gx~? = gs is a pe rmuta t ion  independent  of t?, we have to 
show that  t?-gx =- gst?- Let v be the difference between two right inverses 
of ~ - .  Then t ? - v = 0 .  By assumpt ion  we have U gxv=O. Taking  
v = (id - t?t?-), we obtain  0 = 0-gx( id  - t?t?-) = t?-gx - t?-gxt?t?- = t?-gx - 
gst?-" Hence c~-g x = gs 0-  and the theorem is proved.  [ ]  

The tactical decompos i t ion  generated by an a u t o m o r p h i s m  g = (gs, gx) 
are the orbits  of g on points  and blocks. If  RS(g) and RX(g) denote  the 
cor responding  par t i t ion spaces, then RS(g) = (Zzgs(S)]seS) and RX(g) = 
( Z;gJx(x)]x~X ). One verifies quite easily that  these spaces are character ized 
by RS(g)= {v]veRS, gs(V)= v} = k e r n ( g  s -  1) and RX(g)= {w]w~RX,  
gx(W) = w} = kern(g x - 1 ) .  If  r ank  I is equal  to ]S[, Theo rem 3.1 implies 
t?-(RX(g)) = RS(g). This relation determines the point  orbi ts  of g. The total  
numbe r  of orbits  on points  n(gs) is given by n(gs) = n(gx) - dim(kern(g  x - 1) c~ 
kern t?-). Independent ly  of  Theo rem 3.1 we calculate the number  of  orbit.s 
of given length. 

T H E O R E M  4.2. Let 9 = (gs, gx) be an automorphism of the finite structure 
(S, X, I) where the rank of I is [ S]. Suppose M = I--.I for some right inverse 
I -  of  I and let # be the M6bius function. Then the number ni(gs) of  gs-orbits 
of length i is given by 

1 k 
ni(g s) = _" Y]Zk) t r ace (M "9~ )- 

1 kl i  

The total orbit numbers n(gs) and n(gx) are related through n(gx)-  n(gs)= 
dim (kern(9 x - 1) c~ kern 0 ) = Zi~ iXlEklil~(k)/i trace ((1 - M)'gi/xk ). 

Proof. The trace of  a pe rmuta t ion  mat r ix  G is the n u m b e r  n l(G ) of symbols  
fixed by G. The  symbols  invar iant  under  G 2 either are points  fixed by G or 
belong to 2-cycles of G. Hence  t race(G 2) = nl(G ) + 2n2(G ) and by induct ion 
one proves  easily that  trace (G k) ~-Eilki.ni(G ). Using M6bius  inversion, the 
cycle numbers  therefore are given by 

1 
ni(G) = _ ~ #(k) trace(Gi/k). 

l k l i  

F r o m  Ig x = gs I and gs = I g x I -  we conclude gs = I g x I - '  Therefore,  

trace(gs) Z , - - i = (I)rs(gx)st( I )t, = 2 (  I )t,(I),~(gx)s, 
r,s,t r,s,t 

- i i = t r a c e  ( ( I  . I ) g x )  = t r a c e  (M.gx) .  
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Hence we obtain ni(gs)= (1/i)Zkli#(k)trace(M'gi/xk) by the above formula. 
This proves the first part of Theorem 4.2. 

The total orbit number of a permutation G is given by 

n(G) = ~ ni(G ) = ~ ~#(k. ) trace(Gi/k). 
i i k l i  t 

Therefore, 

n(gx) - n(gs) = ~ ni(gx) - ni(gs) 
i 

= E E#(.k)(trace(g~ k)-  trace(g~k)) 
i<~ lX[k l  i 1 

= ~ E#(k.)(trace(gi/x k ) -  trace(M.gl/xk)) 
i ~ l X l k l i  t 

= E ~#(.g)trace((1- M)'g~k). 
i<~[X[k[  i 1 

The equation n(gx ) -n (gs )=d im(kern (Ox-1 )~kern~- )  follows from 
Theorem 3.1 as we have pointed out above. [] 
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