Permutation groups on unordered sets I

By

JOHANNES SIEMONS *

I. Introduction. Let G be a permutation group on a finite or infinite set S. Consider the system X_k of all k-element subsets of S and the natural action of G on X_k. The numbers n_k of G-orbits on X_k form a non-decreasing sequence for $k \leq \frac{1}{2} \cdot |S|$, but little else is known apart from this fact. See [1, 3].

In this note we examine the growth of n_k (if these numbers are finite) in terms of the groups induced by G on subsets of S. If G is $(k-1)$-fold homogeneous on S and $l \geq k$, a rough estimate for the growth rate is $(\binom{n_{k+1}}{k}) \leq (\binom{k}{l-1}) \cdot n_l$. Much sharper results are obtained if the action induced on subsets is rich.

The notation used is standard. The setwise and pointwise stabilizers of a subset Y of S are denoted by $G(r)$ and $G(y)$ respectively. The group $G(Y) = G(Y)/G(y)$ always is considered as a permutation group on Y. The orbits of G on X_k are denoted by $X_k(G)$ and $n_k = |X_k(G)|$.

II. Arrangements. Let H be a group acting on a set Y of finite size l and let $x (\neq Y)$ be a subset of Y. We allow x to be empty. An arrangement is a collection \{x; y_1, y_2, \ldots, y_t\} such that a) all y_i have size $k = |x| + 1$ and contain x, b) $Y = \cup y_i$ and c) for $i \neq j$, y_i and y_j belong to different H-orbits. The set x is called the centre of the arrangement. Clearly $t = l - k + 1$. A second arrangement $A' = \{x'; y'_1, y'_2, \ldots, y'_t\}$ is isomorphic to $A = \{x; y_1, y_2, \ldots, y_t\}$ if there is some h in H such that $A^h = A'$. Notice that two arrangements are isomorphic if and only if their centres belong to the same H-orbit. The total number of non-isomorphic arrangements with centre size $k - 1$ is denoted by $m(H, k)$. Clearly $m(H, k) \leq (\binom{k-1}{l-1})$ and equality holds if and only if H is the identity on Y. We determine the structure of groups for which arrangements exist and determine the numbers $m(H, k)$ for some small values of k.

Theorem 2.1. Let $H \neq 1$ be a permutation group on a set Y of size l and let $k \leq l$. Suppose that $x = \{x, \beta, \ldots\}$ is the centre of an arrangement with $|x| = k - 1$. Then

i) $k > 1$. (In fact $m(H, 1) = 0$ if $H \neq 1$ and $m(H, 1) = 1$ if $H = 1$.)

ii) If $k = 2$, then H is an elementary abelian 2-group and $m(H, 2)$ is the number of H-orbits on the points of Y that have length $|H|$.

*) Questo lavoro è stato fatto mentre ero all'Università di Milano per un anno. Vorrei ringraziare tutti per l'eccellente ospitalità.
iii) If \(k = 3 \), then \(|H_{(x)}| \leq 2 \). If \(|H_{(x)}| = 2 \), then \(H = \text{Sym}(2) \) and \(m(H, 3) = |O| - 1 \) or \(H = \text{Sym}(3) \) and \(m(H, 3) = 1 \).

iv) If \(k = 3 \) and \(|H_{(x)}| = 1 \), then \(|H_{a}| \) and \(|H_{b}| \) are at most 2. Let \(O_{a} \) and \(O_{b} \) be the orbits of \(x \) and \(y \) respectively. Then the graph on \(O_{a} \cup O_{b} \) with edge set \(x^{H} \) has the following connected components: type 1 for \(|H_{a}| = |H_{b}| = 1 \) and \(O_{a} \neq O_{b} \), type 2 for \(|H_{a}| = |H_{b}| = 2 \) and \(O_{a} \neq O_{b} \), type 3 for \(|H_{a}| = 2 \) and \(O_{a} \neq O_{b} \), type 4 for \(|H_{a}| = 1 \) and \(O_{a} = O_{b} \), or type 5 for \(|H_{a}| = 2 \) and \(O_{a} = O_{b} \).

Proof. First we note that \(H_{(x)} \) acts as the identity on \(Y - x \) if \(x \) is a centre of an arrangement. This in particular proves the statement i). If \(k = 2 \), let \(O \) be the orbit of \(x \). If \(h \neq 1 \) is in \(H \), then also \(\beta = \alpha h \) is a centre and \(\beta \in \{ \alpha, \beta \} \cap \{ \alpha, \beta \}^{h} \) implies that these two sets are the same. Therefore \(\beta^{h} = \alpha \), \(h^2 = 1 \) and \(H \) is an elementary abelian 2-group of order \(|H| = |O| \). Vice versa, if \(H \) is an elementary abelian 2-group and if \(y \) belongs to an orbit of length \(|H| \), then \(y \) is the centre of an arrangement. For if \(y \in \{ y, \delta \} \cap \{ y, \delta \}^{h} \) for some \(h \) in \(H \), then either \(\gamma^{h} = \gamma \) and \(h = 1 \) or \(\gamma^{h} = \delta \) and \(\gamma = \delta^{h} \). In both cases \(\{ y, \delta \} \) is fixed by \(h \) and so \(y \) is a centre. This proves ii).

Now we assume that \(x = \{ \alpha, \beta \} \) is a centre of size \(k - 1 = 2 \). By the initial remark, \(|H_{(x)}| \) has size at most 2. Consider the case \(|H_{(x)}| = 2 \). Let \(O \) be the orbit containing \(x \) and \(y \). If \(O = x \), \(H = \text{Sym}(2) \). If \(O \neq x \), then any \(H \)-image is a centre again and as there is a transposition \((\alpha, \beta)(\ldots)(\ldots) \), the images must intersect \(x \) in a point. Counting these images we obtain \(|x^{H}| = \frac{1}{2} \cdot |H| = (|O| - 2) \cdot 2 + 1 \), or \(|O| \cdot (4 - |H_{a}|) = 6 \). Therefore \(|O| = 3 \), \(|H_{a}| = 2 \) and \(H \) is the symmetric group on \(O \). As \(H \) is generated by transpositions fixing all points in \(Y - x \), \(H \) acts as the identity on \(Y - x \) and the only centres are the three isomorphic pairs in \(O \). Therefore \(m(H, 3) = 1 \) which proves iii).

Secondly consider the case \(|H_{(x)}| = 1 \). Suppose that \(k \) in \(H_{x} \) displaces \(\beta \) i.e. \(k: \gamma \to \beta \to \delta \). As \(\{ \alpha, \beta, \gamma \} \) and \(\{ \alpha, \beta, \gamma \}^{h} \) both contain \(x \) we conclude that \(\gamma = \delta \). Therefore \(|H_{a}| \leq 2 \) and similarly \(|H_{b}| \leq 2 \). Consider the graph on the vertices \(O_{a} \cup O_{b} \) with edge set \(x^{H} \). If \(O_{a} \neq O_{b} \), it is bipartite with respective degrees \(d_{a} = |H_{a}| \) and \(d_{b} = |H_{b}| \). This results in the components of type 1-3. If \(O_{a} = O_{b} \), the degree is \(d_{a} = 2 \cdot |H_{a}| = 2 \) or \(4 \). If \(h = (\alpha, \beta, \gamma, \ldots, \delta) \ldots (\ldots) \) maps \(x \) onto \(\beta \), then \(\{ \alpha, \beta, \delta \} \) and \(\{ \alpha, \beta, \delta \}^{h} \) both contain \(x \). Therefore \(\gamma = \delta \) and \(h \) has order 3. If \(|H_{a}| = 1 \), the edges \(x, \{ \alpha, \gamma \} \) and \(\{ \gamma, \beta \} \) form a component of the graph. This is type 4. If \(|H_{a}| = 2 \), there is some \(k = (\alpha)(\beta, \xi) \ldots \) in \(H_{x} \) with \(\xi \neq \gamma \) and \(\xi \) must be displaced by \(h = (\alpha, \beta, \gamma)(\xi, \theta, \eta) \ldots \) From this one concludes that \(k = (\alpha)(\beta, \xi)(\gamma, \theta)(\eta) \ldots \) The resulting images of \(x \) form a component of type 5. This completes the proof.
We suppose now that for any subset \(Y \) of \(Y \) some group \(H \), acting on \(Y \) is given. Denote this collection of groups by \(\mathcal{G} = \{ H \} \). Let \(x \) be a given set of size \(k-1 \) and \(\mathcal{Y} = \{ x; y | x \subset y \text{ and } y \subseteq Y \text{ has size } k \} \). We say that \(\mathcal{Y} \) is a flag arrangement for \(\mathcal{G} \), if the following is true: Whenever \(A = \{ x; y_1, y_2, \ldots, y_i \} \subseteq \mathcal{Y} \), then \(A \) is an arrangement in \(Y_i = y_1 \cup y_2 \cup \ldots \cup y_i \) for the group \(H_i \). Two flag arrangements with centres \(x \) and \(x' \) are isomorphic if \(x^h = x' \) for some \(h \in H \), the group on \(Y \). Let \(m(\mathcal{G}, k) \) be the number non-isomorphic flag arrangements for \(\mathcal{G} \).

III. The growth of the sequence \(n_k \). Let \(G \) be a permutation group on a finite or infinite set \(S \). If \(X_i(G) = \{ O_1, \ldots, O_j, \ldots \} \) are the orbits on \(l \)-element subsets we define \(m_i(l, k) = m(\mathcal{G}, k) \) where \(\mathcal{G} \) is the collection of groups \(G^{x_i} \) induced by \(G \) on the subsets \(Y_i \subseteq Y \) for some fixed \(Y \) in \(O_j \). It is clear that the definition does not depend upon the choice of \(Y \) in \(O_j \).

Theorem 3.1. Suppose that \(G \) acts \((k - 1)\)-fold homogeneously on a set \(S \) with a finite number of orbits on \(X_k \) for some \(k \). If \(l \geq k \) let \(t = l - k + 1 \). Then

\[
\binom{n_k}{t} \leq \sum_{i=1}^{t} m_i(l, k).
\]

Proof. Let \(O_1, \ldots, O_{n_k} \) be all orbits of \(G \) on \(X_k \) and select some set \(x \) of size \(k - 1 \). For any \(t \) distinct orbits \(O_1, \ldots, O_t \), we select \(y_i \) in \(O_i \) for \(i = 1, \ldots, t \) such that \(x \subset y_i \). This is possible because \(G \) is \(k-1 \) homogeneous. Then \(\mathcal{Y} = \{ x; y_1, \ldots, y_i \} \) is a flag arrangement for \(\mathcal{G} = \{ G^{y_i} | Y_i \subseteq Y \} \) where \(Y = y_1 \cup y_2 \cup \ldots \cup y_i \). This is a consequence of the fact that the \(y_i \) belong to distinct \(G \)-orbits on \(X_k \). We label the collection \(Q_1, \ldots, Q_t \) by \(j \) if \(Y \) belongs to \(O_j \). (Of course the label is not necessarily uniquely determined). In all we require \(\binom{n_k}{t} \) labels where a label may be used several times.

Suppose therefore that also the sequence \(Q_1, Q_2, \ldots, Q_t \) obtains the label \(j \). Then there are \(y'_i \supset x, y'_i \subset Q_i \) for \(i = 1, \ldots, t \) such that \(Y' = y'_1 \cup y'_2 \cup \ldots \cup y'_t \) belongs to the same orbit as \(Y \). Let therefore \(g \) in \(G \) be such that \(Y'' = Y \). Then \(\{ x; y_1, \ldots, y_i \} \) and \(\{ x''; y'_1, \ldots, y'_t \} \) are flag arrangements for \(\mathcal{G} \). However, they are not isomorphic as \(\{ Q_1, \ldots, Q_t \} \neq \{ Q'_1, \ldots, Q'_t \} \). Therefore a label \(j \) may be used at most \(m_j(l, k) \) times. This gives the required inequality.

We note several consequences of the theorem:

Corollary 3.2. Let \(G \) be a transitive permutation group on a set \(S \) with a finite number \(n_2 \) of orbits on \(X_2 \). For a given \(l \geq 3 \) let \(n_{i,1} \) be the number of orbits \(O \) for which \(G^Y = 1, Y \in O \) and let \(n_{i,2} \) be the number of orbits \(O' \) for which \(G^Y \) is an elementary abelian 2-group, \(Y \in O' \). Then \(\binom{n_2}{l} \leq l \cdot n_{i,1} + l/2 \cdot n_{i,2} \).

Corollary 3.3. Suppose that \(G \) acts doubly homogeneously on a set \(S \) with a finite number \(n_3 \) of orbits on \(X_3 \). Let \(n_{i,j} \) be the number of orbits \(O \) for which \(|G^Y| = j, Y \in O \) and \(j = 1, 2, 3, \) or \(6 \). Then \(n_3(n_3 - 1) \leq 12 \cdot n_{4,1} + 6 \cdot n_{4,2} + 2 \cdot(n_{4,3} + n_{4,6}) \).

We also note the following theorem which gives a bound for \(n_2 \) if the action induced on subsets is sufficiently rich:
Corollary 3.4. Let G be transitive on a finite or infinite set S. Suppose there is a value l such that the following holds: Whenever $Y \subseteq S$ has size l and $s \in Y$ then there is a subset Y', $s \in Y' \subseteq Y$ with the following properties a) $G^{Y'} \neq 1$ and b) if $G^{Y'}$ is an elementary abelian 2-group, then the orbit of s under $G^{Y'}$ has length different from $|G^{Y'}|$. Then $n_2 < l - 1$.

Proof of 3.2. If $G^Y = 1$ on Y then $m_i(1, 2) \leq 1$ for the orbit containing Y and if G^Y is an elementary abelian 2-group on Y, then $m_i(l, k) \leq l/2$ for the orbit containing Y by theorem 2.1. The conclusion now follows from theorem 3.1.

Proof of 3.3. Using theorem 2.1 we get the bounds $m_i(4, 3) \leq 6$ if $G^Y = 1$, $m_i(4, 3) \leq 3$ if $|G^Y| = 2$ and $m_i(4, 3) \leq 1$ if $|G^Y| = 3$ or 6. In all other cases $m_i(4, 3) = 0$. The conclusion now follows from theorem 3.1.

Proof of 3.4. The hypothesis together with theorem 2.1 implies that no element of Y is the center of a flag arrangement. Therefore $m_i(l, 2) = 0$ for all orbits and so $n_2 < l - 1$ by theorem 3.1.

A simple but useful fact on orbits on X_k and X_l in general is

Theorem 3.5. Let G be a permutation group on a finite or infinite set with finite numbers n_k and n_l of orbits on X_k and X_l for some $k < l$. Let $E = O_1 \cup O_2 \cup \ldots \cup O_s$ be a union of distinct orbits of G on X_l and let r_i denote the number of orbits of G^{X_k} on the k-element subsets of $Y_i \in O_i$. Suppose the following holds about E: If Q_1 and Q_2 are any given G-orbits on X_k, then there exist $x_1, y_1, \ldots, y_t, x_2$ such that $x_1 \in y_1$, $|y_i \cap y_{i+1}| \geq k$ for $i = 1, \ldots, t - 1$, $y_t \supset x_2$ with $x_1 \in O_1$, $x_2 \in O_2$ and $y_i \in E$. Then

$$n_k \leq \sum_{i=1}^s \binom{t}{2} + 1.$$

Proof. We consider the graph whose vertices are the orbits $X_k(G)$. Two distinct orbits Q and Q' are linked by an edge e if there are $x \in Q$ and $x' \in Q'$ such that $x \cup x' \subseteq y \in E$. We label this edge by j if y belongs to O_j. The condition on E implies that this graph is connected. Therefore the total number of edges is at least $n_k - 1$. On the other hand, a label j may be used at most $\binom{t}{2}$ times. This yields the inequality.

We conclude with the following inequalities obtained from a theorem on orbits in graphs [4].

Theorem 3.6. Let G be a permutation group on a finite set S. Suppose that X_2 is a disjoint union $E_1 \cup E_2 \cup \ldots \cup E_r$ where each E_i is a union of G-orbits on X_2.

a) If each graph (S, E_i), $(i = 1, \ldots, r)$, is connected then $n_1 \leq r^{-1} \cdot n_2 + 1$.

b) If every connected component of (S, E_i) contains a circular path of odd length for all $i = 1, \ldots, r$, then $n_1 \leq r^{-1} \cdot n_2$.

Proof. Let G_i be the graph with vertices S and edge set E_i. Then G is a group of automorphisms of G_i and we denote the number of orbits of G on E_i by $|E_i(G)|$. By theorems 3.1 and 3.2 in [4] we have $n_1 \leq |E_1(G)| + 1$ and as $n_2 = \sum |E_i(G)|$ the assertion a) follows. If all connected components of G_i contain a cycle of odd length, then
$n_1 \leq |E_1(G)|$ as a consequence of theorem 2.1 and the proof of theorem 3.1 in [4]. This yields b).

References

Anschrift des Autors:

Johannes Siemons
Universita di Milano
Dipartimento di Matematica
“Federigo Enriques”
Via Saldini 50
20133 Milano, Italia
and
Rittnerstrasse 53
D-7500 Karlsruhe 41

Eingegangen am 30.1.1984