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Abstract

Let D= (P,L,I) be a design with points P, lines L, and incidence 1I.
Assume that G is a group of automorphisms of D acting primitively,
of rank-3 on L, and transitively, rank-3 on P. Assume further that
the characters of the actions G|P, G|L are Xp and X, with Xp = Xy,
=1+ X+ ¢, where X, and ¢ are irreducibles. We show that almost
always the action G|P is also primitive. The argument wuses an
appropriate commuting algebra C for G to show that, except for the
case where a specific numeric condition holds, a certain matrix in C
is invertible. It is believed that the argument can be generalized to
arbitrary rank for G|L.

Introduction

If G|Q is a group action, we denote by +v(G|Q) the number of
G-orbits on Q. Thus, G|R is transitive if and only if V(G|R) = 1.
If G|2 is transitive, then the Eggg' p(G|Q) is defined to be the
number Vv(G|R x Q) of G-orbits on Q@ x Q. Thus, for || > 1,
p(G]Q) > 2, and p(G|Q) = 2 if and only if G|Q is doubly transitive.

If G|Q is a transitive action, a non-empty set 4 < Q is called a
block of imprimitivity if and only if 89na=ao0r # for each g ¢ G.
A transitive action G|Q is called primitive if and only if the only
blocks of imprimitivity are the singleton subsets {x}, x € Q, and ®
itself. 1If G|R is 2-transitive, then it is primitive. G|? is
primitive if and only if the stabilizer Ga is a maximal subgroup of G.

By a design we mean an incidence structure D = (P,L,I) which is a
t—design for t > 2 [l]. Here, P is the set of points, L the set of
lines, and I (c P x L) the incidence between points and lines. If G is

an automorphism group of a design D = (P,L,I), then two analogs of
Fisher’s inequality hold. The first is that

v(G|P) < V(G|L) (1)
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Thus, if G|L is transitive, so is G|P. The second analog is that if
G|L is transitive, then:

p(G|P) < p(G|L) (2)

A consequence of (2) is, of course, that if G is 2-transitive on lines,
then it must be 2-transitive on points.

The rank-3 case

The question has been frequently asked: does primitivity on lines
imply primitivity on points? There are some theorems known [1] about
when primitivity of G|P can be deduced from other conditions, but
the general question is still open. The rank-3 case which we
investigate here was proposed by A. Wagner whom we thank for many
inspiring discussions. We prove the following theorem:

Theorem: Suppose that G is a group of automorphisms of the design
D = (P,L,I) acting primitively and of rank-3 on L. Assume,
furthermore, that in case p(G|P) = 3, the characters XP' xL of the
actions G|P, G|L satisfy xP = xL =1+ X+vy, where X, ¢ are
irreducible characters of G. Then, G|P is almost always primitive.

Proof: If p(G|P) = 2 then G is doubly transitive on points and
therefore primitive. Suppose now that p(G|P) = 3, and x(1) < w(l). If
we were to suppose that G|P is not primitive, then for p ¢ P, Gp ; H ;
G for some subgroup H of G and there is a non-trivial system of
imprimitivity B = {Bl,...,Br} in the action G|P, with 1 < r < v, r|v,
and H = Gﬁ' Since Gp § H, the character of G|B is Xg = l1+XxX and
r=1+ X(1) divides ¢(1). It follows that Xx(1) < y(1l) and X # v.

Since Xg = 1+ X Xp = X, = 1+ X+vy, we have that (XB,XP) =
(XgrXg,) = (XgrXg) =2 and (XpiXp) = (XpiX) = (X, %) = 3. This
implies, among other, that G is doubly transitive on B, hence |G| 1is
even, that G has exactly two orbits A and ©on L x B, and exactly
three orbits I, A, Ton L x L. Here, I is the diagonal orbit in L x L
and since |G| is even, A and T are symmetric orbitals (A-1 = T).

Each of A and 6 define an incidence structure between L and B,
while I, A, T define graphs with vertex set L. We identify A, 6, I,
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4, T with the incidence (adjacency) matrices of the corresponding
incidence structures or graphs. As matrices A, @ are of size v x r,
while I, 8, T are of size v xv. We let k,{\u,d,s,t,£,9 be the
rank-3 parameters [3) of the graph defined by A. For lines 2.0,‘21, £,
such that (Ko,ﬂl) € A and (Ko,tz) ¢ T we define the integer parameters
hy = [A(2g) |, hy = [Aeg) N A(£y)| and hy = |A(gg) N A(£y)|. Then,

MY =h.I+ hd+hT (3)

0 1 2
and,

rank(AAT) < rank(A) < £ <V (4)

If we can show that AA? is nonsingular, then rank(AA?) = v, and we
would have shown that r = v, a contradiction to G_ »¥ H. We normalize,

P
and consider the matrix

M= (l/ho)MT =TI+ xA+yl (5)

where, 0 <y = (hy/hy) < x = (hy/hy) < 1. Furthermore, we seek condi-
tions under which an inverse for M exists in the commuting algebra
C={al + bA + cT : a,b,c £ Q}.

Recall that I + A+ I'=J, the all 1’s v x v matrix, and that
AT = KT + MA + pT. Thus, A% = BAT = kI + AA + u(J-8-T) = (k-u)I +
(M»u)8 + pJ. We further have that AJ JA = kJ, and J2 = vJ. Now,
changing bases from {I,A,T} to {I,A,J} yields M=1I + xA + y(J-I-4) =

(1-y)I + (x~-y)A + yd.

Since in any non-trivial case y # 1, we normalize again and seek
*
an inverse for M = (1/1-y)M = I + uA + wJ in C , where

u= (x-y)/(l-y) , and w = y/(1-y) (6)
There exist a,b,c € Q such that
(I+uvA+wlh)(al +bA+cJ) =1 (7)
if and only if al + bA +cJ + uad + ubA2 + ucAJ + wad +
wbJA + wc.'.l2 = I from which we get (a + bu(k—u))I + (b + ua + ub(}-u))Aa

+ (c + uby + uck + wbk + wa + wev)J = I. Since I, A, and J form a basis
for C over Q we have:
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a + u(k-u)b + 0c =1
ua + (1 + u(x=u))b + 0c =0 (8)
wa + (ww +wk)b + (1 +uk +wv)c =0

M fails to have an inverse in C if and only if the determinant of the

coefficients in system (8) vanishes, which is equivalent to

(1 + uk + wv) ((p=k)u® + (A=p)u + 1) = 0 (9)

Now, u, w, k, v are all non-negative, hence (9) can hold iff

(u=K)u + (Zp)u + 1 = 0 (10)

Since k > y, we have that Jg‘ - J(Arp)z + 4(k-y) > |»u| therefore,
(u = X+ {d)2(u-k) < 0, and the only possible solution u > 0 to
equation (10) is

u=(u-x-4d)/2(uk) = s/(k-u) (11)

where s is the positive eigenvalue of A [3]. Since u = (hl-hz)/(ho-hz)
we have proved that G|P is primitive unless (ho-hz)(k-u) - s(hl—hz).
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