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Decompositions of Modules Associated to Finite
Partially Ordered Sets

JOHANNES SIEMONS

For a finite partially ordered set L and a field F, let FL be the associated vector space with L
as basis. In the case of ranked posets this space decomposes into eigenspaces under the maps
afforded by the order relation. In this note we show how to construct generating sets for such
decompositions and discuss their combinatorial significance.

1. ASSOCIATED MODULES

We consider finite partially ordered sets (L, <) with unique minimal element 0 and
with rank function ||:L—N; that is, |x|=r is the length of any saturated chain
0<x,<---<x,=x. Denote the set of elements of rank k by L,.

For a field F the vector space FL, consists of all formal sums }; fx with f, in F and x
in 1. Also put FL:=&®,FL,. The order relation on L gives rise to the maps
*: Fle— Fl,y, and ~: FL,— FL,_; which are defined on a basis of FL, by x* =3, _, y
(with y in L;4,;) and x™ = }¥,.., z (with z in L;_,). These maps thus lead to the chain

Floe= FlLie= Fle= - - == Fly e Flyy == Fliyp . (1)

Now observe that * and ~ are adjoint to each other in the standard inner products.
Hence the maps ™~ and ™ are self-adjoint or symmetric. Correspondingly — at least for
suitable fields—each FIl, decomposes into eigenspaces under *~ and ~*. These
decompositions are the subject of this note. They appear to be important objects, as
they are defined entirely in terms of the order relation in L.

Below we construct generating sets when L is the Boolean lattice of subsets of a finite
set. The construction seems to rely mostly on the fact that L has a large group of
automorphisms. For this reason I expect that finite projective spaces can be treated
analogously.

2. EIGENSPACE DECOMPOSITIONS

Regarding the sequence (1) above, we fix some value of k and suppose that
D, E, = Fl, <> Fly,, = ©;+ E}. are decompositiosn into eigenspaces E, of *~ and
E}. of ™7 respectively. The lemma below shows that we can arrange the sums in such
a way that A = A* with isomorphisms E}. = (E;)* and E; =(E}.)” unless A= 0= A*.

Lemma 1. Let a: V—>V* and B:V*—V be linear maps between vector spaces.
Denote by E, the eigenspace of the map Ba: V — V and by E; the eigenspace of the map
af:V*—>V* for the same value A in both cases. If A+0 then «:E,— E} and
B: EX— E, are isomorphisms.

(The proof is very easy: for x in E, we have af(ax)= a(Bax)=Aax so that
a: E;— E7, even injectively as long as A #0. Now apply the same argument to f3.)
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Comparing the decomposition ®; E, = Fl, < FlL,,, = ®;. E}. to those of adjacent
spaces Fl,_, < Fl; or Fl;,, < Fl,., we note that in general there may be no relation
at all. However, frequently a linear recurrence relation of the type

X T —aqx=bx"" (@x, by #0in F, all x in L, and all k) ()
holds. For instance, this is the case in the Boolean lattice, in projective spaces or in
posets associated to 2-designs. Partially ordered sets satisfying (2) were considered in
[6] and have been the motivation for this note.

In this situation it is immediate that FI,_, < FL, and FL, & Fl,., give rise to the
same eigenspace decomposition for each FIL,. We therefore write FL, =@, E, ,
unambiguously. Also let x— x™" denote the r-fold application of the map x— x*.

PROPOSITION 1. Suppose that L satisfies (2) above. Then the eigenvalues of the map
*7: Fly— FL, are at most k + 1 integers A, for 0<i <k and every k. Furthermore, if
Lol <|Ly| =+ - - < |L| < |Lx| then the A, can be arranged as Ay, = Ay, = Ay =---=
A=+ Z My k= Ak, where A has multiplicity |L;| — |L;_,|, independently of k.
The corresponding eigenspace satisfies E,,, = (E;, )**™".

For details, see [6, Theorem 2.4].

3. GENERATING SETS IN THE BOOLEAN LATTICE

We give an explicit description of generators for the eigenspaces E;, , above when L
is the power set of some finite set €2 of size n. We only consider the case when 2k < n.
By Proposition 1 above, it will be sufficient to determine E, , for every ¢. Let F be the
field of rational numbers and consider the map *~: FL, <> FL,. As E,  is an eigenspace
of "":Fl,~FLl,and as E,  +E,, +---+E,, _, isisomorphic to FL,_, it follows that,
alternatively, E, , is the kernel of ~: FI,— FL,_,. So, for instance, E w0018 Floy=F, E,; |
is (¢ —B|a Be Q) and E;,, is generated by elements of the form e, — e, +e; —e,,
where e, e, €3, e, when viewed as a graph form a 4-cycle.

We extend the Boolean operations on £ to turn FL into an associative algebra (see
[5] and Mnukhin [4], also in these proceedings): for f =Y., f.x in FL and y in L we
put fUy:=X,q f. (xUy). The U-product can be extended linearly to the whole of
FL, which is now an associative algebra with identity. We say that g =% gy Is
disjoint from f if f, # 0+ g, implies that x and y are disjoint sets. An important fact is
that disjoint elements satisfy the product rule (f Ug) " =fUg™ +f Ug.

ProrosiTiON 2. Let M be a generating set for E, .. For points a # 8 in Q denote
the set of all elements in M disjoint from {«, B} by M,g. Then M* = {(a« — B)Um | « +
P e 2and me Mg} is a generating set for E, .

Proor. Let U be the subspace generated by M*. The expressions in M* involve
t-sets only, and ((¢ - B)Um)" =(a—-B)Um™ + (a—B)"Um=0; hence U is con-
tained in E;, . The symmetric group actson FLby f =¥, fix—>f¥ =X, f.x& for g in
Sym(£2). We show that U is invariant under Sym(£2). Let g be a permutation: then
(= BYUm)E =((a® — ) Um?). As m* belongs to E,_, _ it can be written as a
combination of elements from M which, furthermore, are all disjoint from {a%, §5}.
Hence ((« — B)Um)®isin U.

Now let x be in E,  and let & # f be any two points of 2. We write x uniquely as
x=aUa+BUb+ {a, B} Uc+d, where a,beFlL,_,,ceFL,_, and d e FL, are all
disjoint from {a, B}. If g is the transposition interchanging o and B but fixing the
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remaining points, then x* = Ua+ aUb + {a, B} Uc +d, so that x —x¥ = (a — ) U
(@a—Db). Since 0=(x—x5)"=0)U(@—b)+(a—pP)U(a—>b)" it follows that (a—
b)" =0 and so x —x?# belongs to U. We write this as x =x* mod(U). As g is an
arbitrary transposition, it follows that x =x® mod(U) holds for any g in Sym(Q). As
Sym(L) is finite the coset x + U must therefore contain a vector fixed by Sym(£).
However, the only such vectors are in E, , (the 1-dimensional space spanned by the
sum over all t-subsets). Hence 0 belongs to x + U = U, and the proof is complete. [

The generating sets given above for E, , E, , and E;,, evolve in this pattern from
the vector in E, ,. Continuing in the same way we construct what one might call the
standard generating set S, , for each E, . Thus take x in S, ,. Then x involves 2 sets with
coefficients either 1 or —1 and the union of those sets appearing in x with non-zero
coefficient forms as set A, of size 2t. We put o,,:= Yrcoua,n=-I and define
S«={xUg,,|xinS,, and r=k —1t}.

ProposITION 3. For t <k <n/2 the space E,,, is generated by S, ;.

Proor. - We only need to consider the case ¢t <k. By Proposition 1 above E, , is
generated by {x*" |x in S,,}, where r=k —¢t. Hence the result follows from the
formula

xT'=rl-(xUag,), where o, =0, ,, 3)

which we now prove. By induction we assume x*¢ V=(r—1)!:-(xUo,_,) and
compute (x U o,_;)*. The latter is equal to r - (x U 0,) + (x'*’ U 0,_,) where *) denotes
the map * when applied to subsets a of A; that is, a'* = L, 4, a U a. But it is easy to
see that (*) and ~, on the module of ¢-subsets of a set of size 2¢, have the same kernel.
Thus, as x~ =0, also x*) =0 and so (3) holds. O

4. WEIGHTS

The weight of a vector x in FL is the number w(x) of sets appearing in x with
non-zero coefficient. We observe that the vectors in S,, have weight 2‘- (3 7%).
Regarding the question of minimum weights see also the paper by Frankl and Pach [1].

Rather surprisingly, in E,, , we obtain:
PROPOSITION 4. The set of minimum weight vectors in E;_, is Sy .

It appears that such a result should hold for arbitrary ¢t=<k. However, we were
unable to prove this. Note that all the vectors §,, have coefficients from the set
{-1,0,1} so that one may consider this question in arbitrary characteristic. The
following argument holds independently.

Proor. The proposition is obvious when ¢ = k = 1. We proceed by induction. Thus
let x #0 be a minimum weight vector in E,_ , and denote its weight by w(x). We know
from above that

w(x) <2~ 4)

Let Q* be the support of x; that is, the union of all sets appearing in x with non-zero
coefficient, and let v be the cardinality of £*. We can assume that 2k <wv, for
otherwise the map ~ restricted to Q* is injective and x = 0.
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Now let a# B be any points in * and write x, as in the proof of Proposition 2,
uniquely as x=aUa+BUb+ {a, f}Uc+d. Since O0=x"=aU(@ +c)+BU
b +c)+{a, B}Uc™ +(a+b+d”), we have in particular:

0=a" +c, 0=>b"+c, O=c~ and a+b+d =0. (5)

Thus either ¢ =0 or, by induction, w(c)=2%"?. We now show that there must be at
least one choice of @, B for which ¢ =0. For assume the contrary. Counting triples
(o, B, A| &, Be A, A appears in x) we obtain 2%~ Dy(v — 1)/2 < w(x)k(k — 1)/2. This
contradicts (4) above and the fact that 2k < wv.

Thus choose « and B such that x=aUa + B Ub +d. Notice that a #0+# b since
@, B belong to 2%, but a”=0=>0" by (5). By induction on k we can assume that
26-V<w(a) and 2% V<w(b). Therefore 2*=w(x)=w(a)+w(b)+w(d)=2*+
w(d) implies that d = 0. Going back to (5) we see that b = —a, so that x = (& — ) U a.
This proves that w(x) =2* and w(a) = 2%, By induction, x belongs to S ,. O

5. REMARKS

1. The symmetric group has rank k +1 as permutation group on the k-element
subsets of 2. This implies that the E, , are irreducible for each ¢ <k and so appear as
Specht modules (see [2] or [3]). One can observe directly that E,  arises in Specht’s
construction from the tableau corresponding to the partition of type (n — k, k). There
are other situations in which the E,  are irreducible. These include, for instance,
projective spaces over a finite field.

2. Often, the construction of combinatorial objects is equivalent to solving an
equation of the type x™" =a in FI, where x is required to be a vector of non-negative
integer components. Thus, for instance, a t-design on £ with block size k can be
identified with a zero—one vector x in FL, which satisfies x“* 9 =g, where a is a
vector of constant entries. It seems desirable to obtain further invariants of the maps ~
or *. This applies in particular to integer invariants such as elementary divisors and
rational congruences. Some aspects of the latter are discussed in [6, Section 5].
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