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Let R be an associative ring with identity and V an n-element set. For k F n
consider the R-module M with k-element subsets of V as basis. The r-stepk
inclusion map ­ : M ª M is the linear map defined on this basis throughr k kyr
Ž . Ž .­ D [ G q G q ??? qG where the G are the k y r -element subsets of D.r 1 2 ikŽ .r

For m - r one obtains chains

­ ­ ­ ­ ­ ­r r r r r r
MM : 0 ¤ M ¤ M ¤ M ¤ M ¤ ??? ¤ 0m mqr mq2 r mq3 r

of inclusion maps which have interesting homological properties if R has charac-
Žteristic p ) 0. V. B. Mnukhin and J. Siemons J. Combin. Theory 74, 1996

.287]300; J. Algebra 179, 1995, 191]199 introduced the notion of p-homology to
examine such sequences when r s 1 and here we continue this investigation when
r is a power of p. We show that any section of MM not containing certain middle
terms is p-exact and we determine the homology modules for such middle terms.
Numerous infinite families of irreducible modules for the symmetric groups arise
in this fashion. Among these the semi-simple inductï e systems discussed by A.

Ž .Kleshchev J. Algebra 181, 1996, 584]592 appear and in the special case p s 5 we
Žobtain the Fibonacci representations of A. J. E. Ryba J. Algebra 170, 1994,

.678]686 . There are also applications to permutation groups of order co-prime to
p, resulting in Euler]Poincare equations for the number of orbits on subsets of´
such groups. Q 1998 Academic Press

1. INTRODUCTION

Let V be a set of finite size n and R an associative ring with identity.
For k F n consider the R-module M which has k-element subsets of Vk
as basis. So M consists of all formal sums f s Ý f D with D : V andk <D <sk D
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f g R. When r G 0 is an integer the r-step inclusion map ­ : M ª MD r k kyr
Ž .is the linear map defined through ­ D [ G q G q ??? qG where Gkr 1 2 iŽ .r

Ž .are the k y r -element subsets of D. So fixing some m - r we obtain a
chain of inclusion maps

­ ­ ­ ­ ­r r r r r
MM : 0 ¤ M ¤ M ¤ M ¤ M ¤ ??? .m mqr mq2 r mq3 r

When R has characteristic p ) 0 then ­ p is the zero map and one isr
w xinterested in the homological properties of MM. In the papers 10, 11 with

Valery Mnukhin we have defined the notion of a p-homological and
p-exact sequence}see the definition in Section 3}and this paper is a
continuation of that work.

For the purpose of p-homology it is necessary to investigate certain
subchains of MM. We assume now that R is a ring of prime characteristic
p ) 0 and that r is a power of p. For integers 0 - iU - p and 0 F kU '

Ž . U Um mod r with k q i r - pr we consider the subsequence

MM U U : 0 ¤ M U ¤ M U U ¤ M U ¤ M U U ¤ M U U ??? .k , i k k qi r k qpr k qŽ i qp. r k q2 i r

Here each arrow represents the relevant power of ­ and as ­ p s 0 we seer r
ŽU Uthat MM is homological. MM would be p-exact by definition if allk , i

.U Usubsequences MM of the kind just described were exact .k , i
Ž .Let ) : M ¤ M ¤ M be any three consecutive termsky i r k kqŽ pyi. r

U Ž . U U
U Uof MM , thus either k ' k mod pr with i s p y i or k ' k qk , i

Ž . U Ž . Ž .i*r mod pr with i s i . We say that ) or k, ir is a middle term for
Ž .U U U UMM if n - 2k q p y i r - n q pr. Note that MM may have nok , i k , i

Ž .middle terms take n odd, p s 2, and r s 1, for example , but if there is
one then it is unique and we can speak of the middle term for MM U U .k , i

In Theorem 3.2 we prove that any section of MM U U not containing itsk , i
w xmiddle term is exact. This result is already contained in Bier’s paper 2

w xand it is proved there via rank arguments based on Wilson’s work 15 . Our
proof is more direct. In Section 2 we develop the general calculus for
inclusion maps in [ M . This leads to an ‘‘integration theorem’’ whichkk G 0

py iŽ .allows us to write down a pre-image F with ­ f s f for any f withr
iŽ . Ž .­ F s 0 unless k, ir is a middle term. If M ¤ M ¤ is ar kyi r k kqŽ pyi. r

middle term denote the kernel of ­ i by K n [ ker ­ i l M n and so letr k , i r r k
n n pyiŽ n .H [ K r­ M be the only non-trivial homology module ofk , i r k , i r r kqŽ pyi. r

MM U U .k , i
In Section 5 we determine explicit generators for all H n and in Sectionk , i r

6 we classify completely the homologies of the 1-step map. In Theorem 6.2
n ny1 ny1 Ž .it is shown that H is isomorphic to H [ H as Sym V R a -k , i k , iq1 ky1, iy1

Ž .modules. This is used to construct infinite families of irreducible Sym V -
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modules for arbitrary primes p ) 2 occurring as the homology modules of
the 1-step inclusion map.

� nFor an arbitrary prime p ) 2 the family H : 0 - i - p, k F n,k , i
42k y i q 1 s n is an example of a semi-simple inductï e system as consid-

w xered by Kleshchev 9 and in the case p s 5 we obtain Ryba’s Fibonacci
w x w xrepresentations of 13 . In 3 Bier has shown how certain spin modules over

Ž .GF 2 arise as the homology modules of the 2-step map when R has
characteristic 2. These examples illustrate that the notion of p-homology
leads to worthwhile results on the modular representation theory of the
symmetric groups. For the modules of the r-step maps with r ) 1 in
general not much appears in the literature. Our description of the H n ink , i r
Section 5 is explicit enough to allow a full analysis of these modules which
may be presented in a subsequent paper.

Other applications concern permutation groups. Permutations act natu-
Ž .rally on [ M and for any group G : Sym V we can consider thekk G 0

G � g 4orbit module in M defined as M [ f g M : f s f ;g g G . Its natu-k k k
ral basis are the ‘‘orbit sums’’ S U G GU where GG as usual denotesG g G

� g 4 GG : g g G . In particular, the dimension of M is the number of G-orbitsk
Ž G. Ž G .on the k-element subsets of V. As ­ M : M we obtain sequencesr k kyr

of the kind

MM G
U U : 0 ¤ M G

U ¤ M G
U U ¤ M G

U ¤ M G
U U ¤ M G

U ??? ,k , i k k qi r k qpr k qŽ i qp. r k q2 pr

where each term is a submodule of the corresponding term in MM U U . Suchk , i
a sequence is automatically homological but may fail to be exact at terms
where MM U U is exact. However, in Theorem 4.1 we show that if the orderk , i
of G is not divisible by p, then any section of MM G

U U not containing itsk , i
middle term is exact.

Ž . G G G
U UIf k, ir is a middle term of MM we let H [ K l M rk , i k , i r k , i r k

py iŽ G . G
U U­ M denote the only non-trivial homology module in MM .r kqŽ pyi. r k , i

The results in Section 5 give generators for H G and in Theorem 4.5 wek , i r
obtain Euler]Poincare equations for the number of G-orbits on k-element´
subsets of V when p does not divide the order of G. For p s 2 we have

w xmade use of such equations before in 10 for groups of odd order.
Modular pU-homology over rings R of characteristic p ) 0 for se-

quences such as MM above can be considered for more general classes of
partially ordered sets. Note that it will be necessary to distinguish between
the characteristic of the ring and the interval length pU appearing in the
definition of pU-homology; for the Boolean lattice these happen to coin-

Ž < <.cide. If PP, F , ) is a ranked poset and if M denotes the R-module withk
� < < 4x g PP : x s k as basis then one can define order maps ­ : M ª Mk ky1
analogous to ­ and therefore the question of pU-homology can be studiedr

w xalso for such ranked posets. In 12 we have done this for projective spaces
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Ž . Žover GF q when the coefficient ring R has characteristic p / q for
.p s q no homologies occur . The results are interesting: One principal

difference to the Boolean case is that pU indeed is different from the
characteristic of the coefficient ring. On the other hand, also in projective
spaces every chain such as MM U U is inexact in at most one position and sok , i
gives rise to just one non-trivial homology. We hope that these facts
support the suggestion that the modular homology considered here uncov-
ers some deeper properties of partially ordered sets.

2. THE r-STEP INCLUSION MAP

Throughout R will be an associative ring with identity and V a finite set
of cardinality n. We let 2V denote the collection of subsets of V and R2V

the R-module with 2V as a basis.
For an integer k the collection of all k-element subsets of V is denoted

by V�k4. Furthermore, we let RV�k4 ; R2V denote the submodule with
k-element subsets as basis. We will abbreviate RV�k4 by M n or simply Mk k
if the context is clear. We identify V�14 with V and 1 ? B with 1 g R so

� 4that in particular M s r ? B : r g R s R. Also, we put M s 0 whenever0 k
k - 0 or k ) n and refer to R as the coefficient ring of M .k

For f s Ý f D g R2V the support of f is the union of all D for whichD

5 5 < <f / 0; we will denote it by supp f. The support size of f is f [ supp f .D

Two elements f and h of R2V are said to be disjoint if supp f and supp h
are disjoint sets.

The Boolean operation of set union is easily extended to a product on
R2V : if f s Ý f D and h s Ýh G are elements of R2V we defineD G

f j h f h D j G .Ž .Ý D G
D , G

It is a simple matter to check that R2V with this product is an associative
algebra with the empty set as identity.

For an integer r G 0 the r-step inclusion map on 2V is the linear map
­ : R2V ª R2V given byr

­ D s G q G q ??? qG ,Ž .r 1 2 kŽ .r

Ž .where D is a k-element subset of V and where the G are the k y r -i
Ž .element subsets of D. In particular, ­ is the identity map, ­ D s 0 if0 r

< < Ž . < <D - r, and ­ D s 1 g R if r s D . Clearly, this map restricts to homo-r
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morphisms

­ : M ª M .r k kyr

Furthermore, it is easily verified that for any positive integer s we have

r q s ­ s ­ ­ .rqs r sž /r

Let f be an element of R2V. Then for any a in V we can write f
uniquely as

f s a j f q la

in such a way that a does not belong to supp f j supp l. Also verya

important is the following
V Ž .LEMMA 2.1. If f and h are disjoint elements in R2 then ­ f j h sr

r Ž . Ž .Ý ­ f j ­ h .js0 j ryj

Proof. The identity is obvious when f and h are two disjoint sets and
follows from linearity in general.

We shall use these basic facts without further reference. The next
w xtheorem generalizes Theorem 2.1 of 10 where the result was proved for

the one-step map.

THEOREM 2.2. For any coefficient ring with identity the kernel of ­ : Mr k
� 4ª M is generated by elements of support size at most max 2k y r q 1, k .ky r

Remark. When the coefficient ring is an integral domain of character-
istic 0 then the minimum support size of elements in the kernel is

� 4max 2k y r q 1, k exactly. This can be seen from simple rank arguments.
However, in non-zero characteristic there may be elements of smaller
support size. Corollary 3.4 later gives more information.

w xProof. The proof follows closely that of Theorem 2.1 in 10 and
proceeds by induction on n. For n s 1, 2 the result is easily verified.

n 5 5Therefore suppose that n ) 2 and that f g ker ­ l M with f )r k
� 4max 2k y r q 1, k . Furthermore, we may assume that r F k, for if r ) k

then the standard basis of M n is contained in the kernel of ­ and thek r
result clearly holds.

We pick a g supp f and write f s a j f q l where a f supp f ja a

supp l. Then by Lemma 2.1

0 s ­ f s a j ­ f q ­ f q ­ l .Ž . Ž . Ž . Ž .r r a ry1 a r

Therefore, f g ker ­ l M ny1 and by the inductive hypothesis we maya r ky1
s ny1 5 5 �write f s Ý w with w g ker ­ l M and w F max 2k y r y 1, ka is1 i i r ky1 i
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4 5 5 Ž . 5 5y 1 . As f ) 2k y r q 1 s k q 1 q k y r G k q 1, we have f G
5 5w q 2 for i s 1, . . . , s. Hence, whenever 1 F i F s, we may choose a ini i

5Ž .5V with a / a and a g supp f R supp w . Then a y a j w s 2 qi i i i i
5 5 � 4 � 4 ŽŽ . .w F max 2k y r q 1, k q 1 s max 2k y r q 1, k and ­ a ya j wi r i i

s Ž . ss 0 by Lemma 2.1. Furthermore, f sÝ a ya j w qÝ a j w q lis1 i i is1 i i
and as Ýs a j w q l g ker ­ l M ny1 we may invoke the inductionis1 i i r k
hypothesis to complete the proof.

LEMMA 2.3. Suppose that R is an associatï e ring with identity and has
prime characteristic p ) 0. Let r G 1 be a power of p and let f be an element
of ker ­ l M . If 0 - s - p satisfies 2k q sr F n then there exists F inr k

sŽ .M with ­ F s f.kqsr r

5 5 �Proof. By the theorem above we may assume that f F max 2k y r q
41, k .

5 5Suppose firstly that f F k and that k ) 2k y r q 1. Therefore we
also have r ) k and r / 1. As k F n y sr y k there exists G : V with

5 5 Ž .y1 Ž .G l supp f s B and G s sr q k. We define F [ s! ­ G j f gk
tŽ . Ž .y1 Ž .M and show by induction on t F s that ­ F s t! s! ­ G j f.kqsr r t rqk

Taking t s s will then complete the proof in this case. For t s 0 the result
is certainly true and supposing the result holds for t F s y 1 we calculate,
using Lemma 2.1,

y1tq1­ F s ­ t! s! ­ D j fŽ . Ž . Ž .Ž .Ž .r r t rqk

r
y1s t! s! ­ ­ G j ­ fŽ . Ž . Ž .Ž .Ý ry j t rqk jž /

js0

k t q 1 r q k y jŽ .y1s t! s! ­ G j ­ f .Ž . Ž . Ž .Ý Ž tq1. rqkyj jž /ž /tr q kjs0

t q 1 r q k y jŽ .Ž . Ž .To deduce that ' 0 mod p if 0 - j F k we usetr q k

Ž w x.Fact 1. see 1, p. 8 . For a positive integer m and a prime p the
l ` ? n @ Ž ? @largest integer l such that p divides m! is Ý mrp where x denotesns1

.the integral part of the real number x .

And

? @ ? @ ? @Fact 2. For any real numbers x and y we have x q y G x q y .
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Therefore, if r s pd with d G 1, then the largest integer l such that pl

t q 1 r q k y jŽ .Ž .divides istr q k

` t q 1 r q k y j tr q k r y jŽ .
y yÝ n n nž /p p pns1

dy1 t q 1 r q k y j tr q k r y jŽ .
G t q 1 y t q y yŽ . Ý n n nž /p p pns1

Žwhich is strictly greater than zero. Note that each term of the sum is
t q 1 r q k y jŽ .. Ž .nonnegative by Fact 2. So we have indeed shown that 'tr q k

Ž .0 mod p if 0 - j F k.

Furthermore, we can calculate

t q 1 r q lŽ .t q 1 r q kŽ . s Ł ž /ž / tr q ltr q k ytr-lFk

r
s 1 qŁ ž /tr q lytr-lFk

1 1 1 1
' 1 q 1 q ??? 1 q 1 qž / ž / ž / ž /t t y 1 2 1

s t q 1

which completes the induction and gives the result in this case.
5 5 Ž .We may now suppose that f F 2k y r q 1 F n y s q 1 r q 1.

5 5 Ž .Therefore there exists G : V with G l supp f s B and G s s q 1 r y
Ž .y1 Ž . tŽ .1. We then define F [ s! ­ G j f and show inductively that ­ Fry1 r

Ž .y1 Ž .s t! s! ­ G j f whenever t F s. Taking t s s will then completeŽ tq1. ry1

the proof in this case. For t s 0 the result is certainly true and if we
suppose the result holds for t F s y 1 then

y1tq1­ F s ­ t! s! ­ G j fŽ . Ž . Ž .ž /r r Ž tq1. ry1

r
y1s t! s! ­ ­ G j ­ fŽ . Ž . Ž .Ž .Ý j Ž tq1. ry1 ryj

js1

r t q 1 r q j y 1Ž .y1s t! s! ­ G j ­ f .Ž . Ž . Ž .Ý Ž tq1. ry1qj ryjž /jjs1
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We note that we are done if r s 1. Therefore we suppose that r ) 1. But
then

t q 1 r q j y 1 t q 1 r q j y 2Ž . Ž .Ž . Ž .t q 1 r q j y 1Ž . s ?ž /j j y 1 j y 2Ž . Ž .

t q 1 r q 1 t q 1 rŽ . Ž .
? ??? ? ?

1 j

Ž .and we see that all terms in the product will be ' 1 mod p except the
Ž .last. This will be ' 0 mod p unless j s r when it will be t q 1. This

completes the induction and hence also the proof.

The main result of this section is the next theorem which shows that
w xCorollary 2.3 of 10 can be extended to r-step maps.

Ž .THEOREM 2.4 The Integration Theorem . Suppose that R is an associa-
tï e ring with identity of prime characteristic p. Let r G 1 be a power of p and

iŽ .let f be an element of M . Suppose further that ­ f s 0 with 0 - i - p andk r
� 4that j g 1, . . . , p y i satisfies 2k q jr F n. Then there exists F in M withkq jr

jŽ .­ F s f.r

Proof. The proof is by induction on i. For i s 1 the result holds by the
preceding lemma. Suppose the result holds for i F p y 2 and that f g

iq1 � Ž .4ker ­ l M with j g 1, . . . , p y i q 1 satisfying 2k q jr F n. Thenr k
iŽ Ž .. Ž . Ž . Ž­ ­ f s 0. Also ­ f g M and 2 k y r F n y jr y 2 r F n y j qr r r kyr
. � 41 r where j q 1 g 2, . . . , p y i . Therefore by the inductive hypothesis

jq1Ž . Ž . Ž jŽ . .there exists H g M with ­ H s ­ f . But then ­ ­ H y f s 0kq jr r r r r
and 2k q jr F n. So by the preceding lemma, there exists J g M withkq jr

jŽ . jŽ . jŽ .­ J s ­ H y f. Hence f s ­ H y J and the induction is complete.r r r

3. HOMOLOGICAL SEQUENCES

Throughout this chapter the coefficient ring R has prime characteristic
p ) 0, r G 1 is a power of p, and V is some finite of cardinality n.

We observe that ­ p : R2V ª R2V is the zero map. To see this recall ther
r q sŽ .formula ­ s ­ ­ from Section 2. By induction it follows thatrqs r sr

jr 2 r rj­ s ? ??? ? ? ­ .r jrž / ž /ž / r rr

pr pr y 1Ž . Ž . Ž .Now notice that s p ' 0 mod p .r r y 1
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The results in Section 2 lead us to investigate homology. We recall the
definitions: if x : A ª B and c : B ª C are homomorphisms then the

Ž . Ž .sequence A ª B ª C is homological at B if ker c = x A . In this case
Ž . Ž .H [ ker c rx A is the homology module at B and the sequence is exact

Ž . Ž .if H s 0, that is, if ker c s x A . A longer sequence

AA: ??? ¤ A ¤ A ¤ A ¤ A ¤ A ¤ ???jy2 jy1 j jq1 jq2

Ž . w xis homological exact if it has that property at every A . In 10, 11 we havei
introduced the following

Ž .DEFINITION. AA is p-exact p-homological if all subsequences of the
kind AA U U : ??? ¤ A U ¤ A U U ¤ A U ¤ A U U ¤ A U ¤k , i k k qi k qp k qi qp k q2 p

Ž . U U
U UA ¤ ??? are exact homological for every k and 0 - i - p.k qi q2 p

Ž .The arrows are the natural compositions of the maps in AA.

w xAs is pointed out in Bier’s paper 2 , this kind of homology was first
w x w xconsidered in the works 8 of Mayer in 1947, see also 14 .

Now select some m - r and consider the sequence

­ ­ ­ ­ ­r r r r r
MM : 0 ¤ M ¤ M ¤ M ¤ M ¤ ??? .m mqr mq2 r mq3 r

In order to investigate its p-homological properties we fix integers 0 - iU

U Ž . U U- p and 0 F k ' m mod r with k q i r - pr to obtain the subse-
quence

MM U U : 0 ¤ M U ¤ M U U ¤ M U ¤ M U U ¤ M U ???k , i k k qi r k qpr k qŽ i qp. r k q2 pr

in which each arrow represents the relevant power of ­ . Since ­ p : R2V
r r

ª R2V is the zero map this sequence is homological.
< < nFor general parameters V s n, 0 - i - p, and k we let K denotek , i r

ker ­ i l M n and letr k

H n [ K n r­ py i M nŽ .k , i r k , i r r kqŽ pyi. r

be the corresponding homology module. If f g K n then we denote itsk , i r
coset in H n byk , i r

w x py i nf [ f q ­ M .Ž .r kqŽ pyi. r

As before the superscript n can be dropped if the context is clear. We
begin by stating a consequence of the Integration Theorem of Section 2:

LEMMA 3.1. Suppose that R is an associatï e ring with identity and has
prime characteristic p. Let r G 1 be a power of p and suppose that 0 - i - p

Ž . nsatisfies 2k q p y i r F n. Then H s 0.k , i r
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To extend this result let now M ¤ M ¤ M be any threeky i r k kqŽ pyi. r

Ž U Ž . U
U Uconsecutive terms of MM . So either k ' k mod pr and i s p y i ork , i

U U Ž . U . Ž .k ' k q i r mod pr and i s i . We say that k, ir is a middle term for
Ž Ž . .U UMM if n - k q k q p y i r - n q pr, indicating that M ¤ Mk , i kyi r k

¤ M is nearest to the middle of MM U U . Note that there may be nokq Ž pyi. r k , i
Ž .U Umiddle terms for MM take n odd, p s 2, and r s 1, for example .k , i

However, if there is a middle term, then it is easy to see that there is at
most one so that we can talk of the middle term for MM U U . We extend thek , i

use of this term slightly and refer also to M ¤ M ¤ M as theky i r k kqŽ pyi. r

middle term of MM U U . Further, M ¤ M ¤ M will be called ak , i kyi r k kqŽ pyi. r

middle term, or a middle term of MM, if it is the middle term for some
MM U U .k , i

w xThe following result appears already in Bier’s paper 2, Satz 2 . The
w xproof there is based on Wilson’s rank formula 15 which yields the p-rank

Ž .of the incidence matrix of k-subsets versus k y ir -subsets of V.

THEOREM 3.2. Suppose that R is an associatï e ring with identity and has
prime characteristic p ) 0. Let r G 1 be a power of p. Then H n s 0 unlessk , i r
Ž .k, ir is a middle term.

COROLLARY 3.3. A section of MM containing no middle terms is p-exact.

COROLLARY 3.4. If the coefficient ring has prime characteristic p ) 0 and
Ž . iif k, ir is not a middle term then the kernel of ­ : M ª M is generatedr k kyi r

Ž .by elements of support size at most k q p y i r.

Proofs. The corollaries are clear. To prove the theorem we introduce a
V V Ž .new linear map U : R2 ª R2 defined by U D s G q G q ??? qG nykr r 1 2 Ž .r

Ž .where D is a k-element subset of V and where the G are the k q r -i

element subsets of V containing D. Note that for 0 - i - p the matrix
representing U i : M ª M is the transpose of the matrix representingr k kqi r

­ i : M ª M . In particular, U i : M ª M and ­ i : M ª Mr kqi r k r k kqi r r kqi r k

have the same rank. Furthermore, the linear map c : R2V ª R2V defined
Ž .by c D s V R D is a module isomorphism which satisfies cU c s ­ .r r

Let M ¤ M ¤ M be consecutive terms of MM U U where withouta b aqpr k , i

loss of generality b s a q ir. If a q b q pr F n then this sequence will be
exact by Lemma 3.1. Hence we may assume that a q b q pr G n q pr. We
consider the sequence of modules M ¤ M ¤ M . Since 2nny Žaqpr . nyb nya

Ž .y a q b F n, Lemma 3.1 implies that this sequence is exact. But then we
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calculate

dim H s dim K y dim ­ pq i MŽ .b , i r b , i r r aqpr

s dim M y dim ­ i M y dim ­ py i MŽ . Ž .b r b r aqpr

s dim M y dim U i M y dim U py i MŽ . Ž .b r a r b

s dim M y dim ­ i M y dim ­ py i MŽ . Ž .nyb r nya r nyb

s dim K y dim ­ i MŽ .nyb , Ž pyi.?r r nya

s dim Hnyb , Ž pyi.?r

s 0.
This completes the proof.

4. GROUP ACTIONS AND THE
´EULER]POINCARE EQUATION

We shall show that there is a canonical way to attach submodules of
R2V to any permutation group on V. These give rise to homological
sequences to which we can apply the result of the last section in order to
establish exactness.

As before, the coefficient ring R has prime characteristic p ) 0, r G 1
Ž .is a power of p, V is some finite set of cardinality n, and G : Sym V is a

permutation group on V.
V g � gLet g be a permutation of V. Then g acts on 2 by G ¬ G [ g : g

4 Vg G which can be extended linearly to the whole of R2 . It is not
difficult to see that g commutes with ­ and so images and kernels of ­ i

r r
are left invariant by permutations. This also implies that permutations act
as linear maps on the homology modules H .k , i r

We define the orbit module of G in M ask

M G [ f g M : f g s f , ;g g G .� 4k k

The natural basis for M G are the ‘‘orbit sums’’ Ý U G GU where GG ask G g G

� g 4usual denotes G : g g G . In particular

nG [ dim M G
k k

�k4 Ž G. Ž G .is the number of G-orbits on V . As ­ M : M we obtainr k kyr
sequences of orbit modules. Therefore select as before some m - r and
consider the sequence

­ ­ ­ ­ ­r r r r rG G G G GMM : 0 ¤ M ¤ M ¤ M ¤ M ¤ ???m mqr mq2 r mq3 r
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which is certainly p-homological. In order to investigate p-exactness we fix
U U Ž . U Uintegers 0 - i - p and 0 F k ' m mod r with k q i r - pr to obtain

the subsequence

MM G
U U : 0 ¤ M G

U ¤ M G
U U ¤ M G

U ¤ M G
U U ¤ M G

U ???k , i k k qi r k qpr k qŽ i qp. r k q2 pr

of MM G in which arrows are appropriate powers of ­ .r
< < GFor arbitrary parameters V s n, 0 - i - p, and k we let K denotek , i r

ker ­ i l M G and letr k

H G [ K G r­ py i M GŽ .k , i r k , i r r kqŽ pyi. r

be the corresponding homology module. If f g K G we denote its coset ink , i r
H G byk , i r

w x py i Gf [ f q ­ M .Ž .r kqŽ pyi. r

The dimension of H G is the Betti numberk , i r

b G [ dim H G .k , i r k , i r

In particular, if G is the identity group then H G s H n and we putk , i r k , i r

b n [ dim H n .k , i r k , i r

n Ž .By Theorem 3.2 we have b s 0 unless k, ir is the middle term ofk , i r
MM U U in which case we refer to b n as the Betti number of MM U U .k , i k , i r k , i

Middle terms for MM G
U U and MM G are defined as before. We now examinek , i

MM G
U U for exactness.k , i

THEOREM 4.1. Suppose that R is a ring of prime characteristic p ) 0. Let
r G 1 be a power of p and G a permutation group on V whose order is not

G Ž .dï isible by p. Then H s 0 unless k, ir is a middle term.k , i r

COROLLARY 4.2. If p does not dï ide the order of G then any section of
MM G containing no middle terms is p-exact.

Remark. Theorem 3.2 is the special case of Theorem 4.1 when G is the
identity group on V. Theorem 4.1 states that all but one of the Betti

G Ž .U Unumbers of MM are trivial. Therefore, if k, ir is the middle term ofk , i

MM G
U U , we call b G s dim H G the Betti number of MM G

U U .k , i k , i r k , i r k , i

Proof. Let M G ¤ M G ¤ M G be consecutive terms of MM G
U U wherea b aqpr k , i

without loss of generality b s a q ir. Suppose that b q a q pr F n or that
b q a q pr G n q pr. If f g K G : K then by Theorem 3.2 there existsb, i r b, i r
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py iŽ . < <y1 g GF g M with ­ F s f. But then G Ý F g M andaqpr r g g G aqpr
py iŽ < <y1 g . < <y1 pyiŽ . g­ G Ý F s G Ý ­ F s f. This completes the proof.r g g G g g G r

Before we continue we note that Theorem 4.1 can be used to compute
the modular rank of certain orbit inclusion matrices of G: For s F t let W G

s, t

be the matrix whose columns are indexed by G-orbits on V�t4, rows by
�s4 Ž . thG-orbits on V , with i, j -entry, for a fixed t-set G in the j orbit,

counting the number of s-element subsets D : G belonging to the i th

orbit.
It is easy to see that W G , viewed as a matrix over R, is the matrix ofky r , k

G G w x­ : M ª M . The following extends Theorem 4.2 of 10 .r k kyr

COROLLARY 4.3. If p does not dï ide the order of G, if r is a power of p,
and if k, 0 - i - p satisfy 2k y ir F n then the p-rank of W G is nG yky i r , k kyi r

nG q nG y nG ??? .kypr kyŽ pqi. r ky2 pr

Proof. 0 ¤ ??? ¤ M G ¤ M G ¤ M G ¤ M G is exact accord-kypryi r kypr kyi r k

ing to the preceding corollary.

The Euler]Poincare Equation for a homological sequence states that its´
Ž .characteristic i.e., the alternating sum of the dimensions is equal to the

w xalternating sum of its Betti numbers, see for instance Chapter IX.4 in 7
w x G

U Uor Chapter XX.3 in 6 . As MM has particularly simple homologies whenk , i
G has order co-prime to p this becomes a strong result. We denote by

gw x w x w xC G [ f g H : f s f ;g g GŽ . � 4H k , i rk , i r

the centralizer of G in H , or in other words, the fixed-module of G onk , i r
H . We give an alternative characterization of H G .k , i r k , i r

PROPOSITION 4.4. If the coefficient ring has prime characteristic p ) 0
Ž . G Ž .and if G : Sym V has order co-prime to p then H ( C G .k , i r Hk , i r

Proof. First we note that

gw x w x w xC G s f g H : f s f ;g g GŽ . � 4H k , i rk , i r

s K G q ­ py i M r­ py i MŽ . Ž .Ž .k , i r r kqŽ pyi. r r kqŽ pyi. r

w x w x g w x w < <y1 g xsince if f s f for all g g G then f s G Ý f andg g G

< <y1 g pyiŽ G .G Ý f is fixed by the group. We clearly have ­ M :g g G r kqŽ pyi. r
py iŽ . G pyiŽ .­ M l K . Moreover, if F g M with ­ F fixedr kqŽ pyi. r k , i r kqŽ pyi. r r
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py iŽ . py iŽ < <y1 g .by the group then ­ F s ­ G Ý F showing thatr r g g G
py iŽ G . py iŽ . G­ M s ­ M l K . But thenr kqŽ pyi. r r kqŽ pyi. r k , i r

H G s K G r­ py i M l K GŽ .k , i r k , i r r kqŽ pyi. r k , i r

( K G q ­ py i M r­ py i MŽ . Ž .Ž .k , i r r kqŽ pyi. r r kqŽ pyi. r

s C G .Ž .Hk , i r

nŽ .As usual, we put the binomial coefficient equal to zero if k - 0 or ifk

k ) n:

Ž .THEOREM 4.5 The Euler]Poincare Equation . If the coefficient ring has´
Ž .prime characteristic p ) 0 and if r G 1 is a power of p, let k, ir with

0 - i - p be the middle term of MM U U and b n s dim H n its Bettik , i k , i r k , i r
number.

Ž . GSuppose that G : Sym V has order not dï isible by p and let b sk , i r
dim H G be the Betti number of MM G

U U . Thenk , i r k , i

n nnb s yÝk , i r ž / ž /k y prt k y ir y prt
tgZ

G b G s nG y nGÝk , i r kypr t kyi rypr t
tgZ

and G induces a fixed-point-free representation of degree b n y b G onk , i r k , i r
H rC where C ( H G is the fixed module of G on H .k , i r k , i r k , i r

Proof. By Theorem 4.1, MM G
U U has at most one non-trivial homologyk , i

and so the Euler]Poincare formula gives b G s Ý nG y nG´ k , i r t g Z kypr t kyi rypr t

as the nG are the dimensions of the modules in MM G
U U . The equation forj k , i

b n is the special case when G s 1 and the inequality follows fromk , i r
Proposition 4.4. Finally, the centralizer of G in H rC is trivial as p doesk , i r

< <not divide G .

n n nŽ . Ž . Ž .Remarks. 1 Consider the function w [ Ý yk y prt k y ir y prtk , i r t g Z

for general n, k, i, r. It is clearly periodic in k and ir and Theorem 4.5
n n Ž .states that b agrees with w when k, ir is a middle term whilek , i r k , i r

b n s 0 otherwise. Some fascinating observations can be made: Fork , i r
n n � 4p s 2, r s 1 we have w s 0; for p s 3 and r s 1 we get w g 0, 1k , i k , i

n Ž .st thwhile for p s 5, r s 1 we find that w is 0 or the n y 1 , n , ork , i
Ž .stn y 1 Fibonacci number. See also Remark 2 following Theorem 6.5.

Ž . n G2 The inequality b G b may not hold for groups of orderk , i r k , i r
divisible by p. For instance, when p s 3 and G is C acting on six points,6
we have b 6 s 1 but b G s 2.3, 1 3, 1
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Ž . n G3 For middle terms the inequality w G b gives interestingk , i r k , i r
results about the orbits on subsets of permutation groups of order co-prime
to p, in particular if w n is small. This was first used in Theorem 6.1 ink , i r
w x10 .

Ž . n4 Any functional relation for w will give information aboutk , i r
b n . For instance, it is clear that w n s w ny1 q w ny1 as this holds fork , i r k , i r k , i r ky1, i r

binomial coefficients. This leads to the corollary below. But there are less
obvious relations and some of these will be made more explicit in Sec-
tion 6.

Ž . Ž .COROLLARY 4.6. i If 0 - i - p and n q 1 F 2k q p y i r F n q pr
n ny1 ny1 Ž .y 1 then b s b q b . ii If 0 - i - p and n - 2k q p y i - nk , i r k , i r ky1, i r

qp, then b n s b ny1 q b ny1 .k , i k , iq1 ky1, iy1

Ž . Ž .Proof. In i the conditions on the parameters mean that k, ir is a
Ž . Ž .middle term for a set of size n and that k, ir and k y 1, ir are middle

terms for a set of size n y 1. Hence b n s w n , b ny1 s w ny1, andk , i r k , i r k , i r k , i r
b ny1 s w ny1 . The result follows from w n s w ny1 q w ny1 . Simi-ky1,i r ky1, i r k , i r k , i r ky1, i r

Ž . nlarly, for ii write out the terms of w and use the relation for thek , i
binomial coefficients.

5. GENERATORS OF THE KERNELS

In this section we construct generators for K n for general 0 F k F nk , i r
and 0 - i - p. This then also provides generators for the homology mod-
ules H n and H G for groups of order co-prime to p.k , i r k , i r

Ž . Ž .If 2k q p y i r F n or 2k q p y i r G n q pr then Theorem 3.2 im-
py iŽ .plies that K s ­ M which provides an efficient set of gener-k , i r r kqŽ pyi. r

ators. Therefore we restrict our attention to finding a generating set for
Ž . Ž .K when n - 2k q p y i r - n q pr, that is, when k, ir is a middlek , i r

term.
Moreover, if k - ir then K s M and so we can assume that k G ir.k , i r k

When ir F k and 2k y ir q 1 F n we define

C [ a y b j a y b j ??? j a y b j G :Ž . Ž . Ž .�k , i r 1 1 2 2 t t

a , b U g V , G : V , a / b Uj j j j

< <for 1 F j, j) F t , t s k y ir q 1, G s ir y 1 .4

LEMMA 5.1. Let R be any coefficient ring with identity and let r and i be
² :positï e integers. If k s ir and k q 1 F n then K s C .k , i r k , i r



ON MODULAR HOMOLOGY 571

i � < <Proof. Certainly ker ­ l M is spanned by G y D : G, D : V and Gr k
< < 4 ² : < <s D s k . We show that G y D g C by induction on G R D .k , i r

< < <For G R D s 0 or 1 this certainly holds. Therefore suppose that G R
<D G 2 and that

� 4G s g , g , . . . , g , g , . . . , g1 2 j jq1 k

and

� 4D s g , g , . . . , g , a , . . . , a ,1 2 j jq1 k

< < � 4where j s k y G R D . Then we let Q s g , g , . . . , g , g , a , . . . , a1 2 j jq1 jq2 k

< < < <and note that G y D s G y Q q Q y D where G R Q s G R D y 1 and
< <Q R D s 1. Invoking the induction hypothesis completes the proof.

LEMMA 5.2. Let R be a ring of prime characteristic p and r G 1 a power
Ž . nof p. If 0 - i - p and ir F k let k, ir be a middle term. Then K sk , i r

² py iŽ n . :­ M , C .r kqŽ pyi. r k , i r

Proof. We proceed by induction on n. For small values of n the result
is easily verified. So suppose that the lemma is true for all values - n. By
the above lemma we may assume that k - ir. Let f g K be given. Wek , i r
assume that supp f s V otherwise we may use induction or Theorem 3.2
to complete the proof. We write f s a j f q l where supp f j supp l :a a

U iŽ . iŽ .V [ V R a . Then ­ f s 0 implies that ­ f s 0, that is, f gr r a a

K ny1 . Then either by induction, the above lemma, or Theorem 3.2 weky1, i r
² py iŽ ny1 . ny1 : py iŽ .see that f g ­ M , C . We write f s ­ F qa r ky1qŽ pyi. r ky1, i r a r

Ý r c with r g R, c g C ny1 , and F g M ny1 . Since 2k y irj j j j j ky1, i r ky1qŽ pyi. r

5 5 U- n and c s 2k y ir y 1 we may select a g V R supp c . We letj j j
Ž . py iŽ . ny1h [ f y Ý r a y a j c y ­ a j F and note that h g K ,j j j j r k , i r

Ž . py iŽ . py iŽ .Ý r a y a j c g C and ­ a j F g ­ M . Thereforej j j j k , i r r r kqŽ pyi. r

by induction or Theorem 3.2 the proof is complete.

We collect the results of this section so far together in the following.

THEOREM 5.3. Let R be a ring of prime characteristic p, r G 1 a power of
the prime p, and let 0 - i - p.

Ž . Ž . py iŽ .i If k, ir is not a middle term then K s ­ M , andk , i r r kqŽ pyi. r

Ž . Ž .ii If k, ir is a middle term then K s M for k - ir and K sk , i r k k , i r
² py iŽ . :­ M , C for ir F k.r kqŽ pyi. r k , i r
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From this we obtain immediately expressions for the homology modules:

Ž .COROLLARY 5.4. If k, ir is a middle term, then

s M r­ py i M if k - irŽ .k r kqŽ pyi. rnHk , i r pyi½ ² : ² :( C r C l ­ M if ir F k .Ž .k , i r k , i r r kqŽ pyi. r

Ž .Further, if G ; Sym V has order co-prime to p, then

s M GrM G l ­ py i M if k - irŽ .k k r kqŽ pyi. rGHk , i r G G pyi½ ² : ² :( M l C rM l C l d M if ir F k .Ž .k k , i r k k , i r r kqŽ pyi. r

Proof. The first part is clear and the second follows from Proposi-
tion 4.4.

It is clear that the module generated by C is of special importancek , i r
and we will examine it in terms of the standard representation theory of

w xthe symmetric groups; as a reference we suggest Chapter 7 of 5 .
Suppose now that R is a field of characteristic p ) 0. Let

c s a y b j a y b j ??? j a y b j GŽ . Ž . Ž .1 1 2 2 t t

� 4be an element in C with t s k y ir q 1 and G s g , g , . . . , g andk , i r 1 2 i ry1
U � 4define V s a , . . . , a , b , . . . , b , g , . . . , g . We notice that c corre-1 t 1 r 1 i ry1

sponds to the polytabloid t ? k on VU wheret

a a ??? a g g ??? g1 2 t 1 2 i ry1
t s ž /b b ??? b1 2 t

Ž Ž .. Ž Ž .. Ž Ž ..and where k s 1 y a , b ? 1 y a , b ??? 1 y a , b gt 1 1 2 2 t t
Ž U . UR Sym V is the signed column stabilizer of t . So if we let M denote thek

R-module with k-element subsets of VU as basis we have obtained

² U :LEMMA 5.5. S [ M l C is isomorphic to the Specht module fork k , i r
U ² :the partition of V into 2 parts of size k and k y ir q 1. Further, C sk , i r

S ­ SymŽV . is the module induced from S.

With the use of this lemma and reciprocity arguments one can deter-
² : < U <mine the structure of C . This is the case in particular when V isk , i r

< <close to V and we will use this lemma in the next section to determine
the structure of some homology modules in terms of Specht modules.
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6. THE HOMOLOGIES OF THE 1-STEP MAP

In this section we restrict our attention to the case r s 1 and for
simplicity the 1-step map ­ is denoted by ­ . Throughout this section R is1

w xa ring of prime characteristic p. In 10 we have shown that in characteris-
tic p s 2 all homologies of the 1-step map are trivial. So here throughout
p ) 2.

Ž . GIf G : Sym V is a permutation group on V and 0 - i - p then H isk , i
the homology module relative to V as defined in Section 4. If a g V then
we regard the stabilizer G of a as a permutation group on V R a and soa

H Ga denotes the homology module relative to V R a . To avoid unpleasantk , i
case distinctions we will put H Ga s H G s H n s 0 when i s 0 or i s p.k , i k , ik , i

THEOREM 6.1. Let R be a ring of prime characteristic p, 0 - i - p, and
let G be a permutation group on V. Suppose that for some a g V the size of
the orbit a G is co-prime to p and let N be the normalizer of G ina

Ž .Sym V R a .
Then there exists a monomorphism F : H G ª H Ga [ H Ga whichk , i ky1, iy1k , iq1

commutes with N.

A special case of this theorem is worth mentioning separately. Note that
Ž .in both theorems we do not require that k, i be a middle term:

THEOREM 6.2. Let R be a ring of prime characteristic p, 0 - i - p, and
let a be an arbitrary element of V. Then H n ( H ny1 [ H ny1 ask , i k , iq1 ky1, iy1

Ž . nSym V R a -modules. In particular, if p ) 2 and 0 F k F n then H / 0k , i
Ž .if and only if k, i is a middle term for n.

Ž .Remark. Note that k, i is a middle term with respect to V if and only
Ž . Ž .if k, i q 1 and k y 1, i q 1 are middle terms with respect to V R a .

Hence Theorem 5.2 and induction on n can be used to give the shortest
n Ž .self-contained proof that H is trivial if and only if k, i is a middle term.k , i

Proof of Theorem 6.1. Let f s a j f q l be an element of K G wherea k , i

Ž . Ž . iŽ . iŽ . iy1Ž . iŽ .a f supp f j supp l . Then 0 s ­ f s a j ­ f q i­ f q ­ la a a
iŽ . Ga Ž . Gaand so ­ f s 0, l g K , and if q ­ l g K .a ak , iq1 ky1, iy1

Now define the map F : H G ª H Ga [ H Ga by puttingk , i ky1, iy1k , iq1

w x w xF : f ¬ l , if q ­ l .Ž .Ž .a

w x w xTo show that this is well defined suppose that f s h with h s a j ha

Ž . Ž .q m and a f supp h j supp m . So there exists some F s a j F q La a
G Ž . Ž . py iŽ . Žg M with a f supp F j supp L and ­ F s f y h s a j fkqpyi a a
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. g gyh q l y m. Note that F s F and L s L for all g g G and wea a a a

calculate

a j f y h q l y mŽ .a a

s ­ py i a j F q LŽ .a

s a j ­ py i F q p y i ­ py iy1 F q ­ py i LŽ . Ž . Ž . Ž .a a

py iy1Ž Ga . py iŽ .implying that l y m g ­ M and that ­ F s f y h .kqpyiy1 a a a

Applying ­ to the equation gives

a j ­ f y h q f y h q ­ l y mŽ . Ž .a a a a

s ­ py iq1 a j F q LŽ .a

s a j ­ py iq1 F q p y i q 1 ­ py i F q ­ py iq1 LŽ . Ž . Ž . Ž .a a

Ž . Ž . py iq1Ž Ga .so that i f y g q ­ l y m g ­ M . Therefore F is wella a kqpyi
defined, clearly linear, and it is a simple matter to check that it commutes
with N.

Žw x. Žw x w x. GaSuppose now that F f s 0 , 0 . Then there exists F g Mkqpyiy1
py iy1Ž . Ga py iq1Ž .with ­ F s l and there exists H g M with ­ H skqpyi
Ž .if q ­ l . Thena

­ py i a j F s a j ­ l q p y i l ,Ž . Ž . Ž .
­ py iq1 a j H s a j if q ­ l q p y i q 1 ­ py i HŽ . Ž . Ž . Ž .Ž .a

py iq1Ž . Ž . py iŽ . py iŽ .and hence ­ a j H y p y i q 1 ­ H y ­ a j F s if.
Ž . Ž .Let J [ ­ a j H y p y i q 1 H y a j F. Then J is fixed by G anda

we may define

G < G <y1 gJ [ a J .Ý
Ž .G ggcos G : Ga a

G pyi GŽ .Then J is fixed by G and ­ J s if. Hence F is injective.

� 4 Žw x w x.Proof of Theorem 6.2. Here we suppose G s 1 and let l , m g
ny1 ny1 iŽ Ž y1Ž Ž .. .. ŽwH [ H . Then ­ a j i m y ­ l q l s 0 and F a jk , iq1 ky1, iy1

y1Ž Ž .. x. Žw x w x.i m y ­ l q l s l , m showing that F is surjective. Alternatively,
Ž . ny1 ny1 nuse Corollary 4.6 ii to show that H [ H has dimension b .k , iq1 ky1, iy1 k , i

Ž . Ž . Ž .As k, i is a middle term for n if and only if k, i q 1 and k y 1, i y 1
are middle terms for n y 1 the statement about the non-triviality of H n

k , i
is proved by induction on n. This completes the proof.

Theorem 6.2 is useful for investigating the irreducibility of the homology
modules which we deal with in the next two results.
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THEOREM 6.3. Let R be a ring of prime characteristic p ) 2. For a g V
assume that H n ( H ny1 [ H ny1 is non-zero and suppose further thatk , i k , iq1 ky1, iy1

ny1 ny1 Ž .H and H are zero or irreducible R Sym V R a -modules and thatk , iq1 ky1, iy1
they are non-isomorphic if they are both non-zero. Then H n is an irreduciblek , i

Ž .R Sym V -module.

Proof. For a contradiction we will suppose that U is a non-trivial
Ž . nR Sym V -submodule of H and so if F is the map of Theorem 6.2 thenk , i

Ž . Ž . ny1 ny1F U is a non-trivial R Sym V R a -submodule of H [ H .k , iq1 ky1, iy1
Therefore we are done if either H ny1 or H ny1 is zero. Hence wek , iq1 ky1, iy1

may assume that H ny1 and H ny1 are irreducible non-isomorphick , iq1 ky1, iy1
Ž .R Sym V R a -modules and further that n G 3, k - n, and 1 - i - p y 1.

Ž . ny1 ny1Therefore F U is either H or H .ky1, iy1 k , iq1

Ž . ny1 w x ny1Case 1. F U s H . Let f be a generator of H as givenky1, iy1 ky1, iy1
ny1 Ž .in Theorem 5.3. So either f g C if k G i or f is a k y 1 -subset ofky1, iy1

w x Ž . w y1 x y1Žw x.V R a if k - i. As f g F U we have i a j f s F f g U. But
²w x g Ž .: nagain by Theorem 5.3 we have a j f : g g Sym V s H , a contra-k , i

diction.

Ž . ny1 ny1Case 2. F U s H . First assume that i - k and let f g C .k , iq1 k , iq1

� 4 ny iy1Then we may write f s A j l where A s a , . . . , a and l g C .1 i kyi, 1
y1 y1Ž . Žw x. w xHence putting f [ yi a j ­ f q f we see that F f s f , and as

ny1 Ža , a .1w xf g H it follows that f belongs to U. Let f be the result ofk , iq1
Ž .applying the transposition a , a to f. Then1

Ža , a . y11f s yi a j ­ A R a j a j l q A R a j a j lŽ . Ž .Ž .1 1 1

y1 y1 y1s a j i q 1 A R a y i ­ A j l y i A j l .Ž . Ž .Ž .Ž .1

Ža , a .1Ž . w xAs i ) 1 consider the transposition a , a and compute f y2
Ža , a . y12w x wŽ . Ž . � 4 xf s i q 1 a j a y a j A R a , a j l . By Theorem 5.32 1 1 2

Ž . w Ž . � 4 x nthe Sym V -images of a j a y a j A R a , a j l generate H2 1 1 2 k , i
which is a contradiction.

� 4Secondly we assume that 2 F k F i and here we let A [ a , . . . , a so1 k
w x ny1 y1 Ž . w xthat A g H . Putting f [ yi a j ­ A q A, we see that f sk , iq1

y1Žw x.F A so that f g U. Further,

Ža , a . y11f s yi a j ­ A R a j a q A R a j aŽ . Ž . .1 1 1

y1 y1 y1s a j i q 1 A R a y i ­ A y i AŽ . Ž .Ž .1

w Ža , a1.x w Ža , a 2 .x wŽ y1 . Ž . �and hence f y f s i q 1 a j a y a j A R a ,2 1 1
4x Ž .a . If i s k then Theorem 5.3 implies as before that the Sym V -images2
w Ž . � 4x nof a j a y a j A R a , a generate H which is a contradiction.2 1 1 2 k , i
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Ž . � 4In any case expressions of the form a j a y a j A R a , a are2 1 1 2
differences of two k-element sets and so U has co-dimension as most one

n Ž n .in H . We suppose therefore that k - i and that 1 s dim H rU sk , i k , i
dim H n y dim H ny1 s dim H ny1 by Theorem 6.2. As 2 F k wek , i k , iq1 ky1, iy1

Ž . Ž .have 1 F i y 1 - i q 1 - p so that both k y 1, i and k y 2, i y 2 are
middle terms with respect to n y 2 and 0 F k y 2 - k y 1 F n y 2. Hence
by Theorem 6.2 we have b ny2 ) 0 and b ny2 ) 0 which contradictsky1, i ky2, iy2
1 s b ny1 s b ny2 q b ny2 .ky1, iy1 ky1, i ky2, iy2

Therefore finally assume that k s 1 and as H ny1 / 0 it follows fromky1, iy1
Ž .Theorem 6.2 that 0, i y 1 is a middle term so that p yi q1 ) n y1. As

ny1 ny1 ny1 ny1 pyŽ iq1.Ž ny1.K s M for i q 1 ) 1 we have H s M r­ M .1, iq1 1 k , iq1 1 pyi
As H ny1 is irreducible by assumption while M ny1 is not, we cannot havek , iq1 1

py Ž iq1.Ž ny1.­ M s 0. Together with p y i q 1 ) n y 1 this implies thatpy i
n n ny1Ž n.n y 1 s p y i which means that H s M r­ M and this module isk , i 1 n

w xknow to be irreducible for p ) n, see 4, p. 18 . This completes the proof.

THEOREM 6.4. Let R be a ring of prime characteristic p / 2 and suppose
that 0 F k F n and 0 - i - p satisfy 2k q p y i s n q p y 1. Then H n isk , i

Ž X X.irreducible. Furthermore, if k , i is another pair of positï e integers satisfying
the abo¨e conditions then H n \ H n

X X .k , i k , i

Proof. We prove this result by induction on n. For small values of n
the result is easily verified. Therefore suppose the result holds for n y 1.

Ž . Ž . Ž . Ž .Since 2k q p y i q 1 s n y 1 q p y 1 and 2 k y 1 q p y i y 1 s
Ž . ny1 ny1n y 1 q p y 1 we see inductively that H and H are eitherk , iq1 ky1, iy1
zero or irreducible, and that if they are both irreducible then they are
non-isomorphic. However, as p / 2 it is easy to see that H ny1 andk , iq1
H ny1 cannot both be zero. So Theorem 6.3 implies that H n isky1, iy1 k , i
irreducible.

Ž X X.Now suppose that k , i is another pair of positive integers satisfying
2kX q p y iX s n q p y 1 and 0 - iX - p. We assume for a contradiction
that H n ( H n

X X and so by Theorem 6.2 we have H ny1 [ H ny1 (k , i k , i k , iq1 ky1, iy1

H ny1
X X [ H ny1

X X . The induction hypothesis then implies that H ny1
k , i q1 k y1, i y1 ky1, iy1

\ H ny1
X X , hence H ny1 ( H ny1

X X and H ny1 ( H ny1
X X .k y1, i y1 k , iq1 k y1, i y1 ky1, iy1 k , i q1

Moreover, if H ny1 and H ny1 are both non-zero then the inductionk , iq1 ky1, iy1
hypothesis implies that k s kX y 1 and k y 1 s kX, giving us a contra-
diction.

Suppose therefore that H ny1 is non-zero and H ny1 is zero. Butk , iq1 ky1, iy1
X Ž .then we see that i y 1 ' i q 1 ' 0 mod p and by the induction hypothe-

X X Ž .sis that i q 1 s i y 1. Hence 2 ' i q 1 s i y 1 ' y2 mod p , a contra-
diction. A similar argument works in the case when H ny1 is zero andk , iq1

ny1H is non-zero.ky1, iy1



ON MODULAR HOMOLOGY 577

Finally we are in a position to identify certain of the homology modules
in terms of Specht modules and partitions of V:

THEOREM 6.5. Let R be a ring of prime characteristic p / 2 and suppose
that i F k and 0 - i - p satisfy 2k q p y i s n q p y 1. Then H n isk , i
isomorphic to StrSt l St H where St is the Specht module corresponding to a
partition of V into 2 parts of length k and k y i q 1.

n ² : ² :Proof. By Corollary 5.4 we have H ( C r C lk , i k , i k , i
py iŽ . U t ² :­ M and as V s V in Lemma 5.5 we have S s C . Askq Ž pyi. r k , i

St l St H is the unique maximal submodule of St, the result follows from
Theorem 6.4.

Ž . Ž .Remarks. 1 Provided that n q 2 G p there are p y 1 r2 distinct
pairs of positive integers k and 0 - i - p with 2k q p y i s n q p y 1.

Ž . Ž .So Theorem 6.4 provides p y 1 r2 non-isomorphic irreducible Sym V -
modules and their dimensions are given by the function w n of Section 4.k , i

Ž .2 When p s 5 these modules are precisely the Fibonacci represen-
w xtations of the symmetric groups described in Ryba’s paper 13 . Such

w xsystems of representations have been generalized in Kleshchev’s work 9 .
� nFor general prime p ) 2 the collection HH [ H : k - n, 0 F i - p,k , i

42k y i q 1 s n is an example of the semi-simple inductï e systems dis-
w xcussed in 9 . In fact, HH consists precisely of the modules arising from

w x2-part partitions which satisfy Kleshchev’s condition of Theorem 2.1 in 9 .
We conjecture that such semi-simple inductive systems for partitions with
more than 2 parts arise also as homologies for suitable posets.

In the remainder of this section we give the complete decomposition of
the H n . Let a be an integer satisfying 0 - a - p. For 0 - i - p we definek , i
module homomorphisms

r : H n ª H n
k , i k , iq1

and

­ : H n ª H n
k , i ky1, iy1

Žw x. w x Žw x. w Ž .xby r f [ f and ­ f [ ­ f , respectively. It is a simple matter to
check that these maps are well-defined. We record some properties of
these homomorphisms in the following:

LEMMA 6.6. If 2k q p y i s n q a then

Ž . n na r : H ª H is surjectï e if i G a y 1 andk , i k , iq1

Ž . n n Ž .b ­ : H ª H is surjectï e if i F p y a y 1 .k , i ky1, iy1

Ž . n iŽ . n Ž .Proof. a Let f be in K . Then ­ f g K and 2 k y i qk , iq1 kyi, 1
Ž . Žp y 1 s n q a y 1 y i F n. By the Integration Theorem or indeed, by
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. n py1Ž . iŽ .Lemma 2.3 there exists F in M with ­ F s ­ f . But thenkqpyŽ iq1.
iŽ py Ž iq1.Ž .. Žw py Ž iq1.Ž .x. w x­ f y ­ F s 0 and r f q ­ F s f .

Ž . n Ž . Ž Ž .b Let f be in K . Then 2 k y 1 q 1 s n y p y a y 1 yky1, iy1
. Ž .i F n and by the Integration Theorem or indeed, by Lemma 2.3 there

n Ž . Žw x. w xexists F in K with ­ F s f. But then ­ F s f .k , i

We now present two further results which will help us determine the
composition factors of the homology modules.

LEMMA 6.7. If 2k q p y i s n q a then H n ( H n .k , i k , a

Ž . nProof. We notice that k q p y i q k q p y a ' n mod p so that Hk , i
and H n will have the same dimension. Without loss of generality we mayk , a

suppose that i - a and then we look at the map r ay i : H n ª H n . Ifk , i k , a
n iŽ . n Ž . Ž .f g K then ­ f g K and 2 k y i q p y a y i s n so that,k , a kyi, ayi

py Žayi.Ž .by the Integration Theorem, there exists F in M with ­ Fkqpya
iŽ . iŽ pyaŽ .. ay iŽw pyaŽ .x. w xs ­ f . But then ­ f y ­ F s 0 and r f y ­ F s f .

LEMMA 6.8. H n ( H n .k , i nyk , pyi

Proof. Suppose 2k q p y i s n q a and, without loss of generality,
Ž .that n y k G k. But then n y 2k s p y i q a and we can look at the

map ­ py Ž iqa. : H n ª H n . Suppose that f g K n . Then 2k q p ynyk , pyi k , a k , a
Ž . ni q a s n and by the Integration Theorem there exists F g Knyk , pyi

py Ž iqa.Ž . py Ž iqa.Žw x. w x nwith ­ F s f. But then ­ F s f . However, Hnyk , pyi
and H n have the same dimension and hence applying the previous resultk , i
completes the proof.

We are now in a position to determine the composition factors of all
homology modules. Since H n ( H n it suffices to consider the casek , i nyk , pyi
when 2k q p y i s n q a and 0 - a - pr2.

THEOREM 6.9. Let 2k q p y i s n q a and 0 - a - pr2. Then the
composition factors of H n each ha¨e multiplicity one and are gï en ask , i
follows:

Ž . � n 4a H : j s 0, . . . , a y 1 if a F i F p y a.ky j, iqay1y2 j

Ž . � n 4b H : j s 0, . . . , i y 1 if i - a andky j, iqay1y2 j

Ž . � n Ž . 4c H : j s i y p y a , . . . , a y 1 if i ) p y a.ky j, iqay1y2 j

Proof. The proof is by induction on a. Suppose firstly that i - a. Then
H n ( H n and 2k q p y a s n q i with i - a - p y i so that, by induc-k , i k , a

n � n 4tion, the composition factors of H are H : j s 0, . . . , i y 1 .k , i kyj, iqay1y2 j
n n Ž .Secondly suppose that i ) p y a. Then H ( H and 2 n y kk , i nyk , pya

Ž .q p y p y a s n q p y i - n q a with p y i - p y a - i. By induc-
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tion the composition factors of H n are thereforek , i

H n : j s 0, . . . , p y i y 1� 4nykyj , 2 pyŽaqi.y1y2 j

s H n : l s i y p y a , . . . , a y 1 .� 4Ž .ky l , iqay1y2 l

Finally suppose that a F i F p y a. By Lemma 6.6 all composition
factors of H n and H n will be composition factors of H n . Sincek , iq1 ky1, iy1 k , i
Ž . Ž . Ž . Ž .2 k y 1 q p y i y 1 s 2k q p y i q 1 s n q a y 1 and a y 1 F i

Ž .y 1 - i q 1 F p y a y 1 we can assume inductively that

H n : j s 0, . . . , a y 2� 4ky1yj , iy1qay2y2 j

j H n : l s 0, . . . , a y 2� 4ky l , iq1qay2y2 l

s H n : j s 0, . . . , a y 1� 4ky j , iqay1y2 j

are all composition factors of H n . This set consists precisely of thek , i
composition factors of H n together with H n . Furthermore, weky i, iy1 k , iqay1
notice that dim H n y dim H n s dim H n since k y 1 q k yk , i ky1, iy1 k , iqay1

Ž . Ž . � ni q a y 1 ' n mod p . Since all the modules in H : j sky j, iqay1y2 j
40, . . . , a y 1 are irreducible and non-isomorphic we are done.
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