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Let R be an associative ring with identity and () an n-element set. For k <n
consider the R-module M, with k-element subsets of ) as basis. The r-step
inclusion map d,: M, — M, _, is the linear map defined on this basis through
G(A) =T, + T, + - +F(k) where the T are the (k — r)-element subsets of A.

For m < r one obtains chains

a, d, 3, 3, 3, a,

M0 (_Mm (_Mrr1+r (_MerZr(_MerSr(_ <0

of inclusion maps which have interesting homological properties if R has charac-
teristic p > 0. V. B. Mnukhin and J. Siemons (J. Combin. Theory T4, 1996
287-300; J. Algebra 179, 1995, 191-199) introduced the notion of p-homology to
examine such sequences when r = 1 and here we continue this investigation when
r is a power of p. We show that any section of .# not containing certain middle
terms is p-exact and we determine the homology modules for such middle terms.
Numerous infinite families of irreducible modules for the symmetric groups arise
in this fashion. Among these the semi-simple inductive systems discussed by A.
Kleshchev (J. Algebra 181, 1996, 584—592) appear and in the special case p = 5 we
obtain the Fibonacci representations of A. J. E. Ryba (J. Algebra 170, 1994,
678-686). There are also applications to permutation groups of order co-prime to
p, resulting in Euler-Poincare equations for the number of orbits on subsets of
such groups. © 1998 Academic Press

1. INTRODUCTION

Let Q be a set of finite size n and R an associative ring with identity.
For k < n consider the R-module M, which has k-element subsets of ()
as basis. So M, consists of all formal sums f = X, _, f,A with A ¢ O and
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fa € R. When r > 0 is an integer the r-step inclusion map o, : M, — M, _,
is the linear map defined through 9(A) =T, + T, + -+ +F(¢) where T
are the (k — r)-element subsets of A. So fixing some m < r we obtain a
chain of inclusion maps

<—M

m+3r

A0 iMm iMerr (_Mm+2r
When R has characteristic p > 0 then 47 is the zero map and one is
interested in the homological properties of .#Z. In the papers [10, 11] with
Valery Mnukhin we have defined the notion of a p-homological and
p-exact sequence—see the definition in Section 3—and this paper is a
continuation of that work.

For the purpose of p-homology it is necessary to investigate certain
subchains of .#Z. We assume now that R is a ring of prime characteristic
p > 0 and that r is a power of p. For integers 0 < i* <p and 0 < k* =
m mod(r) with k* + i*r < pr we consider the subsequence

%k*yi*ZO&Mk* (_ka (_Mk*

+itr < My s 1 pyr < My g, 0

+pr
Here each arrow represents the relevant power of ¢, and as J” = 0 we see
that .# » is homological. (.# would be p-exact by definition if all
subsequences .#,  of the kind just described were exact).

Let (x):M,_,, < M, < M. ,_;, be any three consecutive terms
of # ;», thus either k =k* mod(pr) with i=p —i* or k=k* +
i*r mod( pr) with i = i*. We say that («) or (k,ir) is a middle term for
My if n <2k + (p—ir<n+pr. Note that .#. »~ may have no
mlddle terms (take n odd, p = 2, and r = 1, for example) but if there is
one then it is unique and we can speak of rhe middle term for .Z. ;.

In Theorem 3.2 we prove that any section of .Z;- ;= not containing its
middle term is exact. This result is already contained in Bier’s paper [2]
and it is proved there via rank arguments based on Wilson’s work [15]. Our
proof is more direct. In Section 2 we develop the general calculus for
inclusion maps in &, _ ; M,. This leads to an “integration theorem which
allows us to write down a pre-image F with g7 (f) = f for any f with
/(F) = 0 unless (k,ir) is a middle term. If M, _, < M, <, ,_,, isa
middle term denote the kernel of g’ by K}, = kerd’ N M} and so let
Hp =K,/ 0P (M, ,_.,) be the only non-trivial homology module of
‘%k*,i*'

In Section 5 we determine explicit generators for all H" ;. and in Section
6 we classify completely the homologies of the 1-step map. In Theorem 6.2
it is shown that H}', is isomorphic to H;'; !, @ H;"};_; as Sym(Q \ a)-
modules. This is used to construct infinite families of irreducible Sym(Q)-
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modules for arbitrary primes p > 2 occurring as the homology modules of
the 1-step inclusion map.

For an arbitrary prime p > 2 the family {H,:0<i<p, k <n,
2k — i + 1 = n} is an example of a semi-simple inductive system as consid-
ered by Kleshchev [9] and in the case p = 5 we obtain Ryba’s Fibonacci
representations of [13]. In [3] Bier has shown how certain spin modules over
GF(2) arise as the homology modules of the 2-step map when R has
characteristic 2. These examples illustrate that the notion of p-homology
leads to worthwhile results on the modular representation theory of the
symmetric groups. For the modules of the r-step maps with r > 1 in
general not much appears in the literature. Our description of the H",, in
Section 5 is explicit enough to allow a full analysis of these modules which
may be presented in a subsequent paper.

Other applications concern permutation groups. Permutations act natu-
rally on &, _, M, and for any group G < Sym({)) we can consider the
orbit module in M, defined as M == {f € M, : f¢ = f Vg € G}. Its natu-
ral basis are the “orbit sums” 3. _pcI'* where T'“ as usual denotes
{I'¢ : g € G}. In particular, the dimension of M,C is the number of G-orbits
on the k-element subsets of Q. As (M%) c (M ,) we obtain sequences
of the kind

G . G G G G G
‘%k*,i* 10 « Mk* <« Mk*+i*r <« Mk*+pr <« Mk*+(i*+p)r <« Mk*+2]7r s

where each term is a submodule of the corresponding term in .#« ;«. Such
a sequence is automatically homological but may fail to be exact at terms
where .7« ;« is exact. However, in Theorem 4.1 we show that if the order
of G is not divisible by p, then any section of //k‘i,i* not containing its
middle term is exact.

If (k,ir) is a middle term of .Z% . we let HS, =K, , "M/
a7~ (M, ,;),) denote the only non-trivial homology module in .z ..
The results in Section 5 give generators for H;, and in Theorem 4.5 we
obtain Euler—Poincaré equations for the number of G-orbits on k-element
subsets of () when p does not divide the order of G. For p = 2 we have
made use of such equations before in [10] for groups of odd order.

Modular p*-homology over rings R of characteristic p > 0 for se-
guences such as .# above can be considered for more general classes of
partially ordered sets. Note that it will be necessary to distinguish between
the characteristic of the ring and the interval length p* appearing in the
definition of p*-homology; for the Boolean lattice these happen to coin-
cide. If (&, < ,|*]) is a ranked poset and if M, denotes the R-module with
{x €2 :|x| = k} as basis then one can define order maps ¢: M, - M, _,
analogous to g, and therefore the question of p*-homology can be studied
also for such ranked posets. In [12] we have done this for projective spaces
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over GF(q) when the coefficient ring R has characteristic p # g (for
p =g no homologies occur). The results are interesting: One principal
difference to the Boolean case is that p* indeed is different from the
characteristic of the coefficient ring. On the other hand, also in projective
spaces every chain such as .Z;« ;« is inexact in at most one position and so
gives rise to just one non-trivial homology. We hope that these facts
support the suggestion that the modular homology considered here uncov-
ers some deeper properties of partially ordered sets.

2. THE r-STEP INCLUSION MAP

Throughout R will be an associative ring with identity and () a finite set
of cardinality n. We let 2 denote the collection of subsets of O and R2%
the R-module with 29 as a basis.

For an integer k the collection of all k-element subsets of () is denoted
by Q®. Furthermore, we let RQ¥ c R2® denote the submodule with
k-element subsets as basis. We will abbreviate RQ* by M or simply M,
if the context is clear. We identify Q® with  and 1-& with 1 € R so
that in particular M, = {r- &@:r € R} = R. Also, we put M, = 0 whenever
k < 0or k> n and refer to R as the coefficient ring of M.

For f = Lf\A € R2% the support of f is the union of all A for which
fix # 0; we will denote it by supp f. The support size of f is || fIl == lsupp f|.
Two elements f and & of R2% are said to be disjoint if supp f and supp &
are disjoint sets.

The Boolean operation of set union is easily extended to a product on
R2%:if f=Yf\A and h = Lh T are elements of R2% we define

fUh Y fihe(AUT).
AT

It is a simple matter to check that R2® with this product is an associative
algebra with the empty set as identity.

For an integer r > 0 the r-step inclusion map on 2% is the linear map
g, :R2% > R2% given by

a(A)y =T, +T, + - +I‘(k

/)

where A is a k-element subset of Q) and where the T are the (k — r)-

element subsets of A. In particular, d, is the identity map, d,(A) = 0 if
|Al < r,and §(A) =1 € R if r =|Al. Clearly, this map restricts to homo-
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morphisms
7

r

M, - M,_,.

Furthermore, it is easily verified that for any positive integer s we have

+
(r r S)O”rJrs = 07,0’;.
Let f be an element of R2“. Then for any o in Q we can write f
uniquely as

f=aUf, +1

in such a way that « does not belong to supp f, U supp /. Also very
important is the following

LEMMA 2.1. If f and h are disjoint elements in R2® then 3,(f U h) =
£ _0a () U 4 ,(h).

Proof. The identity is obvious when f and & are two disjoint sets and
follows from linearity in general. |

We shall use these basic facts without further reference. The next
theorem generalizes Theorem 2.1 of [10] where the result was proved for
the one-step map.

THEOREM 2.2.  For any coefficient ring with identity the kernel of d, : M,
— M, _, is generated by elements of support size at most max{2k — r + 1, k}.

Remark. When the coefficient ring is an integral domain of character-
istic 0 then the minimum support size of elements in the kernel is
max{2k — r + 1, k} exactly. This can be seen from simple rank arguments.
However, in non-zero characteristic there may be elements of smaller
support size. Corollary 3.4 later gives more information.

Proof. The proof follows closely that of Theorem 2.1 in [10] and
proceeds by induction on n. For n = 1,2 the result is easily verified.
Therefore suppose that n > 2 and that f e kerd, N M} with [ f]l >
max{2k — r + 1, k}. Furthermore, we may assume that r < k, for if r > k
then the standard basis of M} is contained in the kernel of ¢, and the
result clearly holds.

We pick « € supp f and write f=a Uf, + [ where a & supp f, U
supp [. Then by Lemma 2.1

0=0(f) = aVU (L) + 44(f.) + a(l).

Therefore, f, € ker g, " M~} and by the inductive hypothesis we may
write f, = Y35_w, with w, € ker g, 0 M}~ and |lw,|| < max{2k —r — 1,k
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-1} As [[fll>2k—r+1=k+1+(k—r)>k+ 1 we have ||f|l >
llw;ll + 2 for i = 1,...,s. Hence, whenever 1 < i < s, we may choose «; in
Q with @, # « and «a; € supp f \ suppw;,. Then (e — a; Uw)ll =2 +
Iwl < max{2k —r + 1,k + 1} = max{2k —r + 1, k} and ,((a —a;) Uw;)
=0 by Lemma 2.1. Furthermore, f=X;_(a —a) Uw, + L!_a; Uw, +1
and as X{_,o, Uw;, +1 € kerg, n M"' we may invoke the induction
hypothesis to complete the proof. |

LEMMA 2.3. Suppose that R is an associative ring with identity and has
prime characteristic p > 0. Let r > 1 be a power of p and let f be an element
of kerd. N M,. If 0 <s <p satisfies 2k + sr < n then there exists F in
M, ., with 3°(F) = f.

Proof. By the theorem above we may assume that || f|| < max{2k — r +
1, k).

Suppose firstly that |||l <k and that k > 2k — r + 1. Therefore we
also have r > k and r # 1. As k <n — sr — k there exists I' € Q) with
FNsuppf=¢ and |T||=sr+ k. We define F:=(s) 9 (DUfe
M, ., and show by induction on ¢ < s that J/(F) = t!/(sD)"%,,, ,(I') U f.
Taking ¢ = s will then complete the proof in this case. For ¢ = 0 the result
is certainly true and supposing the result holds for t < s — 1 we calculate,
using Lemma 2.1,

GTHF) = a,(0(s) 7 (da(A) US))

=t!(s!)_l( ) r— (34 (T)) U f%-(f))
j=0
= t!(s!)_l(jg,O (r+ :tlr):_—;k _j)f?(;+1)r+k—j(r) U ﬁj(f)).

To deduce that (¢ *+ L7+ -7) = 0mod(p) if 0 <j < k we use

Fact 1. (see [1, p. 8]). For a positive integer m and a prime p the
largest integer [ such that p’ divides m! is ¥7_,|m /p"| (where | x] denotes
the integral part of the real number x).

And

Fact 2. For any real numbers x and y we have [x + y] > [x] + |yl
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Therefore, if r = p¢ with d > 1, then the largest integer [ such that p'
divides (¢ +)r % k=J) is

“(l(t+Dr+k—j tr+k r—j
Z n - n - n
n=1 p p p
A1l (t+Dr+k—j r+k r—j
s —re x (| R ’J— n —{ ’J)
n=1 p p p

which is strictly greater than zero. (Note that each term of the sum is
nonnegative by Fact 2.) So we have indeed shown that (¢+1r%k-J) =
Omod(p) if 0 <j < k.

Furthermore, we can calculate

(t+r+k) _ (t+1r+1

r+k —r<l<k r+1
= 1+
tyggk( tr+l)

1 1 1 1

=(1+—-{1+—(1+=]{1+ =
el g
=tr+1

which completes the induction and gives the result in this case.

We may now suppose that [[fll<2k—r+1<n—(s+ Dr+ 1
Therefore there exists I' € Q with T' N supp f = Jand [Tl = (s + Dr —
1. We then define F = (s!)"%9,_,(I') U f and show inductively that 4'(F)
= 11(sD) 79, 1, () U f whenever ¢ <s. Taking ¢ = s will then complete
the proof in this case. For ¢ = 0 the result is certainly true and if we
suppose the result holds for ¢t < s — 1 then

3H(F) = 3,(11(s) My 1 o(T) UF)

= t!(S!)71 -il &j(a(wl)r—l(r)) Y &r—/(f)

r

=1sH Y

j=1

(t+r+j—1
J

)‘9(:+1)r1+j(r) v &r—j(f)-
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We note that we are done if r = 1. Therefore we suppose that » > 1. But
then

(t+1)r+j—1)= ((+Dr+j-1) (+Dr+j-2)

J (-1 (-2
(t+Dr+1 (t+Dr
n . ;

and we see that all terms in the product will be = 1 mod(p) except the
last. This will be = 0mod(p) unless j =r when it will be ¢ + 1. This
completes the induction and hence also the proof. |

The main result of this section is the next theorem which shows that
Corollary 2.3 of [10] can be extended to r-step maps.

THEOREM 2.4 (The Integration Theorem). Suppose that R is an associa-
tive ring with identity of prime characteristic p. Let r > 1 be a power of p and
let f be an element of M,. Suppose further that 3/(f) = 0 with 0 < i < p and
thatj € {1,..., p — i} satisfies 2k + jr < n. Then there exists F in My ;, with
(F) =f.

Proof. The proof is by induction on i. For i = 1 the result holds by the
preceding lemma. Suppose the result holds for i <p — 2 and that f e
ker gi*t n M, with j € ({1,...,p — (i + 1)} satisfying 2k + jr < n. Then
(3 (fN=0.Also g(f)eM,_,and 2k —r)<n—jr—2r<n—(j+
Dr where j+1e{2,...,p —i}. Therefore by the inductive hypothesis
there exists H € M, ;, with ¢/**(H) = 4,(f). But then 4,(5/(H) — f) =0
and 2k + jr < n. So by the preceding lemma, there exists J € M, ;, with
3(J) = 3/(H) — f. Hence f = 3/(H —J) and the induction is complete.

|

3. HOMOLOGICAL SEQUENCES

Throughout this chapter the coefficient ring R has prime characteristic
p>0,r=>1isapowerof p,and Q is some finite of cardinality ».
We observe that 47 : R2® — R2% is the zero map. To see this recall the

formula (" +#)d,,, = 4,9, from Section 2. By induction it follows that

o= (7)o (2) (7)o

Now notice that (»") = p(# =) = 0 mod(p).
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The results in Section 2 lead us to investigate homology. We recall the
definitions: if y: A - B and ¢ : B —» C are homomorphisms then the
sequence A — B — C is homological at B if ker(ir) 2 x(A). In this case
H = ker(yr)/x(A) is the homology module at B and the sequence is exact
if H =0, that is, if ker(y/) = y(A). A longer sequence

Fo A A A A A, e

is homological (exact) if it has that property at every A4;. In [10, 11] we have
introduced the following

DEFINITION. & is p-exact (p-homological) if all subsequences of the
kind Mk*,i* o <_Ak* <_Ak*+i* %Ak*+p (_Ak*Jri*er (_Ak*Jrzp —
Ays x40, < -+ are exact (homological) for every k* and 0 <i* <p.

(The arrows are the natural compositions of the maps in .+7.)

As is pointed out in Bier’s paper [2], this kind of homology was first
considered in the works [8] of Mayer in 1947, see also [14].
Now select some m < r and consider the sequence

g,

.

d, a,
< Mm+2r (_Mm+3r <o

d, a,
MO=M, <M,
In order to investigate its p-homological properties we fix integers 0 < i*
<p and 0 < k* = mmod(r) with k* + i*r < pr to obtain the subse-
guence

‘%k*,i* 10« Mk* < Mk*+i*r < Mk*+pr < Mk*+(i*+p)r < Mk*+2pr
in which each arrow represents the relevant power of 4,. Since 47 : R2%
— R2% is the zero map this sequence is homological.

For general parameters || =n, 0 <i <p, and k we let K}, denote
ker ' N M}’ and let

Hkn,ir = Klil,ir/arp_i(Ml:l+(p—i)r)

be the corresponding homology module. If f € K, then we denote its
coset in H;, by

[f] :=f+ &rp_i(Mkn#—(p—i)r)'

As before the superscript n can be dropped if the context is clear. We
begin by stating a consequence of the Integration Theorem of Section 2:

LEMmA 3.1. Suppose that R is an associative ring with identity and has
prime characteristic p. Let r > 1 be a power of p and suppose that 0 <i <p
satisfies 2k + (p — i)r < n. Then H!;, = 0.
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To extend this result let now M, _; < M, < M, ,_;, be any three
consecutive terms of .#. ;. (So either k = k* mod(pr) and i = p — i* or
k =k* + i*r mod(pr) and i = i*.) We say that (k, ir) is a middle term for
M i n<k+(k+(p—10ir)<n+pr, indicating that M, , < M,
< M, (- is nearest to the middle of .7 ... Note that there may be no
middle terms for .#;. » (take n odd, p = 2, and r = 1, for example).
However, if there is a middle term, then it is easy to see that there is at
most one so that we can talk of the middle term for .Z,. .. We extend the
use of this term slightly and refer also to M, _,, < M, < M, ,_;, as the
middle term of 4} . Further, M, _, < M, < M, ,_,, will be called a
middle term, or a middle term of .#, if it is the middle term for some
s .

The following result appears already in Bier’s paper [2, Satz 2]. The
proof there is based on Wilson’s rank formula [15] which yields the p-rank
of the incidence matrix of k-subsets versus (k — ir)-subsets of Q.

THEOREM 3.2.  Suppose that R is an associative ring with identity and has
prime characteristic p > 0. Let r > 1 be a power of p. Then H}! ;. = 0 unless
(k,ir) is a middle term.

CoROLLARY 3.3. A section of # containing no middle terms is p-exact.

COROLLARY 3.4.  If the coefficient ring has prime characteristic p > 0 and
if (k,ir) is not a middle term then the kernel of 3} : M, — M, _,, is generated
by elements of support size at most k + (p — i)r.

Proofs. The corollaries are clear. To prove the theorem we introduce a
new linear map U, : R2% — R2“ definedby U(A) =T, + T, + - +T
where A is a k-element subset of Q) and where the T; are the (k + r)-
element subsets of ) containing A. Note that for 0 <i < p the matrix
representing U’ : M, — M, . ,, is the transpose of the matrix representing
dt M, , — M,. In particular, U': M, > M, ., and &' : M, ., —> M,
have the same rank. Furthermore, the linear map ¢ : R2® — R2% defined
by c(A) = Q \ A is a module isomorphism which satisfies cU.c = 4,.

Let M, <« M, < M, ,. be consecutive terms of .Z; . where without
loss of generality b = a + ir. If a + b + pr < n then this sequence will be
exact by Lemma 3.1. Hence we may assume that a + b + pr > n + pr. We

consider the sequence of modules M, _ ., < M,_, < M,_,. Since 2n
—(a + b) < n, Lemma 3.1 implies that this sequence is exact. But then we
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calculate

dim H, ,, = dim K, ,, — dim 9"*'(M,, )

= dim M, — dim 3/(M,) — dim 97"/(M,, ,,)

a+pr
=dim M, — dimU/(M,) — dim U’ ~'(M,)
=dimM,_, — dim 9/(M,_,) — dim 37~ (M,_,)

=dimK —dim 9/(M,_,)

n—>b,(p—i)r
=dim H,

n—b,(p—i)r
=0.
This completes the proof. |

4. GROUP ACTIONS AND THE
EULER-POINCARE EQUATION

We shall show that there is a canonical way to attach submodules of
R2% to any permutation group on (. These give rise to homological
sequences to which we can apply the result of the last section in order to
establish exactness.

As before, the coefficient ring R has prime characteristic p > 0, r > 1
is a power of p, Q is some finite set of cardinality n, and G c Sym(Q) is a
permutation group on €.

Let g be a permutation of Q. Then g acts on 2% by ' > I'¢ == {y% : y
€ I'} which can be extended linearly to the whole of R2%. It is not
difficult to see that g commutes with g, and so images and kernels of 4/
are left invariant by permutations. This also implies that permutations act
as linear maps on the homology modules H, ;..

We define the orbit module of G in M, as

ME = {feM,: fs=f VgeG}.

The natural basis for M are the “orbit sums” Y« oI'* where T'C as
usual denotes {I'¢: g € G}. In particular

n¢ = dim M¢

is the number of G-orbits on Q®. As g(MF) c (M ,) we obtain
sequences of orbit modules. Therefore select as before some m < r and
consider the sequence

J, J, d,. dJ, dJ,
G . " G .~ G " G 4 G 4
MO0 MEE MO, MO, <MY,

m+r m+2r
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which is certainly p-homological. In order to investigate p-exactness we fix
integers 0 < i* < p and 0 < k* = m mod(r) with k* + i*r < pr to obtain
the subsequence

G . G G G G G
‘%k*,i* 10 « Mk* <« Mk*+i*r — Mk*+pr <~ Mk*Jr(l-*JrP)r <« Mk*+2pr

of .# in which arrows are appropriate powers of 4,.
For arbitrary parameters |Q| =1, 0 <i <p, and k we let K¢, denote
ker 9/ N M and let

G ._ G —i G
Hk,ir '_ Kk,ir/(?rp I(MkJr(pfi)r)

be the corresponding homology module. If f € K,f,-, we denote its coset in
HkG,ir by

[f]l=f+ ‘9rp_i(MkG+(p—i)r)-
The dimension of H,, is the Betti number
B, =dimHC,, .
In particular, if G is the identity group then H,fi, = H}', and we put
By i =dim H ..

By Theorem 3.2 we have B;; =0 unless (k,ir) is the middle term of
M+ = in which case we refer to B, as the Betti number of .7« ;.
Middle terms for .Z% . and .#“ are defined as before. We now examine
L& for exactness.

THEOREM 4.1.  Suppose that R is a ring of prime characteristic p > 0. Let
r =1 be a power of p and G a permutation group on () whose order is not
divisible by p. Then HS,, = 0 unless (k,ir) is a middle term.

COROLLARY 4.2. If p does not divide the order of G then any section of
A C containing no middle terms is p-exact.

Remark. Theorem 3.2 is the special case of Theorem 4.1 when G is the
identity group on (. Theorem 4.1 states that all but one of the Betti
numbers of .Zg .« are trivial. Therefore, if (k,ir) is the middle term of

MG w, we call B, = dimH,, the Betti number of .Z5 .

Proof. Let M7 « M « MZ, . be consecutive terms of .Z% . where
without loss of generality b = a + ir. Suppose that b + a + pr < n or that

b+a+pr>n+prlf feKf, CK,, then by Theorem 3.2 there exists
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FeM,,, with ¢ (F)=f But then |G|'T, ;F¢eMC, and
9P (G, c o F8) = |IGIT'E, c ¢ 37 ~(F)® = f. This completes the proof.
|

Before we continue we note that Theorem 4.1 can be used to compute
the modular rank of certain orbit inclusion matrices of G: For s <t let WS
be the matrix whose columns are indexed by G-orbits on Q, rows by
G-orbits on Q, with (i, j)-entry, for a fixed t-set I' in the j™ orbit,
counting the number of s-element subsets A ¢ I' belonging to the i
orbit.

It is easy to see that W%, ,, viewed as a matrix over R, is the matrix of
g, ME — ME . The following extends Theorem 4.2 of [10].

COROLLARY 4.3.  If p does not divide the order of G, if r is a power of p,
and if k, 0 < i < p satisfy 2k — ir < n then the p-rank of W&,  is n§_,, —
ng—pr + ng—(p+i)r - ng—Zpr U

Proof. 0« -+ <M ., <M <« M, <M is exact accord-
ing to the preceding corollary. |

The Euler—Poincare Equation for a homological sequence states that its
characteristic (i.e., the alternating sum of the dimensions) is equal to the
alternating sum of its Betti numbers, see for instance Chapter 1X.4 in [7]

or Chapter XX.3in [6]. As /%k‘ivi* has particularly simple homologies when
G has order co-prime to p this becomes a strong result. We denote by

Cy, (G) = ([f1€H: [f] = [f]1Vg € G}

the centralizer of G in H, ;,, or in other words, the fixed-module of G on
H, ;. We give an alternative characterization of H_,,.

PropPosITION 4.4. If the coefficient ring has prime characteristic p > 0
and if G < Sym(Q) has order co-prime to p then HZ;, = Cy; (G).

Proof. First we note that

Cy, (G) ={[fl1€H,;,:[f]" = [f]Vg € G)

= (KkG,ir + &rp_i(Mk+(p—i)r))/arp_i(Mk+(p—i)r)

since if [f]=1[f]¢ for all g G then [f]= [IGI_lngGfg] and
IGI_.ldeGfg is fixed by the group. We clearly have &,P”'(M,{Gﬂp,i),) c
P (M, (,—1) N K¢ ,,. Moreover, if F e M, ,_,, with 37~'(F) fixed

ir
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by the group then ¢7 (F) = g7 '(IGI"*L,.;F¢) showing that
APME, (,—iy) = 3P My, (,—p,) N K. But then

Hk?ir = Klgir/&rp_i(Mk-%—(p—i)r) N Kk?ir
= (KkG,ir + &rp_i(Mk+(p—i)r))/&rp_i(Mk+(p—i)r)
= Cy, (G). 11

As usual, we put the binomial coefficient (7) equal to zero if k < 0 or if
k> n:

THEOREM 4.5 (The Euler—Poincaré Equation). If the coefficient ring has
prime characteristic p > 0 and if r > 1 is a power of p, let (k,ir) with
0 <i<p be the middle term of M« = and B;'; =dim H', its Betti
number.

Suppose that G € Sym(Q) has order not divisible by p and let B, =
dim HE,, be the Betti number of 4§ . Then

Bk”=2(k pn) (k—if—prl)

te”Z

G
= Bk,n an —prt nk ir—prt
tezZ

and G induces a fixed-point-free representation of degree B, — BC; on
H, ;,/C where C = HC, is the fixed module of G on H,_,,.

Proof. By Theorem 4.1, %}fi,i* has at most one non-trivial homology
and so the Euler—Poincaré formula gives B, = X, cn{_ ., — n¢_i,_ .
as the n]‘? are the dimensions of the modules in .z ;.. The equation for
By i is the special case when G =1 and the inequality follows from
Proposition 4.4. Finally, the centralizer of G in H, ;. /C is trivial as p does
not divide |G|. |

Remarks. (1) Consider the function ¢, ==X, _,( ") — G _7 )
for general n,k,i,r. It is clearly periodic in k£ and ir and Theorem 4.5
states that B;',, agrees with ¢}, when (k,ir) is a middle term while
Bi' ;. = 0 otherwise. Some fascinating observations can be made: For
p=2r=1we have ¢/, =0; for p=3and r=1 we get ¢, €{0,1}
while for p =5, r =1 we find that ¢/, is 0 or the (n — D%, a™, or
(n — 1)* Fibonacci number. See also Remark 2 following Theorem 6.5.

(2) The inequality B, > B;, may not hold for groups of order
divisible by p. For instance, when p = 3 and G is C, acting on six points,
we have B3, = 1 but By, = 2.
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(3) For middle terms the inequality ¢}, > B, gives interesting
results about the orbits on subsets of permutation groups of order co-prime
to p, in particular if ¢ ;. is small. This was first used in Theorem 6.1 in
[10].

(4) Any functional relation for ¢, will give information about
B(,,. For instance, it is clear that ¢, = ¢¢,' + @f-1;, as this holds for
binomial coefficients. This leads to the corollary below. But there are less
obvious relations and some of these will be made more explicit in Sec-
tion 6.

COROLLARY 4.6. (i)If0<i<pandn+1<2k+(p—i)r<n+pr
— Lithen B, = Biot + BiZt Lir (IfO<i<pandn<2k+p—i<n

+p! then Bkt Bkt+l+Bk ll 1

Proof. In (i) the conditions on the parameters mean that (k,ir) is a
middle term for a set of size n and that (k, ir) and (k — 1,ir) are middle
terms for a set of size n — 1. Hence B, = ¢/ ;. ,Bk o= gok et and

n—1

L = @ef "1, The result follows from 7, = ¢/ 7! + @=L, Simi-

larly, for (i) write out the terms of ¢, and use the relation for the
binomial coefficients. |

5. GENERATORS OF THE KERNELS

In this section we construct generators for K}/ ;. for general 0 <k <n
and 0 < i < p. This then also provides generators for the homology mod-
ules H, and HZ,, for groups of order co-prime to p.

If 2k + (p —ir <n or 2k + (p — )r = n + pr then Theorem 3.2 im-
plies that K, ;, = &,P"'(Mkﬂp_i),) which provides an efficient set of gener-
ators. Therefore we restrict our attention to finding a generating set for
K, ;. when n <2k + (p — i)r <n + pr, that is, when (k, ir) is a middle
term.

Moreover, if kK < ir then K, ;. = M, and so we can assume that k > ir.
When ir < k and 2k — ir + 1 < n we define

Ceiv = {(al —B1) VU (a,—B)VU-U(aq—-p)Ul:
aj,Bj* EQ,F QQ, CYJ?& le

forl <j,j* <t,t=k—ir+ 1, =ir—1}.

LEMMA 5.1. Let R be any coefficient ring with identity and let r and i be
positive integers. If k = ir and k + 1 < n then K, ;. = {C; ;.).
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Proof. Certainly ker ' N M, is spanned by {T — A:T,A c Q and |T|
= |A| = k}. We show that I' — A € (C, ,,» by induction on [I" \ Al.

For |T" \ Al = 0 or 1 this certainly holds. Therefore suppose that [T \
Al > 2 and that

I'= {71’72""’7j*7j+1v---:7k}
and
A= {’ijv’)IZP--v')/jyCVjﬁ,l,...,Clk}7

where j = k — |T" \ Al. Then we let © = {yl,yz,...,yj,yjH, osz,...,ak}
andnotethat ' —A=T—-0 + ® — Awhere [T \ 0| ="\ Al — 1and
|® \ A| = 1. Invoking the induction hypothesis completes the proof. ||

LEMMA 5.2. Let R be a ring of prime characteristic p and r > 1 a power
of p- If 0<i<p and ir <k let (k,ir) be a middle term. Then K}, =
<O7rp_l(Ml:l+(p—i)r)' Ck,ir>'

Proof. We proceed by induction on n. For small values of » the result
is easily verified. So suppose that the lemma is true for all values < n. By
the above lemma we may assume that k <ir. Let f € K, ;. be given. We
assume that supp f = () otherwise we may use induction or Theorem 3.2
to complete the proof. We write f = o U f, + [ where supp f,, U supp! C
Q* =0 N\ a. Then J(f) =0 implies that ¢/(f,) =0, that is, f, €
K;~{,. Then either by induction the above lemma, or Theorem 3.2 we
see that f,€{ar (M 1+(p b CiZi L. We wrlte f,=ar ’(F) +
Yric; with r, €R, ¢; € Ck ity and Fe M !, , .. Since 2k —
< n and llc; || =2k —ir — 1 we may select «; € Q" \ suppc;. We Iet
h=f- Zr(a—a)Uc — 9" (a UF) and note that heKk,,,
rira — qa ) Uc; € Ck i and 97 (a U F) € ¢~ (My, ,-;,). Therefore
by inductlon or Theorem 3.2 the proof is complete. |

We collect the results of this section so far together in the following.

THEOREM 5.3.  Let R be a ring of prime characteristic p, r > 1 a power of
the prime p, and let 0 < i < p.

(i) If (k,ir) is not a middle term then K, ;, = 37~ '"(M, (,_;,), and

(i) If (k,ir) is a middle term then K, ;,, = M, for k <irand K, ;, =
(3P~ (M iy Cyiy) forir < k.
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From this we obtain immediately expressions for the homology modules:

COROLLARY 5.4. If (k,ir) is a middle term, then

= Mk/arpii(MkJr(pfi)r) lfk <ir
= <Ck,ir>/<ck,ir> N &rp_i(Mk+(p—i)r) lfir =< k.

n
k,ir

Further, if G € Sym(Q) has order co-prime to p, then

o =MZ/MZ 03P (Myy i) ifk <ir
“ = MENLC Y /ME N LC) N 8T (Myy (o) ifir <k.

Proof. The first part is clear and the second follows from Proposi-
tion 4.4. |

It is clear that the module generated by C, ;. is of special importance
and we will examine it in terms of the standard representation theory of
the symmetric groups; as a reference we suggest Chapter 7 of [5].

Suppose now that R is a field of characteristic p > 0. Let

c=(a;=B)U(a,—B)Y-U(a-6)ul

be an element in C, ;, witht =k —ir+1and I' = {y,,v,,...,7,_,} and
define Q* = {ay,..., &, By,---, By Y1, - -+ V;r—1)- We notice that ¢ corre-
sponds to the polytabloid 7- k. on Q* where

;= Qy &y " &y Yy Yo o VYir-1
By B, B
and where k. = (1 — (a;, B) -1 — (a,, B,) A — (a, B)) €
R Sym(Q*) is the signed column stabilizer of 7. So if we let M;f denote the
R-module with k-element subsets of Q* as basis we have obtained

LEMMA 5.5. S := (M N Cy ;> is isomorphic to the Specht module for
the partition of (V¥ into 2 parts of size k and k — ir + 1. Further, {C, ;) =
S 1Y) s the module induced from S.

With the use of this lemma and reciprocity arguments one can deter-
mine the structure of (C, ;). This is the case in particular when [Q*] is
close to |Q)] and we will use this lemma in the next section to determine
the structure of some homology modules in terms of Specht modules.
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6. THE HOMOLOGIES OF THE 1-STEP MAP

In this section we restrict our attention to the case r =1 and for
simplicity the 1-step map J, is denoted by d. Throughout this section R is
a ring of prime characteristic p. In [10] we have shown that in characteris-
tic p = 2 all homologies of the 1-step map are trivial. So here throughout
p > 2.

If G c Sym(Q) is a permutation group on Q) and 0 < i < p then H, is
the homology module relative to () as defined in Section 4. If « € () then
we regard the stabilizer G, of «a as a permutation group on ) \ « and so
HkG;; denotes the homology module relative to Q0 \ «. To avoid unpleasant
case distinctions we will put H = H,’, = H{', = 0 when i = 0 or i = p.

THEOREM 6.1. Let R be a ring of prime characteristic p, 0 < i < p, and
let G be a permutation group on (). Suppose that for some o € Q) the size of
the orbit aS is co-prime to p and let N be the normalizer of G, in
Sym(Q \ a).

Then there exists a monomorphism ®: HZ; —» HCs | & H= ,_, which
commutes with N.

A special case of this theorem is worth mentioning separately. Note that
in both theorems we do not require that (k, i) be a middle term:

THEOREM 6.2. Let R be a ring of prime characteristic p, 0 < i < p, and
let a be an arbitrary element of Q. Then H;', = H!;} ® H!'"}, | as
Sym(Q \ «)-modules. In particular, if p > 2 and 0 < k < n then H! ; # 0
if and only if (k,i) is a middle term for n.

Remark. Note that (k, i) is a middle term with respect to Q if and only
if (k,i +1) and (k—1,i + 1) are middle terms with respect to Q \ a.
Hence Theorem 5.2 and induction on n can be used to give the shortest
self-contained proof that H;', is trivial if and only if (k, i) is a middle term.

Proof of Theorem 6.1. Let f = a U f, + [ be an element of K, where
a & supp(f,) U supp(D). Then 0 = d'(f) = a U 3'(f,) +id' " *(f,) + (D)
and so 9'(f,) =0,/ € Kl ,, and if, + o() € KJ . ..

Now define the map ®: H¢, - HS & HC= ,_; by putting

@[]~ ([1].[if. + a(D)]).

To show that this is well defined suppose that [f] = [h] with h = ¢« U h,,
+ m and « & supp(h,) U supp(m). So there exists some F = a UF, + L
€ M&, ,_; with o & supp(F,) U supp(L) and ¢? " (F) = f —h = a U (f,
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—h,) + 11— m. Note that F8 =F,
calculate

alU (f,—hy,) +1—m
=97 (aUF, +L)
=@ U P (F,) + (p—i)a? "Y(F,) + a? /(L)

and L& =L for all g€ G, and we

implying that [ —m € 9?~"" XM, ,_,) and that 9*"'(F,) = f, — h,,.
Applying ¢ to the equation gives

aJd(f,—hy)+f,—h,+d(—m)
=9’ " (aUF, +L)
=aU P "N E)+ (p—i+ 1)’ (F) + d?"*(L)

so that i(f, —g,) + d(l —m) € 9P~ H(M: ). Therefore @ is well
defined, clearly linear, and it is a simple matter to check that it commutes
with N.

Suppose now that ®([f]) = ([0],[0D. Then there exists F € M, ,
with 97~ ""*(F) =1 and there exists H € M:, , with 97~ "**(H) =
if,, + d(I). Then

P (aUF)=aUd(l) + (p—i)l,
" aUH)=aU (if, + () +(p—i+1)d”"'(H)

and hence 97 ""NaUH)—(p—i+ 1Dd” (H)— 3" (aUF)=if.
Let J:==3d(a UH)—(p —i+ DH — o« U F. Then J is fixed by G, and
we may define

TG = la®™! Y s
G,g€cos(G:G,)

Then J€ is fixed by G and 97 ~(J¢) = if. Hence @ is injective. |

Proof of Theorem 6.2. Here we suppose G = {1} and let ([/],[m]
H!;heH!"! 1. Then d(au (i"'(m — a() +1)) =0 and ®(a U
i~(m — 9(D) + I]D = ([{],[m]) showing that ® is surjective. Alternatively,
use Corollary 4.6(ii) to show that H;'; !, ® H;~}', , has dimension B/,.
As (k, i) is a middle term for n if and only if (k,i + 1) and (k — 1,i — 1)
are middle terms for n — 1 the statement about the non-triviality of H',
is proved by induction on n. This completes the proof. |

Theorem 6.2 is useful for investigating the irreducibility of the homology
modules which we deal with in the next two results.
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THEOREM 6.3. Let R be a ring ofpn'me characteristic p > 2. For a € ()
assume that H'; = H';}, ® H{_!',_, is non-zero and suppose further that
H' Y and HPZ},_ | are zero or irreducible R Sym(Q) \ a)-modules and that
they are non-isomorphic if they are both non-zero. Then H,'; is an irreducible
R Sym(Q)-module.

Proof. For a contradiction we will suppose that U is a non-trivial
R Sym(Q)-submodule of H; and so if ® is the map of Theorem 6.2 then
®(U) is a non-trivial R Sym(Q \ a)-submodule of H; ! & H!' !, ..
Therefore we are done if either H'; !, or H !, ; is zero. Hence we
may assume that H;;'; and H/~}, ; are irreducible non-isomorphic
R Sym(Q \ a)-modules and further that n > 3, k <n,and 1 <i <p — 1.
Therefore ®(U) is either H"}; ; or H;'; 1.

Case 1. ®U) = H}~{', . Let[f]be a generator of H ', , as given
in Theorem 5.3. So either f € C;/~},_, if k > i or f isa (k — 1)-subset of
QN aif k<i As[f]l€ ®U) we have [i o U f]=d (f] € U. But
again by Theorem 5.3 we have {[a U f]¢: g € Sym(Q)) = H,, a contra-
diction.

Case 2. ®U) = H';},. First assume that i <k and let fe C};l..
Then we may write f=A4 Ul where A4 ={ay,..., e} and [ € C}7/ 1%
Hence putting f == —i ‘a U d(f) + f we see that (I) 1([f]) = [f], and as
[f1e H 7} it follows that f belongs to U. Let f(* v be the result of
applying the transposition («, a,) to f. Then

[Feeo] = [ Ud((ANa)UaUl) + (AN a) UaUl]
=[aU((((T*+ AN ay—i"9(A)) V) —i"UUl].

As i> 1 consider the transposition («, @,) and compute [f(* )] —
[fleed] =[G+ Da U (a, — a;) UA \ {a,, a,} U] By Theorem 5.3
the Sym(Q)-images of [« U (a, — ;) UA \ {ay, a,} U] generate H',
which is a contradiction.
Secondly we assume that 2 < k < i and here we let 4 := {ay,..., o;} S0
that [4] € H';},. Putting f= —i o U d(A4) + A, we see that [f]=
“}([A) so that f € U. Further,

] = =17, U (A N ) U+ (4N ) U )]
= [a U ((fl + AN e - iila(A)) - flA]

and hence [f(*®] —[f**)] =[G+ Da U (a, — a)) UA \ {ay,
a,}]. If i = k then Theorem 5.3 |mpI|es as before that the Sym(Q)-images
of [ U (a, — a;) UA \ {ay, a,}] generate H}', which is a contradiction.
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In any case expressions of the form a« U (a, — a;) U A \ {ay, a,} are
differences of two k-element sets and so U has co-dimension as most one
in H;';. We suppose therefore that k <i and that 1 = dim(H},/U) =
dim H;, — dim H;; !, = dim H;~!,_, by Theorem 6.2. As 2 <k we
have 1 <i—1<i+ 1< p sothat both (k — 1,i) and (k — 2,i — 2) are
middle terms with respectton — 2and0 <k —2 <k — 1 <n — 2. Hence
by Theorem 6.2 we have B/ ‘1 ;>0 and B/~7,_, > 0 which contradicts
1=Biiioa =BTt + BiZsizs

Therefore finally assume that k = 1 and as H;'~}';_, # 0 it follows from
Theorem 6.2 that (0,7 — 1) is a middle term so that p —i +1>n —1. As
K7 =My~ for i +1>1 we have H';} = M”‘l/a”‘("”)(M" .
As H;'7}, is irreducible by assumption while M;~* is not, we cannot have
g~ Y(MP=1) = 0. Together with p — i+ 1> n — 1 this implies that
n — 1 =p — i which means that H;, = M} /9"~ *(M}") and this module is
know to be irreducible for p > n, see [4, p. 18]. This completes the proof.

THEOREM 6.4. Let R be a ring of prime characteristic p # 2 and suppose
that 0 <k <nand 0 <i <psatisfy 2k + p—i=n+p — 1. Then H is
irreducible. Furthermore, if (k',i') is another pair of positive integers satisfying
the above conditions then H' ; # H}\ ..

Proof. 'We prove this result by induction on n. For small values of n
the result is easily verified. Therefore suppose the result holds for n — 1.
Since 2k +p—-(G+1D=(m-1D+p—1and 2(k—1)+p—(i—1)
(n — 1) + p — 1 we see inductively that H;'; !, and H }, , are either
zero or irreducible, and that if they are both wreducnble then they are
non-isomorphic. However, as p + 2 it is easy to see that H;';!; and
H}~!,_, cannot both be zero. So Theorem 6.3 implies that H/, is
irreducible.

Now suppose that (k’,i') is another pair of positive integers satisfying
2k' +p—i"'=n+p—1and 0 <i <p. We assume for a contradiction
that H” = H,f, » and so by Theorem 6.2 we have H/;!; & H,f*fl : =
Hy A @ HE L, . The |nduct|on hypothesis then implies that H;'"},_,
512Hk’—l,z’—lv hence H/?,Jrll =Hyp~1,qand HiZf, oy = Hpob

Moreover, if H';}; and Hk,lyl,1 are both non-zero then the induction
hypothesis implies that k = k" — 1 and k — 1 = k', giving us a contra-
diction.

Suppose therefore that H;';}!, is non-zero and H;'~',_, is zero. But
then we see that i — 1 =i’ + 1 = 0mod(p) and by the induction hypothe-
sisthat i + 1 =7/ — 1. Hence2 =i+ 1=i — 1= —2mod(p), a contra-
diction A similar argument works in the case when H;;l! is zero and
H!~}, , isnon-zero. |



ON MODULAR HOMOLOGY 577

Finally we are in a position to identify certain of the homology modules
in terms of Specht modules and partitions of ():

THEOREM 6.5. Let R be a ring of prime characteristic p # 2 and suppose
that i <k and 0 <i<p satisfy 2k +p —i=n+p — 1 Then H, is
isomorphic to ST/S™ N ST+ where S” is the Specht module corresponding to a
partition of Q) into 2 parts of length k and k — i + 1.

Proof. By Corollary 54 we have H, = (C; >/{C, ;> N
P~ (Myy(,-i)) and as Q = Q* in Lemma 5.5 we have S™ = (C, ;). As
S™N S™* is the unique maximal submodule of S7, the result follows from
Theorem 6.4. |

Remarks. (1) Provided that n + 2 > p there are (p — 1)/2 distinct
pairs of positive integers k and 0 <i <p with 2k +p —i=n+p — 1.
So Theorem 6.4 provides (p — 1) /2 non-isomorphic irreducible Sym(Q)-
modules and their dimensions are given by the function ¢ ; of Section 4.

(2) When p = 5 these modules are precisely the Fibonacci represen-
tations of the symmetric groups described in Ryba’s paper [13]. Such
systems of representations have been generalized in Kleshchev's work [9].
For general prime p > 2 the collection Z7:=={H,:k <n, 0<i<p,
2k —i + 1 =n} is an example of the semi-simple inductive systems dis-
cussed in [9]. In fact, .7 consists precisely of the modules arising from
2-part partitions which satisfy Kleshchev’s condition of Theorem 2.1 in [9].
We conjecture that such semi-simple inductive systems for partitions with
more than 2 parts arise also as homologies for suitable posets.

In the remainder of this section we give the complete decomposition of
the H;',. Let a be an integer satisfying 0 < a < p. For 0 <i < p we define
module homomorphisms

p H; = H
and
O HE = H
by p((fD :==1[f]and a( f] = [a(f)], respectively. It is a simple matter to

check that these maps are well-defined. We record some properties of
these homomorphisms in the following:

LEMMA 6.6. If 2k +p —i=n + a then
(@ p:H; = H},, is surjective if i > a — 1 and
(b) o:H, —» H! ,, . issurjective ifi <p — (a — 1).

Proof. (a) Let f be in K}, ,. Then ¢'(f) € K¢_,, and 2(k — i) +
p—1=n+(a— 1) —i<n. By the Integration Theorem (or indeed, by
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Lemma 2.3) there exists F in M}, , ., with 9”7 *(F) = d'(f). But then
d'(f — a7~ BD(F)) = 0 and p([f+ P~ DR = [f1.

(b) LetfbeinK;! ,, ;. Then2k—D+1=n—-(p—-(a—-1—
i) < n and by the Integration Theorem (or indeed, by Lemma 2.3) there
exists F in K}, with 9(F) = f. But then o((FD =[f] 1

We now present two further results which will help us determine the
composition factors of the homology modules.

LEMMA 6.7. If 2k +p —i=n + athen H, = H' .

Proof. We notice that k +p —i + k + p —a = nmod(p) so that H},
and H;', will have the same dimension. Without loss of generality we may
suppose that i < a and then we look at the map p® ': H', —» H . If
feK}, then 9'(f) €K}_,,_, and 2(k — i) + p — (a — i) = n so that,
by the Integration Theorem, there exists F in M, , with 97~ “=7(F)
= ¢'(f). But then ¢'(f — 9P~ “%(F)) =0 and p“ ‘((f — d”"“(F)D = [f].

|

LEMMA 6.8. H}'; = H

n—k,p—i*

Proof. Suppose 2k +p —i =n 4+ a and, without loss of generality,
that n — k > k. But then n — 2k = p — (i + a) and we can look at the
map 47~ H! , . — H, Suppose that f € K ,. Then 2k + p —
(i+a)=n and by the Integration Theorem there exists F € K,/ ,_;
with 97~ C@*9(F) = f. But then o7~ “*“(F]) = [f] However, H; ,

and H;', have the same dimension and hence applying the previous result
completes the proof. ||

We are now in a position to determine the composition factors of all
homology modules. Since H'; = H,'_, ,_; it suffices to consider the case
when 2k +p—i=n+aand0<a <p/2

THEOREM 6.9. Let 2k +p —i=n+a and 0<a <p/2. Then the
composition factors of H'; each have multiplicity one and are given as
follows:

@ {H{jit4-1-2;:7=0,....,a =1l ifa<i<p-—a.
0 {H ;412,27 =0,...,i —1}ifi <aand
© {H is4o1-0;0j=i—(p—a)...,.a-1ifi>p—a
Proof. The proof is by induction on a. Suppose firstly that i < a. Then
H';=H;,and 2k + p —a =n + i with i <a <p — i so that, by induc-
tion, the composition factors of H;'; are {H;" ; ;. ,_1_,;:j=0,...,i — 1}.
Secondly suppose that i > p —a. Then H, = H} and 2(n —k)

n—k,p—a
+p—(p—a)=n+p—i<n+a with p—z<p—a<i. By induc-
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tion the composition factors of H'; are therefore

{Hn”—k—j,zp—(aﬂ)—l—zj: j=0,...,p—i-1}
={H! | va-r-2" I=i—(p—a),...,a— 1}

Finally suppose that a <i <p —a. By Lemma 6.6 all composition
factors of H',,, and H;' ,, , will be composition factors of H;',. Since
2k—-D+p—-(G—-D=2k+p—-(G+D=n+(@—Dand a—-1<i
—1<i+1<p—(a— 1) wecan assume inductively that

~

{Hkn—l—j,i—1+a—2—2j: j=0,...,a-2}
U{H{_ | is140-2-211 1=0,...,a = 2}

={H ;iya1.2,17=0,...,a -1}

are all composition factors of H', This set consists precisely of the
composition factors of H/' 1 together with H;',, , ,. Furthermore, we

notice that dim H;', — dim H; , , , = dim H}',,, , since k — 1 + k —
(i +a—1) =nmod(p). Since all the modules in {H;" ;. ., 1 5;']j=
0,...,a — 1} are irreducible and non-isomorphic we are done. 1
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