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An inviscid model of droplet impact into a water layer is examined analytically for small
times just after impact and computationally for order-one distortion times. Various layer
depths are considered, as are surface-tension effects. Good correspondence is found
between analysis, computation and experiments.
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1. Introduction

The high-speed impact of a single water droplet onto a previously undisturbed
layer of water has a range of applications; for example, in the chocolate
manufacturing, spray-coating and aeronautics industries and particularly in
regard to aircraft icing. When flying through clouds at or below freezing
temperature, aircraft can accrete ice on forward-facing parts of the aircraft, most
crucially on the leading edge of a wing, on the tail and around the engine intakes.
Supercooled water droplets suspended in the cloud impact upon the aircraft.
After impact, depending on temperature and speed, water can turn to ice
immediately or it can spread further aft down the wing before freezing. These
different behaviours lead to different ice shapes. Despite the complexity of the
phenomenon and the dependence on many parameters, existing models are
reasonably accurate in predicting both ice shapes and the quantity of ice
produced for small droplets (up to about 40 mm). However, for larger droplets
(40–400 mm) the current models tend to fail, dramatically over-predicting the
amount of ice produced and wrongly predicting its location. This is thought to be
due, at least in part, to splashing. When larger droplets hit the thin layer of
water on the wing they splash, ejecting droplets back into the airstream.
These either escape the wing completely (hence the over-prediction of ice mass)
or re-impinge further back on the wing (explaining the incorrect prediction of ice
location/shape). See Gent et al. (2000) for a review of the factors contributing to
aircraft icing and modelling approaches. Ice build-up can have significant
influence on the aircraft aerodynamics; better understanding of the influence of
splashing on icing is therefore desirable.

Despite this physical importance, there has been relatively little previous
direct theoretical input and suitable physical modelling on droplet impact at
On
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a high Reynolds number into water. Early interest appeared in Worthington
(1908), whose book includes many images of splashing after both droplet and
solid sphere impacts upon a fluid layer. However, several interesting studies have
been made on related aspects both analytically, for example, Korobkin &
Pukhnachov (1988), Wilson (1989) and Howison et al. (1991) who consider
solutions at small times after impact for solid–water impacts, and Yarin & Weiss
(1955) and Mundo et al. (1995) who consider differing aspects of droplet impact,
and numerically such as in Weiss & Yarin (1999), who use a Lagrangian-type
approach. Much work has also been produced by Josserand & Zaleski (2003, and
references therein), who have developed powerful three-dimensional techniques
for simulating droplet impacts, although their parameter ranges differ from those
important in an icing context. More recent studies have been completed by
Purvis & Smith (2004a, 2005) and Smith et al. (2003).

Section 2 outlines the central impact problem, which is analysed in §3 at small
distortion times for a droplet entering deep water. Sections 4 and 5 consider
instead a thin layer. Section 6 then describes the numerical work to examine O(1)
times. Final brief comments are provided in §7.
2. Governing equations

We consider a single water droplet impacting upon an otherwise undisturbed
layer of water. The droplet has diameter D, the layer has depth H and the
incoming droplet velocity is V. Non-dimensionalized on a typical droplet
diameter (40–400 mm in the large droplet icing context) and incoming velocity
(150–200 m sK1 but can vary), the incident droplet thus has diameter O(1) and
VZK1. Typical Reynolds numbers are large O(105) and so it seems reasonable
to treat the problem as inviscid. Surface tension is small, WewO(105) and the
effect of gravity is also negligible (FrwO(108)). We examine the flow in two
dimensions and also ignore the influence of air (cf. Purvis & Smith 2005; Smith
et al. 2003). The unsteady two-dimensional Euler equations, namely

Ux CVy Z 0; (2.1)

Ut CUUx CVUy ZKPx ; (2.2)

Vt CUVx CVVy ZKPy; (2.3)

then apply in terms of the velocities U, V in coordinates x, y with time t and
pressure P. The undisturbed layer lies in y% 0.
3. Droplet impacting upon a deep layer

First, we consider the small-time behaviour of a circular droplet entering an
undisturbed horizontal layer of infinite depth.
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Figure 1. Local problem in neck region, as a droplet descends onto a still water layer.
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(a) Small-time behaviour

In a region where x and y are O(t1/2) around the neck of the impact, the
velocities, pressure and free-surface height scale as

½U ;V ;P;F �w½u; v; tKð1=2Þp; tf �; (3.1)

and substitution into the governing Euler equations yields the Cauchy–Riemann
equations for ftt and Kpx (extended into the xKy plane),

fGttx ZKpGxy; fGtty Z pGxx ; (3.2)

where ‘plus or minus’ indicates quantities above (in the droplet) and below (in
the layer; see figure 1). The boundary conditions

fCwx2K t; fK/0 as jxj/N; y Z 0; (3.3)

match with the circular droplet impacting with velocity K1 above and with the
undisturbed horizontal layer below in the outer x, ywO(1) region, while

pCZ pKZ 0 for jxjOaðtÞ; y Z 0; (3.4)

as surface tension has no effect to leading order on this scale (see §3c below), and
pressure continuity and equal free-surface shapes require

pCZ pK; fCZ fK; for jxj!aðtÞ; y Z 0: (3.5)

Finally, the contact points x ZGa(t) where the upper and lower free surfaces
meet are also unknown in this problem with mixed boundary conditions.

Cauchy’s integral formula, however, gives the integral relation

pCCpKZ
1

p

ðN
KN

fCtt K fKtt ðx; tÞ
xKx

dx: (3.6)

For jxjOa(t) the pressures are both zero (condition (3.4)) and the integrand is
only non-zero for jxjOa(t). Inverting the resulting relation (see Muskhelishvili
1946), integrating twice in t and imposing (3.3)–(3.5) leads to the solutions

fGZG
1

2
jxjðx2 K2tÞ1=2 C x2

2
K

t

2
; x2O2t; fGZ

x2

2
K

t

2
; x2!2t: (3.7)

The contact points are thus at xZG(2t)1/2. The small-time solution (3.7) is
shown in figure 2 for two times; as time increases, the contact point in the neck
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Figure 2. The small-time solution at two times: (a) tZ0.1, (b) tZ0.9.
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region where the upper and lower free surfaces meet moves outwards and
upwards.

The pressure in the connected region jxj!ð2tÞ1=2 follows from [f ]tt in (3.7) and
pCx ZpKx in (3.5), so that (3.6) becomes

pGx ZK
x

4p

ðN
ffiffiffi
2t

p
x

ðx2 K2tÞ3=2
dx

x2 Kx2
; (3.8)

giving

pGZK
1

4
ð2tKx2ÞKð1=2Þ: (3.9)

(Similar results hold for a non-flat layer incidentally.) To smooth out the square-
root behaviour exhibited by (3.7) and the singular behaviour of the pressure near
the contact point a smaller region arises where

ðxK
ffiffiffiffiffi
2t

p
; y;U ;V ;P;FÞZ ðt3=2�x; t3=2�y; t1=2�u; t1=2�v; tK1�p; t3=2�f ÞC.: (3.10)

This expansion leads locally to the steady Euler equations. The problem is
exactly that encountered in solid–water impacts and the solution is given in
Howison et al. (1991). It is found that a fast-moving horizontal jet appears in
the neck region. This response is the limiting case of that set out in §5 as h/N.
(b) Impact at incidence

The solution outlined above assumes a normal impact. This can be easily
extended to allow for oblique impact. The form for the pressure and
streamfunction from the direct impact solution has

pCK ijC
t Z

i

4
ðz2K2tÞKð1=2Þ; (3.11)
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with zZxCiy. Integrating with respect to t leads to

qCK ijCZK
i

4
ðz2 K2tÞ1=2C iĉz; (3.12)

where qCt ZpC and the arbitrary function is determined by insisting jzjwt1=2.
The imaginary part of (3.12) at large distances gives jCwðð1=2ÞKcrÞxCciy,
where ĉZcrCici. To ensure v/K1 in the farfield we need crZK1/2. We can,
however, choose ci to give the required horizontal velocity of the droplet. Since
ftZKjx we find from (3.12) that

fCt ZKjC
x ZK

1

2
jxjðx2K2tÞKð1=2ÞK

1

2
; (3.13)

which, on integration in t, gives the previous result (3.7). Note that this is
independent of the initial horizontal velocity cr. The water layer solution remains
unchanged, i.e. cKi Z0; cKr Z0, leaving a jump in u across yZ0, jxj!ð2tÞ1=2,
according to this model.

Consideration of the inner jetting region discussed for the normal impact
above shows that this sideways motion does not affect the local jetting to leading
order. So the small-time solution holds for oblique impacts also. Similar
phenomena are found in stone skimming and solid-liquid impact (Howison et al.
2003), where the horizontal velocity there also does not affect the leading-order
solution at small times unless the horizontal velocity is sufficiently large, of the
order of the initial jetting velocity, and likewise in air–water interactions with a
moving wall (Smith et al. 2003).
(c) Surface tension

To include surface tension in the small-timemodel, consider a regionnear contact
where ðxK

ffiffiffiffiffi
2t

p
; yÞZ tmð�x; �yÞ and expand

ðU ;V ;P;FÞZ ðtKðm=2ÞC1=4�u; tKðm=2ÞC1=4�v; tKðm=2ÞKð1=4Þ�p; tm=2C3=4�f ÞC.; (3.14)

where theF scaling is fromF beingO(t) in the xwywt1=2 region but parabolic near
the contact point.Then theV scaling follows fromVwFt,U from continuity and the
P condition from balancing Vt with Py. This leaves FxxwtKð3m=2ÞCð3=4Þ. Comparing
this with the pressurePwtKðm=2ÞKð1=4Þ then, as surface tension is proportional to the
curvature of the free surface, the surface-tension effect enters where FxxwP,
i.e. where mZ1. So surface tension has a substantial influence on a scale
intermediate between the t1/2 region and the initial jetting.

Substituting (3.14) into the Euler equations yields to leading order

�u�x C �v�y Z 0; K

ffiffiffi
2

p

2
�u�x ZK�p�x ; K

ffiffiffi
2

p

2
�v�x ZK�p�y: (3.15)

Scaling out the
ffiffiffi
2

p
=2 factor and combining (3.15) leaves the Cauchy–Riemann

equations for �v; �p. These are to be solved subject to

�pZs�f �x�x ; �v ZK�f �x for �xO0; �v Z 0 for �x!0; (3.16)
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Figure 3. The numerical solution of the surface tension integral equation.
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where s is the non-dimensionalized coefficient of surface tension. Cauchy’s
integral formula now leads to the integral equation

s�f �x�x Z
1

p

ðN
0

�f x
xK �x

dx: (3.17)

The solution can be obtained numerically or using a Wiener–Hopf approach,
as in Stewarton (1960) for a similar equation, and is presented in figure 3.
The inclusion of surface tension smooths out the square-root behaviour in f near
the contact point, and a linear behaviour can be seen. The influence that this has
on the inner jetting region remains unclear however.
4. Droplet impacting upon a shallow layer

For thin layers, and as the size of the connected region grows in time, the ground
effect may enter the small-time evolution. This occurs when the t1/2 extent grows
as large as the layer depth h, i.e. at times O(h2). The governing equations are
then unchanged, as are the boundary conditions. The difference is that we now
have an additional requirement on the wall that vZ0 at the scaled distance
h beneath the free surfaces. Introducing the image reduces the problem to solving
(3.2) subject to (3.3)–(3.5) but applied both at yZ0 and at yZK2 h.
(a) Integral formulation

The problem is that of finding the function wðxC iy; tÞZpxðx; y; tÞC ifttðx; y; tÞ,
analytic in the complex plane and bounded in the far field such that

wðxG0iÞZ pGx ðxÞC ifGtt ðxÞ; wðxK2hiH0iÞZ pGx ðxÞK ifGtt ðxÞ; (4.1)

where the values on the free surfaces, fGtt ðx; tÞ and pGx ðx; tÞ, are either known from
(3.3) to (3.5) or unknown. A method similar to that in Jones (2000) and Purvis &
Smith (2004b), based on applying Cauchy’s integral formula, yields integral
equations for the free surfaces and pressures. The boundary conditions show that
Phil. Trans. R. Soc. A (2005)
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pCx KpKx Z0 on the free surface jxjOa(t) since pGZ0 and also in the middle since
pCZpK. Likewise, fCtt K fKtt Z0 for jxj!a(t).Once again, the position of the contact
points xZGa(t) is unknown in advance. Therefore, the obtained integral equations
immediately reduce to

hfttiZ
1

p

ð
FS

2h

ðxKxÞ2C4h2
½ftt�ðxÞdx; (4.2)

hpxiZ
1

p

ð
FS

1

xKx
C

xKx

ðxKxÞ2 C4h2

� �
½ftt�ðxÞdx; (4.3)

where we have introduced the notation [p]ZpCKpK, hpiZpCCpK, for the
differences and sums of the pressure terms above and below, and similarly for
the free-surface shape f, and FS denotes the free-surface regions (KN, Ka(t)] and
[a(t),N).

We solve these integral equations numerically using a method adapted
from Purvis & Smith (2005). We consider (4.3) for jxjOa(t) when hpxiZ0 and
separate the integral on the right-hand side into a Cauchy part and the
remainder. The Cauchy part is then inverted and the resulting equation is
evaluated numerically. Results are shown in figure 4 for two values of h. Observe
that in the large-h case the solution is as before with the contact point moving
upward and rightwards. For smaller h the solution initially follows the no-wall
case but then the upper free surface is pulled downwards and the free surface of
the layer remains largely flat. The numerically determined contact points are
very close to (2t)1/2 in all the cases that we have examined.
(b) Smaller and larger times

The behaviour seen in the numerical results can be explained/verified by
considering the large and small h limits (or small and large times, respectively).
Considering large h, the second term in the integrand of equation (4.3)
is negligible to leading order and this equation reduces to (3.6), reassuringly
the governing equation with no wall present.

The small-h case is not quite so straightforward. A Fourier transform of
(4.2), (4.3) leaves

hf̂ ttiZ eKbjwj½f̂ tt�; Kiwhp̂iZKisgnðwÞð1CeKbjwjÞ½f̂ tt�; (4.4)

where bZ2 h and ‘cap’ denotes a transformed quantity. Expanding the sums as
hcapiZhcapi0Cbhcapi1C. and the differences similarly, and considering
(4.4) for b/1, we find to leading order

hf̂ tti0 Z ½f̂ tt�0; Kiwhp̂i0 ZK2isgnðwÞ½f̂ tt�0: (4.5)

The inverse transform then gives the leading-order problem as

hftti0 Z ½ftt�0; (4.6)
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Figure 4. Free surface shapes in the twh2 case for hZ10 (top) and hZ0.2 (bottom).

R. Purvis and F. T. Smith1216
hpxi0 Z
2

p

ðN
KN

½ftt�0ðxÞ
xKx

dx: (4.7)

Considering (4.6), we find that fKtt 0Z0 and, as fK/0 as jxj/N, then fK0 Z0;
the free surface of the layer remains flat to leading order. Now consider (4.7) for
jxjOa(t); here pC0 ZpK0 Z0 and, knowing fK0 , we find

0Z
2

p

ð
FS

fCtt 0ðxÞ
xKx

dx: (4.8)

This is exactly the governing equation for a droplet hitting a solid wall with no
water layer present. In summary, to leading order, for t[h2 the layer remains
undisturbed and the droplet reacts as if hitting a wall.
5. Even larger times

The next limit of interest is when the wall effect enters the jetting region.
This occurs when hwOðt3=2Þ, again either for a very thin layer or at later times
O(h2/3) as the contact region expands. The governing equations and expansions
Phil. Trans. R. Soc. A (2005)
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are unchanged from (3.10), although here we omit the overbars. The problem
is set out in figure 5.

In brief, to find a solution, we consider the domain edge in the JZuKiv plane
which is a circle of radius 1 (the velocity at F and in the incoming jet BC is
normalized such that uZK1 there) but with an extra loop along the real axis
from JZK1 to the mapped point Q where the minimum velocity is found along
the wall, JZKq say. We proceed by mapping this to the upper-half plane x via

J Z
ðx2Kg2Þ1=2 K i

ðx2Kg2Þ1=2 C i
; (5.1)

where gZð1KqÞ=ð1CqÞ. Now we construct the complex potential w. The jet at
BC corresponds to a source in the x-plane, the jet at DE a sink. Incorporating
also the free-stream behaviour at F, ensuring the correct behaviour as x/N and
satisfying the requirement that u is a minimum along the wall at Q leads to the
solution

w Z
KL2

4ðxCgÞC
dKh

p
lnðxCgÞC h

p
lnðxKgÞ; (5.2)

where d is the width of the jet DE and h is the layer depth. Matching with
the (assumed given) upper free-surface shape f ðxÞZKx1=2 yields L2ZK2=8g.
Additionally, we also need to ensure that the stagnation point in the x-plane
corresponds to the origin in the J-plane. Satisfying this requirement implies

w Z
KK2

32gðxCgÞC
K2ð4g2K1Þ

64g2
lnðxCgÞC K2

64g2
lnðxKgÞ: (5.3)

Note that the solution yields hZpK2=64g2, determining the value of g for a
given layer depth. The total flux into the splash jet (x/N) is also determined
Phil. Trans. R. Soc. A (2005)
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as dZpK2=16, which is independent of the layer depth h. We assume here that
g!1 and so there is a single stagnation point in the upper-half plane; similar
analysis applies for gO1 where there are then two stagnation points on the wall
AB.

The detachment H, from C to D, between the inward jet BC and the emergent
jet DE is related to �A by an integral in x (using dzZdw=JZðdw=dxÞðdx=JÞ).
The imaginary part is

H

2
Z

ðN
g

L2

4ðECgÞ2
C

2dKh

2pðECgÞC
h

2pðEKgÞ

� �
ðE2Kg2Þ1=2

E2 Kg2C1
dE; (5.4)

which fits with the expectation that H/N as g/0. Smaller times mean h/N
here, when g/0, retrieving the Howison et al. (1991) vertically symmetric case.
Larger times correspond to h/0, when the jet BC reduces, leaving the flow as if
onto a flat wall again (compare comments on figure 8 later).

Many details are omitted here, including matching with an outer flow,
touchdown of the stagnation point onto the wall and the make-up of the splash
jet; a paper on this and other aspects of the small-time behaviour is planned by
S. Howison, J. Ockendon, J. Oliver, R. Purvis and F. T. Smith.
6. Numerical results

We have also considered the complete problem at O(1) times computationally
using a volume-of-fluid (VOF) approach (see Purvis & Smith (2004a) for the
numerical method and more detailed results). We present a few examples to
compare with the small-time solution. Figure 6 shows an example of the splash
Phil. Trans. R. Soc. A (2005)
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produced by a droplet of diameter DZ1.5 impacting upon a layer of depth
HZ0.5. The droplet starts above the layer and surface tension is included with a
physically representative value of the Weber number, WeZ3000. The numerical
method can handle the change in topology as the droplet enters the layer without
any special treatment.

Figure 7 shows the free surfaces for a large droplet impact. The jets that can be
clearly seen are a continuation of the initial jetting found in §3. If the numerical
method commences from the small-time solution outlined earlier, the results are
indistinguishable from starting the droplet above the layer. Favourable
comparison with the experimental work of Thoroddson (2002) is also found.
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Finally, figure 8 presents the results for a droplet hitting a dry wall and for a
droplet hitting a wall with a very thin layer. As anticipated analytically in
§§4 and 5, the layer remains flat and the results for the droplet-wall and droplet-
thin layer cases are very similar. With deeper layers the jets are forced upwards
as in figures 6 and 7.
7. Further comments

This article has examined analytically the small-time behaviour of a droplet
impacting upon an undisturbed water layer, for various layer depths, and
numerically the O(1)-time behaviour. The correspondence between the
behaviours predicted thus (as well as the agreement with experiments noted in
Purvis & Smith 2004a) is reassuring, altogether, and suggests continuing both
the analysis and the computations. Extra features of interest such as viscosity,
density, air flow effects and compressibility need to be incorporated and studied
similarly.
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