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Abstract 

Macrophages are phagocytic leukocytes that mediate the innate immune response and can 

respond to lipopolysaccharide (LPS), a component of the gram negative bacterial cell wall.  LPS 

activates pro-inflammatory signalling, triggering the release of inflammatory mediators and 

modulating gene expression. Matrix metalloproteinases (MMPs) are capable of degrading the 

extracellular matrix (ECM) whilst also mediating the proteolytic processing of growth factors, 

cytokines and chemokines. MMPs have long been associated with cell migration and invasion, and 

are therefore implicated in the macrophage response to infection and inflammation. 

In this thesis the expression of metalloproteinase mRNA in murine bone marrow-derived 

macrophages (BMM) has been profiled in response to LPS with the use of quantitative RT-PCR 

(qRT-PCR). LPS induced the differential expression of several metalloproteinases in a time- and 

dose-dependent manner. Of particular interest was the novel down-regulation of MMP-10 mRNA 

following LPS treatment. As LPS is known to elicit a rapid pro-migratory macrophage response in 

vitro and in vivo, time-lapse microscopy was employed to study the effect of LPS on BMM 

migration on a two dimensional fibronectin matrix, a known MMP-10 substrate. Intriguingly, LPS 

was found to significantly repress BMM migration on fibronectin 24 hours post-treatment, 

coinciding with the down-regulation of MMP-10 expression. siRNA targeting the MMP-10 

transcript mimicked the LPS-induced repression of BMM migration velocity. This repression of 

BMM migration could, in turn, be rescued with recombinant MMP-10 protein. 

Both macrophages and metalloproteinases are associated with the process of wound healing. The 

type II diabetic mouse (Db/Db), a model of impaired wound healing, was utilised to investigate the 

expression of MMP-10 in wounded skin. Interestingly Db/Db BMMs display a significantly variation 

in morphology and a repressed migratory response to chemoattractant stimuli compared to their 

heterozygous controls. The mechanisms behind this, however, are unclear. 

A potential metalloproteinase-driven mechanism has been identified by which macrophage 

migration in response to infection may be modulated.  This has broad implications in 

understanding the control of macrophages in several pathologies, particularly in type II diabetes 

and the associated impaired wound healing response. 
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Chapter 1: Introduction 
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1.1 Inflammation and the immune response 

 

1.1.1 The innate immune system 

The immune system is composed of a diverse array of responses that enable host protection 

against disease-causing pathogens, toxins, and allergenic substances, whilst differentiating self 

from non-self to maintain homeostasis. The immune system can be broadly categorised into to 

two subsets: innate immunity and the adaptive response.  

Innate immunity includes all aspects of the host immune response that are encoded for by an 

organism’s germline genetic code. This response is non-specific but occurs immediately following 

exposure to a pathogen or non-self molecule. Despite its lack of specificity and inability to confer 

long-lasting protection, the innate immune response is actually far more sophisticated than 

originally thought.   The component features of the innate response are numerous and include 

factors secreted from cells, such as cytokines, chemokines and free radical species; bioactive 

molecules present in bodily fluids, including complement proteins and defensins; and membrane-

bound and cytosolic receptor proteins that are able to recognise pathogen-associated molecular 

patterns (PAMPs) (Chaplin, 2010). 

The features of the innate immune response described above fall into two main categories of 

functional response to pathogen invasion; the complement system and inflammation. The 

complement system is a biochemical cascade of zymogen activation that ultimately results in the 

destruction of pathogens by marking them via opsonisation and then recruiting the cells and 

proteins able to facilitate their lysis. The molecules resulting from the complement cascade are 

pro-inflammatory in nature and thus trigger the next stage in the innate immune response. The 

complement system also acts as a bridge between innate and adaptive immunity by influencing 

the behaviour and differentiation of B-cells, the principle function of which is to produce 

antibodies (Dunkelberger and Song, 2010). 

The cellular component of inflammation is mediated by leukocytes, and can be acute, involving 

granulocytes; or chronic, involving monocytes and lymphocytes. Both forms of inflammation are 

characterised by marked vascular changes such as vasodilation and increased vessel permeability, 

and are the result of increased expression of pro-inflammatory factors secreted by leukocytes 

(Chaplin, 2010). To fully understand the inflammatory response it is important to first consider the 

hematopoietic cell lineage from which all leukocytes are derived. 
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1.1.2 The haematopoietic lineage and macrophage differentiation 

1.1.2.1 Haematopoiesis 

Haematopoiesis is the process through which all the cellular components of the blood derive from 

haematopoietic stem cells (HSC) in the bone marrow. This maintains a steady state of blood cells 

in the peripheral circulation of healthy organisms and also allows for the production of important 

immune cells in response to infection and inflammation. Haematopoietic cells can be broadly 

divided into three main lineages; erythroid, lymphoid and myeloid (figure 1.1) that function in 

oxygen transport, adaptive immunity and innate immunity, respectively. As with all stem cells, 

HSCs have the ability to differentiate into any one of these multiple cell lineages whilst also being 

responsible for replenishing the pluripotent population by a process of self-renewal (Rosmarin et 

al., 2005). At each stage of differentiation cell type is defined by cell surface markers and 

functional activity. 

1.1.2.2 Macrophage differentiation 

The process of differentiation from HSCs to myeloid progenitor cells, monoblasts, monocytes, and 

finally to macrophages does not depend on the action of one ‘master regulator’ transcription 

factor. Instead a combination of external cytokine signals regulates the developmentally ordered 

expression of a set of transcription factors, including PU.1 (purine-rich PU-box binding) and C/EBP 

(CCAAT/enhancer-binding protein)-α, which are critical in myeloid lineage commitment (Friedman, 

2002) (figure 1.1). Once a monoblast has committed to the monocytic lineage it can leave the 

bone marrow as a peripheral blood monocyte. The cytokines that orchestrate the final stage of 

differentiation into tissue macrophages are also responsible for the simultaneous migration of 

monocytes out of the blood vasculature and into tissue. The chemokine colony stimulating factor 

(CSF)-1, for example, induces differentiation and proliferation of monocytes whilst also functioning 

as a potent chemoattractant (Pixley and Stanley, 2004). 

1.1.2.3 CSF-1 

Despite there being no single ‘master regulator’ of monocyte/macrophage differentiation, a 

putative hierarchy could place additional significance on CSF-1. In mice unable to express 

functional CSF-1 protein macrophage number is severely reduced, mice exhibit poor breeding due 

to impairment of ovulation and life-span is significantly reduced compared to their wild-type litter 

mates (Pollard, 1997; Wiktor-Jedrzejczak et al., 1990). These mice also have reduced bone marrow 

cellularity, with total cell number being around 10% of healthy mice. Conversely, the constitutive 

expression of the CSF-1 receptor (CSF-1R) is enough to trigger a change of cell fate, forcing B-

lymphocyte progenitors to irreversibly ‘switch’ lineage to macrophages (Borzillo et al., 1990). The 
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over-expression of transcription factor PU.1 has a similar effect, stimulating macrophage 

proliferation from B-lymphoid progenitors (Friedman, 2002).  

  

Haematopoietic Stem Cell

“self-renewal”
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Figure 1.1 Haematopoiesis and macrophage differentiation. A simplified schematic to show the 

process of differentiation from haematopoietic stem cell to tissue macrophage. At each stage the 

key chemokines and cytokines (red), and transcription factors (blue) that drive the commitment 

and maturation of the myeloid lineage are indicated. AML1 – acute myeloid leukaemia 1;  CSF-1 – 

colony stimulating factor-1; C/EBPα - CCAAT/enhancer-binding protein-α;  GM-CSF – granulocyte 

monocyte-CSF; HOXB7 – Homeobox B7;  IL – interleukin; NF-Y – nuclear transcription factor-Y; 

PU.1 - purine-rich PU-box binding. Information for this figure taken from (Valledor et al., 1998; 

Chaplin, 2010). 
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1.1.3 The role of peripheral blood monocytes and tissue macrophages during infection and 

inflammation 

The primary function of the macrophage is as a phagocyte. During phagocytosis macrophages 

engulf and digest anything they recognise as non-self, for example, pathogens and foreign bodies. 

Macrophages also have the ability to also recognise dead and dying cells, removing cellular debris 

and necrotic tissue as a vital part of the wound healing process (Leibovich and Ross, 1975; Kong 

and Ge, 2008) (see Chapter 1, 1.3.2) . 

1.1.3.1 Pattern recognition receptors and Pathogen associated molecular patterns: Toll-like 

receptors and lipopolysaccharide 

Macrophages are able to recognise such a vast number of self and non-self molecules (and make 

decisions about how to respond to them) because they express a high number of pattern 

recognition receptors (PRRs) on their cell surface. PRRs are able to identify specific pathogen 

associated molecular patterns (PAMPs), such as lipopolysaccharide (LPS). LPS forms a major 

component of the bacterial outer membrane and is composed of a hydrophilic polysaccharide 

moiety and a fatty acid ‘lipid A’ hydrophobic domain. Whilst the lipid A portion is anchored to the 

outer membrane, the polysaccharide backbone protrudes into the host micro-environment where 

it can be detected and bound by macrophage PRRs. PRRs are classified according to their ligand 

specificity and include the toll-like receptors (TLRs). TLRs mediate cellular signalling through the 

cell membrane via adaptor proteins that trigger complex signalling pathways, resulting in the 

increased transcription of pro-inflammatory genes (Guha and Mackman, 2001).  

LPS, for example, is recognised by TLR4 in complex with CD14, a cell surface glycoprotein, and 

myeloid differentiation protein (MD)-2 (figure 1.2). A serum lipid binding protein (LBP) transfers 

LPS to CD14 on the macrophage cell surface; however CD14 cannot activate pro-inflammatory 

signal transduction alone as it lacks transmembrane and intercellular domains. CD14 therefore 

presents LPS to the TLR4/MD-2 complex, initiating signal transduction via the TLR4 cytoplasmic 

domain (Fujihara et al., 2003). LPS-stimulated signalling via TLR4 is explored in more detail in 

Chapter 3. 

When a macrophage recognises and binds to a pathogen via its PRRs the pathogen is then 

engulfed in a phagosome. Phagosomes eventually fuse with lysosomes in the cytoplasm initiating a 

release of enzymes, an oxidative burst and a reduction in pH in order to destroy the pathogen 

(Blander and Medzhitov, 2006). Waste products remain in the phagosome until they are expelled 

from the macrophage or integrated into the cell surface in a process known as antigen 

presentation whereby B-cell antibody production is stimulated (Blander and Medzhitov, 2006). 
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In terms of their location there are two types of macrophage involved in pathogen recognition and 

the immune response; resident macrophages and blood-borne monocyte-derived tissue 

macrophages. Resident macrophages are present in tissue at low levels and are immediately 

protective against invasion of pathogens and available for homeostatic clearance of cellular debris. 

Monocytes, however, move from the circulation into infected tissues via the process of monocyte 

recruitment, diapedesis and differentiation into monocyte-derived tissue macrophages. 

  

Figure 1.2 LPS recognition by TLR4 on the macrophage cell surface. LBP in the 

serum binds the lipid A portion of LPS, transferring LPS to CD14 on the cell surface. 

CD14 concentrates LPS and presents it to TLR4 in complex with accessory protein 

MD-2. This induces a conformational change and triggers dimerisation of TLR4. This 

in turn stimulates pro-inflammatory signalling, such as NF-κB, via cytosolic adaptor 

proteins (see Chapter 3, figure 3.1 for more detail). Information for this diagram 

taken from (Fujihara et al., 2003; Guha and Mackman, 2001). 
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1.1.4 The recruitment of monocytes and their diapedesis into sites of infection and 

inflammation 

The recruitment of peripheral blood monocytes to sites of infection and inflammation, and their 

subsequent diapedesis and differentiation into tissue macrophages, is vital to tissue homeostasis 

and host defence. Whilst there are a small number of resident tissue macrophages in all tissues it 

is necessary for their presence to be massively augmented in response to pro-inflammatory 

stimulation. Circulating monocytes are arrested in blood vessels surrounding areas of infected or 

injured tissue by becoming tethered to the surface of the activated endothelium. Once attached to 

the lining of the blood vessel monocytes are able to first roll then ‘crawl’ towards the damaged 

tissue along a gradient of chemotactic cues before transmigration through the endothelium and 

basement membrane (figure 1.3). 

1.1.4.1 Selectins and monocyte rolling 

The process of monocyte rolling and crawling is made possible by the synchronised making and 

breaking of cell adhesion molecules (reviewed in (Worthylake and Burridge, 2001)). This includes 

the transmembrane selectins, of which there are three variants; P-, E- and L-selectin. This adhesion 

cascade begins with the activation of the endothelium by cytokines, such as TNF-α, which are 

secreted into the wound site by damaged cells and early response immune cells such as 

neutrophils. Activated endothelial cells express P-selectin and E-selectin, both of which bind 

ligands on the surface of the monocytes facilitating their loose adhesion and rolling (figure 1.3). P-

selectin, for example, binds P-selectin glycoprotein ligand-1 (PSGL-1) and signals through this to 

activate monocyte integrin expression (Huo and Xia, 2009). Leukocytes express L-selectins that, as 

well as mediating leukocyte rolling on the endothelium, also allows for secondary leukocyte 

capture, i.e., the interaction of free flowing leukocytes with rolling leukocytes (Galkina and Ley, 

2007). L-selectin also relays information about the leukocyte microenvironment via specific 

protein binding sites its cytoplasmic tail (reviewed in (Ivetic and Ridley, 2004)). The importance of 

L-selectin interaction with the cytoskeleton has been highlighted in a recent mutagenesis study. 

This revealed reduced L-selectin mediated tethering and a reduction in the shedding of the L-

selectin ectodomain upon leukocyte activation (Ivetic et al., 2004).  

1.1.4.2 Integrins mediate firm adhesion of monocytes 

Integrins are heterodimeric transmembrane receptors that connect the actin cytoskeleton of the 

cell to the surrounding matrix proteins, mediating the firm adhesion of monocytes to the 

endothelium (Brakebusch and Fassler, 2003) (figure 1.4). Integrins are composed of two distinct α 

and β subunits both of which contain transmembrane domains. Generally, the α domain 
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determines the specificity of ligand binding whilst the β subunit interacts with the cytoskeleton. 

Variants of each subunit exist, allowing the generation of 24 unique receptors (reviewed in 

(Barczyk et al., 2010)). Integrins can signal in a bi-directional manner, that is they are able to 

mediate signals from the ‘inside-out’ as well as the ‘outside-in’.  

‘Inside-out’ signalling appears to act mainly to bring the α and β subunits into their active 

conformation through the formation of focal adhesion complexes. Focal adhesion complexes are 

typically composed of cytosolic proteins, for example, talin and vinculin, which form a bridge 

between the β integrin subunit and the actin cytoskeleton. In leukocytes, another cytoskeleton-

associated protein, Paxillin, has also been shown to interact with the cytosolic domain of the α4 

integrin (Alon et al., 2005).  The Kindlins are a relatively novel family of integrin-related proteins. 

Haematopoietic lineage-specific kindlin-3, for example, has been shown to bind to β1 and β3 

integrin tails triggering integrin activation and enhancing macrophage binding to fibronectin 

(Moser et al., 2008).  Focal adhesions, as their name suggests, have been shown to be expressed at 

specific foci on the cell surface during two-dimensional (2D) cell adhesion. Recent studies, 

however, have revealed a more diffuse expression pattern of focal adhesion proteins during three-

dimensional (3D) migration (Fraley et al., 2010).  

Once in their active conformation integrins can mediate ‘outside-in’ signals in response to the 

extracellular environment. Integrins can bind to matrix proteins, such as fibronectin and collagens, 

and other cell-adhesion molecules. This allows for the firm adhesion of cells to the surrounding 

matrix, whilst also mediating signals that trigger changes in cell behaviour and differentiation.  For 

example, the α4β1 integrin heterodimer expressed on leukocytes binds to vascular cell adhesion 

molecule (VCAM)-1 on the endothelium. The expression of VCAM-1 is up-regulated by pro-

inflammatory stimuli and studies have shown that blocking VCAM-1 binding dramatically reduces 

the migration of monocytes across an endothelial monolayer in vitro, reflecting its role in adhesion 

(Ronald et al., 2001).  Integrin α4β1 is also known to bind fibronectin, present both in a soluble 

form in the blood and as an insoluble matrix in both healthy and wounded tissue. Fibronectin 

binding stimulates the nuclear translocation of nuclear factor (NF)-κB (Roldan et al., 1992). NF-κB 

(discussed in detail in Chapter 3) is a transcription factor known to play a role in the differentiation 

of immune cells including monocytes/macrophages (Hoffmann and Baltimore, 2006).  

In order for continuous crawling along the endothelium to proceed, monocyte-integrin 

interactions participate in a negative feedback loop that enables the detachment of old adhesions 

triggered by the formation of new ones. For example, the activation of αvβ3 integrin binding in 
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monocytes feeds back to decrease the engagement of β2 integrins in the same cell (Worthylake 

and Burridge, 2001). Increasingly data are emerging that implicate proteinases in the process of 

cell adhesion molecule cleavage. Specifically the ADAMs (a disintegrin and metalloproteinase; 

described in more detail in Chapter 1, 1.2), are capable of cleaving all selectins implicated in 

monocyte rolling and the cell adhesion molecules involved in firm adhesion and crawling (Reiss et 

al., 2006). For example, B-cells from the ADAM17-/- mouse express higher levels of L-selectin on 

the cell surface due to reduced ADAM mediated shedding (Le Gall et al., 2009). Recently, ADAM17 

mediated shedding of L-selectin has been shown to be enhanced in activated leukocytes as a 

result of increased ADAM17 levels at the plasma membrane (Killock and Ivetic, 2010). In addition 

to its action as a sheddase at the leukocyte surface, ADAM-17 can also cleave VCAM-1 from the 

surface of TNF-α stimulated endothelial cells (Singh et al., 2005). In combination with the integrin 

negative feedback mechanism the protease mediated cleavage of cell adhesion molecules 

probably contributes to successful translocation of monocytes over the endothelium along the 

gradient of chemo-attractant. 
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Figure 1.4 The basic structure of the integrin heterodimer and its interaction with 

key focal adhesion proteins in the cytoplasm. Heterodimeric integrin receptors are 

composed of an α and a β subunit that are activated when ‘inside-out’ signalling 

triggers an unbending of the ligand binding head region. Talin (a focal adhesion 

protein) binds the cytoplasmic tail of the β subunit. Autophosphorylation of focal 

adhesion kinase triggers interaction between talin, vinculin and the actin cytoskeleton. 

Vinculin can transiently bind to the Arp2/3 complex, mediating actin polymerisation. 

The active integrin can now bind to ECM ligands with high affinity, triggering ‘outside-

in’ signalling. This in turn elicits complex and cell specific signalling events that allow 

the cell to respond to the external environment. The table embedded shows a list of 

ligands common to leukocytic cells during their recruitment, and their integrin binding 

partners. Information for this diagram is taken from (Brakebusch and Fassler, 2003; 

Barczyk et al., 2010; Askari et al., 2009). 
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1.1.4.3 Endothelial transmigration 

Once the activated monocyte has reached the site of infection and inflammation it must squeeze 

through the tight gaps between neighbouring endothelial cells and escape the blood vessel at the 

site of infection and/or inflammation. Perhaps the most important cell adhesion molecule 

implicated at this stage is platelet/endothelial cell adhesion molecule (PECAM)-1 also known as 

CD31 (Martin and Leibovich, 2005). PECAM-1 is a transmembrane protein expressed on the 

surface of most leukocytes, endothelial cells and platelets, which forms cell-cell junctions through 

homophilic binding. As well as its role in cell adhesion PECAM-1 is also able to interact with 

integrins, such as αvβ3, and appears to have important signalling properties suited to a role in 

transmigration (Thompson et al., 2001). In vivo studies using PECAM-1-/- mice have revealed a 

failure in leukocyte transmigration following pro-inflammatory IL-1β stimuli but no effect on 

leukocyte rolling or adhesion, with leukocyte arrest observed at the level of the perivascular 

basement membrane (Thompson et al., 2001).  

In monocytes, as well as some endothelial and smooth muscle cells, integrins are enriched in 

adhesions know as podosomes (reviewed in (Linder, 2007)). These are unique in that they have 

the ability to degrade the surrounding matrix proteins as well as mediating adhesion. 

Unsurprisingly podosomes have therefore been implicated in several forms of cell transmigration, 

including that of activated monocytes. For example, human monocyte-derived macrophages have 

been found to form podosome-like structures as cells undergo an amoeboid to 3D change in 

migration (Van et al., 2010).  

Following the transmigration of the perivascular basement membrane the process of monocyte 

recruitment and diapedesis into areas of infection and inflammation is complete. Throughout this 

process the CSF-1 expressed by the surrounding endothelial cells is continually driving monocyte 

differentiation to tissue macrophages. Perhaps unsurprisingly, the integrins play a role in 

differentiation also. For example, in un-stimulated cells the transcriptional repressor Foxp1 binds 

to and represses CSF-1R transcription. Engagement of αMβ2 on monocytes, however, down-

regulates the expression of Foxp1 allowing differentiation to proceed (Tester et al., 2007). 
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1.1.5 The role of peripheral blood monocytes and tissue macrophages in disease pathologies  

The aberrant recruitment of macrophages is pivotal in the development of several diseases. For 

example, macrophage accumulation is known to play a role in the pathogenesis and complications 

of type 2 diabetes; including atherosclerosis, impaired wound healing (discussed in detail in 

Chapter 1, 1.3, and Chapter 5) (Maruyama et al., 2007), nephropathy (Ninichuk et al., 2007) and 

even obesity (Weisberg et al., 2003). 

1.1.5.1 Atherosclerosis 

As a result of their ability to transmigrate the endothelium, in combination with their function as 

phagocytes, macrophages are the predominant cells involved in both the formation and 

destabilisation of atherosclerotic plaques in cardiovascular disease (CVD) (Takahashi et al., 2002).  

Unlike during response to infection, during atherogenesis endothelial cells are activated by the 

accumulation of low density lipoprotein (LDL), usually at sites of vessel bifurcation and curvature 

(Mestas and Ley, 2008). LDL is vital for the transport of cholesterol around the body, necessary for 

proper cell membrane structure and permeability as well as the intestinal absorption of fat soluble 

vitamins. Monocytes are similarly activated by components of LDL; this can trigger their 

differentiation into macrophages and up-regulates their expression of chemokine receptors thus 

increasing adhesion to the endothelium and coronary artery smooth muscle cells (Barlic et al., 

2006). 

Transport of LDL particles into the arterial wall can result in excessive accumulation of LDL, again 

at areas of branching and where shear stress is reduced. LDL particles can then become oxidised 

(oxLDL) and further stimulate the expression of chemokine receptor CX3CR1 (receptor for 

fractalkine) on the surface on monocytes (Barlic et al., 2006). The damage caused to the arterial 

wall by oxLDL triggers the innate immune response and, due to the increased expression of 

CX3CR1, excessive recruitment of monocytes to the endothelium occurs via the adhesion cascade 

(figure 1.3). Once transmigration of the endothelium has occurred macrophages begin uptake of 

the oxLDL particles via phagocytosis. Some, but not all, of these particles are degraded within 

phagosome of the macrophages and secreted as single LDL particles. These are eventually re-

phagocytosed and converted to cholesterols triggering the transformation from macrophage to 

foam cell (Takahashi et al., 2002). 

An accumulation of macrophage-derived foam cells can form a fatty streak in the blood vessel 

wall. Small fatty streaks alone are ‘clinically silent’ and can begin formation as early as the first 

decade of life in humans with little threat of morbidity.  If the macrophage response to apoptotic 
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foam cells begins to fail a necrotic core may form and the fatty streak may become dangerous 

(Liang et al., 2007). This further stimulates immune response to the site of foam cell accumulation 

whereby the fatty streak increases in size, vascular smooth muscle cell proliferation and migration 

increases, and calcification of the surrounding tissues causes a hardening of the now fibrous 

plaque (Takahashi et al., 2002). As this plaque increases in size a fibrous cap can form between the 

fat deposits and the arterial wall, resulting in an atheroma. It is the stability of this ‘cap’ that 

determines the life-span of the atheroma and this is largely influenced by the expression of a 

family of proteolytic enzymes expressed by the macrophages present in the plaque shoulder 

(reviewed in (Newby, 2005)).  This family, known as the metalloproteinases (described in detail in 

Chapter 1, 1.2), is able to degrade all major components of the surrounding vascular matrix, 

including the components of the fibrous cap. Plaque destabilisation occurs when the fibrous cap 

protecting the fatty core of the plaque is degraded by metalloproteinases. This can be further 

weakened by the constant mechanical strain of blood vessel expansion and contraction during 

circulation. When the plaque is weakened sufficiently it may rupture, leaking the contents of the 

atheroma into the blood vessel. This can cause blockage of the blood vessel lumen due to the size 

of the plaque fragments and the blood clotting response. Increased expression of the proteinases 

by macrophages has been observed in atherosclerotic plaques in vivo, for example the membrane 

bound matrix metalloproteinase MMP-16 (Uzui et al., 2002). There are increasing data to suggest 

their use as biomarkers for plaques undergoing destabilisation (Rodriguez et al., 2008). 

It is clear, therefore, that the monocyte adhesion cascade and subsequent macrophage 

differentiation can be inappropriately activated, contributing to the pathogenesis of life-

threatening cardiovascular diseases.  It is through understanding the mechanisms behind 

monocyte and macrophage adhesion to the endothelium and the process of cell migration 

through basement membrane that a clear appreciation of their function during homeostasis and in 

disease states can be formed. 

  



15 
 

1.1.6 Immune cell migration and its regulation by the Rho GTPases 

The importance of cell migration between cells and through surrounding matrices during the 

immune response has long been appreciated. Only recently, however, have some of the complex 

pathways involved in the induction and control of cell translocation been determined. For 

successful cell migration to take place localised and transient signalling events must lead efficiently 

to changes in cellular architecture in a cyclical process of lamellipodial protrusion and retraction. 

1.1.6.1 Classical model of migration 

The classical model of 2D cell migration (reviewed in (Ridley et al., 2003)) involves the polarization 

of a cell by the formation of a protruding leading edge and a trailing edge that will undergo 

retraction (figure 1.5). The leading edge is driven by actin polymerization and the clustering of 

integrins at focal adhesions with the underlying substrate.  The actin monomer, G-actin, is a 

globular protein which forms a major component of the dynamic cytoskeletal microfilaments by 

assembling into polymeric filaments known as F-actin. The leading edge is characterised by large 

areas of dynamic lamellipodia rich in an F-actin mesh and focal adhesions. Some focal adhesions 

disassemble as the lamellipodia restructure but some mature and become anchors for the cell 

during migration, eventually dissolving as the cell migrates forward.  

Throughout the migrating cell are bundles of polarised microtubules that form a structural 

cytoskeletal network emanating from the microtubule organizing centre (MTOC). In macrophages 

microtubules are highly dynamic and demonstrate an unusually rapid response to extracellular 

stimuli, reflective of their role in innate immunity (Robinson and Vandre, 1995). Microtubules 

appear to stabilise the migrating cell and have been found to be vital for macrophage recruitment 

to wounds in vivo. 

The trailing edge of migrating cells is characterized by tail retraction, whereby the adhesions at the 

rear of the cell are synchronously disassembled. This process is driven by the targeting of dynamin, 

a GTPase responsible for endocytosis of adhesion components; the inhibition of myosin light chain 

(MLC) phosphatise and the activation of MLC kinase. This prevents the phosphorylation and 

activation of Myosin II, a motor protein which interacts with F-actin and transmits force along 

filaments to sites of adhesion (reviewed in (Vicente-Manzanares et al., 2005; Ridley et al., 2003)). 

1.1.6.2 Rho, Rac and Cdc42: The RhoGTPases 

The fundamental role of macrophages in the innate immune response requires an ability to 

mobilize rapidly in response to chemical signals, such as chemokines. The key regulators of the 

signalling networks controlling this response are the Rho GTPases. These are a class of the Ras 
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superfamily of GTP binding proteins comprising of Rho, Rac, and Cdc42, of which there are further 

isoforms (Bokoch, 2005). These proteins bind and hydrolyse GTP that, amongst other basic cell 

functions, acts as a ‘molecular switch’ controlling cytoskeletal dynamics and, in turn, cell motility 

(figure 1.6). Classically Rac is considered to mediate lamellipodia formation, Rho is thought to 

control the actin cytoskeleton and stress fibre formation, whilst Cdc42 organizes filopodia 

dynamics (Ridley, 2001). 

Three isoforms of the Rho protein, RhoA, RhoB and RhoC, are present in mammals. As with all the 

RhoGTPases these are regulated both temporally and spatially throughout the cell. Canonical Rho 

signalling occurs via Rho Kinases (ROCK), and is largely thought to control cell body contraction at 

the trailing edge of the migrating cell by inhibiting MLC phosphatase, as explained above (Ridley, 

2001). In macrophages stimulated with CSF-1 functional inhibition of Rho has been shown to 

induce enhanced cell spreading (including both lamellipodia and filopodia), but significantly inhibit 

migration speed and translocation (Allen et al., 1998a). Endogenous inhibition of Rho-ROCK 

signalling by the integrin αvβ3 has also been shown to induce formation of large lamellipodia and 

increase directional migration (Petrie et al., 2009). 

In mammals Rac exists in three highly homologous isoforms: Rac1, Rac2 and Rac3 with only Rac1 

and Rac2 expressed in macrophages.  Despite their homology, each isoform appears to play a 

different role in migration. Inhibition of Rac1 in the RAW264.7 macrophage cell line, for example, 

results in reduced membrane ruffling and lamellipodial extension, despite no effect on migration 

speed, in vitro (Cox et al., 1997). Rac1-null mice are embryonic lethal due to migration defects and 

the neutrophils from Rac1 conditional knockout mice display a severely impaired response to 

chemotactic stimuli (Zhang et al., 2009). Conversely, endogenous activation of Rac1 by the 

formation of an α5β1/syndecan 4/fibronectin focal adhesion restricts its activity to the leading 

edge of migrating fibroblasts allowing the formation of a dominant lamellipodium (reviewed in 

(Petrie et al., 2009)). The importance of integrins in Rac signalling is compounded by evidence 

from fibroblasts expressing a β1 integrin point mutation. These cells show inhibition of Rac1 

signalling and, surprisingly, more directional migration (Pankov et al., 2005).  Rac2 inhibition 

results in reduced F-actin levels, marginally decreased migration, and reduced formation of the 

actin-rich adhesions, podosomes. Interestingly Rac2-null mice are viable (Wheeler et al., 2006) and 

conditional deletion of Rac2 in the neutrophils of mice reveals no real change in response to 

chemotactic stimuli other than a slight delay, perhaps a reflection of the differential dependence 

on Rac1 and Rac2 in these cells (Zhang et al., 2009). Rac proteins exert their effects on the leading 
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edge lamellipodia by signalling via the WAVE (Wiskott-Aldrich syndrome protein family verprolin-

homologous protein) complex to promote actin polymerization driven by actin related protein 

(Arp) 2/3.  

Cdc42, perhaps the least understood of the RhoGTPases, is thought to control the extension of 

filopodia towards the front of migrating cells by signalling through WASP (Wiskott-Aldrich 

syndrome protein) and activating Arp2/3 driven actin polymerization.  In macrophages Cdc42-

WASP signalling can be stimulated by CSF-1 and act upstream of Rac-WAVE induced lamellipodia 

formation (Jones, 2000). Inhibition of Cdc42 expression in macrophages does not inhibit migration 

altogether but prevents directional migration towards a chemoattractant (Allen et al., 1998a). In 

fact, Cdc42 has been shown to play a key role in maintaining microtubule stability at the leading 

edge, in turn promoting directional migration (Petrie et al., 2009).  

All three of the Rho GTPases are therefore vital for the successful control of cell migration in 

response to chemotactic stimuli. Rho activation alone, however, appears to be sufficient to 

stabilise the monocyte-endothelial interaction during migration along the vascular endothelium 

and during endothelial transmigration. Interestingly, inhibition of Rho activity in TNF-α stimulated 

human umbilical vein endothelial cells (HUVECs) reduces monocyte adhesion to a monolayer of 

these cells (Wojciak-Stothard et al., 1999). This was not due to a reduced number of endothelial 

CAMs (VCAM-1, ICAM-1 and E-selectin) however, but instead Rho inhibition appeared to interfere 

with their distribution on the cell surface, preventing monocyte-binding receptor clustering. 

Wójciak-Stothard et al hypothesise that this is as a result of deregulated signalling to the actin 

cytoskeleton that would inevitably have an effect on migratory events. 
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Figure 1.6 A ‘molecular switch’: the Rho GTPase cycle controls cytoskeletal dynamics in 

migrating cells. Rho GTPases cycle between an inactive GDP-bound and active GTP-bound 

conformation to control formation of lamellipodia (Rac), stress fibres (Rho) and filopodia (Cdc42). 

In their inactive GDP-bound state Rho GTPases form a complex with GDI in the cytoplasm. This 

blocks GTPase interaction with the plasma membrane or downstream effectors. Dissociation of 

GDI enables the GTPase to move closer to the plasma membrane and bind GEF. GEF is 

responsible for catalyzing the exchange of GDP with GTP, subsequently activating the Rho GTPase 

complex enabling further activation of potential downstream effectors. Active GTPase attracts 

the binding of GAP which accelerates the conversion of GTP back to GDP, with the release of 

inorganic phosphate (Pi), thus inactivating the Rho GTPase. Inactive GTPase moves back into the 

cytoplasm where it is bound again by GDI. GDI – Guanine nucleotide Dissociation Inhibitors. GEF 

– Guanine nucleotide Exchange Factors.  GAP – GTPase Activating Protein. Information for this 

diagram obtained from (Petrie et al., 2009). 
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1.1.7 The extracellular matrix and immune cell migration 

The extracellular matrix (ECM) is the connective tissue that surrounds cells and provides support. 

There are two main forms of ECM; interstitial matrix and the basement membrane or basal 

lamina, both of which are composed of aggregates of matrix proteins.  The interstitial matrix forms 

the majority of the connective tissue between cells and acts as scaffold for migrating cells. 

Basement membranes, on the other hand, form sheet-like matrix barriers that separate epithelial 

cells from underlying mesenchymal cells. For example, basement membranes separate the 

epidermis from the underlying dermis in the skin (see Chapter 1, 1.3) and also provide a barrier 

between the endothelial cells lining blood vessels and the underlying vascular smooth muscle 

cells. 

1.1.7.1  Extracellular matrix structure: basement membrane and interstitial matrix  

The four main components of the basement membrane are laminin, non-fibrillar type IV collagen, 

nidogen and heparan sulphate proteoglycan (Yurchenco and Schittny, 1990). These proteins form 

the basement membrane architecture through specific binding interactions, with type IV collagen 

and laminin forming distinct networks that are bridged by nidogen and provide an anchor for 

heperan sulphate proteoglycan complexes (Yurchenco and Schittny, 1990). The interstitial matrix 

is composed mainly of fibrillar type 1 collagen, which provides physical stability and acts as a loose 

scaffold for other proteins to anchor themselves to. As well as collagens, the interstitial matrix also 

contains glycoproteins, such as vitronectin and fibronectin and proteoglycans, such as condroitin 

sulphate (Korpos et al., 2010). The specific structure of each type of ECM depends on its function. 

For example, ECM surrounding arteries and veins also contain high levels of elastin to cope with 

the increased blood pressure and maintain vessel integrity (Bou-Gharios et al., 2004). 

1.1.7.2  Fibronectin in the extracellular matrix 

Fibronectin is a major component of the interstitial matrix binding to heparin sulphate molecules 

and collagens. Fibronectin molecules typically exist as dimers composed of two ~250 kDa subunits 

linked by a disulphide bond and, due to alternative splicing, at least 20 different variants of 

fibronectin are present in humans (Pankov and Yamada, 2002). As a result of its solubility 

fibronectin can be subdivided in to two broader categories; soluble plasma fibronectin and less-

soluble cellular fibronectin. Plasma fibronectin is formed by hepatocytes in the liver and this splice 

variant is relatively basic, for example lacking the ‘EDA’ domain responsible for integrin α4β7 

binding (Pankov and Yamada, 2002). Cellular fibronectin on the other hand forms a much larger 

group including numerous cell-type specific isoforms. The basic domain structure of both plasma 

and cellular fibronectin are however homologous (figure 1.7).  The elucidation of its domain 
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structure has been enabled by several proteolytic cleavage sites throughout the molecule, which 

may also reveal cryptic ligand binding sites. The RGD (Arg-Gly-Asp) binding site, for example, 

mediates the binding of α5β1 and αvβ3 and is therefore critical for fibronectin-cell interaction 

(Akiyama et al., 1995). Fibronectin contributes to the ECM by providing a degree of elasticity 

following the formation of fibrils. Fibronectin fibrillogenesis occurs following binding to integrin 

α5β1 that elicits the formation of a dense network of fibrils on the cell surface (reviewed in 

(Wierzbicka-Patynowski and Schwarzbauer, 2003)). In turn, fibronectin fibrils can trigger integrin 

clustering, thus further increasing local concentration and allowing cross-talk between the matrix 

and the cell cytoskeleton. 

1.1.7.3  Extracellular matrix and leukocyte migration 

The composition of blood vessel basement membrane is of particular importance to immune cell 

migration as this presents the first matrix barrier during extravasation from the circulation 

(reviewed in (Korpos et al., 2010)). Leukocytes migrating through the basement membrane do so 

by forming adhesions with the ECM components via the integrins (the formation of distinct focal 

adhesions in vivo is somewhat controversial however [see Chapter 1, 1.1.4.2]) and secreting 

proteases to breakdown the ECM barriers. Neutrophils, for example, stain positive for cleaved 

laminin-α4 and -α5 chains following basement membrane transmigration in vivo and these areas 

of staining co-localise with integrin α6 distribution, suggesting that a remodelling of the ECM has 

occurred (Wang et al., 2006). A similar study, however, has suggested that monocytes are able to 

traverse the basement membrane without remodelling the ECM (Voisin et al., 2009). This is 

understandably something of a contentious issue however, and is discussed further in Chapter 1, 

1.2.5.  
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1.2 Metalloproteinases  

 

1.2.1 The Metalloproteinases 

First classified by Rawlings and Barret (Rawlings and Barrett, 1993), the evolutionary family of 

proteinases is composed of four subfamilies; the serine proteinases, cysteine proteinases, aspartic 

proteinases and the metalloproteinases. Together these are responsible for the degradation and 

turnover of all connective tissue proteins in the ECM (Cawston, 1995).  Whilst the aspartic and 

cysteine proteinases mainly act intracellularly in acidic compartments, the serine and 

metalloproteinase families are largely considered to work extracellularly, cleaving surrounding 

matrix proteins at a neutral pH (Cawston, 1995).  

The metalloproteinases can be further subdivided and include the metzincin superfamily, which in 

turn includes the matrix metalloproteinases (MMPs), the ADAMs (a disintegrin and 

metalloproteinase) and the ADAMTS proteinases (ADAM with thrombospondin motifs) (Nagase et 

al., 2006).  MMPs function as endopeptidases with broad substrate specificity and all members of 

the family are dependent on the presence of a zinc ion in their active site (Kahari and Saarialho-

Kere, 1997). There are 23 human MMPs in total and these are conserved throughout the 

mammalian class of vertebrates. Table 1.1 demonstrates the further classification of these 

proteinases into five main functional groups due to their ECM substrate specificity; the 

Collagenases, Gelatinases, Stromelysins, Matrilysins and the Membrane-type MMPs;  and one 

group of MMPs that share neither structural nor substrate specificities. More recently a role for 

the MMPs in the cleavage and activation of chemokines during the immune response has been 

established (Overall et al., 2002) and this is discussed in more detail in Chapter 5. 

1.2.3 Matrix Metalloproteinase structure and activity 

All 23 mammalian MMPs have similar structural domains (figure 1.8). MMPs are composed of a 

hydrophobic amino terminal signal sequence, a pro-peptide domain containing a conserved 

cysteine residue, and a catalytic domain including a zinc ion in the active site. Most MMPs (not 

including MMP-7 and -26) also contain a hemopexin-like c-terminal domain that includes a calcium 

binding site and is connected to the catalytic domain by a hinge region (Nagase et al., 2006). The 

MT-MMPs also either possess a transmembrane domain (MMP-14, -15, -16 and -24) or are 

attached to the cell surface by a glycosylphosphatidylinositol (GPI) anchor (MMP-25) (Nagase et 

al., 2006). 
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Table 1.1 The MMPs and their ECM substrates; including their exogenous activators and capacity 

to further activate other MMPs. Information for this table adapted from (Murphy and Knauper, 

1997; Rawlings et al., 2010; Kahari and Saarialho-Kere, 1997; Chakraborti et al., 2003). 
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Protease ECM Substrates Activated by Activator of

Collagenases

MMP-1 (Collagenase 1)
Fibrillar collagens I, II, III, VII, VIII, X, 
aggrecan, serpins, α2M

Plasmin, MMP-3, MMP-10 MMP-2

MMP-8 (Collagenase-2)
Fibrilliar collagens I, II, III,
aggrecan, serpins, α2M

Plasmin, MMP-3, MMP-10 No protease activation defined

MMP-13 (Collagenase-3)

Fibrillar collagens I, II, III, type IV, IX,
X, XI collagens, gelatin, fibronectin, 
laminin,
tenascin, aggrecan, serpins

Plasmin, MMP-2, MMP-3, MMP-10, 
MMP-14, MMP-15 MMP-2, MMP-9

Gelatinases

MMP-2 
(Gelatinase A)

Gelatin, type I and IV collagen, 
fibronectin, tenascin

MMP-1, MMP-7, MMP-13, MMP-14, 
MMP-16, MMP-17, MMP-25

MMP-9, MMP-13

MMP-9 
(Gelatinase B)

Gelatin, type I, IV and XIV collagen, 
α2M

Plasmin, MMP-2, MMP-3, MMP-13 Plasmin

Stromelysin

MMP-3 (Stromelysin-1)
Type IV collagen, fibronectin, 
aggrecan, nidogen

Plasmin, elastase
MMP-1, MMP-7, MMP-8, MMP-9,
MMP-13

MMP-10 (Stromelysin-2)
Type IV collagen, fibronectin, 
aggrecan, nidogen

Plasmin, elastase
MMP-1, MMP-7, MMP-8, MMP-9,
MMP-13

MMP-11 (Stromelysin-3)
α1-proteinase inhibitor, α2-
macroglobulin

Furin No protease activation defined

MMP-19 (Stromelysin-4)
Type IV collagen, gelatin, laminin,
fibronectin, aggrecan,
fibrin/fibrinogen

Trypsin No protease activation defined

Matrilysins

MMP-7 
(Matrilysin)

Type IV collagen, fibronectin, 
aggrecan, nidogen, elastin, laminin, 
vitronectin, fibrin/fibrinogen

Plasmin, MMP-3 MMP-2

MMP-26 (Matrilysin-2)
Type IV collagen, gelatin,
fibronectin, fibrin/fibrinogen

MMP-26 No protease activation defined

Membrane Type

MMP-14 
(MT1-MMP)

Type I, II and III collagen, gelatin, 
fibronectin, laminin, vitronectin, 
aggrecan

Plasmin, furin MMP-2, MMP-13

MMP-15
(MT2-MMP)

Proteoglycan No protease activator(s) defined MMP-2, MMP-13

MMP-16
(MT3-MMP)

Type III collagen, fibronectin No protease activator(s) defined MMP-2

MMP-17 
(MT4-MMP)

Gelatin, fibrin/fibrinogen No protease activator(s) defined MMP-2

MMP-24 (MT5-MMP) Fibronectin, proteoglycan, gelatin No protease activator(s) defined MMP-2

MMP-25 (MT6-MMP)
Type IV collagen, gelatin,
fibronectin, proteoglycans, laminin-
1, fibrin/fibrinogen

No protease activator(s) defined MMP-2

Other MMPs

MMP-12 (Metalloelastase)
Type IV collagen, fibronectin, 
aggrecan, nidogen, elastin

Plasmin No protease activation defined

MMP-20 (Enamelysin) Aggrecan No protease activator(s) defined No protease activation defined

MMP-23 Gelatin No protease activator(s) defined No protease activation defined

MMP-27 No substrates defined No protease activator(s) defined No protease activation defined

MMP-28 Casein No protease activator(s) defined No protease activation defined
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As with all proteins, the structure of an MMP determines its function and site of action. The 

majority of the MMPs are secreted as inactive zymogens, or pro-MMPs, and require removal of 

the pro-peptide domain to activate the latent enzyme. The pro-peptide domain contains a 

cysteine residue that directly interacts with the zinc in the active site thus preventing substrate 

binding.  Conversely, the MT-MMPs can be activated intracellularly, before binding to the cell 

membrane, due to a furin-like recognition sequence in the pro-domain (Chakraborti et al., 2003). 

The activity of MMPs is tightly regulated in healthy tissue with a delicate balance of activation, 

either by other MMPs or via the plasmin-plasminogen cascade; and inhibition, by the endogenous 

tissue inhibitors of metalloproteinases (TIMPs). 

Plasminogen is a circulating plasma protein produced in the liver. The conversion of the inactive 

plasminogen zymogen to active plasmin is mediated by the binding of urokinase-like plasminogen 

activator (uPA) to its receptor uPAR on the cell surface. This instigates the extracellular 

plasminogen cascade, the main function of which is fibrinolysis of blood clots. This cascade also 

however results in the activation of proteinases involved in cell-cell and cell-matrix interactions 

(Murphy et al., 1992). For example, plasmin is able to activate both proMMP-3 and -10. Active 

MMP-3 is further responsible for the direct activation of proMMP-1 and the sequential activation 

of MMP -9 (Murphy and Knauper, 1997). Thus it becomes apparent that uPA-uPAR interaction can 

trigger activation cascades capable of activating all latent MMPs. 

1.2.4 The TIMPs: endogenous inhibitors of metalloproteinases 

The endogenous tissue inhibitors of metalloproteinases, the TIMPs, are capable of inhibiting all 

active forms of the MMPs by forming a complex with the N-terminus of the relevant proteinase 

and chelating the zinc ion in the active site (Nagase et al., 2006). There are four mammalian TIMPs, 

numbered 1-4, which vary in efficacy and inhibitory profile (table 1.2). For example, TIMP-1 

inhibits most MMPs and ADAM10 but has low inhibitory activity for most of the MT-MMPs.  TIMP-

3, on the other hand, has the broadest inhibitory range and is also able to inhibit several of the 

ADAM and ADAMTS family members (Brew and Nagase, 2010). Interestingly TIMP-3 is able to bind 

ECM via glycosaminoglycans whilst TIMPs-1, -2 and -4 are soluble, suggesting that their site of 

action is as important as that of the MMPs (Yu et al., 2000). 
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Table 1.2 The inhibitory profile of the TIMPs; including their interaction with ADAMs, ADAMTSs 
and some proMMPs. Adapted from (Brew and Nagase, 2010). 

 

TIMPs are also capable of forming non-inhibitory complexes with proMMPs via interaction of the 

TIMP C-terminal domain and the proMMP hemopexin-like domain. These interactions allow the 

TIMP molecule involved to bind simultaneously to another MMP via its N-terminal (Brew and 

Nagase, 2010). The functional significance of these interactions is not well understood, with the 

exception of TIMP-2 interaction with proMMP-2.  TIMP-2 is able to bind proMMP-2 via its C-

terminal domain as explained above. Concurrently TIMP-2 can bind MMP-14 (MT1-MMP) via its N-

terminal domain, resulting in the formation of an MMP-14-TIMP-2-proMMP-2 membrane 

associated complex (Itoh et al., 2001). The components of this complex are not proteolytically 

active; however adjacent TIMP-2-free MMP-14 molecules, drawn into a homophilic interaction via 

their hemopexin domain, are able to activate the proMMP-2 by cleavage of the pro-domain (Itoh 

et al., 2001). 

1.2.5 The role of metalloproteinases during cell migration 

The metalloproteinases have long been implicated in the process of cell migration. Their primary 

role is to enable migratory cells to focus proteolytic activity on the ECM molecules in their path. 

More recently, however, the capacity for MMP-driven cleavage and activation of cryptic pro-

migratory factors in the extracellular environment has also emerged. 

Gene Location MMP Inhibition
Other metalloproteinase 
interactions

Pro-MMP 
interaction

TIMP-1 Secreted

All, but weak inhibition
of MMP-14, -16, -19, 
and -24.
Strong inhibition of 
MMP-3 and 7.

ADAM10 ProMMP-9

TIMP-2 Secreted All ADAM12 ProMMP-2

TIMP-3 ECM bound All

ADAM10, 12, 17, 28 and 
33.
ADAMTS-1, -4, and -5.

Weak inhibition of
ADAMTS-2.

ProMMP-2 and -9

TIMP-4 Secreted Most
ADAM17 and 28.
Weak inhibition of 
ADAM33.

ProMMP-2
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1.2.5.1 MMPs 

The dependence on broad-spectrum MMP expression for successful migration of vascular smooth 

muscle cells has been demonstrated by over-expression of TIMP-1 and-2. VSMC migration was 

inhibited both in vitro, in Transwell assays; and in vivo, in during neointimal thickening (Forough et 

al., 1996; Cheng et al., 1998). Similarly, the use of synthetic MMP inhibitors significantly represses 

migration; studies have shown the ability of monocytes to pass through a monolayer of 

endothelial cells in an in vitro model of the blood brain barrier to be impeded by MMP inhibition 

(Reijerkerk et al., 2006). Further studies into the role of specific proteinases in migration have also 

yielded important results. Loss of MMP-8, for example, has been shown to abrogate the migration 

of polymorphonuclear (PMN) leukocytes in response to LPS in MMP-8-/- mice (Tester et al., 2007). 

MMP-13 has also been found to enhance migration, inducing a four-fold increase in VSMC velocity 

by cleaving a type 1 collagen to substrate to its ¾ fragment (Stringa et al., 2000). 

1.2.5.2 MT-MMPs 

Numerous studies have also implicated the MT-MMPs (MMP-14-17, -24 and -25) in the process of 

basement membrane transmigration (Hotary et al., 2006; Cao et al., 2004; Sithu et al., 2007). 

Despite this, the true extent of their contribution has been a source of controversy of late. Given 

that MT-MMPs are anchored to the cell membrane it seems intuitive that they would imbue the 

cell with a focussed proteolytic power that would be more difficult to achieve with diffusible 

secreted MMPs. This requirement for MT1, MT2 and MT3-MMP has been demonstrated by the 

migration of neoplastic cells across the basement membrane during cancer metastasis (Hotary et 

al., 2006). Hotary et al employ siRNA knock-down of this triad of proteinases to demonstrate their 

necessity for cancer cell invasion and migration in intact ex vivo basement membrane. Similarly, 

knock-down of MT1-MMP alone in primary human blood monocytes prevents their 

transendothelial migration in vitro, whilst adenovirus driven over-expression of MT1-MMP 

enhances it (Sithu et al., 2007). Conversely, it has been claimed that fibrosarcoma and T-

lymphocyte cells, treated with a broad-spectrum protease inhibitor in vitro, are able to retain their 

basement membrane invasive properties by migrating in a proteinase-independent ‘amoeboid-

like’ fashion rather than the classical mesenchymal style of locomotion (Wolf et al., 2003a; Wolf et 

al., 2003b). Further to this, in vivo studies have revealed a preference for neutrophils and 

monocytes to transmigrate the endothelium of murine cremasteric venules at areas of low matrix 

protein expression suggesting the expression of MMPs alone is insufficient for breakdown of the 

basement membrane (Wang et al., 2006; Voisin et al., 2009). Voisin et al also show that inhibition 

of MMP-2 and -9 activities had no effect on monocyte migration in this model. 
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To counter the argument for MMP-independent cell migration it is important to understand that, 

despite inhibition of the gelatinases in the model used by Voisin et al, activity of all other MMPs, 

including the MT-MMPs, remains. This in no way rules out the role of any other MMP in this in vivo 

model of transendothelial migration. Also, in a murine model of central nervous system 

inflammation, expression of MMP-2 and -9 by macrophages has been shown to be vital for 

basement membrane transmigration in the brain and the spinal cord suggesting that the 

requirement for proteinases is site-specific (Agrawal et al., 2006). Subsequent studies have also 

challenged the proteinase-independent ‘amoeboid-like’ migration hypothesis. Sabeh et al (2009) 

have shown definitively that proteinase-independent migration is an artefact of ECM substrate 

pore size rather than a biologically relevant migratory phenotype. Specifically, pepsin-extracted 

type I collagen matrices lack the specific cross-linked structure found in native collagen and thus 

allow for cell migration even when MMP-14 is absent (Sabeh et al., 2009).  Migration through 

reconstituted native type I collagen however is totally dependent on this metalloproteinase. 

1.2.5.3 ADAM and ADAMTS families  

Another group of metalloproteinase molecules that appear to play a role in cell migration are the 

ADAMs and the ADAMTSs. Their pro-migratory activity is primarily mediated by their interaction 

with cell surface proteins such as the integrins and cell adhesion molecules. ADAM28, for example, 

is able to interact with and bind to integrin α4β1 via its disintegrin domain, implying that it either 

plays a role in cell-cell adhesion or sequestering the active protease to the cell surface (Bridges et 

al., 2002). ADAM28 has also been shown to enhance leukocyte adhesion to endothelial cells in 

vitro, via binding to P-selectin on the surface of endothelial cells (Shimoda et al., 2007). P-selectin 

is known to play a role in leukocyte rolling along the blood vessel lumen (see Chapter 1, 1.1.4.1) 

and Shimoda et al suggest that ADAM28 enhances its function in leukocyte transmigration. 

Similarly, ADAM17 has been found to play a role in the recruitment of leukocytes to the 

endothelium lining blood vessels via its action as a sheddase for VCAM-1. Knockdown of ADAM17 

leads to a reduction of VCAM-1 ectodomain shedding in response to pro-inflammatory stimulation 

(Singh et al., 2005). As soluble VCAM-1 is a known chemoattractant for T-cells (Kitani et al., 1998) 

it seems that ADAM17 may play an important role in the migration of these cells during the 

immune response. In earlier studies ADAM17 had been shown to mediate ectodomain shedding of 

pro-inflammatory TNF-α, earning the moniker TNF-α-converting enzyme (TACE) (Black et al., 

1997). More recently Fraktalkine/CX3CL1 has been identified as an ADAM17 substrate, also a 

potent pro-inflammatory factor (Garton et al., 2001). 
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The function of the ADAMTS family in cell migration is less well understood, however recent 

research has uncovered some important roles. ADAMTS7, for example, is strongly expressed in 

VSMC both in vivo and in vitro, and its over-expression is associated with increased neointima 

formation and VSMC migration (Wang et al., 2009). As with the MMPs and ADAMs, the function of 

the ADAMTSs appears to be site specific. For instance, ADAMTS1 is significantly up-regulated 

following skin and nerve injury (Krampert et al., 2005). In particular, ADAMTS1 is strongly 

expressed by macrophages in skin early in the wounding process and keratinocytes later on. 

Exposure of fibroblasts and endothelial cells to recombinant ADAMTS1 revealed modulation of 

migration in both cell types. Interestingly, low levels of ADAMTS1 appear to enhance migration 

whilst high levels inhibit it. Krampert el al also shown that this action is dependent on ADAMTS1 

activity, again suggesting it is the proteolytic function of this molecule that is implicated in 

migration. 

 

1.2.6 MMP expression in macrophages 

In humans, macrophages and their monocytic precursors have been shown to express the majority 

of the mammalian MMPs, with MMP-1, -3, -9, -10, -12, -14, -19 and -25 expressed preferentially 

(Webster and Crowe, 2006). The induction of MMPs in macrophages is principally driven by pro-

inflammatory stimuli, such as TNF-α, the colony stimulating factors, LPS, and the interferons. For 

example, both TNF-α and M-CSF stimulate a dose- and time-dependent increase in MMP-16 mRNA 

expression in human monocyte derived macrophages (Uzui et al., 2002). Similarly, MMP-7 is 

constitutively expressed in human bone marrow-derived monocytes, but secretion is further 

stimulated in the presence of LPS (Busiek et al., 1992). Interestingly, levels of MMP expression can 

also vary during differentiation from monocyte to macrophage. In human peripheral blood 

monocytes stimulated to differentiate with phorbol 12-myristate 12-acetate (PMA) or M-CSF, 

secretion of proMMP-9 increased along with hallmarks of monocyte differentiation such as cell 

adhesion and spreading (Xie et al., 1998). 

The capacity of macrophages and monocytes to produce an increased level and range of MMPs 

reflects their function within tissue. By secreting matrix degrading enzymes, these cells are able to 

participate in the remodelling of the ECM in response to immune status. This is particularly 

evident when investigating the interaction between monocytes and endothelial cells as a model of 

their extravasation from the blood vessel in response to pro-inflammatory stimuli. Co-culture 

techniques, for example, have revealed a dependence on MMP-14 expression by human blood 
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peripheral monocytes for migration through TNF-α stimulated endothelial monolayers (Matias-

Roman et al., 2005). Not only did Matias-Roman et al detect enhanced MMP-14 expression during 

monocyte/endothelium transmigration but MMP-14 was also observed to cluster at the leading 

edge of these cells where they suggest it exerts its proteolytic activity of fibronectin. Similarly 

broad spectrum MMP inhibition in vivo is shown to reduce monocyte extravasation due to a 

decrease in endothelial gap formation and loss of tight junction proteins (Reijerkerk et al., 2006). 

Again, this appears to be the result of proteolytic degradation although the specific 

metalloproteinase(s) involved were not elucidated. 

As well as expressing MMPs during normal homeostatic processes, macrophages have been shown 

to aberrantly express proteinases in diseased tissues, such as atherosclerotic plaques and chronic 

wounds. This is covered in detail in Chapter 1, 1.3 and 1.4. 
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1.3 The wound healing response 

 

1.3.1 Skin structure and function 

Mammalian skin is comprised of three primary layers of cells that provide an anatomical barrier to 

protect against pathogens, regulate body temperature and control evaporation (figure 1.9). Skin is 

the largest member of the largest organ system in mammals, the integumentary system 

(Breitkreutz et al., 2009). This system also includes other external protective features such as the 

hair and nails. 

1.3.1.1 Epidermis 

The epidermis is the outermost layer of the mammalian skin. This acts as an immediate barrier to 

pathogens and other foreign objects in the external environment as well as guarding against 

evaporation and loss of solutes, whilst also providing a waterproof layer (reviewed in (Madison, 

2003)). The epidermis is formed from a layer of squamous stratified epithelial cells interspersed 

with Merkel cells (somatosensory receptors), melanocytes (pigment producing cells), langerhans 

cells (antigen presenting) and, predominantly, keratinocytes. The outermost layer of the 

epidermis, the stratum corneum, is composed of fully differentiated keratinocytes that have 

migrated outwards through the strata, become enucleated, loaded with keratin filaments, and 

embedded in an extracellular lipid matrix (Madison, 2003). Eventually these cells die due to a lack 

of blood supply and are sloughed off in a process known as desquamination. The cycle of 

keratinocyte differentiation continues constantly, replenishing the epidermal layer and 

maintaining its barrier function (reviewed in (Proksch et al., 2008)).  

1.3.1.2 Dermis 

Beneath the epidermis lies a basement membrane and then the dermis. The dermis is largely 

acellular, consisting mainly of connective tissue composed of collagen interspersed with cellular 

structures such as the mechanosensory nerve endings, hair follicles, sebaceous glands, and blood 

and lymphatic vessels. Interestingly, a recent study revealed that approximately 60% of the cells in 

the dermis of mouse skin are macrophages, staining positive for macrophage-specific markers 

(Dupasquier et al., 2004), whereas previously fibroblasts had been thought to make up the 

majority. This suggests that the dermal layer plays a far greater role in the steady-state immune 

response than has previously been estimated.  

The dermis can be subdivided into two further layers, the papillary region and the slightly thicker 

reticular region, which is separated by a vascular interface (figure 1.9; reviewed in (Sorrell and 
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Caplan, 2004)). The papillary dermis is arranged into finger-like structures, or papillae, that 

protrude towards the epidermis and provide a greater surface area for interaction between these 

two layers. The collagen fibres present in the papillary region are poorly organised and are 

composed mainly of type I and III collagen, although non-fibrillar collagens XII and XVI are also 

present. There is also a high concentration of decorin, a proteoglycan, and microfibril associated 

versican present in the papillary region. The reticular dermis extends deep into the skin and has an 

even lower concentration of cells than the papillary region. The composition of ECM in this layer of 

dermis differs from that of the papillary region with thicker, well-organised bundles of mainly type 

1 collagen. Decorin is also present, although in a more dispersed pattern than is seen in the 

papillary region, and versican is expressed in association with elastic fibres rather than microfibrils 

(Sorrell and Caplan, 2004). The presence of these ECM components add strength to the dermis 

whilst also providing a scaffold for migrating cells and also enabling storage of water and solutes in 

the skin (Sorrell and Caplan, 2004).  

1.3.1.3 Hypodermis 

The innermost layer of the skin is known as the hypodermis, or the subcutaneous adipose layer. 

This is composed mainly of adipocytes and loose connective tissue but also contains macrophages 

and larger cellular structures such as blood and lymph vessels and nerve fibres. The main functions 

of the hypodermis appear to be fat storage, for energy and thermoregulation, and to connect the 

skin to the underlying muscle (Kanitakis, 2002). Recently however the endocrine function of 

adipose tissue has become the focus of much research, revealing an important role for adipocytes 

in the progression of pro-inflammatory diseases (Yeop et al., 2010), such as type II diabetes and 

related complications, for example impaired dermal wound healing (Goren et al., 2007; 

Nascimento and Costa, 2006). 
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Figure 1.9 The mammalian skin structure. The skin is composed of three main layers: the epidermis, 

dermis and hypodermis. The epidermis is mainly formed from layers of stratified squamous epithelial 

cells providing a barrier to the external environment. In between the epidermis and the dermis is a 

basement membrane. The dermis can be subdivided into the papillary dermis and the reticular dermis, 

separated by a vascular interface. The papillary dermis protrudes into the epidermis with papillae, 

providing increased surface area for interaction. The connective tissue of the dermis is mainly 

composed of collagen, which is poorly organised in the papillary layer but more tightly ordered in the 

reticular dermis.  The dermis is largely acellular although there are more cells present in the papillary 

layer than the reticular dermis. The hypodermis contains mainly adipocytes for fat storage and is the 

innermost layer of the skin. Information for this diagram obtained from (Sorrell and Caplan, 2004). 
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1.3.2 Wound healing and the multistep inflammatory cascade 

Wound healing is the process by which the skin repairs itself after injury (figure 1.10). Immediately 

following wounding the healing process begins with an initial pro-inflammatory response. This is 

followed by a phase of proliferation and culminates with the remodelling of the dermis and 

epidermis to restore the protective barrier provided by the skin. 

1.3.2.1 The multistep inflammatory cascade 

The wound healing response involves numerous cell types that are deployed to the site of injury in 

exquisitely timed succession (table 1.3). This process is orchestrated by an equally complex 

sequence of chemoattractant signals secreted by both the injured tissue and the cells participating 

in the wound healing response.  Immediately after wounding, platelets are released from 

damaged blood vessels and come into contact with ECM components and other factors released 

from damaged endothelium, such as von Willebrand factor (vWF). This stimulates platelets to bind 

to one another in aggregates allowing blood clots to form. These aggregates are strengthened by 

soluble fibrinogen that cross-links to form a fibrin clot and acts as a scaffold for migratory cells 

involved in the subsequent stages of wound healing (Martin and Leibovich, 2005). 

Neutrophils are the first leukocytic cells to arrive at the site of injury (figure 1.10 A). Neutrophil 

diapedesis and migration is stimulated by chemokines released from endothelium exposed to 

pathogens during wounding. This process can be mimicked in vitro by exposing human endothelial 

cells to LPS, resulting in an up regulation in IL-8 transcription (Goetzl et al., 1996). The role of 

neutrophils is to phagocytose pathogens and enzymatically digest them within phagolysosomes. 

Neutrophils are also able to produce an oxidative burst that further aids their antimicrobial action; 

a process that appears to be intrinsically linked to the control of their migration (Zhang et al., 

2009).  

Macrophages arrive shortly after neutrophils as the second influx of leukocytes to the wound site, 

using the fibrin clot as a scaffold for their migration (figure 1.10 B). Their diapedesis into the 

wounded tissue and subsequent differentiation from monocytes is triggered by numerous growth 

factors. Perhaps the most important of these is macrophage chemotactic protein (MCP)-1, 

expressed by vascular endothelium, smooth muscles cells and fibroblasts (reviewed in (Deshmane 

et al., 2009)). Genetic deletion of MCP-1 and its receptor is not lethal although severe 

abnormalities in monocyte recruitment and chemokine expression are observed (Lu et al., 1998). 

Macrophages in the wound also respond to the presence of PAMPs, such as LPS, peptidoglycan 

and unmethylated CpG motifs that can stimulate their activation and migration (Guha and 
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Mackman, 2001; Sweet et al., 2002). Like neutrophils, the primary role of macrophages in wound 

healing is as phagocytes. Macrophages not only engulf pathogens but also clear the wound of 

spent neutrophils via PECAM-1 mediated cell-cell recognition. Unlike neutrophils however, the 

action of macrophages has been shown to be absolutely necessary for wound healing (Leibovich 

and Ross, 1975; Danen et al., 2002).  

1.3.2.2 The proliferation phase 

Activation of fibroblast migration into wounded tissues marks the end of the pro-inflammatory 

phase of wound healing and the beginning of the proliferative phase. Fibroblasts migrate into the 

wound using the fibrin clot as scaffold. They then lay down a collagen-rich matrix allowing for 

further migration, and form granulation tissue composed mainly of fibronectin. A small proportion 

of fibroblasts in dermal wounds continue to differentiate into myofibroblasts and provide a 

contractile force to close to the wound (Sorrell and Caplan, 2004). The majority of the fibroblasts, 

however, further contribute to the wound healing process by secreting growth factors to stimulate 

angiogenesis and keratinocyte migration.  

Fibroblasts contribute to angiogenesis in two ways. Firstly, fibroblasts secrete chemoattractants 

such as vascular endothelial growth factor (VEGF) and hepatocyte growth factor (HGF) that 

stimulate the migration and proliferation of endothelial cells during angiogenesis (Bou-Gharios et 

al., 2004). Secondly, fibroblasts contribute to the structure of new blood vessels by laying down 

ECM and, in the case of much deeper wounds, forming the outer layer of blood vessels greater 

than 5 mm in diameter (Bou-Gharios et al., 2004). 

Keratinocyte migration and subsequent re-epithelialisation is the final stage of the proliferative 

phase of wound healing. Keratinocytes respond to several growth factors during the re-

epithelialisation of a wound. For example, fibroblast growth factors (FGFs) and platelet derived 

growth factor (PDGF) have been shown to stimulate significantly greater closure of dermal wounds 

in mice (Greenhalgh et al., 1990). Re-epithelialisation is also made possible by the expression of 

MMPs in keratinocytes. In vitro, MMP-1 has been found to be expressed by keratinocytes 

migrating on a type 1 collagen matrix, whilst in vivo studies have revealed the expression of MMP-

10 in the basal keratinocytes of wounded epithelium (Rechardt et al., 2000; Madlener et al., 1996). 

The expression of MMPs in keratinocytes and other cells in wounded skin is disused further in 

Chapter 5. 
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1.3.2.3 Tissue remodelling 

The final stage of wound healing takes the greatest amount of time and persists even after the re-

epithelialisation is complete. The remodelling phase can last up to a year and results in the 

formation of scar tissue as matrix is laid down in place of granulation tissue (figure 1.10 C; 

reviewed in (Velnar et al., 2009)). The key feature of this is the thickening of collagen bundles, 

increasing the tensile strength of the wound. A delicate balance between synthesis and 

degradation of ECM components is struck during remodelling, with an increase in TIMP expression 

resulting in a decrease in MMP activity (Kahari and Saarialho-Kere, 1997). The various cells 

involved in the earlier wound healing stages are depleted by apoptosis so that fibroblast density is 

reduced, growth of capillaries stops and only resident macrophages remain (Velnar et al., 2009). 

Due to the complex nature of the wound healing process and the multiple cells types involved it is 

perhaps unsurprising that several disease states include impaired wound healing as a secondary 

complication. For example, any disease affecting the circulation and causing ischemia, such as 

atherosclerosis, will prevent the proper deployment of the cells involved in wound healing. 

Similarly immune suppression will delay the wound healing process, particularly the pro-

inflammatory phase, and is a symptom of human immunodeficiency virus (HIV) induced acquired 

immunodeficiency syndrome (AIDS). Perhaps the most common pathology associated with 

impaired wound healing, and one that is rapidly becoming more prevalent, is type II diabetes 

(Campbell, 2009). 

  



39 
 

  

Fi
gu

re
 1

.1
0

 T
h

e 
w

o
u

n
d

 h
ea

lin
g 

re
sp

o
n

se
. 

W
o

u
n

d
 h

ea
lin

g 
in

 h
ea

lt
h

y 
ti

ss
u

e 
ta

ke
s 

p
la

ce
 i

n
 t

h
re

e 
p

ri
m

ar
y 

st
ag

es
. 

(A
) 

Im
m

ed
ia

te
ly

 f
o

llo
w

in
g 

w
o

u
n

d
in

g 

p
la

te
le

ts
 a

re
 r

el
ea

se
d

 f
ro

m
 t

h
e 

b
lo

o
d

 a
n

d
 f

o
rm

 a
 f

ib
ri

n
 c

lo
t.

 T
h

e 
fi

rs
t 

st
ag

e 
o

f 
w

o
u

n
d

 h
ea

lin
g 

is
 p

ro
-i

n
fl

am
m

at
o

ry
 a

n
d

 i
n

vo
lv

es
 a

 m
as

si
ve

 i
n

fl
u

x 
o

f 

im
m

u
n

e 
ce

lls
, 

b
eg

in
n

in
g 

w
it

h
 n

eu
tr

o
p

h
ils

, 
w

h
ic

h
 m

ig
ra

te
 i

n
to

 t
h

e 
w

o
u

n
d

 u
si

n
g 

th
e 

fi
b

ri
n

 c
lo

t 
as

 a
 s

ca
ff

o
ld

 a
n

d
 c

le
ar

 t
h

e 
w

o
u

n
d

 o
f 

p
at

h
o

ge
n

s.
 (

B
) 

Fo
llo

w
in

g 
n

eu
tr

o
p

h
ils

 m
o

n
o

cy
te

-d
er

iv
ed

 m
ac

ro
p

h
ag

es
 m

ig
ra

te
 i

n
to

 t
h

e 
w

o
u

n
d

 c
le

ar
in

g 
an

y 
re

m
ai

n
in

g 
p

at
h

o
ge

n
s 

w
h

ils
t 

al
so

 e
n

gu
lf

in
g 

sp
en

t 

n
eu

tr
o

p
h

ils
 a

n
d

 c
el

l 
d

eb
ri

s.
 T

h
e 

p
ro

lif
er

at
io

n
 p

h
as

e 
b

eg
in

s 
as

 f
ib

ro
b

la
st

s 
m

ig
ra

te
 i

n
to

 t
h

e 
w

o
u

n
d

 a
n

d
 l

ay
 d

o
w

n
 g

ra
n

u
la

ti
o

n
 t

is
su

e 
ri

ch
 i

n
 E

C
M

 

co
m

p
o

n
en

ts
. 

Fi
b

ro
b

la
st

s 
al

so
 s

ec
re

te
 c

yt
o

ki
n

es
 t

h
at

 t
ri

gg
er

 a
n

gi
o

ge
n

es
is

 t
h

u
s 

in
cr

ea
si

n
g 

b
lo

o
d

 f
lo

w
 t

o
 t

h
e 

w
o

u
n

d
ed

 t
is

su
e.

 K
e

ra
ti

n
o

cy
te

 m
ig

ra
ti

o
n

 

al
so

 
tr

ig
ge

rs
 

w
o

u
n

d
 

cl
o

su
re

 
an

d
 

co
n

tr
ib

u
te

s 
to

 
th

e 
ad

va
n

ci
n

g 
ep

id
er

m
al

 
to

n
gu

e.
 

(C
) 

Th
e 

fi
n

al
 

st
ag

e 
o

f 
w

o
u

n
d

 
h

ea
lin

g 
co

n
ti

n
u

es
 

af
te

r 
re

-

ep
it

h
el

ia
lis

at
io

n
 i

s 
co

m
p

le
te

 a
n

d
 i

n
vo

lv
ed

 t
h

e 
re

m
o

d
el

lin
g 

o
f 

w
o

u
n

d
ed

 t
is

su
e 

an
d

 f
o

rm
at

io
n

 o
f 

sc
ar

 t
is

su
e.

 F
ib

ro
b

la
st

 p
ro

lif
e

ra
ti

o
n

 s
to

p
s 

an
d

 g
ro

w
th

 

o
f 

n
ew

 c
ap

ill
ar

ie
s 

is
 a

rr
es

te
d

. 
R

es
id

en
t 

m
ac

ro
p

h
ag

es
 r

em
ai

n
 b

u
t 

al
l 

o
th

er
 w

o
u

n
d

 r
es

p
o

n
si

ve
 c

e
lls

 a
re

 c
le

ar
ed

 b
y 

ap
o

p
to

si
s.

 I
n

fo
rm

at
io

n
 f

o
r 

th
is

 

d
ia

gr
am

 t
ak

e
n

 f
ro

m
 (

G
u

rt
n

er
 e

t 
al

.,
 2

00
8

) 



40 
 

  

Table 1.3 Cells deployed during the multistep inflammatory cascade. Numerous cells are 

stimulated during the wound healing response and the precise timing of their deployment is vital for 

efficient resolution of injury, infection and subsequent inflammation. The cells involved are listed 

from earliest to latest induction and the approximate period during which they are active is 

indicated by arrows. C5a – complement component  5a, EGF – epidermal growth factor, FGF – 

fibroblast growth factor, IL-8 – interleukin-8, IFN-γ – interferon-γ, KGF – keratinocyte growth factor, 

MCP-1 macrophage chemotactic protein-1, PDGF – platelet derived growth factor, TGF-β – 

transforming growth factor-β, VEGF – vascular endothelial growth factor,  vWF – von Willebrand 

Factor. Adapted from (Martin and Leibovich, 2005) with information drawn from (Esche et al., 2005). 

Cell type Source Function in wound healing Responds to…

Platelets Damaged blood vessels
Form an aggregate mass 
aiding blood clotting

Collagen, vWF, Tissue Factor,
Thrombin – in blood and 
released from damaged 

endothelial cells

Neutrophils
Diapedesis from blood 
vessels

Anti-microbial: phagocytosis 
and oxidative burst

IL-8 (CXCL8), CXCL5, CXCL1, 
IFN-γ, C5a – expressed by 
epithelial cells, fibroblasts, 

endothelial cells

Macrophages

Diapedesis of circulating 
monocytes from blood 
vessels

Some resident in tissue

Secondary influx of 
phagocytes: clears wound of 
ECM, cell debris, spent 

neutrophils and any 
remaining pathogens

MCP-1 (CCL2), CCL3, CCL5, 
PDGF, TGF-β – expressed by 
platelets, neutrophils and 
damaged endothelium

PAMPs – on the surface of 
pathogens

Fibroblasts
Connective tissue at the
wound edges 

Formation of granulation 
tissue and later wound 
contraction

EGF, PDGF, FGF-1, FGF-2 –
expressed by macrophages, 
keratinocytes and damaged 

endothelium

Endothelial cells Nearby blood vessels

Angiogenic sprouting

(Earlier activation allows for 

diapedesis)

VEGF, HGF, PDGF, FGF-1, 
FGF-2, TGF-β, IL-8 –
expressed by macrophages,
smooth muscles cells, T-
lymphocytes, other 
endothelial cells.

Keratinocytes Epidermal wound edges
Re-epithelialisation of open 
wound

TGF-β, KGF, EGF, FGF-1, FGF-
2 – expressed by 
macrophages, fibroblasts, 

smooth muscle cells, other 
keratinocytes

Lack of contact inhibition 
from other keratinocytes at 
the wound edge

0-3 d
ays

3-12 d
ays

3 d
ays –

6 m
o

n
th

s +
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1.4 Type II Diabetes 

 

1.4.1 Type II diabetes and the diabetic milieu 

Diabetes mellitus, often just referred to as diabetes, is a disease characterised by high blood 

glucose levels due to a deregulation of the hormone insulin. There are two types of diabetes, type 

I and type II.  

1.4.1.1 Comparing type I and type II diabetes 

Type I diabetes is the result of the autoimmune destruction of insulin-producing pancreatic beta 

cells and is fatal unless treated with a strict regime of exogenous insulin administration. Type II 

diabetes, conversely, is characterised by an inability to respond to endogenously produced insulin, 

termed insulin resistance, and is considered to be a metabolic disorder rather than an 

autoimmune disease. Like type I diabetes, type II is characterised by increased blood glucose, 

however patients usually do not lose the ability to produce insulin. Therefore, the first line of 

treatment for type II diabetes is lifestyle modification as obesity and physical inactivity strongly 

correlate to increased prevalence of the disease (reviewed in (Campbell, 2009)). Following this a 

regimen of oral anti-diabetes drugs, anti-hypertensive medications and anti-dyslipidemic agents 

can be prescribed.  Type II diabetes is by far the more common of the two variants, accounting for 

more than 90% of cases, and is increasing in incidence to epidemic levels (Zimmet et al., 2001). 

Despite being preventable and treatable type II diabetes still imposes a huge burden on health 

systems world-wide. Therefore a better understanding of its pathogenesis and the subsequent co-

morbidities is necessary to reduce its prevalence. 

1.4.1.2 The diabetic milieu and insulin resistance 

There are a number of factors that can trigger the development of type II diabetes. For example  

lifestyle; including diet, weight and physical activity; genetics, pre-existing medical conditions and 

even certain medications can contribute to the constant low-grade pro-inflammatory 

microenvironment known as  the diabetic milieu (figure 1.11).  

Lifestyle is perhaps the most important aetiological factor contributing to increased risk of 

diabetes, particularly in terms of the recent epidemic (reviewed in (Mozaffarian et al., 2009)). 

Increased intake of food containing saturated fatty acids can lead to increased levels of circulating 

LDLs, which, combined with a sedentary lifestyle, can lead to obesity and prolonged dislipidemia, 

both of which strongly correlate to insulin resistance (Haffner and Miettinen, 1997). Insulin 

resistance is a condition whereby tissues that would usually respond to insulin, such as muscle, 
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liver and fat, are no longer able to. In a healthy individual increased blood glucose triggers insulin 

production in turn triggering uptake of blood glucose and circulating fatty acids and their 

conversion to glycogen and triglycerides, respectively. Insulin resistance therefore results in 

increased blood glucose and levels of circulating fatty acids. 

Both increased blood glucose and circulating fatty acids trigger pro-inflammatory events 

associated with the diabetic milieu (figure 1.11). For example, even transient hyperglycemia has 

been shown to trigger a lasting up-regulation of NF-κB in aortic endothelial cells in vitro (El-Osta et 

al., 2008). Similarly, NF-κB expression was induced in adipocytes and fibroblast cells following 

exposure to saturated fatty acids, whilst treatment with unsaturated fatty acids decreased NF-κB 

(Yeop et al., 2010). This increase in pro-inflammatory gene expression leads to macrophage 

activation and expression of certain cytokines and chemokines. It has been shown, for example, 

that high glucose significantly increased the levels of MCP-1, TNF-α, IL-1β and β2 integrins 

expressed by a monocytic cell line (Shanmugam et al., 2003). Interestingly secretion of pro-

inflammatory nitric oxide was also significantly increased in macrophages from the type II diabetic 

mouse model, db/db, compared to its non-diabetic heterozygous counterpart, db/+, suggesting a 

deregulation of pro-inflammatory events in the diabetic phenotype (Zykova et al., 2000).  

It is clear that monocytes and macrophages respond to increased levels of pro-inflammatory 

cytokines by proliferating and migrating towards the source in excess. It is the deregulation of 

these otherwise normal macrophage functions, attributable to their exposure to the diabetic 

milieu, which contributes to the pathology of several secondary complications of type II diabetes. 

1.4.2 Macrophage expression of metalloproteinases in type II diabetes  

Macrophages play an important role in the resolution of inflammation. It is to be expected, 

therefore, that the chronic inflammation associated with the diabetic milieu should further trigger 

aberrant macrophage activation and migration, contributing to co-morbidities, such as impaired 

wound healing and atherosclerosis (figure 1.11). Metalloproteinases expressed by macrophages 

play an important role in cell migration (see Chapter 1, 1.2.5) and degradation of ECM, both of 

which are key features of wound healing and atherosclerosis. 
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Figure 1.11 The diabetic milieu and secondary complications of type II diabetes. Poor diet and a 

sedentary lifestyle lead to prolonged obesity and dislipidemia, which can trigger insulin 

resistance. Insulin resistance is characterised by hyperglycaemia and an increase in circulating 

fatty acids converted from glucose that is unable to be stored. This stimulates enhanced 

expression of chemoattractants, transcription factors and adhesion molecules that activate 

macrophages. Macrophage accumulation contributes to chronic inflammation due to their 

expression of pro-inflammatory factors such as TNF-α. Risk of atherosclerotic plaque 

development is the result of macrophage foam cell formation. The proteases secreted by 

macrophages degrade matrix proteins leading to plaque rupture and impaired wound healing. 

Information for this diagram taken from (Haffner and Miettinen, 1997; Wall et al., 2002) 
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1.4.2.1 Impaired wound healing and metalloproteinases 

Impaired wound healing is one of the most common secondary complications attributable to type 

II diabetes and typically manifests as ulcerations seen frequently on the feet and the legs of 

diabetic patients. ‘Diabetic foot’, as it is more commonly known, first develops as a result of 

another complication of type II diabetes; peripheral neuropathy. Neuropathies result from damage 

to the microvasculature supplying blood to the nerves and lead to loss of peripheral sensation, i.e., 

in the hands and feet. Loss of sensation means that small wounds can often go unnoticed, 

especially in the feet, and can rapidly form chronic ulcers.  

Evidence that deregulation of macrophage number is responsible for the delayed healing of 

chronic wounds has been shown by rescuing wound healing using mouse models of type II 

diabetes; the naturally occurring leptin receptor-deficient db/db mouse and the leptin-deficient 

ob/ob mouse. Leptin (encoded by the ob gene) is a hormone that acts on the hypothalamus to 

regulate satiety. Loss of Leptin or its receptor (obr) results in uncontrolled food intake, thus 

inducing a type II diabetic phenotype (Chen et al., 1996) including the propensity for delayed 

wound healing. More recently studies have revealed leptin to have a direct effect on immune cell 

recruitment in both mice and humans (Goren et al., 2003) suggesting a mechanism by which 

healing is impaired.  

Left untreated, full thickness dermal wounds in db/db mouse skin take significantly longer to heal 

than those of non-diabetic heterozygous (db/+) control wounds and macrophage infiltration is 

significantly delayed. This can be partially rescued by the application of PDGF, FGF (Greenhalgh et 

al., 1990), and HGF (Bevan et al., 2004), of which PDGF and HGF were found to increase 

macrophage infiltration to the wounds. Interestingly, in ob/ob wounds, repressing pro-

inflammatory TNF-α signalling with the application of an anti-TNF-α monoclonal antibody (mAb) 

was found to decrease inflammation and rescue impaired rate of wound re-epithelialisation 

(Goren et al., 2007). This suggests a delicate balance must be struck between the need for 

macrophages during wound healing and their expression of inflammatory cytokines in the chronic 

ulcer. 

There is a wealth of data supporting the need for tight regulation of metalloproteinase expression 

in healing wounds. Differential expression of the gelatinases, MMP-2 and -9, for example, has 

been observed in both mouse and human chronic diabetic wounds (Wall et al., 2002). A putative 

role for MMP-14 in monocyte migration has also been demonstrated, with the use of an anti-

MMP-14 mAb. The inhibition of MMP-14 activity represses monocyte migration on a fibronectin 
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matrix and through an endothelial monolayer (Matias-Roman et al., 2005). Enhanced expression 

of MMP-14 has been found in isolated human dermal fibroblasts as a result of increased TNF-α 

and MMP-2 activation (Han et al., 2001). This suggests a mechanism by which prolonged TNF-α 

expression contributes to MMP-driven deregulation of macrophage migration. 

There is also evidence of ADAMTS function in wound healing. For example, ADAMTS-1 is expressed 

by macrophages at relatively low levels in non-diabetic wounded tissue and contributes to 

enhanced migration of keratinocytes and endothelial cells (Krampert et al., 2005). Krampert et al 

also show however that increased levels of ADAMTS-1, as seen in diabetic wounded tissue, 

actually represses migration by inhibiting the action of FGF-2. This again highlights the need for 

balance of factors in chronic wounds and suggests there is much more to learn before we can fully 

appreciate the complex mechanisms controlling wound healing in type II diabetes. 

 

1.4.2.2 Atherosclerosis and metalloproteinases 

The role of macrophages in the pathogenesis of CVD and atherosclerosis is well understood (see 

Chapter 1, 1.1.4). Atherosclerosis is a serious disease, but is clinically silent for the majority of its 

progression. Atherosclerotic plaques only become clinically relevant when they pose an immediate 

risk of blood vessel occlusion or of rupture. Plaque rupture and intimal thickening, which can lead 

to occlusion, are caused in part by the over expression of metalloproteinases in macrophages and 

foam cells that form the majority of the atheroma (Newby, 2005). This is particularly relevant in 

diabetic patients as their plaques are typically more advanced and more prone to rupture (Liang et 

al., 2007).  

The macrophage-derived foam cells that contribute to the lipid laden core of an atherosclerotic 

plaque are known to exhibit increased expression of various MMPs. For example, whilst MMP-2 is 

expressed constitutively in both healthy alveolar macrophages and aortic macrophage foam cells 

extracted from rabbits, only the foam cells expressed MMP-1  and -3 (Galis et al., 1995).  Similarly, 

enhanced expression of MMP-16 has also been reported in the macrophages of advanced 

atherosclerotic plaques in vivo, whilst its expression can be up-regulated by treatment with oxLDL 

and TNF-α in macrophages in vitro (Uzui et al., 2002).  The db/db type II diabetic mouse model is 

also useful for studying metalloproteinase expression in atherosclerosis, when crossed with the 

hypercholesterolemic ApoE-null mouse. Compared to non-diabetic ApoE-null controls, for 

example, these mice develop atheromas more quickly and express enhanced levels of active 
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MMP-9 (Wendt et al., 2006). These studies suggest that MMPs may have potential as biomarkers 

of imminent plaque rupture or as an indication of prognosis in heart disease patients. 

Interestingly, a lack of macrophage MMP expression appears to stabilise plaques rather than 

prevent their formation altogether. For example, research has shown that transplant of MMP-14-

null bone marrow into mice deficient in the LDL receptor can lead to increased accumulation of 

collagen in atherosclerotic plaques and a concurrent decrease in macrophage MMP-1 activity 

(Schneider et al., 2008). Despite there being no effect on the size of the atheroma or its 

macrophage composition, loss of MMP-14 did enhance stability of plaques, thus further 

confirming the importance of macrophage MMP expression for the potential of plaque rupture. 

This corresponds to a recent study into levels of TIMP-3 in atherosclerotic plaques. Expression of 

TIMP-3 was found to be dramatically reduced in macrophage foam cells collected from an in vivo 

model of foam cell accumulation (Johnson et al., 2008). Interestingly, immunohistochemical 

analysis of atheromas from cholesterol-fed rabbits also revealed differential expression of TIMP-3, 

with higher levels associated with the stable cap and lower levels present in the deep, less stable 

layers of the plaque. Johnson et al propose that TIMP-3 expression inversely correlates with that 

of MMP-14 in plaques and highlight the significance of a TIMP-3/MMP-14 balance in the 

progression of atherosclerosis. 

Just as in impaired wound healing, there is also a role for the ADAMTS family in atherosclerotic 

plaque rupture. Expression of ADAMTS4 and 8 co-localised with macrophage-rich areas in 

immunohistochemical analyses of atherosclerotic plaque in mice (Wagsater et al., 2007). Wagsater 

et al also showed that ADAMTS-4 and -8 increase in expression during monocyte to macrophage 

differentiation and in response to TNF-α and IFN-γ stimulation, although it is not yet clear what 

their relevant substrates are in the atherosclerotic plaque.  

These studies confirm the need to better understand macrophage expression of 

metalloproteinases in atherosclerosis, however there must be caution in considering the use of 

metalloproteinase inhibitors to prevent destabilisation of plaques. As well as macrophages, VSMCs 

express metalloproteinases to aid their migration towards atheromas (Newby, 2007). VSMCs 

however are thought to strengthen, rather than destabilise, the plaque, thus contributing another 

layer of complexity to the pathology of type II diabetes. 
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1.5 Summary 

The role of macrophages in inflammation and the immune response is well understood. Their 

function as phagocytes to clear the wound of pathogens and cell debris has long been appreciated 

and more recent studies have elucidated the role of macrophages in expression of important 

cytokines and chemokines. Similarly, the signalling pathways involved in macrophage response to 

infection have been well studied, for example, knowledge of the activation of TLR4 by LPS and the 

subsequent nuclear translocation of NF-κB has triggered a wealth of publications investigating the 

targets of this transcription factor. 

Despite an expanding knowledge-base, there is still a need to better appreciate the role of the 

metalloproteinases in infection and inflammation, particularly in the case of monocyte and 

macrophage migration. Aberrant macrophage migration and expression of metalloproteinases has 

been shown to contribute to a number of secondary complications of type II diabetes, such as 

atherosclerosis and chronic wounds. The growing prevalence of this entirely preventable disease 

only serves to highlight the need to understand its pathogenesis.  

Due to the number of different metalloproteinase genes, their broad expression profile, and their 

numerous functions in varying diseases, it is important to take a systematic approach when 

studying them. By profiling individual metalloproteinases in macrophages it is possible to narrow 

down the search for relevant genes that may serve as potential biomarkers or even drug targets.  
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1.6 Aims of thesis 

In this thesis I aim to explore the expression of the metalloproteinases in murine bone marrow-

derived macrophages; including all the MMPs and TIMPs, and some key ADAMs and ADAMTSs. In 

doing this I aim to produce a potential protease signature for these macrophages, both at basal 

levels and in response to pro-inflammatory LPS stimulation. I also aim to perform miRNA 

microarray analysis of bone marrow-derived macrophages, again both at basal levels and following 

stimulation. 

 

Following on from the proteinase and miRNA profile analysis I aim to investigate the migratory 

phenotype of bone marrow-derived macrophages on different ECM components, both with and 

without LPS stimulation. I will examine the possible functional role of any differentially regulated 

metalloproteinases or miRNAs in migration, as identified by the profile analysis. 

 

As macrophages are key players in the various secondary complications of type II diabetes, I aim to 

investigate the expression of metalloproteinases in tissues from the type II diabetic mouse (db/db) 

and its non-diabetic counterpart (db/+). Specifically, I will look at the expression of any proteinases 

highlighted in the original profile analysis in db/db bone marrow-derived macrophages and during 

a model of impaired wound healing that is well established in our laboratory.  I also plan to 

investigate the migratory phenotype of bone marrow-derived macrophages from the db/db 

mouse in response to chemoattractant stimuli in an attempt to reveal any inherent defects in 

diabetic macrophage motility.  
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Chapter 2: Materials and Methods 
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2.1 Materials 

Unless otherwise stated all chemical reagents were purchased from Sigma-Aldrich Inc., all tissue 

culture reagents from Gibco Invitrogen Corportation and all tissue culture plastics from Nunc 

Thermo Fisher Scientific. 

 

2.2 Cell Culture 

The RAW264.7 macrophage cell line (TIB-71 ATCC) was grown in Dublecco’s Modified Eagle 

Medium (DMEM) high glucose liquid medium, containing 100 units/ml Penicillin/Streptomycin 

antibiotic, 5 mM L-Glutamine, supplemented with 10% (v/v) Fetal Calf Serum (FCS; Biosera). Cells 

were incubated at 37°C, 5% CO2 and split 1:3 roughly every three days, using an 18mm blade Cell 

Scraper (BD Falcon) to remove adherent cells. Before experiments were set up RAW264.7 were 

centrifuged at 1000 r.c.f for 5 minutes and re-suspended at the density stated. 

2.2.1 Bone Marrow-derived Macrophage Model System 

This protocol and much kind advice was provided by Dr. Parag Bhavsar and Prof. Anne Ridley, 

King’s College, London 

C57Bl/6 mice, bred in the Disease Modelling Unit, UEA, were killed by CO2 suffocation under 

schedule 1 of the 1986 Animals Scientific Procedures Act and Bone Marrow-derived Macrophages 

(BMM) were isolated from the femurs and tibias of the mice as previously described (Walker et al., 

1985). Briefly, bone marrow was flushed from the bone cavity with a 21g needle and syringe 

containing macrophage medium consisting of Roswell Park Memorial Institute (RPMI) 1640 liquid 

medium containing 100 units/ml Penicillin/Streptomycin antibiotic, 5 mM L-Glutamine, 1% (v/v) 

sodium pyruvate, 0.5% (v/v) nonessential amino acids,  24 µM tissue culture grade β-

mercaptoethanol, supplemented with 10% (v/v) FCS and 10% (v/v) L929-cell-conditioned medium 

(LCM) as a source of Colony Stimulating Factor-1 (CSF-1). Cell number in bone marrow flush was 

counted (see Appendix, table 8.1) and 10 x 106 cells were plated onto 100 mm diameter 

Bacteriological Petri Dishes (BD Falcon) in 10ml macrophage medium. After three days of 

incubation at 37°C, 5% CO2, the non-adherent population was aspirated and re-plated at the same 

density, with fresh macrophage medium. The adherent population was discarded. After a further 

five days culture non-adherent cells were aspirated and discarded, whilst remaining adherent 

BMMs were removed by scraping. Before experiments were performed BMM were centrifuged at 

1000 r.c.f for 5 minutes and re-suspended at the density stated. 
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The L929 fibroblast cell line (a gift from Anne Ridley) was grown in DMEM high glucose liquid 

medium, containing 100 units/ml Penicillin/Streptomycin antibiotic, 5 mM L-Glutamine, 1% (v/v) 

Sodium Pyruvate, supplemented with 10% (v/v) FCS. Initially cells were grown in non-vented 

closed-system 75 cm2 tissue culture plastic flasks (TPP) at 37°C, 5% CO2 with the cap open. When 

cells reached confluencey flask caps were closed to allow them to condition the medium with CSF-

1 in a closed system. After 2 weeks the conditioned medium was harvested and filtered using 

0.2µm pore Mini Filters (Vivascience AG), aliquoted into volumes of 5ml and stored at 4°C for no 

longer than 3 months. For continued culture cells were split 1:5, roughly every three days with the 

cap open. Adherent cells were removed using 2ml 0.5% (v/v) Trypsin/EDTA per 75 cm2 flask. 

 

2.3 Trypan Blue Exclusion Assay of Cell Viability 

Macrophage cell suspension was diluted 1:1 with Trypan Blue, a vital dye solution. Dead cells with 

damaged membranes take up the dye, appearing blue when viewed under a microscope, whilst 

live cells with intact membranes remain unstained. The resulting cell suspension was loaded onto 

a haemocytometer and the number of live (unstained) versus dead (stained) cells were counted. 

The percentage viability was calculated for all macrophage treatments. 

 

2.4 Macrophage Treatments 

Unless stated otherwise, all experiments were carried out on RAW264.7 or BMMs in the relevant 

tissue culture medium described above in the presence of 0.2% FCS. 

2.4.1 LPS (a TLR4 agonist)  

A 1 mg/ml stock solution of Lipopolysaccharide purified from E. coli (LPS) were diluted in the 

appropriate medium to concentrations of either 2, 20 and or 200 ng/ml as indicated and added to 

an equal volume of macrophage cell suspension resulting in final LPS concentrations of 1, 10 or 

100 ng/ml, respectively. Macrophages were seeded into 24 or 48 well plates at densities of 0.5 x 

106 and 0.25 x 106 cells per well, respectively. Cells remained exposed to LPS for the duration of 

the experiment stated, before total RNA purification or protein extraction. 

2.4.2 Recombinant mouse TNFα (a pro-inflammatory cytokine)  

Lyophilised recombinant mouse TNF alpha (rmTNFα) was reconstituted in sterile dH2O to a 

concentration of 1 µg/ml, then stored at -20°C. This stock solution was further diluted in the 

appropriate medium containing 10% (v/v) FCS as a carrier protein to concentrations of 2, 20 and 
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200 ng/ml as indicated and added to an equal volume of macrophage cell suspension resulting in 

final rmTNFα concentrations of 1, 10 and 100 ng/ml. Macrophages were seeded into 24 or 48 well 

plates at densities of 0.5 x 106 and 0.25 x 106 cells per well, respectively. Cells remained exposed to 

rmTNFα for the duration of the experiment stated, before total RNA purification or protein 

extraction. 

2.4.3 BMS-345541 and BAY 11-7082 (IκB kinase inhibitors)  

Solid BMS-345541 was dissolved in DMSO to a concentration of 1 mg/ml, then stored at -20°C. 

This stock solution was further diluted in the appropriate medium to concentrations of 10, 20 and 

30 µg/ml as indicated and added to an equal volume of macrophage cell suspension resulting in 

final BMS-345541 concentrations of 5, 10 and 15 µg/ml. Solid BAY 11-7082 was dissolved in DMSO 

to a concentration of 10 mg/ml, then stored at -20°C.  This stock solution was further diluted in 

the appropriate medium to concentrations of 0.4, 4 and 40 µg/ml as indicated and added to an 

equal volume of macrophage cell suspension resulting in final BAY 11-7082 concentrations of 0.2, 

2 and 20 µg/ml. Macrophages were seeded into 24 or 48 well plates at densities of 0.5 x 106 and 

0.25 x 106 cells per well, respectively, and exposed to BMS-345541 or BAY 11-7082 for 1 hour prior 

to LPS treatment. Following this, all BMS-345541 and BAY 11-7082 was removed from cells and 

LPS was added as above. 

2.4.4 Actinomycin D (inhibitor of transcription)  

A 1 mg/ml stock solution of Actinomycin D was diluted in the appropriate medium to a 

concentration of 10 µg/ml and added to an equal volume of macrophage cell suspension resulting 

in a final Actinomycin D concentration of 5 µg/ml. Macrophages were seeded into 24 or 48 well 

plates at densities of 0.5 x 106 and 0.25 x 106 cells per well, respectively, with Actinomycin D for 45 

minutes. Following this, all Actinomycin D was removed from cells and LPS was added as above. 

2.4.5 D-Glucose and D-Mannitol  

A 450 mg/ml stock solution of D-Glucose was diluted in the appropriate medium to give working 

concentrations of 200 mg/ml (11 mM – equivalent to wild type blood glucose)and 720 mg/ml (40 

mM – equivalent to blood glucose levels found in the diabetic mouse). A 180 mg/ml stock solution 

of D-Mannitol was diluted in the appropriated medium to give a single working concentration of 

720 mg/ml (40 mM – to mimic maximum equivalent D-glucose concentration). After three days of 

initial BMM culture the non-adherent macrophage population was aspirated and 10 x 106 of these 

cells were plated onto 100 mm diameter Bacteriological Petri Dishes in 10ml macrophage medium 
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containing D-glucose. Differentiation of BMM continued as described above before cells were 

prepared for immunocytochemistry. 

2.4.6 Recombinant Human MMP-10  

The concentration of a stock solution of recombinant human MMP-10 (rhMMP-10; a kind gift from 

A.D. Rowan (Barksby et al., 2006)) was determined to be 360 ng/ml with the Human MMP-10 

Quantikine ELISA kit (R&D systems). Stock rhMMP-10 was diluted in the appropriate medium to 

give a working concentration of 2.8 ng/ml. Macrophages were seeded into 24 well plates at a 

density of 25 x 103 cells per well and were treated with rhMMP-10 6 hours before time-lapse 

microscopy of the cells began. 

2.4.7 siRNA  

5 nmol lyophilised siGENOME SMARTpool siRNA (Dharmacon; see Table 2.1) targeting mouse 

MMP-10 was dissolved in 250 µl siRNA Suspension Buffer (Qiagen) to a concentration of 20 µM. 

Any aggregates that were formed during lyophilisation were disrupted by heating for 1 minute at 

90˚C, followed by 60 minutes incubation at 37C˚.  siGENOME SMARTpool siRNA and AllStars 

Negative Control (Qiagen) scrambled siRNA were then stored at -20˚C. siRNAs were diluted in 100 

µl of the appropriate medium (serum free) to a working concentration of 15 nM and 1.5 µl of 

HiPerfect Transfection Reagent (Qiagen) was added. Samples were incubated for 5 minutes to 

allow transfection complexes to form.  Macrophages were seeded at a density of 15 x 103 cells per 

well into 96 well plates or 25 x 103 cells per well into fibronectin coated 24 well plates 24 hours 

prior to transfection. siRNA and HiPerfect Transfection Reagent were added ‘drop-wise’ to the 

cells and remained on the cells for 24 hours before total RNA extraction and protein extraction, or 

before time-lapse microscopy began. 

 Sequence 5’ – 3’  

siGENOME SMARTpool siRNA ‘Mouse-MMP-

10’ 

GGGAAGUCCUAUUCUUUAA 

 GAAUUGAGCCACAAGUUGA 

 GAGAUGUUCACUUCGAUGA 

 CCUCAGGGACCAACUUAUU 

AllStars Negative Control ‘Scrambled siRNA’ Alexa488 labelled - sequence not provided 

Table 2.1 siRNA sequences as supplied by Dharmacon. 



54 
 

2.4.8 LNA modified Oligonucliotides: Anti-miRs  

5 nmol miRCURY locked nucleic acid (LNA) Knockdown oligonucleotide (Exiqon; see Table 2.2) 

targeting mouse miR-155 and a 5 nmol Scramble-miR  LNA oligonucleotide (Exiqon) in a 25 nM 

suspension were diluted in 100 µl of appropriate medium (serum free) to a working concentration 

of 50 nM. 1.5 µl of HiPerfect Transfection Reagent was added and samples were incubated for 5 

minutes to allow transfection complexes to form.  Macrophages were seeded at a density of 25 x 

103 cells per well into fibronectin coated 24 well plates 24 hours prior to transfection. Transfection 

complexes were added ‘drop-wise’ to the cells and remained on the cells for at least 24 hours 

before the start of time-lapse microscopy began. 1 hour after transfection, stock solutions of LPS 

were diluted to a concentration of 1 µg/ml in the appropriate medium and further diluted to a 

working concentration of 10 ng/ml in the wells containing the miRCURY LNA transfected cells.  

 Sequence 5’ – 3’  

miRCURY LNA Knockdown ‘mmu-miR-155’ /56-FAM/ACCCCTATCACAATTAGCATTAA 

miRCURY LNA Knockdown ‘Scramble-miR’ GTGTAACACGTCTATACGCCCA 

Table 2.2 LNA anti-miR sequences as supplied by Exiqon. 

 

2.5 Total RNA purification 

Total RNA was purified from macrophage cell lysates using the RNeasy Minikit (Qiagen) according 

to the manufacturer’s instructions. Briefly, culture medium was removed from adherent 

macrophages and cells were lysed in a highly denaturing guanidine thiocyanate buffer with β-

mercaptoethanol. Lysate was further homogenized by passing through a 21 g needle and syringe. 

Later, β-mercaptoethanol and the homogenization step were omitted at the manufactures 

instructions and were found to have no adverse effect on RNA yield. 70% (v/v) ethanol was added 

to the homogenate to promote RNA binding to the silica-gel based membrane of the RNeasy mini 

spin column. Following this the membrane was washed and treated with DNase to degrade any 

DNA contaminants. To remove cell contaminants and further bind RNA to the membrane, a series 

of washes with high salt buffers was performed. After the membrane was dried, purified RNA was 

eluted in RNase-free water for storage at -20°C. All binding, washing and elution steps were 

performed at 15,000 r.c.f in a microcentrifuge at room temperature. RNA yield was measured 

using the Nanodrop ND-100 spectrophotometer (Nanodrop technologies) at 260 and 280 nm. A 

260/280 nm ratio of 1.8 – 2.0 was considered acceptable purity. The normal ranges of mRNA yield 

for each macrophage cell line are shown in Table 2.3. 
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Cell Type Normal Range of mRNA yield Cell Number 

RAW264.7 150 – 250 ng/µl 0.5 x 106  

BMM 50 - 150 ng/µl 0.25 x 106 

Table 2.3 Range of mRNA yield from RAW264.7 cell line and primary BMMs after total RNA 

purification. 

 

2.6 Reverse Transcription 

250 ng - 1 µg of purified mRNA in a 10 µl volume was reverse transcribed to complementary DNA 

(cDNA) using Random Primers (Promega), dNTP Mix (Bioline) and Superscript II ® Reverse 

Transcriptase in a 20 µl reaction according to the manufacturer’s instructions. Briefly, 250 ng/ml 

random primers and 100 mM dNTP was added to each sample and heated at 65˚C for 5 minutes to 

denature the mRNA secondary structure. Samples were then immediately transferred to ice to 

prevent secondary structures reforming and to allow random primers to anneal to mRNA. 

Following this 250 mM 5 x first strand buffer, 0.1 M DDT, 200 U/µl reverse transcriptase and 

analytical grade H2O, to bring the volume to 20 µl, were added to each sample and heated at 42˚C 

for 50 minutes to allow first strand cDNA synthesis, followed by 70˚C for 15 minutes to inactivate 

the reaction.  Later, Superscript II ® Reverse Transcriptase was replaced with 200 U/µl Moloney 

Murine Leukemia Virus Reverse Transcriptase (M-MLV RT; Promega) with no adverse effect on 

reverse transcription efficiency. 

2.7 Quantitative Real Time – PCR 

Quantitative real-time PCR (qRT-PCR) reactions were performed using the 7500 Fast RT-PCR 

System (Applied Biosystems) according to the manufacturer’s instructions. Each reaction 

contained the equivalent of 5 - 10 ng reverse transcribed mRNA (1 ng mRNA for the 18S control 

analyses), 8.33 µl QuantiTect probe PCR Master Mix (Qiagen), 100nM each of the forward and 

reverse primer (see Appendix, table 8.2) and 200nM of probe in a volume of 25 µl per reaction. 

Each reaction was performed for 2 minutes at 50°C and 10 minutes at 95°C to activate the Taq 

DNA polymerase component of the master mix, followed by 40 cycles, each consisting of 15 

seconds melting at 95°C, and 1 minute annealing and extending at 60°C. The ribosomal gene 18S 

was used as an endogenous control to normalize differences in total reverse transcribed mRNA in 

each sample. Standard curves for each PCR reaction were prepared covering a range equivalent to 

20 – 0.625ng of mRNA (4 to 0.125ng for 18S analyses) and relative levels of target cDNA within 
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each sample were determined, normalized to the 18S cDNA for that sample. Any samples with an 

18S value varying more than 1 CTs from the mean were omitted (see Figure 2.1). Data is therefore 

represented as the level of target mRNA relative to the level of 18S mRNA in that sample, or 

converted to fold change in expression relative to 18S.  Statistical analysis of gene expression 

changes between two sets of data was performed using the two-tailed Student’s T-test on sample 

groups no smaller than n = 3. 
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Figure 2.1 Example 18S CT values and variance from the mean. The variance from the mean of all 

samples was calculated and plotted to indicate which samples, if any, vary more than 1 CT from 

the mean value. In this case, sample 3; Type 1 collagen (indicated by *) varies almost 1.5 CT from 

the mean. 
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2.8 Trichloroacetic Acid Precipitation of Proteins from Cell  Culture Supernatant 

500 µl of cold 10% (v/v) trichloroacetic acid (TCA) was added to 1 ml of cell supernatant, incubated 

on ice for 1 hour and then centrifuged for 15 minutes, 13,000 r.c.f, at 4˚C to collect protein pellet. 

Following this, protein pellets were washed with cold acetone to remove excess TCA, vortexed and 

then collected again by further centrifugation. Acetone was removed and pellets were air-dried 

before resuspension in 1x SDS-PAGE Reducing Final Sample Buffer (0.625 M Tris pH 6.8, 2% (v/v) 

SDS, 2% (v/v) of 10% Bromophenyl blue (dissolved in EtOH), 10% (v/v) Glycerol, 15% β-

mercaptoethanol, 6 M urea). 

 

2.9 Extraction of Protein from Tissue Samples 

Snap frozen tissue sections were fully immersed in cold extraction buffer (10 mM Tris-HCL pH7.6, 

10 mM NaCl, 3 mM MgCl2, 1% (v/v) NP-40) and finely cut up with scissors. Tissue was then fully 

disrupted with ball barings using the TissueLyser II (Qiagen). Samples were incubated on ice for 1 

hour, with gentle vortexing every 15 minutes. Finally, samples were centrifuged for 1.5 minutes at 

10,000 r.c.f and supernatants were collected. Protein concentration was determined by the 

Bicinchoninic acid (BCA) Protein Assay Kit (Pierce) according to the manufacturer’s instructions. 

Briefly, samples and a series of Bovine Serum Albumin (BSA) standards were combined with 

reagents from the BCA assay kit, creating an alkaline environment for the chelation of copper with 

protein reducing Cu2+ to Cu1+. BCA reacts with the Cu1+ to produce a water soluble purple 

precipitate, the absorbance of which was read immediately with an MRX Microplate Reader 

(Dynatech Laboratories) at 550 nm primary wavelength. Protein extracts were then diluted to 

allow for equal loading onto polyacrylamide gels. 

 

2.10 Western Blotting 

TCA precipitated or RSB extracted protein samples were diluted 1:5 with 4x reducing sample 

buffer (0.625 M Tris pH 6.8, 2% [v/v] SDS, 2% [v/v] of 10% Bromophenyl blue [dissolved in EtOH], 

10% *v/v+ Glycerol, 20% *v/v+ β-mercaptoethanol) and denatured by boiling for 5 minutes. 

Samples, along with pre-stained Precision Plus Protein All Blue Standards (BIO-RAD), were loaded 

into a 6% SDS-polyacrylamide stacking gel (6% [v/v] acrylamide/bis [BIO-RAD], 25% [v/v] 0.5M Tris 

buffer pH 6.8)  and resolved in a 10% SDS-polyacrylamide gel (10% [v/v] acrylamide/bis [BIO-RAD], 

25% [v/v] 1.5 M Tris buffer pH 8.8) in the presence of 1 x running buffer (35 mM Tris, 274 mM 

Glycine, 5 mM SDS). Proteins were transferred onto PVDF membrane (BIO-RAD) by semi-dry 
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blotting with semi-dry transfer buffer (25 mM Tris, 192 mM Glycine, 20% (v/v) MeOH, 0.13 mM 

SDS). Membranes were blocked in a 2x non-fat dry milk solution (25 mM Tris pH 7.4, 150 mM 

NaCl, 0.05% (v/v) Tween-20, 5% (v/v) non-fat dry milk) and incubated with primary antibody 

diluted in 1x non-fat dry milk solution.  Membranes were washed in a 1x western wash buffer (25 

mM Tris pH 7.4, 150 mM NaCl, 0.05% (v/v) Tween-20) for 5 x 5 minutes and blocked again before 

incubation with a horseradish peroxidise (HRP) conjugated secondary antibody, also diluted in 1x 

non-fat dry milk solution. Membranes were washed in 1 x western wash buffer for a further 5 x 5 

minutes before 5 minutes incubation with Amersham ECL Western Blotting Detection Reagents 

(GE Healthcare). Membranes were then exposed to x-ray film and developed in an autoradiograph 

film processor (Xograph Healthcare Ltd.) to qualitatively measure the HRP catalysed 

chemiluminescent signal. 

 

2.11 ELISA 

The concentration of mTNFα in cell culture supernatants and cell lysates was determined with the 

solid phase sandwich Murine TNFα ELISA Kit (Diaclone Research) according to  the manufacturer’s 

instructions. Briefly, a serial dilution of a mTNFα standard was made providing a range of 

concentrations from 1000 pg/ml to 31.25 pg/ml. 200 µl of standards and samples were pipetted 

into microtitre strip wells coated with a monoclonal antibody against mTNFα and incubated for 2 

hours at room temperature. Wells were washed three times with the washing buffer provided 

before addition of 50 µl biotinylated polyclonal anti-mTNFα antibody to all wells. A further 1 hour 

incubation was followed by washing as before and the addition of 100 µl streptavidin conjugated 

HRP. Wells were incubated for 30 minutes to allow biotin-streptavidin binding and washed again 

to remove unbound streptavidin-HRP before addition of 100 µl chromogen tetramethylbenzidine 

(TMB; containing H2O2) and a further 30 minutes incubation at room temperature in the dark. In 

the presence of H2O2, HRP catalyses the production of a water soluble blue precipitate from TMB. 

To stop the HRP catalysed reaction, 100 µl H2SO4 stop reagent was added to each well to acidify 

and denature HRP, producing a yellow colour change.  Absorbance was read immediately with an 

MRX Microplate Reader at 450 nm primary wavelength.  

 

2.12 Cell Migration Assay and Time-lapse Microscopy 

24 well plates were coated with Type 1 Rat Tail Collagen (BD Biosciences), Human Plasma 

Fibrinogen (Calbiochem) or Bovine Plasma Fibronectin (Calbiochem) at the concentrations given 
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(see Table 2.4) for at least one hour before cell seeding and washed with sterile 1x PBS, or left 

uncoated. 2.5 x 105 cells were seeded into 24 well plates then incubated at 37°C, 5% CO2 and 

allowed to adhere. Treatment agents were administered as described above before cells were 

transferred to a motorised stage within a controlled environment chamber at 37˚C, 5% CO2.  

For gas equilibration and to prevent formation of bubbles µ-Slide Chemotaxis chambers (Ibidi 

GmbH; Figure 2.2) and cell culture media were kept in 5% CO2 overnight before experiments were 

performed. 6 x 103 cells in 6 µl culture medium were applied to the observation channel and 

allowed to adhere before 40 µl culture medium was added to both reservoirs. 30 minutes before 

time-lapse microscopy began, 18 µl of either recombinant mouse CSF-1 (rmCSF-1; R&D Systems), 

recombinant mouse Monocyte Chemoattractant Protein – 1 (rmMCP-1; R&D Systems) or 1x PBS 

control was applied to one reservoir to create a gradient of chemoattractant across the 

observation channel (see Table 2.4).  

Cells were imaged every 10 minutes for 17 hours (unless stated otherwise) with a monochrome 

Axioplan CCD camera (Zeiss) attached to a widefield, Axiovert 200M inverted light microscope 

(Zeiss) using Axiovision software. Cell migration velocity and distance (accumulated and Euclidean; 

figure 2.3) was tracked and analysed using the ImageJ (NIH) plug-ins ‘Manual Tracking’ (F. 

Cordelières, Institute Curie, France) and ‘Chemotaxis and Migration Tool’ (Trapp and Horn, Ibidi 

GmbH). 

 

Chemoattractant Concentration Applied Concentration at Cells 

rmCSF-1 600 ng/ml 198 ng/ml (taken as 200 

ng/ml) 

rmMCP-1 600 ng/ml 198 ng/ml (taken as 200 

ng/ml) 

Table 2.4 Concentration of chemoattractant applied to Ibidi µ-Slide chemotaxis chambers and 

the concentration at which the gradient reaches the cells. 
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2.13 2D and 3D Cell Culture 

2.13.1 2D Cell Culture  

24 or 48 well plates were coated with Type 1 Rat Tail Collagen (in 0.02 M acetic acid), Human 

Plasma Fibrinogen (in PBS) or Bovine Plasma Fibronectin (in PBS) at the concentration stated (see 

Table 2.4) and incubated for 1 hour at room temperature. Following this, wells were washed twice 

with 1x sterile PBS. Cells were resuspended in cell culture medium + 0.2% (v/v) FCS at 1 x 106 

cells/ml and plated out onto adsorbed matrix components.  

2.13.2 3D Type 1 Collagen   

Working on ice, 300 µl collagen solutions were prepared from a 3.66 mg/ml stock solution of type 

1 collagen, 10% (v/v) 10 x sterile PBS, 1M  NaOH (equal to volume of collagen) and sterile 

analytical grade water (up to desired final volume). The 10 x sterile PBS and sterile analytical grade 

water were combined with 1M NaOH before the type 1 collagen was added, diluting it to the 

concentration stated (see Table 2.4). Immediately after the type 1 collagen was added, 6 x 103 cells 

were resuspended in the solution which was then plated out into 48 well plates and incubated at 

37˚C, 5% CO2 for 30 minutes. Once gels had set, a volume of cell culture medium + 0.2% (v/v) FCS 

equal to the volume of the gel was added. 

2.13.3 3D Plasminogen-depleted Fibrinogen/Fibrin 

Working on ice, 300 µl Human Plasminogen-depleted Fibrinogen (Calbiochem) solutions were 

prepared from a 25 mg/ml stock diluted to the concentration stated (see Table 2.5) with serum-

free cell culture medium. 0.15 NIH units of Bovine Plasma Thrombin was added in a 0.1% (w/v) 

BSA carrier solution and 6 x 103 cells were resuspended in this final solution. Subsequently cells 

were plated out into 48 well plates and incubated at 37˚C, 5% CO2 for 30 minutes. Once gels had 

set, a volume of cell culture medium + 0.2% (v/v) FCS equal to the volume of the gel was added. 

N.B. Bovine FCS was omitted and plasminogen-depleted fibronectin was used for 3D gels to avoid 

the introduction of plasminogen to the solution. Plasmin, the active form of plasminogen, has 

serine protease activity and is able to degrade insoluble fibrin to fibrinogen, thus solubilising the 

3D gel. 

2.13.4 3D Plasma Fibronectin in a Type 1 Collagen gel  

Working on ice, a 3D type 1 collagen gel was prepared as described above. Before 1M NaOH, a 200 

µg/ml stock solution of plasma fibronectin was diluted to the concentration stated (see Table 2.4) 

in the sterile analytical grade water component of the gel.  Cells were resuspended in the solution 

at 2 x 106 cells/ml, plated out into 24 or 48 well plates and incubated at 37˚C, 5% CO2 for 30 
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minutes. Once gels had set, a volume of cell culture medium + 0.2% (v/v) FCS equal to the volume 

of the gel was added. 

 

Matrix Component 2D concentration 3D concentration 

Type 1 Rat Tail Collagen 10 µg/ml 1 mg/ml 

Human Plasma Fibrinogen 10 µg/ml ND 

Human Plasminogen-depleted 

Fibrinogen 

ND 2.5 mg/ml 

Bovine Plasma Fibronectin 10 µg/ml 10 µg/ml (in a Type 1 Collagen 

gel) 

Table 2.5 Concentration of matrix components used to create a 2D coating or 3D gel. 

 

2.14 Full thickness excisional wounding 

Wounding procedures were kindly carried out by Dr. Damon Bevan in the Disease Modelling Unit, 

UEA under project licence no. PPL80/1799, essentially as described in Bevan et al. (2004)(Bevan et 

al., 2004). 

Genetically diabetic (C57BL/KsOlaHsd, db/db) mice and their non-diabetic heterozygote control 

(db/+) were obtained from Harlan UK Limited. All mice were maintained on a standard laboratory 

diet and water ad libitum. Experiments were carried out using animals aged between 7 – 16 weeks 

old and controls were age-matched wherever possible. Mice were anaesthetized by halothane and 

N2O inhalation and all subsequent wounding procedures were carried out on a heated table. The 

dorsal region of the animal was shaved and sterilized using Isopropyl Wipes (Johnson and 

Johnson). Using sterile 0.6 cm punch biopsies (Stiefel Laboratories), two full-thickness excisional 

wounds were created on each dorsolateral flank of the db/db mice, equidistant from the midline. 

As the db/+ mice are considerably smaller than their diabetic counterparts a single wound was 

created on each dorsolateral flank of these animals. Wounds were separated by a margin of at 

least 10 mm. Immediately after wounding, a transparent semi-permeable dressing (Bioclusive, 

Johnson and Johnson) was applied over all wounds and firmly secured using a surgical adhesive 

(Vetbond, 3M). The covering was applied such that the wounds were completely isolated from one 

another. Mice were housed separately after wounding to minimise chance of infection.  
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2.15 Tissue Embedding and Sectioning 

Tissue embedding and sectioning of fresh tissue was largely carried out by, or under the 

supervision of, Dr. Damon Bevan, UEA.  

After the indicated number of days wounded mice were killed by CO2 suffocation according to 

Schedule 1 of the 1986 Animals Scientific Procedures Act. Immediately following this a blood 

glucose test (Accu-Chek, Roche) was performed and mice were weighed to confirm diabetic or 

non-diabetic phenotype (see Table 2.6). Wounded and non-wounded control tissue was excised 

from the mice and either immersed in RNAlater (Ambion) for subsequent RNA extraction; 

embedded in Tissue-Tek Optimum Cutting Temperature (OCT) compound (Sakura) and snap frozen 

in liquid nitrogen; or cultured as tissue explants in 24 well plates containing 1ml DMEM high 

glucose liquid medium, containing 100 units/ml Penicillin/Streptomycin antibiotic, 5 mM L-

Glutamine, supplemented with 10% (v/v) FCS for 24 hours incubated at 37˚C, 5% CO2, treated with 

100 ng/ml LPS +/- 5 µM Monensin Sodium Salt. Subsequently, tissue explants were cut in half, one 

half embedded in OCT and one half immersed in RNAlater as above and stored at -20˚C. Wounds 

embedded in OCT compound were cut into 10 µm sections with the Microm HM560 Cryostar 

cryostat (Thermo Scientific), mounted on 26 x 76 mm Glass Microscope Slides (Surgipath) and 

stored at -20˚C prior to immunohistochemistry and immunofluorescence. 

 

Phenotype Quantity Blood Glucose Range Weight Range 

db/db 12 17.4 - ≥33 mmol/L 32 - 48.5 g 

db/+ 10 2.7 - 6.8 mmol/L 23.6 - 32.7  

Table 2.6 Blood glucose and weight range of Db/Db and Db/+ mice indicates diabetic phenotype 

in Db/Db mice. 

 

2.16 Immunocytochemistry  

For antibody dilutions see Table 2.7. All incubations were carried out at room temperature unless 

otherwise stated.  

2.16.1 Cell Surface F4/80   

F4/80 is a murine macrophage-specific cell surface glycoprotein that is used extensively to 

characterise populations of macrophages (McKnight et al., 1996). 
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2 x 104 cells in a 40 µl drop were plated onto 13mm glass coverslips (Chance Propper Ltd.) in 24 

well plates and allowed to adhere for 1 hour. 500 µl cell culture medium was added with 

treatments as indicated and cells were incubated at 37˚C, 5% CO2 overnight. The following day 

coverslips were removed from the 24 well plate and cells were fixed with a 4% (w/v) 

Paraformaldehyde solution for 5 minutes and washed quickly in 1x PBS.  Non-specific protein 

binding and Fc receptor binding was blocked by incubating the cells for 30 minutes in a 10% (v/v) 

normal goat serum (NGS) solution. Without washing, cells were then incubated with Rat anti-

Mouse F4/80 monoclonal IgG primary antibody diluted in a 1% (v/v) NGS solution for 30 minutes. 

Following this, cells were washed extensively in 1x PBS to remove unbound primary antibody 

before a further 30 minutes incubation with Goat anti-Rat Alexa-Fluor 488 polyclonal IgG 

secondary antibody. Cells were washed extensively as before and then incubated with DAPI for 5 

minutes. Finally cells were washed quickly in 1x PBS and mounted onto microscope slides with 

Hydromount Mounting Medium. 

2.16.2 MMP-10 and MMP-12  

2 x 104 cells in a 40 µl drop were plated onto 13mm glass coverslips in 24 well plates and allowed 

at adhere for 1 hour. 500 µl cell culture medium was added with treatments as indicated and cells 

were incubated at 37˚C, 5% CO2 overnight. The following day cells were treated with 5 µM 

Monensin Sodium Salt to block intracellular protein transport, sequestering secreted proteins 

within the cytoplasm (Hembry et al., 1986). After 3 hours incubation cells were fixed with a 4% 

(w/v) Paraformaldehyde solution for 5 minutes and washed quickly in 1x PBS. Cell membranes 

were permeablised with a 0.1% (v/v) Triton X-100 solution for 5 minutes and washed quickly in 1x 

PBS.  Non-specific protein binding and Fc receptor binding was blocked by incubating the cells for 

30 minutes in a 10% (v/v) NGS solution or 10% (v/v) NDS. Without washing, cells were then 

incubated with either Rabbit anti-Human/Mouse MMP-12 polyclonal primary antibody (BIOMOL) 

or Sheep anti-Mouse D248/6 MMP-10 polyclonal primary antibody (a kind gift from Ros Hembry – 

‘homemade’ (Bord et al., 1998)) diluted in a 1% (v/v) NGS or NDS solution for 30 minutes. 

Following this, cells were washed extensively in 1x PBS to remove unbound primary antibody 

before a further 30 minutes incubation with Goat anti-Rabbit Alexa-Fluor 488 conjugated 

polyclonal IgG secondary antibody (Molecular Probes) or Donkey anti-Sheep Alexa-Fluor 488 

conjugated polyclonal IgG secondary antibody. Cells were washed extensively as before and then 

incubated with DAPI for 5 minutes. Finally cells were washed quickly in 1x PBS and mounted onto 

microscope slides with Hydromount Mounting Medium. 
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2.16.3 Cytoskeletal Components  

2 x 104 cells in 40 µl were plated onto 13mm glass coverslips in 24 well plates and allowed at 

adhere for 1 hour.  500 µl cell culture medium was added with treatments as indicated and cells 

were incubated at 37˚C, 5% CO2 overnight. The following day cells were fixed with ice cold 

Methanol/10% MES (100nM 4-Morpholineethanesulfonic acid sodium salt [MES], 1mM Ethylene-

bis[oxyethylenenitrilo]tetraacetic acid [EGTA], 1mM MgSO4)  solution for 5 minutes at -20˚C and 

washed quickly in 1% (v/v) NGS. Cell membranes were permeablised with a 1% NP40 detergent 

solution for 5 minutes and washed quickly as before.  Non-specific protein binding and Fc receptor 

binding was blocked by incubating the cells for 30 minutes in a 10% (v/v) NGS. Without washing, 

cells were then incubated with Rat anti-Mouse α-Tubulin monoclonal IgG antibody (AbD Serotec), 

Rabbit anti-Mouse Arp2 (a kind gift from Dr. Mette Mogensen, UEA – ‘homemade’), Rabbit anti-

Mouse β-Actin polyclonal IgG antibody (AbCam), Rabbit anti-Mouse Non-Muscle Myosin Heavy 

Chain II-A polyclonal IgG antibody (MHC-IIA; Covance) or combinations thereof diluted in a 1% 

(v/v) NGS for 1 hour. Following this, cells were washed extensively in 1% NGS  to remove unbound 

primary antibody before a further 30 minutes incubation with Goat anti-Rabbit Alexa-Fluor 488 

conjugated polyclonal IgG secondary antibody, Goat anti-Rabbit Alexa-Fluor 568 conjugated 

polyclonal IgG secondary antibody (Molecular Probes) or Goat anti-Rat Alexa-Fluor 633 conjugated 

polyclonal IgG secondary antibody (Molecular Probes). Cells were washed extensively as before 

and then incubated with DAPI for 5 minutes. Finally cells were washed quickly in 1x PBS and 

mounted onto microscope slides with Hydromount Mounting Medium. Double labelling of 

cytoskeletal components was achieved by combining primary antibodies raised in different species 

simultaneously or sequential application of primary antibodies raised in the same species. 

Primary antibodies against α-tubulin, β-actin and Arp2 were a kind gift from Dr Mette Mogensen.  

2.16.4 Immunofluorescence in tissue sections  

10 µm sections of wounded or non-wounded tissue were removed from -20˚C and allowed to 

reach room temperature before sections were outlined with a hydrophobic ImmEdge barrier pen 

(Vector Labs). Tissue was fixed with a 4% (w/v) Paraformaldehyde solution for 10 minutes and 

washed quickly in 1x PBS then permeablised in a 0.2% (v/v) Tween-20 solution for 30 minutes and 

washed quickly again. Non-specific protein binding was blocked by incubating the sections for at 

least 30 minutes in 4% (v/v) BSA, 4% (v/v) Normal Goat Serum (NGS) or Normal Donkey Serum 

(NDS). Without washing, tissue was then incubated with Rat anti-Mouse F4/80 monoclonal IgG 

primary antibody (AbD Serotec), or Sheep anti-Mouse IW13 MMP-10 polyclonal primary antibody 

(a kind gift from Ros Hembry – ‘homemade’ (Bord et al., 1998)) diluted in a 4% (v/v) BSA/4% (v/v) 
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NGS/ 0.2% (v/v) Tween-20 solution overnight at 4˚C. The following day tissue was washed 

extensively in 1x PBS to remove unbound primary antibody before a further 1 hour incubation 

with Goat anti-Rat Alexa-Fluor 488 polyclonal IgG secondary antibody (Molecular Probes) or 

Donkey anti-Sheep Alexa-Fluor 488 conjugated polyclonal IgG secondary antibody (Molecular 

Probes). Cells were washed extensively as before and then incubated with 4′,6-Diamidino-2-

phenylindole dihydrochloride (DAPI) for 5 minutes. Finally tissue was washed quickly in 1x PBS and 

mounted onto 26 x 76 mm Glass Microscopy Slides (Surgipath) with Hydromount Mounting 

Medium (National Diagnostics). 

2.16.5 Immunohistochemistry in tissue sections  

Tissue sections were fixed, permeablised and treated with primary antibody as described above, 

blocking with 4% (v/v) BSA/4% (v/v) Normal Rabbit Serum (NRS; DAKO). The following day tissue 

was washed extensively in 1x PBS to remove unbound primary antibody before a further 1 hour 

incubation with Biotinylated Rabbit anti-Rat polyclonal IgG secondary antibody (DAKO) or 

Biotinylated Rabbit anti-Goat polyclonal IgG secondary antibody (DAKO). Tissue was washed 

extensively as before then treated for 30 minutes with the VECTASTAIN Elite ABC kit (Vector Labs) 

which contains an optimised Avadin/Biotinylated HRP enzyme Complex (ABC) that irreversibly 

binds to the biotinylated secondary antibodies. Following this incubation the sections were 

washed quickly in 1x PBS before the addition of Diaminobenzidine (DAB) and H2O2 as supplied in 

the DAB Peroxidase Substrate Kit (Vector Labs). In the presence of H2O2, HRP converts DAB to an 

insoluble brown precipitate allowing visualisation of the antigen of interest. Optimum incubation 

time with DAB Substrate kit components varied but was no longer than 5 minutes. Tissue was 

observed constantly and then immersed in dH2O to stop the reaction. Tissue was dehydrated with 

sequential immersion in 70% (v/v) EtOH for 30 seconds, 100% (v/v) EtOH for 30 seconds followed 

by a final 5 minute incubation with 100% (v/v) EtOH. Tissue was mounted onto microscope slides 

with DEPEX Mounting Medium (Electron Microscopy Sciences).   

2.16.6 Haematoxylin Counterstain  

Before fixation tissue was counterstained for 30 seconds with Harris’ Haematoxylin (Surgipath) to 

resolve areas rich in nucleic acid, such as the cell nucleus. 
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Antibody Concentration used 

Rat anti-Mouse F4/80 monoclonal primary  1:500 

Sheep anti-Mouse IW13 MMP-10 polyclonal 

primary  

1:1000 

Sheep anti-Mouse D248/6 MMP-10 polyclonal 

primary  

1:3690 

Rabbit anti- Mouse MMP-12 polyclonal 

primary 

1:150 

Rat anti-Mouse α-Tubulin monoclonal primary 1:200 

Rabbit anti-Mouse Arp2 polyclonal primary 1:200 

Rabbit anti-Mouse β-Actin polyclonal primary 1:200 

Rabbit anti-Mouse Non-Muscle Myosin Heavy 

Chain II-A polyclonal primary 

1:500 

Goat anti-Rat Alexa-Fluor 488 polyclonal 

secondary  

1:1000 

Goat anti-Rabbit Alexa-Fluor 488 conjugated 

polyclonal secondary  

1:1000 

Donkey anti-Sheep Alexa-Fluor 488 conjugated 

polyclonal secondary  

1:1000 

Goat anti-Rabbit Alexa-Fluor 568 conjugated 

polyclonal secondary  

1:1000 

Goat anti-Rat Alexa-Fluor 633 conjugated 

polyclonal secondary  

1:1000 

Biotinylated Rabbit anti-Rat polyclonal 

secondary  

1:1000 

Biotinylated Rabbit anti-Goat polyclonal 

secondary  

1:1000 

 

Table 2.7 Concentrations of primary and secondary antibodies used for immunocytochemistry. 
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2.17 Taqman Low Density Array for MicroRNAs 

RAW264.7 cells were grown to confluency in 75 cm2 tissue culture flasks at a density of roughly 10 

x 106 cells, and treated with 100 ng/ml LPS, 10 µg/ml BMS-345541, 4 µg/ml BAY 11-7082 or 

combinations thereof. Cells were incubated at 37˚C, 5% CO2 for 4 hours before cells were removed 

from the flasks with a cell scraper and centrifuged at 1000 r.c.f for 5 minutes. Supernatant was 

discarded and cell pellets were snap frozen in liquid Nitrogen. 

Murine microRNA microarray was outsourced to Aros Applied Technology AS, Denmark. Briefly,  

RNA was extracted from cell pellets and subjected to quality control before 1 ng total RNA was 

reverse transcribed to cDNA using primers specific to the Taqman ® Rodent MicroRNA A + B Cards 

Set v2.0 (Applied Biosystems). Each card contains 364 microRNA assays enabling quantitation of 

518 unique mouse microRNAs and 303 unique rat microRNAs (see Appendix, figure 8.1). Three 

endogenous control assays for each species are included on each array as well as one unrelated 

negative control to aid in data normalization.  

Data was analysed using the 2-ΔΔCT
 algorithm with great help from Dr. Oona Adams, Pfizer UK. 
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Chapter 3: Lipopolysaccharide induces 

differential metalloproteinase 

expression in murine macrophages 
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3.1 Introduction 

 

3.1.1 Metalloproteinase expression in monocytes and macrophages 

The long-held hypothesis that migratory cells focus extracellular matrix (ECM) degrading 

proteinases at the leading edge has led to a wealth of studies revealing the role of the matrix 

metalloproteinases (MMPs) in path clearance (Murphy and Gavrilovic, 1999), including their ability 

to expose cryptic ECM pro-migratory sites (Stringa et al., 2000; Davis et al., 2000). More recently 

an additional role for the MMPs and other proteinases in the cleavage and activation of pro-

inflammatory chemokines has been explored (Dean et al., 2008). When considering the 

macrophage response to infection and inflammation it becomes clear that both modes of MMP 

action are relevant. 

When circulating monocytes are exposed to the relevant pro-inflammatory signals they bind the 

endothelium and extravasate through gaps between neighbouring endothelial cells (Worthylake 

and Burridge, 2001). This process has been shown to be MMP-dependent, for example, studies 

using monocytic and neutrophil cell lines in Transwell© migration assays have revealed that the 

interaction between MMP-9 and leukocyte β2 integrins is essential for the translocation of these 

cells across a β2-ligand coated Transwell© membrane, towards a TNF-α gradient (Stefanidakis et 

al., 2004). Following extravasation, monocytes must transmigrate through the surrounding 

basement membrane in order to differentiate into tissue macrophages and migrate towards areas 

of infection or inflammation (Luster et al., 2005). Again, this process appears to be MMP-

dependent; with the use of siRNA it has been shown that expression of MT1-MMP/MMP-14 is 

essential for the migration of monocytes through endothelial cells in vivo (Sithu et al., 2007).  

3.1.2 LPS/NF-κB induced metalloproteinase expression in monocytes and macrophages 

Macrophage activation in response to the bacterial endotoxin LPS via toll-like receptor (TLR) 4 is 

well-characterised (explained in detail in Chapter 1, 1.1.3). It is perhaps only in the last fifteen 

years that research has begun to elucidate the molecular mechanisms by which LPS is able to 

regulate expression of proteases in macrophages and other blood cells, focusing on the role of the 

transcription factor nuclear factor (NF)-κB. Figure 3.1 shows the canonical pathway of NF-κB 

activation and nuclear translocation triggered by LPS-TLR4 binding on the surface of monocytes 

and macrophages. Despite an early focus on its involvement in the expression of antibodies by B-

cells (Hoffmann and Baltimore, 2006), NF-κB has been shown to play another important role in the 

transcription of MMPs in various other leukocytic cell types. For example, in the pro-monocytic 
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cell line U937 LPS stimulated expression of MMP-1 has been shown to be blocked by inhibition of 

the NF-κB signalling cascade in vitro (Nareika et al., 2005). Similarly, by inhibiting the proteasomal 

degradation of cytosolic IκB in vitro the translocation of NF-κB to the nucleus of LPS stimulated 

human peripheral blood mononuclear cells has been revealed to be crucial in the production of 

MMP-9 (Lu and Wahl, 2005). 

In vivo and ex vivo studies have also revealed a clear relationship between LPS and MMP 

expression in a variety of tissues. For example, MMP-7 and MMP-10 have been shown to be 

induced in the airway epithelium of mice infected with the gram-negative bacterium Pseudomonas 

aeruginosa (Kassim et al., 2007). Analysis of known key gene interaction networks involved in host 

response to infection with P. aeruginosa revealed the involvement of NF-κB in the regulation of 

both MMPs. Human organ-cultured full-thickness skin biopsies, stimulated with the well 

characterised NF-κB stimulus and effector TNF-α, have also been found to express both the ‘pro’ 

and active forms of MMP-2 (Han et al., 2001). Similarly, dermal fibroblasts cultured from these 

tissue explants were shown to express both MMP-2 and MT1-MMP in response to TNF-α, which 

could be blocked by a compound that inhibits the translocation of NF-κB to the nucleus. 
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Figure 3.1 LPS binds TLR4 activating nuclear translocation of the transcription factor NF-κB: The 

canonical/MyD88 dependent pathway. LPS binds TLR4, triggering dimerisation. The intracellular 

domain of the TLR is now able to associate with the adaptor protein MyD88, either directly via TIR 

(a cytoplasmic signaling domain), or indirectly via TIRAP. This interaction allows for the formation 

of the IRAK1-IRAK2-TRAF6 complex.  Subsequent ubiquitination of TRAF6 allows for binding with 

the TAB2-TAB3-TAK1 trimer. This activates TAK1, which is now able to phosphorylate IKKβ of the 

IKK complex – the core convergence of most NF-κB activation pathways. Phosphorylated IKKβ in 

turn phosphorylates the inhibitory IκB protein, targeting it for ubiquitination and degradation by 

the proteasome. NF-κB is now liberated and is free to translocate to the nucleus where it is able to 

bind to DNA and activate the transcription of relevant genes. MyD88 - Myeloid differentiation 

primary response gene 88, TIR - Toll - IL-1 receptor, TIRAP – Toll - IL-1 receptor domain containing 

adaptor protein, IRAK - IL-1 receptor associated kinase, TRAF - TNF receptor associated factor, TAB 

– TGF-β activated kinase-1, TAK - TAK1-binding proteins, IKK - IκB kinase. Information for this 

diagram was assembled from (Guha and Mackman, 2001; Hoffmann and Baltimore, 2006). 
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3.1.3 The role of the HDACs in LPS – stimulated expression of metalloproteinases 

It is only relatively recently that the role of the chromatin remodelling histone deacetylases 

(HDACs) has been considered in a pro-inflammatory setting, such as response to LPS. HDACs are 

categorised into three classes based on their sequence homology; Class I, Class II and Class III. It is 

the Class II HDACs; 4, 5 and 7, that seem particularly relevant to the molecular mechanisms 

controlling response to LPS. For example, LPS has been shown to transiently repress then induce 

these three HDACs in bone marrow-derived macrophages over a 24 hour period (Aung et al., 

2006). Classically HDACs function to deacetylate histone groups encouraging high affinity binding 

between histones and the DNA backbone. This condenses DNA structure preventing transcription 

factors accessing promoter regions, thus inhibiting transcription of mRNA.  Class II HDACs also 

interact directly with transcription factors themselves to inhibit gene expression. The transcription 

factor Myocyte Enhancer Factor (MEF)-2, for example, known to be induced by LPS in the 

RAW264.7 macrophage-like cell line (Han et al., 1997), is prevented from binding to the MMP-10 

promoter by HDAC7 in human aortic endothelial cells (Chang et al., 2006). This relationship has 

further been elucidated with the finding that Transforming Growth Factor (TGF)-β is able to up-

regulate MMP-10 expression by activating MEF2 and promoting the proteasome-dependent 

degradation of HDAC4, 5 and 7 (Ishikawa et al., 2010b). 

 

3.2 Aims 

In order to approach this well established area of research we chose to complete a full profile of 

lipopolysaccharide (LPS) stimulated and unstimulated murine bone marrow-derived macrophage 

MMPs including some ADAMs (A Disintegrin And Metalloproteinase), ADAMTSs (ADAM with 

ThromboSpondin motif) and their endogenous inhibitors, the TIMPs (Tissue Inhibitors of 

MetalloProteinases). By performing this analysis we aim to reveal a potential protease signature 

for bone marrow-derived macrophages. 

In this chapter we also aim to confirm the temporal regulation of class II HDACs 4, 5 and 7 in bone 

marrow-derived macrophages by LPS seen in Aung et al (2006), and subsequently relate this to the 

expression of the MMPs in these cells. 
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3.3 Results 

 

3.3.1 LPS induced metalloproteinase mRNA in RAW264.7 and bone marrow-derived 

macrophages reveals distinct expression profiles 

Bone marrow-derived macrophages (BMMs) and the RAW264.7 macrophage cell line were 

exposed to 1, 10 or 100 ng/ml lipopolysaccharide (LPS) for 24 hours before total RNA was 

extracted and quantitative RT-PCR (qRT-PCR) performed. A summary of change in 

metalloproteinase mRNA expression in response to 100 ng/ml LPS is shown in Table 3.1. This 

includes expression of all MMPs and TIMPs and the levels of key ADAM and ADAMTS mRNA. For 

reference, and because we wished to focus on this family of metalloproteinases more carefully, a 

heat map profile of the change in MMP cycle threshold (CT) range in response to LPS in RAW264.7 

macrophages and BMMs was compiled (figure 3.2). Overall levels of metalloproteinase mRNA 

expression appear to vary between the two types of macrophage; however there are some 

interesting similarities that will be discussed further.  For example, MMP-9 and -12 are the most 

highly expressed in both types of macrophage. The range of CT values for MMP-9 is between 23 – 

28 in BMMs and 23 – 25 in RAW264.7 whilst the range for MMP-12, also known as macrophage 

metalloelastase, is between 21 – 22 in BMMs and ≤ 20 – 22 in RAW264.7. MMP-1b, -7, -16, -17, -

20, -24; TIMP-3 and -4; ADAM9 and 28; and ADAMTS8 show no expression in either type of 

macrophage.  

Relative MMP mRNA expression normalised to 18s for the genes that show a change of at least 1 

CT in response to the highest concentration of LPS in RAW264.7 and BMMs reveals further 

similarities and variations in expression profile (Figures 3.3 – 3.4 ). In both RAW264.7 macrophages 

and BMMs MMP-11 (figure 3.3 C, 3.4 D), -14 (figure 3.3 E, 3.4 F), and -25 (figure 3.3 G, 3.4 H) 

appear to be regulated by LPS in similar trends. MMP-11 shows a small but significant dose-

dependent reduction in expression in response to LPS. MMP-14 and -25, both members of the 

‘membrane type’ family of MMPs, show a similar trend for induction of expression in response to 

LPS that appears to peak at 10 ng/ml, although levels of significance vary. The remaining MMPs 

shown in figures 2.2 – 2.3 serve to highlight the difference in expression profile between the two 

types of macrophage. MMP-2, for example, can be seen to be induced by 100 ng/ml LPS in BMMs 

(figure 3.4 A) whereas no expression is seen in RAW264.7 macrophages. Conversely, MMP-3 is 

induced by 10 and 100 ng/ml LPS in RAW264.7 macrophages (figure 3.3 A) whilst no expression is 

seen in BMMs. In the case of certain MMPs it seems that BMMs are more responsive to LPS than 
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the RAW264.7 macrophages. In this initial profile both MMP-10 and -12 appear significantly down 

regulated in BMMs in response to LPS, albeit with a stronger response to all concentrations of LPS 

seen for MMP-10. In RAW264.7 both MMP-10 and -12 are expressed highly but are not regulated 

by LPS (see table 3.1). 

This profile of metalloproteinase expression was performed once with triplicate samples. 
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Table 3.1 Summary of change in metalloproteinase expression in response to LPS. qRT-PCR was 

performed on triplicate samples of cDNA extracted from RAW264.7 and BMMs treated with 100 

ng/ml LPS. Resulting average CT values were analysed and any value ≥35 was deemed to indicate no 

expression. Unless LPS treatment brought CT values to within the detectable range, lack of expression 

is indicated with ‘x’. ↑ indicates increased expression by at least 1 CT, ↓ indicates decreased 

expression by at least 1 CT and ↔ indicates no change in expression in response to 100 ng/ml LPS. 

Gene + LPS Average CT Average CT

+ LPS
Average CT Average CT

+ LPS

RAW264.7 BMM RAW264.7 BMM

MMP-1b x x - - - -

MMP-2 x ↑ - - 36.5 32.5

MMP-3 ↑ x 38.3 30.9 - -

MMP-7 x x - - - -

MMP-8 ↑ ↔ 33.4 30.6 31.5 32.0

MMP-9 ↔ ↑ 25.0 24.9 27.4 24.5

MMP-10 ↔ ↓ 27.1 27.5 32.5 38.8

MMP-11 ↓ ↓ 34.3 35.7 33.0 34.4

MMP-12 ↔ ↓ 20.9 20.9 21.5 22.7

MMP-13 ↑ ↔ 28.9 25.3 29.5 29.4

MMP-14 ↑ ↑ 36.5 33.7 27.6 22.1

MMP-15 ↔ ↓ 33.8 33.3 22.3 25.5

MMP-16 x x - - - -

MMP-17 x x - - - -

MMP-19 ↔ ↔ 32.3 33.1 27.0 27.5

MMP-20 x x - - - -

MMP-21 ↓ x 31.0 32.1 - -

MMP-23 ↔ x 34.2 33.6 - -

MMP-24 x x - - - -

MMP-25 ↑ ↑ 30.6 28.9 33.7 32.7

MMP-27 x ↓ - - 30.2 34.7

MMP-28 ↑ ↔ 35.0 32.5 32.5 32.7

TIMP-1 x ↑ - - 26.5 25.2

TIMP-2 ↔ ↓ 25.6 26.0 23.4 25.1

TIMP-3 x x - - - -

TIMP-4 x x - - - -

ADAM8 ↔ ↔ 25.1 24.3 24.6 25.4

ADAM9 x x - - - -

ADAM10 ↔ ↔ 25.6 25.7 26.6 27.2

ADAM12 ↔ x 33.3 33.6 - -

ADAM15 ↔ ↔ 24.1 23.8 26.8 27.3

ADAM17 ↔ ↔ 27.7 28.5 25.7 25.1

ADAM28 x x - - - -

ADAM33 ↑ ↔ 36.4 34.1 32.8 33.5

ADAMTS1 ↔ ↓ 28.2 28.8 34.2 36.7

ADAMTS4 ↑ ↑ 33.1 29.3 35.8 33.7

ADAMTS8 x x - - - -
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Figure 3.2 Heat maps of matrix metalloproteinase CT range in RAW264.7 macrophages 

and BMMs in response to LPS. qRT-PCR was performed on triplicate samples of cDNA 

extracted from (A) RAW264.7 and (B) BMMs treated with increasing concentrations of LPS 

for 24 hours. (C) CT values were converted to a representative colour, black indicating no 

expression (≥ 35) and green indicating very high expression (≤ 20). - = untreated, + = 1 

ng/ml LPS, ++ = 10 ng/ml LPS, +++ = 100 ng/ml LPS. 

 

A. B. C.RAW264.7 LPS

MMP - +    ++    +++

BMM LPS

MMP - +    ++    +++

CT
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Figure 3.3 Relative MMP expression in RAW264.7 macrophages in response to LPS. (A-H) qRT-

PCR was performed on cDNA extracted from RAW264.7 macrophages treated with increasing 

concentrations of LPS for 24 hours. Data was analysed by relative quantification and normalized 

to 18S endogenous control. Each bar represents the mean of 3 samples ± SEM. Statistical 

significance was determined using the Student’s t-test. * p ≤ 0.05, ** p ≤ 0.01 *** p ≤ 0.001. 
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3.3.2 MMP-10 mRNA expression is significantly down-regulated in macrophages 24 hours 

post-LPS stimulation  

To further investigate the macrophage response to LPS we chose to focus on the surprising down 

regulation of MMP-10 seen in BMMs. LPS-induced modulation of MMP-10 has been seen 

previously in monocytes derived from human peripheral blood mononuclear cells, however this 

study revealed an up-regulation of MMP-10 mRNA (Bar-Or et al., 2003). As shown above, MMP-10 

mRNA is strongly down-regulated 24 hours post – LPS stimulation in BMMs. In order to confirm 

this result BMMs were again exposed to 100 ng/ml LPS for 24 hours before qRT-PCR for MMP-10. 

This assay was also repeated for RAW264.7 macrophages despite seeing no change in MMP-10 

mRNA levels in the initial profile (figure 3.3). Again, LPS is shown to drive significant repression of 

MMP-10 mRNA in BMM (figure 3.5 B, D). Interestingly, in repeating this analysis we also found 

MMP-10 mRNA in RAW264.7 macrophages to be repressed (figure 3.5 A, C). This analysis of 

expression has been performed five times in BMMs and four times in RAW264.7 macrophages 

with reproducible results. This suggests that the initial lack of LPS-driven MMP-10 mRNA 

repression in RAW264.7 macrophages was anomalous.  

Despite the similarity in BMM and RAW264.7 macrophage MMP-10 expression in response to LPS 

seen above, the CT values shown in figure 3.5 reveal clear differences in overall expression level. As 

we consider a CT value of ≥ 35 to signify the end of the linear range of PCR amplification for a gene 

it can be said that MMP-10 mRNA levels are undetectable in BMMs treated with 100 ng/ml LPS 

(range 37.19 – 38.72). In RAW264.7 macrophages however MMP-10 expression is still detectable 

following 100ng/ml LPS treatment (range 33.19 – 33.47), although significantly decreased 

compared to untreated control. 

 

 

 

 

Figure 3.4 Relative MMP expression in BMMs in response to LPS. (A-I) qRT-PCR was performed 

on cDNA extracted from BMMs treated with increasing concentrations of LPS for 24 hours. Data 

was analysed by relative quantification and normalized to 18S endogenous control. Each bar 

represents the mean of 3 samples ± SEM. Statistical significance was determined using the 

Student’s t-test. * p ≤ 0.05, ** p ≤ 0.01 *** p ≤ 0.001. 
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3.3.3 MMP-10 mRNA expression is significantly up-regulated in macrophages 4 hours post – 

LPS stimulation  

To this point all MMP-10 mRNA quantification has been carried out at the relatively late time point 

of 24 hours post-LPS stimulation. A time course of macrophage response to LPS stimulation with 

qRT-PCR analysis of MMP-10 mRNA levels at 4, 8, 16 and 24 hours was performed in RAW264.7 

macrophages (figure 3.6). Interestingly this revealed a trend towards an increase in MMP-10 

mRNA expression at the 4 hour time point (lack of significance due to anomalous 18S - confirmed 

as significant in a subsequent experiment, see figure 3.8) whilst also confirming the significant 

down-regulation of MMP-10 mRNA at 24 hours. At 8 and 16 hours no significant change in 

expression was observed. LPS also induced a significant increase in MMP-10 mRNA in BMMs, 

though at the even earlier time point of 3 hours (figure 3.7). Although there still appears to be a 

trend for up regulation of MMP-10 mRNA in BMMs 4 hours post-LPS stimulation this is no longer 

statistically significant.  

This temporal regulation of MMP-10 mRNA following LPS stimulation has been observed three 

times in RAW264.7 macrophages and twice in BMMs with all experiments performed in triplicate. 

To determine whether LPS has an effect on mRNA stability we incubated RAW264.7 macrophages 

with Actinomycin D, an inhibitor of mRNA transcription (figure 3.8). In the absence of Actinomycin 

D LPS was able to significantly induce MMP-10 mRNA at 4 hours as expected. When RAW264.7 

macrophages were pre-incubated with Actinomycin D for 45 minutes before stimulation with LPS 

for 4 hours, no change in MMP-10 expression was seen. This suggests that up regulation of MMP-

10 in RAW264.7 macrophages 4 hours post-LPS stimulation is likely to be due to enhancement of 

transcriptional activity, rather than an LPS-induced increase in mRNA stability. This was repeated 

with LPS stimulation for 24 hours; however RNA yield was too poor to perform qRT-PCR due to the 

toxicity of Actinomycin D at this time-point. Viability of RAW264.7 macrophages was assessed via 

the trypan blue exclusion assay revealing ≤ 12% live cells after 24 hours with both Actinomycin D 

and LPS stimulation. 

This analysis of transcriptional activity has only been performed once in RAW264.7 macrophages, 

in triplicate, and not confirmed in BMMs. 
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Figure 3.6 Relative expression of MMP-10 normalized to 18S in RAW264.7 macrophages at 4, 

8, 16 and 24 hours post-LPS stimulation. (A) qRT-PCR was performed on RAW264.7 

macrophages. Data was analysed by relative quantification and normalized to 18S. (B) 

Corresponding CT values are shown. Each bar represents the mean of 3 samples ± SEM. 

Statistical significance was determined using the Student’s t-test. *** p ≤ 0.001. † indicates 18S 

CT value varied more than 1.5 CTs from the mean and was therefore excluded from analysis. 
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Figure 3.7 Relative expression of MMP-10 normalized to 18S in BMMs at 3 and 4 hours post-

LPS stimulation. (A) qRT-PCR was performed on BMMs. Data was analysed by relative 

quantification and normalized to 18S. (B) Corresponding CT values are shown. Each bar 

represents the mean of 3 samples ± SEM. Statistical significance was determined using the 

Student’s t-test. * p ≤ 0.05  
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Figure 3.8 Induction of MMP-10 mRNA expression 4 hours post-LPS is blocked by inhibition of 

transcription with Actinomycin D in RAW264.7 macrophages. Actinomycin D was applied for 45 

minutes and then removed before the experiment began. (A) qRT-PCR was performed on 

RAW264.7 macrophages. Data was analysed by relative quantification and normalized to 18S. (B) 

Corresponding CT values are shown. Each bar represents the mean of 3 samples ± SEM. Statistical 

significance was determined using the Student’s t-test. *** p ≤ 0.001.  
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3.3.4 Immunocytochemistry of MMP-10 protein in LPS treated macrophages 

To confirm that LPS-induced regulation of MMP-10 mRNA is translated into a change in MMP-10 

protein expression RAW264.7 macrophages (figure 3.9) and BMMs (figure 3.10) were cultured on 

glass cover-slips for 24 hours stimulation with LPS and three hours incubation with 5 µM monensin 

sodium salt before being immuno-stained with D248/6 anti-MMP-10 polyclonal antibody. Both 

types of macrophage show strong positive staining for MMP-10 when untreated (figure 3.9 A, B 

and 3.10 A, B). This staining is markedly reduced following LPS stimulation for 24 hours (figure 3.9 

D, E and 3.10 D, E). Secondary antibody only controls (figure 3.9 C, F and 3.14 C, F) reveal minimal 

non-specific secondary antibody binding and autofluorescence.  

High magnification images of both RAW264.7 macrophages and BMMs allow for comparison of 

MMP-10 protein distribution (figure 3.11). In both cell types staining appears punctate throughout 

the cytoplasm with some concentration around the nuclei. This is particularly evident in the 

RAW264.7 macrophages where staining appears to concentrate further next to the nucleus, 

perhaps in the Golgi apparatus. In both cases there also appears to be punctate staining on the 

surrounding matrix. 

RAW264.7 macrophages were immuno-stained for MMP-10 4 hours after LPS stimulation to 

investigate whether the induction of MMP-10 mRNA at this time-point is translated into a 

detectable change in protein. No obvious increase in MMP-10 protein after 4 hours LPS 

stimulation was observed (figure 3.12 A, B). In this experiment there also appears to be more non-

specific secondary antibody binding or autofluorescence from the secondary antibody only control 

(figure 3.12 C). 

To confirm that the regulation of MMP-10 protein we have seen is not caused by a global effect of 

LPS on protein level, RAW264.7 macrophages were immuno-stained with antibodies against MMP-

12 (figure 3.13) which is highly expressed but minimally regulated by LPS in both RAW264.7 

macrophages and BMM, as shown in figure 3.1. Both untreated cells (figure 3.13 A) and those 

stimulated with LPS for 24 hours (figure 3.13 B) show high levels of MMP-12 expression in a similar 

punctate pattern to that seen for MMP-10. 

Each analysis of MMP-10 and MMP-12 protein expression was performed once with all 

experiments performed in triplicate. 
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Figure 3.12 Immunocytochemical staining for MMP-10 protein in RAW264.7 macrophages 4 

hours post-LPS stimulation. Cells were cultured on glass cover-slips for 24 hours before 

stimulation with LPS for a further 4 hours. (A) Unstimulated RAW264.7 macrophages. (B) 

RAW264.7 macrophages 4 hours post LPS stimulation. (C) Secondary antibody only control. Scale 

bar = 25 µm. Images captured at fixed exposure.  

MMP-10
DAPI

+ LPS

A. B.

C.

MMP-10
DAPI

DAPI

Figure 3.11 Comparing unstimulated RAW264.7 macrophage and BMM immunocytochemical 

staining for MMP-10 protein. MMP-10 positive staining appears punctuate with possible 

concentration around the Golgi apparatus, in both (A) BMMs and (B) RAW264.7 macrophages. 

Scale bar = 25 µm. 

A. B.
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3.3.5 Western Blot analysis of LPS induced macrophage MMP-10 protein regulation is 

inconclusive 

Western blot analyses of cumulative MMP-10 protein present in TCA precipitated RAW264.7 

macrophage supernatant 4 or 24 hours post-LPS stimulation was performed (figure 3.14). 

Preliminary blots with IW13 MMP-10 polyclonal primary antibody revealed this to be more 

effective in western blots than the D248/6 MMP-10 primary antibody used for 

immunocytochemistry (data not shown). There appears to be no change in cumulative secreted 

MMP-10 protein at both 4 and 24 hours post-LPS stimulation compared with unstimulated control 

macrophages. A small up-regulation in overall cumulative MMP-10 protein concentration is 

apparent from 4 to 24 hours. Predicted pro- and active murine MMP-10 protein sizes are 57 and 

47 KDa, respectively. On this blot MMP-10 protein appears to run at a slightly higher molecular 

weight, approximately 65 KDa. A band at approximately 90 KDa is also present on the 24 hour blot. 

This could reflect non-specific binding due to the presence of 0.2% serum. It is difficult to drawn 

any definitive conclusions however as the wells appear overloaded with protein. 

The blot shown is representative of three experiments. No loading control is available for secreted 

proteins; however equal volumes of TCA precipitate were loaded into each well. 

 

 

Figure 3.14 Western blot of RAW264.7 macrophage supernatant for cumulative MMP-10 protein 

4 and 24 hours post-LPS stimulation.  RAW264.7 macrophages were plated at the same density 

per well and transferred to 0.2% serum medium for the duration of the experiment. Supernatants 

were removed and 1 ml TCA precipitated. One fifth of each precipitate was loaded per well.  

Positions of BioRad Precision Plus protein standards are indicated. 
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Western blot analysis of cumulative MMP-10 protein present in TCA precipitated BMM 

supernatant 24 hours post-LPS stimulation was also performed, revealing an apparent increase in 

MMP-10 protein in BMMs 24 hours post-LPS stimulation (figure 3.15). Samples were resolved and 

detected as above, this time including a positive control of rhMMP-10. Both untreated and LPS-

stimulated BMMs appear to express MMP-10 although the signal is much stronger for the 

stimulated cells. Overloading of the well makes it difficult to resolve any specific band sizes. It 

appears, however that neither sample shows detection of the smaller active form of MMP-10. 

The blot shown represents one experiment. No loading control is available for secreted proteins; 

however equal volumes of TCA precipitate were loaded into each well. 

 

 

Figure 3.15 Western blot of BMM supernatant for cumulative MMP-10 protein 24 hours post-

LPS stimulation.  BMM were plated at the same density per well and transferred to 0.2% serum 

medium for the duration of the experiment. Supernatants were removed and 0.5 ml TCA 

precipitated. One fifth of each precipitate was loaded per well. 2.5 ng of rhMMP-10 was loaded to 

one well as a positive control. Positions of BioRad Precision Plus protein standards are indicated. 
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3.3.6 LPS stimulated MMP-10 regulation in macrophages may be controlled via the NF-κB 

signalling pathway 

In order to better understand how LPS stimulation of macrophages results in MMP-10 modulation 

the signalling pathways activated by LPS/Toll-like receptor 4 (TLR4) interactions were investigated. 

qRT-PCR performed on LPS stimulated RAW264.7 macrophages and BMMs after 3, 4 and 24 hours 

reveals regulation of murine tumour necrosis factor – alpha (mTNF-α), a key player in the TLR4-

Nuclear factor kappa B (NF-κB) signalling axis (figure 3.16). Significant induction of mTNF-α in 

BMMs following 3 hours stimulation with LPS is sustained until at least 24 hours post-LPS (figure 

3.16 A, B). Similar results were observed in RAW264.7 macrophages at 4 and 24 hours post-LPS 

stimulation (figure 3.16 C, D). 

This analysis of expression has been performed four times in BMMs and three times in RAW264.7 

macrophages with reproducible results and all experiments performed in triplicate. 
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An inhibitor of the TLR4-NF-κB signalling axis was utilised to further investigate the effect of LPS on 

RAW264.7 macrophage TNF-α and MMP-10 mRNA expression. At 4 hours post-LPS the induction 

of mTNF-α was significantly repressed by the IκB kinase inhibitor BMS-345541 (5 µg/ml), although 

expression of mTNF-α was still significantly greater than control samples (figure 3.17). LPS-driven 

induction of mTNF-α was also significantly inhibited by 10 µg/ml BMS-345541 and this is no longer 

significantly greater than control, suggesting a dose dependent response to increasing levels of 

inhibitor. Neither concentration of BMS-345541 appeared to have an effect on endogenous mTNF-

α expression. At 24 hours post-LPS stimulation neither concentration of BMS-345541 had a 

significant inhibitory effect on LPS-driven induction of mTNF-α expression, despite a trend for 

reduction in mTNF-α mRNA with 10 µg/ml inhibitor (figure 3.18) compared with LPS treatment 

alone. Again, the inhibitor had no effect on endogenous mTNF-α expression. 

The expression of MMP-10 mRNA in RAW264.7 in the presence of BMS-345541 was analysed 24 

hours post-LPS stimulation (figure 3.19). A trend toward reversal of LPS-driven MMP-10 repression 

with 5 µg/ml BMS-345541 was observed, although MMP-10 mRNA levels were still significantly 

less than in untreated macrophages. Treatment of LPS-stimulated RAW264.7 macrophages with 10 

µg/ml BMS-345541 results in a reversal in repression of MMP-10; MMP-10 mRNA levels are no 

longer significantly repressed compared to untreated macrophages and are significantly higher 

than in samples treated with 5 µg/ml BMS-345541. Endogenous levels of MMP-10 were not 

affected by either concentration of inhibitor. 
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Figure 3.17 Effect of IκB kinase inhibitor BMS-345541 on relative expression of 

mTNF-α mRNA in RAW264.7 macrophages at 4 hours post-LPS stimulation 

normalized to 18S. (A) qRT-PCR was performed on cDNA extracted from RAW264.7 

macrophages 4 hours post-LPS stimulation. Data was analysed by relative 

quantification and normalized to 18S. (B) Corresponding CT values are shown. Each 

bar represents the mean of 3 samples ± SEM. Statistical significance was 

determined using the Student’s t-test. * p ≤ 0.05, ** p ≤ 0.01, *** p ≤ 0.001.  
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Figure 3.18 Effect of BMS-345541 on relative expression of mTNF-α mRNA normalized 

to 18S in RAW264.7 macrophages at 24 hours post-LPS stimulation. (A) qRT-PCR was 

performed on cDNA extracted from RAW264.7 macrophages 24 hours post-LPS 

stimulation. Data was analysed by relative quantification and normalized to 18S. (B) 

Corresponding CT values are shown. Each bar represents the mean of 3 samples ± SEM. 

Statistical significance was determined using the Student’s t-test. * p ≤ 0.05, ** p ≤ 0.01, 

*** p ≤ 0.001. † indicates 18S CT value varied more than 1.5 CTs from the mean and was 

therefore excluded from analysis 
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Figure 3.19 Effect of BMS-345541 on relative expression of MMP-10 mRNA normalized 

to 18S in RAW264.7 macrophages at 24 hours post-LPS stimulation. (A) qRT-PCR was 

performed on cDNA extracted from RAW264.7 macrophages 24 hours post-LPS 

stimulation. Data was analysed by relative quantification and normalized to 18S. (B) 

Corresponding CT values are shown. Each bar represents the mean of 3 samples ± SEM. 

Statistical significance was determined using the Student’s t-test. * p ≤ 0.05. † indicates 

18S CT value varied more than 1.5 CTs from the mean and was therefore excluded from 

analysis 
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BMS-345541 was also used to investigate control of mTNF-α and MMP-10 in BMMs 3 hours post-

LPS (figure 3.20). qRT-PCR for mTNF-α reveals a trend towards repression 3 hours post-LPS with 10 

µg/ml BMS-345541, although this is not significant compared to BMMs stimulated with LPS alone 

(figure 3.20 A). Expression of endogenous mTNF-α shows a trend toward decrease with BMS-

345541 compared to untreated cells, evident from CT values (figure 3.20 C). qRT-PCR for MMP-10 

(C) reveals a significant repression of LPS induced expression 3 hours post-LPS with 10 µg/ml BMS-

345541. CT values (D) reveal that this repression brings levels of MMP-10 mRNA back down to 

almost that of untreated BMMs. Interestingly 10 µg/ml BMS-345541 also shows a strong trend 

toward repression of endogenous levels of MMP-10 expressed by BMMs, compared to untreated 

BMMs. Again, significance could not be determined due to low ‘n’ number. 

All results shown for RAW264.7 macrophages represent two experiments with reproducible 

results whilst results shown for BMMs represent one experiment, with all experiments performed 

in triplicate. 
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3.3.7 A potential role for class II Histone Deacetylases in macrophage MMP-10 expression in 

response to LPS 

Previous research has shown an inverse relationship between MMP-10 and expression of the class 

II histone deacetylase HDAC7 in the endothelium during angiogenesis and development (Ha et al., 

2008) (Chang et al., 2006). In light of this correlation, mRNA expression levels of class II HDACs 4, 5 

and 7 were analysed in LPS-stimulated macrophages (figure 3.21). As already demonstrated, 

MMP-10 mRNA expression decreases significantly in response to increasing concentrations of LPS 

(figure 3.21 A, see also figure 3.4 C). In the same samples however the level of HDAC7 mRNA does 

not vary significantly, despite a marginal trend for decreased expression (figure 3.20 B). This 

relationship is also seen in RAW264.7 macrophages (figure 3.22); MMP-10 mRNA expression is 

significantly down-regulated 24 hours post – LPS (figure 3.22 A) but there is no significant change 

in HDAC7 expression in the same samples (figure 3.22 B). 

The analysis of HDAC7 mRNA in BMMs represents two experiments with reproducible results. The 

equivalent results shown for RAW264.7 macrophages represent three experiments. 

HDAC4 and 5, as with HDAC7, are able to interact with the MEF2 transcriptional activator and have 

been shown to be regulated in LPS-stimulated macrophages (Aung et al., 2006). Figures 3.23 and 

3.24 show the expression of MMP-10 and HDAC4 and HDAC5 in BMMs and RAW264.7 

macrophages 24 hours post-LPS stimulation. As with HDAC7, there appears to be no significant 

change in HDAC4 mRNA expression with LPS in either BMMs or RAW264.7 cells (figure 3.23 A, 3.24 

A), despite a slight trend for down regulation in BMMs. HDAC5 expression however follows the 

pattern of MMP-10 mRNA in the same samples; in both BMMs and RAW264.7 macrophages there 

is a statistically significant repression in HDAC5 mRNA 24 hours post – LPS (figure 3.23 C, E; 3.24 C, 

E). 

The analysis of HDAC4 and 5 in BMMs was performed only once. The data shown for expression of 

HDAC4 and 5 in RAW264.7 macrophages represents two experiments with reproducible results 

and all experiments performed in triplicate.  
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Figure 3.23 Relative expression of HDAC4, HDAC5 and MMP-10 mRNA normalized to 18S in 

BMMs 24 hours post-LPS stimulation. qRT-PCR was performed on cDNA extracted from BMMs 

for (A) HDAC4, (C) HDAC5 and (E) MMP-10 mRNA. Data was analysed by relative quantification 

and normalized to 18S. (B, D, F) Corresponding CT values are shown. Each bar represents the 

mean of 3 samples ± SEM. Statistical significance was determined using the Student’s t-test. * p 

≤ 0.05, ** p ≤ 0.01. 
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Figure 3.24 Relative expression of HDAC4, HDAC5 and MMP-10 mRNA normalized to 18S in 

RAW264.7 macrophages 24 hours post-LPS stimulation. qRT-PCR was performed on cDNA 

extracted from RAW264.7 macrophages for (A) HDAC4, (C) HDAC5 and (E) MMP-10 mRNA. 

Data was analysed by relative quantification and normalized to 18S. (B, D, E) Corresponding CT 

values are shown. Each bar represents the mean of 3 samples ± SEM. Statistical significance 

was determined using the Student’s t-test. * p ≤ 0.05, ** p ≤ 0.01. 
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3.4 Discussion 

 

In this chapter an extensive profile of all MMPs and TIMPs is reported in both BMMs and 

RAW264.7 macrophages, in response to LPS. Previous investigations into MMP expression in 

monocytes and macrophages have hinted at similar results (Bar-Or et al., 2003; Suzuki et al., 2000; 

Ho et al., 2008). For example, in primary human monocytes MMP-10 mRNA is markedly induced 

after 3 hours LPS stimulation (Ho et al., 2008), reflecting the results observed at 4 hours post-LPS 

in RAW264.7 and 3 hours post-LPS in BMMs (figures 3.6 and 3.7, respectively). LPS-driven 

induction of MMP-10 mRNA has also been observed in different cell types; in human umbilical vein 

endothelial cells (HUVECs) microarrays have shown MMP-10 to be induced at least two-fold 

following 3 to 7 hours LPS exposure (Zhao et al., 2001; Norata et al., 2004). This suggests that 

endothelium exposed to infection in vivo may secrete MMP-10 concomitantly with macrophages 

during the immune response, potentially aiding their extravasation and transmigration. Whilst this 

early induction of MMP-10 mRNA in response to LPS is well established, the repression observed 

24 hours post-LPS in BMMs appears to be novel. 

In BMMs the induction of MMP-10 mRNA at 3 hours post-LPS was repressed by the highly 

selective IκB kinase allosteric site inhibitor BMS-345541 (figure 3.20 B). This inhibits the 

translocation of transcription factor NF-κB into the nucleus by preventing the phosphorylation and 

subsequent ubiquitination of IκB in the cytoplasm (Burke et al., 2003). Interestingly the LPS-driven 

repression of MMP-10 mRNA observed 24 hours post-LPS was also reversed with BMS-345541 

(figure 3.19).  Despite there being little evidence to suggest that NF-κB interacts directly with the 

MMP-10 promoter (MatInspector (Cartharius et al., 2005)), these results suggest that NF-κB drives 

both the early induction and late repression of MMP-10 mRNA. It is difficult to reconcile these two 

ostensibly conflicting events, however, without considering other potential mechanisms of MMP-

10 regulation. 

Recent literature suggests a novel regulatory pathway for LPS-driven MMP expression, including 

MMP-10, in macrophages (Kim et al., 2010). Kim et al have shown that induction of MMP-10 

mRNA in RAW264.7 and murine peritoneal macrophages up to 9 hours post-LPS can be inhibited 

with siRNA targeting NADPH oxidase-2 (Nox-2) reactive oxygen species (ROS). Macrophages, along 

with other immune cells, generate Nox-2 during the ‘respiratory burst’ following phagocytosis of 

pathogens. In turn Nox-2 catalyses the production of superoxides, such as H2O2, that are capable 

of killing bacteria. This implies that the generation of superoxides by Nox-2 is intrinsically linked to 
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the expression of MMPs in an immune setting, possibly delaying regulation of specific proteases 

until after phagocytosis.  Perhaps unsurprisingly NF-κB has also been shown to respond to 

oxidative stress. It is known that H2O2 activates NF-κB nuclear translocation via the 

canonical/MyD88 dependent pathway, much like LPS (figure 3.25, (Gloire et al., 2006)).  

An extensive search of the literature reveals little reference to MMP-10 regulation at 24 hours 

post-LPS in macrophages. In fact, by this relatively late time point any change in MMP expression 

is unlikely to be due to the direct effect of LPS, but instead may be the result of regulation further 

down-stream. For example, the transcription factor MEF-2, a direct activator of MMP-10 mRNA 

transcription, can be inhibited by the action of class II histone deacetylase, HDAC7, subsequently 

repressing MMP-10 in endothelial cells (Chang et al., 2006). As MEF-2 is known to be induced by 

LPS in macrophages (Han et al., 1997) it seems reasonable to hypothesise that the late repression 

of MMP-10 in BMMs may be due to inhibition of MEF2, potentially via the increased action of 

HDAC7. Analysis of HDAC7 mRNA however revealed no change in expression in RAW264.7 

macrophages or BMMs 24 hours post LPS, despite the expected repression of MMP-10 (figures 

3.21 and 3.22). There was also no significant change in expression of another class II histone 

deacetylase, HDAC4. A significant repression in HDAC5 mRNA was observed however in both 

BMMs and RAW264.7 macrophages 24 hours post-LPS (figures 3.23 and 3.24), which conflicts with 

previous observations in BMMs (Aung et al., 2006). However, the BMMs harvested by Aung et al 

were cultured without a selection stage and stimulated with LPS from a Salmonella strain, rather 

than E. coli, which may go some way to explaining their conflicting results. Due to the compelling 

support for this LPS/HDAC/MMP-10 regulation hypothesis in the literature however it would be 

important to repeat these experiments, particularly in BMMs as HDAC mRNA was examined only 

once in these cells. 

Despite the evidence for LPS-driven class II HDAC mRNA regulation in BMMs described above 

there is also data supporting a potential mechanism by which HDAC7 protein is sequestered, 

preventing it from interacting with the MEF2 without altering its transcription. HDAC7 has been 

found to co-localise with promyelocytic leukemia protein (PML) nuclear bodies (NBs) in epithelial 

and endothelial cells (Gao et al., 2008). PML NBs are sub-nuclear compartments that play a role in 

transcriptional regulation, amongst other process.  Gao et al have shown increased PML NB 

formation and co-localisation with HDAC7 following TNF-α and LPS treatment. Once HDAC7 is 

sequestered by the PML NBs in the nucleus it can no longer interact with and inhibit MEF2 

transcription factor, leaving MEF2 free to activate MMP-10 transcription. As the levels of LPS 
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present in culture medium and the TNF-α expressed by the cells falls, it is reasonable to assume 

that HDAC7 will eventually disassociate from PML NBs allowing it to bind to and inhibit MEF2 once 

more. This suggests a method by which HDAC7 protein can mediate the expression of MMP-10 

mRNA without levels of HDAC7 mRNA varying in response to LPS. 

In order to further develop some of the preliminary data presented in this chapter it is important 

to consider the use of alternative techniques, especially in the analysis of MMP-10 protein 

expression. The limitations of the Western blots are clear and infer little about the true changes in 

MMP-10 expression, whilst also indicating a discrepancy between MMP-10 mRNA expression and 

protein secretion. It may be possible to optimise the protocol; for example, adjusting the volume 

of protein loaded; however the harsh precipitation techniques that lead to poor Western blot 

resolution are unavoidable. Whilst immunofluorescence reveals a clear down-regulation in MMP-

10 protein expression 24 hours post-LPS, employing alternative assays, such as ELISA or 

fluorescence activated cell sorting (FACS), would provide a more quantitative result, despite not 

allowing for differentiation between pro- and active-MMP forms. At the time of writing no 

commercial murine MMP-10 ELISAs are available, however it would be possible to develop one 

using the polyclonal MMP-10 antibody utilised throughout this chapter. 

 

  



111 
 

Chapter 4: Modulation of MMP-10 

expression alters macrophage migratory 

phenotype 
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4.1 Introduction 

 

4.1.1 The role of metalloproteinases in cell migration 

The fundamental role of macrophages in the innate immune response requires an ability to 

mobilize rapidly in response to external signals, such as chemokines, or a change in the 

surrounding extracellular matrix (ECM). The key regulators controlling this response are the Rho 

GTPases, a family of GTP binding proteins that control the dynamics of the cell cytoskeleton 

(described in detail in Chapter 1, 1.1.6).  

The structure of the cytoskeleton in macrophages is greatly influenced by the composition of the 

ECM, affecting both the persistence and directionality of macrophage migration in vivo. Migration 

is routinely modelled in vitro using two-dimensional (2D) coatings of matrix components. Current 

concepts of cell migration and cell-matrix interactions were largely established in 2D models as 

these provide relatively high-throughput results which are easily visualized. Macrophages are 

perhaps one of the few cell types that encounter an environment where 2D migration occurs in 

vivo. Before blood monocytes differentiate into tissue macrophages they must first adhere to the 

2D layer of activated endothelium lining the blood vessel lumen; rolling then crawling along it to 

sites of infection and injury before commencing diapedesis through the endothelial cell junctions 

and transmigrating the 3D basement membrane (see Chapter 1, 1.1.4). The role of the Rho 

GTPases in this process is fairly well understood. For example, RhoA has been shown to be vital for 

monocyte tail retraction during migration on a monolayer of endothelial cells (Worthylake et al., 

2001).  The function of MMPs in this setting has also long been of interest. The transmigration of 

leukocytic cells through the endothelial blood-brain barrier, for example, has been shown to 

depend on the action of MMPs on the tight junction protein, Occludin (Reijerkerk et al., 2006). 

Reijerkerk et al suggest that Occludin, a tight junction specific protein associated with decreased 

monolayer permeability, can be degraded by MMPs during leukocyte diapedesis but they do not 

speculate which MMP may be involved.  

Further advances in our understanding of protease-dependent cell migration have come from 

studies assessing expression of the MMPs during migration on, or through, various matrix 

components that would be present in or around sites of diapedesis. For example, co-transfection 

of MMP-2 and MT1-MMP/MMP-14 into a kidney cell-line has been shown to increase digestion of 

FITC-labelled 2D fibronectin, as seen in ‘tracks’ left by migrating cells. Interestingly, subsequent 

treatment with recombinant TIMP-2 inhibited fibronectin degradation but not cell migration (Cao 
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et al., 2004). MT1-MMP/MMP-14 has also been found to co-localise with areas of collagen 

degradation at F-actin rich foci during the migration of a fibrosarcoma cell line through fibrillar 

collagen (Friedl and Wolf, 2009).  

In migrating macrophages specifically, MMP activity appears to be mainly focused around actin-

rich adhesions called podosomes. These are thought to aid degradation of the ECM, thus playing a 

role in cell migration and invasion. In hematopoietic lineage-derived osteoclasts, for example, 

MMP-9 and MT1-MMP/MMP-14 have been localized to podosomes and it has been hypothesized 

that microtubules may traffic MMPs to the cell surface at sites of podosome formation (Linder, 

2007). A recent study has suggested that podosomes form dendritic cell protrusions containing 

MT1-MMP/MMP-14 allowing for specific areas of gelatin degradation (Gawden-Bone et al., 2010). 

Gawden-Bone et al hypothesise that myosin II-driven podosome formation and MT1-MMP/MMP-

14 localization to the podosome are expressly coupled to allow for tissue degradation and 

migration.  Perhaps most relevant to this chapter is the recent finding that podosomes are 

downregulated in dendritic cells by LPS-induced TLR4 signalling in an MMP-dependent manner, 

subsequently reducing their migratory capacity (West et al., 2008). 

4.1.2 MicroRNAs in cell migration 

MicroRNAs (miRNAs) are short, ~22 nucleotide, RNA molecules that can bind to complementary 

mRNA sequences in the 3’ untranslated region (UTR) of target transcripts. MiRNA biogenesis takes 

place in the nucleus with RNA polymerase II mediating the transcription of ‘primary’ pri-miRNA 

stem-loop precursors. These precursors are processed and exported out of the nucleus where, 

after further processing to their mature miRNA form, they are able to interact with mRNA 

(Pasquinelli et al., 2005). MiRNA binding triggers the function of an RNA-induced silencing complex 

(RISC) that drives the repression or cleavage of target mRNA.   

MicroRNAs have the ability to regulate the expression of a diverse and abundant number of 

targets at a post-transcriptional level and data suggesting they play a role in cell migration is 

emerging. For example, constitutive expression of microRNA (miR)-146b has been shown to 

significantly reduce the migration and invasion of a human glioma cell line in an in vitro wound 

healing model and through three-dimensional matrigel (Xia et al., 2009). Conversely, in a murine 

epithelial cell line stably expressing miR-155, cell migration was observed to have nearly doubled 

in Boyden chamber and scratch wounding assays as a result of RhoA targeting (Kong et al., 2008). 
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MiR-155 has been shown to play a fundamental role in macrophage function, regulating 

differentiation and immune response. For example, miR-155 is up-regulated in primary murine 

macrophages in response to pro-inflammatory stimuli such as interferon (IFN)-β and via toll-like 

receptor (TLR) signalling with lipopolysaccharide (LPS) (O'Connell et al., 2007). Increased 

expression of miR-155 leads to higher levels of the tumour necrosis factor (TNF)-α transcript in an 

NF-κB-dependent manner (Tili et al., 2007), whilst enforced expression of miR-155 is mouse bone 

marrow in vivo triggers a myeloproliferative disorder characterized by an overabundance of 

macrophages (O'Connell et al., 2008).  A recent study has shown an array of LPS-responsive genes 

to be further regulated following knock-down of miR-155 (Ceppi et al., 2009). For example, several 

MMPs were shown to increase in expression, including MMP-10.  

4.2 Aims 

In this chapter the migratory phenotype of bone marrow-derived macrophages is analysed in 

response to LPS on a variety of 2D ECM substrates; specifically type 1 collagen, plasma fibrinogen 

and plasma fibronectin. Given that MMP-10 has been shown to be repressed following 24 hours 

stimulation with LPS (see Chapter 3) the function of this specific protease in LPS-induced 

macrophage migration is explored with the use of siRNA targeting the MMP-10 transcript. 

In Chapter 3 the LPS-driven repression of MMP-10 at 24 hours is shown to be NF-κB-dependent. 

As the action of miR-155 in macrophages also appears to be dependent on NF-κB signalling (Tili et 

al., 2007), and MMP-10 regulation may fall downstream of miR-155 (Ceppi et al., 2009), a 

potential relationship between miR-155 and LPS-induced macrophage migration is also explored 

with the use of antisense locked nucleic acid (LNA) oligonucleotides targeting miR-155  
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4.3 Results 

 

4.3.1 Lipopolysaccharide and components of the extracellular matrix alter the migratory 

phenotype of bone marrow-derived macrophages 

BMMs were cultured in 2D on thin coatings of several physiologically relevant extracellular matrix 

(ECM) components for 24 hours before time-lapse microscopy was performed and cell migration 

tracked and quantified. Phase contrast images of BMMs show the gross morphology of the 

macrophages cultured on type 1 collagen, plasma fibrinogen and plasma fibronectin with 0.2% 

fetal calf serum alone as a control (figure 4.1) Morphology was most dramatically altered by 

culture on type 1 collagen; cells appear small and round with very little obvious adhesion to the 

matrix component (figure 4.1 B). With 0.2% serum alone, or on plasma fibrinogen or fibronectin, 

BMMs have areas of lamellipodia and large protrusions, and vary in size and shape.  

To further investigate macrophage response to 2D ECM components time-lapse microscopy was 

performed with images of BMMs captured every 10 minutes for 17 hours. When cultured on 

fibrinogen and fibronectin, velocity and accumulated distance of BMM migration varied very little 

compared with the 0.2% serum control (figure 4.2 A, B). This is unsurprising when we consider 

their similar morphologies (figure 4.1 A, C, D). There is a clear trend for repression of migration 

velocity and accumulated distance, however, on type 1 collagen; this is not statistically significant 

despite the stark difference in macrophage morphology on this substrate. Interestingly it is only 

when comparing the effect of ECM components on Euclidean distance migrated that we see a 

significant difference between the migratory phenotype of the BMMs on fibrinogen and 

fibronectin. Euclidean distance travelled by macrophages on fibronectin is significantly greater 

than that of macrophages on fibrinogen, type 1 collagen or with 0.2% serum alone (figure 4.2 C). 

This suggests that presence of this substrate triggers more directional persistence in these cells. 

Plots of BMM trajectory on each ECM substrate reflect the quantitative results described above 

(figure 4.3). The migratory pattern of BMMs on fibrinogen, for example, varies little from that of 

cells exposed to 0.2% serum alone (figure 4.3 A, C). The trend for decreased migration velocity and 

distance on type 1 collagen is also reflected in the corresponding migration plot (figure 4.3 B), with 

three anomalous trajectories possibly accounting for the lack of significance seen in figure 4.2 A 

and B. Finally, the trajectory of BMMs on fibronectin (figure 4.3 D) clearly emulates the 

significantly increased Euclidean distance seen in figure 4.2 C. This initial profile of migratory 

phenotype was performed once. 
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Figure 4.1 Phase contrast images of BMMs reveal changes in gross morphology in 

response to ECM components. Phase contrast images of BMMs after 24 hours culture 

with (A) 0.2% fetal calf serum, or on (B) type 1 collagen, (C) plasma fibrinogen and (D) 

plasma fibronectin. Arrowhead indicates lamellipodia. Scale bar = 150 µm. 

A. B.

C. D.
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Figure 4.2 ECM components affect BMM migratory phenotype. Time-lapse images of BMMs on type 

1 collagen, plasma fibrinogen and plasma fibronectin were captured every 10 minutes over a 17 hour 

period. 0.2% fetal calf serum acted as a control. (A) Migration velocity, (B) accumulated distance and 

(C) Euclidean distance of BMMs were analyzed with ImageJ processing software. Each bar represents 

the mean of 10 cells ± SEM. Statistical significance was determined using the Student’s t-test. * p ≤ 

0.05, *** p ≤ 0.001. 

 

A. 

B. 

C. 
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Figure 4.3 Plots of BMM migration trajectory on ECM components reflect migration velocity and 

distance. Cell trajectories were derived from time-lapse images of BMMs on (B) type 1 collagen, 

(C) plasma fibrinogen and (D) plasma fibronectin were captured every 10 minutes over a 17 hour 

period. (A) 0.2% fetal calf serum acted as a control. The migration of 10 cells per substrate was 

analyzed with ImageJ processing software. 

 

To model the migratory phenotype of BMMs with relevance to the role of macrophages in 

response to infection, cells were cultured in 2D on plasma fibrinogen or plasma fibronectin in the 

presence of 10 ng/ml LPS for 24 hours before time lapse microscopy was performed and cell 

migration tracked.  Phase contrast images of BMMs cultured either with 0.2% fetal calf serum with 

or without LPS; on plasma fibrinogen with or without LPS; or on plasma fibronectin with or 

A. B.

C. D.
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without LPS reveal variations in gross morphology (figure 4.4). Irrespective of their substrate, the 

morphology of the BMMs is affected by the presence of LPS; a high proportion of LPS treated 

BMMs appear to have longer and more numerous protrusions, more membrane ruffles and large 

areas of lamellipodia compared to their unstimulated controls (figure 4.4 B, D, F).  The LPS treated 

cells on fibronectin in particular appear to have the largest proportion of lamellipodia per cell 

(figure 4.4 F). 

 

Figure 4.4 Phase contrast images of BMMs reveal changes in gross morphology in response to 

LPS. Phase contrast images of BMMs after 24 hours culture with (A) 0.2% fetal calf serum, (B) 0.2% 

fetal calf serum with 10 ng/ml LPS, or on (C) plasma fibrinogen, (D) plasma fibrinogen with 10 

ng/ml LPS, (E) plasma fibronectin or (F) plasma fibronectin with LPS. Arrowheads indicate 

lamellipodia. Arrows indicate protrusions. Scale bar = 150 µm. 

A. B.

C. D.

E. F.
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Velocity and distance migrated was also analysed with and without LPS pre-treatment (figure 4.5). 

When cultured without LPS we see a similar pattern in BMM migratory phenotype on fibrinogen 

and fibronectin and with 0.2% Serum alone as that observed in figure 4.2; there is a slight trend 

toward increased migratory velocity and accumulated distance for BMMs on fibronectin. Again 

there appears to be trend toward increase in Euclidean distance migrated by unstimulated cells on 

fibronectin, although in this case it is not statistically significant (figure 4.5 C). When stimulated 

with 10 ng/ml LPS, BMMs on fibrinogen, fibronectin, and with 0.2% serum alone appear to lose 

their migratory capacity. This is particularly evident on fibronectin, showing a statistically 

significant drop in migration velocity and accumulated distance (figure 4.5 A, B). Interestingly, 

stimulation with LPS appears to provoke more directional persistence in migration with BMMs on 

fibrinogen and in 0.2% serum alone showing a trend toward increased Euclidean distance. No such 

trend is observed for cells on fibronectin however (figure 4.5 C). Again, Plots of BMM trajectory on 

each ECM substrate reflect the velocity and distance quantified (figure 4.6). In particular these 

echo the increased persistence in BMM migration on fibrinogen and with 0.2% serum treated with 

LPS (figure 4.6 B, D).  

 

The initial assay of macrophage morphology and migration in response to LPS was performed 

once. The significant down regulation of BMM migration velocity and distance on fibronectin with 

LPS pre-treatment has been reproduced three times.  
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Figure 4.5 LPS effects BMM migratory phenotype. Time-lapse images of BMMs on plasma 

fibrinogen and plasma fibronectin stimulated with LPS were captured every 10 minutes over a 17 

hour period. 0.2% fetal calf serum acted as a control. (A) Migration velocity, (B) accumulated 

distance and (C) Euclidean distance of BMMs were analyzed with ImageJ processing software. 

Each bar represents the mean of 17 cells ± SEM. Statistical significance was determined using the 

Student’s t-test. *** p ≤ 0.001. 
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A. B.

C. D.

E. F.

Figure 4.6 Plots of BMM trajectory on ECM components reflect migration velocity and 

distance. Cell trajectories were derived from time-lapse images of BMMs after 24 hours 

culture with (A) 0.2% fetal calf serum, (B) 0.2% fetal calf serum with 10 ng/ml LPS, or on 

(C) plasma fibrinogen, (D) plasma fibrinogen with 10 ng/ml LPS, (E) plasma fibronectin or 

(F) plasma fibronectin with LPS were captured every 10 minutes over a 17 hour period. 

The migration of 17 cells per substrate was analyzed with ImageJ processing software. 
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4.3.2 Successful transfection and knockdown of MMP-10 in bone marrow-derived 

macrophages with siRNA 

In order to investigate the potential role of MMP-10 expression on macrophage migratory 

phenotype a gene silencing approach was taken. BMMs were transfected with siRNA targeting the 

murine MMP-10 transcript (siMMP-10) in 10% serum to preserve viability. As a control against 

non-specific effects of transfection BMMs were also transfected with an Alexa488 fluorophore 

tagged scrambled siRNA (siScrambled). This enabled visualisation of successful transfection and 

quantification of transfection efficiency (figure 4.7). Transfection of BMMs with both 25 nM and 

15 nM siScrambled results in a successful incorporation into the cytoplasm of BMMs with an 

efficiency of 70.3% and 61.2 %, respectively (figure 4.7). Minimal autofluorescence could be seen 

from untransfected cells (data not shown). 

 

 

Figure 4.7 Quantification of BMM transfection efficiency with Alexa488 flurophore tagged 

scrambled siRNA. BMMs were cultured in an Ibidi 18 well µ-Slide before transfection with 25 nM 

or 15 nM siScrambled for 24 hours. Cells were fixed and DAPI stained before transfection 

efficiency was calculated. (A) BMMs transfected with Alexa 488-tagged 15 nM siScrambled are 

shown. (B) Transfection efficiency was calculated as the average of percentage cells transfected 

for three fields of view.  

 

To confirm knock down of MMP-10 mRNA and protein in siMMP-10 transfected BMMs qRT-PCR 

(figure 4.8) and immunocytochemistry (figure 4.9) were performed. Preliminary experiments 

revealed greater repression of MMP-10 in BMMs treated with 15 nM siMMP-10, as opposed to 25 

nM (data not shown). For this reason only 15 nM siMMP-10 transfection was repeated in triplicate 

for qRT-PCR as shown. qRT-PCR reveals a significant reduction in MMP-10 mRNA expression 

Alexa 488
DAPI

A. Total Cells Transfected
Cells

Transfection 
Efficiency

15nM
1 44 22 50.0%

2 17 14 82.4%

3 43 22 51.2%

average 61.2%

25nM
1 49 37 75.5%

2 50 31 62.0%

3 49 36 73.5%

average 70.3%

B.
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following 15 nM siMMP-10 transfection compared to 15 nM siScramled  control (figure 4.8). There 

is a trend toward repression of MMP-10 compared with control cells (also in 10% serum). This is 

not statistically significant but the corresponding CT values indicate that there is a repression in 

expression in all three samples (figure 4.8 B).  

MMP-10 immunostaining of BMMs was markedly reduced following siMMP-10 transfection (figure 

4.9). As seen in Chapter 3, these macrophages show a strong punctuate staining for MMP-10 when 

untreated. The extent of MMP-10 protein repression varies between fields of view reflecting the 

less than 100% transfection efficiency (data not shown). 

Successful transfection of the Alexa488 fluorophore tagged siScrambled has been seen in three 

out of three experiments. qRT-PCR of MMP-10 mRNA has been performed three times, revealing 

successful knockdown of MMP-10 with all experiments performed in triplicate, whilst 

immunohistochemical analysis of MMP-10 protein knockdown has been performed once. 
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Figure 4.8 qRT-PCR for MMP-10 in BMMs transfected with siMMP-10. Cells were treated 

with 15 nM siRNA targeting the MMP-10 transcript for 24 hours before RNA was extracted 

and qRT-PCR was performed. (A) Data was analysed by relative quantification and normalized 

to 18S. (B) Corresponding CT values are shown. Each bar represents the mean of 3 samples ± 

SEM. Statistical significance was determined using the Student’s t-test. *** p ≤ 0.001. 
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4.3.3 siRNA driven repression of MMP-10 alters the migratory phenotype of bone marrow-

derived macrophages on fibronectin 

Having established the efficacy of siMMP-10 in BMMs, time lapse migration assays were 

performed with transfected cells as above. It is important to note that all subsequent experiments 

were performed in 10% serum to preserve cell viability in the presence of siRNA. Again, the gross 

morphology of BMMs seems to be most drastically altered in LPS-stimulated cells (figure 4.10 G), 

however both concentrations of siMMP-10 appear to have some effect on cell size and shape. 

BMMs transfected with 25 nM siMMP-10 appear to have far fewer protrusions and far greater 

areas of lamellipodia compared to their controls (figure 4.10 C), similar to the LPS-stimulated cells. 

BMMs transfected with 15 nM siMMP-10 do not appear to have such a dramatically altered 

phenotype (figure 4.10 F), however cell protrusions do appear shorter compared to their controls. 

SiScrambled and the transfection vehicle alone appear to have no effect on gross cell morphology.  

Again, velocity and distance migrated were analysed for siMMP-10 transfected BMMs on 

fibronectin (figure 4.11). This verifies the significant reduction in migration velocity and 

accumulated distance of LPS-stimulated BMMs compared with those in 10% serum alone. 

Interestingly in this instance there also appears to be a trend for reduction in Euclidean distance 

travelled by LPS-stimulated BMMs compared with 10% serum (figure 4.11 C).  A small but 

significant repression in macrophage migration velocity, accumulated distance and Euclidean 

distance in both 25 nM and 15 nM siMMP-10 transfected cells compared with their siScrambled 

controls was also observed. These observations are consistent with the LPS-induced repression of 

both MMP-10 expression and migration in BMMs on fibronectin. Corresponding migration plots 

showing the trajectories of 25 individual cells clearly reflect the reduction in migration distance 

quantified for 25 nM siMMP-10, 15 nM siMMP-10 and LPS treated macrophages (figure 4.12).  

Significant reduction in BMM migration velocity and accumulated distance in siMMP-10 

transfected cells has been seen in assays performed with BMMs extracted from three different 

mice. Data shown here is representative of cells from one mouse per phenotype. 
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Figure 4.11 siMMP-10 and LPS effect BMM migratory phenotype. Time-lapse images of 

BMMs on plasma fibronectin transfected with siMMP-10 or stimulated with LPS were captured 

every 10 minutes over a 17 hour period. (A) Migration velocity, (B) accumulated distance and 

(C) Euclidean distance of BMMs were analyzed with ImageJ processing software. Each bar 

represents the mean of 50 cells ± SEM. Statistical significance was determined using the 

Student’s t-test. ** p ≤ 0.01, *** p ≤ 0.001. 
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A. B. C.

D. E. F.

G.

Figure 4.12 Migration plots of siMMP-10 transfected BMMs on fibronectin reflect migration 

velocity and distance. Cell trajectories were derived from time-lapse images of BMMs after 24 

hours culture with (A) 10% fetal calf serum, or 10% fetal calf serum with either (B) 25 nM 

siScrambled, (C) 25 nM siMMP-10, (D) transfection vehicle control, (E) 15 nM siScrambled, (F) 

15 nM siMMP-10 or (G) 10 ng/ml LPS were captured every 10 minutes over a 17 hour period. 

The migration of 25 cells per substrate was analyzed with ImageJ processing software. 
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4.3.4 Recombinant human MMP-10 protein can rescue the effects of siRNA driven MMP-10 

repression on bone marrow-derived macrophage migration on fibronectin 

Given that siMMP-10 is shown to significantly reduce BMM migration velocity, accumulated 

distance and Euclidean distance from start point it is important to further investigate whether this 

effect is a consequence of reduction in MMP-10 protein secretion. Approximate endogenous 

MMP-10 protein secretion from BMMs over 24 hours was estimated from previous western blots 

and human MMP-10 ELISA. Time lapse migration assays were performed as above, this time 

including siMMP-10 transfected BMMs cultured with 2.7 ng/ml recombinant human MMP-10 

(rhMMP-10) for 6 hours before time lapse microscopy began. Again, there appears to be a change 

in gross morphology in cells treated with siMMP-10 or exposed to LPS. In this case the BMMs 

transfected with siMMP-10 alone appear the most morphologically different from their controls, 

with the majority of cells appeared rounded with large areas of lamellipodia (figure 4.13 D). The 

majority of BMMs transfected with siMMP-10 then cultured with rhMMP-10 also appear to have 

large areas of lamellipodia, as do those stimulated with LPS, however their difference in gross 

morphology is not as striking compared with control cells, or those seen in the previous 

experiment. 

Confirming the previous results, both LPS-stimulation and transfection with siMMP-10 repressed 

migration velocity and accumulated distance of BMMs on 2D plasma fibronectin (figure 4.14 A, B). 

Importantly, the addition of rhMMP-10 to siMMP-10 transfected BMMs for 6 hours significantly 

reverses the effect of the RNA interference on velocity and accumulated distance, restoring their 

migratory phenotype to that of siScrambled treated cells. Interestingly, in this case (as opposed to 

figure 4.11) the effect of siMMP-10 appears to be stronger than that of LPS. This, however, is not 

statistically significant. 

Corresponding migration plots showing the trajectories of 50 individual cells are shown in figure 

4.15 A – E. These reflect the reduction in accumulated and Euclidean migration distance quantified 

for 15 nM siMMP-10 transfected macrophages (D) compared with their controls. Figure 4.15 E also 

reflects the trend for reduction in Euclidean distance migrated by the rhMMP-10 rescued BMMs 

and the perceived trend for increase in Euclidean distance migrated by LPS – stimulated cells. A 

montage of frame capture images for untreated, siMMP-10 transfected, LPS treated and rhMMP-

10 rescued cells corroborates the quantitative results (figure 4.16), with both untreated and 

rhMMP-10 rescued BMMs migrating the greatest distance from their starting point. These results 

are representative of the outcome of assays performed with BMMs extracted from three different 

mice.   



132 
 

 

 

 

Figure 4.13 Phase contrast images of BMMs reveal changes in gross morphology in response to 

siMMP-10, LPS and rhMMP-10. Phase contrast images of BMMs on fibronectin after 24 hours 

culture with (A) 10% fetal calf serum, or 10% fetal calf serum with either (B) 15 nM siScrambled, 

(C) 15 nM siScrambled + 6 hours rhMMP-10, (D) 15 nM siMMP-10, (E) 15 nM siMMP-10 with 6 

hours rhMMP-10, (F) 10 ng/ml LPS.  Arrowheads indicate lamellipodia. Scale bar = 150 µm. Insets 

cropped from original image. 
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Figure 4.14 rhMMP-10 rescues siMMP-10 effect on BMM migratory phenotype. Time-lapse 

images were captured every 10 minutes over a 17 hour period of BMMs on plasma fibronectin 24 

hours after transfection with siMMP-10 with 6 hours rhMMP-10. (A) Migration velocity, (B) 

accumulated distance and (C) Euclidean distance of BMMs were analyzed with ImageJ processing 

software. Each bar represents the mean of 50 cells ± SEM. Statistical significance was determined 

using the Student’s t-test. *** p ≤ 0.001. 
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4.3.5 Antisense LNA oligonucleotide driven repression of microRNA-155 may alter the 

migratory phenotype of bone marrow-derived macrophages on fibronectin 

A microarray analysis of 518 unique murine microRNAs was performed for RAW264.7 

macrophages (see Appendix, figure 8.2). This confirmed a high basal level of miR-155 expression 

and a robust increase in expression 4 hours post-LPS (figure 4.17 A, B). Given that LPS-driven 

repression of MMP-10 mRNA can be reversed by inhibition of the NF-κB signalling pathway 

(Chapter 3, figure 3.19) and that MMP-10 is up-regulated in LPS-stimulated miR-155 knock-down 

monocytic cells (Ceppi et al., 2009), miR-155 expression was also analysed in response to the IκB 

kinase inhibitor BMS-345541. A trend for inhibition of LPS-driven miR-155 induction following 

simultaneous incubation with BMS-345541 was observed (figure 4.17), suggesting that MMP-10 

and miR-155 are regulated by LPS via a similar signalling pathway. 

The microarray analysis of RAW264.7 macrophages was performed once on single samples. 

Antisense locked nucleic acid (LNA) oligonucleotides complementary to the miR-155 sequence 

(anti-miR-155) were utilised to further explore the role of this microRNA in macrophages. These 

oligonucleotides bind to their complimentary sequence and inhibit the action of the target miRNA. 

LNA technology limits nucleotide binding to the ideal conformation as determined by Watson-

Crick base pairing rules, thus increasing the stability of the oligonucleotide binding. To determine 

whether transfection of anti-miR-155 in BMMs was successful expression of TNF-α mRNA was 

analysed. TNF-α transcript levels have been found to respond to changes in miR-155 expression in 

an NF-κB-dependent manner (Tili et al., 2007) thus providing an indirect method of quantifying 

miR-155 expression. A trend for repression of TNF-α mRNA expression was observed in BMMs 

exposed to anti-miR-155 for 24 hours (figure 3.20) thus suggesting the anti-miR was successfully 

repressing its target.  

TNF-α mRNA analysis was performed once on single samples of anti-miR-155 transfected BMMs. 

To investigate the potential function of miR-155 in macrophage migration BMMs from two mice 

were transfected with a range of anti-miR-155 concentrations before time-lapse migration assays 

on fibronectin were performed (figure 4.21). No effect on BMM velocity or accumulated distance 

was observed except for a minor repression caused by 10 nM Scramble-miR. Anti-miR-155 did 

however cause a statistically significant reduction (~40%) in Euclidean distance migrated (figure 

4.21 C). This suggests macrophages were migrating in a less directional manner. These results are 

representative of migration assays performed once with BMMs extracted from two different mice. 
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Figure 4.17 LPS induced expression of miR-155 in the RAW264.7 macrophage cell line is inhibited 

by the IκB kinase inhibitor BMS-345541. A Taqman low density array (TLDA) was performed on 

single samples of cDNA extracted from RAW264.7 4 hours post-LPS. (A) Data was analysed with 

the comparative CT method (2ddCT) for miR-155 normalised to snoRNA202. (B) Corresponding CT 

values are shown.  
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Figure 4.19 Anti-miR-155 has no effect on migration speed or velocity of BMM. Time-lapse 

images were captured every 10 minutes over a 17 hour period of BMMs on plasma fibronectin 24 

hours after transfection with anti-miR-155. (A) Migration velocity, (B) accumulated distance and 

(C) Euclidean distance of BMMs were analyzed with ImageJ processing software. Each bar 

represents the mean of 25 cells ± SEM. Statistical significance was determined using the Student’s 

t-test. * p ≤ 0.05. 
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4.4 Discussion 

 

The importance of cell migration for successful homeostatic processes in eukaryotes is well 

understood. Elucidation of the cellular mechanisms controlling migration is vital to our 

comprehension of its role in the development of various pathologies. The effect of deregulated 

macrophage migration is clearly seen in inflammatory disorders such as diabetic ulceration and 

atheromatous plaque formation. Throughout this chapter macrophage migration has been 

analysed, both with and without LPS pro-inflammatory stimulation. Investigation was focused on 

the functional effects of LPS-driven repression of MMP-10, following the results obtained in 

Chapter 3.  

The gross morphology of BMMs on various 2D substrates in vitro reflects their potential 

interactions in vivo (figure 4.1). Fibronectin, for example, is present in the body in either a soluble 

or less soluble form (Wierzbicka-Patynowski and Schwarzbauer, 2003).  Soluble plasma fibronectin 

is abundant in the blood whilst less soluble cell-associated fibronectin is a major component of the 

ECM and plays an important role in wound healing. BMMs displayed an active and migratory 

morphology with fibronectin as a substrate (figure 4.2 and 4.3). In contrast, 2D type 1 collagen 

induced an unusually rounded morphology in BMMs. This substrate is present in large blood 

vessels but is largely absent from sites of macrophage diapedesis, such as venules and capillaries 

where type IV collagen predominates the basement membrane (Bou-Gharios et al., 2004). Studies 

comparing macrophage adhesion to type 1 collagen with fibronectin revealed that macrophages 

on collagen only made contact with the substrate by the tips of cell processes, whereas on 

fibronectin adhesion was closely opposed to the substratum (Koyama et al., 2000).  Novel 

methods of quantifying cell morphology, in terms of lamellipodia area and cell protrusions, have 

been described (Parker et al., 2002). Further work to apply this to BMMs could enable a hierarchy 

of substrate-induced morphological response to be established.  

In light of these observations it is perhaps unsurprising that Euclidean distance migrated is 

significantly greater for BMMs on fibronectin than those on fibrinogen, type 1 collagen or with 

0.2% fetal calf serum alone, despite no change in migration velocity (figure 4.2). Previous studies 

have revealed similar results, with a trend for increased directional persistence observed for 

BMMs on fibronectin compared to those on glass (Wheeler and Ridley, 2007). Two major cell 

adhesion molecules mediating macrophage adhesion to fibronectin are integrins αvβ3 and α5β1 

(also known as VLA-5). When bound to α5β1, soluble plasma fibronectin dimers become activated 
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and cluster at specific sites on the cell surface (focal adhesions and fibrillar adhesions) forming an 

insoluble network of fibronectin fibrils (Wierzbicka-Patynowski and Schwarzbauer, 2003). This not 

only provides a rigid scaffold for BMM migration and intracellular interaction with the 

cytoskeleton but also instigates cell signalling pathways via the cytoplasmic integrin domain, such 

as the β1-dependent activation of RhoA in epithelial cells (Danen et al., 2002). α5β1 is also known 

to play a critical role in the up-regulation of MMP expression in macrophages cultured on 

fibronectin (Xie et al., 1998). Recently the RhoGEF Arhgef1 has been shown to participate in α5β1 

mediated MMP expression in pulmonary macrophages with exaggerated expression of MMP-2 

and -9 in Argef1-/- cells on fibronectin (Hartney et al., 2010). This provides a novel link between 

the RhoGTPase cycle and integrin-mediated MMP control. It is likely that the BMMs studied in this 

chapter express α5β1 in response to culture on fibronectin. It is also possible therefore that the 

interaction with fibronectin is affecting their MMP expression profile as well as their migratory 

capacity.  

Like fibronectin, plasma fibrinogen is also a soluble blood protein with a role in wound healing. 

Following trauma to the blood vessel wall the ‘coagulation cascade’ is activated, resulting in the 

cleavage of fibrinogen to fibrin by the serine protease thrombin. Fibrin is then cross-linked to form 

the blood clot which acts as a scaffold for macrophages migrating to the site of injury. The 

relevance of this substrate to macrophage migration in vivo is clear, however in vitro we see no 

effect on accumulated or Euclidean distance migrated (figure 4.2 and 4.3). Macrophages are 

known to express integrin αMβ2, which binds immobilised fibrinogen with great avidity 

(Mosesson, 2005). The strength of this interaction however is increased in the presence of 

fibronectin, due to a direct interaction between the amino-terminal domains of each substrate 

(Blystone et al., 1991). It is possible that, on a more physiologically relevant combination of 

substrates, such as fibrinogen and fibronectin together, BMMs would show increased binding by 

αMβ2 and subsequently increased migration. 

Type 1 collagen forms triple-helical fibrils that, as explained above, are widely expressed 

throughout the body though not necessarily in areas of macrophage function. Due to the rounded 

morphology observed for BMMs on type 1 collagen it follows that their migratory capacity may 

also be altered. Despite a trend for reduced velocity and accumulated distance, however, the 

Euclidean distance migrated by BMMs on 2D type 1 collagen varies little to that seen for untreated 

cells (figure 4.2 and 4.3). From what we know about the ‘loose’ adhesions formed by macrophages 

on type 1 collagen (Koyama et al., 2000) this suggests that macrophages may ‘roll’ along the 
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surface of the substrate rather than forming strong adhesions with the collagen fibrils. Integrins 

α1β1 and α2β1 bind type 1 collagen and studies have shown that α1 deficiency can lead to 

reduced macrophage migration, specifically in the advanced atherosclerotic plaques of α1-/-/ApoE-

/- mice (Schapira et al., 2005). This indicates that macrophage migration in type 1 collagen is 

physiologically relevant. Recent work with human macrophages derived from human blood 

monocytes (MDMs) reflects results seen with BMMs; MDMs take on an amoeboid morphology on 

fibrillar type 1 collagen and show less directional migration than cells in gelled 3D type 1 collagen 

(Van et al., 2010). This suggests that BMMs would respond differently to type 1 collagen in a 3D 

formation and suggests that ECM structure and extracellular ligand spacing, as well as ECM 

composition, plays an important role in the migratory phenotype of macrophages. However, as 

type 1 collagen did not appear to be conducive for BMM migration in this model it was not 

pursued further here. 

The relationship between macrophage migration and LPS stimulation is fairly well characterised. In 

terms of migration towards a gradient of LPS, macrophage recruitment has been shown to 

increase both in vivo and in vitro. For example, LPS increases macrophage infiltration into the 

lungs of mice in a CD44-dependent manner (Hollingsworth et al., 2007). CD44 is a cell surface 

adhesion molecule known to play a role in cell adhesion and cell migration. Similarly, RAW264.7 

macrophages have shown increased migration across an uncoated membrane in response to LPS 

in vitro (Gu et al., 2010).  This increased migratory capacity is, in part, due to LPS-induced changes 

in the macrophage cytoskeleton. For example, the indirect phosphorylation and co-localisation of 

cytoskeletal proteins Pyk2 and paxillin was observed in membrane ruffles of LPS treated 

macrophages (Williams and Ridley, 2000). In this chapter BMMs exposed to LPS certainly displayed 

greater areas of lamellipodia and numbers of filopodia, consistent with this finding (figure 4.2). 

Despite the evidence for increased migration and macrophage activation in a gradient of LPS 

(Hollingsworth et al., 2007), a trend for reduced migration velocity and accumulated distance was 

observed for LPS treated BMMs in 0.2% serum and on fibrinogen, with a significant reduction seen 

on fibronectin (figure 4.3). Interestingly, the Euclidean distance migrated by LPS-stimulated BMMs 

on fibronectin did not vary from that of untreated cells and this is reflected in their migration plots 

(figure 4.4). This suggests that the more directional migration induced by culture on fibronectin 

cannot be further enhanced by LPS in BMMs. 

To resolve this perceived discrepancy in LPS-induced macrophage migration it is important to 

consider the physiological relevance of this response. Whilst previous work has shown increased 
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migration towards an LPS gradient, mimicking the migration of macrophages towards sites of 

infection in vivo; these observations reveal a suppression of migration in a relatively high, yet 

uniform, concentration of LPS (100 ng/ml), perhaps mimicking macrophage arrest in tissues with 

elevated pathogen level. Simply put, these results suggest that velocity of macrophage migration 

may slow once cells have reached their site of action, i.e., maximum pathogen concentration. 

Again, the Rho GTPases appear to play a role in mediating the directionality of macrophage 

migration. Rac1, for example, controls random migration with a correlation between decreasing 

Rac1 activation and increased directionality (Allen et al., 1998a; Pankov et al., 2005). This would 

suggest that Rac1 may be down-regulated by LPS, however studies have shown that Rac1 activity 

is in fact induced by uniform concentrations of LPS over time (Kong and Ge, 2008). It is clear, 

therefore, that the mechanisms controlling LPS-induced macrophage migration are complex, and it 

would be of great interest to explore the activation of Rho GTPases in LPS-stimulated BMMs to 

further elucidate the signalling pathways involved.  

It has recently become apparent that the MMPs play an intriguing role in cell migration 

downstream of Rho GTPase signalling in non-small cell lung cancer (NSCLC) cells (Frederick et al., 

2008). Frederick et al have shown MMP-10 expression to be down-regulated by RNAi mediated 

knockdown of Rac1 or the Rac1 binding protein Par6α, whilst RNAi against MMP-10 itself 

decreases migration of NSCLC cells through Matrigel. This suggests a role for MMP-10 in 

responding to migrational cues. In this chapter siRNA mediated knockdown of MMP-10 induced a 

BMM morphology similar to that seen in LPS treated BMMs; cells appear less polarised, with larger 

areas of lamellipodia and less membrane protrusions (figure 4.10). Other MMP-deficient myeloid 

cells have shown a similar response, for example, osteoclasts derived from the bone marrow of 

MT1-MMP/MMP-14-/- mice display fewer membrane protrusions whilst also exhibiting reduced 

migration through endothelial monolayers (Gonzalo et al., 2010). Results in this chapter 

demonstrate a significantly reduced velocity and distance migrated by MMP-10-deficient BMMs 

on fibronectin with this clearly reflected in the corresponding migration plots (figure 4.11 and 

4.12). Again, analysis of the Rho GTPases in these cells, specifically Rac1 activation, would be 

interesting.  

Interestingly in vivo analysis of pneumonia induced by the gram-negative bacterium P. aeruginosa 

in MMP-10-null mice reveals increased levels of pulmonary inflammation (Kassim et al., 2007) 

supporting the hypothesis that MMP-10 is vital for proper control of immune cell migration, such 

as macrophages, in a physiologically relevant setting. 
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The effect of MMP-10 knockdown on BMM migratory phenotype is rescued with the addition of 

rhMMP-10 to culture medium; the velocity and accumulated distance migrated is restored to that 

of scrambled siRNA treated cells on fibronectin (figure 4.12). This suggests that the role of MMP-

10 in BMM migration is extracellular, possibly acting on the fibronectin substrate. This hypothesis 

is further strengthened by the results of recent preliminary experiments with BMMs harvested 

from the mmp10-/- mouse. Analysis of random migration on fibronectin reveals a reduction in 

distance and velocity migrated by mmp10-/- BMMs compared to back-crossed wild-type control 

BMMs, which can also be rescued by the addition of rhMMP-10 (data not shown). Fibronectin is a 

known substrate of MMP-10 (Chin et al., 1985) and it is possible that the MMP-10 protein (either 

endogenously secreted by BMMs or exogenously applied) is able to cleave the 2D fibronectin. This 

could enhance migration either by creating a path for the macrophages through the substrate or 

releasing potentially pro-migratory fibronectin cleavage fragments. Previous work has shown that 

fibronectin fragments are capable of modulating monocyte migration. For example, monocytes 

incubated with fibronectin fragments obtained from post-infarction cardiac lymph fluids showed 

decreased expression of α5β1 and altered migration (Trial et al., 1999). Surprisingly however Trail 

et al revealed a clustering of monocytes and a decrease in migration in response to these 

fibronectin fragments, suggesting that this is not the mechanism at play in the BMMs studied in 

this chapter. Interestingly the reduction in Euclidean distance migrated was not restored by 

rhMMP-10, despite its effect on velocity, suggesting that the mechanisms controlling directional 

migration of BMMs are more complex and perhaps regulated intracellularly, as opposed to the 

result of extracellular substrate remodelling.  

Repression of BMM miR-155 expression with LNA oligonucleotides had no effect on migration 

velocity or accumulated distance on fibronectin but did repress Euclidean distance at the highest 

concentration used (figure 4.19). This suggests that miR-155 may play a role in control of 

directionality of migration and supports what is already known about miR-155 targeting the Rho 

GTPase, RhoA, in epithelial cells (Kong et al., 2008). Constitutive over-expression of RhoA in 

macrophages has been found to repress their ability to polarise and migrate in response to a CSF-1 

gradient (Allen et al., 1998b). One can speculate, therefore, that repression of miR-155 in BMMs 

may potentially de-repress RhoA activity and could result in reduced directionality. It would be 

vital, therefore, to analyse the expression and activation of the Rho GTPases in BMMs during 

migration and following miR-155 knock down to further understand the LPS-driven macrophage 

migratory response. Similarly, it would be important to analyse the effect of anti-miR-155 on LPS-

driven repression of migration. MMP-10 has been found to increase in expression following miR-
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155 knockdown in human monocyte-derived dendritic cells (Ceppi et al., 2009), hinting at a 

potential mechanism for MMP-10 repression in BMMs. Therefore, it can be hypothesised that 

anti-miR-155 treatment of LPS-stimulated BMMs may rescue the reduction in migration seen on 

fibronectin. 
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Chapter 5: Metalloproteinase expression 

in wounded and healthy skin from 

diabetic and non-diabetic mice 
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5.1 Introduction 

 

5.1.1 The role of macrophages in the wound healing response  

The wound healing response in healthy tissue (explained in detail in Chapter 1, 1.3.2,) comprises, 

in part, a cascade of pro-inflammatory cell recruitment events, commencing with an influx of 

neutrophils closely followed by the diapedesis of circulating monocytes that differentiate into 

tissue macrophages. The role of macrophages in wound healing is vital; macrophage depletion in 

wounds has been shown to dramatically delay resolution of tissue damage and wound closure 

(Maruyama et al., 2007; Mirza et al., 2009).  

The function of the macrophage during wound healing is two-fold. Following the anti-microbial 

action of the invading neutrophils, macrophages are recruited in a classic phagocytic capacity to 

clear the wound of debris, such as degraded ECM components (including fibrin) and spent 

neutrophils (Leibovich and Ross, 1975). Macrophages also play an important role in triggering 

neovascularisation, angiogenesis and fibro-proliferation in wounds due to their ability to express 

numerous cytokines and growth factors (Martin and Leibovich, 2005).  

In their role as phagocytes macrophages are responsible for the clearance of large numbers of 

apoptotic neutrophils that, if allowed to remain at the wound site, contribute to a build up of 

debris that can be detrimental to healing. It has recently been postulated however that this 

phagocytosis alone cannot entirely account for the reduction in neutrophil numbers at the wound 

site, but rather macrophages also secrete proteases that indirectly inhibit neutrophil recruitment 

through the cleavage of several chemokines, such as IL-8 (Dean et al., 2008). Simultaneously, 

hypoxic conditions at the wound site can trigger a pro-angiogenic/neovasculogenic macrophage 

phenotype capable of producing factors that stimulate the growth and migration of endothelial 

cells. For example, macrophages have been found to secrete basic fibroblast growth factor (bFGF), 

vascular endothelial growth factor (VEGF) and interleukin (IL)-8 (Sunderkotter et al., 1994) 

stimulating the growth of new blood vessels in wounded tissue. This process is clearly vital for the 

rapid resolution of wounding and to prevent further tissue damage. 

5.1.2 Expression of matrix metalloproteinases during wound healing 

MMP expression is vital for a timely and efficient wound healing response (Lund et al., 1999; 

Mirastschijski et al., 2002). The role of the MMPs in wound healing can be divided into two classes; 

those that mediate tissue remodelling by degradation of the extracellular matrix (ECM), and those 

that cleave and inactivate (and occasionally activate)  chemokines. In the main, investigation into 
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the ability of MMPs to mediate tissue remodelling in wounds has focused on their ECM-degrading 

function. For example, in man MMP-1 is found localised to the basal keratinocyte layer of 

wounded skin, where it is shown to facilitate the migration of keratinocytes by cleaving the 

collagen-integrin contacts that form with the dermal matrix (Pilcher et al., 1997).  

The ability of MMPs to degrade ECM is no longer considered to be their major function in this 

context, however, and focus has shifted to their role in fine-tuning the chemokine and growth 

factor response (reviewed in (Gill and Parks, 2008)). For example, macrophages control the 

clearance and recruitment of neutrophils in wounds by secreting a protease, namely MMP-12. 

Macrophage MMP-12 cleaves and inactivates potent pro-neutrophil chemokines CXCL-5 and -8, 

preventing further influx into wound tissue. Over time MMP-12 expressed by macrophages in the 

wound further contributes to the degradation of pro-monocyte/macrophage chemokines CCL2, 7, 

8 and 13, to disrupt their own recruitment and bring about the resolution of inflammation (Dean 

et al., 2008). MMP-10 has also been proposed to play a role in wound healing and is seen 

expressed in similar patterns to MMP-1 in basal keratinocytes (Pilcher et al., 1997) but appears to 

be regulated in a spatiotemporal manner, peaking in expression at both day 1 and day 5 post 

wounding (Madlener et al., 1996). Over expression of MMP-10 in wounded epithelium disrupts 

cell migration at the wound edge, possibly triggered by increased keratinocyte apoptosis; reduces 

expression of laminin-5, important in cell adhesions; and triggers the aberrant expression of β1 

integrins (Krampert et al., 2004). Interestingly MMP-10 has also been found to be expressed in 

intestinal wounds; specifically in the migrating enterocytes surrounding gastric ulcers (Salmela et 

al., 2004). Despite the clear necessity for tight regulation of MMP-10 expression during wound 

healing and recent work investigating inflammation in the MMP-10 null mouse (Kassim et al., 

2007), the specific mode of action for this MMP in this context has not yet been elucidated. 

5.1.3 Impaired wound healing in type II diabetes 

Impaired wound healing has long been associated with type II diabetes, particularly in elderly 

patients (Liu et al., 2008). Factors that contribute to this are an abnormal inflammatory response 

and decreased angiogenesis due to a reduction in VEGF expression (Liu et al., 2008); both of which 

are partly influenced by the macrophage contingent of the wound healing response. 

The type II diabetic Db/Db mouse can be used to model impaired wound healing in vitro. In 

healthy, non-diabetic mice studies have shown full thickness wounds of 2.25cm2 to heal fully 

within 16 days. In Db/Db counterparts however wounds fail to heal even by 40 days post-

wounding (Greenhalgh et al., 1990). Several growth factors have been implicated in wound healing 
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and studies of their induction post-wounding in Db/Db mice has revealed important discrepancies 

in expression: levels of insulin-like growth factor (IGF)-1 mRNA in non-diabetic wounds, for 

example, show a sharp increase at 3 days post wounding whilst IGF-1 mRNA levels in Db/Db fail to 

peak until 14 days post-wounding (Brown et al., 1997). Brown et al have also observed a similarly 

delayed response for IGF-1 protein levels in wounds. Unsurprisingly, knowledge of some of the 

triggers for delayed wound healing in Db/Db skin has led to studies attempting to rescue this 

phenotype with exogenous growth factors. Hepatocyte growth factor/scatter factor (HGF/SF), for 

example, has potent cell growth and motility properties during embryonic organ development and 

is thought to play a role in adult organ regeneration. Application of HGF/SF on Db/Db wounds has 

been shown to increase wound re-epithelialisation and neovascularisation, and stimulate greater 

numbers of neutrophils, macrophages, endothelial cells and mast cells to the diabetic wound 

(Bevan et al., 2004). Bevan et al hypothesise that this growth factor acts both directly and 

indirectly on macrophages, via either the stimulation of the macrophage c-Met receptor triggering 

migration and chemokine expression, or by triggering the expression of platelet activating factor 

(PAF) in macrophages that in turn contribute to angiogenesis. 

The matrix metalloproteinases have also been implicated in impaired diabetic wound healing, both 

in the Db/Db model and in chronic diabetic foot ulcers in man. Expression of the gelatinases, pro-

MMP-2 and pro-MMP-9, has been shown to be significantly reduced at 5 days post wounding in 

Db/Db skin  compared to non-diabetic Db/+ skin. Pro-MMP-9 is also reduced in Db/Db wound fluid 

5 days post-wounding and in the wound fluid from chronic human diabetic foot ulcers compared 

to acute control wounds (Wall et al., 2002). This highlights the importance of proteases in tissue 

remodelling, such as that which takes place during wound healing, and suggests that the role of 

certain MMPs during wound healing may be conserved between species. 

 

5.2 Aims 

In light of previous experiments that revealed differential MMP-10 expression in BMMs following 

LPS stimulation, the expression of MMP-10 mRNA in BMMs from the type II diabetic Db/Db and 

non-diabetic Db/+ mouse with and without LPS stimulation was determined. 

To explore MMP-10 expression in vivo, specifically during wound healing, MMP-10 mRNA and 

protein expression in normal skin and full thickness wounds from Db/Db and Db/+ mice at both 5 

and 7 days post-wounding was analysed.  
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5.3 Results 

 

5.3.1 LPS treatment represses MMP-10 mRNA expression in bone marrow-derived 

macrophages from the Db/Db type II diabetic mouse and the Db/+ heterozygous 

counterpart 

In order to investigate any potential variation in macrophage function key LPS-responsive 

macrophage MMPs identified in Chapter 3 were analysed in diabetic bone marrow-derived 

macrophages (BMMs). BMMs from type II diabetic (Db/Db), heterozygous control (Db/+) and wild 

type C57BL6 (WT)  mice were exposed to 100 ng/ml lipopolysaccharide (LPS) for 24 hours before 

total RNA was extracted and quantitative RT-PCR (qRT-PCR) performed. The statistically significant 

repression of MMP-10 mRNA 24 hours post-LPS stimulation seen in WT BMMs was also observed 

in Db/Db and Db/+ BMMs (figure 5.1 A, B, C). The corresponding CT values reveal similar levels of 

expression in all three macrophage genotypes (figure 5.1 D, E, F). To confirm that these results are 

not due to a universally repressive effect of LPS on MMP expression the levels of steady-state 

MMP-14 (MT1-MMP) mRNA was analysed. A significant induction of MMP-14 is also seen across 

all three BMM genotypes (figure 5.2 A, B, C). Again, CT values reveal similar levels of expression in 

all three macrophage populations (figure 5.2 D, E, F). These results suggest that the diabetic 

phenotype does not affect BMM ability to respond to LPS in terms of MMP expression, at least in 

vitro. 

These results are representative of two experiments with all experiments performed in triplicate. 
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5.3.2 The expression of MMP-10, TNF-α and the murine macrophage marker, F4/80, in normal 

and wounded skin suggest aberrant response to wounding in the type II diabetic Db/Db 

mouse 

The wound healing response of the Db/Db mouse has been well characterised in terms of immune 

cell recruitment and some work has been performed studying expression of the gelatinases, MMP-

2 and -9 (Wall et al., 2002; Bevan et al., 2004) and ADAMTS1 (Krampert et al., 2005). A comparison 

of gross wound morphology in Db/Db skin compared to Db/+ skin reveals a difference in wound 

size after 5 days (figure 5.3 C, D). The physiological difference between Db/Db and Db/+ mice, due 

to obesity of the type II diabetes model, means that only two biopsy wounds can be made in the 

dorsal flank of the Db/+ mouse compared with four on the Db/Db dorsal flank (figure 5.3 A, B). In 

subsequent mRNA analysis Db/+ controls have occasionally been omitted to conserve tissue for 

protein analysis. 

A full list of mice used and wound number is included in the Appendix (table 8.3). 

 

 

Figure 5.3 Gross morphology of full thickness skin wounds on the dorsal flank of Db/Db and 

Db/+ mice after 5 days. (A, C) Four full-thickness punch biopsies are made in the dorsal flank skin 

of the obese Db/Db mouse. Circular dotted line indicates wound edge and squared dotted line 

indicates tissue harvested. (B, D) The Db/+ heterozygous control can only sustain two punch 

biopsies due to its size. (E) Biopsy tissue is retained following wounding procedure and serves as a 

‘day 0’ control whilst wound tissue is harvested after indicated healing time. One half of wound 

tissue is reserved for protein extraction and one half for RNA extraction. 

 

 

6 mm 
biopsy 
punch

biopsy 
tissue

wound 
tissue

A. B. C.

D.
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Relative levels of MMP-10, TNF-α and F4/80 mRNA were examined in Db/Db and Db/+ normal skin 

and some preliminary wounded tissue (figure 5.4). At 5 days post-wounding the relative level of 

MMP-10 mRNA appears enhanced in Db/+ wound tissue (n = 1) compared with Db/+ normal skin 

(n = 3) and the corresponding CT values reflect this. In Db/Db wounds (n = 2) the pattern of MMP-

10 mRNA induction appears the same (figure 5.4 A, D). Relative levels of TNF-α mRNA expression 

also suggest an increase in wounded compared to normal skin, for both Db/+ and Db/Db (figure 

5.4 B, E).  Interestingly CT values for F4/80 mRNA, a murine macrophage specific marker, are 

particularly high and out of the range considered to indicate expression in both Db/Db and Db/+ 

samples (figure 5.4 C, F).  

The ‘n’ numbers given in figure 5.4 indicate the number of different mice analysed. 
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The level of MMP-10 protein in wounded and normal Db/+ skin, revealed by Western blotting, 

seems to correspond with the mRNA levels described above (figure 5.5); after 5 days post-

wounding the 57 KDa proMMP-10 form is increased compared to normal skin whilst the 47 KDa 

processed form is no longer expressed. This suggests either an increase in MMP-10 transcript 

translation or a decrease in proMMP-10 processing. In Db/Db tissue MMP-10 protein expression is 

more ambiguous as several bands are observed. In both wounds analyzed the level of processed 

MMP-10 appears to be raised compared with normal skin, whereas levels of the pro form do not 

appear to change.  

 

Figure 5.5 Western blot for MMP-10 protein expression in skin 5 days post-wounding. Wound 

tissue and normal skin was harvested 5 days post-wounding and snap frozen. Protein was 

extracted as described in Chapter 2 and equal concentrations were loaded into each well. 2.5 ng of 

rhMMP-10 was loaded as a positive control which runs at the slightly lower molecular weight of 

54KDa. Position of BioRad Precision Plus protein standards are indicated. 

 

 

100

75

50

37

MW MMP-10

no
rm

al
 1

no
rm

al
 2

no
rm

al
 1

w
ou

nd
 1

w
ou

nd
 2

w
ou

nd
 1

Db/Db Db/+

Day 5

Mr x 103

Mouse 1 Mouse 2 Mouse 1

ProMMP-10
MMP-10



157 
 

To further investigate the aberrant expression of MMP-10 in Db/Db skin, wound tissue was 

harvested 7 days post-wounding (n = 3) for comparison with day 5 samples (n = 2) and day 0 

unwounded tissue (n = 3). MMP-10 mRNA was undetectable in day 0 skin but shows a trend for 

enhanced expression at day 5 and significant increase by day 7, which is made clear by the 

associated CT values (figure 5.6 A, D). Expression of TNF-α mRNA also shows a trend toward 

increase at day 5 and a significant increase at day 7 (figure 5.6 B, E). Expression of F4/80 mRNA 

appear to peak at day 5 in Db/Db wounded skin and is significantly greater by day 7 (figure 5.6 C, 

F).  As observed previously however, CT values for F4/80 mRNA expression are high (≥35). This 

perhaps reflects that fact that mRNA was extracted from whole tissue including epidermis, dermis 

and some subcutaneous tissue. 
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Again, MMP-10 protein levels in corresponding tissue samples were examined by Western blot 

revealing a possible increase in the 57 KDa proMMP-10 levels 7 days post wounding (figure 5.7). 

By day 7 the potential 47 KDa processed MMP-10 band has decreased, similar to the response 

seen at 5 days post wounding in Db/+ tissue (figure 5.5).  

The qRT-PCR (figure 5.6) and Western blot (figure 5.7) comparison of MMP-10 expression in 

wounds harvested at different time points was performed once. 

 

 

Figure 5.7 Western blot for MMP-10 protein expression in Db/Db skin 5 and 7 days post-

wounding. Wound tissue and normal skin was harvested 5 or 7 days post-wounding and snap 

frozen. Protein was extracted as described in Chapter 2 and equal concentrations were loaded into 

each well. Position of BioRad Precision Plus protein standards are indicated. 
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5.3.3 Expression of MMP-10, TNF-α and the murine macrophage marker F4/80, in type II 

diabetic Db/Db mouse wound explants cultured with LPS 

As a model system of in vivo infection wounded Db/Db and Db/+ skin tissue was harvested 7 days 

post-wounding and then cultured ex vivo with 100 ng/ml LPS for a further 24 hours. This enabled 

analysis of MMP-10, TNF-α and F4/80 in response to LPS in a more physiologically relevant 

environment. In terms of F4/80 expression this would reflect the presence of resident 

macrophages together with macrophages recruited in response to LPS. 

No significant change in expression of MMP-10, TNF-α and F4/80 mRNA was observed in LPS-

treated wound explants (see Appendix, figure 8.3). Corresponding MMP-10 protein levels in LPS-

treated Db/Db and Db/+ wound explants were examined by Western blot along with unwounded 

Db/Db and Db/+ explants (figure 5.8). In unwounded tissue basal levels of MMP-10 are higher in 

Db/+ skin than Db/Db skin, but in both cases expression appears inhibited when cultured with 100 

ng/ml LPS for 24 hours (figure 5.8 A). In wounded tissue explants there is little difference in basal 

Db/Db MMP-10 protein expression and MMP-10 protein in Db/Db samples cultured with LPS. In 

Db/+ wound explants, however, there appears to be an increased level of MMP-10 protein 

following LPS treatment (figure 5.8 B). This suggests that expression of MMP-10 in non-diabetic 

skin has further potential to be regulated by LPS ex vivo.  

Table 5.1 shows a summary of relative MMP-10, TNF-α and F4/80 expression in wound tissue from 

both Db/Db and Db/+ mice. 
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Table 5.1 A summary of MMP-10, TNF-α and F4/80 mRNA and protein expression in Db/Db and 

Db/+ skin in response to wounding or LPS treatment. Information compiled from figures 5.4 – 5.8 

and Appendix, figure 8.3. For quick reference; green text indicates an increase in expression, red 

text indicates a decrease in expression and black text indicates no change. 

 

 

 

Genotype

Wound Db/Db Db/+

Day 5

MMP-10 mRNA

ProMMP-10 (57KDa) protein

Processed MMP-10 (47 KDa) protein

TNF-α mRNA

F4/80 mRNA (≥ 34 CT)

MMP-10 mRNA

ProMMP-10 (57 KDa) protein

Processed MMP-10 (47 KDa) protein

TNF-α mRNA

F4/80 mRNA (≥ 34 CT)

Day 7

MMP-10 mRNA

ProMMP-10 (57 KDa) protein

Processed MMP-10 (47 KDa) protein

TNF-α mRNA expression

F4/80 mRNA (≥ 34 CT)

Day 7 + 
24 hours 

LPS 

MMP-10 mRNA

TNF-α mRNA

F4/80 mRNA (≥ 34 CT)

ProMMP-10 (57 KDa) protein

ProMMP-10 (57 KDa) protein (in wound)

ProMMP-10 (57 KDa) protein (in unwounded 
tissue)
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5.3.4 Immunohistochemistry reveals localised expression of MMP-10 and F4/80 in wound 

tissue from the type II diabetic Db/Db mouse 

Expression of MMP-10 has previously been analysed in wounds, showing localisation to basal 

keratinocytes at the base of the epidermal tongue (Krampert et al., 2004) and especially high 

expression in chronic diabetic ulcers (Rechardt et al., 2000). To address the question of whether 

MMP-10 is expressed in macrophage-rich regions in wounds, tissue was sectioned, fixed and 

stained for MMP-10 and F4/80.  

Wound architecture was determined by haematoxylin staining normal and wounded Db/Db and 

Db/+ skin (figure 5.9). The most striking differences between Db/Db and Db/+ skin is the thick 

layer of adipose tissue present in Db/Db tissue due to obesity, and the impaired formation of 

granulation tissue (figure 5.9 B and D).  

 

Figure 5.9 Architecture of normal skin and wound tissue harvested from the dorsal flank of Db/+ 
and Db/Db mice. 10 µm sections were fixed and stained with haematoxylin for comparison of (A, 
B) normal skin and (C, D) excisional wound architecture 7 days post wounding. Labels indicate: e – 
epidermis, et – epidermal tongue, d – dermis, a – adipose tissue, g – granulation tissue, hf – hair 
follicle. Dashed line represents wound edge. Scale bar = 200 µm. 
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In order to explore macrophage distribution in the skin immunofluorescent staining for F4/80 

expression was performed. A scattered distribution of macrophages is observed throughout the 

dermis in both Db/Db and Db/+ unwounded skin (figure 5.10 A, C). A greater number of F4/80 

positive cells are apparent in Db/Db tissue however, particularly localised to the bottom of the 

dermis and surrounding adipose tissue. F4/80 staining appears to be specific as indicated by the 

secondary only control (Appendix, figure 8.4 C) and may therefore be indicative of the pro-

inflammatory state the diabetic phenotype imposes on all tissues of the body. Expression of MMP-

10 in Db/+ and Db/Db normal skin is minimal and appears to be more diffuse than cell-specific 

(figure 5.10 B, D).  

A non-fluorescent staining method known as ABC (avidin-biotin complex) DAB (diaminobenzidine) 

peroxidise staining (DAB staining) was also utilized to investigate the localisation of MMP-10 and 

F4/80 in Db/+ and Db/Db skin. DAB staining exploits the high degree of affinity and specificity 

between the biotinylated secondary antibody and an avidin/horseradish peroxidise conjugate. This 

not only results in a more permanent stain but also amplifies signal greatly. In combination with a 

haematoxylin counter-stain this enables the visualisation of both MMP-10 and F4/80 protein 

expression in wound histology more clearly.  

DAB staining for F4/80 expression in normal skin reveals low levels of macrophages in Db/+ skin 

(figure 5.11 A) and suggests a greater number in Db/Db skin (figure 5.11 B). Secondary antibody-

only controls suggest that staining of the adipose layer may be non-specific, particularly in Db/+ 

skin (figure 5.11 C, D). DAB staining for MMP-10 shows minimal expression in Db/+ skin and no 

expression in Db/Db tissue (figure 5.11 E, F), which was not unexpected (Madlener et al., 1996). 

Secondary only controls reveal non-specific staining in the adipose tissue and around the hair 

follicles (figure 5.11 G, H). 
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F4/80 F4/80

Db/+ 

Db/+ 

Db/Db 

Db/Db 

E. F.
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2˚ only 2˚ only

MMP-10 MMP-10

Figure 5.11 DAB staining for F4/80 and MMP-10 in normal tissue from Db/+ and 

Db/Db dorsal flank. 10 µm sections were fixed and stained for (A, B) F4/80, (E,F) MMP-

10 or (C, D, G and H) treated with secondary only control. Tissue was counterstained 

with haematoxylin to emphasize skin architecture and appears blue whilst protein of 

interest is brown. Inserts show detail highlighted in black box. Scale bar = 200 µm.  
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As both DAB and immunofluorescent staining techniques have their own benefits both were 

utilised to further investigate F4/80 and MMP-10 expression in wounded tissue. 

Immunofluorescent staining for F4/80 in Db/+ wound tissue reveals increased concentration of 

fluorescent F4/80 positive cells, chiefly in the granulation tissue (to the right of the wound edge, 

figure 5.12 A, C). In Db/Db tissue however there appear to be fewer F4/80 positive cells in the 

granulation tissue immediately next to the wound edge, but still a relatively large amount of 

staining further into the granulation tissue (figure 5.12 B, D).  

DAB staining for F4/80 in wounded tissue from both Db/+ and Db/Db mice gives a clearer 

representation of macrophage distribution in wound tissue. In Db/+ wounds F4/80 staining is 

concentrated around the wound edge, on the border between dermis and granulation tissue and 

below the area covered by the epidermal tongue. F4/80 immunostaining is absent from the 

epidermis (figure 5.12 E). In Db/Db wound tissue there appears to be increased F4/80 

immunostaining throughout the dermis and granulation tissue with no obvious area of increased 

concentration. There also appears to be some staining towards the tip of the epidermal tongue 

(figure 5.12 B). This is not visible in the Db/+ tissue, perhaps due to the advanced migration of the 

epidermal tongue. 

 

 

 

 

 

 

 

Figure 5.12 Immunostaining for F4/80 expression in 5 day wounded tissue from Db/Db and Db/+ 

mouse dorsal flank. 10 µm sections were fixed and fluorescently stained for (A-D) F4/80 and DAPI 

or (E-H) DAB stained for F4/80. (A,C) F4/80 staining in Db/+ wound reveals an activated 

morphology at the wound edge. White box indicates field of view enlarged in image below. (B, D) 

F4/80 positive cells in Db/Db wound appear rounded at the wound edge. White box indicates field 

of view enlarged in image below. (E,F) DAB staining reveals more F4/80 positive cells at the wound 

edge in Db/+ skin compared to Db/Db skin. Black box indicates inset. (G,H) 2˚ antibody only 

control.  (A,B) Scale bar = 75 µm, (C,D) Scale bar = 50 µm, (E-H) Scale bar = 400 µm.  
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Immunolocalisation of MMP-10 in Db/+ and Db/Db wounds also reveals some difference in 

expression between the phenotypes (figure 5.13). In Db/+ wounded skin, for example, MMP-10 

immunostaining appears fairly diffuse with a small area of positive staining at the base of the 

migrating epidermal tongue at the wound edge (figure 5.13 A, C). In equivalent Db/Db wounds this 

area of staining does not appear to be as clearly defined, if present at all (figure 5.13 B, D). The 

base of the epidermis is known to be populated with keratinocytes, known as basal keratinocytes, 

and this area has previously been shown to stain positively for MMP-10 (Krampert et al., 2004), 

suggesting this as the source of MMP-10 expression in this experiment. MMP-10 positive cells 

were also observed in the granulation tissue of Db/+ wounds (figure 5.14 A-C). No such specific 

staining was detected in Db/Db granulation tissue. 

DAB staining for MMP-10 in Db/+ and Db/Db wounded tissue is less revealing than that of F4/80 

(figure 5.13). In wounded tissue from the Db/+ mouse there appears to be a small area of cell 

associated staining at the border between epidermal tongue and granulation tissue (figure 5.13 E) 

however the section has split along this border making it difficult to determine the accuracy of 

these images.  There also appears to be some faint brown staining in the secondary only control 

(figure 5.13 G, open arrowheads), which may indicate action of endogenous peroxidises. In Db/Db 

tissue positive MMP-10 staining is visible at the tip of the epidermal tongue (figure 5.13 F, 

arrowheads), which has been described previously (Madlener et al., 1996). This cannot be seen in 

Db/+ tissue as the epidermis has almost healed; indicative of the Db/Db delayed healing response. 

Interestingly this area of MMP-10 expression is in a similar vicinity to an area of F4/80 expression 

(sections < 160 µm apart; figure 5.14). 

A summary of the immunohistochemical staining for MMP-10 and F4/80 in normal and wounded 

Db/Db and Db/+ skin is shown in Table 5.2. 

 

Figure 5.13 Immunostaining for MMP-10 expression in 5 day wounded tissue from Db/Db and 

Db/+ mouse dorsal flank. 10 µm sections were fixed and fluorescently stained for (A-D) MMP-10 

and DAPI or (E-H) DAB stained for MMP-10. (A,B) MMP-10 staining in Db/+ wound reveals a 

concentration at the wound edge and at the base of the epidermal tongue. White box indicates 

field of view enlarged in image below. (B, D) MMP-10 staining at the wound edge is reduced in 

Db/Db wound. White box indicates field of view enlarged in image below. (E,F) DAB staining for 

MMP-10 shows expression along the base of the epidermal tongue in Db/+ wound and in the tip of 

the epidermal tongue in Db/Db wound. Black box indicates inset. (G,H) 2˚ antibody only control.  

(A,B) Scale bar = 75 µm, (C,D) scale bar = 50 µm, (E-H) Scale bar = 400 µm.  
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Figure 5.14 Immunofluorescent staining for MMP-10 expression reveals MMP-10 positive cells 

in Db/+ 5 day wound granulation tissue. 10 µm sections were fixed and stained for MMP-10 and 

DAPI. (A) Composition image of MMP-10 localisation at wound edge. (B) MMP-10 localisation and 

DAPI staining in granulation tissue. (C) Higher power image of MMP-10 positive cells in 

granulation tissue. g – granulation tissue, e – epidermis, d – dermis, et – epithelial tongue. White 

boxes indicate area shown in subsequent picture. (B) Scale bar = 75 µm, (D) scale bar = 10 µm.  
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Table 5.2 A summary of MMP-10 and F4/80 protein expression and localisation in Db/Db and 

Db/+ 5 day wound tissue and normal skin. Information compiled from figures 5.10 – 5.15. 

Genotype

Normal Skin Wounded Skin

F4/80 MMP-10 F4/80 MMP-10

Db/+ Minimal expression Minimal expression
Increased expression
in granulation tissue 
and at wound edge

Some increased
expression at base of 
epidermal tongue
and at wound edge

Positive cells found in 
granulation tissue

Db/Db
Some diffuse 
expression

Some diffuse 
expression

Increased expression 
in granulation tissue
and tip of epidermal 
tongue 

Does not reach 
intensity seen in 
Db/+

Positively stained 
cells at tip of 
epidermal tongue
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5.4 Discussion 

 

Understanding the significance of macrophage activity during the wound healing process is vital 

for the treatment of chronic wounds, prevalent in diseases such as type II diabetes. There is 

currently little treatment available for chronic wound healing other than prevention of infection 

and pain management (Campbell, 2009). As a common problem causing great discomfort in type II 

diabetic patients it is vital to understand the pathophysiology of the chronic wound in order to 

develop better treatments and prevent potentially serious consequences developing that place an 

immense strain on the health service in the UK. 

In a healing wound there are likely to be two types of macrophage present; those that are 

recruited during the immune response and resident macrophages already present in the tissue 

before wounding. In this chapter we do not draw distinction between these two subsets. Similarly, 

the MMP-10 expression analysed throughout this chapter is not necessarily specific to 

macrophages but rather represents the level of expression throughout the skin and its potential 

for secretion from other cell types. 

Having shown that LPS triggers differential expression of the MMPs in wild type BMMs, and given 

that infection with gram negative bacteria is a significant problem in the management of chronic 

wounds, it was important to establish the ability of BMMs from the Db/Db mouse to respond to 

LPS. Studies have shown Db/Db derived peritoneal macrophages to have a significantly different 

profile of cytokine and pro-inflammatory gene expression compared to Db/+ controls (Li et al., 

2006), so it is perhaps surprising that the diabetic phenotype does not seem to affect BMM 

response to LPS in terms of expression of key LPS-responsive MMPs; MMP-10 and MMP-14 (figure 

5.1 A and 5.2 A). One important difference between Db/Db BMMs used in this study and Db/Db 

derived peritoneal macrophages is the environment they differentiate in; either in vitro or in vivo, 

respectively. Macrophages that have endured the diabetic milieu during their differentiation in 

vivo are perhaps more likely to have a different expression profile of MMPs.  It is important, 

therefore, to analyse both MMP expression and macrophage localisation in vivo, in a clinically 

relevant setting such as wound healing.  

In both Db/Db and control Db/+ wound tissue a trend for increased expression of TNF-α mRNA 5 

days post-wounding was observed in preliminary experiments compared to unwounded controls 

(figure 5.4 B, E). By day 7 in Db/Db skin this increase was significant but appeared to have 



175 
 

plateaued (figure 5.6 B, E).  Enhanced TNF-α expression in wounded skin has been shown 

previously in the literature (Han et al., 2001; Goren et al., 2007). Formerly, adipocytes were 

considered to be the main source of TNF-α in skin however studies have shown that this is more 

likely to be bone marrow-derived adipose tissue macrophages, particularly in obese (Ob/Ob) mice 

where increased adipose mass triggers increased macrophage infiltration (Weisberg et al., 2003).  

Ex vivo cultured 7 day Db/Db wound explants reveal no significant up-regulation of TNF-α mRNA in 

response to 24 hours exposure to LPS (see Appendix, figure 8.3). Initially, this result is surprising 

due to the substantial induction of TNF-α observed in wild type macrophages in vitro (see Chapter 

3). Db/Db peritoneal macrophages have however been shown to have a repressed TNF-α 

expression profile in vitro in response to LPS (Zykova et al., 2000), so it is reasonable to assume 

this would translate into a deregulated response in vivo, perhaps also involving other TNF-α 

expressing cells such as neutrophils (Feiken et al., 1995). It is important, therefore, to confirm the 

functionality of LPS in this system by including Db/+ control tissue explants in repeat experiments.  

The preliminary investigation into expression of MMP-10 mRNA in day 5 wounds reflects the trend 

seen for TNF-α; MMP-10 mRNA may be up-regulated in wounded compared to normal skin in both 

Db/Db and Db/+ tissue (figure 5.4 A, D). By day 7 the expression of MMP-10 mRNA is significantly 

increased compared with unwounded Db/Db skin (figure 5.6 A, D) and shows a clear trend to 

increase compared with day 5 tissue. Studies have shown that MMP-10 mRNA is induced in a 

biphasic pattern in whole wounds at day 1 and day 5 post wounding in healthy mice, with levels 

falling by day 7 (Madlener et al., 1996). This suggests that the MMP-10 response in Db/Db mice is 

delayed, at least at the message level. The increase in MMP-10 mRNA in Db/Db wounds 7 days 

post wounding is reflected at the protein level also (figure 5.7). Recent work studying the effect of 

MMP-10 over-expression in diabetic corneas implies that MMP-10 is responsible for alterations in 

the epithelial basement membrane that contribute to reduced rate of healing in this model 

(Saghizadeh et al., 2010). It is possible, therefore, that the deregulation of MMP-10 mRNA and 

protein in Db/Db dermal wounds could play a role in delayed healing in diabetic skin by affecting 

the epithelial basement membrane integrity.  

In explants of Db/+ unwounded skin treated with LPS for 24 hours a dramatic reduction in basal 

MMP-10 protein expression was observed (figure 5.8 A), which potentially reflects the in vitro 

macrophage response to LPS. Conversely, MMP-10 produced in wounded Db/+ skin explants is 

further increased following exposure to LPS for 24 hours, an observation not replicated in Db/Db 

skin (figure 5.8 B).  Studies have shown that MMPs are required in vivo for proper chemotaxis of 
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immune cells in response to LPS. For example, neutrophils require MMP-8 for chemotaxis in an 

LPS gradient due to its ability to cleave and activate various chemokines (Tester et al., 2007).  

In explants of Db/Db unwounded skin there is little expression of MMP-10 protein and no 

regulation in response to 24 hours LPS (figure 5.8 A). In explants of Db/Db wounded skin basal 

expression of MMP-10 protein appears induced but again there is no response to LPS treatment 

(figure 5.8 B). It is tempting to speculate that there may be a lower level of the LPS receptor TLR4 

expressed by Db/Db macrophages, explaining the reduction in response to LPS. Given the robust 

induction of TNF-α observed in preliminary experiments (figure 5.4B) this seems unlikely but 

further investigation would be beneficial. In future experiments it will also be vital to optimise the 

analysis of MMP-10 protein expression in skin by Western blots. Whilst Western blots provide the 

perfect platform for protein analysis in whole tissue lysate, for results to be of real, qualitative use 

the simultaneous application of a loading control will be necessary.  

Asides from the macrophage population in wounded skin there is the potential for other MMP-10 

and TNF-α expressing cells to be present in both the dermis and epidermis. It is important to 

remember this when drawing conclusions from these results with respect to macrophage 

response to LPS.  Prior studies into the expression of the murine macrophage marker F4/80 in skin 

suggest that macrophages constitute approximately 60% of the total cells in the mouse dermis 

(Dupasquier et al., 2004). In normal skin from the Db/+ mouse immunofluorescence and DAB 

staining revealed a low level of expression of F4/80 throughout the dermis which is moderately 

enhanced in Db/Db skin (figure 5.10 A, C). This increased staining for F4/80 positive cells in Db/Db 

normal skin suggests that macrophages are deregulated in diabetic tissue even before wounding 

initiates an immune response.  

The expression pattern of F4/80 in the day 5 Db/+ wound indicates a massive influx of 

macrophages to the wound edge (figure 5.12 A, E), echoing what is seen in the literature (Goren et 

al., 2003). In equivalent day 5 Db/Db wounded skin staining for F4/80 indicates enhanced 

expression compared to unwounded skin but not to the extent seen in Db/+ wounded skin, and is 

reminiscent of F4/80 DAB staining seen in the literature (Bevan et al., 2004). This suggests that 

macrophage recruitment to the Db/Db wound is impaired in our model and is consistent with the 

hypothesis that macrophages are a rate limiting factor in wound healing (Leibovich and Ross, 

1975; Mirza et al., 2009). An interesting new role for F4/80-positive macrophages in lymphatic 

vessel formation during wound healing has been demonstrated recently, also using the Db/Db 

model (Maruyama et al., 2007). This study found macrophage integration into lymphatic vessels to 
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be impaired in Db/Db skin and corneal wounds.  Stimulation of these wounds with IL-1β or the 

application of IL-1β-treated Db/Db macrophages onto wounds not only increased lymphatic vessel 

formation but also hastened the wound healing response. This implies an IL-1β deficiency in 

Db/Db skin (or perhaps an inability to cleave and activate it) and reveals a structural as well as 

immunomodulatory function for macrophages in wound repair. 

Currently, most studies have focused on the expression of MMP-10 in the basal keratinocytes of 

the healing wound. Immunolocalisation of MMP-10 protein (Rechardt et al., 2000) and in situ 

hybridisation for MMP-10 mRNA (Madlener et al., 1996) have revealed spatiotemporal regulation 

of this protease with an increase observed 3 days post-wounding  in the migrating basal 

keratinocytes at the edge of the wound. Once re-epithelialisation is complete Rechardt et al have 

also shown MMP-10 expression to be attenuated. Immunofluorescent staining for MMP-10 

reveals little if any specific staining in unwounded Db/+ skin (figure 5.10 B), as expected from the 

literature (Madlener et al., 1996). In Db/Db unwounded skin MMP-10 protein expression seems 

slightly enhanced however (figure 5.10 D), reflecting increased F4/80 staining observed and 

possibly due to the pro-inflammatory diabetic phenotype.  

Immunofluorescence and DAB staining for MMP-10 in Db/+ wound tissue does suggest some 

expression in the basal keratinocytes of the migrating epithelial tongue and at the wound edge as 

shown in the literature (Madlener et al., 1996; Rechardt et al., 2000; Krampert et al., 2004) (figure 

5.13 A, C, E). The band-like expression pattern of MMP-10 between dermis and epidermis in Db/+ 

tissue seen in figure 5.13 A is also reminiscent of MMP-10 staining seen in human 7 day gingival 

wounds from healthy volunteers (Rechardt et al., 2000). Over-expression of MMP-10 in 

keratinocytes in vivo has been shown to result in excess processing of the ECM component 

laminin-5 and aberrant localisation of β1 integrins (Krampert et al., 2004). This reflects the 

potential role for MMP-10 in normal cell migration and for ECM structure and function. In Db/Db 

wounds MMP-10 protein expression seems less discrete with little positive staining in the basal 

keratinocytes either via immunofluorescence or DAB staining (figure 5.13 B, D, F). In the literature 

MMP-10 protein expression has also been used as a marker of diabetic retinopathy, being the only 

protease to show strong expression in epithelium and stroma from the corneas of diabetic 

patients (Saghizadeh et al., 2001). The authors speculate a role for MMP-10 in mediating the 

abnormal adhesive activities of corneal epithelium in diabetic patients by enhanced proteolysis of 

basement membrane. This also suggests a tissue specific level of regulation for MMP-10 however, 

be it in skin, cornea or the gingival of both healthy and diabetic patients. 



178 
 

In Db/Db wounds distinct MMP-10 positive regions are observed in the tip of the migrating 

epidermal tongue by DAB staining (figure 5.13 F and figure 5.15 C, D). This area of staining is not 

visible in Db/+ skin, probably because the epidermal tongue is less apparent due to advanced 

wound healing. There is some staining visible at the border between epidermis and dermis 

however (figure 5.13 E) and is possible that MMP-10 staining would be visible in Db/+ wounds at 

the tip of their epidermal tongue at an earlier stage of healing. DAB staining for F4/80 at the tip of 

the epidermal tongue in adjacent sections to those expressing MMP-10 show a strong correlation 

in areas of staining (figure 5.15 A, B). This implies the possibility that macrophages are expressing 

MMP-10 in vivo, at the tip of the migrating epidermal tongue, facilitating their functions in wound 

healing described above; be it by clearance of debris (Leibovich and Ross, 1975), cleavage of 

chemokines (Tester et al., 2007), integration into lymphatic vessels (Maruyama et al., 2007) or 

proteolysis of basement membrane proteins (Krampert et al., 2004). This parallel expression 

suggests that the role of MMP-10 in wound healing is, at least in part, mediated by its expression 

in macrophages. 
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Chapter 6: The functional impact of 

apparent morphological differences 

between diabetic and non-diabetic 

macrophages.   
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6.1 Introduction 

 

6.1.1 Macrophage chemotaxis 

The morphology of a cell is often a direct reflection of the cell’s function in the body. Macrophage 

morphology is highly dynamic, therefore mirroring the varying environments and extracellular 

stimuli these cells must respond to during their diapedesis out of the blood vessels and towards 

sites of injury and infection. The ability of these cells to modify their morphology in response to 

external signals results in the acquisition of a polarised cell shape (see Chapter 1) allowing for 

chemotaxis towards gradients of pro-migratory and stimulatory factors.   

The first stage in initiation of chemotaxis in all cell types is the binding of chemotactic factors to its 

receptor on the cell surface. There are two major families of transmembrane receptors at play 

during macrophage response to chemokines; the G-protein coupled receptors (GPCR) and the 

receptor tyrosine kinases (RTK) (reviewed in (Jones, 2000)), both of which trigger signalling via 

phosphatidylinoside-3-kinase (PI3-K).  Numerous studies with PI3-K inhibitors have revealed the 

importance of PI3-K signalling to chemotaxis in macrophages and, perhaps most significantly, PI3-K 

family members have been found to accumulate at the leading edge of leukocytic cells (reviewed 

in (Curnock et al., 2002)). Different chemokines trigger different signalling events within the cell, 

and with a superfamily of over 40 members the potential for variation in response is huge. Ligand 

binding triggers association with and activation of G-proteins that further activate intracellular 

effector signalling molecules, such as Ras, MAPK and PI3-K as mentioned above. 

Monocyte chemotactic protein (MCP)-1, also known as CCL2, is one of the key chemokines 

involved in the induction of macrophage migration. MCP-1 binds to its receptor CCR2 and whilst 

MCP-1 is widely expressed by a variety of cell types, expression of CCR2 is more discrete. Studies 

have shown expression of CCR2 to be up-regulated in macrophage-rich areas of human 

atherosclerotic plaques and to correlate with increased macrophage influx to these regions in mice 

(Boring et al., 1998). Importantly Boring et al have revealed a decrease in lesion formation in 

CCR2-null mice, suggesting that both CCR2 and MCP-1 have potential as drug targets. In 

population studies an activating polymorphism in the MCP-1 promoter region has been found to 

correlate with increased risk of developing coronary heart disease (Szalai et al., 2001), also 

highlighting its possible use as a biomarker for prevention of cardiovascular disease.  

Colony stimulating factor (CSF)-1, or macrophage-CSF, is a widely expressed cytokine of key 

importance in the differentiation, survival and proliferation of mononuclear phagocytes, such as 
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macrophages. Much of what is known about CSF-1 has been achieved through studying the CSF-1 

deficient osteopetrotic (op/op) mouse, characterised by severely decreased macrophage number 

in various organs and altered macrophage actin cytoskeleton (Chitu and Stanley, 2006). CSF-1 

binds its receptor CSF-1R, triggering dimerisation and autophosphorylation, and further 

stimulating downstream signalling that regulates macrophage number, adhesion and motility 

(Pixley and Stanley, 2004). Activation of the RhoGTPases is vital for normal migratory response to 

CSF-1 in macrophages and studies have shown distinct roles for each. For example; whilst Rho and 

Rac are essential for macrophage locomotion in response to CSF-1, Cdc42 is required for response 

to the gradient by regulating cell polarity (Allen et al., 1998a). Despite not being classed as a 

chemokine CSF-1 does appear to exert some chemoattractant effects on macrophages. For 

example, murine macrophages have been shown to reorient and re-align themselves in a gradient 

of CSF-1 and migrate preferentially to its source, with a concentration of F-actin evident the cells’ 

leading lamellae (Webb et al., 1996). Similarly primary macrophages have been stimulated to 

migrate across a membrane towards CSF-1, a process that depends on the activity of Wiskott-

Aldrich Syndrome protein (WASp) family members through their regulation of F-actin-rich cell 

protrusions (Kheir et al., 2005). 

Recently MCP-1 has been shown to promote monocyte adhesion to vascular smooth muscle cells 

(VSMCs) in high glucose conditions chosen to mimic the diabetic milieu (Meng et al., 2010). Given 

that macrophage response to pro-inflammatory stimuli is known to be deregulated in diabetes 

(Wall et al., 2002; Goren et al., 2007; Maruyama et al., 2007), the work described above suggests a 

role for MCP-1 and its receptor in diabetic pathologies. The concept of deregulated leukocyte 

migration in diabetic tissues is not new however. Several studies have explored increased 

macrophage migration as a key feature of diabetic pathology. For example, studies have shown 

that CSF-1-dependent macrophage infiltration into adipose tissue is increased in obese mice and 

humans (Weisberg et al., 2003). In turn, obesity and increased adipocyte volume strongly correlate 

with risk of type II diabetes. Similarly, type II diabetes raises the chance of suffering a 

cardiovascular disease, such as atherosclerosis. Macrophage adhesion to and infiltration of the 

vascular endothelium is a key feature of atherosclerosis and can be triggered by oxidised low 

density lipoprotein (oxLDL) inducing a shift in cell surface chemokine receptor expression (Barlic et 

al., 2006). Macrophage migration also plays a role in impaired wound healing in diabetic patients 

where it seems a delicate balance of macrophage infiltration and clearance must be achieved. For 

example, inactivation of macrophages in the ob/ob mouse restores diabetes-impaired wound 

healing by attenuating inflammation (Goren et al., 2007), however excessive reduction in 
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macrophage number can also impair healing by loss of macrophage contribution to lymphatic 

vessel formation (Maruyama et al., 2007). 

6.1.2 The macrophage cytoskeleton 

Components of the cell cytoskeleton are instrumental in the control of cell motility, including 

change in cell shape, interaction with substrates and other cells, and mediation of chemotaxis by 

augmenting cell polarity. There are two main types of filaments present in all eukaryotic cells that 

form this cellular ‘scaffold’; microtubules, consisting of α- and β-tubulin subunits; and 

microfilaments, composed of actin polymers.  

As a major component of the microtubule network, α-tubulin plays an important role in cell 

polarisation and rapid morphological response to stimulus. Along with β-tubulin, dimers of α-

tubulin are able to rapidly assemble and disassemble microtubule proto-filaments in a process 

known as dynamic instability (Nogales, 2000). Microtubules have been shown to play an important 

role in immune cells, such as macrophages, by mediating swift morphological responses to pro-

inflammatory factors LPS and interferon-γ (Binker et al., 2007). Binker et al found that increased 

macrophage cell spreading in response to LPS was, in part, driven by enhanced microtubule 

stability.  

β-actin, a non-muscle actin subunit, forms the principle component of microfilaments within the 

cell under the control of the RhoGTPases and the Wiskott-Aldrich Syndrome protein (WASP) family 

(Kheir et al., 2005). The main role for actin in the migrating cell is to drive the protrusion of the 

leading edge by a process of polymerisation and de-polymerisation of the α- and β- subunits in 

response to extracellular signals (Vicente-Manzanares et al., 2005). These extracellular signals are 

mediated via the transmembrane cell adhesion molecules, integrins. As well as classical signal 

transduction via the integrins (indirect activation of Ras/MAPK phosphorylation pathways, for 

example) these receptors are also able to transmit information about the surrounding 

microenvironment and extracellular matrix (ECM) directly to the actin microfilaments via actin 

binding proteins talin, vinculin and paxillin, amongst others (Brakebusch and Fassler, 2003). For 

example, β1 integrin binding triggers F-actin stress fibre formation and paxillin integration to focal 

adhesions in epithelial cells in response to culture on fibronectin (Danen et al., 2002). Similarly, in 

mouse and human monocytes active phosphorylated paxillin has been observed in the 

lamellipodia and membrane ruffles formed after LPS stimulation (Williams and Ridley, 2000), again 

indicating reorganisation of the actin microfilaments potentially driven by integrin mediated 

activity. An interesting recent study into a novel family of integrin-related adhesion proteins, the 
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kindlins, has found the hematopoietic lineage-specific kindlin-3 to co-localise with vinculin in F-

actin rich areas known as podosomes (Ussar et al., 2006). Whilst the integrin binding partners of 

kindlin-3 are not yet known kindlin-1 can interact with the cytoplasmic tail of β1 and β3 integrins. 

In addition to filamentous proteins the cytoskeleton is also composed of numerous accessory 

proteins, like paxillin mentioned above, which aid its function. In polarised cells actin related 

protein (Arp)2/3 has been shown to concentrate at the leading edge where it is thought to 

mediate the branching of actin filaments (Ridley et al., 2003). Despite the mechanism of Arp2/3 

function coming into some controversy recently it is clear that this protein does play an important 

role in the formation of actin microfilaments (Urban et al., 2010). In macrophages Arp2/3 appears 

to play a critical role in cell polarisation and migration via the formation of podosomes (Linder et 

al., 2000). Linder et al found that macrophages deficient in WASp, which plays a role in actin 

organisation via Arp2/3, are unable to polarise in a gradient of chemoattractant whilst also failing 

to form podosomes. 

Non-muscle myosin II-A, also an actin accessory protein, plays an important role in cell polarisation 

and migration by acting as a motor protein. Myosin II mediates intracellular force by ‘walking’ 

along actin filaments, forming stress fibres. Whilst myosin II is typically considered to be involved 

in force generation during tail retraction of migrating cells (Uchida et al., 2003) there is also 

evidence to suggest it plays a role at the cell periphery and in lamellipodia disassembly. For 

example, when the phosphorylation and subsequent activation of myosin II is inhibited in 

fibroblasts the formation of peripheral actin stress fibres is disturbed and cells were no longer able 

to spread (Conti and Adelstein, 2008; Katoh et al., 2001). In vivo studies utilizing a myosin II 

inhibitor in a model of renal disease have shown a reduction in inflammation and tissue damage as 

a result of reduced migration and infiltration of immune cells, including macrophages (Si et al., 

2010). This demonstrates the importance of actin accessory proteins in physiologically relevant 

cell migration within inflammatory disease states. 

6.2 Aims 

In this chapter chemotaxis is explored in vitro, in the type II diabetic Db/Db bone marrow-derived 

macrophage compared to Db/+ heterozygous counterparts. Time-lapse microscopy is utilized to 

quantify differences in migratory phenotype in response to MCP-1 and CSF-1. To further explore 

the role of morphology and potential mechanisms controlling cell motility in bone marrow-derived 

macrophages, immunocytochemical staining for cytoskeletal components α-tubulin, β-actin, 

myosin II and the Arp2 sub-unit was performed.     
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6.3 Results 

 

6.3.1 Bone marrow-derived macrophages from the Db/Db type II diabetic mouse exhibit 

significantly longer cell protrusions than their Db/+ heterozygous control and wild-type 

counterparts 

During routine culture of type II diabetic (Db/Db) bone marrow-derived macrophages (BMMs) a 

distinct morphological difference was observed when compared to their heterozygous (Db/+) 

control and wild type (WT) BMMs (figure 6.1). Specifically, Db/Db BMM appear to have longer cell 

protrusions than either Db/+ or WT BMM. In order to quantify this observation, fully differentiated 

cells were measured from the centre of the nucleus to the tip of the protrusion (figure 6.1 C and 

D). Comparison of WT, Db/+ and Db/Db BMM from three mice per phenotype reveals this 

difference in morphology to be significant, with average protrusion lengths of 24.9 µm ±11.04, 

25.8 µm ±12.54 and 39.5 µm ±19.98, respectively (figure 6.2). It is interesting to note the range of 

protrusion lengths measured for each BMM phenotype highlighting the heterogeneity of BMM 

culture despite the significantly greater mean protrusion length observed for Db/Db BMMs.  

These results represent combined data from three independent experiments comparing WT, Db/+ 

and Db/Db BMM protrusion length. 
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WT BMM
F4/80
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Db/Db BMM
F4/80
DAPI

WT BMM
DIC
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Db/Db BMM
DIC
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protrusion length
protrusion length

Db/Db BMM
F4/80
DAPI

Db/+ BMM
F4/80
DAPI

A. B.

C. D.

E. F.

Figure 6.1 Routine culture reveals an apparent difference in morphology between type 

II diabetic Db/Db BMMs, heterozygous Db/+ BMMs and their wild-type BMM 

counterparts. (A, C) Fully differentiated wild-type and (B, D) Db/Db BMMs stained for the 

murine macrophage marker F4/80 and DAPI and imaged via DIC microscopy, display 

morphological differences that can be quantified by measuring protrusion length as 

shown. (E) Db/+ BMMs also appear morphologically distinct compared to (F) Db/Db BMM 

(images E and F taken of a region of lower cell density). Scale = 50 µm. 



186 
 

 

WT BMM Db/+ BMM Db/Db BMM

0

50

100

150
P

ro
tr

u
si

o
n

 L
en

gt
h

 (


m
)

WT BMM Db/Db BMM

150

100

50

0

P
ro

tr
u

si
o

n
 L

en
gt

h
 (µ

m
)

Db/+ BMM

***
***

Figure 6.2 Range and average length of cell protrusions from type II diabetic Db/Db BMMs, 

heterozygous Db/+ BMMs and their wild-type BMM counterparts. Cell protrusions from fully 

differentiated wild-type (n = 68), Db/+ (n = 190) and Db/Db BMMs (n = 190) from 3 mice per 

phenotype were measured. Horizontal bar shows mean protrusion length of number of cells 

given ± SEM. Statistical significance was determined using the Student’s t-test. *** p  ≤ 0.001. 
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6.3.2 Exposure to high levels of blood glucose does not appear to be the cause of increased 

protrusion length in type II diabetic Db/Db bone marrow derived macrophages 

To determine the cause of altered Db/Db BMM morphology we considered the possibility of 

epigenetic regulation caused by exposure to high blood glucose levels in vivo. As with all cells, 

macrophages require glucose for survival but little is known about the effect of high glucose levels 

on macrophages long term, such as those experienced in the Db/Db mouse in vivo. Transient 

hyperglycemia is sufficient to cause epigenetic modification for up to 7 days in endothelial cells 

(Curnock et al., 2002) leading to the hypothesis that, once harvested, the Db/Db BMMs are likely 

to retain any glucose-induced epigenetic changes throughout the duration of these experiments. If 

increased protrusion length is due to Db/Db BMM exposure to higher concentrations of glucose in 

vivo it is possible that treating WT BMM with comparable levels of glucose will induce a similar 

morphology. Monitoring of blood glucose in Db/Db mice revealed a range from 17.4 - ≥33 mM 

(chapter 2, table 2.6), so to ensure hyperglycaemic levels were achieved in vitro WT BMM were 

cultured in 40 mM D-Glucose. Despite a small trend toward increased protrusion length however, 

exposure of WT BMM to 40 mM D-Glucose for 24 hours in vitro triggered no significant change in 

protrusion length or gross cell morphology (27.38 µm ±17.46 compared with 33.14 µm ±15.87, 

respectively; figure 6.3 A-E). D-Mannitol, a sugar that has the same osmotic properties as D-

Glucose but is not metabolised, is used as a control. Interestingly this also appears to stimulate a 

trend for increased protrusion length with an average of 35.37 µm and, rather unexpectedly, 

appeared to trigger a more spread-out and dendritic phenotype in WT BMMs (figure 6.3 A, F, G). 

This preliminary experiment was performed once and results represent cells harvested from one 

mouse per phenotype.  
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Figure 6.3 Range and average length of cell protrusions from WT BMMs cultured in 

normoglycemic and hyperglycaemic conditions for 24 hours. (A) Cell protrusions from 

wild-type BMMs (n = 36 cells per treatment) cultured in either 11mM (normoglycemic) or 

40 mM (hyperglycaemic) D-glucose for 24 hours were measured. Cells were cultured in D-

mannitol as a control. Horizontal bar shows mean protrusion length of 36 cells ± SEM. (B-G) 

WT BMM were fixed and stained for F4/80 murine macrophage marker and DAPI, or 

imaged via DIC microscopy, to further reveal any morphological differences. Scale bar = 50 

µm. 
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6.3.4 Bone marrow-derived macrophages from the Db/Db type II diabetic mouse migrate 

significantly more slowly on two-dimensional fibronectin and fibrinogen than the Db/+ 

heterozygous counterparts  

The morphological differences observed in Db/Db BMM (figure 6.1 - 6.2) could relate to a change 

in migratory phenotype and this can be analysed by time-lapse microscopy of BMM migration. In 

vivo, macrophage migration occurs commonly on matrices composed of fibronectin and 

fibrinogen. To this end functional studies of random cell migration on various 2D matrices were 

performed with Db/+ BMMs as a control.  

There were no significant differences in velocity or distance migrated when comparing Db/Db and 

Db/+ BMMs in the presence of 0.2% serum alone with no 2D matrix (figure 6.4 A). On 2D coats of 

fibrinogen and fibronectin, however, both Db/Db and Db/+ BMMs showed significantly slower 

migration velocity and decreased accumulated distance migrated compared to those with only 

0.2% serum (figure 6.4 A, B). Db/+ BMMs also showed a significant decrease in Euclidean distance 

migrated on fibrinogen compared to 0.2% serum (figure 6.4 C). Perhaps most interesting is the 

significant reduction in velocity and accumulated distance migrated observed in Db/Db BMM 

compared to Db/+ BMMs on both fibrinogen and fibronectin (figure 6.4 A, B). This is also reflected 

in the Euclidean distance migrated on fibronectin, despite not being statistically significant (figure 

6.4 C). 

Plots of Db/Db and Db/+ BMM trajectory on each substrate reflect the quantitative results 

described above (figure 6.5). The reduction in Db/Db BMM migration distance, both accumulated 

and Euclidean, is particularly evident on plasma fibronectin compared to Db/+ BMMs (figure 6.5 C, 

F). These results suggest that the increase in protrusion length observed on Db/Db BMMs has a 

functional effect on their ability to migrate. 

This preliminary experiment was performed once and results represent cells harvested from one 

mouse per phenotype. 
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Figure 6.4 Type II diabetic Db/Db BMM migration velocity is significantly less than 

heterozygous Db/+ BMMs. Time-lapse images were captured every 10 minutes over a 17 hour 

period for Db/+ and Db/Db BMMs in 0.2% serum alone (n = 35 or n = 29 cells, respectively)  or 

on plasma fibrinogen or plasma fibronectin (n = 39 or n = 35 cells, respectively). (A) Migration 

velocity, (B) accumulated distance and (C) Euclidean distance of BMMs were analyzed with 

ImageJ processing software. Each bar represents the mean of the number of calls given ± SEM. 

Statistical significance was determined using the Student’s t-test. *** p ≤ 0.001. 
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6.3.5 Wild-type bone marrow-derived macrophages migrate significantly more quickly in 

gradients of Colony Stimulating Factor-1 and Monocyte Chemotactic Protein-1 

The data regarding random migration (figure 6.4 - 6.5) revealed intriguing differences between the 

migration of diabetic and non-diabetic-derived macrophages. It was important, however, to 

explore this in more detail by analysing directional migration. 

It is well understood that monocyte chemotactic protein (MCP)-1 is responsible for mobilisation of 

several leukocyte subsets during inflammation (Dean et al., 2008), whilst colony stimulating factor 

(CSF)-1 has been shown to play an important role in the growth and survival of macrophages in 

vivo (Kleemann et al., 2008). In keeping with such observations, wild-type BMMs responded to 

gradients of recombinant murine (rm) MCP-1 and CSF-1 with increased migration in vitro (figure 

6.6). This result is particularly interesting as the increased Euclidean distance migrated by WT 

BMMs in the rmMCP-1 gradient suggests a far greater directionality of migration compared to 

both the control treatment and the gradient of rmCSF-1, indicating that these factors stimulate 

chemotaxis in WT BMMs (figure 6.6 C). This is clearly reflected in plots of WT BMM trajectory 

(figure 6.7). WT BMM in 10% serum only show no clear uniformity of migration; despite a number 

of cells moving into the lower sector of the plot (red trajectories) there are also a number of cells 

migrating into the upper sector (black trajectories) (figure 6.7 A).  

To further analyse data from directional migration it is possible to investigate directional bias or 

cell migration. Rose diagrams represent the number of times a cell passes through each 10° sector 

and correspond to plots of cell trajectory. For WT BMMs the Rose diagram clearly shows no bias 

for directionality (figure 6.7 B).  The result of a Rayleigh test for uniformity of migration also 

reveals no significant directionality (p = 0.55). WT BMMs appear to show a strong trend for 

migration towards an rmCSF-1 gradient (figure 6.7 C), with several cells moving into the bottom 

sector. The corresponding Rose diagram also suggests a trend toward chemotaxis however the 

Rayleigh test reveals that this is not significant (p = 0.33) (figure 6.7 D). The response of WT BMMs 

to rmMCP-1, however, is far more robust. The plot of cell trajectories in this chemokine gradient 

show the majority of cells analysed migrating well into the bottom sector (figure 6.7 E). This is 

echoed by the corresponding Rose diagram showing a clear directional bias of cells moving 

towards the rmMCP-1 gradient and a significant result for the Rayleigh test for uniformity (p ≤ 

0.05).  

This data is representative of the results of two experiments, harvesting BMMs from one mouse 

per experiment. 
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Figure 6.6 WT BMM migration velocity and Euclidean distance is significantly greater is 

gradients of rmCSF-1 and rmMCP-1. Time-lapse images were captured every 10 minutes over a 

17 hour period of WT BMMs in either 10% serum (control; n = 16 cells), or a gradient of 200 

ng/ml rmCSF-1 (n = 31 cells) or rmMCP-1 (n = 30 cells). (A) Migration velocity, (B) accumulated 

distance and (C) Euclidean distance of WT BMMs were analyzed with ImageJ processing 

software. Each bar represents the mean of the number of cells given ± SEM. Statistical 

significance was determined using the Student’s t-test. *** p ≤ 0.001. 
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Figure 6.7 Plots of WT BMM migration trajectory in gradients of rmCSF-1 and rmMCP-

1. Cell trajectories were derived from time-lapse images captured every 10 minutes 

over a 17 hour period of WT BMMs in (A) 10% serum only, (C) 200 ng/ml rmCSF-1 

gradient and (E) 200 ng/ml rmMCP-1. (B, D, F) Corresponding ‘Rose diagram’ and result 

of Rayleigh test for uniformity are shown. The source of chemokines is at the bottom of 

each diagram whilst red trajectory indicates cells with an overall migration towards 

gradient. Migration was analyzed and Rayleigh test calculated with ImageJ processing 

software. 
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6.3.6 Bone marrow-derived macrophages from the Db/Db type II diabetic mouse are less 

responsive to a gradient of monocyte chemotactic protein-1 than their Db/+ 

heterozygous or wild-type controls  

As a gradient of rmMCP-1 elicited the greatest migratory response in WT BMMs (figure 6.6) this 

chemokine was utilised to stimulate migration of Db/Db and Db/+ BMMs enabling further 

elucidation of the functional repercussions of greater protrusion length in Db/Db BMMs. When 

comparing WT, Db/+ and Db/Db BMM migration velocity and accumulated distance a significantly 

slower migratory phenotype was observed in the Db/Db macrophages (figure 6.8 A, B). A small 

trend for decreased Euclidean distance migrated was also observed for Db/Db BMMs (figure 6.8 

C). Plots of BMM trajectory contribute additional information allowing application of these 

quantitative results to directional chemotaxis. For example, in addition to migrating significantly 

more slowly, the Db/Db BMM plot displays a number of cell trajectories in the upper sector and a 

Rose diagram that suggests little directional bias towards the source of rmMCP-1 (figure 6.9 E, F). 

The Db/+ BMM migration plot is less revealing, with a several cell trajectories remaining in the in 

the upper sector (figure 6.8 C) despite their migrating significantly more quickly and a greater 

accumulated distance than Db/Db BMMs. The Db/+ BMM Rose diagram does however reflect the 

directional bias towards the source of rmMCP-1 (figure 6.9 D). The WT BMM plot of cell trajectory 

and Rose diagram more clearly reflect the migration of macrophages towards to source of rmMCP-

1 (figure 6.9 A, B). Perhaps surprisingly the Rayleigh test for uniformity shows no significant 

directional bias of migration by WT (p = 0.16), Db/+ (p = 0.44) or Db/Db (p = 0.12). 

This experiment was performed twice and combined data is presented from two mice per 

phenotype. 
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Figure 6.8 Comparing WT, Db/+ and Db/Db BMM migration in gradients of rmMCP-1. Time-

lapse images were captured every 10 minutes over a 17 hour period of WT (n = 50 cells), Db/+ (n 

= 45 cells) and Db/Db BMMs (n = 47 cells) in a gradient of 200 ng/ml rmMCP-1. (A) Migration 

velocity, (B) accumulated distance and (C) Euclidean distance of each genotype of BMM was 

analyzed with ImageJ processing software. Each bar represents the mean of the number of cells 

given ± SEM. Statistical significance was determined using the Student’s t-test. *** p ≤ 0.001. 
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  Figure 6.9 Plots of WT, Db/+ and Db/Db BMM migration trajectory in a gradients of 

rmMCP-1. Cell trajectories were derived from time-lapse images captured every 10 

minutes over a 17 hour period of (A) WT BMMs, (C) Db/+ BMMs and (E) Db/Db BMMs 

in 200 ng/ml rmMCP-1. (B, D, F) Corresponding ‘Rose diagram’ and result of Rayleigh 

test for uniformity are shown. The source of chemokines is at the bottom of each 

diagram whilst red trajectory indicates cells with an overall migration towards 

gradient. Migration was analyzed and Rayleigh test calculated with ImageJ processing 

software. 
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6.3.7 Comparing cytoskeletal components in type II diabetic Db/Db bone marrow derived 

macrophages and their Db/+ heterozygous controls 

The cytoskeleton is instrumental in the control of cell motility, including change in cell shape, 

interaction with substrates and other cells, and mediating chemotaxis. Following observations of 

enhanced protrusion length (figure 6.1 - 6.2) and decreased migratory phenotype in Db/Db 

compared to Db/+ BMMs (figure 6.8) an immunocytochemical approach was taken to explore 

potential differences in cytoskeleton. Immunocytochemical staining of four major components of 

the cytoskeleton; α-tubulin, β-actin, non-muscle myosin II-A and actin related protein (Arp) 2/3, 

was performed.  

As a major component of the microtubule network, α-tubulin plays an important role in cell 

polarisation and rapid morphological response to stimulus. In Db/+ BMMs immunocytochemical 

staining of α-tubulin revealed relatively distinct networks of microtubules (figure 6.10 A). In 

certain cases these appear to emanate in an array from one distinct point adjacent to the nucleus, 

probably the microtubule organising centre (MTOC) (figure 6.11 A, C). In Db/Db BMMs this radial 

array of microtubules is not apparent, possibly due to lack of centrosomal focus (figure 6.10 B and 

6.11 B, D). 

β-actin, a non-muscle actin subunit, plays an important role in cell migration by polymerising to 

form actin filaments, although in macrophages the formation of classic ‘stress fibres’ is not 

observed. Immunocytochemical staining for β-actin in Db/+ and Db/Db BMM served to further 

highlight the morphological difference between the two macrophage phenotypes (figure 6.12). As 

well as the longer cell protrusions observed for Db/Db BMM there also appeared to be a possible 

increase in total cell area with increased lamellipodia and filopodia staining positive for β-actin 

(figure 6.12 B). As expected, filamentous actin stress fibres are not present in either phenotype 

and instead pools of β-actin are apparent.  
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Figure 6.10 Immunocytochemical staining for α-tubulin in Db/+ and Db/Db 

BMMs. (A) Db/+ BMMs and (B) Db/Db BMMs were cultured on glass cover-slips 

for 24 hours before fixing and staining for α-tubulin. Scale bar = 25 µM 
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 Figure 6.12 Immunocytochemical staining for β-actin in Db/+ and Db/Db BMMs. 

(A) Db/+ BMMs and (B) Db/Db BMMs were cultured on glass cover-slips for 24 

hours before fixing and staining for β-actin. Arrows indicate areas of lamellipodia. 

Arrowheads indicate filopodia. Scale bar = 25 µM 
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Non-muscle myosin II-A (myosin II) also plays important roles in cell migration, polarisation and 

cell-cell interaction. This is achieved via its action as a motor protein that can mediate force by 

moving along actin filaments. Again, immunocytochemical staining for myosin II in both Db/+ and 

Db/Db BMMs highlights the increased protrusion length and total cell area of Db/Db macrophages 

(figure 6.13) and is reflective of the β-actin staining. Staining appeared to be more distinctly 

punctate in Db/Db BMMs than Db/+ BMMs, particularly along the cell membrane (figure 6.13 B). 

Interestingly, despite its proposed role in tail retraction, there did not appear to be any obvious 

polarisation of myosin II in either macrophage phenotype. 

As the pattern of β-actin and myosin II expression appear similar in both phenotypes, double 

staining for these proteins was performed in Db/Db and Db/+ BMMs (figure 6.14). There appeared 

to be some co-localisation along the cell periphery and in small areas of lamellipodia in both Db/+ 

and Db/Db BMMs (figure 6.14 A, D).  
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 Figure 6.13 Immunocytochemical staining for non-muscle Myosin II in Db/+ and 

Db/Db BMMs. (A) Db/+ BMMs and (B) Db/Db BMMs were cultured on glass 

cover-slips for 24 hours before fixing and staining for non-muscle Myosin II. 

Arrows indicate concentration at cell membrane. Scale bar = 25 µM 
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To further investigate polarisation, Db/+ and Db/Db BMMs were immunocytochemically stained 

for Arp2 localisation. In polarised cells the Arp2/3 complex has been shown to concentrate at the 

leading edge where it is thought to mediate development of the actin filament network. In Db/+ 

and Db/Db BMMs Arp2 staining is diffuse throughout the cell (figure 6.15 A, B). As with myosin II, 

there does not appear to be an obvious polarity of Arp2 expression. 

Double staining for myosin II and Arp2 in both Db/+ and Db/Db BMMs revealed discrete areas of 

protein expression within the cell (figure 6.16). In Db/+ and Db/Db BMMs there is a clear 

concentration of myosin II at what appears to be the leading edge of the cell pictured (figure 6.16 

A-D and I-L, respectively), although staining was also apparent at the trailing edge of the cell. The 

expression of Arp2 was fairly distinct from the expression pattern of myosin II in Db/+ BMMs 

(figure 6.16 C, D and G, H), however in the Db/Db BMM the boundary of expression was less clear 

(figure 6.16 K, L and O, P).  Again, neither myosin II nor the Arp2 complex showed absolute 

polarisation despite their proposed roles in migration. 
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Db/+ BMM
Arp2

Db/Db BMM
Arp2

B.

A.

Figure 6.15 Immunocytochemical staining for Arp2 in Db/+ and Db/Db BMMs. 

(A) Db/+ BMMs and (B) Db/Db BMMs were cultured on glass cover-slips for 24 

hours before fixing and staining for Arp2. Scale bar = 25 µM 
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Figure 6.16 Double Immunocytochemical staining for Arp2 and non-muscle Myosin II in 

Db/+ and Db/Db BMMs. (A-H) Db/+ BMMs and (I-M) Db/Db BMMs were cultured on glass 

cover-slips for 24 hours before fixing and sequentially staining for Arp2 and non-muscle 

Myosin II. White boxes in (A), (E), (I) and (M) indicate area highlighted in (B-D), (F-H), (J-L) 

and (N-P), respectively. Scale bar = 10 µM 
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6.4 Discussion 

 

Striking differences were observed in Db/Db BMM morphology compared to Db/+ morphology 

that, when quantified, reveal a significant increase in the length of cell protrusions from the Db/Db 

BMMs compared to the Db/+ heterozygous counterpart (figure 6.1 - 6.2). Variation in morphology 

between Db/Db and Db/+ macrophages has been observed previously, albeit in resident 

peritoneal macrophages (Zykova et al., 2000). In contrast to the results in this chapter Zykova et al 

observed Db/Db macrophages to be more rounded compared with their Db/+ counterparts, with 

less areas of cell spreading and what they describe as numerous cytoplasmic extensions. These 

observations have not been quantified however and the potential mechanism behind this 

observation is not explored. Interestingly this study makes no mention of CSF-1 in the macrophage 

medium so it seems that their culture conditions may vary from that of the BMMs, perhaps 

contributing to these conflicting results.  In other studies wild type BMMs have shown an altered 

morphology in response to a loss of expression of Rac isoforms 1 and 2 (Wheeler et al., 2006); 

Rac2-/- and Rac1/2-/- macrophages display a significantly greater elongation that correlates with 

increased protrusion length in these cells. This suggests a possible Rac-driven mechanism 

controlling morphology of Db/Db BMMs and highlights the importance of future analysis of Rac 

activity in Db/Db BMMs. 

Hyperglycaemia is a hallmark of the diabetic milieu and contributes to the formation of advanced 

glycation endproducts (AGEs) and oxidised low density lipoprotein (oxLDLs). In turn these 

molecules can influence macrophage behaviour and contribute to atherosclerotic plaque 

formation (Takahashi et al., 2002). In vivo, hyperglycaemia is associated with increased chemokine 

production (Shanmugam et al., 2003), increased superoxide, and altered cell surface topology in 

monocytes (Hayashi et al., 2007). Importantly high levels of glucose have also been shown to 

increase the adhesiveness of leukocytes to endothelial cells (Esposito et al., 2001; Meng et al., 

2010) contributing to plaque formation. As there is a clear precedent for increased glucose 

affecting macrophage phenotype and activity we hypothesised that the significant difference in 

Db/Db BMM morphology observed could be due to exposure to hyperglycaemia in vivo, and that it 

may be possible to induce the diabetic macrophage phenotype in WT BMM by exposure to 

increased glucose. Wild type BMMs cultured in high glucose levels did not develop the phenotype 

observed in the Db/Db BMMs however; and despite a trend for increased protrusion length this 

was not significant (figure 6.3). Despite these results hyperglycaemia may still be a contributory 

factor to altered Db/Db BMM morphology, but it is possible that short term culture of wild type 
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cells is not enough to exert this effect. It is likely that the cause of increased protrusion length 

observed in Db/Db BMMs is multifactoral, combining the effects of the diabetic microenvironment 

with the epigenetic changes this drives.  

One unexpected outcome of this experiment was the observation of a trend for increased 

protrusion length in the wild type BMMs exposed to the D-Mannitol control (figure 6.3 F, G). D-

Mannitol, a sugar alcohol, is used as a control as it has the same effect on culture medium 

osmolarity as D-Glucose but is not metabolised by cells, and does not trigger hyperinsulinaemia in 

vivo (Song and Vieille, 2009). D-Mannitol can however be oxidised to form the sugar Mannose. 

Mannose is known to bind to a class of receptor on the macrophage cell surface know as pattern 

recognition receptors (PRRs) which trigger pro-inflammatory responses similar to LPS binding TLR4 

(Stahl and Ezekowitz, 1998). It is likely therefore that D-Mannitol was able to be oxidised to 

Mannose in culture, thus triggering a pro-inflammatory response and a more activated phenotype 

in control BMM, and therefore inadvertently modulating the results. 

To further investigate the morphological differences between Db/Db and Db/+ BMMs it may be 

useful to implement a more comprehensive ‘scoring’ system, alongside the quantification of 

protrusion length. For example, analysing the relative adhesive area and elongation ratio 

(longest:shortest axes) of BMMs would allow quantification of cell spreading and cell size, as 

applied to the analysis of Rac1-/- (Wells et al., 2003) and RhoB-/- BMMs (Wheeler et al., 2007). 

In this chapter we have shown that Db/Db BMM migrate at a lower velocity than their Db/+ 

counterparts on both 2D plasma fibronectin and plasma fibrinogen (figure 6.4). Fibronectin also 

appears to induce a trend for decreased directionality of migration in Db/Db BMMs that becomes 

particularly apparent in plots of their migration trajectory (figure 6.5 F). Studies have shown 

monocyte adhesion in Db/Db mice to be mediated primarily through integrin α4β1 expression on 

monocytes interacting with VCAM-1 and fibronectin on the endothelium, and that monocyte-

endothelium adhesion is amplified in Db/Db mice (Hatley et al., 2003). This suggests that increased 

adhesion to fibronectin may be the cause of reduced migration observed in this chapter. 

Of the two key macrophage stimulatory factors tested we found that wild type BMMs 

demonstrated a more robust response to MCP-1 than to CSF-1 (figure 6.6 and 6.7). For this reason 

Db/Db and Db/+ BMM migration was analysed in response to a gradient of MCP-1, revealing a 

significant reduction in velocity and accumulated distance migrated by Db/Db BMMs (figure 6.8 

and 6.9).  A small but expanding body of work exists on the effect of diabetes on macrophage 
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chemotaxis. An important recent study revealed increased chemotaxis of wild type monocytes 

towards medium conditioned by adipocytes, rich in saturated fatty acids and increased glucose 

levels (Yeop et al., 2010). The chemoattractive properties of adipose tissue to leukocytic cells are 

relatively well characterised; however, the ability of diabetic macrophages to respond to 

chemokines once the diabetic milieu had been established is less well understood. A study of the 

developmental signalling protein, Sonic Hedgehog (Shh), revealed potent chemoattractive 

properties for healthy monocytes, which is impaired in monocytes isolated from the blood of type 

II diabetic patients with coronary artery disease (Dunaeva et al., 2010). Dunaeva et al suggest this 

is due to increased levels of the Shh receptor Patched on the surface of the monocytes triggered 

by the constant low level of inflammation experienced by diabetic patients. An impaired 

chemotactic response to MCP-1 in monocytes from type 1 diabetic patients was observed and 

associated with increased adhesion  and expression of receptors CCR1, CXCR4 and CCR7 (Bouma et 

al., 2005). It is possible therefore that the Db/Db BMMs analysed in this chapter express greater 

levels of the MCP-1 receptor, CCR2, or other chemokine receptors, triggering increased adhesion 

and therefore reducing migration. There is also evidence to suggest that the Db/Db BMMs 

expressed a reduced level of CCR2 however, as human macrophages differentiated in the presence 

of oxLDLs show a switch from expression of CCR2 to CX3CR1, the fraktalkine receptor (Barlic et al., 

2006). It is clear that further analysis of chemokine receptors expressed on the surface of the 

Db/Db and Db/+ BMMs is necessary to fully appreciate the different migratory phenotypes. 

Analysis and comparison of the cytoskeletal components of Db/Db and Db/+ BMMs serves to 

highlight the morphological differences observed between the two phenotypes rather than 

revealing any striking differences in cytoskeletal protein localisation. The localisation of α-tubulin, 

for example, shows distinct networks of microtubules in both phenotypes although the potential 

site of the microtubule organising centre (MTOC) or centrosome is less clear in most Db/Db cells 

(figure 6.10 and 6.11). Staining in both cell types is reminiscent of that seen in wild type murine 

macrophages seen previously (Robinson and Vandre, 1995). The importance of microtubules in 

macrophage migration in vivo is elegantly demonstrated in studies performed in Zebrafish (Redd 

et al., 2006). By disrupting microtubule stability with the anti-mitotic agent nocodazole, Redd et al 

found that macrophages lost the ability to migrate towards a wound site in the Zebrafish embryo. 

It is possible, therefore, that the apparent interruption in Db/Db microtubule centrosomal focus 

may be related to the altered migratory phenotype of the Db/DB BMMs. 
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β-actin and myosin II are co-localised in certain areas of both Db/Db and Db/+ BMMs, suggesting 

active rearrangement of actin filaments, particularly along the cell periphery and in lamellipodia 

(figure 6.14). In single staining for both proteins extensive filopodia are also clearly visible (figure 

6.12 and 6.13), serving as further indication of enhanced cell spreading and increased interaction 

with serum proteins present. A study of actin-myosin co-localisation in human monocytes revealed 

a similar pattern of expression to that observed in Db/+ and Db/Db BMMs, with both proteins 

being expressed at the periphery but myosin II also showing expression throughout the cytoplasm 

(Meconi et al., 1998). A trend for Db/Db BMM increased cell area is particularly evident in both β-

actin and myosin II single staining (figure 6.12 and 6.13). It is possible, therefore, that the 

expression of these proteins contributes to the migratory phenotype of the Db/Db BMMs.  

Double staining for myosin II and Arp2 shows no co-localisation of these two proteins in either 

phenotype BMM. Arp2/3 is known to play a role in actin branching and polymerisation so we 

would expect to see concentration at the leading edge of areas of lamellipodia.  In both Db/Db and 

Db/+ BMMs however Arp2 appears to concentrate in filaments along cytoplasmic protrusions 

(figure 6.16). It is likely that these filaments are actin; however an extensive search revealed no 

evidence of similar staining in the literature. Expression of Arp2 along filopodia-like protrusions is 

also apparent, particularly in Db/Db BMMs (figure 6.16 M, N, O). This is reminiscent of staining 

patterns observed in fibroblast filopodia that are thought to be a precursor to lamellipodial 

expansion (Johnston et al., 2008). In both phenotypes myosin II also appears to be present in these 

filopodia-like protrusions in a similar pattern to that observed for Arp2, though not co-localised 

(figure 6.16 E-H and M-P).  

Myosin II is typically considered to play a role in tail retraction in migrating cells but more recently 

has been found to be expressed in lamellipodia during their disassembly (Conti and Adelstein, 

2008), which may explain why a strong band of expression is visible at the apparent leading edge 

of both Db/Db and Db/+ BMMs whilst also at the trailing edge (figure 6.16 A-D and I-L). Without 

the presence of a chemoattractant the nuclei of BMMs were observed to translocate up and down 

the cell body before the cell would commit to migration in one direction (as observed in time-

lapse microscopy). This suggests that polarisation is occurring rapidly, again contributing to the 

presence of myosin II at either end of the cell.  Despite there being a low level of L-cell derived 

CSF-1 present during cell culture before being fixed and stained, there is no gradient of 

chemoattractant present to trigger polarisation of either phenotype BMM. It is likely that there 

would be a clearer pattern of Arp2 and myosin II polarisation in the presence of a chemoattractant 
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and staining for these proteins in such an environment may reveal more about the mechanisms 

involved in the Db/Db BMMs repressed migration in response to a gradient of MCP-1. 
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Chapter 7: Discussion 
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7.1  Discussion  

 

Given what is known about the role of the metalloproteinases in migration and invasion it is 

perhaps unsurprising that macrophages express high levels of these enzymes in response to pro-

inflammatory stimuli and throughout the wound healing process. Data from this thesis proposes a 

novel function for MMP-10 during macrophage migration in response to pro-inflammatory stimuli 

and investigates a possible role for MMP-10 in diabetic wound healing. 

 

7.1.1 A potential mechanism for LPS-driven temporal regulation of MMP-10 expression in 

macrophages 

The initial profile of the metalloproteinases in primary bone marrow-derived macrophages 

(BMMs) performed in this thesis revealed a pattern of differential expression in response to 

lipopolysaccharide (LPS). These LPS-induced changes in proteinase expression were both time- and 

dose-dependent. Of particular interest was the secreted matrix metalloproteinase MMP-10. 

Previous reports of MMP-10 in macrophages have revealed increased expression in response to 

LPS at 3 hours post-stimulation (Ho et al., 2008). Data in this thesis confirm this early induction of 

MMP-10 mRNA in BMMs following LPS stimulation and demonstrate a return to basal levels 

between 8-16 hours after stimulation. Interestingly, a novel down-regulation of both MMP-10 

mRNA and protein expression significantly below basal levels was observed 24 hours post-LPS 

treatment. Recent studies have shown that LPS-induced MMP-10 expression in macrophages is 

inhibited by siRNA targeting the NADPH oxidase Nox2 (Kim et al., 2010), which is crucial for the 

macrophage oxidative burst following phagocytosis and during the NF-κB-mediated pro-

inflammatory response. Use of an NF-κB pathway inhibitor in this thesis revealed a role for this 

transcription factor in both the early induction and the late repression of MMP-10 mRNA by LPS. 

There is no evidence however that NF-κB binds the MMP-10 promoter directly in human cells 

although there is evidence of a putative binding site in murine cells (‘MatInspector’ algorithm 

(Cartharius et al., 2005)). This, coupled with the fact that NF-κB signalling is still implicated at 24 

hours post-LPS, suggests that an intermediate factor may be involved in the regulation of MMP-10 

repression. It is, in fact, unlikely that the LPS in the medium will have a long enough half-life to 

retain activity and be directly responsible for NF-κB signalling at later time-points (Kato et al., 

2004).  
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Several reports in the literature point towards class II histone deacetylases (HDACs) as potential 

intermediates in the regulation of MMP-10. Experiments in this thesis, however, were unable to 

reproduce the induction of HDAC4, 5 and 7 mRNA 24 hours post-LPS stimulation observed 

previously in BMMs ((Aung et al., 2006) see Chapter 3). HDAC7 has been found to regulate 

expression of MMP-10 by binding to and inhibiting the LPS-inducible transcription factor myocyte 

enhancer factor (MEF)2, thus preventing MEF2 binding to promoter regions on the MMP-10 gene 

(illustrated in figure 7.1). Despite their being no regulation of HDAC7 mRNA in BMMs in response 

to LPS, there is evidence in the literature of a mechanism for the regulation of HDAC7 protein 

activity that offers encouragement for further research into the HDAC7/MMP-10 relationship in 

BMMs. Previous studies found HDAC7 protein to be sequestered within promyelocytic leukemia 

protein (PML) nuclear bodies (NBs) in epithelial and endothelial cells (Gao et al., 2008). PML NBs 

are sub-nuclear compartments known to play a role in transcriptional regulation. Gao et al have 

shown increased formation of PML NBs, and their co-localisation with HDAC7, following TNF-α and 

LPS stimulation in endothelial cells. Once HDAC7 is sequestered in these sub-nuclear 

compartments MEF2 is free to activate MMP-10 transcription. It is reasonable to assume that 

HDAC7 will eventually disassociate from PML NBs as the levels pro-inflammatory stimuli falls, 

allowing HDAC7 to bind to and inhibit MEF2 once more. This hypothesis (illustrated in figure 7.1) 

suggests a mechanism by which LPS can quickly induce MMP-10 transcription due to HDAC7 

protein sequestration, but also drive its repression as levels of stimuli fall without effecting HDAC7 

mRNA. Despite recent data confirming a role for HDAC4, 5 and 7 in the repression of MMP-10 via 

MEF2 inhibition in epithelial cells (Ishikawa et al., 2010a) there are, as yet, no publications 

implicating this relationship in macrophages.  

This potential relationship between HDAC protein levels and MMP-10 transcription serves to 

highlight the importance of confirming the regulation of MMP-10 mRNA at the protein level. 

Although intriguing, LPS-induced MMP-10 mRNA modulation is of little physiological relevance 

unless this is translated into a change in MMP-10 protein activity. 

Post-transcriptional regulation of MMP-10 driven by microRNAs may provide a further potential 

level of LPS-induced repression. Recent work has hinted at miR-155-driven regulation of several 

MMPs in LPS-stimulated human peripheral blood-derived dendritic cells, including MMP-10 (Ceppi 

et al., 2009). Ceppi et al found MMP-10 expression to be up-regulated in dendritic cells stimulated 

with LPS for 24 hours following transfection with anti-miR-155, suggesting that miR-155 (either 

directly or indirectly) represses MMP-10 mRNA. Various algorithms fail to predict a putative miR-
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155 target sequence in the MMP-10 3’ UTR (miRbase (Griffiths-Jones et al., 2008), TargetScan 

(Friedman et al., 2009)), again implicating an intermediate factor. It is unclear how, or if, this 

proposed mechanism of MMP-10 regulation could interact with the ‘HDAC hypothesis’ detailed 

above as published data concerning both miRNAs and HDACs is only recently emerging. Algorithms 

do predict a putative target site for miR-155 in the 3’ UTR of the human MEF2A gene (TargetScan 

(Friedman et al., 2009)). Figure 7.1 suggests some possible mechanisms of LPS-driven MMP-10 

regulation, including roles for HDAC7 and miR-155. 

 

 

 

 

 

 

 

Figure 7.1 An hypothesis for the signalling mechanisms controlling LPS-driven early and late 

MMP-10 expression in BMM. Early: within 3-4 hours of LPS-TLR4 binding there is an NF-κB 

dependent induction of TNF-α and MMP-10 mRNA. LPS can increase activation of transcription 

factor MEF2 through p38-catalysed phosphorylation (Han et al., 1997). TNF-α is also known to bind 

its receptor and signal via the p38 MAPK pathway. Both LPS and TNF-α can trigger dissociation of 

MEF2 from HDAC7 in the nucleus via p38 MAPK. This frees MEF2 to bind to the MMP-10 promoter 

and sequesters HDAC7 in PML nuclear bodies (Aung et al., 2006; Chang et al., 2006; Gao et al., 

2008). Studies have shown that Nox-2 also mediates LPS-driven MMP-10 mRNA expression, via 

NF-κB, presumably feeding in to this pathway (Kim et al., 2010). Expression of miR-155 is induced 

by LPS and is dependent on NF-κB signalling. At this stage it does not appear to have an inhibitory 

effect on MMP-10. Late: As LPS levels fall NF-κB-dependent induction of TNF-α mRNA returns to 

basal levels and by 24 hours MMP-10 mRNA is repressed. Without excessive p38 MAPK signalling 

to trigger sequestration of HDAC7 protein in nuclear bodies, HDAC7 is free to bind MEF2 in the 

nucleus and prevent its interaction with the MMP-10 promoter. Expression of MMP-10 is 

repressed. Throughout this process neither HDAC7 transcription nor total HDAC7 protein levels 

change. LPS-induced miR-155 expression continues to increase. Inhibition of miR-155 at 24 hours 

leads to an increase in MMP-10 expression (Ceppi et al., 2009). Relevant miR-155 targets are 

unclear but may include MEF2.   IκB – Inhibitor of κB, IKK – IκB kinase, MAPK – mitogen activated 

protein kinase, MKK – MAPK kinase, MEKK – MKK kinase, protein, MyD88 - Myeloid differentiation 

primary response gene 88, TLR4 - Toll-like receptor-4, TNF-R – TNF-α receptor. Dashed arrows 

indicate hypothetical mechanisms. 
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7.1.2 The functional implications of LPS-driven MMP-10 expression on macrophage migration 

Migration analysis was performed to further investigate the novel regulation of macrophage 

MMP-10 in response to LPS in terms of its potential functional repercussions. In this thesis analysis 

of 2D BMM migration on thin coatings of fibronectin, an MMP-10 substrate (Chin et al., 1985), 

demonstrated a reduction in macrophage migration velocity in response LPS, from 24 hours post-

stimulation. In itself this was an intriguing result as previous studies have found LPS to induce 3D 

macrophage migration in vitro and in vivo (Tester et al., 2007; Hollingsworth et al., 2007). For 

example, Hollingsworth et al found increased macrophage migration into lung tissue in response 

to LPS aerosol challenge and also enhanced migration through a Transwell membrane towards 

bronchiolar lavage supernatants from LPS treated mice. Mice were exposed to an aerosol of 1 

µg/ml LPS; however Hollingsworth et al did not determine the level of LPS activity in the lavage 

fluid.  

Targeting the MMP-10 transcript with siRNA mimicked the repressive effect of 24 hour LPS-

stimulation on BMM migration and could be rescued by addition of recombinant MMP-10 to the 

medium. This strongly implies that the loss of MMP-10 protein function is responsible for the 

reduction in migration velocity, rather than another LPS-inducible factor. This also suggests that 

MMP-10 cleavage of fibronectin or degradation of a fibronectin-associated motogenic factor may 

play a role in BMM migration. These results are strengthened by recent preliminary results 

revealing decreased motility of BMMs harvested from the mmp10-/- mouse (data not shown).  

MMP-10 has previously been implicated in cell migration, albeit in the migration of lung carcinoma 

cells (Frederick et al., 2008). Frederick et al found siRNA targeting MMP-10 to repress the invasion 

of tumour cells through a matrigel plug in vitro; however they do not speculate on potential 

substrates or mechanisms of cell migration and matrigel is not known to contain any fibronectin. 

Interestingly another study into MMP-10 expression in lung carcinomas suggests a role for MMP-

10 in the expansion of the tumour cell mass rather than the initial invasion of cells and progression 

to metastasis, and shows increased MMP-10 expression in the tumour itself rather than the 

surrounding stroma (Gill et al., 2004). 

The basal level of MMP-10 expression in BMMs may be mediated by their interaction with 

fibronectin. As well as the fibronectin specifically applied in 2D coatings, there will also be a small 

amount present (0.2% serum ≈ 600 ng fibronectin) on uncoated plates due to estimated serum 

present in tissue culture medium extrapolated from known plasma fibronectin concentrations 

(Perttila et al., 1990). Macrophage adhesion to and migration on fibronectin is mediated by 
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integrins and this relationship is well-established. Macrophage-fibronectin binding is mainly 

mediated by integrins αVβ3, α4β1 and α5β1, which are also necessary during macrophage 

differentiation (Danen et al., 2002; Roldan et al., 1992; Xie et al., 1998). Integrin α4β1 however 

only binds to the variable region of fibronectin that is not present in the plasma fibronectin splice 

variant (Pankov and Yamada, 2002). Integrin binding is also associated with macrophage motility 

and polarity, for example, fibroblasts adhering to fibronectin experience a transient down-

regulation in expression of the RhoGTPase RhoA followed by a prolonged increase in its expression 

(Ren et al., 1999). Later studies have shown that this is mediated by the extracellular integrin β1 

domain (Danen et al., 2002).  

Activation of the RhoGTPase Rac1 is also likely to be of importance to the migratory capacity of 

the BMMs studied in this thesis. For example, published data suggests an inverse correlation 

between levels of Rac1 and directionality of migration of macrophages and fibroblasts, i.e., more 

directionally persistent cells exhibit lower levels of Rac1 activation (Allen et al., 1998a; Pankov et 

al., 2005). LPS has been shown to enhance Rac1 activity in macrophages at early time-points (Kong 

and Ge, 2008) whilst fibronectin binding has been shown to quickly enhance Rac1 activation in 

epithelial cells, increasing F-actin expression and the formation of focal adhesions (Kimura et al., 

2006). Rac1-null macrophages do not lose their ability to migrate however their morphology and 

mode of migration is altered (Wheeler et al., 2006). A relationship has also been proposed linking 

Rac1 activity to MMP-10 expression in lung carcinoma cells (Frederick et al., 2008). More 

specifically, activation of protein kinase C (PKC)-ι activates Rac1 through the adaptor protein Par6α 

and stimulates MMP-10 expression in carcinoma cells. Frederick et al do not propose a mechanism 

by which Rac1 is responsible for MMP-10 activation, however. These potential roles for Rac1 

activation in the regulation of MMP-10 during macrophage migration are outlined in figure 7.3.  

There is also evidence of direct integrin-MMP interactions that contribute to leukocyte and cancer 

cell motility. MMPs have been shown to activate integrins on the cell surface via proteolytic 

cleavage, whilst there is also evidence of integrin-mediated MMP activation via C-terminal domain 

binding. Integrin αVβ3, for example, can be activated by MMP-14-mediated proteolytic cleavage in 

endothelial cells (Galvez et al., 2002) whilst the interaction between MMP-14 and αVβ3 can, in 

turn, promote MMP-2 activation in breast cancer cells (Deryugina et al., 2001).  Evidence of 

integrin-mediated MMP-10 expression can be found in studies of thymic lymphoma: T 

lymphocytes are shown to express increased levels of MMP-10 following binding to endothelial 

cells that is dependent on ICAM-1/αLβ2 integrin interaction (Van et al., 2004). However, there 
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does not appear to be any physical interaction between MMP-10 and αLβ2.  Interesting in vivo 

data has shown abnormal β1 integrin expression in the wounds of mice that constitutively express 

MMP-10 in their keratinocytes (Krampert et al., 2004). Again, however, no direct interaction 

between MMP-10 and integrins is proposed.      
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Figure 7.2 A potential role for the RhoGTPase Rac1 in LPS-driven macrophage migration and 

MMP-10 expression. Results from this thesis shown in blue, speculations based on published data 

shown in pink. (A) Macrophage migration is relatively fast but has little directionality when 

cultured without LPS or fibronectin. MMP-10 is expressed at basal levels. Increased Rac1 activation 

has been linked to random migration in epithelial cells and fibroblasts (Pankov et al., 2005) so it is 

not unreasonable to suppose levels of Rac1 may be high during random migration of macrophages. 

(B) On thin 2D coatings of fibronectin macrophages migrate less randomly and at a greater 

velocity. Rac1 activation is down-regulated in more directionally persistent cells (Pankov et al., 

2005). (C) On fibronectin macrophages stimulated with LPS demonstrate a dramatic reduction in 

migration velocity concurrent with slightly increased directionality and repression of MMP-10 

below basal levels. Repression of MMP-10 can occur downstream of reduced Rac1 activation, 

albeit in lung carcinoma cells (Frederick et al., 2008). This suggests a mechanism by which the Rac1 

may regulate macrophage migration and also modulate the expression of MMP-10. 
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7.1.3 A possible role for miR-155 in post-transcriptional regulation of macrophage migration 

Several previous studies have shown that LPS can induce the differential expression of 

macrophage miRNAs, particularly miR-155 (Taganov et al., 2006; Tili et al., 2007; O'Connell et al., 

2008; Ceppi et al., 2009). Preliminary microarray data in this thesis corroborates this, showing 

miR-155 to be induced in the RAW264.7 macrophage cell-line in an NF-κB-dependent manner 

following 4 hours LPS-stimulation. MiR-155 is considered to be a critical regulator of immune 

function, contributing to the differentiation process of several haematopoietic lineages 

(Shivdasani, 2006; Rodriguez et al., 2007). Studies are emerging, however, suggesting this miRNA 

also plays a role in other processes, such as control of cell migration.  

Given the data in this thesis outlining a role for MMP-10 in the migration of LPS-stimulated 

macrophages one could hypothesise that miR-155 is indirectly responsible for the repression of 

migration through inhibition of MMP-10 transcription. The migration velocity of BMMs did not 

change following transfection with anti-miR-155 oligonucleotides; however a significant down-

regulation of Euclidean distance migrated was observed. This hints at a miR-155-driven regulation 

of factors associated with directional migration, such as the RhoGTPases. For example, both 2D 

and 3D epithelial cell migration can be induced by miR-155 over-expression due to the post-

transcriptional targeting of RhoA mRNA (Kong et al., 2008). In macrophages a constitutive over-

expression of RhoA has been found to inhibit the cells’ ability to migrate and polarise in response 

to CSF-1 (Allen et al., 1998b). Due to this wealth of evidence suggesting a mechanism of post-

transcriptional control of macrophage migration it would be important to further pursue the 

preliminary results obtained in anti-miR-155 transfected BMMs. 

 

 7.1.4 The physiological relevance of MMP-10 expression in macrophages 

It is important to apply the potentially novel MMP-10-driven mechanism of macrophage migration 

to physiologically relevant situations in vivo, for example, the wound healing response. During 

wound healing and the multi-step pro-inflammatory cascade macrophages respond quickly to a 

barrage of chemotactic signals that ultimately trigger their migration towards the site of injury and 

infection. Convention no-longer dictates that the MMPs act solely as ‘molecular scissors’ 

implementing the degradation of matrix barriers, although this mode of action may well be 

important in the wound healing situation. The ability of MMPs to cleave and activate cryptic 

chemotactic molecules from the extracellular matrix is equally, if not more relevant in the 

mediation of macrophage migration in vivo. Novel high-throughput ‘scanning’ techniques have 
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revealed numerous chemokine substrates for MMPs (Overall et al., 2002). Specifically, MMP-12, 

also known as macrophage metalloelastase, has been found to cleave and inactivate IL-8 during 

the early pro-inflammatory response, aiding neutrophil clearance. At later stages MMP-12 cleaves 

macrophage chemotactic proteins (MCP)-1 – -4 at critical receptor binding motifs triggering 

macrophage clearance from inflamed tissue (Dean et al., 2008). Dean et al hypothesise that the 

synchronous expression of MMPs by macrophages aids both the pro- and anti-inflammatory 

response. The differential expression of macrophage MMP-10 observed in this thesis follows this 

premise. 

Temporal changes in MMP expression have been studied in the context of inflammation and 

wound healing previously. For example, an analysis of cutaneous burn healing in mice showed 

early down regulation of MMP-9 and -13 followed by a rebound over-expression from 3 days up to 

two weeks after initial wounding (Feezor et al., 2004). These studies make no mention of MMP-10 

expression however and do not speculate on the function of the changing MMP expression 

patterns. Interestingly however, research into Pyoderma gangrenosum, a non-infectious chronic 

ulcer of the skin driven by autoimmune response, has revealed an increase in expression of MMP-

10 in the ulcer margin (Bister et al., 2007). Bister et al suggest this may contribute to excessive 

degradation of collagen IV and fibronectin in the wound thus impairing healing.  

 

7.1.5 MMP-10 expression in diabetic wound tissue  

The leptin receptor-deficient Db/Db mouse, a model of impaired wound healing and type II 

diabetes, was utilized to further elucidate a role for MMP-10 in vivo. Analysis of MMP-10 protein 

expression in full thickness dermal wounds from the Db/Db mouse and its non-diabetic (Db/+) 

counterpart suggest that the normal regulation of MMP-10 protein is delayed in diabetic wounds. 

It is tempting to speculate that levels of MMP-10 are due to the influx of macrophages to the 

wound tissue alone, known to be delayed in Db/Db mice (Tsuboi and Rifkin, 1990), however other 

cell types present in wounds have been found to express MMP-10, for example the basal 

keratinocytes (Rechardt et al., 2000; Krampert et al., 2004; Madlener et al., 1996).  It is not 

possible to make any definitive conclusions about macrophage expression of MMP-10 in vivo until 

co-localisation studies are performed.  

Overall there appeared to be a trend toward reduced MMP-10 protein induction in Db/Db skin 

explants exposed to LPS compared with Db/+ skin explants. These findings need to be further 

substantiated but suggest that LPS-induced MMP-10 expression is deregulated in diabetic wounds. 
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A brief mention of the aberrant kinetics of MMP-10 expression in Db/Db wounds can be found in a 

publication that focuses mainly on an alternative model of impaired wound healing (Madlener et 

al., 1996). Madlener et al state that MMP-10 induction was initially delayed in Db/Db wounds, but 

the subsequent expression was prolonged (their unpublished data). This suggests there would be 

merit to further investigation of this finding. There is also evidence to suggest role for integrins in 

diabetic wound healing.  For example, in diabetic corneal wound tissue enhanced MMP-10 

expression correlates with areas of weak and disorganised β1 integrin and impaired healing 

(Kabosova et al., 2003). This would also offer further explanation for the impaired migration of 

macrophages into diabetic wound tissue as well as delayed re-epithelialisation of the open wound. 

 

7.1.6 Diabetic macrophages have an impaired response to chemoattractants 

Despite the well-characterised delay in macrophage influx to diabetic wounds it is clear that 

diabetic macrophages do not completely lack the ability to be recruited in vivo. It was important, 

therefore, to examine any potential mechanism by which Db/Db macrophage migratory response 

is impeded. Data in this thesis show that Db/Db macrophages have a significantly altered 

morphology compared to their Db/+ counterparts, displaying longer protrusions and an 

appearance of increased cell size. Db/Db BMMs were also found to migrate more slowly on 

fibronectin or with MCP-1 stimulation, despite expressing similar levels of MMP-10 mRNA to Db/+ 

BMMs. This indicated an MMP-10-independent mechanism controlling macrophage migration.  

The possibility that exposure to high blood glucose in vivo was responsible for variable 

macrophage morphology was investigated. Whilst exposure to high levels of glucose did not 

induce a Db/Db-like morphology in wild-type BMMs further examination of the literature suggests 

that macrophages can respond to glucose concentration by augmenting their adhesion and 

migration. For example, peripheral blood mononuclear cells (PBMCs) demonstrate significantly 

greater adhesion to monolayers of primary human aortic endothelial cells cultured in high glucose 

medium in a process that appears to be dependent on expression of vascular cell adhesion 

molecule (VCAM)-1 (Esposito et al., 2001). It is possible, therefore, that the diabetic 

microenvironment Db/Db BMMs are exposed to in vivo (before harvest and differentiation in 

vitro) triggers an increase in innate adhesiveness. Assuming the biphasic relationship between 

adhesion and migration applies this may contribute to the decreased migration speed and 

distance observed on fibronectin in this thesis. In another similar study monolayer cultures of 

vascular smooth muscle cells (VSMC) and endothelium-denuded aortic explants from Db/Db mice 
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induced increased binding of a non-diabetic monocytic cell line compared to VSMC from their 

Db/+ counterparts (Meng et al., 2010). Meng et al suggest this is due to an increased level of 

fraktalkine (CX3CL1) expressed by the diabetic VSMC. Results from Db/Db BMM migration studies 

in this thesis may be consistent with Meng et al’s observations since the slower migration 

observed could be due to enhanced adhesion to the substrate. It would be interesting therefore to 

explore cell-cell interactions between diabetic macrophages and non-diabetic endothelial cells. 

The hypothesis that enhanced macrophage adhesion is responsible for atherosclerosis is well 

accepted (Galkina and Ley, 2007) however there are some discrepancies when considering how 

this affects wound healing and resolution of inflammation (reviewed in (Duffield, 2003)). Despite 

the absolute necessity for macrophages during wound healing (Leibovich and Ross, 1975; Mirza et 

al., 2009) it seems that in type II diabetes inhibition of macrophage activity can actually be 

beneficial. For example, wound healing in the obese and diabetic Ob/Ob mouse was enhanced by 

the application of anti-TNF-α and anti-F4/80 neutralising monoclonal antibodies (Goren et al., 

2007). In contrast, a study of corneal wound healing in Db/Db mice found macrophages to be a 

rate limiting factor for wound closure (Maruyama et al., 2007). Maruyama et al found that the 

application of IL-1β pre-treated Db/Db BMMs onto Db/Db wounds rescued impaired wound 

healing suggesting an inherent deregulation of cytokines in Db/Db tissues.  This corroborates with 

the data in this thesis and suggests that macrophage inability to migrate properly in response to 

pro-inflammatory stimuli may contribute to impaired wound healing. 

In conclusion, data in this thesis explore the expression of MMP-10, both in LPS-treated BMMs in 

vitro and in response to wound healing in vivo. Whilst LPS-driven induction and repression of 

MMP-10 mRNA in macrophages seems reliant on the NF-κB signalling pathway it is likely that an 

intermediate factor is more directly responsible for MMP-10 repression. The results presented 

here also suggest that MMP-10 plays a role in the migration of macrophages on fibronectin in vitro 

and may be implicated in the impaired wound healing observed in diabetic wounds. Finally Db/Db 

BMMs were found to have reduced ability to respond to chemoattractant signals, hinting at an 

MMP-10-independent mechanism behind the delayed macrophage influx in diabetic wounds and 

potentially reflecting their increased adhesion in vivo. This work has laid solid foundations for 

future experiments into the role of macrophage MMP-10 in inflammation as well as MMP-10-

independent macrophage migration in diabetes. 
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7.2 Future Work 

 

MMP-10 and cell migration: To further strengthen the hypothesis that MMP-10 is necessary for 

optimal macrophage migration on fibronectin the migration of BMMs derived from the MMP-10 

null mouse could be investigated. As well as quantifying their migratory capacity in unstimulated 

conditions, it would be important to study their response to LPS and MCP-1. A complete MMP 

profile of these cells would also be useful in order to reveal any potential compensation 

mechanisms for MMP-10 redundancy. In addition it would be necessary to examine the 

degradation products of the plasma fibronectin used in these experiments by MMP-10. Mass 

spectrometry could be utilized to determine the fragments of fibronectin produced and also the 

potential release of any cryptic fibronectin-associated motogens.  

Integrin expression: In order to build a more comprehensive understanding of BMM interaction 

with fibronectin and subsequent macrophage migratory capacity it would be interesting to profile 

BMM integrin expression. Adhesion assays utilizing integrin blocking antibodies would reveal 

specific interactions with the fibronectin matrix, both with and without LPS. Integrin blocking 

antibodies could also be used during migration analysis and would reveal the effect of specific 

integrins on velocity and directionality of BMM migration.  

Deregulation of MMP-10 expression: Due to the wealth of published data suggesting a role for 

HDAC4, 5 and 7 in the control of MMP-10 transcription it will be vital to follow up this relationship 

in our model. The hypothesis that sub-cellular localisation of HDAC7 may vary following LPS 

stimulation should be pursued, either by immunocytochemistry or by cell fractionation and 

investigation of proteins present. It may also be possible to perform chromatin 

immunoprecipitation (ChIP) analysis to explore interaction of HDAC7, MEF2 and MMP-10 in BMMs 

at different time-points following LPS-stimulation. ChIP allows the investigation of protein-DNA 

interactions and could therefore indicate protein binding at the MMP-10 promoter region. 

Similarly co-immunoprecipitation (Co-IP) could be utilised to study protein-protein interaction, 

such as that between HDAC7 and MEF2. 

Diabetic macrophages: A comparison of Db/+ and Db/Db BMM integrin profile may also aid 

understanding of the reduced velocity of migration observed in Db/Db cells. Analysis of 

RhoGTPase activity in BMMs during migration on fibronectin may also reveal a mechanism for 

regulation of macrophage motility. Specifically Rac1 could be analysed using PAK1 pull-down 

assays. PAK1 binds specifically to Rac1 in its active form, i.e., GTP-bound. Immunocytochemical 
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analysis of Rac1 distribution in polarized cells could also be performed potentially revealing a role 

for this RhoGTPase in Db/Db macrophage morphology. 

It would be interesting to investigate both wild-type and Db/Db BMM migration in a 3D 

environment, either through 3D matrices in an invasion assay or on an undulating 3D surface such 

as a cell-derived matrix (as described in (Beacham et al., 2007)). Potentially, the investigation of 

macrophage migration and response to LPS in vivo, in wild-type, Db/Db and MMP-10 null mice, 

would provide more physiologically relevant data. For example, topical administration of LPS onto 

wounds would allow for analysis of MMP-10 expression in response to LPS in vivo. 

Patient studies: Ultimately, however, it will be crucial to apply any findings to human studies. For 

example, obtaining blood samples from healthy and diabetic patients would enable me to profile 

MMP-10 expression at basal levels in the blood. Any potential correlation of MMP-10 expression 

and migratory behaviour of macrophages derived from patient blood samples would be explored. 

Similarly, obtaining diabetic skin samples, including that of chronic ulcers, would enable these 

initial investigations of MMP-10 expression to be repeated in a clinically relevant setting. It would 

also be important to study the potential co-localisation of MMP-10 expression with macrophages 

in human tissue to allow us to state definitively whether or not macrophages MMP-10 plays a role 

in the wound healing response. Investigating the expression of MCP-1 and its receptor in human 

diabetic tissues may also illuminate the relevance of impaired migration of Db/Db BMM in a 

physiological setting.  
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Table 8.1 Example bone marrow-derived macrophage yields.   Bone marrow flush is harvested 

from mice on day 0 and counted. 10 x 106 cells were plated onto 100 mm diameter Bacteriological 

Petri Dishes (BD Falcon). At day 3 non-adherent cells were aspirated and counted again, then re-

plated in fresh medium at the same density. At day 10 fully differentiated adherent bone marrow-

derived macrophages were removed by scraping and counted before use in experiments. 

 

 

 

 

Table 8.2 Primer and probe sequences for genes studied by qRT-PCR. Primer and probers for all 

the TIMPs, MMPs, ADAMs, ADAMTSs and for TNF-α were designed using Primer Express® software 

(Applied Biosystems) by Dr. Caroline Pennington. Primers and probe for F4/80 were designed, also 

using Primer Express® software, by Dr. Damon Bevan. Primers for HDAC4, 5 and 7 were purchased 

from Roche Universal ProbeLibrary system. 

Phenotype Quantity 

Cell Number x 106 

Day 0  
bone marrow flush 

Day 3  
non-adherent 
population 

Day 10  
bone marrow-
derived 
macrophages 

Average bone 
marrow-derived 
macrophages per 
mouse 

WT C57Bl/6 2 45.22 15.75 2.94 1.47 

 3 41.52 24.31 11.32 3.77 

 3 37.94 25.92 10.05 3.35 

 3 53.82 24.60 8.80 2.93 

 1 53.82 26.78 4.20 4.20 

Db/+ 1 49.60 30.40 3.18 3.18 

 1 20.80 16.50 3.48 3.48 

 1 10.08 1.82 1.69 1.69 

 1 11.01 3.60 5.07 5.07 

 1 23.60 30.40 3.18 3.18 

Db/Db 1 46.80 26.80 2.96 2.96 

 1 22.00 16.92 5.30 5.30 

 1 25.40 7.98 3.80 3.80 

 1 15.22 10.02 3.69 3.69 

 1 21.50 14.40 2.35 2.35 
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Gene Primer and Probe Sequences

Timp 1 Forward Primer:

Reverse Primer:

Probe:

5'-CATGGAAAGCCTCTGTGGATATG-3'

5'-AAGCTGCAGGCACTGATGTG-3'

5'-FAM-CTCATCACGGGCCGCCTAAGGAAC-TAMRA-3'

Timp 2 Forward Primer:

Reverse Primer:

Probe:

5'-CCAGAAGAAGAGCCTGAACCA-3'

5'-GTCCATCCAGAGGCACTCATC-3'

5'-FAM-ACTCGCTGTCCCATGATCCCTTGC-TAMRA-3'

Timp 3 Forward Primer:

Reverse Primer:

Probe:

5'-GGCCTCAATTACCGCTACCA-3'

5'-CTGATAGCCAGGGTACCCAAAA-3'

5'-FAM-TGCTACTACTTGCCTTGTTTTGTGACCTCCA-TAMRA-3'

Timp 4 Forward Primer:

Reverse Primer:

Probe:

5'-TGCAGAGGGAGAGCCTGAA-3'

5'-GGTACATGGCACTGCATAGCA-3'

5'-FAM-CCACCAGAACTGTGGCTGCCAAATC-TAMRA-3'

MMP-1 Forward Primer:

Reverse Primer:

Probe:

5’- CGTGGACCAACAGCAGTGAA -3’

5’- GAGTGAGCCCAAGGGAGTGA -3’

5’- FAM-TCAACTTGTTCTATGTTACGGCTCATGAACTGG -TAMRA-3'

MMP-2 Forward Primer:

Reverse Primer:

Probe:

5’-AACTACGATGATGACCGGAAGTG -3’

5’-TGGCATGGCCGAACTCA -3’

5’- FAM-TCTGTCCTGACCAAGGATATAGCCTATTCCTCG -TAMRA-3’

MMP-3 Forward Primer:

Reverse Primer:

Probe:

5’-GGAAATCAGTTCTGGGCTATACGA -3’

5’-TAGAAATGGCAGCATCGATCTTC -3’

5’- FAM- AGGTTATCCTAAAAGCATTCACACCCTGGGTCT-TAMRA-3’

MMP-7 Forward Primer:

Reverse Primer:

Probe:

5’- GCAGAATACTCACTAATGCCAAACA -3’

5’- CCGAGGTAAGTCTGAAGTATAGGATACA -3’

5’- FAM- CCAAAATGGCATTCCAGAATTGTCACCTAC -3’

MMP-8 Forward Primer:

Reverse Primer:

Probe:

5’- GATTCAGAAGAAACGTGGACTCAA -3’

5’- CATCAAGGCACCAGGATCAGT -3’

5’- FAM-CATGAATTTGGACATTCTTTGGGACTCTCTCAC-TAMRA -3’

MMP-9 Forward Primer:

Reverse Primer:

Probe:

5’-CGAACTTCGACACTGACAAGAAGT -3’

5’- GCACGCTGGAATGATCTAAGC-3’

5’- FAM-TCTGTCCAGACCAAGGGTACAGCCTGTTC-TAMRA -3’

MMP-10 Forward Primer:

Reverse Primer:

Probe:

5’-CCTGCTTTGTCCTTTGATTCAGT-3’

5’-CGGGAT TCCAATGGGATCT-3’

5’- FAM-TCCTATTCTTTAAAGACAGGTACTTCTGGCGCA-TAMRA -3’

MMP-11 Forward Primer:

Reverse Primer:

Probe:

5’- ATTGATGCTGCCTTCCAGGAT -3’

5’- GGGCGAGGAAAGCCTTCTAG -3’

5’- FAM-TCCTTCGTGGCCATCTCTACTGGAAGTTTG-TAMRA -3’

MMP-12 Forward Primer:

Reverse Primer:

Probe:

5’- GAAACCCCCATCCTTGACAA -3’

5’- TTCCACCAGAAGAACCAGTCTTTAA -3’

5’- FAM-AGTCCACCATCAACTTTCTGTCACCAAAGC-TAMRA -3’

MMP-13 Forward Primer:

Reverse Primer:

Probe:

5’-GGGCTCTGAATGGTTATGACATTC -3’

5’-AGCGCTCAGTCTCTTCACCTCTT -3’

5’- FAM-AAGGTTATCCCAGAAAAATATCTGACCTGGGATTC-TAMRA -3’
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Gene Primer and Probe Sequences

MMP-14 Forward Primer:

Reverse Primer:

Probe:

5’- AGGAGACAGAGGTGATCATCATTG -3’

5’- GTCCCATGGCGTCTGAAGA -3’

5’- FAM-CCTGCCGGTACTACTGCTGCTCCTG-TAMRA -3’

MMP-15 Forward Primer:

Reverse Primer:

Probe:

5’- ATCCCCTATGACCGCATTGAC -3’

5’- CCCCTGCCAGACACTGATG -3’

5’- FAM-ACACAGCATGGAGACCCTGGCTACCC-TAMRA -3’

MMP-16 Forward Primer:

Reverse Primer:

Probe:

5’- GGCTACCTTCCACCGACTGA -3’

5’- CTTCATCCAGTCGATTGTGTTTCT -3’

5’- FAM- CTGCAGAGACCATGCAGTCAGCTCTAGCT-TAMRA -3’

MMP-17 Forward Primer:

Reverse Primer:

Probe:

5’-GGCAGTATGTTCCTGCACTTCA-3’

5’- GCTAGCACTGCCCTCAGGAT -3’

5’- FAM-CCTGTGGACCTCAGTCTCTGCCAAGG-TAMRA -3’

MMP-19 Forward Primer:

Reverse Primer:

Probe:

5’- GCCCATTTCCGGTCAGATG -3’

5’- AGGGATCCTCCAGACCACAAC -3’

5’- FAM- CCACAAGGGCCCGTATGAAGCAGC-TAMRA -3’

MMP-20 Forward Primer:

Reverse Primer:

Probe:

5’-GATCAGGAGGATTAAGGAGCTACAAA -3’

5’- GGCGGTAGTTAGCCACATCAG -3’

5’- FAM- CCAGAATACAATGAATGTGATCAAGAAGCCTCG-TAMRA -3’

MMP-21 Forward Primer:

Reverse Primer:

Probe:

5’-TCCAAAGAAGATGAGCCAAGTG -3’

5’-ACGCTGAATCGAGGTTTCTG -3’

5’- FAM-TTCCAGCAATAATGCCTCAAAACCACCC-TAMRA -3’

MMP-23 Forward Primer:

Reverse Primer:

Probe:

5’- CAGACTGTTGACCATGTCGGTAA -3’

5’- GAAGGAAAGAACTCTGTATGTGAGGTT -3’

5’- FAM- CCGCTACACGCTGACACCGGC-TAMRA -3’

MMP-24 Forward Primer:

Reverse Primer:

Probe:

5’- TATCATGGCTCCCTTCTACCAATAC -3’

5’- CTGCGGACCGGGAGTGT -3’

5’- FAM-CCAGCTGAGCCCTCTGGAGCCA-TAMRA -3’

MMP-25 Forward Primer:

Reverse Primer:

Probe:

5’- TGGCTGTCTGGGCTACTGAA -3’

5’- GGTAGGCCCGAGCAAAGTG -3’

5’- FAM-AATTCTCAGTACCAGGAGCCTGACATCATTATCC-TAMRA -3’

MMP-27 Forward Primer:

Reverse Primer:

Probe:

5’-AGGATAATAAAGTGCTTCCCAGGA-3’

5’-AAGAAATAGAGGAATCCATTATGTTGG-3’

5’- FAM-TCGCCTCCGTGTGGATGCTGTC-TAMRA -3’

MMP-28 Forward Primer:

Reverse Primer:

Probe:

5’- CCACTTGGACAGAGAGGATCAGT -3’

5’- AAGCGTTTCTTACGCCTCATTT -3’

5’- FAM- CTGCTTGCTGGACACCGAGCCAA-TAMRA -3’

ADAM8 Forward Primer:

Reverse Primer:

Probe:

5’-CCGAAAGGCTCCGAGACAA-3’

5’-GAAGGGTCTGGAGGCCTGTT-3’

5’-FAM-AGGAGTGTGGCACCCAAGCCTATCTCG-TAMRA-3

ADAM10 Forward Primer:

Reverse Primer:

Probe:

5’- GTGCCAGTACAGGCTCTTTGC -3’

5’- CACAGTAGCCTCTGAAGTCATTACATG -3’

5’- FAM-ACTATCACTCTGCAGCCGGGCTCTCC-TAMRA -3’
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Gene Primer and Probe Sequences

ADAM17 Forward Primer:

Reverse Primer:

Probe:

5’-AAGTGCAAGGCTGGGAAATG -3’

5’-CACACGGGCCAGAAAGGTT -3’

5’- FAM-CCTGCGCATGCATTGACACTGACAAC-TAMRA -3’

ADAM19 Forward Primer:

Reverse Primer:

Probe:

5’-CGGGCCCACCTCGAA-3’

5’-CCGTTTCATTCTGCGAGGTT-3’

5’- FAM-TGGGCCCTTCAGTTTACACATCAGACCA-TAMRA -3’

ADAM28 Forward Primer:

Reverse Primer:

Probe:

5’-TACTGCTTGAAGGGCAAATGTC -3’

5’-TGTCCCACCTTCATTCTGCTT -3’

5’- FAM-TCCAGGAACCAAGGTTGCAAATACATCATGTTAC-TAMRA -3’

ADAM33 Forward Primer:

Reverse Primer:

Probe:

5’-CAGGCACTGTCAGAATGCTACCT-3’

5’-CTATTGCAAACCCCACCGTTA-3’

5’- FAM-TGGAACGTTGCTTGACTGCCTGCC-TAMRA -3’

Adamts1 Forward Primer:

Reverse Primer:

Probe:

5’-CCAGAACACCCGGAACCA-3’

5’-CACAAATCGCTTCTTCCTTATGC-3’

5’- FAM-ACGCGGGAAAGCCATCAGGACC-TAMRA -3’

Adamts4 Forward Primer:

Reverse Primer:

Probe:

5’- TCAACACCCCTAACGACTCAGA -3’

5’- CAGCTCCTAGCTGGATCACACA -3’

5’- FAM- CTGACCACTTTGACACAGCCATTCTGTTCA -TAMRA -3’

Adamts8 Forward Primer:

Reverse Primer:

Probe:

5’-AGAGGACAGGAAGCAGGACAA-3’

5’-GGACACAAACCTCTTGCTTCTAGTT-3’

5’- FAM-AAGTGCCACCACCCTTCGGATCC-TAMRA -3’

Adamts15 Forward Primer:

Reverse Primer:

Probe:

5’-GCTCATCTGCCGAGCCAAT -3’

5’-CAGCCAGCCTTGATGCACTT -3’

5’- FAM-CCTGACTCCACCTCGGTCTGTGTCCA -TAMRA -3’

Adamts16 Forward Primer:

Reverse Primer:

Probe:

5’- AACTCAGACTGTGTCACGCATAGAG -3’

5’- GGAGGTAGAGATGTTTGTTTCGTAGA -3’

5’- FAM- TAAGCACCATTCCACCAACCAGTACTACCACA -TAMRA -3’

TNFa Forward Primer:

Reverse Primer:

Probe:

5’ – AGACCCTCACACTCAGATCATCTTC – 3’

5’ – CCACTTGGTGGTTTGCTACGA – 3’

5’- FAM- CAAAATTCGAGTGACAAGCCTGTAGCCCA-TAMRA -3’

F4/80 Forward Primer:

Reverse Primer:

Probe:

5’ – CCTGGACGAATCCTGTGAAG – 3’

5’ – GGTGGGACCACAGAGAGTTG – 3’

Universal # 1

HDAC4 Forward Primer:

Reverse Primer:

Probe:

5’ – AATCCTGCCCGTGTGAAC – 3’

5’ – GTAGGGGCCACTTGCAGA – 3’

Universal #71

HDAC5 Forward Primer:

Reverse Primer:

Probe:

5’ – GAGTCCAGTGCTGGTTACAAAA – 3’

5’ – TACACCTGGAGGGGCTGTAA – 3’

Universal #71

HDAC7 Forward Primer:

Reverse Primer:

Probe:

5’ – CCATGGGGGATCCTGAGT – 3’

5’ – GCAAACTCTGGGCAATG – 3’

Universal # 71
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Figure 8.2 Microarray analysis of 518 unique murine microRNAs performed for RAW264.7 

macrophages treated with LPS, the IκK kinase inhibitor BMS-345541 or LPS and BMS 345541 

combined. Taqman low density array (TLDA) was performed on cDNA extracted from RAW264.7 4 

hours post-treatment. CT values were converted to a representative colour, black indicating no 

expression (≥ 35) and green indicating very high expression (≤ 20) as shown in key. MicroRNAs are 

ordered according to their basal level of expression (control). Red arrow indicates miR-155 whilst 

highlighted microRNAs indicate those that have been shown to respond to LPS previously: miR-9 

(Bazzoni et al., 2009), miR-147a/b (Taganov et al., 2006), miR-155 (O'Connell et al., 2007; Tili et al., 

2007). 

Figure 8.1 TaqMan® Array Rodent MicroRNA Card Set v2.0 (Applied Biosystems). A two card 

set containing a total of 364 TaqMan® MicroRNA Assays per card. Enables quantitation of 518 

and 303 unique microRNAs for mouse and rat respectively. Three endogenous controls for each 

species are included on each card for data normalization and one unrelated to rodent as a 

negative control.  
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RAW264.7 RAW264.7

microRNA microRNA

mmu-miR-24 21.519108 21.930367 21.759493 21.82682 mmu-miR-615-3p 30.880753 30.72889 30.550385 29.942188

mmu-miR-146a 21.97872 21.961744 22.441452 22.439568 mmu-miR-101a 30.903257 31.28846 31.833868 31.1965

mmu-miR-19b 22.564947 22.821264 22.926828 22.985737 rno-miR-333 30.938457 31.626139 40 40

mmu-miR-16 22.579662 22.948236 22.972439 22.92611 mmu-miR-200b 30.947477 31.210005 31.093874 30.682505

mmu-miR-17 23.589773 23.928926 23.728674 23.944298 mmu-miR-181a 30.949268 30.625992 30.498951 30.77952

mmu-miR-191 23.613527 23.795109 23.75428 23.962091 mmu-miR-132 30.977804 30.576225 30.244642 30.715841

mmu-miR-21 23.712465 23.954544 23.946083 23.877026 mmu-miR-676 31.028534 31.049793 30.70104 30.958

mmu-miR-222 23.723598 23.674576 23.74206 23.934404 mmu-miR-10b 31.074167 31.92479 32.031944 31.68966

mmu-miR-29a 23.82552 23.97267 23.980923 23.954086 mmu-miR-98 31.21321 31.975857 31.443583 40

mmu-miR-20a 24.333307 24.828585 24.945534 24.938126 mmu-miR-185 31.282787 31.816133 31.551067 31.936972

mmu-miR-142-3p 24.390251 24.63592 24.955772 24.715588 mmu-miR-497 31.29078 30.921997 31.473143 31.927315

mmu-miR-484 24.575327 24.93435 24.727127 24.959532 mmu-miR-365 31.32846 31.954594 31.699892 32.244354

mmu-miR-106a 24.794495 25.364038 25.491323 25.510208 mmu-miR-20b 31.383091 32.357075 33.521996 32.882763

mmu-miR-19a 25.42931 26.573082 27.605495 26.950579 mmu-miR-429 31.40035 31.971415 32.512135 32.407684

mmu-miR-93 25.522966 25.94371 25.60083 25.850904 mmu-miR-142-5p 31.427229 31.6075 31.974398 31.718992

mmu-miR-223 25.582466 25.738012 25.712883 25.700294 mmu-miR-544 31.472525 32.60436 40 32.070927

mmu-miR-29c 25.671015 25.760288 25.745342 25.73165 mmu-miR-500 31.478085 31.951033 31.88059 31.15859

mmu-miR-30c 25.67214 25.979103 25.97056 25.935932 mmu-miR-342-3p 31.498976 32.0008 31.958193 32.32463

mmu-miR-221 25.74364 25.603094 25.932966 25.836235 mmu-miR-34a 31.554573 31.315119 31.13802 31.550997

mmu-let-7g 25.763351 26.099527 25.983095 25.95125 mmu-miR-124 31.57764 31.994307 31.45577 31.790789

mmu-let-7i 25.781948 25.954115 25.639614 25.70641 mmu-miR-339-5p 31.600187 31.962399 31.706995 31.614485

mmu-miR-652 26.009518 26.144 25.812155 25.940937 mmu-miR-126-3p 31.607616 31.94071 31.77024 31.817284

mmu-miR-26b 26.391077 26.947933 27.375626 26.773945 mmu-miR-433 31.74552 31.983372 40 40

mmu-miR-27b 26.450611 26.758823 26.554335 26.591059 mmu-miR-7a 31.775133 31.962648 31.587212 31.65993

mmu-miR-99b 26.470678 26.755474 26.87876 26.834137 mmu-miR-449a 31.87126 31.968357 31.963957 32.803596

mmu-miR-30b 26.49048 26.494661 26.60941 26.618977 mmu-miR-188-5p 31.891626 31.909925 32.051483 31.838226

mmu-miR-15b 26.583746 26.614704 26.653934 26.749592 mmu-miR-7b 31.914528 32.789062 35.874535 32.75232

mmu-miR-140 26.648193 26.921398 26.928396 26.825386 mmu-miR-107 31.93277 32.862457 32.278397 32.985638

mmu-miR-467a 26.724443 26.94595 26.68714 26.861994 mmu-miR-203 31.95583 31.68098 32.53392 31.947273

mmu-miR-146b 26.79465 26.817616 27.061863 27.10834 mmu-miR-872 31.966301 31.955933 31.969488 32.368725

mmu-miR-301a 26.86924 26.94647 26.98953 26.941181 mmu-miR-197 31.966658 33.289547 32.422764 32.83914

mmu-miR-92a 26.87576 26.926498 27.095688 27.209568 mmu-miR-139-3p 31.973179 40 40 40

mmu-let-7e 26.888163 26.983435 26.864351 26.604296 mmu-miR-685 31.979048 31.985458 31.435081 31.981632

mmu-miR-30e 26.919437 27.554626 28.07006 27.434183 mmu-miR-682 31.987719 31.347544 31.174526 31.623995

mmu-miR-30a 26.933214 26.86238 26.872906 26.80185 mmu-miR-423-5p 31.993994 31.309591 32.063324 31.99786

mmu-let-7c 27.12158 27.477818 27.531317 27.174694 mmu-miR-200a 32.037495 32.508797 32.84192 32.710964

mmu-miR-425 27.367197 27.612043 27.7811 27.758188 mmu-miR-667 32.06352 32.34442 32.448826 32.817074

mmu-miR-125a-5p 27.427341 27.708767 27.479994 27.968449 mmu-miR-345-5p 32.218334 32.38173 31.962587 31.968693

mmu-miR-532-5p 27.575687 27.713556 27.54559 27.691027 rno-miR-196c 32.232056 32.86096 33.648205 32.398685

mmu-miR-26a 27.594345 27.946724 27.946335 27.782604 rno-miR-339-3p 32.37285 31.867887 31.396622 32.987152

mmu-miR-27a 27.664194 27.808178 27.811504 27.87278 mmu-miR-362-3p 32.44797 32.760433 32.93482 33.10553

mmu-miR-15a 27.726837 27.728182 27.682116 27.811525 mmu-miR-148b 32.482594 32.965626 32.79751 32.842632

mmu-miR-106b 27.730095 27.89305 27.575684 27.8437 mmu-miR-680 32.70469 32.883568 34.985 32.295128

mmu-miR-30d 27.751694 27.956173 27.903578 27.762495 mmu-miR-128a 32.743855 33.97729 33.390034 33.33402

mmu-miR-186 27.755135 27.935993 27.879953 27.966248 mmu-miR-361- 32.816837 32.699272 32.76525 32.961212

mmu-let-7d 27.755774 27.941599 27.74724 27.644938 mmu-miR-465b-5p 32.859493 35.36211 34.938427 33.18253

mmu-miR-103 27.812626 27.855505 27.831924 27.709146 mmu-miR-215 32.914967 40 37.063255 40

mmu-miR-139-5p 27.849869 27.91122 27.954056 27.974585 mmu-miR-499 32.957886 32.9031 32.837505 32.940056

mmu-miR-301b 28.000055 28.144617 28.757835 28.353388 rno-miR-345-3p 32.964745 33.36577 34.03388 33.670353

mmu-miR-195 28.017523 28.98117 29.850788 28.716274 mmu-miR-208b 32.98911 40 40 40

mmu-miR-10a 28.049496 28.08367 28.031576 27.94955 mmu-miR-491 33.055496 33.704567 36.015125 34.629154

rno-miR-532-5p 28.36773 28.533945 28.11335 28.155298 mmu-miR-330 33.16869 33.504597 33.505947 34.976334

mmu-miR-328 28.39833 28.576752 28.436947 28.615492 mmu-miR-193b 33.193134 35.957317 40 35.558777

mmu-miR-100 28.51837 28.960014 28.843529 28.58723 mmu-miR-331-5p 33.27332 32.92863 32.936802 32.322876

mmu-miR-669a 28.53138 28.931862 28.889711 28.490997 mmu-miR-181c 33.276627 36.15996 36.98763 34.46395

mmu-miR-467c 28.648388 28.973286 28.834017 28.902704 mmu-miR-671-3p 33.295765 34.474968 35.89448 33.589252

mmu-miR-138 28.691517 28.967155 28.82502 28.86934 mmu-miR-194 33.38165 33.068672 33.957256 33.906746

mmu-miR-148a 28.75799 28.989708 29.13028 28.957489 mmu-miR-489 33.383537 34.173935 35.019657 34.49888

mmu-let-7b 28.775045 28.971111 29.008419 28.481375 rno-miR-207 33.562595 33.859146 40 33.98694

mmu-miR-99a 28.807613 29.480143 28.952162 28.88206 mmu-miR-196b 33.576008 33.33168 37.08462 33.941174

mmu-miR-486 28.820648 28.977654 28.96507 28.83699 mmu-miR-130b 33.606102 33.202614 34.64016 33.209373

mmu-miR-23a 28.87946 29.150934 29.032398 28.908308 mmu-miR-190 33.62613 34.292656 34.623688 35.99752

mmu-miR-23b 28.954927 28.847649 28.942617 28.89846 mmu-miR-184 33.729378 40 36.935196 35.768547

mmu-miR-467b 28.971075 29.083136 28.9365 28.920475 mmu-miR-126-5p 33.75229 34.418774 35.985546 34.98622

mmu-let-7a 29.133064 29.5422 29.933395 29.393736 mmu-miR-150 33.766575 33.842545 33.009956 33.631634

mmu-miR-320 29.134531 29.513308 28.98927 28.663118 mmu-miR-125a-3p 33.848335 34.693012 34.160892 34.354973

mmu-miR-210 29.286789 29.301363 29.101524 29.403658 mmu-miR-297b-5p 33.85059 34.341824 33.997425 33.83737

mmu-miR-18a 29.305466 29.865536 29.590696 29.762705 mmu-miR-32 33.909096 34.58771 35.974285 35.766636

mmu-let-7f 29.328674 29.650702 29.930859 29.590464 mmu-miR-193 33.914734 35.97066 34.823822 34.498375

mmu-miR-324-3p 29.352371 29.959522 29.511177 29.571491 mmu-miR-546 33.926136 35.962246 33.53107 33.729378

mmu-miR-322 29.369282 29.575905 29.954138 29.671583 mmu-miR-672 33.977222 40 40 35.831062

mmu-miR-9 29.450186 29.790375 29.484926 29.739538 mmu-miR-450a-5p 33.980587 31.880276 32.127712 32.611206

mmu-miR-155 29.484724 26.378942 29.971073 30.125736 mmu-miR-183 33.985523 33.576572 32.747658 34.30487

mmu-miR-151-3p 29.651878 29.707476 29.554369 29.892414 mmu-miR-451 33.998356 40 33.161407 40

mmu-miR-340-5p 29.712225 29.982851 29.93911 29.9531 mmu-miR-542-3p 34.052143 34.57829 34.889133 35.970547

mmu-miR-501-3p 29.75533 29.991194 29.646029 29.808481 mmu-miR-338-3p 34.057964 35.116817 33.486385 34.115852

mmu-miR-574-3p 29.768251 29.967014 29.98158 30.143847 mmu-miR-294 34.29708 35.617958 36.959328 40

mmu-miR-331-3p 29.777054 29.818851 29.840303 29.960613 mmu-miR-34b-3p 34.504803 35.067963 40 34.44094

mmu-miR-324-5p 29.796942 29.93846 29.860863 29.45745 mmu-miR-542-5p 34.610077 34.461357 33.969795 33.461758

mmu-miR-503 29.850304 30.423384 31.144747 31.203684 rno-miR-377 34.86458 40 40 40

mmu-miR-539 29.869516 40 30.958569 40 rno-miR-190b 34.870285 35.026848 35.12003 35.77146

mmu-miR-125b-5p 29.969284 30.26488 29.937464 29.965046 mmu-miR-383 35.070152 40 40 35.94993

mmu-miR-339-3p 30.02722 30.90233 30.95767 30.708088 mmu-miR-590-5p 35.085735 35.084698 40 35.844463

mmu-miR-687 30.041126 30.495462 28.945116 28.904268 rno-miR-450a 35.126465 33.37105 33.881622 33.461037

mmu-miR-708 30.09536 30.572302 30.173729 29.970259 mmu-miR-375 35.369446 33.883064 36.705334 40

rno-miR-351 30.18933 30.599735 30.951 30.851639 mmu-miR-677 35.66515 40 36.9734 36.90979

mmu-miR-200c 30.336708 30.95066 30.1021 30.495863 mmu-miR-31 35.869156 34.702995 35.584236 35.721615

mmu-miR-182 30.375006 30.83103 30.575558 30.948866 mmu-miR-582-5p 35.922386 40 33.083103 32.743137

mmu-miR-467e 30.379318 30.684832 30.907955 30.664001 mmu-miR-363 35.94773 40 40 35.84433

mmu-miR-532-3p 30.39126 30.908176 30.766768 30.822727 mmu-miR-295 35.94902 36.9617 36.727673 35.645218

mmu-miR-25 30.416016 30.545326 30.545233 30.542679 mmu-miR-224 35.949425 33.37961 33.96091 34.518867

mmu-miR-351 30.441868 30.921085 30.683594 30.94939 mmu-miR-96 35.969994 35.6214 40 35.7247

mmu-miR-379 30.445618 31.98988 30.537096 31.025017 mmu-miR-434-3p 35.983692 40 40 37.070484

mmu-miR-28 30.447765 30.64282 30.939732 30.556116 mmu-miR-141 35.986923 33.535847 35.21141 34.60389

mmu-miR-744 30.488642 30.9591 30.60409 30.948597 mmu-miR-202-3p 35.990795 34.849854 35.07265 34.650272

mmu-miR-192 30.494568 30.937178 30.794428 30.705885 mmu-miR-410 36.009716 34.973648 35.54397 35.79572

mmu-miR-509-3p 30.519882 30.489824 30.520569 30.97623 mmu-miR-741 36.037014 35.060352 34.897476 35.876816

mmu-miR-340-3p 30.52941 30.829563 30.38702 30.507135 rno-miR-347 36.049595 35.65347 34.596527 40

mmu-miR-494 30.55224 30.67701 30.27907 30.98788 mmu-miR-384-5p 36.60459 40 36.321754 36.72401

mmu-miR-152 30.55253 30.768616 30.942913 30.976435 mmu-miR-199a-3p 40 33.13325 40 33.954964

mmu-miR-449b 30.678492 31.362131 30.960052 30.92924 mmu-miR-297c 40 40 35.633263 35.981674

mmu-miR-674 30.70897 29.909952 30.481562 30.582247 mmu-miR-376c 40 35.715324 40 33.984825

mmu-miR-350 30.729132 30.715515 30.875843 30.774057 mmu-miR-466h 40 31.551756 30.506199 31.00071

mmu-miR-29b 30.79832 30.954075 30.771307 30.910965 rno-miR-224 40 34.927933 36.954514 34.451458

mmu-miR-547 30.801281 31.480154 32.482826 31.58988 rno-miR-381 40 40 37.015686 40

mmu-miR-467d 30.82446 31.675947 30.948507 31.053537 rno-miR-421 40 40 36.009537 35.19446
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Tissue Db/Db Db/+

Day 0
Unwounded

Mouse 1a 2a 3a Mouse - - -

Sample 1a 2a 3a Sample - - -

Day 5 
Wound

Mouse 1 2 3 Mouse 1 2 3

Sample
n1 (normal)
w1 (wound)

n2 (normal)
w2 (wound)

n3 (normal) Sample
n1 (normal)
w1 (wound)

n2 (normal) n3 (normal)

Day 7 
Wound

Mouse 4 5 - Mouse 4 5 -

Sample w5 (wound)
w6 (wound) 
w7 (wound)

- Sample
n4 (normal)
w4 (wound)

n5 (normal) 
w5 (wound)

-

Table 8.3 Mice used in wounding studies in Chapter 5. Mouse number correlates to numbers 

given in chapter 5, figures 5.4-5.8.   
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