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On the number of orbits of a group in two permutation actions 

By 

DAVID M. EVANS and JOHANNES SIEMONS 

1. Introduction. Let G be the symmetric group on the set f2 and suppose that G also 
acts on some other set A. When is it true that every subgroup of G has at least as many  
orbits on A as on f2? This question is due to Alexander Zalesskii. We wish to thank him 
for bringing it to our attention. 

In this note we give a complete - and more general - answer to his problem. First we 
need a definition, see also [2]: Let (G, ~2) be a permutat ion group, F a field and FY2 the 
vector space of formal sums { 52 f~ co I f~ in F, only finitely many  f~ + 0}. Then G acts 

~oEaQ 

naturally on Ff2 and has { 2 f~ o9 I 2 f~ = 0}, and ( 52 09) if~2 is finite, as G-invari '  
o)~t2 o~Ef2 wef~ 

ant subspaces. We say that  Ff2 is almost irreducible if there are no other G-invariant 
subspaces. Note  that in this case (G, f2) must be transitive. 

Theorem A. Let (G, f2) be a permutation group such that FY2 is almost irreducible for 
some field E Suppose that G acts also on some set A. Then 
(a) there is some 6 in A such that Ga, the pointwise stabiliser of  3, has a finite orbit ~9 on 

f2, ~ 4= (2 and the characteristic of  F does not divide tq~[, implies that 
(b) for every subgroup H of  G there are at least as many H-orbits on A as there are 

on g2. 
I f  G is finite and transitive on A, then (b) implies (a). 

In the case of finite groups almost irreducibility over the complex numbers is equiva- 
lent to double transitivity of the permutat ion action. For  infinite groups the situation is 
a little more interesting. Results in [2] prove almost irreducibility of certain classes of 
infinite permutat ion modules. For  example, if (G, f2) is transitive and such that the 
pointwise stabiliser of every finite subset X of f2 fixes only the points of X then Ff2 is 
almost irreducible, whatever the field F. Slightly more amusing is the case of the affine 
group AGL (1, Q) acting on the rational line •. Here Fq) is almost irreducible if and only 
if F has non-zero characteristic. Presumably, in this case the conclusion of Theorem A 
can be shown directly by looking at the possibilities for A and H. 

The assumption of finiteness of the Ga-orbit is essential for Theorem A, this is shown 
by an example we give in Section 3. Returning to the original form of Zalesskii's question, 
however, we are able to prove 
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Theorem B. Let  ~2 be a set, G the symmetric group on f2 and suppose that G acts also 
on some set A. Then 
(a) there is some 3 in A such that G~ is not transitive on ~2, implies that 
(b) for  every subgroup H of  G, there are at least as many H-orbits on A as there are 

on O. 
I f  G is transitive on A, then (b) implies (a). 

For  the statement (b) we do not assume that the number of orbits is finite. Taking 
H = 1, in particular, implies that ] f2 ] __< [A I. The proofs follow in Sections 2 and 4 below. 

2. The proof of Theorem A. Let G be a permutation group on a set O and let F be a 
field. As above F G  and F~? denote the vector spaces with bases G and Q respectively. 
There is also the usual multiplication defined on F G which turns it into the group ring 
of G over F. Then Ff~ can be considered as an FG-module  by extending the G-action on 
f2 in the obvious way. 

One of the submodules mentioned above is the augmentation submodule 
Aug (Fg2):= { 52 f,, co ] Z foe -- 0}. We define for any permutation group G on f2 

the subspace AugG(FO ) to be generated by the set {co-gcolcoeO and g e G } .  
This clearly is an FG-submodule  of Ff2 with A u g ( F O ) >  AugG(FO ). If as usual 

Aug(FG)  = { 52 fog l ~]fo = 0} is the augmentation ideal of FG, then AugG(Ff2 ) = 
g~G gEG 

Aug(FG)  �9 FQ. 

Lemma. (i) I f  M is an FG-submodule of  F O  then F O / M  is trivial if and only if  
M > AugG(F(2); 
(ii) The dimension of  Ff2/Auga(Fg2) is equal to the number of  G-orbits on f2. 

P r o o f. (i) If  g e G and co ~ f2, then g (co + M) = co + M if and only if co - gco e M. 
(ii) Let F be a system of representatives for the G-orbits on f2. Then 

{7 + AugG(FQ)[ ~' e F} is an F-basis for Ff2/AugG(FO ). For, if co ~ O then there exist 
g e  G and 7 e F  such that g7 = co. Thus 7 -  coaAugG(Ff2) and so co + AugG(FO ) 
= ~ + AugG(Ff2 ). Further, if 52 % o )  belongs to AugG(F(2 ) then we have Z ao = 0 

r  O~EA 

for each G-orbit A. This implies linear independence. Hence FO/Aug a (F~2) has dimen- 
sion I F]. 

P r o o f  o f  T h e o r e m  A. If Go is transitive on f2 and if G is transitive on A, 
then it is easy to see that G,~ is transitive on A. Hence condition (b) is violated for 
H =  Go,. 

To prove that (a) implies (b) we may restrict (G, A) to the orbit containing 6. 
Hence assume that G is transitive on A and let ~b be the finite G0-orbit on ~2, ~ + O. 
For  6' ~ A we put q~ (6') : = g �9 where g in G is such that 9 6 = 6' (this does not depend 
on the choice of g). Define the linear map ~o : FA ~ Ff2 by setting ~o (6') = Z co for 
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The hypotheses, about the characteristic of F, mean that the image of q~ is not con- 
tained in Aug (Ff2), and in the finite case, that it is not  ( Z co)v. As q) is an FG-homo-  

morphism and since Ff2 is almost irreducible, ~o must be surjective. 
Now let H be a subgroup of G. Then q ~ ( A u g u ( F A ) ) = p ( A u g ( F H ) F A ) =  

Aug (FH)q~ (FA) = Augn(Ff2). Hence q0 induces a surjection from FA/AugH(FA)  onto 
Ff2/AugH(Ff2) and the claim follows from the lemma. 

V a r i a t i o n s : There are other ways to prove Theorem A which may be of indepen- 
dent interest: 

1. Characters: We first proved Theorem A for the finite case only and here one can 
argue as follows. Assume as above that (G, f2) and (G, A) are transitive and let :~ and / /  
be the corresponding permutation characters. When Zo = 1, •1, Z2 . . . .  are the irreducible 
characters of G then/~ = I + n t )~ + n z )~2 + --- and cr = I + Z~ as G is doubly transitive 
on f2. 

If H is any subgroup of G let ~ = 1 + m~ )~ + m2 7+2 + . . .  be the permutation character 
of G acting on the cosets of H. Then, by reciprocity, the number of H-orbits on (2 and 
A are (1, :~)~ = (~z, ~)~ and (1, f l )u  = (~, / / )G respectively. Hence we are required to 
show that t + m t < I + nt m~ + n 2m 2 + . . .  which will certainly hold if n 1 > 1. But 
nt = 0 implies I = (e, f l )a  = (~, 1)G~ so that Ga is transitive on fL Note that I < n 1 
means that the character cr is a constituent of ft. This is a typical situation in finite orbit 
theorems, see also [3] and the survey in [4]. 

2. Another incidence map: Let Ff2 now be the space of functions f2 ~ F whose image 
is finite. (Note: Ff2 can be viewed as the space of functions whose support is finite.) A 
group G on f2 acts on Ff2 via (g f )  (co) = f ( 9 - 1  co) and the dimension of the fixed point 
space is the number of G orbits on fL This approach to counting orbits has been 
suggested in [1]. 

The map qo: FA --* Ff2 defined above induces an FG-homomorphism ~o* : Ff~ ~ FA 
by (~0" f ) (6 )  = f(~o (d)). Clearly, if q) is onto then qo* is injective and the result follows, 

3. An example. We show that the hypothesis of finiteness of the G,-orbit can not be 
removed from Theorem A. Our example is a highly transitive permutation group (G, Q) 
and a permutation group (G, A) with the following properties: (i) Go has two orbits on f2, 
and (ii) there is an infinite, co-infinite subset f~' of f2 such that G{a,} is transitive on A. 

The universal, homogeneous, countable bipartite graph, equipped with a bipartition 
(~2, A) of its vertex set, is characterised by the following property: 

(**) The bipartite graph (f2, A) is countably infinite and if A, B are finite subsets of f2 
(respectively A) then there exists a vertex in A (respectively f2) which is adjacent to 
all vertices in A, and to none in B. 

Let (fl, A) be this graph and let G be its automorphism group. Then G acts faithfully and 
highly transitively on each of f~ and A. Now, there exists an infinite, co-infinite subset a2' 
of f2 such that each of (f2', A) and (f2\g2', A) has property (**), A simple back-and-forth 
argument then establishes that G(a,} is transitive on A. (One way of seeing the existence 
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of such a subset Q' is to recall that the graph can be constructed "randomly":  Enumerate 
all pairs f2 x A and toss a fair coin to decide (independently) which are edges in the graph. 
With probability 1, the resulting graph has property (**). So now do this construction 
again, but start off with f2 partitioned into two infinite parts f2' and f2". Again with 
probability 1, each of (f2', A), (~2", A), (f2, A) has property (**).) 

4. Proof of Theorem B. Let G be the symmetric group on g2 acting also on some sets 
A. If G is transitive on A and if G~ is transitive on Y2 it is clear that G~ is transitive on A. 
Hence H = G~ violates condition (b). 

We now come to the converse. As before it suffices to assume that G is transitive on 
A. Let Z be a G-orbit on s • A and for 3 ~ A let Z(3) = {o~ E Y21 (~o, 3) ~ Z}. Note that by 
assumption Z (3) + g2 and also Z (g3) = gZ (3) for g ~ G. Define the G-relation ~ on A by 
6 ~ 6' if and only if Z(6) = Z(6'). Let A* be the quotient G-set A/,~. Clearly, if H =< G 
then the number of orbits of H on A is not less than the number of orbits of H on A* (if 
3 / ~  and 6 ' / ~  lie in different H-orbits then there does not exist h~H with 
hZ(6) = hE(6'),  so in particular 6 and 6' lie in different H-orbits). 

Thus it will suffice to show that if H =< G then the number of H-orbits on A* is not 
less than the number of H-orbits on ~2. Note that (G, A*) is permutation equivalent to 
G acting on the set ~ 2 ~ ' " = { X ~ f 2 ] [ X I = 2 ,  I ~ 2 \ X ] = # } ,  where 2 = ] Z ( 6 ) [  and 
# = [f2\Z(6)]. Note that 2, # 4 = 0 and that we can assume 2 < #. Let H < G and let 
(Oili < v) be the H-orbits on ~ (here v is some initial ordinal), and arranged so that 

IOs[ < [O~[ ifc~ < ft. 

C a s e 1. 2 < [f21. Let a < v be minimal such that [ k) {Oil i < a}l > 2. Let Z,  be a set 
of size 2 with W {O~1 i < c~} = Z= ~ U {O~1 i < c~}, and let a i e  O~ (and a= e Z~). If  i 4= 
define sets Z~ as follows: 

if i>c~ then Z i=(Z\{a,})U{ai}; 

if i<c~ then Z / = ( Z \ { a i } ) ~ { b } ,  where b ~ f 2 \ Z ~ .  

Then (Zi[i <= v) lie in different H-orbits. 

In the remaining two cases 2 is of course infinite. 

C a s e 2. ~ = 2 = [(2[, and [ O~1 = [(2[. The above construction works automatically if 
< v. To make it work if~ = v we need only to ensure that IO,\Z~l = #, which is not a 

problem. 

C a s e  3. # = 2 = IOI, and IO~1 =g 1(21. In this case, v = If~[, and so there are 2 lal 
H-orbits on Oa'*. This completes the proof of Theorem B. 
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