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Abstract

This paper investigates a connection between the semantic notion provided by the ordering /∗9
among theories in model theory and the syntactic (N)SOPn hierarchy of Shelah. It introduces
two properties which are natural extensions of this hierarchy, called SOP2 and SOP1. It is shown11
here that SOP3 implies SOP2 implies SOP1. In Shelah (Ann. Pure Appl. Logic 80 (1996) 229) it
was shown that SOP3 implies /∗-maximality and we prove here that /∗-maximality in a model of13
GCH implies a property called SOP′′

2 . It has been subsequently shown by Shelah and Usvyatsov
that SOP′′

2 and SOP2 are equivalent, so obtaining an implication between /∗-maximality and15
SOP2. It is not known if SOP2 and SOP3 are equivalent.
Together with the known results about the connection between the (N)SOPn hierarchy and17

the existence of universal models in the absence of GCH, the paper provides a step toward the
classi�cation of unstable theories without the strict order property.19
c© 2003 Published by Elsevier B.V.
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0. Introduction23

This paper investigates a connection between the ordering /∗ among theories in
model theory and the (N)SOPn hierarchy of Shelah and as such provides a step toward25
the classi�cation of unstable theories without the strict order property. The thesis we
pursue is that the syntactic property SOP2 is closely related to the semantic property of27
being maximal in the /∗-order. We shall now give the relevant de�nitions and explain
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the motivation behind the paper as well as noting our main results. For the purpose of1
this introductory discussion we shall limit ourselves to countable (complete �rst order)
theories.3
The following order among theories was introduced and investigated by Keisler in

[7].5

De�nition 0.1. (1) For any cardinal �, the Keisler order l� among theories is de�ned
as follows: T0l�T1 if whenever Ml(l¡2) is a model of T0; T1 respectively and D is a7
regular ultra�lter over �, then the �+-compactness of M�

1 =D implies the �+-compactness
of M�

0 =D.9
(2) We say T0lT1 if for all � we have T0l� T1.

The relevance of this order to the project of classifying unstable theories without11
strict order property lies in the two following theorems of Shelah (note that the second
one implies the �rst).13

Theorem 0.2 (Shelah [11, V14.3]). Any (countable) theory with the strict order prop-
erty is l-maximal.15

As stated in [11], p. xiv, Chapter VI of [11] gives a rather complete picture of
Keisler’s order and to complete it we should know more about unstable theories with-17
out the strict order property. Paper [13] started a classi�cation of such theories by
introducing the hierarchy SOPn for n¿3 and in particular it is stated there that being19
maximal in the Keisler order is not a characterisation of theories with the strict order
property.21

Theorem 0.3 (Shelah [13], see also Shelah and Usvyatsov [14]). Any theory with
SOP3 is l-maximal.23

Details of the proof are given in [14]. Precise de�nitions of properties SOPn for
n¿3 will be repeated below in Section 2 but for the moment we note that it was25
proved in [13] that for n¿3

strict order property ⇒ SOPn+1 ⇒ SOPn ⇒ not simple27

and that all the implications are irreversible. One may now wonder if having SOP3 is a
characterisation of theories that are maximal in the Keisler order, giving us a semantic29
equivalent to the syntactic notion of SOP3. This would be consistent with what is
known about this order, see the Introduction to Chapter VI of [11]. This question31
remains open but instead one may attempt to give a characterisation of SOP3 or SOPn
in terms of some other similarly de�ned order. This is suggested by [13] which in fact33
gives a theorem stronger than 0.3, namely.

Theorem 0.4 (Shelah [13], see also Shelah and Usvyatsov [14]). Any theory with35
SOP3 is /∗-maximal.
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The de�nition of this order will be recalled in Section 1 where we shall also prove1
that being /∗-maximal implies being maximal in the Keisler order. Given this fact one
may now ask if being /∗-maximal characterises theories with SOP3. To test this claim3
it is natural to investigate a prototypical example of an NSOP3 theory that is still not
simple, which is T ∗

feq. In Section 1 we shall recall the de�nition of this theory and5
show that in fact it is not /∗-maximal, as it is consistently strictly below the theory of
a dense linear order with no �rst or last element (all we need for the consistency is a7
partial GCH assumption).
This naturally leads to the question of the possibility of re�ning the distinction9

between simplicity and SOP3. De�nition of the SOPn hierarchy from [13] does not
immediately give way to such a re�nement as SOPn is roughly speaking, de�ned in11
terms of omitting loops of size n. However in Section 2 we introduce two properties
SOP2 and SOP1 that in fact satisfy13

SOP3 ⇒ SOP2 ⇒ SOP1 ⇒ not simple:

We then ask if these properties in any way characterise the maximality in /∗. To this15
end in Section 3 we prove that any theory that is /∗-maximal in a model of a su�cient
amount of GCH must satisfy a syntactic property SOP′′

2 . Together with a subsequent17
result of Shelah and Usvyatsov in [14] that proved that SOP′′

2 is equivalent to SOP2
we hence obtain that /∗-maximality in any model of a su�ciently rich fragment of19
GCH implies SOP2. (See Section 3 for the de�nition of SOP

′′
2 and the exact reference

from [14]). To summarise, our main result, appearing as Corollary 3.9(1) below is21

Theorem 0.5. Suppose that T is a theory that is /∗-maximal in some universe of set
theory in which 2�= �+ holds for all large enough regular �. Then T has SOP2.23

Several questions remain open. The main one of course is if SOP2 is actually equiv-
alent to /∗-maximality. Recall from the discussion above that we know that SOP325
implies /∗-maximality. It is not known if SOP3 and SOP2 are actually equivalent.
We also note that Shelah and Usvyatsov have proved in [14] a local version of the27
implication SOP2 ⇒ /∗-maximality, see Section 3 for a more detailed discussion.
A burning question also is that we in fact do not know almost anything about the29

reverse of other implications in the (consistent) diagram

SOP3 ⇒ /∗-maximality ⇒ SOP2 ⇒ SOP1 ⇒ not simple;31

apart that not all of them may be equivalences, as T ∗
feq is not simple but is NSOP3. In

fact [14] proves that T ∗
feq is not even SOP1.33

Before laying down the organisation of the paper let us also mention the connection
of the SOPn hierarchy with another semantic property, which is the possibility of having35
a universal model at � in some universe of set theory where a su�cient amount of
GCH fails (under GCH every countable �rst order theory has a universal model in37
every uncountable cardinal). The connection between this property and unstable theories
without the strict order property has been investigated in a series of papers, notably in39
[9] where it is proved that if GCH fails su�ciently then there are no universal dense
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linear orders. It was proved in [13] that SOP4 is already su�cient for such a negative1
universality result. The question of universality is interesting also for classes that are
not elementary classes of models of a �rst order theory, for example for classes without3
amalgamation the most interesting case is the strong limit singular � of co�nality ℵ0.
In [5] it is proved that for such � and �¡� a strongly compact cardinal the class of5
models of any L�;�-theory of cardinality ¡� admits a universal model of cardinality
�. A rather detailed description of what is known about the connection of unstable7
theories without the strict order property and the universality problem may be found
in the introduction to [4].9
The paper is organised as follows. In the �rst section we investigate the theory T ∗

feq.
This is simply the model completion of the theory of in�nitely many parametrised11
equivalence relations. We show that under a partial GCH assumption, this theory is
not maximal with respect to /∗

� , as it is strictly below the theory of a dense linear13
order. In the second section of the paper we extend Shelah’s NSOPn hierarchy by
introducing two further properties SOP1 and SOP2, and we show that their names are15
justi�ed by their position in the hierarchy. Namely SOP3 ⇒SOP2 ⇒SOP1. Furthermore,
SOP1 theories are not simple. The last section of the paper contains the main result17
showing that /∗-maximality in a model of a su�ciently rich fragment of GCH implies
SOP′′

2 , and hence SOP2 by Shelah–Usvyatsov.19
The following conventions will be used in the paper.

Convention 0.6. Unless speci�ed otherwise, a “theory” stands for a �rst order complete21
theory. An unattributed T stands for a theory. We use �(T ) to denote the vocabulary
of a theory T , and L(T ) to denote the set of formulae of T .23
By C=CT we denote a ��-saturated model of T , for a large enough regular cardinal

�� and we assume that any models of T that we mention are elementary submodels of C.25
�; �; � stand for in�nite cardinals.

1. On the order /∗
�27

De�nition 1.1. (1) For (�rst order complete) theories T0 and T we say that �’= 〈’R

( �xR): R a predicate of �(T0) or a function symbol of �(T0) or = 〉, (where we have29
�xR=(x0; : : : ; xn(R)−1)), interprets T0 in T , or that �’ is an interpretation of T0 in T , or
that31

T � “ �’ is a model of T0”;

if each ’R( �xR)∈L(T ), and for any M |=T , the model M [ �’] described below is a model33
of T0. Here, N =M [ �’] is a �(T0) model, whose set of elements is {a :M |=’=(a; a)}
(so M [ �’] ⊆M) and RN = { �a :M |=’R[ �a]} for a predicate R of T0.35
For any function symbol f of �(T0) we have that N |=“f( �a)= b” i� M |=’f( �a; b),

while37

M |= “’f( �a; b) = ’f( �a; c) ⇒ b = c”

for all �a; b; c.39
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(2) We say that the interpretation �’ is trivial if ’R( �xR) = R( �xR) for all R∈ �(T0), so1
M [ �’] = M � �(T0), for any model M of T .
(The last clause in De�nition 1.1(1) shows that we can in fact restrict ourselves to3

vocabularies without function or constant symbols.)
We use the notion of interpretations to de�ne a certain relation among theories. This5

relation was introduced by Shelah in [13, Section 2] and one can see [14] for a more
detailed exposition. The reason we are interested in this ordering is Shelah’s Theo-7
rem 0.3 quoted in the Introduction and we shall now start developing methods for the
proof of our main result 3.9.9

De�nition 1.2. For (complete �rst order) theories T0, T1 we de�ne:

(1) A triple (T; �’0; �’1) is called a (T0; T1)-superior i� T is a theory and �’l is an11
interpretation of Tl in T , for l¡2.

(2) For a cardinal �, a (T0; T1)-superior (T; �’0; �’1) is called �-relevant i� |T |¡�.13
(3) For regular cardinals �, � we say T0 /∗

�; � T1 if there is a min(�; �)-relevant (T0; T1)-
superior triple (T; �’0; �’1) such that in every model M of T in which M [ �’1] is15
�-saturated, the model M [ �’0] is �-saturated. If this happens, we call the triple a
witness for T0 /∗

�; � T1.17
(4) We say that T0 /∗

�; � T1 over � if �6�; �6� and T0 /∗
�; � T1 as witnessed by a

(T; �’0; �’1) with |T |¡�.19
(5) If �= �, we write /∗

� in place of /
∗
�; �.

(6) We say that T1 /∗
� T2 i� T1 /∗

� T2 holds for all large enough regular �.21
(6) T ∗ is /∗

� -maximal i� T /∗
� T ∗ holds for all T . The notion of /∗-maximality is

de�ned analogously.23
(7) We say T0 /∗

�; �= T1 i� T0 /∗
� T1 but ¬(T1 /∗

� T0).

Although in this paper we do not consider this in its own right, it is natural to de�ne25
the local versions of the /∗-relation. This is used by Shelah and Usvyatsov in [14] to
obtain their local converse to the implication /∗-maximality ⇒SOP2, see Section 3 for27
more discussion on this.

De�nition 1.3. Relations /∗;1
�; � and /∗;1

� are the local versions of /∗
�; � and /∗

� respectively,29
where by a local version we mean that in the de�nition of the relations, only types of
the form31

p ⊆ {±#(x; �a): �a ∈ lg( �y)M}
for some �xed #(x; �y) are considered.33

Observation 1.4. (0) If T0 /∗
�; � T1 and l¡2. then there is a witness (T; �’0; �’1) such

that �’l is trivial, hence Tl ⊆T .
35

(1) /∗
� is a partial order among theories (note that T /∗

� T for every complete T of size
¡�, and that the strict inequality is written as T1 /∗

�; �= T2).37
(2) If T0 /∗

�; � T1 over � and T1 /∗
�; � T2 over �, then T0 /∗

�; � T2 over �.
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[Why? (0) Trivial.1
(1) Suppose that Tl /∗

� Tl+1 for l¡2 over �, as exempli�ed by (T ∗; �’0; �’1) and
(T ∗∗; � 1; � 2) respectively. Without loss of generality, �’1 is trivial (apply part (0)), so3
as T ∗ is complete we have T1 ⊆T ∗. Similarly, without loss of generality, � 1 is trivial
and so, as T ∗∗ is complete, we have T1 ⊆T ∗∗. As T1 is complete, without loss of5
generality, T ∗ and T ∗∗ agree on the common part of their vocabularies, and hence
by Robinson Consistency Criterion, T def= T ∗ ∪T ∗∗ is consistent. Also |T ∗|+ |T ∗∗|¡�,7
hence |T |¡�. Clearly T interprets T0; T1; T2 by �’0; �’1 = � 1 and � 2 respectively and
T is complete. We now show that the triple (T; �’0; � 2) is a (T0; T2)-superior which9
witnesses T0 /∗

� T2 over �. So suppose that M is a model of T in which M [ � 2] is �-
saturated. As (T ∗∗; � 1; � 2) witnesses T1 /∗

� T2, we can conclude that M [ �’1] =M [ � 1] is11
�-saturated. We can argue similarly that M [ �’0] is �-saturated.
(2) is proved similarly to (1).]13

In this section we consider an example of a theory which is a prototypical example
of an NSOP3 theory that is not simple (see [12]). It is the model completion of the15
theory of in�nitely many (independent) parametrised equivalence relations, formally
de�ned below. We shall prove that for � such that �= �¡� and 2�= �+, this theory is17
strictly /∗

�+-below the theory of a dense linear order with no �rst or last element.

De�nition 1.5. (1) Tfeq is the following theory in {P;Q; E; R; F}
19

(a) Predicates P and Q are unary and disjoint, and (∀x)[P(x)∨Q(x)],
(b) E is an equivalence relation on Q,21
(c) R is a binary relation on Q ×P such that

[x R z & y R z & x E y] ⇒ x = y:23

(so R picks for each z ∈P (at most one) representative of any E-equivalence class).
(d) F is a (partial) binary function from Q ×P to Q, which satis�es25

F(x; z) ∈ Q & F(x; z)R z & x E F(x; z):

(so for x∈Q and z ∈P, the function F picks the representative of the E-equivalence27
class of x which is in the relation R with z).

(2) T+feq is Tfeq with the requirement that F is total.29
(3) For n¡!, we let Tn

feq be T+feq enriched by the sentence saying that over any n
elements, any (not necessarily complete) quanti�er free type consisting of basic (atomic31
and negations of the atomic) formulae with no direct contradictions, is realised.

Note 1.6. One may easily check that every model of Tfeq can be extended to a model33
of T+feq and that T

+
feq has the amalgamation property and the joint embedding property.

This theory also has a model completion, which can be constructed directly, and which35
we denote by T ∗

feq. It follows that T ∗
feq is a complete theory with in�nite models, in

which F is a full function.37
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Remark 1.7. Notice that Tfeq has been de�ned somewhat di�erently than in [12, Sec-1
tion 1], but the di�erence is non-essential, as the following Claim 1.8 shows that the
two theories have the same model completion. This claim also shows the origin of the3
name “in�nitely many independent equivalence relations” for T ∗

feq.

Claim 1.8. Let T be the theory de�ned (in [12,1]) by
5

(a) T has unary predicates P and Q and a three place relation E written as y Exz,
(b) the universe of any model of T is a disjoint union of P and Q,7
(c) y Exz ⇒P(x) & Q(y); Q(z),
(d) for any �xed x∈P the relation Ex is an equivalence relation on Q.9

Then T ∗
feq is the model completion of T.

Proof. Let M be a model of Tfeq, we shall extend M to a model of T as follows. Each11
E-equivalence class e= a=E gives rise to an equivalence relation Ee on P given by

z1Eez2 i� z1; z2 ∈ P and F(a; z1)=F(a; z2):13

This de�nition does not depend on a, just on a=E. Let PN and QN be QM and PM

respectively. De�ne y EN
x z i� y Eez where e= x=EM . Clearly N is a model of T .15

Now suppose that we have a model M of T and we shall extend it to a model N
of Tfeq. Let PN and QN be QM and PM respectively. De�ne x ENx′ i� for every y; z17
we have y Exz i� y Ex′z. Choose a representative of each E-equivalence class and for
any z ∈QN and such a representative x let F(x; z)= x. Then for x′ ∈QN which has19
not been chosen as a representative of any equivalence class, �nd x which has been
chosen as its representative and de�ne F(x′; z)=F(x; z) for all z ∈PN .21
This shows that Tfeq and T are cotheories [1, 3.5.6(2)]. Being the model completion

of Tfeq ; T ∗
feq is its cotheory, and hence a cotheory of T . Hence T ∗

feq is a model companion23
of T . In order to prove that it is the model completion of T it su�ces to show that T
has the amalgamation property [1, 3.5.18] which is easily seen directly.25

Observation 1.9. T ∗
feq has elimination of quanti�ers and for any n, any model of T ∗

feq
is a model of Tn

feq.27

Notation 1.10. Tord stands for the theory of a dense linear order with no �rst or last
element.29

The following convention will make the notation used in this section simpler.

Convention 1.11. Whenever considering (Tord ; T ∗
feq)-superiors (T; �’; � ) we shall abuse31

the notation and assume �’=(I;¡0) and � =(P;Q; E; R; F). In such a case we may
also write PM in place of PM [ � ], etc., and we may simply say that T is a (Tora ; T ∗

feq)-33
superior.

We intend to prove that for � satisfying �¡� and 2�= �+ the theory T ∗
feq is strictly35

/∗
�+-below Tord (Theorem 1.17 below). This will be done by a diagonalisation argument
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where for a given �-relevant (Tord ; T ∗
feq)-superior T we inductively construct a model1

of T that is saturated for T ∗
feq but not for Tord. Main Claim 1.13 provides one step in

the required induction. In Stage A of its proof we use the elimination of quanti�ers in3
T ∗
feq to reduce the situation to Tfeq-types of four prescribed kinds, and then we show
that we may in fact work only with three of them. Stage B contains the main point5
of the proof, which is the construction of a certain tree of models and embeddings.
Once this is done in Stage C we use the analysis from Stage A to show that the T ∗

feq-7
type de�ned by the union of the embeddings is consistent. In Stage D we take N ≺C
of size � that realises this type and show that N must omit most of the Dedekind9
cuts induced by the tree of embeddings, and that most of these cuts are not de�nable
over N . After an application of an appropriate automorphism of C this �nishes the11
proof of the Main Claim. The proof of the theorem then follows by induction. The
cardinal arithmetic assumptions are used in Stage D and in the inductive proof of the13
theorem.

De�nition 1.12. For a �-relevant (Tord ; T ∗
feq)-superior T , the statement15

∗[M; �a; �b] = ∗[M; �a; �b; T; �]

means:
17

(i) M is a model of T of size �,
(ii) �a= 〈ai: i¡�〉, �b= 〈bi: i¡�〉, are sequences of elements of IM [ �’] such that19

i ¡ j ¡ � ⇒ ai ¡0 aj ¡0 bj ¡0 bi;

(iii) there is no x∈M [ �’] such that for all i we have ai¡0x¡0bi,21
(iv) the Dedekind cut {x : ∨

i¡� x ¡0 ai} is not de�nable by any formula of L(M)
with parameters in M .23

Main Claim 1.13. Assume �¡�= � and (T; �’; � ) is a �-relevant (Tord ; T ∗
feq)-superior.

Further assume that ∗[M; �a; �b] holds, and p=p(z) is a (consistent) T ∗
feq-type over25

M [ � ]. Then there is N |=T with M ≺N , such that p(z) is realised in N [ � ] and ∗[N; �a; �b]
holds.27

Proof.
Stage A. Without loss of generality, p is complete in the T ∗

feq-language over M [ � ].29

(By Convention 1.11, we can consider p to be a type over M (rather than M [ � ]). We
shall use this Convention throughout the proof). If p is realised in M , our conclusion31
follows by taking N =M , so let us assume that this is not the case. Using the elimina-
tion of quanti�ers for T ∗

feq, we can without loss of generality assume that p(z) consists33
of quantifer free formulae with parameters in M . This means that one of the following
four cases must happen:35
Case 1: (This will be the main case) p(z) implies that z ∈P and it determines which

elements of QM are R-connected to z. Hence for some function f :QM →QM which37
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respects E, i.e.1

a E b ⇒ f(a) = f(b);

and3

f(a) ∈ a=EM ;

we have5

p(z) = {P(z)} ∪ {b R z : b ∈ Rang(f)}
and no a∈PM satis�es p.7
Case 1A: Like Case 1, but f is a partial function and

p(z) = {P(z)} ∪ {f(b)R z : b ∈ Dom(f)}
∪{¬(b R z) : (b=EM ∩ Rang(f)) = ∅}:

(This case will be reduced to Cases 1–3 in Subclaim 1.15).9
Case 2: p(z) determines that z ∈Q and that it is E-equivalent to some a∗ ∈QM , but

not equal to any “old” element. Note that in this case if b∗ realises p(z), we cannot11
have b∗Rc for any c∈PM , as this would imply F(a∗; c)= b∗ ∈M [ � ] (and we have
assumed that p is not realised in M [ � ]). Hence, the complete M -information is given13
by

p(z) = {Q(z)} ∪ {a∗E z} ∪ {a �= z : a ∈ a∗=EM}:15

Case 3: p(z) determines that z ∈Q, but it has a di�erent E-equivalence class than
any of the elements of QM . As p is complete, it must determine for which c∈PM17
we have z R c, and for which c; d∈PM we have F(z; c)=F(z; d). Hence, for some
f :PM → {yes; no} and some E, an equivalence relation on PM such that cEd⇒f(c)19
=f(d), we have

p= {Q(z)} ∪ {¬(a E z) : a ∈ QM} ∪ {(z R b)f(b) : b ∈ PM}
∪{(F(z; c) = F(z; d))ifcEd : c; d ∈ PM}:

In the above description, we have used21

Notation 1.14. For a formula # we let #yes ≡# and #no ≡ ¬#.

Subclaim 1.15. It su�ces to deal with Cases 1–3, ignoring the Case 1A.23

Proof. Suppose that we are in the Case 1A. Let

{di=EM : i ¡ i∗ 6 �}25

list the d=EM for d∈QM such that d′ ∈d=EM ⇒ ¬(d′ R z)∈p(z). We choose by in-
duction on i6i∗ a pair (Mi; ci) such that

27
(a) M0 =M; ‖Mi‖= �,
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(b) 〈Mi: i6i∗〉 is an increasing continuous elementary chain,1
(c) ∗[Mi; �a; �b]
(d) ci ∈ (di=EMi+1)\Mi; for i¡i∗.3

For i limit or i=0, the choice is trivial. For the situation when i is a successor, we
use Case 2.5
Let 〈ci=EMi∗ : i∈ [i∗; i∗∗)〉 list without repetitions the c=EMi∗ which are disjoint to M .

Note that |i∗∗|6�. Let7

p+(z) def= p(z) ∪ {ciR z : i ¡ i∗∗}:

Then p+(z) is a complete type (for M [ � ]
i∗ ), and ∗[Mi∗ ; �a; �b] holds by (c). If p+(z) is9

realised in Mi∗ , we can let N =Mi∗ and we are done. Otherwise, p+(z) is not realised
in Mi∗ and is a type of the form required in Case 1, so we can proceed to deal with11
it using the assumptions on Case 1.

Stage B. Let us assume that p is a type as in one of the Cases 1, 2 or 3, which we13
can do by Subclaim 1.15. We shall de�ne 〈M�: �¡�〉, an ≺ -increasing continuous
sequence of elementary submodels of M , each of size ¡�, and with union M , such15
that:

(a) In Case 1, each M� is closed under f,17
(b) In Case 2, a∗ ∈M0,
(c) For every �¡�,19

(M�; {(aj; bj) : j ¡ �} ∩ M�) ≺ (M; {(aj; bj) : j ¡ �}):
Hence, for some club C of � consisting of limit ordinals �, we have that for all21

�∈C,

aj ∈ M� ⇔ bj ∈ M� ⇔ j ¡ �;

(∀c ∈ IM�)(∃j ¡ �)[c ¡0 aj ∨ bj ¡0 c]:

Let C = {�i: i¡�} be an increasing continuous enumeration.23
Now we come to the main point of the proof.
By induction on i= lg(�)¡� we shall choose �h= 〈h�: �∈ �¿2〉, a sequence such25

that

(�) h� is an elementary embedding of M�lg(�) into CT , whose range will be denoted by27
N�.

(	) 
 / �⇒ h
 ⊆ h�.29
(�) If �l ∈ �¿2 for l=0; 1 and �0 ∩ �1 = �, then:

(i) N�0 ∩N�1 =N�.31
(ii) In addition, if al ∈QN�l for l=0; 1 and a0ECT a1, then for some a∈QN� we

have alECT a for l=0; 1. (Equivalently, if al ∈QN�l and ¬(∃a∈N�)(
∧

l¡2al33
E a), then ¬(a0 E a1)).

(�) |= “h�˙ 〈0〉(b�lg(�))¡0 h�˙ 〈1〉(a�lg(�) )” (see Convention 1.11 on ¡0 ).35
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Note that the requirement of h� being elementary and onto N� in particular implies1
that

(�′) If for some l¡2 and �∈ �¿2 we have a∈N�˙ 〈l〉\N� and b∈N�, then aECT b i�3
a= h�˙ 〈l〉(a′) for some a′ such that a′ECT h−1

� (b).

We now describe the inductive choice of h� for �∈ �¿2, the induction being on5

i= lg(�). Let h〈 〉= idM0 . If i is a limit ordinal, we just let h�
def=

⋃
j¡lg(�) h� � j. Hence,

the point is to handle the successor case.7
Fixing i¡�, let 〈�i; �: �¡�∗6�〉 list i+12, in such a manner that �i;2� � i= �i;2�+1 � i

and �i;2�+l(i)= l for l¡2 (we are using the assumption �¡�= �). Now we choose9
h�i; 2�+l by induction on �. Hence, coming to �, let us denote by �l the sequence �i;2�+l,
and let �0 ∩ �1 = � (so �0 � i= �1 � i= �). Let M�i+1\M�i = {di

j: j¡j∗
i }, so that di

0 = a�i11
and di

1 = b�i . We consider the type �, which is the union of

(a)13

�0
def=




’(x0j0 ; : : : ; x
0
jn−1

; h�( �c)) : n ¡ ! & �c ⊆ M�i & j0; : : : ; jn−1 ¡ j∗i &

M�i+1 |= ’(di
j0 ; : : : ; d

i
jn−1

; �c)


 ;

(taking care of one “side” (for �0 or �1) of the part (�) above).15
(b) �1, de�ned analogously to �0, but with x0j0 ; : : : ; x

0
jn−1

replaced everywhere by
x1j0 ; : : : ; x

1
jn−1

17
(taking care of the remaining “side” of (�) above, interchanging �0 and �1).

(c) �2 = {(x00 ; x01)I ∩ (x10 ; x11)I = ∅}19
(this says that the above intervals in ¡0 are disjoint, which after the right choice of
h�0 (d

i
j)= a realisation of x0j or h�0 (d

i
j)= a realisation of x1j (j¡2), and similarly21

for h�1 , will take care of the part (�) above.)
(d) �3 =�03 ∪�13, where for l¡223

�l
3 = {xlj �= c : j ¡ j∗

i ; c ∈ ∪{Rang(h) : h already de�ned}}:
(e) �4 = {x0j1 �= x1j2 : j0; j1 ¡ j∗

i }25
((d)+(e) are taking care of (�) above, part (i)).

(f)27

�5 =

{ ¬(x0j0Ex1j1 ) : if j0; j1 ¡ j∗
i

but there is no a ∈ M�i with [d
i
j0Ea ∨ di

j1Ea]

}
:

(together with �6 below, taking care of part (�)(ii), see below. Note that the type29
is de�ned using ∨ rather than ∧ , but this will turn out to be su�cient.)

(g) �6 =�06 ∪�16, where31

�l
6 =

{
¬(xljEb) : j ¡ j∗

i and b is an element of the set

∪{Rang(h) : h already de�ned and ¬(∃c ∈ N�)[b E c]}

}
:

First note that requiring �5 ∪�6 throughout the construction indeed guarantees that33
(�)(ii) can be satis�ed. Namely, suppose that the realisations of x0j0 and x1j1 are35
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E-equivalent. Then by �5 we must have that for some l¡2 and a∈M�i we have that1
dijlEa. By transitivity then the realisation of x1−l

j1−l
would have to be E-equivalent to

h�(a), which might only be precluded by di
j1−l

being E equivalent to some c such that3
a and c are not E-equivalent. This cannot happen by �6.
We conclude that, if � is consistent, as C is ��-saturated, the functions h�l can be5

de�ned. Namely, for a realisation {clj: j¡j∗
i ; l¡2} of �, we can de�ne gl(di

j)= clj,
and then we let h�0 = g0 if c01¡0 c10, and g1 otherwise. We let h�1 = g1−l if h�0 = gl.7
This guarantees that (�) above is satis�ed.
Let us then show that � is consistent. Suppose for contradiction that this is not so, so9

we can �nd a �nite �′ ⊆� which is inconsistent. Let {j0; : : : ; jn−1} be an increasing
enumeration of a set including all j¡j∗

i such that xlj is mentioned in �′ for some11
l¡2 and let �d= 〈di

j0 ; : : : ; d
i
jn−1

〉. Without loss of generality, 0 and 1 appear in the
list {j0; : : : ; jn−1} and hence j0 = 0 while j1 = 1. By closing under conjunctions and13
increasing �′ (retaining that �′ ⊆� is �nite) if necessary, we may assume that for
some formula �(x0; : : : ; xn−1; �c)∈ tp( �d=M�i), we have15

�′ ∩ �l = {#l(xlj0 ; : : : ; x
l
jn−1
; h�( �c))}

for l¡2, where #l(xlj0 ; : : : ; x
l
jn−1
; h�( �c)) is the formula obtained from � by replacing xk17

by xljk and �c by h�( �c).
Let #2 be the formula comprising �2 and #l

3( �x
l; �c l

3)=
∧
(�l
3 ∩�′), while #4 =

∧
(�419

∩�′) and #5 =
∧
(�5 ∩�′). Let #3 =#03 ∧#13 and #=

∧
k¡6; k �= 2;3 #k . Without loss of

generality, # includes statements xl0 �= · · · �= xln−1 and xl0¡0 xl1 for l¡2. We may also21
assume that (x00 ; x

0
1)I ∩ (x10 ; x11)I = ∅ is included in �′. The choice of n may be assumed

to have been such that for some cl0; : : : ; c
l
n−1 (for l¡2) from

⋃ {Rang(h) : h already23
de�ned}, we have

�′ ∩ �3 = {xljm �= clk : l ¡ 2; k ¡ n; m ¡ n};25

and �nally that

�′ ∩ �5 = {¬(x0jk Ex1jm) : k; m ¡ n &¬(∃a ∈ M�i)[d
i
jk Ea ∨ di

jmEa]}:27

By extending h� to an automorphism ĥ� of C, and applying (ĥ�)−1, we may assume
that h�= idM�i

. We can also assume that no clk is an element of M�i , as otherwise the29
relevant inequalities can be absorbed by �.
We shall use the following general31

Fact 1.16. Suppose that N ≺C and �e∈ mC is disjoint from N , while N ⊆A. Then

r( �x) def= tp( �e; N ) ∪ {xk �= d : d ∈ A\N; k ¡ m}
∪{¬(xkEd) : d ∈ A & (d=E) ∩ N = ∅; k ¡ m};

is consistent (and in fact, every �nite subset of it is realised in N ).33
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Proof. Otherwise, there is a �nite r′( �x)⊆ r( �x) which is inconsistent. Without loss of1
generality, r′( �x) is the union of sets of the following form (we have a representative
type of the sets for each clause)

3
• {%( �x; �c)} for some �c⊆N and % such that |= %[ �e; �c].
• {xk �= ĉsk : k¡m} for some ĉs0; : : : ; ĉ

s
m−1 ∈A\N and s¡s∗¡!,5

• {¬(xkEd̂t
k): k¡m} for some d̂t

0; : : : ; d̂
t
m−1 ∈A\N and t¡t∗¡! such that (d̂t

k =E)∩N
= ∅.7

By the elementarity of N , there is �e′ ∈N with N |= %[ �e′; �c]. By the choice of the rest of
the formulae in �r′( �x), we see that �e′ satis�es them as well, as which is a contradiction.9

Let �x l=(xl0; : : : ; x
l
n−1) for l¡2. Let11

�0
def={’( �x0) : ’(x0j0 ; : : : ; x0jn−1

) ∈ �′ ∩ (�0 ∪ �03 ∪ �06)}:
Applying the last phrase in the above Fact to �0( �x0), the model M�i and �d, we13
obtain a sequence �e0 = (e00; : : : ; e

0
n−1)∈M�i which realises �0( �x0). For k; m such that

¬(x0jk E x1jm)∈�5 we have ¬(∃a∈M�i)(aEd
i
jk ∨ aEdi

jm). So15

¬(xk E e0m) ∧ ¬(e0m E xm) ∈ tp( �d=M�i):

Let now17

�1( �x1) = {¬(x1k E e0m) ∧ ¬(e0k E x1m) : ¬(x0jk E x1jm) ∈ �5}

∪{x1k �= e0m : k; m ¡ n} ∪ {’( �x1) : ’(x1j0 ; : : : ; x1jn−1
)

∈ �′ ∩ (�1 ∪ �13 ∪ �16)}:
�1( �x1) is a �nite set to which we can apply the last phrase of Fact 1.16. In this way
we �nd �e1 = (e10; : : : ; e

1
n−1)∈M�i realising �1( �x1). Now we show that �e0˙ �e1 realises19

�′\�2. So suppose ¬(x0jk Ex1jm)∈�′ ∩�5, then ¬(x1kEe0m)∈�1, hence ¬(elkEe0m). Also∧
k;m¡n(e

1
k �= e0m) holds, by the choice of �1, so �e

0˙ �e1 realises �′ ∩�4. Now we need21
to deal with �2. Let

D
def={( �u0; �u1) : ( �u0; �u1) satis�es #}:23

So D is �rst order de�nable with parameters in M�i and we have just shown that
D∩M�i �= ∅. Also if �e0˙ �e1 ⊆M�i satis�es #, it necessarily realises �′\�2 (as no25
clk ∈M�i , see the de�nition). As �

′ is presumed to be inconsistent, no ( �u0; �u1)∈D∩M�i
can realise �′, i.e. satisfy #2, and hence for no ( �u0; �u1)∈D∩M�i are the intervals27
(u00; u

0
1)I and (u

1
0; u

1
1)I disjoint. Now we claim that if ( �u

0; �u1)∈M�i ∩D, then (u00; u01)I ∩
(a�i ; b�i)I �= ∅.29
Indeed, suppose otherwise, say u01¡0 di

0 = a�i , so u01¡0 x0 ∈ tp( �d=M�i). Arguing as
above, with �u0 in place of �e0 and �1( �x)∪ {u01¡0 x10} in place of �1( �x1), we can31
�nd �u∈M�i satisfying (u

0
1¡0 u0) and such that ( �u0; �u) satis�es #. So ( �u0; �u)∈D∩M�i
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and the intervals (u00; u
0
1)I and (u0; u1)I are disjoint, a contradiction. A similar contra-1

diction can be derived from the assumption b�i =d�i
1 ¡0 u00. Now note that ( �u0; �u1)∈

D⇒ ( �u1; �u0)∈D, so if ( �u0; �u1)∈D∩M�i we also have (u
1
0; u

1
1)I ∩ (a�i ; b�i)I �= ∅.3

By the choice of C, there is no x∈M�i with d�i
0 60 x60 d

�i
1 , hence

if ( �u0; �u1) ∈ M�i ∩D and l ¡ 2; we have u10 ¡0 d�i
0 ¡0 d�i

1 ¡0 ul
1: (∗)5

Let �∗( �Y ) be ∃ �x(( �x; �y)∈D). Hence if
%0(z) = (∃ �y)[�∗( �y) ∧ z 60 y0]7

and

%1(z) = (∃ �y)[�∗( �y) ∧ y1 60 z];9

then

M�i |= (∀z0; z1)[%0(z0) ∧ %1(z1) ⇒ z0 ¡0 z1]:11

Of course, this holds in C as well, as

(a) %0(z) de�nes an initial segment of I ,13
(b) %1(z) de�nes an end segment of I ,
(c) the segments de�ned by %0(z) and %1(z) are disjoint,15
(d) %0(M�i)∪ %1(M�i)= I ∩M�i .

[Why? Note that ( �e0; �d)∈D. Hence �∗( �d) holds. As for every a∈ I ∩M�i we have17
a¡I a�i or a¿I b�i , the conclusion follows.]

(e) %0(a�i) and %1(b�i) hold.19
[Why? Again because �∗( �d) holds.]

The above arguments show that {x : (∃ �y)[(�∗( �y)∧ x¡0 y0)]} de�nes the Dedekind21
cut {x: x¡0 a�i} over M�i , which contradicts the choice of C and the fact that the
Dedekind cut induced by ( �a; �b) is not de�nable (which is a part of the de�nition of23
∗[M; �a; �b]).
Stage C. Now we have shown that the trees 〈N�: �∈ �¿2〉; 〈h�: �∈ �¿2〉 of models25

and embeddings can be de�ned as required, and we consider

p∗ def=
⋃

�∈�¿2

h�(p � M�lg(�) ):
27

We shall show that p∗ is �nitely satis�able, hence satis�able. Let �′ ⊆p∗ be �nite.
Recalling the analysis of p from Stage A, we consider each of the cases by which p29
could have been de�ned (ignoring Case 1A, as justi�ed by Subclaim 1.15.)
Case 1: In this case there is a function f :QM →QM respecting E, with aEf(a)31

for all a∈QM , and without loss of generality there are some n0; : : : ; �m−1 ∈ �¿2 and
{bj

i : j¡m; i¡nj} ⊆Rang(f) such that33

�′ = {P(z)} ∪
⋃
j¡m

{h�j(b
j
i )R z : i ¡ nj};
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and for each j we have {bj
i : i¡nj} ⊆M�lg(�j )

. Let n def= �j¡mnj, hence �′ is a quanti�er1

free (partial) type over n variables in C[
� ]. By Observation 1.9, we only need to check

that in �′ there are no direct contradictions with the axioms of T+feq.3
The only possibility for such a contradiction is that for some j0; j1 and bj0

i ; b j1
k we

have5

h�j0
(bj0

i ) �= h�j1
(bj1

k ) ∧ h�j0
(bj0

i )Eh�j1
(bj1

k )

and hj0 (b
j0
i )R z; hj1 (b

j1
k )R z ∈�′. In such a case, any c which would realise �′ would7

contradict part (c) of the de�nition of T+feq. Suppose that b
j0
i ; b j1

k and �0; �1 are as above.

Let �l
def= �jl for l¡2 and let �= �0 ∩ �1. By part (�)(ii) in the de�nition of �h, there9

is b̂∈N� such that h�0 (b
j0
i )Eb̂ and h�1 (b

j1
k )Eb̂. For some b∈M�lg(�) we have

h�0 (b) = h�1 (b) = h�(b) = b̂;11

so applying the elementarity of the maps, we obtain

bj0
i E b E bj1

k :13

On the other hand, by the de�nition of p∗ we have bj0
i R z ∈p(z) and bj1

k R z ∈p(z).
By the demands on p this implies that bj0

i = bj1
k =∈M�lg(�) and f(b)= bj0

i , contradicting15
the fact that M�lg(�) is closed under f.
Case 2: For a �xed a∗ ∈M0 we have17

p(z) = {Q(z)} ∪ {a∗E z} ∪ {z �= c : c ∈ a∗=EM};
so without loss of generality19

�′ = {Q(z)} ∪ {a∗E z} ∪ {z �= h�j (cj): j ¡ m}
for some c0; : : : ; cm−1 ∈ a∗=EM and �0; : : : ; �m−1 ∈ �¿2, as h〈 〉= idM0 . As a

∗=E is in�nite21
in any model of T ∗

feq, the set �
′ is consistent.

Case 3: We may assume that for some equivalence relation E on PM , a function f23
from PM into {yes; no}, sequences �0; : : : ; �n−1 ∈ �¿2, and {ak

i : i¡m; k¡n} ⊆QM and
{bk

i ; c
k
i ; d

k
i : i¡m; k ′¡n} ⊆PM we have e1Ee2 ⇒f(e1)=f(e2) and25

�′(z) = {Q(z)} ∪
⋃
k¡n

{¬(h�k (a
k
i )E z) : i ¡ m} ∪

⋃
k¡n

{(zRh�k (b
k
i ))

f(bki ) : i ¡ m}

∪
⋃
k¡n

{[F(z; h�k (c
k
i )) = F(z; h�k (d

k
i ))]

if cki Ed
k
i : i ¡ m}:

We could have a contradiction if for some k1; k2; i1; i2 we had f(bk1
i1 ) = yes; f(bk2

i2 ) = no,
but h�k1

(bk1
i1 ) = h�k2

(bk2
i2 ), which cannot happen by �(i) and the fact that each h� is27

1–1. Another possibility is that for some bk1
i1 ; b

k2
i2 we have f(bk1

i1 ) =f(bk2
i2 ) = yes, but

h�k1
(bk1

i1 ) �= h�k2
(bk2

i2 ) while h�k1
(bk1

i1 )Eh�k2
(bk2

i2 ). To see that this cannot happen, we dis-29
tinguish various possibilities for bk1

i1 ; b
k2
i2 and use part (�)(ii) in the choice of

�h.
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Yet another possible source of contradiction could come from a similar consideration1
involving the last clause in the de�nition of �′(z), which cannot happen for similar
reasons.3
Stage D. Now we can conclude, using �= �¡� and |T |¡�, that there is a model

N ∗ ≺C of size � with
⋃

� ∈ �¿2 N� ⊆N ∗, such that p∗ is realised in N ∗. For 
∈ �2, let5

h

def=

⋃
i¡� h
 � i, and let N


def= Rang(h
), while p

def= h
(p).

For such 
, let7

q
(x)
def= {I(x)} ∪ {h
(ai)¡0 x ¡0 h
(bi) : i ¡ �}:

Hence we have that for 
 �=  from �2, the types q
 and q are contradictory, by (�)9
above. As ‖N ∗‖+ |L(T )|6�, there are only 6� de�nable Dedekind cuts of ¡0 over
N ∗, and only 6� types q
 are realised in N ∗. Hence there is 
∈ �2 (actually 2� many)11
such that the Dedekind cut {x :∨i¡�x¡0 h
(ai)} is not de�nable over N ∗ and q
 is
not realised in N ∗. So N ∗ omits q
 and realises p
. We let N = h(N ∗), where h is an13
automorphism of C extending h−1


 .

Theorem 1.17. Assume that �¡�= � and 2�= �+.
15

(1) For any �-relevant (Tord ; T ∗
feq)-superior (T; �’; � ), the theory T has a model M∗

of cardinality �+ such that17
(i) �’M∗

is not �+-saturated,

(ii) � 
M∗

is �+-saturated.19
(2) We can strengthen the claims in (i) and (ii) to include any interpretations of a

dense linear order and T ∗
feq-respectively in M∗, even with parameters.21

Proof. We prove (1), and (2) is proved similarly. Using the Main Claim 1.13, we
can construct M∗ of size �+, by an ≺ -increasing continuous sequence 〈M∗

i : i6�+〉,23
with ‖M∗

i ‖= � satisfying ∗[Mi; �a; �b] for each i6�+, and letting M∗=M�+ . The Main
Claim 1.13 is used in the successor steps. To assure that M∗ is �+-saturated for T ∗

feq,25
we use the assumption 2�= �+, to do the bookkeeping of all T ∗

feq-types involved.

Conclusion 1.18. Under the assumptions of Theorem 1.17, the theory T ∗
feq is /

∗
�+ strictly27

below the theory of a dense linear order with no �rst or last elements.
[Why? It is below by Shelah’s Theorem 0.4 above.]29

We recall that our motivation for studying /∗ is to try to characterise SOP3 (or SOP2)
theories by the /∗-maximality. As we explained in the Introduction this has origins in31
the connection between the maximality in the Keisler order and having the strict order
property, so we should show here what is the connection between the maximality in33
Keisler’s order and the maximality in the order /∗. The following Claim 1.19 does
that for countable theories.35

Claim 1.19. Suppose that T is a countable theory that is /∗
�∗ -maximal. Then it is

maximal in the Keisler order l�.37
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Proof. Suppose otherwise and let T1 be a theory that is /∗-maximal but not maximal1
in the Keisler order l�. In particular we have Tord /∗

� T1, so there is a �-relevant
(Tord ; T1)-superior triple (T; �’0; �’1)-exemplifying this. By Observation 1.4(0) we may3
assume that the interpretation �’1 is trivial, so T1 ⊆T -for simplicity.
Since T is not maximal in the Keisler order l�, by [11, 4.2(1)] there is a regular5

ultra�lter D which is not good and a model M of T such that M�=D is nevertheless
�+-compact. We can extend M to a model N of T and consider N ∗=N�=D. This is a7
model of T and by the Extension Theorem for ultra�lters we have that [N ∗] �’1 =M�=D,
so it is �+-compact and hence it is �+-saturated. Again by the Extension Theorem we9
have that [N ∗] �’1 = (N �’1 )�=D. Now on the one hand we have by the /∗

�∗ -maximality
of T1 that (N �’1 )�=D must be �+-saturated, hence �+-compact. But on the other hand11
(N �’1 )�=D cannot be �+-compact because D is not a good ultra�lter and Tord is maximal
in the Keisler order, contradicting [11, 4.2(1)].13

2. On the properties SOP2 and SOP1

In his paper [13], S. Shelah investigated a hierarchy of properties unstable theories15
without strong order property may have. This hierarchy is named NSOPn for 36n¡!,
where the acronym NSOP stands for “not strong order property”. The negation of17
NSOPn is denoted by SOPn. It was shown in [13] that SOPn+1 ⇒SOPn, that the im-
plication is strict and that SOP3 theories are not simple. In this section we investigate19
two further notions, which with the intention of furthering the above hierarchy, we
name SOP2 and SOP1. The original de�nitions of SOPn for n¿3 do not immediately21
lend themselves to extending the hierarchy for n=1; 2, but the properties we de�ne
nevertheless ful�ll that role. In Section 3, a connection between this hierarchy and23
/∗
� -maximality will be established.
Recall from [13] one of the equivalent de�nitions of SOP3. (The equivalence is25

established in Claim 2.19 of [13]).

De�nition 2.1. A (complete) theory T has SOP3 i� there is an indiscernible sequence27
〈 �ai: i¡!〉 and formulae ’( �x; �y),  ( �x; �y) such that

(a) {’( �x; �y);  ( �x; �y)} is contradictory,29
(b) for some sequence 〈 �bj: j¡!〉 we have

i 6 j ⇒|= ’[ �bj; �ai] and i ¿ j ⇒|=  [ �bj; �ai];31

(c) for i¡j, the set {’( �x; �aj);  ( �x; �ai)} is contradictory.

De�nition 2.2. (1) T has SOP2 if there is a formula ’( �x; �y) which exempli�es this33
property in C=CT , which means:
There are �a� ∈C for �∈ !¿2 such that35

(a) for every ∈ !2, the set {’( �x; �a�n): n¡!} is consistent,
(b) if �, 
∈ !¿2 are incomparable, {’( �x; �a�); ’( �x; �a
)} is inconsistent.37
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(2) T has SOP1 if there is a formula ’( �x; �y) which exempli�es this in C, which1
means:
There are �an ∈C, for �∈ !¿2 such that:3

(a) for ∈ !2 the set {’( �x; �a�n): n¡!} is consistent.
(b) if 
˙ 〈0〉E �∈ !¿2, then {’( �x; �a�); ’( �x; �a
˙〈1〉)} is inconsistent.5

(3) NSOP2 and NSOP1 are the negations of SOP2 and SOP1 respectively.

The following claim establishes the relative position of the properties introduced in7
De�nition 2.2 within the (N)SOP hierarchy.

Claim 2.3. For any complete �rst order theory T , we have9

SOP3 ⇒ SOP2 ⇒ SOP1:

Proof. Suppose that T is SOP3, as exempli�ed by 〈 �ai: i¡!〉, 〈 �bj: j¡!〉 and formulae11
’( �x; �y) and  ( �x; �y) (see De�nition 2.1), and we shall show that T satis�es SOP2. We
de�ne13

#( �x; �y0 ˙ �y1) ≡ ’( �x; �y0) ∧  ( �x; �y1); where lg( �y0) = lg( �y1):

Let us �rst prove the consistency of15

� def=

T ∪ {¬(∃ �x)[#( �x; �y�) ∧ #( �x; �y
)]: �⊥
 in !¿2}
∪

⋃
n¡!

{(∃ �x)
[ ∧

k6n

#( �x; �y��k)

]
: � ∈ n2}:

Suppose for contradiction that � is not consistent, then for some n¡!, the following17
set is inconsistent:

�′ def=

T ∪ {¬(∃ �x)[#( �x; �y�) ∧ #( �x; �y
)]: �; 
 incomparable in
n¿2}

∪{(∃ �x)
[ ∧

k6n

#( �x; �y��k)

]
: � ∈ n2}:

19

Fix such n. We pick ordinals ��; 	�¡! for �∈ n¿2 so that

(i) 
 / �⇒ �
¡��¡�� + 1¡	�¡	
,21
(ii) 	�˙ 〈0〉¡��˙ 〈1〉.

For �∈ n¿2 let �a∗
�
def= �a�� ˙ �a	� . We show that C and { �a∗

� : �∈ n¿2} exemplify that23
�′ is consistent. So, if �∈ n¿2 then we have

∧
k6n #[ �b�� + 1; �a

∗
��k ] as for every k6n

we have ���k¡�n + 1, so ’[ �b��+1; �a���k ] holds, but also for all k6n, as � � k E �, we25
have 	��k¿�� + 1, so  [ �b��+1; �a	��k ] holds. Hence (∃ �x)[

∧
k6n #( �x; �a∗

��k)]. On the other
hand, if 
˙ 〈l〉E �l for l¡2, then {#( �x; �a∗

�0 ), #( �x; �a
∗
�1 )} is contradictory as the con-27

junction implies  ( �x; �a	�0
)∧’( �x; �a��1

), which is contradictory by 	�0¡��1 and (c) of
De�nition 2.1. This shows that �′ is consistent, hence we have also shown that � is29
consistent.



UNCORRECTED P
ROOF

APAL1475

ARTICLE IN PRESS
M. D�zamonja, S. Shelah / Annals of Pure and Applied Logic ( ) – 19

Having shown that � is consistent, we can �nd witnesses { �a∗
� : �∈ !¿2} in C realising1

�. Now we just need to show that {#( �x; �a∗
��n): �¡!} is consistent for every �∈ !2.

This follows by the compactness theorem and the de�nition of �. Hence we have3
shown that SOP3 ⇒SOP2.
The second part of the claim is obvious (and the witnesses for SOP2 can be used5

for SOP1 as well).

Question 2.4. Are the implications from Claim 2.3 reversible?7

Claim 2.5. If T satis�es SOP1, then T is not simple. In fact, if ’( �x; �y) exempli�es
SOP1 of T , then the same formula exempli�es that T has the tree property.9

Proof. Let ’( �x; �y) and { �a�: �∈ !¿2} exemplify SOP1. Then

��
def={’( �x; �a�˙〈0〉n˙〈1〉): n¡!}11

for �∈ !¿2 consists of pairwise contradictory formulae. (Here 〈0〉n denotes a sequence
consisting of n zeroes.) For n¡! and 
∈ n! let13



def=〈0〉
(0)+1 ˙ 〈1〉 ˙ 〈0〉
(1)+1 : : : ˙ 〈0〉
(n−1)+1 ˙ 〈1〉;

so 
 ∈ !¿2 and 
E �⇒ 
 E �. For 
∈ n! let �b
= �a
 . We observe �rst that {’( �x;15
�b
˙〈k〉): k¡!} is a set of pairwise contradictory formulae, for 
∈ n!; namely, if k0 �= k1,
then ’( �x; �b
˙ 〈kl〉) for l¡2 are two di�erent elements of �
 . On the other hand,17
{’( �x; �b
�n): n¡!} is consistent for every 
∈ !!. Hence ’( �x; �y) and { �b
: 
∈ !¿!}
exemplify that T has the tree property, and so T is not simple.19

This ends the discussion of the properties of SOP1 and SOP2 that are directly relevant
to the main thesis of the paper—the reader only interested in the connection with the21
order /∗ can now turn directly to Section 3. The rest of this section however contains
some further syntactic developments of these properties which are of interest if one23
wishes to understand the type theory induced by them. The indescernibility results we
have here were recently used by Shelah and Usvyatsov [14] to de�ne a rank function25
on NSOP1 theories (see Theorem 2.18).
The de�nition of when a theory has SOP1 can be made in another equivalent fashion.27

De�nition 2.6. Let ’( �x; �y) be a formula of L(T ). We say ’( �x; �y) has SOP′
1 i� there29

is 〈 �a�: �∈ !¿2〉 in CT such that

(a) {’( �x; �a��n)�(n): n¡!} is consistent for every �∈ !2 where we use the notation31

’l =

{
’ if l = 1;

¬’ if l = 0

for l¡2.33



UNCORRECTED P
ROOF

20 M. D�zamonja, S. Shelah / Annals of Pure and Applied Logic ( ) –

APAL1475

ARTICLE IN PRESS

(b) If 
˙ 〈0〉E �∈ !¿2, then {’( �x; �a�); ’( �x; �a
)} is inconsistent.1

We say that T has property SOP′
1 i� some formula of L(T ) has it.

Claim 2.7. (1) If ’( �x; �y) exempli�es SOP1 of T then ’( �x; �y) (hence T ) has property3
SOP′

1.
(2) If T has property SOP′

1 then T has SOP1.5

Proof. (1) Let { �a�: �∈ !¿2} and ’( �x; �y) exemplify that T has SOP1. For �∈ !¿2 we

de�ne �b�
def= �a�˙ 〈1〉. We shall show that ’( �x; �y) and { �b�: �∈ !¿2} exemplify SOP′

1.7
Given �̂∈ !2. Let �c exemplify that item (a) from De�nition 2.2(2) holds for �̂.

Given n¡!, we consider ’[ �c; �b�̂�n]�̂(n). If �̂(n)= 1, then, as �b�̂�n= �a�̂�n˙ 〈1〉= �a�̂�(n+1),9
we have that ’[ �c; �b�̂�n]�̂(n) =’[ �c; �a�̂�(n+1)] holds. If �̂(n)= 0, then

(�̂ � n) ˙ 〈0〉 = �̂ � (n+ 1):11

As ’[ �c; �a�̂�(n+1)] holds, by (b) of De�nition 2.2(2), we have that ’[ �c; �a�̂�n˙ 〈1〉] can-
not hold, showing again that, ’[ �c; �b�̂�n]�̂(n) =¬’[ �c; �a�̂�n˙ 〈1〉] holds. This shows that13
{’( �x; �b�̂�n)�̂(n): n¡!} is consistent, as exempli�ed by �c.
Suppose 
˙ 〈0〉E �∈ !¿2 and that ’[ �d; �b�]∧’[ �d; �b
] holds. So both ’[ �d; �a�˙ 〈1〉]15

and ’[ �d; �a
˙ 〈1〉] hold. On the other hand, as 
˙ 〈0〉E �, clearly 
 ˙ 〈0〉D �〈1〉, and
so (b) of De�nition 2.2(2) implies that {’( �x; �a�˙ 〈1〉), ’( �x; �a
˙ 〈1〉)} is contradictory,17
a contradiction. Hence the set {’( �x; �b�); ’( �x; �b
)} is contradictory
(2) De�ne �rst for �∈ !¿2 an element � ∈ !¿2 by letting19

�(3k) = �(k);

�(3k + 1) = 0;

�(3k + 2) = 1;

and if lg(�)= k¡!, then lg(�)= 3k. Note that for �∈ !2 and k¡! we have
��k = � � (3k).21
Let ’( �x; �y) and { �a�: �∈ !¿2} exemplify property SOP′

1. We pick c0 �= c1 and de�ne
for �∈ !¿223

�b�˙〈1〉
def= �a� ˙ �a�˙〈1〉 ˙ 〈c0; c1〉;

�b�˙〈0〉
def= �a�˙〈0;0〉 ˙ �a� ˙ 〈c0; c1〉;

�b〈 〉
def=〈c0〉2n+2;

where 〈c〉k stands for the sequence of k entries, each of which is c, and n = lg( �y) in
’( �x; �y). We de�ne25

 ( �x; �z)≡  ( �x; �z0 ˙ �z1 ˙ w0 ˙ w1)

≡ [w0 = w1] ∨ [’( �x; �z0) ∧ ¬’( �x; �z1)];
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where �z= �z0˙ �z1˙ 〈w0; w1〉 and lg( �z0)= lg( �z1)= lg( �y). We now claim that  ( �x; �z)1
and { �b�: �∈ !¿2} exemplify that SOP1 holds for T . Before we start checking this,
note that for �∈ !¿2 we have3

•1  ( �x; �b〈 〉) holds for any �x,
•2  ( �x; �b�˙〈0〉) holds i� ’( �x; �a�˙〈0;0〉)∧ ¬’( �x; �a�) holds,5
•3  ( �x; �b�˙〈1〉) holds i� ¬’( �x; �a�˙〈1〉)∧’( �x; �a�) holds.

Let us verify 2.2(2)(a), so let �∈ !2. Pick �c such that ’[ �c; �a��n ]
�(n) holds for all7

n¡!. We claim that

 [ �c; �b��n] holds for all n: (∗)9

The proof is by a case analysis of n.
If n=0, this is trivially true. If n= k + 1 and �(k)= 0, then we need to verify that11

’[ �c; �a��k˙〈0;0〉] holds and ¬’[ �c; �a��k ] holds. We have

��k ˙ 〈0; 0〉 = � � (3k + 2);13

and �(3k+2)=1. Hence ’[ �c; �a��k˙〈0;0〉] holds by the choice of �c. On the other hand,
we have ��k = � � (3k), and �(3k) = �(k)= 0, hence ¬’[ �c; �a��k ] holds.15
If n= k + 1 and �(k)= 1, then we need to verify that ’[ �c; �a��k ] holds while ’[ �c;

�a��(3k)˙〈1〉] does not. As ��k = � � (3k), and �(3k)= �(k) = 1, we have that17
’[ �c; �a��k ] holds. Note that ’[ �c; �a��(3k+2)] holds as �(3k + 2) = 1. We also have (�

� (3k+1))˙ 〈0〉E � � (3k+2). Hence ¬’[ �c; �a��(3k+1)] by part (b) in De�nition 2.6.19
But

¬’[ �c; �a��(3k+1)] ≡ ¬’[ �c; �a��(3k)˙〈1〉] ≡ ¬’[ �c; �a��k˙〈1〉]21

holds, so we are done proving (∗).
Let us now verify 2.2(2)(b). So suppose 
˙ 〈0〉E � and consider { ( �x;23

�b
˙〈1〉);  ( �x; �b�)}. Let �= �˙ 〈l〉.
Case 1: 
= �. Hence l=0. So  ( �x; �b�)⇒ ¬’( �x; �a
) and  ( �x; �b
˙〈1〉)⇒’( �x; �a
),25

by •2 and •3 respectively, showing that { ( �x; �b�);  ( �x; �b
˙〈1〉)} is inconsistent.
Case 2: 
 / � and l=0. Hence 
˙ 〈0〉E �. Clearly 
 ˙ 〈0〉E � ˙ 〈0; 0〉, as27

�(lg(
)) = �(lg(
)) = 0:

We have  ( �x; �b
˙〈1〉)⇒’( �x; �a
) by •3 and  ( �x; �b�)⇒’( �x; �a�˙〈0;0〉) by •2, and the29
two formulae being implied are contradictory, by (b) in the de�nition of SOP′

1.
Case 3: 
 / � and l=1. Observe that  ( �x; �b�)⇒’( �x; �a�) by •3 and  ( �x; �b
˙〈1〉)⇒’31

(�x; �a
). As above, using 
˙ 〈0〉E �, we show that the set {’( �x; �a
); ’( �x; �a�)} is
inconsistent.33

Conclusion 2.8. T has SOP1 i� T has property SOP′
1 from Claim 2.7.

Question 2.9. Is the conclusion of 2.8 true when the theory T is replaced by a formula35
’?



UNCORRECTED P
ROOF

22 M. D�zamonja, S. Shelah / Annals of Pure and Applied Logic ( ) –

APAL1475

ARTICLE IN PRESS

It turns out that witnesses to being SOP1 can be chosen to be highly indiscernible.1

De�nition 2.10. (1) Given an ordinal � and sequences ��l= 〈�l
0; �

l
1; : : : ; �

l
nl〉 for l=0; 13

of members of �¿2, we say that ��0 ≈1 ��1 i�

(a) n0 = n1,5
(b) the truth values of

�l
k = 〈 〉; �l

k3 E �l
k1 ∩ �l

k2 ; �l
k1 ∩ �l

k2 / �l
k3 ; (�l

k1 ∩ �l
k2 ) ˙ 〈0〉 E �l

k3 ;7

(hence also of (�l
k1 ∩ �l

k2 ) ˙ 〈1〉E �l
k3 , as the tree is binary) for k1; k2; k36n0, do

not depend on l.9
(2) We say that the sequence 〈 �a�: �∈ �¿2〉 of elements of C (for an ordinal �) is 1-
fully binary tree indiscernible (1-fbti) i� whenever ��0 ≈1 ��1 are sequences of elements11
of �¿2, then

�a ��0
def= �a�00

˙ · · · ˙ �a�0n013

and the similarly de�ned �a ��1 , realise the same type in C.
(3) We replace 1 by 2 in the above de�nitions i� (�l

k1 ∩ �l
k2 ) ˙ 〈0〉E �l

k3 (and hence15
also (�l

k1 ∩ �l
k2 )˙ 〈1〉E �l

k3 ) is omitted from clause (b) above.

Claim 2.11. If t ∈ {1; 2} and 〈 �b�: �∈ !¿2〉 are given, and �¿!, then we can �nd17
〈 �a�: �∈ �¿2〉 such that
(a) 〈 �a�: �∈�¿2〉 is t-fbti,19
(b) If ��= 〈�m: m¡n〉, where each �m ∈ �¿2 is given, and � is a �nite set of formulae

of T , then we can �nd 
m ∈ !¿2(m¡n) such that with �
 def=〈
m: m¡n〉, we have21
�
≈t �� and sequences �a �� and �b �
 realise the same �-types.

Proof. By the compactness theorem it su�ces to assume �=!. The proof goes through23
a series of steps through which we obtain increasing degrees of indiscernibility. We
shall need some auxiliary de�nitions.25

De�nition 2.12. (1) Given ��= 〈�0; : : : ; �k−1〉, a sequence of elements of �¿2, and an
ordinal �. We de�ne ��′=cl�( ��) as follows:27

��′ = 〈〈 〉; �0; �0 � �; �1; �1 � �; �0 ∩ �1; �2; �2 � �; �0 ∩ �2; �1 ∩ �2 : : :〉:

(2) We say that ��≈�; n �
 i� ��′ def= cl�( ��) and �
′ def= cl�( �
) satisfy29

(i) ��′= 〈�′
l: l¡m〉 and �
′= 〈
′

l: l¡m〉 are both in m(�¿2) for some m,
(ii) for l¡m we have �′

l ∈ �¿2⇔ 
′
l ∈ �¿2, and for such l we have �′

l= 
′
l,31

(iii) n¿|u1|= |u2|, where we let u1 = {lg(�′
l): l¡m}\(�+1) and u2 = {lg(
′

l): l¡m}
\(�+ 1),33

(iv) lg(�′
l); lg(�

′
k)∈ u1 ⇒ lg(�′

1)¡lg(�′
k)⇔ lg(
′

l)¡lg(
′
k),
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(v) �′
l1 E �′

l2 ⇔ 
′
l1 E 
′

l2 , and the same holds for the equality,1
(vi) �′

l1
∧〈0〉E �′

l2 ⇔ 
′
l1

∧〈0〉E 
′
l2 (and hence the same holds with 1 in place of 0).

(3) 〈 �a�: �∈ �¿2〉 is (�; n)-indiscernible i� for every k, for every ��; �
∈ k(�¿2) with3
��≈�; n �
, the tuples �a �� and �a �
 realise the same type.
(4) (6�; n)-indiscernibility is the conjunction of (	; n)-indiscernibility for all 	6�.5
(5) We say that 〈 �a�: �∈ �¿2〉 is 0-fbti i� it is (�; n)-indiscernible for all � and n.

Subclaim 2.13. If �a� ∈ kC for �∈ !¿2, then for any �¿! we can �nd �a′= 〈 �a′
�: �∈7

�¿2〉 such that
(x) �a′ is 0-fbti,9
(xx) for every m and a �nite set � of formulae, we can �nd h: m¿2→ !¿2 such

that11
(�) 〈 �a′

�: �∈ m¿2〉 and 〈 �ah(�): �∈ m¿2〉 realise the same �-type,
(	) h satis�es h(�)∧〈l〉E h(�∧〈l〉) for �∈ m¿2 and l¡2, and13

lg(�1) = lg(�2) ⇒ lg(h(�1)) = lg(h(�2)):

Proof. By the compactness theorem it su�ces to work with �=!.15
Let (∗)�; n be the conjunction of the statement (x)�; n given by

�a′ is (6�; n)-indiscernible;17

and (xx) above. We prove by induction on n and then � that for any �6! we can
�nd �a′ for which (∗)�; n holds.19

n=0. We use �a′
�= �a�.

n+1. By induction on �6!, we prove that there is �a′ for which (∗)�; n+1+(∗)!;n+(xx)21
holds.

�=0 (or just �¡!).23
Without loss of generality, the sequence 〈 �a�: ∈ !¿2〉 is (6!; n)-indiscernible, as

(xx) as a relation between 〈 �a�: �∈ !¿2〉 and 〈 �a′
�: �∈ !¿2〉 is transitive. Suppose we25

are given ��∗; �
∗ satisfying ��∗ ≈�; n+1 �
∗, in particular the appropriately de�ned u1; u2
have size 6n+1. For simplicity in notation, we assume ��∗; �
∗ to be the same as their27
cl� closures and the same convention will hold for any ��; �
 that we mention in this
context.29
If |u1|6n, the conclusion follows by the assumptions. We shall assume |u1|¿n.

Moreover, if min(u1)=min(u2) and lg(�∗
l )=min(u1)⇒ �∗

1 = 
∗
l , using (x)min(u1); n, we31

get that �a ��∗ and �a �
∗ realise the same type. By the same argument, �xing a �nite set
� of formulae, for every ��, de�ning u1 appropriately, we get that the tp�( �a ��) depends33
just on the

��= ≈�;n+1
def= � and {�l: l¡lg( ��)} ∩ min(u1)2 = {�l: l ∈ v�}35

for some v� ⊆ lg( ��). Let us de�ne F0�;� by F0�;�(〈�l: l∈ v� 〉)= tp�( �a ��). By the closure
properties of �� and the de�nition of ≈�; n+1, we get that for l1 �= l2 ∈ v� the truth37
values of �l1 � (�+1)= �l2 � (�+1) depends only on � . We can hence replace v� by
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a set v�∗ ⊆ v� such that 〈�l: l∈ v�∗ 〉 are the representatives under the equality of the1
restrictions to �+ 1.
As we have �xed �, there is a �nite set A of �s that can be used as representatives3

for the values of F0�;�. Let k∗=2�+1 (so �nite) and let {
∗
k : k¡k∗}. We de�ne a

partial function F�;� by5

F�;�(
0; : : : ; 
k ; : : :)k¡k∗
def= F0�;�(〈�l : l ∈ v�∗ 〉);
where �l � (�+ 1) = 
∗

k ⇒ �l = 
∗
k ˙ 
k :

De�ne a function F with arity k∗ so that F((: : : ; xk ; : : :)k¡k∗) is de�ned i� for some
m¡! we have {xk : k¡k∗} ⊆ m2 and then7

F((: : : ; xk ; : : :)k¡k∗) = 〈F�;�((: : : ; xk ; : : :)k¡k∗): � ∈ A〉:
Now we use the Halpern–Lauchli [6] theorem. We get a function h: !¿2→ !¿2 such9
that
• lg(h(�)) depends just on lg(�) (not on �),11
• h(�)˙ 〈l〉 / h(�˙ 〈l〉) for l=0; 1,
• for some c we have that for all m¡!13

{�k : k ¡ k∗} ⊆ m2 ⇒ F((h(�0); h(�1); : : : ; h(�k); : : :)k¡k∗) = c:

Let �a′
� for �∈ !¿2 be de�ned to be: �a� if �∈ �¿2, and �ah(
) if � � �= 
∗

k and �= 
∗
k ˙ 
.15

We have obtained the desired conclusion, but localized to �. The induction step ends
by an application of the compactness theorem.17

�=!. Follows by the induction hypothesis and the compactness.
The conclusion of the subclaim follows by the compactness theorem.19

Now we go back to the proof of the claim. Let us �rst work with t=1. Given
〈 �b�: � ∈ !¿2〉 as in the assumptions, by the subclaim we can assume that they are 0-fbti.21
We choose by induction on n a function hn : n¿2 → !¿2 as follows. Let h0(〈 〉)= 〈 〉.
If hn is de�ned, let23

kn
def= max{lg(hn(�)) + 1 : � ∈ n¿2}

and let25

hn+1(〈 〉) = 〈 〉; hn+1(〈1〉∧
) = 〈1〉∧hn(
); hn+1(〈0〉∧
) = 〈0; : : : ; 0〉∧hn(
);

where the sequence of 0s in the last part of the de�nition has length kn. The point of the27
de�nition of hn is that if ��l= 〈�l

0; : : : ; �
l
nl〉 for l=0; 1 are given and n∗= lg(cl0( ��0)),

then29

��0≈1 ��1 ⇒ 〈hn(�00); : : : ; hn(�0n0 )〉≈0; n∗〈hn(�10); : : : ; hn(�1n1 )〉:
To check this, we verify the six relevant items of the de�nition of ≈0; n∗ .

31
(i) Follows because n0 = n1 by the de�nition of ≈1.
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(ii) If hn(�0i )∩ hn(�0j )= 〈 〉 then �0i ∩ �0j = 〈 〉 so �1i ∩ �1j = 〈 〉 by the de�nition of ≈1,1
and hence hn(�1i )∩ hn(�1j )= 〈 〉. The opposite implication holds by symmetry.

(iii) Follows by the de�nition of n∗.3
(iv) Suppose

0¡ lg(hn(�0i ) ∩ hn(�0j ))¡ lg(hn(�0k) ∩ hn(�0s )):5

Let m6n be the �rst such that

0¡ lg(hn(�0i � m) ∩ hn(�0j � m))¡ lg(hn(�0k � m) ∩ hn(�0s � m)):7

Clearly, m¿0. To simplify the notation, let us assume that m= n. Let �0t =
〈lt〉 ˙ 
0t for t ∈ {i; j; k; s} and for some lt ∈ {0; 1} depending on t. The situa-9
tion we describe can happen i� li= lj =1 and lk = ls=0, by the de�nition of hn.
By the de�nition of ≈1 this can be recognised by the ≈1-type of ��0.11

(v), (vi) Follow because the corresponding properties are preserved by hn. Fix an n¡!

and de�ne �a�= �bhn(�) for �∈ n¿2. By the above argument it follows that 〈 �a�: �∈ n¿2〉13
are 1-fbti. As n was arbitrary, we can �nish by compactness.
For t=2, we use the same proof, except that we let15

hn+1(〈1〉∧
) = 〈0; 1〉∧hn(
):

Claim 2.14. If t ∈ {1; 2} and ’( �x; �y) exempli�es that T has SOPt , we can without17
loss of generality assume that the witnesses 〈 �a� : �∈ !¿2〉 for this fact are t-fbti.

Proof. Let �b= 〈 �b�: �∈ !¿2〉 be any witnesses to the fact that ’( �x; �y) exempli�es that19
T has SOPt . Let �a= 〈 �a�: �∈ !¿2〉 be t-fbti and satisfy the properties guaranteed by
Claim 2.11. We check that �a satis�es the properties (a) and (b) from the De�nition21
of SOPt .
For (a), we �rst work with t=1, the case t=2 is similar. Let ∈ !2 be given, and23

suppose that {’( �x; �a�n): n¡!} is inconsistent. Then there is some n∗¡! such that
{’( �x; �a�n): n¡n∗} is inconsistent. Let �= 〈 � n: n¡n∗〉, and let25

� def= {’∗
n∗(( �y0; : : : ; �yk ; : : :)k¡n∗)} where ’∗

n∗ ≡ (∃ �x)
∧

k¡n∗
’( �x; �yk):

Let �
≈t � be such that �b �
 and �a � realise the same �-types. As �
≈t � we have that27
�
= 〈
0; 
1; : : : ; 
n∗−1〉 for some 
0; 
1; : : : ; 
n∗−1 satisfying

i ¡ j ¡ n∗ ⇒ 
i C 
j:29

Let �∈ !2 be such that 
1 C � for all i. Hence {’( �x; �b��n): n¡!} is consistent, so in
particular31

|= “(∃ �x)
[ ∧
n¡n∗

’( �x; �b
n)

]
”:
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Hence1

|= “(∃ �x)
[ ∧
n¡n∗

’( �x; �a�n)

]
”;

a contradiction.3
For (b), suppose that �0 ˙ 〈0〉E � and let ��= 〈�0; �; �0 ˙ 〈1〉〉, while �= {’∗

2 ( �y0;
�y1)}. Let �
= 〈
0; 
1; 
2〉 be such that ��≈t �
 and �b �
 realises the same �-types as �a ��. If5
t=1, as �
≈t �� we have 
0 ˙ 〈0〉E 
2, hence {’( �x; �b
0˙〈1〉); ’( �x; �b
)} is contradictory,
hence {’( �x; �a�0˙〈1〉); ’( �x; �a�)} is contradictory. The case t=2 is similar, as the notion7
of incompatibility in !¿2 can be encaptured by a relevant choice of ��.

As we mentioned before, it would be really interesting to know if SOP2 and SOP19
are equivalent. A step towards understanding this question is provided by the next claim
which shows that in the case of theories which are SOP1 and NSOP2, the witnesses11
to being SOP1 can be chosen to be particularly nice.

Claim 2.15. Suppose that ’( �x; �y) satis�es SOP1, but for no n does the formula13
’n( �x; �y0; : : : ; �yn−1)≡

∧
k¡n ’( �x; �yk) satisfy SOP2. Then there are witnesses 〈 �a�: �∈ !¿

2〉 for ’( �x; �y) satisfying SOP1 which in addition satisfy:
15

(c) if X ⊆ !¿2, and there are no �; 
∈X such that � ˙ 〈0〉E 
, then {’( �x; �a�): �∈
X } is consistent.17

(d) 〈 �a�: �∈ !¿2〉 is 1-fbti.

(In particular, such a formula and witnesses can be found for any theory satisfying19
SOP1 and NSOP2.)

Proof. We shall be using the following colouring theorem, for which we could not21
�nd a speci�c reference and so we include a proof of it.

Lemma 2.16. Suppose cf (�)= � and we colour �¿2 by �¡� colours. Then there is23
an embedding h : !¿2 → �¿2 such that h(�)∧〈l〉E h(�∧〈l〉) and Rang(h) is monochro-
matic.25

Proof. Let c be a colouring as in the assumptions and let {ai: i¡0} list Rang(c). We
claim that there is 
∗ ∈ �¿2 and j¡� such that for every 
∈ �¿2 satisfying 
∗ E 
 there27
is ∈ �¿2 with 
E  and c()= j. For otherwise, we can choose by induction on i6�
a member �i ∈ �¿2 with i¡j ⇒ �i E �j such that for no ∈ �2 do we have �i+1 E  and29
c()= i, using �¡cf (�). As �¡�, we obtain a contradiction.
Having found such 
∗; j we de�ne h(�) for �∈ n2 by induction on n¡!. For n=031

we choose h(〈 〉) to satisfy 
∗ E h(〈 〉) and c(h(〈 〉))= j, which is possible by the choice
of 
∗ and j. For n+ 1, for any �∈ n+12 we choose for l=0, 1 a member h(� ˙ 〈l〉)33
of �¿2 which is above h(�) ˙ 〈l〉 and on which c is j, which again is possible by the
choice of 
∗ and j.35
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Let ’( �x; �y) be a SOP1 formula which is not SOP2, and moreover assume that for1
no n does the formula ’n de�ned as above satisfy SOP2. By Claim 2.14, we can �nd
witnesses 〈 �a�: �∈ !¿2〉 which are 1-fbti. By the compactness theorem, we can assume3
that we have a 1-fbti sequence 〈 �a�: �∈ !1¿2〉 with the properties corresponding to (a)
and (b) of De�nition 2.2(2), namely

5
(a) for every �∈ !12, set {’( �x; �a���): �¡!1} is consistent,
(b) if 
 ˙ 〈0〉E �∈ !1¿2, then {’( �x; �a
˙〈1〉); ’( �x; �a�)} is inconsistent.7
We shall now attempt to choose 
� and w� for �∈ !1¿2, by induction on lg(�)= �

¡w1 so that
9

(i) 
� ∈ !1¿2,
(ii) 	¡�⇒ 
��	 C 
�,11
(iii) 	¡�⇒ 
�(lg(
��	))= �(	),
(iv) w� ⊆ !1¿2 is �nite and 
∈w� ⇒ lg(
)¡lg(
�),13
(v) if lg(�) is a limit ordinal ¿0, then w�= ∅,
(vi) if �∈ 	2 and l¡2, then w�˙〈l〉 ⊆ {∈ !1¿2 : 
� ˙ 〈l〉E } and max{lg(): ∈15

w�˙〈l〉}¡lg(
�˙〈l〉),
(vii) for each � there is ∗= ∗

� such that17
(�) 
� C ∗ ∈ !12,
(	) |{�¡!1 : ∗(�)= 1}| ℵ1,19
(�) letting

p�( �x)
def= {’( �x; �a�) : � ∈w��� for some �6lg(�)};21

we have that all large enough 	∗, the set

p�( �x) ∪ {’( �x; �a∗�	) : 	 ¿ 	∗ ∧ ∗(	) = 1}23

is consistent,
(viii) �( �x)∪ {’( �x; �a): ∈w�˙〈0〉 ∪w�˙〈1〉} is inconsistent.25

Before proceeding, we make several remarks about this de�nition. Firstly, requirements
(vii) and (viii) taken together imply that for each �∈ !1¿2 we have that w�˙〈0〉 ∪w�˙〈1〉27
�= ∅. Secondly, the de�nition of w�˙〈l〉 for l∈ {0; 1} implies that∧

l=0;1

l ∈ w�˙〈l〉 ⇒ 0 ⊥ 1:
29

Thirdly, in (vii), any ∗ which satis�es that 
� / ∗ and |{� : ∗(�)= 1}|=ℵ1 can be
chosen as ∗

� , by indiscernibility.31
Now let us assume that a choice as above is possible, and we have made it. Hence

for each �∈ !1¿2 there is a �nite q� ⊆p� such that33

q�( �x) ∪ {’( �x; �a) :  ∈ w�˙〈0〉 ∪ w�˙〈1〉} (∗)
is inconsistent. Notice that there are q and �∗ ∈ !12 such that35

(∀�1)[�∗ E �1 ∈ !1¿2 ⇒ (∃�2 ∈ !1¿2)(�1 E �2 ∧ q�2 = q)]:
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Namely, otherwise, we would have the following: each p� is countable, hence for1
every � there is g(�) with � / g(�)∈ !1¿2 and

g(�) E �1 ⇒ q�1 * p�:3

Let �0
def= 〈 〉, and for n¡! let �n+1 = g(�n). Let �

def=
⋃

n¡! �n, hence p�=
⋃

n¡! p�n
(as w�= ∅), and so q� ⊆p�n for some n, a contradiction.5
Having found such q; �∗, by renaming and using Lemma 2.16, we can assume that

�∗ def= 〈 〉 and that for all �∈ !2 we have q�=p〈 〉= q (as �E 
⇒p� ⊆p
). For �∈ !¿27
let ��� list w�. Without loss of generality, by thinning and renaming, we have that for
all �1; �2,9

〈
�1〉 ˙ ���1˙〈0〉 ˙ ���1˙〈1〉 ≈1 〈
�2〉 ˙ ���2˙〈0〉 ˙ ���2˙〈1〉:

Similarly to the proof of Claim 2.7, we can de�ne a formula  ( �x; �y) and { �b�: �∈ !¿2}11
such that

 ( �x; �b�) ≡
∧

q ∧
∧

{’( �x; �a) :  ∈ w�}:13

We claim that  ( �x; �y) and 〈 �b�: �∈ !¿2〉 exemplify SOP2 of T , which is then a con-
tradiction (noting that  is a formula of the form ’n for some n, where ’n was de�ned15
in the statement of the claim). We check the two properties from De�nition 2.2(1).
To see (a), let �∈ !2 be given. We have that p� is consistent, and q⊆p�. For n¡!,17

we have

 ( �x; �b��n) ≡
∧

q ∧
∧

{’( �x; �a) :  ∈ w��n}:19

As this is a conjunction of a set of formulae each of which is from p�, we have that
{ ( �x; �b��n): n¡!} is consistent. To check (b), suppose �⊥ 
∈ !¿2. Let n be such that21
� � n= 
 � n but �(n) �= 
(n). Hence

 ( �x; �b�) ≡
∧

q ∧
∧

{’( �x; �a) :  ∈ w��n˙�(n)}23

and

 ( �x; �b
) ≡
∧

q ∧
∧

{’( �x; �a) :  ∈ w��n˙
(n)};25

so taken together, the two are contradictory by the choice of q.
We conclude that the choice of 
� and w� cannot be carried throughout �∈ !1¿2. So,27

there is �¡!1 and �∈ �2 such that 
�, w�˙〈l〉, 
�˙〈l〉 for l¡2 cannot be chosen, and
� is the �rst ordinal for which there is such �. Let 
0� ∈ !1¿2 .

⋃
	¡� 
��	 ˙ 〈�(�− 1)〉29

if the latter part is de�ned, otherwise let 
0� .
⋃

	¡� 
��	. This choice of 
�=  for any
D 
0� with ∈ !12 satis�es items (i)–(iii) above. We conclude that w�˙〈l〉 for l¡231
using any D 
0� with ∈ !1¿2 for 
� could not have been chosen, and examine why33
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this is so. Note that p� is already de�ned. Let1

� def=




(; �; w) : 
0� /  ∈ !12;

lg(
0�)6 � ¡ !1;

(∃ℵ1	 ¡ !1)((	) = 1);

w ⊆ {� ∈ !1¿2 :  � � / �} is �nite and
for some 	 ¡ !1 the set

p� ∪ {’( �x; �a�	) : (	) = 1& 	 ∈ [	; !1)}
∪{’( �x; �a�) : � ∈ w}
is consistent




We make several observations:3
(0) If (; �; w)∈� and w⊆w′ with w′ �nite and w′\w is contained in { � 	 : 	6	

∧ (	)= 1}, then (; �; w′)∈�.5
[This is obvious.]
(1) If (l; �; wl)∈� and for some �∈ !1¿2 with 
0� E � we have � ˙ 〈l〉 / l � � for7

l¡2, while 0 and 1 are eventually equal, then (l; lg(�); w0 ∪w1)∈�.
[Why? We have wl ⊆ {� ∈ !1¿2 : l � �E�} is �nite, so clearly w0 ∪w1 ⊆ {� ∈ !1¿9

2 : � E�} is �nite. By the assumption, we have that for some 	l¡!1 for l¡2

p� ∪ {’( �x; �al�	) : 	 ¿ 	l ∧ l(	) = 1} ∪ {’( �x; �a�) : � ∈ wl}11

is consistent. Suppose that (1) is not true with l=0 and let 	∗¿max{	0; 	1} be such
that 	∗¡!1 and for 	¿	∗ the equality 0(	)= 1(	) holds. Hence we have that13

p� ∪ {’( �x; �a0�	) : 	 ¿ 	∗ ∧ 0(	) = 1} ∪ {’( �x; �a�) : � ∈ w0 ∪ w1}
is inconsistent. By increasing w0 if necessary, (0) implies that15

� ∪ {’( �x; �a�) : � ∈ w0 ∪ w1}

is inconsistent. Let 
�
def= �, for l¡2 let w�˙〈l〉=wl, and let 
�˙〈l〉

def= l � 	∗
l for a17

large enough 	∗
l so that 	

∗¡	∗
l and max({lg(�): � ∈w�˙〈l〉})¡	∗

l .
This choice shows that we could have chosen 
�, w�˙〈l〉 as required, contradicting19

the choice of �.]
(2) If 
0� / ∈ !12 for some  such that there are ℵ1 many 	¡!1 with (	)= 1, and21

lg(
0�)6�¡!1, then (; �; ∅)∈�.
[Why? By the choice of p� and the remark about the freedom in the choice of ∗23

that we made earlier.]
Now we use the choice of � to de�ne witnesses to T being SOP1 which also satisfy25

the requirements of the claim. For �∈ !¿2, let �b�
def= �a
0�˙�. Let us check the required

properties. Properties (a), (b) and (d) follow from the choice of { �a�: �∈ !1¿2}. Let27
X ∗ ⊆ !¿2 be such that there are no �; 
∈X ∗ with � ˙ 〈0〉E 
, we need to show that
{’( �x; �b�): �∈X ∗} is consistent. It su�ces to show the same holds when X ∗ replaced29
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by an arbitrary �nite X ⊆X ∗. Fix such an X . Clearly, it su�ces to show that for some1
; �, letting w= {
0� ˙ �: �∈X }, we have (; �; w)∈�.
Let ∗ ∈ !12 be such that 
0� / ∗ and ∗(	)= 1 for ℵ1 many 	. By induction on3

n def= |X | we show:
there is ∈ !12 such that for some �¿max{lg(�): �∈w}, we have (; �; w)∈�5

and 	¿�⇒ (	)= ∗(	), while (�)= 1.
n=0. Follows by observation (2) above.7
n=1. Let X = {�} and �= lg(�) + lg(
0�). Let ∈ !12 be such that  � �= 
0� ˙ �,

(�)= 1 and 	¿�⇒ (	)= ∗(	). By observation (2) above, we have that (; �; ∅)∈9
�. Then, by observation (0), we have (; �; w)∈�.

n= k + 1¿2. Case 1. w is linearly ordered by /.11
Let �∈w be of maximal length, so clearly �∈w\{�} ⇒ � ˙ 〈1〉E �. Let ∈ !12 be

such that � ˙ 〈1〉 /  and 	¿lg(�), while (	)= ∗(	). Now continue as in the case13
n=1.
Case 2. Not Case 1.15
Let �∈ !1¿2 be /-maximal such that (∀�)(�∈w⇒ � E �). This is well de�ned, as

w �= ∅ is �nite. Let wl
def= {�∈w : � ˙ 〈l〉E �}, so w0 ∩w1 = ∅ but neither of w0; w1 is17

empty. Now we have that � =∈w, as otherwise we could choose �∈w0 such that � ˙
〈0〉E �, obtaining an easy contradiction with our assumptions on X . Hence w=w0 ∪w1.19
We can now use observation (1) and the inductive hypothesis.
To complete this discussion of the syntactic properties (N)SOP1, 2 we shall quote21

a result from [14] in which the understanding of SOP′
1 and the witnesses for SOP1

developed here was used to show that NSOP1 theories admit a rank function.23

De�nition 2.17. Given (partial) types p( �x); q( �y) and a formula ’( �x; �y). By induction
on n¡! we de�ne when25

rk1’( �x; �y)(p( �x); q( �y))¿ n:

n=0. This happens i� both p( �x) and q( �y) are consistent.27
n+ 1. The rank is ¿n+ 1 i� for some �c realising q( �y) both

rk1’( �x; �y)(p( �x) ∪ {’( �x; �c)}; q( �y))¿ n29

and

rk1’( �x; �y)(p( �x); q( �y) ∪ {¬(∃ �x)(’( �x; �y) ∧ ’( �x; �c))})¿ n:31

If the rank is ¿n for all n then we say it is in�nite, otherwise we say it is �nite.

Theorem 2.18 (Shelah–Usvyatsov [14]). A theory T is NSOP1 i�33

rk1’( �x; �y)( �x = �x; �y = �y)¡ ∞

for every formula ’(�; �y).35
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3. /∗ -maximality revisited1

In this section we come back to our main thesis, which is that properties SOP2 and
the maximality in the /∗-order are closely connected.3
Our main proof will use two auxiliary notions. The �rst is the order /∗∗

� , which is
a version of the /∗

� -order.5

De�nition 3.1. (1) For (complete �rst order theories) T1, T2 and a regular cardinal
�¿|T1|, |T2|, let T1 /∗∗

� T2 mean:7
There is a �-relevant (T1; T2)-superior (T ∗; �’; � ) (see De�nition 1.2) such that T ∗

has Skolem functions and if T ∗∗ ⊇T ∗ is complete with |T ∗∗|¡� then9
(⊕) there is a model M of T ∗∗ of size � and an M [ � ]-type p omitted by M such

that for every elementary extension N of M of size � which omits p and a type q (in11
one variable) over N [ �’], there is an elementary extension of N of size � which realises
q and omits p.13
(2) Let T1 /∗∗ T2 mean that T1 /∗∗

� T2 holds for all large enough regular �.
(3) T1 is said to be /∗∗

� -maximal i� there is no T2 such that T1 /∗∗
� T2. Similarly15

for /∗∗.

The connection between this notion and /∗ is given by the following claim:17

Claim 3.2. Suppose that T1, T2 are theories and �¿|T1|, |T2| satis�es 2�= �+. Then

T1 /∗
�+ T2 ⇒ ¬(T2 /∗∗

� T1):19

Proof. This statement is just a reformulation of the beginning of the proof of Theo-
rem 1.17. In other words, let (T; �’1; �’2) show that T1 /

∗
�+ T2. This means that |T |¡�+21

but since �¡�= � and �¿|T1|; |T2| we may assume that |T ∗|¡�. Namely since there
is a consistent theory T ⊇ �’1 ∪ �’2 in which �’l interprets Tl, and each Tl has size23
¡�, there is a consistent theory T ′ of size ¡� which does the same. Without loss of
generality T ′ ⊆T . In particular |�(T ′)|¡� so by extending T ′ to a complete subtheory25
of T and renaming we may assume T ′ is complete. Any model M of T has a reduct
N that is a model of T ′ and that satis�es M [ �’] =N [ �’] and similarly for � . Hence27
(T ′; �’; � ) is a �-relevant (T1; T2)-superior that exempli�es T1 /∗

�+ T2, so by renaming
we may assume |T |¡�.29
Suppose for contradiction that T2 /∗∗

� T1 and let (T ∗; �’; � ) exemplify this. Without
loss of generality, �’1 = � and �’1 = �’ and the common vocabulary of T and T ∗ is31
�( �’1)∪ �( �’2). Hence T ∗∗=T ∪T ∗ is consistent by Robinson Consistency Criterium.
Without loss of generality T ∗∗ is complete. Hence let M be a model of T ∗∗ of size33
� and p be a M [ � ] type omitted by M exemplifying the de�nition of /∗∗

� . Using the
assumption 2�= �+ we can build by induction an elementary extension N of M with35
|N |= �+, with N omitting p and being �’-saturated. This is a contradiction with the
choice of T .37

Corollary 3.3. Suppose that for all large enough regular � we have 2�= �+. Then
any /∗-maximal theory is also /∗∗-maximal.39
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Proof. Suppose otherwise and let T exemplify this. Hence for every � there is regular1
�¿� such that T is not /∗∗-maximal and 2�= �+. Hence T is not /∗

�+-maximal by
Claim 3.2, a contradiction.3

The next notion we need is a syntactic property.

De�nition 3.4. Let T be a theory.
5

(1) For a formula �(x; �y) we say that �(x; �y) has SOP′′
2 i� for some [by compactness

equivalently all] regular �¿|T | there is a sequence7

〈 �e �� : �� = 〈�0; : : : ; �n∗−1〉; �0 / · · · / �n∗−1 ∈�¿ � and lg(�i) a successor〉
such that

9
(�) for each �∈ ��, the set{

�(x; �e �� : �� = 〈� � (�0 + 1); � � (�1 + 1); : : : ; � � (�n∗−1 + 1)〉
and �0 ¡ �1 ¡ · · · �n∗−1 ¡ �

}
11

is consistent
(	) for every large enough m, if g : n

∗¿m → �¿� satis�es13

 / 
 ⇒ g() / g(
)

and15

 ∈ n¿m ⇒ lg(g()) is a successor;

while for l¡n∗ − 117

(g()) ˙ 〈l〉 E g( ˙ 〈l〉);
then19

{�(x; �e〈g(�1);g(�2);:::;g()〉) :  ∈ n∗
m}

is inconsistent. Here n∗= lg( �y) in �(x; �y).21
(2) T is said to have SOP′′

2 i� some �(x; �y) exempli�es it.
Our Theorem 3.6 is phrased in terms of SOP′′

2 . Answering a question from an earlier23
version of this paper Shelah and Usvyatsov proved in [14] the following Theorem 3.5,
which then can be used together with Theorem 3.6 to prove Corollary 3.9 which states25
that /∗-maximality implies SOP2.

Theorem 3.5 (Shelah–Usvyatsov [14]). For any theory T , T has SOP2 i� it has SOP′′
2 .27

Main Theorem 3.6. For any theory T and regular cardinal �¿|T |, if T is /∗∗
� -

maximal then T has SOP′′
2 .29
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Proof. Let T be a given theory and let �=cf (�)¿|T |. We shall assume that T is1
/∗∗
� -maximal and prove that T has SOP′′

2 . To make the reading of the proof easier we
shall break it into stages.3

Stage A. Let Tn
tree

def= Th(n¿2;¡tr) for n¡!, where ¡=¡tr stands for the relation

of “being an initial segment of”, and let Ttree
def= lim〈Tn

tree: n¡!〉, that is to say the5
set of all  which are in Tn

tree for all large enough n. In order to use our assumptions
at a later point, let us �x a theory T ∗ which is a �-relevant (Ttree; T )-superior with7
Skolem functions (such a T ∗ is easily seen to exist), and let �’; � be the interpretations
of Ttree and T in T ∗, respectively. We can without loss of generality, by renaming if9
necessary, assume that L(T ) ⊆ L(T ∗), so the interpretation � is trivial.
As |T |; |T ∗|¡�, we can �nd A ⊆ � which codes T and T ∗. Working in L[A], we11

shall de�ne a model M of T ∗ of size � as follows. Let

� def= T ∗ ∪ {’=(x�; x�): � ∈ �¿�}
∪{x� ¡’ x
: � / 
 ∈ �¿�}
{¬(x� ¡’ x
) :¬(� / 
) for �; 
 ∈ �¿�)}:

By a compactness argument and the fact that �’ interprets Ttree in T ∗, we see that � is13
consistent. Let M be a model of � of size �= �¡� (as we are in L[A]). For � ∈�¿ �
let a� be the realisation of x� in M . For � ∈�¿ �, let15

p�(x)
def={a��� ¡’ x : � ¡ �}:

By the choice of M and the compactness argument it follows that each p� is a (con-17
sistent) type. Note that for �0 �= �1 ∈ ��, types p�0 and p�1 are contradictory. Let

p′
�(x) = {a ¡’ x: for some � ¡ �; a ¡’ a���}:19

By the axioms of Ttree, we have that p� and p′
� are equivalent. Now we observe that

by the size of M there is �∗ ∈ �� such that the type p′
�∗ is omitted in M , and p′

�∗ is21
not de�nable in M , i.e. for no formula #(y; �z) and �c ⊆ M do we have: for a∈M , the

following are equivalent: [a¡’x] ∈ p′
�∗ and M |=#[a; �c]. Let p def= p′

�∗ for such a �xed23

�∗. For �¡�, let a�
def= a�∗��. We now go back to V and make an observation about

M .25

Subclaim 3.7. Ttree satis�es the following property:
for any formula #(x; �y) we have that Ttree � �= �(#), where27

� ≡ (∀ �y)[[(∀x1; x2))#(x1; �y) ∧ #(x2; �y) ⇒ x1 6tr x2 ∨ x2 6tr x1)]

⇒ (∃z)(∀x)(#(x; �y) ⇒ x 6tr z)]:

Proof. Let #(x; �y) be given. By the de�nition of Ttree we only need to show that
Tn
tree � � for all large enough n, which is obvious as for every n the tree n¿2 has the29
top level.
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Hence the interpretation �’ of Ttree in T ∗ satis�es the same statement claimed about1
Ttree. We conclude:

⊗ if M ≺N and p is not realised in N , then there is no #(x; �c) with �c ⊆ N such3
that #(a�∗��; �c) for all �¡� holds and every two elements of N satisfying #(x; �c) are
¡’-comparable.5
Stage B. We shall choose a �ltration �M = 〈Mi: i¡�〉 of M , and an increasing

sequence 〈�i: i¡�〉, requiring:
7

(a) Mi ≺M and Mi are ≺-increasing continuous of size¡�, with M being the
⋃

i¡� Mi,
(b) a�i ∈Mi+1\Mi.9

We may note that the branch induced by {a�i : i¡�} is the same as the one induced
by {a�: �¡�}. Hence p is realised in any model in which p′(x) def={a�i¡’x: i¡�} is11
realised (or even the similarly de�ned type using any unbounded subset of {�i: i¡�}).
Hence, by renaming, without loss of generality we have �i= i for all i¡�.13
Stage C. At this point we shall use the /∗∗

� -maximality of T , which implies that it
is not true that T/∗∗

� Ttree. In particular, our T ∗, M and p do not exemplify this, hence15
there is N with M ≺N and ‖N‖= �, such that N omits p, but for some N [ � ]-type q
over N , whenever N ≺N+ and N+ realises q, also N+ realises p. By ⊗, the branch17
induced by {a�∗ � �: �¡�} is not de�nable in N , so without loss of generality N =M .
We can also assume that q is a complete type over M [ � ]. Let us now use the choice19
of q to de�ne for each club E of � a family of formulae associated with it, and to
show that each of these families is inconsistent. We use the abbreviation c.d. for “the21
complete diagram of”.
For any club E of � we de�ne23

�E
def= c: d: (M) ∪ q(x) ∪ {¬(ai ¡’ �(x; �b)): i ∈ E; � a term of T ∗; �b ⊆ Mi}:

Clearly, for any club E, if �E is consistent then there is a model N in which �E25
is realised. Identifying any b∈M with its interpretation in N and letting a∗ be the
interpretation of x from �E , we can assume that N is an elementary extension of M27
in which q is realised by a∗. As T ∗ has Skolem functions, we have M ≺N . Let N1
be the submodel of N with universe29

A∗ def= M ∪
⋃
i∈E

{�(a∗; �b) : �b ⊆ Mi and � a term of T ∗}:

Note that the size of N1 is �. Clearly, N1 is closed under the functions of T ∗, so31
M ⊆ N1 ⊆ N . As T ∗ has Skolem functions, we get that M ≺N1 ≺N . By the third
part of the de�nition of �E; p is omitted in N1. This is in contradiction with our33
assumptions, as a∗ ∈N1 realises q(x).
Hence we can conclude35

for every club E of �; the set �E is inconsistent:

Stage D. Now we start our search for a formula that exempli�es that T has SOP′′
2 .37

In the following de�nitions, we shall use the expression “an almost branch” or the
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abbreviation a.b. to stand for a set linearly ordered by ¡’ (but not necessarily closed1
under ¡’-initial segments and not necessarily unbounded). Let

�0
T∗

def=




#(x; y; �z): there is l = l# ¡ ! such that

for every M∗ |= T ∗; a ∈ M∗; �c ⊆ M∗; the set

#(a; y; �c)M
∗
is the union of 6 l a:b: in M∗[ �’]


 ;

3

and let �T∗ be the set of all #(x; �y; �z) of the form
∨

j¡n #j(x; yj; �zj) for some #0;
: : : ; #n−1 ∈�0

T∗ (where �y= 〈yj: j¡n〉 and �z= ˙
j¡n

�zj). The formulae in �T∗ will be5
called candidates. For every candidate

#(x; �y; �z) ≡
∨
j¡n

#j(x; yj; �zj)
7

and a � -formula �(x; �t), we consider the following game n; �; # (whose de�nition also
depends on our �xed p; q and �M), played by two players ∃ and ∀. The game starts by9
∃ playing �b0 from lg(�z0)M , then ∀ playing �0¡�. After that ∃ chooses 	0 ∈ (�0; �) and
�b1 ∈ lg(�z1)M such that �b0 ∈ lg(�z0)M	0 , after which ∀ chooses �1¡�, etc., �nishing by ∃11
choosing �bn−1 ∈ lg(�zn−1)M and ∀ choosing �n−1, while ∃ chooses 	n−1 ∈ (�n−1; �) such
that �bn−1 ∈ lg(�zn−1)M	n−1 . Player ∃ wins this game i� for some �e∈ lg(�t)M we have13

�(x; �e) ∈ q and M |= (∀x)[�(x; �e) ⇒ #(x; 〈a	0 ; : : : ; a	n−1〉; ˙k¡n
�b
k
)]: (⊗1)

(Note: the constants a	k are from the set {ai: i¡�} we chose above.) Observe that15
every sequence 〈�0; : : : ; �n−1〉 ∈ n� is an admissible sequence of moves for ∀.
We shall show that for some n¿ 1 and �; #, player ∃ has a winning strategy in the17

game n; �; #, where #=
∨

j¡n #j as above. As these are determined games, it su�ces
to show that for some n¿ 1 and �; #, player ∀ does not have a winning strategy.19
Suppose that this is not the case, arguing in (H(�); ∈ ¡∗

� ; �M;p; q), where � is large
enough and ¡∗

� is a �xed well ordering of H(�). Fix for a moment (n; �; #). Player ∀21
has a winning strategy in n; �; #, which, replacing the ordinals �l by constants a�l , can
be represented by a sequence of functions Gl

n;�; # for l¡n (in (H(�); ∈ ;¡∗
� ; �M;p; q)),23

where for l¡n, if the play up to time l has been �b0; �0; 	0; : : : ; �l−1; 	l−1; �bl, then
Gl

n;�; # applied to this play is a�l for the �l in the choice of player ∀. We shall assume25
that these functions are the ¡∗-�rst which can act in this manner. Using this and
elementarity, we notice that for every n; �; # the values of Gl

n;�; # take place in M , and27
that

E0
def= {� ¡ � : (∀�; #)(∀n)(∀l ¡ n)[M ∩ Skolem(H(�);∈; �M;Gl

n;�;#)
(M�) = M�]}29

is a club of � (as |T ∗|, ‖Mi‖¡� for all i and �M is increasing continuous). Let

E def= acc(E0). Consider now the set �E . It is contradictory, so there is a �nite subset31
of it which is contradictory. Hence for some n0; n1; n2¡! and formulae %l( �zl)(l¡n0)
from the c.d.(M), formulae �k(x; �ek)(k¡n1)∈ q(x), ordinals �0¡ · · ·¡�n2−1 ∈E, a33
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sequence 〈 �bj; l: j¡n2; l¡lj〉 with �bj; l ⊆ M�j and terms 〈�j; l: j¡n2; l¡lj〉 of T ∗, the1
following is inconsistent:∧

l¡n0

%l( �zl) ∧
∧
k¡n1

�k(x; �ek) ∧
∧

j¡n2 ;l¡lj

¬(a�j ¡’ �j;l(x; �bj;l)):
3

As %l come from the c.d.(M) and q(x) is a complete type over M [ � ], we may assume
that n0 = 1 and n1 = 1. Note that we must have n2¿ 1 and that there is no loss of5
generality in assuming that �bj; l= �bj for all l¡lj for j¡n. We shall omit the subscript
0 from %; �; �e. Let n= n2 and let us de�ne #j(x; yj; �zj) for j¡n by7

#j(x; yj; �zj) ≡
∨
l¡lj

yj ¡’ �j;l(x; �zj);

and let #=
∨

j¡n #j. Note that for each j we have that #j ∈�0
T∗ , as ¡’ is a tree9

order. Hence # is a candidate, �(x; �e)∈ q(x), and since M |= %[ �d] for some �d we have

M |= (∀x)
[
�(x; �e) ⇒

∨
j¡n

#j(x; a�j ; �bj)

]
: (∗)

11

Now we consider the following play of n; �; #. Let ∃ choose �b0. Recall that �b0 ⊆ M�0 .
The strategy G0n; �; # of ∀ yields an ordinal �0. By the choice of E0 we have �0¡�013
and �b0 ∈M�0 , so we can let ∃ choose 	0 = �0. Let ∃ choose �b1 and then let ∀ choose
�1 according to the strategy, etc. At the end of the play, player ∀ should have won15
(as he/she used the supposed winning strategy), but clearly (∗) implies that ∃ won, a
contradiction.17
Stage E. We conclude that (for our �; �M;p; q), for some �; # and n¿ 1 the player

∃ has a winning strategy in the game n; �; #, call it St. Let us �x n= n∗; �; #, and St19
and use them to get SOP′′

2 .
For any ��= 〈�0; : : : ; �n−1〉 ∈ n�, we can let 〈 �b ���k ; 	 ���(k+1) : k¡n〉 be the sequence21

of moves that ∃ plays by following the winning strategy St in a play in which
∀ plays ��, as the dependence is as marked. Let E be a club of � such that if k6n23
and �0¡ · · ·¡�k−1¡�∈E, then �b〈�0 ; :::; �k−1〉 ∈ lg(�zj)M�. (Such a club can be found by a
method similar to the one used in Stage D). Renaming the Mi and ai’s, we can without25
loss of generality assume that E= �. For ��∈ n� let �e �� be such that:

M |= ∀x
[
�(x; �e ��) ⇒

∨
j¡n

#j(x; a	 ���(j+1) ; �b
���(j+1)
j )

]
:

27

Notice that � is a formula in the language of T . We shall show that �, together with
a conveniently chosen sequence of �e ��’s, exempli�es SOP

′′
2 . The proof now proceeds29

similarly to the proof of Main Claim 1.13. Namely

Lemma 3.8. There are sequences31

〈N�: � ∈ �¿�〉; 〈h�: � ∈ �¿�〉
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such that
1

(i) h� is an elementary embedding of Mlg(�) into CT∗ with range N�,
(ii) 
E �⇒ h
 ⊆ h�,3
(iii) for � �= 	¡� and �∈ �¿� we have

h�˙〈�〉(alg(�))⊥’h�˙〈	〉(alg(�));5

(iv) N�0 ∩N�1 =N�0∩�1 for all �0; �1.

Proof. This Lemma has the same proof as that of Main Claim 1.13 Stage B. In the7
notation of that proof, ignore b�i . When de�ning � use

� =
⋃
�¡�

��
0 ∪

⋃
�¡�

��
3 ∪ �4 ∪ �+2 ;

9

where �+2 = {x�0 ⊥’ x	0 : � �= 	¡�} and ��
0 ; �

�
3 and �4 are de�ned as in the proof of

Main Claim 1.13, allowing for the replacement of �¿2 by �¿� by using { �x�: �¡�} in11
place of { �x0; �x1}. Assumptions on ��

0 ; �
+
2 and ��

3 are analogous to the ones we made in
that proof. Fact 1.16 still holds, except that we drop the last set from the de�nition of13
r( �x). The rest of the proof is the same, recalling that the branch induced by {ai: i¡�}
is unde�nable in M .15
Stage F. For �∈ ��, let h�

def=
⋃

�¡� h���. Let q�
def= h�(q), hence each q� is a consis-

tent type. For ��= 〈�0; : : : ; �n−1〉 and �0 / · · · / �n−1 with lg(�i)= �i + 1, let �e ��
def= h�n−117

( �e〈�0 ;:::; �n−1〉).
Suppose now that �∈ �� is given, and consider the set19

{�(x; �e ��) : �� = 〈� � (�0 + 1); : : : ; � � (�n−1 + 1)〉 for some �0 ¡ : : : �n−1 ¡ �}:

This set is a subset of q�, and is hence consistent. This proves property (�) from the21
de�nition of SOP′′

2 . For (	), let m be large enough and g : n¿m→ �¿� be as in the

statement of (	). For ∈ nm let �eg
def= �e〈g(�1);:::; g()〉 (note that this is always de�ned).23

We shall now show that the set

{�(x; �eg):  ∈ nm}25

is inconsistent. Suppose otherwise, so let d∈CT∗ realise it. For each p∈ nm, let

� ∈ �� ⊇ g() and let �� def= 〈�
0 ; : : : ; �


n−1〉 satisfy lg(g( � k))= �

k + 1 for k6n,27
so for each k¡n we have g( � (k + 1))= � � (�


k + 1). Now we have that for each

∈ nm
29

(i) �(x; �eg) ≡ �(x; h��(�

n−1+1)

( �e ��

))∈ q����(x)

(ii) N� |=(∀x)[�(x; �eg)⇒#(x; 〈h�(a	 ���1 ); : : : ; h�(a	 ��)〉; ˙
j¡n

h�( �b
��
j ))] (hence the31

same holds in CT∗),



UNCORRECTED P
ROOF

38 M. D�zamonja, S. Shelah / Annals of Pure and Applied Logic ( ) –

APAL1475

ARTICLE IN PRESS

(iii)

#(x; 〈h�(a	 ���1 ); : : : ; h�(a	 �� )〉; ˙j¡n
h�( �b

��
j ))

⇒
∨
j¡n

#j(x; h�(a	 ���(j+1) ); h�( �b
���(j+1)

j ))

for our #0; : : : ; #n−1.1

For each ∈ nm let j()¡n be the �rst such that

#j(d; h�(a	 ���(j+1) ); h�( �b
���(j+1)

j ))3

holds. Let l∗= max{l#0 ; : : : ; l#n−1}.
As m is large enough, there are 0; : : : ; l∗ ∈ nm such that j(s)= j∗ for all s∈ {0;5

: : : ; l∗}, while s � j∗ is �xed and s(j∗) �= t(j∗) for s �= t6l∗. (We use that there is
a full l∗+1¿n subtree t∗ of n¿m such that for all ∈ t∗ ∩ nm we have j()= j∗. Choose7
s belonging to t∗ and splitting at the level j∗). In particular, �s

0 = �0; : : : ; �
s
j∗−1 = �j∗−1

is �xed, and so is h�s � M�∗
j−1+1, but9

g(s) � (�j∗−1 + 2) for s6 l∗ are incomparable in ��: (∗∗)

Let �� def= ��0 .11
For each ∈ nm and k¡n we have that �b ��

�(k+1) ∈M�
k+1
(by the choice of E), so in

particular �b ��
�j∗ ∈M�

j∗−1+1
, and hence h�s (

�b ��
�j∗
) is a �xed �b∗. By the choice of d and13

de�nitions of j∗; l∗ and �T∗ , there are s �= t¡l#j∗6l∗ such that h�s (a	 ��s�( j
∗+1) ) and

h�t (a	 ��t�( j
∗+1) ) are on the same almost branch. Now note that for all  we have15

a	 ���(j
∗+1) ∈ M	 ���(j

∗+1)+1\M	 ���(j
∗+1)

and 	 ��
�( j∗+1)

¿�
j∗ . Hence h�s (a	 ��s�( j

∗+1) ) and h�t (a	 ��t�( j
∗+1) ) are incomparable, by17

property (iii) in Lemma 3.8, a contradiction. This shows (	) from the de�nition of
SOP′′

2 , so �nishing the proof.19

Putting this together with Corollary 3.3 and Shelah–Usvyatsov theorem 3.5 above
we get the following Corollary 3.9.21

Corollary 3.9. (1) Suppose that T is a theory that is /∗-maximal in some universe of
set theory in which 2�= �+ holds for all large enough regular �. Then T has SOP2.23
(2) Suppose that T is a theory that is /∗

�+-maximal in some universe of set theory
in which � is regular and 2�= �+. Then T has SOP2.25

Proof. (1) Let W be a universe of set theory in which 2�= �+ holds for all large
enough regular � and in which T is /∗-maximal. Hence by Corollary 3.3 T is /∗∗-27
maximal in W and hence by Main Theorem 3.6 in W it satis�es SOP′′

2 . By Shelah–
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Usvyatsov Theorem 3.5 above T satis�es SOP2 in W . An application of the Compact-1
ness Theorem shows that satisfying SOP2 is absolute, hence T satis�es SOP2 in V .
(2) This follows similarly, but more directly, from Main Theorem 3.6 and the3

Shelah–Usvyatsov Theorem 3.5.

This section hence provides us with the proof of one side of our thesis that SOP25
and /∗-maximality are closely connected. Recall that Shelah proved in [13] that SOP3
implies /∗-maximality. So an important open question (provided that SOP3 are not7
actually equivalent, which we still do not know) is

Question 3.10. Does SOP2 imply /∗-maximality?9

In a partial answer to this question posed in an earlier version of the paper Shelan and
Usvyatsov in Theorem 3.12 of [14] provided a local positive answer to this question,11
where by “local” we mean that they proved that any theory with SOP2 is /∗ above Ttree
when only types localised by a certain formula are considered (see De�nition 1.3).13
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