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ABSTRACT. Arithmetic properties of integer sequences counting
periodic points are studied, and applied to the case of linear re-
currence sequences, Bernoulli numerators, and Bernoulli denomi-
nators.

1. INTRODUCTION

An existing dialogue between number theory and dynamical systems
is advanced. A combinatorial device gives necessary and sufficient con-
ditions for a sequence of non-negative integers to count the periodic
points in a dynamical system. This is applied to study linear recurrence
sequences which count periodic points. Instances where the p-parts of
an integer sequence themselves count periodic points are studied. The
Mersenne sequence provides one example, and the denominators of the
Bernoulli numbers provide another. The methods give a dynamical
interpretation of many classical congruences such as Euler-Fermat for
matrices, and suggest the same for the classical Kummer congruences
satisfied by the Bernoulli numbers.

Let X denote a set, and T': X — X a map. An element z € X is a
periodic point of period n € N if it is fixed under 7", that is T"(z) = z.
Let Per,(T') denote the set of points of period n under T. Following
[13], call a sequence u = (u,),>1 of non-negative integers realizable if
there is a set X and a map T': X — X such that u, = | Per,(T)|.

This subject is example-driven so we begin our account with several
of these. Throughout, examples will be referenced as they appear in
the Encyclopedia of Integer Sequences.

Example 1.1. (1) Let M,, = 2" — 1,n > 1 denote the n-th term
of the Mersenne sequence A000225. This sequence is of in-
terest in number theory because it is conjectured to contain
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infinitely many prime terms, and in dynamics because it counts
the periodic points in the simplest expanding dynamical sys-
tem: If T : S' — S' is the squaring map T'(z) = 2%, then
| Per,,(T)| = M,,.

Let L, denote the n-th term of the Lucas sequence A000204.
Let X denote the set of all doubly-infinite strings of 0’s and 1’s
in which every 0 is followed by a 1, and let 7" : X — X be the
left shift defined by (T'x),, = 1. Then |Per,(T)| = L,.

The Lehmer-Pierce sequences (generalizing the Mersenne se-
quence; see [4]) also arise in counting periodic points. Let f(z)
denote a monic, integral polynomial with degree d > 1 and
roots aq, ..., aq. Define

which is non-zero for n > 1 under the assumption that no «; is
a root of unity. When f(z) = x—2, we obtain A, (f) = M,,. Se-
quences of the form (A, (f)) were studied by Pierce and Lehmer
with a view to understanding the special form of their factors,
in the hope of using them to produce large primes. One such,
is sequence A001945 corresponding to f(z) = 2* —x — 1. In
dynamics they arise as sequences of periodic points for toral en-
domorphisms: Let X = T? denote the d-dimensional additive
torus. The companion matrix Ay of f acts on X by multipli-
cation mod 1, T'(x) = Ayx mod 1. It requires a little thought
to check that |Per,(T)| = A,(f) under the same ergodicity
condition that no «; is a root of unity (see [4]). Notice that
the Lehmer-Pierce sequences are the absolute values of integer
sequences which could have mixed signs.

The next two examples illuminate the same issue of signed
sequences whose absolute value counts periodic points.
The Jacobsthal-Lucas sequence A014551 R,, = |(—2)"—1| counts
points of period n for the map z +— 272 on S!.
The sequence S,, = |2" + (—3)"| counts periodic points in a
certain continuous automorphism of a 1-dimensional solenoid,
see [3] or [10].
For a > 1, the shift map T"on {0,1,...,a—1}% has | Per,(T)| =
a’.
If B denotes a square matrix with non-negative integral entries
then (trace(B™)) is a realizable sequence. To see this, let Gp be
the labelled graph with adjacency matrix B and T the edge-
shift on the set of labels of infinite paths on Gg. Then the
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number of points of period n for this system is trace(B™) (see
[11] for the details).

The sequences above are realizable by continuous maps of compact
spaces; it turns out that any realizable sequence is in fact realizable by
such a map.

It is natural to ask what is required of a sequence in order that it
be realizable. For example, could the Fibonacci sequence A000045, the
more illustrious cousin of the Lucas sequence, be realized in this way?
The answer is no, and a simple proof will follow in Section 3. In fact a
sequence of non-negative integers satisfying the Fibonacci recurrence is
realizable if and only if it is a non-negative integer multiple of the Lucas
sequence (see [13], [14], [15] and Theorem 2.1 below). However, we will
see in Theorem 2.6 that in a precise sense, the Fibonacci sequence is
semi-realizable.

2. STATEMENTS OF RESULTS

If u = (u,) is any sequence of integers, then it is reasonable to ask if
the sequence |u| = (|u,|) of absolute values is realizable. For example,
the sequence (1,—3,4,—7,...) is a signed linear recurrence sequence
whose absolute values are realizable. A signed sequence u will also be
called realizable if |u] is realizable.

Theorem 2.1 recasts [14, Theorem 2.5, concerning realizable binary
linear recurrence sequences, in a form that generalizes. The definitions
are standard but they will be recalled later. Recall that the C-space
of all solutions of a binary recurrence relation has dimension 2. The
realizable subspace is the subspace spanned by the realizable solutions.
Thus, for the Fibonacci recurrence, the realizable subspace has dimen-
sion 1 and is spanned by the Lucas sequence.

Theorem 2.1. Let A denote the discriminant of the characteristic
polynomial associated to a non-degenerate binary recurrence relation.
Then the realizable subspace has

(1) dimension 0 if A <0,

(2) dimension 1 if A =0 or A > 0 and non-square,

(3) dimension 2 if A > 0 is a square.

Example 2.2. (cf. [14, Example 2.6(2)]) As an example of the third
condition, consider the recurrence relation

Upio = SUpp1 — 2Up, (1)

which is satisfied by the Mersenne sequence. The recurrence sequences
a2" + b with a,b € N all satisfy (1) and are realizable — see Corollary
3.2.
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Theorem 2.1 is proved in [14] using essentially quadratic methods —
but it surely has a generalization to higher degree, characterizing the
realizable subspace in terms of the factorization of the characteristic
polynomial of the recurrence. The second theorem is a partial result in
that direction, giving a restriction on the dimension of the realizable
subspace under the assumption that the characteristic polynomial has
a dominant root.

Theorem 2.3. Let f denote the characteristic polynomial of a non-
degenerate linear recurrence sequence with integer coefficients. If f
15 separable, with € irreducible factors and a dominant root then the
dimension of the realizable subspace cannot exceed (. If f(0) # 0 then
equality holds if either the dominant root is not less than the sum of
the absolute values of the other roots or the dominant root is strictly
greater than the sum of the absolute values of its conjugates.

It is not clear if there is an exact result but the deep result of Kim,
Ormes and Roush [8] on the Spectral Conjecture of Boyle and Handel-
man [1] gives a checkable criterion for a given linear recurrence sequence
to be realized by an irreducible subshift of finite type.

Example 2.4. Consider the sequences which satisfy the Tribonacci
relation

Up+3 = Up42 + Upt1 + Up. (2)
The sequence A001644 satisfies (2) and is realizable, since it is the
sequence (trace(A?)), where Ay is the companion matrix to f(x) =
x2® — 22 — x — 1. Theorem 2.3 says that any realizable sequence which
satisfies (2) is a multiple of this one.

Example 2.5. Suppose g denotes a polynomial with ¢ — 1 distinct
irreducible factors (possibly repeated). For an integer K, consider the
linear recurrence relation with characteristic polynomial

f(z) = (z = K)g(z).
For all sufficiently large K, f has ¢ distinct irreducible factors and the
realizable subspace has dimension £.

The third theorem consists of a triple of examples. Given a sequence
uw and a prime p, write [u,], for the p-part of w,. Notice that [u],
is always non-negative. A sequence u is locally realizable at p if [u],
is itself realizable, and is everywhere locally realizable if it is locally
realizable at p for all primes p. If a sequence is everywhere locally
realizable and non-negative then it is realizable by Corollary 3.2 below.
Moss has shown [12] that the converse is true for any endomorphism
of a locally nilpotent group.
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Consider the Bernoulli numbers B, defined by the relation

t A
et —1 nzg n!

B, € Q for all n, and B,, = 0 for all odd n > 1.

Theorem 2.6. Any Lehmer—Pierce sequence is everywhere locally real-
1zable, and hence realizable. The Fibonacci sequence is locally realizable
at primes = +1 modulo 5. Let b, denote the denominator of Bs, for

n > 1. Then b= (b,) is everywhere locally realizable, and hence realiz-
able.

The sequence b is A002445, a much-studied sequence. The maps in
Theorem 2.6 are endomorphisms of groups. Theorem 2.6 and Lemma 3.1
suggest a dynamical interpretation of composite versions of the classical
Kummer congruences; see Section 4 below.

3. COMBINATORICS OF PERIODIC POINTS

As pointed out in [14, Example 2.2(1)], the Fibonacci sequence is not
realizable. No map can have 1 fixed point and 2 points of period 3 —
the image under the map of the non-fixed point of period 3 would have
to be a distinct non-fixed point of period 3, and there are no others.
More generally, for any prime p, the number of non-fixed points of
period p must be divisible by p because their orbits occur in cycles of
length p. From this kind of reasoning, the following characterization
emerges (see [14, Lemma 2.1]).

Lemma 3.1. Let u be a sequence of non-negative integers, and let ux p
denote the Dirichlet convolution of uw with the Mobius function p. Then
u 18 realizable if and only if (u* p), =0 mod n and (u* ), > 0 for
alln > 1.

Corollary 3.2. The sum and product of two realizable sequences are
both realizable.

Proof. This may be seen either using elementary properties of the
Dirichlet convolution or using the realizing maps: if v and v are realiz-
able, then the Cartesian product of the realizing maps realizes (u,v,),
while the disjoint union realizes (u, + v,). O

Notice that if n = p", for a prime p and r > 0 an integer, Lemma 3.1
requires that
Upr = Upr—1 mod p” (3)

for any realizable sequence u.
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Corollary 3.3. Let a denote a positive integer and let p and r be as
above. Then

" =a” mod p".
Proof. This is the statement of the Euler-Fermat Theorem; a dynamical
proof applies (3) to Example 1.1(6). O

This kind of observation — that periodic points in full shifts give
simple proofs of many elementary congruences — is folklore; indeed
the paper [2] gives a rather complicated proof of Euler—Fermat using a
dynamical system.

Lemma 3.1 does more with no additional effort. The following is a
generalization of the Euler-Fermat Theorem for integral matrices which
will be used in the proof of Theorem 2.1.

Corollary 3.4. Let A denote a square matrixz with integer entries and
let p and r be as above. Then

trace(A”") = trace(4” ) mod p’.

Proof. Tt is sufficient to assume A has non-negative entries, since any
matrix has such a representative mod p”". The result follows at once
from Example 1.1(7). O

We now state the consequences of Lemma 3.1 in their most general
form for matrix traces.

Corollary 3.5. Let A denote a square matriz with integer entries and
let A,, denote the sequence trace(A™). Then for alln > 1

ZAdu(n/d) =0 mod n.

d|n

4. PROOFS

Before the proof of Theorem 2.1, we begin with some notation (for a
lively account of the general properties of linear recurrence sequences,
see [16]). Let u be a binary recurrence sequence. This means that u,
and us are given as initial values, with all subsequent terms defined by
a recurrence relation

Upio = By — Cuy,. (4)

The polynomial f(z) = 2* — Bx + C' is the characteristic polynomial
of the recurrence relation. Write

0 1
)
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for the companion matrix of f. The zeros a; and «as of f, are the
characteristic roots of the recurrence relation. The sequence is non-
degenerate if aj/as is not a root of unity. The discriminant of the
recurrence relation is A = B? — 4C. The general solution of the recur-
rence relation is u, = (71 + yen)a} if A =0, and u,, = Y07 + yah if

A £0.

PROOF OF THEOREM 2.1. Assume first that A = 0, and let p denote
any prime which does not divide a; or 7,. Then the congruence (3) is
violated at n = p unless 72 = 0. In that case, |y;af| is realizable and
the space this generates is 1-dimensional.

If A > 0 is a square, then the roots are rationals and, plainly, must
be integers. We claim that for any integers 7; and s, the sequence
|y1a + a0l is realizable. In fact (up to multiplying and adding full
shifts) this sequence counts the periodic points for an automorphism
on a one-dimensional solenoid, see [4] or [10].

The two cases where A # 0 is not a square are similar. Write o = s+
tv/A, with s,t € Q, for one of the roots of f and let K = Q(c) denote
the quadratic number field generated by a. Write Tgg : K — Q for
the usual field trace. The general integral solution to the recurrence
is u, = Txig((a + bv/A)a™), where a and b are both integers or both
half-odd integers. Write v, = Tgg(aa™) and w, = Tgjo(bvAa™).
Now v, = atrace(A}), where Ay denotes the companion matrix of f.
Hence it satisfies v, = v; mod p for all primes p by Corollary 3.4.

Let p denote any inert prime for K. The residue field is isomorphic
to the field F,2. Moreover, the non-trivial field isomorphism restricts
to the Frobenius at the finite field level. Reducing mod p gives the
congruence

VAR? — VAa = VAx—VAa? mod p.

Thus w, = —w; mod p for all inert primes p. On the other hand,
v, = v; mod p for all inert primes p.

If |u,| is realizable then |u,| = |u;| mod p by (3). If u, = —u; mod
p for infinitely many primes p then v, +w, = v; —w; = —v; —w; mod

p. We deduce that p|v; for infinitely primes and hence v; = 2as = 0.
We cannot have s = 0 by the non-degeneracy, so a = 0. If u, =
mod p then, by a similar argument, we deduce that bt = 0. We cannot
have t = 0 again, by the non-degeneracy so b = 0. This proves that
when A # 0 is not a square, the realizable subspace must have rank
less than 2.

Suppose firstly that A > 0. We will prove that the rank is precisely
1. In this case, there is a dominant root. If this root is positive then
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all the terms of w, are positive. If the dominant term is negative
then the sequence of absolute values agrees with the sequence obtained
by replacing @ by —a and the dominant root is now positive. In the
recurrence relation (4) C' = Nk g(a), the field norm, and B = Tgg(a).
We are assuming B > 0. If C' < 0 then the sequence u, = trace(A%})
is realizable using Example 1.1(7), because the matrix A; has non-
negative entries. If C' > 0 the matrix Ay may be conjugated to a
matrix with non-negative entries (this leaves the sequence of traces
invariant). To see this, let £ denote the matrix

(1Y)

1 o k 1
b AfE_(Bk—k2—C B—k)

If B is even, take k = B/2. Then the lower entries in E~'A;F are
(B>—4C)/4=A/4 > 0and B/2 > 0. If B is odd, take k = (B+1)/2.
Then the lower entries are (B? —1 —4C)/4 = (A —1)/4 > 0 and
(B—1)/2> 0. In both cases we have conjugated A; to a matrix with
non-negative entries.

Finally, we must show that when A < 0, both sequences v, and
wy, are not realizable in absolute value. Assume a # 0, and then
note that v; = 2as # 0 by the non-degeneracy assumption. For all
primes p we have v, = v; by the remark above. Since the roots ay
and as are complex conjugates, || = |as|. Let 3 = 5= arg(on/as);
[ is irrational by the non-degeneracy assumption. The sequence of
fractional parts of p, with p running through the primes, is dense
in (0,1) (this was proved by Vinogradov [19]; see [18] for a modern
treatment). It follows that there are infinitely many primes p for which
v,v1 < 0. Therefore, if |v,| is realizable then it satisfies v, = v; mod
p and —v, = v; mod p for infinitely many primes. We deduce that
vy = 0 which is a contradiction. With w, we may argue in a similar
way to obtain a contradiction to w; # 0. If |w,| is realizable then
Lemma 3.1 says |wy2| = |w,| = |wy| for all primes p. Arguing as before,
w2 = wy for both split and inert primes. However, the sequence {p*3},
p running over the primes, is dense in (0,1). (Again, this is due to
Vinogradov in [19] or see [5] for a modern treatment. The general case
of {F(p)}, where F' is a polynomial can be found in [7].) We deduce
that wyew; < 0 for infinitely many primes. This means w2 = w; mod
p and wy,: = —w; mod p infinitely often. This forces w; = 0 — a
contradiction.

Then
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PROOF OF THEOREM 2.3. Let d denote the degree of f. In the first
place we assume ¢ = 1, thus f is irreducible. The irreducibility of f
implies that the rational solutions of the recurrence are given by u, =
Trio(ya™), where K = Q(«), and v € K. We write v;, o, = 1,....,d
for the algebraic conjugates of v and . The dominant root hypothesis
says, after re-labelling, |ay| > |ay| for i = 2,...,d. We will show that
if u is realizable then v € Q.

Let p denote any inert prime. If p is sufficiently large, the dominant
root hypothesis guarantees that u,, ..., u, will all have the same sign.
Using Lemma 3.1 several times, we deduce that

Up = Up2 = -+ = Upa = Fuy  mod p.

Therefore u, + - - - 4+ u,e = £du; mod p, the sign depending upon the
sign of u;. However,

Up + -+ + upas = Trio(y) Trio(e) mod p.
We deduce a fundamental congruence

TK|@(7) TK|Q(a) =+d TK|Q(70z) mod p.

Since this holds for infinitely many primes p, the congruence is actually
an equality,

Trio(7) Tkjole) = £d Tkg(va). (5)

The next step comes with the observation that if w,, is realizable then
U, is realizable for every r > 1. Thus equation (5) now reads

Trio(y) Tke(a") = £d Tgp(ya”). (6)

Dividing equation (6) by o} and letting  — oo we obtain the equation

Tkio(y) = £dn.

This means that one conjugate of ~ is rational and hence ~ is rational.

The end of the proof in the case £ = 1 can be re-worked in a way
that makes it more amenable to generalization. The trace is a Q-linear
map on K so its kernel has rank d — 1. Thus every element v of K
can be written ¢ + v where ¢ € Q and Tkg(7) = 0. Noting that
Tkio(q) = dq and cancelling d, this simply means equation (6) can be
written

Uy = Zl:C] TK|Q(O[)7
for all 7 > 1 confirming that the realizable subspace has rank < 1.

The general case is similar. Each of the irreducible factors of f
generates a number field K;,j = 1,...,¢ of degree d; = [K; : Q]. The
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solutions of the recurrence look like

¢
Up = Z TKj|@(7ja§L)v
j=1

where each 7; € K;. Let L denote the compositum of the K;. Using
the inert primes of L and noting that each is inert in each Kj, we
deduce an equation

¢ ¢
d
> d_ Tr,10(%) Tiyelay) = £d > Tra(v0;). (7)
j=1 "/

J=1

As before, replace a; by af, and cancel d so that

‘1
Zd— k;10(7) Tk;j0(a))

Each ~; can be written v; = ¢; + 705, where Tk g(70;) = 0. Noting
that Tk, jo(q;) = d;jq; we deduce that

y4
up =+ Y q; Tro(a))
j=1

which proves that the realizable subspace has rank < /.

Finally, show that equality holds in the two cases stated. Write
ul) = Tk;o(}), which is not identically zero because no a; = 0.
Each sequence usf ) satisfies the congruence part of Lemma 3.1 and

hence any Z-linear combination also satisfies the congruence. This is
because 1’ is identical to trace(A” ), where Ay, denotes the companion
matrix for f; - hence we can invoke Corollary 3.5. To obtain [ linearly
independent realizable sequences suppose «; is the dominant root and
take u together with uld + 4l for J =2,...,l. The non-negativity
part of Lemma 3.1 follows from the cond1t10n on the dominant root.
For the second case, a similar argument shows that for sufficiently large

M > 0, the independent sequences ul and MulY +uY are realizable.

ProOOF OF THEOREM 2.6. It is sufficient to construct local maps
T, : X, — X, for each prime p. Then Corollary 3.2 guarantees a global
realization by defining

T=]]T, on X =]]X,.
p p
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If the maps T}, are group endomorphisms then the map 7" is a group
endomorphism.

As motivation, consider the Mersenne sequence. For each prime p,
let U, C S* denote the group of all pth power roots of unity. Define the
local endomorphism S, : z +— z? on U,. Then | Per,(S,)| = [2" — 1], so
S, gives a local realization of the Mersenne sequence. Using the same
method of proof, we can easily verify the claim about the Fibonacci
sequence. Let F), denote the n-th term and let X denote the group of
all p-th power roots of 1. This is naturally a Z,-module. Let u denote
the golden-mean, thought of as lying in Z, by the congruence property
on p. Then the map = — 2z~ has precisely [F,.], points of period p.

An alternative proof in the Mersenne case uses the S-integer dynami-
cal systems from [3]: for each prime p, define T}, to be the automorphism
dual to & — 2z on Z,) (the localization at p). Then by [3],

| Per,,(T5,)| = H 2" =1y = [2" = 1],

q<o00;q7#p

by the product formula. This approach gives a convenient proof for
Lehmer-Pierce sequences in general. We may assume that the polyno-
mial f is irreducible; let K = Q(¢) for some zero of f. Then for each
prime p, let S comprise all places of K expect those lying above p, and
let 7}, be the S-integer map dual to  — £z on the ring of S-integers
in K. Then by the product formula

Per,(T,)] = (TTI€"—11) = [Aul£)],

vlp

as required.

For the Bernoulli denominators, define X, = F, = Z/pZ. For p = 2
define 7}, to be the identity. For p > 2, let g, denote an element
of (multiplicative) order (p — 1)/2. Define T, : X, — X, to be the
endomorphism 7,(z) = g,z mod p. Plainly |Per,(7},)| = p if and only
if p — 1|2n; for all other n, |Per,(7,)] = 1. The Clausen von Staudt
Theorem ([6], [9]) states that

BQn—i_Z})GZ’

where the sum ranges over primes p for which p—1|2n. Thus |Per, (7},)| =
max{1,|Bsy,|,} and this shows the local realizability of the Bernoulli
denominators.
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5. EPILOGUE

A result similar to the one in Theorem 2.6 for the Fibonacci sequence
can be proved for any binary linear recurrence sequence, using the
primes which split in the corresponding quadratic field.

Using the same ideas as in the proof of Theorem 2.6 one can prove
that the sequence A006953, the denominators of By, /2n, is everywhere
locally realizable. A much more subtle result, due to Moss [12], is
that the sequence A001067, the numerators of By, /2n, is a realizable
sequence that is not locally realizable exactly at the irregular primes
A000928. Taking these remarks together with n = p” in Lemma 3.1,
suggests a dynamical interpretation of the Kummer congruences. These
are stated now, for a proof see [9].

Theorem 5.1. If p denotes a prime and p — 1 does not divide n then
n=n' mod (p— 1)p" implies

/

— B?’L n' — Bn’ T
(1—p" 1)75(1—19 1)n, mod p"t.

Finally, experimental evidence suggests the sequence A006863, the
denominators of By, /4n forms a realizable sequence that is not locally
realizable at the primes 2, 3,5, 7,11, 13 but seems to be locally realizable
for all large primes.
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