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Abstract

Lipoproteins are lipid modified proteins attached to the cytoplasmic membrane of 

both Gram-negative and Gram-positive bacteria.  In Gram-negative bacteria, 

lipoproteins are produced in a four stage process.  Firstly the protein is translocated 

across the cytoplasmic membrane, primarily  by the Sec general secretory  pathway,  

then lipidated at a conserved cysteine by  the enzyme Lipoprotein diacylglyceryl 

transferase (Lgt).  The signal peptide is cleaved by  Lipoprotein signal peptidase II 

(Lsp), to leave the lipid modified cysteine at the N-terminus.  Finally  the lipoprotein 

is N-acylated by Lipoprotein N-acyl transferase (Lnt).  This pathway  is essential and 

occurs in the order listed.  However the pathway in all Gram-positive bacteria 

tested to date is non-essential, and in low GC Gram-positive bacteria the Lnt 

enzyme is absent.  This work concentrates on the lipoprotein biosynthetic pathway 

of Streptomyces coelicolor, the model organism for the high GC branch of Gram-

positive bacteria and Streptomyces scabies, a pathogen of potatoes.  Each of the 

genes encoding the enzymes listed above were disrupted to assess their 

importance to the bacteria.  Strong evidence is shown in both species that the Lsp 

(and probably the Lgt) enzyme is essential, not seen in other Gram-positive 

bacteria.  Evidence from the S. scabies work suggests the pathway occurs in a 

strict, regimented order.  Both results indicate the lipoprotein biosynthetic pathway 

of Streptomyces is closer to that of the Gram-negative bacteria, than that of the 

other Gram-positives tested to date.  This work also provides the first insights into 

the role of the lipoprotein biosynthetic pathway in plant pathogenesis.  Studies in 

animal pathogens have shown that disrupting the pathway  can have a variety  of 

effects, ranging from avirulence to hypervirulence.  This work shows that disrupting 

the lipoprotein processing enzymes has a moderate effect of the virulence of S. 

scabies on both potato tubers and radish seedlings.
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Chapter 1 - Introduction

1.1 Introduction

Bacteria live in a variety  of different environments.  As such, they are subjected 

to a multitude of stresses to which they must sense and respond in order to 

survive. Both branches of bacteria, Gram-positive and Gram-negative, contain 

proteins localised within their membranes which can interact with the 

surrounding environment.  This thesis will summarise work carried out on a 

specialised class of membrane proteins known as lipoproteins in the Gram-

positive bacteria Streptomyces coelicolor and Streptomyces scabies.

1.2 Protein Translocation

The translocation of proteins across the cell membrane is essential for all 

cellular life.  Although all proteins are synthesised cytoplasmically, many have 

extra-cellular functions, be they metabolic or structural, and their transport from 

the inside to the outside of the cell must be tightly regulated.  There are two 

main translocation routes for proteins across the cytoplasmic membrane, i) The 

Sec (General Secretory) pathway and ii) The Tat (Twin Arginine Translocation) 

pathway.

1.2.1 The Sec Pathway

The Sec pathway has been studied for several decades, and is relatively  well 

understood.  This translocation pathway is involved in the secretion of unfolded 

proteins, as well as the insertion of proteins into the cell membrane [1].  The 

Sec pathway is found in all organisms, including the Endoplasmic Reticulum of 

eukaryotic cells and the thylakoid membranes of plant chloroplasts.  Proteins 
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are targeted to the Sec machinery by a Sec signal sequence which is also 

conserved in all domains of life.  The sequence is usually about twenty amino 

acids in length and does not contain any conserved sequence motifs. Instead 

there are three distinct regions: i) the n-region which consists of positively 

charged amino acids ii) the h-region consisting of hydrophobic amino acids, iii) 

the c-region or cleavage region (fig. 1.2), which is necessary for the action of 

signal peptidases.

The Sec machinery consists of several proteins: SecY, SecE and SecG form 

the hydrophilic protein conducting channel (PCC) and are associated with 

SecA, the motor protein which contains an ATPase domain.  SecD and SecF 

are required for efficient translocation.  Of these proteins, SecYEA are essential. 

There are two methods of Sec mediated translocation, co-translational and 

post-translational.  Co-translational protein translocation in bacteria is used by 

only a few secretory proteins [1], and is mainly used to insert integral membrane 

proteins into the membrane.  In this method the Sec signal sequence of the 

protein to be translocated is recognised by the Signal Recognition Particle 

(SRP) whilst it is emerging from the ribosome.  This entire complex is then 

transferred to the Sec machinery with the aid of the SRP receptor (fig. 1.1).  The 

post-translational translocation in Gram-negative bacteria requires an additional 

chaperone protein, which in E. coli is named SecB.  SecB is a secretion-specific 

chaperone which binds to aromatic and basic regions of the preprotein as it is 

emerging from the ribosome, stabilising it, and preventing folding.  SecB 

interacts with SecA in the SecYEGA complex and passes the unfolded protein 

to SecA to allow for translocation.  SecB is not essential for Sec translocation.  It 
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appears that in its absence, the Sec signal peptide is enough to target the 

unfolded protein to the Sec machinery [1].  As SecB is only found in 

proteobacteria, it seems likely that bacteria lacking in this protein either rely on 

the signal peptide, or utilise other chaperones.  

Figure 1.1 An overview of Sec and Tat dependent translocation. Sec dependent 

translocation can be co-translational (a), or post-translational (b) and involves 

unfolded proteins, whilst Tat dependent translocation (c) involves full folded 

proteins.  From [1].

1.2.2 The Tat Pathway

The Tat pathway is used to transfer fully folded proteins across the cell 

membrane.  Whilst the Sec system is ubiquitous, it appears that the Tat system 

is only  encoded in about half of the currently sequenced bacterial genomes [2], 

although it must be stressed that there is a bias in the number of bacterial 

species sequenced towards the Gram-negatives, so this figure may not 

represent the true number of species containing the Tat system.  Proteins which 
19



are translocated by Tat can be identified by their signal sequence, which is 

larger than the Sec sequence, but still contains the tripartite structure described 

above.  Unlike the Sec signal peptide however, the Tat signal peptide contains a 

very  specific sequence which gives the system its name. A comparison of the 

two signal peptides can be seen in figure 1.2.  The amino acid sequence 

spanning the division between n and h region contains the motif Ser/Thr-Arg-

Arg-X-Φ-Φ (where X can be any amino acid and Φ is a hydrophobic residue) [3].  

This sequence is essential for translocation, and the twin arginine residues are 

almost always conserved.  To date only two Tat substrates have been found that 

lack the Arg-Arg motif [4].  The Tat system is able to translocate proteins that 

contain cofactors, which need to be folded before translocation.  A molybdenum 

cofactor containing subunit of DMSO Reductase in Shewanella oneidensis, 

DmsA, has been shown to contain a twin arginine motif in its leader sequence 

[5], as has the HysB subunit of [NiFeSe]  hydrogenase from Desulfovibrio 

vulgaris [6].

In E. coli, the Tat system consists of three proteins: TatA, TatB and TatC.  A 

homologue of TatA, TatE, also exists but is encoded elsewhere in the genome.  

The transmembrane pore in the Tat complex is formed by the TatA protein.  

TatA is 89 amino acids in length and its functional domain is a single N-terminal 

transmembrane helix [4].  TatA is only approximately  9kDa in size, but individual 

TatA monomers are able to interact via their transmembrane domains to form 

complexes estimated to be up to 750kDa in size [7].

The TatC protein is 258 amino acids in length and contains six transmembrane 

helices.  Both the N and C termini are located in the cytoplasm.  This protein is 
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the most conserved Tat subunit throughout the bacterial kingdom [8].  TatC is 

essential for the formation of the Tat complex and is able to bind both the signal 

peptide of the protein to be transported and TatB.  The structure of TatB is 

similar to that of TatA but its function is somewhat of a mystery.  Many Gram-

Positive bacteria, such as B. subtilis, lack TatB and are still able to export 

proteins via the Tat pathway.  In E. coli however, the loss of TatB leads to a 

disruption of the translocation of some proteins, but not others [4, 7].

It is currently thought that in E. coli, when at rest, TatB and C from a complex 

which is ready to accept the Tat signal sequence.  Once the TatBC-substrate 

complex is formed, TatA monomers are recruited, and the protein is 

translocated.  Once this occurs the TatABC complex rapidly dissociates back to 

its resting state [7].  What is not known currently is whether a ready sized TatA 

pore is selected depending on the size of the substrate, or whether the TatA 

monomers form a pore when required.  The exact role of TatB is yet to be 

elucidated.  It is possible that this protein acts as a bridge between the TatC 

bound substrate and the TatA pore [3, 7].

n-region h-region c-region

Z-R-R-x-ϕ-ϕ
Tat

Sec

C+1

Figure 1.2 Comparison of the Tat and Sec secretion N-terminal signal sequences.  The 

characteristic Twin arginine motif of a Tat substrate is shown.  The cysteine at position 

+1 represents the first amino acid of a mature lipoprotein.  Based upon [1].
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1.3 Lipoproteins 

In bacteria the addition of a lipid molecule to a protein to form a lipoprotein is 

tightly controlled as part of a multi-step  reaction which occurs after translocation 

across the cytoplasmic membrane.  This pathway  appears to be unique to the 

Bacteria even though lipid modified proteins are also found in Archaea and 

Eukaryotes [9].  Most of the work on bacterial lipoproteins has been carried out 

in the Gram-negative bacterium Escherichia coli.  The first lipoprotein 

discovered was the murein lipoprotein from E. coli also known as Braunʼs 

lipoprotein in 1969 [10].

The leader sequences of lipoproteins closely resemble those of other Sec 

transported proteins with the exception of an extra motif known as the lipobox.  

As before, the signal sequence contain three distinct regions: i) The n-region ii) 

The h-region iii) The c-region.  The c, or cleavage, region contains the lipobox 

motif.  This motif is essential for correct lipoprotein processing and contains a 

four amino acid sequence as follows: L-3-[A/S/T]-2-[G/A]-1-C+1 [11].

The only  invariant here is the cysteine residue at +1.  The other three amino 

acids are occasionally different, but the frequency at which others occur is much 

lower [12].  The cysteine is invariant as it contains the sulphydryl group  to which 

the diacylglyceride (lipid) moiety is covalently attached.  It is labelled +1 as it will 

become the first amino acid (the N-terminus) of the mature lipoprotein.  It has 

been noted that the lipoprotein signal sequence appears to be shorter than that 

of exported proteins that are not lipidated [13].
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The production of a mature lipoprotein in Gram-negative bacteria is a four-stage 

process.  The first stage involves export of the protein to be lipidated via the 

Sec (or Tat) pathway.  The next three steps are processing steps which occur 

on the extracytoplasmic face of the membrane, each requiring a separate 

enzyme: i) Lipoprotein diacylglyceryl transferase (Lgt) ii) Lipoprotein signal 

peptidase II (Lsp) iii) Lipoprotein N-acyl transferase (Lnt).  The pathway is tightly 

controlled and occurs strictly in the order listed  [14] (figs. 1.3, 1.4).  In Gram-

positive bacteria, the pathway is different, due to the lack of an outer 

membrane.
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1.3.1 Lipoprotein diacylglyceryl transferase

The first enzyme in the pathway, Lgt, is responsible for adding the diacylglyceryl 

molecule to the cysteine  in the lipobox via a thioether linkage.  In E. coli it has 

been shown that this lipid moiety is transferred from phosphatidyl glycerol (PG) 

to the sulphhydrl group of the unmodified immature liprotein [12].  Lgt is a 

membrane bound enzyme which is highly conserved throughout the bacterial 

kingdom, with the structure containing large sections of hydrophobic amino 

acids separated by  short hydrophilic sections.  The large amounts of arginine 

and lysine lead to a net basic charge for the enzyme [15], estimated to have a 

pKa value ~10 [16].  It is thought that the basic charge is important for 

interaction with acidic membrane phospholipids [14].  In E. coli a histidine 

residue at position 103 has been shown to be essential for enzyme activity and 

two other amino acids, His-196 and Tyr-235, important for function [17].  The 

generally  accepted theory is that Lgt lipidates an immature lipoprotein that is 

anchored in the cytoplasmic membrane by its signal peptide.  This would 

explain the presence of the hydrophobic region in the signal peptide.  

Confusingly  however, a recent paper has suggested that the h-regions of some 

signal peptides may be more hydrophilic than previously thought and that the 

Lgt enzyme may be located on the inner face of the cytoplasmic membrane 

[16].

Lgt catalysed lipidation of the immature lipoproteins has been shown in various 

bacteria, including L. monocytogenes, S. aureus, and S. equi.  ∆lgt mutants 

grown in the presence of [14C]-palmitic acid had no detectable lipoproteins in 

their membrane fractions, whereas they were detectable in the wild type 

controls [15, 18, 19]. 
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1.3.2!  Lipoprotein signal peptidase II

Lsp, also known as signal peptidase II, is the second enzyme in the pathway, 

and is a transmembrane protein responsible for removing the signal sequence 

from exported immature lipoproteins [19].  In eubacteria such as B. subtilis there 

is only a single copy of the lsp gene, whereas there are multiple signal 

peptidase I genes [20], which cleave the signal sequences from all non-

lipoproteins translocated via Tat or Sec.   This appears to be the case in the 

majority of bacterial species, although there do appear to be some examples of 

an organism having more than one lsp paralogue, such as in Myxococcus 

xanthus [21].  In E. coli the lsp gene is encoded in an operon with four other 

genes and is cotranscribed with ileS, which encodes the isoleucyl-tRNA 

synthetase [22], although there seems to be no obvious physiological 

connection.  This cotranscription is conserved in a number of Gram-negative 

bacteria as are the other downstream open reading frames (ORF) [19].  In 

Gram-positive bacteria lsp and ileS are not found in the same operon [21].  To 

date an Lsp  homologue has not been identified in eukaryotes or archaea but it 

has been shown that signal cleavage of lipoproteins in archaea is inhibited by 

globomycin, a potent inhibitor of Lsp  [20, 23].  It has been shown that in the 

majority of bacteria, both Gram-positive and Gram-negative, a lipoprotein must 

be lipidated by Lgt before Lsp can recognise its substrate [20].  However, there 

are exceptions to this rule and L. monocytogenes Lsp can act on non-lipidated 

lipoproteins leading to their mass release into the growth medium [24].  This 

enzyme cleaves the signal sequence just prior to the +1 cysteine, which then 

becomes the N-terminal residue of the mature protein.
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The sizes of the lsp genes sequenced so far encode Lsp  enzymes ranging from 

154 amino acids in B. subtilis to 181 amino acids M. genitalium [25].  Computer 

analysis of the protein suggests it contains four membrane spanning domains 

[19], consistent with the idea that this is a membrane-bound protein.  The 

enzyme also contains several conserved amino acids that are necessary for 

function, including two aspartic acid residues which may form a catalytic dyad in 

the active site of the enzyme [19].  These residues are all predicted to be 

located on the external face of the cytoplasmic membrane in B. subtilis [26].  

Indeed Lsp lacks the amino acids or associated metal ions required by several 

classes of proteases and is inhibited by  Pepstatin, an inhibitor of aspartate 

peptidases, indicating that the enzyme belongs to this group, although it does 

not share the active sites found in plant or viral aspartate petidases, suggesting 

that Lsp may represent a novel class of these enzymes [26].

Many of the studies carried out on Lsp  have been made possible by the action 

of the cyclic peptide antibiotic, globomycin.  This antibiotic acts as a non-

competitive analogue inhibitor of Lsp [27], and is lethal to Gram-negative 

bacteria as it leads to the accumulation of incorrectly processed lipoproteins in 

the inner membrane.  Globomycin is lethal to E. coli at a concentration of 20-40 

μg ml-1 [28].  Overexpression of Lsp leads to increased resistance to 

globomycin, and this has been used to determine whether lsp genes from other 

bacteria expressed in E. coli can raise the level of globomycin resistance and 

therefore be shown to be active Lsp homologues as has been demonstrated in 

a variety of different species [19, 21, 25, 28].
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1.3.3 Lipoprotein N-acyl transferase

The final enzyme involved in the maturation of a lipoprotein is Lnt.  The function 

of this protein is to N-acylate the amino group found in the C+1 cysteine of the 

lipoprotein.  Lnt was initially thought to be unique to Gram-negative bacteria as 

it had not been found in most Gram-positive bacteria, including B. subtilis, the 

model low GC Gram-positive bacterium [29].  However, recent genome 

sequence analysis has revealed that some members of the actinomycetes, the 

high-GC branch of Gram-positive bacteria, contain homologues of Lnt [30].  It is 

believed to be a member of the nitrilase superfamily of enzymes, which 

hydrolyse carbon-hydrogen bonds [30, 31].

Before Lnt can act on a lipoprotein it must first have its signal sequence 

removed by Lsp  giving the strict sequence Lgt->Lsp->Lnt [14].  Once the signal 

peptide has been removed, Lnt catalyses the addition of an acyl group  to the +1 

cysteine residue in the lipoprotein [12].  In E. coli this acyl group is typically 

donated by phosphatidylglycerol, although phosphatidylethanolamine and 

cardiolipin can also be used [32].

Using sequence alignments and site-directed mutagenesis, in E. coli seven 

conserved amino acid residues have been discovered, three of which form a 

potential catalytic triad (E267, K335 and C387), and four which are found within 

the periplasm (W237, E343, Y388 and E389) [30].  Lnt is thought to be one of 

the few examples of a protein that exists in its reaction intermediary  form in vivo 

[33].  The reason for this seems to be that due to the large number of 

lipoproteins found in a typical E. coli cell (~106  of the murein lipoprotein at any 

one time) there needs to be a rapid turn over of fatty acids, which has been 
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estimated at >2 x 104 min-1 [33].

As mentioned above, Lnt homologues have been identified in a number of 

Gram-positive bacteria.  Intriguingly, indirect evidence of N-acylated lipoproteins 

has been discovered in B. subtilis [34], and in S. aureus the lipoprotein SitC has 

been shown to be triacylated, whereas others have been shown to only  be 

diacylated [35, 36].  Both of these low GC species lack any homologues of E. 

coli Lnt, indicating that there may be other types of N-acetyltransferases 

currently unknown.

To date, only two confirmed Gram-positive Lnt proteins exist, found in M. 

smegmatis and M. tuberculosis.  Homologues of this protein are found in 

several members of the Mycobacteriaceae.  The Lnt from M. tuberculosis is 

interesting, as it has fused with a separate protein to become a two domain 

enzyme, known as Ppm1, a polyprenol monophosphomannose synthase.  The 

Ppm1 domain is found at the c-terminus, and in M. smegmatis and M. leprae 

the two enzymes Lnt and Ppm are encoded by separate genes [37].  As well as 

acting as N-acyl transferase, Ppm1 is involved with the biosynthesis of 

lipomannan (LM) and lipoarabinomannan (LAM), cell envelope glycolipids 

involved in the infection process [37].  The confirmation of triacylation of 

lipoproteins in both species was carried out using the confirmed M. tuberculosis 

lipoprotein LppX expressed in M. smegmatis.  Mass spectrometry of a trypsin 

digested LppX from a wild-type strain showed a much larger mass at the N-

terminal cysteine than the predicted mass of the peptide, confirming there was 

an N-terminal modification. A Δlnt strain showed a mass smaller than the wild-

type by a size corresponding to a C16 fatty acid.  LppX run on an SDS-Page gel 
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was 0.3 kDa larger in a wild-type strain than in a Δlnt stain [38].  The Δlnt strain 

of M. smegmatis could be rescued by M. tuberculosis Ppm1, suggesting that 

part of it has the same function.  Neither M. smegmatis lnt nor ppm1 were able 

to rescue a Δlnt strain of E. coli  [38].  The same can be said for the putative lnt 

genes from Streptomyces coelicolor and Corynebacterium glutamicum [30].  All 

of these homologues are missing the essential W237 and Y388 found in E. coli 

although the rest of the active site residues are conserved, and it is speculated 

that these differences are due to an altered substrate for each of the enzymes, 

given their difference in membrane fatty acids [30, 33].

1.3.4 The Lol System 

In Gram-negative bacteria, following the action of Lnt, mature lipoproteins either 

remain anchored to the cytoplasmic membrane or, for the majority, are 

transported through the hydrophilic periplasm to the outer membrane via the 

lipoprotein localisation (Lol) transport system. The Lol system is comprised of 

five genes, ordered in the operon lolABCDE.  The lolCDE genes encode an 

ATP-Binding Cassette (ABC) transporter consisting of two LolD, one LolC  and 

one LolE proteins, whilst the two remaining genes encode the proteins LolA and 

LolB, responsible for transporting a lipoprotein across the periplasm and 

anchoring it into the outer membrane, respectively.  The system is essential in 

E. coli, and is highly conserved in Gram-negative bacteria, although LolB does 

appear to be absent from several species [39].  The Lol system is absent in all 

Gram-positive bacteria checked to date [40], although a potential homologue of 

LolD has been found in S. coelicolor.
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Figure 1.5 The Lol system from E. coli  [13], the inner membrane retention +2 

Aspartate (D) can be seen.

The LolCDE complex differs from other ABC transporters as it is not involved in 

the transmembrane transfer of a substrate and contains fewer membrane 

spanning domains (8) than ABC transporters usually  have (≥10).  It is one of 

only two essential ABC transporters found in E. coli [39].  To transport a 

lipoprotein across the periplasm, it is first accepted by the LolCDE complex, 

with LolD acting as the ATPase, releasing it from the cytoplasmic membrane.  

Since lipoproteins are hydrophobic, a chaperone is needed to move it across 

the periplasm.  The LolA protein acts as the chaperone.  This protein is 20 kDa 

and works as a monomer, consisting of an incomplete β-barrel with an α-helical 

lid, forming an internal hydrophobic cavity, which opens and closes to allow 

entrance and exit of the lipoprotein [41].  The LolA-lipoprotein complex is water 

soluble, presumably as the N-terminal lipid is shielded from the aqueous 
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environment by LolA [39].  The complex crosses the periplasm and passes the 

lipoprotein to LolB, a 23 kDa novel outer membrane lipoprotein.  LolB transfers 

the lipoprotein to the inner leaflet of the outer membrane where it becomes 

firmly  attached [39].  LolB has a similar structure to LolA and it contains the 

same hydrophobic pocket.  It has a higher affinity for lipoproteins than LolA and 

it is believed that an arginine residue at +43 in LolA  is important for the transfer 

of lipoproteins from LolA to LolB [41].  Direct mouth-to-mouth transfer of 

lipoproteins from LolA to LolB has been speculated, given that the opening of 

the hydrophobic pocket of LolA contains many negatively charged residues, 

whilst the opening of LolB has many positively charged residues, suggesting a 

direct interaction [42].  Currently  it is not known how LolA accepts the 

lipoproteins from the LolCDE complex.  The roles of LolC and LolE are unclear.  

Despite sharing ~26% identity they are both essential [39],  and  have ~19% 

identity to LolB, so it is possible that the same mouth-to-mouth transfer occurs 

between LolC/LolE-LolA as with LolA-LolB [42].  What is clear however, is that 

the transport across the periplasm is rapid and efficient.  There is an estimated 

106 molecules of the murein lipoprotein in the outer membrane in an E. coli 

bacterium, yet there are only a few hundred LolA and LolB enzymes [42].  Thus 

far no LolA-lipoprotein intermediates have been detected in periplasmic 

fractions of E. coli [41].  Triacylation by Lnt is a prerequisite for a lipoprotein 

being accepted by the Lol system, but the inner membrane retention signal has 

been shown to have no effect on the activity of Lnt [43].

E. coli has over 90 predicted lipoproteins with the vast majority expected to be 

found on the periplasmic face of the outer membrane [13].  It is vitally important 

that these outer membrane proteins are correctly  localised as an accumulation 
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in the inner membrane leads to instability and, ultimately, cell death [44, 45].  In 

E. coli the location that lipoproteins ultimately end up in is determined by the 

amino acid residue found at position +2.  Generally, a lipoprotein with an 

aspartate (Asp) residue at +2 will be retained in the cytoplasmic membrane, 

whilst the presence of another amino acid will lead to the lipoprotein becoming 

a substrate for the Lol machinery and transported to the outer membrane [13, 

45]. However this +2 rule is not absolute, and it appears that the amino acid at 

position +3 has a bearing on the destination of the lipoprotein.  An acidic or 

amide amino acid seems to enhance the effectiveness of Asp+2 whilst a histidine 

or lysine at +3 leads to the lipoprotein being localised to the outer membrane, 

regardless of the presence of Asp+2 [39].  Also, a number of synthetic inner 

membrane retention signals have been identified at +2, including phenylalanine, 

tryptophan, tyrosine, glycine and proline, although these do not occur naturally 

in E. coli lipoproteins [39].  The current hypothesis as to how the +2 rule works 

is that the Lol complex does not directly recognise the presence or absence of 

Asp at +2, but that the negative charge of the R group  (carboxylic acid) is the 

correct distance away from its backbone carbon (Cα) to lead to a 

conformational change of the lipoprotein and Lol avoidance [13].  Also, Lol 

avoidance appears to involve an interaction between the Asp+2 and 

phosphatidylethanolamine found in the cytoplasmic membrane [46].

Other species of Gram-negative bacteria have been shown to possess a 

different set of retention signals, Psuedomonas aeruginosa uses the amino 

acids at +3 and +4, as well as the +2 Asp  to determine whether a lipoprotein is 

retained or not [44].  Borrelia burgdorferi, the causative agent of Lyme disease, 

has no Lol avoidance system with all lipoproteins being targeted to the outer 
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membrane by default [47].  Interestingly, despite the lack of an outer membrane 

and the fact that all lipoproteins remain in the ̒ innerʼ membrane, there has yet to 

be a Gram-positive lipoprotein found with an Asp at residue +2 [45].

1.3.5! The essentiality of the lipoprotein pathway

The lipoprotein pathway is essential for viability  in all the Gram-negative 

bacteria tested to date [48].  Mutants lacking the lipoprotein biosynthetic 

enzymes are likely  to aggregate improperly processed lipoproteins in the 

cytoplasmic membrane or periplasm which ultimately leads to cell death [14].  A 

number of essential lipoproteins have been identified in E. coli such as LolB and 

Murein, as mentioned previously.  The same is true of the Lol system [44].  

Conversely it appears that Gram-positive bacteria are able to survive without 

this pathway, and in contrast to the rigid Gram-negative pathway, there is some 

flexibility as to the order of lipoprotein processing.  As described above, the first 

enzyme in the pathway, Lgt, is a prerequisite for the action of the second 

enzyme Lsp  in Gram-negative bacteria.  A number of viable Δlgt Gram-positive 

mutants have been described, including B. subtilis [49], L. monocytogenes [24] 

and S. agalactiae [50], with the latter two examples having detectable, 

unlipidated, immature lipoproteins in their supernatant, showing that the action 

of Lsp is independent of Lgt.  Examples of Δlsp Gram-positive bacteria can also 

be found, such as in B. subtilis [20], L. monocytogenes [51] and M. tuberculosis 

[18].  Confusingly, despite the non-essentiality of this pathway in Gram-

positives, a number of essential lipoproteins do exist.  In Lactococcus lactis two 

lipoproteins, PrtM and OppA, are essential for growth in milk but a Δlsp mutant 

is still viable and able to grow [52].  The proteins are lipidated, and remain 

active in their pro form, in the absence of Lsp.  The same can be said of the B. 
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subtilis lipoprotein PrsA, involved in extracytoplasmic folding of secreted 

proteins [49].  In an Δlgt mutant the protein is unlipidated and remains attached 

to the cell membrane by its signal peptide unprocessed by Lsp, whereas in a 

Δlsp mutant the protein is found in both in its immature form, with an intact 

signal peptide and in its ʻmatureʼ form, suggesting that some alternative 

processing may be occurring in the absence of Lsp  [49].  Examples of 

alternative processing of lipoproteins have been discovered in other Gram-

positive bacteria, such as the Eep protein from Streptococcus uberis [53].  The 

reason for these alternative processing pathways is unclear, potentially they 

prevent the buildup of unprocessed lipoproteins in the cell membrane.

The final enzyme in the Gram-negative pathway Lnt is, as discussed, absent 

from the majority of Gram-positive bacteria.  The reasons for its presence in the 

actinomycetes is unclear, especially given that it is not essential in M. 

smegmatis [38].  Recently  however, it has been postulated that the outer most 

cell wall lipid in various mycobacteria forms a symmetrical bilayer that could be 

thought of as an outer membrane [54].  This, coupled with the fact that Cryo-

Electron Microscopy has revealed a periplasm between the cell membrane and 

the cell wall in S. aureus [55] and in B. subtilis [56], leads to the tempting 

thought that the Lnt proteins found in Gram-positives thus far may be involved 

in the transport of lipoproteins to the outer cell wall.  If this were true however, 

then the transport system is unknown, given the absence of the Lol system.

1.3.6! Functions of lipoproteins

Bacteria use lipoproteins to interact with their extracellular environment and 

they perform a variety of functions.  The first identified lipoprotein, the murein 
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lipoprotein, was found to be anchored to the outer membrane of E. coli and is 

vital for its integrity.  The C-terminal end is bound to the periplasmic 

peptidoglycan layer and stabilises the outer membrane [10].  A substantial 

number of Gram-positive lipoproteins are solute-binding proteins, a well studied 

example of which is the high affinity maltodextrin binding protein MalX of 

Streptococcus pneumoniae [12].  Solute-binding proteins in Gram-negative 

bacteria are located in the periplasm, and their function is to bind reversibly with 

their specific substrate, and pass it to their partner ABC transporters for uptake 

into the cytoplasm [57].  There have been many other identified lipoprotein 

functions including antibiotic resistance, sporulation and bacterial conjugation 

[58], but the most well studied is the pathogen-host interaction.  Given that 

lipoproteins are non-essential in Gram-positive bacteria, the lgt or lsp genes 

have been disrupted in a number of pathogens with differing results.  The loss 

of Lgt during in vitro experiments in L. monocytogenes, S. aureus and S. 

agalactiae lead to impaired growth in cell cultures, whilst in vivo tests in mice 

showed the two latter species to be hypervirulent [24, 50, 59].  In mice, a S. 

equi Δlgt mutant was attenuated, whilst in its natural host, ponies, the bacteria 

showed no change in virulence [60].  The loss of Lsp leads to both in vitro and 

in vivo attenuation of L. monocytogenes [51].  An M. tuberculosis Δlsp mutant, 

shows no growth impairment in vitro but is attenuated in vivo [61].  Other Δlsp 

mutants also show different phenotypes.

Aside from the species to species variation, the most striking thing about the 

results above is the hypervirulence of some of the Δlgt mutants.  At first glance 

this seems counterintuitive.  If, as described above, the loss of Lgt can lead to 

the loss of lipoproteins into a culture supernatant, one might assume that their 
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loss would lead to the reduced fitness of a bacterium and therefore a reduction 

in its ability  to cause infection.  However what seems to be happening is that the 

hypervirulent bacteria are evading the hostʼs innate immune response.  Bacteria 

can be recognised in their hosts by their lipoproteins.  In vertebrates, 

lipoproteins are recognised by  Toll-like receptor 2 (TLR2), which can recognise 

whether a lipoprotein is di- or triacylated and form heterodimers with TLR6 or 

TLR1 respectively, as can be seen in figure 1.6 [62]. For a TLR2-TLR1 

heterodimer to be formed, an N-acyl fatty acid of at least eight carbons in length 

is needed to interact with a hydrophobic channel found in TLR1.  This channel 

is not present in TLR6 and so it can only form the TLR2-TLR6 heterodimer in 

the presence of a diacylated lipoprotein.  The immune response induced by 

both heterodimers appear to be the same and it is unknown if there are subtle 

differences in the response to each [62].  Hypervirulence in bacteria is 

presumably due to this pathway not being activated due to the lack of lipid 

molecules anchoring the protein into the membrane. 
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Figure 1.6. A diacylated or triacylated lipoproteins is recognised by  either the TLR2-

TLR6 or TLR2-TLR1 heterodimers respectively.  TLR6 lacks the hydrophobic channel 

necessary to accept the N-acylated lipoprotein.  Modified from [62].

1.3.7!Computational analysis of Lipoproteins

The rapid increase in the number of fully sequenced bacterial genomes has led 

to a huge amount of data available for mining.  Currently more than 2000 

lipoproteins have been identified in silico in a variety of species [63].  

Lipoproteins are thought to represent between 0.5 and 8% of a bacterial 

genome [64], although the average is around 2.5%.  Computer analysis often 

leads to the identification of false positives as the signal sequence can be highly 

variable. Pattern searches have been used to identify  potential lipoproteins and 

most are based around the signal sequence, which contains the characteristic 

lipobox motif, L-3-[A/S/T]-2-[G/A]-1-C+1 [11].

Studies on the Gram-positive signal sequence have led to the following 

observations.  For a protein to be identified as a lipoprotein it must contain: i) no 

charged amino acids in the h-box ii) a cysteine residue at +1 but only between 
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position 15 and 50 in the leader peptide iii) only one Arg or Lys in the first seven 

amino acids [58].  Gram-negatives should have i) one or more charged amino 

acids in the first five to seven residues ii) the h-region should be 7 to 22 

residues in length iii) the lipobox motif (shown above) should occur in the first 

50 amino acids from the N-terminus [63].

1.4 Streptomyces coelicolor

Streptomyces coelicolor is the model organism for the high GC branch of Gram-

positive bacteria known as the actinomycetes.  It is a soil dwelling bacterium 

and has developed a complex life-cycle to enable it to survive in this nutrient 

scarce ecological niche.

One of the most striking things about S. coelicolor is its complex multistage life-

cycle, which is highly unusual amongst prokaryotes.  This bacterium begins life 

as a uninucleate spore that contains a hydrophobic coating and is resistant to 

desiccation.  These spores germinate and establish a complex network of 

hyphae known as the substrate mycelium.  These are often multinucleate with 

infrequent septa [65] with growth occurring at the hyphal tips.  This method of 

growth initially lead to Streptomyces being mis-categorised as a fungus [66].

Specific environmental signals, including nutrient deprivation, activate the next 

stage of the developmental cycle.  The substrate mycelial growth halts and the 

erection of aerial hyphae is initiated.  The growth of these reproductive 

structures is fuelled by  controlled lysis of the substrate mycelium [67], which 

provides nutrients to the aerial mycelium.  The substrate hyphae are emptied of 

their cellular contents, but retain their cell wall integrity, presumably to prevent 
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collapse of the colony [68].  Emergence of the aerial hyphae is dependent on 

the production, and action, of the secreted lantibiotic (lanthionine-containing 

peptide antibiotics) SapB [69].  This protein reduces the surface tension at the 

water-air interface allowing the aerial hyphae to escape the aqueous 

environment of the colony.  Other proteins known as chaplins act as 

hydrophobic sheaths, enhancing the growth of the hyphal tip [70].

When fully developed, the aerial mycelia undergo cell division by 

compartmentalising their chromosomes and laying down septa.  These septated 

hyphae eventually form spore chains with each compartment a separate spore. 

The spore chains grow in a characteristic spiral shape, and their hydrophobic 

coating aids propagation as they can be carried long distances by water [67].

S. coelicolor is also unusual as it contains one of the largest genomes of any 

currently sequenced bacterium, with 8,667,507 base pairs encoding 7,825 

genes [66], twice as many as the related actinomycete M. tuberculosis.  The 

genome is linear, which is also very unusual amongst bacteria, and consists of 

a central core region flanked by two ʻarmsʼ.  The core region is approximately 

half the genome in size (4.9 Mbp) and contains all the essential genes whilst 

the arms contain genes that are non-essential, only expressed under specific 

conditions and which were probably acquired through horizontal gene transfer 

(HGT).  The left arm and right arm are of different lengths, being 1.5 Mbp and 

2.3 Mbp  respectively.  Indeed, the core region has more in common with other 

actinomycetes such as M. tuberculosis or Corynebacterium diptheriae than the 

arms [66].
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This large genome is certainly  useful given the variability  of the soil environment 

and S. coelicolor secretes a large number of proteins in order to break down a 

variety of potential nutrient sources.  A predicted 10.5% of the encoded proteins 

are hydrolases (proteases, cellulases etc.) with an equally significant proportion 

of the proteome (7.8%) taken up  by various transport systems, probably for 

uptake of the breakdown products [71].

It is generally accepted that the amount of regulatory genes in an organism 

increases proportionally  to the increase in genome size and S. coelicolor 

contains a high proportion of regulatory proteins (12.3%) [66].  S. coelicolor 

encodes multiple two-component regulatory systems and contains 84 sensor 

kinases (SK) and 80 response regulators (RR), (67 paired SK/RRs and 17 

unpaired RRs) comprising 0.86% of its total Open Reading Frames (ORFs).  

This value is 25% higher than the average non-pathogenic bacteria [72].  The 

high number of two-component systems is again almost certainly  due to the 

variety of stresses the bacterium faces in the soil.

Another important set of genes in S. coelicolor are those which encode 

secondary metabolites.  There are predicted to be 220 genes, in 22 clusters 

involved in the biosynthesis of secondary metabolites [71].  Commercially these 

metabolites are very important as approximately  70% of commercial antibiotics 

are derived from Streptomyces species as well as other pharmaceutically 

important compounds such as anti-tumour drugs [73].  These metabolites are 

most likely produced as a defence response to competitors, but may also serve 

other functions such as combating physical, chemical or biological stresses [66].
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1.5 Streptomyces scabies 

Like S. coelicolor, S. scabies is a soil dwelling saprophyte, and shares many 

elements of the multistage lifecycle seen in S. coelicolor.  However, S. scabies 

is unusual in that it is a pathogenic Streptomyces species.  S. scabies is 

predominantly a pathogen of potatoes (Solanum tuberosum), and has been 

identified worldwide [74].  The bacterium causes characteristic lesions on the 

surface of potato tubers, which reduces their market value.  This disease is of 

great economic importance worldwide.  As well as attacking potatoes and other 

tap root crops, S. scabies is also able to infect other monocotyledonous or 

dicotyledonous plants [67] and appears neither host, nor tissue, specific.

The ability to cause disease is due to the presence of a discrete cluster of 

genes, known as a pathogenicity island (PAI).  The genes found in these islands 

can be moved between bacteria either individually or as a group, and as such 

the G+C  content of the PAI can differ from the genome it is found in [75].  S. 

scabies contains a PAI which at 325 kb is currently  the largest known bacterial 

PAI, with a G+C  content substantially lower than the remaining genome [76].  

The genes on this island encode the two main virulence factors for S. scabies, 

thaxtomin A and Nec1.  Thaxtomin A is a nitrated dipeptide phytotoxin, capable 

of necrosing excised potato tissue and causing scabs on immature potatoes 

[67], whilst Nec1 is a novel virulence factor, and is a necrotic protein of unknown 

target [75].  Both factors are required for full plant virulence.

The mechanisms that S. scabies uses to invade plants is unknown, and being 

soil based offers  some unique challenges that other plant pathogens do not 

face.  Root structures lack the natural openings seen in other plant organs, 
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such as stomata found in leaves [77], and it appears that S. scabies employs 

specialised mechanisms to penetrate the potato tuber.  Specialised hyphae 

have been visualised growing directly into a tuber, although it is not known 

whether enzymatic degradation of the plant cell wall occurs to allow the 

bacterial hyphae to enter the potato [77, 78].

1.6 Aims of this thesis

This work will investigate the lipoprotein biosynthetic pathways in both S. 

coelicolor and S. scabies.  These pathways are unusual amongst bacteria, both 

contain one copy of lsp, whilst S. coelicolor contains two copies of lgt, and both 

contain two copies of lnt. There is also good evidence that Streptomyces 

species send large numbers of lipoproteins out via the Tat pathway which is 

highly unusual amongst bacteria.

Of the two lgt genes found in S. coelicolor, lgt1 (SCO2034) is found in the 

central region of the chromosome, whilst lgt2 (SCO7822) is found on one of the 

arms and has possibly been acquired by HGT.  It is possible, therefore, that the 

gene may have an alternative function or be functionally  redundant.  It will be 

interesting to see which Lgt is able to add the diacylglyceride to an immature 

lipoprotein and, if both are able, whether there are specific proteins lipidated by 

each one.  To test the functions of these enzymes it should be possible to 

examine whether Δlgt1 lgt2 mutants release unlipidated proteins into their 

growth media, as is the case with L. monocytogenes [24].

Why both S. coelicolor and S. scabies would have two homologues of lnt is a 

mystery.  As has been previously  stated, the Lnt protein was only thought to be 
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active in Gram-negative bacteria, until the recent discovery of an active Lnt in 

M. smegmatis [38].  As with the M. smegmatis Lnt, both of the Streptomyces 

proteins share five of the seven residues needed for activity in E. coli.  It is 

currently unknown whether these proteins can act as true Lnts as the M. 

smegmatis Lnt does.

As discussed, S. coelicolor, S. scabies and other members of the 

actinomycetes are unusual in their lipoprotein biosynthesis and they  may 

represent a new paradigm in this field of research.  The S. coelicolor pathway 

will be analysed by a combination of experimental and in silico analysis.  The lgt 

and lsp genes will be deleted from the chromosome of S. coelicolor and the 

mutant strains will be subjected to phenotypic analysis.  Bioinformatic 

identification of lipoproteins and their roles in S. coelicolor will give clues about 

processes affected in strains which cannot synthesise lipoproteins.  The 

macroscopic and microscopic phenotypes of the mutants will also be analysed 

to determine whether this pathway has any effect on development or antibiotic 

production.  The same will be done for S. scabies, with the addition that the 

action of the lipoprotein pathway on the infection of plants will be assessed by 

the disruption of each of the lipoprotein processing genes.  The action of these 

mutants on both living plants, and potato tubers will be tested.  Whilst there 

have been multiple studies on disrupting lipoprotein biosynthesis in animal 

pathogens and the effect therein on virulence, to date there has been no such 

study on plant pathogens.  

It seems likely that lipoproteins and the lipoprotein biosynthetic pathway will be 

of particular importance to Streptomyces species given their saprophytic 
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lifestyle.  Nutrient scavenging in the soil requires a variety  of exported and 

externally facing proteins, including plant cell wall degrading enzymes and 

substrate transport systems.  It is likely that a number of these are lipoproteins, 

especially  given the ability of this subset of proteins to remain anchored in the 

cell membrane in large numbers without mechanical disruption to the cell.
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Chapter 2. Materials and Methods.

2.1 Strains and culture conditions.

The bacterial strains, and plasmids used or constructed in this study are listed 

in table 2.2.  Growth media used are listed in table 2.3.  Liquid cultures of E. coli 

were routinely grown shaking at 250 rpm, in LB broth at 37°C unless stated. 

Liquid cultures of S. coelicolor or S. scabies were grown at 30°C, shaking at 

250 rpm.  Typically  10 ml of liquid culture was grown.  Cultures grown on solid 

media were grown at the same temperatures listed above, unless stated.  

Where necessary, cultures were supplemented with antibiotics at 

concentrations listed in table 2.1.

Antibiotic
Stock Concentration 
(mg/ml)

Working Concentration 
(μg/ml) for media

Working Concentration 
(mg/ml) for overlays

Ampicillin 100 100
Apramycin 50 50 1.25
Chloramphenicol 25 25
Hygromycin 25 12.5 0.625
Kanamycin 50 50
Nalidixic acid 25 25 0.5
Vancomycin 25 25

Table 2.1 Concentrations of antibiotics used during this thesis.
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Media Composition
Weight, %v/v, 
%w/v or mM 
per 1 litre

Lennox Broth (LB) Tryptone 10 g
Yeast Extract 5 g
NaCl 5 g
dH2O 1000 ml

LB Agar Tryptone 10 g
Yeast Extract 5 g
NaCl 5 g
Agar 15 g
dH2O 1000 ml

Soy Flour Media (SFM) Mannitol 20 g
Soy Flour 20 g
Agar 20 g
Tap Water 1000 ml

Tryptone Soya Broth 
(TSB)

TSB powder (Oxoid) 30 g 

dH2O 1000 ml
Yeast extract Malt extract 
medium (YEME)

Yeast Extract 3 g

Peptone 5 g
Malt Extract 3 g
Glucose 10 g
dH2O 1000 ml

Difco Nutrient Broth (DNB) 
Agar

DNB powder (BD) 4 g

Agar 20 g
Minimal Media (pH 7.0) L-asparagine 0.5 g

di-potassium hydrogen orthophosphate 0.5 g
Magnesium Sulpate heptahydrate 0.2 g
Iron (II) sulphate heptahydrate 0.01 g
Agar 10 g
dH2O 1000 ml
Before dispensing, 4 ml 50% glucose added per 200mlBefore dispensing, 4 ml 50% glucose added per 200ml

Instant Mash Agar (IMA) SMASH potato powder 20 g
Agar 20 g
Tap Water 1000 ml

Murashige & Skoog (MS) 
Medium

MS powder (Melford) 2.2 g 

Sucrose 2%
MES Sodium Salt pH 5.9 (Sigma Aldrich) 0.5 g
dH2O 1000 ml

Table 2.3 Growth media used during this thesis.

53



2.1.1 Preparation of Streptomyces  spores.

Spores from S. coelicolor or S. scabies were plated onto Soya Flour Media 

(SFM), or Instant Mash Agar (IMA) respectively, with the spores streaked out to 

grow a confluent lawn on the plate.  Plates were incubated at 30°C for 5 nights.  

Spores were harvested by  placing 1 ml of sterile 20% glycerol (2G) on the plate, 

and sloughing off the spores with a sterile cotton bud.  A further 1 ml of 2G was 

then added and the spore suspension was removed by pipetting and stored in a 

2 ml centrifuge tube at -20° C.

2.1.2 Glycerol stocks.

Glycerol stocks of E. coli strains were made by centrifuging 1ml of culture in a 

desktop centrifuge for 30 seconds.  Once centrifuged the supernatant was 

poured off, 0.5ml of fresh LB broth and 0.5 ml 40% glycerol were added.  The 

pellet was resuspended and frozen.

2.2 Genetic Manipulations. 

2.2.1 Plasmid preparation.

Qiaprep Spin Miniprep  kits (Qiagen) were used to prepare plasmid DNA from 10 

ml overnight cultures, as per the manufacturers instructions.  Plasmids were 

eluted in autoclaved distilled water and stored at -20°C.  A number of plasmids 

were synthesised by Genscript USA Inc. (section 2.4.1).

2.2.2 Cosmid preparation.

In order to recover cosmid DNA from E. coli, 1.5 ml of overnight culture 

containing the cosmid was transferred to a 1.6 ml microfuge tube and cells were 

recovered by centrifugation at 13,000 rpm for 1 minute.  The cell pellet was 
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immediately resuspended in 100 μl of Solution 1 (table 2.5).  Once 

resuspended, 200 μl Solution 2 (table 2.5) was added and the tube was mixed 

10 times by inversion.  After mixing, 150 μl ice cold Solution 3 (table 2.5) was 

added and mixing was achieved by inverting the tubes five times.  The solution 

was centrifuged for five minutes at 13,000 rpm and the supernatant was 

transferred to a fresh tube.  Immediately after centrifugation 400 μl 1:1 phenol/

chloroform was added to the supernatant and the solution was mixed for 2 

minutes on a vortex mixer. The tube was then centrifuged as above.  The upper 

phase was transferred to a fresh tube and 600 μl ice-cold 2-propanol was 

added.  The tube was left on ice for 10 minutes.  Once cooled the tube was 

centrifuged as above to spin down the precipitated cosmid DNA.  All liquid was 

removed from the tube and the pellet, containing cosmid DNA and total RNA, 

was washed with 200 μl 70% ethanol.  The tube was centrifuged as above, all 

ethanol was removed and the tube was left open on its side for five minutes to 

air dry the pellet and remove any residual ethanol.  The pellet was resuspended 

in 50 μl TE buffer plus 2 μl DNase free RNase (Sigma-Aldrich) and the tube 

was incubated at 37°C for 15 minutes. The cosmid DNA was then stored at 

-20°C.

2.2.3 Polymerase Chain Reaction.

GoTaq polymerase (Promega) was used for colony PCR, with TaqExpand Long 

Template (with buffer 3) (Roche) used for high fidelity PCR and cloning.  A 

typical reaction contained buffer supplied by the manufacturer, 50 μM dNTP mix 

(12.5 μM each dNTP), 5% DMSO, 20 pmoles of each primer (Invitrogen), 2.5 

units polymerase in a 50 μl reaction.  If the template was a plasmid, 1 μl of a 

stock at approximately 50 ng/μl was used.  When genomic DNA was used, a 
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bacterial colony was picked with a sterile wooden toothpick and scraped into a 

PCR tube.  To amplify DNA a BioRad DNA Engine thermocycler was used.  A 

typical PCR program included an initial denaturing step of 94°C/5 minutes 

followed by 25 cycles with a denaturing step  of  94°C/30 seconds, a primer 

annealing step  of 63°C/90 seconds and an extension step  of 72°C/2 minutes, 

and a final single extension of 72°C/5 minutes.  The annealing temperatures 

and extension times were tailored to suit each primer set.

2.2.4 DNA sequencing.

All cloned PCR products were sequenced using the ABI Big Dye 3.1 die-

terminator reaction mix, according to the manufacturers instructions.  When 

sequencing from a plasmid, a 10 μl reaction containing; 1 μl of DNA, 1 μl of 

primer (3.2 pm/μl), 1 μl reaction mix, 1.5 μl reaction buffer, 5.5 μl dH2O was 

used.  The thermo-cycler conditions included an initial denaturing step  of 96°C/1 

minute followed by 25 cycles with a denaturing step of  96°C/10 seconds, a 

primer annealing step  of 50°C/5 seconds and an extension step  of 60°C/4 

minutes, and a final single extension of 60°C/10 seconds.  The sequence 

a n a l y s i s w a s c a r r i e d o u t a t T h e G e n o m e A n a l y s i s C e n t r e 

(www.jicgenomelab.co.uk) using 3730XL sequencers (Life Technologies).  

Sequence trace files were analysed using 4Peaks software (mekentosj.com/

science/4peaks/).
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Solution Composition
Tris/Borate/EDTA buffer (TBE) 90 mM Tris Base

90 mM Boric Acid
2 mM EDTA

TE buffer 10 mM Tris-HCl (pH 7.0)
1 mM EDTA

DNA loading buffer 0.25% (w/v) bromophenol blue
0.25% (w/v) xylene-cyanol blue
40% (w/v) sucrose in water

DNA extraction ʻSolution 1ʼ 50 mM Tris-HCl pH 8.0
10 mM EDTA

DNA extraction ʻSolution 2ʼ 200 mM NaOH
1% (v/v) SDS

DNA extraction ʻSolution 3ʼ 3 M Potassium Acetate pH 5.5
Tris/Glycine/SDS (TGS) Buffer 25 mM Tris

192 mM glycine
0.1% (w/v) SDS

Transfer Buffer 25 mM Tris
192 mM glycine
20% (v/v) ethanol

Tris buffered saline (TBS) buffer 20 mM Tris-HCl (pH 7.6)
137 mM NaCl

TBS Tween buffer TBS + 0.1% (v/v) Tween
Blocking solution TBS + 0.1% (v/v) Tween

5% Skimmed Milk Powder
Enhanced Chemiluminescence (ECL) ʻSolution Aʼ 100 mM Tris-HCl pH 8.5

0.4 mM coumaric acid in DMSO
2.5 mM Luminol

ECL ʻSolution Bʼ 100 mM Tris-HCl pH 8.5
0.02% (v/v) Hydrogen Peroxide

TCB ultracentrifuge buffer 100 mM Tris pH 8.0
50 mM NaCl

Table 2.5 Solutions and reagents used during this thesis.

2.2.5 General restriction digest.

When digesting DNA with a single restriction enzyme typically a 20 μl reaction 

was set up  using; 1 μl of the required enzyme, 2μl of the corresponding buffer 

(Roche), 10μl of DNA and 7 μl sH2O.  A digest was incubated at 37°C for 1 

hour.  When a double digest was required, 1 μl of the second enzyme was 

added at the expense of 1 μl dH2O.
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2.2.6 DNA ligation.

DNA ligation reactions took place in a total volume of 10 μl containing 1x 

ligation buffer and 1 unit of T4 DNA ligase (Roche), tubes were placed in a float 

in a beaker of room temperature water and chilled in a refrigerator to 4°C 

overnight.  Concentrations of both vector and insert DNA were obtained using a 

nanodrop ND2000c (Thermo Scientific), with volumes of vector and insert being 

adjusted so that the molar ratio was approximately 3:1, with total DNA 

concentration being approximately  10 μg/ml.  The following day the ligations 

were PCR purified (Qiagen) as per the manufacturers instructions, and 

electroporated into E. coli strain DH5α.

2.2.7 Preparing and transforming CaCl2 competent cells.

An E. coli overnight culture was diluted 1/50 in 10 ml fresh LB and grown  at 

37°C until the OD600 reached between 0.3-0.6.  The cells were then recovered 

by centrifugation, the media decanted and the cell pellet resuspended in 5ml ice 

cold CaCl2 (glycerol).  The cells were left on ice for a minimum of 30 minutes.  

The cells were then recovered by centrifugation and resuspended in 1 ml ice 

cold CaCl2 (glycerol).  The cells were left on ice for a minimum of 10 minutes 

then aliquoted out into 500 ml aliquots for storage at -80°C.  10 μl of the 

plasmid to be ligated was mixed with 200 μl of CaCl2 and plated onto pre-

warmed plates containing the appropriate antibiotics.

2.2.8 Preparation of electrocompetent cells.

E. coli cells to be electroporated were grown overnight from glycerol stocks with 

the relevant antibiotics in 10 ml of growth medium.  The overnight culture was 

diluted 1/100 into 10 ml of fresh LB and grown shaking for 3-4 hours until they 
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reached an OD600 of approximately 0.4.  The cells were recovered by 

centrifugation at 4000 rpm in a desktop  centrifuge at 4°C.  Once recovered the 

supernatant was poured off and the cell pellet was gently resuspended in 10 ml 

of ice-cold 10% glycerol.  The cells were recovered by centrifugation as above, 

with the pellet resuspended in 5 ml of ice-cold glycerol.  The cells were again 

centrifuged, the supernatant decanted and the cells resuspended in the 

remaining volume of glycerol (~100 μl).  Cells were then divided into 50 μl 

aliquots and stored at -20°C.

2.2.9 Electroporating cells.

Cosmid DNA (2 μg) was used to transform 50 μl of pre-prepared 

electrocompetent cells in an ice cold electroporation cuvette using the BioRad® 

Electroporator set to: 200 Ω, 25 μF and 2.5 kV.  Immediately  following 

electroporation, 1 ml of ice cold LB broth was added to the cuvette.  The entire 

contents of the cuvette was transferred to a 1.5 ml microfuge tube and the cells 

were incubated shaking at 30ºC for 1 hour.  A 0.5 ml sample of these cells were 

plated onto an agar plate containing the relevant antibiotics and incubated 

overnight.

2.2.10 Agarose Gel electrophoresis.

Assessing the sizes of DNA fragments required running them in agarose gels 

containing 1% (w/v) agarose in 1x TBE buffer (table 2.5) and 1 μl ethidium 

bromide.  Samples were mixed with 0.25 volumes of DNA loading buffer (table 

2.5) and the gels were run in 1x TBE buffer at 100v for approximately  1 h.  A 

1Kb  DNA marker ladder (Roche) was co-electrophoresed alongside the 

samples, and the DNA was visualised by exposure to UV light. 
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2.2.11 Extraction of DNA from agarose gels.

DNA fragments of interest were excised from an agarose gel using a scalpel 

and extracted using a Qiaquick Gel Extraction Kit (Qiagen), according to the 

manufacturerʼs instructions.  The DNA was eluted in 50 μl dH2O.

2.2.12 PCR purification.

The Qiaquick PCR purification kit (Qiagen) was used to remove any 

incorporated nucleotides, primers, enzymes etc. from a PCR reaction.  The 

DNA was eluted in 50 μl dH2O.

2.2.13 Precipitating DNA with Ethanol.

To precipitate DNA from a solution, 1/10 volume of 3M Sodium Acetate was 

added to the sample which was then mixed by inversion.  Two volumes of ice 

cold 100% ethanol was then added followed by mixing by inversion.  The 

mixture was centrifuged at 13000 rpm in a bench top centrifuge for 10 minutes.  

Post centrifugation, all ethanol was removed by pipetting and 200 μl of 70% 

ethanol was added to the pellet which was mixed by inversion.  The sample was 

centrifuged at 13000 rpm for 5 minutes, and all ethanol was removed.  The 

microfuge tube was left open for 2 minutes to air dry the DNA pellet which was 

then resuspended in either 30 μl TE buffer (table 2.5) containing 2 μl RNase 

(Sigma-Aldrich), or 30 μl autoclaved distilled water.

2.2.14 Chromosomal DNA preparation from Streptomyces.

An overnight culture of Streptomyces grown in 50% TSB/YEME media at 30 °C 

was centrifuged at 4000 rpm in a desktop centrifuge for 5 minutes.  The 

supernatant was discarded and the cell was resuspended in 500 μl of Solution 
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1 (table 2.5) and transferred to a 1.5 ml microfuge tube.  10 μl of filter sterilised 

lysozyme (30 mg/ml) and 5 μl DNase-free RNase (10 mg/ml) (Roche) were 

added and the mycelial pellet was incubated for 1 hour at 30°C.  After 

incubation, 5 μl of 20% SDS was added and the solution was mixed by 

inversion.  One volume of 1:1 phenol-chloroform (approximately  500 μl) was 

added and the solution was mixed thoroughly by vortexing for 1 minute and 

centrifuged on a bench-top centrifuge at full speed for 5 minutes.  Post-

centrifugation, the solution had separated and the upper-aqueous level 

containing the DNA was carefully removed and transferred to a fresh microfuge 

tube.  The phenol-chloroform steps were repeated until the top aqueous level 

was clear, indicating the all protein had been removed.  The clear aqueous layer 

was transferred to a fresh microfuge tube, and 1 ml of 100% ethanol was 

added.  The tube was mixed by inverting the tube several times followed by 

centrifuging at maximum speed for 5 minutes.  All ethanol was removed and the 

resultant cell pellet was washed in 200 μl 70% ethanol and centrifuged for 2 

minutes at maximum speed.  All ethanol was removed and the pellet was dried 

for one minute at room temperature.  The DNA was resuspended in 50 μl of 

sterile water.  Where necessary the microfuge tube was warmed to 37 °C  for 15 

minutes to dissolve the DNA pellet.

2.3 Constructing gene knockouts.

2.3.1 Generating a knockout PCR product.

The antibiotic resistance cassette of choice, typically apramycin (apr) or 

hygromycin (hyg), containing the origin of transfer oriT was amplified using 

knockout (KO) primers specific for the gene to be disrupted (see table 2.4).  The 

details of the plasmids containing the antibiotic cassettes, as well as instructions 
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regarding the design of the KO cosmids was found at http: / /

streptomyces.org.uk/.  The forward primer contains 39 nucleotides (nt) of the 

upstream coding region ending ATG, the translational start codon of each gene, 

plus a 20 nt P1 sequence corresponding to the 5′ end of the antibiotic 

resistance cassette.  The reverse primer had 39 nt of antisense sequence 

ending TGA, the translational stop  codon of each gene plus a 19 nt sequence 

corresponding to the end of the antibiotic resistance cassette.  The PCR 

amplification included an initial denaturing step  of 94°C/2 minutes followed by 

10 cycles with a denaturing step of 94°C/45 seconds, a primer annealing step  of 

50°C/45 seconds and an extension step of 72°C/90 seconds, followed by 15 

cycles with a denaturing step of 94°C/45 seconds, a primer annealing step of 

55°C/45 seconds and an extension step of 72°C/90 seconds with and a final 

single extension of 72°C/5 minutes. PCR products were checked by agarose 

gel electrophoresis, excised and gel extracted then stored at -20ºC until use.

2.3.2 Introducing cosmids into E. coli.

Cosmids from S. coelicolor or S. scabies were obtained from the Streptomyces 

group at the John Innes Centre (JIC) or Prof Rose Loriaʼs group  at Cornell 

University, respectively.  These cosmids contained the wild-type copy of the 

gene to be targeted for replacement.  To check the S. coelicolor cosmids were 

correct they were digested with SacI (1μl SacI, 2 μl Buffer A, 17 μl cosmid DNA) 

at 37ºC for 1 hour.  The S. scabies cosmids were digested with BamHI (1μl 

BamHI, 2 μl Buffer B, 17 μl cosmid DNA) at 37ºC for 1 hour.  All digests were 

separated on a 1% agarose gel with the results checked either in silico at http://

streptomyces.org.uk/redirect/res_cosmid2.html or, for S. scabies cosmids, via 

information received from Prof Rose Loriaʼs group at Cornell university.
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Cosmid DNA (2 μg) was used to transform 50 μl electrocompetent E. coli 

BW25113/pIJ790 as described in section 2.2.9.  The entire contents of the 

cuvette were transferred to a 1.5ml microfuge tube and the cells were incubated 

shaking at 30ºC for 1 hour.  A 0.5 ml sample of these cells were plated onto LB-

agar containing; ampicillin, kanamycin (to select for the incoming cosmid) and 

chloramphenicol (to select for pIJ790), at concentrations described in table.  

The plates were incubated at 30°C  overnight.  A single colony was picked from 

each plate and inoculated into a 10ml LB broth containing the same antibiotics.  

These cultures were grown shaking overnight at 30°C.

2.3.3 PCR-targeting the S. coelicolor cosmid.

An overnight culture (0.1 ml) of E. coli BW25113/pIJ790 containing the cosmid 

of choice was inoculated into 10 ml LB broth plus antibiotics (as in the previous 

section) and 100 μl 1M L-arabinose, and grown shaking at 30°C for 4 hours.  

The arabinose induces the λ red genes carried on pIJ790 allowing 

transformation with linear DNA [84].

The cells were made electrocompetent and 50μl cells were electroporated with 

2 μl of the antibiotic knockout PCR corresponding to the gene of choice.  The 

cells were incubated shaking at 37°C  for 1 hour and then plated onto LB agar 

containing ampicillin  and kanamycin, to select for the cosmid, and apramycin, 

to select for the gene disruption.  The plates were incubated at 37°C  overnight 

to select for the loss of pIJ790.  Single colonies were selected and grown in 10 

ml LB broth plus antibiotics for 15 hours at 37°C.
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2.3.4 Checking the mutagenised cosmid.

The cosmids were extracted from overnight cultures as in section 2.2.2 and 

were checked for gene disruption using PCR.  Test primers for the disrupted 

genes of choice were used in combination with primers P1 and P2 which anneal 

to the antibiotic resistance cassette (see table 2.4) to ensure the knock-out was 

successful.  The cosmids were also digested with SacI or BamHI to check for 

disruption.

2.3.5 Conjugating the cosmids into Streptomyces.

Both S. coelicolor and S. scabies contain a methyl-sensing restriction system. 

The disrupted cosmid must therefore be passaged through the non-methylating 

E. coli strain ET12567 before introduction into the target Streptomyces species. 

Cosmid DNA (2 μl) was electroporated into 50 μl of electrocompetent ET12567 

cells containing the driver plasmid pUZ8002 (table 2.2). Following 

electroporation the cells were plated onto LB agar containing; ampicillin, 

apramycin and chloramphenicol to select for the incoming cosmid, and to retain 

the dam mutation.  The plates were incubated at 37ºC overnight.  Single 

colonies were selected and grown in 10 ml LB broth plus antibiotics at 37ºC 

overnight.

Overnight culture (300 μl) was diluted into 10 ml fresh LB broth plus antibiotics 

and grown shaking for 4 hours at 37ºC. Cultures were centrifuged for 5 minutes 

at 13,000 rpm to recover the cells.  The pellet was then washed twice with fresh 

LB broth, to remove any antibiotics potentially harmful to S. coelicolor or S. 

scabies.  The cell pellet was then resuspended in 1 ml fresh LB broth.
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Spores (10 μl) of the required strain were added to 500 μl LB broth, and heat 

shocked at 50°C in a water bath for 10 minutes. They were left to cool for 15 

minutes at room temperature.

Washed E. coli cells (500 μl) were mixed with 500 μl of heat shocked spores. 

The mixture was centrifuged briefly, the supernatant was poured off and the 

remaining volume (about 50 μl) was used to resuspend the pellet. The entire 

mixture was then plated out onto SFM agar for S. coelicolor, or IMA agar for S. 

scabies  and incubated at 30°C for 16-20 hours.

The following day the SFM or IMA plates were overlaid with 1 ml of sterile H2O 

containing 0.5 mg naladixic acid (an antibiotic used to selectively kill E. coli) and 

either 1.25 mg apramycin or 0.625 mg hygromycin (to select for recombination 

of the incoming cosmid with the streptomycete chromosome).  A sterile 

spreader was used to gently  distribute the antibiotic solution evenly.  Once 

overlaid the plate was incubated at 30°C for four days or until colonies 

appeared. These colonies were replicated using velvets onto DNA agar plates 

containing nalidixic acid and apramycin (or hygromycin) and DNA plates 

containing nalidixic acid and kanamycin.  These were incubated at 30°C for two 

days.

Any double cross-over exconjugants would be apramycin or hygromycin 

resistant and kanamycin sensitive as the apr or hyg cassette has replaced the 

chromosomal copy of gene in the genome.  These colonies were picked from 

the original conjugation plate and plated onto an SFM or IMA plate containing 
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apramycin or hygromycin and nalidixic acid (as above).  This plate was grown at 

30°C for five days.  This cycle of apramycin/hygromycin selection followed by 

velvet replica plating was done a minimum of three times to ensure loss of all 

kanamycin resistant single crossovers. Spores of these double cross-over 

exconjugants were prepared and stored at -20°C. 

2.3.6 Excising the gene disruption cassette using FLP recombinase.

The antibiotic disruption cassette found in the gene disruption contains FLP 

recognition targets (FRT) sites at the 5′ and 3′ ends.  The enzyme FLP 

recombinase is able to remove the cassette between these FRTs leaving an 

81bp ʻscarʼ. 

E. coli DH5α/BT340 (table 2.2) was grown shaking at 30°C in 10 ml LB broth 

containing chloramphenicol (to retain the BT340 plasmid) overnight.  A fresh 10 

ml LB broth was inoculated using 100 μl of this overnight culture and grown with 

chloramphenicol for 4 hours.  These cells were made electrocompetent and 

electroporated with the apramycin cassette disrupted cosmid.  The 

electroporation was plated out onto LB agar containing apramycin (to select for 

the incoming cosmid) and chloramphenicol (to retain BT340).  The plate was 

incubated at 30°C for 2 days.  A  single colony was selected and restreaked onto 

LB agar containing no antibiotics, which was in turn plated at 42°C  for 15 hours 

to induce expression of FLP recombinase followed by loss of the BT340 

plasmid.  The cosmids were checked using PCR primers against the gene of 

choice.  If the apra cassette had been removed by the FLP recombinase an 

81bp PCR fragment was amplified and could be detected by electrophoresis.
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2.3.7 Introduction of oriT to a FLP cosmid.

The removal of the apramycin cassette by the action of FLP recombinase also 

removes the origin of transfer (oriT) found within it.  In order for the knockout 

FLP cosmid to be introduced into the S. coelicolor chromosome, a new oriT 

must be introduced to the cosmid.  This was done by amplifying the apramycin 

cassette from plasmid pIJ773 (table 2.2) which contains an oriT using the 

apramycin specific primers (known as P1 and P2) with flanking sequence 

against the bla gene in the cosmid backbone (table 2.4).  Once amplified, this 

cassette was transformed into electrocompetent E. coli BW25113/pIJ790 (as 

described above) containing the FLP knockout cosmid of choice.  Following 

electroporation the cells were plated onto LB agar containing ampicillin and 

apramycin to select for the altered cosmid.  The plates were incubated at 37ºC 

overnight.

Once checked by PCR, the FLP cosmids were transformed into 

electrocompetent Et12567/pUZ8002 as before, and stored at -20°C.  This strain 

was conjugated into the required Streptomyces species to create an unmarked 

gene deletion.  Single exconjugants were selected by growing potential 

unmarked deletion mutants on SFM media containing kanamycin to select for 

the incoming FLP cosmid.  Kanamycin resistant colonies were selected and 

streaked for single colonies onto SFM containing no antibiotics.  These plates 

were grown for 4-5 nights then the colonies were replica plated onto DNA agar 

plates containing either apramycin or kanamycin.  Colonies that were sensitive 

to both represented potential double exconjugants and were selected and 

tested by PCR for the FLP scar.
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2.4 Gene Complementations

2.4.1 Complementation with full length and truncated lsp.

The unmarked deletion strain of S. coelicolor lsp, lspFlp  was complemented 

with both full length, and N-terminally truncated versions of the gene.  The 

truncations removed either the first 10, 20, 30 or 40 amino acids of the gene, 

and were designed so that the first codon was in the same position as the 

annotated lsp start codon with an additional 300 bp upstream DNA, containing 

the lsp promoter.  The constructs were synthesised by Genscript USA Inc. and 

cloned into the vector pUC57.  Each allele was excised from the pUC57 by 

digestion with BamHI and EcoRI restriction enzymes and sub-cloned into 

pSET152, to make the plasmids listed in table 2.2.  Each plasmid was 

transformed into ET12567 / pUZ8002 by  electroporation, and transformants 

were selected on LB agar containing apramycin.  The transformed strains were 

conjugated into S. coelicolor M145 ΔlspFLP and plated onto SFM medium.  

Exconjugants were selected using apramycin resistance.

2.4.2 Complementation of lsp::apr with 4A10.

In order to reverse the apramycin disruption of the lsp gene, the wild type gene 

was reintroduced into the strain M145 lsp::apr.  The cosmid 4A10, containing 

the lsp gene, was electroporated into E. coli strain BW25113/pIJ790 and plated 

onto LB-agar containing ampicillin, kanamycin and chloramphenicol.  The plate 

was incubated at 30°C overnight.  A single transformant was picked and grown 

in 10 ml LB broth containing the same antibiotics and grown shaking overnight 

at 30°C. Overnight culture (0.1 ml) was diluted into 10 ml fresh LB broth plus 

antibiotics plus and 100 μl 1M L-arabinose and grown for approximately 4 hours 

at 30°C.  These cells were made electrocompetent, and the ampicillin 
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resistance gene (bla) found on the backbone of the cosmid was replaced by 

electroporating the cells with a hygromycin resistance cassette (containing oriT) 

that was amplified with primers bla replacement For and bla replacement Rev 

(table 2.4). Hygromycin resistant, ampicillin sensitive colonies were selected 

and confirmed by PCR using the bla Test For and bla Test Rev primers (table 

2.4).  The cosmid was extracted and transformed into E. coli ET12567 / 

pUZ8002 by electroporation and conjugated with the strain M145 lspFlp  

Selection for single exconjugants involved picking colonies that were 

hygromycin resistant, kanamycin resistant and apramycin sensitive.  After 

growth on SFM agar in the absence of antibiotics, double exconjugants were 

selected by identifying colonies that were hygromycin sensitive, kanamycin 

sensitive and apramycin sensitive, with genomic DNA tested by PCR, using the 

Lsp  Test For and Lsp  Test Rev primers to ensure the full length gene was 

present.

2.4.3 E. coli complementation.

E.coli lsp was amplified from genomic DNA using primers EcolspA For and 

EcolspA Rev. S. coelicolor lsp and S. coelicolor N40 lsp were amplified using 

pBT100 and pBT105 as templates, respectively.  PCR primers ScoFL LspA For 

and Sco LspA Rev were used for S. coelicolor lspA with ScoN40 LspA For and 

Sco LspA Rev used for S. coelicolor N40 lspA.  Each of the forward primers 

incorporated an NdeI restriction site, and each of the reverse primers 

incorporated a BamHI restriction site.  Once amplified, each PCR product run 

on a 1% agarose gel, extracted and gel purified (sections 2.11, 2.12) was 

cloned into PCR2.1-Topo (Invitrogen).  Following cloning, each plasmid was 

transformed into competent Top10 E. coli cells (Invitrogen) and plated onto LB-
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agar, containing ampicillin, X-Gal and IPTG and incubated at 37°C overnight.  

White colonies were selected from the overnight plates, grown for 15 hours in 

LB-media and ampicillin at 37°C.  Plasmids were extracted from each overnight, 

digested with NdeI and BamHI and ligated into the vector pBAD24-NdeI to 

make vectors pBT106-109 (table 2.2), such that each inserted gene is under 

the control of the arabinose-inducible pBAD promoter.  Each clone was 

confirmed by restriction digest and sequencing and then used to transform E. 

coli strain BW25113 / pIJ790 by  electroporation.  The incoming plasmid was 

selected for by growth on LB-agar containing ampicillin, with kanamycin and 

chloramphenicol, and grown at 30 °C in order to maintain pIJ790.  The 

chromosomal copy of lsp was disrupted by PCR targeting it using an apramycin 

cassette containing lspA flanking DNA amplified using the EcolspA KO For and 

EcolspA KO Rev PCR primers.  Transformants were plated onto LB agar 

containing ampicillin, apramycin, and arabinose, to express the lsp alleles in 

trans.

2.5 Protein Methods

2.5.1 Protein preparation for electrophoresis.

Mycelium from an overnight culture grown shaking at 30°C in 10 ml of 50% 

TSB/YEME media was harvested by centrifuging in a bench-top centrifuge at 

4000 rpm for 5 minutes.  All medium was discarded and the pellets were 

washed in 1 ml of TCB (table 2.5) and transferred to a microfuge tube.  The 

pellet was centrifuged briefly, the TCB removed and was resuspended in a 

volume of fresh TCB ranging from 100μl to 500μl depending on the size of the 

pellet.  The required volume of 50x EDTA free protease inhibitor (Roche) was 

added to the mix.
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The suspensions were sonicated, on ice, at 50 kHz for 5 seconds, followed by 

one minute chilling on ice.  Each sample was sonicated an average of 5 times.  

Following sonication the samples were centrifuged in a bench-top centrifuge at 

15,000 rpm for 1 minute and the supernatant stored at -20°C  as crude protein 

extract.

2.5.2 SDS-PAGE.

15% SDS polyacrylamide gels were cast using a mini Protean 3 system as per 

the manufacturerʼs instructions (BioRad).  In addition to the 15% 

polyacrylamide, the resolving gels contained 0.325M Tris-HCl pH 8.8, 0.1% (w/

v) SDS, 0.01% (v/v) TEMED and 0.1% (v/v) ammonium persulphate (APS).  

The mixture was poured between two glass plates to a distance of 

approximately  2.5 cm from the top of the plates and was layered with 100% 

ethanol.  Once polymerisation had occurred, the ethanol was removed and the 

gel was washed with dH2O.  All water was removed using filter paper, and the 

stacking gel was layered on top.  The stacking gel consists of 4% 

polyacrylamide, 0.125M Tris-HCl pH 6.8, 0.1% (w/v) SDS, 0.01% (v/v) TEMED 

and 0.1% (w/v) APS.  A comb was inserted into the top layer, and once 

polymerisation had occurred, the comb  was removed and the gel was fastened 

into its electrode, and placed into the electrophoresis tank, which was filled with 

TGS buffer (table 2.5).  The concentration of protein in samples was 

ascertained using a BioRad protein concentration assay kit.  Equal 

concentrations of protein were loaded into each well, having first been mixed 

with one volume of Laemmli buffer (BioRad) + 5% 2-mercaptoethanol and 

boiled at 95°C for 2 minutes.  The samples were run at 200 volts for 1.5 hours.  
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2.5.3 Semi-dry immunoblotting.

For immunoblotting, proteins immobilised within the gel were transferred to a 

polyvinylidene difluoride (PDVF) membrane using a Bio-Rad Semi Dry Transfer 

Cell.  Following electroporation, the gel was washed in transfer buffer (table 

2.5), along with 12 pieces of 1 mm filter paper (Whattman) cut slightly larger 

then the gel. Six pieces of filter paper were placed in the Transfer Cell with a 

sheet of PVDF membrane (BioRad), cut to a slightly smaller size and presoaked 

in methanol and then transfer buffer was lain on top.  The gel was then placed 

on top of the membrane, with the final 6 sheets of filter paper rested on top.  

Pressure was placed on this sandwich to remove any air bubbles, and any 

excess transfer buffer was removed.  The Transfer Cell was assembled and run 

at 15 volts for 1 hour.  Following the run, the membrane was blocked overnight, 

shaking, in 50 ml blocking solution (table 2.5).  The following day the blocking 

solution was removed, and 10 ml of fresh blocking solution containing either 8 

μl of CseA primary antibody or 2 μl Anti-His-HRP antibody was added.   The 

membrane was incubated in this solution on a shaker for 1 hour at room 

temperature.  After incubation the membrane was washed twice in 20 ml 1 x 

TBS + 1% Tween.  Each wash was 10 minutes long.  Following these washes, 

the TBS/Tween was removed and 10 ml of fresh blocking solution containing 

2.5 μl of secondary antibody (HRP-linked anti-rabbit IgG) was added to the 

CseA blot.  The Anti-His antibody  is an HRP conjugate and requires no 

secondary antibody.  The membrane was incubated for 1 hour.  Once this 

incubation was complete the membrane was washed twice as above.  2 ml of 

developing solution was mixed immediately  prior to development (table 2.5), 

and then pipetted over the membrane, ensuring the entire surface was covered, 

and then incubated at room temperature for 1 minute.  Once incubated the 
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membrane was placed in an Hypercassette (GE Healthcare), covered with 

clingfilm and overlaid with X-ray film (FujiFilm).  The X-ray  film was exposed for 

1 minute, with fresh exposures taken at increasing/decreasing time points as 

required. Films were developed using a Konica-Minolta SRX-101A development 

machine.

2.5.4 Sub-cellular fractionations.

In order to separate the cell membrane from the cytoplasm, crude cell extracts 

were ultracentrifuged.  Crude extracts were placed in a 1 mm thick walled 

centrifuge tube (Beckman) and were balanced by volume.  The tubes were 

spun for 1 hour at 80,000 rpm at 4°C in a Beckman centrifuge.  Following 

centrifugation the supernatant (cytoplasmic fraction) was removed and stored at 

-20°C.  200 μl of fresh TCB buffer was added and the tubes were respun as 

above.  The supernatant (wash fraction) was removed and discarded, leaving 

the cell membrane pellet.  This was resuspended by gentle pipetting in 50 - 200 

μl of TCB + 1% Sarcosyl depending on the size of the pellet.  This membrane 

fraction was then stored at -20°C.

2.6 Microscopy.

2.6.1 Light Microscopy.

Brightfield images were acquired using a Zeiss M2 Bio Quad SV11 

stereomicroscope. The samples were illuminated with a halogen lamp and 

reflected-light images captured with an AxioCam HRc CCD camera and 

AxioVision software (Carl Zeiss, Welwyn Garden City, UK).
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2.6.2 Scanning Electron Microscopy.

Samples were mounted on an aluminium stub using Tissue TekR (BDH 

Laboratory Supplies, Poole, UK).  The stub  was then immediately  plunged into 

liquid nitrogen slush at approximately -210°C  to cryo-preserve the material.  The 

sample was transferred, onto the cryostage of an ALTO 2500 cryo-transfer 

system (Gatan, Oxford, UK) attached to a Zeiss Supra 55 VP FEG scanning 

electron microscope (Zeiss SMT, Germany).  Sublimation of surface frost was 

performed at -95°C  for three minutes before sputter coating the sample with 

platinum for 3 mins at 10mA, at colder than -110°C.  After sputter-coating, the 

sample was moved onto the cryo-stage in the main chamber of the microscope, 

held at approximately -130°C. The sample was imaged at 3 kV and digital TIFF 

files were stored.

2.7 Phenotype Assays.

2.7.1 Antibiotic sensitivity.

All phenotype assays were conducted in a standard 12 well cell culture plate.  

Each well contained 3 ml minimal media (+1% glucose).  When strains were 

being tested for sensitivity to antibiotics, the required concentration of the 

relevant antibiotic was dissolved into the minimal medium before it was poured 

into the 12 well plate.  The highest concentration was found in well A1, whilst 

the lowest was found in well C3.  A  control well containing no antibiotics was 

found in C4.  100 μl of sterile water containing 1 μl spores was placed onto 

each well and thoroughly spread to cover the entire surface of the growth 

media.  The plates were sealed and incubated at 30°C for 5 days.  Growth was 

assessed as either ʻconfluentʼ, ʻweakʼ where there were sufficient colonies to 

count individually, or ʻnoneʼ where there was an absence of any colonies.
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2.7.2 Lysozyme/SDS sensitivity.

When strains were assessed for sensitivity to lysozyme or SDS, they were they 

were tested in three different ways.  Firstly 100 μl of sterile water containing 1 μl 

spores was placed onto each well of a plate containing 3 ml minimal media.  

The plates were dried in a sterile flow hood, and once fully dried, they were 

overlaid with sterile water containing differing concentrations of lysozyme, or 

percentages of SDS.  The plates were dried as before, sealed and incubated at 

30°C for 5 days.  A variance of this method involved the spores being placed 

onto the plates and dried as above, but grown for 15 hours at 30°C  prior to 

overlay with the lysozyme or SDS.  Once overlayed the plates were reincubated 

for a further 5 days.  The final assay  involved preincubation of the spores in 

sterile water containing differing concentrations of lysozyme or percentages of 

SDS for one hour, prior to plating onto 12 well plates.

2.8 Virulence assays.

2.8.1 Potato disc tuber assay.

A potato tuber of the cultivar Maris Piper, was washed and peeled.  The tuber 

was surface sterilised by immersion in 2% bleach for 5 minutes, with stirring.  

The potato was transferred using sterile forceps into a beaker containing 500 ml 

of sterile water in a laminar flow hood.  The potato was rinsed for 2 minutes, 

and transferred to a second beaker of water where it was washed as before.  

After washing was completed, the potato was lain on some sterile paper towels 

and cores were taken using a sturdy potato peeler (sterilised with ethanol).  

These cores were sliced into discs 0.5 cm thick using a sterile scalpel.  The 

slices were placed onto sterile filter paper, prewetted with 2 ml of sterile water, 

in a petri dish.  Four potato slices were placed in each dish.  Plates of the S. 
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scabies strains were prepared on IM agar.  Spores were plated in order to 

obtain confluent lawns of bacteria.  The plates were incubated for 5 nights, and 

agar plugs (1 cm2) were cut using a sterile scalpel.  A plug was placed on each 

potato piece, spore side down.  Uninoculated IM agar was used as a negative 

control.  The plates were sealed and incubated at 30 °C in the dark for either 2 

nights, or 7 nights.  The agar plugs were then removed and the potato slices 

were viewed under a microscope to investigate signs of necrosis.

2.8.2 Radish seedling root virulence assay.

Radish seeds of the cultivar Scarlet Globe were soaked in 70% ethanol for 10 

minutes, the ethanol removed, then soaked in 13% bleach for a further 10 

minutes.  The bleach was removed, and the seeds were washed copiously in 

sterile H2O.  The seeds were placed onto sterile filter paper in a petri dish, 

prewetted with 2 ml sterile H2O.  The seeds were incubated in the dark at room 

temperature for 24 hours.  Cultures of various S. scabies strains were set up by 

growing 1 x 106 spores in 10 ml of 50% TSB/YEME media, with the relevant 

antibiotics at 30° C for 20 hours.  After this time had elapsed the mycelium was 

collected by  centrifugation and washed twice in TSB.  After the final wash the 

mycelium was resuspended in 1 ml of TSB broth, with 500 μl being spread over 

half a square petri dish containing plant MS medium (table 2.3) (1% agar).  The 

remaining 500 μl of mycelium were placed in a 12 well cell culture plate, into 

which seedlings at the same stage of germination were immersed prior to being 

placed in the petri dish.  These dishes were sealed and stored vertically in a 

incubation chamber at 21° C with a day length of 12 hours.
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Chapter 3 - The lipoprotein biosynthetic pathway of S. coelicolor.

3.1 Introduction

This chapter focuses on the biosynthetic pathway by which S. coelicolor 

processes its lipoproteins, from the cytoplasm to the fully  functional cell surface 

protein.  The lipoprotein biosynthetic pathway in S. coelicolor consists of several 

different steps, starting with translocation of the protein across the cell 

membrane.  This usually occurs via the Sec pathway but S. coelicolor can also 

export fully folded, but unlipidated lipoproteins through the twin arginine 

translocase (Tat) pathway and this appears to be unusual amongst bacteria 

[82].  Following translocation the protein is anchored in the bacterial membrane 

by its signal sequence.  The protein is tethered to the membrane by the addition 

of a diacylglyceryl lipid moiety to the conserved cysteine residue found in all 

lipoprotein signal sequences.  Addition of this lipid is catalysed by the 

membrane bound enzyme Lgt (Lipoprotein diaclyglyceryl transferase).  Once 

lipidated, the Lsp  enzyme (Lipoprotein signal peptidase) cleaves the signal 

peptide from the anchored, lipidated protein to produce the mature lipoprotein.  

As mentioned in Chapter 1 this pathway is strictly ordered in Gram negative 

bacteria [14] and appears, with few exceptions, to be similarly controlled in 

Gram positive bacteria.  There are some unusual aspects to the lipoprotein 

biosynthetic pathway in S. coelicolor which will be examined in detail below.  

Whilst there is only one copy of the lsp gene as in other bacteria, there are two 

putative lgt genes, named in this study as lgt1 (Sco2034) and lgt2 (Sco7822).  

There are also two copies of lnt, lnt1 (Sco1014) and lnt2 (Sco1336).  What role 

these genes have is currently  unknown, however, as discussed in Chapter 1, 

the recent discovery  of a fully functional Lnt protein in M. smegmatis, does 

suggest that one or both may serve their predicted function.
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3.2 Aims.

The aims for this chapter are two-fold.  Firstly, it will focus on the bioinformatic 

analysis of the lipoprotein biosynthetic enzymes from a variety of bacterial 

species and analysis of the functions of the predicted 223 lipoproteins found in 

S. coelicolor.  These functions will be related to any potential developmental 

phenotypes gained from the second aim, which is to obtain and analyse 

mutants in each of the lipoprotein synthesis genes found in S. coelicolor, using 

the REDIRECT system.  These mutants will be examined both macroscopically 

and microscopically, using light and electron microscopy.  Two model 

lipoproteins, CseA (SCO3357) and SCO3484 will be immunoblotted to examine 

their processing in each of the mutants, either natively, or fused to a hexa-

histidine peptide.  Each of the mutants will be subjected to a variety of stresses, 

to gauge the effect the mutations are having on the bacteria.  Any mutants 

which exhibit a drastic phenotype will be complemented to see whether it is 

possible to restore the wild-type phenotype.

3.3 Results.

3.3.1 Identification and comparison of the lipoprotein biosynthetic 

enzymes.

In order to learn more about the lipoprotein biosynthetic enzymes in S. 

coelicolor the sequences were first identified by BLASTP analysis and then 

aligned with the primary sequences of homologous enzymes from other 

bacteria.  In total, eight species were chosen for sequence comparisons.  

Alongside S. coelicolor (Sco), three other streptomycetes were chosen: S. 

scabies (Scab), S. avermitilis (Sav) and S. griseus (Sgr).  Two related 

actinomycetes M. tuberculosis (Mtb) and M. smegmatis (Msm) were also 
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chosen, primarily due to the confirmed Lnt enzyme in M. smegmatis.  B. subtilis 

(Bsu) was used to represent the low GC Gram-positive bacteria.  Finally, the 

model Gram-negative bacterium E. coli (Eco) was chosen, as much of the work 

involved with identifying essential residues in Lgt and Lnt has been carried out 

in E. coli.

3.3.1.1 Lipoprotein diacyglycerol transferase (Lgt).

The two Lgt enzymes from S. coelicolor share 60% identity.  Both are predicted 

to contain seven transmembrane helices (http://www.enzim.hu/hmmtop/, http://

www.cbs.dtu.dk/services/TMHMM-2.0/, http://www.ch.embnet.org/software/

TMPRED_form.html).  Both S. coelicolor enzymes show a high degree of 

identity with the other Streptomyces species (>70%), and both have ≥45% 

similarity  with the MtbLgt enzymes.  Both ScoLgt1 nor ScoLgt2 share a low  

identity with the Lgt enzymes from E. coli and B. subtilis (<30%), however the 

enzymes from these two species are equally dissimilar.

The Histidine residue at position 103 in the E. coli Lgt enzyme has been shown 

to be essential for function [17], but interestingly it is absent from all of the 

actinomycete proteins compared, where it is a tryptophan (fig. 3.1).  Conversely, 

the two other amino acids important for function in E. coli , His-196 and Tyr-235 

[17], are both present in all of the bacteria, with the exception of H196Q in M. 

tuberculosis.
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ScoLgt1 ---MELAFIPSPSRGVLHLGPVPLRGYAFCIIIGVFVAVWLGNKRWVARGG--RPGTVAD 55
ScoLgt2 ---MDLAYLPSPSTGVLHLGPIPLRAYAFCIILGVFAAVWLGNRRWVARGG--KQGVIAD 55
ScabLgt ---MELAYIPSPSHGVYYLGPVPLRGYAFCIIIGVFVAVWLGNKRWVARGG--QAGTIAD 55
SavLgt  ---MELAYIPSPARGVLYLGPIPLRGYAFCIIIGVFVAVWLGNKRWVARGG--RPGTVAD 55
SgrLgt  ---MNLAFIPSPSTGVIELGPIPLRGYAFCIIIGVFVAVWFGNKRWVARGG--KAGTVAD 55
MtbLgt  -MRMLPSYIPSPPRGVWYLGPLPVRAYAVCVITGIIVALLIGDRRLTARGG--ERGMTYD 57
MsmLgt  MTTTVLAYLPSPSQGVWHLGPVPIRAYALCIIVGIVAALVIGDRRWQARGG--EPGVIYD 58
EcoLgt  -MTSSYLHFPEFDPVIFSIGPVALHWYGLMYLVGFIFAMWLATRRANRPGSGWTKNEVEN 59
BsuLgt  ----MNEAIEPLNPIAFQLGPLAVHWYGIIIGLGALLGLWIAMRESEKRGL--QKDTFID 54
                       
ScoLgt1 IAVWAVPFGLIGGRL-YHVITDYQLYFSE-GRDWVDAFKIWEGGLGIWGAIAFGAVGAWI 113
ScoLgt2 VTLWAVPFGLVGGRL-YHVFTSPDAYFGE-RGEPVRALYVWEGGLGIWGAIALGAVGAWI 113
ScabLgt IAVWAVPFGLVGGRL-YHVITDYELYFSE-GRDWVDAFKVWEGGLGIWGAIALGAVGAWI 113
SavLgt  IAVWAVPFGLVGGRL-YHVITDYELYFSE-GRDWVDAFKIWEGGLGIWGAIALGAVGAWI 113
SgrLgt  VAVWAVPFGLVGGRL-YHVITDYQLYFSD-GEDWVDAFKIWEGGLGIWGAIAFGAVGAWI 113
MtbLgt  IALWAVPFGLIGGRL-YHLATDWRTYFGDGGAGLAAALRIWDGGLGIWGAVTLGVMGAWI 116
MsmLgt  IALWAVPFGLAGGRI-YHVITDWKTYFGPTGKGFGAALQIWEGGLGIWGAVAFGAVGAWI 117
EcoLgt  LLYAGFLGVFLGGRIGYVLFYNFPQFMAD----PLYLFRVWDGGMSFHGGLIGVIVVMII 115
BsuLgt  LVLFAIPIAIICARI-YYVAFEWDYYAAH----PGEIIKIWKGGIAIHGGLIGAILTGYV 109
                
ScoLgt1 GARRRGVPMPAYADAVAPGIALAQAIGRWGNWFNQELYGKAT-DLPWAVEIT-------- 164
ScoLgt2 GCRRHRIPLPAFADAVAPGIVLAQAIGRWGNWFNQELYGRPT-TLPWGLEIDR------- 165
ScabLgt GCRRRGIPLPAYADAVAPGIALAQAIGRWGNWFNQELYGKPT-DLPWAVEIT-------- 164
SavLgt  GCRRRGIPLPAWADAVAPGIAFAQAFGRWGNWFNQELYGRET-HVPWALHIT-------- 164
SgrLgt  ACRRRGIPLPAWADALAPGIAIAQAIGRWGNWFNQELYGKPT-DLPWALEIS-------- 164
MtbLgt  GCRRCGIPLPVLLDAVAPGVVLAQAIGRLGNYFNQELYGRET-TMPWGLEIFYRRDPSGF 175
MsmLgt  ACRLRGIPLPAFGDAIAPGIILAQGIGRLGNYFNQELYGRPT-DVPWGLEIYERLN--KF 174
EcoLgt  FARRTKRSFFQVSDFIAPLIPFGLGAGRLGNFINGELWGRVDPNFPFAMLFPGSRTEDIL 175
BsuLgt  FSRVKNLSFWKLADIAAPSILLGQAIGRWGNFMNQEAHGEAV-SRAFLENLHLP------ 162
                      
ScoLgt1 ---------STADGRVPGTYHPTFLYESLWCIGVALLVIWADRRFKLGHGRAFALYVAAY 215
ScoLgt2 -------AHRPAGTLDIATYHPTFLYESLWNIGVAALILWAAKRFPLGHGRTFALYVAAY 218
ScabLgt ---------SSTDGRLPGTYHPTFLYESLWCIGVALLVIWADRRFTLGHGRAFALYVASY 215
SavLgt  ---------SSTDGRVPGYYHPTFLYESLWCVGVGFLVIWADRRFKLGHGRAFALYVAAY 215
SgrLgt  ---------EGPN-RVAGTYHPTFLYESLWCIGVALLVIWADRRFKLGHGRAFALYVAGY 214
MtbLgt  DVPN--SLDGVSTGQVAFVVQPTFLYELIWNVLVFVALIYIDRRFIIGHGRLFGFYVAFY 233
MsmLgt  GQSD--QLNGVSTGQVTAVVHPTFLYELIWNIAVFGFLIWVDRKFRIGHGRLFALYVASY 232
EcoLgt  LLQTNPQWQSIFDTYGVLPRHPSQLYELLLEGVVLFIILNLYIRKPRPMGAVSGLFLIGY 235
BsuLgt  ------EFIINQMYINGQYYHPTFLYESLWSF-VGVIVLLLLRRANLRRGEMFLIYIIWY 215

ScoLgt1 CAGRFWIEYMRVDDAHHILG----LRLNNWTALFVFLLAVLYIVLSARKR---------- 261
ScoLgt2 TVGRFGTEYLRIDEAHTFLG----LRLNNWTSVLVFLGAVACLVVSAHRH---------- 264
ScabLgt CTGRFWIEYMRVDEAHHILG----LRLNNWTALFVFVLAVIYMVLSARKR---------- 261
SavLgt  CVGRAWIEYMRVDDAHHILG----VRLNDWTAIAVFLLAVLYIVLSSRKR---------- 261
SgrLgt  CAGRGWIEYMRVDEAHHILG----LRLNVWTAIVVFILAVVYIVISAKIR---------- 260
MtbLgt  CAGRFCVELLRDDPATLIAG----IRINSFTSTFVFIGAVVYIILAPKGREAPGALRG-- 287
MsmLgt  CVGRFWVELMRSDTATEFAG----IRVNTFTSTFVFIGAVVYIMLAPKGREEPESLRGKA 288
EcoLgt  GAFRIIVEFFRQPDAQFTGAWVQYISMGQILSIPMIVAGVIMMVWAYRRS---------- 285
BsuLgt  SIGRYFIEGMRTDSLMLTDS----LRIAQVISIVLIVLAVAAIIFRRVKG---------- 261

ScoLgt1 --------------------------------------------------------PGR- 264
ScoLgt2 --------------------------------------------------------PGI- 267
ScabLgt --------------------------------------------------------PGR- 264
SavLgt  --------------------------------------------------------PGR- 264
SgrLgt  --------------------------------------------------------PGR- 263
MtbLgt  --------SEYVVDEALEREPAELAAAAVASAASAVG----------------PVGPGEP 323
MsmLgt  ADETEEGDEESLVDEAGKELVAAAAGTGVVAAATAAAREDTDDTDGTTDPAAASDEPGDE 348
EcoLgt  ------------------------------------------------------------
BsuLgt  ------------------------------------------------------------                                                                        

ScoLgt1 ---------------------------------------------EAVVEPGAETAAGDS 279
ScoLgt2 ---------------------------------------------ENVAR--------LQ 274
ScabLgt ---------------------------------------------EEVVEPGVSDGDGDE 279
SavLgt  ---------------------------------------------EEIVEPGAS----DT 275
SgrLgt  ---------------------------------------------EEIVEPDRD------ 272
MtbLgt  NQPD----------------------DVAEAVKAEVAEVTDEVAAESVVQVADRDGESTP 361
MsmLgt  AEPETEAATAVLTADGAEAMSVDEQPDDDEAVDEEAGQEAEEPADELVELADEPEGEPEP 408
EcoLgt  ------------------------------------------------------------
BsuLgt  ------------------------------------------------------------  

                                                                        

84



ScoLgt1 GSAADKDVKGTKDAE-------DAEGAEDGAEKTDASGATEAPEDTSGADEADAAKDAEG 332
ScoLgt2 GAGADGRTD---------------DPRPADASVGLASGPPGNSTPRRATESWNVRNRS-- 317
ScabLgt GAGAAAPVE-------------DSETKSESKAKPGES-EAKAEGDAGASGGGGEKKEPE- 324
SavLgt  GTGADDPVDLGKD---------EDKATTDKATATDTSTTTDKSTDRGKNEDENEGEDAEP 326
SgrLgt  ATPAEKDGSG------------EDGSGEKGVAKADAAAKDPLTKDEPGKDATAENAGAAG 320
MtbLgt  AVEETSEADIERE---------QPGDLAGQAPAAHQVDAEAASAAPEEPAALASEAHDET 412
MsmLgt  AAAEEAEPAETIEPDEDEIFDAELAEALAEAAEDFAVVPESAGSDEAEVAAAESAADAED 468
EcoLgt  ---PQQHVS--------------------------------------------------- 291
BsuLgt  -YSKERYAE--------------------------------------------------- 269                                                                            

ScoLgt1 ---VTNGADSAKKG---------------------------------------------- 343
ScoLgt2 ------------------------------------------------------------
ScabLgt ---------SAKKS---------------------------------------------- 329
SavLgt  SEKTESAAESAKKV---------------------------------------------- 340
SgrLgt  ---------AAEKA---------------------------------------------- 325
MtbLgt  EP------EVPEKAAP----IPDPAK---------------------------------- 428
MsmLgt  GPSDAESAEVPAEAAADDAVVSEPAGTVDETEVAEEAAAEAADLEFESYDAELAEALAEA 528
EcoLgt  ------------------------------------------------------------
BsuLgt  ------------------------------------------------------------                                                                          

ScoLgt1 ------------------------------------------------------------
ScoLgt2 ------------------------------------------------------------
ScabLgt ------------------------------------------------------------
SavLgt  ------------------------------------------------------------
SgrLgt  ------------------------------------------------------------
MtbLgt  ---------PDELAVAGPGDDPAEPDGIRRQDD--------------------------- 452
MsmLgt  AEDMAVVVAPAETAESDEAREPVETDATESEEPSEPEEPDAPEAVEAPEALDENADETRA 588
EcoLgt  ------------------------------------------------------------
BsuLgt  ------------------------------------------------------------                                                                         

ScoLgt1 ----------------------------
ScoLgt2 ----------------------------
ScabLgt ----------------------------
SavLgt  ----------------------------
SgrLgt  ----------------------------
MtbLgt  ------------FSSRRRRWWRLRRRRQ 468
MsmLgt  EPAAPAAVATAPVEPEKGRLRRWLRRNR 616
EcoLgt  ----------------------------
BsuLgt  ----------------------------

Figure 3.1  Amino acid sequence alignment of the Lgt enzymes. Potential 

transmembrane domains are underlined.  The essential E. coli H103 is highlighted in 

red whilst the H196 and Y235, important for function in E. coli are highlighted in blue. 

Sequences compared using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/

index.html).

What is immediately obvious when comparing the actinomycetes to E. coli and 

B. subtilis is that Lgt proteins from the actinomycetes contain elongated, 

cytoplasmic, C-termini which are not present in E. coli and B. subtilis.  

Interestingly, these elongated sequences contain very  little similarity to each 

other, with the Mycobacterium proteins being substantially  longer than those 

from Streptomyces.  When compared from amino acid 292 onwards (EcoLgt 
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terminates at amino acid 291), the two S. coelicolor enzymes only  share 15% 

similarity, whilst the 30% similarity  shared between ScoLgt2 and MtbLgt is the 

highest similarity found between any two actinomycete Lgt proteins.  The amino 

acid comparison can be seen in figure 3.2.

ScoLgt1 ------------------------------------------------------------
ScoLgt2 ------------------------------------------------------------
ScabLgt ------------------------------------------------------------
SavLgt  ------------------------------------------------------------
SgrLgt  ------------------------------------------------------------
MtbLgt  ---------VDEALEREPAELAAAAVASAASAVGPVGPGEPN------------------ 33
MsmLgt  TEEGDEESLVDEAGKELVAAAAGTGVVAAATAAAREDTDDTDGTTDPAAASDEPGDEAEP 60  
                                                                         
ScoLgt1 ------------------------------------------------------------
ScoLgt2 ------------------------------------------------------------
ScabLgt ------------------------------------------------------------
SavLgt  ------------------------------------------------------------
SgrLgt  ------------------------------------------------------------
MtbLgt  --------------------QPDDVAEAVKAEVAEVTDEVAAESVVQVADRDGESTPAVE 73
MsmLgt  ETEAATAVLTADGAEAMSVDEQPDDDEAVDEEAGQEAEEPADELVELADEPEGEPEPAAA 120
                                                                            
ScoLgt1 --------------------------------------------------DAEDAEGAED 10
ScoLgt2 ------------------------------------------------------------
ScabLgt ------------------------------------------------------------
SavLgt  --------------------------------------------------ATTDKATATD 10
SgrLgt  ------------------------------------------------------------
MtbLgt  ETSE---------ADIEREQPGDLAGQAPAAHQVDAEAASAAPEEPAALASEAHDETEPE 124
MsmLgt  EEAEPAETIEPDEDEIFDAELAEALAEAAEDFAVVPESAGSDEAEVAAAESAADAEDGPS 180
                                                                            
ScoLgt1 GAEKTDASGATEAPEDTSGADEADAAKDAEGVTNGADS---------AKKG--------- 52
ScoLgt2 --------------VGLASGPPGN--STP---RRATES-------WNVRNRS-------- 26
ScabLgt --TKSESKAKPGESEAKAEGDAGA--SGGGGEKKEPES---------AKKS--------- 38
SavLgt  TSTTTDKSTDRGKNEDENEGEDAE---PSEKTESAAES---------AKKV--------- 49
SgrLgt  ------AKADAAAKDPLTKDEPGK---DATAENAGAAG--------AAEKA--------- 34
MtbLgt  VPEKAAPIPDPAKPDELAVAGPGDDPAEPDGIRRQDDFSSRRRRWWRLRRRRQ------- 177
MsmLgt  DAESAEVPAEAAADDAVVSEPAGTVDETEVAEEAAAEAADLEFESYDAELAEALAEAAED 240
   
ScoLgt1 ------------------------------------------------------------
ScoLgt2 ------------------------------------------------------------
ScabLgt ------------------------------------------------------------
SavLgt  ------------------------------------------------------------
SgrLgt  ------------------------------------------------------------
MtbLgt  ------------------------------------------------------------
MsmLgt  MAVVVAPAETAESDEAREPVETDATESEEPSEPEEPDAPEAVEAPEALDENADETRAEPA 300                                                                          

ScoLgt1 -------------------------
ScoLgt2 -------------------------
ScabLgt -------------------------
SavLgt  -------------------------
SgrLgt  -------------------------
MtbLgt  -------------------------
MsmLgt  APAAVATAPVEPEKGRLRRWLRRNR 325

Figure 3.2  Amino acid sequence alignment of the C-termini of the Actinomycete Lgt 

enzymes.  Sequences compared using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/

index.html).
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3.3.1.2 Lipoprotein signal peptidase (Lsp).

Of the species tested, the Lsp  proteins from the Streptomyces species share 

the highest identity (≥75%).  ScoLsp showed relatively weak identity with the 

Lsp  from Mycobacterium species (~41%) and even lower to both EcoLsp  (36%) 

and BsuLsp  (34%).  Currently it is believed that there are five regions of the Lsp 

protein necessary for protein function (fig. 3.3).

Figure 3.3. The predicted membrane topology of L. pneumophila Lsp showing the five 

essential regions I->V.  From [19].

Within these conserved regions, the amino acid residues that are critical for 

function can be found in domains I, where an aspartic acid (D) is necessary for 

enzyme stability  [26], as are the residues NXXD in region III and FNXAD in 

region V.  It is thought that the aspartic acid residues in III and V may form a 

catalytic dyad which is the active site of the protease [19, 28].  Whilst the amino 

acid sequences of regions I->V are inconsistent between species, all the 

residues needed for stability  or catalysis in B. subtilis [26] are conserved in all 

species (fig. 3.4).
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ScoLsp   MAEAERIIGTPDIPDAAGEGQERPDADPEREQQEQEQAPERTRGKRRVAVLFAVALFAYL 60
ScabLsp  MAEAERIIGTPDIPDATGAGPEQSDDGAGAATAEPADAAARPRGRRRIAVLFGVAALAYA 60
SavLsp   MAEAERIIGTPDIPEAAGAEPEQADGESGGAGAG----TERPKGRRRIAVLFAVAALAYA 56
SgrLsp   MAEAERIIGMPENPDVDGTDEGGSTAADAAVNAG--------RGKRKILALLSVAVVAYL 52
MtbLsp   MPDEP--TG-SADPLTSTEEAGGAGEPNA------------PAPPRRLRMLLSVAVVVLT 45
MsmLsp   MTDET--SG-PAEPVT--DAPGDAESP--------------AQPKRRLRLLLTVAAVVLF 41
EcoLsp   --------------------------------MSQSICSTG-------LRWLWLVVVVLI 21
BsuLsp   ------------------------------------------------MLYYMIALLIIA 12

ScoLsp  LDLGSKMLVVAKLEHHEPIEIIGDWLRFAAIRNAGAAFGFGEA----FTIIFTVIAAAVI 116
ScabLsp LDLVSKMIVVARLEHHEPIEIIGEWLKFEAIRNAGAAFGFGEA----FTIIFTVIATIVI 116
SavLsp  FDLVSKLIVVAKLEHHAPIEIIGDWLRFEAIRNAGAAFGFGEA----FTVIFTVIAAAVI 112
SgrLsp  LDLGSKMLVVAKLEHQPPIDIIGDWLQFRAIRNPGAAFGIGEA----FTVIFTIIATGVI 108
MtbLsp  LDIVTKVVAVQLLPPGQPVSIIGDTVTWTLVRNSGAAFSMATG----YTWVLTLIATGVV 101
MsmLsp  LDVVTKVLAVRLLTPGQPVSIIGDTVTWTLVRNSGAAFSMATG----YTWVLTLVATGVV 97
EcoLsp  IDLGSKYLILQNFALGDTVPLFP-SLNLHYARNYGAAFSFLADSGGWQRWFFAGIAIGIS 80
BsuLsp  ADQLTKWLVVKNMELGQSIPIIDQVFYITSHRNTGAAWGILAG----QMWFFYLITTAVI 68

ScoLsp  VVIARLARKLHS--LPWAIALGLLLGGALGNLTDRIFRAPGVFEGAVVDFIAPKHFAVFN 174
ScabLsp VVIARLARKLYS--LPWAIALGLLLGGALGNLTDRIFRAPGVFEGAVVDFIAPKGFAVFN 174
SavLsp  VVIARLARKLYS--LPWAIALGLLLGGALGNLTDRIFRSPGVFEGAVVDFIAPKHFAVFN 170
SgrLsp  VVIFRIARKLYS--LPWAIALGLLLGGALGNLTDRIFRAPGVFEGAVVDFIAPKNSAVFN 166
MtbLsp  VGIFWMGRRLVS--PWWALGLGMILGGAMGNLVDRFFRAPGPLRGHVVDFLSVGWWPVFN 159
MsmLsp  IGIIWMGRRLVS--PWWALGLGLILGGATGNLVDRFFRSPGPLRGHVVDFFSVGWWPVFN 155
EcoLsp  VILAVMMYRSKATQKLNNIAYALIIGGALGNLFDRLWH--GFVVDMIDFYVGDWHFATFN 138
BsuLsp  IGIVYYIQRYTKGQRLLGVALGLMLGGAIGNFIDRAVR--QEVVDFIHVIIVNYNYPIFN 126

ScoLsp  LADSAIVCGGILIVILSFRGLD----------------------------PDG------- 199
ScabLsp LADSAIVCGGILIVLLSFRGLD----------------------------PDG------- 199
SavLsp  LADSAIVCGGILIVLLSFRGLD----------------------------PDG------- 195
SgrLsp  LADSAIVCGGILIVILSFKGLD----------------------------PDG------- 191
MtbLsp  VADPSVVGGAILLVILSIFGFDFDTVGRR--------------------HADG------- 192
MsmLsp  VADPSVVGGAILLVALSLFGFDFDTVGRRRPGEDAEPSAGASDSTPEAPAADGPDKPAGP 215
EcoLsp  LADTAICVGAALIVLEGFLPSR-------------------------------------- 160
BsuLsp  IADSSLCVGVMLLFIQMLLDSG-------------------------------------- 148

ScoLsp  -----------TVHKD---- 204
ScabLsp -----------TVHKG---- 204
SavLsp  -----------TVHKD---- 200
SgrLsp  -----------TVHKD---- 196
MtbLsp  ----------DTVGRRKADG 202
MsmLsp  VGPEDAAEESKTVGHQAEPS 235
EcoLsp  ------------AKKQ---- 164
BsuLsp  -----------KKKKEQ--- 154

Figure 3.4.  Amino acid sequence alignment of the Lsp enzymes.  Potential 

transmembrane domains are underlined, highlighted in yellow are regions believed to 

be important in B. subtilis Lsp.  Amino Acids in blue are to be necessary  for enzyme 

stability  in B. subtilis whilst those in red are necessary  for catalysis.  Sequences 

compared using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html).

As with the Lgt enzymes, there is a marked protein elongation between the Lsp 

enzymes from the actinomycetes and those from E. coli and B. subtilis.  This 

time however the elongated sections are found in the N-termini.  Like the C-

terminal tails of Lgt these extensions are predicted to be cytoplasmic, however 
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unlike the Lgt tails they  show a higher level of similarity.  Between the 

Streptomyces species the similarity ranges from 45-68%, whilst between the 

Mycobacterium species the similarity is 35%.  However, there is low similarity 

between the two groups.  There are two predicted amino acids that are 

conserved between the species. (fig. 3.5).

ScoLsp  MAEAERIIGTPDIPDAAGEGQERPDADPEREQQEQEQAP 39
ScabLsp MAEAERIIGTPDIPDATGAGPEQSDDGAGAATAEPADAA 39
SavLsp  MAEAERIIGTPDIPEAAGAEPEQADGESGGAGAGT---- 35
SgrLsp  MAEAERIIGMPENPDVDGTD----EGGSTAADAAV---- 31
MtbLsp  MPDEP--TG-SADPLTS------TEEAGGAGEP------ 24
MsmLsp  MTDET--SG-PAEPVT---------DAPGDAE------- 20

Figure 3.5.  Amino acid sequence alignment of the N-terminal extensions of the Lsp 

enzymes from the actinomycetes tested.  Predicted conserved residues are highlighted 

in red.

3.3.1.3 Lipoprotein N-acyl transferase (Lnt).

As has been discussed, S. coelicolor is unusual as it contains two potential 

copies of the lnt gene.  The ScoLnt1 protein shares a high degree of identity 

with ScabLnt1 (86%) and a lower level with the Mycobacterium Lnt enzymes 

(~42%).  It only shares 29% identity with ScoLnt2, which is itself more similar to 

the remaining Streptomyces Lnt enzymes.  There is no BsuLnt homologue, as 

discussed in Chapter 1.

Currently, the only experimentally confirmed Gram-positive Lnt enzymes are 

found in M. smegmatis, and M. tuberculosis [38].  MsmLnt, ScoLnt1 and 

ScoLnt2 all conserve the three residues (E267, K355, C387) which form the 

enzymeʼs catalytic triad in E. coli [30], as do all the other species tested (fig. 

3.6).  However, of the four remaining essential amino acids found in E. coli Lnt, 

only E343 and E389 are conserved between all species.  In both MsmLnt and 
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ScoLnt1, a valine is present in place of E. coli W237 whilst in ScoLnt2 a serine 

is present.  Y388 is conserved between EcoLnt and ScoLnt1, with a 

phenylalanine located here in ScoLnt2 or a tryptophan in MsmLnt.  As can be 

seen in figure 3.6, MtbLnt has an extended C-terminus.  As described in chapter 

1, this is as a result of a fusion between lnt and the ppm1 genes [37], which has 

lead to a multi domain protein.

ScoLnt1  ---------------------------------------------------------MTA 3
ScoLnt2  ------------------------------------------------------------
ScabLnt1 ---------------------------------------------------------MTV 3
ScabLnt2 ------------------------------------------------------------
SavLnt   ------------------------------------------------------------
SgrLnt   ------------------------------MRIRGARLPARRHAAGTAAAGGSGGRAGDD 30
MtbLnt   ------------------------------------------------------------
MsmLnt   MADDRARRFDRFRVRPEEITEVIPAVTDDDPLEDPLDDDVAPGLDDAEPEPEPRDEHDEP 60
EcoLnt   ------------------------------------------------------------                                                                       

ScoLnt1  TATTVGEPDRTQPQTTPASRAVSRLARLLPAAAAALSGVLLYISFPPRTLWWLALPAFAV 63
ScoLnt2  ----------------MKTLDRRLASPWRRSGLAVLAGALPVLAFPGPALWWWAW--FAL 42
ScabLnt1 TATPVDEPEQLEPQAAPVSRVSRWAARLLPAAAAALSGVLLYVSFPPRTLWWLALPAFAV 63
ScabLnt2 ----------------MRTP-DWIASPWRRRSAVVVAGALPVLAFPAPGLWWSAY--GAL 41
SavLnt   ----------------MRMPEDWLGSRWWRGAAAVLAGALPMLAFPAPSWWWFAY--VAL 42
SgrLnt   ASGDGPPDDGPGPRGRGSAREGALSSAWARGAAALLAGALPALAFPAPGLWWFAY--VAL 88
MtbLnt   ------MKLGAWVAAQLPTTRTAVRTRLTRLVVSIVAGLLLYASFPPRNCWWAAVVALAL 54
MsmLnt   SRPATGSRIGGWVARRGSRFGKGVLDRCAPLSAAIGGGLALWLSFPPIGWWFTAFPGLAL 120
EcoLnt   -----------------MAFASLIERQRIRLLLALLFGACGTLAFSPYDVWPAAIISLMG 43

ScoLnt1  FGWVLRGR----GWK--AGLGLG-YLFGLGFLLPLLVWTGVEVGPGPWLALAAIEALFVA 116
ScoLnt2  VPWILLAR----TAPGGKRAAYDGWCGGFGFVLAMHHWLLPNLHVFTFVIAALLGALWVP 98
ScabLnt1 LGWVLRGR----GWK--AGLGLG-YLFGLGFLLPLLVWTGVEVGPGPWLALAVIEAVFVA 116
ScabLnt2 VPWILLLR----AAPTGRRAAYDGWLGGFAFMLAMHHWLLPNLHVFTFLIAGLLGALWAP 97
SavLnt   VPWILLAR----TAPTGGRAAYDGWLGGLGFMLAVHHWLLPSLHVFTVLIAALLGALWAP 98
SgrLnt   VPWLLLIR----GARSPRRAALDGWIGGIGFVVAVHHWLMPSLHVFIVLLAALLGLLWAP 144
MtbLnt   LAWVLTHR----ATTPVGGLGYG-LLFGLVFYVSLLPWIGELVGPGPWLALATTCALFPG 109
MsmLnt   LGWVLTRT----ATTKAGGFGYG-VLFGLAFYVPLLPWISGLVGAVPWLALAFAESLFCG 175
EcoLnt   LQALTFNRRPLQSAAIGFCWGFGLFGSGINWVYVSIATFGGMPGPVNIFLVVLLAAYLSL 103

ScoLnt1  AVGAGVAAVSKLPGSP------VWAAAVWIAGEAARARAPFEGFPWGKIAFG-QADGVFL 169
ScoLnt2  WGWLVHRTLGGTPSSRRVAAALVVLPSGWLLAELVRSWQGLGG-PWGMLGASQWQVAPAL 157
ScabLnt1 LVGAGVAVVSKLPGWP------VWAAALWVAGEAARARAPFHGFPWGKIAFG-QADGVFL 169
ScabLnt2 WAWLAHRFLAGSPSSGRVAAALLVVPSGWLMIELVRSWQGLGG-PWGLLGSSQWEVEAAL 156
SavLnt   WGWLVRRFLAGVPSPGRVAAAMLVLPSGWLMVELVRSWQGLGG-PWGLLGSSQWQVEPAL 157
SgrLnt   WGLLVARLLGGSPSAGRAVAAVVVVPSGWLMIELVRSWEGLGG-PWGLLGASQWDVAPAL 203
MtbLnt   IFGLFAVVVRLLPGWP------IWFAVGWAAQEWLKSILPFGGFPWGSVAFG-QAEGPLL 162
MsmLnt   LFGLGAVVVVRLPGWP------LWFATLWVAAEWAKSTFPFGGFPWGASSYG-QTNGPLL 228
EcoLnt   YTGLFAGVLSRLWPKTTWLRVAIAAPALWQVTEFLRGWV-LTGFPWLQFGYS-QIDGPLK 161

ScoLnt1  PLAAVGGTPVLGFAVVLCGFALHEAVRLAVRARR-GDEVRRGAAAVALLGVAVPVVGAVA 228
ScoLnt2  RLASVGGVWLLSFLVVAVNAALAVLVAVRRARVP-------ALAGLVATAAATSAAWVWS 210
ScabLnt1 PLAALGGTPVLGFAVVLCGFGLCEAVRLLVANRRTGEAVRRGTAAVAALSVAVPLAGAFA 229
ScabLnt2 RLASVGGVWLLSFLVVAVNVAVTVLVSVRASRAP-------ALAGLVVVAVATSAVWLWS 209
SavLnt   RLASVGGVWLLSFLVVTVNIAVAVLVSVRASRMP-------ALAGLVATAAATSAAWAWS 210
SgrLnt   RVASVGGVWLVSLLVLAVNTGVALLVADRAARRT-------GGVLLAVCALSVAAVWAWA 256
MtbLnt   PLVQLGGVALLSTGVALVGCGLTAIALEIEKWWRTGGQ-GDAPPAVVLPAACICLVLFAA 221
MsmLnt   ALARIGGAPLVSFAVALIGFSLTLLTAQIVWWWRHGHKPGVPAPAVMLPGVAIAASLLVT 288
EcoLnt   GLAPIMGVEAINFLLMMVS-GLLALALVKRNWRP-------LVVAVVLFALPFPLRYIQW 213
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ScoLnt1  A------RPLVSDTAEDGTATVAVIQGNVPRAGLGFNAQRRAVLDYHARETQRLADEVKA 282
ScoLnt2  P-----------RPDTDERAAIAVVQPGV--------VAGADSADRRFDREEQLTRRLAD 251
ScabLnt1 S------RALVSDTAEDGTATVAVIQGNVPRLGLDFNAQRRAVLDYHAKETERLAAQVKA 283
ScabLnt2 P-----------RPDVRGEVRIAVVQPGV--------TDGP---DARFAREEALTRRLAG 247
SavLnt   P-----------RPDHDGDMRIAIVQPGV--------IDGTGSADRRFDREEQLTRELAG 251
SgrLnt   P-----------RPTETGAVRIAVVQPGV--------VEGPGSVARRFDRGEELTRALRG 297
MtbLnt   IVVWPQVRHAGSGSGGEPTVTVAVVQGNVPRLGLDFNAQRRAVLDNHVEETLRLAADVHA 281
MsmLnt   ALVWPQVRQSGTGAGDDTAVTVAAVQGNVPRLGLEFNAQRRAVLDNHVKETLRLADDVKA 348
EcoLnt   F-----------TPQPEKTIQVSMVQGDIP--------QSLKWDEGQLLNTLKIYYNATA 254

ScoLnt1  GKVARPDFVLWPENSSDIDPFANADARLVIDRAAKAVGAPISVGGVVERDGK------LL 336
ScoLnt2  ---RDLDLIVWGESSVGFDLDDRPDLARRLAALSRETGADILVN-VDARRSD---KPGIY 304
ScabLnt1 GKVARPDFVLWPENSSDIDPFANADARAVIDRAATAIGAPISVGGVVERDGK------LY 337
ScabLnt2 ---QDVDLIVWGESSVGHDLADRPDLSDRIAALARAADSDILVN-VDARRSD---RPGIY 300
SavLnt   ---QNVDLVVWGESSVGFDLADRPDLARRIAGLSERVGADILVN-VDARRSD---RPGIY 304
SgrLnt   ---RGVDLVVWGESSIGAGAWERPETARRLAGLSRLVGADLLVN-VDARQTDGSGRSGIF 353
MtbLnt   GLAQQPQFVIWPENSSDIDPFVNPDAGQRISAAAEAIGAPILIGTLMDVPGRPRENPEWT 341
MsmLnt   GRAAQPMFVIWPENSSDIDPLLNADASAQITTAAEAIDAPILVGGVVRADGYTPDNPVAN 408
EcoLnt   PLMGKSSLIIWPESAITDLEINQQPFLKALDGELRDKGSSLVTGIVDARLNK-QNRYDTY 313

ScoLnt1  NEQILWDPDKG----PVDTYDKRQIQPFGEYLPLRSLIGAINDEWTSMVSRDFSRGTEPG 392
ScoLnt2  KSSVLVGPQGP----TGDRYDKMRLVPFGEYVPFRSLLGWATSVGKAAG-EDRRQGTEQV 359
ScabLnt1 NEQILWDPAKG----PVDTYDKRQIQPFGEYLPLRSLIGAINGEWTSMVRKDFSRGTEPG 393
ScabLnt2 KSSVLVGPDGP----TGDRYDKMRLVPFGEYIPMRSLLGWATSVGEAAG-EDRRRGTEQV 355
SavLnt   KSSVLVGPHGP----TGDRYDKMRLVPFGEYIPARSLLGWATSVGKAAG-EDRRRGSEQV 359
SgrLnt   KSAVLVGPDGP----TGDRYDKMRLVPFGEYVPARSLLGWATSVGKAAG-EDRLRGDRQV 408
MtbLnt   NTAIVWNPGTG----PADRHDKAIVQPFGEYLPMPWLFRHLSGYADRAG--HFVPGNGTG 395
MsmLnt   NTVIVWEPTDG----PGERHDKQIVQPFGEYLPWRGFFKHLSSYADRAG--YFVPGTGTG 462
EcoLnt   NTIITLGKGAPYSYESADRYNKNHLVPFGEFVPLESILRPLAPFFDLPMSSFSRGPYIQP 373

ScoLnt1  VFT----MAGTKVGLVTCYEAAFDWAVRSEVTDGAQMISVPSNNATFDRSEMTYQQLAMS 448
ScoLnt2  VM---DVGDGLRIGPMVCFESAFPDMSRSLVADGAQVLVAQSSTSTFQHTWAPEQHASLA 416
ScabLnt1 VFT----MHGAKIGLVTCYEAAFDWAVRSEVTDGAQLISVPSNNATFDRSEMTYQQLAMS 449
ScabLnt2 VF---DAGKGLRIGPMVCFESAFPDMSRQLALDGAELLLAQSATSSFQQSWAPEQHATLA 412
SavLnt   VM---NAGHGLRIGPMVCFETAFPDMSRHLAEDGAEVLLAQSSTSTFQQSWAPEQHASLA 416
SgrLnt   VMTLPDGARGLRIGPLVCFETAFPDMSRRLVRDGAQVIVAQSATSTFQHSWAPAQHASLG 468
MtbLnt   VVR----IAGVPVGVATCWEVIFDRAPRKSILGGAQLLTVPSNNATFNKT-MSEQQLAFA 450
MsmLnt   VVH----AAGVPIGITTCWEVIFDRAARESVLNGAQVLAVPSNNATFDEA-MSAQQLAFG 517
EcoLnt   PLS----ANGIELTAAICYEIILGEQVRDNFRPDTDYLLTISNDAWFGKSIGPWQHFQMA 429

ScoLnt1  RIRAVEHSRTVTVPVTSGVSAIIMPDG-RITQKTGMFVADSLVQEVPLRSSETPATRLGI 507
ScoLnt2  ALRAAETGRPMVHATLTGVSAVYDANGARIGSWLGTDASASRVYEVPVTHGTTPYVRYGD 476
ScabLnt1 RVRAVEHSRTVTVPVTSGVSAIIMPDG-RIAQKTGMFVPDSLVQKVPLRSSQTPATRYGI 508
ScabLnt2 ALRAAETGRPMVHATLTGVSAVYGPSGERVGPWLGTDASEAAVYRVPMAGGTTPYVRFGE 472
SavLnt   ALRAAETGRPMVHATLTGVSAVYGPSGERVGSWLGTGKSTSAVYDVPLARGVTPYVRFGD 476
SgrLnt   ALRAAENGRPMVHATLTGISAAYGPRGERVGRPLGTDASAAEVFDLPLAGGSTLYNRLGD 528
MtbLnt   KVRAVEHDRYVVVAGTTGISAVIAPDG-GELIRTDFFQPAYLDSQVRLKTRLTPATRWGP 509
MsmLnt   KLRAVEHDRYVVVAGTTGISAVIAPDG-HEISRTEWFQPAYLDNQIRLKTDLTPATKWGP 576
EcoLnt   RMRALELARPLLRSTNNGITAVIGPQG-EIQAMIPQFTREVLTTNVTPTTGLTPYARTGN 488

ScoLnt1  APEIALVLVAAGGLGWAVGAG--------------------------------------- 528
ScoLnt2  WTVYAALGILAAWGAAEGVRTVRLRRNRPARPGPP------------------------- 511
ScabLnt1 APEMLLVLVAAGGLGWAIGAG--------------------------------------- 529
ScabLnt2 WPVQAALLVLVAWGAVEGVRALRLRRQAG-PRPPA------------------------- 506
SavLnt   WPVHAALLILAALCTAEGVREFRLRRTVPSPRVPP------------------------- 511
SgrLnt   WPVYGALAALAVLCAVEGLR--ALRRPAPGPPGPP------------------------- 561
MtbLnt   ILQWILVGAAAAVVLVAMRQNGWFPRPRRSEPKGENDDSDAPPGRSEASGPPALSESDDE 569
MsmLnt   IVQAVLVIAGVAVLLIAILHNGRFAP---------------------------------- 602
EcoLnt   WPLWVLTALFGFAAVLMSLRQRRK------------------------------------ 512

ScoLnt1  ------------------VRGRRARDV--------------------------------- 537
ScoLnt2  ------------------ARTAH-GSPARPGH---------------------------- 524
ScabLnt1 ------------------VRGRRAGGV--------------------------------- 538
ScabLnt2 ------------------AQSADPSSTARTTRSHSS------------------------ 524
SavLnt   ------------------ARTVR-ESPARPGR---------------------------- 524
SgrLnt   ------------------ARTAH-GSPGSPGH---------------------------- 574
MtbLnt   LIQPEQGGRHSSGFGRHRATSRSYMTTGQPAPPAPGNRPSQRVLVIIPTFNERENLPVIH 629
MsmLnt   -----------------RMLRRRSATTVKR------------------------------ 615
EcoLnt   ------------------------------------------------------------
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ScoLnt1  ------------------------------------------------------------
ScoLnt2  ------------------------------------------------------------
ScabLnt1 ------------------------------------------------------------
ScabLnt2 ------------------------------------------------------------
SavLnt   ------------------------------------------------------------
SgrLnt   ------------------------------------------------------------
MtbLnt   RRLTQACPAVHVLVVDDSSPDGTGQLADELAQADPGRTHVMHRTAKNGLGAAYLAGFAWG 689
MsmLnt   ------------------------------------------------------------
EcoLnt   ------------------------------------------------------------ 

ScoLnt1  ------------------------------------------------------------
ScoLnt2  ------------------------------------------------------------
ScabLnt1 ------------------------------------------------------------
ScabLnt2 ------------------------------------------------------------
SavLnt   ------------------------------------------------------------
SgrLnt   ------------------------------------------------------------
MtbLnt   LSREYSVLVEMDADGSHAPEQLQRLLDAVDAGADLAIGSRYVAGGTVRNWPWRRLVLSKT 749
MsmLnt   ------------------------------------------------------------
EcoLnt   ------------------------------------------------------------

ScoLnt1  ------------------------------------------------------------
ScoLnt2  ------------------------------------------------------------
ScabLnt1 ------------------------------------------------------------
ScabLnt2 ------------------------------------------------------------
SavLnt   ------------------------------------------------------------
SgrLnt   ------------------------------------------------------------
MtbLnt   ANTYSRLALGIGIHDITAGYRAYRREALEAIDLDGVDSKGYCFQIDLTWRTVSNGFVVTE 809
MsmLnt   ------------------------------------------------------------
EcoLnt   ------------------------------------------------------------

ScoLnt1  ------------------------------------------------------------
ScoLnt2  ------------------------------------------------------------
ScabLnt1 ------------------------------------------------------------
ScabLnt2 ------------------------------------------------------------
SavLnt   ------------------------------------------------------------
SgrLnt   ------------------------------------------------------------
MtbLnt   VPITFTERELGVSKMSGSNIREALVKVARWGIEGRLSRSDHARARPDIARPGAGGSRVSR 869
MsmLnt   ------------------------------------------------------------
EcoLnt   ------------------------------------------------------------

ScoLnt1  -----
ScoLnt2  -----
ScabLnt1 -----
ScabLnt2 -----
SavLnt   -----
SgrLnt   -----
MtbLnt   ADVTE 874
MsmLnt   -----
EcoLnt   -----

Figure 3.6.  Amino acid sequence alignment of the Lnt enzymes.  Potential 

transmembrane domains are underlined.  Amino Acids in blue are to be necessary  for 

enzyme stability  in E. coli whilst those in red are necessary  for catalysis.  Sequences 

compared using ClustalW (http://www.ebi.ac.uk/Tools/clustalw2/index.html).
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3.3.2 Bioinformatic analysis of lipoproteins in S. coelicolor. 

3.3.2.1 Identification of Lipoproteins.

Analysis of the S. coelicolor genome sequence by Professor Iain Sutcliffe 

(University  of Northumbria, Newcastle), Dr Matt Hutchings (UEA) and Dr. 

Govind Chandra (John Innes Centre, Norwich) led to the identification of up  to 

223 putative lipoproteins (appendix 1).  All S. coelicolor proteins (http://

strepdb.streptomyces.org.uk/) were assessed, and only those with a cysteine 

within the first 50 amino acids (representing a potential lipobox C+1, 

characteristic of a lipoprotein) were accepted for further analysis.  These 

proteins were matched against the G+LPP pattern, used for the identification of 

Gram positive lipoprotein sequences [64], and the revision G+LPPv2 [11, 85].  

These patterns are used to filter out any proteins that do not contain a potential 

lipobox (see chapter 1).  In tandem with this, potential lipoproteins were also 

tested against the prosite pattern PS51257 (http://www.expasy.ch/tools/

scanprosite/).  Those which passed both tests were submitted to the following 

tests: SignalP v3.0 [86], Phobius [87], LipoP [88] and Predlipo [89].  The 

combined use of these tests is useful for accurate identification of lipoproteins.  

In addition lipoproteins secreted by the Tat pathway (Chapter 1), were identified 

using TatFind [90] and TatP [91].

3.3.2.2 Functional analysis of lipoproteins.

The 223 potential lipoproteins identified in the S. coelicolor genome using the 

methods described above represent ~2.7% of the S. coelicolor proteome.  

Surprisingly, fifty of the putative lipoproteins passed one or other of the Tat tests 

mentioned above, with 38 passing both, which would represent 17% of the total 

S. coelicolor lipoproteins.  Even when taking into account the genome size of S. 
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coelicolor, this is a large amount.  M. tuberculosis  is estimated to have 10-15% 

Tat secreted lipoproteins [11].  In comparison,  E.coli is predicted to have 28 Tat 

secreted proteins in total, and B. subtilis is predicted to only  secrete ≤7 proteins 

via Tat [2].

Of the putative S. coelicolor lipoproteins, it is unsurprising that 35% are of 

unknown function and several have no homologues outside of the genus 

Streptomyces.  ABC transporters make up a further 41% of the lipoproteome.  

Of these, more than half are needed for carbohydrate transport, and given the 

complex nature of the soil, and the saprophytic nature of S. coelicolor cannot be 

surprising.

Function Numbers %
Solute binding proteins 92 41%
Putative enzymes 34 15%
Redox processes 6 3%
Signal transduction (ʻthree componentʼ systems) 6 3%
Cell envelope processes 7 3%
Function unknown 78 35%

Table  3.1.  Overview of lipoprotein functions in S. coelicolor.  Number of proteins and % of total 

lipoproteins are shown.

3.3.3 Disrupting the S. coelicolor biosynthetic genes.

Cosmids containing the S. coelicolor genes lgt1 (Sco2034), lgt2 (Sco7822) and 

lsp (Sco2074), were obtained from the Streptomyces group at the John Innes 

Centre.    Genes were identified, by homology searches against the proteomes 

of E. coli, B. subtilis and M. tuberculosis (see section 3.3.1 above).  The 

cosmids were checked by restriction digest, to ensure their fidelity.  Digestion 

patterns were obtained from http://streptomyces.org.uk/.
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Apramycin marked cassettes for each of the genes were generated using ʻKOʼ 

primers specific to each gene (table 2.4) and introduced into their respective 

cosmids as explained in chapter 2.  The disrupted cosmids were checked by 

PCR, and the correct position of the antibiotic disruption cassette was ensured 

by using several combinations of primers.  Firstly, short test primers annealing 

to flanking regions of the gene were used to confirm that there was a size 

difference between the wild type and the disrupted gene, with a band at ~1400 

bp  representing the apr cassette.  Secondly primers specific to the apr cassette 

were used to show that it did indeed exist somewhere in the cosmid, and finally 

combinations of the two were used to show that it was in the right place.  PCR 

primers are listed in table 2.4 and results for each of the genes can be seen in 

figures 3.7 and 3.8.

Figure 3.7.  Confirmation of the disrupted lgt1::apr (Lanes 1. -> 4.) and lgt2::apr (Lanes 

4->8) in cosmids 4G6 and 8E7 respectively.  Primer combinations in each lane 

(expected band sizes shown in brackets): 1. = P1/P2 (1423 bp), 2. = P1/Sco Lgt1 Test 

Rev  (1424 bp), 3. = P2/Sco Lgt1 Test For (1423 bp), 4. = Sco Lgt1 Test For/Sco Lgt1 

Test Rev (1424 bp), 5. = P1/P2 (1423 bp), 6 = P1/Sco Lgt2 Test Rev (1424 bp), 7. = 

P2/Sco Lgt1 Test Rev  (1423 bp), 8. = Sco Lgt2 Test For/Sco Lgt2 Test Rev  (1423 bp).  

Lanes 9 and 10 are positive controls of the lgt1::apr and lgt2::apr PCR products using 

the P1 + P2 primers (1423 bp).
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Figure 3.8.  Confirmation of the disrupted lsp::apr in cosmid 4A10.  Primer 

combinations in each lane (expected band sizes shown in brackets): 1. = Sco LspTest 

For/Sco Lsp Test Rev  (1424 bp), 2. = P1/P2 (1423 bp), 3. = P2/Sco Lsp Test For (1423 

bp), 4. = P1/Sco Lsp Test Rev (1424 bp).

When the mutagenised cosmids were transferred into S. coelicolor by 

conjugation to give in-frame gene disruptions (section 2.3.5), genomic DNA was 

isolated from the exconjugants selected on apramycin and checked by PCR as 

before (Figs. 3.9 and 3.18).

Figure  3.9. PCR of S. coelicolor genomic DNA, to confirm apramycin disruption of lgt1.  

Primer combinations in each lane (expected band sizes shown in brackets): 1. = Sco 

Lgt1 Comp For/Rev (1736 bp), 2. = P1/Sco Lgt1 Comp Rev  (1611 bp), 3. = P1/P2 

(1423 bp).
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A marker-less deletion of lsp was also made, using the FLP recombinase 

method described in Chapter 2.  Removing the apr cassette, left a signature 

81bp  ̒ scarʼ, which was detectable by PCR, as can be seen in figure 3.10.  This 

strain was used throughout the experiments described below.

Figure 3.10.  PCR of S. coelicolor genomic DNA using the Sco LspTest For/Sco Lsp 

Test Rev  primers (expected band sizes shown in brackets).  Lane 1. = wild-type  M145 

(654 bp).  Lane 2. = Δlsp::apr (1424 bp).  Lane 3. = ΔlspFLP (81 bp).

Initial attempts to isolate a deletion of lgt2 proved fruitless.  The mutation was 

successfully  made in the cosmid 8E7 but could not be conjugated into S. 

coelicolor M145, probably due to the presence of three transposons in the 

cosmid carrying the lgt2 gene.  Instead, the lgt2 gene deletion was carried out 

by Dr David Widdick (UEA). A suicide vector containing the apr disrupted lgt2 

gene was used to make the mutant S. coelicolor strain, which was thoroughly 

tested to ensure it was correct [82].  A hygromycin cassette was also used to 

make an lgt2::hyg disruption strain. Creation of the S. coelicolor lgt double 

mutant using lgt1::apr and lgt2::hyg proved impossible despite repeated 

attempts.  The deletion of lsp also proved difficult, and resulted in numerous 
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growth phenotypes that are described below.

3.3.3.1 Development and colony morphology.

Of all the null mutants obtained, only the Δlsp strain (BJT1001) showed a 

marked phenotype.  This strain is slower growing, and sporulates poorly.  This 

strain frequently overproduces the blue-pigmented antibiotic actinorhodin (act) 

when grown on a variety of growth media, which is often a sign of stress [92].  

The macroscopic phenotype of the lgt1::apr and lgt2::apr strains appear similar 

to the wild-type.

1. 1.

2.

3.

2.

3.

4. 4.

5. 5.

6. 6.

Figure 3.11.  Unmagnified phenotypes of each of the S. coelicolor strains grown on 

SFM media.  The sections are as follows: 1. = WT (M145), 2. = M145 Δlgt1::apr 

(BJT1002), 3. = M145 Δlgt2::apr (BJT1027), 4. = M145 ΔlspFlp (BJT1001), 5. =  M145 

Δlsp + lsp in trans complementation (BJT1007), 6. = M145 Δlsp + lsp cis 

complementation (BJT1006). The growth retardation of the Δlsp strain is clearly  visible, 

whilst the complemented strains look more closer to wild-type.  Neither Δlgt1, nor Δlgt2 

display any obvious phenotype.
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All strains were visualised by both light and scanning electron microscopy.  Both 

of these techniques confirmed that the Δlsp mutant (BJT1001) had a drastic 

phenotype in comparison to the other strains.  Individual colonies viewed under 

the light microscope can be seen in figure 3.12.  After 5 nights growth on SFM 

growth media (table 2.3), the wild-type, Δlgt1 (BJT1002) and Δlgt2 (BJT1027)  

mutants were typically between 3 and 4 mm in diameter, whilst the diameter of 

the Δlsp mutant was between 1 and 2 mm.  The Δlsp mutant also lacks depth 

when compared to the other strains, appearing very flat against the growth 

media.  As this mutant sporulates very poorly it is unsurprising to see a larger 

proportion of white areas around the colony, representing undifferentiated 

substrate hyphae, than grey areas, representing mature spore chains.   The 

bisections shown in the WT and Δlgt1 colonies below are unexplained, and 

appears to occur at random in these strains as well as in the Δlgt2 mutant.  A 

colony divided into four was also seen regularly.  These crenellations were not 

seen in the Δlsp mutant and could potentially be caused by the colony 

collapsing in upon itself, due to its increased height and mass.
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Colonies dissected bilaterally can be seen in figure 3.13.  As with the top-down 

images, the difference between the Δlsp mutant and the other strains is 

conspicuous.  These results again highlight the lack of depth in this strain, and 

its overall reduced size.  Also apparent, is the reduction in the layer of 

undecylprodigiosin, the red pigmented antibiotic, in the Δlsp mutant.  Whether 

or not this is down to the delayed development in the strain is unknown.

Viewing colonies grown for 5 nights under SEM (fig. 3.14) shows some 

differences between the samples.  As with the light microscopy results above, 

the wild-type sample appears very similar to both the Δlgt1 and Δlgt2 mutants.  

At first glance, this appears to be the case for the Δlsp mutant as well.  

However, on closer inspection there are very few spiral spore chains in 

comparison to the other strains.  The overall lack of these structures would 

explain the reduction of sporulation in the Δlsp mutant, in comparison to the 

wild-type.  The spore chains in S. coelicolor begin as undifferentiated aerial 

hyphae (see chapter 1), which grow vertically in comparison to the substrate 

mycelium. The lack of this vertical growth may also be a contributing factor to 

the overall lack of depth in the Δlsp mutant.
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3.3.4 Effect of gene disruption on lipoprotein processing.

3.3.4.1 Western blots.

Spores of each strain were grown for 15 hours in 50% TSB/YEME growth 

media (table 2.3) and the resultant cell extract was fractionated by 

ultracentrifugation to obtain separate cytoplasmic and cell membrane fractions.  

Each group of proteins was run on a separate 15% SDS PAGE gel, with the 

amount protein loaded in each lane normalised.  The results for each of the 

fractions can be seen in figures 3.15 and 3.16.

3.3.4.2 CseA.

The first lipoprotein assayed was CseA (SCO3357), a Sec translocated, 

experimentally  confirmed lipoprotein from S. coelicolor, with no known 

homologues outside of the streptomycetes [93].  CseA is part of the CseABC-σE 

regulatory system which is involved in sensing of cell envelope stress in S. 

coelicolor.  Good polyclonal antibodies exist against this lipoprotein [93].  The 

CseA protein runs as a band at 21 kDa on a protein gel.  This band was absent 

from all the cytoplasmic fractions (fig. 3.15).  The band was also undetectable in 

the precipitated growth medium (not shown).  Being a membrane bound protein, 

CseA was present as expected in the membrane fractions of wild-type S. 

coelicolor.  It is absent from the ΔcseA null mutant (J2172 - see table 2.2).  In 

the membrane fractions of both the Δlgt1 (BJT1002) and Δlgt2 (BJT1027)  

strains CseA is present, with no detectable size shift in comparison to the wild-

type.  However, in the ΔlspFLP mutant (BJT1001), CseA was undetectable.
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Membrane

Cytoplasm

ΔlspFLPΔlgt2::aprΔlgt1::aprWTΔcseA

J2172 M145 BJT1002 BJT1027 BJT1001

Figure 3.15.  Western blot analysis of the cytoplasm and membrane fractions of the 

various S. coelicolor  strains.  CseA can be seen in the WT, Δlgt1 and Δlgt2 membrane 

samples.  The fractions were incubated against an anti-CseA antibody.  Strain names 

are as labelled.

3.3.4.3 SCO3484

The second lipoprotein assayed was SCO3484, a Tat translocated, confirmed 

lipoprotein [2, 82], and a substrate binding protein of unknown function.  An 

effective antibody against this lipoprotein is unavailable at the current time, so a 

fusion was created whereby the gene was cloned with six histidine codons at its 

3′ end (pTDW188 - see table 2.2).  Constructs carrying this altered gene were 

conjugated into each S. coelicolor strain in single copy, integrating using the 

ϕC31 attP-int locus, and membrane fractions of each of the strains were 

prepared, as discussed previously.  These fractions were immunoblotted with a 

commercially available, monoclonal anti-His antibody  (Qiagen).  This antibody is 

highly sensitive and is able to detect proteins at a very low level.  The results 

(fig 3.16), show that as with CseA, the processing of SCO3484 in both the Δlgt1 

and Δlgt2 mutants appears to be the same as the wild-type.  However, the 

processing in the Δlsp strain is different.  In this case the protein, whilst present 

at a low level, is detectable although it is larger than the protein from the wild-

type.  This suggests that it retains its signal peptide due to the lack of Lsp and 
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that the majority of the protein is proteolysed to remove it from the membrane.  

The size of the protein in an in trans complemented Δlsp mutant is returned to 

normal.  This will be discussed in section 3.3.5.2 below.

Membrane

in transΔlspFLPΔlgt2::aprΔlgt1::aprWT

M145 BJT1002 BJT1027 BJT1001 BJT1007

Figure 3.16.  Western blot analysis of His-tagged SCO3484 using an anti-His antibody 

in the membranes of each of the strains listed.  The protein in the Δlsp mutant has 

shifted in comparison to the other strains, suggesting it is improperly  processed.  It has 

reverted to its fully  processed size in the complemented strain.  Strain names are as 

labelled.

3.3.5 Complementation of the Δlsp mutant.

Of the three gene disruptions made, only the Δlsp mutant displays a severe 

phenotype, as described above.  In an attempt to reverse these mutations, a full 

length copy of the lsp gene was replaced into the Δlsp strain in order to see if 

could restore the mutant back to a wild-type phenotype.  This was done in two 

ways, with a full length copy of the gene and its promoter being reintroduced 

into the mutant on an integrative plasmid, or by reversing the REDIRECT 

mediated apramycin gene disruption (section 2.4), to reintroduce a full length 

lsp gene back into the bacterial chromosome, thus reconstructing the wild-type 

strain.  A copy  of the full length lsp was synthesised by Genscript USA inc. with 

an additional 300 bp of upstream DNA incorporating the lsp promoter (see 

Chapter 2).  
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The in trans complementation of the Δlsp mutant involved subcloning the full 

length lsp gene, under the control of its own promoter, into the vector pSET152  

to form vector pBT100 (see table 2.2) and transforming it into the unmarked 

Δlsp deletion strain to create the strain BJT1007.

 

Replacing the lsp gene into the chromosome of the mutant to make a cis 

complemented strain (section 2.4.2) involved replacing the ampicillin resistance 

gene (bla) found on the backbone of the cosmid 4A10 (which contains full 

length lsp) with the hygromycin resistance cassette (hyg) containing the origin 

of transfer (fig. 3.17).  This altered cosmid, pBT110, was conjugated into M145 

lsp::apr (BJT1000) and double exconjugants were selected by choosing 

colonies that were hygromycin sensitive and apramycin sensitive (BJT1006).  

Genomic DNA was tested by PCR (fig. 3.18), as described earlier, to ensure 

that the full length lsp was present.

Figure 3.17  PCR confirmation of the replacement of the bla gene in the backbone of 

cosmid 4A10 with the hyg cassette. Lane 1. = cosmid 4A10, lane 2. = cosmid 4A10 

bla->hyg.  The bla Test forward and reverse primers were used.   The band in lane 1 

(~1 Kb) is the bla gene and flanking DNA, absent in the altered cosmid and replaced by 

the hyg cassette (~1.5 Kb).
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Figure 3.18.  PCR of genomic DNA to confirm the replacement of full length lsp into 

the Δlsp::apr mutant. Lanes 1-3 = cis complementation, 4-6 = M145 wild-type, 7-9 = 

M145 lsp::apr.  Primer combinations in lane 1,4,7 = hyg test forward/reverse.  Lanes 

2,5,8 = P1 and P2. Lanes 3,6,9 = lsp Test forward/reverse.  A band representing full 

length lsp (614 bp) is present in the wild-type and cis complementation.  This band is 

absent in the Δlsp::apr mutant, where the apr gene is present (1424 bp), replacing the 

lsp gene.

3.3.5.1 Development and colony morphology.

When plated as a confluent lawn, as in figure 3.11 the complementations both 

look closer to the wild-type than the ΔlspFLP mutant (BJT1001).  They appear 

to have grown more than the mutant, and are sporulating to a greater extent.  

When individual colonies were viewed under the light microscope however, the 

similarities between the wild-type and complemented strains end.  The results 

for colonies grown for 5 nights can be seen in figure 3.19.  As before the Δlsp 

mutant colony is dwarfed by  the wild-type.  Neither of the complemented strains 

have returned to the size of the wild-type, and appear to approximately the 

same size as the deletion mutant.  The cis complemented strain (BJT1006) is 

markedly  more grey than the in trans complemented strain (BJT1007) (fig. 3.19) 
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and is producing a higher number of spores, which is confirmed in the SEM 

images (fig. 3.22).  Both complemented colonies retain the large proportion of  

white areas seen in the Δlsp mutant but absent in the wild-type.  The cross-

sections of each of the colonies (fig. 3.20) confirms the drastic difference with 

both complemented strains show the same lack of depth observed in the Δlsp 

mutant.
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Whilst light microscopy shows very  little difference between the Δlsp and the 

complemented strains, the use of SEM revealed some variations unseen at a 

low magnification.  Colonies viewed after both 2 and 5 nights can be seen in 

figures 3.21 and 3.22.

After 2 nights, the cis complementation (BJT1006) resembles the wild-type, with 

a large amount of aerial hyphae present.  As with the wild-type, there are no 

spore chains visible.  The in trans complemented strain (BJT1007) however 

closely  resembles Δlsp strain and shares the distinctive lack of aerial hyphae.  

High magnification of these strains show there is no vertical growth of aerial 

hyphae and any depth of the colony appears to be a result of substrate hyphae 

aggregating on top of each other.  After 5 nights, all the strains look broadly 

similar, but closer inspection reveals that whilst both the wild-type and cis 

complemented strains share an abundant number of curly aerial hyphae, they 

are not present in either the Δlsp mutant or the in trans complemented strain.  

The highest magnification does reveal though that mature spores are present in 

all four of the strains.  If you were to base the analysis of the complemented 

strains solely on these SEM data it would appear that the cis complementation 

closely  resembles the wild-type, whilst the in trans complementation is closer to 

the Δlsp mutant.

112



Fi
gu

re
 3

.2
1.

  S
ca

nn
in

g 
el

ec
tro

n 
m

ic
ro

sc
op

y 
of

 e
ac

h 
of

 th
e 

w
ild

-ty
pe

, Δ
ls

p 
an

d 
co

m
pl

em
en

te
d 

st
ra

in
s 

gr
ow

n 
fo

r 2
 n

ig
ht

s 
on

 S
FM

 m
ed

ia
. S

tra
in

 n
am

es
 

ar
e 

sh
ow

n 
in

 b
ra

ck
et

s.

W
T 

(M
14

5)
Δ

ls
pF

lp
 (B

JT
10

00
)

Δ
ls

pF
lp

 c
is

 c
om

pl
em

en
ta

tio
n 

(B
JT

10
06

)
Δ

ls
pF

lp
 in

 tr
an

s 
co

m
pl

em
en

ta
tio

n 
(B

JT
10

07
)



Fi
gu

re
 3

.2
2.

  
Sc

an
ni

ng
 e

le
ct

ro
n 

m
ic

ro
sc

op
y 

of
 e

ac
h 

of
 th

e 
w

ild
-ty

pe
, Δ

ls
p 

an
d 

co
m

pl
em

en
te

d 
st

ra
in

s 
gr

ow
n 

fo
r 

5 
ni

gh
ts

 o
n 

SF
M

 m
ed

ia
. 

 S
tra

in
 

na
m

es
 a

re
 s

ho
w

n 
in

 b
ra

ck
et

s.

W
T 

(M
14

5)
Δ

ls
pF

lp
 (B

JT
10

00
)

Δ
ls

pF
lp

 c
is

 c
om

pl
em

en
ta

tio
n 

(B
JT

10
06

)
Δ

ls
pF

lp
 in

 tr
an

s 
co

m
pl

em
en

ta
tio

n 
(B

JT
10

07
)



3.3.5.2 Effect of gene disruption on lipoprotein processing.

As can be seen in figure 3.16, in trans complementation of the Δlsp mutant 

(BJT1007) is able to restore the processing of SCO3484 (the cis 

complementation could not be tested at the time due to a clash of antibiotic 

resistance cassettes in the integrative vectors).  In order to confirm this, 

membrane fractions from the wild-type, Δlsp mutant and complemented strains  

were collected as before and tested against an unaltered native lipoprotein, in 

this case CseA.  The results can be seen in figure 3.24 below.  As before, the 

band representing CseA in the wild-type membrane is absent from the Δlsp 

membrane.  It is however, detectable in both of the complemented strains at the 

same size as the wild-type band.

3.3.6 Phenotype tests.

Many lipoproteins are involved in maintaining cell envelope integrity.  In E. coli, 

the murein lipoprotein (Lpp) is needed to covalently  attach the peptidoglycan 

cell wall to the inner membrane.  It seems feasible that disruption of the 

lipoprotein biosynthetic pathway may lead to a weakened cell envelope due to 

the incomplete processing, or absence of lipoproteins.  To test this hypothesis 

the wild type and mutant strains were tested for sensitivity to a variety of 

stresses.  Identical numbers of spores were plated into each well of a 12 well 

cell-culture plate containing 3ml of minimal growth media (+1% glucose).  Each 

well contained a decreasing concentration of the compound to be tested, with 

the highest concentration being well A1 and the control well being C4 (fig. 3.23).  

Growth was scored as 2 if the growth was confluent, 1 if individual colonies 

were sparse enough to be counted by eye, or 0 for the absence of growth (for 

full results see appendix 2).
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Name/Strain WT Δlgt1::apr Δlgt2::apr ΔlspFLP cis comp in trans 
comp

M145 BJT1002 BJT1027 BJT1001 BJT1006 BJT1007

Bacitracin
Confluent Growth (2) up to 50 μg/ml 30 μg/ml 100 μg/ml 20 μg/ml 35 μg/ml 35 μg/ml

Weak Growth (1) up to N/A 40 μg/ml 500 μg/ml 30 μg/ml 40 μg/ml 50 μg/ml

+15 Hour SDS
Confluent Growth (2) up to 0.2% 0.2% 0.2% 0.05% 0.06% 0.04%

Weak Growth (1) up to N/A N/A N/A 0.1% 0.1% 0.1%
0 hour lysozyme

Confluent Growth (2) up to 0.5 μg/ml 0.5 μg/ml 0.5 μg/ml 0.3 μg/ml 0.75 μg/ml 0.75 μg/ml
Weak Growth (1) up to 1.25 μg/ml 2.5 μg/ml 2.5 μg/ml 0.75 μg/ml 1 μg/ml 1.25 μg/ml
+15 Hour Lysozyme

Confluent Growth (2) up to 1 μg/ml 0.5 μg/ml 0.3 μg/ml 0.4 μg/ml 0.3 μg/ml 0.4 μg/ml

Weak Growth (1) up to 1.25 μg/ml 1.25 μg/ml 1.25 μg/ml 1.25 μg/ml 2.5 μg/ml 1.25 μg/ml

Table 3.2. Abbreviated results of the stress test carried out on each of the S. coelicolor 

strains.  As described, confluent growth was scores as a 2, whilst weak growth was 

scored as a 1. N/A represents confluent growth to the highest level tested.

3.3.6.1 Cell envelope specific antibiotics.

Of the antibiotics tested, bacitracin, carbenicillin and vancomycin, the most 

obvious effect was observed with bacitracin.  Bacitracin is a cyclic 

dodecapeptide produced by Bacillus species, and an unusual antibiotic 

because it requires a divalent metal ion (for example Zn2+) in order to function 

[94].  Bacitracin inhibits cell wall biosynthesis in Gram-positive bacteria by 

interfering with the transport of peptidoglycan precursors, leading to the 

cessation of cell wall synthesis and eventually cell lysis (fig. 3.27) [95].  Wild-

type S. coelicolor exhibited growth at ≤50 μg ml-1 bacitracin but higher 

concentrations were lethal.  The Δlgt1 mutant (strain BJT1002 - see table 2.2) 

showed slightly lower resistance, with strong growth at ≤30 μg ml-1 and weak 

growth up  to 40 μg ml-1.  The Δlgt2 mutant (BJT1027) showed a higher level of 

resistance than the wild-type, growing strongly  at ≤100 μg ml-1 and growing 
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weakly  at 500 μg ml-1.  In contrast, Δlsp (BJT1001) showed decreased 

resistance compared to the wild-type, only showing strong growth at ≤20 μg ml-1 

and weak growth up to 30 μg ml-1.

3.3.6.2 SDS Sensitivity.

The detergent Sodium Dodecyl Sulphate (SDS) is an anionic surfactant.  It is 

used frequently  in experiments to denature proteins by disrupting their non-

covalent bonds.  As a detergent, SDS also affects lipid-lipid interaction in the 

cell membrane phospholipid-bilayer [96], potentially leading to a weakened cell 

membrane.  Of the three SDS experiments carried out, neither incubating the 

spores for 1 hour in SDS nor overlaying the spores with SDS after 0 hours lead 

to any discernible effect on the strains.  Overlaying the plates after 15 hours 

growth (newly germinated spores) had no effect on the wild-type, Δlgt1 

(BJT1002) or Δlgt2 (BJT1027) strains, each of which was resistant to ≤0.2% 

SDS.  The Δlsp strain (BJT1001) showed strong growth at ≤0.05% SDS and 

weak growth up to 0.1% SDS.  There was no growth at 0.2% SDS.  These 

results suggest that S. coelicolor spores are very resistant to SDS as are newly 

germinated spores under normal conditions but deletion of lsp increases SDS 

sensitivity.

3.3.6.3 Lysozyme sensitivity.

Lysozyme belongs to a family of enzymes known as the 1,4-β-N-

acetylmuramidases which damage Gram-positive bacterial cell walls [97].  This 

enzyme attacks peptidoglycan by hydrolysing a glycosidic bond between N-

acetylmuramic acid and N-acetylglucosamine [98].  The weakening of the cell 

wall means that an affected bacterium is more susceptible to lysis caused by 

turgor pressure.  Lysozyme had an effect on the strains both when overlain after  
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0 hours and 15 hours.  After 0 hours, the wild-type showed confluent growth on  

≤0.5 μg ml-1 and weak growth up to 1.25 μg ml-1.  The Δlgt1 (BJT1002) and 

Δlgt2 (BJT1027) mutants were broadly  similar.  The Δlsp mutant (BJT1001) was 

the most sensitive, showing confluent growth up  to ≤0.3 μg ml-1 and weak 

growth up to 0.75 μg ml-1.  This pattern is changed in the +15 hour overlay 

experiment.  In this case, the wild-type and Δlsp mutant both show higher levels 

of resistance than at 0 hours, with confluent growth at ≤1.0 μg ml-1 and ≤0.4 μg 

ml-1 respectively.  The Δlgt1 mutant shows a similar level of resistance to the 0 

hour overlay, but the Δlgt2 mutant shows considerably lower resistance, with 

confluent growth at ≤0.3 μg ml-1 and weak growth up to 0.75 μg ml-1.

3.3.6.4 Complemented Δlsp strain phenotypes.

As the Δlsp mutant typically displayed enhanced sensitivity to stresses 

compared to the wild-type, the same phenotype assays were carried out using 

the cis and in trans complemented lsp strains (BJT1006 and BJT1007 

respectively).  The resistance of both complemented strains to bacitracin 

increased.  Both showed a similar level of resistance, with confluent growth 

seen at ≤35 μg ml-1 compared to ≤20 μg ml-1 for the Δlsp mutant (BJT1001) and 

≤100 μg ml-1 for the wild-type (M145).  

The Δlsp mutant showed confluent growth on 0.05% SDS when overlain after 

15 hours.  The complemented strains both showed approximately  the same 

level of resistance, with the cis complementation slightly higher at 0.06% and 

the in trans complementation slightly lower at 0.04%.  These results are still far 

lower than the wild-type, which showed confluent growth at the highest level of 

SDS tested, 0.2%.
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The pattern of resistance for the complemented Δlsp strains when stressed by 

lysozyme differed between the 0 hour and 15 hour experiments.  When overlain 

after 0 hours these strains showed levels of resistance closer to the wild-type 

whilst after 15 hours the levels were closer to the Δlsp mutant.  After 0 hours, 

the wild-type showed confluent growth at  ≤0.5 μg ml-1.  This was increased to 

≤0.75 μg ml-1 in both the cis and in trans complementations, the Δlsp mutant 

grew confluently ≤0.3 μg ml-1.  When overlain after 15 hours, the wild-type grew 

confluently to ≤1.25 μg ml-1, whilst both the Δlsp mutant and in trans 

complementation grew to  ≤0.4 μg ml-1.  The cis complementation was even 

lower, only growing confluently to ≤0.3 μg ml-1.

3.3.7 Truncating the N-terminus of Lsp.

As has been shown in figure 3.5, the Lsp protein from S. coelicolor contains an 

elongated N-terminus, when compared to both E. coli and B. subtilis.  Similar 

elongations are also present in the Lsp enzymes of the other actinomycetes, as 

described above.  In order to find out whether this extension is needed for the 

enzyme to function, deletions were made in the coding sequence of lsp in order 

to produce truncated enzymes.  These truncated genes were synthesised by 

Genscript, sub-cloned into pSET152 to form vectors pBT101-105 (table 2.2), 

and introduced into the unmarked Δlsp deletion mutant (BJT1001) in single 

copy, integrating using the ϕC31 attP-int locus, to make strains which were 

identical to the in trans complemented strain (BJT1007), except for the loss of 

some, or all of the N-terminal extension.  In total, four truncations were made, 

with enzymes starting at amino acid 10 (N10), 20 (N20), 30 (N30) and 40 (N40) 

(strains BJT1008-1011).  The first amino acid of the N40 truncation aligns to the 

first amino acid of the E. coli Lsp  (fig. 3.23).  In addition to these truncations, a 
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double point mutant was constructed, where two active site aspartate residues, 

D148 and D177, were change to alanine (D148A/D177A), in order to create an 

inactive enzyme (BJT1012).  These residues are conserved in all genomes 

checked and thought to make up a catalytic dyad forming the active site of the 

protein in B. subtilis (section 3.3.1.2).

BsLsp  ------------------------------------------------MLYYMIALLIIA 12
EcLsp  ---------------------------------------MSQSICSTGLRWLWLVVVVLI 21
ScLsp  VAEAERIIGTPDIPDAAGEGQERPDADPEREQQEQEQAPERTRGKRRVAVLFAVALFAYL 60
                N10       N20       N30       N40 

Figure 3.23.  The N-terminal extensions of Lsp from B. subtilis, E. coli and S. 

coelicolor.  The four truncations are shown, with the amino acid which becomes the 

start of the protein highlighted in red.  The codons for each of these amino acids were 

changed to encode methionine in the truncated forms.

To test if the truncations or the point mutant were able to complement the Δlsp 

mutant, membrane fractions were prepared and immunoblotted with the CseA 

antibody as described in section 3.3.4.2.  The results can be seen in figure 3.24.  

As before, mature CseA is present in the wild-type and complemented strains 

and absent in the Δlsp strain.  The fully processed protein is also present in the 

N10 truncation.  There is a band in the N30 lane, but it is slightly larger than 

those seen in the other lanes.  This would be consistent with an unprocessed 

form of CseA which retains its signal peptide.  The protein is undetectable in the 

N20, N40 and D148A/D177A complementations.  As before, CseA was 

undetectable in cytoplasmic fractions or precipitated supernatant (not shown).
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WT ΔlspFLP N10 N20 N30 N40 DD in trans cis
M145 BJT1001 BJT1008 BJT1009 BJT1010 BJT1011 BJT1012 BJT1007 BJT1006

Figure 3.24.  Membrane fractions from Wild-type, Δlsp, N-truncated Lsps, point mutant 

(DD), cis and in trans complementations.  The band visible represents CseA.  Strain 

names are as indicated.

3.3.8 Lsp specific antibody.

Whilst the results shown in section 3.3.7 demonstrated whether the CseA 

protein was processed correctly or not by the N-truncated Lsp enzymes, the 

absence of detectable lipoprotein neither confirms nor denies the presence of 

the Lsp enzyme itself.  In order to see whether the absence of the model 

lipoprotein CseA was down to the absence of Lsp, an antibody was raised 

against the synthesised peptide KLEHHEPIEIIGDWLRFA, which corresponds to 

residues 72 to 89 in an extracytoplasmic loop of Lsp.  Disappointingly this 

antibody was unable to detect the Lsp protein in S. coelicolor cell extracts of 

membrane fractions.  This also thwarted a plan to visualise potential direct 

interactions between Lgt1/Lgt2 and Lsp using membrane crosslinking.

3.3.9 Complementing an E. coli lsp disruption.

The Lsp  protein is encoded in only  single copy in the majority of bacterial 

species studied, such as B. subtilis [20].  The protein is essential in E. coli, as 

has been shown when the protein is inhibited by the antibiotic globomycin.  As 

has been discussed above, the S. coelicolor lsp gene has been correctly 

identified, and disrupting this gene leads to altered lipoprotein processing.  It 

has also been shown that the N40 truncated Lsp protein is unable to rescue a 

S. coelicolor Δlsp mutant (section 3.3.7).  To further investigate the role the N-
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terminal extension plays in S. coelicolor Lsp, both the full length (FL) protein 

and N40 truncation were tested to see whether they could rescue an E. coli 

Δlsp strain.   Typically, to test whether a potential protein is a true Lsp 

homologue, it is expressed in E. coli to see whether the excess of the enzyme 

leads to an increase in resistance to globomycin.  This approach was not 

chosen here as globomycin is in very short supply worldwide and is not 

commercially available.  Instead, the full length E. coli lsp, FL S. coelicolor lsp 

and the N40 truncation gene were subcloned into the cosmid pBAD24-NdeI 

containing an arabinose inducible promotor, to create vectors pBT107-109 

(table 2.2) and introduced into E. coli strain BW25113 / pIJ790 (see section 

2.4.3).  The E. coli chromosomal copy was disrupted with an apramycin 

cassette whilst the in trans alleles were expressed by the addition of arabinose.

Despite repeated attempts, a knockout of the E. coli lsp gene was not obtained.  

However, apramycin resistant colonies of the strains complemented with the 

N40 or FL S. coelicolor lsp gene were obtained, and an initial PCR using 

primers specific for the apramycin cassette confirmed it was present, as can be 

seen in figure 3.25 below.
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Figure 3.25.  PCR showing the presence of the apr cassette in six potential E. coli 

Δlsp colonies. Lanes 1->3 were complemented with full length S. coelicolor lsp and 

lanes 4->6 were complemented with N40 lsp.  Bands at ~1400 bp represent the apr 

cassette.

Although these results showed that the apramycin cassette was present in both 

the FL and N40 complemented strains, it did not confirm that the E. coli 

chromosomal lsp gene had been disrupted.  Using primers specific to the E. coli 

lsp gene as well as those specific for the apramycin cassette, showed that 

whilst the apramycin cassette is present in each (as before), a band 

representing the E. coli lsp gene is also present, suggesting that the antibiotic 

cassette has gone in to the chromosome in an incorrect location.  Repeated 

attempts produced the same result suggesting that the E. coli lsp gene is very 

difficult to disrupt (fig. 3.26).
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Figure 3.26.  PCR of E. coli genomic DNA showing our inability  to disrupt the E. coli 

lsp gene, despite the presence of the apr cassette.  FL = full length S. coelicolor lsp 

complementation (Lanes 1 + 2).  N40 = truncated S. coelicolor lsp complementation 

(lanes 3 + 4).  Lanes 1 + 3 use the E. coli lsp Test forward/reverse primers.  Lanes 2 + 

4 use apr cassette P1 + P2 primers.  Lane 5 shows the size of the lsp gene in E. coli 

DH5α using the E. coli lsp Test forward/reverse primers.

3.4 Discussion

The data presented in this chapter shows that disrupting the lipoprotein 

biosynthetic pathway in S. coelicolor has a deleterious effect on the overall 

fitness, and phenotype, of the bacterium.  From a macroscopic perspective it is 

obvious that the Δlsp mutant (BJT1001 - see table 2.2) has a number of severe 

growth phenotypes, whilst the Δlgt1 (BJT1002) and Δlgt2 (BJT1027) mutants 

appear quite normal.  This observation is backed up by  both the light and 

scanning electron microscopy, both of which show that Δlsp is retarded in every 

aspect of its growth and development.  This strain frequently overproduced the 

antibiotic actinorhodin, which is often seen as a response to cellular stress [92].  

At this point it is timely to note that S. coelicolor has a tendency to show random 

growth phenotypes, however time was taken to ensure that the microscopic 

phenotypes described within this chapter were characteristic for the majority  of 
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colonies/cells and for multiple, independently isolated, Δlsp colonies.

Bioinformatic analysis of each of the proteins making up  the S. coelicolor 

lipoprotein biosynthetic pathway reveal that there are a number of differences 

compared to the published and studied enzymes from other bacterial species.  

Typically, once an immature lipoprotein has been exported out of the cell by Sec 

or Tat and is anchored into the cell membrane by its signal sequence, the first 

enzyme to act upon it is Lgt, which adds the diacylglyceryl moiety  to the 

proprotein.  S. coelicolor is unusual in that it contains two homologues of the Lgt 

protein, whereas E. coli, B. subtilis and the selection of actinomycetes chosen 

(fig. 3.2) only have one.  Both of the S. coelicolor Lgt enzymes share a good 

level of similarity (~58%) and both share the His-196 and Tyr-235 residues that 

have been shown to be important for function in E. coli Lgt [17] which suggests 

that they are true Lgt enzymes.  However His-103, which is essential for 

function in E. coli Lgt, is present in B. subtilis, yet absent from S. coelicolor Lgt1 

and Lgt2 (as well as the other actinomycete Lgt enzymes) where it is a 

tryptophan.  The reasons for this are unknown.  Lgt in E. coli is used to transfer 

the lipid moiety  from phosphatidyl glycerol (PG) to the sulphydryl group of the 

immature lipoprotein [12].  Perhaps, given the difference in membrane 

composition between the actinomycetes and E. coli, a different phosholipid is 

used as a substrate by their respective Lgt enzymes, and therefore the amino 

acid substitution is needed. 

In contrast to Lgt, the S. coelicolor Lsp enzyme, which removes the signal 

peptide from the immature lipoprotein contains all the experimentally  verified 

essential residues from another organism, in this case B. subtilis, as do all the 
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other species tested (fig. 3.4).  The S. coelicolor Lsp  shows a low similarity to 

both E. coli and B. subtilis Lsp  (~30%), and the conserved regions I->V 

probably account for a large proportion of this similarity.

The essential amino acids of the final enzyme in the lipoprotein pathway, Lnt, 

have been experimentally verified in E. coli [30].  This enzyme was thought not 

to exist in Gram-positive bacteria, but has recently  been identified in M. 

smegmatis and M. tuberculosis [38].  The M. smegmatis enzyme contains the 

three essential amino acids thought to form the catalytic region in E. coli [30], 

but only contains two of the other four essential E. coli residues (fig. 3.6).  Given 

the lack of an outer membrane, the reason S. coelicolor contains two potential  

Lnt homologues is unclear, especially  as at they  appear, at first glance, to be 

functionally redundant.  However, whilst S. coelicolor Lnt1 and Lnt2 share a low 

level of similarity (26%) to each other, the catalytic triad found in E. coli and M. 

smegmatis Lnt enzymes is present in both S. coelicolor homologues.  Lnt1 

shares three out of the other four essential E. coli residues, whist Lnt2 has two.  

Sadly, it was not possible to see whether either, or both of these proteins are 

able to N-acylate a lipoprotein, or whether their deletion alters the way 

lipoproteins are processed in S. coelicolor as the genes could not be disrupted 

in S. coelicolor (D. Widdick, unpublished). 

One of the more striking aspects of the S. coelicolor proteins, is that both the 

Lgt enzymes, and Lsp  contain extended C, or N-termini respectively, which are 

absent from E. coli.  The functions of these extensions is unclear and will be 

discussed below.
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As mentioned above, disrupting the lgt genes in S. coelicolor had very little 

effect on the bacterium, whilst disrupting lsp led to a highly  pleiotropic 

phenotype.  In order to try to explain why this might be the case, it is necessary 

to again consider the pathway by which lipoproteins are created.  The loss of 

Lgt1 or Lgt2 had no effect on the processing of either of the model lipoproteins 

tested (CseA, SCO3484), both of which were detected in membrane fractions. 

Neither mutant had a detectable growth phenotype, with each strain looking 

comparable to the wild-type under both light and electron microscopy.  Given 

that both of the lipoproteins tested are the same size as the wild-type protein it 

seems likely  that they  are correctly  lipidated (fig. 3.15 and 3.16).  In B. subtilis it 

has been shown that the signal sequence of an unlipidated lipoprotein is 

enough to anchor it to the cytoplasmic membrane [99].  If this were the case in 

either of the Δlgt mutants however, you would expect a size shift in the band 

representing the immature lipoprotein as it would have an increased mass due 

to the presence of the signal sequence.  This is clearly not the case in either of 

the mutants tested.

A likely explanation for this lack of phenotype and the correct lipoprotein 

processing observed in both single mutants is that the the two Lgt homologues 

in S. coelicolor are complementing each other.  In the absence of Lgt1 the 

lipoproteins are lipidated by Lgt2, and vice versa.  Both Lgt enzymes are able to 

partially complement a S. scabies Δlgt mutant (BJT1040) (Chapter 4), which is 

good evidence that both are true Lgt homologues.  However, these results raise 

several questions.  Firstly, is the lipidation of of proteins so important to the 

viability of a S. coelicolor cell that it needs two copies of the lgt gene, in case 

one is lost?  The lgt2 (SCO7822) gene is found in one of the arms of the 
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chromosome, which typically contain non-essential genes most likely acquired 

through HGT [66].  Conversely, lgt1 is found in the core-region of the 

chromosome, which contains the essential genes.  Regardless of the position of 

the genes, it appears that both are retained by S. coelicolor suggesting that the 

lipidation step  of the lipoprotein biosynthetic pathway is of great importance to 

the bacterium.  The second question that is unanswered, is whether or not each 

Lgt enzyme has a specific ʻsub-setʼ of lipoproteins to lipidate.  S. coelicolor has 

an estimated 223 lipoproteins, and to test the processing of each one in both 

the Δlgt1 and Δlgt2 mutants (BJT1002 and BJT1027 repectively) would be an 

arduous task.  Again though, this scenario seems unlikely, given that of the two 

lipoproteins tested neither showed a difference in either the Δlgt1 or the Δlgt2 

mutant.  If both were from the Lgt1 subset, you would expect a difference in the 

Lgt2 membrane and vice versa.  Also, 2 dimensional gel electrophoresis carried 

out by D. Widdick shows that there is little difference between the proteomes of 

the membranes of wild-type and Δlgt1/Δlgt2 mutants implying that the single 

mutants are complementing one another [82].  Our hypothesis that one enzyme 

caters to Sec translocated lipoproteins and the other caters to Tat translocated 

lipoproteins seems unlikely.  CseA is Sec dependent, whilst SCO3484 is Tat 

dependent and both were were processed correctly in the Δlgt1 and Δlgt2 

mutant.  Given these results, it appears that, for reasons unknown, S. coelicolor 

has two functioning copies of the Lgt protein.

What is also unknown based upon these results, is whether lipidation by Lgt is a 

prerequisite for the action of Lsp, as it is in the majority of bacteria tested to 

date [14], with the exception of L. monocytogenes [24].  In order to find out if this 

is the case in S. coelicolor a double Lgt mutant is needed.  Despite numerous 
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attempts, the construction of this mutant proved impossible.  If the order of 

enzyme activity is tightly controlled, then the loss of lipidation will mean that Lsp 

is unable to function, leaving the immature lipoprotein bound to the membrane 

by its signal sequence with a detectable shift in size in the lipoproteins tested, 

as mentioned above.  If the processing pathway is not tightly controlled then it 

might be expected that the lipoproteins tested would be undetectable in the 

membrane fraction of a Δlgt1 lgt2 mutant as Lsp  would act on the proprotein to 

cleave its signal sequence leading to its release into the extracellular medium 

as has been shown in L. monocytogenes [24].  Alternatively, the loss of 

lipidation may be fatal, which would explain the inability  to construct the double 

mutant.  An inability to construct a double lgt mutant in S. coelicolor suggests 

that Lgt function is essential in this bacterium.

The loss of Lsp  had a large effect on the growth of S. coelicolor presumably due 

to the loss of lipoprotein processing.  This is immediately obvious simply looking 

at the colonies by eye, without the need for magnification.  Compared to the 

wild-type (M145) the ΔlspFLP (BJT1001) colonies are small, and overproduce 

actinorhodin.  Under the light microscope the severity  of the growth retardation 

is even clearer.  The colonies are a fraction of the size of the wild-type, and are 

lacking any depth, appearing to grow almost flush to the surface of the growth 

media (figs. 3.12 and 3.13).  They also sporulate poorly, and the shortage of 

aerial hyphae and spore chains can be observed when a colony is viewed 

under SEM (fig. 3.14).

The two lipoproteins tested were processed in different ways in the Δlsp mutant.  

SCO3484 was present in the cell membrane fraction (fig. 3.16) but was seen at 
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a larger size than in the wild-type, suggesting that it still contained an uncleaved 

signal peptide.  CseA on the other hand, was completely undetectable in both 

the cytoplasmic and membrane fractions as well as the precipitated 

supernatant.  The reasons for this difference are unknown, but it has been 

noted that the same lipoprotein can be processed in different ways, even in the 

same mutant [11].  Why there is this difference in processing is difficult to 

explain.  A large amount of unprocessed lipoproteins anchored in the cell 

membrane by both their signal sequence and lipid moiety is likely to a 

detrimental effect on the integrity of the membrane.  These accumulated 

proteins are likely to be broken down by extra-cellular proteases.  If this were 

happening in the S. coelicolor Δlsp mutant (BJT1001) it could explain why no 

CseA was detectable.  However as SCO3484 is present, then not all incorrectly 

anchored lipoproteins are proteolysed, or at least not all at the same rate.

Even though the lipoprotein biosynthetic pathway  is non-essential in the Gram-

positive bacteria tested to date, a number of essential lipoproteins do exist, 

such as PrsA in B. subtilis, required for the correct folding of translocated 

proteins [49], or PrtM and OppA from Lactococcus lactis [52].  The retention of 

one lipoprotein (SCO3484) and the loss of another (CseA) may indicate that 

there are a subset of lipoproteins that are essential or more important to the 

viability of the bacterium.  For example, the S. coelicolor lipoprotein SCO1639 is 

involved in the correct folding of translocated proteins and its homologue found 

in Streptomyces anulatus (formerly S. chrysomallus) could not be deleted [100], 

suggesting that essential lipoproteins probably do exist in Streptomyces, 

although SCO1639 can be disrupted in S. coelicolor [82].
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If the absence of CseA is representative of a number of lipoproteins in the Δlsp 

mutant (BJT1001) it might explain the dramatic phenotypes seen.  

Complementing the mutant both cis and in trans (BJT1006 and BJT1007 

respectively) restored the correct processing of CseA and it was detectable in 

the membrane fractions of each at the same size as in the wild-type (fig. 3.24).  

The in trans complementation also lead to the correct processing of SCO3484, 

which was detectable at the same size as in the wild-type, not the increased 

size seen in the Δlsp mutant, suggesting that the signal sequence is again 

being cleaved (fig. 3.16).  Two dimensional electrophoresis of lipoproteins from 

the wild-type, Δlsp and complemented strains performed by  D. Widdick 

confirms that whilst there is a large subset of lipoproteins lost from the Δlsp 

membrane when compared to the wild-type, they are restored in both the 

complemented strains [82]. 

Whilst the processing of lipoproteins was restored by complementing the loss of 

Lsp, the retarded growth phenotype remained [82].  The cis complementation 

(BJT1006) seems to produce a higher number of spores than the in trans 

complementation (BJT1007) although both show no increase in colony size 

compared to the Δlsp mutant, and colonies of both complemented strains 

remain much smaller than the wild-type (fig. 3.19).  Both complemented strains 

also retain the characteristic flat colony phenotype shown by the Δlsp mutant 

(fig. 3.20).  Surprising differences between the two types of complementations 

were seen when viewed under SEM (figs. 3.21 and 3.22).  After 5 nights of 

growth, the wild-type, Δlsp (BJT1001) and complemented strains (BJT1006 and  

BJT1007) looked quite similar, but after only 2 nights, the cis strain closely 

resembled the wild-type, whilst the in trans strain was much closer to the Δlsp 
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mutant, showing that replacing Lsp  in different ways has lead to different 

results.  This, and the inability to restore a wild-type phenotype in a 

complemented strain, suggests that the growth defects seen in the Δlsp mutant 

are not solely  down to the loss of Lsp. Deletion of lsp appears to result in 

spontaneous secondary mutations that may suppress an otherwise lethal 

phenotype.  If lipoprotein processing is essential in S. coelicolor this might also 

explain why it encodes two copies of Lgt and why a double lgt mutant could not 

be isolated in this study.

This idea is further backed up by the stress tests carried out.  Figure 3.27 below 

shows the actions of several antibiotics that effect the cell envelope in various 

ways.  The majority of the antibiotics tested had no effect on any of the S. 

coelicolor strains (data not shown).  For example, S. coelicolor has a natural 

resistance to the β-lactam group  of antibiotics due to its constitutive expression 

of β-lactamases [101].  S. coelicolor also contains a gene cluster which confers 

resistance to the glycopeptide antibiotic vancomycin, likely transferred by HGT 

from other members of the actinomycetes [93].

The most drastic effect was seen with bacitracin.  Whilst the wild-type and Δlgt2 

mutant showed good growth at high concentrations of bacitracin (100 and 200 

μg/ml respectively), the Δlsp mutant is much more sensitive, only showing 

strong growth at 20 μg/ml.  The Δlgt1 strain was in between showing strong 

growth up to 30 μg/ml.  As has been mentioned, bacitracin, a cyclic 

dodecapeptide produced by Bacillus species, inhibits cell wall biosynthesis in 

Gram-Positive bacteria by binding to the lipid carrier undecaprenyl 

pyrophospate (UP), preventing it from being dephosphoylated by membrane 
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associated pyrophosphatases [94, 95].  Preventing this dephosphorylation 

means that the UP cannot be recycled, reducing the amount available for 

transport of the newly synthesised peptidoglycan precursors, leading to the 

cessation of cell wall synthesis and eventually  cell lysis (fig. 3.27) [103]. 

Currently, there are four known resistance mechanisms to bacitracin: removal of 

the antibiotic by an ABC transporter, overexpression of UP, expression of 

alternative UP phosphatase or exopolysaccaride production [95].

Figure 3.27. Diagram showing the effects of a variety of antibiotics on cell wall 

biosynthesis.  From [102].

Both the detergent SDS, and the muramidase lysozyme, had a severe effect on 

the Δlsp mutant.  When overlain after 15 hours with SDS the wild-type and Δlgt 

mutants all survived the highest % tested (0.2%), whilst the Δlsp mutant grew 

confluently at a quarter of this.  The spores of all of the strains were impervious 
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to SDS and the results show that the Δlsp mutant has a compromised cell 

membrane. 

The lysozyme results are curious.  When overlain after 0 hours, the Δlsp mutant  

(BJT1001) is more susceptible than the other strains which are all resistant to 

the same concentration.  When overlain over 15 hours however, the results are 

different, with all the mutants more susceptible than the wild-type.  The 

lysozyme in the 0 hour overlay affects the germinating spores, and as we have 

seen the growth of the Δlsp strain is much more feeble than the others, 

suggesting that the newly emerging germling cell walls may be more 

susceptible to cell wall damage than the other strains.  When the strains are 

overlain after 15 hours the resistance in the Δlsp strain increases relative to the 

0 hour overlay, either because; there is a higher density  of cells, and therefore 

there is a much larger amount of cell wall present raising the resistance to the 

lysozyme or the mycelial cell walls are simply  more resistant than the germling 

cell walls.  Quite why the resistance of the Δlgt2 mutant drops is unknown, 

although reproducible.

As has been discussed, complementing the Δlsp strain leads to the resumption 

of correct lipoprotein processing, but shows mixed results in the phenotype 

assay tests.  Both the cis and in trans complementations have a higher 

resistance to bacitracin than the Δlsp mutant, although they do not match the 

wild-type levels.   This is also true of the 0 hour Lysozyme overlay. Conversely 

neither complementation shows an increased resistance to SDS, nor 15 hour 

lysozyme overlay.
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Recent work has uncovered a new type of enzyme that may shed some light on 

why the Δlsp mutant is so damaged, and why complementing the mutant 

restores lipoprotein processing, but only  some of its ability to resist cell 

envelope stress. 

Typically, in the final stage of cell wall synthesis, glycan chains are polymerised 

by transglycosylation and transpeptidation, in which peptide side chains are 

cross-linked to form the rigid cell wall peptidoglycan (fig. 3.28) [104].  The 

enzymes that facilitate this reaction are transglycosylases/transpeptidases, also 

know as Penicillin Binding Proteins (PBPs).  The peptidoglycan is crosslinked 

by transpeptidases between Ala4 and Lys3 leading to a D,D (also known as 3,4) 

transpeptidation.  PBPs are targets for the β-lactam antibiotics which inhibit cell 

wall synthesis by acting as analogues of the D-Ala-D-Ala portion of 

peptidoglycan, covalently altering the transpeptidase active site [95] and 

preventing peptidoglycan cross-linking, leading to a mechanically weakened cell 

wall.

Figure 3.28. The transpeptidation reaction.  From [105].

An enzyme domain known as the YkuD  domain (formerly  known as the ErfK/

YbiS/YcfS/YhnG domain) is ubiquitous amongst prokaryotes and appears to be 

involved in alternative cross-linking of peptidoglycan and in attachment of 
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proteins to the cell wall.  The YkuD family can be recognised by the conserved 

amino acid sequence ΦGΦHGTX10(S/T)XGCΦR(M/L) (where Φ is a 

hydrophobic amino acid and X is any amino acid) [106].  The first protein 

containing this domain whose function was elucidated is L,D transpeptidase 

(Ldtfm) from Enterococcus faecium [107].  This enzyme catalyses the 

modification of the bacterial peptidoglycan, acting as an alternate 

transpeptidase cross-linking peptidoglycan between Lys3 and Lys3.  This leads 

to L,D  (also known as 3,3) cross-links, rather than the D,D links created by 

PBPs (fig. 3.29).

Figure 3.29. Comparison of the two different forms of transpeptidation:  D,D-

transpeptidation, facilitated by PBPs, and L,D-transpeptidation, as carried out by Ldt 

enzymes containing a YkuD domain.  From [108].

In E. faecium Ldt was shown to confer resistance to β-lactam antibiotics as the 

protein has no affinity  for these compounds. Ldt-catalysed remodelling of the 

peptidoglycan is an alternative pathway that negates the use of PBPs which are 

often sensitive to β-lactam antibiotics.  Further studies have revealed that Ldt 

proteins exist in other bacterial species, including E. coli [109] and B. subtilis 

[108].  During stationary phase, M. tuberculosis contains up to 80% L,D cross-
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links in its peptidoglycan [110] and recent work has identified the protein LdtMt2.  

Deleting the gene encoding this protein lead to mutants which were small and 

smooth and had stunted aerial growth, despite the lack of difference in the cell 

wall constituents [111].  Streptomyces albus G has been shown to contain L,D 

cross-links, but only as a minor percentage of the overall cross-linking in the cell 

wall [112].

These findings are important to this work as homology searching has shown 

that S. coelicolor possesses six lipoproteins containing the YkuD domain 

(appendix 1).  All are of unknown function, although one of the proteins 

(SCO4868) also contains a peptidoglycan binding domain.  Assuming they are 

Ldt enzymes, the potential disruption of the processing of these lipoproteins in 

the Δlsp mutant, as seen with CseA, is likely to have a detrimental effect on the 

cell wall and could explain the extreme sensitivity of the Δlsp mutant to 

bacitracin.  As discussed above, bacitracin stops the recycling of UP and 

therefore prevents any new peptidoglycan precursors being transported out of 

the cell, ceasing the formation of any new D,D cross-linked peptidoglycan.  The 

L,D transpeptidases are the only group of enzymes capable of modifying the 

cell wall in the absence of new peptidoglycan precursors [110], and the absence 

of these lipoproteins in the Δlsp mutant would suggest that, in the presence of 

bacitracin, no peptidoglycan cross-links of any kind are being made, leading to 

substantial weakening of the cell wall.  The small flat growth phenotype seen in 

the Δlsp mutant is also analogous to the growth phenotype seen in the M. 

tuberculosis strain lacking LdtMt2.  As has been shown, complementing the Δlsp 

mutant restores the correct processing of CseA and SCO3484.  It also raises 

the resistance of the complemented strains to bacitracin, suggesting that the 
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YkuD domain containing lipoproteins have also been restored and that L,D 

peptidoglycan cross-linking has resumed, although these lipoproteins were not 

identified in the membrane proteome of wild-type or complemented Δlsp 

mutants, and the colonies retain their flat phenotype.

Whilst the Ldt homologues in Gram-positive bacteria are involved in remodelling 

the cell wall, a homologue in the Gram-negative E. coli has been shown to have 

a separate function, catalysing the cross-linking of Braunʼs Lipoprotein (Lpp) to 

the periplasmic peptidoglycan. The Ldt enzyme anchors the C-terminus of the 

Lpp to the peptidoglycan [109], while the N-terminus is secured in the outer 

membrane by the lipid moiety.  If any of the S. coelicolor YkuD containing 

lipoproteins are involved with linking lipoproteins anchored in the cytoplasmic 

membrane to the cell wall peptidoglycan, then the loss of anchoring may also 

contribute to the weakened cell wall of the Δlsp strain.

Restoring the Lsp enzyme restores resistance to bacitracin, as well as 

resistance to  lysozyme overlay after 0 hours, but not resistance to 15 hour SDS 

or lysozyme overlay.  This suggests that the mycelia immediately post-

germination are as healthy as the wild-type, but later develop  flaws in their cell 

envelope.  

The inability  of the complemented strains to restore both the growth phenotype 

of the wild-type and the integrity of the cell envelope, but to restore the correct 

processing of lipoproteins, suggests that at least one secondary mutation has 

arisen in the S. coelicolor genome.  If this has occurred spontaneously  to 

compensate for the loss of correct lipoprotein processing it suggests that lsp is 
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an essential gene in S. coelicolor which would prove unique amongst the Gram-

positive bacteria tested to date.  The difficulty  in disrupting the lsp gene 

suggests that it is very  important to S. coelicolor.  The genome of this mutant 

will have to be sequenced, along with that of the wild-type, to ascertain where 

the potential mutations may have arisen.

As has been mentioned previously, the Lgt enzymes in S. coelicolor both 

contain an extended C-terminal whilst the Lsp  protein contains an extended N-

terminus.  These extensions are not present in the Gram-negatives nor the low 

GC Gram-positives.  In order to assess the roles that these extensions perform, 

truncations were made of both the Lsp and the Lgt proteins.  Given that both 

extensions are cytoplasmic, and absent from E. coli, it was thought unlikely that 

they performed an enzymatic function, but more likely a structural one.  

Removing the C-terminal extension from either of the Lgt enzymes had no 

effect on the processing of CseA (data not shown).  This result is not 

unexpected, given that deletion of either protein in its entirety has no effect on 

lipoprotein processing, as discussed.  To ascertain whether the N-terminal 

extension of Lsp  was necessary for enzyme activity  a series of truncation 

mutants were created, and the results are shown in figure 3.24.  The first 10 

amino acids of Lsp appear to be unnecessary  for function as properly 

processed CseA is detectable.  Confusingly, deleting the first 20 amino acids 

renders Lsp inactive, with CseA undetectable, yet removing a further 10 

residues allows CseA to be detected again, albeit at a larger size, presumably 

with its signal sequence still attached. Truncating the N-terminus to the same 

size as E. coli also leads to the loss of CseA. 
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These results suggest that the N-terminal extension of Lsp is required for 

enzyme function.  What cannot be proved however, is whether or not the 

extension is required for enzyme stability.  The inactivity of the anti-Lsp antibody 

means we were unable to show whether the enzyme is present in situ but 

functionally inactive in the N20 and N40 truncation mutants or whether it is not 

expressed. The lack of an anti-Lsp antibody also meant that the planned 

experiment to directly  visualise Lgt1/Lgt2-Lsp  interaction was not possible.  The 

plan was to chemically link proteins in the cell membrane fraction, then probe 

the fraction with the anti-Lsp antibody.  If there was a direct Lgt-Lsp  interaction, 

the band present would be larger than the size of the Lsp protein.  This could 

have been carried out in both the Δlgt1 and Δlgt2 strain to see whether either, 

or both proteins interacted with Lsp.  This interaction seems plausible, as 

passive diffusion of an immature lipoprotein between processing enzymes 

seems energetically wasteful.  Attempts to fuse Lgt1, Lgt2 and Lsp  to the 

fluorescent reporter protein eGFP, to visualise their position in the bacterial 

hyphae also proved fruitless, presumably  due to the low level of their production 

(data not shown).  It was postulated that these proteins might be localised to the 

hyphal tip, given that this is where the Tat translocation machinery is located (D. 

Widdick and T. Palmer unpublished).

The D148A/D177A (DD) point mutant was created to see whether the loss of 

Lsp  acts as a ʻmaster switchʼ, halting the transcription/translation of non-

essential lipoproteins, to prevent the cell membrane being damaged by having 

too many embedded signal sequences.  The thought was that the presence of 

the inactive DD enzyme in the cell membrane might mean that the switch 

remained ʻonʼ and a higher molecular weight band comprising of CseA with its 
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intact signal peptide would be detectable.  This does not appear to be the case 

as CseA is clearly  not detectable in the membrane although the lack the anti-

Lsp  antibody means we were unable to show whether the enzyme had been 

expressed or not. 

In summary, the work in this chapter describes the lipoprotein biosynthetic 

pathway in the Gram-positive bacterium S. coelicolor.  This pathway is unusual 

amongst bacteria, as it encodes two Lgt homologues, and two potential Lnt 

homologues.  It appears that the Lgt proteins are functionally redundant 

because both seem capable of lipidating a lipoprotein.  This work suggests, but 

does not definitively prove, that the lsp enzyme is essential in S. coelicolor.  

Deleting lsp does prove seriously  detrimental to the bacterium, altering both the 

processing of lipoproteins and the growth of the cell.  These data suggest that 

Lsp  is an essential enzyme in S. coelicolor but the bacterium has gained one or 

more spontaneous suppressor mutations to rescue the strain.  Also the inability 

to isolate a double lgt mutant suggests that the lipidation step of the lipoprotein 

biosynthetic pathway is essential for survival.  Future work will be aimed at 

mapping these suppressor mutations and this work is ongoing.  Deletion strains 

of each of the six YkuD lipoproteins will also have to be made to see whether 

they contribute to the remodelling of S. coelicolor peptidoglycan and lead to any 

of the growth phenotype seen in the lsp deletion strain.
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Chapter 4 - The lipoprotein biosynthetic pathway of S. scabies.

4.1 Introduction

The previous chapter investigated the lipoprotein biosynthetic pathway in the 

model streptomycete S. coelicolor.  The work showed strong evidence as to the 

essentiality of the enzyme Lsp, but left some unanswered questions, notably  as 

to the phenotype of a mutant lacking Lgt, and the role played by the Lnt 

homologues encoded by  streptomycete genomes.  This chapter attempts to 

rectify this by extending the study of the same pathway to the plant pathogenic 

bacteria S. scabies.  

Whilst the majority  of well studied pathogenic bacteria are Gram-negative, the 

Gram-positive actinomycetes do include a number of animal pathogens (e.g. 

Rhodococcus equi, M. tuberculosis) and plant pathogens (e.g. Leifsonia xyli, 

Clavibacter michiganensis) [113]. S. scabies is a plant pathogen, predominantly 

of potatoes (Solanum tuberosum).  S. scabies is one of only  a few characterised 

pathogenic Streptomyces species and has been identified in Europe, Asia, 

Africa as well as North and South America [74].  The main phenotype of an 

infected potato plant is the presence of lesions or scabs on the surface of the 

potato tuber (fig. 4.1).  These scabs are usually based on the surface of the 

plant and have a round appearance but can overlap to cover a significant 

proportion of the surface of the tuber [67].  These lesions are often only 

identified at the time of harvesting [74] reducing the marketing value of the 

potato.  As a direct result this disease is of great economic importance to 

farmers worldwide.

142



Figure 4.1. Typical symptoms of a scabies infected potato [67].

Like S. coelicolor, S. scabies is a soil dwelling saprophytic bacterium, and has a 

very  similar developmental cycle.  However S. scabies has gained a set of 

genes which has enabled it to colonise a variety of plants.  Whilst the bacteria 

usually infects tap root crops such as potato or radish, the bacterium appears to 

be neither host, nor tissue, specific and will infect seedlings of 

monocotyledonous or dicotyledonous plants [67].  Other plant pathogens, such 

as members of the Xanthomonas or the Pseudomonas genera, attack the 

leaves or stems of plants.  There is an advantage in doing this, as these 

structures contain an abundance of natural openings (such as the stomata) 

which the invading pathogen can utilise.  In contrast S. scabies, as a soil 

dwelling bacterium, infects the roots or tubers of plants and causes scabs on 

the latter.  These plant structures have a lower amount of openings [77], and the 

bacterium has developed a specialised way of entering the plant.  The main 

weapons for the pathogenicity of S. scabies are two compounds, thaxtomin A, 

and Nec1.
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4.1.1 The S. scabies pathogenicity island.

Bacterial pathogens have a very specialised niche, and the ability to cause 

disease is a highly evolved phenotype.  The genes responsible for this 

phenotype can be moved between bacteria, either individually  or as a group, 

with the ability  to utilise another source of nutrients potentially conferring extra 

fitness upon the donor strain [114].  Virulence genes are often arranged in a 

bacterial genome in a discrete cluster, known as a pathogenicity island (PAI).  

Pathogenicity islands have been discovered in a wide variety of Gram-positive 

pathogens including Staphylococcus aureus and Bacillus anthracis. Given their 

ability  to move from one species to another, the genetic background of a PAI 

often differs from the species of bacteria it is found in and the G+C content of a 

PAI is frequently different from the genome surrounding it [75].  The movement 

of PAIs from one species to another is often described as ʻHorizontal Gene 

Transferʼ, but in the strictest sense, it should be described as ʻLateral Gene 

Transferʼ as the transfer is intergenetic, rather than interdomain [115].

S. scabies has acquired a set of genes which has allowed it to become a very 

successful plant pathogen. These genes are arranged into a PAI, which at 325 

kb is currently the largest known bacterial PAI.  At 54%, the G+C content of the 

PAI is considerably lower than the rest of the S. scabies genome, which is 

71.45% [76] (www.sanger.ac.uk/projects/S_scabies).  The PAI contains multiple 

genes responsible for pathogenicity, including those needed for the biosynthesis 

of thaxtomin A and the nec1 gene, which has the lowest G+C content of any 

currently sequenced streptomycete gene [113].  The DNA in the areas around 

these genes contains multiple transposons, and insertion elements (IS).  This is 

a typical characteristic of a PAI, as are the presence of truncated ORFs [77], 

144



presumably a relic of the transfer of genes from one species to another.

S. scabies is related to the other scab  forming streptomycetes, S. turgidiscabies 

and S. acidscabies but the PAI responsible for the disease phenotype was 

initially passed from S. scabies to the other varieties [76].  These genes offered 

the recipients a selective advantage and were maintained in the newer 

pathogens.  Simply moving the PAI from one species of streptomycete to 

another does not confer the ability to infect plants however.  S. coelicolor cannot 

be made a pathogen simply by artificially introducing the PAI from S. 

turgidiscabies [76].  The reasons for this are unclear, but what is known is that 

the PAI integrates into an 11bp region of the S. coelicolor gene bacA 

(SCO1326), which shows similarity  to an E. coli undecaprenyl pyrophosphate 

phosphatase, a gene involved in resistance to the antibiotic bacitracin.  The 

insertion of the PAI does not affect the resistance of S. coelicolor to bacitracin.  

The DNA flanking bacA, in S. coelicolor has a low G+C content, suggesting that 

this site may have been used for lateral gene transfer previously [67].  Whilst it 

may be impossible to artificially ʻweaponiseʼ S. coelicolor, this is not true of all 

Streptomyces species.  Transfer of the S. turgidiscabies PAI into S. 

diastatochromogenes allowed the recipient to colonise potato tubers [67].  The 

reasons for the selectivity of recipient strains is unclear.  As mentioned earlier, 

there are few pathogenic streptomycetes and it may be that there is some 

underlying genetic background that prevents most species from accepting, or 

retaining, a PAI.  Perhaps another element is needed in order to activate the 

pathogenicity  genes, it has been suggested that perhaps some PAI need 

concomitant ʻmetabolic islandsʼ (MAIs) for optimal pathogen fitness when 

invading a host [115].   These may be absent from one recipient strain, but 
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present in another.

4.1.2. Thaxtomin A.

The most well described virulence factor from S. scabies  is thaxtomin A.  This 

molecule is a nitrated dipeptide phytotoxin, capable of necrosing excised potato 

tissue and causing scabs on immature potatoes [67].  Thaxtomin A is produced 

by S. scabies, S. turgidiscabies and S. acidscabies, with other variations 

produced by other Streptomycetes (e.g. thaxtomin C, produced by S. 

ipomoeae) and is the primary pathogenicity determinant in Streptomyces [116].  

Thaxtomin A appears to have a novel mechanism of action, whereby it inhibits 

cellulose biosynthesis and induces hypertrophy in plant cells [114] and it can be 

purified from both infected potatoes and growth media, with nanomolar 

concentrations able to induce irregular, binucleate, cells in onion root tips [67].  

As a virulence factor, thaxtomin A exhibits no antimicrobial activity and is purely 

plant specific [113].  This result suggests that it may be involved in cytokinesis, 

and it is tempting to think that this inhibition of cell wall synthesis would make 

cells weaker, and therefore more susceptible to the invading S. scabies  [77].

The pathway for the production of thaxtomin A requires multiple genes, and is 

summarised in figure 4.2, it requires conserved non-ribosomal peptidase 

synthases, a P450 monooxygenase and Nitric Oxide synthase (NOS) genes 

[113].  Expression of these genes is regulated by TxtR a member of the AraC/

XylS family  of regulators.  TxtR binds a disaccharide, cellubiose, which is a 

component of cellulose.  Disruption of the txtR gene leads to a cessation of 

thaxtomin A production.  However, as well as cellubiose, the  plant polymer 

suberin is also required to induce thaxtomin production [117].  
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Figure  4.2. a) The biosynthetic pathway  for the production of thaxtomin A.  b) The txt 

gene cluster.  From [113].

The conserved non-ribosomal peptidase synthases (TxtA and TxtB) are 

required for production of the N-methylated cyclic peptide backbone of the 

molecule, whilst post-cyclisation  hydroxylation steps are carried out by the 

P450 monooxygenase (TxtC) [113].  Perhaps the most interesting part of the 

pathway is related to the nos gene. Nitric oxide (NO) is an intracellular signalling 

molecule in mammals, involved in a variety of situations, including regulation of 

blood pressure and the immune system [118].  Recently  NOS-like proteins have 

been discovered in several Gram-positive bacteria, including B. subtilis, that 

show homology to the mammalian NOS proteins [119].  The function of these 
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bacterial NOS (bNOS) proteins is unknown, as unlike S. scabies they do not 

produce thaxtomin [113].  In mammals NO is produced by the oxidation of L-

arginine to L-citrulline and NO, via an enzyme bound intermediate, catalysed by 

three isoenzymes [118, 119].  Like the NOS proteins from other bacteria,  S. 

scabies share the same key residues as those found in the mammalian 

enzymes and, typical of bacterial NOS, they lack the mammalian N-terminal 

Zn2+ and carboxy-terminal flavoprotein reductase domains.  However, unlike 

other bacteria the S. scabies bNOS has an elongated N-terminus [118].  The 

nos gene in S. scabies is necessary for thaxtomin A production, as it is in the 

other scab causing Streptomyces species, as they are highly  conserved and 

their deletion results in a drastic drop in thaxtomin A production and a loss of 

virulence [118].

4.1.3 Nec1

Alongside thaxtomin, Nec1 is the other significant virulence factor found in S. 

scabies.  As has been previously mentioned, the nec1 gene has a particularly 

low G+C content, and unusually, although it is conserved amongst scab causing 

bacteria, it shows no homology to any other genes or gene products currently 

sequenced [75].  Thus, it can be thought of as a novel virulence factor [67].  

Usefully, as nec1 is unique amongst the scab causing streptomycetes, it can be 

used as a marker for the rapid detection of S. scabies and related species by 

conventional or real-time PCR, regardless of whether scab  symptoms are 

present on a potato or not [114].  The Nec1 protein is secreted, typically  during 

the early log phase, after approximately 20 hours [67, 75].  Thaxtomin is 

produced after approximately  48 hours, suggesting that Nec1 is involved with 

early interaction with the plant to be colonised.  Thaxtomin production is 
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unaffected by Nec1 production [76], but it does appear that a combination of the 

two is required for a pathogen to be truly effective.  Arabidopsis thaliana plants 

infected with a Δnec1 strain of S. turgidiscabies, show mild symptoms of root 

damage, but recover, whilst wild-type infected strains invariably  die [75].  The 

reasons for the need for the combination of the two virulence factors is unclear.  

Certainly the gap between their secretion is likely to be important, and it may be 

that Nec1 has a role in suppressing plant cell defences.  Thaxtomin produces a 

rapid (within one minute of inoculation) Ca2+ influx , followed by a net efflux of   

H+ in root cells, part of the plant cell defence [67], potentially Nec1 suppresses 

the cell defences induced by the acidification of the cell wall.

4.1.4. Mechanisms of S. scabies infection

Whilst the tools used by S. scabies to infect potatoes are known and (at least 

partially) understood, the exact method by which the pathogen interacts with its 

host are not.  As mentioned earlier, root systems in plants offer unique 

challenges for invading pathogens not seen in other plant structures, mainly 

due to their lack of natural openings, such as the multitudinous stomata found in 

leaves [77].  However as a place to live, the soil does offer some distinct 

advantages when compared to a leaf, as it has a relatively stable temperature 

day and night, and young roots are an excellent source of nutrients  [77].

When S. scabies hyphae come into contact with a potato, specialised 

mechanisms must be employed by the bacteria in order to penetrate the tuber.  

S. ipomoea, a pathogen of sweet potato (Ipomoea batatas), appears to grow 

specialised hyphae that branch off directly into the sweet potato.  These lateral 

hyphae are able to both pierce, and grow within, the plant cell wall [78].  More 
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recent work has showed the same structures in S. scabies growing on potato 

tubers (fig. 4.3) [77].  There is some suggestion that there is degradation of the 

cell wall where these hyphae penetrate, which would presumably  be enzymatic 

[78].   It appears that this method of infection differs from that of fungal plant 

pathogens, as there are no appressoria or infection cushions to be seen.

Figure 4.3.  SEM image of S. scabies hyphae growing on a potato tuber.  Infection 

hyphae are shown penetrating the surface of the tubers (white arrows).  Scale bar = 

2μm. From [77].

Whatever the mechanism is for breaching the host cell, it is clear that S. scabies 

does significant damage to the root system of the potato plant.  A  recent paper 

has used Computed Tomograph (CT) scanning to investigate the damage 

caused by scabies to potato plant roots in a non-invasive way, in situ.  The 

results of this study showed that a potato plant growing in S. scabies infected 

sand had a significantly less complex root system than a control plant after four 

weeks of growth, and the growth of the infected plant was reduced after this 

time [74].
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Once the bacterium is growing within the host potato, the next stage in the 

infection process is to secrete the relevant pathogenicity  factors.  In Gram-

negative plant pathogens, such as Pseudomonas syringae, this process has 

been studied in detail, with these bacteria using well characterised methods of 

neutralising plant host defences based around the Type III secretion system 

(T3SS).  This complex of approximately 30 proteins forms a needle like 

structure allows pathogens to directly inject proteins which disrupt the hosts 

defence signalling into a host cell.  These are known as Type III secreted 

effectors [120].  Gram-positive bacteria are completely lacking in T3SS, and the 

exact methods by which pathogenicity factors are exported is unknown, other 

than the Tat or Sec systems, and the specialised ESAT-6 system, also known 

as type VII secretion systems, discovered in M. tuberculosis [121].  Large 

numbers of S. scabies lipoproteins (~20%) are translocated by the Tat system 

[122], and a recent study has shown that the loss of Tat leads to an avirulent 

phenotype in S. scabies [80].  Seven Tat substrate virulence factors were 

identified, and individual mutants in each coding gene showed reduced 

virulence.  One of these proteins, putative spermidine/putrescine transporter 

peptide binding protein (SCAB81041) has been identified as a lipoprotein [122].

4.2 Aims

The aims of this chapter are to analyse the lipoprotein biosynthetic pathway of 

S. scabies.  Unlike S. coelicolor, S. scabies only contains one potential lgt gene 

(SCAB68531)  and, like most bacteria, one potential lsp gene (SCAB68121).  

Like S. coelicolor, S. scabies contains two putative lnt genes, named in this 

study as lnt1 (SCAB83111) and lnt2 (SCAB76621), and the S. scabies cosmids 

containing these genes were provided by Professor Rose Loria (Cornell).  
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Mutants in each of the lipoprotein processing genes will be examined, both 

macro and microscopically, as will the effects these mutations have on the 

processing of lipoproteins.  This work with S. scabies will allow us to confirm 

and extend our findings on lipoprotein biogenesis in Streptomyces gained using 

S. coelicolor as a model (chapter 3).  Additionally, given the lack of research on 

the role of lipoproteins in plant infection, each mutant will be assessed for 

virulence in both potato tubers and whole plants, and compared to a wild-type 

S. scabies infection.  As discussed in chapter 1, disruption of the lipoprotein 

biosynthetic genes can attenuate bacterial animal pathogens, or make them 

hypervirulent.  Given the obvious differences between plant and animal defence 

responses, it will be interesting to see the role lipoproteins play in bacteria-host 

interaction.

4.3 Results

4.3.1 Identification and comparison of the lipoprotein biosynthetic 

enzymes.

The lipoprotein biosynthetic enzymes from S. scabies were initially identified by 

BLASTP analysis, and the primary sequence of each enzyme was aligned with 

the equivalent primary sequences from: S. coelicolor (Sco), S. avermitilis (Sav), 

S. griseus (Sgr), M. tuberculosis (Mtb), M. smegmatis (Msm) B. subtilis (Bsu) 

and E. coli (Eco).

4.3.1.1 Lipoprotein diacyglycerol transferase (Lgt).

The Lgt enzyme from S. scabies shares a high amount of identity (≥74%) to all 

the Streptomyces Lgt enzymes, with the exception of ScoLgt2 (60%).  The 

identity to the M. tuberculosis and M. smegmatis Lgt enzymes is lower at 53% 
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and 57% respectively, whilst the lowest identity is to BsuLgt and EcoLgt (31% 

and 26% respectively) (fig. 3.1 ).

The essential E. coli His-103 is absent from S. scabies where it is a tryptophan, 

although both His-196, and Tyr-235, needed for E. coli function are conserved 

[17], as in the other actinomycetes tested.  Also present is the elongated C-

terminus discussed in chapter 3.

4.3.1.2 Lipoprotein signal peptidase (Lsp).

S. scabies Lsp shares a high level of identity to the enzymes from the other 

Streptomyces species (≥74%), and a low identity  to the other species tested 

(≤44%).  As with S. coelicolor it conserves the NXXD and FNXAD residues 

necessary for catalysis in B. subtilis [19, 28], as well as the Asp-15 needed for 

enzyme stability  [26].  Also present is the extended N-terminus, characteristic of 

the actinomycete enzymes (fig. 3.4).

4.3.1.3 Lipoprotein N-acyl transferase (Lnt).

The S. scabies Lnt1 and Lnt2 enzymes share a low identity  to each other 

(31%), but both also show low levels of identity to E. coli Lnt (22% and 28%).  

Both enzymes conserve the three residues (E267, K355, C387) thought to form 

the enzymeʼs catalytic triad in E. coli [30].  The S. coelicolor Lnt enzymes also 

show a low level of identity  to each other (29%) and E. coli Lnt (~25%), but 

when directly  compared, ScabLnt1 and ScoLnt1 share a high level of identity 

(86%), as do ScabLnt2 and ScoLnt2 (72%).
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4.3.2 Disrupting the S. scabies biosynthetic genes.

Cosmids containing the S. scabies lgt (SCAB68531), lsp (SCAB68121), lnt1 

(SCAB83111) and lnt2 (SCAB76621) were obtained from Cornell University.  

Each gene was replaced with an antibiotic resistance cassette.  Apramycin was 

used to replace each of the genes individually, to form cosmids Scab  139 

lgt::apr, Scab 45 lsp::apr, Scab  351 lnt1::apr and Scab  2255 lnt2::apr.  A 

hygromycin marked lnt2 deletion strain was also made, cosmid Scab 2255 

lnt2::hyg. in order to construct an lnt1::apr, lnt2::hyg double mutant (D. Widdick, 

unpublished). 

The mutagenised cosmids were transferred into S. scabies by conjugation, to 

form strains BJT1040, BJT1044, BJT1047, BJT1048, BJT1049 and BJT1050 

(see table 2.2) as described in chapter 2, and potential mutants were selected 

on apramycin or hygromycin. The genomic DNA from potential mutants was 

checked by PCR.  An important observation was that the isolation of an Δlsp 

mutant was much easier than it was in S. coelicolor (see previous chapter).
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BJT1040 87-22

Figure 4.4.  PCR of S. scabies genomic DNA showing disruption of the lgt gene with 

the apr cassette.  Lanes 1->4 show the mutant, lanes 5->8 are the wild type control.  

Primer combinations in each lane (expected band sizes shown in brackets): 1+5 = 

ScabLgt comp forward/ScabLgt test reverse (1642 bp/1493 bp).  Lanes 2 + 6 = 

ScabLgt comp forward/P2 (1602 bp/no band).  Lanes 3 + 7 = ScabLgt Test reverse/P1 

(1439 bp/no band).  Lanes 4 + 8 = P1/P2 (1423 bp/no band).

BJT1044 87-22

Figure 4.5.  PCR of S. scabies genomic DNA showing disruption of the lsp gene with 

the apr cassette.  Lanes 1->4 show the mutant, lanes 5->8 are the wild type control.  

Primer combinations in each lane (expected band sizes shown in brackets): 1+5 = 

ScabLsp Test forward/reverse (1437 bp/651 bp). Lanes 2 + 6 = ScabLsp test Forward/

P2 (1418 bp / no band). Lane 3 + 7 = ScabLsp Test reverse/P1 (1419 bp /no band). 

Lanes 4 + 8 = P1/P2 (1423 bp/no band).
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BJT1040 87-22

Figure 4.6.  PCR of S. scabies genomic DNA showing disruption of the lnt1 gene with 

the apr cassette.  Lanes 1->3 show the mutant, whilst lanes 4->6 are the wild-type 

control.  Primer combinations in each lane (expected band sizes shown in brackets): 1 

+ 4 = ScabLnt1 Complementation Forward/P2 (1602 bp/no band).  2 + 5 = ScabLnt1 

Test reverse/P1 (1440 bp/no band). 3 + 6 = P1/P2 (1423 bp/no band).

S. scabies lnt2::apr

BJT1048

Figure 4.7.  PCR of S. scabies genomic DNA showing disruption of the lnt2 gene with 

the apr cassette.  Primer combinations in each lane (expected band sizes shown in 

brackets): Lane 1 = ScabLnt2 Test Forward/Reverse (1574 bp).  Lane 2. = can Lnt2 

Test Forward/P1 (1420 bp). Lane 3. = ScabLnt2 Test reverse/P1 (1425 bp).  Lane 4. = 

P1/P2 (1423 bp).

4.3.2.1 Confirmation of nec1.

Before any work was carried out on the strains created, a final check was 

carried out to ensure that all the strains created were S. scabies and not S. 
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coelicolor contamination had occurred.  A simple test using primers specific to 

the nec1 gene [114] (table 2.4) was used.  This gene is present in S. scabies 

and absent in S. coelicolor.  The results shown in figure 4.8 show that a band 

representing both nec1 (666bp) is present in the genomic DNA of each of the S. 

scabies strains, and absent from the negative control, S. coelicolor genomic 

DNA.

Figure  4.8.  PCR of S. scabies genomic DNA to confirm presence of nec1.  Lane 1. = 

Wild-type S. coelicolor (M145). Lane 2. = Wild-type S. scabies (87-22). Lane 3. = S. 

scabies Δlgt::apr (BJT1040). Lane 4 = S. scabies Δlsp::apr (BJT1044).  Lane 5. = S. 

scabies Δlnt1::apr (BJT1047).  Lane 6. = S. scabies Δlnt2::apr (BJT1048).

4.3.2.2 Development and colony morphology.

Once each of the null mutants, and the Δlnt double mutant were created, they 

were viewed under the light microscope (fig. 4.9).  The typical morphology of a 

wild-type colony, is a flat circular disc, about 3-4 mm in diameter, after 5 nights 

growth, with a raised section in the centre.  The shape is akin to that of a fried 

egg.  The colonies were grey, indicating the presence of mature spores, but

typically  contained a white outline, presumably representing areas of 

undifferentiated aerial hyphae. The Δlgt mutant (BJT1040) had a very different 

growth phenotype, growing slower than the wild-type, sporulating poorly, as 
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suggested by a much lighter shade of grey.  Often the size of an Δlgt colony 

was smaller than that of the wild-type, but not consistently.  This strain also 

lacked the raised area in the centre of the colony and the surface was 

frequently  pock marked.  The Δlsp strain (BJT1044) had a similar, although 

more pronounced phenotype than the Δlgt mutant.  The strain sporulated very 

poorly, which lead to an almost entirely  white colony, and was smaller than the 

wild-type, usually between 2-3 mm.  In contrast to the ʻfried eggʼ growth pattern 

seen in the wild-type, the Δlsp mutant grew in a dome structure, frequently 

pock-marked, like the Δlgt mutant.  These holes in the surface of the colony 

were often filled with a clear liquid, which appeared to be covered in a ʻskinʼ of 

come kind (see section 4.3.2.3 below).  The various Δlnt mutants all display a 

more subtle growth phenotype than either the Δlgt or Δlsp mutants, but 

nevertheless they do look different to the wild-type (fig. 4.9).  All sporulate to a 

good level, giving the strains an overall grey appearance, and each retains the 

white border seen in the wild-type.  Although the Δlnt1 (BJT1047) and Δlnt2  

(BJT1048) mutant colonies are of a similar size to the wild-type, the edges are 

much more ragged and the colonies are irregularly shaped.  Frequently  the 

raised section in the centre of the colony is missing from these mutants.  The 

Δlnt double mutant (BJT1050) contains both the raised area from the wild-type, 

and the irregular colony shape of the Δlnt single mutants.  The colony size is 

slightly  larger than the wild-type, although the growth seems more dispersed, 

and there are often patches where no aerial hyphae/spore chains are present.
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Viewing the strains grown for 5 nights under SEM showed that the Δlsp mutant  

(BJT1044) contains fewer hyphae and thus fewer spores than the other strains, 

consistent with the overall whiteness of the colony seen under light microscopy.  

The wide-angle view (fig. 4.10) shows that all of the other strains contain a 

dense mass of hyphae, with the wild-type showing the largest amount of spiral 

spore chains.  Although the Δlgt (BJT1040) and Δlsp mutants share a similar 

growth phenotype, the Δlgt mutant is showing a higher amount of spore chains, 

although not nearly as many as the wild-type.  Time constraints prevented there 

being any images taken of the Δlnt double mutant.  Given its lack of an obvious 

growth phenotype, this was not considered an issue.  Neither of the Δlnt 

mutants (BJT1047, BJT1048) display an obvious phenotype when viewed 

under SEM.

The SEM closeups of the hyphae revealed that S. scabies spores appear to be 

a different shape to those seen in S. coelicolor, with the former being much 

more cylindrical.  This is not overly  surprising given the variety  of spore shapes 

found in the streptomycetes [123].  This highly magnified view confirmed the 

observation that the Δlsp mutant is sporulating poorly.  Finding spore chains 

from each of the other strains to image was relatively  easy, whilst it proved very 

difficult for the Δlsp mutant.  The immature spore chain shown in figure 4.11, 

was the closest identified, and this shows a further phenotype for the Δlsp 

mutant.  As shown, the immature spores are irregularly  sized compared to the 

wild-type.  This was seen frequently  in the Δlsp mutant, but was also seen in 

the Δlgt mutant, although with less regularity.
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4.3.2.3 Liquid on the surface of the Δlsp mutant

As discussed in section 4.3.2.2 above, light microscopy of the Δlsp strain 

revealed the presence of liquid droplets unseen in the wild-type.  These 

appeared to have a ʻskinʼ and were assessed under SEM (fig. 4.12).  The wide 

angle image shows that these droplets do indeed possess a covering of some 

sort, as a number of crenellations can be seen on their surface.  Where this 

liquid has been displaced, a crater is left in the surface of the colony.  A zoomed 

in view of these craters reveals that they are formed by the remains of the 

matrix surrounding the liquid and are frequently punctured by mycelia.  The 

identity of this liquid is unknown, although confluent lawns of both wild-type and 

the Δlsp mutant have been washed with sterile water in order to remove any 

surface associated liquids and consequently discover their identity.  This work is 

currently ongoing.

Wide Zoomed

L

C

Figure 4.12.  Scanning electron microscopy images of the liquid droplets found on the 

surface of the Δlsp mutant (BJT1044), marked L, and the craters they  leave in the 

surface of the colony, marked C.
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4.3.3 Effect of gene disruption on lipoprotein processing.

4.3.3.1 Western blots.

As with S. coelicolor, each S. scabies mutant was was grown for 15 hours in 

liquid culture, before being fractionated by  ultracentrifugation as described in 

chapter 2.  Both cytoplasmic and membrane fractions were normalised and run 

on a 15% SDS-PAGE gel.  Two model lipoproteins were used and were 

produced in each S. scabies strain with C-terminal His tags to facilitate Western 

blotting with monoclonal anti-His antibodies (Qiagen).

4.3.3.2 SCO3484.

Given the absence of any confirmed S. scabies lipoproteins, and the inability of 

the anti-CseA antibody to detect the S. scabies homologue of CseA, the 

confirmed Tat secreted S. coelicolor lipoprotein, SCO3484 was used as a model 

lipoprotein.  As in chapter 3, this protein was fused to a penta-Histidine peptide 

at its C-terminus and expressed in each of the S. scabies strains.  This allowed 

the monoclonal anti-His antibody (Qiagen) to be used.  Given the sensitivity  of 

this antibody, typically a very short exposure time was used.  This can be seen 

in figure 4.13.  If the band in the membrane of the wild-type fraction represents 

the mature, processed, form of the protein then this mature protein is also 

detectable in the cytoplasm of the wild-type.  The cytoplasm of the Δlgt strain  

(BJT1040 - see table 2.2 ) contains two forms of the lipoprotein, presumably 

with and without signal sequence.  Only the unprocessed form is detectable in 

the membrane of the Δlgt mutant in a 2 second exposure.  The cytoplasm of the 

Δlsp strain (BJT1044) contains the fully  processed protein, whilst the 

unprocessed form is seen in the membrane.  The Δlnt1 (BJT1047) cytoplasm 

contains both forms of SCO3484, whilst only the mature form is seen in the 
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membrane.  The same result is seen in the membranes of the Δlnt2 (BJT1048) 

and Δlnt double (BJT1050) mutants (not shown).

87-22

WT Δlgt Δlsp Δlnt1

C M C M C M C M

BJT1040 BJT1044 BJT1047

Figure 4.13.  Western blot analysis, using anti-his antibody of the cytoplasm (c) 

and membrane (m) fractions of the different S. scabies strains, as listed.

4.3.3.3 PstS-His.

A second S. coelicolor lipoprotein, PstS (phosphate specific transport), was 

used to study  the processing of S. scabies lipoproteins.  This lipoprotein is part 

of the high affinity, low velocity system for the transport of Pi ions across the  

cytoplasmic membrane.  This system has been well characterised in E. coli 

[124], B. subtilis [125] and S. coelicolor [126].  The PstS lipoprotein (SCO4142) 

was produced with a penta-histidine tag at its C-terminus, and expressed in 

each of the S. scabies strains.  The results, shown in figure 4.14 show that the 

fully processed protein can be seen in the membranes of the wild-type, Δlnt1 

(BJT1047), Δlnt2 (BJT1048), and Δlnt double (BJT1050) mutants, although the 

protein is detectable at a lower level in these mutants.  PstS is undetectable in 

the membrane of the Δlgt mutant (BJT1040), but does appear in the 

supernatant of the same strain (M. Hicks, unpublished).  The protein is larger in 

the Δlsp mutant (BJT1044), and presumably retains its signal sequence.
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WT
87-22

Δlgt
BJT1040

Δlsp
BJT1044

Δlnt1
BJT1047

Δlnt2
BJT1048

Δlnt double
BJT1050

Figure 4.14.  Western blot analysis, using an anti-his antibody, of the membrane 

fractions of the different S. scabies strains, as listed.

4.3.4 Plant virulence assays.

As has been mentioned, to date there has been no investigation into the role 

that lipoproteins play in plant pathogenicity although numerous studies have 

been done on animal pathogens (chapter 1).  The aim of this work is to assess 

the role that S. scabies lipoproteins play in the plant infection process.  Two 

approaches were chosen.  The first involved overlaying sterilised discs of potato 

with agar plugs containing a confluent lawn of growth of the wild type, Δlgt, 

Δlsp, Δlnt1, Δlnt2 or Δlnt double mutant strains of S. scabies.  The second 

involved assessing the effect that each of the mutants had on a whole plant, in 

this case newly germinated radish seedlings (Raphanus sativus) (Chapter 2).  

These methods were adapted from previous work on the infection pathway of S. 

scabies [127].  As has been noted, S. scabies is capable of infecting a wide 

number of plants, both monocotyledonous and dicotyledonous [67] and radish 

plants were chosen due to their rapid germination and growth.  The potato 

cultivar Maris Piper was used in the potato disc experiments due to its low 

immunity to S. scabies, as documented by the British Potato Council (http://

varieties.potato.org.uk).
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4.3.4.1 Potato tuber assay.

The effect that each of the S. scabies strains had on potato slices was 

assessed after both 2 and 5 nights. The results can be seen in figures 4.15 and 

4.16 below.  Circular discs were cut from a sterile potato tuber and had an agar 

plug containing a confluent lawn of each S. scabies strain placed upon them 

(section 2.8.1).  After two nights the control, overlain with sterile agar only, 

showed no evidence of necrosis.  It is difficult to see where the agar was 

placed.  In contrast, a brown square is clearly visible in the wild-type infected 

potato disc, and represents an area of necrosis.  This is also visible in each of 

the mutant strains (fig. 4.15), although it does appear to be lighter in colour in 

the Δlnt2 mutant (BJT1048 - see table 2.2) than in the other strains.  Whilst 

these areas of necrosis are present in each strain, there is an absence of any 

obvious breakdown of the tuber surface, which remains a uniform flatness.

After 5 nights growth however, there are large areas of potato tissue 

degradation caused by each of the S. scabies strains (fig. 4.16).  As before, the 

negative control remains totally  clear of any areas of necrosis, and it is still 

difficult to see where the agar plug has been placed.  For each of the infected 

strains, removing the agar square has also removed the top layer of potato, 

either completely  as seen in the wild-type or Δlgt (BJT1040) infected potatoes, 

or partially, as seen in the Δlnt1 (BJT1047) or Δlnt double (BJT1050) mutants. 

The loss of this top  layer is presumably due to the bacteria becoming tightly 

associated with the surface of the potato and potentially growing into the disc, in 

a manner similar to that seen in figure 4.3.  A large covering of bacteria remains 

on each potato, unseen after 2 nights.  There is no obvious difference in the 

rate of growth suggesting that the loss of each respective lipoprotein processing 
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enzyme has had no effect on the ability of the strain to grow on, and necrose, 

the potato tissue.  In the wild-type infected potato, large areas of black are 

seen, corresponding to severe necrosis, likely caused by  thaxtomin A.  These 

areas are beyond the edges of where the agar plug was placed, suggesting that 

either the thaxtomin A is readily diffusible, or that there is a large amount of 

unseen substrate mycelial growth, and it is from here that the toxin is secreted.  

These black areas are also seen in the Δlgt mutant, and the Δlnt1 mutant, 

although to a lesser extent.  They are absent from the remaining mutants, which 

retain the brown areas seen after two nights infection.
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4.3.4.2 Radish seedling assay.

Plant infection assays involved germinating sterile seeds of the Radish cultivar 

Scarlet Globe, and immersing the seedlings in a broth of S. scabies (wild-type 

or mutants), before plating them in sterile containers on Murashige and Skoog 

medium containing 2% sucrose (table 2.3) which had previously been overlaid 

with the same S. scabies strain.  The seedlings were grown for 7 nights in a 

controlled environment chamber, before being assessed (section 2.8.2).  An 

overview of the effect of each of the mutations on virulence in these seedlings 

can be seen in figure 4.17 below.  The negative control plant, overlaid with 

sterile TSB growth medium only, shows healthy growth, with a long primary 

root, and multiple secondary roots.  After 7 days the primary roots were typically 

between 11-12 cm in length.  The leaves are healthy and new leaf growth can 

be seen at the apical meristem.  The stem of the plant was typically between 

1.3 and 1.6 cm.  This growth pattern is also seen in plants treated with the non-

pathogenic S. coelicolor.  However, plants infected with wild-type S. scabies are 

vastly  different.  The growth is stunted, with a primary root of between 4-6 cm.  

There is very little secondary root growth evident, and those that are present 

are much smaller than in the negative control.  Very small leaves were present 

and there was no evidence of further leaf growth.  The stem was shorter than 

the negative control, rarely exceeding 1.5 cm in length.  This phenotype was 

consistent in each of the S. scabies  mutants tested, as can be seen in figure 

4.17.

171



WT Δlgt::apr Δlsp::apr Δlnt1::apr Δlnt2::apr Δlnt doubleTSB Sco WT

(BJT1040)(87-22) (BJT1044) (BJT1047)(BJT1048)(M145) (BJT1050)

Figure 4.17.  Overview of Radish seedlings grown for 7 nights and either: mock 
infected (TSB), infected with S. coelicolor wild-type (Sco WT), or the S. scabies strains.  
Strain names are shown in brackets.



4.3.4.3 Analyses of root structures.

As shown above, each of the S. scabies strains has a deleterious effect on the 

root systems of Radish seedlings not seen in mock-inoculated plants or those 

infected with the non-pathogenic S. coelicolor.  The root systems of each plant 

were studied under a light microscope to view any subtle changes not seen in 

the overview above.  The results can be seen in figure 4.18  below.  A complex 

network of root hairs, invisible in the overview photo above can be see in each 

S. scabies strain.  As above however, each of the mutant strains shows a 

severe growth phenotype compared to the negative controls.  Both the TSB 

treated, and S. coelicolor treated negative controls have a complex root system 

consisting of many secondary roots emerging at regular intervals from the 

primary root.  The entire root system grew into the agar making the plants 

difficult to remove without also removing a large amount of agar.  In contrast, 

the root system in each of the S. scabies infected strains was much less 

complex.  In the wild-type infected plant the root system comprises only the 

single, stunted, primary  root, with multiple brown nodules which represent failed 

secondary roots.  The root grows on the surface of the growth medium, and 

lacks the penetration seen in the wild-type.  Only the fragile attachments of the 

root hairs allowed the plant to remained bound.   This weak attachment is seen 

in all of the S. scabies strains.  Whilst the Δlgt strain (BJT1040) does share the 

stunted primary root seen in the wild-type, the overall phenotype does not seem 

as severe.  Multiple secondary roots are present, although they are significantly 

more stunted than in the wild-type.  This phenotype is shared in the Δlsp mutant 

(BJT1044).  The roots of both the Δlnt1 (BJT1047) and Δlnt2 (BJT1048) 

infected plants look like those seen in the wild-type infection, with the presence 

of nodules representing failed secondary  root growth.  The phenotype of the 

173



Δlnt double mutant (BJT1050) is similar to that seen in the Δlgt and Δlsp 

mutants.  Multiple secondary roots are seen at regular intervals.  Again 

however, these are consistently shorter than those found in the negative 

controls.
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4.3.5 Complementing the S. scabies Δlgt and Δlsp mutant.

In the previous chapter, we showed that disrupting the lsp gene in S. coelicolor 

caused a severe growth phenotype.  This was not the case with the disruption 

of either of the lgt genes which both appeared as the wild-type, potentially  due 

to the self complementation of the disruption.  S. scabies is unlike S. coelicolor 

as it only contains one copy of the lgt gene (section 4.2).  Disrupting this gene 

causes a growth phenotype similar to that of the Δlsp mutant.  Both of the Δlgt 

and Δlsp strains were only  partially  complemented by replacing a full length 

copy of the disrupted gene back into the mutant in trans.  The S. coelicolor lgt1, 

lgt2 and lsp genes were also used to see if they  were able to complement the 

S. scabies mutants.  Using the lgt genes from S. coelicolor allowed us to further 

investigate whether either, or both genes encoded a true Lgt homologue.  The 

results for colonies grown for  5 nights on IM agar can be seen in figures 4.19 

and 4.20 below.

4.3.5.1 S. scabies Δlgt complementation.

When compared to the wild-type under light microscopy, the Δlgt mutant 

(BJT1040) showed a lower level of sporulation leading to a lighter colony 

appearance, spore chains were observed under SEM however.  Unlike wild-

type colonies which are typically flat with a raised centre, the Δlgt mutant 

appears to have more depth and often contains depressions upon its surface 

similar to those described in the Δlsp strain (section 4.3.2.2).  Complementing 

the mutant with the lgt genes from either S. scabies (BJT1041 - see table 2.2) 

or S. coelicolor (BJT1042 and BJT1043 for Sco lgt1 and Sco lgt2 respectively) 

does go someway to restoring the growth phenotype to wild-type, as can be 

seen below.  When complemented with the S. scabies gene, the colony regains 
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both the flatness, and halo of white substrate mycelium, but fails to regain the 

raised area seen in the middle of a wild-type colony.  This complementation also 

appears to have a more ʻraggedʼ appearance than the uniform shape of the 

wild-type.  This ragged appearance is even more pronounced in the mutant 

complemented with the S. coelicolor lgt1 gene.  This strain lacks both a defined 

edge, and uniform topography, containing many raised areas.  In contrast, the 

S. coelicolor lgt2 complemented strain appears much closer to the wild-type.  

The strain is flat, and a uniform grey with a white halo surrounding it.  However, 

the raised area in the centre of the wild-type colony is again absent from this 

complementation, and it was frequently smaller in size than the wild-type.

4.3.5.2 S. scabies Δlsp complementation.

As discussed in section 4.3.2.2 the S. scabies Δlsp mutant (BJT1044) has a 

severe growth phenotype, with colony sizes much smaller than the wild-type, 

and the presence of an unknown liquid on the colony surface (section 4.3.2.3).  

Substantially less sporulation occurs in the mutant, leading to an overall white 

appearance.  Complementing the mutant with either the S. scabies, or S. 

coelicolor lsp gene (BJT1045 and BJT1046 - respectively) had an effect on the 

mutant, but neither was able to completely  rescue the strain (fig. 4.20).  In both 

cases the complemented strains showed an increase in colony size, with both 

being flat like the wild type, as opposed to the domed shape seen in the Δlsp 

mutant.  However, the shape of the colonies in both complementations was 

different to the wild-type.  Unlike the broadly circular wild-type colony, the S. 

scabies lsp complementation had a misshapen central grey area, surrounded 

by diffuse substrate mycelium.  This area of substrate mycelia was thin enough 

that the growth media could be seen below.  There is no raised area in the 
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middle of the colony, instead holes are seen similar (albeit smaller) to those 

seen in the Δlsp and Δlgt mutants.  The S. coelicolor lsp complemented mutant 

shares the large area of diffuse substrate mycelia, but in this case the centre of 

the colony is more spherical than the S. scabies complementation.  However, 

this is divided into an outer ring and an inner circle.  The outer ring is white, 

presumably consisting of undifferentiated mycelium, whilst the centre is grey, 

indicating mature spore chains are present.  The lower amount of aerial hyphae 

corresponds with the observation that this strain sporulates poorly in 

comparison to the S. scabies lsp complementation. 
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4.4 Discussion

The experiments presented in this chapter were focussed on the plant 

pathogen, S. scabies.  The aim was to investigate the effect that the loss of 

lipoprotein processing had on the bacterium, compare this to results from S. 

coelicolor (chapter 3) and determine whether this had a deleterious effect on its 

ability  to infect plants.  The role of lipoproteins in plant pathogenesis is 

unknown.

The bioinformatic analysis shows that, unlike in S. coelicolor, S. scabies only 

encodes one Lgt homologue which shares a high level of identity with both S. 

coelicolor Lgt1 and Lgt2.  The S. scabies Lsp  enzyme also shows a high level of 

similarity  to the S. coelicolor enzyme.  The S. scabies Lnt enzymes are curious, 

insomuch that although they share the potential catalytic triad from E. coli, they 

share a low level of identity with each other (32%).  The genes encoding both 

Lnt1 and Lnt2 are found in the right arm of the S. scabies genome, suggesting 

that they may have been acquired by HGT and, given their low similarity, could 

have been acquired from different sources.  Both the lgt and lsp genes are 

found more centrally in the chromosome.

Disrupting the lipoprotein processing enzymes in S. scabies was relatively 

simple when compared to S. coelicolor.  However, it should be noted that 

recombination efficiency is much higher in S. scabies compared to S. coelicolor, 

such that single crossover events are rarely seen in S. scabies (R. Seipke, 

personal communication).  However, observing the mutant colony phenotypes 

(fig. 4.9) shows there are several parallels when compared to the S. coelicolor 

mutants.  The Δlsp S. scabies mutant is much smaller than the wild-type, and 
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sporulates poorly, in a manner similar to the S. coelicolor mutant.  The Δlgt 

mutant (BJT1040) shares many of the growth deformities, although is slightly 

larger than the Δlsp strain (BJT1044).  Both are discernibly  different to the wild-

type.  The same cannot be said for the disruptions in the lnt genes.  Neither of 

the single mutants (BJT1047 and BJT1048), nor the double (BJT1050) show 

any size reduction compared to the wild-type, although both of the single lnt 

mutants lack the raised area in the centre of the colony, characteristic of wild-

type S. scabies.  The edges of each of the lnt mutant colonies does look more 

dispersed than the wild-type, leading to an irregular shape.  A  lack of phenotype 

was observed under SEM, where the Δlnt1 mutant (BJT1047) showed no 

obvious differences to the wild-type.  However, as with the light microscope, the 

Δlsp mutant (BJT1044) sporulated very  poorly, and the spores that were 

observed under SEM were often misshapen.  Surprisingly, given their similarity 

when viewed under light microscope, the Δlgt strain (BJT1040) did not look 

nearly  as damaged when viewed under SEM.  One curious discovery made by 

SEM is the discovery that the liquid on the surface of the Δlsp mutant 

(BJT1044) is sequestered into covered vesicles (fig. 4.12).  The ʻskinʼ forming 

this coating is of unknown consistency, but it is punctured multiple times by the 

mycelia.  S. scabies is known not to produce any antibiotics, so initially this 

liquid was assumed to be water.  The identity  of this liquid remains unknown, 

but is due to be investigated.  Potentially it could represent a cryptic secondary 

metabolic pathway switched on in the absence of lsp or lgt.

The effect that the loss of the lipoprotein biosynthetic enzymes had on the 

processing of the two lipoproteins tested is intriguing.  It is important to note that 

both SCO3484 and PstS (SCO4142) are native S. coelicolor lipoproteins, and 
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therefore may be processed differently in the heterologous host S. scabies than 

they are in their native S. coelicolor.  Looking at the S. scabies membrane 

fractions (fig. 4.13), the mature SCO3484 lipoprotein is present in the wild-type, 

with a larger unprocessed form seen in the membranes of the Δlgt (BJT1040)

and Δlsp mutant (BJT1044).  The protein is properly processed in the Δlnt1 

(BJT1047), Δlnt2 (BJT1048) and Δlnt double (BJT1050) mutants.   This pattern 

would be expected if the lipoprotein biosynthetic pathway is ordered tightly  as it 

is in Gram-negative bacteria.  The unprocessed band seen in the membrane of 

the Δlgt strain shows that lipidation by Lgt is required before Lsp  can cleave the 

signal peptide.  The unprocessed band in the Δlsp strain is also seen in S. 

coelicolor.  However, the presence of processed lipoproteins in the cytoplasms 

of each strain is difficult to explain.  In the wild-type cytoplasm processed 

SCO3484 is detectable, as it is in the Δlsp cytoplasm.  In the cytoplasms of the 

Δlgt and Δlnts both processed and unprocessed forms can be seen.  The 

reasons for these extra bands are unclear, although the result is reproducible.  

Experimental error can be discounted, given that the pattern is different 

between strains, and fractions, and any problem with the fractionating process 

would give a uniform pattern for each lane.  There should be no bands 

detectable in the cytoplasm, as seen in S. coelicolor (fig. 3.16).  

The processing of PstS (fig. 4.14), is different from that seen with SCO3484.  In 

this case, PstS is undetectable in the membrane of the Δlgt mutant (BJT1040).  

However, a band corresponding to the processed form is detectable in the 

supernatant of the Δlgt mutant, showing that it has been cleaved.  This could 

suggest that Lsp is able to act on non-lipidated proteins.   However, mass spec 

analysis of another lipoprotein found in the supernatant of the Δlgt mutant 
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revealed that the signal peptide has been cleaved just downstream of the 

lipobox, removing the C+1 (M. Hicks, unpublished) suggesting that processing is 

not due to Lsp but due to an alternative signal peptidase, potentially a signal 

peptidase I (SpaseI).  In Gram-negative bacteria, one copy of SpaseI exists.  

However in B. subtilis and several Streptomyces species, including S. 

coelicolor, multiple homologues (SCO5596, 5597, 5598, 5599) exist [128].  

Another possible explanation would be that an alternative, as yet undiscovered 

Lsp, such as the Eep  protein from Streptococcus uberis [53] is cleaving the 

lipoprotein.  The use of alternative processing indicates again that the 

lipoprotein biosynthetic pathway is potentially ordered, given that Lsp  does not 

seem to act on a non-lipidated protein.  The band representing PstS in the Δlsp 

mutant (BJT1044) is larger than seen in the wild-type, suggesting that, as with 

SCO3484, it retains its signal sequence.  The deletion of the lnt genes, either 

individually  or together, appears to have no effect on the processing of PstS, as 

was the case with SCO3484.  As both of these proteins are from S. coelicolor, 

future work will involve using native S. scabies lipoproteins to see whether the 

results are the same as those described here. 

Complementing both the Δlgt and Δlsp mutants only partially  rescues each 

strain.  The similarity of the phenotypes in both the Δlgt and Δlsp mutants 

suggest that they share a defective lipoprotein biosynthesis pathway, which in 

turn suggests that the pathway in S. scabies has a regimented order as found in 

Gram-negative bacteria.  This result is also strong evidence that the two Lgt 

enzymes found in S. coelicolor are complementing each other (chapter 4). 
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Recently  it has been shown that the S. coelicolor lipoprotein SCO3484 is 

triacylated in wild-type S. scabies, whilst in the Δlgt mutant (BJT1040) it is 

unlipidated (M. Hicks unpublished).  This shows that S. scabies contains at 

least one functional Lnt enzyme although what role this N-acylation plays is 

unknown.  Given that the double Δlnt disruption mutant displays no severe 

growth phenotype, the importance of triacylation of lipoproteins in S. scabies 

must be questioned. Perhaps only  a subset of lipoproteins are triacylated in 

Streptomyces.

What is clear from this work is that disrupting lipoprotein processing seems to 

have an effect on plant pathogenicity.  Each of the mutant strains was able to 

infect both potato tubers and radish seedlings to a similar extent to the wild-type 

although the roots of the radish seedlings were less stunted in the Δlgt 

(BJT1040), Δlsp (BJT1044) and Δlnt double (BJT1050) mutants compared to 

wild type S. scabies suggesting a potential reduction in virulence.  Deleting the 

Tat secreted lipoprotein SCAB81041 has been shown to have a moderate effect 

on the virulence of S. scabies [80] in agreement with this work.  That disrupting 

the lipoprotein processing pathway in S. scabies does not have a larger impact 

on virulence is surprising, given that three lipoprotein genes are found on the S. 

scabies PAI island: SCAB77471, encoding a substrate binding protein (SBP) 

also found in S. avermitilis, SCAB77361 and SCAB77271, both encoding SBP, 

although unique to S. scabies.  However, there is no evidence that these 

proteins are virulence factors.  Given that the improper processing of 

lipoproteins does not have a large impact on virulence, it appears that 

lipoproteins are not a determining factor in S. scabies pathogenesis.  Neither of 

the two main pathogenicity factors, thaxtomin A and Nec1, are lipoproteins and 
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it seems that the loss of the lipoprotein processing enzymes does not effect 

their action.  However, Nec1 production seems to be stimulated by glucose [75] 

and thaxtomin A production appears to be induced by xylan and glucan [130], 

so the lack of effect seen through disruption of lipoprotein biosynthetic genes is 

surprising given the large number of lipoproteins are involved in carbohydrate 

transport in the streptomycetes (chapter 3).  There is no evidence of 

hypervirulence in any of the strains, suggesting that lipoproteins are not the 

determining factor for the initiation of the plant defence response, as their loss 

does not allow the bacteria to infect the host plant undetected.  The radish 

assays above had a seven night duration, after which the virulence was 

assessed.  Future work should include a longer term experiment to see whether 

any of the plants are able to recover from infection.  
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Chapter 5. Discussion

The aim of this thesis was to investigate the lipoprotein processing pathway in 

Streptomyces.  Two Streptomyces species were used as models, S. coelicolor, 

a model organism for the high GC Gram-positive actinomycetes and S. scabies, 

one of the causative agents of scab formation on potato tubers, a disease of 

significant economic value worldwide.  Both species are soil dwelling 

saprophytes, with complex multistage lifecycles.  Their genomes are linear and 

considerable larger than most other bacteria, and presumably this linearity 

allows the acquisition of new genes, making the species more successful soil 

saprophytes.  As little is known about the lipoprotein processing pathway in the 

high GC Gram-positive bacteria this work, which involved disrupting the genes 

encoding each of the biosynthetic enzymes in both S. coelicolor and S. scabies, 

allowed us to observe whether the pathway is essential and ordered, as in the 

Gram-negatives, or dispensable, as it is in the low GC Gram-positives.  

S. coelicolor contains two Lgt homologues, and both S. coelicolor and S. 

scabies contain two Lnt homologues.  The reasons for this are unclear.  The 

presence of two Lgt homologues seems unusual amongst Streptomyces 

species, with only S. coelicolor and S. clavuligerus containing the duplicates, 

the latter on a megaplasmid, whilst the presence of two Lnt homologues seems 

ubiquitous throughout the species.  The presence of multiple enzymes made it 

difficult to determine whether Lgt has an essential function in S. coelicolor.  

Disruption of one or other of the S. coelicolor lgt genes had very  little effect on 

the growth of the bacterium, nor did it seem to effect the processing of the two 

model lipoproteins tested or on the lipoproteome, as detected by 2D gel 

analysis [82].  The two lgt genes are therefore self complementing in S. 
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coelicolor.  The double lgt mutant was impossible to isolate in this study, which 

in itself suggests that the lipidation step of the lipoprotein biosynthetic pathway 

may be essential in S. coelicolor and that therefore the entire pathway is also 

essential.  The second lgt gene (SCO7822) is found very close to the end of 

one of the S. coelicolor chromosome arms, and these are the regions of the 

chromosome which typically  contain non-essential genes acquired through 

HGT [66].  Why S. coelicolor has sought to maintain this gene when a second 

homologue is encoded elsewhere on the chromosome does suggest that the 

Lgt function is of great importance to the bacterium.  One hypothesis was that 

each enzyme caters to a different subset of lipoproteins, for example Tat or Sec 

secreted lipoproteins, but this now seems unlikely, given that the two 

lipoproteins tested (one Sec- and one Tat-dependent) were processed correctly 

in both the Δlgt1 and Δlgt2 mutant.

S. scabies only contains a single lgt gene, and it was possible to delete this 

gene, which indicates that Lgt function is not essential in S. scabies.  However, 

the growth phenotype exhibited in this mutant is very  similar to that observed 

upon disrupting the lsp gene, suggesting that they share incorrect lipoprotein 

processing which in turn has an effect on growth and development, as also 

observed in S. coelicolor.  In the Δlgt deletion strain, a band consistent with 

unprocessed SCO3484 still containing its signal peptide was seen in the cell 

membrane, suggesting that the action of Lgt is a required in order for Lsp to 

recognise its substrate and cleave the signal sequence, indicating an ordered 

processing of lipoproteins.  PstS is processed differently in the Δlgt mutant, and 

was undetectable in the cell membrane.  The unlipidated protein was probably 

cleaved by  an alternative signal peptidase, showing that, for this lipoprotein at 
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least, Lsp  is unable to function in the absence of Lgt, again suggesting a strict 

order in the lipoprotein processing pathway.  Why there is a difference in the 

processing of the two lipoproteins is unclear at this time, although there was 

also a difference seen in the processing of CseA and SCO3484 in S. coelicolor.

Disrupting the lsp gene from both S. coelicolor and S. scabies resulted in a 

growth phenotype very different from the wild-type, both growing and 

sporulating poorly.  In S. coelicolor the mutation could not be completely 

rescued by complementation, either cis or in trans with the loss of the gene 

causing the improper processing of the two model lipoproteins tested, with one 

(CseA) becoming undetectable in the cell membrane, and one (SCO3484) 

retaining its signal sequence.  Which of these two outcomes is more prevalent 

is unknown, and more lipoproteins will have to be tested to see which is the 

norm.  Either way, both forms of misprocessing are likely to have a significant 

effect on the bacterium, either leading to the loss of swathes of lipoproteins, or 

having numerous lipoproteins anchored into the cell membrane by both their 

lipid moiety and signal sequence. 

As discussed in chapter 4, recent results have proved the presence of at least 

one true Lnt enzyme in S. scabies.  In the Δlgt deletion mutant the model 

lipoprotein tested is unlipidated and has been non-specifically processed just 

downstream of the lipobox, whilst the same lipoprotein is triacylated in the wild-

type (M. Hicks, unpublished).  Currently, both the Δlnt1 and Δlnt2 deletion 

strains are being tested for N-acylation of lipoproteins to see which, if not both, 

acts as a true Lnt enzyme.  Neither S. scabies lnt mutant exhibited a severe 

growth phenotype probably due to self complementation, as seen in the S. 
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coelicolor Δlgt mutants, although the phenotype of the lnt double mutant is not 

as severe as that of the lgt and lsp mutants.  Now that functional Lnt enzymes 

have been identified in M. smegmatis and S. scabies, with very similar proteins 

present in a variety of actinomycetes including S. coelicolor it must be asked  

ʻWhy does this branch of the Gram-positives need an Lnt enzyme?ʼ.  In Gram-

negative bacteria, this enzyme is a prerequisite for the activity of the Lol 

pathway, needed to transport a lipoprotein to the outer membrane.  In Gram-

positive bacteria the Lol pathway is missing, given the lack of outer membrane, 

and it could therefore be assumed that the Lnt enzyme function is not required.  

However, given the complex nature of the cell envelope in various Gram-

positives, particularly  M. tuberculosis, and the evidence of a potential pseudo-

periplasmic space discovered in others, such as S. aureus [55] and B. subtilis 

[56], it is tempting to think that there may be a targeting system, as yet 

unknown, in the Gram-positive branch of the bacteria in order to shuttle 

lipoproteins to the ʻouterʼ membrane.

Another aspect of lipoprotein processing that this work uncovered is the 

presence of elongated sections of the Streptomyces enzymes.  In both species 

the Lgt and Lsp enzymes contain elongated sections, at the C- and N-terminals 

respectively.  These extensions are absent from both the Gram-negative and 

low GC Gram-positive bacteria assessed.  These areas are both found 

cytoplasmically  suggesting, initially at least, that they serve no enzymatic 

function, given that the active sites of both proteins are on the external face of 

the cell membrane (chapter 1).  The initial theory  was that these extensions 

represent sites of interaction between the Lgt and Lsp enzyme.  This is 

attractive given that the Gram-negative pathway is well ordered (as may be the 
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pathway in S. scabies as described above), and that passive diffusion of 

unprocessed lipoproteins between the processing enzymes seems energetically 

wasteful.  In opposition to this theory is the lack of extensions in the Lnt 

enzymes and the translocation machinery.  The majority of this work was done 

on the S. coelicolor Lsp  protein, as truncating either of the Lgt enzymes 

singularly  has no effect, presumably  due to the self complementation mentioned 

previously.  It was thought that if the Lgt and Lsp  proteins were interacting 

directly,  truncating the N-terminus of the Lsp  enzyme would impede or stop this 

interaction, and the processing of the lipoprotein tested, CseA, would cease in a 

manner similar to the deletion strain.  Removing the first 10 amino acids of the 

protein had no effect on CseA processing, yet removing 20 lead to it being 

undetectable.  Removing 30 amino acids lead to a size shift in CseA, 

suggesting the enzyme was inactive, whilst removing 40 amino acids again 

leads to CseA being undetectable.  With the exception of the N10 truncation, 

removing the N-terminus of Lsp results in the loss of enzyme activity.  It is not 

known however, whether these truncated enzymes are expressed or not. 

Attempts to fuse both of the S. coelicolor Lgt and Lsp proteins to both eGFP 

and mCherry fluorescent markers to visualise them were unsuccessful, given 

their low expression and the natural background fluorescence of S. coelicolor.  

It was thought that the lipoprotein processing machinery may have been 

localised at the growing hyphal tip, given that this is the location of new 

bacterial growth.  The Tat machinery has been found at the hyphal tip (D. 

Widdick, unpublished) and to find the lipoprotein processing enzymes there too 

would lend weight to the theory that the whole pathway is linked.
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Although they  share the same environment, S. scabies differs from S. coelicolor 

as it has gained the ability to infect plants.  Two main compounds, thaxtomin A 

and Nec1 are the main elicitors of necrosis in potato tubers.  Previous to this 

work, no research had been undertaken on the role lipoproteins have on plant 

pathogenesis.  Much has been done on their action in animal pathogenesis, 

and the results of disrupting their biosynthesis range from attenuation to 

hypervirulence.  What is clear though is that the loss of Lgt or Lsp is not lethal in 

the Gram-positive pathogens tested to date.  This is also the case in S. scabies.  

Both the Δlgt and Δlsp deletion strains show a similar growth phenotype as 

described above.  Neither mutation can be fully complemented, similar to the S. 

coelicolor Δlsp mutant, suggesting the strains have also gained secondary 

mutations in order to survive.  The disruption of these enzymes had a clear 

effect on the processing of the two model lipoproteins tested, with examples of 

improper localisation shown in each deletion strain.  It is important to note that 

both SCO3484 and PstS (SCO4142) are native S. coelicolor lipoproteins, and 

therefore may be processed differently in the heterologous host S. scabies than 

they are in their native S. coelicolor.  This is certainly the case for SCO3484 as 

can be seen in figure 3.16 (S. coelicolor) and figure 4.13 (S. scabies).  Future 

work will have to involve native S. scabies lipoproteins.   Despite this incorrect 

processing, none of the mutants showed any avirulence in the two plant assays 

carried out, with each deletion strain able to causes disease in both potatoes 

and radishes.  

The Radish seedlings were also susceptible to each of the S. scabies strains.  

The general pattern of growth seen in the wild-type infected plant: short stem, 

withered leaves and a short primary root is replicated in each infection, although 
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the overall severity  of virulence caused by the Δlgt, Δlsp and Δlnt double 

mutants seemed less than the wild-type, with more secondary roots seen, in 

contrast to the complete failure of secondary root growth in the other strains.  

This growth stunting was clearly  a result of the S. scabies as the non-

pathogenic S. coelicolor produced no evidence of damaged growth.  Given that 

the reduction of secondary  root formation was frequently  seen in each of the 

deletion strains, and the ʻnodulesʼ representing this failed growth are thought to 

be the area where S. scabies gains access to the plant [77], it appears as 

though disrupting the S. scabies lipoprotein machinery  has had no effect on the 

bacteriaʼs ability to colonise root structures.  That disrupting the lipoprotein 

processing pathway does not have a significant effect on virulence is surprising, 

given that three lipoproteins encoding SBP (SCAB77471, SCAB77361, 

SCAB77271) are present in the S. scabies pathogenicity island, although as 

noted above, there is no evidence that these are virulence factors.  The loss of 

the Tat dependent lipoprotein SCAB81041 has been shown to cause a 

moderate decrease in virulence in A. thaliana [80].  A moderate decrease in 

virulence is also seen in the Δlgt, Δlsp and Δlnt double mutants, showing that 

the lipoprotein processing pathway does play a role in plant pathogenesis.  A 

further gene involved in the pathogenicity process SCAB78931 has been 

discovered.  This gene encodes a cutinase, an enzyme used by pathogenic 

fungi to break down the protective layer of cutin found on the aerial organs of 

plants.  The improper processing of this lipoprotein does not seem to impede 

the infection process, and its role is still unclear, given that the target organs for 

the bacterium are found underground.  This gene does offer a potential insight 

into the origins of the pathogenicity genes found in S. scabies given that its 

closest homologue is found in the fungus Phytophthora infestans, the causative 

193



agent of potato blight.  The large numbers of potentially  improperly processed 

substrate binding proteins also does not effect the production of pathogenicity 

elicitors.  As has been noted, both Nec1 and thaxtomin A appear to be induced 

by carbohydrates [75, 130], and as we have seen, large numbers of 

lipoproteins, in S. coelicolor at least, are involved with carbohydrate transport.  

Again though, as there is no detriment to virulence it seems likely  that either 

non-lipoprotein transporters are used for carbohydrate uptake, or any 

lipoproteins necessary remain active. 

To conclude, this work has analysed the lipoprotein processing pathways of 

both S. coelicolor and S. scabies and shown strong evidence that the 

lipoprotein biosynthesis pathway is essential in S. coelicolor, and preliminary 

evidence in the latter that the pathway by which lipoproteins are processed 

occurs in a strict, regimented order.  
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Table A2. Stress Phenotype Results.
Name

A B C A B C A B C A B C A B C A B C
Bacitracin μg/ml 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
4 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
5 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
15 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
20 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
25 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2
30 2 2 2 2 2 2 2 2 2 1 1 1 2 2 2 2 2 2
35 2 1 2 1 1 1 2 2 2 0 0 0 1 2 2 2 2 2
40 2 1 2 1 1 1 2 2 2 0 0 0 1 2 1 2 1 1
50 2 0 2 1 0 0 2 2 2 0 0 0 1 1 0 1 1 0

100 0 0 0 0 0 0 2 2 2 0 0 0 0 0 0 0 0 0
200 0 0 0 0 0 0 1 1 2 0 0 0 0 0 0 0 0 0
300 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
400 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
500 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 0
1000 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

+15 Hour SDS % 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.01 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.02 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.03 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.04 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.05 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 1 1 1
0.06 2 2 2 2 2 2 2 2 2 1 1 1 2 2 1 1 1 1
0.07 2 2 2 2 2 2 2 2 2 1 1 1 1 1 0 1 1 1
0.08 2 2 2 2 2 2 2 2 2 1 1 1 1 1 0 1 1 1
0.09 2 2 2 2 2 2 2 2 2 1 1 1 1 1 0 1 1 1
0.1 2 2 2 2 2 2 2 2 2 1 0 1 1 1 0 1 1 1
0.2 2 1 2 2 2 2 2 2 2 0 0 0 0 0 0 0 0 0

0 hour lysozyme μg/ml 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.3 2 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2
0.4 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 2 2 2
0.5 2 2 2 2 2 2 2 1 2 1 1 1 2 2 2 2 2 2
0.75 1 1 1 1 1 1 1 1 2 1 1 1 1 2 2 2 2 2

1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1
1.25 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 1 1 1
2.5 0 0 0 1 1 1 1 0 1 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
+15 Hour Lysozyme μg/ml 0 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2

0.1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2
0.4 2 2 2 2 2 2 1 1 1 2 2 1 1 2 1 1 2 2
0.5 2 2 2 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1
0.75 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1 2 2 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1
1.25 1 1 1 1 0 1 1 0 0 1 1 1 1 1 1 1 1 1
2.5 0 1 0 0 0 1 0 0 0 0 0 0 1 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

10 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
*cis = Δlsp cis complementation
in trans = Δlsp in trans complementation

ΔlspFLP cis* in trans*Conc/Amount WT Δlgt1::apr Δlgt2::apr


