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Abstract  

 

Habitat destruction and degradation are primary causes of loss of biodiversity and 

ecosystem services. In the marine realm, there is the overwhelming concern about the 

rates of decline of coral reefs, which sustain thousands of species and support millions 

of livelihoods. Although declines in reef-building corals have been reported across 

different regions of the world, the concomitant consequences for reef architectural 

complexity have not been quantified to date. This in part is because the true nature of 

the relationship between live coral cover and reef architecture has yet to be described in 

detail. In this thesis, I describe the patterns of change in architectural complexity and 

explore the relationships between reef complexity, coral cover and the identity of reef-

building corals in the Caribbean, a region in which coral reefs are highly threatened and 

degraded.  

 

 Using an extensive database of studies reporting coral cover and reef rugosity 

over the last 40 years, I provide region-wide analyses of changes in reef architectural 

complexity. The results show that reef complexity has declined non-linearly with near 

disappearance of the most complex reefs over the last 40 years. The loss of coral cover 

is directly followed by reductions in complexity with little time-lag, and that there is 

little correspondence between the overall rates of change in coral cover and reef 

architecture, probably due to spatial variation in coral composition on reefs. Major 

drivers of coral mortality, such as coral bleaching, do not immediately influence 

architectural complexity, instead hurricane impacts and enhanced bioerosion inside 

protected areas appear to be important drivers of the widespread loss of architecturally 

complex reefs in the Caribbean. 

  

Through detailed studies of coral reefs in Cozumel, Mexico, I then show that 

although reef architectural complexity increases with coral cover, the rate of increase is 

highly dependent on the identity of dominant corals, with important reef-building coral 

such as Montastrea providing the most complex reefs. that the most complex remaining 

reefs in Cozumel, particularly those dominated by robust Montastrea corals, support 

fish assemblages with higher mean trophic levels and larger abundances of small-bodied 

fishes. This highlights the importance of complex reefs for fish recruitment, and thus the 

need to protect and enhance complex reef structures in order to maintain reef fisheries 

and biodiversity in the Caribbean. 
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General Introduction 

 

Global ecosystems are changing at an unprecedented rate, largely as a consequence of 

several human-induced drivers of change (Pimm et al. 1995; Vitousek et al. 1997; Sala 

et al. 2000; Hoekstra et al. 2005). Although recent international efforts to halt rates of 

loss (Balmford & Bond 2005), most indicators of the state of biodiversity indicate 

ongoing declines, with no significant reductions in rate (Butchart et al. 2010). Habitat 

degradation has been shown to be one of the primary causes of species endangerment 

and ecosystem simplification (Pimm et al. 1995; Tilman et al. 2001), and habitat loss is 

considered to be a significant cause of increased risk of extinction in many terrestrial 

and marine species (Temple & Cary 1988; Owens & Bennett 2000; Dulvy et al. 2003; 

Costello et al. 2010). The degradation of habitat also has a considerable effect on the 

capacity of ecosystems to provide fundamental environmental services. For example, 

the loss of forest cover can reduce water flow and yield to agricultural and urban areas 

(Maass et al. 2005; Brauman et al. 2007), and degraded coastal ecosystems are 

associated with reduced fisheries yields and increasing  social and economic costs 

following tropical storm impacts (Aburto-Oropeza et al. 2008; Costanza et al. 2008). 

The understanding of the trends, drivers and consequences of habitat loss may therefore 

help to prioritise the conservation efforts to restore the benefits that ecosystems provide 

to biodiversity and humans.  

 

 Coral reefs are highly heterogeneous marine environments. They make up only 

0.2% in area of marine environments, and yet they harbour around one third of all 

described marine species (Reaka-Kudla 2001; Spalding et al. 2001). Unfortunately they 

are also among the most rapidly changing ecosystems in the world (Bryant et al. 1998; 

Halpern et al. 2007). Drivers of coral reefs degradation range from direct damage due to 

destructive human practices (McManus 1997; Barker & Roberts 2004; Saphier & 

Hoffmann 2005), to the loss of ecological resilience due to the harmful algal blooms 

resulting from the loss of herbivory and coastal eutrophication (Fabricius et al. 2005; 

Mumby 2006). More recently, climate change has emerged as an additional and serious 

threat to coral reefs, which can be manifest in at least three ways. Current rates of 

increases in sea temperatures have been associated with widespread bleaching events, in 

which temperature-induced stress results in the loss of symbiotic algae that live within 
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coral tissue; (Hoegh-Guldberg 1999; Hoegh-Guldberg et al. 2007; Veron et al. 2009), 

and disease outbreaks (Harvell et al. 2002; Bruno et al. 2007). In addition, increasing 

CO2 concentrations poses the threat of ocean acidification, which may result in the 

dissolution and/or reduced deposition of the calcium carbonate skeletons of reef 

building corals (Kleypas et al. 1999; Hoegh-Guldberg et al. 2007; Kleypas & Yates 

2009). Finally, rising sea levels, primarily as a consequence of thermal expansion 

resulting from global warming, may potentially drown some reefs (Pittock 1999; 

Barnett & Adger 2003; Veron et al. 2009).  

 

 Reef deterioration may occur as a direct response to an individual stressor such 

as mass bleaching (Darling et al. 2010), but it more commonly occurs in response to 

combinations of different stressors acting simultaneously, and occasionally 

synergistically, to increase coral mortality or reduce coral growth and reproduction 

(Green & Bruckner 2000; Hughes et al. 2003; Crain et al. 2008; Darling & Côté 2008). 

After mass bleaching events, for example, coral growth may remain suppressed for 

considerable periods of time in sites with high anthropogenic stressors (Carilli et al. 

2009; 2010). As result of this wide range of drivers of change and their interactions, the 

cover of reef-building corals has decreased rapidly on tropical reefs throughout the 

world (Gardner et al. 2003; Bellwood et al. 2004; Bruno & Selig 2007), which has 

resulted in the loss of a least 20% of the total cover of tropical reefs. Most of the 

remaining coral reefs are seriously perturbed and threatened (Wilkinson 2008).  

 

 The ecological degradation of coral reefs is likely to affect the associated 

ecosystem goods and services provided to humanity (Costanza et al. 1997; Adger et al. 

2005; Balmford & Bond 2005). The world’s coral reefs support the livelihood of well 

over 250 million people, especially in the developing world, providing protein in the 

form of fisheries resources and supporting a global tourism industry (Moberg & Folke 

1999; Cinner et al. 2009; Hughes 2009). In addition, reef systems protect essential 

mangrove, seagrass and lagoon habitat that are support vulnerable life stages of a wide 

range of commercially exploited species (Nagelkerken et al. 2002; Mumby et al. 2004), 

and shield coastlines from wave erosion and tropical storms (Gourlay & Colleter 2005; 

Sheppard et al. 2005; Koch et al. 2009). The consequences of coral reef destruction 

would not be limited to the loss of the value of these goods and services, but the demise 

of reefs would also represent the lost of a large proportion of the world’s marine 

biodiversity (Veron et al. 2009). For example, within reef-building corals alone, one 
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third of species are currently facing increasing risks of extinction (Carpenter et al. 

2008). 

 

 Because of the importance of hard coral cover in building and structuring the 

reef matrix, most of the interest in understanding and protecting against reef degradation 

has focused on exploring the trends, drivers and consequences of the loss of live coral 

cover (e.g. Gardner et al. 2003; Côté et al. 2006; Gill et al. 2006; Bruno & Selig 2007; 

Schutte et al. 2010). However, most of the ecological and socio-economic value of coral 

reefs is provided not just by the cover of live coral, but also by the intricate three-

dimensional architecture that reef corals promote. Reef architectural complexity is 

therefore more likely to have substantial ecological, economical and social relevance. 

For instance, reef complexity is strongly related to the availability of shelter and refugia, 

and consequently to fish and invertebrate richness, abundance and biomass (e.g. Risk 

1972;  Dulvy et al. 2002; Gratwicke & Speight 2005; Idjadi & Edmunds 2006; Wilson 

et al. 2007). Reef architectural complexity also plays a key role in providing additional 

important environmental services to humans such as coastal protection. Wave energy 

transmitted over reefs is significantly dissipated by the friction exerted by bottom 

roughness (Lugo-Fernandez et al. 1998; Sheppard et al. 2005). A decreased 

architectural complexity would therefore be expected to offer less resistance to water 

flow, thus increasing the risks of coastal erosion and flooding of low-lying areas, with 

associated heightened economic and social costs for coastal communities. The 

consequences of reef-framework degradation for shoreline protection were apparent in 

Sri Lanka during the 2004 tsunami, when sections of coastline for which reef structure 

had been impacted by poaching and mining were unable to provide an effective buffer 

against the wave energy, and water inundation and wave heights were considerably 

more severe than in those areas protected by healthy reefs (Kunkel et al. 2006; 

Fernando et al. 2008). 

 

 Despite the importance of reef architectural complexity, little is known of how 

current losses in the cover of reef-building corals and associated components of benthic 

communities influence reef complexity. The Caribbean is unfortunately an 

exceptionally good model system in which to explore these issues, given the dramatic 

degradation that has been evident across the region in recent decades. Caribbean reefs 

have been intensively studied since the 1970s, enabling a detailed description of 

changes in biodiversity (live coral cover, macroalgae and fishes; Gardner et al. 2003; 
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Bruno et al. 2009; Paddack et al. 2009; Schutte et al. 2010), and the effects of the major 

drivers of change including hurricanes, diseases outbreaks, overfishing and human-

induced climate change (Aronson & Precht 2001; Jackson et al. 2001; Gardner et al. 

2005; McWilliams et al. 2005; Sheppard & Rioja-Nieto 2005; Aronson & Precht 2006). 

Declines in coral cover started in the late 1970s, when the major reef-formers Acropora 

palmata and A. cervicornis (Elkhorn and Staghorn corals) suffered dramatic population 

reductions as result of widespread infection with white-band disease (Aronson & Precht 

2001, 2006; Schutte et al. 2010). Thereafter, the die-off of the black sea urchin 

(Diadema antillarum), a major consumer of macroalgae, combined with the long-term 

depletion of herbivorous fishes through over-fishing, facilitated the gradual increase in  

macroalgae on many reef sites (Carpenter 1988; Jackson et al. 2001; Bruno et al. 2009). 

More recently, reef-building corals in the Caribbean and elsewhere face new threats 

from the increase in atmospheric green house gases, as coral bleaching and mortality 

become progressively worse as thermal anomalies intensify and lengthen, and ocean 

acidification is compromising carbonate accretion and therefore the reef building 

process (Hughes et al. 2003; McWilliams et al. 2005; Hoegh-Guldberg et al. 2007). 

 

 

Thesis outline 

 

In this thesis, I use a combination of regional and local-scale analyses to investigate 

three major questions: (1) how has reef architectural complexity changed in the 

Caribbean, (2) how do coral cover and different drivers of change on reefs influence 

reef complexity, and (3) what are the consequences of the degradation of reef 

complexity for reef-associated fishes? As local differences in reef structure and 

composition can make it difficult to scale-up findings from small-scale studies (Levin 

1992; Hughes & Connell 1999; Purvis & Hector 2000; Pandolfi et al. 2005) and thus 

identify the effects of different drivers (Aronson & Precht 2006; Bruno & Selig 2007; 

Halpern et al. 2007), in the first three chapters I use a large-scale approach to explore 

patterns of change at the region-wide level. Following on from these studies, I then 

carry out a detailed local-scale field study in order to identify the mechanisms that are 

likely to influence the large-scale patterns, and to explore the possible consequences for 

reef-associated biodiversity. 
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In Chapter 1, I provide a region-wide analysis describing the trend in change of 

reef architectural complexity since the 1970s, and explore whether these trends vary 

between different sub-regions and depth strata. Chapter 2 focuses on exploring the 

temporal and spatial covariation between live coral cover and reef architectural 

complexity, using a Caribbean-wide dataset of temporally-replicated measures of reef 

structure spanning four decades. In Chapter 3, I use a meta-analysis to examine how 

annual rates of change in architectural complexity across the Caribbean are influenced 

by three key drivers of change on coral reefs: hurricanes, coral bleaching and fisheries. 

Chapter 4 uses field data that I collected in Cozumel, Mexico to explore the 

contribution of different types of coral to reef architectural complexity. Specifically I 

explore the role of coral diversity, coral community composition and the taxonomic and 

functional attributes of coral dominance. Chapter 5 examines the influence of the 

architectural complexity of reef-building corals on reef- associated fishes. In particular, 

I compare diversity, abundance, biomass and the trophic and size structure of reef fishes 

along a gradient of coral cover, species dominance and architectural complexity. 

Finally, in the Concluding remarks, I synthesize the key findings of this research and 

discuss the implications for coral reef management, and future research 
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Chapter 1 

 

Flattening of Caribbean coral reefs: region-wide declines 

in architectural complexity 

 

 

 

Abstract 

Coral reefs are rich in biodiversity, in large part because their highly complex 

architecture provides shelter and resources for a wide range of organisms. Recent rapid 

declines in hard coral cover have occurred across the Caribbean region, but the 

concomitant consequences for reef architecture have not been quantified on a large scale 

to date. We provide the first region-wide analysis of changes in reef architectural 

complexity, using nearly 500 surveys across 200 reefs, between 1969 and 2008. The 

architectural complexity of Caribbean reefs has declined non-linearly with near 

disappearance of the most complex reefs over the last 40 years. The flattening of 

Caribbean reefs was apparent by the early 1980s, followed by a period of stasis between 

1985 and 1998 and then a resumption of the decline in complexity to the present. Rates 

of loss are similar on shallow (< 6 m), mid-water (6 - 20 m) and deep (> 20 m) reefs and 

are consistent across all five subregions. The temporal pattern of declining architecture 

coincides with key events in recent Caribbean ecological history: the loss of 

structurally-complex Acropora corals, the mass mortality of the grazing urchin Diadema 

antillarum, and the 1998 ENSO-induced world-wide coral bleaching event. The 

consistently low estimates of current architectural complexity suggest regional-scale 

degradation and homogenisation of reef structure. The widespread loss of architectural 

complexity is likely to have serious consequences for reef biodiversity, ecosystem 

functioning and associated environmental services. 

 

 

 

 

 

Published: 

Alvarez-Filip L., Dulvy N.K., Gill J.A., Côté I.M. & Watkinson A.R. (2009). Flattening 

of Caribbean coral reefs: region-wide declines in architectural complexity. Proceedings 

of the Royal Society B: Biological Sciences, 276, 3019-3025.
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Introduction 

 

The physical structure of a habitat profoundly influences its associated biodiversity and 

ecosystem functioning (MacArthur & MacArthur 1961), with more complex habitats 

facilitating species coexistence through niche partitioning and the provision of refuges 

from predators and environmental stressors (Bruno & Bertness 2001; Willis et al. 

2005). In tropical shallow waters, the calcium carbonate skeletons of stony corals 

contribute to reef frameworks that sustain the most diverse ecosystem in our seas 

(Spalding et al. 2001). However, coral reefs have been heavily impacted worldwide by a 

combination of local and global stressors, including overfishing, climate change-

induced coral bleaching, eutrophication and diseases (Hughes et al. 2003). The marked 

declines in live hard coral cover documented over recent decades throughout the 

Caribbean and the Indo-Pacific regions (Gardner et al. 2003; Bruno & Selig 2007) 

exceed those reported for many other foundation species in terrestrial or marine 

ecosystems (Balmford et al. 2003). However, in contrast to other ecosystems where 

degradation usually indicates reductions in habitat area (e.g., deforestation), decreases in 

live coral cover on coral reefs do not immediately result in loss of available habitat 

because the reef framework can persist long after the death of corals. 

 

 In the Caribbean, declines in live coral cover began in the late 1970s, when 

substantial loss of the major reef-forming corals Acropora palmata and A. cervicornis 

occurred as a result of with white-band disease (Aronson & Precht 2001).  Coral 

mortality, in combination with the mass mortality of the black sea urchin (Diadema 

antillarum), which was a major remover of algae, and the long-term depletion of 

herbivorous fishes through overfishing, facilitated phase-shifts to macroalgal dominance 

on many reefs (Carpenter 1988; Precht & Aronson 2006). In the Caribbean and 

elsewhere, reef-building corals now face new threats from climate change, particularly 

in the form of thermally-induced coral bleaching and mortality, which are becoming 

increasingly frequent and extensive as thermal anomalies intensify and lengthen 

(Hughes et al. 2003; McWilliams et al. 2005). 

 

A potential consequence of the widespread reduction in Caribbean coral cover is 

a reversal of the historic net accretion of calcium carbonate, resulting in a decrease in 

calcification and erosion of the reef framework. At local scales, hard coral mortality is 
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associated with the loss of architectural complexity and „reef flattening‟ after direct 

impacts, such as hurricanes through the breakage of coral skeletons (e.g. Rogers et al. 

1982). Reefs may also erode gradually owing to the natural activity of host organisms, 

such as herbivorous fishes and sea urchins, and by physical abrasion or geochemical 

shifts. However, widespread mortality of hard corals, for example after severe bleaching 

events moves the balance toward net reef erosion (Sheppard et al. 2002). These impacts 

could be exacerbated in the future by ocean acidification, which is expected to enhance 

calcium carbonate dissolution with negative consequences, initially for coral growth and 

eventually for the entire reef framework (Hoegh-Guldberg et al. 2007). 

 

The ecological and socio-economic consequences of declining architectural 

complexity are likely to be substantial (Pratchett et al. 2008). For many reef organisms, 

risk of predation is influenced by access to refuges, and the densities of herbivores and 

grazing rates typically increase with architectural complexity (Beukers & Jones 1997; 

McClanahan 1999; Almany 2004; Lee 2006).  Consequently the species richness, 

abundance and biomass of coral reef fishes and invertebrates are all influenced by 

architectural complexity (e.g. Gratwicke & Speight 2005; Idjadi & Edmunds 2006; 

Wilson et al. 2007). The loss of architectural complexity may therefore drive declines in 

diversity, particularly of habitat specialists, and compromise fisheries productivity 

through elevated post-settlement mortality (Beukers & Jones 1997; Graham et al. 2007). 

Reef architectural complexity also plays a key role in providing important 

environmental services to humans, including enhancing coastal protection through the 

dissipation of wave energy transmitted over reefs (Lugo-Fernandez et al. 1998).  

 

While recent regional-scale analyses have revealed declines in hard coral cover 

(Gardner et al. 2003; Bruno & Selig 2007), the consequences for reef habitat 

complexity on a similar large scale have not been quantified. The capacity of reefs to 

continue to perform key functions of refuge provision and coastal protection will 

depend on whether reef architecture persists for a substantial period of time following 

the loss of live coral. Here we collate published and unpublished estimates of reef 

complexity spanning four decades from reefs across the Caribbean, a region with clear 

evidence of recent declines in coral cover. We explore the rate and timing of changes in 

reef architecture in relation to region-wide events, such as the demise of Acropora 

corals and grazing urchins. As the drivers of reef degradation are apparent throughout 
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the Caribbean, we also examine whether the patterns are consistent throughout the 

entire region. 

 

 

Material and methods 

 

Estimating architectural complexity 

 

Habitat complexity on coral reefs has been measured using a variety of methods which 

differ in the attributes measured, the scale of measurement and the degree of 

subjectivity (with attendant variation in inter-observer comparability). To determine 

which methods are commonly used by researchers to measure habitat complexity on 

coral reefs, we conducted a preliminary literature search using the ISI web of 

Knowledge in July 2007 for papers containing any of the following words in the title, 

abstract or keywords: “rugosity”, “spatial heterogeneity”, “spatial index”, “habitat 

structure”, “habitat complexity”, “structural complexity”, “substratum complexity”, 

“reef relief”, “coral complexity”, and “complexity index”. Additionally, the same words 

were searched in the entire text of the 1368 papers published in Volumes 1 (June 1982) 

to 26 (September 2007) of the journal Coral Reefs. We retained all papers that reported 

work carried out in the Caribbean and in which the methodology used to measure 

architectural complexity was clearly explained. A total of 49 papers met these two 

criteria. The description and frequency of use of the various methodologies used to 

describe habitat complexity in Caribbean coral reefs are presented in table 1.   

   

The rugosity index is by far the most widely used method for measuring reef 

architectural complexity (table 1), and is generally highly correlated with other methods 

(Wilson et al. 2007). Studies reporting the rugosity index were therefore chosen to 

quantify spatial and temporal variation in the architectural complexity of reefs across 

the Caribbean.  

 

The rugosity index is expressed as the ratio between the total length of a chain and 

the length of the same chain when moulded to a reef surface.  A perfectly flat surface 

would have a rugosity index of one, with larger numbers indicating a greater degree of 

architectural complexity (figure 1). The index tends toward infinity with increasing 

architectural complexity; however, rugosity estimates greater than three are very rare.  
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Table 1. Description and percentage of use (% of studies) of methodologies used to measure reef 

structural complexity in the Caribbean. 

 

Method % 

 

Rugosity index. A fine-link chain is laid over the contours of the substratum, and the 

ratio between the total length of the chain (a) to the planar distance between the ends of 

the chain (b) is calculated. The greater the ratio, the more complex the substratum. 

Some papers use a modified rugosity index: 1- (b / a). 

 

59.2 

 

Visual assessment. Semi-quantitative estimates of reef structural complexity on an 

arbitrary scale, e.g. scores 0–5 where 0 corresponds to a totally flat surface and 5 

represents maximum reef complexity. 

 

14.3 

 

Maximum relief. The difference (usually in cm) between the lowest and highest points 

of the substratum along a transect or within a quadrat. Larger differences indicate 

greater complexity. 

 

10.2 

 

Remote sensing. Optical analyses of data obtained from aerial photographs or scanners 

(e.g., light detection and ranging altimeter).  

 

10.2 

 

Layers. An imaginary vertical line is placed through a transect or quadrat and the 

number of times it passes from coral to water to coral again represents structural 

complexity. A structural complexity value of 0 indicates a flat surface, while greater 

values represent a substratum with more layers and hence more complexity. 

 

4.1 

 

Number of holes. The number of holes of different sizes within an area or transect is 

counted, and complexity increases with increasing number of holes. 

 

2.0 

 

 

Data search 

 

A database of quantitative surveys that measured reef rugosity within the wider 

Caribbean was compiled. We searched online ISI Web of Science, Google Scholar and 

other relevant databases (e.g. Reefbase) for peer-reviewed and grey literature using 

several search terms (see previous section for examples). We also searched for papers 

that used the rugosity index in all issues of the journals Coral Reefs, Bulletin of Marine 

Sciences, Atoll Research Bulletin, Caribbean Journal of Science and in all Proceedings 

of the International Coral Reef Symposium.  Additionally, we contacted directly coral 

reef scientists, site managers and those responsible for reef monitoring programs 

throughout the Caribbean, asking for any available data pertaining to their study sites.  

 

A total of 464 records from 200 reefs surveyed between 1969 and 2008 across 

the Caribbean were obtained (figure 2a,b). The database includes reefs that were 

surveyed only once (n = 214) and reefs where repeated measures of rugosity were 

collected over more than one year (n = 250). Both datasets provide highly consistent 
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results (see table 2 and table A1.1 in Appendix 1). We therefore only present findings 

from the whole dataset, because it offers a wider spatial and temporal representation. 

 

 

 

 
Figure 1. Examples of three different values of rugosity index of architectural complexity on Caribbean 

reefs. The value of the index is indicated in each photo. (Source for photos: L. Alvarez-Filip, M. Uyarra, 

W. Henry). 

 

 

 

 

 

Figure 2. (a) Regional distribution of locations from which rugosity values were obtained; grey circles= 

Central America; white circles= South America; black circles= Lesser Antilles; circles with vertical 

lines= Greater Antilles; circles with crosses= SW North Atlantic. (b) Number of studies from which 

rugosity data were collated per year, from 1969 to 2008. 

 

 

Analyses 

 

To assess the temporal pattern of change in region-wide architectural complexity, we 

calculated annual estimates of rugosity averaged across all available sites for each year 

from 1969 to 2008. We fitted a range of linear and non-linear models to represent 

increasing degrees of complexity in the rate of change in rugosity over time, and used 

the small-sample adjusted Akaike Information Criterion AICc to evaluate the models 
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(Burnham & Anderson 2002). Linear models were fitted using both simple regressions 

and robust regression, to downweight the influence of outliers. We contrasted these 

linear models, which represent a hypothesis of constant change in rugosity over the 

whole time period, against segmented models that assumed piecewise linear 

relationships (i.e. two or more straight lines connected by breakpoints) and a General 

Additive Model (GAM) of an unspecified non-linear (spline) function, which assumed 

that the rate of change in rugosity varied over time (Venables & Ripley 2002; Muggeo 

2003). In addition, because the number of sites contributing to each annual rugosity 

estimate varied, with more sites available toward the end of the time period, we ran all 

models with annual estimates unweighted and weighted by sample size. Weighted 

models consistently provided a significantly better fit (lower AIC and higher variance 

explained) than unweighted models. All analyses were implemented in R (R 2009). 

 

We used randomisation techniques to evaluate whether the pattern and rate of 

change were sensitive to the inclusion of any particular site or year. For the best-

supported model identified in the AICc analysis, we tested whether the rate of decline in 

rugosity was biased by the inclusion of any particular year, using a jackknife method to 

calculate the distribution of annual decline rates while sequentially removing each 

individual year. To evaluate any potential site selection bias, we used a bootstrap 

method to compare the annual decline rate to the range of possible decline rates for 

10,000 random combinations of year, rugosity and weighting. 

 

To explore if the trends of changing architectural complexity varied with depth 

and within the region, we aggregated the data by decade to maximise the signal relative 

to interannual variation while retaining sufficient power. To evaluate the change in 

rugosity at different depths, we divided the data into three zones: (i) < 6 m, which 

represents the optimal range of Acropora palmata (and therefore Acropora reefs); (ii) 6 

- 20 m, to include the range other reef-building scleractinian corals, including A. 

cervicornis; and (iii) > 20 m, to reflect sites where hard corals are present but do not 

necessarily form complex three-dimensional structures. We also aggregated the data 

within five sub-regions to explore spatial variation in changes in rugosity within the 

Caribbean region (figure 2a). 

 

A key question is if the regional change in reef structure has produced more 

structurally homogeneous habitats throughout the Caribbean. We classified each reef 
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into one of five rugosity index categories (1.0-1.49, 1.5-1.99, 2.0-2.49, 2.5-2.99, >3.0) 

to explore the change in region-wide representation of complex (rugosity > 2.0) and 

flatter (rugosity ≤ 1.5) reefs for the four different decades. 

 

 

Results 

 

There has been a marked decline in the architectural complexity of Caribbean reefs over 

the past four decades (figure 3).  The best-supported model of change in rugosity over 

time was a weighted segmented model (table 2), which suggests that the decline in 

rugosity has three distinct phases of change (figure 3). Architectural complexity 

declined steeply early in the time series (1969 – 1985), from reefs with indices ~2.5 to 

much flatter reefs with indices ~1.5. This period of decline ended in 1985 ( 2.4 years 

SE), and architectural complexity throughout the region then remained relatively stable 

until the late 1990s. However, since 1998 ( 2.8 years SE) the declining trend has 

resumed, with rugosity indices after the mid 2000s reaching the lowest levels recorded 

in the time-series (~1.2; see example in figure 1). The pattern of change is robust to the 

inclusion or exclusion of individual years (Jackknife) and individual sites (bootstrap) 

(Appendix 1, figure A1.1). 

 

 

 

Figure 3. Changes in reef rugosity on reefs across the Caribbean from 1969 to 2008.  Black line 

represents the best fitting model – a segmented regression weighted by the number of sites contributing to 

each annual rugosity estimate (mean ± 95% confidence intervals). Black dots at the top of the figure 

indicate the significant break-point in 1985 and 1998 (± 1 SE) for the segmented regression. Model 

slopes: 1969 to 1984= -0.054; 1985 to 1997= 0.008; 1998 to 2008= -0.038. 
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Table 2. Model structure and the temporal pattern of change in Caribbean architectural complexity. 

Summary of Akaike Information Criterion analysis of linear and non-linear models of change in yearly 

mean rugosity (derived from all 464 estimates), ordered by decreasing weight. Models in which annual 

rugosity estimates have been weighted by sample size are indicated (wt). df = degrees of freedom of the 

model (for GAM we use the estimated degrees of freedom). AICc is the Akaike Information Criterion 

corrected for small sample size. Δ is the difference in AICc between a given model and the best-supported 

model (indicated in bold). W is the Akaike weight, which represents the probability that a given model is 

the best of those models considered. 

 

Model R
2
 Slope df AICc Δ AICc AICc W 

Segmented model (wt) 0.64 -0.028* 26 -25.8 0 0.8695 

Linear model (wt)  0.53 -0.019 30 -17.1 8.7 0.0112 

Robust linear model (wt)  - -0.018 30 -16.9 8.8 0.0107 

Segmented model 0.65 -0.038* 26 -2.9 22.9 0.0000 

Generalized additive model (wt)  0.99 -0.033* 3.6 0.1 25.8 0.0000 

Linear model 0.49 -0.026 30 9.4 35.2 0.0000 

Robust linear model - -0.021 30 11.2 37 0.0000 

Generalized additive model 0.59 -0.044* 3.3 22.8 48.6 0.0000 

        *average slope of the different model segments 

 

 

The decline in architectural complexity is widespread. The temporal pattern of 

change was consistent across all three depth intervals (figure 4a) and across the three 

sub-regions for which the available data spanned the whole time period, and the two 

regions with patchier data (Central America and SW North Atlantic; figure 4b). 

 

 

 

 

 

Figure 4. Change in Caribbean reef rugosity in four different decades (a) at three depth intervals and (b) 

in five subregions (mean index value ± 95% confidence intervals). 
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Caribbean reefs are becoming both flatter and more structurally homogeneous 

across the region. The proportion of complex reefs (rugosity > 2) has declined from 

~45% of sites to ~2% in the past four decades (figure 5).  

 

 

 

Figure 5. Proportion of reefs in five rugosity index categories across the Caribbean between 1969 and 

2008. Number of studies for each decade: 1970s: n = 32; 1980s: n = 52; 1990s: n = 136 and 2000s: n = 

167. 

 

 

Discussion 

 

The architectural complexity of coral reefs has declined drastically over the last 40 

years throughout the Caribbean. Structurally complex reefs with a rugosity of >2 have 

been virtually lost from the entire region. Today, the flattest reefs (rugosity <1.5) 

comprise approximately 75% of the total compared to ~20% in the 1970s, with most of 

the increase in the proportion of flattest reefs occurring in the 2000s. The high 

proportion of complex reefs in the 1960s and 1970s is unlikely to result from 

researchers at this time tending to visit just the most pristine reefs, because less 

architecturally complex categories were also well represented during this period. The 

loss of architectural complexity is non-linear and has occurred over three distinct phases 

that coincide closely with large-scale events that have affected Caribbean reef 

ecosystems. The rate of decline was steepest prior to 1985. The sample sizes are small 

and variance high during the 1960s and 1970s, hence it is unclear whether the decline 

began prior to the early 1980s, when widespread loss of acroporid corals began (Precht 

& Aronson 2006).  After this period, average architectural complexity changed little 

until the late 1990s, when a new episode of decline began. The pattern of decline is 
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consistent across depth zones and sub-regions. The widespread occurrence of flatter 

reefs could have serious implications for reef-associated biodiversity and reef-based 

environmental services. 

 

The non-linearity in the loss of architectural complexity suggests that different 

drivers operating at different times have influenced components of the reef community. 

Disturbances on reefs range in scale and intensity, from local tropical storms that can 

break and displace coral skeletons, to widespread events such as climate-induced 

bleaching and diseases that kill coral tissue without immediately compromising the reef 

structure (Pratchett et al. 2008). In the late 1970s, one key event is likely to have had a 

major role in the early, steep decline in Caribbean reef architecture.  White band disease 

killed ~90% of the shallow-water, structurally dominant acroporid corals, exposing their 

fragile branching skeletons to erosion and hurricanes that likely led to their collapse in 

subsequent years (Aronson & Precht 2001). However, declines also occurred at depths 

greater than those at which acroporids were dominant, suggesting that the systematic 

loss of Caribbean reef corals was more widespread than previously thought during the 

1970s and early 1980s.  

 

After 1985, the main driver(s) of declining architectural complexity appear to 

cease; by this time, acroporids had disappeared almost entirely from the Caribbean, and 

the sea urchin D. antillarum had experienced a region-wide disease-induced mass 

mortality in 1983/4 (Carpenter 1988). The loss of this important source of bioerosion 

may have slowed the decline following the first phase of reef flattening. This 

intermediate stable period of architectural complexity in the region persisted in the face 

of several disturbance events including the first large-scale bleaching events and several 

major hurricanes (Gardner et al. 2005; McWilliams et al. 2005).  

 

Around 1998, Caribbean reefs were tipped into a new phase of structural 

decline, following the most intense and widespread coral bleaching event to date 

(McWilliams et al. 2005). The coral mortality and reductions in growth rates that 

typically follow such bleaching events are likely to have precipitated the resumption of 

loss of architectural complexity. The low levels of coral cover, and presumably reef 

accretion, at this time (Gardner et al. 2003) may also have increased rates of erosion of 

underlying geological structures that were no longer shielded by actively growing hard 
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corals. Since 1998, further mass bleaching events have occurred regularly (McWilliams 

et al. 2005), likely contributing to the continued decline in reef complexity. 

 

All of the major events that are likely to have impacted reef complexity have 

occurred against a backdrop of changes not only in coral abundance but also in 

community composition. Following the disappearance of acroporids, massive species 

with slower growth rates, such as Montastrea spp, remained as the primary reef 

framework builders, and weedy corals, such as Porites spp and Agaricia spp, that form 

rapidly growing, small colonies that are short lived and quickly replaced, started to 

increase in abundance (Green et al. 2008). The shift from major reef-building species to 

weedy species that contribute less to maintenance of the reef framework, combined with 

increases in macroalgae (Côté et al. 2006) which compete for space with coral recruits 

(Mumby et al. 2007), likely reduced the rates of coral accretion on Caribbean reefs. 

 

The loss of reef architecture is likely to have profound ecological, social and 

economic impacts. A growing body of evidence indicates severe repercussions for 

biodiversity of the loss of architectural complexity. On Indo-Pacific reefs, major 

changes in fish community composition have resulted from the long-term loss of 

structure following coral bleaching events (Pratchett et al. 2008 and references therein). 

The effects of bleaching are first manifest in obligate coral-dwelling species, followed 

by impacts on other small-bodied fishes (both small adults and juveniles of larger 

species) when the physical matrix of the reef collapses(Pratchett et al. 2008). In the 

Caribbean, the greatest impacts on biodiversity are expected to occur only with the 

breakdown of the reef matrix because no fish species feed exclusively on live coral, 

although many reef-associated species depend highly on rugose substrata to feed, recruit 

and hide (Gratwicke & Speight 2005). In this context, declining reef complexity may 

explain the onset of a decline in Caribbean reef fishes that has occurred since ~1996 

(Paddack et al. 2009). Given that the loss of reef architecture began much earlier: our 

analysis supports the notion of a degradation debt for Caribbean reef fishes. Reduced 

recruitment resulting from a lack of settlement sites and refuges for species with 

commercial importance, such as lobsters and large fishes (Graham et al. 2007; Wynne 

& Côté 2007), may compromise the long-term sustainability of fisheries and fishing 

communities. Collapsing reef structures may also lead to the loss of important 

environmental services such as coastal protection. Simulation models predict that a 

reduction in reef surface roughness of ~50% could produce a doubling of the wave 



18 
 

energy reaching the shores behind those reefs (Sheppard et al. 2005). The vulnerability 

of coastal human communities in the Caribbean to projected increases in the intensity of 

Atlantic Ocean hurricanes and sea levels (Hopkinson et al. 2008) will therefore likely be 

compounded by the reduced wave dissipation function of architecturally simpler reefs. 

 

Reversing declines in reef architecture will be a major challenge for scientists 

and policy-makers concerned with maintaining reef ecosystems and the security and 

well-being of Caribbean coastal communities. Although recent evidence suggests 

increases in coral cover on some Caribbean reefs (e.g. Cho & Woodley 2000; Idjadi et 

al. 2006), the effect of coral recovery on architectural complexity is unknown. If weedy 

corals dominate this recovery in the long-term, future reef complexity is unlikely to 

mirror any improvement in coral condition. To regain the levels of architectural 

complexity that were prevalent prior to 1980, the recovery of large branching corals 

(i.e., Acropora spp.) and the maintenance of healthy populations of massive robust 

species (e.g., Montastrea spp.) are essential within the region. Not meeting these 

challenges will most probably result in a continued flattening of reefs throughout the 

region and seriously compromised biodiversity and environmental services. 
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Chapter 2 

 

Region-wide temporal and spatial variation in Caribbean 

reef architecture: is coral cover the whole story? 

 

 

 

Abstract 

The complexity of coral reefs is largely generated by reef-building corals, yet the effects 

of current regional-scale declines in coral cover on habitat complexity are poorly 

understood. Here we explore temporal and spatial covariation between coral cover and 

reef architectural complexity using a Caribbean-wide dataset of temporally-replicated 

estimates spanning four decades. Although coral skeletons can remain after coral 

mortality, the loss of coral cover is directly followed by loss of complexity with little 

time-lag,  However, there is little correspondence between the overall rates of change in 

coral cover and reef architecture, probably due to temporal and spatial variation in coral 

community composition. Across the Caribbean, sites with greater coral cover tend to 

also be more complex but the variance in architectural complexity also increases with 

increasing coral cover. Reef architectural complexity is therefore not a direct function of 

coral cover, but both are key attributes of coral reef health that need to be considered 

separately in reef ecology and management. 
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Introduction 

 

In some ecosystems, complex structural or functional attributes can be provided by a 

single taxon. Consequently, these foundation species can provide essential habitat for a 

wide variety of other species and underpin fundamental ecosystem processes such as 

productivity and nutrient cycling (Bruno & Bertness 2001; Ellison et al. 2005). In 

tropical shallow waters, hard corals increase the architectural heterogeneity of the 

seascape considerably, providing suitable habitat and microclimatic conditions for a 

myriad of species and contributing substantially to ecosystem dynamics (Hatcher 1997). 

Loss of hard corals on reefs is therefore likely to have severe repercussions for 

associated biodiversity, ecosystem structure, function and stability. 

 

Hard corals are increasingly threatened worldwide by direct and indirect effects 

of human activities (Pandolfi et al. 2003; Carpenter et al. 2008; Mora 2008).  As result, 

live coral cover has decreased rapidly on tropical reefs throughout the world (Gardner et 

al. 2003; Bruno & Selig 2007), but the effects of changing coral cover on habitat 

complexity are not yet clear. At large scales, direct relationships between changing coral 

cover and reef architecture have been suggested based on the aftermath of widespread 

coral mortality following mass bleaching events on some Indo-Pacific reefs (Wilson et 

al. 2006; Pratchett et al. 2008). Declines in architectural complexity appeared to lag 

bleaching-induced coral mortality by more than five years in ‘before-and-after’ 

comparisons (Graham et al. 2007; 2008).  In contrast, for the Caribbean, turning points 

in the regional trajectory of declining architectural complexity coincide closely with the 

loss of structurally complex Acropora corals and El Niño Southern Oscillation-induced 

coral mortality, and there is little evidence of a region-wide lag in loss of habitat 

complexity following declines in coral cover (Aronson & Precht 2006; Chapter 1) 

Consequently, the exact nature of the relationship between coral cover and reef 

architecture, including the generality of a 5-year lagged response, has yet to be 

established. 

 

Here we use a Caribbean-wide dataset of temporally replicated coral cover and 

reef architecture estimates that spans four decades to explore the regional covariance in 

coral cover and reef architectural complexity. First, we test whether the change in 

architectural complexity lags behind the change in live coral cover. Second, we test for 
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a dose-response coral cover-architectural complexity relationship by quantifying 

changes in both coral cover and architectural complexity on a year-by-year basis. 

Finally, we test for a positive relationship between the spatial variance in live coral 

cover and reef architecture across the region.  

 

 

Material and methods 

 

Data collation 

 

We collated all available site-specific data on the percentage cover of live hard coral 

and associated architectural complexity for reefs within the wider Caribbean Basin. We 

focused on studies that used the rugosity index to describe reef architecture, as this is 

the most commonly used method for measuring reef complexity in the region (Chapter 

1). Reef rugosity is less frequently measured than coral cover, thus we first searched for 

studies reporting rugosity of specific sites, and then from this dataset we selected all 

studies that also reported information on coral cover. 

 

The database was compiled by searching online ISI Web of Science, Google 

Scholar and other relevant databases (e.g. Reefbase) for peer-reviewed and grey 

literature. We searched for pertinent papers in all issues of the journals Coral Reefs, 

Bulletin of Marine Sciences, Atoll Research Bulletin, Caribbean Journal of Science and 

in all Proceedings of the International Coral Reef Symposium.  Additionally, we 

directly contacted scientists and site managers asking for any available data pertaining 

to their study sites. The search resulted in a total of 81 studies that includes 312 records 

from 139 reefs surveyed between 1977 and 2008 across the Caribbean. From this larger 

database, we identified 24 studies with repeated measures (i.e. data collected over more 

than one year; figure 1).  This subset included 96 records reporting information for 37 

reef sites between 1978 and 2004 (table A2.1 in appendix 2), and ranging in duration 

from two to 12 years (mean = 5.01 ± 3.41 SD years). 
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Figure 1. Regional distribution of reef sites with both live coral cover and rugosity data replicated over 

more than one year. 

 

 

Statistical analyses 

 

We tested for a delayed response in architectural complexity to changing coral cover 

using region-wide annual estimates of coral cover and architectural complexity. We first 

used all available information (repeated and unrepeated measures) to calculate regional 

annual averaged estimates of live coral cover and reef rugosity. We then calculated the 

correlation coefficient for the coral cover – architectural complexity relationship for 

lags of up to 15 years. This technique provides a broad view of the temporal 

correlations between coral cover and architectural complexity; however, each iteration 

includes data from different sites and thus spatial variation in either parameter could 

influence the strength of the correlation. We therefore also restricted the analyses to the 

repeated-measures dataset, in which both coral cover and architectural complexity 

measures were available for more than one year. In this analysis, architectural 

complexity on each site was lagged iteratively by one year, up to a maximum of six 

years (as sample size decreases rapidly with this technique). For each time lag, all sites 

for which estimates of both coral cover and architectural complexity were available 

were used to calculate a coefficient of correlation between coral cover and reef 

architecture. In both analyses, the largest significant coefficient of correlation is 

considered as the best estimate of the number of years required to detect the effects of 

declining coral cover on reef architecture. False discovery rates were used to correct for 

multiple tests (Benjamini & Hochberg 1995). 
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To investigate temporal variation in rates of change on coral cover and reef 

architecture, we examined how annual region-wide changes in coral cover were related 

to the corresponding annual change in architectural complexity between 1974 and 2004. 

We used a weighted meta-analytic approach to estimate annual rates of change in live 

coral cover and reef architecture in the temporally replicated studies (Rosenberg et al. 

2000). The standardised effect size was the annual rate of change in coral cover and reef 

rugosity for each study, calculated as: 

annual rate of change = (log End - log Start) / d 

where End and Start represent the final and initial coral cover or reef rugosity of the 

time series, respectively, and d is the number of years elapsed between the two 

estimates.  This metric has been previously used in studies of ecological change on coral 

reefs (Côté et al. 2005; Paddack et al. 2009) and its properties as an effect size have 

been thoroughly investigated (Côté et al. 2005).  We weighted effect sizes using the 

natural logarithm of the total transect length surveyed (see also Mosqueira et al. 2000; 

Côté et al. 2001; Molloy et al. 2008). Statistically significant effect sizes were identified 

by 95% bias-corrected bootstrapped confidence intervals (generated from 9999 

iterations) that did not encompass zero. The QM statistic was used to test for differences 

in rates of change in live coral cover and architectural complexity. A significant QM 

implies that there are differences in mean effect sizes among groups, but a non-

significant QM does not preclude individual groups showing significant effect sizes (i.e. 

individual CIs that do not overlap zero). The meta-analyses were conducted in MetaWin 

Version 2.0 (Rosenberg et al. 2000). Annual rates of change and confidence intervals 

are presented back-transformed to percentages to facilitate their interpretation.  

 

Finally, we explored the spatial relationship between live coral cover and reef 

architecture at the regional scale using (i) all available data (i.e. repeated and unrepeated 

measures) and (ii) a smaller dataset of unrepeated measures (which avoids including 

more than one estimate per site). As both datasets provide very similar results (see 

figure 4 and figure A2.1 in appendix 2), we only present findings for all the available 

data because of the wider spatial and temporal representation. Because preliminary 

analysis demonstrated that the variance in reef rugosity was unequal along the gradient 

of coral cover, we used quantile regression to obtain a detailed picture of the 

relationship between coral cover and architectural complexity (Koenker & Bassett 

1978). Quantile regression differs from ordinary least squares regression in that it 

minimizes the sum of absolute values of residual errors around a specified quantile of 
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the dependent variable, rather than just changes in the mean (Cade & Noon 2003). 

Exploring the full range of quantile responses provides a more complete view of the 

relationship between variables than those captured by individual (median) quantile 

regression functions (Knight & Ackerly 2002), hence we estimated the complete series 

of quantile regression functions from the 1
st
 to the 99

th
 quantile for the regional 

relationship between coral cover and reef architecture. Analyses were carried out in R 

and using the Quantreg package (R 2009). 

 

 

Results 

 

What is the time-lag between coral cover loss and reef structural decline? 

 

At both region-wide and site scales, there was little evidence for a time-lag of more than 

two years between the onset of a change in coral cover and a subsequent change in 

architectural complexity (figure 2). In both analyses, the strongest correlation between 

architectural complexity and coral cover was found when the data were unlagged. After 

the correction for multiple tests, the only statistically significant (α = 0.05) lagged-

relationship was the two-year lag in the regional analysis (tables 1 and 2). 

 

 

 

Figure 2. Changes in Pearson correlation coefficients for (a) lagged relationships between regional 

average live coral cover and reef rugosity from 1977 to 2008 and (b) lagged relationships between live 

coral cover and reef rugosity on the same sites, in which each time series was lagged by one additional 

year in each iteration. Significant correlations, corrected for false discovery rates, are indicated with filled 

circles; the grey triangles in (b) indicate the number of records used in each iteration.
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Table 1. Unadjusted and corrected (using false discovery rates) P values of the correlations between the 

regional average live coral cover and reef rugosity from 1978 to 2008, with time-lags ranging from 0 to 

15 years. 

 

  P-value Corrected P-value 

no-lag 0.001 0.011 

1 year lag 0.070 0.224 

2 year lag 0.002 0.019 

3 year lag 0.118 0.275 

4 year lag 0.139 0.277 

5 year lag 0.302 0.536 

6 year lag 0.869 0.927 

7 year lag 0.473 0.624 

8 year lag 0.411 0.598 

9 year lag 0.060 0.224 

10 year lag 0.345 0.552 

11 year lag 0.995 0.995 

12 year lag 0.729 0.833 

13 year lag 0.507 0.624 

14 year lag 0.120 0.275 

15 year lag 0.047 0.224 

 

 

Table 2. Unadjusted and corrected (using false discovery rates) P values of regional correlation between 

site-lagged live coral cover and reef rugosity, withtime-lags ranging from 0 to 6 years. 

 

 P-value Corrected P-value 

no-lag 0.004 0.029 

1 year lag 0.068 0.237 

2 year lag 0.254 0.592 

3 year lag 0.441 0.772 

4 year lag 0.842 0.932 

5 year lag 0.830 0.932 

6 year lag 0.932 0.932 

 

 

 

 

Are the rates of change of coral cover and reef architecture similar? 

 

There is no consistent relationship between the annual rates of change in coral cover and 

annual changes in reef rugosity across the 37 sites with repeated measures (figure 3), 

and the overall meta-analysis showed that both live coral cover and reef architecture 

have declined significantly (i.e. the confidence intervals do not encompass zero) but at 
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different overall rates (QM = 3.68, P = 0.054). The annual rate of change in coral cover 

has been -8.6% (95% CI = -11.9% to -5.2%) while the annual change in rugosity has 

been -4.0% (95% CI = -7.8% to -1.3%).  

 

 

 

 

Figure 3. The absence of a relationship between annual rates of change in live coral cover and 

architectural complexity for 37 reef sites across the Caribbean region (R
2
 = 0.07, P = 0.12). 

 

 

Is reef architecture a function of coral cover? 

 

Architectural complexity varies more widely with increasing hard coral cover, across 

139 reef sites and 31 years throughout the Caribbean (figure 4a). For example, the 

rugosity indices of reefs with 10% coral cover vary from 1.05 (i.e. relatively flat) to 

~2.0 (i.e. moderately complex reefs) while, at 40% coral cover, rugosity ranges from 

1.05 to 3.5 (i.e. highly complex reefs; figure 3a).  Quantile regression analyses indicated 

consistently positive relationships between coral cover and reef architecture, with 

steeper relationships for higher quantiles of architectural complexity (figure 4b). In the 

lower quantiles, rugosity is low across a wide range of coral cover estimates, indicating 

that reefs with relatively high coral cover may still be quite flat (figure 4b). By contrast, 

the steepest coral cover-architectural complexity relationships are associated with high 

rugosity even at the lowest levels of coral cover (figure 4b, c), with slopes of the highest 

quantiles lying far above the mean and 90% CI of the overall relationship (figure 4 a, b). 

Thus, some reefs with lower coral cover may still have some level of architectural 

complexity.
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Figure 4. (a) Relationship between coral cover and reef rugosity on 139 reef sites (323 surveys from 

1977 to 2008) throughout the Caribbean. The decade in which each study was conducted is indicated 

(circles= 1970s, triangles= 1980s, squares= 1990s, diamonds=2000s). Nine estimated quantile regression 

lines (0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 quantile) are superimposed on the scatterplot; the 

median (0.5 quantile) is indicated with a black dashed line and the others are indicated with grey dotted 

lines. The least square estimate of the mean function is indicated by the black solid line (R
2
 = 0.11, Slope 

= 0.009, P<0.001). The (b) slopes and (c) intercepts of the quantile regressions are shown from the 0.01 

quantile to the 0.99 quantile, with 90% confidence bands (grey shading), and the mean (solid line) ± 90% 

confidence intervals (dashed lines) from the ordinary least squares regression.   
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Discussion  

 

The decline of coral cover represents both an absolute loss and a reduction in the quality 

of reef habitat. Although coral skeletons can persist after coral mortality, our findings 

show that the region-wide loss in Caribbean coral cover has been rapidly followed by 

the loss of architectural complexity with little evidence of a lag greater than two years. 

However, the inconsistent relationship between the annual rates of change in coral cover 

and in architectural complexity suggests a temporally complex and non-linear 

relationship between these components of reef function. In addition, the increase in 

variance in local architectural complexity with increasing coral cover suggests that 

architectural complexity is not a simple function of coral cover. 

 

  Time-lags may be expected when the drivers of coral mortality and those 

affecting structural complexity are separate and occur more or less sequentially. 

Examples of the former include disease and bleaching events, which can produce 

widespread coral mortality without immediately modifying the reef framework (beyond 

halting carbonate accretion; Glynn 1997; Aronson & Precht 2001; Sheppard et al. 

2002); examples of the latter include persistent direct human impacts and recurrent 

physical disturbances such as hurricanes which degrade underlying reef structures 

(Hughes 1994; Hughes & Connell 1999; Gardner et al. 2005). In the Caribbean, drivers 

of both coral mortality and erosion have operated as virtually chronic pressures 

throughout the entire region in recent decades (Pandolfi et al. 2003; Gardner et al. 2005; 

Aronson & Precht 2006; Mora 2008), which may be why no evidence of a time-lag is 

apparent in our regional analysis.    

 

The lack of a clear response of architectural complexity to changes in coral 

cover may also be partly a consequence of the relative susceptibility of different corals 

to erosion following mortality. In the Caribbean, the largest changes in coral cover 

occurred as a result of the disease-induced die-off of acroporids in the late 1970s and 

early 1980s (Aronson & Precht 2006; Schutte et al. 2010). The erect branching 

structures of Acropora corals contributed disproportionately to reef complexity before 

that time. Although the robust skeleton of A. palmata may have persisted longer than 

the fragile framework of A. cervicornis in some locations, the regional trends of 

declining coral cover and architectural complexity suggest that most dead Acropora 

were relatively rapidly broken down and eroded following mortality (Aronson & Precht 
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2006; Chapter 1).  In our study, similarly rapid annual rates of change of both coral 

cover and architectural complexity were apparent during the Acropora die-off period 

(1978-1985; coral cover = -23.19, bias-corrected 95% CI = -2.73 to -1.49; rugosity = -

27.03, bias-corrected 95% CI = -14.64 to -9.57), suggesting a rapid response of 

architectural complexity to coral cover loss during this period. However, very few 

studies are available for these years (n = 3), and therefore the lack of a delayed decline 

in reef complexity reported here refers primarily to the years since the demise of 

Acropora, in which Caribbean reefs have been dominated by a combination of massive 

and weedy corals. 

 

The absence of a dose-response in the coral cover – architectural complexity 

relationship (figure 3) suggests temporal variation in the rates of change of each 

attribute. Coral communities have continuously changed since the mass mortality of 

acroporids. Important reef-building corals such as Montastrea have been declining 

throughout the region and stress-resistant coral species that contribute relatively little to 

the reef framework and architectural complexity have increasingly dominated 

Caribbean reefs (Hughes 1994; Edmunds & Carpenter 2001; Aronson et al. 2002; Green 

et al. 2008). Thus changes in coral composition leading to ‘flatter’ reef communities, 

together with possible changes in carbonate budgets as a consequence of higher 

amounts of bare substrata (Eakin 1996; Glynn 1997), can occur in the absence of 

declines in coral cover. Previous studies do indeed suggest that rates of loss of 

Caribbean reef architecture have remained high in recent years (Chapter 1), while coral 

loss has almost ceased (Schutte et al. 2010). 

 

The rapid increase in architectural complexity with increasing coral cover 

(figure 4), despite the absence of a dose-response between these two variables (figure 3) 

suggests extensive fine-scale spatial variation in coral community structure. Some 

spatial variation may be attributable to the underlying reef framework and other 

organisms, such as sponges and soft corals (e.g. Diaz & Rutzler 2001; Halford et al. 

2004). However, it is likely that much of the variation in reef structural complexity at 

any given time reflects variation in coral species assemblages (Chapter 3). For example, 

reefs dominated by tall, branched species such as Acropora spp would have higher 

levels of architectural complexity than reefs with similar coral cover but dominated by 

smaller, flatter corals such as Agaricia spp.  Coral identity may therefore be an 

important mediator of reef complexity and, consequently, the impact of coral loss on 
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reef architecture will differ among sites, with sites dominated by architecturally-

complex reef-building corals bearing the greatest losses in rugosity following coral 

mortality. Unfortunately, coral species composition was seldom reported in the studies 

included here, hence we could not explore the effect of coral identity on patterns of 

architectural complexity change. 

 

The near-immediate loss of architectural complexity following declines in coral 

cover in the Caribbean differs from the pattern reported in the Indo-Pacific region, 

where a lagged response in the aftermath of widespread coral mortality following mass 

bleaching events was apparent (Wilson et al. 2006; Graham et al. 2007; 2008; Pratchett 

et al. 2008). However, these studies encompassed different temporal scales; our 

Caribbean analyses explore year-by-year changes throughout a multidecadal period of 

continual coral and reef architecture loss, whereas the Indo-Pacific studies spanned 

either side of a discrete catastrophic coral mortality event. In addition, there are 

important historical and ecological differences between these two regions that are likely 

to influence these processes, with Caribbean reefs typically having fewer coral species, 

less ecological redundancy and frequent hurricane impacts (Bellwood et al. 2004; 

Briggs 2005). To determine whether our findings can be broadly generalised would 

require longitudinal studies of Indo-Pacific reefs.  

 

Architectural complexity is clearly not a simple function of coral cover. 

Therefore, to restore the ecosystem services that Caribbean corals provide to other 

species, including humans, these two critical reef attributes may require different types 

of management and at different spatial scales. Much of coral reef conservation at 

present focuses on ecological management and control of the cover of coral and algae 

(Gardner et al. 2003; Côté et al. 2006; Bruno & Selig 2007; Mumby et al. 2007; Bruno 

et al. 2009). However, restoring coral cover on reefs may not necessarily provide the 

architectural complexity that underpins important coral reef ecosystem services relating 

to nutrient recycling, dissipation of wave energy and fish production (Szmant 1997; 

Lugo-Fernandez et al. 1998; Sheppard et al. 2005; Cinner et al. 2009). Consequently, 

we also need to understand the biotic and abiotic drivers of architectural complexity at a 

range of spatial scales.  
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Chapter 3 

 

Drivers of region-wide declines in architectural 

complexity on Caribbean reefs 

 

 

 

Abstract 

Severe declines in the cover of live hard coral on reefs have been reported worldwide 

and, in the Caribbean region, the architectural complexity of coral reefs has also 

declined markedly.  While the drivers of coral cover loss are relatively well understood, 

little is known about the drivers of regional-scale declines in architectural complexity. 

We use a dataset of 49 time series reporting reef architectural complexity to explore the 

effect of hurricanes, coral bleaching and fisheries on the Caribbean-wide annual rates of 

change in reef complexity. Hurricane impacts greatly influence reef complexity, with 

the most rapid rates of decline in complexity occurring at sites impacted during their 

survey period, and with lower rates of loss occurring at unimpacted sites. Reef 

architectural complexity did not change significantly following mass bleaching events 

or thermal anomalies. Interestingly, the rates of change in architectural complexity were 

similar in and out of marine protected areas (MPAs); however, significant declines in 

complexity were observed inside but not outside of MPAs, possibly because reductions 

in fishing can lead to increased bioerosion by herbivores within MPAs. Our findings 

suggest that the major drivers of coral mortality, such as coral bleaching, do not 

immediately influence reef complexity. Instead, direct physical impacts and reef 

bioerosion appear to be important drivers of the widespread loss of architecturally 

complex reefs in the Caribbean. 
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Introduction 

 

Natural systems are changing rapidly (Balmford et al. 2003), as a consequence of 

human perturbations of the natural environment and global biochemical cycles 

(Vitousek et al. 1997; Rockstrom et al. 2009). Coral reefs provide a clear example of 

how anthropogenic activities have, at different scales, led to the degradation of natural 

habitats. At local scales, a wide range of human stressors such as nutrient enrichment 

and overfishing (Hughes 1994; Roberts 1995; Bryant et al. 1998; Szmant 2002) can 

modify natural disturbance regimes of coral reefs by transforming pulse events into 

persistent disturbance or even chronic stress (Nyström  et al. 2000). At the global scale, 

anthropogenic alteration of the climate causing rising sea temperatures has increased 

bleaching-induced mortality of reef-building corals (Hoegh-Guldberg 1999). Under 

these new, more stressful conditions, increases in the intensity of natural disturbances 

such as hurricanes or diseases (Rosenberg & Loya 2004; Webster et al. 2005; Bruno et 

al. 2007), previously natural but less-frequent parts of tropical reef dynamics (Connell 

1978), may become an obstacle to reef recovery and development.  

 

Caribbean reefs are among the most heavily impacted of marine ecosystems 

(Halpern et al. 2008). Over the last four decades, the region has seen declines in coral 

cover of ~80% (Gardner et al. 2003) and a severe reduction in the proportion of highly 

complex reefs (Chapter 1). Architectural complexity is strongly related to the abundance 

of reef-building corals (Chapter 3). However, the poor match between annual rates of 

change in coral cover and architectural complexity (Chapter 2) suggests that the drivers 

of loss of coral cover and architectural complexity may differ. A decoupling of rates of 

change of coral cover and reef complexity is likely to have an impact on the response of 

reef biodiversity and environmental services to habitat degradation. For instance, while 

coral cover loss has almost ceased in recent years (Schutte et al. 2010), declines in fish 

abundance began to be evident in the late 1990s (Paddack et al. 2009), likely following 

ongoing declines in reef complexity (Chapter 1). 

 

Given the extreme importance of coral reefs for biodiversity, human livelihoods 

and key environmental services such as coastal protection, there is an urgent need to 

discriminate among the effects of different drivers of coral degradation in order to 

identify effective conservation strategies for restoring reef complexity (Pandolfi et al. 

2005; Mora 2008; Chapter 2). The drivers of coral loss in the Caribbean are relatively 
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well understood: in the late 1970s the widespread disease-induced die-off of complex 

acroporid corals triggered extensive coral loss (Aronson & Precht 2006; Schutte et al. 

2010), and it is likely that a combination of loss of herbivory through overfishing and 

diseases (Carpenter 1988; Pandolfi et al. 2005), increased frequency and severity of 

mass bleaching events (McWilliams et al. 2005; Eakin et al. in press), and increasing 

coastal development (Mora 2008) exacerbated coral mortality in subsequent years. 

Hurricanes have played a relatively small role in the regional loss of coral cover, 

although, they can have considerable localized impacts (Gardner et al. 2005). In 

contrast to our sophisticated understanding of the drivers of changing coral cover, little 

is known about the drivers of the regional-scale changes in architectural complexity in 

Caribbean reefs or elsewhere.  

 

Here we use a unique Caribbean-wide dataset of time series of reef architectural 

complexity to explore the influence of hurricanes, mass bleaching events and fishing 

(by comparing protected to unprotected reefs) on the rate of change in architectural 

complexity. We hope to improve understanding of whether the major drivers of coral 

cover loss have also impacted the structural integrity of Caribbean reefs, and thus to 

provide information of importance for developing strategies for reef recovery and 

conservation. 

 

 

Material and methods 

 

Data collation 

 

We collated data from replicated studies (i.e. data collected over more than one year) 

that reported architectural complexity for reefs sites within the wider Caribbean. We 

used the rugosity index to describe reef architecture, as this is the most commonly used 

method for measuring reef complexity in the region (Chapter 1). We used online 

literature search tools to browse in the most relevant journals for Caribbean reef studies, 

and contacted scientists and reef managers directly to obtain the required information 

(details in Chapter 1). This resulted in a total of 27 studies with temporal replication 

between 1978 and 2008 (figure 1), reporting information for 49 reef sites and ranging in 

duration from two to 17 years (mean = 6.29 ± 4.23 SD years; table 1). 
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Figure 1. Regional distribution of reef sites from which surveys of architectural complexity, replicated 

over more than one year, were collated. 

 

 

 

 

Table1. Details of the studies from which data were collated to assess the effects of bleaching, hurricanes 

and protection from fishing on annual rates of change in reef architectural complexity. 

 

Data source Country / Island Years Number 

of sites
a
 

Mean # 

replicates 

Transect 

length 

Alvarez-Filip
1
 Mexico 2006 - 2008 1 41 3 

Baron et al. 2004 Florida (US) 1983 - 1991 1 19 8 

Bythell et al. 2000
2
 USVI 1990 - 2000 3 4 20 

Caricomp
3
 16 reef sites 1993 – 1996 17 5 10 

Clarke 1996 USVI 1979 - 1995 1 9 10 

Edmunds 2002
4
 USVI 1994 - 2007 2 3 10 

Jaap et al. 1991 Florida (US) 1989 - 1991 5 2 20 

McGrath et al. 2007 Bahamas 1995 - 2004 3 10 5 

NOAA
5
 Puerto Rico & USVI 2001 - 2007 9 47 6 

Rogers et al. 1982 USVI 1978 - 1979 1 3 10 

Rogers et al. 1991 USVI 1989 - 1990 1 5 20 

Steneck 1993 Jamaica & USVI  1982 - 1988 
5 

76 10 
 

a 
‘Sites’ represent an average of many data points (e.g. transects and, in some studies, locations). For 

transects reported separately for the same location but at different depths, each depth stratum (e.g. 5-10 m 

and 15-20 m) was considered as a separate site. 
1 
Unpublished data 

2 
Data complemented with previous reports 

3 
Caricomp data from 1993 to 1996, except when indicated, and include records for Bahamas, Barbados 

(1993-2006)
4
, Belize, Bermuda, Bonaire, Colombia, Cuba, Curacao, Dominican Republic (1996-2001)

4
, 

Jamaica, Mexico, Nicaragua, Puerto Rico, Saba, Trinidad & Tobago (1994-2000)
2
 and Venezuela.  

4 
Complemented with unpublished data provided by the corresponding authours. 

5
 Data obtained from the Caribbean Coral Reef Ecosystem Monitoring Project of the National Oceanic & 

Atmospheric Administration, Biogeography Team. Data accessed in Octuber 2008 

(http://ccma.nos.noaa.gov/ecosystems/coralreef/reef_fish.html) 

.  
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Drivers of change of reef architectural complexity 

 

Coral bleaching  

 

We tested for an effect of coral bleaching on regional reef architecture in two ways: 

temporally by focusing on years of mass bleaching and spatially by exploring the effect 

of local, small-scale temperature anomalies. We first assumed that in the seven years 

between 1978 and 2008 in which bleaching was widespread (sometimes referred to as 

‘‘mass bleaching events”: 1987, 1990, 1995, 1998, 1999, 2003 and 2005; McWilliams 

et al. 2005; Perry 2008; Eakin et al. in press), bleaching affected all sites in this study. 

For each mass bleaching event, we calculated the annual rate of change in rugosity from 

the year prior to the mass bleaching event to the last year of the time series or the year 

immediately before the next mass bleaching event, in order to account for the possible 

erosion of architectural complexity after coral mortality. The mass bleaching events of 

1998 and 1999 were classed together because they occurred in consecutive years and, 

for time series that spanned more than one bleaching event, each event was included 

separately in the analysis. In addition, to avoid confounding the effect of bleaching with 

the effect of physical damage on reef architecture, only data from reefs that were not 

impacted by a hurricane after a bleaching episode were included.  Some of the time 

series did not contain data spanning any of the years of mass bleaching events, and were 

therefore not included in these analyses. 

 

Secondly, although region-wide thermal anomalies have been linked to the 

geographic extent and intensity of bleaching across the Caribbean (McWilliams et al. 

2005; Perry 2008; Donner 2009), thermal stress does not usually occur homogeneously 

through the entire seascape (e.g. Selig et al. 2010; Eakin et al. in press). Consequently, 

we also explored the effect of variation in summer sea surface temperature (SST) 

anomalies on the annual rates of change in architectural complexity within individual 1° 

latitude by 1° longitude cells. We used historical SST data from the HadISST 1.1 

dataset (Hadley Centre, UK Meteorological Office) to calculate the average summer 

monthly (August, September and October) SST anomalies (relative to the means for 

these months for the baseline period of 1961-1990) for each year between 1989 and 

2006, for all cells within our dataset. These monthly anomalies were then averaged 

within each year, giving annual summer mean SST anomalies for each cell that 

contained information on reef rugosity in each specific year. The rates of change in reef 
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rugosity were then calculated for all consecutive years in each time series, then the 

average of all sites that contained information for specific pair of years was calculated 

and related to the average SST anomaly for all those sites in that pair of years.  

 

Hurricanes 

 

We classified whether sites were impacted by a hurricane using the method of Gardner 

et al. (2005). A hurricane was considered to have impacted a reef if its track passed 

within a given distance of the site, with its range of effect increasing with hurricane 

strength.  Thus, tropical storms or hurricanes of category 1 or 2 passing within 35 km of 

a site, category 3 hurricanes passing within 60 km, or category 4 or 5 hurricanes passing 

within 100 km of a given site were recorded as impacts. The hurricane history of each 

site was obtained from the web-based tool of the NOAA Coastal Services Center 

(http://csc.noaa.gov). 

 

We compared annual rates of change in architectural complexity at sites 

impacted and unimpacted by hurricanes.  In addition, because the time elapsed between 

hurricanes influences the magnitude of the loss of coral cover seen in response to 

hurricane impacts (Connell 1997; Gardner et al. 2005), we also compared the rates of 

complexity change between sites that had been impacted in the 10 years prior to the 

focal hurricane impact and sites that were not impacted. We therefore measured the 

effect of hurricanes at four categories of sites: (i) reef sites impacted 10 years before the 

onset of their study and during their survey period (before-during); (ii) sites impacted 

only during their survey period (during); (iii) sites impacted only within the 10 years 

before their survey period (before); and (iv) sites not impacted by hurricanes from 10 

years prior to the onset of their study to the end of their survey period (non-impacted). 

 

Marine Protected Areas 

 

We tested for effects of fishing on changes in reef architecture by determining whether 

sites were protected (i.e. within the boundaries of a Marine Protected Area [MPA], and 

hence not subject to fishing) or unprotected (i.e. subject to fishing) during their survey 

period.  Protection status was determined using the global database of Marine Protected 

Areas (Wood 2007).  Rates of change in rugosity were then compared between 

protected and unprotected sites. 
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Because the duration of protection has been shown to be important in 

determining MPA success in increasing fish diversity and density (Claudet et al. 2008; 

Molloy et al. 2009), both of which are important factors contributing to restoring habitat 

quality (Mumby & Steneck 2008; Mumby & Harborne 2010; Selig & Bruno 2010), we 

also calculated the number of years between the official designation of the MPA and the 

first survey for each site. We then correlated the age of reserves with their annual rates 

of change in architectural complexity. 

 

Meta-analysis 

 

To estimate annual rates of change in reef architecture we used a weighted meta-

analytic approach (Rosenberg et al. 2000). The standardised effect size was the annual 

rate of change (ARC) for each study, calculated as: 

ARC = (log End - log Start) / d 

where End and Start represents the final and initial reef rugosity of the time series, 

respectively, and d is the number of years elapsed between the two estimates.  This 

metric has been previously used in studies of ecological change on coral reefs (Côté et 

al. 2005; Côté et al. 2006; Paddack et al. 2009; Chapter 2), and its properties as an 

effect size have been thoroughly investigated (Côté et al. 2005).  In meta-analyses, 

effect sizes are often weighted by the inverse of the sample variance to incorporate a 

measure of the robustness of each effect size estimate (Rosenberg et al. 2000). 

However, survey area has been found to yield more biologically realistic weightings for 

coral reef benthic data (Côté et al. 2005). For this reason, we used the natural logarithm 

of the area surveyed (i.e. transect length multiplied by the number of replicate transects) 

as a weighting factor in our analyses (see also Mosqueira et al. 2000; Côté et al. 2001). 

Statistically significant effect sizes were identified from 95% bias-corrected 

bootstrapped confidence intervals (generated from 9999 iterations) which did not 

encompass zero. The QM statistic was used to test for differences in rates of change in 

architectural complexity in the different treatments. A significant QM implies that there 

are differences in mean effect sizes among groups, thus a non-significant QM does not 

preclude individual groups showing significant effect sizes (i.e. individual confidence 

intervals do not overlap zero). All meta-analyses were conducted in MetaWin Version 

2.0 (Rosenberg et al. 2000). Annual rates of change and confidence intervals are 

presented back-transformed to percentages to facilitate their interpretation.  
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Results 

 

Coral bleaching  

 

A total of 31 studies spanned one or more bleaching events; eleven encompassed one, 

14 encompassed two and six encompassed three mass bleaching events. Eighteen of 

these 57 separate bleaching events occurred in locations that simultaneously 

experienced a hurricane impact and therefore were removed from the analysis. Thus, in 

total, 39 separate bleaching events, with a mean duration of 3.1 (± 1.4 SD) years, were 

used to explore the link between coral bleaching and subsequent changes in 

architectural complexity.  

 

Overall, architectural complexity did not decline significantly after mass 

bleaching events, with an annual rate of change of -0.87 % (CI = -2.47 % to 0.46 %). 

There were no statistically significant differences in the rates of architectural 

complexity change among the seven mass bleaching events (QM = 5.81, P = 0.22; figure 

2a).  The only significant decline in architectural complexity occurred just after the 

mass bleaching event of 1995, although the very limited number of studies makes this 

conclusion tentative (figure 2a).  

 

Rates of change in architectural complexity were also not related to SST 

anomalies (R
2
 = 0.002, P = 0.88; figure 2b), and the seven years referred to as mass 

bleaching events in the literature all had positive SST anomalies but similar rates of 

change in architectural complexity as the other years (figure 2b).  

 

Hurricanes 

 

Annual rates of change in architectural complexity varied significantly between reefs 

that had been impacted either before, during, before and during or not impacted by a 

hurricane (QM = 14.31, P = 0.04). The most rapid rates of decline in rugosity occurred at 

sites impacted during their survey period only, while considerably lower rates of decline 

were recorded at sites that were impacted both before and during their survey period 

(figure 3). Architectural complexity on sites that were not impacted by a hurricane 

during their survey period (i.e. the ‘before’ and ‘non-impacted’ groups) did not decline 

significantly (figure 3). 
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Figure 2. Effect of widespread bleaching events and SST anomalies on rates of architectural complexity 

change in the Caribbean. (a) Annual percentage change in reef rugosity on reef sites after widespread 

bleaching events. The total number of sites is given in parentheses (1998-1999 is excluded as only one 

bleaching event was available) and bars show 95% bias-corrected bootstrapped confidence intervals (b) 

Average (± SE) change in rugosity on reef sites between pairs of consecutive years and average (± SE) 

summer SST anomaly in the first year of each pair (black = years of mass bleaching events, grey = one 

year after mass bleaching events, white = all other years). Points are labelled by year, from 1989 to 2006. 

 

Fishing (Marine Protected Areas) 

 

Rates of change of architectural complexity did not differ significantly between sites 

that were fished and sites within MPAs (QM = 0.04, P = 0.92), although reef rugosity 

did decline significantly inside but not outwith MPAs (figure 4a). Annual rates of 

change in reef architectural complexity within MPAs did not vary with the duration of 

site protection (R
2
 = 0.002, P = 0.848; figure 4b). 
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Figure 3. Effect of hurricane impacts on rates of architectural complexity change in the Caribbean.  

Annual percentage change in reef rugosity for reef sites impacted 10 years before the onset of their study 

and during their survey period (before-during); only during their survey period (during); only 10 years 

before their survey period (before); and not impacted by hurricanes from 10 years prior the onset of their 

study to the end of their survey period (non-impacted). Numbers in parentheses indicate the number of 

sites included in the analysis for each group. Bars show the 95% bias-corrected bootstrapped confidence 

intervals. 

 

 

 

Discussion 

 

This study describes the effect off three major disturbances of coral reefs degradation on 

the structural integrity of reefs throughout the Caribbean. While hurricanes and fishing 

appear to have significantly influenced the rate of change of region-wide reef 

complexity, coral bleaching appears to have had little influence on architectural 

complexity loss. Our results therefore suggest that at least one of the major drivers of 

coral mortality, i.e. bleaching (Aronson & Precht 2006; Schutte et al. 2010), may not 

have an immediate influence on reef complexity.  Instead, direct physical impacts and 

reef bioerosion may be the most important drivers of the widespread loss of 

architecturally complex reefs in the Caribbean. 
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Figure 4. Effect of Marine Protected Areas (MPA) on rates of change in reef architectural complexity in 

the Caribbean. (a) Annual percentage change in reef rugosity for reefs inside and outwith MPAs. 

Numbers in parentheses indicate the number of sites included in the analysis for each group. Bars show 

the 95% bias-corrected bootstrapped confidence intervals. (b) Relationship between annual rate of change 

in complexity and years since protection for 24 sites inside MPAs.  

 

 

 

Physical disturbances such as hurricanes and direct damage due to destructive 

human practices are likely to simultaneously affect the tissue and skeletons of reef 

corals, thus producing rapid declines in architectural complexity following coral 

mortality (e.g. Woodley et al. 1981; Alvarez-Filip & Gil 2006).  The magnitude of 

damage may vary depending on the composition of coral assemblages (e.g. branching 

corals are more susceptible to breakage) and intensity of disturbances (Hughes & 

Connell 1999).  The strong influence of hurricane impacts on region-wide reef 

architectural complexity reported here contrasts with previous studies which have 

shown that hurricanes are not a major driver of recent regional declines in coral cover in 

the Caribbean (Gardner et al. 2005),likely because biological drivers are thought to be 
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more important than physical disturbances in impacting the live tissue of corals as they 

can generally occur at larger spatial scales and/or can spread rapidly (Aronson & Precht 

2006; Hoegh-Guldberg et al. 2007; Schutte et al. 2010). Interestingly, declines in 

architectural complexity following hurricane impacts were less severe on reefs that had 

been impacted by another hurricane during the previous 10 years. This may indicate 

reductions in the abundance of coral colonies that are particularly susceptible to 

physical disturbances (e.g., branching species). Indeed, branching species can dominate 

reefs that have not experienced a hurricane for several years (Woodley et al. 1981; 

Rogers 1993). Hurricane-impacted reefs on which these species are less abundant may 

thus provide less scope for subsequent hurricanes to cause further damage to reef 

architecture (Woodley et al. 1981; Alvarez-Filip et al. 2009). However, consecutive 

hurricanes impacts are likely to maintain coral reefs in less structurally complex states, 

an effect that is likely to be compounded by the increase in activity of Atlantic Ocean 

hurricanes (Saunders & Lea 2008). 

 

Biological disturbances such as diseases, predator outbreaks or climate-induced 

coral bleaching usually kill coral tissue without initially compromising the integrity of 

the coral skeleton. After tissue death, the exposed coral skeletons are subject to local 

rates of physical, chemical and biological erosion (Hutchings 1986; Glynn 1997). Coral 

skeletons of erect branching corals (e.g., Acropora) may then break down into coral 

rubble (Sheppard et al. 2002; Graham et al. 2006), whereas massive coral skeletons 

typically gradually erode in situ (Sheppard et al. 2002). One probable reason for the 

absence of significant declines in architectural complexity following coral bleaching or 

anomalously warm sea surface temperatures may be the lack of extensive coral 

mortality following bleaching at the reef-sites included in our meta-analysis. Although 

reef accretion can be halted after coral bleaching (Hoegh-Guldberg et al. 2007; Baker et 

al. 2008), recovery of live coral tissue after bleaching events would reduce any impact 

on reef complexity. In addition, most of the studies included in this analysis took place 

during a period in which Caribbean reefs have been dominated by massive and weedy 

corals (post-Acropora die-off; (Aronson & Precht 2006; Chapter 2). As the erosion of 

massive coral skeletons is likely to be a slow process, the period of time after bleaching 

events (average ≈ 3 years for data in figure 2a) may not have been sufficient to detect an 

impact on reef structure. However, previous studies have shown that regional declines 

in reef complexity in the Caribbean followed coral mortality with no evidence of a time-

lag (Chapter 2), which also suggests that biological disturbances (which typically 
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operate more slowly than physical disturbances) have not played a direct role in the 

recent region-wide declines in Caribbean reef complexity. 

 

 The removal of fishing pressure, through the establishment of marine protected 

areas, is widely recognized as an important tool for the protection of biological diversity 

and fisheries management (Sale et al. 2005; Gaston et al. 2008). On coral reefs, there is 

a broad range of positive effects within protected areas, such as increased biomass, 

abundance, average size and diversity of fish and invertebrates (Halpern 2003; Claudet 

et al. 2008; Molloy et al. 2009).  However, regional- and local-scale studies have found 

that large declines in coral cover can occur in spite of protection (Coelho & Manfrino 

2007; Graham et al. 2008; Mora 2008), although recent evidence suggests that coral 

cover is maintained to a greater extent inside marine reserves (Selig & Bruno 2010). 

The latter is probably because protection from fishing can restore key ecological 

processes such as herbivory, which can aid the recovery of coral colonies through the 

removal of space competitors or other sources of stress (e.g. macroalgae; Mumby & 

Harborne 2010). These positive effects of protection might only become apparent long 

after reserve establishment, for instance coral cover inside some Caribbean marine 

reserves experienced continuous declines for up to 14 years after implementation (Selig 

& Bruno 2010). The significant decline in architectural complexity inside MPAs, but 

not on unprotected reefs, could have resulted from MPA designation of reef sites that 

were initially in better condition, and thus had  'more to lose' than unprotected reefs. 

However, this seems unlikely in our case, as average rugosity at the start of the time 

series was similar for protected and unprotected reefs (protected = 1.66 ± 0.9 SE; 

unprotected = 1.73 ± 0.13 SE; T(47) = -0.61, P = 0.55). Alternatively, protection from 

fishing may lead to enhanced rates of bioerosion by herbivorous fish inside MPAs 

(Hutchings 1986; McClanahan 1994), which could increase rates of loss of reef 

architecture on protected reefs. Because of over-exploitation and disease, Caribbean 

reefs have had relatively low densities of macro-bioeroders since the early 1980s 

(Carpenter 1988; Pandolfi et al. 2005), which likely slowed down rates of reef 

architecture loss (Mallela & Perry 2007; Chapter 1). The implementation of MPAs can 

greatly enhance the number and biomass of grazers such as parrotfishes (e.g. Mumby 

2006; Mumby et al. 2006), which can in turn increase rates of erosion on reefs that are 

already failing to accrete as a consequence of the loss of reef-building corals 

(Bruggemann et al. 1996). This scenario does not imply that MPAs are not fulfilling 

their function; indeed, they may be critically important for the recovery of key 
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components of coral reefs such as the associated fish communities. However, our results 

highlight the necessity of understanding the full range of interactions between the 

components of coral reefs to design management tools that will successfully secure the 

long-term persistence of these ecosystems. 

 

Over the last four decades, Caribbean reefs have undergone rapid and severe 

rates of decline in coral cover and reef architecture (Gardner et al. 2003; Chapter 2), 

generating a debate in the scientific community about the major disturbances (local vs 

global) that have driven these declines (Aronson & Precht 2006; Knowlton & Jackson 

2008). While a growing body of evidence indicates that the cover of reef-building corals 

is influenced by large-scale drivers such as changing climate and the spread of human 

development (Knowlton & Jackson 2008; Mora 2008; Schutte et al. 2010), here we 

show that changes in reef architecture may be more sensitive to local reef conditions 

(e.g. rates of erosion and hurricane impacts) and hence may be relatively independent of 

changing coral cover. Thus, while reversing coral decline is likely to require 

international regulations to reduce the impacts of human activities, our results suggest 

that the protection and recovery of reef architecture will depend largely on the 

protection and enhancement of conditions at the local reef scale.  
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Chapter 4 

 

Coral identity underpins reef complexity on Caribbean 

reefs 

 

 

 

Abstract 

The architectural complexity of ecosystems can greatly influence their capacity to 

support biodiversity and deliver ecosystem services. Understanding the components 

underlying this complexity can aid the development of effective strategies for 

ecosystem conservation. Caribbean coral reefs support and protect millions of 

livelihoods, but recently the anthropogenic change is shifting communities towards 

reefs dominated by stress-resistant and less architecturally complex coral species. We 

quantify the influence of coral composition, diversity and morpho-functional traits on 

the architectural complexity of reefs across 91 sites at Cozumel, Mexico. Although reef 

architectural complexity increases with coral cover and species richness, it is highest on 

sites that are low in taxonomic evenness and dominated by morpho-functionally 

important reef-building coral genera, particularly Montastrea. Sites with similar coral 

community composition also tend to occur on reefs with very similar architectural 

complexity, suggesting that reef structure tends to be determined by the same key 

species across sites. Our findings suggest that a major emphasis on facilitating the 

endurance of healthy populations of key morpho-functional groups may be required to 

halt the rapid and severe declines in reef architectural complexity across the Caribbean. 

Specifically, these results provide support for prioritising and protecting particular reef 

types, particularly those dominated by Montastrea corals, in order to enhance reef 

complexity. 
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underpins reef complexity on Caribbean reefs. Ecological Applications.   
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Introduction 

 

The architectural complexity of ecosystems often underpins the biodiversity and 

ecosystem services that they support. Architectural complexity is very often defined or 

provided by foundation taxa (e.g. trees, oysters, stony corals) that have a 

disproportionate influence on ecosystem structure, function and stability (MacArthur 

1984; Bruno & Bertness 2001; Ellison et al. 2005). However, within these broad groups 

of foundation taxa, different species can contribute disproportionately to architectural 

complexity. Understanding the influence of different species and taxa on ecosystem 

structure and function can therefore be key to the development of effective conservation 

priorities and actions.    

 

 Coral reefs are among the most rapidly changing and valuable ecosystems in the 

world. It is estimated that nearly 70 per cent of the world’s coral reefs are threatened by 

anthropogenic activities (Wilkinson 2008) and are experiencing unprecedented rates of 

degradation (Veron 2008). In the Caribbean, for instance, the architectural complexity 

of reefs has declined substantially over the past forty years with the loss of ~80% of the 

most complex reefs (Chapter 1). Because of the importance of reef-building corals as 

foundation species within the diverse reef ecosystem, patterns of degradation and 

ecological resilience on coral reefs are typically measured through changes in overall 

coral cover (e.g. Gardner et al. 2003; Bruno & Selig 2007; Mumby et al. 2007). 

However, changes in coral cover do not capture the changes in reef architectural 

complexity (Chapter 2) that can underpin a suite of important ecosystem services such 

as the dissipation of wave energy, nutrient recycling and the abundance, diversity and 

trophic structure of coral reef fishes (Szmant 1997; Lugo-Fernandez et al. 1998; 

Sheppard et al. 2005; Wilson et al. 2007; 2010).  

 

There is considerable potential for taxon identity and the composition of reef-

building corals to influence the architectural complexity of reefs, as hard scleractinian 

corals are a taxonomically and morphologically diverse group (Veron & Stafford-Smith 

2002; Dullo 2005). While qualitative differences in the relative contribution of different 

coral species to reef complexity are apparent for most of the reef scientist, the 

contribution of coral identity and community composition to architectural complexity 

has yet to be quantified at the larger reef scales. Quantifying the relative contribution of 

different coral species to the architectural complexity of the reefscape is therefore 
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particularly important in order to understand the trajectory of coral reefs under changing 

environmental conditions. A growing body of evidence suggests that loss of the main 

reef-building coral taxa is accompanied by an increase in the relative abundance 

(leading to eventual dominance) of stress-tolerant, early-colonizing corals that form 

smaller and less-architecturally complex colonies such as Porites and Agaricia 

(Aronson et al. 2002; Green et al. 2008; Lirman & Manzello 2009). This shift towards 

weedy coral species may constrain reefs into a state of lower potential architectural 

complexity (Steneck et al. 2009), even if overall coral cover remains stable. 

 

Here we explore the contribution of coral community composition to reef 

architectural complexity across a broad range of sites in Cozumel, Mexico. First, we 

quantify whether sites with similar coral community composition also tend to be similar 

in terms of architectural complexity. Second, we test whether greater coral species 

diversity is related to greater architectural complexity. Finally, we explore how the 

taxonomic and functional attributes of coral dominance influence the relationship 

between coral cover and architectural complexity. 

 

 

Materials and methods 

 

Study area 

 

This study was carried out with the permission and support of the Parque Nacional 

Arrecifes de Cozumel. Cozumel is a continental island in the North-Western Caribbean 

(figure 1). Cozumel is surrounded by coral reefs, the most developed of which are on 

the western side of the island and primarily comprise shelf-edge reefs, which typically 

have a complex reef framework formed by calcareous formations of several meters 

depth, and barrier reefs which are less well-developed (Jordán-Dahlgren 1988). The 

reefs along the south-west coast have been under official protection since 1980 

(Alvarez-Filip et al. 2009; figure 1).   

 

Field surveys 

 

In total, 91 sites along the south-west coast of Cozumel, all separated by at least 200 m 

(figure 1), were surveyed between October 2007 and February 2008. At each site, one 
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30 m transect between 10 and 15 m depth was randomly located on the top of the frontal 

reefs and parallel to the coast. To evaluate coral abundance, we used the point intercept 

method to record the occurrence of coral species every 25 cm along each transect (120 

counts per transect). 

 

Reef architectural complexity was quantified using the rugosity index, which is 

the ratio of a length of chain moulded to the reef surface to the linear distance between 

its start and end point (Chapter 1). A perfectly flat surface has a rugosity index of one, 

with larger numbers indicating more complex surfaces. Scores rarely exceed three, 

which would be typical of historic reef complexity in the Caribbean prior to the 1980s 

(Chapter 1). A three metre chain (0.7 cm link-length) was used to estimate reef rugosity 

at five equally spaced points along the same 30 m transect, which were then averaged to 

give transect-level rugosity.  

 

 

 

 

Figure 1. Map of Cozumel Island and (inset) the location within the Caribbean Sea. The continuous line 

delimits the polygon of the Marine Protected Area (Parque Nacional Arrecifes de Cozumel) and the bold 

dotted line represents the area surveyed in this study. 

 

 

Data Analyses  

 

To examine whether transects with similar coral community composition also tended to 

have similar architectural complexity, we constructed matrices of site community 

composition and site rugosity for all pairs of sites. The similarity matrix for coral 
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community composition was constructed using all coral species and their relative cover 

in each site, and computed using the Bray-Curtis similarity coefficient. The architectural 

complexity matrix was constructed by calculating the relative percentage similarity in 

rugosity between each pair of sites using the following formula: 

% similarity = [(RL-RS) / MD)] x 100 

where RL and RS are the larger and smaller values of rugosity for each pair of 

comparisons independent of their position in the matrix, and MD is the maximum 

observed difference between all the pairwise comparisons of RL and RS. We evaluated 

whether architectural complexity among sites is a function of coral community 

composition by comparing both matrices using a Mantel test based on 10,000 

permutations (Mantel 1967).  

 

To test whether greater coral species diversity is related to greater architectural 

complexity, we quantified coral diversity using three univariate dimensions of diversity 

(Magurran 2004): coral species richness (number of species recorded at each site), 

evenness in species abundance (the Pielou index of percentage areal cover of each 

species) and taxonomic diversity. For the last dimension, we calculated the average 

taxonomic distinctness (Δ
+
) and the variation in taxonomic distinctness (Λ

+
) using a 

widely-used and accepted coral taxonomy (Veron & Stafford-Smith 2002). Average 

taxonomic distinctness measures average evolutionary relatedness as the mean path or 

branch length of the local community and the variation in taxonomic distinctness is the 

variance in path or branch lengths of the local community (Clarke & Warwick 1998; 

Clarke & Warwick 2001). We also calculated richness and evenness of the morpho-

functional groups. We then used linear regressions to explore the strength and nature of 

the associations between each of these measures of coral diversity and reef architectural 

complexity.  

 

To explore the influence of species identity and morpho-functional attributes on 

reef structure, we grouped coral species by genus and by morphology. Morpho-

functional groups were constructed from the maximum size and colony shape of each 

coral species (table 1). Following Reyes-Bonilla (2004), three shape categories (massive 

or nodular; branching, ramose or phaceloid; platy, foliaceous or encrusting) and three 

size categories (small (<10 cm); medium (10 to 30 cm); large (>30 cm)) were used. 

Combining shape and size categories resulted in seven different morpho-functional 

groups (table 1).   



50 

 

 

Table 1. Mean cover (± standard error) and morphological information of the coral species recorded in 

the 91 sites surveyed.  

 

 

Genus Species 

Average cover 

(± SE) 

Colony 

shape
a
 

Colony 

size
b
 

Morphology 

group
c
 

Acropora A. cervicornis 0.03  (0.03) B L BL 

 A. palmata  0.16  (0.1) B L BL 

Madracis M. decactis  0.16  (0.04) M M MM 

 M.  formosa 0.02  (0.01) B M BM 

Stephanocoenia S. michelini 0.24  (0.05) M M MM 

Eusmilia E. fastigiata  0.39  (0.07) B M BM 

Colpophyllia C. natans  0.06  (0.04) M L ML 

Diploria D. clivosa  0.03  (0.02) M L ML 

 D. labyrinthiformis  0.05  (0.02) M M MM 

 D. strigosa  0.07  (0.04) M M MM 

Montastrea M. annularis  1.43  (0.39) M L ML 

 M. cavernosa  0.97  (0.12) M L ML 

 M. faveolata  1.68  (0.26) M L ML 

 M. franksi  0.09  (0.03) M M MM 

Favia F. fragum  0.02  (0.01) M S MS 

Dendrogyra D. cylindricus 0.01  (0.01) M L ML 

Dichocoenia D. stokesi  0.04  (0.02) M M MM 

Meandrina M. meandrites   0.13  (0.04) M M MM 

Isophyllastrea I. rigida   0.02  (0.01) M M MM 

Mycetophyllia M. lamarckiana  0.15  (0.04) P M PM 

Agaricia A. agaricites 4.56  (0.41) P L PL 

 A. humilis 0.03  (0.02) M L ML 

 A. lamarcki 0.02  (0.01) P L PL 

 A. tenuifolia  0.43  (0.13) P L PL 

Siderastrea S. radians  0.02  (0.01) M S MS 

 S. siderea  1.45  (0.16) M L ML 

Porites P. astreoides  2.45  (0.3) M M MM 

 P. colonensis  0.03  (0.02) P M PM 

 P. divaricata  0.02  (0.01) B L BL 

 P. furcata  0.10  (0.04) B L BL 

 P. porites     0.82  (0.13) B L BL 

Millepora M. alcicornis  0.27  (0.06) B M BM 

 M. complanta  0.06  (0.02) P L PL 
 

a
M = massive or nodular; B = branching, ramose or phaceloid; P = platy, foliaceous or encrusting.  

b
S = small (<10 cm); M = medium (10 to 30 cm); L = large (>30cm).  

c
Morphological group is the combination of shape and size.  
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The 91 transects then were categorised depending on the single most dominant 

(highest relative abundance on the site) genus and morpho-functional group. We used 

linear regression to compare the relationships between architectural complexity and 

cover of (a) the three most abundant genera (Agaricia, Porites and Montastrea) and (b) 

the three most abundant morpho-functional groups (figure 2b). Differences between 

each pair of linear models were explored by dividing the difference between both 

regression coefficients by the square root of the sum of the squared standard errors. 

Assuming normally distributed residuals, this estimate follows a t-distribution with n-2 

degrees of freedom (Zar 1999). 

 

 

Results 

 

A total of 33 species of reef-building corals were recorded in Cozumel during this study 

(table 1). Agaricia, Montastrea and Porites were the dominant genera (figure 2a), and 

corals with massive and foliaceous colonies that form large colonies were the most 

abundant morpho-functional groups (figure 2b). Both coral cover and reef architectural 

complexity vary greatly across the study area, from flat sites with low coral cover to 

highly complex areas of reef. Average coral cover for the 91 sites was 16% (± 1.32 SE, 

range: 0 - 52%) while rugosity indices averaged 1.49 (± 0.04 SE, range: 1.02 - 2.77).  

 

 

 

 

Figure 2. Mean percent cover (± standard error) of hard corals on Cozumel reefs, grouped by (a) genus 

and (b) morphology (see table 1 for definitions of morpho-functional groups). For (b) the total number of 

species included in each morpho-functional group is given in parentheses. 
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Pairs of sites with similar coral community composition tend to also have 

similar levels of architectural complexity (Mantel test, rm = 0.18; p < 0.001).Very high 

similarity in coral community composition (> 70% similarity) only occurred in reefs 

with similar architectural complexity (> 50% similarity in rugosity), regardless of 

whether the sites were similarly complex or similarly flat (figure 3). 

 

 

 

 

Figure 3. Similarities in coral community composition (Bray-Curtis similarity coefficient) and reef 

architecture (% similarity in rugosity indices) for 4095 different pairs of sites from 91 sites in Cozumel. 

Circle colour indicates pairs of sites which both have rugosity values > 1.5 (black), both < 1.5 (grey) or 

one from each category (white). 

 

 

 

Architectural complexity is positively associated with the number of coral 

species: sites with fewer than five coral species tend to be relatively flat while more 

diverse sites, with between 8 and 13 species, had the greatest complexity (figure 4a). 

However, the evenness in coral cover among coral species declined with increasing 

coral species richness (r = -0.40; P < 0.001), and consequently sites with greater 

architectural complexity tended to be dominated by one or few coral species (figure 4b). 

The relationship between taxonomic distinctness among coral species and architectural 

complexity is dome-shaped, with a small number of flat reefs tending to be either 

particularly distinct or particularly related (figure 4c). The variation in taxonomic 

distinctness was not significantly related to architectural complexity (figure 4d). From 

the morphological and functional perspective, greatest complexity is found on reefs 
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with higher morpho-functional diversity (figure 4e), but dominance by relatively few 

morpho-functional types (figure 4f). 

 

 

 

 

Figure 4. The relationships between reef architectural complexity on 91 sites in Cozumel and (A) total 

number of coral species (y = 1.06 + 0.08x; R
2
 = 0.34; P < 0.001); (B) Pielou index of coral species 

evenness (y = 3.99 - 2.79 x; R
2
 = 0.30; P < 0.001); (C) average taxonomic distinctness of coral species; 

(D) variation in taxonomic distinctness of coral species; (E) total number of coral morpho-functional 

groups (y = 0.79 + 0.19x; R
2
 = 0.33; p < 0.001); and (F) Pielou index of morpho-functional groups 

evenness (y = 4.08 – 2.90x; R
2
 = 0.32; p < 0.001).  
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Reefs with greater coral cover tend to have greater architectural complexity but 

the variance in architectural complexity also increases with coral cover (figure 5a). 

Much of variance in architectural complexity at high levels of coral cover is the result of 

dominance by a particular coral genus. Sites dominated by species from the genus 

Montastrea have greater architectural complexity for a given coral cover, followed by 

Agaricia then Porites (figure 5b). On Montastrea-dominated sites, architectural 

complexity increased more rapidly with increasing coral cover than on Porites-

dominated sites (T24 = -2.23; P = 0.03). However, the slopes of relationships between 

coral cover and architectural complexity for Agaricia and each of the other two genera 

did not differ significantly (Agaricia vs Montastrea: T49 = 1.65, P= 0.10; Agaricia vs 

Porites: T47 = -1.23, P = 0.22).  

 

The differences in architectural complexity for given levels of coral cover are 

also strongly related to the morpho-functional attributes of the dominant species. Sites 

dominated by massive and large coral species have greater architectural complexity for 

a given coral cover, followed by sites dominated by large platy, foliaceous or encrusting 

(PL) and then medium size massive corals (figure 5c). Architectural complexity on sites 

dominated by massive and large coral species also increased significantly more rapidly 

with increasing coral cover than on reefs dominated by medium size massive corals (T34 

= -2.72, P = 0.01). However, the slope of the architectural complexity -coral cover 

relationship on large platy, foliaceous or encrusting -dominated reefs did not differ 

significantly from the other two morphological groups (PL vs ML: T54 = 1.56, P = 0.13; 

PL vs MM: T30 = -0.81; P = 0.43).  

 

 
Discussion 

 

Reef architectural complexity increases with increasing coral cover, but the rate of 

increase in complexity depends on the coral community composition and, in particular, 

the identity of the dominant species and their associated morphological and functional 

traits. The most architecturally complex sites are dominated by few coral species (and 

morpho-functional groups) and the identity of these corals largely explains the 

differences in the architecture of these sites. These findings underscore the importance 

of considering coral species composition and shifts in coral dominance on Caribbean 

reefs in order to understand the implications of changes in these ecosystems on the 

associated biodiversity and ecosystem services.   
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Figure 5. The relationship between coral cover and architectural complexity indices across 91 sites in 

Cozumel (R
2 
= 0.61; slope = 0.024; P < 0.001) for (A) sites dominated by Montastrea (black), Agaricia 

(dark grey), Porites (pale grey) or no dominant species (white), and the linear regression and 95% 

confidence intervals for sites dominated by the three most common (B) coral genera: Montastrea (y = 

1.02 + 0.04x; R
2
 = 0.61; P < 0.001); Agaricia (y = 1.12 + 0.02x; R

2 
= 0.55; P < 0.001) and Porites (y = 

1.05 + 0.02x; R
2
 = 0.84; P < 0.001) and (C) morphological groups: ML (y = 1.05 + 0.03x; R

2
 = 0.62; P < 

0.001); PL (y = 1.16 + 0.02x; R
2 
= 0.50; P < 0.001) and MM (y = 1.02 + 0.02x; R

2
 = 0.93; P < 0.001). See 

table 1 for details of morphological groups. In (A) increasing point size represents increasing evenness 

(Pielou index) of coral community composition.  

 

 

 

Species diversity is considered a fundamental feature of ecosystem structure and 

function (Loreau et al. 2001; Hooper et al. 2005) and, in coral reefs, greater species 

diversity might be expected to increase reef complexity simply because of the large 

variety of coral forms and shapes (e.g. Chabanet et al. 1997; Bruno & Bertness 2001). 
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However, positive relationships between the number of coral species and architectural 

complexity may in fact be a consequence of the positive relationship between coral 

cover and architectural complexity, as species diversity is also positively associated 

with coral cover (this study: r = 0.83, P < 0.001; Bell & Galzin 1984). Moreover, 

taxonomic relatedness indices show that most sites shared a very similar species 

composition and that there is no clear effect of increasing taxonomic composition on 

reef architectural complexity. By contrast, the distribution of species abundances clearly 

shows that predominance by one or few species increases the complexity of the reef 

structure. Historically, Caribbean reefs have comprised small numbers of abundant 

species rather than a high diversity of coral species (Johnson et al. 2008), supporting the 

importance of coral dominance in structuring Caribbean reefs. In addition, Caribbean 

corals have relatively low diversity and redundancy in comparison with other regions of 

the world. For example, there are 120 massive coral species in the Great Barrier Reef, 

Australia while the Caribbean harbours fewer than 25 (Bellwood et al. 2004). This lack 

of functional diversity might explain why Caribbean reef architectural complexity relies 

more on the presence and identity of dominant species than on the combined structural 

attributes of a wider range of species. 

 

We found that the strength of the positive effect of foundation species in 

providing structure to the habitat largely depends on the identity of the dominant taxa. 

At the reefscape scale, architectural complexity increased faster in sites dominated by 

large-massive species, such as Montastrea, than in sites dominated by short-lived and 

stress-resistant species. Among Caribbean reef-building corals, Montastraea species 

play critical roles in reef construction and community ecology (Harborne et al. 2008; 

Harborne 2009). The relative abundance of such massive species is declining in the 

Caribbean (Edmunds & Elahi 2007). For example, Cozumel reefs were largely 

dominated by Montastrea species in the 1980s (Muckelbauer 1990) but more recently 

they have been increasingly dominated by Agaricia and Porites (Alvarez-Filip et al. 

2009; figure 2). Cozumel reefs may therefore no longer be providing the structural 

benefits that they were in recent decades. Similar shifts from assemblages dominated by 

physically large and long-lived coral species toward assemblages dominated by weedy 

corals are being recorded throughout the Caribbean (Steneck et al. 2009), highlighting 

the large-scale consequences that these changes in coral community composition may 

have for the architectural complexity of Caribbean reefs. 
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On sites with relatively low coral cover (≤ 20 %), architectural complexity 

varies little, even across sites dominated by different coral species and types (figures 5 

b,c), probably because dominant species are not abundant enough (high evenness; figure 

5a) to contribute significantly to the reef framework. Assuming that this also applies 

elsewhere in the Caribbean, our findings may help to explain the rapid structural 

homogenization towards relatively flat reefs reported in recent decades (Chapter 1). 

Most Caribbean reefs have been near or below 20% coral cover since the early 2000s 

(Gardner et al. 2003; Bruno et al. 2009; Schutte et al. 2010), which may suggest that the 

abundance of previously dominant corals in most reefs is now too low to contribute 

significantly to reef architectural complexity. It is likely that the high frequency of 

disturbances or chronic mortality that Caribbean reefs are facing may prevent some 

structurally-important species from dominating (Hughes & Connell 1999), and these 

reefs are therefore likely to remain in the current low-complexity and high evenness 

state. 

 

More complex reefs tend to have greater numbers of individuals, biomass or 

richness of reef-associated fishes and invertebrates (Luckhurst & Luckhurst 1978; 

Dulvy et al. 2002; Idjadi & Edmunds 2006; Wilson et al. 2007). Consequently, our 

findings suggest that assemblages with dominant reef-building species such as 

Montastrea spp (or Acropora spp.) would be expected to facilitate more biodiverse and 

functionally-important coral reefs in the Caribbean. However, important regional 

differences in the species richness and functional composition of reef systems 

(Bellwood et al. 2004) also highlight the need to explore the generality of these 

findings. Assessing whether similar patterns occur in regions with considerably higher 

diversity of coral forms and functional redundancy, such as in the Indo-West Pacific, 

would enrich our understanding of the role of coral species composition in the provision 

of ecological and ecosystem services. In the Caribbean, however, it is likely that halting 

rates of architectural complexity loss will require a major emphasis on facilitating the 

maintenance and endurance of healthy populations of these key coral species, rather 

than focussing efforts on restoring the overall abundance of scleractinian corals. This 

seems to be particularly important for those reefs that have relatively high coral cover 

(> 20%), where the presence of healthy populations of these key coral species may 

considerably increase the reef architectural complexity. 
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Chapter 5 

 

Coral reef architectural complexity influences fish 

community and food web structure 

 

 

 

Abstract 

Coral community shifts towards reefs dominated by stress-resistant corals have 

contributed to the severe declines in the architectural complexity of reefs throughout the 

Caribbean. Complex reef architecture provides important refuges and resources for 

many reef fishes and thus widespread declines in reef complexity could have severe 

consequences for the structure and function of fish assemblages. Here, we explore the 

influence of reef architecture on fish assemblages by comparing the size and trophic 

structure of reef fishes along a 15-reef gradient of coral cover, coral species dominance 

and architectural complexity in Cozumel, Mexico. Our results show that reefs with high 

architectural complexity, in particular those dominated by robust Montastrea corals, 

supported fish assemblages with greater recruitment and longer food chains (higher 

mean trophic levels).  The association between coral complexity and fish communities 

is highly size-structured and is greatest for smallest size classes and is less so for larger 

size classes. The greater abundance of both small fish and the key early life stages of 

larger fishes on more complex reefs suggests that architectural complexity may 

influence entire reef fish assemblages, even though larger fish  are less dependent on 

reef complexity. Key reef-building corals such as Montastrea are thus likely to be 

disproportionately important for maintaining reef fish communities, and shifts in 

Caribbean coral communities may compromise fish recruitment and recovery and 

truncate food chains. 
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Introduction 

 

Habitat architecture is known to profoundly influence the abundance and diversity of 

species through the provision of niches and diverse ways of exploiting environmental 

resources (e.g. MacArthur & MacArthur 1961; Bazzaz 1975; Bell et al. 1991; Tews et 

al. 2004). In many ecosystems, the architecture of the habitat is defined by the 

abundance and morphological attributes of certain foundation species. Many of these 

species, such as numerous overstorey trees, reef-building corals and kelp, have 

experienced or are experiencing widespread declines (Steneck et al. 2002; Gardner et al. 

2003; Ellison et al. 2005). These declines commonly result in dominance shifts towards 

more stress-resistant species that often have rapid growth rates and are likely to provide 

fewer structural benefits (Ellison et al. 2005; Steneck et al. 2009). Understanding the 

influence of changes in the relative abundance of different foundation species on 

associated biodiversity can therefore provide valuable insights into the potential 

consequences of changing habitat structure resulting from environmental disturbances. 

 

In tropical reefs systems, the architectural complexity of coral species is 

important for providing a wide variety of refuge spaces, such as crevices, holes and 

branches, which can influence the diversity and structure of reef-associated 

communities (Bell & Galzin 1984; Jones & Syms 1998). For instance, at small spatial 

scales (< 1 km) the recruitment of fish larvae depends in part on the availability of 

suitable refuges, and the post-settlement movements of fish recruits are largely 

influenced by the availability of microhabitat structures (Jones 1991; Tolimieri 1995; 

Caley & John 1996; Caselle & Warner 1996; Schmitt & Holbrook 1999; Johnson 2007). 

In juvenile and adult fishes, levels of competition and predation can also be influenced 

by the complexity of reef habitats, as more complex habitats may reduce competition by 

providing a greater spectrum of resources, and reduce predation by providing more prey 

refuges and/or reducing encounter rates between predators and prey (Holbrook & 

Schmitt 1988; Hixon & Beets 1993; Almany 2003; 2004).  

 

Coral reefs are currently changing very rapidly, particularly in the Caribbean 

where structurally complex reefs are becoming increasingly scarce, at least partly as a 

consequence of the loss of key reef-building corals (Gardner et al. 2003; Chapters 1 & 

2). Such rapid declines in reef complexity are likely to have severe consequences for 

biodiversity and associated environmental services. The consequences for coral reef 
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fishes are of particular concern because reef fisheries are extremely valuable and are an 

important source of protein and livelihood for many vulnerable coastal human 

communities (Newton et al. 2007; Allison et al. 2009). Declines in reef architectural 

complexity may therefore result in reductions in overall species richness, particularly of 

reef specialists (Beukers & Jones 1997; Graham et al. 2006; 2007), with potential long-

term consequences for large-bodied species of importance for local fisheries (Graham et 

al. 2007).  

 

As different species of coral vary in their vulnerability to environmental 

perturbations, the variety of natural and human disturbances can greatly impact the 

relative abundance of key coral species, potentially resulting in a differential loss of 

specific microhabitats. For example, in the Caribbean, rapid declines in live coral cover 

have been accompanied by a shift in communities towards reefs dominated by stress-

resistant and less architecturally complex corals (Hughes 1994; Aronson et al. 2002; 

Green et al. 2008; Lirman & Manzello 2009). In this region, mid-water reefs now 

dominated by stress-resistant corals such as Porites and Agaricia provide consistently 

less architectural-complex reefs in comparison to Montastrea-dominated sites (Chapter 

4). As these shifts in coral community composition can potentially have severe 

consequences for associated reef-fishes, there is thus a pressing need to understand the 

response of fish communities to the changes in coral community composition and 

associated loss of reef complexity. 

 

Here we test whether more structurally-complex areas of coral reef support 

greater abundances or diversity of fish along a 15-reef gradient of architectural 

complexity in Cozumel, Mexico. As the architectural complexity of reef-building corals 

may be especially important for small-bodied fishes, including recruits and juveniles 

from larger species that rely directly on reef microhabitat features to settle and feed, we 

explore these relationships using both size-based and trophic-guild perspectives.  
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Methods 

 

Field surveys  

 

Cozumel is a continental island located 22 km off the east coast of the Yucatán 

Peninsula in the North-Western Caribbean. The island is approximately 46 km long on 

the north-south axis and 16 km wide (figure 1). Cozumel is surrounded by coral reefs, 

the most developed of which are on the western side of the island and primarily 

comprise shelf-edge reefs (mostly in the southwestern area), which typically have a 

complex framework formed by calcareous formations of several meters height, and 

barrier reefs, mostly in the central part of the island, which are less well-developed 

(Jordán-Dahlgren 1988). The reefs located in the southwest coast have been under 

official protection from fishing since 1980 (Alvarez-Filip et al. 2009; figure 1).  

 

 

 

 

 

Figure 1. The location of reef sites on Cozumel Island, Mexico. The continuous line delimits the polygon 

of the Marine Protected Area (Parque Nacional Arrecifes de Cozumel) and the circles indicate surveyed 

reefs (Pa= Paraiso, Ch= Chankanaab, Yu= Yucab, Tu= Tunich, Sf= San Francisco, Sr= Santa Rosa, Cd= 

Cedral, Fr= Francesa, Da= Dalila, Jr= Jardines, Hr= Herradura, Pl= Palancar, Cw= Colombia West, Ce= 

Colombia East, Ps= Punta Sur). 
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Description of reef structure and fish assemblages  

 

Benthic composition, architectural complexity and reef fish assemblages were surveyed 

in 15 mid-water depth (10-15 m) reefs within Cozumel‟s protected area between 

October 2007 and February 2008 (figure 1). The surveyed area in each reef (i.e. 

transects and the area between them) covered ca. 2000 m
2
, and the 15 reefs sites were 

all at least 500 m apart. Between three and eight 30 x 5 m transects (150 m
2
; number of 

transects per reef is given in figure 2) were surveyed on each reef. In each transect, a 

plastic tape measure was unrolled as the diver was moving forward identifying all the 

conspicuous fishes that crossed the transect line. Individuals were counted in an 

instantaneous manner to avoid the possibility of double counting and inflated density 

estimates (Ward-Paige et al. 2010). The fork length of each fish was estimated within 

10 cm categories (≤ 10, 10 – 20, 20 – 30, 30 – 40, 40 – 50 cm), which is well within the 

precision possible with minimal training (Dulvy et al. 2004). The surveyor was 

previously trained in fish identification and size estimation, and has carried out similar 

surveys in the study area for several years. Count time was not standardised because this 

was dependent on fish abundance, diversity and subsequent habitat measures. All 

transects were haphazardly located within the reefs and surveyed between 09:00 and 

16:00 h by the same observer. 

 

Benthic community structure was characterised using the point intercept method 

(Loya 1972) in each 30 m transect once the fish census was complete. The percentage 

cover of each benthic component (live coral species, soft coral, turf algae, macroalgae, 

sponges, bare rock and sand) was identified every 25 cm, resulting in 120 estimates per 

30 m transect.  

 

Architectural complexity was measured with two complementary 

methodologies: a chain measure of local reef-relief and a larger-scale visual categorical 

estimate. For the small scale we used the rugosity index, which is the ratio of a length of 

chain moulded to the reef surface to the linear distance between its start and end point 

(Chapter 1). A perfectly flat surface would have a rugosity index of one, with larger 

numbers indicating more complex surfaces. A three metre chain (0.7 cm link-length) 

was used to estimate reef rugosity five times evenly distributed along each 30 m 

transect, and the average was calculated as a measure of transect-level rugosity.  The 

reefscape-scale visual assessment of architectural complexity consists of assigning each 
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transect a score from 0 (flat surface) to 5 (exceptionally complex reef with numerous 

caves and overhangs; Wilson et al. 2007). 

 

Description of fish assemblages  

 

Fish assemblages were characterized using three univariate metrics that describe the 

overall fish community (total number of species, total number of individuals and total 

biomass) and four metrics that describe food-web structure (mean trophic level, trophic 

guilds and the slope and intercept of the size spectra). The three community metrics 

were calculated at the transect level and then averaged across transects to produce reef-

level fish community metrics. Total fish biomass was calculated by converting the 

estimates of fish length to weight using species-specific length-weight conversions 

(Froese & Pauly 2009). Food chain length was estimated using mean trophic level 

which was calculated for each reef by averaging the trophic level (obtained from 

Fishbase; Froese & Pauly 2009) of each individual recorded on all transects within each 

reef.  In addition to the mean trophic level, fishes were also grouped into six major 

trophic guilds (planktivores, herbivores, omnivores, invertivores, carnivores and 

piscivores) following Paddack et al. (2009). In aquatic environments, organismal 

function varies with the size of individuals, particularly for those that grow by several 

orders of magnitude during their life (Jennings 2005). The size-frequency distribution 

(size spectrum) of fish can therefore have profound ecological implications, because 

most life history and ecological characteristics, such as growth schedules, age at 

maturity, lifespan, reproductive output, density dependence in juvenile survival and 

relative prey sizes are related to body size in marine fishes (Jennings et al. 1999; Froese 

& Binohlan 2000; Denney et al. 2002; Goodwin et al. 2006; Barnes et al. 2010). The 

size spectrum of the fish community on each reef was calculated by plotting the total 

number of individuals in each of the five 10 cm length categories, up to 50 cm. 

Individuals larger than 50 cm were very rare (n = 3) and therefore were excluded from 

the analyses. The fish size spectrum was then described by the slope and intercept of a 

linear regression of this size frequency distribution (Dulvy et al. 2004). Body length 

data were log10(x + 1) transformed before analysis, and the midpoint of size classes was 

rescaled to zero to remove the correlation between slope and intercept (Daan et al. 

2005). The intercept of size spectra provides a description of overall productivity or 

energy entering the community (Trenkel & Rochet 2003; Jennings 2005; Jennings et al. 

2008; Wilson et al. 2010) and the slope describes the flow and depreciation of energy 
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across fish size classes (Kerr & Dickie 2001; Jennings 2005; Wilson et al. 2010), with 

steeper slopes indicating an increase in the relative abundance of small fish, a decrease 

in large fish abundance, or both, and this in turn can be dissected by examining the 

relative contribution of each size class along the environmental or impact gradient 

(Dulvy et al. 2004).  

 

Data analyses 

 

Benthic data were averaged within transects and then within individual reefs, and the 

average percentages of cover of the benthic components were normalized using arcsine 

square root transformation. Exploratory analyses revealed strong positive covariation 

between the percentage cover of coral and both measures of architectural complexity 

(chain and visual estimation methods; table 1) across the 15 reefs. Hence, we calculated 

a combined index of coral “cover-complexity” from the first axis of a principal 

component analysis of these three variables. This first PCA axis explained 99.6% of the 

variance, and comprised coral cover (coefficient = 0.11), chain rugosity (coefficient = 

0.23) and the visual estimation of habitat complexity (coefficient = 0.97). 

 

 

 
Table 1. Associations between the percentage cover of different benthic components of the reefs and reef 

architecture. Values on the lower left of the table are Spearman-correlation coefficients and values in the 

upper right of the table (in italics) are P values. 

 

  Rugosity Visual Rock Sand Coral Macroalgae Turf Sponges 

Rugosity - <0.001 0.523 0.002 <0.001 0.269 0.486 0.209 

Visual 0.909 - 0.378 0.001 <0.001 0.199 0.694 0.178 

Rock -0.167 -0.228 - 0.073 0.363 <0.001 0.181 0.174 

Sand -0.703 -0.750 0.446 - <0.001 0.021 0.830 0.001 

Coral 0.907 0.915 -0.235 
-

0.801 
- 0.252 0.619 0.149 

Macroalgae 0.284 0.328 -0.892 
-

0.554 
0.294 - 0.125 0.051 

Turf -0.181 -0.103 0.341 0.056 -0.130 -0.387 - 0.277 

Sponges -0.321 -0.343 0.346 0.738 -0.365 -0.480 -0.279 - 

 

 

 

The influence of different components of reef structure and benthic community 

on all fish assemblage metrics were first explored with hierarchical partitioning analysis 

(Mac Nally 2000, 2002). The metrics that were identified from these analyses as 

responding to variation in reef structure were then included in analyses (also using 
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hierarchical partitioning) of the influence of different dominant coral types on the 

structure of fish assemblages. We restricted this second analysis to four categories: the 

three most dominant coral genera in Cozumel, Montastrea, Agaricia and Porites, which 

have been shown to have different colony and size structure and hence different 

contributions to reef complexity (Chapter 4), and one category including all the other 

remaining coral genera.  

 

Hierarchical partitioning is a multiple-regression technique which calculates 

goodness of fit measures for all possible combinations of independent variables in linear 

models, in order to calculate the average contribution of each predictor (Chevan & 

Sutherland 1991; Mac Nally 2000). Hierarchical partitioning provides both the 

independent and the joint effects of each predictor, with independent values 

representing the explanatory power associated with a single predictor and joint values 

representing the explanatory power of the parameter of interest in combination with 

other variables (Mac Nally 2002). In some situations, significant independent effects 

can be suppressed by antagonistic joint effects, in which case hierarchical partitioning 

technique converts antagonistic effects into negative joint contributions, effectively 

unmasking the independent contributions (Chevan & Sutherland 1991). Independent 

effects of the explanatory benthic variables on the fish assemblages were tested with 

1000 permutations of the data matrix and significance was evaluated at the 5% level 

(Mac Nally 2002). We used hierarchical partitioning rather than traditional multiple 

regressions or other multivariate analysis, because this method deals well with 

multicollinearity of predictor variables (Mac Nally 2000, 2002). We conducted 

hierarchical partitioning within R using the hier.part package (R 2009). Hierarchical 

partitioning does not calculate the direction of the effects of the explanatory variables, 

so these were derived from Pearson correlations. 

 

 

Results 

 

Fish and habitat description 

 

In Cozumel there is a pattern of increasing coral cover from the north to the south of the 

island (figure 2), and the reefs are largely dominated by Agaricia, Montastrea and 

Porites, although the surface cover of these species varies considerably between reef 
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sites with the northernmost and southernmost reefs having a particularly high relative 

cover of Montastrea species (figure 2). 

 

 

 

 

 

Figure 2. Mean (± SE) reef rugosity and cover of Agaricia, Montastrea, Porites and all other coral genera 

on the 15 surveyed reefs. Reefs are ordered from north to south (see Figure 1). The total number of 

transects is provided in brackets.  
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A total of 10,965 individuals from 93 species of fish were recorded across the 15 

reefs (appendix 3). The most common fishes were those that mainly feed on plankton 

and algae (appendix 3), and there is a clear trend of decreasing abundance with body 

size; the smallest individuals (< 10 cm) represented 48.1 % of the total abundance while 

larger individuals (> 40 cm) accounted for only 0.7 % of total abundance.  

 

Influence of benthic components on fish assemblages 

 

Fish species richness and total fish abundance are both positively associated with cover-

complexity and negatively associated with the percentage cover of bare rock and sand 

(figure 3), but total fish biomass is unrelated to any of the benthic community 

components or structure (figure 3). However, much stronger links are apparent between 

reef structure and the trophic and size structure of fish assemblages. The food chain 

length (as indexed by mean trophic level) and the size spectra slope and intercept of fish 

communities all increase significantly with increasing cover complexity but not with 

any of the other benthic components (figure 3). The intercept of the fish size spectra 

increases and the slope of the size spectra decreases with cover-complexity (Figure 3). 

The higher intercept and steeper slope of fish size spectra on reefs with greater coral-

complexity results from greater densities of the smallest size class (<10 cm) on complex 

reefs. While mean trophic level and size spectra slope are related only to cover-

complexity, the size spectra intercept is also influenced by a joint contribution from 

different benthic components (figure 3), suggesting that while the overall productivity 

of fish communities is influenced by several different benthic components, the food 

chain length is mainly driven by cover-complexity.  
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Figure 3. Results of hierarchical partitioning analyses of the contribution of reef complexity and the 

cover of reef benthic components to the community and food-web structure of reef fishes. Bars show the 

independent (black = statistically significant, grey = not significant) and joint (white) effects, and +/- 

indicates the direction of each relationship. Joint effects are either additive (above the line) or antagonistic 

(below the line) to the independent effects. 

-10

0

10

20

30

40

C
o

m
p

le
x

it
y

R
o

ck

S
an

d

M
ac

ro
al

g
ae

T
u

rf

S
p

o
n

g
es

v
a
ri

a
n
c
e
 e

x
p
la

in
e
d
 (
%

)
Abundance Independent

Joint

(-)(-)

(+)
(-)

(-)(+)

-10

0

10

20

30

40

C
o
m

p
le

x
it

y

R
o
ck

S
an

d

M
ac

ro
al

g
ae

T
u
rf

S
p
o
n
g
es

v
a
ri

a
n

c
e
 e

x
p

la
in

e
d

 (
%

)

Trophic level

(+)
(-)(-)(+)

(-)

(+)

-10

0

10

20

30

40

C
o
m

p
le

x
it

y

R
o
ck

S
an

d

M
ac

ro
al

g
ae

T
u
rf

S
p
o
n

g
es

v
ar

ia
n
ce

 e
x
p
la

in
ed

 (
%

)

Species richness

(-)
(+)(+)

(-)

(-)
(+)

-10

0

10

20

30

40

C
o
m

p
le

x
it

y

R
o
ck

S
an

d

M
ac

ro
al

g
ae

T
u
rf

S
p
o
n
g
es

v
ar

ia
n
ce

 e
x
p
la

in
ed

 (
%

)

Slope

(+) (-)(-)

(+)

(-)

(+)

-10

0

10

20

30

40

C
o

m
p

le
x

it
y

R
o

ck

S
an

d

M
ac

ro
al

g
ae

T
u

rf

S
p

o
n

g
es

v
a
ri

a
n
c
e
 e

x
p
la

in
e
d
 (

%
)

Biomass

(+) (-)
(-)

(+)
(-)

(-)

-10

0

10

20

30

40

C
o

m
p

le
x

it
y

R
o

ck

S
an

d

M
ac

ro
al

g
ae

T
u

rf

S
p

o
n

g
es

v
ar

ia
n
ce

 e
x
p
la

in
ed

 (
%

)

Intercept

(+)

(-) (-) (+) (+)

(+)



69 
 

Influence of coral genera on size and trophic structure of fish assemblages 

 

The abundance of the two smallest fish size classes (< 20 cm) is significantly greater on 

reefs with greater cover of Montastrea, whereas other coral genera have no significant 

effect on the abundance of fishes from any size categories (figure 4). The positive 

relationship between the abundance of small fishes and cover-complexity corresponds 

to the pattern indicated by the size spectra analyses (figure 3), suggesting that the 

abundance of complex scleractinian corals strongly influences the abundance of small 

fish. Initially the smallest fishes (< 10 cm) are most dependent on the presence of the 

most architecturally-complex corals (i.e. Montastrea), and this relationship decays for 

increasingly larger size classes, suggesting a strong ontogenetic detachment from 

scleractinian corals.  Fishes in the second size-category (10 - 20 cm) are also more 

abundant in the presence of Montastrea, but the presence of other types of corals also 

appear to influence their abundance, given the considerable positive contribution of the 

joint effects to the variation in abundance of this size-class. Although abundance of fish 

in size classes greater than 20 cm are not significantly related to the cover of any coral 

genera, those in size classes 20 – 30 and 30 – 40 cm tend to be positively associated 

with the cover of all coral genera while the largest fish (40 – 50 cm) tend to be 

negatively associated with coral cover (Figure 4). 

 

The abundance of carnivores, omnivores and herbivores all increased 

significantly with increasing cover of Montastrea corals (figure 5) but the cover of 

Porites, Agaricia or other coral species did not significantly influence the abundance of 

fish species of any trophic group. The strong and positive influence of Montastrea on 

carnivorous fish abundance, in addition to the increase in mean trophic level with coral 

complexity (figure 3), suggests that reefs with greater architectural complexity support 

longer food chains with more predator-dominated fish communities compared to flatter 

reefs with lower coral cover. 
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Figure 4. Results of hierarchical partitioning analyses of the contribution of different coral genera to the 

abundance of reef fishes of five different size classes. Bars show the independent (black = statistically 

significant, grey = not significant) and joint (white) effects, and +/- indicates the direction of each 

relationship. Joint effects are either additive (above the line) or antagonistic (below the line) to the 

independent effects.  
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Figure 5. Results of hierarchical partitioning analyses of the contribution of the cover of different coral 

genera to the abundance of six major trophic guilds of reef fishes. Bars show the independent (black = 

statistically significant, grey = not significant) and joint (white) effects, and +/- indicates the direction of 

each relationship. Joint effects are either additive (above the line) or antagonistic (below the line) to the 

independent effects. 
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Discussion 

 

The cover and complexity of coral reef has profound implications for fundamental 

processes structuring coral reef fish communities. Here, we show that coral cover and 

complexity have positive influences on the abundance and recruitment of small fishes 

and the food chain length and presumably energy flow through the Caribbean fish 

assemblages of Cozumel, Mexico. Across reefs varying greatly in coral cover, 

complexity and composition, greater abundances of small-bodied reef-associated fishes 

are supported on „healthier‟ more architecturally-complex reefs, in particular those 

dominated by robust Montastrea corals. However, the dependence of fishes upon 

complex reef structures declines for larger-bodied fish size classes. This suggests that 

complex reef structures are most important for maintaining reef fish communities by 

facilitating the presence of key early-life stage individuals and small-bodied fishes that 

are preyed upon by larger fishes (Caley & John 1996; Beukers & Jones 1997). The 

relatively weak contribution of cover-complexity and other benthic components to the 

variation in species richness, abundance and biomass suggests that a size-based food 

web view of coral reef ecology may provide more insights into coral reef community 

structure, function and energy flow than the classical terrestrial species-based functional 

perspective. 

 

The positive influence of corals, particularly of the genus Montastrea on reef 

fishes is most evident in small-bodied individuals and probably at small spatial scales. 

This suggests that the complexity provided by reef-building corals is an important 

mediator of the energy entering the reef system and the productivity of the reef-fish 

community (see also Jennings & Dulvy 2005; Shin et al. 2005). These results are 

consistent with experimental and observational analyses showing that, at small spatial 

scales (< 1 km), the recruitment of fish larvae depends in part on the availability of 

suitable refuges, and the post-settlement movements of fish recruits are largely related 

to the availability of microhabitat structures (Jones 1991; Tolimieri 1995; Caselle & 

Warner 1996; Schmitt & Holbrook 1999; Johnson 2007). The steepness of the size 

spectra on more complex reefs has been attributed to the depleted abundances of apex 

predators, for example fishing can change the size distribution of fish communities by 

directly reducing the number of large-bodied fishes that in consequence will result in 

prey release (Dulvy et al. 2004; Graham et al. 2005; Wilson et al. 2010). However, 

Cozumel reefs have been under protection for 30 years, and have relatively high 
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abundances of apex predators (relative to other Caribbean reefs; Knowlton & Jackson 

2008; Alvarez-Filip et al. 2009). Therefore the steepening of the slope in the size-

spectrum, in combination with the elevated intercept, is likely to result from a stronger 

association of small-bodied fishes to the coral complexity rather than an effect of 

fisheries exploitation of larger fish.  

 

The dependence of reef fishes on complex reef structures declines gradually 

with increasing body-length, which hints at an ontogenetic habitat shift. Small-bodied 

fishes are strongly related to coral complexity, and particularly to cover of Montastrea, 

probably because coral colonies from this genus develop many holes and crevices that 

may function as shelter for small fish (Goreau 1959). For example, these corals are 

known to attract high numbers of damselfishes of the genus Stegastes that commonly 

recruit and „garden‟ in these corals (Precht et al. 2010). Indeed, the small-scale pre-and-

post settlement processes of reef-fishes are more likely to be explained by the presence 

of Montastrea than by other corals such as those from the genus Porites, likely due to 

the more suitable microhabitat characteristics provided by Montastrea (Tolimieri 1995). 

Our results are also consistent with previous studies that have shown that, at patch 

scales, Montastrea-dominated reefs are the most species-rich habitats on Caribbean 

reefs and have the greatest intra-habitat variability (Harborne et al. 2008; Harborne 

2009).  

 

The abundance of fish of body lengths 10 - 30 cm seem to be influenced by the 

overall cover of reef-building corals, not just Montastrea corals. This may be a 

consequence of increases in the home range size with increasing body size, as larger 

Caribbean reef fishes tend to also increase in mobility (Kramer & Chapman 1999), and 

are therefore less likely to be associated with specific attributes of individual coral 

colonies. More generally, home range size scales positively with body size and the 

degree of exclusivity of habitat use declines with increasing size due to the metabolic 

scaling of energy acquisition (Jetz et al. 2004). The reduction in dependence on reef 

complexity of large-bodied fishes suggests that factors such as the availability of prey 

(Hixon & Beets 1993) and/or reef conditions at larger scales (e.g. the effect of 

protection at Marine Reserve scales; Kramer & Chapman 1999) may be stronger 

influences on the abundance of these adult fishes.  
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The complexity or reef structures, and in particular the cover of Montastrea 

corals, also appears to favour the presence of higher-trophic level (especially 

carnivorous) fish. However, although increased abundance of fishes from higher trophic 

levels might be expected to increase the overall biomass of the fish assemblage, we 

found no significant increase in total fish biomass with increasing cover-complexity. 

This might be explained by three, non-mutually exclusive reasons. First, the abundance 

of higher trophic level fishes could be primarily represented by juvenile individuals that 

may be using the corals for refuge or searching for small prey items (e.g. Rooker 1995; 

McCormick 1998; Gratwicke et al. 2006). Although the dietary mode of carnivorous 

fishes persists throughout their lives, prey size and composition often change as body 

size increases (Wainwright & Bellwood 2002; Cole 2010), thus small-bodied 

carnivorous fish may in fact represent lower trophic levels than the maximum category 

used in these analyses. Second, overall fish biomass on these reefs may be dominated 

by widely-distributed fishes pertaining to other trophic categories such as herbivores or 

omnivores (e.g.  scarids, surgeonfish or grunts; appendix 3) which may reduce the effect 

of carnivorous fishes of relatively low abundance on total biomass. Finally, there are 

some small-bodied fishes of high trophic level (e.g Hamlet fish; Froese & Pauly 2009), 

which also may help to explain the lack of a clear relationship between mean trophic 

level and overall biomass.  

 

The cover of Monstastrea corals also appears to positively influence the 

abundance of fishes of lower trophic guilds such as omnivores and herbivores. The 

omnivorous fishes recorded in this study are commonly recognized as reef-dependent 

species that feed on reef benthic flora and fauna (appendix 3; Froese & Pauly 2009), 

hence the greater number of refuges for small invertebrates and benthic algae provided 

by the massive structures of Montastrea may support a greater number of food items for 

these fishes (e.g. Idjadi & Edmunds 2006). The relationship between herbivorous fishes 

and Montastrea cover is more complex; the complex structures and ramets of 

Montastrea may support greater algal diversity and biomass (Mumby et al. 2005; 

Piñón-Gimate & Collado-Vides 2008), and thus be attractive to herbivorous fishes. In 

addition, some herbivorous fish such as Scarus viridie and Stegastes planiforms are 

common grazers of Montastrea colonies (Rotjan & Lewis 2008; Mumby 2009; Precht et 

al. 2010; Rotjan & Dimond 2010) and may therefore be attracted by the live tissue of 

these corals.   
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The ongoing decline in reef architectural complexity throughout the Caribbean 

may therefore have profound effects on fish communities (Paddack et al. 2009; 

Chapters 1 & 2). In particular, our findings suggest that recent declines in the overall 

density of fish communities (Paddack et al. 2009) may be in part a consequence of 

ongoing declines in the cover of Montastrea in reefs through the entire region (Hughes 

& Tanner 2000; Bruckner & Bruckner 2006; Steneck et al. 2009). Our study suggests 

that changes in the abundance of Montastrea populations could have significant and 

direct detrimental effects on the abundance of small-bodied fish, with subsequent 

impacts on the abundance of adult fishes through failures in recruitment and reductions 

on the transfer of energy through the food web (Graham et al. 2005; Graham et al. 

2007; Wilson et al. 2010). This may result in bottlenecks limiting the flow of energy 

and production of fish assemblages and fisheries yields. 

 

Montastrea historically ranked in importance with Acropora palmata and A. 

cervicornis in overall contribution to Western Atlantic reef structure (Jackson 1992). 

Acroporids have now almost vanished from Caribbean reefs and important functional 

attributes have been lost with the demise of these highly complex coral structures. Both 

acroporid species are now listed as Critically Endangered by the International Union for 

the Conservation of Nature (Bruckner 2003; Aronson & Precht 2006). More recent 

declines in the abundance of Montastrea populations and increases in the relative 

abundance of stress-resistant coral species are compromising the capacity of reefs to 

provide habitat for reef-associated biodiversity even further (Green et al. 2008; Steneck 

et al. 2009; Chapters 2 & 4). Our findings indicate that these recent changes in coral 

composition on Caribbean reefs may result in a very little ecological space for fish 

species to inhabit. The extreme importance of these fish populations in sustaining 

millions of livelihoods highlights the urgent need to identifying and implement means 

of preserving and improving reef habitat quality throughout the Caribbean.  
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Concluding remarks 

 

Caribbean reef ecosystems have undergone severe changes in the last few decades, 

owing to a variety of anthropogenic and natural causes. Previous studies have described 

in detail the rapid declines in the cover of reef-building corals, shifts in coral 

community composition and increases of macroalgae on Caribbean reefs (Aronson et al. 

2002; Gardner et al. 2003; Bruno et al. 2009; Schutte et al. 2010). This thesis has 

shown that these ecological changes have resulted in rapid but non-linear declines in 

reef architectural complexity during the last four decades (Chapter 1). The massive die-

off of Acropora palmata and A. cervicornis (Elkhorn and Staghorn corals) during the 

1970s and 1980s triggered the decline in reef architectural complexity throughout the 

region (Aronson & Precht 2006; Schutte et al. 2010; Chapters 1 & 2). Subsequently, 

three major issues are likely to have fostered the ongoing degradation of reef 

architecture. First, increasing levels of coral stress resulting from climate-induced 

bleaching events, coastal development and the loss of ecological resilience (e.g. 

herbivory) may have reduced rates of reef accretion (Williams et al. 2001; Pandolfi et 

al. 2005; Aronson & Precht 2006; Mora 2008). Second, reductions in live coral cover 

may prevent the recovery of reef structure following direct physical impacts and 

erosion. In particular, this thesis provides evidence that hurricane impacts and enhanced 

bioerosion in perturbed reefs may have played a significant role in the region-wide 

declines in architectural complexity in recent decades (Chapter 3). Finally, changes in 

the ecological composition of benthic communities towards reefs dominated by stress-

resistant corals that contribute little to reef complexity may have gradually decreased 

architectural complexity on many reefs within the Caribbean (Green et al. 2008; 

Wilkinson 2008; Steneck et al. 2009; Chapter 2 &4). In Chapters 2 and 4, for example, I 

demonstrate that live coral cover does not necessarily reflect reef complexity at local 

and regional scales, and that coral species composition and the morph-functional 

attributes of dominant corals are important for defining the contribution of coral cover 

to reef complexity. The capacity of reef systems to support biodiversity and provide 

environmental services to humans is therefore likely to rely more on the presence of key 

structure-forming corals than on overall coral cover (Chapter 5).  
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It is important to highlight some inherent problems and necessary caveats of this 

thesis. (1) The regional-scale analyses reported in Chapters 1, 2 & 3 use data I collated 

from a considerable number of published and unpublished studies reporting reef 

architectural complexity and coral cover. Literature searching and data collation for 

these analyses was as extensive as possible, but accessing grey literature is problematic, 

even though much is available on the internet. A great deal of key information is 

unpublished and, in some cases, valuable data are owned by specialists who were not 

keen to collaborate in these studies (e.g. CARICOMP), thus not all relevant data could 

be included in the analyses. Nonetheless, the relatively high sample size and good 

spatial representation of sites suggests that the results are robust and likely to be 

representative of the Caribbean region.  (2) There is also important variation in the 

methods used in the studies included in the analyses. For example, key aspects of 

methodologies such as levels of replication and lengths of transects often differ 

considerably among studies and among scientists within a study. However, this type of 

variation can be considered with the statistical tools that I employed in the thesis (e.g. 

meta-analysis; Arnqvist & Wooster 1995), and I therefore controlled for such variation 

as much as possible throughout the thesis. (3) Many of the analyses in the thesis use the 

rugosity index, which is a descriptor of small-scale reef relief. This is clearly an 

important scale for many organisms such as fishes and invertebrates (Luckhurst & 

Luckhurst 1978; Idjadi & Edmunds 2006; Chapter 5), but reefs also exhibit larger scales 

of architectural complexity that were not considered in these analyses. For example, 

geomorphologic differences (e.g. spur and grooves, forereefs) can be very important in 

defining larger-scale patterns of diversity and abundance of reef-associated species 

(Karlson et al. 2004; Connolly et al. 2005). Therefore the results presented in this thesis 

should be considered with reference to the fine scale and could not necessarily be 

extrapolated to larger structural scales. However, it is likely that larger scales of 

‘complexity’ follow at some degree the patterns depicted at finer scales, as suggested by 

the high correlation between fine (reef rugosity) and reefscape (visual estimations, 

remote sensing) scales that local studies have reported (Kuffner et al. 2007; Wilson et 

al. 2007; Chapter 5).  
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Implications for conservation 

 

Reversing reef degradation is a major challenge for scientists and reef managers 

concerned with maintaining reef ecosystems and the security and well-being of 

Caribbean coastal communities. Among scientists and managers, it is commonly 

accepted that the overall cover or abundance of reef-building corals directly relates to 

the ‘state’ or ‘health’ of tropical reefs, and therefore that restoring coral cover is key to 

restoring ecosystem functioning and services (Mumby et al. 2007; Selig & Bruno 

2010). The presence of healthy coral populations is indeed likely to indicate reefs that 

are more resilient to environmental change. For example, healthy coral populations can 

indicate reefs that have not shifted to macroalgae-dominated alternate states (Hughes 

1994; Nyström  et al. 2000; Williams et al. 2001; Bruno et al. 2009). However, this 

thesis has shown that changes in coral cover do not always capture changes in reef 

architectural complexity (Chapter 2), which is a reef attribute more likely to have direct 

ecological, economical and social relevance (Sheppard et al. 2005; Pratchett et al. 2008; 

Cinner et al. 2009). To restore the ecosystem services that Caribbean corals provide to 

other species, including humans, coral cover and reef architecture may therefore require 

different types of management and at different spatial scales. The major threats to reef-

building corals are occurring at regional and global scales; hence international 

regulations to reduce the impacts of human activities are probably the most appropriate 

scales at which to protect reef corals. By contrast, reef architecture may be more 

sensitive to local-scale reef conditions (e.g. rates of erosion and hurricane impacts) and 

hence, for the purposes of management, may be relatively independent of changing 

coral cover at this scale (Chapters 2 & 3). Halting and reversing rates of reef complexity 

loss may therefore depend largely on the protection and enhancement of conditions at 

the local reef scale.  

 

Halting rates of architectural complexity loss in the Caribbean will also require a 

major emphasis on facilitating the maintenance and endurance of healthy populations of 

key structure-forming coral species (Chapters 2 & 4). At local scales, conservation goals 

that consider the status of key reef-building coral such as Acropora and Montastrea in 

addition to overall changes in benthic cover may therefore be necessary. At larger 

temporal and spatial scales, more information on the changes in coral community 
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composition and the status of key coral species is needed. While the rapid loss of 

acroporid corals in the 1980s is well described and has resulted in considerable amounts 

of effort in designing conservation and restoration plans for populations of these species 

(Bruckner 2003), the state of populations of  Montastrea corals and other important 

reef-building corals in the Caribbean is much less well known. For instance, the 

temporal changes in areal cover and population demographics of Montastrea corals has 

only been described for a few sites (Edmunds 2002; Bruckner & Bruckner 2006; 

Edmunds & Elahi 2007). Future research in the Caribbean should therefore aim to 

understand the region-wide trends of change and current status of Montastrea corals, 

and to identify changes at the community level across different reefs.   

 

 

Implications of reef complexity decline  

 

The ecosystem services provided by coral reefs are critical to the biodiversity and social 

and economic welfare of millions of people (Moberg & Folke 1999; Cinner et al. 2009), 

and there is therefore an urgent need to understand the long-term effects of reef 

degradation in the Caribbean and elsewhere.  Although collapsing reef structures may 

lead to subsequent declines in a wide range of reef-associated species and the loss of 

important ecosystem services such as coastal protection (Sheppard et al. 2005; Wilson 

et al. 2006), I have focussed mainly on the possible impacts of reef degradation on 

associated fish communities. This focus is because (i) fishes contribute to critical 

ecosystem functions and support local fisheries and tourism across the developing world 

(Bellwood et al. 2003; Newton et al. 2007; Allison et al. 2009; Uyarra et al. 2009); and 

(ii) large amounts of existing relevant information, including regional estimates of fish 

abundance since the 1950s and international programs that report information for at 

least two decades (Paddack et al. 2009; AGRRA and CARICOMP), allow a detailed 

description of the consequences of reef flattening for those fish communities.  

 

The only existing region-wide and long-term study of changes in fish 

assemblages in the Caribbean indicates that overall fish abundance may have begun to 

respond negatively to habitat degradation (Paddack et al. 2009). However, significant 

declines in overall fish density are only apparent during the last few years, during a time 

characterised by a reduction in rates of coral cover loss and a resumption of 

architectural complexity decline in the Caribbean (Paddack et al. 2009; Schutte et al. 
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2010; Chapter 1). Interestingly, significant declines in fish abundance were not apparent 

during the rapid declines in architectural complexity and coral cover in the 1970s and 

1980s. This raises the question of whether the declines in fish abundance in the late 

1990s is the result of a lagged response to the loss of acroporid corals in the late 1970s 

and early 1980s (Paddack et al. 2009), or is a threshold effect in response to expanding 

and high levels of habitat degradation that Caribbean reefs have experienced in recent 

years. In the Caribbean, most fish species do not require specific reef features (as 

suggested by their wide distribution throughout the region and across reef types; 

Carpenter 2002; Sandin et al. 2008), and it is therefore possible that their populations 

could have persisted due to the habitat provided by the remaining coral species, despite 

the loss of acroporid corals. By the late1990s, it is possible that, some reefs were too 

degraded to provide the minimum structural attributes required by many fish species 

and thus only during this time period the effects of habitat degradation on fish 

populations become evident. Chapter 5 of this thesis indeed suggests that the decrease 

in relative cover of the primary remaining important reef-building corals, Montastrea, 

might be one of the drivers of region-wide declines in fish density, as many small-

bodied fish (size classes and species) are strongly associated with the structural 

complexity provided by Montastrea corals. In addition, reductions in energy transfer to 

higher trophic levels on less structurally-complex reefs may in turn result in reduced 

density (or biomass) of predators (Dulvy et al. 2004; Whiteman & Côté 2004; Graham 

et al. 2007; Pratchett et al. 2008; Wilson et al. 2010).  

 

There is, however, also the possibility that other ecological dimensions (not 

captured by total fish density) of reef fish assemblages may have been affected by the 

earlier rapid declines in Caribbean reef complexity. It is possible, for example, that fish 

community composition may have changed as consequence of declines in the 

abundance of particular fish species that depend on habitat features (e.g. coral branches) 

that were lost with the decline in acroporids and increases in abundance of more 

generalist species (Chesson 2000). Attaining a better understanding of the large-scale 

impacts and consequences of reef degradation for reef-associated fishes would be 

helped by integrating information on coral cover, rugosity, algae and fish abundance. 

This would allow more direct exploration of the consequences and timing (e.g. lag 

effects) of habitat degradation for a range of diversity and trophic dimensions of fish 

assemblages, and would allow tests of well-established paradigms such as the role of 

the loss of herbivory in increasing the dominance of macroalgae and subsequent phase 
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shifts (Hughes 1994; Nyström  et al. 2000; Mumby et al. 2007; Bruno et al. 2009). 

Integration of such information may even allow a test of the hypothesis proposed in 

Chapter 3 of the role of herbivorous grazers in increasing rates of bioerosion in fisheries 

closure areas.  

 

 The influence of reef structure and composition (reef architecture, coral cover 

and coral identity) on reef-associated species is rarely explored across different spatial 

scales and geographical locations (exceptions include Nunez-Lara et al. 2005; Newman 

et al. 2006; Semmens et al. 2010). Consequently, the relationship between reef 

biodiversity and the structure of coral reefs is poorly understood and the importance of 

putative drivers of coral cover and architectural complexity loss in a hierarchy of 

different spatial scales needs to be explored, from coral colony scales to whole reef 

systems. Identifying the spatial scales at which different drivers of reef degradation 

affect different species would improve understanding of the effect of losing different 

levels of organization in reef systems, which may be important considerations in reef 

management or restoration planning (Acosta & Robertson 2002; Connolly et al. 2005; 

MacNeil et al. 2009). Large-scale spatial analyses of this sort would also allow 

exploration of the role of the remaining ‘healthy’ reefs as a source of recruits in a matrix 

of degraded reefs, and thus in supporting wider biodiversity and ecosystem functioning. 

In addition, large-scale spatial analyses of reef structure would also allow exploration of 

the possible effects of habitat degradation on taxa that have not been systematically 

recorded, such as most reef-associated invertebrates, which are usually diverse groups 

with strong relationships to the complexity of reef structure (Idjadi & Edmunds 2006; 

Miloslavich et al. 2010) 

 

 

Future change and the carbonate budget on reefs  

 

The balance between the production (calcification) and loss (biological, physical, and 

chemical erosion) of calcium carbonate on a coral reef determines whether or not reef 

structures are maintained. Predictions based on experimental and field observations 

indicate that the combined effects of rising temperatures and ocean acidification could 

increase the frequency of bleaching events and reduce coral calcification drastically 

(Hoegh-Guldberg et al. 2007; Kleypas & Yates 2009). If rates of CaCO3 production by 

corals and other reef calcifiers cannot keep up with rates of erosion, the majority of 
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coral reefs could switch from net accreting to net eroding structures (Veron et al. 2009). 

Increasing our knowledge of how processes such as bioerosion or dissolution of corals 

operate in Caribbean reefs is therefore of the utmost importance. An important future 

research area would be to model the effects of ocean acidification and increasing sea 

temperatures on the carbon budget of Caribbean reefs, as both variables have been 

reported to influence coral growth and calcification considerably in other regions of the 

world (De'ath et al. 2009; Cantin et al. 2010). The role of bioerosion should also be 

explored more thoroughly in future studies. For instance, this thesis suggests that 

biological erosion (as result of enhanced abundance of herbivores fish inside MPAs) 

might be an important process contributing to the loss of architectural complexity on 

Caribbean reefs (Chapter 3). Models designed to explore methods of restoring 

architectural complexity on coral reefs may therefore need to include both ‘positive’ 

(e.g. control of macroalgae abundance) and ‘negative’ (e.g. bioerosion) effects of 

herbivores fishes and invertebrates, as well as information on coral cover and 

composition on reefs, in order to identify appropriate strategies of intervention and 

management. 
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Appendix I 

 

1969 to 1984  

  

 

1985 to 1997 

 

 

 
 

 

1998 to 2008 

 

 

  

 
Figure A1.1. Frequency distributions of the estimates of the slope for each section of the segmented 

regression weighted by sample size (break-points: 1985 and 1998) in the Jackknife (grey bars) and 

Bootstrap (white bars) analyses. Black lines indicate the median slope obtained in each analysis. Red line 

is the slope of the linear model weighted by sample size in each time period. Dotted lines are the 

bootstrap quantiles (0.025 and 0.975).   
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Table A1.1. Summary of Akaike Information Criterion analysis of linear and non-linear models of 

change in yearly mean rugosity over time for the 250 studies for which rugosity data were available for 

more than one year. Abbreviations as in Table 1 in chapter 1.  

 

Model R
2
 Slope df AICc Δ AICc AICc W 

Segmented model (wt) 0.62 -0.169* 22 -22.1 0 0.9972 

Linear model (wt)  0.39 -0.019 26 -8.8 13.3 0.0013 

Robust linear model (wt)  * -0.017 26 -8.5 13.7 0.0011 

Segmented model 0.65 -0.231* 22 -4 18.1 0.0001 

Generalized additive model (wt)  0.99 -0.036* 5.5 7.9 30 0.0000 

Linear model 0.24 -0.021 26 17.5 39.7 0.0000 

Robust linear model * -0.014 26 18.9 41 0.0000 

Generalized additive model 0.99 -0.046* 5.8 27.9 50 0.0000 

*average slope of the different model segments 
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Appendix II 
 
 

Table A2.1. Supplementary site information of the time series reporting coral cover and reef rugosity for Caribbean reefs. 

 

Data source Region Country / Island Site Name Years 
No. 

Years 

Depth 

(m) 

Mean #  

replicates 

Transect 

length 

Bythell et al, 2000
1,2,3

 Lesser Antilles St. Croix, USVI Buck Island BI-2 1989-2000 12 9 4 20 

Bythell et al, 2000
1,2,3

 Lesser Antilles St. Croix, USVI Buck Island BI-4 1989-2000 12 3 4 20 

Bythell et al, 2000
1,2,3

 Lesser Antilles St. Croix, USVI Buck Island BI-5 1990-2000 11 5 4 20 

Caricomp-Dominican Republic
4,*

 Greater Antilles Dominican Republic El Peñón 1996-2001 6 10 6 10 

Caricomp-Trinidad&Tobago
4,5

 Lesser Antilles Trinidad & Tobago Buccoo Reef 1994-2000 7 10 5 10 

Caricomp-Bahamas
4
 SW North Atlantic San Salvador, Bahamas Fernandez Bay 1994-1995 2 10 5 10 

Caricomp-Barbados
4,*

 Lesser Antilles Barbados Bellairs North Reef 1993-1994 2 10 5 10 

Caricomp-Barbados
4
 Lesser Antilles Barbados Bellairs South Reef 1993-1994 2 10 5 10 

Caricomp-Belize
4
 Central America Belize Carrie Bow 1993-1995 3 10 5 10 

Caricomp-Bermuda
4
 SW North Atlantic Bermuda Hog and Twin Breaker 1993-1995 3 10 5 10 

Caricomp-Bonaire
4
 South America Bonaire Barcadera Reef 1994-1995 2 10 5 10 

Caricomp-Colombia
4
 South America Colombia Chengue Bay 1993-1995 3 10 5 10 

Caricomp-Cuba
4
 Greater Antilles Cuba Cayo Coco 1994-1995 2 10 5 10 

Caricomp-Curacao
4
 South America Netherland Antilles Santa Barbara Reef 1994-1995 2 10 5 10 

Caricomp-Jamaica
4
 Greater Antilles Jamaica "Site A" 1993-1995 3 10 5 10 
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continue TableA2.1. 
 

Data source Region Country / Island Site Name Years 
No. 

Years 

Depth 

(m) 

Mean #  

replicates 

Transect 

length 

Caricomp-Mexico
4
 Central America Mexico Puerto Morelos 1993-1995 3 10 5 10 

Caricomp-Nicaragua
4
 Central America Nicaragua Great Corn Island 1993-1995 3 10 5 10 

Caricomp-Puerto Rico
4
 Greater Antilles Puerto Rico 

Media Luna & 

Turrumote 
1994-1995 2 10 5 10 

Caricomp-Saba
4
 Lesser Antilles Saba Ladder Labyrinth 1993-1995 3 10 5 10 

Caricomp-Venezuela
4
 South America Venezuela Playa Caiman 1994-1995 2 10 5 10 

Edmunds et al, 2002
6,*

 Lesser Antilles St. John, USVI Yawsi 1992-1998 7 9 3 10 

Edmunds et al, 2002
6,*

 Lesser Antilles St. John, USVI Tektite 1994-1999 6 14 3 10 

Jaap et al, 1991
7
 SW North Atlantic Florida (US) Bird Key Reef 1989-1991 3 10.5 2 20 

Jaap et al, 1991
7
 SW North Atlantic Florida (US) Loggerhead Key 1989-1991 3 7 2 20 

Jaap et al, 1991
7
 SW North Atlantic Florida (US) Pulaski Shoal 1989-1991 3 9 2 20 

Jaap et al, 1991
7
 SW North Atlantic Florida (US) Texas Rock 1989-1991 3 20 2 20 

Jaap et al, 1991
7
 SW North Atlantic Florida (US) White Shoal 1989-1991 3 5 2 20 

McGrath et al, 2007
8
 SW North Atlantic San Salvador, Bahamas Lindsay reef 1995-2004 10 5 10 5 

McGrath et al, 2007
8
 SW North Atlantic San Salvador, Bahamas Rice bay 1995-2004 10 5 10 5 

McGrath et al, 2007
8
 SW North Atlantic San Salvador, Bahamas Rocky point 1995-2004 10 5 10 5 

Rogers et al, 1982
9
 Lesser Antilles St. Croix, USVI Robin bay 1978-1979 2 5 3 10 
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Data source Region Country / Island Site Name Years 
No. 

Years 

Depth 

(m) 

Mean #  

replicates 

Transect 

length 

Rogers et al, 1991
10

 Lesser Antilles St. John, USVI Yawsi 1989-1990 2 11.7 5 20 

Steneck, 1993
11

 Greater Antilles Jamaica Discovery Bay 1978-1987 10 3 18 10 

Steneck, 1993
11

 Greater Antilles Jamaica Discovery Bay 1978-1987 10 10 20 10 

Steneck, 1993
11

 Lesser Antilles St. Croix, USVI Teague and Salt River 1982-1988 7 3 38 10 

Steneck, 1993
11

 Lesser Antilles St. Croix, USVI Teague and Salt River 1982-1988 7 10 51 10 

Steneck, 1993
11

 Lesser Antilles St. Croix, USVI Teague and Salt River 1982-1988 7 30 76 10 
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Figure A2.1. (a) Relationship between coral cover and reef rugosity on 140 unreplicated reef surveys 

through the Caribbean from 1977 to 2008. The decade in which each study was conducted is indicated 

(circles= 1970s, triangles= 1980s, squares= 1990s, diamonds=2000s). Nine estimated quantile regression 

lines (0.01, 0.05, 0.1, 0.25, 0.5, 0.75, 0.9, 0.95, 0.99 quantile) are superimposed on the scatterplot; the 

median (0.5 quantile) is indicated with a black dashed line and the others are indicated with grey dotted 

lines. The least square estimate of the mean function is indicated by the black solid line (R
2
 = 0.19, Slope 

= 0.013, P<0.001). The (b) slopes and (c) intercepts of the quantile regressions are shown from the 0.01 

quantile to the 0.99 quantile, with90% confidence bands (grey shading), and the mean (solid line) ± 90% 

confidence intervals (dashed lines) from the ordinary least squares regression.  
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Appendix III 
 
Table A3.1. Fish species recorded in this study.  

Species 

Relative 

abundance 

(n = 10,965) 

% occurrence 

per transect  

(n = 85) 

Trophic 

group 

Mean size 

 (± SD) in cm 

Chromis cyanea 17.67 91.25 Planktivore 9.27 (4.95) 

Thalassoma bifasciatum 14.27 96.25 Planktivore 7.42 (4.29) 

Stegastes partitus 8.50 95.00 Herbivore 5.00 (0.00) 

Stegastes adustus 6.34 88.75 Herbivore 11.69 (4.71) 

Halichoeres garnorti 5.85 72.50 Invertivore 7.35 (4.24) 

Acanthurus coerulus 4.82 93.75 Herbivore 23.96 (9.27) 

Clepticus parrae 2.95 28.75 Planktivore 11.64 (6.05) 

Sparisoma viride 2.93 88.75 Herbivore 20.95 (14.59) 

Haemulon sciurus 2.80 25.00 Invertivore 23.73 (7.80) 

Haemulon flavolineatum 2.75 53.75 Invertivore 23.94 (5.49) 

Lutjanus apodus 2.46 23.75 Carnivore 30.15 (6.71) 

Lutjanus mahogoni 2.22 17.50 Carnivore 26.77 (7.14) 

Chromis multilineata 1.80 28.75 Planktivore 10.18 (5.01) 

Stegastes planifrons 1.78 62.50 Herbivore 10.33 (5.00) 

Scarus iserti 1.68 55.00 Herbivore 13.97 (11.33) 

Sparisoma aurofrenatum 1.61 66.25 Herbivore 17.78 (12.03) 

Abudefduf saxatilis 1.60 33.75 Omnivore 13.00 (5.36) 

Caranx ruber 1.38 27.50 Carnivore 23.41 (5.30) 

Haemulon plumierii 1.23 27.50 Invertivore 25.74 (4.34) 

Acanthurus chirurgus 0.96 33.75 Herbivore 25.19 (9.09) 

Acanthurus bahianus 0.92 33.75 Herbivore 27.08 (6.97) 

Microspathodon chrysurus 0.78 43.75 Herbivore 13.00 (7.20) 

Scarus taeniopterus 0.69 40.00 Herbivore 21.18 (10.95) 

Melichthys niger 0.67 36.25 Omnivore 24.46 (5.94) 

Stegastes variabilis 0.67 20.00 Herbivore 10.34 (5.02) 

Kyphosus spp 0.62 20.00 Herbivore 32.72 (7.84) 

Stegastes diencaeus 0.60 33.75 Herbivore 8.94 (4.92) 

Haemulon aurolineatum 0.59 7.50 Invertivore 15.62 (2.42) 

Ocyurus chrysurus 0.58 23.75 Carnivore 32.89 (7.86) 

Canthigaster rostrata 0.57 32.50 Omnivore 5.48 (2.15) 

Cephalopholis cruentatus 0.52 28.75 Carnivore 17.81 (6.75) 

Halichoeres maculipinna 0.51 13.75 Invertivore 6.96 (4.01) 

Chaetodon capistratus 0.47 27.50 Invertivore 5.00 (0.00) 

Haemulon carbonarium 0.42 10.00 Invertivore 25.65 (4.42) 

Paranthias furcifer 0.39 5.00 Planktivore 21.98 (5.58) 

Holacanthus ciliaris 0.32 23.75 Invertivore 34.57 (10.24) 

Haemulon melanurum 0.32 12.50 Invertivore 22.43 (4.43) 

Haemulon striatum 0.29 12.50 Planktivore 19.69 (10.47) 

Pomacanthus paru 0.26 20.00 Omnivore 25.17 (11.61) 

Cephalopholis fulvus 0.24 21.25 Carnivore 16.15 (5.16) 

Halchoeres bivittatus 0.22 7.50 Invertivore 9.58 (5.09) 
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continue TableA3.1 

 

Species 

Relative 

abundance 

(n = 10,965) 

% occurrence 

per transect  

(n = 85) 

Trophic 

group 

Mean size 

 (± SD) in cm 

Pomacanthus arcuatus 0.21 16.25 Omnivore 34.13 (10.19) 

Cantherhines macrocerus 0.20 12.50 Omnivore 36.59 (5.85) 

Lutjanus analis 0.19 2.50 Carnivore 26.19 (5.46) 

Holacanthus tricolor 0.19 16.25 Invertivore 26.43 (7.27) 

Haemulon album 0.18 2.50 Invertivore 17.5 (4.44) 

Anisostremus virginicus 0.16 15.00 Invertivore 32.06 (4.7) 

Mulloidichthys martinicus 0.16 6.25 Invertivore 26.76 (3.93) 

Scarus vetula 0.15 12.50 Herbivore 37.19 (6.82) 

Chaetodon striatus 0.15 10.00 Invertivore 15.00 (0.00) 

Lutjanus griseus 0.14 6.25 Carnivore 17.67 (7.99) 

Holocentrus rufus 0.14 8.75 Invertivore 21.67 (4.88) 

Bodianus rufus 0.13 7.50 Invertivore 22.14 (9.94) 

Lutjanus campechanus 0.12 2.50 Carnivore 28.08 (11.09) 

Sparisoma chrysopterum 0.12 11.25 Herbivore 26.92 (16.65) 

Haemulon macrostomum 0.12 2.50 Invertivore 16.54 (3.76) 

Serranus tigrinus 0.11 11.25 Carnivore 9.17 (5.15) 

Haemulon parra 0.11 3.75 Invertivore 26.67 (3.89) 

Chaetodon aculeatus 0.11 3.75 Omnivore 5.00 (0.00) 

Mycteroperca venenosa 0.09 2.50 Carnivore 29.00 (9.66) 

Canthidermis sufflamen 0.09 6.25 Invertivore 16.5 (14.15) 

Aluterus scriptus 0.09 6.25 Omnivore 9.50 (14.23) 

Scarus guacamaia 0.06 3.75 Herbivore 44.29 (10.18) 

Holacanthus bermudensis 0.06 5.00 Invertivore 25.00 (5.77) 

Stegastes leucostictus 0.05 5.00 Herbivore 5.00 (0.00) 

Chaetodon ocellatus 0.05 1.25 Invertivore 11.67 (5.16) 

Gramma loreto 0.05 3.75 Invertivore 5.00 (0.00) 

Holocentrus adscensionis 0.05 3.75 Invertivore 17.00 (4.47) 

Hypoplectrus puella 0.04 3.75 Carnivore 15.00 (0.00) 

Sparisoma rubripinne 0.04 5.00 Herbivore 32.50 (5.00) 

Sparisoma atomarium 0.04 3.75 Herbivore 20.00 (10.00) 

Lactophrys triqueter 0.04 3.75 Invertivore 27.5 (5.00) 

Trachinotus falcatus 0.03 3.75 Carnivore 41.67 (14.43) 

Scarus coeletinus 0.03 1.25 Herbivore 50.00 (0.00) 

Balistes vetula 0.03 3.75 Invertivore 40.00 (8.66) 

Xanthichthys ringens 0.03 2.50 Invertivore 15.00 (0.00) 

Mycteroperca bonaci 0.03 3.75 Piscivore 35.00 (25.98) 

Hypoplectrus nigricans 0.02 1.25 Carnivore 15.00 (0.00) 

Acanthostracion polygonia 0.02 2.50 Invertivore 30.00 (7.07) 

Diodon holocanthus 0.02 2.50 Invertivore 5.00 (0.00) 

Diodon hystrix 0.02 2.50 Invertivore 5.00 (0.00) 

Calamus calamus   0.02 1.25 Invertivore 25.00 (0.00) 

Chaetodon sedentarius 0.02 2.50 Omnivore 15.00 (0.00) 

Sphyraena barracuda 0.02 2.50 Piscivore 50.00 (0.00) 
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Species 

Relative 

abundance 

(n = 10,965) 

% occurrence 

per transect  

(n = 85) 

Trophic 

group 

Mean size 

 (± SD) in cm 

Epinephelus guttatus 0.01 1.25 Carnivore 25.00 (0.00) 

Gymnothorax milaris 0.01 1.25 Carnivore 25.00 (0.00) 

Lutjanus cyanopterus 0.01 1.25 Carnivore 35.00 (0.00) 

Lutjanus jocu 0.01 1.25 Carnivore 35.00 (0.00) 

Scorpaena plumieri 0.01 1.25 Carnivore 25.00 (0.00) 

Pseudupeneus maculatus 0.01 1.25 Invertivore 15.00 (0.00) 

Cantherhines pullus 0.01 1.25 Omnivore 25.00 (0.00) 

Gymnothorax moringa 0.01 1.25 Piscivore 35.00 (0.00) 

Mycteroperca tigris 0.01 1.25 Piscivore 15.00 (0.00) 

 


	1.Title page.pdf
	2. Contents.pdf
	3. Abstract.pdf
	4. Aknowledgements.pdf
	5. Introduction.pdf
	6. Chapter 1.pdf
	7. Chapter 2.pdf
	8. Chapter 3.pdf
	9. Chapter 4.pdf
	10. Chapter 5.pdf
	11. Concluding remarks.pdf
	12. References.pdf
	13. Appendix 1.pdf
	14. Appendix 2.pdf
	15. Appendix 3.pdf

