
Three results on mixing shapes

T. Ward

Abstract. Let α be a Zd–action (d ≥ 2) by automorphisms of a compact
metric abelian group. For any non–linear shape I ⊂ Zd, there is an α with the

property that I is a minimal mixing shape for α. The only implications of the
form “I is a mixing shape for α =⇒ J is a mixing shape for α” are trivial
ones for which I contains a translate of J .

If all shapes are mixing for α, then α is mixing of all orders. In contrast to
the algebraic case, if β is a Zd–action by measure–preserving transformations,

then all shapes mixing for β does not preclude rigidity.
Finally, we show that mixing of all orders in cones – a property that co-

incides with mixing of all orders for Z–actions – holds for algebraic mixing
Z2–actions.

1. Introduction

Let α be a measure–preserving action of Zd on a standard probability space
(X,B, µ) (d ≥ 2). If X is a compact metrizable abelian group, µ is Haar measure,
and each αn is a group automorphism, then α is an algebraic dynamical system (as
studied in [10], where the notions below are found).

The action α is rigid if there is a sequence nj → ∞ (going to infinity means
leaving finite sets) with the property that µ(A ∩ αnjA) → µ(A) as j → ∞ for all
A ∈ B. The action α is mixing of all orders if for all r ≥ 1 and for all sets B1, . . . , Br
in B,

lim
nl∈Zd and nl−nl′→∞ for 1≤l′<l≤r

µ

(
r⋂
l=1

α−nl(Bl)

)
=

r∏
l=1

µ(Bl).

The shape F = {n1, . . . ,nr} is mixing for α if for all sets B1, . . . , Br in B,

lim
k→∞

µ

(
r⋂
l=1

α−knl(Bl)

)
=

r∏
l=1

µ(Bl).

The shape F is a minimal non–mixing shape for α if F is non–mixing but any
subset of F is mixing. A shape is admissable if it does not lie on a line in Zd, it
contains 0, and for any k > 1 the set 1

kS contains non–integral points.
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For the last mixing property, take d = 2 for simplicity and let α be a measure–
preserving Z2–action on (X,B, µ) as before. An oriented line through the origin in
Z

2 is a half–line starting at the origin. An oriented cone C = (`1, `2) in Z2 is the
region between an ordered pair (`1, `2) of oriented half lines, including the edges.
Notice that if `1 = `2 then the cone (`1, `2) comprises exactly a half–line. The cone
defined by no lines is all of Z2. Given a collection {`j} of half–lines, there is an
associated collection of oriented cones {Cj} where Cj is the cone associated to the
ordered pair (`j , `j+1) (if there are n lines, with j + 1 reduced mod n).

The Z2–action α is mixing of all orders in the oriented cone C if for every r ≥ 1
and all sets B1, . . . , Br in B,

lim
nj∈C and nj→∞ for 1≤j≤r

ν

(
r⋂
l=1

α−(n1+n2+···+nl)(Bl)

)
=

r∏
l=1

µ(Bl). (1)

Theorem 1.1. If S is any admissable shape, then there is an algebraic Zd–action
for which S is a minimal non–mixing shape. If S and T are admissable shapes, then
there is an algebraic Zd–action that is mixing on S and not mixing on T unless a
translate of T is a subset of S.

That is, the poset formed by equivalence classes (under translation) of admissable
shapes in Zd, partially ordered by inclusion, embeds in the hierarchy of mixing
properties for Zd–actions.

Theorem 1.2. If α is an algebraic Zd–action for which every shape is mixing,
then α is mixing of all orders. In general, a measure–preserving Zd–action for
which every shape is mixing can be rigid.

Notice that the notion of mixing shapes still makes sense for d = 1, and there it
is not clear whether in general all shapes mixing implies mixing of all orders.

For the next theorem, notice that if an action α is mixing of all orders in the
oriented cones associated to a family of lines L, then the same is true of any larger
family L′ ⊃ L. It follows that the object of interest is the smallest set of lines for
which the property holds. Examples related to parts (b) and (c) of Theorem 1.3
are given below (Example 3.5).

Theorem 1.3. Let α be a mixing algebraic Z2–action on the compact abelian group
X. Then there is a collection L = {`j} of half–lines in Z2 with the property that
α is mixing of all orders in the oriented cones associated to the family of lines.
Moreover, (a) if X is connected then L may be taken to be empty; (b) if α is
expansive then L may be taken to be finite; (c) if α is not expansive and X is not
connected, then the smallest such set L may contain a line through every point in
Z

2.

2. Proof of Theorems 1.1 and 1.2

Let R be any ring; a polynomial f ∈ R[u±1
1 , . . . , u±1

d ] may be written
∑

n∈S cnun,
where each cn ∈ R\{0}, and un is the monomial un1

1 . . . undd . The set S = Supp(f)
is the support of f . If R is an integral domain, then the polynomial f is absolutely
irreducible if f is irreducible over an algebraic closure of the field of fractions of R.
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A polynomial is primitive if its support includes the origin and is not an integer
dilate of another set.

Let R = Z[u±1
1 , . . . , u±1

d ] and Rp = Fp[u±1
1 , . . . , u±1

d ]. Following [10], if M is
a module over R, then the d commuting automorphisms given by multiplication
by u1, . . . , ud have as duals d commuting automorphism of X = M̂, defining an
algebraic Zd–action αM on X. Conversely, any algebraic action is of the form αM

for some R–module M. Notice that any Rp–module is an R–module.

Proof of Theorem 1.1. The following result is proved in Section 3 of [4]: if the
polynomials

f (k)(u1, . . . , ud) = f(uk1 , . . . , u
k
d)

have no primitive irreducible factors for any k ≥ 1 (apart from k a power of p), and
the support of f is the admissable shape S, then S is a minimal non–mixing shape
for the Zd–action αRp/〈f〉.

So it is enough to show that for any admissable shape S there is a prime p,
and a polynomial f over Fp whose support is S and with the property that f (k) is
absolutely irreducible for all k ≥ 1. By Lemma 3.10 of [4] (see also Theorem I,II in
[3]), if Supp(f) is admissable, then there is an N(Supp(f)) with the property that
if f (k) has no primitive irreducible divisors over F̄p for 1 ≤ k ≤ N(Supp(f)), then
f (k) has no primitive irreducible divisors for all k not a power of p.

Fix an admissable shape S with s = |S|, an integral domain R, and a generic
polynomial h ∈ R[u±1

1 , . . . , u±1
d ] with support S. Then h = h(u) = h(u1, . . . , ud) is

a polynomial h∗(u,a) ∈ R[u, a1, . . . , as] in which the variables a1, . . . , as all appear
with degree one. By the Bertini–Noether Theorem (Proposition 9.29 in [2]), there
exist polynomials R1, . . . , Rt ∈ R[a] with the property that h∗(u,a0) is absolutely
irreducible if and only if at least one of R1(a0), . . . , Rt(a0) is not zero. So, if
the polynomial h(u,a) is absolutely irreducible over Q(a), then the polynomials
R1, . . . , Rt don’t vanish identically. Therefore, in this case there exists a0 integral
such that for all but finitely many primes p, h̄(u,a0) is absolutely irreducible over Fp
and Supp(h̄(u,a0) = S, where g 7→ ḡ is the canonical map Z → Fp. Now consider
the collection of all the polynomials h∗(u,a) with support S. By Bertini’s Theorem
(see Theorem I.11.18 of [9] or Theorem IX.6.17 of [13]), the generic member of
this linear system (of dimension greater than or equal to 2) is irreducible if and
only if the general member is not composite with a pencil (h∗ is composite with
a pencil if h∗(u,a) = P (Q(u)) with P ∈ Q(a)[λ]). Assume the general member is
composite with a pencil, and let P (λ) =

∑n
i=0 aiλ

i and Q(u) =
∑

n∈S0
cnun. Then

h∗(u,a) =
∑n
i=1 ai

(∑
n∈S0

cnun
)i
. Now count the number of coefficients that may

be chosen freely in the family: in h∗(u,a) there are s; in P (Q(u)) there are n,
so s = n. On the other hand, the support of the family P (Q(u)) has cardinality
|S0| + |2S0| + · · · + |nS0| where 2S0 = {n + m | n ∈ S0,m ∈ S0} and so on. If
|S0| > 1, then it follows that the cardinality of the support of the family of P (Q(u))
exceeds s, which is impossible. If |S0| = 1, then Q is a monomial, so the shape S
is not admissable, contrary to our assumption. We deduce that the family h∗(u,a)
is not composite with a pencil, and therefore is generically absolutely irreducible.
Now apply the bound N(Supp(f)) to deduce that the generic specialization h(u,a0)
has the property that for all but finitely many primes, the reduction mod p is a
polynomial f with Supp(f) = S and with f (k) absolutely irreducible for all k ≥ 1
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not a power of p. By the remarks above, this shows that there is an algebraic
Z
d–action for which S is a minimal non–mixing shape.
Now fix two admissable shapes S and T , with the properties that for all n ∈ Zd,

T + n 6⊂ S, and 0 ∈ S ∩ T . By the construction above, we can find a polynomial f
in the ring R with the property that, for a generic prime p, the reduction mod p of
f gives a polynomial f̄ in Rp whose support is S and which has the property that
f (k) has no primitive irreducible factors for k not a power of p.

It follows from Proposition 28.9 in [10] that for a generic prime p, the Zd–action
αRp/〈f̄〉 has S as its unique extremal non–mixing set (see Definition 28.8 in [10]).
We now need to show that, for an appropriate choice of the prime p, the shape T is
a mixing set for αRp/〈f̄〉. This is not guaranteed because of possible cancellations
mod p.

The following example (Example 28.10(7) in [10]) illustrates the problem. If
f(u1, u2) = 1 + u1 + u2, and p is chosen to be 2, then {(0, 0), (1, 0), (0, 1)} is the
unique extremal non–mixing set for αR2/〈f̄〉, but the identity (1 + u1 + u2)(1 +
u1) = 1 + u2

1 + u2 + u1u2 mod 2 shows that the set {(0, 0), (2, 0), (0, 1), (1, 1)} is
also a minimal non–mixing set for αR2/〈f̄〉. However, choosing for the fixed shape
T = {(0, 0), (2, 0), (0, 1), (1, 1)} a sufficiently large prime p (in this case, p > 2 will
suffice), this cancellation will not occur mod p and so the shape T will be mixing
for αRp/〈f̄〉.

Similarly, by Proposition 28.9 in [10] if the prime p is chosen large enough for
the given shape T , the shape T will be mixing for the action αRp/〈f̄〉.

Proof of Theorem 1.2. The first part follows from characterisations of higher–
order mixing and mixing shapes for algebraic dynamical systems in Sections 27 and
28 of [10].

Before turning to the second part of Theorem 1.2, we assemble some basic facts
about Gaussian processes (see for instance [12]). The entropy of a d–dimensional
Gaussian process has been computed in [8]. Define a measure space by (Ω,F0) =∏

n∈Zd(R,B) where B is the Borel σ–algebra on R. Let ξn(ω) be the nth coordi-
nate of ω ∈ Ω. Let µ be a probability measure on (Ω,F0) with the property that
for any k–tuple of integer vectors n1, . . . ,nk of the k–dimensional random variable
(ξn1 , . . . , ξnk) is a k–dimensional Gaussian law, and the joint distribution is sta-
tionary in the sense that µ(n1+m,...,nk+m) = µ(n1,...,nk) for any m ∈ Zd. Let F
denote the completion of F0 under µ. Then (Ω,F , µ, {ξn}n∈Zd) is a d–dimensional
Gaussian stationary sequence. Assume that E{ξn} = 0 for each n ∈ Zd. The
covariance function R : Zd → C may be expressed in terms of a (symmetric)
spectral measure ρ on Td via Khinchine’s decomposition, R(n) = E{ξn+mξm} =∫ 1

0
· · ·
∫ 1

0
e−2πi(n1s1+···+ndsd)ρ(ds1 . . . dsd). Conversely, if ρ is a symmetric finite mea-

sure on Td, then there is a unique d–dimensional Gaussian stationary sequence
whose spectral measure is ρ.

Associated to any Gaussian stationary sequence of the above form there is a
measure–preserving Zd–action α, defined by the shift on Ω. Standard approxi-
mation arguments (see [12]) give the following. Let C denote the class of func-
tions f : Ω → C with the property that f(ω) = F (ξm1(ω), . . . , ξmt

(ω)) for some
m1, . . . ,mt and some bounded continuous function F : Rt → C. Let α be a Gaus-
sian Zd–action. Then, in order to check any mixing property, it is sufficient to check
it for functions in the class C.
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For each n ∈ Zd, the Z–action generated by the tranformation αn is again Gaus-
sian, on (Ω,Fn), where Fn is the sub–σ–algebra of F generated by the projections
{ξkn}k∈Z. The spectral measure of αn is ρn = ρψ−1

n , where ψn : Td → T is given
by ψn(s1, . . . , sd) = n1s1 + · · ·+ ndsd mod 1.

To exhibit an example for the second part of Theorem 1.2, we simply check
that a simple modification of the construction of Ferenci and Kaminski in [1] has
the stated properties. Choose Q–independent numbers 1, β1, . . . , βd, and let f(t) =
(β1t, . . . , βdt) (mod 1) for t ∈ T the additive circle. Let ı : Td → T

d be the involution
ı(t1, . . . , td) = (1 − t1, . . . , 1 − td), and let λ be Lebesgue measure on Td. Define
a symmetric, singular, continuous measure ρ on Td by ρ = 1

2

(
λf−1 + λ(ı ◦ f)−1

)
.

Let α be the Gaussian Zd–action with spectral measure ρ. The covariance function
is given by

R(n) =
sin(2π(n1β1 + · · ·+ ndβd))

2π(n1β1 + · · ·+ ndβd)
. (2)

Choose a sequence nj = (n(j)
1 , . . . , n

(j)
d ) → ∞ for which n

(j)
1 β1 + · · · + n

(j)
d βd → 0

as j →∞. Then R(nj)→ 1 as j →∞. It follows that the 2t–dimensional random
Gaussian vector

Φj(ω) =
(
ξm1(ω), . . . , ξmt

(ω), ξm1−nj (ω), . . . , ξmt−nj (ω)
)

has covariance matrix

[
V

(j)
00 V

(j)
10

V
(j)
01 V

(j)
11

]
, where V (j)

00 = V
(j)
11 is the covariance matrix V

of (ξm1(ω), . . . , ξmt
(ω)), and V

(j)
01 has (p, q)th entry is

E{ξmp
ξmq−nj} = R(mp −mq + nj)→ R(mp −mq)

as j →∞ by our choice of nj . Thus V (j)
01 → V ; similarly V (j)

10 → V . By the remark
above, this shows that µ(αnj (A) ∩A))→ µ(A) for all A ∈ F , so α is rigid.

Let S = {n1, . . . ,nr}, and define a random vector of dimension r× t by Ψk(ω) =(
ξmi−knj (ω) | i = 1, . . . , t; j = 1, . . . , r

)
. This vector is Gaussian with zero mean

and covariance matrix

Vk =

V
11
k V 12

k . . . V 1r
k

...
...

V r1k V r2k . . . V rrk

 ,
where V jlk is the t× t matrix whose (p, q)th element is

v
(j,l)
(p,q)(k) = E

(
ξmp−knjξmq−knl

)
=

{
R(mp −mq) if j = l

R(mp −mq + knl − knj) if j 6= l.

Notice that V0 = V jjk is the covariance matrix of (ξn1 , . . . , ξnt). For j 6= l, it is clear
from (2) that

lim
k→∞

v
(j,l)
(p,q)(k) = 0,
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so that

lim
k→∞

Vk =


V0 0 . . . 0
0 V0 . . . 0

. . .
0 0 . . . V0

 .
It follows that α is mixing for all shapes.

3. Proof of Theorem 1.3

As in the proof of Theorem 1.1, the (countable) dual group M = X̂ is a module
over the ring R = Z[u±1

1 , u±1
2 ].

Following [11], expanding the characteristic functions of the sets appearing in
(1) as Fourier series on X shows that property (1) is equivalent to the following:
for any non–zero r–tuple (m1, . . . ,mr) ∈Mr,

un1m1 + un1+n2m2 + · · ·+ un1+n2+···+nrmr 6= 0 (3)

whenever n1, . . . ,nr ∈ C lie outside some sufficiently large finite set in Z2 (how
large depending on the characters (m1, . . . ,mr) ∈Mr).

Recall that a prime ideal p ⊂ R is associated with the module M if there is
an element m ∈ M for which p = {f ∈ R | f · m = 0 ∈ M}. The basic mixing
behaviour is governed by the following lemmas.

Lemma 3.1. The following conditions are equivalent: (i) αM is mixing; (ii) αM
n is

ergodic for every n 6= 0; (iii) no prime ideal associated with the module M contains
a polynomial of the form umφ(un) where φ is cyclotomic.

Proof. See Proposition 6.6(3) in [10]

Lemma 3.2. The following conditions are equivalent: (i) αM is mixing of all or-
ders in the cone C; (ii) for every prime ideal p associated with M, αR/p is mixing
of all orders in the cone C.

Proof. This follows from the proof of Theorem 2.2 in [11] or Theorem 27.2 in [10]
by restricting those proofs to the special sequence of mixing times in the cone.

Lemma 3.3. If X = XM is connected, and αM is mixing, then αM is mixing of
all orders.

Proof. This is proved in [11].

According to Lemma 3.2, in order to prove Theorem 1.3 it is sufficient to consider
mixing actions of the form αR/p on XR/p. If XR/p is connected, then by Lemma
3.3 the action αR/p is mixing of all orders, which proves Theorem 1.3 (a).

Assume therefore that XR/p is not connected. It follows that p = char (R/p) is
a rational prime. Let Rp = Fp[u±1

1 , u±2
2 ]; then R/p becomes Rp/q for a prime ideal

q ⊂ Rp. Notice that the ideal q may be {0}: in this case the original ideal p must
have been p ·Z[u±1

1 , u±1
2 ]. The corresponding Z2–action is the full two–dimensional

shift on p symbols which is mixing of all orders. From now on we therefore assume
that q is non–zero. By Proposition 25.5 of [10], if α is ergodic then q must be
principal, so it is enough to look at mixing Z2–actions of the form αRp/〈f〉, where
f ∈ Rp. For any polynomial g ∈ Rp, let CH(g) denote the convex hull of Supp(g).
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Choose a finite set of oriented lines through the origin L(f) with the following
properties: (i) for each extreme point n of CH(f), there is a line `(n) ∈ L(f) such
that CH(f)\{n} is entirely contained in one of the open half–planes defined by the
line parallel to `(n) through n; (ii) all the cones defined by L(f) are strictly acute.

The group X = XRp/〈f〉 has the following form. If f =
∑

n∈Supp(f) fnun, then

XRp/〈f〉 = {x ∈ FZ
2

p |
∑

n∈Supp(f)

fnxn+m = 0 ∈ Fp for all m ∈ Z2}. (4)

When described in this way, the Z2–action αRp/〈f〉 is the shift on the closed shift–
invariant subgroup of FZ

2

p defined by (4).

Lemma 3.4. If C is a cone determined by the lines L(f) and αRp/〈f〉 is mixing,
then αRp/〈f〉 is mixing of all orders in C.

Proof. First notice that the set Supp(f) does not lie on a line – if it did, then f
would be a polynomial in a single monomial t = un say. In this case the action of
α

Rp/〈f〉
n is isomorphic to the infinite direct product of one–dimensional systems de-

termined by the Z[t±1]–module Z[t±1]/〈p, f〉. Since the ideal 〈p, f〉 is non–principal
and Z[t±1] ⊗ Q is a principal ideal domain, the group Z[t±1]/〈p, f〉 is finite (see
Examples 6.17(3) in [10]). It follows that αRp/〈f〉

n is periodic and therefore cannot
be mixing.

Fix the cone C. With the chosen ordering described in Section 1, the cone C
is defined by a “bottom” half–line `1 and a “top” half–line `2. Each polynomial
h ∈ Rp defines a character on X = XRp/〈f〉. Two polynomials h1 and h2 will
define the same character if h1 − h2 ∈ 〈f〉. Denote by h̄ a single character on X,
and let h denote any polynomial that defines that character. Each character h̄ with
Supp(h) ⊂ C has a distinguished representative h̃, defined as follows. Let Bf (C)
denote the half–open strip along the bottom (= `1) edge of C, with width exactly
equal to the width of CH(f) in the direction orthogonal to `1. The polynomial h̃
is defined by the following two properties:

(i)h̃ defines the character h̄,
(ii) Supp(h̃) ⊂ Bf (C).
There is such a representative: by construction there is a line parallel to `1 that

meets Supp(f) in a singleton and has the property that any other line parallel
to `1 above it does not meet Supp(f). It follows that if n ∈ Supp(h)\Bf (C), an
appropriate multiple (of the form cumf with c ∈ Fp) of f may be added to h to
give h′ with n /∈ Supp(h′) and with the top edge of Supp(h′) the same as the top
edge of Supp(h) at all points other than n. After finitely many such additions, we
end up with the desired polynomial h̃.
claim 1: The representative h̃ is unique. That is, h̄1 = h̄2 if and only if h̃1 = h̃2.

To see this, first notice that if h̃1 = h̃2, then h̄1 = h̄2. Now the set Bf (C) has,
by construction, the following property: given any element y ∈ FBf (C)

p , there is an
element y∗ ∈ X such that y∗ restricted to Bf (C) coincides with y. This is clear
from (8). If then h̃1 6= h̃2, there is a point n ∈ Bf (C) with (h1)n 6= (h2)n; choose
y ∈ FBf (C)

p with the property that the characters defined by h1 and h2 differ on
this point. Then h̄1 and h̄2 must differ on y∗.
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For a character h̄ with Supp(h) ⊂ C define a number r(h̄) by r(h̄) = k if the line
orthogonal to `2 most distant from the origin that intersects Supp(h̃) meets `1 at
distance k from the origin.
claim 2: If n ∈ C, then r(unh) > r(h).

This is clear: the polynomial unm̃ has an associated representative ũnm̃ obtained
by adding multiples of monomials times f . There is a face of CH(f) orthogonal to
`2, so the support of the resulting polynomial moves further away from the origin.

Now consider property (3). Let m1, . . . ,mr be a collection of polynomials, not all
zero, with Supp(mi) ∈ C (if this is not the case, multiply all of them by a monomial
un to ensure their supports move into C). By the second claim, if n2, . . . ,nr ∈ C
are large enough, then for each j = 2, . . . , r the set Supp( ˜un1+···+njmj) contains
points not in

Supp(ũn1m1 + ˜un1+n2m1 + · · ·+ ˜un1+···+nj−1mj−1).

By the first claim, it follows that the character

un1m1 + un1+n2m2 + · · ·+ un1+n2+···+nrmr

is non–trivial, proving Lemma 3.4.

Proof of Theorem 1.3. Let M be the R–module associated to the action α on
X. As pointed out above, (a) follows from Lemma 3.3, so we may assume that X is
not connected and α acts expansively. By Corollary 6.13 of [10], it follows that the
R–module M is Noetherian, so there are only finitely many prime ideals associated
to M (see Theorem 6.5, Chapter 2 of [6]). Let L be the finite set of lines given
by the union of the set of lines chosen before Lemma 3.4 for each of the associated
prime ideals. Then any cone C defined by L is a sub–cone of a cone in Lemma 3.4,
so by Lemma 3.2 the action α = αM is mixing of all orders in C, proving (b).

Finally, (c) follows from Example 3.5(2) below.

Example 3.5. (1) An example to illustrate Theorem 1.3(b) is given by Ledrap-
pier’s example [5] for which the shape {(0, 0), (0, 1), (1, 0)} is non–mixing. In the
R–module description, Ledrappier’s example corresponds to the module

R

〈2, 1 + u1 + u2〉
.

In the notation of Section 3, this means that the prime p is 2 and the polynomial
g is 1 + u1 + u2. The convex hull is CH(g) = {(s, t) ∈ R2 | 0 ≤ s, t ≤ 1, s+ t ≤ 1}
with extreme points (0, 0), (0, 1), and (1, 0). A suitable set of lines that satisfy
properties (i) and (ii) are the five oriented lines through the origin and the points
(1, 0), (−1, 1), (−1,−1), (1,−2) and (1, 2). Notice that there are many other possible
choices, though all of them have at least five lines. The statement (b) for this
example is then that mixing of all orders in the sense of equation (1) occurs in each
of the five associated cones.
(2) Without the assumption that the group be connected or that the action be
expansive, there may be no cones in which mixing of all orders can occur. An
example to show this starts again with Ledrappier’s example [5] for which the
shape {(0, 0), (0, 1), (1, 0)} is non–mixing, and applies linear maps in Z2 to produce
similar examples for which any given triangle is a non–mixing shape. Since any cone
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subtending a positive angle contains some triangle, the product of these (countably
many) examples gives the required example. Let

M =
⊕

a∈Z\{0},b∈Z

R

〈2, 1 + ua1u
b
2 + ua1u

b+1
2 〉

.

Then the Z2–action corresponding to the module M is not mixing on the shapes
{(0, 0), (a, b), (a, b+ 1)} for each a 6= 0, b ∈ Z. It follows that αM cannot be mixing
of all orders in any cone subtending a positive angle.

4. Remarks

I thank Prof. Fried for pointing out [2] and the connection between the Bertini–
Noether Theorem and irreducibility. The Gaussian construction above is based on
that of Ferenci and Kamiński, who used it to exhibit a rigid Z2–action each of whose
elements is a Bernoulli shift; I thank Prof. Kamiński for showing me a preprint of
the paper [1]. Mixing properties in the positive quadrant and their relationship to
mixing properties of a complete Z2–action are discussed in [7].
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