
RESCALING OF MARKOV SHIFTS

Thomas Ward

Abstract. Given a Zd topological Markov shift Σ and a d×d integer matrix M with det(M) 6=
0, we introduce the M–rescaling of Σ, denoted Σ(M). We show that some (internal) power of

the Zd–action on Σ(M) is isomorphic to some (Cartesian, or external) power of Σ, and deduce
that the two Markov shifts have the same topological entropy. Several examples from the

theory of group automorphisms are discussed. Full shifts in any dimension are shown to be

invariant under rescaling, and the problem of whether the reverse is true is interpreted as a
higher–dimensional analogue of William’s problem.

1. Introduction

Let A be a compact metric space, and let AZ
d

be the set of all functions x : Zd → A,
endowed with the product topology. For any set F ⊂ Zd, let ρF : AZ

d → AF denote the
restriction map, sending x to x|F ∈ AF . Denote by σ the natural shift action of Zd on AZ

d

,

σn(x)m = xn+m. (1.1)

A closed, σ–invariant subset Σ ⊂ AZd is called a (topological) Markov shift if there exists a
finite set F ⊂ Zd and a subset P ⊂ AF for which

Σ = Σ(F,P ) = {x ∈ AZ
d

| ρF (σnx) ∈ P for all n ∈ Zd}. (1.2)

The shift action σ restricts to a shift action σ(F,P ) of Zd on Σ(F,P ). For brevity, we shall use
Σ(F,P ) to denote both the set (1.2) and the Zd topological dynamical system (Σ(F,P ), σ

(F,P ))
For a discussion of this definition and some examples, see [S2], Chapter 5.

Let M be a d × d integer matrix with det(M) 6= 0, and let e1, . . . , ed be the standard
basis for Zd. For a finite set F ⊂ Zd, let M(F ) = {nM | n ∈ F}. For P ⊂ AF , define
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M(P ) ⊂ AM(F ) as follows. The map x : M(F )→ A is in M(P ) if and only if y : F → A is
in P , where y(n) = x(nM).

The M–rescaling of the Markov shift Σ(F,P ) is then defined to be

Σ(M)
(F,P ) = Σ(M(F ),M(P )), (1.3)

with associated Zd–action σ(M(F ),M(P )).

Notice that the rescaled shift is well–defined in the following sense: if Σ(F,P ) and Σ(G,Q)

are topologically conjugate Markov shifts then, for any M , so too are Σ(M)
(F,P ) and Σ(M)

(G,Q).

We shall see that Σ and Σ(M) are not in general topologically conjugate, though they
have the same entropy; the first theorem in Section 2 exhibits a more direct connection.

2. Rescaled Markov shifts

Consider a topological Markov shift (Σ(F,P ), σ
(F,P )) and let M be a d× d integer matrix

with det(M) 6= 0.

Theorem 2.1. The Zd–action n 7→ σ
(M(F ),M(P ))
nM is topologically conjugate to the |det(M)|–

fold Cartesian product σ(F,P ) × · · · × σ(F,P ).

Notice that if d = 1, thenM = [m] is a non–zero integer, and the action n 7→ σ
(M(F ),M(P ))
nM

is then simply the usual m–fold power or iterate of σ(M(F ),M(P )).

Proof. Let k = |det(M)|, and choose coset representatives r1, . . . , rk for the subgroup
Z
dM ⊂ Zd. Define a map θ : Σ(M(F ),M(P )) →

(
Σ(F,P )

)k by

θ(x) = (ρZdM+r1(x), ρZdM+r2(x), . . . , ρZdM+rk(x)). (2.1)

We claim that θ is a topological conjugacy. By (1.3), θ is well–defined (each ρZdM+rj (x) is
an allowed point in Σ(F,P )). Moreover, every k–tuple of allowed words appears as the image
of a unique point under θ in Σ(M(F ),M(P )). Thus θ is a homeomorphism. It is clear that θ
intertwines the actions. �

Let h(σ) denote the topological entropy of the Zd shift (for a definition, see footnote to
page 56 of [S2] or Appendix A of [LSW]. When the alphabet A is finite, the entropy is given
by h(σ) = lim supn→∞

1
nd

log |{ρR(n)(Σ)}|) where R(n) = [0, n)d ∩ Zd.).

Corollary 2.2. Topological entropy is invariant under rescaling.
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Proof. This follows from two quite general facts.
Firstly, for any Zd–actions α and β on compact metric spaces X and Y by homeomor-

phisms, we have h(α × β) = h(α) + h(β). This may be proved by an easy extension of
the argument in [AKM] from single maps to Zd–actions. Alternatively, notice that this is
true for measure–theoretic entropy of amenable group actions by the increasing Martingale
theorem (see Lemma 4.1 of [WZ]); the variational principle (see [E]) for Zd–actions then
shows h(α× β) ≥ h(α) + h(β). The reverse inequality is clear. It follows that

h(σ(F,P ) × · · · × σ(F,P )) = k h(σ(F,P )). (2.2)

Secondly, if α is any action by homeomorphisms of a compact metric space X then
h(n 7→ αnM ) = |det(M)|h(α). When d = 1 and M = [m], m > 0, this is the usual power
rule ([AKM], Theorem 2). The extension to Zd–actions is straightforward. It follows that

h(n 7→ σ
(M(F ),M(P ))
nM ) = k h(σ(M(F ),M(P ))). (2.3)

By Theorem 2.1, h(n 7→ σ
(M(F ),M(P ))
nM ) = h(σ(F,P ) × · · · × σ(F,P )); since k 6= 0 we deduce

from (2.2) and (2.3) that h(σ(M(F ),M(P ))) = h(σ(F,P )). �

When the alphabet A is finite and d = 1, it follows that rescaling does not take one
outside the finite equivalence class of the original shift (see [P1] and [P2]).

We now show how the number of periodic points is affected by rescaling. A period for a
Z
d–action α is a lattice of full rank Λ ⊂ Zd; the set of Λ–periodic points is defined by

FΛ(α) = {x | αnx = x for all n ∈ Λ}.

When d = 1, we shall write Fn for FnZ. The symbol Λ will always be used for a lattice of
full rank.

Lemma 2.3. The number of Λ–periodic points in Σ(M)
(F,P ) is given by

∣∣∣FΛ

(
Σ(M)

(F,P )

) ∣∣∣ =
∣∣∣FH(Λ)

(
Σ(F,P )

) ∣∣∣|Zd/(Λ+ZdM)|
,

where H(Λ) is the kernel of the map n 7→ nM + (Λ + ZdM) from Z
d to Zd/(Λ + ZdM).

Corollary 2.4. If d = 1 and M = [m], then∣∣∣Fn(Σ(M)
(F,P ))

∣∣∣ =
∣∣∣Fn/(n,m)(Σ(F,P ))

∣∣∣(n,m)

,

where (n,m) denotes the highest common factor of n and m.
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Proof of Lemma 2.3. This is a simple counting argument. Let x be a Λ–periodic point in
Σ(M)

(F,P ). For each coset r+Λ of Λ in Zd, look at the co–ordinates of x along the coset r+ZdM .
These form an element of Σ(F,P ) with period H(Λ); moreover there are

∣∣Zd/(Λ + ZdM)
∣∣

ways to extract such a point. The result follows. �

Remark 2.5. The rescaling construction may be applied to any Zd action (by homeomor-
phisms or measure–preserving transformations) to produce an action of the same type. Let
α be a Zd action on a set X, and let M be a d×d integer matrix with non–zero determinant.
Choose a set of coset representatives L = {`1, . . . , `| det(M)|} for Zd/ZdM , let c(n) = `j if
`j + ZdM = n + ZdM and let s(j) = `j . Then define a Zd–action α(M) on X | det(M)| by
setting

α(M)
n (x1, . . . , x| det(M)|) = (α(n−c(n))M−1xc(s(1)+n), . . . , α(n−c(n))M−1xc(s(| det(M)|)+n)).

3. Group automorphisms

If α is an expansive action of Zd by automorphisms of a compact group X (or, more
generally, an action satisfying the descending chain condition on closed invariant subgroups),
then α is a Markov shift in the above sense ([KS1]). If the group is abelian, then the system
is determined by a module L over the ring Rd = Z[u±1

1 , . . . , u±1
d ]: the module L as an

additive group is the dual X̂ of X, with multiplication by the variable ui the automorphism
of L dual to the automorphism αei of X. See [KS1] or [LSW] for a detailed discussion of
this correspondence.

In the case of a cyclic module L = Rd/〈f1, . . . , f`〉, the correspondence takes the following
form. The Zd–action αL on XL is the shift action on

XL = {x ∈ TZ
d

|
∑
m

xn+mcj,m = 0 mod 1, for j = 1, . . . , `,n ∈ Zd}, (3.1)

which is a closed, shift–invariant subgroup of the compact group TZ
d

. Here we have written
each polynomial fj(u1, . . . , ud) as

∑
cj,mum, where um = um1

1 . . . umdd .
It is clear from Section 1 that the M–rescaling of αRd/〈f1,...,f`〉 is the Zd–action corre-

sponding to the module Rd/〈f1(um1 , . . . ,umd), . . . , f`(um1 , . . . ,umd)〉 where

M = [mt
1 | · · · |mt

d].

Example 3.1. Consider α = αRd/〈f〉 (f non–zero). By [LSW], the topological entropy of
α is given by

h(α) = log M(f) =
∫ 1

0

· · ·
∫ 1

0

log |f(e2πis1 , . . . , e2πisd)|ds1 . . . dsd
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where M(f) is the Mahler measure of f . It follows from Corollary 2.2 that

M (f(u1, . . . , ud)) = M (f(um1 , . . . ,umd)) (3.2)

whenever det[mt
1 | · · · | mt

d] 6= 0. This may of course be seen directly: the endomorphism
of the d–torus given by the matrix M is Lebesgue measure–preserving.

Example 3.2. Consider α = αR2/〈1+u1+u2〉. By [S3], α is isomorphic to a Z2 Bernoulli

shift. For any M =
[
a b
c d

]
, ad 6= bc, the M–rescaling α(M) = αR2/〈1+ua1u

c
2+ub1u

d
2〉 is also a

Bernoulli shift by Theorem 2.1 and [OW]. By Corollary 2.2 we deduce that α and α(M) are
measurably isomorphic for every non–singular M . Notice that by [S1], α and α(M) are not

topologically conjugate if M 6=
[

1 0
0 1

]
.

Example 3.3. Consider α = αR2/〈2,1+u1+u2〉. In contrast to 3.2 above, the rescalings

of α are not all measurably isomorphic (for instance, if M =
[
−1 0
0 1

]
, then α(M) is not

isomorphic to α; see [KS2], Examples 4.3(1)).

Example 3.4. Let f(u) = un + an−1u
n−1 + · · · + a1u ± 1. As shown in [KS1], αR1/〈f〉

is algebraically isomorphic to the automorphism α of the n–torus Tn determined by the
matrix A companion to f . The M = [m]–rescaling of α is algebraically isomorphic to
the automorphism β of the mn–torus Tmn determined by the companion matrix to the
polynomial f(um). By Corollary 2.2 and [K], α and β are measurably isomorphic (though
they are not topologically conjugate unless m = 1). By Theorem 1.1, βm is algebraically
isomorphic to the m–fold Cartesian product of α. This observation is nothing more than
the following matrix lemma: if A is the companion matrix to f(u), and B is the companion
matrix to f(um), then Bm is conjugate in GL(n,Z) to A⊕ · · · ⊕A (m times).

Example 3.5. Consider the group endomorphism α (the invertible case may be dealt
with by an easy extension) given by the module Z[u]/〈u − 2〉. This is simply the map
x 7→ 2x mod 1 on the circle T. By the above remarks, the endomorphism β of the 2–
torus T2 given by the 2–rescaling of α (i.e. by the module Z[u]/〈u2 − 2〉) is measurably
isomorphic to α. Off a countable set, the map θ : T → T × T sending t = t1

2 + t2
4 + t3

8 +
. . . to

(
t1
2 + t3

4 + t5
8 + . . . , t22 + t4

4 + t6
8 + . . .

)
is an invertible measure–preserving map, and

intertwines the two N–actions. To see this, notice that the 2–rescaling of α is given by the

action of
[

0 1
2 0

]
on T× T, and

θ−1

[
0 1
2 0

] [
t1
2 + t3

4 + t5
8 + . . .

t2
2 + t4

4 + t6
8 + . . .

]
= θ−1

[
t2
2 + t4

4 + t6
8 + . . .

t3
2 + t5

4 + t7
8 + . . .

]
=
t2
2

+
t3
4

+ . . . .
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4. Other examples

Now consider a one–dimensional subshift of finite type Σ = ΣA, where A = (aij) is a 0–1
valued square k × k matrix. The subshift is the shift map on

ΣA = {x ∈ {1, 2, . . . , k}Z | axnxn+1 = 1 for all n ∈ Z}.

For the definition of the zeta function, see [BL].

Example 4.1. The rescalings of the golden mean shift give an infinite family of topologically

distinct subshifts of finite type with the same entropy. Let A =
[

1 1
1 0

]
, and let Σ = ΣA

be the corresponding subshift of finite type. An easy calculation shows that Σ(2) is given
by the matrix

A(2) =


1 1 0 0
0 0 1 1
1 0 0 0
0 0 1 0

 ,
Σ(3) is given by the matrix

A(3) =



1 1 0 0 0 0 0 0
0 0 1 1 0 0 0 0
0 0 0 0 1 1 0 0
0 0 0 0 0 0 1 1
1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 0 1 0


,

and so on. All the shifts have the same entropy. By Theorem 2.1, Fn
(
Σ(n)

)
= F1 (Σ)n = 1;

it follows that Σ(n) cannot be topologically conjugate to Σ for n 6= 1. Similar considerations
show that Σ(n) and Σ(m) have the same zeta function (and therefore can only be topologically
conjugate) if n = m, so this is an infinite family of topologically distinct subshifts of finite
type all with topological entopy log

(
1+
√

5
2

)
. The first few zeta functions are given by:

ζΣ(z) =
1

1 + z − z2
, ζΣ(2)(z) =

1
(1 + z − z2)(1 + z2)

,

and
ζΣ(3)(z) =

1
(1 + z − z2)(1− z3 − z6)

.



RESCALING OF MARKOV SHIFTS 7

Example 4.2. By Corollary 2.4, the zeta function of a rescaling of any subshift of finite
type is computable from the zeta function of the original subshift of finite type. This means
no additional invariants of topological conjugacy can be extracted from the periodic points
of the rescalings of a subshift of finite type. As an illustration, we show how to find the zeta
function of Σ(2) when the zeta function of Σ is given by

ζΣ(z) =
∏

i=1,...,s

1
1− λiz

.

By Corollary 1.4,

ζΣ(2)(z) = exp

( ∞∑
n=1

z2n+1

2n+ 1
(
λ2n+1

1 + · · ·+ λ2n+1
s

)
+
∞∑
m=1

z2m

2m
(λm1 + · · ·+ λms )2

)

= exp

 ∞∑
n=1

zn

n
(λn1 + · · ·+ λns ) +

∞∑
m=1

z2m

2m
(
2
∑
i<j

λmi λ
m
j

)
so that

ζΣ(2)(z) =
∏

i=1,...,s

1
1− λiz

×
∏
i<j

1
1− λiλjz2

. (4.1)

Example 4.3. If σ is a Zd topological Markov shift, then the k–fold Cartesian product
σ×· · ·×σ has kth roots of every kind for any k 6= 0. (For d = 1 a kth root of σ is a subshift
of finite type φ with the property that φk is topologically conjugate to σ; for d > 1 we say
that σ has kth roots of every kind if for any integer matrix M with det(M) = k, there is a
Z
d topological Markov shift φ with the property that the action n 7→ φnM is topologically

conjugate to σ). For the given matrix M , take φ to be the shift σ(M) and apply Theorem
2.1.

Example 4.4. For any N ≥ 1 there is a Zd topological Markov shift with no points of
period Λ with |Zd/Λ| ≤ N . Enumerate the distinct subgroups with index not exceeding N
as Λ1, . . . ,Λk. Define a Zd Markov shift as follows:

Σ0 = {x ∈ {1, 2, 3}Z
d

| ax(n),x(n+ei) = 1 ∀ n ∈ Zd, i = 1, . . . , d}

where A is the matrix

A =

 0 1 1
1 0 1
1 1 0





8 THOMAS WARD

and e1, . . . , ed are basis vectors for Zd. Then Σ0 is a shift with no fixed points (points
invariant under the whole action). For each j = 1, . . . , k, let Mj be an integer matrix with
Z
dMj = Λj . Then the Mj–rescaled shift Σj = Σ(M)

0 has no points with period Λj by Lemma
2.3. It follows that the shift

Σ = Σ0 × Σ1 × · · · × Σk

has the required property.

5. Shifts invariant under rescaling

Let (Σ, σ) be a Zd topological Markov shift, assumed throughout this section to have
only finitely many fixed points. Then (Σ, σ) is said to be invariant under rescaling if for any
integer matrix M with det(M) 6= 0, the rescaled shift σ(M) is topologically conjugate to σ.

Lemma 5.1. If σ is the full d–dimensional shift on s symbols, then σ is invariant under
rescaling.

Notice that Lemma 5.1 is obvious: in the notation of Section 1, the full shift on s symbols
may be defined by taking A = {1, 2, . . . , s}, F = {0} and P = A.

Lemma 5.2. If σ is a Zd Markov shift that is invariant under rescaling, then, for any
lattice Λ ⊂ Zd,

|FΛ(σ)| = s|Z
d/Λ|

where s is the number of points fixed by σ.

That is, if σ is invariant under rescaling, then it has the same periodic point data as a
full shift.

Proof. By Lemma 2.3 and rescaling invariance,

|FΛ(σ(M))| = |FΛ(σ)| = |FH(Λ)(σ)||Z
d/(Λ+ZdM)|.

Pick M so that ZdM = Λ. Then

|FΛ(σ(M))| = |FΛ(σ)| = |FZd(σ)|| det(M)|.

The proof is completed by noting that s = |FZd(σ)| is the number of points fixed by σ, and
|det(M)| = |Zd/Λ|. �

Corollary 5.3. If σ is invariant under rescaling, then the topological entropy of σ is greater
than or equal to log s, where s is the number of points fixed by σ.
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Corollary 5.4. If σ is a one–dimensional subshift of finite type that is invariant under
rescaling, then it is shift equivalent to a full shift.

Proof. By Lemma 5.2, the dynamical zeta function of σ is given by ζσ(z) = 1
1−sz . It follows

that some power of σ is topologically conjugate to a full shift (see Theorem B in [W]). �

For definitions and results used above, see the survey paper [P2].

Problem. If σ is a Zd Markov shift that is invariant under rescaling, is σ topologically
conjugate to a full shift?
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