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Air-water interactions near droplet impact
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The effects of the thin air layer entering play when a water droplet impacts on otherwise still

water or on a fixed solid are studied theoretically with special attention on surface tension

and on post-impact behaviour. The investigation is based on the small density and viscosity

ratios of the two fluids. In certain circumstances, and in particular for droplet Reynolds

numbers below a critical value which is about ten million, the air-water interaction depends

to leading order on lubricating forces in the air coupled with potential flow dynamics in the

water. The nonlinear integro-differential system for the evolution of the interface and induced

pressure is studied for pre-impact surface tension effects, which significantly delay impact,

and for post-impact interaction phenomena which include significant decrease of the droplet

spread rate. Above-critical Reynolds numbers are also considered.

1 Introduction

The present theoretical work is motivated mainly by the air-water interactions induced

when a water droplet impinges on a body of water, a particular industrial context being

in terms of the icing-up of a wing beneath that body of water. Examples of air-water

interactions are observed in the experiments shown by Lesser & Field (1983), Liow (2001)

and in direct numerical simulations by Gueyffier et al. (1999), Josserand & Zaleski (2003)

and Purvis & Smith (2004). A recent review given in Smith et al. (2003) discusses relevant

literature, including interesting papers by Howison et al. (1991, 2002), Wilson (1991) and

Korobkin (1997, 1999) on inviscid aspects, and by King & Tuck (1993), King, Tuck &

Vanden-Broeck (1993), Vanden-Broeck & Miloh (1996) and Vanden-Broeck (2001) on

viscous/inviscid waves of steady or travelling type. The Smith et al. analysis is, however,

perhaps the most relevant one here as it found a critical droplet Reynolds number

below which the air has a lubricating action and above which the air acts as if inviscid.

Moreover, that critical Reynolds number is of the order of 10 million, thus pointing

(rather surprisingly) to the use of lubrication theory in the many practical contexts such

as that mentioned at the beginning where the typical value of Reynolds number is less

than about 100,000. The predictions from the analysis are also in qualitative agreement

with the Lesser & Field experimental results among others.

In the real situations of present background concern the droplet Reynolds number

(Re1, where the subscript 1 signifies the value for water) and Weber number (We1) are

both large, in fact, typically around 10,000–100,000, and the Froude number tends to be

greater still. These values are based on the characteristic water droplet diameter, approach
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velocity, density, kinematic viscosity and air-water surface tension. Gravity can usually

be neglected at least over the shorter term of an impact but surface tension effects (cf.

Kriegsmann et al. (1998), McKinley & Wilson (2001), Miksis & Vanden-Broeck (1999)

and Kang & Vanden-Broeck (2000)) would seem to require detailed examination despite

the largeness of the representative Weber number.

There are many interaction effects present in the real/industrial setting of course.

The current concern is with two main aspects, namely surface tension and post-impact

phenomena. The droplet of water may be taken to fall vertically on to an otherwise

still horizontal thick layer of water, for definiteness. The interaction with the air motion

induced in the relatively thin gap between the two bodies of water is then the concern

here just prior to or soon after impact takes place, and, as in most related works, a planar

incompressible regime is assumed. Similar reasoning applies to impact onto a fixed solid

wall and also more generally to any two fluids, say fluids 1 and 2, with small density and

viscosity ratios. These ratios are in fact treated as vanishingly small parameters (Smith

et al.) in the present investigation.

The comparatively small-time response can be addressed analytically to account for

air cushioning or for pre-existing air flow, both of which are of practical relevance,

although this work concentrates only on the former for the most part. The overall aim

is to understand more of the complex short term dynamics near impact and also longer

term features such as the nature of any fluid splash, although again the current work

is concerned only with the former. An alternative or complement is direct numerical

simulation (e.g. Gueyffier et al., 1999; Josserand & Zaleski, 2003; Purvis & Smith, 2004,

2005), which provides helpful comparisons as well as capturing the broader longer term

behaviour in principle.

§ 2 describes the structure of the air-water interaction for pre-impact surface tension

effects and also for post-impact behaviour; we should emphasize that these are treated

throughout as separate issues. The Reynolds number is taken to lie below the critical

value, in the main text. Solution properties are considered in § 3 for the pre-impact case

and in § 4 post-impact including for example the influence of a wall roughness. Our

interest is mostly in the water-air-water configuration but the reasoning holds virtually

unchanged for water-air-solid, as noted already. In the latter configuration it is worth

pointing out that the dynamics near the contact point of § 4 is found to be predominantly

inviscid. A final discussion is provided in § 5, while an appendix considers the behaviour

at above-critical Reynolds numbers.

2 Air-water interaction

Nondimensional variables are used in which the velocity u = (u, v), the corresponding

Cartesian coordinates (x, y), the pressure p and the time t are based on the droplet

approach speed V , a representative length scale D, ρ1V
2 and D/V , respectively. Here D

is a global quantity such as the droplet diameter if the droplet is of circular shape, while

ρ1 is the density of the water (or fluid 1). The Navier–Stokes equations then take the

form, in the water,

(∂t + u · ∇) u = −∇p + Re−1
1 ∇2u, (2.1a)
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with ∇ denoting the operator (∂x, ∂y), and in the air (fluid 2)

(∂t + u · ∇) u = −
(
ρ1

ρ2

)
∇p +

(
ν2

ν1

)
Re−1

1 ∇2u. (2.1b)

Here Re1 ≡ VD/ν1 is the droplet Reynolds number, µ1 = ρ1ν1 denoting the viscosity of the

water. Gravity is neglected here: see later. The air density and viscosity are ρ2, µ2(= ρ2ν2),

respectively. The continuity equation

∇ · u = 0 (2.1c)

applies in each fluid. The coordinates used are centred for convenience in the impact area.

The pressure is measured relative to the atmospheric value.

The impact setting has rapid local interaction involving a thin layer of air between

water and a solid surface or between two bodies of water, depending on whether the

droplet impacts on a solid or on water. The theory takes the density and viscosity ratios

of the two fluids 1,2, that is ρ2/ρ1 and µ2/µ1, to be small; for dry air with pure water

these two ratios are near 1/828 and 1/55 in turn, at 20◦ C and one-atmosphere pressure,

while at 0.1◦ C the ratios are near 1/772 and 1/100. With that background, and with the

aspect ratio δ of the air layer assumed small, asymptotic expansions for the velocities and

pressure in the two fluids are substituted into (2.1a–c) in principle regardless of whether

the behaviour is pre- or post-impact. The expansions follow from an order of magnitude

argument. Thus

(u, v, p) =

{
(u1, v1, δ

−1p1) + · · · in the water,

(δ−1u2, v2, δ
−1p2) + · · · in the air,

(2.2a,b)

with the typical time scale t= δ2T being short (T ∼ 1). The length scalings in the water

are also short near impact, (x, y) = (X,Y )a/D where the characteristic local length a�D

(indeed a/D ∼ δ for a smooth incident droplet shape), while in the air layer which lies

astride the x-axis the scalings are (x, y) = (X, δŷ)a/D. The governing equations in the water

are therefore those of unsteady potential flow, while those in the air are of lubrication.

Hence interaction is controlled by the coupled equations

FTT =
1

π
−
∫ ∞

−∞
Pξ(ξ, T )

dξ

X − ξ
, (2.3)

(F3PX)X = (12Γ )FT , (2.4)

for the unknown scaled interface shape F(X,T ) and pressure P (X,T ). Here p2(X, ŷ, T ) =

p1(X, 0, T ) ≡ P to leading order and (2.3) follows from the water flow equations subject to

the kinematic condition at the interface and to uniform approach motion in the farfield,

whereas (2.4) is Reynolds lubrication equation from the air motion. The pressure P must

tend to zero at large |X| in view of the atmospheric pressure. So far this is for the case

of droplet impact on a solid. For impact onto water, in which case (2.1a), (2.2a) apply

in each body of water, the factor 12Γ is replaced by 3Γ as F represents essentially the

average (F1 +F2)/2 of the dual water-air and air-water interfacial shapes, with P as their

common pressure.
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The parameter Γ denotes µ2/(δ
3ρ1VD) and is taken as 0(1). The validity of (2.3), (2.4)

relies on several assumptions which are met readily in real applications, namely that δ

is large relative to ρ2/ρ1 but small relative to both ρ1/ρ2 and (µ2/µ1)
1/3, and the global

Reynolds number Re1 is comparable with µ2/(µ1δ
3). Hence the theory applies for Re1

values that are large but lie below about ν2ρ
2
1/(ν1ρ

2
2), a critical value which is more than

107 for the air-water combination.

Solutions of (2.3), (2.4) are described in Smith et al. (2003) for pre-impact behaviour,

usually with the normalized condition

F ∼ X2 − T , for T → −∞ or |X| → ∞, (2.5)

which is appropriate to the incident locally parabolic shape of the interface when or where

interaction is still weak, and in line with v → −1 in the incident motion. The solutions

show that as the interaction strengthens it leads to a so-called touchdown, meaning that

F → 0 at one or more positions X within a finite time T .

The extra effects of gravity and compressibility are also considered in that paper, but

here our concern is with the influence of surface tension in the pre-impact stage (§ 3) and,

separately, with the application to post-impact phenomena (§ 4). The inclusion of surface

tension leads to (2.3) being replaced by

FTT =
1

π
−
∫ ∞

−∞
[Pξ(ξ, T ) + σFξξξ(ξ, T )]

dξ

X − ξ
, (2.6)

where the parameter σ is regarded here as O(1). The reason for this is the difference between

the water pressure and the air pressure (∝ P ) being the surface tension multiplied by

the interfacial curvature, which is proportional to ∂2F/∂X2 in the present context. The

scaled air pressure P must still tend to zero at large |X| whereas the water pressure

tends to 2σ, given (2.5).The parameter σ is the dimensional surface tension multiplied by

δ2/(ρ1V
2a) and so is of order δ/We1 which in practice is numerically quite small for our

current applications described in the introduction. Again, the implications of (2.3), (2.4)

for post-impact behaviour can be investigated given that the argument leading to them

holds equally well after an impact as long as we allow for the air gap being closed in at

least one interval of the domain. Thus

F = 0 for X1 < X < X2 (2.7)

say, where the unknown positions X1, X2 vary with T in general. The repercussions from

(2.6), (2.7) respectively are considered in the following two sections.

3 Pre-impact behaviour: surface tension effects

Addressing (2.4) with (2.6), we sought numerical solutions by modifying the method in

Smith et al. (2003). In brief, this uses fourth order accurate compact differencing in X

accompanied by global iteration at each time level, together with a second order temporal

treatment, starting from initial conditions imposed at a suitably large negative time. After

some trials, suitable representative grids in X were found to have steps of 0.05 between
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Figure 1. (a–c) F, P , FXX versus X at times T = −3 to 8, as shown.

endpoints at ±20, whereas 0.001 is the typical time step, although the suitability depends

also on the value of the surface tension parameter.

Results for a specific nonzero σ value, namely 0.4, are presented in Figure 1(a–c). Here

plots of F, P and the effective curvature ∂2F/∂X2 in turn against X are given at various

times T . In Figure 1(a) small waves are present in the F profiles in an outer portion of

the solution but they are discernible only on very close scrutiny, whereas the waves are

far more apparent in Figure 1(c). (In response to a referee’s remark, these waves and

their propagation may indeed be viewed as causing the delay in impact discussed later.)

Figure 1(b), which is shown on a scale similar to Figure 1(c) to compare them readily,

points to some decay of P in a middle portion at increased T with P then falling towards

2σ. We note that P tends to zero as |X| → ∞ strictly (in line with P being the scaled

pressure in the air gap), and indeed a relatively steep and monotonic rise or fall to that

asymptote is indicated in Figure 1(b) as |X| increases. Figure 1(c)’s middle portion is

characterised by ∂2F/∂X2 becoming very close to 2−P/σ (see analysis below), and hence
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exhibiting a relatively steep rise with increasing |X|, near the edge of that middle portion,

while being relatively near zero within that portion. Outside, however, waves as an extra

feature are clearly seen; eventually as T increases they persist to the outer boundary,

which is here at ±20, and this can lead to unrealistic growth in the numerical solution.

Further, in comparison with the zero-σ case of Smith et al. (2003), the major effects of

adding surface tension are initially small, over this parameter range, but they are very

telling in the long run for the following reason. The main indication from the results is

that the solution for any positive σ continues for all time T , unlike that for zero σ which

touches down in a finite T : see also the final paragraph of this section.

With σ positive the interface shape F continues to drop slowly within a middle portion

of the X axis, then, at increased times, but rises fast in spatial terms quite locally and

waves are induced in a region outside of that. Indeed, the solution for σ > 0 appears to

acquire the following form at large positive times. Suppose the solution F rises relatively

fast in spatial terms, in a local zone near X = cT n say, with the constant c positive, such

that the length scaling has

X = cT n + TmX̄ (as T → ∞). (3.1)

For the zone to be local the unknown powers m, n must satisfy m < n, with X̄ of O(1) here,

while corresponding expansions of the interface shape F and pressure P are assumed in

a fairly general form

F = TλF̄(X̄) + · · · , (3.2a)

P = Tλ−2mP̄ (X̄) + · · · , (3.2b)

as indicated by the integrand in (2.6) and by the computational results. The power λ is

also unknown. The system (2.4), (2.6) then reduces to

σ(F̄3F̄ ′′′)′ = (12Γ )cF̄ ′, (3.3)

with a prime here denoting d/dX̄, subject to

m = λ + (1 − n)/3, 3λ < 5(1 − n), (3.4a,b)

and also 3λ < (4n−1). The balance (3.4a) stems from (2.4) and (3.4b) from (2.6) assuming
that the double temporal derivative is negligible. Integration of (3.3) yields

σ

(12Γ )
F̄3F̄ ′′′ = cF̄ − c1 (3.5)

where c1 is a constant of integration. See also Greenspan (1978), Tuck & Schwartz (1990),

Kalliadasis & Chang (1994), Beretta (1997), Jensen (2000) and Braun & Fitt (2003)

concerning properties of (3.5). The local solution F̄ is expected to tend to a nonzero

constant, c1/c, as X̄ tends to −∞. So c1 > 0. An exact solution is F̄ ≡ c1/c for all X̄,

which is associated with the form in the middle portion on the left remaining unaltered

(the middle portion has F being almost constant spatially). However, perturbations from

this can occur, with

F̄ ∼ c1/c + γ1 exp(γ2X̄) as X̄ → −∞, (3.6a)



Air-water interactions near droplet impact 859

Figure 2. F̄ , F̄ ′, F̄ ′′ against X̄, from (3.5) subject to (3.6a,b) with γ1 > 0 and σ/ (12Γ ) , c, c1

normalized to unity.

and the positive root γ2 follows from (3.5) as

γ2 = c−1
1 c4/3(12Γ/σ)1/3, (3.6b)

whereas γ1 remains arbitrary. Computed results for the nonlinear solution of (3.5) with

the starting form (3.6a,b) were derived from a forward marching finite difference method

and are presented in Figure 2. In the figure F̄ , F̄ ′, F̄ ′′ are plotted against X̄, with the

constants σ/(12Γ ), c, c1 all having been normalized to unity without loss of generality

via a division of F̄ , X̄ by c1/c, (σc3
1/(12Γc4))1/3 in turn. The results shown are for γ1 > 0,

and in fact any positive value of γ1 leads to the same solution modulo an origin shift

in X̄. (A negative γ1 value produces in contrast quite different features, dominated by a

singular response in F̄ at a finite X̄ value). The behaviour obtained at large positive X̄ is

in keeping with the asymptote

F̄ ∼ γ3X̄
2 as X̄ → ∞ (3.7)

where γ3 is a positive constant. It is interesting that the asymptotes (3.6a), (3.7) give

P̄ (∞) − P̄ (−∞) = −2σγ3, (3.8)

suggesting a negative quasi-jump in pressure across the present zone, cf. Figure 1(b)’s

results.



860 R. Purvis and F. T. Smith

In view of (3.7) with (3.1), (3.2a), F emerges as

F ∼ γ3T
2(n−1)/3−λ(X − cT n)2 (3.9)

just to the right of the local zone. The farfield condition (2.5) then indicates that the

powers are related by

n = 1 + 3λ/2, m = λ/2, (3.10)

as far as the X2 requirement is concerned. In (3.10) λ can lie between −1 and zero.

Further, waves are induced in the portion to the right of the above local zone essentially

because of the −T requirement in (2.5) compared with the property (3.9) at X = cT n+.

The waves are inviscid capillary waves due to the balance

FTT ∼ σ

π
−
∫ ∞

−∞
Fξξξ(ξ, T )

dξ

X − ξ
(3.11a)

as the double temporal derivative comes into play on the right. The balance (3.11a) yields

F ∼ X2 − T +
1

2π

∫ ∞

−∞
H(ω) exp

{
i
(
ωX − σ1/2|ω|3/2T

)}
dω (3.11b)

where the Fourier transform function H(ω) is effectively from an initial distribution. The

major contribution to (3.11b) at large T comes from ω = 4η2/(9σ) + t−1/2η−1/2ω̃, with ω̃

of 0(1) and η ≡ X/T , and is proportional to

T−1/2η1/2H(4η2/(9σ)) cos

(
4η3T

27σ
− π

4

)
, (3.11c)

which shows a main X-scale expanding like T but including a relatively fast wave of

scale |X| ∼ T 2/3 and of decaying amplitude. Again, this seems in line with the computed

trends in Figure 1.

If λ is zero then n = 1, m = 0 and so the double temporal derivative in (2.6) reasserts

itself, bringing in the principal-value integral and pointing to a nonlinear travelling wave

form. Now X − cT ≡ X̄ and, in the local zone, F, P depend only on X̄ to leading order

and satisfy

c2F ′′ =
1

π
−
∫ ∞

−∞
[P ′ + σF ′′′]

dξ

X̄ − ξ
, (3.12a)

(F3P ′)′ = −(12Γ )cF ′, (3.12b)

from (2.4), (2.6). Each of (3.12a,b) can be integrated fairly readily once in X̄. For large σ

and/or small c however the previous nonlinear form (3.3), (3.5)–(3.8) is reinstated where

the |X̄| scale is not excessive and the linear form (3.11a–c) on the right then follows where

|X̄| ∼ σc−2. For zero σ, moreover, (3.12a,b) has already been studied in Smith et al. (2003,

section 5). In addition, it should be mentioned that we have performed time-marching

calculations on the reduced system where (2.6) is dominated by the ∂P/∂X and ∂3F/∂X3

contributions (cf. Greenspan (1978), Beretta (1997), Braun & Fitt (2003)), for example

with large surface tension parameter and limited |X| scale. This, coupled with (2.4) and

the condition (2.5), leads to broad trends similar to those of the full system, including the

asymptote (3.1)–(3.10) and a right-hand region of adjustment. The account (3.1)–(3.12)
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overall appears to capture the essence of the large-time features, confirming the absence

of a touchdown in the present regime of (2.4), (2.6).

Finally here, it is interesting to examine how small-σ effects come into reckoning given

that the zero-σ case touches down (F → 0) at a finite time T = Tt say. The contribution

σ∂2F/∂X2 due to surface tension is large and of order σ(Tt − T )−2 in the touchdown

structure of Smith et al. (2003) compared with the scaled pressure P , which is also large

but has the order (Tt −T )−1/2. Hence the surface-tension contribution asserts its influence

only when (Tt − T ) becomes as small as σ2/3, i.e. in a time scale of order σ2/3δ2 in t.

That scale within the present model seems to account entirely for the boundary between

touchdown (impact) and inhibited impact as it tends to reinstate a fuller system close to

(2.4), (2.6) but with σ replaced by unity, allowing the terminal form of (3.1)–(3.12) to be

approached then. In practical terms, this time scale and the corresponding spatial scales

are tiny.

4 Post-impact interactions

The arguments and main equations of § 2 also apply after an impact but subject to

the condition (2.7), which corresponds to the existence of a finite interval of contact.

Here, to repeat, the surface tension effect is neglected, and in addition we consider a

symmetric impact in which X1 = −X2 with X2 = �(T ) > 0 being the unknown half-length

of contact, while the unknown interface shape F is even in X. Building the requirements

of (2.7) as well as symmetry into the system (2.3), (2.4) and for convenience setting

∂F/∂T as Q leads to a problem involving Wiener-Hopf techniques to deal with the mixed

boundary conditions which are (2.7) within the contact interval but (2.4) outside. This,

with allowance for the square-root shape of F near the contact point, then points to the

governing equations

QT − X̃�′

�
QX̃ = − ν̂X̃

(X̃2 − 1)3/2�2
+

2X̃

π�(X̃2 − 1)1/2

∫ ∞

1

(ξ2 − 1)1/2Pξ dξ

(X̃2 − ξ2)
, (4.1a)

FT − X̃�′

�
FX̃ = Q, (4.1b)

(F3PX̃)X̃ = (12Γ )�2Q, (4.1c)

for F,Q, P as functions of X̃, T . The coordinate X̃ ≡ X/�(T ) has also been introduced

here in order to fix the contact point at X̃ = 1. Hence our concern is with the domain

X̃ > 1 due to the assumed symmetry, without which the different solutions in two domains

would need to be considered. Also ν̂(T ), like �(T ), is to be found; ν̂(T ) is the coefficient

of the eigenfunction (the first term on the right of (4.1a)) associated with the Wiener-Hopf

inversion and it is related to the variation in the length of the contact domain |X| < �(T )

via (4.2e) below. The condition (2.5) still holds in the far field.

Mention should be made here of two other parts of the flowfield. One is a linear

viscous-inviscid ‘jet-root’ region closer to the moving contact point at X = �, X̃ = 1,

implied by the local square-root behaviour of the shape F (see (4.2a) below). The region

has extent 0(δ/Re1) in both y and x − δ�(T ) and so is small with respect to the main

scales given earlier. Its velocities and pressure have the respective orders Re
1/2
1 , δ−1Re

1/2
1 ,
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implying that the linearized steady Navier-Stokes equations hold in scaled terms in the

coordinate frame moving with the contact point; this is for the local water motion alone

since the air effect is negligible near the contact point. In consequence, the local length

scales are larger than, and the local problem is distinct from, the purely inviscid case of

Howison et al. (1991). The solution here, which must satisfy zero-pressure conditions at

the unknown interface among other conditions, is unknown. For the case of impact onto

a solid surface, the solution is felt likely to show that a jet must emerge horizontally from

the region, with typical velocity of order Re
1/2
1 at most and width of order δ/Re1 initially.

That leads, second, into a thin water ‘jet’ layer just beneath the air gap, over the horizontal

length scale where x ∼ δ and air effects are important. The horizontal water layer then

has a characteristic horizontal velocity which, although large, is initially small relative to

the air velocities, from (2.2b); hence, more accurately, the ‘jet’ is a comparatively thin

water layer bounded above by an interface with the air. Also, the typical water-layer

mass flux is only O(δRe
−1/2
1 ), relatively small compared with that of 0(δ) in the air flow.

This flux is consistent with the kinematic condition on v at the interface. Likewise the

water-layer momentum is comparatively small, by a relative factor O(δ), compared with

that in the air flow. The influence on the main water-air dynamics appears to be negligible

from both of these other regions. The same conclusion applies for water-air-water impact,

where the thin water layer slices through the air gap; the pressure jump induced across

the water layer due to its momentum is small compared with the air pressures which are

large and O(δ−1), from (2.2b), over the O(δ) length scale. We therefore return to the main

post-impact interaction between water and air on the x ∼ δ length scale, i.e. to (4.1a–c).

With the constant Γ zero, so that the air dynamics is neglected, the solution of (4.1a–c)

has P identically zero and � ∼ (2T )1/2, ν̂ → 1 (Korobkin, 1997, 1999; Howison et al.,

2002). That applies at any finite T if the starting conditions are ideal but otherwise

asymptotically for T large and positive.

With the constant Γ nonzero, the system (4.1a–c) needs a numerical treatment in

general. This was adapted from that in the previous section principally to allow for the

square-root factors in (4.1a) and for the inherent irregular behaviour near contact, by

means of a transformation X̃ = 1 + tan2(χ). The behaviour as X̃ → 1+ is perhaps best en-

capsulated by expanding F around any particular time instant T∗ as F0 + (T −T∗)F1 + · · ·
and similarly for the other variables around that instant and then writing, for integers

n � 0,

Fn ∼ an(X̃ − 1)1/2 + bn(X̃ − 1)3/2 + · · · , (4.2a)

Qn ∼ αn(X̃ − 1)−1/2 + βn(X̃ − 1)1/2 + · · · , (4.2b)

dPn/dX̃ ∼ πn(X̃ − 1)−1 + · · · . (4.2c)

Then from (4.1a–c) the first few constants satisfy

−�1a0

2�0
= α0, a1 − �1

�0

(
a0

2
+

3b0

2

)
= β0, (4.2d)

�1α0

�0
=

−ν̂0

21/2�2
0

, a3
0π0 = 24Γ�2

0α0, α1 +
�1

2�0
(α0 − β0) = − ν̂0

27/2�2
0

+ φ0. (4.2e)

These determine �1, a1, ν̂0, π0, α1 in turn for given a0, b0, α0, β0 and �0, etc., and confirm that
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the dominant response near contact is in effect air-free and hence inviscid. Again, from

the first equation in (4.2e) ν̂ plays a role in determining the local growth of the contact

domain. In the third equation of (4.2e) the constant φ0 is given by

φ0 = −21/2

�0π

∫ ∞

1

[
dP0

dξ
− 21/2π0

(ξ − 1)(ξ + 1)1/2

]
dξ

(ξ2 − 1)1/2
+

π0

21/2�0

, (4.3)

in which the integral is finite in view of (4.2c) and the relative corrections which are

O(X̃ − 1) throughout; the integral represents a global influence from the air motion on

the near-contact properties. The main relations among (4.2a–e) were incorporated as local

requirements into the overall computational scheme. To step forward by a small time

step, from old to new time, the program used assumes that F,Q, P (at stations for all

X̃ > 1) and �, ν̂ are known at the old time. Then new �, ν̂ values are inferred from the

local behaviour of F,Q by means of the first equations in (4.2d, e) respectively. In practice,

the first station in X̃ is taken at 1 + ∆ with ∆ positive but tiny, and a0 is evaluated by

equating the known F at that station with a0∆1/2; likewise for α0, from Q and α0∆−1/2;

then �1 gives �′ and hence a new-time � value. Next, new P values at all X̃ stations

are obtained directly from a discretized version of (4.1c), given F,Q. Following that,

the program marches inwards in X̃, starting with the farfield condition imposed as in

(2.5), to yield new Q, F respectively from (4.1a,b) in discretized form for all X̃, ending at

X̃ = 1 + ∆. This inward march is based on passing information along the characteristics

dX̃/dT = −�′X̃/�, i.e. X = constant, and on evaluating the Cauchy-Hilbert integral in

(4.1a) at each X̃ station using the latest P values. The program is then ready for the next

time step. Double-marching in X̃ is also applied to achieve higher spatial accuracy. The

transformation to χ enables high resolution of (4.2a–e) locally along with a large end

value X̃∞ for X̃ at which to impose (2.5). Typically, we took χ∞ greater than 0.95 (π/2),

and we worked in terms of a transformed ∂P/∂X instead of the pressure.

The results are shown in Figure 3(a–e). These include cases which accommodate a fixed

bump on the wall, represented by the scaled shape S(X), whose influence can be followed

by subtracting S(�X̃) from F(X̃, T ) in (4.1c) alone. The solutions in Figure 3(a–e) have

the specific bump shape S = H exp{−2(X − 3)2} with constant height factor H and start

at T = 1 with the ideal solution imposed. Plots of the scaled interface shape F against X̃

at various T and the corresponding evolution of the contact half-length � and the eigen-

function coefficient ν̂ are presented in Figure 3(a,b) for H zero (no bump). At first sight,

and because of the use of the X̃ coordinate, it may appear that the interface is moving

away from the horizontal axis with increasing time but the opposite is true in the X − T

plane, i.e. the interface approaches the axis. The case in Figure 3(a,b) has the interesting

feature that ν̂ reaches a small positive minimum followed by a steep rise, while nearby �

almost develops a kink in the sense that the slope of � against T changes rapidly. The

effects of nonzero H are then shown in Figure 3(c, d) for the same value of Γ . Increasing

H to 1 smooths out the development seen in Figure 3(b), whereas reducing H to −1

instead forces ν̂ to reach down to zero at a finite scaled time, accompanied by a local drop

in the � solution, at which stage the solution fails. Figure 3(e) has a decreased value of Γ ,

but the influence of reducing H from zero to −1.5 and then to −6 produces trends which

are similar to those above even if of a different scale. The interpretation of the effect of the
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Figure 3. Computational solutions of (4.1a–c) with (a − d) Γ = 1.208, (e) Γ = 0.833. Grid has

X̃∞ > 160. (a) F versus X̃ at times T = 1.1, 1.2, 1.3, 1.4, as shown. (b) �, ν̂ versus T for the case

of (a). (c)–(e) include bump shape H exp[−2(X − 3)2]: (c), (d) �, ν̂ for various H values; (e) ν̂ for

H = 0,−1.5,−6 as indicated.
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bump in each case is delicate because of the inherent nonlinearity and global integration

but, in broad terms, increasing the height factor H appears equivalent to a reduction in Γ

and hence reduces the air-motion effect. Decreasing H produces the opposite trend. This

is similar to a blocking effect and is not unrelated to the determination of the constant

φ0 in (4.3). (Some bump effects on pre-impact interactions, as opposed to the present

post-impact ones, are included implicitly in Smith et al.’s 2003 results, and only affect

the touchdown position then.) Overall the results suggest that for a given configuration

and initial condition there is an O(1) cut-off value of Γ or, for given Γ , a cut-off value

of max |S |. At cut-off the coefficient ν̂ just touches zero, while below cut-off ν̂ remains

positive throughout and above cut-off ν̂ reaches zero at a finite scaled time and the contact

length stops increasing. Below cut-off, in fact, after significant air-water interaction the air

effects eventually fade away to leave

� ∼ (2T )1/2, ν̂ → 1 as T → ∞, (4.4a)

i.e. the air-negligible case, in which the asymptote of (4.1a–c) is

F ∼ X̃(X̃2 − 1)1/2�2, Q ∼ −X̃(X̃2 − 1)−1/2, |P | ∼ T−2 (4.4b)

for large T . Above cut-off, by contrast, the air-water interaction appears to lead to a

termination of the assumed flow structure within a finite time, T = T ∗
0 say, with the local

coefficient ν̂ tending to zero then.

The overall inference then is that sufficiently strong air motion in the gap or a sufficiently

pronounced roughness (or roughnesses) can so alter both the air and water flow responses

that the contact length � is altered substantially from the pure water case and even a

breakdown and change of flow structure seem to be forced to occur. Weak air motions or

roughnesses on the other hand only provoke effects which die out. Analytical support for

this inference, which we repeat is in the absence of surface tension, is considered below.

The near-cut-off or marginal situation admits of an analysis as follows. From the orders

of magnitude in (4.1a–c) the solution responds on a short scale, close to the contact point,

at times near some constant value T0, such that

� = �0 + δ1L + · · · , ν̂ = εN + · · · , (4.5a)

T − T0 = δ1 t̃, X̃ − 1 = δ1x̃, (4.5b)

where ε, δ1 are assumed small with δ1 � ε6, and

F = εδ
1/2
1 f̃ + · · · , q = εδ

−1/2
1 q̃ + · · · . (4.5c)

The corresponding pressure P induced on the short scale is of order ε−2 due to (4.1c) and

this provokes, via the integral in (4.1a), a contribution that is small compared with the

ν̂ contribution provided δ1 � ε6. The longer-scale contribution from the integral is then

substantial however (compare (4.3)) as it provides the final term ∝ κ3 in the first of the

two equations obtained from (4.1a,b), namely

q̃t̃ − κ1L
′(t̃)q̃x̃ = −κ2N/x̃3/2 + κ3/x̃

1/2, (4.6a)

f̃t̃ − κ1L
′(t̃)f̃x̃ = q̃. (4.6b)
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The prime denotes d/dt̃, the constants κ1-κ3 can be supposed known with κ1, κ2 positive,

and only the range x̃ > 0 is of concern. The solution of (4.5a,b) then has the form

q̃ = A1x̃
−1/2 + A2x̃

1/2, f̃ = A3x̃
1/2 + A4x̃

3/2 (4.7)

where A1−4 are unknown functions of t̃. Substitution into (4.5a,b) leads to a nonlinear

equation for L(t̃) and a linear one for N(t̃):

1

2
κ1L

′(t̃)

{
3

2
κ1A4L + A2 t̃ + κ5

}
= −

{
1

2
κ1A2L + κ3t̃ + κ4

}
, (4.8a)

κ2N = −1

2
κ1L

′(t̃)

{
1

2
κ1A2L + κ3 t̃ + κ4

}
. (4.8b)

Here A2, A4 have to be constant for self-consistency, A1, A3 are given by the expressions

inside the curly brackets on the right- and left-hand sides of (4.8a), respectively, and κ4, κ5

are constants of integration. Hence we obtain the expressions

L̄ = ±t̄ ± {(1 − λ̄1)t̄
2 + λ̄2}1/2, (4.9a)

N̄ = (L̄ ± λ̄1 t̄)
2/(L̄ ± t̄) (4.9b)

in normalized variables where L= L̄0 + |b̄1|−1L̄, T = T̄ 0 + |b̄2|−1 t̄, the constants L̄0, T̄ 0 are

fixed by {
3
2
κ1A4L̄0 + A2T̄ 0 + κ5 = 0,

1
2
κ1A2L̄0 + κ3T̄ 0 + κ4 = 0,

and b̄1 ≡ 3κ2
1A4/4, b̄2 ≡ κ1A2/2, λ̄1 ≡ b̄1κ3/b̄

2
2, while λ̄2 is a constant of integration. The

constants λ̄1, λ̄2 in (4.9a,b) may therefore be positive or negative, although only the regime

λ̄1 � 1 has real relevance here. Again, the first plus sign in (4.9a) corresponds to b̄1b̄2 < 0,

the first minus to b̄1b̄2 > 0, but the opposite is true in (4.9b). The near-critical solutions

(4.9a,b) are plotted in Figure 4(a,b). In Figure 4(a), λ̄1 is 0.1 or −0.3, with λ̄2 kept at

unity, and the plus signs apply in (4.9a). This corresponds to the subcritical regime, giving

L̄ linear when t̄ is large and negative or large and positive but with different slopes then,

and likewise for N̄, although the changes in slope in N̄ are numerically quite larger.

Figure 4(b), on the other hand, has λ̄1 = 0.5 but λ̄2 is −1, and the two cases shown are

due to the signs on the square roots above. Figure 4(b) is in the supercritical regime,

with the solution terminating at t̄ = t̄0 = −
√

2, where L̄ tends to −t̄0, but encounters a

square-root singularity and N̄ tends to ±∞ as indicated. Depending on the parameters

and signs involved the solutions can clearly, among other things, describe evolutions in

which the slope of � versus T changes significantly over a short time scale (t̄) or in which

ν̂ tends to zero from above at a finite t̄. These evolutions in particular appear to reflect

well the properties found numerically in Figure 3 for the full system (4.1a–c) near the

cut-off values.

5 Further comments

The theory has focused on two distinct and specific aspects of air-water interaction:

surface tension acting just before impact and interaction phenomena just after impact.



Air-water interactions near droplet impact 867

Figure 4. Near-critical solutions (4.9a,b) for L̄, N̄ against t̄: (a) λ̄2 = 1, λ̄1 = 0.1 and −0.3 as shown,

with plus signs in (4.9a); (b) λ̄2 = −1, λ̄1 = 0.5, where the two cases shown are for the different

signs in (4.9a,b).

Concerning surface tension, the main effect is a significant delay of touchdown (§ 3)

compared with the case of zero surface tension, even though it should be remarked

again that the parameter involved is small in the real situations of present concern. The

length and time scales may be tiny then (§ 3), readily admitting several other influences

such as air inertia or relative non-thinness of the air gap. We reiterate that the relation

between the original impact for zero surface tension and the inhibited impact otherwise

is described at the end of § 3 and fits within the present model. Concerning post-impact

phenomena, the general slowing down found (in § 4) due to the presence of air dynamics

is also observed in recent direct numerical simulations incorporating air motion (e.g. by

Purvis & Smith, 2004). Indeed, the present findings imply that the spreading of the water

droplet can in a sense become stalled, and involve a local change of flow structure (the

singular time T ∗
0 quoted in § 4 being given by T0 at first). Taking this a little further, one

has the intriguing possibility that the singularity factor or eigen-function coefficient ν̂ in

(4.1a), which helps dictate the strength of the square-root interfacial shape near contact,

remains zero after the structural change above. In such an event a similarity solution of

the governing equations in (4.1a–c) would suggest that the spread position, i.e. half-length

of contact, �(T ) responds as

� ∼ T 1/2 as T → ∞, (5.1)

because of the farfield condition along with the absence of ν̂. Again, the slowing down,

in comparison with � in (4.4a), is evident. It would be interesting to know the additional

influence of surface tension in the post-impact setting.

Many other influences are also of concern, needless to say. These include incidence in the

droplet approach, water layer depth, background air and water motion, other viscous and



868 R. Purvis and F. T. Smith

thermal effects, impact-impact interaction, compressibility, gravity and ice-wall roughness.

Models and governing equations for some of them have been studied already. Also

the inviscid, rather than lubricating, dynamics of the air in air-water interactions has

interest even if the Reynolds number then has to be above the order of 10 million (from

ν2ρ
2
1/(ν1ρ

2
2)). There is indeed a parallel theory for such higher momentum drops, which

have Re1  ν2ρ
2
1/(ν1ρ

2
2) and so have (2.4) replaced by

FT + (UF)X = 0, where UT + UUX = −PX, (5.2)

as in Wilson (1991) and Smith et al. (2003). For completeness the resulting analogues

of § 3, 4 are described briefly in the appendix. A further investigation is under way in

collaboration with Professor J.-M. Vanden-Broeck. Pre-existing air streams and layers are

likewise amenable to analysis.
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Appendix A Higher momentum droplets

Here (5.2) is coupled with (2.6) in the pre-impact stage.

First, for zero σ, fine grid computations performed suggest secondary instability. Ana-

lytically, short-scale disturbances � exp(ikx+qt) about a basic solution [F, P ,U] say yield

for large k the dispersion relation

q2 = |k|(U2F−1 − k2σ) (A 1)

from (2.6), (5.2). This confirms the presence of secondary instability at zero σ where

q ∝ |k|1/2 is real for all k. Essentially the same result was obtained separately and by

different means by Oliver (2002). Second, for nonzero σ however only secondary waves

are implied at larger |k| values since q becomes pure imaginary. Numerical results for

nonzero σ are presented in Figure 5(a,b), for a horizontally symmetric configuration and

a nonsymmetric one, respectively; the latter (which shows both F and P ) is created

by adding an air stream from left to right which is imposed by means of the farfield

conditions. The results seem equivocal at first since the former tends to point to wave-like

behaviour and the latter to touchdown or near-touchdown at a finite time T = Th say.

Third, for possible touchdown the orders of magnitude in (2.6), (5.2) indicate a form,

local to the touchdown position Xh,

[F, P ,U] ∼
[
(Th − T )n̂F̂ , (Th − T )n̂−4/3P̂ , (Th − T )n̂/2−2/3Û

]
(A 2)

with the length scaling as X − Xh = (Th − T )2/3ξ̂, where ξ̂ ∼ 1 and 0 < n̂ < 2
3
. Hence the
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Figure 5. For the higher momentum droplets studied in the appendix: (a) solutions of (2.6), (5.2)

at times T shown, with σ = 0.002 and symmetry about X = 0; (b) as (a) but σ = 0.02 and

nonsymmetry, showing F (upper) and P (lower); (c) solution of (A3) for n̂ = 0.3, 0.6, with σ zero.

nonlinear governing equation

2
3
ξ̂2F̂ ′′ +

(
5
3

− 2n̂
)
ξ̂F̂ ′ + 3

2
n̂(n̂ − 1)F̂ =

3

2π
−
∫ ∞

−∞

(
c2
1F̂

′

F̂3
+ σF̂ ′′′

)
dξ

ξ̂ − ξ
(A 3)

applies, subject to the matching condition F̂ ∝ |ξ̂|3n̂/2 as |ξ̂| → ∞, and F̂ > 0. Here the

prime denotes differentiation with respect to ξ̂ and c1 is a constant, with Û given by

c1/F and P̂ by −c2
1/(2F̂

2) to within an additive constant. The solution for small n̂ can be

derived analytically,

F̂ = A0 + n̂F̂1 + 0(n̂2), F̂ ′
1 ≡ A1ξ̂

∫ ∞

0

e−κss5/2ds

(1 + s2ξ̂2)
, (A 4)
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where A0, A1 are positive 0(1) constants and κ ≡ 9c2
1/(4A

3
0). This holds only for σ zero,

however. We could find no solution otherwise. Similarly, over the range of n̂ values from 0

to 2/3 numerical solutions of (A3), derived by using (A4) as a first guess, could be obtained

only for σ zero; these are shown in Figure 5(c) and are in line with (A4) as n̂ decreases.

We should remark that the pressure becomes large and negative in this touchdown, as

opposed to the pressure in Smith et al.’s (2003) case which is generally large and positive

and which therefore seems closer to the experimental findings in Lesser & Field (1983).

Again, the existence of a touchdown solution as in (A2)–(A4) and fig.5(c) over a range of

values of n̂ rather than for just a single n̂ value ties in with the presence of short-length

instability in (A1) when σ is zero. No touchdown solutions could be found for σ nonzero,

whatever the n̂ value.

Finally, the corresponding post-impact theory analogous with that in § 4 is likewise

based on (5.2) replacing (2.4). Thus (4.1c) is then replaced by �Q + ∂(UF)/∂X̃ = 0 where

�∂U/∂T + (U − �′X̃)∂U/∂X̃ = −∂P/∂X̃, while (4.1a,b) remain unaltered. Moreover, the

cut-off at finite time and finite parameter values in the form (4.5a)–(4.9b) remains possible

since the cut-off is not affected by the precise nature of (4.1c) or its replacement just above

in the present case but by the longer-scale contribution κ3 in (4.6a).
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