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Abstract

Small RNAs, and in particular microRNAs, are currently receiving a great deal of at-

tention due to their important roles in gene regulation and organism development.

Recently, new high-throughput technologies have made it possible to sequence hun-

dreds of thousands of small RNAs from a single experimental sample. In this thesis we

develop new computational tools to process such high-throughput small RNA datasets

in order to identify microRNAs and other biologically interesting small RNA candidates

and to predict their target genes. We apply these tools to a variety of plant and an-

imal datasets and present some novel discoveries including miRNAs involved in fruit

development in tomato (Solanum lycopersicon).
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Chapter 1

Introduction

The focus of the research presented in this thesis is the development of new com-

putational tools and algorithms to enable the detection and classification of novel,

biologically interesting, small RNAs from experimental sequence data. In addition, ap-

plications of these tools are presented, and a number of interesting biological discov-

eries identified through computational predictions and analyses are reported. Much

of the work presented in this thesis has involved collaborations with biologists who

have provided both small RNA sequence data and experimental validation of com-

putational predictions. An overview of the thesis is given below along with details of

collaborations.

Chapter 2. We provide background information about small RNAs and explain

their function and biogenesis. We then go on to describe both current computational

and laboratory based methods for small RNA detection and classification which are

important in later chapters.
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Chapter 3. We implement a tool, miRCat, to classify miRNA sequences in both

animal and plant high-throughput small RNA datasets. At the time of implementation

it was the only tool specifically designed for this purpose, although, since then an-

other very similar algorithm miRDeep [Friedländer et al., 2008] has been published

that is only applicable to animal datasets. We then go on to describe the first on-

line resource for researchers to upload and process their high-throughput small RNA

datasets: http://srna-tools.cmp.uea.ac.uk. The SiLoCo and RNAfold-

ing/annotation tools detailed in this chapter were created by Dr Frank Schwach and a

description of these tools is included in the thesis for completeness.

Chapter 4. We use computational methods to identify a number of putative miRNA

sequences and to find miRNA homologues conserved between Arabidopsis thaliana

and tomato (Solanum lycopersicon). This work was carried out whilst developing the

miRCat tool described in Chapter 3, and discoveries made during this work enabled

the refinement of the software. All laboratory-based experimental work in this chapter

was carried out by members of Dr. Tamas Dalmay’s group.

Chapter 5. We apply methods described in Chapter 3 to analyse high-throughput

small RNA sequence sets in Solanum lycopersicon. Here we identify the first tomato

specific miRNAs and their targets as well as miRNAs believed to be involved in the

control of tomato fruit ripening. We also describe both an interesting class of trans-

poson derived small RNAs and a set of small RNAs derived from a virus that is in-

tegrated into the host genome. Both observations were made using bioinformatic,
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sequence analysis techniques. All experimental work in this chapter was carried out

by Dr. Tamas Dalmay’s group.

Chapter 6. We describe a novel computational approach for the identification of

miRNAs from high-throughput small RNA sequence sets. This method does not rely

on a genome sequence being available. Instead it classifies putative miRNA/miRNA*

pairs from an input dataset using a Support Vector Machine approach. This technique

is the first miRNA prediction algorithm that does not rely on a genome sequence,

making it an invaluable tool when working with organisms where published sequence

data is not available. All laboratory work in this chapter was carried out by Dr. Jing

Runchun.

Chapter 7. We introduce a novel miRNA target prediction algorithm StackBM

which is the first method that is applicable to both animal and plant data. It makes use

of previously experimentally validated target sites in the search for novel targets. We

show that it performs well in terms of sensitivity and specificity in comparison with a

previously published target prediction method, and discuss future extensions of this

work. Work in this chapter was based on the Binding Matrix technique for transcription

factor binding site classification [Kim et al., 2004] and the StackBM software was im-

plemented by Dr. Jan Kim. The idea for using multiple matrices to incorporate gaps in

input alignments, all experimental testing, refinements of the method and generation

of results were my contribution to this work.
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Chapter 8. We discuss work presented in this thesis and go on to detail possible

future directions and extensions to the research.



Chapter 2

Background

2.1 Summary

This chapter provides a brief introduction to small RNAs, detailing both their biogen-

esis, function and importance in biological systems. It then goes on to describe tra-

ditional laboratory-based techniques to sequence, analyse and validate small RNAs,

including an overview of the new high-throughput sequencing technologies that are

currently emerging. Current state of the art computational methods for small RNA

detection, classification and target prediction are then discussed, and an outline of

the strengths and weaknesses of the various approaches is provided, this gives the

necessary background to the work presented in the rest of the thesis.

2.2 Small RNAs

Small RNA (sRNA) is a general term applied to a broad class of short non-coding

RNAs (ncRNAs) that are not translated into a protein product but instead function

directly at the level of the RNA in the cell. sRNAs are typically between 18 and 30

5
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nucleotides in length and are involved in gene regulation and genome maintenance.

sRNAs are derived from either double-stranded RNA (dsRNA) or highly structured pre-

cursor sequences and be subdivided into several distinct groups based on their prop-

erties, functions and biogenesis. See [Kim, 2005b], [Chapman and Carrington, 2007],

and [Kawaji and Hayashizaki, 2008] for recent overviews.

Several important classes of sRNA are described in detail below.

2.2.1 MicroRNAs

MicroRNAs (miRNAs) are a class of sRNA, typically between 21 and 24 nucleotides

in length [Lau et al., 2001]. The first miRNA to be discovered was lin-4, found in

the nematode worm Caenorhabditis elegans [Lee et al., 1993]. lin-4 was thought

to be a biological peculiarity [Pasquinelli, 2002] and was for many years the only

example of such a sRNA. In 2000 Reinhart et al. discovered a second C. ele-

gans miRNA let-7 [Reinhart et al., 2000], involved in developmental timing, which

was found to be conserved in many other animals including humans and the fruit

fly Drosophila melanogaster [Pasquinelli et al., 2000]. In 2001 several groups identi-

fied a number of new C. elegans miRNAs [Lau et al., 2001, Lee and Ambros, 2001,

Lagos-Quintana et al., 2001] which firmly established that miRNAs were important

regulatory molecules and represented a whole new level of gene regulation that had

previously been overlooked.

In 2002 the first plant miRNAs were identified in Arabidopsis thaliana



7

[Reinhart et al., 2002] and in 2004 miRNAs were identified in the Epstein-

Barr virus (EBV) [Pfeffer et al., 2004]. Since then many new miRNAs

have been discovered in a variety of animals [Lagos-Quintana et al., 2002,

Lagos-Quintana et al., 2003, Xu et al., 2003, Wienholds et al., 2005], plants

[Wang et al., 2004a, Lu et al., 2005b, Jin et al., 2008, Subramanian et al., 2008]

and viruses [Grundhoff et al., 2006, Grey et al., 2005, Cai et al., 2005], but not in

fungi or bacteria which are thought to lack the machinery required for miRNA

production.

Functional miRNAs are derived from a longer, single stranded, primary RNA tran-

script known as a pri-miRNA which can be several kilobases in length [Bartel, 2004,

Kim, 2005a]. In animals the pri-miRNA is processed by the Microprocessor com-

plex to form a short (around 70nt) sequence which is able to fold into an imperfect

stem-loop structure known as the pre-miRNA [Gregory et al., 2004]. In plants the pri-

miRNA is processed by the Dicer-like 1 (DCL1) enzyme to yield a pre-miRNA hair-

pin. Plant pre-miRNAs also undergo extensive base-pairing to form a hairpin-like

structure (see Figure 2.1), and are generally longer than their animal counterparts

[Reinhart et al., 2002].

The pre-miRNA is further processed by DCL1, HEN1 and HYL1 enzymes

[Schauer et al., 2002, Park et al., 2002, Han et al., 2004] in plants and Dicer in

conjunction with a specialised RNA-binding protein e.g. Loquacious (Loqs)

in flies or trans-activation responsive RNA-binding protein (TRBP) in humans
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[Förstemann et al., 2005]. The miRNA along with its complement (known as the

miRNA*) are excised from the hairpin where they form a double stranded RNA

(dsRNA) intermediate. The mature miRNA sequence is the bound to an Arg-

onaute protein (AGO1 in Arabidopsis) [Vaucheret et al., 2004] and recruited into the

RNA-induced silencing complex (RISC) where it acts to regulate genes by bind-

ing to sites complementary to the miRNA sequence on messenger RNAs (mRNAs)

[Reinhart et al., 2000], while the miRNA* strand gets degraded or accumulates at a

lower level [Jones-Rhoades et al., 2006].

The translation of the mRNA is inhibited by the binding of the miRNA/RISC.

Regulation is achieved either by translational repression (blocking the protein pro-

duction machinery) or mRNA cleavage at a specific position in the miRNA/target

duplex followed by degradation of the cleaved transcript. The method of regula-

tion is dependent on the level of complementarity between miRNA and target site

[Aukerman and Sakai, 2003], with highly complementary miRNA/target duplexes lead-

ing to mRNA cleavage and degradation (predominant in plants) and poor complemen-

tarity leading to translational repression (predominant in animals).

Mature miRNAs are often perfectly conserved between a wide variety of organ-

isms since there is strong selection pressure for the conservation of the sequence.

However, miRNA hairpins often differ significantly outside of the miRNA and miRNA*

regions as there the structure rather than sequence must be conserved. This means

that compensatory mutations that change the sequence but conserve the structure
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Figure 2.1: Secondary structure plot of the Arabidopsis thaliana miR157 pre-miRNA. The
mature miRNA is shown in red and the miRNA* sequence is represented in pink.

are common.

miRNAs are known to be involved in stem cell differentiation, organ development,

cell signaling, stress response and cancer [Zhang et al., 2007, Válóczi et al., 2006,

Kloosterman and Plasterk, 2006]. This diverse range of roles coupled with their recent

discovery has led to an increased scientific interest in their identification and analy-

sis. New miRNAs are now characterised on a regular basis, with 6396 sequences
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from 72 different species described in the latest release (11.0) of the central miRNA

repository miRBase [Griffiths-Jones et al., 2008]. The exact number of miRNAs in

any given organism is unknown although different figures have been proposed. Es-

timates in human range from around 1000 [Berezikov et al., 2005] to tens of thou-

sands [Miranda et al., 2006]. 184 miRNAs have so far been discovered in the model

plant Arabidopsis thaliana and recent studies have suggested that Arabidopsis miRNA

genes undergo relatively frequent birth and death with only a small subset being evo-

lutionarily conserved [Fahlgren et al., 2007]. This could mean that a large number of

newly evolved, non-conserved miRNAs are yet to be classified.

Natural antisense miRNAs

Natural antisense miRNAs (nat-miRNAs) are a recently discovered class of plant

miRNA [Lu et al., 2008] that undergo a distinct mechanism of biogenesis (see Figure

2.2). Overlapping sense and antisense transcripts are first produced from the nat-

miRNA locus. The primary antisense transcript contains a large intron which must be

spliced out in order to allow the transcript to fold into a typical pre-miRNA hairpin. The

pre-miRNA then feeds into the regular miRNA processing pathway where the mature

miRNA along with the miRNA* sequence are excised from the hairpin by DCL1. The

mature miRNA goes on to target the sense transcript from the same locus causing

mRNA cleavage, therefore regulating the expression of this gene.
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Figure 2.2: Model for nat-miRNA biosynthesis and function. The nat-miRNA pathway initiates
with the splicing of pri-miRNA transcripts to yield pre-miRNA hairpins. It is believed that the
possession of the introns in nat-miRNA precursors is important for the biosynthesis of miRNAs.
Splicing of these introns limits the potential base-pairing of the pre-nat-miRNA with the sense
transcript and favors hairpin formation. After Dicer cleavage, the mature nat-miRNAs then
enter the cytoplasm and direct the cleavage of the sense transcripts that are their targets. AS,
antisense strand; SS, sense strand. This figure is reproduced from [Lu et al., 2008].
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2.2.2 Short interfering RNAs (siRNAs)

Unlike miRNAs, short interfering RNAs (siRNAs) are derived from long, perfectly com-

plementary double-stranded RNAs (dsRNAs). siRNAs can be either endogenous

(originating within an organism) or exogenous (originating outside of an organism). Ex-

amples of exogenous siRNAs are experimentally introduced dsRNA [Fire et al., 1998],

transgenes [Voinnet et al., 1998] and viruses [Kasschau and Carrington, 1998], which

can initiate an RNA silencing response in plants [Hamilton and Baulcombe, 1999] and

some animals such as Caenorhabditis elegans whereby distinct siRNA populations

are formed during primary and secondary phases. Primary siRNAs are produced

from the initial exogenous trigger whereas secondary siRNA production can be ini-

tiated by primary siRNAs targeting a transcript and inducing the production of sec-

ondary siRNAs [Sijen et al., 2007, Mlotshwa et al., 2008, Moissiard et al., 2007] which

can spread throughout a tissue or organism [Voinnet, 2005].

Several subtypes of endogenous siRNAs are currently known and have distinct

regulatory functions described below.

Trans-acting short interfering RNAs

trans-acting siRNAs (ta-siRNAs) [Vazquez et al., 2004] are found in plants but not in

animals and, like miRNAs, are generally around 21nt in length. ta-siRNAs are pro-

duced from specific genomic loci called TAS loci. TAS genes are transcribed into

mRNA and are cleaved in two positions by miRNAs. After cleavage they are made
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double stranded by RNA-dependent RNA polymerase 6 (RDR6) (in Arabidopsis) and

the double stranded sequence is then processed by Dicer-like 4 (DCL4) which sequen-

tially cuts the transcript yielding “phased” siRNA that are in a 21nt register relative to

the miRNA cleavage sites [Axtell et al., 2006, Allen et al., 2005] (Figure 2.3). The

processed 21nt ta-siRNAs are then, like miRNAs, incorporated into the RISC where

they act to target mRNAs which are then subject to regulation.

Figure 2.3: In-phase processing of ta-siRNA from TAS gene. A) TAS gene is transcribed
giving rise to primary TAS transcript. B) The transcript is targeted and cleaved in two positions
by miRNAs complementary to regions shown in red (indicated by arrows). C) and D) RDR6
recognises the processed transcript and makes the RNA double-stranded. E) DCL4 recog-
nises the double stranded RNA and processes it into 21nt ta-siRNAs. Each ta-siRNA is in a
21nt phasing group relative to the initial miRNA cleavage position (ta-siRNAs are produced
from positions 1-21, 22-43, 44-65 and so on).
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Increasingly complex sRNA gene regulatory systems have been uncovered

whereby ta-siRNAs can invoke a cascade of gene regulation. In the example de-

scribed by Chen et al. [Chen et al., 2007] in Arabidopsis, miR173 cleaves the TAS2

transcript and causes the production of phased ta-siRNAs. One of the TAS2-derived

ta-siRNAs, ta-siR2140, targets two pentatricopeptide repeat (PPR) genes, At1g63130

and At1g63080. The cleavage products of At1g63130 and At1g63080 then produce

secondary ta-siRNAs, with the phase set by ta-siRNA rather than by miRNAs. One of

the secondary ta-siRNAs, siR9as, is known to target another PPR gene, At1g62930,

causing transcript cleavage leading to mRNA degradation and therefore regulating the

gene.

Ta-siRNAs have been found to be an important regulator of plant development

[Fahlgren et al., 2006, Nogueira et al., 2007, Peragine et al., 2004] and mutant plants

lacking the necessary machinery to produce ta-siRNAs show accelerated juvenile to

adult phase change in Arabidopsis which leads to severely deformed, stunted pheno-

types.

Repeat associated short interfering RNAs (ra-siRNAs)

Repeat associated siRNAs or ra-siRNAs are produced from long dsRNA which map

to repetitive sequence regions on the genome such as transposons, long inverted

repeats and dispersed repetitive elements [Slotkin and Martienssen, 2007]. Dicer-

like 3 (DCL3) and RNA-dependent RNA-polymerase 2 (RDR2) are responsible for



15

the generation of this class of siRNA which tend to be longer than ta-si and miR-

NAs (24nt). While DCL3 functions as the ribonuclease to process dsRNA precur-

sors, RDR2 is thought to function as a polymerase to form dsRNA from a primary

single-stranded RNA (ssRNA) transcript [Xie et al., 2004]. siRNAs produced from in-

verted repeats with near perfect self-complementarity are naturally double-stranded

and therefore do not require RDR2 activity and are instead directly processed by DCL3

[Xie et al., 2004].

Repeat associated siRNAs appear to be randomly produced from the dsRNA

precursors rather than following the phased-pattern seen with ta-siRNAs. ra-

siRNAs can trigger epigenetic effects at target loci and are associated with RNA-

directed DNA methylation and chromatin remodelling [Xie et al., 2004, Qi et al., 2006,

Chan et al., 2004]. In Arabidopsis, the 24nt siRNAs associate with Argonaute

4 (AGO4), which in conjunction with DNA-dependent RNA polymerase IVb (Po-

lIVb) [Mosher et al., 2008] guide DNA methylation. In plants, recent studies

have shown that sRNA mediated DNA methylation is required in order to si-

lence transposons and has also been implicated in the regulation of plant devel-

opment [Lippman and Martienssen, 2004, Slotkin et al., 2005, Zilberman et al., 2007,

Zhang et al., 2006c, Liu et al., 2004, Vaughn et al., 2007]. Loss of methylation results

in a genome-wide transcriptional reactivation of transposons.
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Natural-antisense transcript derived short interfering R NAs (nat-siRNAs)

nat-siRNAs have recently been described in Arabidopsis thaliana

[Borsani et al., 2005]. Here two genes are regulated in response to salt stress:

SRO5 gene expression is induced while P5CDH expression decreases. Tran-

scription from opposing promoters yields SRO5 and P5CDH transcripts with

a 760nt antisense overlap in their respective 3’ regions. 24 and 21nt sRNAs

matching this antisense overlap region were isolated from salt-stressed plants

[Sunkar and Zhu, 2004, Borsani et al., 2005] thus showing a novel mechanism of

sRNA production from overlapping transcripts.

Borsani et al. proposed a model whereby SRO5 and P5CDH transcripts anneal

at the antisense, overlap region to form a dsRNA substrate for DCL2 which pro-

duces 24nt siRNAs. The 24nt nat-siRNAs then guide the additional phased, DCL1-

dependent cleavages of the dsRNA into 21nt nat-siRNAs. The nat-siRNAs generated

then target the P5CDH transcripts for degradation. The expression of SRO5 is induced

by salt and is required to initiate siRNA formation.

A second example of a nat-siRNA locus was recently described by Katiyar-Agarwal

et al. [Katiyar-Agarwal et al., 2006] in Arabidopsis. Here nat-siRNA production is

specifically induced by the bacterial pathogen Pseudomonas syringae and confers

disease resistance to the plant. Unlike in the Borsani et al. example, DCL1 was found

to be required for the formation of the initial 24nt nat-siRNA rather than DCL2.

Natural antisense transcripts account for up to 7.4% of annotated transcription
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units in the Arabidopsis genome but such loci do not exhibit an increased likelihood

to give rise to small RNAs based on published MPSS sRNA data [Henz et al., 2007].

However, as both examples of Arabidopsis nat-siRNAs were discovered in plants that

were exposed to different stress conditions it is possible that nat-siRNA production is

not widespread under normal growth conditions and that siRNAs are only produced

when subject to specific environmental stresses or other triggers.

Figure 2.4: Salt stress induces a 24-nt nat-siRNA from the SRO5-P5CDH cis-antisense over-
lapping genes. Genomic structure of SRO5 (At5g62520) and P5CDH (At5g62530) genes.
Arrows indicate the direction of transcription. Thick and thin solid lines represent ORF and
UTR regions, respectively. Sequence of the 24-nt SRO5-P5CDH nat-siRNA is aligned with
P5CDH mRNA. This figure is taken from [Borsani et al., 2005].

Piwi-interacting RNAs (piRNAs)

Piwi-interacting RNAs (piRNAs) are a class of small RNA molecules of between 29-

30nt that are associated with a germline-specific subclass of Argonaute family proteins

(Piwi proteins). Piwi/piRNA complexes are thought to be involved in transposon silenc-

ing in the germline genome of animals and are not present in plants.



18

The "ping-pong" model for piRNA production (Figure 2.5) has recently been pro-

posed by two groups, (see Brennecke et al. [Brennecke et al., 2007] and Gunawar-

dane et al. [Gunawardane et al., 2007] for details). This model shows how a piRNA

cluster which gives rise to a variety of piRNAs can produce a sequence which is able

to target a transposon thus causing cleavage and inactivating the transposon. This

process also creates the 5’ end of new AGO3-associated piRNA which is capable of

cleaving complementary targets. One place from which such targets could be de-

rived are the piRNA clusters themselves. Cleavage of cluster transcripts generates

additional copies of the original antisense piRNA, which become available to silence

active transposons. This process then becomes a self-amplifying loop where the ini-

tial response is general but, once a target is found, copies of the effective piRNA are

amplified thus providing a specific response to the transposon.

2.3 Laboratory based methods for the detection and
analysis of sRNAs

This section introduces the background to the laboratory-based analysis of sRNAs

used later in this thesis.

2.3.1 sRNA detection by Northern blot analysis

The Northern blot is a technique used in molecular biology to detect RNA molecules

with sequence specific probes, and it is often used for semi-quantitative assays where

levels of RNA expression are compared using the intensity of bands produced on the
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Figure 2.5: The ping-pong model for piRNA biogenesis. (Bottom) Sense transcripts from trans-
posons are cleaved by Piwi or Aub RISC loaded with a piRNA guide. The cleaved transcript is
not merely degraded but used to program Ago3 RISC. (Top) This complex in turn cleaves the
antisense transcripts that originate from the master control loci. Again, the cleaved RNA serves
to program Piwi or Aub RISC. Thus, sense and antisense transcripts fuel an amplification cycle
in which the 5’-ends of piRNAs are defined by RISC cleavage. Presumably, the 3’-ends are
shortened by an endonuclease and/or exonuclease to the size that fits the distance between
PAZ and Piwi domains. The 3’-end is subsequently 2’-O-Me-modified by a methyltransferase,
called Pimet/DmHen1 in Drosophila. This figure is taken from [Hartig et al., 2007].

blot.

Firstly RNA is purified from a biological sample. Next a probe, usually an oligonu-

cleotide or an in-vitro transcript, is synthesised against a particular sequence of inter-

est (e.g. a potential novel miRNA). The probe is complementary to the sequence of

interest and is radioactively or chemiluminescently labeled so that it can be detected

at a later stage.
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The RNA sample is then loaded onto a gel for electrophoresis where an elec-

tric current is passed through the gel and the RNA moves away from the negative

electrode. The distance moved depends on the size of the RNA fragment; shorter

sequences move further down the gel, longer heavier sequences less so. This leads

to the RNA molecules being separated according to their size and leaves a continuous

smear on the gel. The gel is then transferred (blotted) onto a nitrocellulose membrane.

The probe is then added to the membrane and will hybridise to the single stranded

sequence of interest if it is present in the RNA sample. The gel is washed to remove

any non-specifically bound probe and then undergoes exposure. If the RNA of interest

is present in the sample, then a dark band should be visible on the Northern blot, the

intensity of which gives an estimate of the relative abundance of the molecule in the

sample. An example Northern blot is shown in (Figure 2.6). Here several different

samples were run on the same gel and the RNA of interest shows differing intensities

or expression levels in the different developmental stages (strong expression in leaf

and fruit 1-3mm, weaker in the other tissue samples).

2.3.2 Sequencing sRNAs

Most plant miRNAs have been identified by size fractionating (gel purification), lig-

ating sRNAs (after adaptor ligation) into cloning vectors and then sequencing using

the traditional Sanger sequencing method. This process was adopted in Arabidopsis,

rice and poplar, and comparison of miRNA sequences across plant families showed
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Figure 2.6: Example Northern blot of a candidate miRNA sequence in different plant tissues
(leaf, fruit 11-14mm, fruit 7-11mm, fruit 5-7mm, fruit 1-3mm, bud).

that the majority were conserved [Axtell and Bartel, 2005]. Recently several new tech-

nologies have become available which have enabled high-throughput sequencing of

sRNAs and have led to the discovery of a plethora of new miRNAs many of which

are expressed at low levels and are either unique to a specific species or at least not

widely conserved in related organisms.

Massively parallel signature sequencing (MPSS) [Reinartz et al., 2002] was the
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first deep-sequencing method successfully used to discover a number of novel miR-

NAs in Arabidopsis [Wang et al., 2004b]. The MPSS sequencing technology identifies

unique 17 nt sequences present in cDNA molecules originated from RNA extracted

from a cell sample [Wang et al., 2004b, Brenner et al., 2000] the exact mechanisms of

this process are not described in detail as MPSS data are not analysed in this thesis.

The short read length of the MPSS system is not ideal for sRNA analysis as full length

sRNAs cannot be sequenced making it harder to define individual sRNA species.

More recently, 454 pyrosequencing technology [Margulies et al., 2005] has

been used by several groups [Lu et al., 2006, Fahlgren et al., 2007, Yao et al., 2007,

Barakat et al., 2007a] in favour of MPSS. The 454 sequencing method generates up

to around 400,000 reads per run and can generate much longer read lengths than

MPSS (up to 300nt with the latest machines) meaning that complete sRNA reads can

be sequenced.

In 454 sequencing specific 3’ and 5’ adaptors are added to the input sample and

are necessary for purification, amplification, and sequencing steps. The sample is im-

mobilised onto specifically designed DNA capture beads, each bead carrying a unique

sequence. Each sequence then undergoes an Emulsion PCR (emPCR) step and is

amplified on its individual bead. Each bead is then loaded onto a PicoTiterPlate which

allows for only one bead per well. The sequencer then flows individual nucleotides in

a fixed order across the hundreds of thousands of wells. Addition of one (or more) nu-

cleotide(s) complementary to the template strand results in a chemiluminescent signal
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recorded by sequencer. The combination of signal intensity and positional information

generated across the PicoTiterPlate allows the sequencing software to determine the

sequence of each of the input sample.

One of the drawbacks of 454 sequencing is that the sequencing software uses

signal intensity to determine the number of consecutive identical bases in a sequence.

When multiple consecutive identical bases are encountered (especially four or more

repeated bases) the software cannot reliably interpret the signal intensity (and there-

fore the number of bases read) which can lead to sequencing errors especially with

low complexity sequences.

Recently Solexa/Illumina machines [Bennett, 2004] have further increased the

number of reads obtainable from sRNA deep-sequencing runs. This approach allows

in excess of 1 million sRNA reads per experiment with a read length of 35nt making it

ideally suited for sRNA discovery. This technology again requires 3’ and 5’ adaptors

to be ligated to the sample to be sequenced. The sample is then attached to a spe-

cial optically transparent plate. Attached DNA fragments are extended and amplified

to create an ultra-high density sequencing flow cell with over 50 million clusters, each

containing around 1000 copies of the same template. These templates are sequenced

using a four colour DNA “sequencing-by-synthesis” technology. This approach means

that each base is sequenced individually base-by-base and eliminates the problem

that 454 technology has with repetitive sequence.

Although high-throughput techniques have revolutionised sRNA sequencing they
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have led to new problems with data analysis. Previously, biologists would often manu-

ally work through small lists of sRNAs but with millions of reads now being produced by

a single sequencing run the need for computational techniques to process and classify

sRNAs has become apparent.

2.3.3 miRNA target validation

As previously described plant miRNAs tend to be highly complementary to their targets

and cause mRNA cleavage at a specific position within the target site of the miRNA

[Rhoades et al., 2002]. This means that predicted targets can be validated experimen-

tally by a process called 5’ Rapid Amplification of cDNA Ends (5’ RACE) analysis. In

essence the process allows the sequencing of cleavage products from the mRNA pre-

dicted to be targeted by a given sRNA. The sequences can then be aligned to the full

length mRNA and, if the mRNA is regulated, then the cleavage products should begin

at the precise nucleotide position predicted to be targeted by the sRNA. This method

is not applicable to animal target validation as the mRNAs are not usually cleaved.

Instead a luciferase assay is required [Clancy et al., 2007, Wang et al., 2007]. As this

technique is not relevant to later work presented in the thesis it will not be detailed

here.

New methods proposed by Addo-Quaye et al. [Addo-Quaye et al., 2008] and Ger-

man et al. [German et al., 2008] allow the entire transcriptome of an organism to be

searched for miRNA cleavage products, and, unlike in the traditional 5’RACE method,

the miRNA and proposed target do not need to be known before the experiment is
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miR171 3’ CUAUAACCGCGCCGAGUUAGU 5’
|||||||||||||||||||||

AT4G00150 GACACGTGTCTAGCTCAGGGGATATTGGCGCGGCTCAATCAACAGCTCTCTTCTCCC
cleavage1 -------------------------------GGCTCAATCAACAGCTCTCTTCTCCC
cleavage2 -------------------------------GGCTCAATCAACAGCTCTCTTCTCCC
cleavage3 -------------------------------GGCTCAATCAACAGCTCTCTTCTCCC
cleavage4 -------------------------------GGCTCAATCAACAGCTCTCTTCTCCC
cleavage5 -------------------------------GGCTCAATCAACAGCTCTCTTCTCCC

Figure 2.7: Alignment of Arabidopsis AT4G00150, Scarecrow-like 6 (SCL6) mRNA to its 5’
RACE cleavage products. miR171 target site is shown along with base pairing between miRNA
and target mRNA. 5’ start positions of all cleavage products all begin the cleavage site showing
a precise cleavage between positions 10 and 11 of the miRNA. Only the region of the alignment
around the cleavage site is shown in this figure.

performed. The groups combine a modified 5’RACE with high-throughput deep se-

quencing to create libraries that contain 3’ cleavage products of mRNAs. mRNA frag-

ments from the high-throughput sequencing are computationally mapped to a library of

mRNAs and potential target sites can be distinguished from random mRNA degrada-

tion products using the relative abundance of the high-throughput sequence reads. In

their test data, highly abundant reads mapped to the cleavage positions of the mRNAs

known to be targeted by miRNAs making genuine targets easily distinguishable from

background noise and providing a novel high-throughput approach for the identification

and validation of miRNA targets.

2.4 Computational prediction and analysis of sRNAs

Ever since their discovery, groups from all over the world have been hunting for new

miRNAs (and homologues of known miRNAs) in a variety of different organisms.
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As previously mentioned, miRNAs are derived from a pre-miRNA (see figure 2.1),

the structure of which is evolutionarily conserved. Several RNA folding algorithms

e.g. [Zuker and Stiegler, 1981, McCaskill, 1990] have been implemented that allow

the prediction of such structures. In general, these work using dynamic programming

algorithms (see [Eddy, 2004] for review) which allow the prediction of a minimum free

energy (MFE) structure for a given input RNA sequence. Examples include RNAfold

[Hofacker, 2003] and Mfold [Zuker, 2003]. In general, single sequence structure pre-

diction can be quite unreliable [Gardner and Giegerich, 2004] but due to the high de-

gree of base pairing in miRNA precursors, predictions of pre-miRNA structures are

generally believed to be much more accurate and show greater stability than other non-

coding RNAs [Chan and Ding, 2008, Loong and Mishra, 2007b, Bonnet et al., 2004b].

Purely computational prediction of other sRNA classes has largely been ignored

due to the fact that they are derived from transcripts that do not have a conserved

secondary structure or sequence making it almost impossible to design algorithms for

their classification.

2.4.1 miRNA homologue detection

Several approaches have been employed to detect homologues of known,

experimentally validated miRNAs (see [Weber, 2005, Legendre et al., 2005,

Dezulian et al., 2006, Hertel et al., 2006, Artzi et al., 2008] for details). All use a

sequence similarity search such as BLAST [Altschul et al., 1990], which looks either

for the mature miRNA or pre-miRNA in a target genome. The secondary structure
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of candidate pre-miRNA is then analysed to ensure that the characteristic hairpin

structure is conserved. Other more advanced single sequence search methods

such as RSEARCH [Klein and Eddy, 2003] which takes into account RNA secondary

structure may also be effective for this purpose. Homology searching is relatively

straightforward and does not pose any significant computational challenges as those

mature miRNA sequences that are conserved are generally highly similar on a

sequence level even though the organisms they come from may be evolutionarily very

distant.

2.4.2 de novo miRNA prediction

De novo miRNA prediction, where novel miRNA candidates are computationally de-

tected from a given input genome sequence without any prior knowledge of their exis-

tence, is a much more challenging problem than homologue detection. The difficulty

is due to the small size of the sequences to be detected and large size of the search

space (the target genome sequence).

Several computational methods have been described for the de

novo prediction of miRNA sequences [Lai et al., 2003, Lim et al., 2003,

Jones-Rhoades and Bartel, 2004, Bonnet et al., 2004a, Wang et al., 2005], many

of which are based on assumptions made by Lai et al. [Lai et al., 2003] which state

that miRNAs are highly conserved between the genomes of related species. In

general, these approaches are based on folding sequence windows of a defined

length from an input genome and predicting the most energetically stable secondary
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structure with algorithms such as RNAfold and Mfold. Resulting secondary

structures are then assigned scores based on empirical properties of known miRNA

precursor hairpins.

Most methods produce many thousands of candidate miRNA sequences,

indicating that such approaches suffer from a lack of specificity. To re-

duce the number of false positive predictions, many algorithms (e.g.

[Wang et al., 2004b, Jones-Rhoades and Bartel, 2004, Bonnet et al., 2004a,

Wang et al., 2005, Adai et al., 2005]) employ a conservation rule, i.e. a candidate

miRNA is only accepted if a homologue can be found in the genome of at least

one other related species. This method of miRNA prediction has been successfully

employed to find many novel miRNAs in both plants and animals with a high degree

of accuracy.

Although some miRNAs are conserved between closely related organisms,

many have now been shown to be specific to individual taxonomic groups

[Barakat et al., 2007b, Bentwich et al., 2005, Fahlgren et al., 2007, Yao et al., 2007].

This discovery has exposed the limitations of comparative methods and has led to

the need for alternative approaches to miRNA detection. Recently a Support Vector

Machine (SVM) based classifier miPred [Loong and Mishra, 2007a] was released.

miPred claims to give accurate predictions without the need for cross-species valida-

tion and achieves a 84.55% sensitivity and 97.75% specificity on a test set of human

pre-miRNAs and pseudo-hairpins (the negative control). An earlier study suggests
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that computational folding of sequence windows obtained from the human genome

can yield around 11 million hairpin sequences [Bentwich et al., 2005] and given an

estimated false positive rate of 2.25% the method would likely give rise to around

250,000 false positive miRNA predictions, a scale of error that would be unacceptable

for biologists who need to validate candidate miRNAs experimentally.

siRNAs are derived from primary transcripts that do not have a well conserved

secondary structure or sequence properties. This means that siRNA loci cannot be

predicted computationally without knowledge of sRNA sequences (such as those pro-

duced from high-throughput sRNA sequencing experiments). As such no ab initio

siRNA detection methods have been published to date.

2.4.3 miRNA target prediction

In plants miRNAs tend to have near perfect complementarity to their target genes

and usually bind within the coding region of the mRNA leading to cleavage and

degradation of the sequence. Because of the high degree of complementarity be-

tween miRNA and target, plant miRNA target prediction is thought to be a rela-

tively straightforward process which relies on simple sequence searches such as

BLAST [Altschul et al., 1990] and FASTA [Pearson and Lipman, 1988] to find poten-

tial target regions. The regions are then filtered based on a number of rules (e.g.

[Allen et al., 2005, Schwab et al., 2005]) such as the number of mismatches between

the miRNA and target, as well as the MFE of the miRNA/target duplex. Many plant
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targets have been identified computationally in this way and later validated experimen-

tally. It is therefore thought that plant miRNA target prediction is much more accurate

than animal target prediction.

In animals the situation is quite different. miRNAs tend to target mRNAs within their

3’ untranslated region (3’ UTR) and show a low degree of complementarity to their

target site. Unlike in plants, the mRNA is not usually cleaved but instead the binding

of the RISC along with the miRNA acts to block translation of the mRNA into its pro-

tein product. The low complementarity between miRNA and target in animal systems

makes it extremely difficult to predict accurately the targets of a given miRNA. Even

so, most animal miRNAs do show a greater degree of complementarity to their targets

at their 5’ ends (positions 2-7 or 8) known as the “seed” sequence [Lewis et al., 2005].

There have been several attempts to address the animal target prediction prob-

lem computationally (see e.g. [Enright et al., 2003, Krüger and Rehmsmeier, 2006,

Krek et al., 2005]). These methods rely on finding target sequences from a single

miRNA input, and employ nucleotide complementarity and MFE calculations to identify

miRNA/target duplexes and rank target sites based on these parameters.

Although these methods have been successfully used to predict some real targets,

they tend to lack specificity, and can produce many false positives. Different target

prediction methods also tend to predict candidate targets that show little or no overlap

[Rajewsky, 2006].

As with detecting the miRNAs themselves, comparative genomic approaches have
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been successfully used to identify inter-species target site conservation so as to filter

out non-conserved target sites (e.g [John et al., 2004, Watanabe et al., 2006]). This

form of post processing can improve specificity but can also reduce sensitivity meaning

that important targets can be missed.

Other strategies for improving specificity of target predictions include looking at

target site accessibility. Many predicted targets are located within regions of 3’ UTRs

which are highly structured. If the target is part of a very stable secondary structure

then it is unlikely to be accessible to the miRNA and therefore should not be consid-

ered as a valid target site. Kertesz et al. [Kertesz et al., 2007] proposed that target

accessibility is a critical factor in microRNA function and target prediction.

2.4.4 ta-siRNA prediction

Although it is not possible to predict TAS loci directly from a genome sequence, the

characteristic phased nature of ta-siRNAs make it possible to classify loci based on

data derived from high-throughput sequencing as long as the genome sequence of

the organism is known.

High-throughput sRNA data can be mapped to a reference genome in order to

identify sRNAs phased in 21nt increments that could represent potential TAS loci.

Chen et al. recently published a method to detect TAS loci from high-throughput se-

quence data [Chen et al., 2007]. This method relies on a simple statistical test to look

at the number of phased and non-phased positions within a cluster. Firstly a 231nt

window downstream of the 5’ start site and an 231nt antisense window with a 2nt 3’
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shift (to mimic the DCL4 cleavage) is produced relative to each sRNA (Figure 2.8A).

This region contains contain 21 possible “phased” positions in 21nt increments and

440 possible “non-phased” positions relative to the start site of each sRNA. The num-

ber of distinct small RNAs mapping to this region (n) and the number of distinct small

RNAs mapped to phased positions (k) are counted. A p-value of obtaining k or more

phased small RNAs is calculated from the hypergeometric distribution (Figure 2.8B).

Low p-values (p < 0.01) represent good candidates for ta-siRNA producing loci.

Figure 2.8: Theoretical basis and derivation of the TAS prediction algorithm. A) The vertical
arrow indicates the start site for the small RNA used to determine the phased and non-phased
positions. 21 phased sites relative to the start site are indicated as black vertical bars. Four
hundred forty non-phased sites relative to the start site are indicated as gray. B) Equation
based on hypergeometric distribution for statistically evaluating the probability of obtaining k

or more phased sRNAs from the genomic fragment defined in A) This figure is taken from
[Chen et al., 2007].

Although this method has been successfully used to identify both known and

novel TAS loci [Chen et al., 2007] it is not without its drawbacks. First, it is known
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that ta-siRNAs are 21nt in length [Allen et al., 2005] and yet the Chen et al. algo-

rithm only looks at the sRNA start position on the genome and does not take size

information into account. The second main drawback with this method is that it ig-

nores abundance (cloning frequency) information so highly abundant sRNA reads are

treated equally to those with a single read count. This makes the algorithm highly

susceptible to noisy data, and it is known from analysing published 454 data (e.g.

[Fahlgren et al., 2007, Rajagopalan et al., 2006]) that phasing at known TAS loci is of-

ten imperfect. However “in-phase” sRNAs are often present at much higher abundance

than other sRNA mapping to the loci. It is not known whether this is a result of sRNAs

mapping to the locus by chance (and in reality being produced from a different genomic

location), a product of incorrect sequencing, or the result of imprecise processing of

ta-siRNAs in the cell (at a low frequency).

2.5 Discussion

This chapter has given a brief background on sRNAs and the biological and computa-

tional methods currently used in their identification, classification and validation. Over

the previous five years there have been huge technological advances, and the advent

of the high-throughput sequencing has opened up new possibilities in the sRNA field

as well as many other areas of biological research. The advent of these new technolo-

gies has however caused problems for biologists who need to process and analyse

the large amounts of data produced. With new even higher throughput technologies
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on the horizon the need for specialised, easy to use tools for the detection of miRNAs,

and other sRNA loci of interest are of utmost importance. These challenges lie in

the field of bioinformatics and throughout the rest of this thesis we will present new

methods and tools designed to improve high-throughput sRNA analyses, as well as

discussing some applications of these techniques to biological datasets.



Chapter 3

miRNA detection in high throughput
small RNA sequencing data

This chapter is an adapted and extended version of

Moxon, S., Schwach, F., Studholme, D., Dalmay, T.,

MacLean, D., Moulton, V. (2008): A toolkit for analysing

large-scale plant small RNA datasets Bioinformatics. In

press.
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3.1 Summary

This chapter describes a toolkit created to process high-throughput datasets and pro-

duce high quality miRNA and ta-siRNA candidates for follow up experimental vali-

dation. Firstly we describe miRCat, a tool to identify miRNA sequences in high-

throughput sequence sets and benchmark its performance on published data. We

then go on to describe a suite of publicly available web-based tools consisting of an

online implementation of miRCat, a plant sRNA target prediction tool, a ta-siRNA

prediction method, and SiLoCo, a tool to compare the expression levels of sRNA loci

in two different sRNA samples.

3.2 miRCat

As described in Chapter 2, there is a need for a generalised tool to screen high-

throughput sRNA data sets for miRNAs. At the time of writing, one such tool miRDeep

[Friedländer et al., 2008] is available for analysing animal datasets, but no such tools

have yet been published for use with plant sRNA data. We now describe such a tool

that we call miRCat (miRNA Categoriser).

3.2.1 Features

For flexibility, adaptability and future extendability, miRCat is comprised of a collec-

tion of standalone scripts written in Perl. It takes as input two Fasta format files;
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Figure 3.1: Workflow diagram showing inputs and outputs of the miRCat pipeline.

one containing the sRNA sequences, and the other the corresponding genome se-

quence (or set of sequences) from the organism of interest. The sequences are pre-

processed to remove adaptor sequences (used in the experimental sequencing of the

sRNAs), mapped to the genome, and miRNA candidates are predicted. The output

of miRCat consists of a comma separated value (.csv) format file (easily imported

into any spreadsheet software) containing information about each candidate miRNA. A

Fasta file of candidate mature miRNA sequences, and a plain text file containing struc-

ture predictions for the precursor miRNAs. Optionally a GFF format file [GFF, 2000]
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containing all sRNAs and their genomic locations can be generated. For an overview

of miRCat see Figure. 3.1.

Adaptor removal

Adaptor sequences are commonly used in high-throughput technologies such as

454 and Illumina and need to be removed before any further analysis is performed.

remove_adaptors.pl reads in the raw reads generated from the sequencing and

prompts the user for a set of adaptor sequences. Sequences that exactly match both

3’ and 5’ adaptors (in the case of 454 sequence reads) and 3’ adaptors (in the case

of Solexa/Illumina reads) specified by the user are then removed (see Figure. 3.2).

All sequences matching the reverse complement of the adaptors are processed, and

then reverse complemented in order to achieve the correct sequence orientation. A

full breakdown of the number of sequences in the input set, the number extracted and

the number of sequences that did not match both adaptors are then displayed to the

user.

Obtaining genomic coordinates

Once adaptors have been removed, genomic coordinates of each sRNA are computed

for later analysis. We found existing tools such as BLAST [Altschul et al., 1990] and

FASTA [Pearson and Lipman, 1988] to be unsuitable for this task as, although they are

fast, they do not guarantee to find all matches to a sRNA on the genome sequence. We

instead devised an exact matching technique that reads all sRNAs and their reverse
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Figure 3.2: Raw sequence reads from high-throughput projects contain 5’ and 3’ adaptor se-
quences (green and blue respectively) that must be removed before they can be mapped to the
genome. remove_adaptors.pl will quickly remove exact matches to adaptor sequences
supplied using a simple Perl pattern match.

complements into memory, and then splits the reference genome into fragments that

correspond to the lengths of each sRNA in the input set. Each genomic fragment is

compared to the sRNA set (and the set of sRNA reverse complements) in memory

and if the sequences match exactly then the genomic coordinates of the fragment

are recorded. This algorithm was implemented in find_genomic_location.pl

which reads in a the processed Fasta format file of sRNA sequences and produces a

list of coordinates in the user defined genome sequence.

sRNA analysis

process_hits.pl is designed to detect candidate miRNA sequences based on

their genomic location and putative precursor properties. Firstly, the script computes
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1/78933-78952(-1)190(2)=TCGGACCAGGCTTCATCCCC
1/537974-537993(1)9948(1)=TTCATCCCCAAATTGATAAC
1/1276554-1276573(1)18080(3)=TCTTGTGTGATGATGTGTCA
1/3785426-3785445(1)46778(1)=AATCATCTTCCACCTCCTTA
1/3825885-3825904(-1)14251(1)=GTTCTTATTAGATGAGGGTA
1/3920120-3920139(-1)36046(1)=TTTTGATGAGCGTTTGAATA
1/3961368-3961387(-1)210(13)=TTGAGCCGTGCCAATATCAC

Figure 3.3: Example of output from find_genomic_location.pl in the following format:
chromosome / start - end (strand) sRNA_accession (sRNA_abundance) = sRNA_sequence.

clusters of sRNA hits (or loci) based on their genomic location. The genome coordi-

nates created in the previous step are read in and sRNAs are clustered based on their

proximity to one-another. Neighbouring sRNAs are defined to fall into the same locus

if they are within 200nt of one another. 200nt was chosen as the optimum value after

looking at the proximity of known Arabidopsis miRNA/miRNA* pairs on the genome.

Once genomic loci have been defined, process_hits.pl compares properties

of sRNA loci to those of known miRNAs. The default settings require 90% of all sRNA

hits within a locus to be in the same orientation. Moreover, no more than four distinct,

non-overlapping sRNA hits must be present in the locus, and the maximum total length

of overlapping sRNAs must not exceed 70nt. If these criteria are satisfied then the

locus is further analysed by extracting flanking genomic sequences of varying lengths,

both upstream and downstream of the most abundant sRNA in the locus (which is

considered to be the miRNA sequence). The resulting sequences are folded with

RNAfold [Hofacker, 2003] and their secondary structures are checked for a number

of properties indicative of miRNA precursors [Ambros et al., 2003].
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First the base pairing of the most abundant sRNA (the predicted mature miRNA)

within the putative precursor is analysed. The mature miRNA must not exhibit base

pairing with itself as no known miRNAs have this feature. If this is the case, then

the sequence window is discarded. Otherwise the structure is analysed and, if a

hairpin-like configuration (see Figure. 2.1) is found (by analysing the base-pairing

and identifying a valid stem and loop region), and is longer than the minimum hairpin

length (70nt) then the hairpin is subjected to additional tests. Using default settings

(based on recent stringent criteria for miRNA annotation [Jones-Rhoades et al., 2006])

no more that three consecutive unpaired bases are allowed in the 25nt region centred

around the predicted mature miRNA and no fewer than 18nt in this 25nt region are

allowed to be unpaired.

All structures passing these criteria are filtered based on their adjusted minimum

free energy (AMFE) as defined by the user – default -25.0 kcal/mol. The AMFE is

calculated by dividing the MFE derived from RNAfold, by the length of the potential

miRNA precursor sequence and multiplying this value by 100. This calculates the

MFE per 100nt of sequence and allows the normalisation of MFEs from sequences of

differing lengths [Zhang et al., 2006b].

Sequences fulfilling these rules are then analysed using randfold

[Bonnet et al., 2004b]. randfold shuffles the hairpin sequence, preserving its

dinucleotide frequency, and folds the sequence (using RNAfold) to obtain its MFE.

This process is repeated (miRCat uses 100 randfold randomisations) and the
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MFE of the hairpin is compared with the distribution of MFE values obtained from

the shuffled sequences. A p-value is assigned to the hairpin sequence based

on its stability compared to the random sample. By default, all hairpins with a

p-value of greater than 0.1 are filtered out as they are unlikely to be real miRNA

hairpins. This process has been shown to be effective in screening miRNAs

[Bonnet et al., 2004b, Loong and Mishra, 2007b].

As multiple sequence windows containing the mature miRNA are checked, the

hairpin with the most stable structure (based on its MFE) is chosen as the represen-

tative miRNA-precursor sequence.

3.2.2 Testing

miRCat has been tested using a variety of published plant and animal datasets taken

from the NCBI Gene Expression Omnibus (GEO) repository [Barrett et al., 2007] and

shows a good level of sensitivity and specificity. When tested on the Rajagopalan et

al. wild-type Arabidopsis thaliana leaf sample [Rajagopalan et al., 2006] (GEO acces-

sion: GSM118373) containing 186,899 sRNA sequences (see Table. A.1), miRCat

predicts 89 miRNA loci using default parameters. 83 of these predictions are known

miRNA sequences (miRNAs from 91 loci were present in this sample), and 6 novel

miRNA loci were predicted. This shows a 91.2% sensitivity and, even assuming all

the novel predictions are false-positives, this gives a specificity of 99.93% (8362 loci

tested). Using the Col-0 leaf sample from Kasschau et al. [Kasschau et al., 2007]

(GEO accession: GSM154370) which contained 15,833 sRNA sequences (see Table.
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A.1), miRCat predicted 51 miRNA loci (miRNAs from 55 loci were present in this

sample) i.e. a 92.7% sensitivity. It also detected two potential novel miRNAs in this

set.

miRCat has also been adapted to work with animal data. In gen-

eral, animal miRNA precursors tend to be shorter and less energetically sta-

ble than their plant counterparts [Reinhart et al., 2002, Millar and Waterhouse, 2005,

Jones-Rhoades and Bartel, 2004]. Animal miRNAs can also be densely clus-

tered as their pri-miRNAs can contain many pre-miRNAs [He et al., 2005,

Tanzer and Stadler, 2004, Seitz et al., 2004] so some changes to the method were

necessary to allow for this. Based on tests with known animal miRNAs the threshold

AMFE was increased to -18.0 kcal/mol, the minimum hairpin length parameter was

reduced to 60nt and the maximum distance between neighbouring sRNA hits was

reduced to 100nt.

miRCat was tested using sRNAs obtained from a Solexa sequencing run from

mouse embryonic stem cells [Calabrese et al., 2007] and predicted 213 miRNAs in

this set. Two of the predictions were not annotated and are therefore good candi-

dates for novel mouse miRNAs. Even if these two are false positives it would still

mean that the method is above 99.9% specific. All the other predicted miRNAs

mapped to either known miRNA loci or new loci of existing miRNAs in miRBase

[Griffiths-Jones et al., 2008]. Of the 205 known miRNA loci present in this sample,
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164 were correctly identified by miRCat, giving an 80% sensitivity using default pa-

rameters. Additional filters were included in this analysis and known non-coding RNAs

such as snoRNAs taken from Rfam [Griffiths-Jones et al., 2005] were removed from

the input dataset. In addition it is likely that further optimisations could be made in

order to increase the sensitivity. Full results can be found in Table. A.4.

3.2.3 Applications

We have run miRCat on several sRNA datasets including those in

[Pilcher et al., 2007, Kasschau et al., 2007, Qi et al., 2006, Rajagopalan et al., 2006,

Lu et al., 2006], and it is currently being used to analyse Arabidopsis thaliana,

Medicago truncatula, Chlamydomonas reinhardtii and Gallus gallus (see A.5) Solexa

datasets. We have also combined several publicly available Arabidopsis wild-type

sRNA datasets obtained using 454 sequencing technology (GEO accessions:

GSM118372, GSM118373, GSM149079, GSM154336, GSM154370, GSM257235,

GSM118375, GSM121455 and GSM149080) to see whether re-analysing these

published datasets using miRCat could yield any further novel miRNAs previously

missed by other groups.

A total of 1,160,593 sRNA reads were obtained from these datasets after exact

matches to known tRNAs and rRNAs from Rfam [Griffiths-Jones et al., 2005], the Ara-

bidopsis tRNA database:

http://lowelab.ucsc.edu/GtRNAdb/Athal/

and rRNA sequences obtained from the EMBL nucleotide sequence database



45

[Kulikova et al., 2007] were removed.

We then used miRCat to map the sRNAs to the Arabidopsis genome giving a

total of 3,416,663 sRNA genomic positions (each sRNA can map to multiple genomic

locations).

miRCat predicted 131 miRNA loci, 117 of which were previously described miR-

NAs, and the remaining 14 appear to be strong candidates for novel miRNAs missed

in the original analyses by other groups. See Table. A.3 for full results.

3.2.4 Availability

miRCat can be downloaded from http://www.uea.ac.uk/~simonm/

miRCat/. We also implemented miRCat as a webserver-based tool to allow

users to quickly process their sRNA sets without having to download and install their

own local copy of the software, this version is available from

http://srna-tools.cmp.uea.ac.uk/mircat/.

The command line based implementation of miRCat requires installation of

Perl version 5.8 http://cpan.org, Bioperl 1.4, http://bioperl.org or

higher, the Vienna package http://www.tbi.univie.ac.at/~ivo/RNA/ and

randfold http://bioinformatics.psb.ugent.be/software.php. Al-

ternatively users can submit their data for processing via the web-based tool.
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3.2.5 miRCat webtool

The web-based implementation of miRCat

(http://srna-tools.cmp.uea.ac.uk/mircat/) (See Figure. 3.4) allows

the user to upload a Fasta format file (or zip/gzip compressed Fasta format file) con-

taining their sRNA sequences (up to a limit of 150Mb). The user uploaded sRNAs are

first searched against ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) with any

exact matches being removed. The remaining sequences are then mapped to a user-

selected genome sequence and undergo a series of tests (detailed in Section 3.2.1)

in order to classify miRNAs present in the sample. Once the analysis is complete

an email is sent to the user with a download link to their results. The output is a

compressed archive (zip file) containing a comma separated value (csv) file showing

all predicted miRNA sequences present in the input dataset as well as a file containing

the secondary structures of predicted precursor miRNA sequences and a Fasta file of

predicted mature miRNAs. The user can also opt to create a GFF format file showing

the genomic coordinates of all sRNAs on the selected genome sequence.

3.3 UEA sRNA tools server

In addition to miRCat, we have implemented several other sRNA analysis tools on

the UEA sRNA tools webserver, each of which is described in further detail below.
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Figure 3.4: Screenshot of the web-interface for the miRCat pipeline.

3.3.1 Target prediction

Due to the high degree of complementarity between plant miRNAs and their tar-

gets it is possible to accurately predict miRNA-target interactions [Llave et al., 2002,

Jones-Rhoades and Bartel, 2004]. We provide a target prediction tool (See Figure.

3.5) which allows users to upload up to 50 sRNA sequences to search for targets in

20 different plant gene sets. The algorithm is based on rules devised by Allen et al.



48

[Allen et al., 2005] and Schwab et al. [Schwab et al., 2005] detailed below. Results of

target searches along with the full target transcript sequence are emailed to users as

an attachment.

Figure 3.5: Screenshot of the web-interface for the plant target prediction tool.

The target prediction script firstly reads in a set of sRNAs and a flat file se-

quence database of ESTs or mRNA sequences from an organism of interest (the

potential targets). Each sRNA is searched against the potential target set using
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FASTA [Pearson and Lipman, 1988]. Any potential matches to the reverse comple-

ment of the input sequence then undergo a series of tests based on criteria from

[Allen et al., 2005] and [Schwab et al., 2005] to further filter the results. The tests are

as follows:

• Number of mismatches between miRNA and target: Up to four mismatches

between the miRNA and potential target are allowed. G-U base pairs are

counted as 0.5 mismatches and all others as 1 mismatch.

• No more than one bulge in the miRNA/target duplex

• No more than two adjacent mismatches

• No adjacent mismatches in positions 2-12 (5’) of the miRNA

• No mismatch in positions 10-11 of the miRNA : This is due to the fact that

cleavage usually occurs at this point and base pairing is always conserved here

in known plant miRNA/target interactions.

• No more than 2.5 mismatches in positions 1-12 of the miRNA : Generally the

miRNA/target duplex is more stable towards the 5’ end of the miRNA therefore

it is less tolerant of mismatches in these positions.

• MFE of miRNA/target heteroduplex > 74% of the perfect (homo-)duplex :

The MFE ratio is calculated by first finding the MFE of the miRNA/target duplex

with RNAcofold [Hofacker, 2003] and dividing this number by the MFE of the
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miRNA bound to its perfect complement. The ratio must be 0.74 or higher and

fulfil all other criteria in order to be considered as a target.

Figure 3.6: Example of the output from the target prediction tool. 1. shows sRNA
ID/accession. 2. shows target transcript ID/accession and start-end position of the target
site. 3. shows any information/annotation this sequence may have. 4. shows the alignment of
the miRNA (bottom sequence) to the target site (top sequence). 5. shows the full sequence of
the predicted target.

3.3.2 trans-acting siRNA prediction

To allow for the rapid screening of sRNA datasets for ta-siRNAs, we have made

available a modified web-based implementation of the algorithm proposed by Chen

et al. (See Figure. 3.7) [Chen et al., 2007]. This first maps an input set of sR-

NAs to a selected genome using PatMaN, a recently released program which allows

extremely fast exact matching of short sequences to large databases (or genomes)

[Prüfer et al., 2008], and then identifies potential ta-siRNA loci as described in section

2.4.4. A p-value is then assigned to each locus and those loci where p is below a

user-defined cutoff are classified as candidate ta-siRNA producing locus.
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Unlike in the Chen et al. implementation we only map 21nt sequences to the

genome. All sRNAs of other lengths are removed from the analysis as ta-siRNAs

are composed solely of 21nt phased sequences. Chen et al. could not do this in

their original analysis as it was based on MPSS data so that the size information

was not available (all MPSS derived sequences are 17nt long). The other difference

in our implementation is that we discard all sequences that were only cloned once

in the sequencing experiment. This is due to the fact that single read sequences in

high-throughput datasets are unlikely to represent real ta-siRNAs, since, based on

observations from Arabidopsis datasets, these tend to be found in much higher abun-

dance. Removing single reads also improved the accuracy of the algorithm when

run using Arabidopsis 454 leaf data from [Rajagopalan et al., 2006] (GEO accession:

GSM118373) and [Kasschau et al., 2007] (GEO accession: GSM154370).

The tool was tested using the GSM118373 Arabidopsis leaf sRNA dataset taken

from Rajagopalan et al. [Rajagopalan et al., 2006], where the tool predicted eight ta-

siRNA producing loci. Four of these were known TAS loci and two were pentatri-

copeptide repeat (PPR) gene loci also predicted by other groups as potential TAS loci

[Howell et al., 2007, Chen et al., 2007]. The remaining two candidates could poten-

tially be novel ta-siRNA producing loci which need to be further tested using laboratory

based methods.
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Figure 3.7: Screenshot of the web-interface for the ta-siRNA prediction tool.

3.3.3 Other tools

Two additional tools were implemented by Dr. Frank Schwach as part of the web-tools

package. We give a brief overview of both below for completeness.
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Table 3.1: Results from ta-siRNA prediction on GSM118373 dataset

Chromosome Start position End position # sequences # phased sequences p-value Locus information
1 18553066 18553317 15 5 2.671539e-04 TAS1b
1 23303204 23303455 7 3 2.545945e-03 PPR repeat gene
1 23423543 23423794 8 3 3.953600e-03 PPR repeat gene
2 11729024 11729275 12 5 7.707355e-05 TAS1a
2 16544727 16544978 10 5 2.603156e-05 TAS1c
2 16546892 16547143 25 7 4.047208e-05 TAS2
3 14214070 14214321 28 5 5.909308e-03 Unannotated locus
3 1970347 1970598 3 2 5.777746e-03 AT3G06435.1

”Chromosome” shows Arabidopsis chromosome number; ”Start position” shows start
position of predicted TAS locus; ”End position” shows end position of predicted TAS
locus; ”# sequences” shows number of unique sequences in predicted TAS locus;
”# phased sequences” shows number of unique sequences that are in phase in the
predicted TAS locus; ”p-value” shows the p-value assigned to the TAS locus; ”Locus
information” shows any annotation (taken from TAIR [Swarbreck et al., 2008]) for this
locus (this column is added manually here for illustration purposes and is not present
in the actual output from the tool).

RNA folding and annotation

It is often difficult to visualise where sRNA sequences map to in a longer sequence,

so we offer a tool which allows a user to input an RNA sequence such as a miRNA

precursor and several sRNA sequences, such as a predicted miRNA and miRNA*

sequence. The tool will then fold the longer RNA using RNAfold and mark-up the

sRNAs on the larger structure. This can be especially useful for visualising the output

from miRCat results and also allows users to download publication quality pdf files of

their RNA secondary structures. Figure 2.1 was created using this tool, the miRNA

and miRNA* sequences are clearly highlighted allowing the user to immediately see

the locations of the sRNA in the overall secondary structure.
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SiLoCo locus comparison

High-throughput sequencing can be used to compare sRNA expression profiles under

varying conditions or between mutants and wild type to gain insights into the biogen-

esis and function of sRNAs. Plant sRNA populations are highly complex and a simple

sequence-by-sequence comparison would not give an accurate picture. To obtain

meaningful profiles, sRNA sequences must therefore be grouped into loci of origin

and the repetitiveness of sRNA matches to the genome must be taken into account.

SiLoCo identifies sRNA loci on plant genomes from two sRNA datasets, which

can be uploaded by the user and/or selected from publicly available datasets. SiLoCo

maps sRNA sequences to the genome and weighs each sRNA hit by its repetitive-

ness in the genome. Loci are defined as described previously in [Molnár et al., 2007,

Mosher et al., 2008] by a minimum number of sRNA hits to a region and a maximum

“gap”, i.e. absence of sRNA hits, between them. Hit counts are normalised to the

total number of genome-matching reads in each sample to make them comparable.

For each locus, the log2 ratio and the average of the normalised sRNA hit counts are

calculated and ranked independently. A sum of the two ranks is also provided and

the results can be downloaded as a csv-formatted file. Sorting the list of loci by the

rank sum in a spreadsheet program is an easy way of finding the best candidates for

differentially expressed loci where sRNA abundance differs greatly at a high overall

expression level. Hyperlinks to some public genome browsers can also be included in

the result file (Figure. 3.8 shows a genome browser view of a differentially expressed



55

locus).

Figure 3.8: SiLoCo candidate locus showing differential expression: The highlighted region
(yellow) represents a predicted sRNA producing locus from the SiLoCo tool. Two tracks are
visible on the genome browser one from a flower sample (bottom), showing many sRNA hits
(coloured arrows) and one from a leaf sample top (showing only a single sRNA hit).

3.4 Discussion

In this chapter we have introduced several new tools to analyse high-throughput sRNA

datasets, as well as outlining a web-based toolkit allowing researchers to freely access

these resources for use in their own projects. One of these tools, miRCat, has suc-

cessfully been applied to plant and animal high-throughput sRNA data and shows a

high level of accuracy on such sets. In the next two chapters, we will describe some

in-depth applications of these tools to new high-throughput datasets.



Chapter 4

Identification of novel small RNAs in
tomato ( Solanum lycopersicum).
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4.1 Summary

The work presented in this chapter was carried out whilst the miRCat software de-

scribed in Chapter 3 was under development. The data analysis helped in the refine-

ment of parameters and rules of the core algorithm in miRCat as well as providing

feedback from biologists concerning features such as the output format of results.

4.2 Background

Recent work has illustrated the important role that sRNA mediated regu-

lation of transcription factors plays in key developmental processes, such

as shoot apical meristem patterning, leaf morphogenesis and flower devel-

opment [Llave et al., 2002, Palatnik et al., 2003, Aukerman and Sakai, 2003,

Baker et al., 2005, Williams et al., 2005]. Arabidopsis is the main plant model

for studying these processes, although it is different from some species in that

upon seed maturation and ripening, it develops a dry dehiscent fruit, similar to

that found in cereals and legumes. Other flowering plants have evolved different

methods of seed dispersal, such as the animal dispersal of seeds encased within

a fleshy fruit. Tomato (Solanum lycopersicum) is the model system for studying

the biology of climacteric (displays an ethylene burst prior to ripening) fleshy fruit

development. The fruit development/ripening process involves many structural,

physiological and biochemical changes in the fruit including periods of rapid cell

division and expansion, changes in carotenoid accumulation, texture and sugar and
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acid content [Giovannoni, 2004] for a review see [Carrari and Fernie, 2006]. MADS

box transcription factors have already been associated with tomato fruit ripening with

the identification of the ripening-inhibitor gene (LeMADS-RIN) [Vrebalov et al., 2002],

an SBP-box transcription factor shown to be necessary for normal ripening in tomato

[Manning et al., 2006] and putative transcription factors have also been correlated

with ripening and ripening inhibition [Fei et al., 2004].

Tomato fruit development and ripening is a tightly coordinated, highly regulated

process, aspects of which are distinct from the events that result in the dry seeds of

cereals, legumes and other flowering plants. Given the substantiated role of sRNAs

in the regulation of developmental pathways in many other species, particularly in the

regulation of transcription factors, we hypothesised that sRNAs may play a key regu-

latory role in fleshy fruit development and that some of these sRNAs maybe unique to

tomato. In this chapter we report the cloning and expression of several known miR-

NAs from tomato fruit and the identification of 12 novel sRNAs that are not present in

Arabidopsis, one of them showing a fruit specific expression pattern.

4.3 Materials and methods

4.3.1 Collating and annotating tomato genomic and EST se-
quences

As there is no complete tomato genome sequence currently available it was nec-

essary to produce a sequence set that included as much information as possi-

ble, so that the likelihood of finding matches to the candidate sRNAs could be
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maximised. Three sources of data were used to construct the tomato sequence

database (TSD): Expressed sequence tag (ESTs) (build: Lycopersicon Combined

#3) and BAC (bac.v15.seq) sequences taken from the SOL Genomics Network

[Mueller et al., 2005] and annotated genes taken from the EMBL sequence database

[Cochrane et al., 2006].

The orientation of many of the tomato ESTs was found to be unreliable and in

order to be able to distinguish between potential sources and targets of sRNAs, each

sequence in the tomato EST set was blasted against an annotated A. thaliana gene

set. Any hits with an expected value below 10−8 were classified as matches and if the

tomato sequence matched the reverse complement of the Arabidopsis sequence then

it was reverse complemented to correct the orientation. We also found that the anno-

tation of many tomato ESTs did not correspond to the latest Arabidopsis annotation

and therefore we updated this information.

4.3.2 Cloning of small RNAs

Total RNA was isolated from the pericarp tissue of mature green (39 days after pol-

lination tomato (S. lycopersicum) fruit (cv. Ailsa Craig; Horticulture Research Inter-

national, Warwick, UK). sRNA 19-24nt in length were size fractionated, cloned and

sequenced as described in Rathjen et al. [Rathjen et al., 2006], from two independent

RNA samples (A and B).
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4.3.3 Analysis of small RNA sequences

Small RNA sequences greater than 17nt in length were extracted from surrounding

adaptor sequences, and sequences containing unassigned nucleotides were removed

from each set. To establish a non-redundant set, identical sequences were removed

from each cloning. These two sets of sequences were compared to each other and

sequences present in both sets, either identical or highly similar to each other (97%

similar over 90% length), were identified. The two non-redundant sets, from clonings

A and B were also combined, and a new non-redundant set of sequences was derived

(C). Sequences from set C were compared to the TSD and exact matches were found

using an exact matching algorithm. sRNAs identified either through comparison of

sets A and B, or by comparing set C to TSD were filtered by removing degradation

products of rRNAs, tRNAs and viral siRNAs. Homologues of known miRNA were also

identified at this stage.

4.3.4 Prediction of secondary structures

Sequences that precisely matched the tomato genome, for which sequence flanking

the sRNAs could be obtained were analysed by predicting secondary structure. Flank-

ing sequences up to 350nt 5’and 3’ of each match were extracted and folded using

RNAfold from the Vienna RNA package [Hofacker, 2003]. The predicted structure

associated with each sRNA sequence was then extended as far as possible whilst

maintaining a valid hairpin structure. Any valid hairpins of greater than 75nt with a
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MFE of lower than -20 kcal/mol were accepted as being potential miRNAs. These se-

quences were then analysed using randfold [Bonnet et al., 2004b] which assigned

a p-value to each of the hairpins based on the probability of the structure occurring by

chance.

4.3.5 Northern-blot analysis

Total RNA was extracted from tomato leaf (cv. Ailsa Craig) and whole tomato fruit (cv.

Ailsa Craig, mature green stage) as described in Dalmay et al. [Dalmay et al., 1993].

Ten micrograms of each total RNA sample was resolved on a 15% denaturing poly-

acrylamide gel and transferred using a semi-dry electroblotting apparatus to Zeta-

probe membrane (Bio-Rad). Four hundred and fifty-nine microgram of total RNA ex-

tracted from mature green fruit (as described above) was enriched for sRNAs using

the miRVANA kit (Ambion). This sRNA fraction was blotted as described above and

these membranes were used to detect sRNAs seen only faintly with 10µg total RNA.

Membranes were hybridised overnight at 37◦C in ULTRAhyb-Oligo hybridisation buffer

(Ambion) with γ-ATP labelled oligonucleotides complementary to each sRNA. Mem-

branes were stripped of probe by incubation in a solution of 10 mM Tris/HCl (pH 8.5), 5

mM EDTA, 0.1% SDS at 95◦C for 10 min. Removal of probe was assessed by exposing

the membrane for as long as any previous exposure.
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4.3.6 Identifying potential Arabidopsis homologues of tomato
sRNA

Homologues of sRNAs present in both clonings or with an appropriate secondary

structure that demonstrated accumulation of 19-24nt RNA species, were searched for

in the Arabidopsis genome [Rhee et al., 2003] (version TAIR6_cDNA_20051108) per-

mitting a maximum of three mismatches. Where putative homologues were identified,

oligonucleotides complementary to these sequences were hybridised to membranes

containing 10µg total RNA from both Arabidopsis siliques and leaf tissue (Col-0). As

a positive control, membranes also contained an oligonucleotide corresponding to the

sense orientation of the predicted Arabidopsis short sequences. Northern-blot analy-

sis was carried out as described above.

4.4 Results

4.4.1 Tomato genomic and EST sequences

To analyse our results we established a TSD consisting of 34,988 sequences; com-

prising 30,576 EST sequences, 87 BAC sequences and 4,325 EMBL sequences. The

30,576 EST sequences from the SOL Genomics Network represented a unigene set

derived from non-redundant EST contigs and singletons. We noticed that the orienta-

tion of some of the unigene sequences was not correct and decided to examine the

whole database. It is important to determine whether an sRNA is derived from an

EST sequence (same sense as EST) or can potentially target it (complementary to
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EST). 5,407 (17.7%) unigenes were found to be in the antisense orientation and were

replaced by the reverse complement of the unigene sequence. In addition, based on

the Arabidopsis annotation we were able to annotate another 5,642 (18.4%) unigenes

that had not previously been assigned a function. Although sequence redundancy had

been addressed within the unigene EST dataset, the infancy of the tomato genome

sequencing project meant that redundancy could be observed both within the BAC

sequences and between the unigene, BAC and EMBL datasets.

4.4.2 Identifying expressed sRNAs

The complete genome sequence of tomato is not available, which presents a consid-

erable limitation in the bioinformatic analysis of cloned sRNA. We have cloned sRNA

from tomato fruits in two independent experiments because we hypothesised that if a

sRNA was detected in two independent samples then it is more likely to have been

specifically produced rather than being a random fragment originating from a longer

RNA. Two independent direct clonings of sRNA (A and B) from mature green tomato

fruit (cv. Ailsa Craig) identified 2,107 and 1,911 sRNAs greater than 17nt in length, re-

spectively. The flowchart illustrating the analysis of the sequences is shown in Figure.

4.1.

Sequences identical in both composition and length from each set were removed,

resulting in non-redundant sets of 1,760 and 1,657 sRNA for clonings A and B, re-

spectively. The majority of cloned sRNAs both in sets A and B were 21nt in length
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Figure 4.1: Analysis of cloned sRNA sequences. The figure shows the bioinformatic analysis
of sequence sets A, B and C leading to the selection of sRNA sequences for Northern-blot
analysis. Numbers of sequences pertaining to each stage are shown in parentheses.

(27 and 22%, respectively; Figure. 4.2). Comparison of non-redundant set A with non-

redundant set B identified 190 families of sRNA that were 97% similar in sequence

across 90% of their length.

Within these 190 groups of sRNA, 44 families were identified as breakdown prod-

ucts of ribosomal RNA and transfer RNA, and 45 originated from tobacco mosaic

virus. These families therefore were not analysed further. Six known miRNAs oc-

curred in both clonings; miR159, miR162, miR164, miR168, miR171, and miR482
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Figure 4.2: Size distribution of cloned sRNA. Frequency of sequences greater than 17nt in
length, present in non-redundant sets A and B was plotted against the length of the cloned
sequences. The most frequently cloned sRNA size in each dataset was 21nt RNA.

(Reinhart et al. 2002; Lu et al. 2005a, b). Accumulation of tomato miRNAs homolo-

gous to these known miRNAs was confirmed by Northern-blot analysis (Figure. 4.3 a).

Only miR171 demonstrated differential expression between leaf and fruit tissues, with

greater expression in leaf than fruit. From the remaining 95 sRNA sequences 33 were

randomly selected for Northern-blot analysis. Six of these sRNAs were expressed and

accumulated as 19-24nt species (sRNA3, 4, 5, 7, 8, 9 Figure. 4.3b). Two additional

sRNAs that were difficult to detect using 10µg of total RNA, could be clearly detected

accumulating as 19-24nt RNA in the purified sRNA fraction from tomato fruit (sRNA

1 and 2, Figure. 4.3b). Probes against nine sRNAs gave signal on the membranes

but significantly higher than the 19-24 zone and the remaining 16 probes did not give

any detectable signal. These 16 sRNAs that could not be detected by Northern-blot

analysis may still accumulate as 19-24nt RNA, but may be expressed at a very low
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level and/or expressed in very few cells.

Figure 4.3: Northern-blot of cloned small RNAs. 10µg of leaf (L) and mature green fruit (F )
tissue was loaded onto each gel, unless otherwise stated. Size markers (19 and 24nt) are
shown in the first lane of each panel. A) Expression of tomato homologues of known miR-
NAs. Oligonucleotides complementary to tomato miRNAs homologous to known Arabidopsis
miRNAs were hybridised to membranes to validate their expression. B) Expression of sRNAs.
Oligonucleotides complementary to cloned tomato sRNAs were hybridised to membranes to
validate their expression. The first two lanes (marked with *) contained small RNA fractions
purified from 459µg of total RNA to detect the expression of sRNA1 and sRNA2 that initially
gave very faint signals with membranes containing 10µg total RNA. C) Expression of puta-
tive tomato miRNAs. Oligonucleotides complementary to cloned sRNAs with predicted stem-
loop structure precursors were hybridised to membranes to validate their expression. miRNA3
showed fruit specific expression.
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4.4.3 Identifying putative miRNAs

Combining the non-redundant sequences of sets A and B resulted in set C comprising

of 3,304 sRNA sequences. Searching for known miRNAs among these sequences

identified nine conserved miRNAs (miR159, miR160, miR162, miR164, miR166,

miR168, miR171, miR408, miR482 [Reinhart et al., 2002, Sunkar and Zhu, 2004,

Lu et al., 2005b, Lu et al., 2005a]. Comparison of set C to the TSD identified seven

sRNAs that had no homology with rRNA, tRNA or viral RNA and were predicted to

possess an appropriate secondary structure with flanking sequences (hairpin longer

than 75nt and MFE < -20 kcal/mol; Figure. 4.4). Two of these sRNAs were identified

as tomato homologues of known miRNAs (miR171 and miR168).

Northern-blot analysis of the remaining five sRNAs demonstrated the accumula-

tion of four sRNAs as 19-24nt RNA, with one exhibiting fruit specific expression (Put-

miRNA1, 2 and 3 on Figure. 4.3c and sRNA6 on Figure. 4.3b). A range of highly

expressed, larger RNA products were observed upon Northern-blot analysis of one of

these sRNAs (sRNA6, Figure. 4.3b). This hybridisation pattern is not characteristic of

known miRNAs detected to date and therefore this sRNA, despite its predicted stem-

loop structure was classed as a sRNA. The remaining three sRNAs (Put-miRNA1, 2

and 3) are novel putative miRNAs since they were cloned as sRNAs, their size and

expression was confirmed by Northern-blot analysis, and their predicted precursor can

be folded into a hairpin structure [Ambros et al., 2003].
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Figure 4.4: Predicted secondary structures of precursors containing sRNAs with exact
matches to the TSD. Stem-loop secondary structures greater than 75nt in length and MFE
< -20 kcal/mol are shown for three putative tomato miRNAs that were validated by Northern-
blot analysis and two cloned tomato homologues of known miRNAs; miR168 and miR171. The
sequence of the cloned sRNA is shown in bold text. We also cloned miR168* that has not been
identified in Arabidopsis (underlined nucleotides). Two other predicted stem-loop structures
are not shown because one of the cloned sRNA was not detected and the other (sRNA6) gave
extra bands by Northern-blot analysis therefore these are not classed as putative miRNAs.

4.4.4 The new sRNAs are not conserved in Arabidopsis

We investigated whether the 12 new sRNA sequences are tomato specific sequences

or if they are present in Arabidopsis. Searching the Arabidopsis genome revealed

no exact matches to the 12 new sRNAs. However, it is known that there can be

a few mismatches within a miRNA family even within the same plant species and

therefore partial matches to the 12 new sRNAs were searched for in the Arabidopsis



69

genome, allowing one to three mismatches. Matches were found for nine new sRNAs

(six sRNAs and three putative miRNAs) but no hairpin structures could be predicted

in Arabidopsis using flanking sequences. Northern-blot analysis showed that while

the oligonucleotides complementary to the sRNAs hybridised to control DNA oligonu-

cleotides identical to the predicted Arabidopsis homologues, no accumulation of 19-

24nt species was seen in the Arabidopsis leaf and silique tissues (data not shown),

indicating that these sRNAs are not expressed in Arabidopsis.

4.5 Identifying novel sRNAs

We identified 12 novel sRNAs in tomato validated through their cloning and expres-

sion as 19-24nt RNAs. A key factor in classifying these sRNAs is the prediction of

their hairpin precursor, a process that required flanking sequences surrounding the

sRNAs. As the sequencing of the tomato genome has only recently begun, we col-

lated the existing available tomato sequence data. The largest proportion of sequence

data (30,576 sequences) came from the tomato unigene set, which is estimated to

represent approximately 19,800 genes of an estimated 35,000 genes in the 950 Mb

tomato genome (Van der Hoeven et al. 2002). Even with the addition of BAC and

EMBL sequences, the absence of a large amount of genome sequence for tomato

was a limiting factor in the identification of new miRNAs from our cloned sRNAs. A

previous study [Zhang et al., 2006a] has shown that the number of miRNA identified

within an EST database is linearly related to the number of ESTs, with approximately
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10,000 ESTs containing a single miRNA.

In an attempt to circumvent this lack of sequence data, we first compared the sRNA

sequences derived from two independent clonings, hypothesising that if a sRNA was

present in both clonings then it was more likely to have arisen as the product of a

DICER-like gene, rather than a random product of RNA degradation. We expected

to clone a high number of rRNA degradation products from the fruit tissue, because

microarray data has shown the largest group of fruit upregulated genes are putative

ribosomal protein encoding genes [Carbone et al., 2005], but found only 14.7% of our

non-redundant set C could be annotated as rRNA or tRNA derived sequences. This

percentage was slightly higher among the 190 sRNA families that were present in

both sets A and B (23.3%), although we expected that the ratio of randomly generated

RNA fragments would be lower in the sequences found in two independent experi-

ments. One possible explanation is that these sRNAs are produced by DCL3 that is

involved in the generation of siRNAs from repeat regions including 5S rRNA genes

[Pontes et al., 2006].

Arabidopsis candidate sequences partially matching nine sRNAs identified in this

work were tested by Northern-blot analysis. None of these potential Arabidopsis ho-

mologues accumulated as a 19-24nt RNA species in leaf or silique tissues. This indi-

cates that these novel tomato sRNAs are not conserved between the Arabidopsis and

tomato genomes.
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4.6 Classification of non-conserved sRNAs

Eight out of the nine sRNAs detected by comparing sequence sets A and B cannot

be further classified, as no exact match was found in the tomato genome and hence

no secondary structure could be predicted. Without the ability to predict a secondary

structure, we cannot determine if the eight sRNAs have arisen from perfect double

stranded RNA (siRNA) or stem-loop secondary structures (miRNA). Since heterochro-

matin and primary nat-siRNAs are slightly larger (24nt) than mi-, ta-si or secondary

nat-siRNAs (21nt) the new sRNA are more likely to belong to one of the previous

classes (Figure. 4.3b). Another sRNA (sRNA6) was also classified as sRNA, despite

its stem-loop secondary structure because of its atypical hybridisation pattern (Figure.

4.3b).

The available genome information provided flanking sequences for 158 sRNAs

and three of these fulfilled the criteria of miRNAs described by Ambros et al. (2003):

(1) they could be folded into a stem-loop structure (Figure. 4.4); (2) they did not

derive from ribosomal or tRNA; (3) they accumulated as 19-24nt RNA species (Fig-

ure. 4.3c) and (4) they were cloned as 19-24nt RNA species. Therefore a few years

ago these three short sequences would have been identified as bona fide miRNAs.

However, during the last few years a huge complexity of plant sRNAs was revealed,

opposite to animal short RNAs [Jones-Rhoades et al., 2006]. Tens of thousands of

sRNAs have been cloned from Arabidopsis tissues [Lu et al., 2005a, Lu et al., 2006,

Rajagopalan et al., 2006], many of them can be detected by Northern-blot analysis



72

and hundreds of thousands of non-miRNA genomic sequences can be folded into

stem-loop structures [Jones-Rhoades et al., 2006]. Conserved miRNAs can be iden-

tified with great confidence but it is more difficult to classify non-conserved sRNAs be-

cause they could be siRNAs that have precursors with stem-loop structure by chance

(due to the very large number of potential stem-loop structures in any genome). Jones-

Rhoades et al. [Jones-Rhoades et al., 2006] proposed a more stringent set of rules for

non-conserved miRNA precursors and two of the new putative miRNAs do not pass

those rules (Put-miR-2 and 3). Although Put-miR-1 fulfils the stringent rule, additional

proof is required for a convincing miRNA classification, such as identifying the DCL

family member that generates this sRNA. However, the lack of DCL mutant tomato or

other Solanaceous species makes it impossible to generate such data at the moment.

It will be more informative to identify target genes for cloned sRNAs, although this

also requires a more complete genome sequence. Another approach is to generate

a much larger sRNA sequence database by high-throughput sequencing and analyse

the pattern of cloned sRNAs for a candidate miRNA locus. Only the mature miRNA

and the miRNA* sequences should be found from a real miRNA locus. Our library is

not large enough to confirm the putative miRNA loci since all three have been found

only once.

The importance of this study is the identification of several sRNAs that are not

present in Arabidopsis. Considering that only 4,018 sRNA were sequenced this result

suggests that many more sRNAs specific to Solanaceous plants will be discovered
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by high-throughput sequencing of tomato sRNA libraries as is indeed confirmed in

Chapter 5. In addition, one of the putative miRNAs shows a significantly higher ac-

cumulation in fruit than in leaf, suggesting a specific role in fruit development/ripening

and linking the sRNA pathway to an agronomically important tissue. This study lays

the foundation for understanding the complexity of the sRNA population in tomato, at-

tainable through the combination of high throughput sRNA sequencing and additional

genome sequencing.

4.7 Discussion

The work described in this chapter involved the analysis of a small scale sRNA se-

quencing experiment which acted as a test case for the miRCat package described

in the previous chapter. It enabled us to test and refine bioinformatics tools for both

miRNA detection and target prediction before running on large scale, high-throughput

datasets that we will discuss in the next chapter. It also led to the discovery of some

interesting tomato specific sRNAs that showed differential expression patterns in fruit

and leaf tissues.
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Deep sequencing of tomato short
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5.1 Summary

This chapter describes the analysis of 454 high-throughput sRNA datasets from

tomato and can be regarded as a follow up study to the small scale sRNA cloning

described in Chapter 4. All experimental work (Northern blots and 5’ RACE analysis)

was carried out by members of Dr. Tamas Dalmay’s laboratory.

5.2 Background

To date, most plant miRNAs have been identified by the traditional Sanger se-

quencing method in Arabidopsis, rice and poplar, and comparison of miRNA se-

quences across plant families has shown that the majority of miRNAs are conserved

[Axtell and Bartel, 2005]. However, some miRNAs appear to be species specific and

Allen et al. [Allen et al., 2004] have suggested that these miRNAs have evolved

recently (“young” miRNAs), in contrast to the conserved miRNAs (“old” miRNAs).

Non-conserved miRNAs are often expressed at a lower level than conserved miR-

NAs, and this is one of the reasons why small-scale sequencing reveals mainly

conserved miRNAs. As mentioned in Chapter 2, development of high-throughput

pyrosequencing technology has allowed the discovery of several non-conserved or

lowly expressed miRNAs through deep sequencing, e.g. in Arabidopsis and wheat

[Rajagopalan et al., 2006, Fahlgren et al., 2007, Yao et al., 2007].

Since most plant developmental processes involve miRNA regulation
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[Kidner and Martienssen, 2005], the discovery of non-conserved miRNAs sug-

gests that plant species/families with specific developmental features may contain

non-conserved miRNAs that are involved in the regulation of gene expression specific

to those features. To investigate this hypothesis, we chose fleshy fruit formation and

ripening as specific developmental features that are not characteristic to Arabidopsis,

rice or poplar. Therefore if miRNAs are involved in these processes they should

probably not be present in these species.

5.3 Materials and methods

5.3.1 Cloning of small RNAs, Northern-blot and 5’RACE analysis

Total RNA was extracted from tomato leaf, bud before flower blooming and different

developmental stages of whole fruits. Small RNA between 19-24nt were cloned from

leaf and fruit (mixture of different sizes between 1 and 15 mm) as described by Pilcher

et al. [Pilcher et al., 2007]. Briefly, the sRNA fraction was purified and ligated to

adaptors without de-phosphorylating and re-phosphorylating the sRNA. The RNA was

converted to DNA by RT-PCR and the DNA was sequenced by 454 Life Sciences.

Twenty micrograms of each total RNA sample was used for Northern blot analysis

as described by Pall et al. [Pall et al., 2007]. 5’RACE analysis was carried out using

poly(A) plus fraction and the GeneRacer kit (Invitrogen).
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5.3.2 Bioinformatics analysis

Small RNA sequences were extracted from raw reads matching both the last seven

nucleotides of the 5’ adaptor and the first seven nucleotides of the 3’ adaptor

sequences. Sequences were then queried against ribosomal and transfer RNAs

from Rfam [Griffiths-Jones et al., 2005], the Arabidopsis tRNA database http:

//lowelab.ucsc.edu/GtRNAdb/Athal/ and rRNA sequences obtained from

EMBL [Cochrane et al., 2006]. Any sRNAs having exact matches to these se-

quences were excluded from genomic mapping. Reads of 18-30nt were mapped to

tomato BAC sequences (bacs.v175.seq) obtained from the SOL Genomics Network

[Mueller et al., 2005] using exact matching. sRNAs were then analysed using miRCat

http://srna-tools.cmp.uea.ac.uk/mircat/. Target predictions were per-

formed based on methods described by Allen et al. [Allen et al., 2005] as implemented

at http://srna-tools.cmp.uea.ac.uk/targets/

5.4 Results

5.4.1 Deep sequencing of tomato short RNAs

Two separate sRNA libraries were generated from mixed size (1-15mm) green

tomato fruits of MicroTom, a miniature rapid-cycling cherry tomato variety

[Meissner et al., 1997]. In addition, two sRNA libraries were prepared from tissue

of young leaves of the same cultivar. The four libraries were sequenced by 454

Life Sciences using pyrosequencing technology that produced 721,874 reads yielding
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402,197 and 168,570 sequences from fruits and leaves, respectively, with recognis-

able adaptor sequences (Table. 5.4.1 ). These reads represented around 225,000

and 102,000 unique sRNA sequences in fruits and leaves. In both tissues the 21nt and

22nt classes showed the highest degree of redundancy (Figure. 5.1 and Figure. 5.2),

suggesting that sRNAs in these size classes are often produced from precursors from

which clearly defined mature short sequences are excised. These sRNAs are often

miRNAs and trans-acting siRNAs (ta-siRNAs) that are usually expressed at a high

level [Vaucheret, 2006]. The 23 and 24nt classes were much less redundant (Figure.

5.1 and Figure. 5.2), indicating that they derive from loci that produce heterogeneous

sRNA populations, such as those found associated with RNA-polymerase IV depen-

dent pathways in Arabidopsis which produce heterochromatin-related siRNAs. To

compare sequence redundancy levels in samples of different size, we normalised the

larger fruit sample to the number of reads in the leaf sample by extracting 1000 random

subsets of 159,886 reads from the fruit sample. Figure. 5.3 and 5.4 show size distri-

butions of the leaf sample in comparison to the random average of the normalised fruit

samples. The distribution of redundant sequences for different size classes was simi-

lar in fruits and leaves (Figure. 5.3). However, the size distribution of non-redundant

sRNAs was slightly different in the two tissues (Figure. 5.4). The non-redundant leaf

sRNA distribution showed a peak at 21nt, while there were more non-redundant fruit

sRNAs of 22, 23 or 24 than 21nt. Assuming that the overall proportion of 24nt sRNA

is related to the extent of transcriptional regulation, this observation suggests a more
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extensive regulation of gene expression by sRNAs at transcriptional level in fruit than

in leaf. This is probably because the longer sRNAs are often associated with DNA

methylation and heterochromatin formation.

Table 5.1: Statistics of sRNAs sequences from tomato fruit and leaf

Fruit Reads match BACv175 Unique reads match BACv175

Raw reads 537036
Adaptors removed 402197 79099 224823 39001

rRNA/tRNA exact matches removed 391119 75353 222391 38064
Match known miRNAs 14536 3974 588 66

sRNAs mapping to predicted hairpins 3909 3909 409 409
Predicted hairpins sRNA abundance > 3 3766 3766 30 30

Leaf Reads match BACv175 Unique reads match BACv175

Raw reads 184838
Adaptors removed 168570 35419 102753 18180

rRNA/tRNA exact matches removed 159886 32535 100168 17032
Match known miRNAs 18352 5488 780 89

sRNAs mapping to predicted hairpins 4019 4019 235 235
Predicted hairpins sRNA abundance > 3 3766 3766 30 30

5.4.2 Known miRNAs

We searched for known miRNAs in our combined (fruit and leaf) tomato sRNA

database and found 7,912 redundant sequences matching 20 known miRNA families

(Table. B.1 and B.2 with precursor sequences shown in B.3). In addition we identified

25,436 sequences that were either shorter/longer or contained up to two mismatches

to the same 20 and another 10 known miRNA families. Of these 30 families three had

previously been thought to be specific to Arabidopsis (miR858; [Fahlgren et al., 2007]),

algae (miR1151; [Molnár et al., 2007]) and moss (miR894; [Fattash et al., 2007]) and
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Figure 5.1: Histogram showing abundance/cloning frequency of redundant (blue) and non-
redundant/distinct (red) sRNA reads from fruit samples.

were selected for testing by Northern blot. The algae specific miR1151, gave neg-

ative result and was probably an artifact. However, we were able to confirm the

expression of miR858 and miR894 (Figure. 5.5). We also confirmed our previous

observation [Pilcher et al., 2007] that miR482 (originally reported to be poplar-specific

[Lu et al., 2005b]) is also expressed in tomato. These three examples show that miR-

NAs previously believed to be species or family specific can exist in several families.

Data from more species is necessary to understand the evolution of these less con-

served miRNAs.

We analysed the expression levels of 13 additional known miRNAs that were
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Figure 5.2: Histogram showing abundance/cloning frequency of redundant (blue) and non-
redundant/distinct (red) sRNA reads from leaf samples.

present in our libraries and that had not been examined in our previous study

[Pilcher et al., 2007] using Northern blot assays of samples from leaves, closed flower

buds and four different stages of fruits (Figure. 5.5). All tested miRNAs, except for

miR165/166, 403 and 472, showed differential expression patterns in these tissues.

Several miRNAs (miR156/157, 164, 408, 858 and 894) were more abundant in leaves

and closed flowers than in fruits. In contrast, miR169 was expressed at a higher level

in all fruit stages than in closed flowers and it was almost undetectable in leaves.

Intriguingly, two known miRNAs showed differential expression between different fruit

stages. miR171 (and miR171*) was as highly expressed in very small fruits (1-3 mm)
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Figure 5.3: Histogram showing the normalised abundance/cloning frequency of redundant
fruit (blue) and leaf (red) sRNA reads.

as in leaves and closed flowers, and it accumulated at a lower level in more mature

fruits. Interestingly, miR390 had much higher accumulation in very small fruits than in

leaves and closed flowers, and it accumulated at a very low level in more mature fruits.

This suggests that miR390 has a specific role in early fruit formation.

Several target genes of known miRNAs have been validated in Arabidopsis, rice

and poplar. However, it is not obvious which genes are targeted by these miRNAs

in tomato because annotation of the partial genome sequence is not complete. In

addition, Itaya et al. [Itaya et al., 2008] could only validate one out of three conserved

miRNA target tomato genes (that miR172 targeted APETALA2). We used the tomato
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Figure 5.4: Histogram showing the normalised abundance/cloning frequency of non-
redundant/distinct fruit (blue) and leaf (red) sRNA reads.

Unigene EST database [Mueller et al., 2005] to predict twelve targets that were all

validated by 5’ RACE assays (Figure. 5.5). Two targets are worth describing specif-

ically; a MYB transcription factor that is targeted by miR858 (originally thought to

be Arabidopsis specific [Fahlgren et al., 2007]), and Colorless non-ripening (CNR), a

member of the Squamosa-promoter Binding Protein (SBP) family that was shown to

be involved in fruit ripening [Manning et al., 2006]. CNR is targeted by miR156/157,

which, for the first time, implies miRNA involvement in the maturation process of a

commercially important fruit.
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5.4.3 Novel miRNAs

As mentioned above, tomato genome sequencing is not yet complete, although

many genomic BAC sequences are available [Mueller et al., 2005]. We used ver-

sion BACv175 (unfinished) for our analysis that represents approximately 25% of

the tomato genome. sRNA sequences that were not known miRNAs were mapped

to BAC sequences. Secondary structures were predicted for each locus, and the

ones that fulfilled the hairpin structure criteria described by Jones-Rhoades et al.

[Jones-Rhoades et al., 2006] were selected as candidate miRNAs. This analysis re-

sulted in 219 (165 unique) candidates, 87 out of which also had a predicted target

in at least one tomato EST sequence. We also looked for sequenced miRNA* se-

quences. However, most of the potential mature miRNAs were sequenced less than

five times and so no miRNA* sequences were found (average frequency of miRNA*

is around 10% of the frequency of mature miRNA [Rajagopalan et al., 2006]). How-

ever, one sequence was found 19 times and a potential miRNA* was sequenced 9

times in our combined datasets. According to the criteria published by Rajagopalan

et al. [Rajagopalan et al., 2006], this sequence, is the first novel bona fide miRNA

(Sly-miR-Z) identified in tomato. The other miRNA candidates were further tested by

northern blot (miRNA) and 5’ RACE assay (target). Northern blot analysis was carried

out for 92 candidates with hairpin structure but without sequenced miRNA*. 51 were

detected as discrete bands around 21nt and several showed differential expression

in different tissues (Figure. 5.7). Three sRNAs showed very strong leaf specificity,
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one sRNA accumulated at higher level in closed flowers and all stages of fruits than in

leaves, and seven sRNAs showed increasing level of expression during fruit develop-

ment, suggesting the possibility that several genes involved in fruit development are

regulated by short RNAs.

Many miRNA candidates had predicted targets. We carried out 5’ RACE assay for

65 predicted targets, but most of them (62) could not be validated. Therefore, these

sRNAs cannot be classified as miRNAs because, although they were sequenced,

produced from stable hairpins, and accumulated as 21nt RNA, no miRNA* was se-

quenced, no target cleavage was shown and their accumulation in a dcl1 mutant could

not be studied due to the lack of such a mutant in tomato. However, we strongly sus-

pect that several of these potential miRNAs are bona fide miRNAs, although at least

one of the above-mentioned criteria would have to be shown to hold before they could

be classified as miRNAs.

In addition to Sly-miR-Z, we found three new tomato miRNAs (secondary struc-

tures are shown in Figure. B.4). Although no miRNA* sequences were found for

these three miRNAs, their predicted target genes were validated by 5’RACE analysis

(Figure. 5.8B). The target genes of Sly-miR-X are the splice variants of constitutive

triple response 4 (LeCTR4sv1 and LeCTR4sv2), which is a member of the CTR family

that are key negative regulators of ethylene responses [Adams-Phillips et al., 2004].

Both Sly-miR-Y and Sly-miR-W target unknown protein expressing mRNAs (ESTs

SGN-U326398 and SGN-U322371, respectively) that do not show any homology to
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annotated genes in the EMBL sequence database. Accumulation of the new miRNAs

was analysed by Northern blot, and Sly-miR-Y and Sly-miR-Z showed significantly

stronger expression in fruit than in leaf or flower bud (Figure. 5.8A). In fact, these

two miRNAs accumulated at a higher level in more mature fruit than in very young

fruit. Sly-miR-X produced a consistently weak signal and it was necessary to use an

LNA (locked nucleic acid) probe to reveal stronger accumulation in more mature fruit.

Sly-miR-W is expressed at a similar level in all analysed tissues (Figure. 5.8A). The

complete genome sequences of Arabidopsis, rice and poplar were interrogated for

miRNA genes homologous to the four new tomato miRNAs but no perfect matches

were found. A few loci were found with two mismatches but none of these exhibited a

hairpin structure with their flanking regions (data not shown). We therefore concluded

that the new tomato miRNAs were not conserved in these species.

5.4.4 Other tomato specific sRNAs

Most sequenced Arabidopsis sRNAs are 24nt and derived from transposons and

other repeats [Rajagopalan et al., 2006, Fahlgren et al., 2007, Mosher et al., 2008].

We found that the 24nt class of sRNAs was also generally abundant in tomato, espe-

cially in fruit. However, the abundancy of sRNA sequences from one particular class

of transposons was exceptional. 9 280 sequences were derived from type III foldback

transposon Tomato Anionic Peroxidase Inverted Repeat [Hong and Tucker, 1998].

TAPIRs are approximately 280nt long inverted repeats, often located adjacent to

genes [Mao et al., 2001]. This element has a high copy number; we found 468
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copies in the available genome sequence (25% of the genome). Although sR-

NAs are usually well dispersed over transposon sequences, we found several sR-

NAs that mapped to TAPIRs derived from specific locations of the inverted repeat

(Figure. 5.9A). In fact, most TAPIR loci produced sRNAs predominantly from

two regions that were opposite to one another on the two stems of the hairpin

structure (reminiscent of potential miRNA/miRNA* pairs). However, the most abun-

dant sequences from the two regions did not form a precise miRNA/miRNA* du-

plex (Figure. 5.9A). We tried to compare the distribution of sRNAs derived from

TAPIR to the accumulation pattern of sRNAs derived from a type III foldback trans-

posons in Arabidopsis [Adé and Belzile, 1999], but the published Arabidopsis sRNA

databases contained almost no sRNA sequences derived from hairpin elements

[Rajagopalan et al., 2006, Fahlgren et al., 2007, Mosher et al., 2008, Qi et al., 2006].

Next we searched for hairpins in the Arabidopsis genome that are longer than 200nt

and produce sRNAs. The sRNA pattern of these loci was different from TAPIRs; sR-

NAs were scattered across the whole hairpin and were absent in dcl-4 plants. Next

we compared the positions of the most abundant sRNAs derived from different TAPIR

loci. The most abundant sRNA sequence was different in some TAPIR elements,

although some loci produced the same major sRNA. Northern blot analysis of the two

most abundant TAPIR sRNAs gave a slightly different expression pattern in spite the

fact that they were shifted only by two nucleotides. TAPIR1 accumulated at a slightly

higher level in leaf than fruit, and TAPIR2 was more abundant in fruit than in leaf
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(Figure. 5.9B).

The other new class of sRNAs, which was not found in libraries from other species,

derived from endogenous pararetroviral (EPRV) sequences. Several DNA viruses

were found integrated into the host genome, some of which can cause infection and

some not [Harper et al., 2002]. An EPRV was recently described in tomato that was

proposed to be controlled by RNA silencing through sRNAs [Staginnus et al., 2007].

Several sRNA sequences matched an integrated EPRV sequence but, surprisingly,

they were not randomly distributed. One particular sequence (EPRV1) was found with

a very high frequency in all four libraries in addition to a few less abundant hot-spots.

Although Northern blot analysis confirmed the accumulation of EPRV1 and two other

less abundant EPRV specific siRNAs, the very high frequency of EPRV1 was not re-

flected by the Northern blot (Figure. 5.10). In fact, EPRV3 was easier to detect than

EPRV1. Expression analysis of EPRV specific siRNAs in different cultivars and wild

species showed that their expression varies in different accessions although integrated

copies were detected in all of them [Staginnus et al., 2007].

5.5 Conclusions

5.5.1 Conserved miRNAs in tomato

We generated sRNA libraries from fruit and leaf of tomato plants, and most conserved

miRNA families were found in at least one of our sRNA libraries. Several conserved

miRNAs showed differential expression in leaf, flowering bud and fruits at different
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stages that could provide information about their function. Sly-miR-169 was prefer-

entially accumulated in flower buds and fruits and was hardly detectable in leaves

(Figure. 5.5). The only known target of this miRNA is a transcription factor of the

CCAAT-binding family, HAP2 and this protein was shown to have an important role

during nodule development in Medicago truncatula [Combier et al., 2006]. HAP2 is

also required for pollen tube guidance and fertilisation [von Besser et al., 2006] and

affects flowering time [Wenkel et al., 2006] in Arabidopsis. It remains to be seen

whether HAP2 also plays a role in fruit development or if Sly-miR-169 can target other

genes in tomato. Another miRNA highly expressed in fruits is Sly-miR-390. In fact,

its expression sharply peaks in very young fruits (1-3 mm; Figure. 5.5) suggesting

that it plays a role in early fruit development. Sly-miR-390 is also expressed at a

lower level in leaves, which is in line with its known function in Arabidopsis where it

controls leaf morphology through targeting TAS3 [Adenot et al., 2006]. Cleaved TAS3

gives rise to ta-siRNAs targeting mRNAs in the AUXIN RESPONSE FACTOR (ARFs)

family [Allen et al., 2005] and it will be interesting to see whether TAS3 or other TAS

gene derived ta-siRNAs are involved in early fruit development (a TAS3 homologue

is present in the tomato genome). In contrast to Sly-miR-390 and 169, Sly-miR-894

was hardly detectable in fruits but accumulated at a high level in flower buds and

leaves (Figure. 5.5). Interestingly, this miRNA was only found in moss previously

but no target gene was identified [Fattash et al., 2007]. Sly-miR-408 was also absent
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in fruits and it does not have any validated targets, although it was predicted to tar-

get plantacyanin genes [Sunkar and Zhu, 2004]. These examples show that target

identification and validation of conserved miRNAs in different species is still important

because miRNAs may have additional function to the regulation of conserved target

genes. Axtell et al. [Axtell et al., 2007] demonstrated that different sRNAs in differ-

ent species can have similar functions. New targets for conserved miRNAs may be

found in tomato after genome sequencing is completed but at this time we could only

use the available Unigene sequences downloaded from the SOL Genomics Network

[Mueller et al., 2005]. Twelve target genes were validated for nine conserved miRNAs

(Figure. 5.6). One of these miRNAs, Sly-miR-858, is not present in the poplar and

rice genome [Rajagopalan et al., 2006] but was found in Arabidopsis where it targets

the MYB12 transcription factor. We identified two MYB12-like genes in tomato and

both of them showed the same level of similarity to the Arabidopsis gene. One of

them validated better (SGN-U320618) than the other (SGN-U322556) which showed

a scattered cleavage pattern around the canonical cleavage site. This pattern was

very similar to the cleavage sites of the Sly-miR-172 targeted APETALA2-like tomato

gene (SGN-U314858; Figure. 5.6), raising the possibility that both SGN-U322556 and

SGN-U314858 (AP2) are primarily suppressed at the translational level similar to the

miR-172 mediated APETALA2 regulation in Arabidopsis [Chen, 2004]. Alternatively,

mRNAs showing several cleavage sites around the canonical sites are not targeted by
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miRNAs. Another transcription factor family regulated by miRNAs is the Squamosa-

promoter Binding Protein (SBP) family. The tomato members of this family are called

SBP-like proteins (SPL). We validated three SPL genes targeted by Sly-miR-156/157

and one of them is CNR, a key gene in fruit ripening [Manning et al., 2006].

5.5.2 Classification of non-conserved miRNAs

Recently a number of publications have reported high-throughput sequencing of

sRNAs from Arabidopsis [Lu et al., 2005a, Lu et al., 2006, Rajagopalan et al., 2006,

Fahlgren et al., 2006, Mosher et al., 2008] and other plant species [Yao et al., 2007,

Axtell et al., 2007, Molnár et al., 2007, Barakat et al., 2007a, Barakat et al., 2007b,

Morin et al., 2008]. The common theme emerging from these reports is that the sRNA

content of plants is very complex and, although a subset of sRNAs is conserved across

different families, a number of sRNAs are specific to each species or family. The most

conserved class of sRNAs is the miRNA class but even these are not all conserved.

These observations led to a change in the minimum criteria for classifying an sRNA as

a miRNA initially set up by Ambros et al. [Ambros et al., 2003]. Even so, the fact that

many of the loci that express sRNA can be folded into a stem loop structure prompted

Rhoades et al. [Jones-Rhoades et al., 2006] to introduce new criteria to avoid flooding

miRBase with sequences that are not miRNAs. In particular, the conservation criterion

was replaced with proof of biogenesis (demonstration of DCL1 dependency or cloning

of perfect miRNA* sequences) or functional data (target validation by 5’ RACE). How-

ever, this criterion was not verified in several recent studies partly because a dcl1
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mutant was not available for species other than Arabidopsis. Since sequence com-

plementarity between miRNAs and their target genes are very high in plants, target

validation has been increasingly overlooked, and a number of recent studies have

considered target prediction as sufficient functional data. This is probably due to the

fact that, at least initially, all predicted targets that were experimentally tested proved

to be real targets. However, most validated targets are recognised by conserved miR-

NAs and the predicted targets of most non-conserved miRNAs have never been tested

experimentally. Here we show that most predicted targets of putative non-conserved

miRNAs could not be validated experimentally, in contrast to the high validation rate of

targets of conserved miRNAs. There are several possible explanations for negative 5’

RACE results, such as the target genes are not expressed in the same cells as the pu-

tative miRNAs or the cleavage product is not stable enough. However, it is more likely

that many of the putative miRNAs are false positive predictions and not true miRNAs.

They are expressed and could derive from hairpin structure precursors but it is now

clear that these criteria hold for many thousands of loci in plant genomes, and it does

not necessarily mean that they do derive from single-stranded stem-loop structures. In

the absence of biogenesis data, it has to be shown that the potential miRNAs mediate

cleavage of mRNAs in order to classify them as miRNAs [Jones-Rhoades et al., 2006].

Our observation suggests that recently published non-conserved miRNAs predicted by

high-throughput sequencing projects have to be considered cautiously because many

of them are likely to be siRNAs and not miRNAs.
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We validated cleavage of three novel targets mediated by new non-conserved

tomato miRNAs (Figure. 5.8B), although one of them produced a less precise cleav-

age pattern. This pattern is similar to the cleavage pattern of miR172 and miR858

targets and so this target may be primarily suppressed at translational level. A fourth

new miRNA was validated by cloning of the perfect miRNA* sequence. One of the

novel targets is a member of the CTR gene family that suppresses ethylene response

and is involved in fruit ripening [Adams-Phillips et al., 2004]. This result, together with

the regulation of CNR by Sly-miR-156/157, opens a new avenue in the field of gene

expression regulation during fruit development and ripening.

5.5.3 Can some miRNA genes derive from transposons?

Transposon specific sRNAs are usually abundant in sRNA libraries but sRNAs de-

rived from type III foldback transposon TAPIR sequences [Hong and Tucker, 1998]

were exceptionally highly represented in the two tomato sRNA libraries. TAPIR el-

ements are flanked by nine nucleotide target site duplications and they are mobile

[Mao et al., 2001]. However, sRNAs are not well dispersed over TAPIR elements like

on other transposons. Instead, they map to specific positions that would be on op-

posite arms of a hairpin structure if the TAPIR element is expressed (Figure. 5.9).

The most abundant sRNA species are similar to miRNA/miRNA* pairs but they do

not precisely pair with each other. Moreover, there are less frequently sequenced

sRNAs around the most abundant species, although the pattern of sRNAs is likely

to be less complex than it is shown on Figure. 5.9. Some sRNAs may not be
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produced from the locus shown and but are instead produced from another TAPIR

locus. Due to the high degree of sequence similarity between TAPIR elements,

the sRNA will map to both loci resulting in a complex distribution of sRNAs on the

hairpin. The sRNA pattern of TAPIRs is reminiscent of Ath-miR-822 and 839 two

DCL4 processed non-conserved miRNAs [Rajagopalan et al., 2006]. However, those

miRNAs are single locus genes in Arabidopsis and we found 468 copies of TAPIR

in the available 25% of the tomato genome. We tried to predict target genes for

TAPIR derived sRNAs but our analysis only found other TAPIR elements (data not

shown). It is tempting to propose that TAPIRs are potential progenitors of miRNA

genes and that if a TAPIR derived sRNA acquires a target gene and this regulation

is beneficial for the plant that it could be fixed. Due to mutations, the miRNA pro-

ducing TAPIR element could lose mobility and eventually become a proper miRNA

gene. It was shown recently that several human miRNAs derive from transposable

elements [Piriyapongsa and Jordan, 2007, Piriyapongsa et al., 2007] that support our

prediction. According to the current model, miRNA genes are derived from target

genes through duplication, inversion and mutations, and this is well supported by

the fact that non-conserved miRNA genes often have low copy number and show

extensive complementarity to the target gene beyond the mature miRNA sequence

[Allen et al., 2004]. Transposons could be an alternative source of miRNA genes, es-

pecially in plant with large genomes and high copy number of foldback transposons.
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5.6 Discussion

In this chapter we have presented results obtained using the tools described in Chap-

ter 3 including miRCat and the target prediction software. We have discovered and

experimentally validated the first tomato specific miRNAs and found two miRNAs that

are potentially involved in fruit ripening as they regulate genes which are known to be

important in fruit development. We have also discovered that TAPIR elements show

miRNA-like sRNA accumulations and could act as a progenitor of new miRNAs in

tomato. It is highly likely that a number of further novel miRNAs are present in the 454

datasets but due to the lack of a complete genome sequence they can not currently

be detected computationally.

An important discovery in this work made from a bioinformatics perspective is that

plant miRNA target prediction is not as accurate as generally assumed. Whilst target

prediction algorithms may work in Arabidopsis thaliana where they have been thor-

oughly tested, the biological mechanisms in other plant species may differ implying

that they are not so accurate. In this study many targets were predicted using the

target prediction method outlined in Chapter 3 but most targets could not be validated

experimentally suggesting a high degree of false-positive predictions. The alternative

explanation for this could be that the targets are not cleaved but instead the mR-

NAs are translationally repressed (as is common in animals). A recent publication by

Brodersen et al. [Brodersen et al., 2008] seems to confirm that this is true for several

Arabidopsis mRNAs and perhaps this level of regulation is more common in tomato.
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Figure 5.5: Expression of conserved tomato miRNAs: Total RNA from different tissues was ex-
tracted, separated and transferred to membranes. The membranes were hybridised to miRNA
specific probes or a U6 specific probe (shown on the right) to demonstrate equal loading.
Membranes were stripped and re-probed, equal loading is shown once for each membranes.
Numbers between brackets indicate the number of sequences found in the fruit (left) and leaf
(right) libraries for each miRNA. Different size fruits were used for RNA extraction; F1: 1-3mm,
F2: 5-7 mm, F3: 7-11 mm and F4: 11-14 mm.
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Figure 5.6: Target validation of conserved tomato miRNAs: 5’RACE analysis was carried out
for each predicted target gene. Arrows show the 5’ ends of cleavage products. Cleavage sites
outside of the displayed sequence are not shown. Target EST sequences are shown on top of
the miRNA sequences.
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Figure 5.7: Differentially expressed tomato short RNAs: Probes specific to potential miRNAs
(tom72, NGM3, tom177, tom179, tom122, tom40 and tomtar3) or short RNAs that could not
be mapped to the available genome sequence but cloned many times (top15, top12, top9 and
top11) were hybridised to the same membranes shown on Figure 5.5. U6 specific probe
shows equal loading. Different size fruits were used for RNA extraction; F1: 1-3mm, F2: 5-7
mm, F3: 7-11 mm and F4: 11-14 mm.
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Figure 5.8: Expression and target validation of new non-conserved tomato miRNAs: Northern
blot analysis of new miRNAs A) showed that Sly-miR-Y and Z accumulate preferentially in the
fruit. U6 probe was used to show equal loading. Different size fruits were analysed; F1: 1-
3mm, F2: 5-7 mm, F3: 7-11 mm and F4: 11-14 mm. B) shows the result of target validation
for three new miRNAs. Arrows show the 5’ ends of cleavage products mapped inside the
displayed sequence. Target EST sequences are shown on top of the miRNA sequences.
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Figure 5.9: TAPIR derived sRNAs: A) Predicted secondary structure of one particular TAPIR
element with lines representing the sRNA sequences mapping to the two arms of the hairpin.
The colour of the lines specifies the abundancy of the sequences in the library. B) Northern blot
shows the accumulation of the two most abundant, overlapping sRNAs from TAPIR elements.
Membranes were stripped and re-probed for U6 to show equal loading. F1: 1-3mm, F2: 5-7
mm, F3: 7-11 mm and F4: 11-14 mm.
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Figure 5.10: Expression of endogenous pararetrovirus specific sRNAs: Northern blot analysis
of EPRV specific sRNAs shows the accumulation of mainly 24nt RNA species in leaves of
four tomato accessions (MicroTom, S. penellii, S. pimpinellifolium and M82). 19 and 24nt RNA
oligonucleotides were used as size markers (left) and a U6 probe shows equal loading.



Chapter 6

Identification of novel miRNAs in
unsequenced genomes

6.1 Summary

All published miRNA identification algorithms, including those presented so far in this

thesis, rely on a genome sequence in order to detect and classify miRNA hairpin

precursors. Due to the comparatively small number of fully sequenced eukaryotic

genomes and the great interest in the role of miRNAs in a number of different bio-

logical processes, it would be beneficial to devise new methods which do not require

genome information. In this chapter we shall see that this type of “blind” approach to

miRNA prediction is possible with the use of sRNA deep-sequencing data. In partic-

ular, we describe a new method that uses a support vector machine (SVM) classifi-

cation approach to find putative miRNA/miRNA* pairs in sRNA deep sequence data

and demonstrate its application to Arabidopsis thaliana, Oryza sativa and Solanum

lycopersicon datasets.

102
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6.2 Background

As explained in Chapter 2 mature miRNA sequences are derived from a longer hairpin-

like structure (see Figure. 2.1). The mature miRNA along with a complementary

miRNA* sequence are excised from the primary transcript by Dicer, and the miRNA

is then incorporated into the RNA Induced Silencing Complex (RISC), after which the

miRNA* is usually degraded. Deep-sequencing technology has allowed increasingly

large numbers of sRNAs to be sequenced from a single sample so that miRNA* se-

quences are being routinely found in such datasets along with the more abundant

miRNA sequences.

Since it has been previously impossible to predict miRNAs without using genome

sequence information to predict secondary structures of putative precursors, miRNA

research has generally been focused on organisms with a fully sequenced genome.

Thus, for those researchers working with other, non-model, organisms there has been

no way to predict novel miRNAs other than to map sRNAs of interest to related se-

quenced genomes, ESTs or other sequences deposited in EMBL and Genbank (e.g.

[Sunkar and Jagadeeswaran, 2008]). However, as both miRNA and miRNA* are often

present in high-throughput sRNA sets we can attempt to use these to find miRNAs

without requiring a genome sequence.

Here we develop a support vector machine (SVM) approach to classify miRNAs

based on miRNA/miRNA* pairs. SVMs are machine learning algorithms that attempt

to use features from true and false examples in order to build a model which can then
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be applied to classify new, unknown data without having to rely on fixed, rule based

methods or expert knowledge. The SVM addresses the problem of learning to dis-

criminate between positive and negative members of a given class by mapping all data

points into an n-dimensional space (where n is the number of features selected) and

then attempting to find a plane that separates the positive from the negative examples

(the separating hyperplane) in the training set. Many potential separating hyperplanes

may exist but the SVM is able to determine maximum-margin hyperplane which main-

tains a maximum margin from any point in the training set. Selecting the maximum-

margin hyperplane maximises the SVMs ability to correctly classify previously unseen

examples [Vapnik, 1998, Noble, 2006].

SVMs have been successfully applied in a variety of diverse fields including

bioinformatics, where amongst other applications they have been used to classify

both miRNA hairpins [Loong and Mishra, 2007a, Xue et al., 2005] and miRNA targets

[Wang and Naqa, 2008, Kim et al., 2006].

6.3 Methods

Forty different Arabidopsis thaliana miRNA/miRNA* pairs were extracted from a

Solexa sRNA dataset and used as a positive training set. Two sets of 100 different

sRNAs with a read count of one were extracted from the Solexa dataset and shuf-

fled using the shuffle program packaged with SQUID [SQUID, 2002]. This provided a
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randomised set of sRNAs which retain the dinucleotide frequency of the original se-

quences. Preserving the dinucleotide frequency of the randomised RNA sequences

is important since the secondary structure of a given RNA sequence is known to

depend on dinucleotide base stacking energies as well as base pairing interactions

[Workman and Krogh, 1999, Clote et al., 2005].

miRNAs were then searched against their complementary miRNA* sequences us-

ing FASTA [Pearson and Lipman, 1988] with features of the miRNA/miRNA* pair be-

ing encoded into a format readable by the LIBSVM package [Chang and Lin, 2001]

to provide a true-positive training set. The two sets of randomised sRNAs were then

searched against one other and all resulting pairs were encoded to provide the true-

negative training set. Thirty-nine different features were selected in order to train the

SVM which are described in detail in Appendix C.

The true positive and true negative examples were then combined and LIBSVM

[Chang and Lin, 2001] was used to train the SVM and build the model. easy.py

(included in the LIBSVM package) was then used to determine the optimal training

parameters. The training data was normalised or “scaled” using svm-scale, a pro-

cess that scales all feature values to lie in a range between -1 and 1, that is required

for the training phase.

Five fold cross-validation was used for the training/testing phase in order to esti-

mate the SVMs accuracy. In other words, the data was divided into 5 sub-samples and

of these a single sub-sample was retained as the validation data for testing the model,
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and the remaining 4 sub-samples were used as training data. The cross-validation

process was then repeated 5 times, with each of the 5 sub-samples used exactly once

as the validation data. The 5 results were then averaged to produce the accuracy

estimation of the SVM predictions. On this test data 100% accuracy was obtained.

6.4 Results

The method was tested using several combined Arabidopsis thaliana 454 datasets

taken from [Fahlgren et al., 2007, Rajagopalan et al., 2006, Mosher et al., 2008,

Qi et al., 2006]. As the method is very computationally intensive, and we know from

previous experience that miRNAs tend to be over-represented in high-throughput se-

quence data, we only tested a subset of the most abundant sRNA sequences as

potential miRNAs. It is also known that miRNA* sequences tend to be cloned at a

much lower frequency than miRNAs (around a 1:10 ratio of miRNA* to mature miRNA)

[Rajagopalan et al., 2006] implying that if a miRNA is found at a low abundance then it

is unlikely that its miRNA* will be present in the dataset. Hence all sequences with an

abundance of 20 or more (total of 1922 non-redundant sequences) were used as input.

These sequences were first searched against tRNAs, rRNAs and other non-coding

RNAs (with the exception of miRNA families) from Rfam [Griffiths-Jones et al., 2005],

and tRNAs from the Arabidopsis tRNA database [Lowe, 2004], and all sequences with

two or fewer mismatches to any of these datasets were filtered out, leaving a total of

1705 unique input sequences. These 1705 sRNAs were then further filtered by size
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to select for sRNAs in the range of 20-22nt (a total of 612 sequences) which is typical

of most miRNAs (Figure. C.1).

The filtered input set of 612 sequences were searched against all sequences with

a read count of five or more from the 454 high-throughput set (5136 non-redundant

reads). Features were then extracted for each potential miRNA/miRNA* pair and the

output from this stage was then scaled with svm-scale using the same parameters

as used for the training set. The scaled feature set was classified with svm-predict

(part of the LIBSVM package) using the model obtained from the training data. Each

of the potential miRNA/miRNA* pairs were classified as either positive or negative by

the SVM and assigned a p-value.

Of the 612 input sequences, 451 were classified as miRNA/miRNA* pairs with the

default p-value of 0.5 or more. Each of the predicted miRNA/miRNA* pairs were then

mapped to the Arabidopsis genome and those that appeared within 1000nt of one

other and had the same orientation on the genome (i.e. were produced from the same

genomic locus) were counted as miRNAs. Those pairs that came from different loci

or different chromosomes were classed as false positives. In this way, 137 predictions

were classed as miRNAs and the remaining 314 were classed as false positives as

the predicted miRNA/miRNA* pairs could not be mapped to the same genomic locus.

Next a p-value filter was applied in order to try to reduce the number of false pos-

itive predictions. After filtering using a p-value threshold of 0.9, 118 miRNAs and 118

false positives were returned thus giving a specificity of 50%. The 118 false positive
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predictions that did not come from the same genomic loci were then searched against

all Arabidopsis miRNA precursor sequences in miRBase. Out of these, 60 mapped

to known miRNA hairpins. This can be explained by the fact that miRNAs often be-

long to families and have several identical or near identical copies spread across the

genome. As this method has no concept of the genomic positions of sRNAs it is prone

to predicting miRNA/miRNA* pairs which, even though they belong to the same family,

come from different genomic loci. A summary of the full results are shown Table D.1.

6.5 Testing

In order to test the method using different organisms, both tomato (from Chapter 5)

and rice (taken from CSRDB [Johnson et al., 2007]) 454 datasets were used. Perl

code implementing the above method has been made available at http://www.

uea.ac.uk/~simonm/nogenomeand requiresFASTA [Pearson, 2000], RNAfold

[Hofacker, 2003] and LIBSVM [Chang and Lin, 2001] in order to function.

6.5.1 Rice analysis

Due to the relatively small size of the rice 454 dataset (11,809 non-redundant reads),

all sequences of between 20-22nt with an abundance of 8 or more (186 non-redundant

sequences) were used as input. The 186 sequences were then filtered to remove

known non-coding RNAs leaving 121 unique sRNA sequences. Each of the input

sequences were then used to search the total non-redundant sRNA sequence set in

order to identify potential miRNA* sequences. Features of each potential pair were
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then calculated as described in the Methods section.

In total 10,083 pairs were identified and of these the SVM classified 63 as be-

ing miRNA/miRNA* duplexes. After applying a p-value cutoff of 0.9, 37 predictions

remained. Of the 37 putative miRNA/miRNA* pairs classified, 16 were derived from

known miRNA loci and 21 false positives were found. Of the 21 false-positive pre-

dictions 12 were known miRNAs but the predicted star sequence was derived from a

different locus (the miRNA* was from a different member of the same miRNA family).

A summary of the full results are shown Table D.2.

6.5.2 Tomato analysis

As discussed in Chapter 5, the lack of a complete genome sequence has been a

limiting factor in the analysis of tomato sRNAs. We therefore employed this approach

in order to try to identify further novel miRNAs from the high-throughput sRNA dataset

described in Chapter 5. sRNAs of 20-22nt with an abundance of at least 20 were

extracted from the total sRNA dataset, yielding 811 non-redundant sRNAs (715 af-

ter filtering against non-coding RNA databases). These were then searched against

the entire non-redundant sRNA dataset of 312,899 sequences and features were ex-

tracted as above yielding 265,867 potential pairs. Of these 422 were classified as

miRNAs. Again a p-value threshold was applied and those pairs where p was below

0.9 were filtered out leaving 220 predicted miRNAs. A summary of the full results are

shown Table D.3.
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As a limited amount of genome sequence is available it is not possible to cal-

culate the false positive rate for this dataset. However, 69 predicted miRNAs could

be mapped to known plant hairpin precursors from miRBase and several interesting

candidates were found. One such candidate pair could be mapped to an EST se-

quence present in the EMBL Nucleotide Sequence Database [Cochrane et al., 2006].

The sequence could not be folded into a miRNA hairpin using traditional folding algo-

rithms and the miRNA (abundance 1349) and miRNA* (abundance 14) were 654 nt

apart. The presence of such high abundance sRNAs in such close proximity appeared

extremely unlikely, so this candidate was experimentally tested.

The presence of the predicted miRNA was first confirmed by Northern blot (Figure.

6.1) and showed differential expression in different developmental and tissue samples

in tomato. Next it was confirmed that the sequence contained an intron (Figure. 6.2)

which when spliced out caused the sequence to form a classical miRNA hairpin se-

quence (Figure. 6.3). Several other candidates were found during this analysis and

will be tested by members of the Dalmay Laboratory.

6.6 Discussion

Methods to process sRNA datasets without a genome sequence are now essential

as high-throughput sRNA sequencing is being used on a wide-spectrum of non-model

organisms. It is of course possible to identify homologues of known/conserved miR-

NAs using sequence similarity searches such as BLAST [Altschul et al., 1990] and
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Figure 6.1: Northern blot of candidate miRNA from different plant tissues (leaf, fruit 11-14mm,
fruit 7-11mm, fruit 5-7mm, fruit 1-3mm, bud).

FASTA [Pearson, 2000], but no tools exist to identify novel miRNAs. This approach,

is more prone to false positives than traditional genome-centric methods but does

have potential benefits even in cases where a genome sequence is available, since

as well as being able to identify miRNAs detectable using traditional structure predic-

tion and analysis tools (e.g. miRCat and miRDeep), it can potentially find spliced

miRNAs (Figure. 6.3), nat-miRNAs [Lu et al., 2008] and other miRNAs which would

not be picked up due to poor secondary structure or extremely long loop regions (e.g.
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Figure 6.2: Alignment of spliced and un-spliced miRNA precursor “TOP14”. Splice variant
TOP14_sv gives rise to a valid hairpin (see Figure. 6.3) structure whereas the un-spliced
transcript TOP14 (see Figure. 6.4) does not. Identical regions are highlighted and the intron
is un-coloured.

miR824 Figure. 6.5). The drawbacks of this method, in addition to the relatively high

false-positive rate, is the fact that if a miRNA* is not present, then the miRNA cannot

be predicted. This is especially problematic when the abundance of a miRNA is low

since there is little chance of cloning a miRNA* sequence.

This method is currently the only technique that can be used to find miRNAs with-

out a sequenced genome, and so it provides a useful tool for biologists who are at-

tempting to find miRNAs in organisms with unsequenced genomes. The false positive

rate of around 50%, is relatively high but is still acceptable for biologists to validate

predictions experimentally. In addition the list can be sorted by abundance or p-value
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to obtain the best candidates. A separate laboratory-based technique to sequence

the full hairpin precursors from miRNA/miRNA* pairs is currently under development

by members of the Dalmay Laboratory. A combined bioinformatics/experimental ap-

proach should lead to a powerful technique for finding new miRNAs in unsequenced

genomes.
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Figure 6.3: Predicted hairpin structure of the TOP14 pre-miRNA, miRNA is highlighted in red
and the miRNA* sequence in pink.



115

Figure 6.4: Predicted secondary structure of the unspliced transcript, “TOP14” miRNA is
highlighted in pink with the miRNA* sequence in red. No valid miRNA hairpin structure is
formed when the intron is not spliced out.
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Figure 6.5: Predicted secondary structure of miR824 showing a non-typical secondary struc-
ture which would not be classified as a valid miRNA precursor by structure based methods
such as miRCat yet is found using the SVM-based no genome prediction. miR824 is high-
lighted in red and miR824* is highlighted in pink.



Chapter 7

A scoring matrix approach to
detecting miRNA target sites

This chapter is an adapted and extended version of

Moxon S., Moulton V., Kim J.T. (2008): A scoring matrix

approach to detecting miRNA target sites. Algorithms Mol

Biol. 3(1):3.
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7.1 Summary

This chapter outlines a new approach to detecting miRNA targets that is applicable to

both plants and animals. The method allows the user to take advantage of existing bio-

logical knowledge by incorporating previously validated targets for a particular miRNA

into a search for novel target sites. We test the method using known miRNA targets

and show that it performs well in terms of sensitivity and specificity in comparison to

other methods.

7.2 Background

As mentioned in Chapter 2, animal miRNA target detection is a very difficult

problem due to the poor complementarity between miRNA and target. Sev-

eral computational methods have been developed for miRNA target predic-

tion – see e.g. [Enright et al., 2003, Zhang, 2005, Krüger and Rehmsmeier, 2006,

Mazière and Enright, 2007]. These methods usually rely on finding target sequences

based on a single miRNA input, and employ nucleotide complementarity and MFE cal-

culations to identify candidate miRNA/target duplexes. Although these methods have

been successfully used in target prediction e.g. [John et al., 2004], their specificity can

be limited, i.e. they may produce many false positives [Rajewsky, 2006].

Various methods have been proposed to improve the specificity of miRNA target

prediction methods. For example, comparative genomics has been used to focus on

sites that are conserved between species [John et al., 2004]. Here we concentrate
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on an alternative approach, the Stacking Binding Matrix (SBM), in which we can in-

corporate all of the known targets for a given miRNA (in general a miRNA may target

several sites) into a search for additional targets. The number of experimentally vali-

dated miRNA targets is steadily growing, and as this number increases so too should

the usefulness of the SBM method.

7.3 Methods

Our approach is an adaptation of the binding matrix (BM) technique for transcription

factor binding site classification [Kim et al., 2004], a method that was designed to sys-

tematically maximise specificity in searches for transcription factor binding sites. In

contrast to computation of the BM, which uses single nucleotide information and re-

sults in a 4 × l matrix for scoring words of length l, the SBM is a 16 × (l − 1) matrix

based on dinucleotides (i.e. consecutive pairs of nucleotides). In this way, it is possible

to incorporate the fundamental principle of RNA stacking energies [Turner et al., 1987]

which is commonly used in miRNA detection.

In brief, the SBM is computed from a multiple sequence alignment consisting of

the reverse complement of the miRNA in question together with any known target

sequences. The resulting matrix (or set of matrices in case the alignment contains

gaps) is then used to scan and score a set of potential target sequences. Sequences

having a score exceeding a user-defined threshold are returned as potential targets.
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7.3.1 Scoring matrices and the binding matrix

A scoring matrix for nucleotide words of length l is an {A, C, G, U} × l matrix M =

(mbk). Given a word w = w[1]w[2] . . .w[l] in the alphabet {A, C, G, U} its score S(w)

is the sum of the matrix elements “selected” by the symbols in the word, that is,

S(w) =
l∑

k=1

mw[k],k.

Given a threshold Smin, a word w is classified as a binding word if S(w) ≥ Smin and

otherwise it is classified as a non-binding word. Generally, the threshold can be used

to adjust sensitivity and specificity of classification: Assuming a positive correlation

between density of true positives and score, lowering the threshold increases sensi-

tivity and decreases specificity. Also, notice that for any λ > 0, scoring a word with the

matrix λM and using the threshold λSmin results in the same classification. A matrix

classifier is called consistent with a set B = {b1, . . . , bN}, of known binding words if it

classifies them all correctly [Wolff et al., 2003], i.e. if S(b) ≥ Smin for all b ∈ B.

There are various ways of constructing a scoring matrix from a set of binding words

[Stormo, 2000]. The Binding Matrix (BM) is defined to be the matrix for which the

number of words classified as binding words is minimal, under the condition that it is

consistent. A method for computing the BM and a discussion of its properties is given

in [Kim et al., 2004].
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7.3.2 Incorporating stacking into binding matrix computat ions

A key feature in RNA structure prediction is the incorporation of stacking energies

[Turner et al., 1987]. So as to capture information from both nucleotide complemen-

tarity and base pair stacking energies, in the computation of the SBM we score din-

ucleotides. Formally, for nucleotide words of length l, SBM is a {A, C, G, U}2 ×

(l − 1) matrix. It is computed by first converting each word w into the sequence

w[1]w[2], w[2]w[3], . . . , w[l− 1]w[l] of dinucleotides in {A, C, G, U}2 and then optimis-

ing as with the BM. An example SBM as calculated from the alignment shown in

Figure 7.1 is given in Table 7.1.

For performance reasons, to compute the SBM we use the optimisation approach

described in [Madany Mamlouk et al., 2003] rather than the quadratic programming

technique used in [Kim et al., 2004]. All SBMs are scaled so that a threshold of 1

corresponds to the most specific consistent classifier.

Note that in contrast to transcription factors, where only binding site sequences

(binding words) are available, the reverse complement of the miRNA sequence itself

provides information about the accepted target site sequences. Thus we include the

reverse complement of the miRNA within the alignment of the known target sites.

7.3.3 Incorporating gaps

The complementarity of a miRNA binding to a target site is usually imperfect and

commonly involves bulges (see Figure 7.2), which results in gapped alignments.
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Figure 7.1: Screenshot of example input aligmment used to build
the SBM in Table 7.1 as viewed using the Belvu alignment viewer
(http://sonnhammer.sbc.su.se/Belvu.html). Columns are coloured based
on nucleotide conservation using the default Belvu colour scheme.

Dinucleotide 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

aa: 0.04 0.07 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ac: 0.0 0.0 0.06 0.0 0.01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ag: 0.0 0.0 0.06 0.0 0.05 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.06
at: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
ca: 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
cc: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.04 0.04 0.0
cg: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06
ct: 0.0 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.0 0.0
ga: 0.02 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.06 0.0
gc: 0.0 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.05 0.0 0.0 0.04 0.0 0.01 0.0
gg: 0.0 0.0 0.0 0.06 0.0 0.0 0.0 0.0 0.07 0.0 0.0 0.0 0.0 0.0 0.0
gt: 0.05 0.0 0.0 0.0 0.0 0.05 0.0 0.0 0.0 0.07 0.0 0.07 0.0 0.0 0.0
ta: 0.0 0.04 0.0 0.0 0.0 0.0 0.11 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tc: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
tg: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.11 0.0 0.07 0.0 0.0
tt: 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0

Table 7.1: Example of a SBM scoring matrix from alignment given in Figure 7.1: The first col-
umn “Dinucleotide” shows each of the possible dinucleotide alignments. Each subsequence
column shows the dinucleotide weighting (given to a maximum of two decimal places) as cal-
culated from the input alignment (Figure 7.1).

However, in common with scoring matrix-based classification approaches, the

SBM cannot accommodate gaps directly. To address this, we employ a set of SBMs

rather than a single SBM.

For N = {A, C, G, U}, let A = {S1, S2, . . . , Sn} denote an alignment consisting of
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ab 3’ UTR 5’ - AGAA A - 3’
-UUGU-CAG UUGA UACCUCA
:|:| ||: :|:| |||||||
GAUA GUU GAUG AUGGAGU

let-7 3’ -U U G--- - - 5’

Figure 7.2: Alignment of the Drosophila melanogaster let-7 miRNA to a cognate target site in
the 3’ UTR of the ab gene adapted from [Burgler and Macdonald, 2005, Fig. 1].

(possibly) gapped sequences over N of length l. Denote the gap character by −, and

let si,j be the j-th symbol of Si. Suppose that D ⊆ {1, 2, . . . , l}. Given a sequence

Si ∈ A, let SD
i = si,j1si,j2 . . . si,jl−|D|

denote the subsequence of Si with jk < jk+1 and

jk ∈ {1, 2, . . . , l} − D, and define the subsequence alignment of A corresponding to

D to be AD = {SD
1 , SD

2 , . . . , SD
n } (i.e. the alignment obtained from A by removing the

columns indexed by elements of D).

The gap pattern of a sequence Si ∈ A, denoted G(Si), is the set G(Si) = {j :

si,j = −}. In particular, for each Si ∈ A, the ungapped sequence corresponding to Si

equals S
G(Si)
i . Correspondingly, the gap pattern of A is defined as G(A) =

⋃
i G(Si),

i.e. the set of indices of those columns in A that contain at least one gap.

Now, let D be a subset of 2G(A) (in practice we take either Dall = 2G(A) or

Dobserved = {G(S) : S ∈ A}). For each of the alignments A(D) = {AD : D ∈ D} we

calculate a SBM. In case an alignment A′ in A contains some gaps, each sequence

S in A′ that contains gaps is replaced by the set of all sequences obtained by re-

placing the gaps in S with all possible nucleotide symbol combinations (or the set of
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nucleotides actually observed at the gap containing position).

Once the set of SBMs has been computed for each alignment in A(D), query

sequences are then scanned with each of the matrices, and the final score at a given

base in a query sequence is taken to be the largest of the scores attained by the

individual SBMs. As usual, a target site is predicted in case the final score exceeds a

user-defined threshold.

This extension to gapped alignments allows the detection of target sites with vary-

ing lengths whilst preserving specificity and consistency, both of which are key fea-

tures of the original BM approach. Note that consistency is ensured since, for each

sequence Si ∈ A, we have G(Si) ∈ D as one alignment in A(D) must contain S
G(Si)
i .

Computing SBMs based on Dobserved makes most use of the gap information contained

in the alignment. As an alternative, computing a (larger) SBM set based on Dall may

allow detection of target sites that are recognised by a pairing structure different from

those formed by the target sites known so far, which may be used to improve sensitivity.

7.3.4 Computational complexity

The number of alignments in the set A(D) used in the calculation of SBM set is of

order 2|G(A)|, and so grows exponentially with the number of columns in A containing

gaps. Hence, our approach will not scale to long alignments containing many gaps.

Even so, in practice we have found the approach to be applicable to miRNA target

prediction, since usually |G(A)| ≤ 6 (as miRNAs are about 21nt’s in length), resulting

in at most 26 = 64 alignments in A(D). Obviously, choosing D = Dobserved rather than
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D = Dall can considerably reduce |D|, particularly if gaps occur in only a few distinct

patterns. Likewise, the number of alignments obtained after the gap filling procedure is

performed also grows exponentially, although the approach is still feasible for miRNA

targets, again due to their short length.

7.3.5 Implementation

We have implemented our method in Python http://www.python.org/ and

R [R Development Core Team, 2004]. The code, together with documentation and

examples, is freely available for download from http://www.cmp.uea.ac.uk/

~jtk/stackbm/.

7.4 Results

To demonstrate the utility of the SBM method, we present an application to the prob-

lem of miRNA target detection for nematode worm (Caenorhabditis elegans), fruit fly

(Drosophila melanogaster ), mouse (Mus musculus), human (Homo sapiens) and thale

cress (Arabidopsis thaliana). We also present a leave one out analysis, and a compar-

ison with miRanda [Enright et al., 2003], a commonly used miRNA target prediction

algorithm.

7.4.1 Data

We extracted C. elegans, D. melanogaster, M. musculus and H. sapiens miRNA

entries from the miRBase database, release 9.1 [Griffiths-Jones et al., 2006] that
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had more than one unique, experimentally validated target in the TarBase database

[Sethupathy et al., 2006].

The reverse complement of each miRNA was then aligned with its validated target

regions using the ClustalW alignment package [Chenna et al., 2003]. If local align-

ment algorithms are used, terminal gaps carry much less significance than internal

gaps. Therefore, alignments were trimmed by removing columns containing terminal

gaps at the 5’ or 3’ end. SBMsets were computed for these alignments as described

in the Methods section. The SBM sets were used to search for potential new targets in

the UTR sequence sets obtained from BioMart [Kasprzyk et al., 2004] (see Table 7.2

for details).

Organism No. Sequences Sequence type No. Nucleotides

C. elegans 12,172 UTR 2,724,326
D. melanogaster 11,277 UTR 4,612,168

M. musculus 20,271 UTR 20,009,781
H. sapiens 27,685 UTR 30,673,888
A. thaliana 31,527 cDNA 46,447,255

Table 7.2: Summary of UTR datasets: “No. sequences” gives total number of unique se-
quences in this dataset; “Sequence type” gives the sequence type used (UTR or cDNA); “No.
nucleotides” gives total number of nucleotides in the UTR set.

To test the applicability of the method to plant target prediction, we took a selection

of A. thaliana miRNAs from miRBase together with validated target regions from the

the Arabidopsis Small RNA Project Database (ASRP) [Gustafson et al., 2005], aligned

these sequences with ClustalW, and computed SBMs.
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7.4.2 Summary of SBM Scan

On the animal data sets, we determined for each of the SBM sets the number of

predicted targets obtained by scanning the UTR data set, using a score threshold of

1. As in [Kim et al., 2004], we used the number of predicted targets obtained with a

consistent classifier as an indicator of the classifier’s specificity.

Plant miRNA targets usually occur in the protein coding region of genes and there-

fore we searched the gene sequence set TAIR6_cdna_20051108 obtained from The

Arabidopsis Information Resource (TAIR) [Rhee et al., 2003] again using a threshold

of 1. A summary of these results can be seen in Table 7.3.

In accordance with the definition of the SBM method, in Table 7.3 we see that

all validated targets present in the input alignment are recovered in the scan output

using a threshold of 1. In many cases no additional candidate targets are predicted

using this stringent threshold, especially when there are few sequences provided in

the input SBM set. Larger sets of validated targets tended to result in the prediction of

more new candidate target sites, as illustrated in Table 7.3 by the cases of dme-miR-

4, dme-miR-7, cel-let-7 and cel-miR-84. This reflects the consistency criterion built

into the binding matrix definition; a larger input set of sequences generally tended to

reduce the stringency of the classifier.

cel-let-7 returned 1708 predicted targets at threshold 1 which appears to be rela-

tively high compared with the other results, but given the size the searched database

(2,274,326nt) it is a small proportion of all possible target regions. A possible reason
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Organism miRNA Validated targets Recovered targets Potential novel targets

C. elegans cel-miR-273 2 2 0
C. elegans cel-let-7 15 15 1708
C. elegans cel-miR-84 7 7 123

D. melanogaster dme-miR-11 4 4 0
D. melanogaster dme-miR-2 4 4 0
D. melanogaster dme-miR-4 8 8 23
D. melanogaster dme-miR-7 15 15 28

M. musculus mmu-miR-124 3 3 0
M. musculus mmu-miR-206 3 3 0

H. sapiens hsa-miR-1 4 4 0
H. sapiens hsa-miR-122 3 3 0

A. thaliana ath-miR-163 5 5 0
A. thaliana ath-miR-172 6 6 0
A. thaliana ath-miR-390 1 1 0
A. thaliana ath-miR-398 2 2 0
A. thaliana ath-miR-408 2 3 1

Table 7.3: SBM scan summary obtained using a score threshold of 1: “miRNA” gives miRBase
miRNA identifier; “Validated targets” gives number of unique validated targets present in the
starting alignment; “Recovered targets” gives number of validated targets in the input alignment
that were recovered; “Predicted novel targets” gives number of candidate target sequences
(other than the validated targets) predicted by the SBM method.

for the large number of predicted targets is that the input sequence set used to build

the SBM set was misaligned by ClustalW. The validated targets used to create the

alignment showed a greater degree of heterogeneity that those in other alignments.

Another possible explanation is that cel-let-7 is known to have several paralogs (cel-

miR-84, cel-miR-48 and cel-miR-241) [Hayes et al., 2006] and therefore its targets are

likely to overlap with other members of this miRNA family. It has also been suggested

that some miRNAs may target thousands of different genes [Miranda et al., 2006]

making it possible that many of the targets predicted are in fact true positives.
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7.4.3 Leave one out analysis

While the SBM method used with Smin = 1 recovers all targets that are present in the

input alignment, unknown targets that receive a score below 1 are likely to exist. It is

possible to detect such sequences using the SBM method by lowering the threshold.

This increases the classifier’s sensitivity at the expense of reducing its specificity. To

assess this effect quantitatively we conducted a leave one out analysis. In particular

we constructed leave one out alignments by deleting one target site sequence from

an input alignment. Then, for each alignment in which the target sequence w was left

out, we computed a SBM set and determined the score S(w) of the target site that

was left out. If S(w) < 1, the threshold needs to be adjusted to Smin = S(w) in order

to detect w. We therefore scanned the respective UTR set with Smin = min{1, S(w)}

and determined the number of predicted targets.

An input alignment of n sequences allows construction of n − 1 leave one out

alignments (we did not leave out the reverse complement of the miRNA), so data sets

containing more experimentally validated target sites clearly result in more meaningful

leave one out analyses. We therefore chose the four miRNAs that had the greatest

number of known experimentally validated targets; D. melanogaster miR-7 and C.

elegans let-7, which both targeted 15 unique UTR regions as well as D. melanogaster

miR-4 (8 unique targets) and C. elegans miR-84 (7 unique targets).

In total 2,484,850 UTR regions were scanned in the C. elegans set compared with

to 4,409,641 regions in the D. melanogaster set. The score of each left out target
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along with the number of regions with a score equal to or greater than this value in the

scan using the full alignment are shown in Tables 7.4 and 7.5.

Drosophila melanogaster, miR-7
Target LOO score > LOO score

CG12487.3/223-241 0.946 94
CG5185.3/279-297 1.000 34
CG3096.3/152-170 1.000 34
CG12487.3/250-268 1.000 34
CG3166.3/1100-1118 0.951 76
CG6096.3/103-121 1.000 34
CG8346.3/78-96 0.966 58
CG5185.3/334-352 1.000 34
CG6494.3/447-465 0.919 155
CG6096.3/24-42 1.000 34
CG6096.3/68-86 0.961 65
CG8328.3/63-81 0.773 2015
CG3166.3/1586-1602 0.855 393
CG3166.3/29-46 0.845 513
CG3166.3/1294-1312 0.861 521

Caenorhabditis elegans, let-7
Target LOO score > LOO score

ZK792.6/247-264 0.959 3561
F38A6.1a/271-288 1.000 1708
C18D1.1.1/526-542 0.906 10458
ZK792.6/666-683 0.959 3522
ZK792.6/458-475 0.929 7311
F38A6.1a/133-150 0.874 19177
C01G8.9a/21-38 0.850 23906
ZK792.6/132-148 0.859 20570
C01G8.9a/159-175 0.813 30895
ZK792.6/190-207 0.807 41812
C12C8.3a/693-709 0.791 39369
C12C8.3a/742-757 1.000 1499
ZK792.6/484-499 0.898 10232
F11A1.3a/1007-1021 0.948 4658
ZK792.6/343-361 0.955 4352

Table 7.4: Leave one out analysis for dme-miR-7 & cel-let-7 : “target” gives validated target
sequence accession/start-end; “miRNA” gives miRNA targeting that region; “> LOO score”
gives mean number of regions scoring equal to or greater than the left out sequence.

The SBM method appears to show a greater degree of accuracy in the D.

melanogaster miR-7 results. Here the mean score of the left out target is 0.9385
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Drosophila melanogaster, miR-4
Target LOO score > LOO score

CG6096.3/135-154 0.755 3118
CG8328.3/27-45 1.000 8
CG3096.3/33-52 0.929 161
CG3096.3/138-157 0.877 473
CG5185.3/46-65 0.960 64
CG12487.3/188-208 0.820 1298
CG12487.3/62-82 0.871 627
CG6096.3/210-230 0.908 207

Caenorhabditis elegans, miR-84
Target LOO score > LOO score

ZK792.6/126-148 0.804 4970
ZK792.6/187-207 0.552 132626
ZK792.6/249-264 0.947 355
ZK792.6/342-361 0.761 12552
ZK792.6/460-475 0.858 2012
ZK792.6/479-499 0.739 18375
ZK792.6/665-683 0.726 15846

Table 7.5: Leave one out analysis for dme-miR-4 & cel-miR-84: “target” gives validated target
sequence accession/start-end; “miRNA” gives miRNA targeting that region; “> LOO score”
gives mean number of regions scoring equal to or greater than the left out sequence.

and the mean number of target regions scoring greater than or equal to the left out

sequence is 273 (0.006% of the total UTR regions scanned). The C. elegans let-7

scan indicates a lower degree of specificity, with an average score of 0.9032, returning

a mean of 14869 regions with a score greater than or equal to the score of the left

out validated target sequence. This represents 0.598% of the sequence database that

was searched.

For D. melanogaster miR-4 the SBM method gave a mean score of 0.890 with an

average of 745 target regions scoring greater than or equal to the left out sequence

(0.017% of the total UTR regions scanned), and for C. elegans miR-84 a mean score

of 0.770 was obtained and an average of 26677 target regions scoring greater than
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or equal to the left out sequence was returned (1.074% of the total UTR regions

scanned). The decrease in specificity in the C. elegans miR-84 results is largely due

to a single leave one out test in which over 132626 sequences scored higher than the

left out sequence (which received a score of 0.552).

Overall, the lowering of the threshold required to detect a word not in the input set

results in a moderate increase in the number of reported hits, which is indicative of a

high specificity even with the reduced threshold.

In order to assess the performance of the algorithm when few known targets are

provided in the input alignment we re-ran the C. elegans let-7 and D. melanogaster

miR-7 scans but this time split each of the alignments of 15 validated targets into two

subalignments containing 8 and 7 sequences respectively. Table 7.6 shows that as

the number of sequences used to build the SBM decreases, so does the mean score

of the left out sequences. This indicates, as might be expected that as the number of

sequences left out of the alignment increases the specificity decreases.

15 targets 14 targets 8 targets 7 targets

Mean score C. elegans let-7 1.000 0.903 0.851 0.810
Mean number returned C. elegans let-7 1708 14869 18032 17225

Mean score D. melanogaster miR-7 1.000 0.938 0.908 0.890
Mean number returned D. melanogaster miR-7 28 273 509 138

Table 7.6: Leave several out analysis: Shows mean scores and mean number of regions
scoring above maximal consistent threshold for alignments containing 15, 14, 8 and 7 validated
targets.
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7.4.4 Comparison with miRanda

We also compared the performance of the SBM method with miRanda v1.9, a com-

monly used target prediction tool [Enright et al., 2003]. miRanda takes a single

miRNA sequence as input and searches a sequence dataset for potential target re-

gions. It uses two different criteria to detect potential target sites, the alignment score

and the MFE of the miRNA bound to the potential target sequence.

In order to obtain results with miRanda that could be meaningfully compared with

the SBM method, we used miRanda to score every potential target site across each of

the UTR sequences. To do this we split each of the UTRs into 30nt sequence windows

covering the entire length of each UTR and used this as our sequence database for

the miRanda scan. Since the same target region may be scored more than once

using this approach, we removed any duplicate regions from the results before the

comparison. By default miRanda uses relatively stringent threshold values which do

not necessarily recover all known target regions, i.e. classification is not consistent.

For this reason miRanda was run using a negative score threshold and a positive

energy threshold which allowed us to obtain a wide distribution of scores and to ensure

consistency.

Table 7.7 provides an overview of the miRanda comparison (full results can

be found in Appendix E). In general the SBM method compared favourably with

miRanda. This is not unexpected as we incorporate additional information into our

searches. For example the cel-let7 results show that an average of 14869 regions
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had a score that was at least as high as the left out sequence using SBM whereas

an average of 92332 regions scored at least as high as the validated target using

miRanda. This difference was more pronounced in the dme-miR-7 results where an

average of 273 sequences scored equal to or better than the left out sequences and

an average of 8868 sequences scored at least as high as the validated target using

miRanda. The SBM method returned an average of 745 sequences scoring equal

to or better than the left out sequence for dme-miR-4 in comparison to an average of

11488 sequences that scored at least as high as the validated target using miRanda.

An average of 26677 target regions were returned using the SBM method for cel-miR-

84 compared with 190693 using miRanda.

miRNA LOO score > LOO score miRanda(s) > miRanda(s) miRanda(e) > miRanda(e) > miRanda(se)

cel-let-7 0.903 14869 119 92332 -15.46 60266 23992
cel-miR-84 0.770 26677 106 190693 -10.19 150137 48538
dme-miR-7 0.938 273 159 8868 -21.69 7227 2129
dme-miR-4 0.890 745 131 11488 -8.51 184134 5325

Table 7.7: Summary of results for the leave one out analysis: “miRNA” gives miRBase acces-
sion of the miRNA sequence; “LOO score” gives mean score of the targets left out of the SBM;
“> LOO score” gives mean number of regions scoring equal to or greater than the left out
sequence; “miRanda(s)” gives raw score of the miRanda hit of lowest scoring target region;
“> miRanda(s)” gives number of regions with returned using the maximal consistent score
threshold; “miRanda(e)” gives minimum free energy (MFE) of the miRanda hit of the least
stable target region; “> miRanda(e)” gives number of regions with returned using the maximal
consistent MFE threshold; “> miRanda(se)” gives number of regions with returned using the
maximal consistent combined score and MFE threshold.

We determined the maximal consistent threshold for miRanda results by filtering

out all candidates with an alignment score lower than the lowest scoring validated

target. The remaining candidates are then filtered further by removing any sequence
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with an MFE of greater than the MFE of the highest (least stable) of the validated

targets. The number of regions returned using the maximal consistent threshold in

miRanda were 23992 for cel-let7 in contrast to the 1708 returned using the SBM

method with maximal consistent threshold. 48538 regions were recovered for cel-

miR-84 compared with 123 using SBM , 2129 for dme-miR-4 in comparison to 23 with

SBM and 5325 for dme-miR-7, with the SBM method returning 28.

7.5 Discussion

We have presented a new method, SBM , that allows the use of miRNA target site

sequences in addition to the miRNA sequence itself to search for novel target sites.

We have demonstrated its application to target prediction for a variety of miRNA ex-

amples from different organisms and have shown that it performs well in comparison

to miRanda.

Many computational methods for target prediction tend to suffer from a lack of

specificity [Rajewsky, 2006]. The SBM method allows the use of all known target

sequences in the search, and is designed to provide maximum specificity whilst re-

covering all members present in the starting alignment. Thus, as the number of

experimentally validated miRNA targets grows, the SBM method should provide an

attractive addition to the available miRNA target site detection methods.

Many current target prediction techniques are based on algorithms with fixed pa-

rameters (such as base pairing rules or binding energies) that are used to assess
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potential targets by matching them to the miRNA sequence. These algorithms are de-

signed to reflect molecular target recognition mechanisms that are assumed to apply

to miRNA target recognition in general. Tailoring these algorithms to reflect mecha-

nisms that are specific to the miRNA is difficult or impossible. In contrast to this, the

SBM method can capture aspects of specific binding mechanisms by extracting such

specific information from the set of validated target site sequences. This also makes

the method generic in that it can be applied to any organism without having to assume

any prior knowledge of specific target recognition mechanisms.

Due to the small number of validated targets for each miRNA, the maximal consis-

tent threshold used in the SBM method is rather stringent. We chose this threshold

to facilitate comparison of the method to miRanda. For many applications lowering

thresholds to increase sensitivity at the cost of losing some specificity may be ad-

visable. The specificity advantage of the SBM method can be expected to be partly

independent of the threshold, since moderate relaxation of the threshold for a classifier

that attains a high level of specificity with a given threshold can be assumed to retain

some of the specificity advantage.

As with all scoring matrix approaches, the SBM method is limited by the quality of

the input data. Firstly if a false positive target sequence is provided as input the method

will be adversely affected, therefore only experimentally validated targets should gen-

erally be used as input. Secondly the quality of the input alignment is extremely

important and a poor quality alignment will lead to poor performance. miRNAs are
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relatively short (~21nt) which means that in many cases they can be aligned quite ac-

curately using multiple alignment algorithms such as ClustalW [Chenna et al., 2003]

and MUSCLE [Edgar, 2004]. In some cases however, the conservation between sites

targeted by the same miRNA is very low, meaning that an accurate sequence align-

ment is hard to produce using automated methods. In such cases it may be favourable

to hand curate alignments in order to ensure quality and obtain optimal SBM results.

Thirdly, although the short length of miRNAs also allows for the integration of

gapped alignments in the SBM method, the method will only search for the gap

patterns contained in the input alignment. Thus, if targets contain insertion/deletion

patterns which are not specified in this way, then they may receive a lower score or

even be missed completely depending on the threshold used in the search.

Several miRNA target prediction systems have implemented post-processing steps

in order to increase their specificity. The most commonly used filtering approach is to

look for cross-species conservation of target sites. Here target sites that appear not to

be conserved between multiple species are filtered out from the search results, remov-

ing false positives, and leading to increased specificity. This type of approach could be

applied to results obtained with SBM to further increase the specificity of target predic-

tions. However, we note that this might also lead to a reduction in sensitivity as it is now

known that miRNAs themselves are not always conserved between related species

(e.g. [Fahlgren et al., 2007]). Another possibility is to post-process based on target
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site accessibility. It has recently been shown that taking into account target site ac-

cessibility in the 3’ UTR can improve target prediction accuracy [Kertesz et al., 2007].

For instance if a predicted target site is part of a stable secondary structure (and is

therefore already involved in base-pairing) it is less likely that the miRNA will be able

to bind to the target causing the translational repression of the mRNA.

In conclusion, we have presented a promising new method for miRNA target pre-

diction, SBM , that employs a generic scoring matrix approach and incorporates ex-

perimentally validated targets. Since the number of validated targets is constantly

growing, SBM should provide a useful new addition to the current target prediction

toolbox.



Chapter 8

Conclusions and future work

8.1 Summary

In the previous chapters we have described some new tools for the analysis of

sRNA data. In Chapter 3 we introduced miRCat, a tool for finding miRNAs in high-

throughput sequence datasets, and then went on to demonstrate its application to both

small-scale (Chapter 4) and high-throughput (Chapter 5) sRNA sequence datasets in

tomato, as well as validating the method in Arabidopsis and extending its functionality

to animals. We have implemented miRCat along with several other tools including

those for target prediction and ta-siRNA classification on a web-server which is being

used by the scientific community for the analysis of high-throughput sequence data.

We have also developed a new method for the classification of miRNAs from high-

throughput sequence data without the need for a genome sequence (see Chapter 6).

This method relies on detecting miRNA/miRNA* pairs from a sRNA sequence set and

uses a SVM in order to classify real miRNA/miRNA* pairs. We demonstrated its use

by finding both known and novel miRNAs and showed that, unlike other methods that

139
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use genomic coordinates and secondary structure information, the SVM-based classi-

fier can detect non-standard miRNAs such as those containing introns or exceedingly

long loop regions. As a result of this we were able to identify a novel tomato miRNA

precursor containing an intron.

In Chapter 7 we described SBM , a scoring matrix approach to miRNA target pre-

diction. SBM is able to utilise existing, validated miRNA target information for a given

miRNA in order to improve the specificity of future predictions. SBM is generic and

does not rely on fixed rules that are generally applied to miRNA target prediction, so

that the method can be applied to both animals and plants.

8.2 Future Work

Further extensions to some of the methods and tools presented in this thesis are

possible and are discussed below.

8.2.1 Improvements to miRNA prediction in unsequenced
genomes

The results obtained in Chapter 6 are preliminary and it is likely that the model used

to train the SVM can be improved to obtain more accurate results by, for example,

adding more features and using further training examples. The method could also be

extended to animal datasets by training a separate model on animal miRNA/miRNA*

pairs from high-throughput sequencing.

As with the miRCat tool, a web-based implementation of this tool would be useful
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as it removes the need to install and run software locally. A user could then upload a

dataset of interest and receive a ranked list of candidate miRNA sequences for follow

up experimentation.

8.2.2 Improvements to the SBM method

The SBM method introduced a new concept in miRNA target recognition by using

information about the miRNA and known, validated targets of the miRNA in the search

for new target sites. The method was shown to increase search specificity but there

are various potential improvements which could be made in order to further improve

the results. For example, it would be interesting to add filters for both MFE (as used

by miRanda) [John et al., 2004] and target site accessibility, used by Kertesz et al.

[Kertesz et al., 2007], to try to improve the specificity of this method further.

8.3 Conclusions

High-throughput sequencing technologies have enabled us to obtain complex small

RNA profiles of biological samples and has led to the discovery of a wealth of pre-

viously unknown miRNAs and other sRNAs over recent years. As seen from work

presented in this thesis, computational tools are invaluable for the interpretation of

such data and have led to a number of important discoveries such as a miRNA in-

volved in fruit ripening and a new class of miRNA precursor which contains an intron

and is only processed in its spliced form.

As high-throughput technologies mature and evolve it is likely that the number of
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sequences obtained from a single sample will increase by an order of magnitude, and

even now millions of sequence reads can be obtained from a single experiment. Future

increases in sequencing depth alone are unlikely to lead to the discovery of many new

miRNAs as it is likely that the majority of ubiquitously expressed miRNAs in previously

studied model organisms such as Arabidopsis, human and Drosophila have been de-

scribed. However, only a small number of commercially and medically important plants

and animals have a fully sequenced genome so it has been impossible to look for novel

miRNAs in such organisms. An important objective now is to provide computational

methods which will allow us to identify miRNAs in unsequenced genomes such as the

approach discussed in Chapter 6.

Another important challenge lies in understanding the role of miRNAs in the cell.

This is especially true for animals where the vast majority of characterised miRNAs

have no known function. A key component in the understanding miRNA function lies in

the use of bioinformatics and the development of new, more accurate target prediction

algorithms such as SBM that can be used to confidently predict the genes regulated

by a given miRNA.

As high-throughput sequencing is rapidly becoming cheaper, it is now already eco-

nomically viable to sequence several different samples from the same organism (e.g.

different tissue types, developmental stages or a time-series after treatment). This

multi-sample sequencing is likely to lead to the discovery of new miRNAs which are

only expressed under specific conditions, developmental stages or tissue types. It also
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means that sRNA profiles can be compared (e.g. over developmental stages) leading

to the discovery of differentially expressed sRNA loci and giving an insight into sRNA

function in biological processes.

Small RNA biology and bioinformatics are rapidly evolving due to the advent and

evolution of high-throughput sequencing. Computational methods for the classifica-

tion and analysis of these datasets, such as those presented in this thesis, have both

supported and made possible exciting new discoveries in the field. Our knowledge

and understanding of sRNAs has increased dramatically from 2001 and the charac-

terisation of the first miRNA, to the present day. We are now aware of the complex

and subtle mechanisms of gene regulation performed by an ever increasing number

of different sRNA classes. It is likely, in this relatively new field of biology, that there

are many new classes of sRNAs with which have not yet been characterised and the

mechanisms and networks of sRNA regulation may be more complex than we first

thought. Whatever discoveries the future holds it is clear that bioinformatics will play a

key role in deciphering the sRNA content of the cell.
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Appendix A

A.1 miRCatTesting Results

A.1.1 Arabidopsis GSM118373 results

Results from miRCat (using default parameters) when run on the 454 Arabidopsis thaliana leaf sRNA set from Rajagopalan

et al. [Rajagopalan et al., 2006].

Column ”miR” shows the miRBase accession of the miRNA (if availalbe), column ”chr” shows the Arabidopsis thaliana

chromosome the sequence maps to, column ”start” shows the start position of the predicted miRNA, column ”end” shows

the start position of the predicted miRNA, column ”ori” shows the orientation of the miRNA (either Watson "+" or Crick "-"

strand). Column ”abun” shows the abundance of the sRNA in the 454 dataset, column ”seq” shows the sRNA sequence,

column ”len” shows the length of the sRNA sequence, column ”g. hits” shows the number of times this sequence maps to the

reference genome, column ”h. len” shows the length of the predicted miRNA precursor structure. Column ”G/C%” shows the
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percentage G/C composition of the miRNA hairpin sequence, column ”MFE” shows the minimum free energy of the folded

miRNA precursor sequence, column ”AMFE” shows the MFE per 100nt (therefore normalising the MFE), column ”p-value”

shows the randfold p-value for the predicted hairpin precursor (using 100 randomisations). Column ”miRNA*” gives the

sequence of any potential miRNA* sequences present in the predicted precursor.

Table A.1: miRNAs predicted in the GSM118373 454 leaf sRNA dataset [Rajagopalan et al., 2006] by miRCat using default settings

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

165a 1 78932 78952 - 24 TCGGACCAGGCTTCATCCCCC 21 2 154 40.91 -57.7 -37.47 0.01 GGAATGTTGTCTGGATCGAGG
171b 1 3961367 3961387 - 233 TTGAGCCGTGCCAATATCACG 21 2 117 45.3 -46.7 -39.91 0.01 CGAGATATTAGTGCGGTTCAA
472a 1 4182141 4182162 - 5 TTTTTCCTACTCCGCCCATACC 22 1 222 40.99 -91.6 -41.26 0.01 NO
159b 1 6220806 6220826 + 640 TTTGGATTGAAGGGAGCTCTT 21 1 259 38.61 -95.16 -36.74 0.01 NO
169h 1 6695535 6695555 - 126 TAGCCAAGGATGACTTGCCTG 21 7 188 39.36 -79.1 -42.07 0.01 NO
400a 1 11785927 11785947 + 15 TATGAGAGTATTATAAGTCAC 21 2 169 34.32 -53.8 -31.83 0.01 AAGTGACTTATGATAATCTCA
773a 1 13067291 13067312 + 5 TTTGCTTCCAGCTTTTGTCTCC 22 1 198 42.42 -93 -46.97 0.01 NO
N/A 1 16006805 16006826 - 5 TTAACAAATCTGGTGTTTTACA 22 15 139 26.62 -43.5 -31.29 0.01 NO
161a 1 17829399 17829419 + 4593 TGAAAGTGACTACATCGGGGT 21 1 122 39.34 -53.5 -43.85 0.01 ACCCTGGTTTAGTCACTTTCA
169d 1 20043224 20043244 - 25 TGAGCCAAGGATGACTTGCCG 21 4 201 35.82 -73.57 -36.6 0.01 GCAAGTTGACCTTGGCTCTGT
169e 1 20045254 20045274 + 25 TGAGCCAAGGATGACTTGCCG 21 4 208 36.54 -70.81 -34.04 0.01 NO
846a 1 22581327 22581347 + 51 TTGAATTGAAGTGCTTGAATT 21 1 267 36.33 -92.1 -34.49 0.01 CATTCAAGGACTTCTATTCAG
171c 1 22933760 22933780 - 233 TTGAGCCGTGCCAATATCACG 21 2 158 37.97 -64.22 -40.65 0.01 NO
399b 1 23349052 23349072 - 27 TGCCAAAGGAGAGTTGCCCTG 21 2 162 38.27 -61.4 -37.9 0.01 NO
157a 1 24916939 24916959 - 73 TTGACAGAAGATAGAGAGCAC 21 3 166 36.14 -63.8 -38.43 0.01 GCTCTCTAGCCTTCTGTCATC
157b 1 24924767 24924787 + 73 TTGACAGAAGATAGAGAGCAC 21 3 132 44.7 -57.06 -43.23 0.01 GCTCTCTAGCCTTCTGTCATC
839a 1 25282801 25282821 - 7 TACCAACCTTTCATCGTTCCC 21 1 340 41.18 -206.1 -60.62 0.01 NO
159a 1 27716895 27716915 - 4046 TTTGGATTGAAGGGAGCTCTA 21 1 184 39.13 -75.9 -41.25 0.01 NO
840a 2 771491 771512 - 22 ACACTGAAGGACCTAAACTAAC 22 1 306 43.46 -153.39 -50.13 0.01 TTGTTTAGGTCCCTTAGTTTCT
398a 2 1041009 1041028 + 41 TGTGTTCTCAGGTCACCCCT 20 3 179 36.31 -62.7 -35.03 0.01 NO
396a 2 4149524 4149545 - 12 TTCCACAGCTTTCTTGAACTGC 22 1 165 35.15 -57.7 -34.97 0.01 NO
156a 2 10683613 10683632 - 236 TGACAGAAGAGAGTGAGCAC 20 6 103 46.6 -50 -48.54 0.01 NO
825a 2 11166852 11166872 + 134 TTCTCAAGAAGGTGCATGAAC 21 1 102 38.24 -42.1 -41.27 0.01 NO
172a 2 11949995 11950015 - 835 AGAATCTTGATGATGCTGCAT 21 2 174 46.55 -67.77 -38.95 0.01 NO
390a 2 16069101 16069121 + 39 CGCTATCCATCCTGAGTTTCA 21 1 107 42.06 -51.6 -48.22 0.01 AAGCTCAGGAGGGATAGCGCC
160a 2 16347360 16347380 + 608 TGCCTGGCTCCCTGTATGCCA 21 3 116 44.83 -54.9 -47.33 0.01 GCGTATGAGGAGCCATGCATA
N/A 2 18626203 18626223 + 1556 TGATTGAGCCGCGCCAATATC 21 4 113 54.87 -40.92 -36.21 0.05 NO
166a 2 19183311 19183331 + 221 TCGGACCAGGCTTCATTCCCC 21 7 210 43.33 -73.85 -35.17 0.01 GGACTGTTGTCTGGCTCGAGG
408a 2 19327003 19327023 + 342 ATGCACTGCCTCTTCCCTGGC 21 1 159 41.51 -50.7 -31.89 0.01 CAGGGAACAAGCAGAGCATGG
403a 2 19422147 19422168 + 1070 TGTTTTGTGCTTGAATCTAATT 22 1 128 32.81 -42.29 -33.04 0.01 NO
164a 2 19527840 19527860 + 1015 TGGAGAAGCAGGGCACGTGCA 21 2 113 46.9 -48.2 -42.65 0.01 NO
167c 3 1306756 1306776 - 10 TAAGCTGCCAGCATGATCTTG 21 1 159 34.59 -66.9 -42.08 0.01 NO
158a 3 3366354 3366373 - 106 TCCCAAATGTAGACAAAGCA 20 1 126 40.48 -43.3 -34.37 0.01 CTTTGTCTACAATTTTGGAA
172c 3 3599797 3599817 - 18 AGAATCTTGATGATGCTGCAG 21 2 176 36.93 -63.56 -36.11 0.01 NO
823a 3 4496833 4496853 - 14 TGGGTGGTGATCATATAAGAT 21 1 97 32.99 -42.3 -43.61 0.01 NO
169f 3 4805806 4805826 - 25 TGAGCCAAGGATGACTTGCCG 21 4 195 42.05 -80.2 -41.13 0.01 GCAAGTTGACCTTGGCTCTGC
167a 3 8108097 8108117 + 14850 TGAAGCTGCCAGCATGATCTA 21 2 136 45.59 -57.1 -41.99 0.01 TAGATCATGTTCGCAGTTTCA
173a 3 8236168 8236189 + 15 TTCGCTTGCAGAGAGAAATCAC 22 1 158 36.08 -51.56 -32.63 0.01 NO
169i 3 9873343 9873363 - 126 TAGCCAAGGATGACTTGCCTG 21 7 206 35.92 -88.5 -42.96 0.01 NO

Continued on Next Page. . .
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miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

169j 3 9873720 9873740 - 126 TAGCCAAGGATGACTTGCCTG 21 7 182 35.16 -80.44 -44.2 0.01 NO
169k 3 9876912 9876932 - 126 TAGCCAAGGATGACTTGCCTG 21 7 206 36.41 -84.9 -41.21 0.01 NO
169l 3 9877277 9877297 - 126 TAGCCAAGGATGACTTGCCTG 21 7 149 36.24 -62.54 -41.97 0.01 NO

169m 3 9879555 9879575 - 126 TAGCCAAGGATGACTTGCCTG 21 7 208 37.5 -91.81 -44.14 0.01 NO
169n 3 9879927 9879947 - 126 TAGCCAAGGATGACTTGCCTG 21 7 295 35.93 -113.1 -38.34 0.01 NO
171a 3 19084500 19084520 + 1556 TGATTGAGCCGCGCCAATATC 21 4 123 43.09 -46.6 -37.89 0.01 TATTGGCCTGGTTCACTCAGA
172d 3 20598970 20598990 + 18 AGAATCTTGATGATGCTGCAG 21 2 143 35.66 -51.2 -35.8 0.01 GCAACATCTTCAAGATTCAGA
827a 3 22133788 22133808 - 8 TTAGATGACCATCAACAAACT 21 1 131 38.17 -38.83 -29.64 0.01 NO
166b 3 22933276 22933296 + 221 TCGGACCAGGCTTCATTCCCC 21 7 147 42.86 -62.16 -42.29 0.01 GGACTGTTGTCTGGCTCGAGG
167b 3 23417152 23417172 + 14850 TGAAGCTGCCAGCATGATCTA 21 2 142 44.37 -55.3 -38.94 0.01 NO
165b 4 369856 369876 - 24 TCGGACCAGGCTTCATCCCCC 21 2 182 37.91 -65.3 -35.88 0.01 NO
N/A 4 2179149 2179169 + 6 ACAATGCCGAATCTTGAACAA 21 5 298 34.9 -116.1 -38.96 0.01 NO
397a 4 2625958 2625978 + 27 TCATTGAGTGCAGCGTTGATG 21 1 128 32.81 -51.4 -40.16 0.01 NO
N/A 4 3163240 3163260 + 9 TGGCTGGGTGATGAAGTAAGT 21 2 102 38.24 -26.7 -26.18 0.03 NO
850a 4 7845752 7845773 + 5 TAAGATCCGGACTACAACAAAG 22 1 465 35.05 -165.6 -35.61 0.01 NO
397b 4 7878726 7878746 - 107 TCATTGAGTGCATCGTTGATG 21 1 126 28.57 -40.1 -31.83 0.01 NO
160b 4 9888999 9889019 + 608 TGCCTGGCTCCCTGTATGCCA 21 3 89 46.07 -42.3 -47.53 0.01 NO
168a 4 10578663 10578683 + 3364 TCGCTTGGTGCAGGTCGGGAA 21 2 155 50.97 -71.4 -46.06 0.01 GATCCCGCCTTGCATCAACTG
N/A 4 11224199 11224219 - 8 TGATGTGTCATTTATAGGGAG 21 1 95 25.26 -30.6 -32.21 0.01 NO
169g 4 11483106 11483126 - 25 TGAGCCAAGGATGACTTGCCG 21 4 161 42.86 -72.3 -44.91 0.01 GCAAGTTGACCTTGGCTCTGT
319a 4 12353119 12353139 + 9 TTGGACTGAAGGGAGCTCCCT 21 2 203 39.9 -83.09 -40.93 0.01 NO
156b 4 15074951 15074970 + 236 TGACAGAAGAGAGTGAGCAC 20 6 182 47.8 -93.2 -51.21 0.01 NO
156c 4 15415497 15415516 - 236 TGACAGAAGAGAGTGAGCAC 20 6 85 48.24 -44.5 -52.35 0.01 NO
164b 5 287583 287603 + 1015 TGGAGAAGCAGGGCACGTGCA 21 2 159 41.51 -67.4 -42.39 0.01 CATGTGCCCATCTTCACCATC
822a 5 897286 897306 - 26 TGCGGGAAGCATTTGCACATG 21 1 337 32.64 -177.6 -52.7 0.01 ACATGTGCAAATGCTTTCTAC
172b 5 1188212 1188232 - 835 AGAATCTTGATGATGCTGCAT 21 2 117 38.46 -48.9 -41.79 0.01 GCAGCACCATTAAGATTCACA
162a 5 2634937 2634957 - 70 TCGATAAACCTCTGCATCCAG 21 2 125 44 -53.3 -42.64 0.01 NO
166c 5 2838738 2838758 + 221 TCGGACCAGGCTTCATTCCCC 21 7 139 42.45 -46.5 -33.45 0.01 GGATTGTTGTCTGGCTCGAGG
166d 5 2840709 2840729 + 221 TCGGACCAGGCTTCATTCCCC 21 7 113 44.25 -41.6 -36.81 0.01 NO
156d 5 3456714 3456733 - 236 TGACAGAAGAGAGTGAGCAC 20 6 115 40 -56.4 -49.04 0.01 NO
156e 5 3867214 3867233 + 236 TGACAGAAGAGAGTGAGCAC 20 6 202 42.57 -80.9 -40.05 0.01 NO
848a 5 4479450 4479471 - 22 TGACATGGGACTGCCTAAGCTA 22 1 179 39.66 -67.1 -37.49 0.01 NO
398b 5 4691110 4691130 + 2267 TGTGTTCTCAGGTCACCCCTG 21 2 135 48.15 -59.9 -44.37 0.01 AGGGTTGATATGAGAACACAC
398c 5 4694781 4694801 + 2267 TGTGTTCTCAGGTCACCCCTG 21 2 157 44.59 -57.7 -36.75 0.01 AGGGTTGATATGAGAACACAC
162b 5 7740613 7740633 - 70 TCGATAAACCTCTGCATCCAG 21 2 115 42.61 -50.3 -43.74 0.01 NO
169b 5 8527595 8527615 + 7 GGCAAGTTGTCCTTCGGCTAC 21 1 181 40.88 -82.3 -45.47 0.01 TGCAGCCAAGGATGACTTGCC
156f 5 9136129 9136148 + 236 TGACAGAAGAGAGTGAGCAC 20 6 148 50 -66.82 -45.15 0.01 NO
164c 5 9852688 9852708 + 46 TGGAGAAGCAGGGCACGTGCG 21 1 116 48.28 -51.8 -44.66 0.01 CACGTGTTCTACTACTCCAAC
N/A 5 12107291 12107310 + 8 GGCATGATTGGTTGGGTTGT 20 2 135 32.59 -41.57 -30.79 0.01 NO
396b 5 13629038 13629058 + 23 TTCCACAGCTTTCTTGAACTT 21 1 155 30.97 -55.4 -35.74 0.01 GCTCAAGAAAGCTGTGGGAAA
166e 5 16792752 16792772 - 221 TCGGACCAGGCTTCATTCCCC 21 7 143 37.06 -49.3 -34.48 0.01 GGAATGTTGTCTGGCACGAGG
166f 5 17533605 17533625 + 221 TCGGACCAGGCTTCATTCCCC 21 7 105 43.81 -42.1 -40.1 0.01 NO
168b 5 18376100 18376120 - 3364 TCGCTTGGTGCAGGTCGGGAA 21 2 156 50 -68 -43.59 0.01 CCCGTCTTGTATCAACTGAAT
160c 5 19026385 19026405 - 608 TGCCTGGCTCCCTGTATGCCA 21 3 117 47.01 -55 -47.01 0.01 GCGTACAAGGAGTCAAGCATG
390b 5 23654187 23654207 + 38 AAGCTCAGGAGGGATAGCGCC 21 2 161 40.99 -64.6 -40.12 0.01 TGGCGCTATCCATCCTGAGTT
172e 5 24005710 24005729 + 33 GCAGCACCATTAAGATTCAC 20 2 136 47.79 -62.5 -45.96 0.01 NO
391a 5 24310386 24310406 + 259 TTCGCAGGAGAGATAGCGCCA 21 1 251 36.65 -74.1 -29.52 0.01 ACGGTATCTCTCCTACGTAGC
399c 5 24979794 24979814 + 27 TGCCAAAGGAGAGTTGCCCTG 21 2 125 45.6 -66.59 -53.27 0.01 GGGCATCTTTCTATTGGCAGG
166g 5 25522108 25522128 + 221 TCGGACCAGGCTTCATTCCCC 21 7 122 43.44 -47.9 -39.26 0.01 NO
170a 5 26428820 26428840 - 279 TGATTGAGCCGTGTCAATATC 21 1 93 46.24 -40.49 -43.54 0.01 TATTGGCCTGGTTCACTCAGA



179

A.1.2 Arabidopsis combined results

Results from miRCat (using default parameters) when run on the 454 Arabidopsis thaliana leaf sRNA set from Kasschau et

al. [Kasschau et al., 2007].

Column ”miR” shows the miRBase accession of the miRNA (if availalbe), column ”chr” shows the Arabidopsis thaliana

chromosome the sequence maps to, column ”start” shows the start position of the predicted miRNA, column ”end” shows

the start position of the predicted miRNA, column ”ori” shows the orientation of the miRNA (either Watson "+" or Crick "-"

strand). Column ”abun” shows the abundance of the sRNA in the 454 dataset, column ”seq” shows the sRNA sequence,

column ”len” shows the length of the sRNA sequence, column ”g. hits” shows the number of times this sequence maps to the

reference genome, column ”h. len” shows the length of the predicted miRNA precursor structure. Column ”G/C%” shows the

percentage G/C composition of the miRNA hairpin sequence, column ”MFE” shows the minimum free energy of the folded

miRNA precursor sequence, column ”AMFE” shows the MFE per 100nt (therefore normalising the MFE), column ”p-value”

shows the randfold p-value for the predicted hairpin precursor (using 100 randomisations). Column ”miRNA*” gives the

sequence of any potential miRNA* sequences present in the predicted precursor.

Table A.2: miRNAs predicted in the GSM118373 454 leaf sRNA dataset [Kasschau et al., 2007] by miRCat using default settings

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

171b 1 3961430 3961450 - 8 AGATATTAGTGCGGTTCAATC 21 1 102 47.06 -44.8 -43.92 0.01 NO
159b 1 6220806 6220826 + 109 TTTGGATTGAAGGGAGCTCTT 21 1 259 38.61 -95.16 -36.74 0.01 GAGCTCCTTGAAGTTCAATGG
169h 1 6695535 6695555 - 15 TAGCCAAGGATGACTTGCCTG 21 7 188 39.36 -79.1 -42.07 0.01 NO
400a 1 11785927 11785947 + 6 TATGAGAGTATTATAAGTCAC 21 2 169 34.32 -53.8 -31.83 0.01 NO
161a 1 17829399 17829419 + 121 TGAAAGTGACTACATCGGGGT 21 1 122 39.34 -53.5 -43.85 0.01 NO
Continued on Next Page. . .
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miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

846a 1 22581327 22581347 + 12 TTGAATTGAAGTGCTTGAATT 21 1 267 36.33 -92.1 -34.49 0.01 NO
171c 1 22933822 22933842 - 10 AGATATTGGTGCGGTTCAATC 21 1 79 37.97 -44.6 -56.46 0.01 NO
157a 1 24916939 24916959 - 12 TTGACAGAAGATAGAGAGCAC 21 3 166 36.14 -63.8 -38.43 0.01 NO
157b 1 24924767 24924787 + 12 TTGACAGAAGATAGAGAGCAC 21 3 132 44.7 -57.06 -43.23 0.01 NO
159a 1 27716895 27716915 - 220 TTTGGATTGAAGGGAGCTCTA 21 1 184 39.13 -75.9 -41.25 0.01 NO
396a 2 4149525 4149545 - 51 TTCCACAGCTTTCTTGAACTG 21 1 165 35.15 -57.7 -34.97 0.01 GTTCAATAAAGCTGTGGGAAG
825a 2 11166852 11166872 + 43 TTCTCAAGAAGGTGCATGAAC 21 1 102 38.24 -42.1 -41.27 0.01 NO
172a 2 11949995 11950014 - 34 GAATCTTGATGATGCTGCAT 20 3 174 46.55 -67.77 -38.95 0.01 NO
160a 2 16347360 16347380 + 31 TGCCTGGCTCCCTGTATGCCA 21 3 116 44.83 -54.9 -47.33 0.01 NO
393a 2 16659189 16659210 + 5 TCCAAAGGGATCGCATTGATCC 22 2 147 36.73 -54.3 -36.94 0.01 NO
N/A 2 18626203 18626223 + 56 TGATTGAGCCGCGCCAATATC 21 4 113 54.87 -40.92 -36.21 0.03 NO
166a 2 19183311 19183331 + 42 TCGGACCAGGCTTCATTCCCC 21 7 210 43.33 -73.85 -35.17 0.01 NO
408a 2 19327003 19327023 + 6 ATGCACTGCCTCTTCCCTGGC 21 1 159 41.51 -50.7 -31.89 0.01 NO
403a 2 19422147 19422168 + 7 TGTTTTGTGCTTGAATCTAATT 22 1 128 32.81 -42.29 -33.04 0.01 NO
164a 2 19527840 19527860 + 19 TGGAGAAGCAGGGCACGTGCA 21 2 113 46.9 -48.2 -42.65 0.01 NO
158a 3 3366354 3366373 - 52 TCCCAAATGTAGACAAAGCA 20 1 126 40.48 -43.3 -34.37 0.01 NO
823a 3 4496833 4496853 - 7 TGGGTGGTGATCATATAAGAT 21 1 97 32.99 -42.3 -43.61 0.01 NO
167a 3 8108097 8108117 + 139 TGAAGCTGCCAGCATGATCTA 21 2 136 45.59 -57.1 -41.99 0.01 GATCATGTTCGCAGTTTCACC
169i 3 9873343 9873363 - 15 TAGCCAAGGATGACTTGCCTG 21 7 206 35.92 -88.5 -42.96 0.01 NO
169j 3 9873720 9873740 - 15 TAGCCAAGGATGACTTGCCTG 21 7 182 35.16 -80.44 -44.2 0.01 NO
169k 3 9876912 9876932 - 15 TAGCCAAGGATGACTTGCCTG 21 7 206 36.41 -84.9 -41.21 0.01 NO
169l 3 9877277 9877297 - 15 TAGCCAAGGATGACTTGCCTG 21 7 149 36.24 -62.54 -41.97 0.01 NO

169m 3 9879555 9879575 - 15 TAGCCAAGGATGACTTGCCTG 21 7 208 37.5 -91.81 -44.14 0.01 NO
169n 3 9879927 9879947 - 15 TAGCCAAGGATGACTTGCCTG 21 7 295 35.93 -113.1 -38.34 0.01 NO
171a 3 19084500 19084520 + 56 TGATTGAGCCGCGCCAATATC 21 4 123 43.09 -46.6 -37.89 0.01 NO
393b 3 20702636 20702657 + 5 TCCAAAGGGATCGCATTGATCC 22 2 174 35.06 -67.6 -38.85 0.01 NO
166b 3 22933276 22933296 + 42 TCGGACCAGGCTTCATTCCCC 21 7 147 42.86 -62.16 -42.29 0.01 NO
167b 3 23417152 23417172 + 139 TGAAGCTGCCAGCATGATCTA 21 2 142 44.37 -55.3 -38.94 0.01 NO
397b 4 7878726 7878746 - 12 TCATTGAGTGCATCGTTGATG 21 1 126 28.57 -40.1 -31.83 0.01 NO
N/A 4 7890503 7890523 - 11 TTGATGTTGTGCTACGATACA 21 1 298 36.91 -124.8 -41.88 0.01 NO
160b 4 9888999 9889019 + 31 TGCCTGGCTCCCTGTATGCCA 21 3 89 46.07 -42.3 -47.53 0.01 NO
168a 4 10578663 10578683 + 78 TCGCTTGGTGCAGGTCGGGAA 21 2 155 50.97 -71.4 -46.06 0.01 CCCGCCTTGCATCAACTGAAT
164b 5 287583 287603 + 19 TGGAGAAGCAGGGCACGTGCA 21 2 159 41.51 -67.4 -42.39 0.01 NO
822a 5 897045 897065 - 7 AAACAATATACGTTGCATCCC 21 1 291 32.65 -149.8 -51.48 0.01 NO
172b 5 1188212 1188231 - 34 GAATCTTGATGATGCTGCAT 20 3 117 38.46 -48.9 -41.79 0.01 NO
162a 5 2634937 2634957 - 6 TCGATAAACCTCTGCATCCAG 21 2 125 44 -53.3 -42.64 0.01 NO
166c 5 2838738 2838758 + 42 TCGGACCAGGCTTCATTCCCC 21 7 139 42.45 -46.5 -33.45 0.01 NO
166d 5 2840709 2840729 + 42 TCGGACCAGGCTTCATTCCCC 21 7 113 44.25 -41.6 -36.81 0.01 NO
162b 5 7740613 7740633 - 6 TCGATAAACCTCTGCATCCAG 21 2 115 42.61 -50.3 -43.74 0.01 NO
164c 5 9852751 9852771 + 13 CACGTGTTCTACTACTCCAAC 21 1 116 48.28 -51.8 -44.66 0.01 NO
396b 5 13629038 13629058 + 12 TTCCACAGCTTTCTTGAACTT 21 1 155 30.97 -55.4 -35.74 0.01 GCTCAAGAAAGCTGTGGGAAA
166e 5 16792752 16792772 - 42 TCGGACCAGGCTTCATTCCCC 21 7 143 37.06 -49.3 -34.48 0.01 NO
166f 5 17533605 17533625 + 42 TCGGACCAGGCTTCATTCCCC 21 7 105 43.81 -42.1 -40.1 0.01 NO
168b 5 18376100 18376120 - 78 TCGCTTGGTGCAGGTCGGGAA 21 2 156 50 -68 -43.59 0.01 NO
160c 5 19026385 19026405 - 31 TGCCTGGCTCCCTGTATGCCA 21 3 117 47.01 -55 -47.01 0.01 NO
172e 5 24005793 24005812 + 34 GAATCTTGATGATGCTGCAT 20 3 197 45.18 -72.75 -36.93 0.01 NO
391a 5 24310437 24310457 + 57 ACGGTATCTCTCCTACGTAGC 21 1 206 38.35 -64.7 -31.41 0.01 TTCGCAGGAGAGATAGCGCCA
166g 5 25522108 25522128 + 42 TCGGACCAGGCTTCATTCCCC 21 7 122 43.44 -47.9 -39.26 0.01 NO
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A.1.3 Arabidopsis combined results

Results from miRCat (using default parameters) when run on the combined 454 Arabidopsis thaliana sets (GEO acces-

sionsGSM118372, GSM118373, GSM149079, GSM154336, GSM154370, GSM257235, GSM118375, GSM121455 and

GSM149080.

Column ”miR” shows the miRBase accession of the miRNA (if availalbe), column ”chr” shows the Arabidopsis thaliana

chromosome the sequence maps to, column ”start” shows the start position of the predicted miRNA, column ”end” shows

the start position of the predicted miRNA, column ”ori” shows the orientation of the miRNA (either Watson "+" or Crick "-"

strand). Column ”abun” shows the abundance of the sRNA in the 454 dataset, column ”seq” shows the sRNA sequence,

column ”len” shows the length of the sRNA sequence, column ”g. hits” shows the number of times this sequence maps to the

reference genome, column ”h. len” shows the length of the predicted miRNA precursor structure. Column ”G/C%” shows the

percentage G/C composition of the miRNA hairpin sequence, column ”MFE” shows the minimum free energy of the folded

miRNA precursor sequence, column ”AMFE” shows the MFE per 100nt (therefore normalising the MFE), column ”p-value”

shows the randfold p-value for the predicted hairpin precursor (using 100 randomisations). Column ”miRNA*” gives the

sequence of any potential miRNA* sequences present in the predicted precursor.

Table A.3: miRNAs predicted in the GSM118373 454 leaf sRNA dataset [Kasschau et al., 2007] by miRCat using default settings

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

165a 1 78932 78952 - 885 TCGGACCAGGCTTCATCCCCC 21 2 144 40.97 -54 -37.5 0.01 GGAATGTTGTCTGGATCGAGG GAATGTTGTCTGGATCGAGGA
Continued on Next Page. . .
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miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

171b 1 3961367 3961387 - 1468 TTGAGCCGTGCCAATATCACG 21 2 117 45.3 -46.7 -39.91 0.01 CGAGATATTAGTGCGGTTCAA AGATATTAGTGCGGTTCAATC
472a 1 4182271 4182291 - 21 TGTATGTATGGTCGAAGTAGG 21 1 222 40.99 -91.6 -41.26 0.01 CCTACTCCGCCCATACCATAC
159b 1 6220806 6220826 + 2910 TTTGGATTGAAGGGAGCTCTT 21 1 188 39.89 -83.9 -44.63 0.01 GAGCTCCTTGAAGTTCAATGG
169h 1 6695535 6695555 - 1032 TAGCCAAGGATGACTTGCCTG 21 7 190 39.47 -80.5 -42.37 0.01 NO
864a 1 6740559 6740580 + 8 TTAAAGTCAATAATACCTTGAA 22 1 120 30.83 -39.17 -32.64 0.01 NO
394a 1 7058197 7058216 + 104 TTGGCATTCTGTCCACCTCC 20 2 198 36.36 -82.4 -41.62 0.01 AGGTGGGTATACTGCCAATA
395a 1 9363193 9363213 - 121 CTGAAGTGTTTGGGGGAACTC 21 3 103 44.66 -51.4 -49.9 0.01 NO
395b 1 9364527 9364547 + 62 CTGAAGTGTTTGGGGGGACTC 21 3 102 41.18 -45 -44.12 0.01 NO
395c 1 9367136 9367156 + 62 CTGAAGTGTTTGGGGGGACTC 21 3 111 42.34 -48.4 -43.6 0.01 NO
399a 1 10227151 10227171 + 89 TGCCAAAGGAGATTTGCCCTG 21 1 133 39.1 -57 -42.86 0.01 NO
400a 1 11785927 11785947 + 148 TATGAGAGTATTATAAGTCAC 21 2 155 32.9 -49.8 -32.13 0.01 AAGTGACTTATGATAATCTCA AGTGACTTATGATAATCTCAT
773a 1 13067291 13067312 + 29 TTTGCTTCCAGCTTTTGTCTCC 22 1 144 41.67 -61.2 -42.5 0.01 NO
161a 1 17829398 17829418 + 41003 TTGAAAGTGACTACATCGGGG 21 1 122 39.34 -53.5 -43.85 0.01 AACCCTGGTTTAGTCACTTTC ACCCTGGTTTAGTCACTTTCA
169d 1 20043224 20043244 - 622 TGAGCCAAGGATGACTTGCCG 21 4 143 37.76 -61.2 -42.8 0.01 CGGCAAGTTGACCTTGGCTCT GGCAAGTTGACCTTGGCTCTG
169e 1 20045254 20045274 + 622 TGAGCCAAGGATGACTTGCCG 21 4 152 39.47 -58.3 -38.36 0.01 GCAAGTTGACTTTGGCTCTGT
158b 1 20775940 20775958 + 18 CCCAAATGTAGACAAAGCA 19 2 95 40 -42 -44.21 0.01 NO
774a 1 22153670 22153690 + 23 TTGGTTACCCATATGGCCATC 21 1 139 30.94 -49.9 -35.9 0.01 TCAGATGGCTGTTTGGGTAAC TGGCTGTTTGGGTAACTAATA

Candidate 9 1 22376144 22376164 + 6 GTCATGGGGTATGATCGAATG 21 1 117 32.48 -51.1 -43.68 0.01 TTTGATCATTCTCCATGATAG
171c 1 22933760 22933780 - 1468 TTGAGCCGTGCCAATATCACG 21 2 95 37.89 -48.4 -50.95 0.01 AGATATTGGTGCGGTTCAATC
399b 1 23349052 23349072 - 537 TGCCAAAGGAGAGTTGCCCTG 21 2 162 38.27 -61.4 -37.9 0.01 GGGCGCCTCTCCATTGGCAGG

Candidate 7 1 23358770 23358790 - 7 TAGTGGAAGCAGCAACGAGAA 21 1 163 40.49 -73.8 -45.28 0.01 NO
Candidate 10 1 24557674 24557694 + 6 TTGTACAAATTTAAGTGTACG 21 1 135 27.41 -63.2 -46.81 0.01 TACACTTAGTTTTGTACAACA ACACTTAGTTTTGTACAACAT

157a 1 24916939 24916959 - 889 TTGACAGAAGATAGAGAGCAC 21 3 154 38.31 -61.2 -39.74 0.01 GCTCTCTAGCCTTCTGTCATC
157b 1 24924767 24924787 + 889 TTGACAGAAGATAGAGAGCAC 21 3 132 44.7 -57.06 -43.23 0.01 GCTCTCTAGCCTTCTGTCATC
839a 1 25282801 25282821 - 439 TACCAACCTTTCATCGTTCCC 21 1 235 42.55 -151.4 -64.43 0.01 GGAACGCATGAGAGGTTGGTA
395d 1 26273652 26273672 - 121 CTGAAGTGTTTGGGGGAACTC 21 3 115 40.87 -51.3 -44.61 0.01 NO
395e 1 26276449 26276469 - 121 CTGAAGTGTTTGGGGGAACTC 21 3 97 41.24 -41.5 -42.78 0.01 NO
395f 1 26277602 26277622 + 62 CTGAAGTGTTTGGGGGGACTC 21 3 123 42.28 -58.7 -47.72 0.01 NO
777a 1 26641746 26641767 + 14 TACGCATTGAGTTTCGTTGCTT 22 1 121 33.06 -42.6 -35.21 0.01 NO
159a 1 27716895 27716915 - 34285 TTTGGATTGAAGGGAGCTCTA 21 1 215 39.53 -80.9 -37.63 0.01 GAGCTCCTTAAAGTTCAAACA

Candidate 12 1 28060612 28060632 - 5 TTAACAATTTCAAGCAAAGAA 21 1 211 35.07 -87.6 -41.52 0.01 NO
394b 1 28573715 28573734 + 104 TTGGCATTCTGTCCACCTCC 20 2 238 37.39 -92.6 -38.91 0.01 AGGTGGGCATACTGCCAATA
402a 1 29021480 29021501 + 11 TTCGAGGCCTATTAAACCTCTG 22 1 205 34.63 -71.3 -34.78 0.01 NO
833a 1 29530158 29530179 + 7 TAGACCGATGTCAACAAACAAG 22 1 157 38.22 -87.3 -55.61 0.01 TTGTTTGTTGTACTCGGTCTAG TGTTTGTTGTACTCGGTCTAGT
840a 2 771384 771404 - 57 TTGTTTAGGTCCCTTAGTTTC 21 1 267 43.45 -125.19 -46.89 0.01 ACACTGAAGGACCTAAACTAA CACTGAAGGACCTAAACTAAC
398a 2 1040947 1040967 + 121 GGAGTGGCATGTGAACACATA 21 1 148 39.19 -56.74 -38.34 0.01 TTTGTGTTCTCAGGTCACCCC TTGTGTTCTCAGGTCACCCCT

Candidate 14 2 3537947 3537968 - 8 CTTGGTCACCAAGTTGGCTCGC 22 1 282 50.35 -101.8 -36.1 0.02 NO
156g 2 8419671 8419690 - 43 CGACAGAAGAGAGTGAGCAC 20 1 135 49.63 -61.4 -45.48 0.01 NO
779a 2 9567946 9567966 + 21 TGATTGGAAATTTCGTTGACT 21 1 163 32.52 -69.5 -42.64 0.01 NO
844a 2 9949282 9949302 - 10 TTATAAGCCATCTTACTAGTT 21 1 240 39.17 -86.3 -35.96 0.01 AATGGTAAGATTGCTTATAAG ATGGTAAGATTGCTTATAAGC
831a 2 10254470 10254491 + 6 TGATCTCTTCGTACTCTTCTTG 22 1 190 38.95 -88.4 -46.53 0.01 AGAAGCGTACAAGGAGATGAGG
156a 2 10683613 10683632 - 6713 TGACAGAAGAGAGTGAGCAC 20 6 103 46.6 -50 -48.54 0.01 TGCTCACTGCTCTTTCTGTC GCTCACTGCTCTTTCTGTCA
862a 2 10725185 10725205 + 8 TCCAATAGGTCGAGCATGTGC 21 1 319 37.62 -148.4 -46.52 0.01 NO
825a 2 11166852 11166872 + 365 TTCTCAAGAAGGTGCATGAAC 21 1 102 38.24 -42.1 -41.27 0.01 NO
172a 2 11949995 11950015 - 30497 AGAATCTTGATGATGCTGCAT 21 2 143 46.15 -64.3 -44.97 0.01 TGTGGCATCATCAAGATTCAC

Candidate 6 2 12277272 12277293 - 8 TAGAGGAAAATATAGAGTTGGG 22 2 193 31.61 -77.31 -40.06 0.01 ATGCGCAACTCTATATTTCCTC
399d 2 14450067 14450087 - 10 TGCCAAAGGAGATTTGCCCCG 21 1 167 40.12 -64.9 -38.86 0.01 NO
399f 2 14452163 14452183 + 38 TGCCAAAGGAGATTTGCCCGG 21 1 146 40.41 -56.8 -38.9 0.01 NO

Candidate 2 2 15618961 15618981 + 32 TGAGATGAAATCTTTGATTGG 21 1 131 37.4 -51.7 -39.47 0.01 NO
390a 2 16069049 16069069 + 723 AAGCTCAGGAGGGATAGCGCC 21 2 107 42.06 -51.6 -48.22 0.01 TGGCGCTATCCATCCTGAGTT GCGCTATCCATCCTGAGTTTC
160a 2 16347360 16347380 + 7028 TGCCTGGCTCCCTGTATGCCA 21 3 116 44.83 -54.9 -47.33 0.01 GCGTATGAGGAGCCATGCATA CGTATGAGGAGCCATGCATAT
393a 2 16659189 16659210 + 115 TCCAAAGGGATCGCATTGATCC 22 2 131 35.11 -46.6 -35.57 0.01 NO
319c 2 17036948 17036968 + 42 TTGGACTGAAGGGAGCTCCTT 21 1 195 40.51 -84 -43.08 0.01 GAAGGAGATTCTTTCAGTCCA GGAGATTCTTTCAGTCCAGTC
159c 2 19001899 19001916 + 298 TTTGGATTGAAGGGAGCT 18 3 197 43.15 -78.4 -39.8 0.01 NO
403a 2 19422147 19422168 + 1766 TGTTTTGTGCTTGAATCTAATT 22 1 128 32.81 -42.29 -33.04 0.01 ATTAGATTCACGCACAAACTCG
164a 2 19527840 19527860 + 11422 TGGAGAAGCAGGGCACGTGCA 21 2 113 46.9 -48.2 -42.65 0.01 CACGTACTTAACTTCTCCAAC
167c 3 1306756 1306776 - 150 TAAGCTGCCAGCATGATCTTG 21 1 159 34.59 -66.9 -42.08 0.01 TAGGTCATGCTGGTAGTTTCA AGGTCATGCTGGTAGTTTCAC
158a 3 3366354 3366373 - 2977 TCCCAAATGTAGACAAAGCA 20 1 125 40.8 -44.52 -35.62 0.01 CTTTGTCTACAATTTTGGAA
172c 3 3599797 3599817 - 8871 AGAATCTTGATGATGCTGCAG 21 2 174 37.36 -62.16 -35.72 0.01 TGTTGGAGCATCATCAAGATT GGAGCATCATCAAGATTCACA

Continued on Next Page. . .
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miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

823a 3 4496833 4496853 - 800 TGGGTGGTGATCATATAAGAT 21 1 97 32.99 -42.3 -43.61 0.01 NO
169f 3 4805806 4805826 - 622 TGAGCCAAGGATGACTTGCCG 21 4 184 42.39 -79.2 -43.04 0.01 GGCAAGTTGACCTTGGCTCTG GCAAGTTGACCTTGGCTCTGC
868a 3 6488405 6488425 + 5 CTTCTTAAGTGCTGATAATGC 21 1 193 35.23 -83.7 -43.37 0.01 NO
167a 3 8108097 8108117 + 52442 TGAAGCTGCCAGCATGATCTA 21 2 136 45.59 -57.1 -41.99 0.01 TAGATCATGTTCGCAGTTTCA GATCATGTTCGCAGTTTCACC
173a 3 8236168 8236189 + 164 TTCGCTTGCAGAGAGAAATCAC 22 1 123 39.84 -48.37 -39.33 0.01 TGATTCTCTGTGTAAGCGAAAG

Candidate 13 3 9871507 9871527 + 15 GAAGTCACACTCAGTGGATGC 21 1 122 50.82 -44.5 -36.48 0.06 NO
169i 3 9873343 9873363 - 1032 TAGCCAAGGATGACTTGCCTG 21 7 206 35.92 -88.5 -42.96 0.01 CAGGCAGTCTCCTTGGCTATC AGGCAGTCTCCTTGGCTATCC
169k 3 9876912 9876932 - 1032 TAGCCAAGGATGACTTGCCTG 21 7 240 35 -90 -37.5 0.01 CAGGCAGTCTCCTTGGCTATC AGGCAGTCTCCTTGGCTATCC
169l 3 9877277 9877297 - 1032 TAGCCAAGGATGACTTGCCTG 21 7 235 35.74 -92.24 -39.25 0.01 AGGCAGTCTCTTTGGCTATCT

169m 3 9879555 9879575 - 1032 TAGCCAAGGATGACTTGCCTG 21 7 208 37.5 -91.81 -44.14 0.01 CAGGCAGTCTCCTTGGCTATC AGGCAGTCTCCTTGGCTATCC
Candidate 4 3 11750277 11750297 - 12 TTAGTTGACGGAATTGTGGCG 21 1 117 40.17 -59.92 -51.21 0.01 NO
Candidate 8 3 17189474 17189494 + 7 TTGTGCGGTTCAAATAGTAAC 21 1 101 30.69 -37.9 -37.52 0.01 TTACTATTTGAATCGTACTGC

843a 3 17753132 17753152 + 30 TTTAGGTCGAGCTTCATTGGA 21 1 183 36.61 -87.1 -47.6 0.01 CTGTGAAGCTCGATCTAAAAG
171a 3 19084500 19084520 + 11649 TGATTGAGCCGCGCCAATATC 21 4 123 43.09 -46.6 -37.89 0.01 TATTGGCCTGGTTCACTCAGA
771a 3 19670359 19670380 - 153 TGAGCCTCTGTGGTAGCCCTCA 22 1 142 43.66 -57.3 -40.35 0.01 NO
172d 3 20598970 20598990 + 8871 AGAATCTTGATGATGCTGCAG 21 2 143 35.66 -51.2 -35.8 0.01 TATTGCAACATCTTCAAGATT GCAACATCTTCAAGATTCAGA
393b 3 20702636 20702657 + 115 TCCAAAGGGATCGCATTGATCC 22 2 174 35.06 -67.6 -38.85 0.01 NO
827a 3 22133788 22133808 - 29 TTAGATGACCATCAACAAACT 21 1 106 37.74 -37 -34.91 0.01 TTTGTTGATTGATATCTACAC
171b 3 22422519 22422539 + 11649 TGATTGAGCCGCGCCAATATC 21 4 139 53.96 -44.5 -32.01 0.24 NO
166b 3 22933276 22933296 + 5086 TCGGACCAGGCTTCATTCCCC 21 7 147 42.86 -62.16 -42.29 0.01 GGACTGTTGTCTGGCTCGAGG GACTGTTGTCTGGCTCGAGGA
167b 3 23417152 23417172 + 52442 TGAAGCTGCCAGCATGATCTA 21 2 142 44.37 -55.3 -38.94 0.01 NO
165b 4 369856 369876 - 885 TCGGACCAGGCTTCATCCCCC 21 2 182 37.91 -65.3 -35.88 0.01 GGAATGTTGTTTGGATCGAGG
826a 4 1340528 1340548 + 42 TAGTCCGGTTTTGGATACGTG 21 1 94 32.98 -40.6 -43.19 0.01 CGTGTCCAAAACCAGATTATC
447c 4 1523445 1523463 - 5 CCCCTTACAATGTCGAGTA 19 3 198 34.85 -72 -36.36 0.01 NO
447a 4 1528188 1528208 - 35 TGGGGACGAGATGTTTTGTTG 21 2 237 36.29 -111.2 -46.92 0.01 ACGAAGCATCTGTCCCCTGGT
447b 4 1535480 1535500 - 35 TGGGGACGAGATGTTTTGTTG 21 2 236 37.29 -105.8 -44.83 0.01 ACGAAGCATCTGTCCCCTGGT
397a 4 2625958 2625978 + 128 TCATTGAGTGCAGCGTTGATG 21 1 128 32.81 -51.4 -40.16 0.01 NO
850a 4 7845752 7845773 + 24 TAAGATCCGGACTACAACAAAG 22 1 255 33.73 -80.6 -31.61 0.01 NO
863a 4 7846826 7846846 + 11 TGCGATTGAGAGCAACAAGAC 21 1 199 23.12 -81.4 -40.9 0.01 NO
857a 4 7878194 7878214 - 23 TTTTGTATGTTGAAGGTGTAT 21 1 165 28.48 -37 -22.42 0.01 NO
397b 4 7878726 7878746 - 380 TCATTGAGTGCATCGTTGATG 21 1 126 28.57 -40.1 -31.83 0.01 NO
780a 4 8504140 8504160 - 22 TTCTTCGTGAATATCTGGCAT 21 1 192 36.46 -71.6 -37.29 0.01 NO
160b 4 9888999 9889019 + 7028 TGCCTGGCTCCCTGTATGCCA 21 3 89 46.07 -42.3 -47.53 0.01 NO
168a 4 10578663 10578683 + 5757 TCGCTTGGTGCAGGTCGGGAA 21 2 155 50.97 -71.4 -46.06 0.01 TGGATCCCGCCTTGCATCAAC GATCCCGCCTTGCATCAACTG

Candidate 1 4 11233793 11233813 - 40 TAGTAACAGAATTTGGTGTTA 21 1 122 31.97 -56.1 -45.98 0.01 NO
867a 4 11375398 11375418 + 39 TTGAACATGGTTTATTAGGAA 21 1 118 26.27 -39.1 -33.14 0.01 NO
169g 4 11483106 11483126 - 622 TGAGCCAAGGATGACTTGCCG 21 4 161 42.86 -72.3 -44.91 0.01 CGGCAAGTTGACCTTGGCTCT GGCAAGTTGACCTTGGCTCTG

Candidate 11 4 11962966 11962986 - 5 CCAAATTAATAGCAAAGTTTG 21 1 147 27.21 -49.6 -33.74 0.01 NO
845b 4 12214096 12214117 - 23 TCGCTCTGATACCAAATTGATG 22 1 184 37.5 -52.1 -28.32 0.01 NO
845a 4 12217467 12217487 - 448 CGGCTCTGATACCAATTGATG 21 1 164 45.12 -60.1 -36.65 0.01 NO
319a 4 12353119 12353139 + 420 TTGGACTGAAGGGAGCTCCCT 21 2 203 39.9 -83.09 -40.93 0.01 AGAGCTTCCTTGAGTCCATTC AGCTTCCTTGAGTCCATTCAC
828a 4 13847026 13847047 + 15 TCTTGCTTAAATGAGTATTCCA 22 1 127 38.58 -61.14 -48.14 0.01 AGATGCTCATTTGAGCAAGCAA
156b 4 15074951 15074970 + 6713 TGACAGAAGAGAGTGAGCAC 20 6 166 48.19 -88.9 -53.55 0.01 TGCTCACCTCTCTTTCTGTC
156c 4 15415497 15415516 - 6713 TGACAGAAGAGAGTGAGCAC 20 6 93 46.24 -46.7 -50.22 0.01 TGCTCACTGCTCTATCTGTC
164b 5 287583 287603 + 11422 TGGAGAAGCAGGGCACGTGCA 21 2 153 41.83 -65.5 -42.81 0.01 TCATGTGCCCATCTTCACCAT CATGTGCCCATCTTCACCATC
172b 5 1188212 1188232 - 30497 AGAATCTTGATGATGCTGCAT 21 2 117 38.46 -48.9 -41.79 0.01 GCAGCACCATTAAGATTCACA
162a 5 2634937 2634957 - 1026 TCGATAAACCTCTGCATCCAG 21 2 125 44 -53.3 -42.64 0.01 TGGAGGCAGCGGTTCATCGAT GGAGGCAGCGGTTCATCGATC
166d 5 2840709 2840729 + 5086 TCGGACCAGGCTTCATTCCCC 21 7 113 44.25 -41.6 -36.81 0.01 GGAATATTGTCTGGCTCGAGG
156d 5 3456714 3456733 - 6713 TGACAGAAGAGAGTGAGCAC 20 6 117 39.32 -57.4 -49.06 0.01 GCTCACTCTCTTTTTGTCAT
156e 5 3867214 3867233 + 6713 TGACAGAAGAGAGTGAGCAC 20 6 138 44.93 -68 -49.28 0.01 NO
848a 5 4479450 4479471 - 55 TGACATGGGACTGCCTAAGCTA 22 1 158 37.97 -62.5 -39.56 0.01 NO
398b 5 4691110 4691130 + 5007 TGTGTTCTCAGGTCACCCCTG 21 2 129 48.06 -58 -44.96 0.01 AGGGTTGATATGAGAACACAC GGGTTGATATGAGAACACACG
398c 5 4694781 4694801 + 5007 TGTGTTCTCAGGTCACCCCTG 21 2 157 44.59 -57.7 -36.75 0.01 AGGGTTGATATGAGAACACAC GGGTTGATATGAGAACACACG
162b 5 7740613 7740633 - 1026 TCGATAAACCTCTGCATCCAG 21 2 125 42.4 -53.8 -43.04 0.01 TGGAGGCAGCGGTTCATCGAT GGAGGCAGCGGTTCATCGATC
169b 5 8527512 8527532 + 237 TGCAGCCAAGGATGACTTGCC 21 2 121 38.84 -54 -44.63 0.01 GGCAAGTTGTCCTTCGGCTAC
860a 5 9098879 9098899 + 7 TCAATAGATTGGACTATGTAT 21 1 156 31.41 -70.9 -45.45 0.01 ATATATAGTCCAATCTATTGA
156f 5 9136129 9136148 + 6713 TGACAGAAGAGAGTGAGCAC 20 6 132 50 -64.12 -48.58 0.01 GCTCACTCTCTATCCGTCAC
164c 5 9852688 9852708 + 520 TGGAGAAGCAGGGCACGTGCG 21 1 116 48.28 -51.8 -44.66 0.01 CACGTGTTCTACTACTCCAAC
319b 5 16677697 16677717 - 420 TTGGACTGAAGGGAGCTCCCT 21 2 253 35.97 -104.2 -41.19 0.01 AGAGCTTTCTTCGGTCCACTC GAGCTTTCTTCGGTCCACTCA

Continued on Next Page. . .
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166e 5 16792752 16792772 - 5086 TCGGACCAGGCTTCATTCCCC 21 7 143 37.06 -49.3 -34.48 0.01 GGGGAATGTTGTCTGGCACGA GGGAATGTTGTCTGGCACGAG
166f 5 17533605 17533625 + 5086 TCGGACCAGGCTTCATTCCCC 21 7 105 43.81 -42.1 -40.1 0.01 TGAATGATGCCTGGCTCGAGA
168b 5 18376100 18376120 - 5757 TCGCTTGGTGCAGGTCGGGAA 21 2 156 50 -68 -43.59 0.01 CCCGTCTTGTATCAACTGAAT
160c 5 19026385 19026405 - 7028 TGCCTGGCTCCCTGTATGCCA 21 3 117 47.01 -55 -47.01 0.01 GCGTACAAGGAGTCAAGCATG CGTACAAGGAGTCAAGCATGA
870a 5 21412818 21412838 - 5 TTAGAATGTGATGCAAAACTT 21 1 85 34.12 -42.2 -49.65 0.01 NO

Candidate 5 5 22214403 22214423 + 9 GCTTCTTGGAGATGTGACGAT 21 1 96 47.92 -32.3 -33.65 0.02 NO
390b 5 23654187 23654207 + 723 AAGCTCAGGAGGGATAGCGCC 21 2 134 43.28 -60.5 -45.15 0.01 TGGCGCTATCCATCCTGAGTT GCGCTATCCATCCTGAGTTCC
172e 5 24005792 24005812 + 834 GGAATCTTGATGATGCTGCAT 21 1 136 47.79 -62.5 -45.96 0.01 TGCAGCACCATTAAGATTCAC GCAGCACCATTAAGATTCACA
391a 5 24310386 24310406 + 549 TTCGCAGGAGAGATAGCGCCA 21 1 124 38.71 -43.6 -35.16 0.01 ACGGTATCTCTCCTACGTAGC

Candidate 3 5 24326846 24326866 - 20 TGCAAATCCAGTTCTTGTGTC 21 1 98 46.94 -29.44 -30.04 0.09 NO
399c 5 24979794 24979814 + 537 TGCCAAAGGAGAGTTGCCCTG 21 2 146 45.21 -67.69 -46.36 0.01 AGGGCATCTTTCTATTGGCAG GGGCATCTTTCTATTGGCAGG
166g 5 25522108 25522128 + 5086 TCGGACCAGGCTTCATTCCCC 21 7 122 43.44 -47.9 -39.26 0.01 GGAATGTTGTTTGGCTCGAGG

A.1.4 Calabrese et al. mouse embyonic stem cell Solexa results

Results from miRCat (using default parameters) when run on the Solexa Mus musculus embyonic stem cell sRNA set from

Calabrese et al. [Calabrese et al., 2007].

Column ”miR” shows the miRBase accession of the miRNA (if availalbe), column ”chr” shows the Mus musculus REFSEQ

chromosome the sequence maps to, column ”start” shows the start position of the predicted miRNA, column ”end” shows

the start position of the predicted miRNA, column ”ori” shows the orientation of the miRNA (either Watson "+" or Crick "-"

strand). Column ”abun” shows the abundance of the sRNA in the Solexa dataset, column ”seq” shows the sRNA sequence,

column ”len” shows the length of the sRNA sequence, column ”g. hits” shows the number of times this sequence maps to the

reference genome, column ”h. len” shows the length of the predicted miRNA precursor structure. Column ”G/C%” shows the

percentage G/C composition of the miRNA hairpin sequence, column ”MFE” shows the minimum free energy of the folded
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miRNA precursor sequence, column ”AMFE” shows the MFE per 100nt (therefore normalising the MFE), column ”p-value”

shows the randfold p-value for the predicted hairpin precursor (using 100 randomisations). Column ”miRNA*” gives the

sequence of any potential miRNA* sequences present in the predicted precursor.

Table A.4: miRNAs predicted in the mouse embyonic stem cell Solexa sRNA cloning [Calabrese et al., 2007] by miRCat using default
settings

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

miR96 NC_000072 30119506 30119528 - 137 TTTGGCACTAGCACATTTTTGCT 23 1 118 53.39 -53.8 -45.59 0.01 NO
miR93 NC_000071 138606802 138606824 - 221 CAAAGTGCTGTTCGTGCAGGTAG 23 1 86 56.98 -45.3 -52.67 0.01 NO
miR92b NC_000069 89031048 89031069 - 21 TATTGCACTCGTCCCGGCCTCC 22 1 110 70.91 -61.42 -55.84 0.01 NO
miR9 NC_000073 86650165 86650187 + 20 TCTTTGGTTATCTAGCTGTATGA 23 3 188 62.77 -96.9 -51.54 0.01 NO
miR9 NC_000069 88019535 88019557 + 20 TCTTTGGTTATCTAGCTGTATGA 23 3 108 45.37 -45.7 -42.31 0.01 NO
miR9 NC_000079 83878426 83878448 + 20 TCTTTGGTTATCTAGCTGTATGA 23 3 125 44 -53.2 -42.56 0.01 NO

miR872 NC_000070 94331897 94331918 + 49 TGAACTATTGCAGTAGCCTCCT 22 1 122 45.08 -49.39 -40.48 0.01 AAGGTTACTTGTTAGTTCAGGA
miR7a NC_000073 86033181 86033203 + 71 TGGAAGACTAGTGATTTTGTTGT 23 2 86 51.16 -39.4 -45.81 0.01 NO
miR7a NC_000079 58494202 58494224 - 71 TGGAAGACTAGTGATTTTGTTGT 23 2 91 40.66 -43.7 -48.02 0.01 CAACAAATCACAGTCTGCCATAT
miR758 NC_000078 110951068 110951089 + 18 TTTGTGACCTGGTCCACTAACC 22 1 81 51.85 -32.3 -39.88 0.01 NO
miR708 NC_000073 103397960 103397982 + 15 AAGGAGCTTACAATCTAGCTGGG 23 1 139 53.24 -58.6 -42.16 0.01 NO
miR674 NC_000068 117010887 117010909 + 14 GCACTGAGATGGGAGTGGTGTAA 23 1 90 55.56 -56.5 -62.78 0.01 NO
miR673 NC_000078 110810214 110810235 + 25 CTCACAGCTCTGGTCCTTGGAG 22 1 145 63.45 -68.4 -47.17 0.1 NO
miR672 NC_000086 101311567 101311589 - 103 TGAGGTTGGTGTACTGTGTGTGA 23 1 129 37.98 -51.03 -39.56 0.01 NO
miR669f NC_000068 10388912 10388934 + 131 CATATACATACACACACACGTAT 23 2 134 42.54 -50.91 -37.99 0.02 AGTTGTGTGTGCATGTGCATGTG
miR669d NC_000068 10390011 10390032 + 61 ACTTGTGTGTGCATGTATATGT 22 2 167 39.52 -63.4 -37.96 0.01 TACATATACATACACACCCATA
miR669d NC_000068 10393285 10393306 + 61 ACTTGTGTGTGCATGTATATGT 22 2 179 38.55 -60.3 -33.69 0.01 TACATATACATACACACCCATA
miR669c NC_000068 10430946 10430969 + 75 ATAGTTGTGTGTGGATGTGTGTAT 24 1 150 41.33 -61.3 -40.87 0.01 NO
miR669b NC_000068 10389479 10389500 + 30 ATATACATACACACAAACATAT 22 7 104 36.54 -42.4 -40.77 0.01 AGTTTTGTGTGCATGTGCATGT
miR669 NC_000068 10398535 10398557 + 1203 ACATAACATACACACACACGTAT 23 13 105 36.19 -37.5 -35.71 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10408331 10408353 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10413244 10413266 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.02 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10400993 10401015 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10403439 10403461 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10405874 10405896 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10425469 10425491 + 1203 ACATAACATACACACACACGTAT 23 13 105 36.19 -37.5 -35.71 0.02 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10423017 10423039 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -43.7 -35.82 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10420589 10420611 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10435982 10436004 + 1203 ACATAACATACACACACACGTAT 23 13 114 38.6 -43.6 -38.25 0.01 TAGTTGTGTGTGCATGTTTATGT
miR669 NC_000068 10433885 10433907 + 1203 ACATAACATACACACACACGTAT 23 13 105 36.19 -37.5 -35.71 0.02 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10415706 10415728 + 1203 ACATAACATACACACACACGTAT 23 13 122 39.34 -45.2 -37.05 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10431848 10431870 + 1203 ACATAACATACACACACACGTAT 23 13 115 38.26 -40.8 -35.48 0.01 TAGTTGTGTGTGCATGTTCATGT
miR669 NC_000068 10396087 10396110 + 113 AGTTGTGTGTGCATGTTCATGTCT 24 15 122 38.52 -45.6 -37.38 0.01 NO
miR669 NC_000068 10410757 10410780 + 113 AGTTGTGTGTGCATGTTCATGTCT 24 15 129 38.76 -47.9 -37.13 0.01 NO
miR669 NC_000068 10418138 10418161 + 113 AGTTGTGTGTGCATGTTCATGTCT 24 15 181 39.78 -62.2 -34.36 0.01 NO
miR542 NC_000086 50402591 50402613 - 12 TGTGACAGATTGATAACTGAAAG 23 1 85 51.76 -38.8 -45.65 0.01 NO
miR541 NC_000078 110980632 110980656 + 129 AAGGGATTCTGATGTTGGTCACACT 25 1 107 42.06 -39.4 -36.82 0.01 NO
miR540 NC_000078 110824295 110824317 + 12 CAAGGGTCACCCTCTGACTCTGT 23 1 106 64.15 -67.2 -63.4 0.01 NO
miR539 NC_000078 110966346 110966368 + 30 GGAGAAATTATCCTTGGTGTGTT 23 1 135 40.74 -48.4 -35.85 0.01 NO
miR532 NC_000086 6825582 6825603 - 26 CATGCCTTGAGTGTAGGACCGT 22 1 183 47.54 -64.06 -35.01 0.01 NO
miR500 NC_000086 6814821 6814842 - 12 AATGCACCTGGGCAAGGGTTCA 22 1 124 52.42 -59.73 -48.17 0.01 NO
Continued on Next Page. . .
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miR497 NC_000077 70048232 70048253 + 67 CAGCAGCACACTGTGGTTTGTA 22 1 87 62.07 -43.5 -50 0.01 NO
miR496 NC_000078 110977375 110977396 + 11 TGAGTATTACATGGCCAATCTC 22 1 79 41.77 -35.3 -44.68 0.01 GGTTGCCCATGGTGTGTTCATT
miR495 NC_000078 110957005 110957026 + 564 AAACAAACATGGTGCACTTCTT 22 1 84 35.71 -29.4 -35 0.01 GAAGTTGCCCATGTTATTTTTC
miR494 NC_000078 110953577 110953599 + 922 TGAAACATACACGGGAAACCTCT 23 1 85 35.29 -36.7 -43.18 0.01 GAGAGGTTGTCCGTGTTGTCTTC
miR493 NC_000078 110818453 110818474 + 17 TTGTACATGGTAGGCTTTCATT 22 1 101 55.45 -50.99 -50.49 0.01 NO
miR485 NC_000078 110973156 110973178 + 214 AGTCATACACGGCTCTCCTCTCT 23 1 113 48.67 -48.5 -42.92 0.01 NO
miR476e NC_000068 10427359 10427380 + 50 TAAGTGTGAGCATGTATATGTG 22 1 146 43.15 -60.1 -41.16 0.01 CATATACATACACACACCTATA
miR467c NC_000068 10395568 10395589 + 59 TAAGTGCGTGCATGTATATGTG 22 1 151 43.05 -55.4 -36.69 0.01 NO
miR467b NC_000068 10402884 10402905 + 155 TAAGTGCCTGCATGTATATGCG 22 12 140 46.43 -52.2 -37.29 0.01 NO
miR467 NC_000068 10417657 10417678 + 597 ATATACATACACACACCTACAC 22 12 151 45.7 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10410276 10410297 + 597 ATATACATACACACACCTACAC 22 12 151 45.7 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10407812 10407833 + 597 ATATACATACACACACCTACAC 22 12 151 45.7 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10420070 10420091 + 597 ATATACATACACACACCTACAC 22 12 151 46.36 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10415187 10415208 + 597 ATATACATACACACACCTACAC 22 12 151 45.7 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10412725 10412746 + 597 ATATACATACACACACCTACAC 22 12 151 45.03 -61.8 -40.93 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10398018 10398039 + 597 ATATACATACACACACCTACAC 22 12 150 46 -63.6 -42.4 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10424950 10424971 + 597 ATATACATACACACACCTACAC 22 12 151 45.03 -61.8 -40.93 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10422499 10422520 + 597 ATATACATACACACACCTACAC 22 12 151 46.36 -64.5 -42.72 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10429303 10429324 + 597 ATATACATACACACACCTACAC 22 12 151 45.7 -60.6 -40.13 0.01 ATAAGTGCGCGCATGTATATGC
miR467 NC_000068 10405355 10405376 + 597 ATATACATACACACACCTACAC 22 12 151 45.03 -61.8 -40.93 0.01 GTAAGTGCCTGCATGTATATGC
miR467 NC_000068 10400475 10400496 + 597 ATATACATACACACACCTACAC 22 12 151 45.03 -60.8 -40.26 0.01 GTAAGTGCCTGCATGTATATGC
miR466f NC_000079 71245986 71246007 + 39 ACGTGTGTGTGCATGTGCATGT 22 5 128 44.53 -44.7 -34.92 0.06 NO
miR466f NC_000068 10393591 10393612 + 39 ACGTGTGTGTGCATGTGCATGT 22 5 107 41.12 -50.6 -47.29 0.09 ATACACACACACATACACACGC
miR466f NC_000068 10388582 10388603 + 39 ACGTGTGTGTGCATGTGCATGT 22 5 139 38.85 -64.5 -46.4 0.01 CATACACATACACACACACATA
miR466b NC_000068 10425242 10425263 + 198 ATACATACACGCACACATAAGA 22 15 127 39.37 -52.7 -41.5 0.01 TTGATGTGTGTGTACATGTACA
miR466 NC_000068 10398307 10398329 + 236 TATACATACACGCACACATAAGA 23 14 131 38.93 -53.6 -40.92 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10395895 10395917 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -55.5 -42.37 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10400765 10400787 + 236 TATACATACACGCACACATAAGA 23 14 131 38.93 -53.6 -40.92 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10403211 10403233 + 236 TATACATACACGCACACATAAGA 23 14 127 39.37 -55.2 -43.46 0.01 TGATGTGTGTGTGCATGTACATA
miR466 NC_000068 10405646 10405668 + 236 TATACATACACGCACACATAAGA 23 14 112 40.18 -47.2 -42.14 0.01 TGATGTGTGTGTGCATGTACATA
miR466 NC_000068 10415478 10415500 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -57.3 -43.74 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10417946 10417968 + 236 TATACATACACGCACACATAAGA 23 14 131 38.93 -50.8 -38.78 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10420361 10420383 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -53.22 -40.63 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10408103 10408125 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -57.3 -43.74 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10410565 10410587 + 236 TATACATACACGCACACATAAGA 23 14 131 38.93 -50.8 -38.78 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10413016 10413038 + 236 TATACATACACGCACACATAAGA 23 14 112 40.18 -47.2 -42.14 0.01 TGATGTGTGTGTGCATGTACATA
miR466 NC_000068 10422789 10422811 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -57.3 -43.74 0.01 TTGATGTGTGTGTACATGTACAT
miR466 NC_000068 10427685 10427707 + 236 TATACATACACGCACACATAAGA 23 14 130 39.23 -49.2 -37.85 0.02 ATGTGTGTGTACATGTACATGTG
miR466 NC_000068 10429594 10429616 + 236 TATACATACACGCACACATAAGA 23 14 131 39.69 -50.2 -38.32 0.01 TTATGTGTGTGTACATGTACATA
miR466 NC_000068 10433644 10433665 + 91 TATACATACACGCACACATAGA 22 2 157 42.04 -74.8 -47.64 0.01 TGTGTGTGCGTACATGTACATG
miR466 NC_000069 50925190 50925211 + 91 TATACATACACGCACACATAGA 22 2 134 29.1 -49.35 -36.83 0.01 NO
miR466 NC_000068 10436528 10436551 + 64 TGTGTGCATGTGCTTGTGTGTATG 24 4 107 39.25 -42.42 -39.64 0.03 NO
miR466 NC_000069 120047126 120047149 - 64 TGTGTGCATGTGCTTGTGTGTATG 24 4 131 33.59 -43 -32.82 0.01 NO
miR450a NC_000086 50401516 50401537 - 13 TTTTGCGATGTGTTCCTAATAT 22 2 120 41.67 -41.8 -34.83 0.01 NO
miR450a NC_000086 50401383 50401404 - 13 TTTTGCGATGTGTTCCTAATAT 22 2 143 38.46 -50.04 -34.99 0.01 NO
miR434 NC_000078 110832775 110832796 + 639 TTTGAACCATCACTCGACTCCT 22 1 82 45.12 -37.1 -45.24 0.01 AGCTCGACTCATGGTTTGAACC
miR433 NC_000078 110829991 110830012 + 190 ATCATGATGGGCTCCTCGGTGT 22 1 86 51.16 -35.3 -41.05 0.01 TACGGTGAGCCTGTCATTATTC
miR425 NC_000075 108471120 108471142 + 53 AATGACACGATCACTCCCGTTGA 23 1 95 56.84 -38.5 -40.53 0.01 NO
miR423 NC_000077 76891624 76891646 - 16 TGAGGGGCAGAGAGCGAGACTTT 23 1 122 50 -62 -50.82 0.01 AGCTCGGTCTGAGGCCCCTCAGT
miR412 NC_000078 110981513 110981535 + 19 TGGTCGACCAGCTGGAAAGTAAT 23 1 74 54.05 -26.3 -35.54 0.06 NO
miR411 NC_000078 110948435 110948455 + 784 TATGTAACACGGTCCACTAAC 21 1 82 45.12 -30 -36.59 0.01 ATAGTAGACCGTATAGCGTAC
miR410 NC_000078 110981974 110981994 + 129 AATATAACACAGATGGCCTGT 21 1 79 40.51 -34.1 -43.16 0.01 AGGTTGTCTGTGATGAGTTCG
miR382 NC_000078 110972027 110972048 + 93 AATCATTCACGGACAACACTTT 22 1 82 41.46 -36.2 -44.15 0.01 GAAGTTGTTCGTGGTGGATTCG
miR381 NC_000078 110965080 110965101 + 12 TATACAAGGGCAAGCTCTCTGT 22 1 107 40.19 -48 -44.86 0.01 NO
miR380 NC_000078 110950052 110950072 + 14 TATGTAGTATGGTCCACATCT 21 1 82 42.68 -31.8 -38.78 0.01 NO
miR379 NC_000078 110947312 110947332 + 226 TATGTAACATGGTCCACTAAC 21 1 85 42.35 -34.4 -40.47 0.01 NO
miR378 NC_000084 61557491 61557512 - 10 ACTGGACTTGGAGTCAGAAGGC 22 1 264 59.47 -155 -58.71 0.01 CTCCTGACTCCAGGTCCTGTGT
miR377 NC_000078 110978763 110978784 + 49 ATCACACAAAGGCAACTTTTGT 22 1 127 47.24 -48.6 -38.27 0.01 AGAGGTTGCCCTTGGTGAATTC
miR376c NC_000078 110960980 110961000 + 78 AACATAGAGGAAATTTCACGT 21 1 149 40.27 -49.14 -32.98 0.01 NO
Continued on Next Page. . .
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miR376b NC_000078 110961718 110961738 + 232 ATCATAGAGGAACATCCACTT 21 1 86 34.88 -36.2 -42.09 0.01 GTGGATATTCCTTCTATGGTT
miR376 NC_000078 110962034 110962054 + 182 ATCGTAGAGGAAAATCCACGT 21 1 103 32.04 -29.01 -28.17 0.01 NO
miR374 NC_000086 100768451 100768472 - 78 ATATAATACAACCTGCTAAGTG 22 1 68 42.65 -43.3 -63.68 0.01 NO
miR370 NC_000078 110856480 110856503 + 14 CAGGTCACGTCTCTGCAGTTACAC 24 1 110 58.18 -51.4 -46.73 0.01 NO
miR369 NC_000078 110981676 110981696 + 482 AATAATACATGGTTGATCTTT 21 1 81 40.74 -36.6 -45.19 0.01 AGATCGACCGTGTTATATTCG
miR362 NC_000086 6819145 6819168 - 16 AATCCTTGGAACCTAGGTGTGAAT 24 1 84 52.38 -40.8 -48.57 0.01 NO
miR361 NC_000086 110188476 110188497 - 85 TTATCAGAATCTCCAGGGGTAC 22 1 84 46.43 -35.8 -42.62 0.01 NO
miR350 NC_000067 178702471 178702494 - 117 TTCACAAAGCCCATACACTTTCAC 24 1 98 44.9 -34.72 -35.43 0.01 NO
miR34c NC_000075 50911181 50911203 - 18 AGGCAGTGTAGTTAGCTGATTGC 23 1 87 39.08 -32.9 -37.82 0.01 NO
miR345 NC_000078 110075198 110075219 + 12 TGCTGACCCCTAGTCCAGTGCT 22 1 109 59.63 -53.36 -48.95 0.01 NO
miR341 NC_000078 110849770 110849790 + 44 TCGATCGGTCGGTCGGTCAGT 21 1 131 56.49 -56.54 -43.16 0.01 NO
miR340 NC_000077 49883222 49883243 + 28 TTATAAAGCAATGAGACTGATT 22 1 124 37.1 -36.1 -29.11 0.01 CCGTCTCAGTTACTTTATAGCC
miR34 NC_000070 149442582 149442603 + 224 TGGCAGTGTCTTAGCTGGTTGT 22 1 112 47.32 -51.9 -46.34 0.01 CAATCAGCAAGTATACTGCCCT
miR339 NC_000071 139845664 139845684 - 23 TCCCTGTCCTCCAGGAGCTCA 21 1 82 68.29 -42.6 -51.95 0.02 NO
miR337 NC_000078 110824028 110824049 + 134 CGGCGTCATGCAGGAGTTGATT 22 1 135 58.52 -76.1 -56.37 0.01 TTCAGCTCCTATATGATGCCTT
miR335 NC_000072 30691354 30691375 + 17 TTTTTCATTATTGCTCCTGACC 22 1 115 41.74 -52.2 -45.39 0.01 TCAAGAGCAATAACGAAAAATG
miR33 NC_000081 82028557 82028576 + 38 GTGCATTGTAGTTGCATTGC 20 1 95 54.74 -52 -54.74 0.01 NO
miR329 NC_000078 110951751 110951772 + 75 AACACACCCAGCTAACCTTTTT 22 1 82 41.46 -35.7 -43.54 0.01 AGAGGTTTTCTGGGTCTCTGTT
miR322 NC_000086 50407483 50407504 - 20 CAGCAGCAATTCATGTTTTGGA 22 1 163 57.06 -80.42 -49.34 0.01 NO
miR32 NC_000070 56908144 56908165 - 21 TATTGCACATTACTAAGTTGCA 22 1 96 42.71 -44.1 -45.94 0.01 NO
miR31 NC_000070 88556517 88556539 - 31 AGGCAAGATGCTGGCATAGCTGT 23 1 166 50 -70.5 -42.47 0.01 TGCTATGCCAACATATTGCCATC
miR30e NC_000070 120445263 120445286 - 129 TGTAAACATCCTTGACTGGAAGCT 24 1 97 51.55 -54.5 -56.19 0.01 NO
miR30d NC_000081 68172817 68172840 - 23 TGTAAACATCCCCGACTGGAAGCT 24 1 128 46.88 -42.5 -33.2 0.01 NO
miR30c NC_000067 23298553 23298576 + 1873 TGTAAACATCCTACACTCTCAGCT 24 2 88 44.32 -31.84 -36.18 0.01 NO
miR30c NC_000070 120442188 120442211 - 1873 TGTAAACATCCTACACTCTCAGCT 24 2 107 49.53 -39.2 -36.64 0.05 NO
miR30b NC_000081 68169031 68169052 - 1365 TGTAAACATCCTACACTCAGCT 22 1 86 46.51 -40.7 -47.33 0.01 NO
miR30a NC_000067 23279113 23279136 + 77 TGTAAACATCCTCGACTGGAAGCT 24 1 96 52.08 -45.5 -47.4 0.01 NO
miR301b NC_000082 17124511 17124535 - 48 CAGTGCAATGGTATTGTCAAAGCAT 25 1 135 55.56 -51 -37.78 0.07 NO
miR301 NC_000077 86926556 86926580 + 102 CAGTGCAATAGTATTGTCAAAGCAT 25 1 97 49.48 -40.5 -41.75 0.01 NO
miR300 NC_000078 110962573 110962594 + 35 TATGCAAGGGCAAGCTCTCTTC 22 1 175 54.86 -77.3 -44.17 0.01 NO
miR29c NC_000067 196863794 196863815 + 63 TAGCACCATTTGAAATCGGTTA 22 1 86 45.35 -34.7 -40.35 0.01 NO
miR29b NC_000072 31013025 31013047 - 105 TAGCACCATTTGAAATCAGTGTT 23 2 74 36.49 -28.62 -38.68 0.01 NO
miR29b NC_000067 196863285 196863307 + 105 TAGCACCATTTGAAATCAGTGTT 23 2 175 44 -66.25 -37.86 0.01 NO
miR299 NC_000078 110948854 110948875 + 95 TGGTTTACCGTCCCACATACAT 22 1 83 45.78 -48.7 -58.67 0.01 GTATGTGGGACGGTAAACCGCT
miR297 NC_000068 10433349 10433370 + 226 ATATACATACACACATACCCAT 22 5 111 31.53 -38 -34.23 0.01 NO
miR297 NC_000068 10430691 10430712 + 226 ATATACATACACACATACCCAT 22 5 98 32.65 -38.8 -39.59 0.01 ATGTATGTGTGCATGTACATGT
miR297 NC_000072 31012673 31012694 - 297 TAGCACCATCTGAAATCGGTTA 22 1 100 40 -36.94 -36.94 0.01 ACTGATTTCTTTTGGTGTTCAG
miR294 NC_000073 3220656 3220677 + 1336 ACTCAAAATGGAGGCCCTATCT 22 1 135 42.22 -43.1 -31.93 0.01 AAAGTGCTTCCCTTTTGTGTGT
miR293 NC_000073 3220391 3220412 + 4868 AGTGCCGCAGAGTTTGTAGTGT 22 1 91 41.76 -32 -35.16 0.01 TACTCAAACTGTGTGACATTTT
miR292 NC_000073 3219240 3219262 + 1684 AAGTGCCGCCAGGTTTTGAGTGT 23 1 122 47.54 -54.2 -44.43 0.01 NO
miR291a NC_000073 3218933 3218954 + 1463 CATCAAAGTGGAGGCCCTCTCT 22 1 82 53.66 -44.3 -54.02 0.01 AAAGTGCTTCCACTTTGTGTGC
miR290 NC_000073 3218640 3218662 + 1507 ACTCAAACTATGGGGGCACTTTT 23 1 167 48.5 -61.8 -37.01 0.01 TTTAAAAAGTGCCGCCTAGTTTT
miR28 NC_000082 24827954 24827975 + 87 AAGGAGCTCACAGTCTATTGAG 22 1 98 51.02 -39.8 -40.61 0.01 CACTAGATTGTGAGCTGCTGGA
miR27b NC_000079 63402068 63402088 + 329 TTCACAGTGGCTAAGTTCTGC 21 1 100 47 -50.8 -50.8 0.01 NO
miR26b NC_000067 74440898 74440919 + 296 TTCAAGTAATTCAGGATAGGTT 22 1 122 60.66 -67.5 -55.33 0.01 NO
miR26a NC_000075 118940929 118940950 + 686 TTCAAGTAATCCAGGATAGGCT 22 2 139 65.47 -78.3 -56.33 0.01 NO
miR26a NC_000076 126432599 126432620 + 686 TTCAAGTAATCCAGGATAGGCT 22 2 113 54.87 -53.9 -47.7 0.01 NO
miR25 NC_000071 138606560 138606581 - 837 CATTGCACTTGTCTCGGTCTGA 22 1 91 63.74 -40 -43.96 0.07 NO
miR24 NC_000079 63402559 63402580 + 433 TGGCTCAGTTCAGCAGGAACAG 22 2 85 57.65 -29.92 -35.2 0.03 NO
miR222 NC_000086 18724029 18724049 - 21 AGCTACATCTGGCTACTGGGT 21 1 106 51.89 -53 -50 0.01 NO
miR221 NC_000086 18723433 18723455 - 195 AGCTACATTGTCTGCTGGGTTTC 23 1 122 46.72 -47.86 -39.23 0.01 NO
miR221 NC_000079 63401837 63401859 + 221 ATCACATTGCCAGGGATTACCAC 23 1 181 53.59 -66.44 -36.71 0.08 NO
miR22 NC_000077 75277274 75277295 + 70 AAGCTGCCAGTTGAAGAACTGT 22 1 119 57.98 -49 -41.18 0.01 AGTTCTTCAGTGGCAAGCTTTA
miR219 NC_000083 34161995 34162017 - 68 TGATTGTCCAAACGCAATTCTCG 23 1 129 68.99 -77.8 -60.31 0.01 NO
miR210 NC_000073 148407306 148407327 - 256 CTGTGCGTGTGACAGCGGCTGA 22 1 117 70.09 -58.4 -49.91 0.05 NO
miR21 NC_000077 86397621 86397643 - 3411 TAGCTTATCAGACTGATGTTGAC 23 1 101 45.54 -46.2 -45.74 0.01 NO
miR205 NC_000067 195333697 195333718 - 52 TCCTTCATTCCACCGGAGTCTG 22 1 134 53.73 -56.2 -41.94 0.02 NO
miR200c NC_000072 124668342 124668364 - 60 TAATACTGCCGGGTAATGATGGA 23 1 92 58.7 -55.9 -60.76 0.01 NO
miR200b NC_000070 155429793 155429815 - 420 TAATACTGCCTGGTAATGATGAC 23 1 82 56.1 -40.3 -49.15 0.01 CATCTTACTGGGCAGCATTGGAT
Continued on Next Page. . .



188

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

miR200a NC_000070 155429019 155429041 - 362 TAACACTGTCTGGTAACGATGTT 23 1 88 51.14 -42.7 -48.52 0.01 CATCTTACCGGACAGTGCTGGAT
miR19a NC_000080 115443270 115443292 + 1409 TGTGCAAATCTATGCAAAACTGA 23 1 95 41.05 -40.3 -42.42 0.01 TAGTTTTGCATAGTTGCACTACA
miR195 NC_000077 70048564 70048585 + 30 TAGCAGCACAGAAATATTGGCA 22 1 118 53.39 -55.8 -47.29 0.01 NO
miR194 NC_000067 187137204 187137225 + 32 TGTAACAGCAACTCCATGTGGA 22 2 82 53.66 -46.4 -56.59 0.01 NO
miR191 NC_000075 108470656 108470677 + 116 CAACGGAATCCCAAAAGCAGCT 22 1 101 56.44 -49.6 -49.11 0.01 GCTGCACTTGGATTTCGTTCCC
miR190 NC_000075 67084506 67084528 - 22 TGATATGTTTGATATATTAGGTT 23 1 149 40.27 -46.1 -30.94 0.01 NO
miR18b NC_000086 50095558 50095580 - 57 TAAGGTGCATCTAGTGCTGTTAG 23 1 137 43.07 -36.5 -26.64 0.05 NO
miR185 NC_000082 18327531 18327552 - 19 TGGAGAGAAAGGCAGTTCCTGA 22 1 82 60.98 -53.1 -64.76 0.01 NO
miR183 NC_000072 30119711 30119732 - 213 TATGGCACTGGTAGAATTCACT 22 1 113 51.33 -42.7 -37.79 0.01 GTGAATTACCGAAGGGCCATAA
miR182 NC_000072 30115962 30115986 - 360 TTTGGCAATGGTAGAACTCACACCG 25 1 102 52.94 -40.94 -40.14 0.03 NO
miR181d NC_000074 86702657 86702680 - 54 AACATTCATTGTTGTCGGTGGGTT 24 1 97 56.7 -42.7 -44.02 0.01 NO
miR181c NC_000074 86702821 86702844 - 421 AACATTCAACCTGTCGGTGAGTTT 24 1 87 58.62 -44 -50.57 0.01 NO
miR181a NC_000067 139863045 139863069 + 17 AACATTCAACGCTGTCGGTGAGTTT 25 2 154 46.75 -43.62 -28.32 0.01 NO
miR181a NC_000068 38708261 38708285 + 17 AACATTCAACGCTGTCGGTGAGTTT 25 2 90 45.56 -35.33 -39.26 0.01 NO
miR15b NC_000069 68813697 68813718 + 1504 TAGCAGCACATCATGGTTTACA 22 1 84 36.9 -28.5 -33.93 0.01 GCGAATCATTATTTGCTGCTCT
miR151 NC_000081 73085284 73085305 - 182 TCGAGGAGCTCACAGTCTAGTA 22 1 133 57.89 -69.2 -52.03 0.01 CTAGACTGAGGCTCCTTGAGGA
miR150 NC_000073 52377132 52377153 + 40 TCTCCCAACCCTTGTACCAGTG 22 1 112 58.93 -54.3 -48.48 0.02 NO
miR148a NC_000072 51219828 51219849 - 129 TCAGTGCACTACAGAACTTTGT 22 1 82 43.9 -35.7 -43.54 0.01 AAAGTTCTGAGACACTCCGACT
miR140 NC_000074 110075149 110075170 + 22 CAGTGGTTTTACCCTATGGTAG 22 1 98 53.06 -50.9 -51.94 0.01 ACCACAGGGTAGAACCACGGAC
miR136 NC_000078 110833541 110833563 + 23 ACTCCATTTGTTTTGATGATGGA 23 1 144 48.61 -62.8 -43.61 0.01 NO
miR135b NC_000067 134094680 134094702 + 62 TATGGCTTTTCATTCCTATGTGA 23 1 95 54.74 -51.9 -54.63 0.01 NO
miR134 NC_000078 110972355 110972376 + 25 TGTGACTGGTTGACCAGAGGGG 22 1 71 60.56 -34.5 -48.59 0.05 NO
miR130b NC_000082 17124164 17124185 - 271 CAGTGCAATGATGAAAGGGCAT 22 1 82 56.1 -32.1 -39.15 0.03 CACTCTTTCCCTGTTGCACTAC
miR130 NC_000068 84581273 84581294 - 1003 CAGTGCAATGTTAAAAGGGCAT 22 1 137 56.93 -77 -56.2 0.01 GCTCTTTTCACATTGTGCTACT
miR128 NC_000067 130098981 130099001 + 187 TCACAGTGAACCGGTCTCTTT 21 2 80 50 -35.6 -44.5 0.01 NO
miR128 NC_000075 112021148 112021168 - 187 TCACAGTGAACCGGTCTCTTT 21 2 85 55.29 -40.5 -47.65 0.01 NO
miR127 NC_000078 110831098 110831119 + 321 TCGGATCCGTCTGAGCTTGGCT 22 1 86 54.65 -38.6 -44.88 0.01 NO
miR126 NC_000068 10435079 10435100 + 29 AGTTTTGTGTGCATGTGCATGT 22 3 98 31.63 -40.6 -41.43 0.01 CATATACATCCACACAAACATA
miR126 NC_000068 10434436 10434457 + 29 AGTTTTGTGTGCATGTGCATGT 22 3 98 35.71 -38.2 -38.98 0.03 CATATACATCCACACAAACATA
miR125b NC_000082 77646524 77646545 + 21 TCCCTGAGACCCTAACTTGTGA 22 2 79 48.1 -41.6 -52.66 0.01 NO
miR125b NC_000075 41390023 41390044 + 21 TCCCTGAGACCCTAACTTGTGA 22 2 99 54.55 -46.5 -46.97 0.01 NO
miR125a NC_000083 17967781 17967804 + 26 TCCCTGAGACCCTTTAACCTGTGA 24 1 84 65.48 -44.5 -52.98 0.01 NO
miR124 NC_000068 180628788 180628809 + 75 TAAGGCACGCGGTGAATGCCAA 22 3 93 56.99 -40.3 -43.33 0.01 CGTGTTCACAGCGGACCTTGAT
miR124 NC_000069 17695723 17695744 + 75 TAAGGCACGCGGTGAATGCCAA 22 3 107 50.47 -44.6 -41.68 0.01 CGTGTTCACAGCGGACCTTGAT
miR124 NC_000080 65209546 65209567 + 75 TAAGGCACGCGGTGAATGCCAA 22 3 101 50.5 -42.42 -42 0.01 CGTGTTCACAGCGGACCTTGAT
miR1193 NC_000078 110953960 110953980 + 31 TAGGTCACCCGTTTTACTATC 21 1 108 52.78 -47.8 -44.26 0.01 ATGGTAGACCGGTGACGTACA
miR103 NC_000077 35595949 35595971 + 94 AGCAGCATTGTACAGGGCTATGA 23 2 84 47.62 -35.3 -42.02 0.02 NO
miR103 NC_000068 131113839 131113861 + 94 AGCAGCATTGTACAGGGCTATGA 23 2 135 51.85 -53.4 -39.56 0.01 AGCTTCTTTACAGTGCTGCCTTG
miR101b NC_000085 29209828 29209849 + 46 GTACAGTACTGTGATAGCTGAA 22 1 160 48.75 -59.7 -37.31 0.01 NO
miR101a NC_000070 101019562 101019583 - 31 GTACAGTACTGTGATAACTGAA 22 1 81 50.62 -45.4 -56.05 0.01 TCAGTTATCACAGTGCTGATGC
miR543 NC_000078 110955514 110955535 + 1382 AAACATTCGCGGTGCACTTCTT 22 1 131 48.09 -45.5 -34.73 0.01 GAAGTTGCCCGCGTGTTTTTCG

N/A NC_000073 87297760 87297781 - 14 AGCCTTTAATTTCAGTACTTGG 22 1 253 50.99 -157.1 -62.09 0.01 NO
miR669 NC_000068 10390616 10390637 + 30 AGTTGTGTGTGCATGTATATGT 22 1 122 36.89 -40.1 -32.87 0.05 TACATATACATACACACCCATA
miR467 NC_000086 113878990 113879011 - 25 ATATACATACACACACCTATAT 22 3 113 32.74 -56.1 -49.65 0.01 NO
miR297c NC_000067 171984192 171984213 + 171 ATGTATGTGTGCATGTACATGT 22 7 98 37.76 -27.2 -27.76 0.03 NO
miR297c NC_000076 80436056 80436077 - 171 ATGTATGTGTGCATGTACATGT 22 7 180 36.67 -81.4 -45.22 0.06 NO
miR669 NC_000076 82774935 82774955 - 10 CATATACATACACACACACGT 21 4 175 23.43 -77.8 -44.46 0.01 NO

N/A NC_000079 21988799 21988819 - 30 CTCACCTGGAGCATGTTTTCT 21 1 60 51.67 -22.3 -37.17 0.02 NO
miR466d NC_000068 10435386 10435407 + 66 GTGTGTGCGTACATGTACATGT 22 2 136 46.32 -74.7 -54.93 0.01 TATACATGAGAGCATACATAGA
miR466a NC_000078 89981901 89981921 - 21 TATGTGTGTGTACATGTACAT 21 13 104 39.42 -33.3 -32.02 0.01 NO
miR466a NC_000075 22519606 22519628 - 23 TATGTGTGTGTACATGTACATAT 23 5 60 36.67 -29.5 -49.17 0.01 NO
miR466a NC_000068 174237240 174237262 - 23 TATGTGTGTGTACATGTACATAT 23 5 138 43.48 -40.6 -29.42 0.05 NO
miR466a NC_000070 77513268 77513290 + 23 TATGTGTGTGTACATGTACATAT 23 5 132 34.09 -49.39 -37.42 0.01 NO
miR126 NC_000068 26446922 26446943 + 29 TCGTACCGTGAGTAATAATGCG 22 1 77 48.05 -33.7 -43.77 0.01 NO
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A.1.5 Dalmay group chicken sRNA Solexa/Illumina results

Results from miRCat (using default parameters) when run on the Solexa Gallus gallus sRNA set from the Dalmay group.

Column ”miR” shows the miRBase accession of the miRNA (if availalbe), column ”chr” shows the chromosome the se-

quence maps to, column ”start” shows the start position of the predicted miRNA, column ”end” shows the start position of

the predicted miRNA, column ”ori” shows the orientation of the miRNA (either Watson "+" or Crick "-" strand). Column ”abun”

shows the abundance of the sRNA in the Solexa dataset, column ”seq” shows the sRNA sequence, column ”len” shows the

length of the sRNA sequence, column ”g. hits” shows the number of times this sequence maps to the reference genome,

column ”h. len” shows the length of the predicted miRNA precursor structure. Column ”G/C%” shows the percentage G/C

composition of the miRNA hairpin sequence, column ”MFE” shows the minimum free energy of the folded miRNA precursor

sequence, column ”AMFE” shows the MFE per 100nt (therefore normalising the MFE), column ”p-value” shows the randfold

p-value for the predicted hairpin precursor (using 100 randomisations). Column ”miRNA*” gives the sequence of any potential

miRNA* sequences present in the predicted precursor.

Table A.5: miRNAs predicted in the Dalmay group chicken Solexa sRNA cloning by miRCat using default settings

miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

miR-29 1 3235362 3235381 + 29 TAGCACCATTTGAAATCAGT 20 2 76 36.84 -30.02 -39.5 0.01 NO
N/A 1 15746124 15746141 - 10 AGCGGCGCGGTAGGAGCA 18 1 146 70.55 -80.9 -55.41 0.01 NO

miR-33 1 51372325 51372345 - 29 GTGCATTGTAGTTGCATTGCA 21 1 69 47.83 -37.6 -54.49 0.01 NO
N/A 1 62970293 62970314 + 20 GTTTGGCTGTAGGCATGTGGGT 22 1 114 51.75 -45.3 -39.74 0.01 NO
let-7 1 73421275 73421296 + 95 TGAGGTAGTAGGTTGTATAGTT 22 4 85 42.35 -38.3 -45.06 0.01 NO

miR-99 1 102424345 102424365 + 165 AACCCGTAGATCCGATCTTGT 21 1 124 44.35 -50.1 -40.4 0.01 NO
let-7 1 102425096 102425118 + 45 TGAGGTAGTAGGTTGTATGGTTT 23 1 118 50.85 -49.9 -42.29 0.01 NO

miR-125 1 102457663 102457684 + 408 TCCCTGAGACCCTAACTTGTGA 22 1 89 50.56 -37.6 -42.25 0.01 NO
Continued on Next Page. . .
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N/A 1 104458572 104458592 - 78 CGAGAAGACGGTCGAACTTGA 21 1 111 60.36 -60.3 -54.32 0.01 NO
N/A 1 104460527 104460550 - 25 CGGGGATCGGGCGCGCCTCTCCGT 24 2 132 83.33 -94.5 -71.59 0.01 NO

miR-222 1 114216044 114216066 + 57 CGCTCAGTAGTCAGTGTAGATTC 23 2 75 45.33 -32.8 -43.73 0.01 NO
miR-222 1 114218439 114218461 + 57 CGCTCAGTAGTCAGTGTAGATTC 23 2 75 45.33 -32.8 -43.73 0.01 NO

N/A 1 130934912 130934932 + 25 TGCATTGCGACGGGTTATATC 21 1 82 46.34 -36.1 -44.02 0.01 NO
miR-92 1 152248079 152248100 - 882 TATTGCACTTGTCCCGGCCTGT 22 1 86 54.65 -43.1 -50.12 0.01 NO
miR-19 1 152248505 152248524 - 65 TGTGCAAATCTATGCAAAAC 20 1 82 41.46 -35.9 -43.78 0.01 NO
miR-17 1 152248830 152248852 - 185 CAAAGTGCTTACAGTGCAGGTAG 23 1 85 41.18 -33 -38.82 0.01 NO

N/A 1 170154883 170154903 + 5 CGGGAGGGGAGGGAGGGCGGG 21 1 104 75 -72.9 -70.1 0.01 NO
miR-16 1 173700401 173700421 - 74 TAGCAGCACGTAAATATTGGT 21 2 71 35.21 -26.39 -37.17 0.01 NO
miR-26 2 4467525 4467546 + 754 TTCAAGTAATCCAGGATAGGCT 22 1 145 51.72 -63.9 -44.07 0.01 NO
miR-489 2 23068888 23068908 - 164 TGACATCATATGTACGGCTGC 21 1 98 46.94 -43 -43.88 0.01 NO
miR-148 2 32053546 32053567 - 748 TCAGTGCACTACAGAACTTTGT 22 1 82 51.22 -36.1 -44.02 0.01 NO
miR-196 2 32586206 32586227 - 29 TAGGTAGTTTCATGTTGTTGGG 22 3 69 44.93 -27.6 -40 0.01 NO
miR-128 2 45549227 45549247 + 671 TCACAGTGAACCGGTCTCTTT 21 2 93 54.84 -43.8 -47.1 0.01 NO
miR-32 2 86506497 86506516 - 24 ATATTGCACATTACTAAGTT 20 1 98 44.9 -45.2 -46.12 0.01 NO
miR-133 2 105670371 105670392 - 45 TTTGGTCCCCTTCAACCAGCTG 22 3 86 43.02 -36.6 -42.56 0.01 NO
miR-1 2 105673494 105673515 - 694 TGGAATGTAAAGAAGTATGTAT 22 2 91 38.46 -35.94 -39.49 0.01 NO
N/A 2 106776399 106776416 - 13 TTCTGTAGACTGTTTGAC 18 2 112 37.5 -42.3 -37.77 0.01 NO

miR-124 2 118524208 118524225 + 181 TAAGGCACGCGGTGAATG 18 2 84 51.19 -35.6 -42.38 0.01 NO
miR-30 2 148331648 148331669 - 62 TGTAAACATCCTACACTCAGCT 22 1 74 44.59 -30.2 -40.81 0.01 NO
miR-30 2 148337299 148337321 - 263 TGTAAACATCCCCGACTGGAAGC 23 1 79 49.37 -35.1 -44.43 0.01 NO

N/A 3 4348337 4348358 + 315 ACGGGACAGTGCTGAAGACTAC 22 1 138 63.77 -58.9 -42.68 0.01 NO
N/A 3 23002020 23002038 + 14 TCCTGCAGAAGGTGCGGCT 19 1 81 67.9 -41.8 -51.6 0.01 NO

miR-456 3 32679732 32679751 - 379 CAGGCTGGTTAGATGGTTGT 20 1 79 49.37 -33.5 -42.41 0.01 NO
miR-30 3 85102286 85102307 + 14276 CTTTCAGTCGGATGTTTGCAGC 22 1 97 53.61 -46.4 -47.84 0.01 TGTAAACATCCTCGACTGGAAG
miR-30 3 85126899 85126920 + 158 CTGGGAGAAGGCTGTTTACTCT 22 1 123 47.97 -49.5 -40.24 0.01 NO
miR-133 3 110384948 110384969 - 41 TTTGGTCCCCTTCAACCAGCTA 22 1 79 55.7 -37.2 -47.09 0.01 NO
miR-206 3 110390449 110390470 - 259 TGGAATGTAAGGAAGTGTGTGG 22 1 123 45.53 -51.6 -41.95 0.01 NO
miR-233 4 233007 233027 + 51 TGTCAGTTTGTCAAATACCCC 21 1 99 50.51 -45.2 -45.66 0.01 NO
miR-20 4 3970100 3970121 - 123 CAAAGTGCTCATAGTGCAGGTA 22 1 79 45.57 -33.1 -41.9 0.01 NO
miR-15 4 4049101 4049120 - 211 TAGCAGCACATCATGGTTTG 20 2 82 48.78 -37.9 -46.22 0.01 NO
miR-302 4 58651323 58651343 + 33 TTTAACATGGAGGTGCTTTCT 21 1 82 39.02 -33.02 -40.27 0.01 NO
miR-302 4 58651617 58651636 + 28 AGTGCTTCCATGTTTCAGTG 20 1 80 48.75 -39.7 -49.63 0.01 NO
miR-302 4 58651884 58651902 + 31 ACTTAAATGTGGATGTGCT 19 1 84 39.29 -30.6 -36.43 0.01 NO
miR-107 4 91906901 91906921 - 833 AGCAGCATTGTACAGGGCTAT 21 3 84 46.43 -37.2 -44.29 0.01 NO
miR-146 4 92169345 92169366 - 1596 TGAGAACTGAATTCCATGGACT 22 2 143 44.76 -60.09 -42.02 0.01 NO

N/A 5 26613484 26613505 - 27 TCAGAAAAGGATATGAATTGTC 22 1 79 39.24 -24.2 -30.63 0.01 NO
N/A 5 33777672 33777692 - 32 ACTAAGGACAGAGGAACGGAG 21 1 103 39.81 -31.52 -30.6 0.01 NO
N/A 5 45344529 45344546 - 26 GTCGTCGGGATGGAGTTT 18 1 69 59.42 -32.9 -47.68 0.01 NO
N/A 5 60284030 60284049 - 26 CGGGGCGGCTGTGAGCTGAG 20 1 65 75.38 -41.3 -63.54 0.01 NO

miR-107 6 20487975 20487995 - 833 AGCAGCATTGTACAGGGCTAT 21 3 84 45.24 -34 -40.48 0.01 NO
miR-202 6 22813083 22813103 + 152 TTCCTATGCATATACTTCTTT 21 1 78 41.03 -35.9 -46.03 0.01 NO
miR-146 6 24570077 24570094 + 21 TTGAGAACTGAATTCCAT 18 2 83 46.99 -42 -50.6 0.01 NO

N/A 6 34416337 34416357 - 39 TTAAGAGTAGGGATTCTGTTC 21 1 74 41.89 -26.2 -35.41 0.01 NO
miR-10 7 17389110 17389131 - 113106 TACCCTGTAGAACCGAATTTGT 22 1 151 40.4 -60.5 -40.07 0.01 NO
miR-375 7 23901164 23901185 + 30 TTTGTTCGTTCGGCTCGCGTTA 22 1 82 60.98 -43.8 -53.41 0.01 NO
miR-128 7 32228199 32228219 + 671 TCACAGTGAACCGGTCTCTTT 21 2 80 46.25 -35.7 -44.63 0.01 NO
miR-181 8 2001580 2001597 + 43 AACATTCAACGCTGTCGG 18 2 154 46.1 -44.61 -28.97 0.01 NO
miR-181 8 2001764 2001787 + 294 AACATTCATTGCTGTCGGTGGGTT 24 2 160 45.63 -54.1 -33.81 0.01 NO

N/A 8 3838518 3838538 - 28 TGGGTCCCGGCATGCTGCACT 21 1 89 64.04 -56.3 -63.26 0.01 NO
miR-199 8 4732840 4732861 + 149 ACAGTAGTCTGCACATTGGTTA 22 2 81 51.85 -36.7 -45.31 0.01 NO
miR-101 8 29051925 29051946 - 233 GTACAGTACTGTGATAACTGAA 22 2 81 49.38 -43.1 -53.21 0.01 NO
miR-551 9 21966435 21966452 - 25 GCGACCCATACTTGGTTT 18 1 113 56.64 -57.1 -50.53 0.01 NO
miR-16 9 23742848 23742868 - 74 TAGCAGCACGTAAATATTGGT 21 2 85 41.18 -32.3 -38 0.01 NO
miR-15 9 23743019 23743038 - 211 TAGCAGCACATCATGGTTTG 20 2 118 38.98 -39.12 -33.15 0.01 NO

N/A 10 1811809 1811828 - 19 TGCAGTGACGTCTCTTCCCC 20 1 64 71.88 -39.7 -62.03 0.01 NO
N/A 10 11522320 11522338 + 16 CAGGCGAGGGCGGGAGGGC 19 1 81 76.54 -54.9 -67.78 0.01 NO

miR-184 10 22146297 22146318 + 1168 TGGACGGAGAACTGATAAGGGT 22 1 86 58.14 -44.7 -51.98 0.01 NO
Continued on Next Page. . .
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miR Chr Start End Ori Abun Seq Len G. Hits H. Len G/C% MFE AMFE p-value miRNA*

miR-140 11 21030701 21030722 + 1487 ACCACAGGGTAGAACCACGGAC 22 1 78 53.85 -44.6 -57.18 0.01 NO
let-7 12 6302556 6302577 - 386 TGAGGTAGTAGATTGTATAGTT 22 1 146 41.1 -63.49 -43.49 0.01 NO
let-7 12 6302967 6302988 - 95 TGAGGTAGTAGGTTGTATAGTT 22 4 97 44.33 -40.5 -41.75 0.01 NO

miR-107 13 4449289 4449309 + 833 AGCAGCATTGTACAGGGCTAT 21 3 72 48.61 -34.4 -47.78 0.01 NO
miR-146 13 7555658 7555676 - 112 TGAGAACTGAATTCCATGG 19 4 72 44.44 -32.1 -44.58 0.01 NO
miR-365 14 764324 764343 + 18 TAATGCCCCTAAAAATCCTT 20 2 138 47.1 -54 -39.13 0.01 NO

N/A 14 857078 857098 + 26 GCGGAAGGACGGCGTCACTGG 21 1 66 72.73 -36.2 -54.85 0.01 NO
N/A 14 4018538 4018560 + 111 CAGCAGGACTGGCTTTGTTACGA 23 1 84 59.52 -38.9 -46.31 0.01 NO

miR-454 15 399864 399882 - 47 TAGTGCAATATTGCTTATA 19 1 89 41.57 -39.7 -44.61 0.01 NO
miR-301 15 406327 406349 - 424 CAGTGCAATAATATTGTCAAAGC 23 1 85 42.35 -29.34 -34.52 0.01 NO
miR-130 15 408409 408430 - 1639 CAGTGCAATATTAAAAGGGCAT 22 1 109 44.04 -37.9 -34.77 0.01 NO

N/A 15 769601 769618 + 25 ATCCCTTACTCACATGAG 18 1 88 50 -53.1 -60.34 0.01 NO
miR-1306 15 1296957 1296978 + 65 TGGACGTTGGCTCTGGTGGTGA 22 1 82 57.32 -33.7 -41.1 0.01 NO

N/A 15 10171741 10171758 + 12 CTGGAGGACACAGAGGCA 18 2 139 64.03 -67 -48.2 0.01 NO
miR-455 17 5339754 5339774 + 90 GCAGTCCATGGGCATATACAC 21 1 106 50.94 -44 -41.51 0.01 TATGTGCCCTTGGACTACATC
miR-199 17 5667203 5667224 + 149 ACAGTAGTCTGCACATTGGTTA 22 2 69 49.28 -29.6 -42.9 0.01 NO
miR-126 17 8431793 8431812 - 37 CATTATTACTTTTGGTACGC 20 1 85 49.41 -41.3 -48.59 0.01 CGTACCGTGAGTAATAATGC
miR-181 17 10218559 10218580 + 203 ACCATCGACCGTTGACTGTACC 22 1 95 41.05 -32.7 -34.42 0.01 AACATTCAACGCTGTCGGTGAG
miR-181 17 10220152 10220175 + 294 AACATTCATTGCTGTCGGTGGGTT 24 2 120 50.83 -48.1 -40.08 0.01 NO
miR-365 18 6437352 6437371 + 18 TAATGCCCCTAAAAATCCTT 20 2 83 42.17 -35 -42.17 0.01 NO

N/A 18 10554165 10554185 - 29 CGGCTTCTCGGTACCTGCGTT 21 1 73 58.9 -31.76 -43.51 0.01 NO
miR-142 19 497036 497057 - 25 CCCATAAAGTAGAAAGCACTAC 22 1 86 43.02 -43.6 -50.7 0.01 NO
miR-22 19 5352156 5352175 - 33 AGTTCTTCAGTGGCAAGCTT 20 1 90 48.89 -45.6 -50.67 0.01 NO
miR-144 19 5824134 5824154 - 76 TACAGTATAGATGATGTACTC 21 1 76 46.05 -34.1 -44.87 0.01 NO

N/A 19 7145042 7145061 - 199 CAGTGCAATGTTAAAAGGGC 20 1 92 46.74 -41.3 -44.89 0.01 NO
miR-21 19 7322089 7322111 + 223 TAGCTTATCAGACTGATGTTGAC 23 1 90 45.56 -45.4 -50.44 0.01 NO
miR-1 20 8107876 8107897 + 694 TGGAATGTAAAGAAGTATGTAT 22 2 83 39.76 -39.1 -47.11 0.01 NO

miR-133 20 8119113 8119134 + 45 TTTGGTCCCCTTCAACCAGCTG 22 3 84 41.67 -34 -40.48 0.01 NO
miR-130 20 8681835 8681852 + 181 TAAGGCACGCGGTGAATG 18 2 76 50 -34.5 -45.39 0.01 NO
miR-200 21 2583333 2583352 - 32 TAACACTGTCTGGTAACGAT 20 1 135 46.67 -53.5 -39.63 0.01 NO
miR-200 21 2585663 2585681 - 33 TAATACTGCCTGGTAATGA 19 1 84 41.67 -36.82 -43.83 0.01 NO

N/A 22 2685020 2685041 - 29 AAGGTCCAACCTCACATGTCCT 22 1 161 46.58 -77.64 -48.22 0.01 NO
N/A 23 1213487 1213505 + 13 TGCGCTTTCTCATCCCGGC 19 1 61 63.93 -31.7 -51.97 0.01 NO

miR-133 23 4664098 4664119 + 45 TTTGGTCCCCTTCAACCAGCTG 22 3 81 54.32 -42.3 -52.22 0.01 NO
miR-30 23 5248474 5248495 + 40045 CTTTCAGTCGGATGTTTACAGC 22 1 88 55.68 -47.9 -54.43 0.01 TGTAAACATCCTTGACTGGAAG
miR-30 23 5249653 5249675 + 45 TGTAAACATCCTACACTCTCAGC 23 2 87 52.87 -37 -42.53 0.01 NO
miR-100 24 3372906 3372927 + 173 AACCCGTAGATCCGAACTTGTG 22 1 63 42.86 -23.3 -36.98 0.01 NO

let-7 24 3380997 3381018 + 95 TGAGGTAGTAGGTTGTATAGTT 22 4 138 47.1 -54.2 -39.28 0.01 NO
let-7 26 1442757 1442778 - 95 TGAGGTAGTAGGTTGTATAGTT 22 4 103 45.63 -52.3 -50.78 0.01 NO
let-7 26 1442959 1442977 - 26 CTGAGGTAGTAGATTGAAT 19 1 98 43.88 -39.7 -40.51 0.01 NO

miR-29 26 2512579 2512598 - 29 TAGCACCATTTGAAATCAGT 20 2 113 43.36 -39.46 -34.92 0.01 NO
miR-205 26 2896068 2896089 + 26 TCCTTCATTCCACCGGAGTCTG 22 1 93 48.39 -41.62 -44.75 0.01 NO
miR-196 27 3553120 3553141 + 29 TAGGTAGTTTCATGTTGTTGGG 22 3 86 33.72 -32.2 -37.44 0.01 NO
miR-9 28 2709415 2709436 + 35 TAAAGCTAGAGAACCGAATGTA 22 1 84 39.29 -32.3 -38.45 0.01 NO
N/A MT 9050 9068 + 31 AGCTAGAGAGAGGGGACAC 19 1 107 45.79 -23.6 -22.06 0.01 NO

miR-10 Un_random 379349 379370 - 28660 TACCCTGTAGATCCGAATTTGT 22 1 86 38.37 -34.76 -40.42 0.01 NO
miR-146 Un_random 14731567 14731588 + 1596 TGAGAACTGAATTCCATGGACT 22 2 116 45.69 -52.43 -45.2 0.01 NO

N/A Un_random 16238906 16238925 + 31 ATGGGTCAAACGTTGACCAA 20 3 109 47.71 -44.5 -40.83 0.01 NO
N/A Un_random 21596967 21596984 - 17 GCAGGAGCGGGGCTCGGT 18 11 66 75.76 -41.4 -62.73 0.01 NO

miR-196 Un_random 27776519 27776540 - 29 TAGGTAGTTTCATGTTGTTGGG 22 3 84 41.67 -37.8 -45 0.01 NO
N/A Un_random 38326406 38326429 + 20 TCCCAGTGGAGCTCTGCAAGGACC 24 1 65 66.15 -33.9 -52.15 0.01 NO
N/A Un_random 47015331 47015348 - 17 GCAGGAGCGGGGCTCGGT 18 11 66 75.76 -41.4 -62.73 0.01 NO
N/A Un_random 61344147 61344164 - 17 GCAGGAGCGGGGCTCGGT 18 11 66 75.76 -41.4 -62.73 0.01 NO
N/A Un_random 63782874 63782891 + 17 GCAGGAGCGGGGCTCGGT 18 11 66 75.76 -41.4 -62.73 0.01 NO

miR-101 Z 28037921 28037942 + 233 GTACAGTACTGTGATAACTGAA 22 2 88 42.05 -37.2 -42.27 0.01 NO
N/A Z 34596495 34596514 + 31 TCCTTAACTCATGCCGCTGT 20 1 82 35.37 -31 -37.8 0.01 NO

miR-23 Z 41157420 41157440 + 32 GGGTTCCTGGCATGATGATTT 21 1 84 42.86 -39.1 -46.55 0.01 NO
miR-27 Z 41157702 41157722 + 58 TTCACAGTGGCTAAGTTCTGC 21 1 77 46.75 -41.2 -53.51 0.01 NO
miR-24 Z 41158218 41158238 + 26 TGGCTCAGTTCAGCAGGAACA 21 1 75 50.67 -28.5 -38 0.01 NO

Continued on Next Page. . .
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N/A Z 44167547 44167568 - 1825 AAAGGACGGAGGCGGCCCGCGC 22 1 81 74.07 -51.3 -63.33 0.01 NO
miR-9 Z 59286330 59286352 + 34 TCTTTGGTTATCTAGCTGTATGA 23 2 85 36.47 -38.4 -45.18 0.01 NO
N/A Z 68816780 68816803 - 841 ATGCAGAAGTGCACGGAAACAGCT 24 1 89 49.44 -40.4 -45.39 0.01 NO

miR-31 Z 71882219 71882240 - 1317 AGGCAAGATGTTGGCATAGCTG 22 1 109 45.87 -49.5 -45.41 0.01 NO



Appendix B

B.1 Conserved fruit miRNAs

B.2 Conserved leaf miRNAs

B.3 Conserved tomato miRNAs
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Table B.1: Cloning frequency of conserved tomato miRNAs from fruit.

miRNA Exact Shorter Longer 1 mismatch 2 mismatches Total

miR156 3 0 0 0 1 4
miR159 207 94 86 15 17 419
miR160 29 4 11 0 2 46
miR162 37 0 43 7 4 91
miR164 23 4 6 1 0 34
miR165 0 0 2 0 0 2
miR166 261 34 243 10 55 603
miR167 271 75 52 3 31 432
miR168 32 312 4 5878 2339 8565
miR169 427 36 145 30 28 666
miR170 18 3 2 0 2 25
miR171 2075 365 516 137 165 3258
miR172 61 30 36 4 10 141
miR319 19 0 7 0 4 30
miR390 25 15 5 0 5 50
miR393 2 0 0 0 0 2
miR394 0 0 0 0 0 0
miR395 0 0 1 0 0 1
miR396 49 28 10 9 18 114
miR397 0 0 0 0 0 0
miR398 0 0 0 4 4 8
miR399 2 0 0 4 0 6
miR403 0 0 0 0 20 20
miR408 0 0 0 0 3 3
miR472 0 0 0 0 0 0
miR482 0 0 0 0 7 7
miR828 0 0 0 0 6 6
miR858 0 0 0 0 92 92
miR894 0 0 2 1 1 4

miR1151 0 0 0 0 0 0

Table showing exact matches, “shorter” (where the sRNA is a substring of the miRNA),
“longer” (where the miRNA is a substring of the sRNA) and sRNAs with one and two
mismatches to the miRNA along with the total numbers.
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Table B.2: Cloning frequency of conserved tomato miRNAs from leaf.

miRNA Exact Shorter Longer 1 mismatch 2 mismatches Total

miR156 47 27 7 6 2 89
miR159 156 247 43 6 28 480
miR160 19 3 9 7 1 39
miR162 141 9 16 19 15 200
miR164 80 10 17 8 8 123
miR165 2 0 1 0 1 4
miR166 142 17 23 12 34 228
miR167 210 115 41 119 50 535
miR168 41 390 6 7913 2092 10442
miR169 19 1 7 0 0 27
miR170 10 5 1 0 2 18
miR171 3388 1270 281 350 278 5567
miR172 21 51 13 1 9 95
miR319 7 1 2 1 1 12
miR390 0 3 0 1 11 15
miR393 1 0 1 0 0 2
miR394 9 0 9 2 2 22
miR395 0 0 0 0 1 1
miR396 73 99 23 18 57 270
miR397 0 0 0 0 2 2
miR398 0 0 0 3 24 27
miR399 0 0 0 6 1 7
miR403 0 0 0 0 74 74
miR408 5 23 3 0 8 39
miR472 0 0 0 1 1 2
miR482 0 0 0 0 31 31
miR828 0 0 0 0 0 0
miR858 0 0 0 5 360 365
miR894 0 0 0 0 1 1

miR1151 0 0 0 0 2 2

Table showing exact matches, “shorter” (where the sRNA is a substring of the miRNA),
“longer” (where the miRNA is a substring of the sRNA) and sRNAs with one and two
mismatches to the miRNA along with the total numbers.
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Figure B.1: Secondary structure of sly-miR160. miRNA is highlighted in red and miRNA* in
pink.
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Figure B.2: Secondary structure of sly-miR167. miRNA is highlighted in red.
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Figure B.3: Secondary structure of sly-miR169a. miRNA is highlighted in red.
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Figure B.4: Secondary structure of sly-miR169b. miRNA is highlighted in red.
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Figure B.5: Secondary structure of sly-miR169c. miRNA is highlighted in red.
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Figure B.6: Secondary structure of sly-miR169d. miRNA is highlighted in red.
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Figure B.7: Secondary structure of sly-miR171a. miRNA is highlighted in red and miRNA* in
pink.
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Figure B.8: Secondary structure of sly-miR171b. miRNA is highlighted in red and miRNA* in
pink.
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Figure B.9: Secondary structure of sly-miR171c. miRNA is highlighted in red and miRNA* in
pink.
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Figure B.10: Secondary structure of sly-miR395a. miRNA is highlighted in red.
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Figure B.11: Secondary structure of sly-miR395b. miRNA is highlighted in red.
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Figure B.12: Secondary structure of sly-miR397. miRNA is highlighted in red and miRNA* in
pink.
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B.4 Novel tomato miRNAs
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Figure B.13: Secondary structure of sly-miRW. miRNA is highlighted in red.
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Figure B.14: Secondary structure of sly-miRX. miRNA is highlighted in red.
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Figure B.15: Secondary structure of sly-miRY. miRNA is highlighted in red.
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Figure B.16: Secondary structure of sly-miRZ. miRNA is highlighted in red and miRNA* in
pink.



Appendix C

C.1 Feature selection

Listed below are the 39 features used to train the SVM in Chapter 6.

Sequence Length

In plants there is a strong bias towards 21nt miRNAs and miRNA* sequences,

with the majority of plant miRNAs in the central miRNA repository, miRBase

[Griffiths-Jones et al., 2008] falling into this size class (Figure. C.1).

Features chosen:

• Length of predicted miRNA

• Length of predicted miRNA*

• Difference in length between the miRNA and miRNA*

Alignment properties and binding energy

The miRNA/miRNA* duplex are excised from characteristic miRNA precursor hairpins

(Figure. 2.1) and often show a typical 3’ two nucleotide overhang (Figure. C.2).

They are not usually perfectly complementary to one another and may contain several

mismatches and in some cases can contain “bulges” or asymmetrical unpaired bases.
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Figure C.1: Histogram showing the frequency of mature plant miRNA size classes in miRBase
11.0 (April 2008)

in addition miRNA/miRNA* duplexes are energetically stable and MFE is an important

feature in distinguishing miRNA/miRNA* pairs.

Features chosen:

• Complementarity score (+1 for canonical base pair between miRNA and miRNA*

and +0.5 for a G-U base)

• Number of mismatches between miRNA and miRNA* sequence

• Number of non-canonical (G-U) base pairs
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ath-miR161 5’ - C - 3’
UGAAAGUGACUA AUCGGGGU
|||||||||||| |:|:||

UCACUUUCACUGAU UGGUCC
ath-miR161* 3’ - U - 5’

Figure C.2: Complementary miRNA/miRNA* duplex of Arabidopsis thaliana ath-miR161 and
ath-miR161* showing the characteristic 2nt 3’ overhang

• Number of asymmetrical unpaired bases (bulges)

• Length of miRNA 3’ overhang

• Length of miRNA* 3’ overhang

• Length of miRNA 5’ overhang

• Length of miRNA* 5’ overhang

• MFE of the miRNA/miRNA* duplex

• Adjusted free energy (AMFE) of the miRNA/miRNA* duplex (MFE per 100nt)

Nucleotide composition

It is known that plant miRNAs show a bias towards uridine bases at the first posi-

tion in the sequence [Mi et al., 2008]. For this reason we capture the first four bases

of both the miRNA and miRNA* and use these as features in the SVM. Nucleotide

composition of both miRNA and miRNA* sequences can also be useful in distinguish-

ing real miRNA/miRNA* duplexes and can be effective in filtering out low-complexity

sequences.

Features chosen:
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• miRNA percentage A composition

• miRNA percentage G composition

• miRNA percentage C composition

• miRNA percentage U composition

• miRNA* percentage A composition

• miRNA* percentage G composition

• miRNA* percentage C composition

• miRNA* percentage U composition

• First base of the miRNA

• Second base of the miRNA

• Third base of the miRNA

• Fourth base of the miRNA

• First base of the miRNA*

• Second base of the miRNA*

• Third base of the miRNA*

• Fourth base of the miRNA*
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Base pairing properties

miRNA/miRNA* base-pairing (complementarity) is often imperfect including multiple

mismatches or non-canonical G-U base pairing. Several base pairing features can be

used in order to capture information about the complementarity between miRNA and

miRNA*.

Features chosen:

• Total number of unpaired bases in the miRNA

• Maximum number of consecutive unpaired bases in the miRNA

• Total number of unpaired bases in the miRNA*

• Maximum number of consecutive unpaired bases in the miRNA*

• Number of consecutive unpaired 5’ nucleotides in predicted miRNA

• Number of consecutive unpaired 3’ nucleotides in predicted miRNA

• Number of internal unpaired nucleotides in predicted miRNA

• Number of consecutive unpaired 5’ nucleotides in predicted miRNA*

• Number of consecutive unpaired 3’ nucleotides in predicted miRNA*

• Number of internal unpaired nucleotides in predicted miRNA*



Appendix D

D.1 No genome miRNA prediction results

D.1.1 Arabidopsis results

Column “Predicted miRNA” shows the sequence of the predicted mature miRNA; col-

umn “Predicted miRNA*” shows the sequence of the predicted mature miRNA*; col-

umn “p-value” shows the p-value assigned by LIBSVM to this prediction; column “Cor-

rect locus?” shows whether the predicted miRNA/miRNA* are present at the same

genomic locus; column “miRNA?” shows whether the predicted miRNA sequence is in

fact a bona-fide miRNA sequence.

Table D.1: miRNAs predicted in Arabidopsis using the no genome SVM method with a p-value
threshold of 0.90

miRNA miRNA* p-value Correct locus? miRNA?

TGCGGGAAGCATTTGCACATGT ACATGTGCAAATGCTTTCTACA 1.0000 Yes Yes
AGAATCTTGATGATGCTGCA GCAGCACCATTAAGATTCAC 1.0000 Yes Yes

AAAGCTCAGGAGGGATAGCGCC TGGCGCTATCCATCCTGAGTT 1.0000 Yes Yes
TTGAGCCGTGCCAATATCAC AGATATTGGTGCGGTTCAATC 1.0000 Yes Yes
TGAAAGTGACTACATCGGGG ACCCTGGTTTAGTCACTTTCA 1.0000 Yes Yes

TGGAGAAGCAGGGCACGTGCG GCACGTGTTCTACTACTCCAAC 1.0000 Yes Yes
TTGGACTGAAGGGAGCTCCTT GGAGATTCTTTCAGTCCAGTC 1.0000 Yes Yes
TTCGCTTGCAGAGAGAAATCAC TGATTCTCTGTGTAAGCGAAA 1.0000 Yes Yes
TTCCACAGCTTTCTTGAACTT GCTCAAGAAAGCTGTGGGAAA 1.0000 Yes Yes
TGCGGGAAGCATTTGCACATG CATGTGCAAATGCTTTCTACA 1.0000 Yes Yes
GCTCTCTATACTTCTGTCACC TTGACAGAAGATAGAGAGCA 1.0000 Yes Yes
TGAAGCTGCCAGCATGATCTA TAGATCATGTTCGCAGTTTCA 1.0000 Yes Yes
TGCAGCCAAGGATGACTTGCC GCAAGTTGTCCTTGGCTACA 1.0000 Yes Yes
TGAAAGTGACTACATCGGGGTT ACCCTGGTTTAGTCACTTTCA 1.0000 Yes Yes
TTGAGCCGTGCCAATATCACG AGATATTGGTGCGGTTCAATC 1.0000 Yes Yes
TCAATGGTGTCTAATAAGTTTT TAACTTATTAGACACCATGAT 1.0000 No No
TTCTAAGTCCAACATAGCATA CGCTATGTTGGACTTAGAATA 1.0000 No No
TAACTTATTAGACACCATGA CAATGGTGTCTAATAAGTTT 1.0000 No No

Continued on Next Page. . .
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miRNA miRNA* p-value Correct locus? miRNA?

TCCTAAGTCCAACATAGCGTT TGCTATGTTGGACTTAGAATA 1.0000 No No
TTCTACCATCCGATCAACAAG TGATTGATAGGATGGTAGAAG 1.0000 No No
GGGCATTTTCGTGATTTGTG GCCCAAATCACGAAAATGCCC 1.0000 No No
TTTTGCATATCCTGGAATATG ACATATTTCAGTATATGCAAA 1.0000 No No

GGGCATTTTCGTGATTTGTGC GCCCAAATCACGAAAATGCCC 1.0000 No No
TTGATGATTCGACAAAGTGAA TCACTTTGTCGAGTCACCAAG 1.0000 Yes Yes

TGAAGCTGCCAGCATGATCTAA TAGATCATGTTCGCAGTTTCA 1.0000 Yes Yes
GATCATGTTCGCAGTTTCACC GAAGCTGCCAGCATGATCTA 1.0000 Yes Yes
ATATTCCAGGATATGCAAAAG TTTTGCATATCCTAGAATATA 1.0000 No No
TATTCCAGGATATGCAAAAGA TTTTGCATATCCTAGAATATA 1.0000 No No

GGGCATTTTCGTGATTTGGGC GCACAAATCACGAAAATGCCC 1.0000 No No
TCAATGGTGTCTAATAAGTTT TAACTTATTAGACACCATGAT 1.0000 No No

TCGCTTGGTGCAGGTCGGGAA TCCCGCCTTGCATCAACTGAA 1.0000 Yes Yes
TCAATGCATTGAAAGTGACTA TTTAGTCACTTTCACTGCATT 1.0000 Yes Yes
TAGACCATTTGTGAGAAGGGA CCCTTCTCATCGATGGTCTAG 1.0000 Yes Yes
TTGACAGAAGATAGAGAGCAC GCTCTCTATACTTCTGTCACC 1.0000 Yes Yes
CAGCCAAGGATGACTTGCCGA GGCAAGTTGTCCTTGGCTAC 1.0000 Yes Yes
GTTCAATAAAGCTGTGGGAAG TTCCACAGCTTTCTTGAACT 1.0000 Yes Yes
TTTAGTCACTTTCACTGCATT CAATGCATTGAAAGTGACTA 1.0000 Yes Yes

GCTCAAGAAAGCTGTGGGAAA TTCCACAGCTTTCTTGAACT 1.0000 Yes Yes
TAGGACGCATAACATACTGGTA TACCAGTATCTTATGCGTCCTA 1.0000 No No
AGATAGGACGCATAACATACTG CAGTATCTTATGCGTCCTATCT 1.0000 No No
AAGCTCAGGAGGGATAGCGCC TGGCGCTATCCATCCTGAGTT 1.0000 Yes Yes

TTGAAAGTGACTACATCGGG CCTGGTTTAGTCACTTTCACT 1.0000 Yes Yes
AAGCTCAGGAGGGATAGCGC GCGCTATCCATCCTGAGTTCC 1.0000 Yes Yes
TTGAAAGTGACTACATCGGGG ACCCTGGTTTAGTCACTTTCA 1.0000 Yes Yes
CGGTTCAATAAAGCTGTGGGA TTCCACAGCTTTCTTGAACT 1.0000 Yes Yes

GAATCTTGATGATGCTGCAT GCAGCACCATTAAGATTCAC 1.0000 Yes Yes
TGAAGCTGCCAGCATGATCT TAGATCATGTTCGCAGTTTCA 1.0000 Yes Yes

TTGAAAGTGACTACATCGGGGT ACCCTGGTTTAGTCACTTTCA 1.0000 Yes Yes
TGAAAGTGACTACATCGGGGT ACCCTGGTTTAGTCACTTTCA 1.0000 Yes Yes
CAGCCAAGGATGACTTGCCG GCAAGTTGTCCTTGGCTACA 1.0000 Yes Yes
TGACAGAAGAGAGTGAGCAC GCTCACTGCTCTTTCTGTCAG 1.0000 Yes Yes
TCGCTTGGTGCAGGTCGGGA TCCCGCCTTGCATCAACTGAA 1.0000 Yes Yes
TTCCACAGCTTTCTTGAACTG CGGTTCAATAAAGCTGTGGGA 1.0000 Yes Yes
CCTTCTCATCGATGGTCTAGA TAGACCATTTGTGAGAAGGG 1.0000 Yes Yes
TGGCGCTATCCATCCTGAGTT AAGCTCAGGAGGGATAGCGCCA 1.0000 Yes Yes
TGATGATTCGACAAAGTGAAG TCACTTTGTCGAGTCACCAAG 1.0000 Yes Yes
TGGAGAAGCAGGGCACGTGC GCACGTGTTCTACTACTCCAAC 1.0000 Yes Yes
GCAAGTTGACCTTGGCTCTGC TGAGCCAAGGATGACTTGCC 1.0000 Yes Yes
GAAGCTGCCAGCATGATCTA TAGATCATGTTCGCAGTTTCA 1.0000 Yes Yes

GGCAAGTTGTCCTTGGCTACA GGTAGCCAAGGATGACTTGCC 1.0000 No Yes
TGATTGAGCCGCGCCAATATC AGATATTAGTGCGGTTCAATC 1.0000 No Yes
GTGGCATCATCAAGATTCAC AGAATCTTGATGATGCTGCAC 1.0000 No Yes

TGAGCCAAGGATGACTTGCCG GGCAAGTTGTCCTTGGCTAC 1.0000 No Yes
AGATATTGGTGCGGTTCAATC TGATTGAGCCGCGCCAATATCC 1.0000 No Yes
GGAATCTTGATGATGCTGCAT GGAGCATCATCAAGATTCACA 1.0000 No Yes
TTGGACTGAAGGGAGCTCCC GGAGATTCTTTCAGTCCAGTC 1.0000 No Yes

TTGGACTGAAGGGAGCTCCCT GGAGATTCTTTCAGTCCAGTC 1.0000 No Yes
GGAGATTCTTTCAGTCCAGTC GATTGGACTGAAGGGAGCTCC 1.0000 No Yes

CTTGGACTGAAGGGAGCTCCC GGAGATTCTTTCAGTCCAGTC 1.0000 No Yes
CGACAGAAGAGAGTGAGCAC GCTCACTCTCTTTTTGTCATA 1.0000 No Yes

TGGAGAAGCAGGGCACGTGCAT GCACGTGTTCTACTACTCCAAC 1.0000 No Yes
TGAAGCTGCCAGCATGATCTAT TAGATCATGTTCGCAGTTTCA 1.0000 No Yes
TTGACAGAAGAGAGTGAGCAC GCTTACTCTCTCTCTGTCACC 1.0000 No Yes
TGGAGAAGCAGGGCACGTGCA GCACGTGTTCTACTACTCCAAC 1.0000 No Yes
ATGAAGCTGCCAGCATGATCTA TAGGTCATGCTGGTAGTTTCAC 1.0000 No Yes
TGAAGCTGCCAGCATGATCTG TAGATCATGTTCGCAGTTTCA 1.0000 No Yes
GGCAAGTTGTCCTTGGCTAC TGAGCCAAGGATGACTTGCC 1.0000 No Yes

TGAAGCTGCCAGCATGATCTGG TAGATCATGTTCGCAGTTTCA 1.0000 No Yes
GTGAAGCTGCCAGCATGATCTA TAGATCATGTTCGCAGTTTCA 1.0000 No Yes
GGGCATCTTTCTATTGGCAGG CCTGCCAAAGGAGAGTTGCCC 1.0000 No Yes

TCGCTTGGTGCAGGTCGGGAAC TCCCGCCTTGCATCAACTGAA 0.9900 Yes Yes
AGAGCTTCCTTGAGTCCATTC GATTGGACTGAAGGGAGCTCC 0.9900 Yes Yes
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TGATTCTCTGTGTAAGCGAAA TTCGCTTGCAGAGAGAAATCA 0.9900 Yes Yes
CGCTATCCATCCTGAGTTTC AAGCTCAGGAGGGATAGCGC 0.9900 Yes Yes

CATGTGCAAATGCTTTCTACAG TGCGGGAAGCATTTGCACATGT 0.9900 Yes Yes
CGCTATCCATCCTGAGTTCC AAGCTCAGGAGGGATAGCGC 0.9900 Yes Yes

TAAGCTGCCAGCATGATCTTG TAGGTCATGCTGGTAGTTTCAC 0.9900 Yes Yes
TGCCTGGCTCCCTGTATGCCA GCGTACAAGGAGTCAAGCATG 0.9900 Yes Yes
TCCCAAATGTAGACAAAGCA CTTTGTCTACAATTTTGGAA 0.9900 Yes Yes

TGCCAAAGGAGAGTTGCCCTG GGGCATCTTTCTATTGGCAGG 0.9900 Yes Yes
TGACAGAAGAGAGTGAGCACA GCTCACTGCTCTTTCTGTCAG 0.9900 Yes Yes
TTGCCGACCCTCAGTAGGAGC TGCGTTCCTACCGAGGTCGGC 0.9900 No No
GCGGAGGACATTGTCAGGTGG TCACTTGATGATGTTCTTCGA 0.9900 No No

AGATATTAGTGCGGTTCAATC TGATTGAGCCGCGCCAATATCT 0.9900 No Yes
GAGAATCTTGATGATGCTGCAT GGAGCATCATCAAGATTCACA 0.9900 No Yes
CAGCCAAGGATGACTTGCCGG GCAAGTTGTCCTTGGCTACA 0.9900 No Yes
TAGCCAAGGATGACTTGCCTG TGGCAAGTTGTCCTTCGGCTAC 0.9900 No Yes

GGCAAGTTGTCCTTCGGCTACA GGTAGCCAAGGATGACTTGCC 0.9900 No Yes
AGAATCTTGATGATGCTGCAT GGAGCATCATCAAGATTCACA 0.9900 No Yes

TAGCCAAGGATGACTTGCCTGT TGGCAAGTTGTCCTTCGGCTAC 0.9900 No Yes
TGTTGATCGGATGGTAGAAAC TTCTTCTACCATCCTATCAAT 0.9900 No No
TTTGGATTGAAGGGAGCTCT AGAGCTTCCTTGAGTCCATTC 0.9900 No Yes

ATGCCTGGCTCCCTGTATGCC GCGTACAAGGAGTCAAGCATG 0.9900 Yes Yes
TACGAGCCACTTGAAACTGAA TCAATTTCTAGTGGGTCGTAT 0.9900 Yes Yes
GGCAAGTTGTCCTTCGGCTAC TGAGCCAAGGATGACTTGCC 0.9900 No Yes
GGAGAAGCAGGGCACGTGCA GCACGTGTTCTACTACTCCAAC 0.9900 No Yes
TTTGGATTGAAGGGAGCTCTA AGAGCTTCCTTGAGTCCATTC 0.9900 No Yes
TGTGTTCTCAGGTCACCCCTG AGGGTTGATATGAGAACACAC 0.9900 Yes Yes
GGAGGGCGCGGCGGTCGCTG GCCCGCTGCGCCTCCTCCGA 0.9900 No No
AGAATCTTGATGATGCTGCAG GGAGCATCATCAAGATTCACA 0.9900 Yes Yes
TGTGTTCTCAGGTCACCCCTT AGGGTTGATATGAGAACACAC 0.9900 No Yes
TGCCTGGCTCCCTGTATGCC GCGTATGAGGAGCCATGCAT 0.9900 Yes Yes

TTGACAGAAGAAAGAGAGCAC GCTCTCTTTCCTTCTGCCACC 0.9900 Yes Yes
CGCTATCCATCCTGAGTTTCA AAAGCTCAGGAGGGATAGCGC 0.9900 Yes Yes
GAACTAGAAAAGACATTGGAC TATCCAATGCTTTTTCTAGTT 0.9900 No No

TGGCAGAGTGGCCTTGCTGCC TGGTGCAAGGTATACTTTGTT 0.9900 No No
GCTCTCTAGCCTTCTGTCATC TGACAGAAGATAGAGAGCAC 0.9900 Yes Yes
GCAAGTTGACCTTGGCTCTGT TGAGCCAAGGATGACTTGCC 0.9900 Yes Yes
CATGTGCAAATGCTTTCTACA CGGGAAGCATTTGCACATGTT 0.9900 Yes Yes
TTGTTGATCGGATGGTAGAAA TTCTTCTACCATCCTATCAAT 0.9900 No No

TAAGCTGCCAGCATGATCTTGT TAGGTCATGCTGGTAGTTTCAC 0.9900 Yes Yes
GCAGCACCATTAAGATTCACA TGAGAATCTTGATGATGCTGC 0.9900 Yes Yes
TTCTAAGTTCAACATATCGAC CGCTATGTTGGACTTAGAATA 0.9900 No No
TCAATGCATTGAAAGTGACT TCACTTTCACTGCATTAATC 0.9900 Yes Yes

TCGAGTTCCAACCTCTTCAAC TTGAAGAGGACTTGGAACTTC 0.9900 Yes Yes
TTTCTACCATCCGATCAACAAG TGATTGATAGGATGGTAGAAG 0.9900 No No
TTGGATTGAAGGGAGCTCTA AGAGCTTCCTTGAGTCCATTC 0.9900 No No
TGAGAATCTTGATGATGCTGC GGAGCATCATCAAGATTCACA 0.9900 Yes Yes

ATGGAGAAGCAGGGCACGTGCA GCACGTGTTCTACTACTCCAAC 0.9800 No Yes
TATGAGAGTATTATAAGTCAC TATTTGTAATATTTTTATGTT 0.9800 No Yes

TTGTTGATCGGATGGTAGAAAC TTCTTCTACCATCCTATCAAT 0.9800 No No
GGGTTGATATGAGAACACACG TGTGTTCTCAGGTCACCCCT 0.9800 Yes Yes
TTCGGACCAGGCTTCATTCCC TGAATGATGCCTGGCTCGAGA 0.9800 No Yes

GGGCAACTGCGTGGTAACTGGT CCTGTTACCACTGAAGTTGCCC 0.9800 No No
GCTCTCTATACTTCTGTCACCA TGACAGAAGAAAGAGAGCAC 0.9800 No Yes
CGCGGATTACGGTGGCGGCCT TGCCGTGATCGTGGTCTGCA 0.9800 Yes Yes
CCTGGTTTAGTCACTTTCACT GAAAGTGACTACATCGGGGT 0.9800 Yes Yes
AGAATCTTGATGATGCTGCATT GGAGCATCATCAAGATTCACA 0.9800 No Yes

TTAGATTCACGCACAAACTC TGTTTTGTGCTTGAATCTAA 0.9800 Yes Yes
TATTGGCCTGGTTCACTCAGA TGATTGAGCCGCGCCAATAT 0.9800 Yes Yes
TTGGCATTCTGTCCACCTCC AGGTGGGCATACTGCCAATA 0.9800 Yes Yes

TCGGACCAGGCTTCATTCCCC TGAATGATGCCTGGCTCGAGA 0.9800 Yes Yes
TCGGACCAGGCTTCATTCCC TGAATGATGCCTGGCTCGAGA 0.9800 Yes Yes

GCGTACAAGGAGTCAAGCATG TGCCTGGCTCCCTGTATGCC 0.9800 Yes Yes
ATTGAAAGTGACTACATCGGGG ACCCTGGTTTAGTCACTTTCA 0.9800 Yes Yes

TTACTTATGGTACCGTAGTAA TACTTATGGTACCGTAGTAAA 0.9800 Yes Yes
Continued on Next Page. . .
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TCCAATGCTTTTTCTAGTTTCG GAACTAGAAAAGACATTGGA 0.9800 No No
TGTGCAAATGCTTTCTACAGG TGCGGGAAGCATTTGCACATGT 0.9800 Yes Yes
TGCGAGAAGCATTTGCACATG ACATGTGCAAATGCTTTCTAC 0.9800 No No
TTTGGATTGAAGGGAGCTCTT AGAGCTTCCTTGAGTCCATTC 0.9800 No Yes
AGAATCTTGATGATGCTGCATC GGAGCATCATCAAGATTCACA 0.9800 No Yes
TGTTGATCGGATGGTAGAAACA TTCTTCTACCATCCTATCAAT 0.9800 No No

GCAGCACCATTAAGATTCAC TGGGAATCTTGATGATGCTGC 0.9800 Yes Yes
TTTGGATTGAAGGGAGCTCTAC AGAGCTTCCTTGAGTCCATTC 0.9700 No Yes
TGACAGAAGAAAGAGAGCAC GCTCTCTAGCCTTCTGTCATCA 0.9700 No Yes
TTAGATGACCATCAACAAACT TAGTTTGTTTGATGGTAACTA 0.9700 No Yes

GCTCACTGCTCTATCTGTCAGA CGACAGAAGAGAGTGAGCAC 0.9700 No Yes
CGGACCAGGCTTCATCCCCC GGATGGGTCGGCCGGTCCGC 0.9700 No Yes

GGCCTCGATGAGTAGGAGGGC CCCTTCTCATCGATGGTCTAG 0.9700 No No
TTGAATTGAAGTGCTTGAATT TTCAAGGACTTCTATTCAGA 0.9700 Yes Yes

TTCGCAGGAGAGATAGCGCCA TGGCGCTATCCATCCTGAGTT 0.9700 No Yes
GTGTTCTCAGGTCACCCCTGC AGGGTTGATATGAGAACACAC 0.9700 Yes Yes
AGAGCTTTCTTCGGTCCACTC GATTGGACTGAAGGGAGCTCC 0.9700 No Yes
TTAGATTCACGCACAAACTCG TGTTTTGTGCTTGAATCTAAT 0.9700 Yes Yes

GGAGGCAGCGGTTCATCGATC TCGATAAACCTCTGCATCCA 0.9700 Yes Yes
AGCTTCCTTGAGTCCATTCAC GATTGGACTGAAGGGAGCTCC 0.9700 Yes Yes
CGCTATCCATCCTGAGTTCCA AAAGCTCAGGAGGGATAGCGC 0.9700 Yes Yes
TCGATAAACCTCTGCATCCAG GGAGGCAGCGGTTCATCGATC 0.9700 Yes Yes
TTTTGCATATACTCGAATACC TATTCTAGGATATGCAAAAGT 0.9700 No No
TCCAATGTCTTTTCTAGTTCG AAACTAGAAAAAGCATTGGATA 0.9700 No No

TGGGCAACTGCGTGGTAACTGG CCTGTTACCACTGAAGTTGCCC 0.9700 No No
ACATGTGCAAATGCTTTCTACA GCGGGAAGCATTTGCACATGT 0.9700 Yes Yes
GCAGCACCATTAAGATTCACAT GGAATCTTGATGATGCTGCA 0.9700 No Yes
TCCCAAATGTAGACAAAGCAA TCTTTGTCTACAATTTTGGAAA 0.9600 Yes Yes
ATGTGCAAATGCTTTCTACAG TGCGGGAAGCATTTGCACATGT 0.9600 Yes Yes

CCTATACCCGGCCGTCGGGGC CCAAATGGCTGGGTTTTGGGA 0.9600 No No
TTCTAAGTCCAACATAGCGTA CGATATGTTGAACTTAGAATA 0.9600 No No

TCCAATGTCTTTTCTAGTTCGT AAACTAGAAAAAGCATTGGATA 0.9600 No No
GGTAGGACGTGTCGGCTGCT CAGTATCTTATGCGTCCTATCT 0.9600 No No
TGTGTAATTGTGTGTCAGCCA TGGGTGACACATCATCACACA 0.9600 No No
TCTCAAGAAGGTGCATGAACA TACTATGCTGCCATCTTGAGAT 0.9500 No Yes

TTCGGACCAGGCTTCATTCCCC TGAATGATGCCTGGCTCGAGA 0.9500 No Yes
GACGCGGATTACGGTGGCGGCC TGCCGTGATCGTGGTCTGCA 0.9500 Yes Yes

TTTGCATATACTCGAATACCT ACATATTTCAGTATATGCAAA 0.9500 No No
TGTGAACATATTCAAGGATAAC TATTGTTTTGAATGTGTTCAA 0.9500 No No
AGAATCCTGATGATGCTGCAT GGAGCATCATCAAGATTCACA 0.9500 No No
TCCCGCCTTGCATCAACTGAA CGCTTGGTGCAGGTCGGGAA 0.9500 Yes Yes
TCGGACCAGGCTTCATCCCC GGGATGGGTCGGCCGGTCCGC 0.9500 No Yes
GCGTATGAGGAGCCATGCATA TGCCTGGCTCCCTGTATGCC 0.9500 Yes Yes

TGGAGGCAGCGGTTCATCGATC CGATAAACCTCTGCATCCAG 0.9400 Yes Yes
TCAATGCATTGAAAGTGACTAC GTCACTTTCACTGCATTAATC 0.9400 Yes Yes

TTGCATATACTCGAATACCTA ACATATTTCAGTATATGCAAA 0.9400 No No
CGGACCAGGCTTCATTCCCC TGAATGATGCCTGGCTCGAGA 0.9400 Yes Yes
GTTATTCTATTCCACCTCTTA TTAGGAGGTTGAATGAGTAGT 0.9400 No No

TCGGACCAGGCTTCATTCCCCC TGAATGATGCCTGGCTCGAGA 0.9400 No Yes
CCCTACTGATGCCCGCGTCGCG TACGCGACGGGGTATTGTAAG 0.9400 Yes Yes
CTGACAGAAGATAGAGAGCAC GCTCACTGCTCTTTCTGTCAG 0.9400 No Yes
CGGAGCTGTGTCAACTCGTGC GCAAGTTGACTTTGGCTCTGT 0.9400 No No

TATTCTAGGATATGCAAAAGT TGTTTTCTTTTGCATATCCTGG 0.9300 No No
CCCGCCTTGCATCAACTGAAT TCGCTTGGTGCAGGTCGGGA 0.9300 Yes Yes
TGCCACGATCCACTGAGATTC TACTCTCAGAGGATCAGTTGC 0.9300 No No

CCTAACGGCGTGCCTCGGCATC GCCGAGGGCACGTCTGCCTGGG 0.9300 Yes Yes
TGCACTGCCTCTTCCCTGGC GGAGAAGCAGGGCACGTGCAT 0.9300 No Yes
GCACATGGGTTAGTCGATCC GGATCGCATGGCCTCTGTGCT 0.9300 No No

CGTACAAGGAGTCAAGCATGA TGCCTGGCTCCCTGTATGCC 0.9300 Yes Yes
CCAAAACCCGGTGGATAAAA TTATCCCCCGTGTTTTGTCC 0.9300 Yes Yes

GGCAAGTGTGCCACGAGACCGG TCGGATTTTGGATACTTGCCT 0.9300 No No
CGATCCCCCGCATCTCCACCA GGTGGAGGTGTTGGGTTCGAGA 0.9300 No No

TTTATCTAGATGATGCATTTC TATTGTGTTTTATCTAGATGA 0.9300 Yes Yes
TAGCCAAGGATGACTTGCCTGA GCAAGTTGACCTTGGCTCTGT 0.9200 No Yes
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CGGAGGACATTGTCAGGTGG CACGTGGCAATGAACTCCTTC 0.9200 No No
GATCCCCGGCAACGGCGCCA GAGGTGTTGTCTTCGTGGATCT 0.9200 No No
TGATTGAGCCGTGTCAATATC AGATATTAGTGCGGTTCAATC 0.9200 No Yes

TGCGCCCGCCGCCCGATTGCC GAGTATTCGATTGCGGCGGCGC 0.9200 No No
GGTCGGCTTGTCCCTTCGGTC TACCACAGGGATAACTGGCTT 0.9200 No No
TCATTGAGTGCATCGTTGATG TGTGGATGATGCACTCAATCT 0.9200 No Yes
TGGAGTGATGCTTCTCGACTA TACGTGGAGGCATCCCTTCAC 0.9200 No No
CATTCAAGGACTTCTATTCAG TTTGAATTGAAGTGCTTGAAT 0.9200 Yes Yes

CCGACGCGGATTACGGTGGCG TCGCTGCCGTGATCGTGGTCT 0.9200 Yes Yes
TAATACTAAACATATTCATGG TCGAATATGTTTTGTATTATT 0.9200 No No

CGACGCGGATTACGGTGGCGGC TGCCGTGATCGTGGTCTGCA 0.9200 Yes Yes
CCCTACTGATGCCCGCGTCGC TACGCGACGGGGTATTGTAAG 0.9200 Yes Yes
TCTTTGTCTACAATTTTGGAAA TTCCCAAATGTAGACAAAGCA 0.9200 Yes Yes
TGTGTTTTATCTAGATGATGC TGTTTTATCTAGATGATGCAT 0.9200 Yes Yes

TCGGACCAGGCTTCATCCCCC GGATGGGTCGGCCGGTCCGC 0.9100 No Yes
CACTGAAGGACCTAAACTAAC TTGTTTAGGTCCCTTAGTTT 0.9100 Yes Yes
TTAGATTCACGCACAAACTCGT TGTTTTGTGCTTGAATCTAAT 0.9100 Yes Yes
TGGTCGGCTTGTCCCTTCGGT TACCACAGGGATAACTGGCTT 0.9100 No No
CGCTATGTTGGACTTAGGATG TTCTAAGTTCAACATATCGACG 0.9100 No No

TCGATCCCCGGCAACGGCGCCA GAGGTGTTGTCTTCGTGGATCT 0.9100 No No
CAATGCATTGAAAGTGACTA GTCACTTTCACTGCATTAATC 0.9000 Yes Yes

TTTGGATTGAAGGGAGCTCTTC GGAGATTCTTTCAGTCCAGTC 0.9000 No Yes
CGACGGGGTATTGTAAGTGGC TGGTCACAACAATATTCCGTTG 0.9000 No No
CGGAGGACATTGTCAGGTGGG CACGTGGCAATGAACTCCTTC 0.9000 No No

TGACAGAAGATAGAGAGCAC TCTCTAGCCTTCTGTCATCACC 0.9000 Yes Yes
TGCACTGCCTCTTCCCTGGCT GGAGAAGCAGGGCACGTGCAT 0.9000 No Yes
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D.1.2 Oryza sativa results

Column “Predicted miRNA” shows the sequence of the predicted mature miRNA; col-

umn “Predicted miRNA*” shows the sequence of the predicted mature miRNA*; col-

umn “p-value” shows the p-value assigned by LIBSVM to this prediction; column “Cor-

rect locus?” shows whether the predicted miRNA/miRNA* are present at the same

genomic locus; column “miRNA?” shows whether the predicted miRNA sequence is in

fact a bona-fide miRNA sequence.

Table D.2: miRNAs predicted in rice using the no genome SVM method with a p-value threshold
of 0.90

miRNA miRNA* p-value Correct locus? miRNA?

CAGCCAAGGATGACTTGCCGG GGCAAGTCTGTCCTTGGCTAC 0.9989 Yes Yes
CAGCCAAGGATGACTTGCCGA CGGCAAGTTGTCCTTGGCTAC 0.9986 No Yes
TCGCTTGGTGCAGATCGGGA CCCGCCTTGCACCAAGTGAA 0.9985 Yes Yes

TGGAAGGGGCATGCAGAGGAG CCTGTGCTTGCCTCTTCCAT 0.9985 Yes Yes
TCGCTTGGTGCAGATCGGGAC TCCCGCCTTGCACCAAGTGAAT 0.9981 Yes Yes

TCGCTTGGTGCAGATCGGGACC TCCCGCCTTGCACCAAGTGAAT 0.9981 Yes Yes
TTGGACTGAAGGGTGCTCCCT GAGCTCCTTTCGGTCCAAAAA 0.9980 No Yes
TGCACTGCCTCTTCCCTGGC CAGGGATGAGGCAGAGCATGG 0.9972 Yes Yes
TGACAGAAGAGAGTGAGCAC GCTCACTTCTCTTTCTGTCAG 0.9971 Yes Yes

CGACGCGCCGCGGCCGGCCGC CCGGCACGGTGGCTGCGCGTC 0.9962 No No
GGCAGTCTCCTTGGCTAGCC ATAGCCAAGGATGACTTGCCT 0.9950 Yes Yes
TGATTGAGCCGCGCCAATATC TGTTGGCATGGTTCAATCAAA 0.9949 No Yes
TTGACAGAAGAGAGTGAGCAC GCTCACTCCTCTTTCTGTCACC 0.9944 Yes Yes
CCCGCCTTGCACCAAGTGAAT TCGCTTGGTGCAGATCGGGA 0.9941 Yes Yes
TTGGATTGAAGGGAGCTCTG GAGCGTCCTTCAGTCCACTC 0.9914 No Yes

CTGCACTGCCTCTTCCCTGGC CAGGGATGAGGCAGAGCATGG 0.9912 Yes Yes
TGCCTGGCTCCCTGTATGCCG GCATTGAGGGAGTCATGCAGG 0.9818 No Yes
TAGCCAAGAATGACTTGCCTA CGGCAAGTTGTCCTTGGCTAC 0.9771 No Yes

GCGCGCGACCCACACCAGGCC TACCTGGTGTGAATTGCA 0.9713 No No
CCCCGGCAGAGAGCGCGACC GGACGTGTTCCGGCTGCCGG 0.9684 No No

AGGGCCCGTGCCACCGGCCAA GCCGGAGGTAGGGTCCAGC 0.9680 No No
CGGCAAGCTAGAGACAGCAAC TGCAGTTGTTGTCTCAAGCTTG 0.9677 No Yes
ATGCCTGGCTCCCTGTATGCCA GCGTGCGAGGAGCCAAGCATGA 0.9646 Yes Yes
TGGTGAGCCTTCCTGGCTAAG TTAGCCAAGAATGGCTTGCCTA 0.9641 Yes Yes
GCTGACGAGCGGGAGGCCCT GGGGGCCTTCCCCGGGCGT 0.9623 No No
TCCACAGGCTTTCTTGAACTG TTCAAGAAAGTCCTTGGAAA 0.9613 Yes Yes
TTGAGTGCAGCGTTGATGAAC TCACCAGCACTGCACCCAATC 0.9556 Yes Yes

CCCGCCACCGGCGCCGCTTCC GCGGTGGCGGAGGTGGGGGCTG 0.9550 No No
CCCCGCGTCGCACGGATTCGT CAGAACTGGCGATGCGGGAT 0.9453 No No
TCGGACCAGGCTTCATTCCCC GGGCGATGAATCAGGTCCGAC 0.9417 No Yes
TGCCTGGCTCCCTGAATGCCA GCGTGCGAGGAGCCAAGCATG 0.9364 No Yes
TCGGACCAGGCTTCATTCCC TGAACCGGAAGCCTGGTT 0.9164 No Yes

TCGGACCAGGCTTCATTCCTC GAACCGGAAGCCTGGTTA 0.9155 No Yes
TGCCAAAGGAGAGTTGCCCTG GGCAGTCTCCTTGGCTAG 0.9139 No Yes
TGGCCGCTGATGACCCACCTC GGGGTCTCCGGTGGCCACGGC 0.9028 No No
TGTGGTCTTGCCTATGTGGCA TCCACATGGCGTGCCACGTAA 0.9024 No No

TTGAGTGCAGCGTTGATGAACC TCACCAGCACTGCACCCAATC 0.9014 Yes Yes
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D.1.3 Solanum lycopersicum results

Column “Predicted miRNA” shows the sequence of the predicted mature miRNA;

column “Predicted miRNA*” shows the sequence of the predicted mature miRNA*;

column “p-value” shows the p-value assigned by LIBSVM to this prediction; column

“miRNA abundance” shows the abundance of the predicted miRNA; column “miRNA*

abundance” shows the abundance of the predicted miRNA*.

Table D.3: miRNAs predicted in tomato using the no genome SVM method with a p-value
threshold of 0.90

miRNA miRNA* p-value miRNA abundance miRNA* abundance

CAGACACGTTGTCCTAACCGA TCGGTTAGGACAACATGTCTG 0.9999 26 17
TAGGACAACATGTCTGGATGAC TCATCCAGACACGTTGTCCTAA 0.9999 80 14
TCGGTTAGGACAACATGTCTGG CCAGACACGTTGTCCTAACCGA 0.9999 197 67
CAGACACGTTGTCCTAACCGAC TCGGTTAGGACAACATGTCTGT 0.9999 107 17
TTAGGACAACATGTCTGGATGA TCATCCAGACACGTTGTCCTAA 0.9999 92 67

TTGAGCCGTGCCAATATCAC TGATGTTGGAATGGCTCAAT 0.9998 70 8
CGGTTAGGACAACATGTCTGG CCAGACACGTTGTCCTAACCG 0.9998 47 8
TTTATCGTGAGTGGCACATGGT AACCATGTGCCACTCTCGATAA 0.9997 26 13
TCCATTTACGTGCAAGCGCAG CTGCGCTTGCCCGTAAATGGA 0.9997 27 16
ACATATATAGTCACACCGATTA TAATCGGTGTGACTATATATGC 0.9997 20 15

TCCATTTACGTGCAAGCGCAGT ACTGCGCTTGCCCGTAAATGGA 0.9997 45 16
CGGTTAGGACAACATGTCTGGA CCAGACACGTTGTCCTAACCGA 0.9996 250 67
CCAGACACGTTGTCCTAACCGA TCGGTTAGGACAACATGTCTG 0.9996 67 5
TCAACCATGTGCCACTCTCGA TCGTGAGTGGCACATGGTTAAT 0.9996 36 7
TCAACCATGTGCCACTCTCGAT TCGTGAGTGGCACATGGTTAAT 0.9995 50 26
TTGAGCCGTGCCAATATCACG TGATGTTGGAATGGCTCAAT 0.9994 96 8
GTGTGCTGGATTATGACTGAA GCTCAGTCATAATCCAGCACA 0.9994 29 5

TTCCATGAGACTGTTTTTGGGT TCCCAAAAACGGTCTTATGGA 0.9994 34 32
ACATGCGAGTATGCCTCATGTA TACATGAGGCATACCCGCATGT 0.9994 162 5

ATGTCTGGATGACACAGGTGCC CACCTGTGTCATCCAGACACGT 0.9993 53 5
TTGGCTGAGTGAGCATCACGG TCAGGTGCTCACTCAGCTAAT 0.9992 259 11
TACCGTGTGCTGGATTATGACA AGTCATAATCCAGCACACGG 0.9991 38 7
TTGGCTGAGTGAGCATCACTG GAGGTGCTCACTCAGCTAATA 0.9990 80 66
CTTGGGACCAAAGTCACCAA TGGTGACTTTGATCTCAAAA 0.9990 26 14
TGCGAGTATGCCTCATGTACC TACATGAGGCATACCCGCATGT 0.9990 23 12
ATGCGAGTATGCCTCATGTACC TACATGAGGCATACCCGCATGT 0.9989 70 12
ACATGCGAGTATGCCTCATGT TACATGAGGCATACCCGCATGT 0.9988 40 6
GTTCAAGAAAGTTGTGGGAA ATTCCACAGCTTTCTTGAAC 0.9988 23 6
CTTTTAAGGACCTATCAAGAAT TTCTTGGTAGGTCCTTAAAAAT 0.9987 22 11
CAGGTGCTCACTCAGCTAAT TTGGCTGAGTGAGCATCACT 0.9987 20 10

TGCGAGTATGCCTCATGTACCA TACATGAGGCATACCCGCATGT 0.9986 140 12
TGATTGAGCCGCGCCAATATC TATTGGTGCGGTTCAATGAG 0.9986 38 7
AATCTGTTTGATCACTTACAAA TTTGTAAGTGATCAAACAGATA 0.9984 42 6

CGTGTGCTGGATTATGACTGAA GCTCAGTCATAATCCAGCACA 0.9983 77 5
GTTCAATAAAGCTGTGGGAAG TTCCACAGCTTTCTTGAACT 0.9982 73 11
TTCCACAGCTTTCTTGAACTG CGGTTCAATAAAGCTGTGGGA 0.9981 99 20
TATTGGTGCGGTTCAATGAGA TGATTGAGCCGCGCCAATAT 0.9980 50 7
CGTGTGCTGGATTATGACTGAT GCTCAGTCATAATCCAGCACA 0.9980 27 5
GAGGTGCTCACTCAGCTAATA TTGGCTGAGTGAGCATCACT 0.9979 47 20
CACAGGTGCCACTTATTTATG CCATAAATAAGTGGCACATGTG 0.9978 78 10

TTGGCTGAGTGAGCATCACGGA TCAGGTGCTCACTCAGCTAAT 0.9978 20 20
TGGAAGGGAGAATATCCAGGA CTGGATATTATCCTTTCCATC 0.9977 88 16
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CACAGGTGCCACTTATTTATGA CCATAAATAAGTGGCACATGTG 0.9977 60 13
TGGATGACACAGGTGCCACTTA AATAAGTGGCACATGTGTCATC 0.9976 135 13
TGGTATTGTTCCGTTCAGGGA CCTGAACGGAACAATACGAT 0.9974 33 24
CTTGGGACCAAAGTCACCAAC TGGTGACTTTGATCTCAAAA 0.9974 1349 14
AAAGGTTTCGTTTGAAAGCTTT CAAGCTTTCAAACGAAACCTTT 0.9969 24 14
CTTGGGACCAAAGTCACCAAT TGGTGACTTTGATCTCAAAA 0.9965 23 18
ATGACACAGGTGCCACTTATT AATAAGTGGCACATGTGTCATC 0.9965 46 13

CACGGTAGCTTCGCGCCACTGG ATGGCGCGAAGCTACCGTGTGC 0.9964 28 7
CAGGTGCTCACTCAGCTAATA TTGGCTGAGTGAGCATCACT 0.9964 110 10
TGACACAGGTGCCACTTATT AATAAGTGGCACATGTGTCATC 0.9964 41 10

GTTCAAGAAAGTTGTGGGAAA ATTCCACAGCTTTCTTGAAC 0.9964 22 6
CGTTTGTGCGTGAATCTAAC CTAGATTCACGCACAAGCTC 0.9962 60 23

CCCGCCTTGCATCAACTGAAT TCGCTTGGTGCAGGGCGGGAC 0.9959 27 12
GACACAGGTGCCACTTATTTA ATAAATAAGTGGCACATGTGTC 0.9958 64 13
CGGTGATAATGGTATTCTAA TTGGAATACCATCATCACCG 0.9958 53 17

CAGATTACTTTTGCTGGTACA TGTACCAACGAAAGTAATCTG 0.9957 36 12
ATGACACAGGTGCCACTTATTT AATAAGTGGCACATGTGTCATC 0.9953 34 10
TCGGACCAGGCTTCATTCCCC GAATGTTGTCTGGTTCGAAAA 0.9953 179 10
TCTCGGACCAGGCTTCATTCC GAATGTTGTCTGGTTCGAAAA 0.9952 20 10
TGACACAGGTGCCACTTATTT AATAAGTGGCACATGTGTCATC 0.9951 38 10

TCGCTTGGTGCAGGCCGGGAC TCCCGGCCGAGCATGAGGTGC 0.9948 47 36
TACTTTTGCTGGTACATGAGGC TGCCTCATGTACCAACGAAAG 0.9945 40 5
TGACACAGGTGCCACTTATTTA ATAAATAAGTGGCACATGTGTC 0.9944 283 13
TGATTGAGCCGTGCCAATATC TGATGTTGGAATGGCTCAAT 0.9943 5217 50

TGGACGCCCATGAGGTACTGG TACCAGTGCCCAGGGTGTCTA 0.9942 50 14
GCGCTCCGGACGCTGGCCTG GCGTGGTGTCCGGTGCGCTC 0.9940 32 14
ACACAGGTGCCACTTATTTATG CCATAAATAAGTGGCACATGTG 0.9939 270 10
CGGTTCAATAAAGCTGTGGGA TTCCACAGCTTTCTTGAACTT 0.9939 20 10
TTAGGTACACGATCTAGGAATA CATATTCTTAGATCGTGTACCC 0.9937 20 8
TGATTGAGCCGTGCCAATAA TATTGGTGCGGTTCAATGAG 0.9937 120 6
CGGTGATAATGGTATTCTAAT TTGGAATACCATCATCACCGT 0.9937 49 17
ACGGTGATAATGGTATTCTAA TTGGAATACCATCATCACCGT 0.9937 413 17

TCGGACCAGGCTTCATTCCTC GAATGTTGTCTGGTTCGAAAA 0.9936 196 10
CAGATTACTTTTGCTGGTACAT TGTACCAACGAAAGTAATCTGT 0.9934 33 12
TGAAGCTGCCAGCATGATCT GATCATGTGGTTGCTTCACC 0.9930 44 19

CAACTTTGTCATTTAGAGCTGA CAGCTCTAAATAACAAAGTTG 0.9928 20 5
GGATGACACAGGTGCCACTTA AATAAGTGGCACATGTGTCATC 0.9928 27 13

ACGGTGATAATGGTATTCTA TTGGAATACCATCATCACCGT 0.9922 67 17
TGATTGAGCCGTGCCAATAT TATTGGTGCGGTTCAATGAG 0.9922 464 50

CTTGGGACCAAAGTCACCAACA TGGTGACTTTGATCTCAAAA 0.9920 50 14
TGATTGAGCCGTGCCAAAAA TATTGGTGCGGTTCAATTAG 0.9919 24 13
TATTGGCCTGGTTCACTCAGA TGATTGAGCCATGCCAATATC 0.9918 210 120
TGATTGAGCCGTGCCAATATCA TGATGTTGGAATGGCTCAAT 0.9918 426 8
TGAAGCTGCCAGCATGATCTA TCAGATCATGTGGTTGCTTCA 0.9917 380 20
TTACTTTTGCTGGTACATGAG CTCATGTACCAACGAAAGTAA 0.9911 29 14
ACGGTGATAATGGTATTCTAAA TTGGAATACCATCATCACCGT 0.9909 38 17

CTTGGGACCAAAGTCACCAACT TGGTGACTTTGATCTCAAAA 0.9909 31 14
CTAGATTCACGCACAAGCTCG CGTTTGTGCGTGAATCTAAC 0.9905 93 60
CTGGATTATGACTGAACGCC GCTCAGTCATAATCCAGCACA 0.9905 23 5

TTACTTTTGCTGGTACATGAGG CTCATGTACCAACGAAAGTAAT 0.9903 51 14
CGTGTCCCACCGGGTGTGCCA TAAACACCCGGTGCGGATAA 0.9902 55 17
TGAAGCTGCCAGCATGATCTAA TCAGATCATGTGGTTGCTTCA 0.9901 85 19
TATCCAAAGACAATCCATGGAA TTCCATGAGACTGTTTTTGGGT 0.9901 52 34
ATTACTTTTGCTGGTACATGAG CTCATGTACCAACGAAAGTAAT 0.9896 42 14
ACGGTGATAATGGTATTCTAAT TTGGAATACCATCATCACCGT 0.9890 20 17
TCTTTCCTACTCCTCCCATACC TGTGGGTGGGGTGGAAAGATT 0.9886 35 33
CACTTTGTTGGTGACTTTGAT CCAAAGTCACCAACAGAGTGTC 0.9874 29 7

CCGTGTGCTGGATTATGACTGT GCTCAGTCATAATCCAGCACA 0.9871 22 5
CTGGATTATGACTGAACGCCT GCTCAGTCATAATCCAGCACA 0.9868 28 5
AACGGTGATAATGGTATTCTA TTGGAATACCATCATCACCGT 0.9864 29 17

TGATTGAGCCGTGCCAATACC TATTGGTGCGGTTCAATGAG 0.9864 35 5
ATGAAGCTGCCAGCATGATCTA TCAGATCATGTGGTTGCTTCA 0.9863 21 19
TGGATTATGACTGAACGCCTC GCTCAGTCATAATCCAGCACA 0.9861 99 47

CGGGTCCCACCGGGTGTGCCA CAGGTCTCGGTGGGACCTCCA 0.9860 35 16
Continued on Next Page. . .
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ATGATTGAGCCGTGCCAATATC TATTGGTGCGGTTCAATTAG 0.9856 103 13
TCGGACCAGGCTTCATTCCCCA GAATGTTGTCTGGTTCGAAAA 0.9853 110 10
TGATTGAGCCGTGCCAATATCT TGATGTTGGAATGGCTCAAT 0.9852 113 8
TGAAGCTGCCAGCATGATCTAT TCAGATCATGTGGTTGCTTCA 0.9848 27 19
TGGAGAAGCAGGGCACGTGCA TATGTGTCCTGTTTTCATAAT 0.9847 101 6
TGATTGAGCCGTGCCAATAGC TATTGGTGCGGTTCAATGAG 0.9847 41 33
CCACAAAGGCCTTTGGTGGA CCACAAAGGCTTTTGGTGGA 0.9845 23 5
TGCCTGGCTCCCTGTATGCCA GCGTATGAGGAGCCAAGCATA 0.9845 47 23
CACGATCTAGGAATATGTTGTA CAACATATTCCTGGACCGTGTA 0.9842 45 8
TCTCTTGGTGCAGGTCGGGAC TGCCGACCTGCAGTAGGGGCC 0.9842 20 8
TGATTGAGCCGTGCCAATATT TGATGTTGGAATGGCTCAAT 0.9840 67 50

TCGGGTCCCACCGGGTGTGCCA CAGGTCTCGGTGGGACCTCCA 0.9829 23 16
TGATTGAGCCGTGCCAATAAA TATTGGTGCGGTTCAATGAG 0.9827 43 8
TCCTTGGTGCAGGTCGGGAC TGCCGACCTGCAGTAGGGGCC 0.9821 35 18
ACAGGTGCCACTTATTTATGA CCATAAATAAGTGGCACATGTG 0.9821 57 13

CGAGTATGCCTCATGTACCAAC TTGCTGGTACATGAGGCATACC 0.9815 110 40
TCGCTTGGTGCAGGTCGGGA CCCGCCTTGCATCAACTGAAT 0.9814 641 27

TCGGACCAGGCTTCATTCCTCA GAATGTTGTCTGGTTCGAAAA 0.9805 64 10
TTCAAAGTTTCCGACGGGTGC CACTTTGTTGGTGACTTTGAA 0.9804 21 5
TCGCTTGGTGCAGGTCGGGGC CCCGCCTTGCATCAACTGAAT 0.9799 131 27
TCGCTTGGTGCAGGTCGGGAC CCCGCCTTGCATCAACTGAAT 0.9795 13559 56
TGATTGAGCCGTGCCAATATA TATTGGTGCGGTTCAATGAG 0.9789 141 50

TCGCTTGGTGCGGGTCGGGAC TCCCGGCCGAGCATGAGGTGC 0.9789 21 9
ATGTGCCACTCTCGATAAATTC TTATCGTGAGTGGCACATGGT 0.9786 59 7
CAGTGACCATGACAACTTCA GATGTTGTCATGGTAATTGTC 0.9775 20 7

TTTACGTGCAAGCGCAGTTGAA ACTGCGCTTGCCCGTAAATGGA 0.9773 28 16
ACAGGTGCCACTTATTTATGAA CCATAAATAAGTGGCACATGTG 0.9766 846 13

ACTTGGGACCAAAGTCACCAAC TGGTGACTTTGATCTCAAAA 0.9765 40 14
CTGGATGACACAGGTGCCACTT AATAAGTGGCACATGTGTCATC 0.9760 64 10
TAAAGCTGCCAGCATGATCTGG TCAGATCATGTGGTTGCTTCA 0.9760 117 13
TATTGGCCTGGTTCACTCAGAA TGATTGAGCCATGCCAATATC 0.9759 33 8
TCGCTTGGTGCAGGTCGGGAA CCCGCCTTGCATCAACTGAAT 0.9758 64 27
AACGGTGATAATGGTATTCTAA TTGGAATACCATCATCACCGT 0.9749 38 17
TCGCTTGGTGCAGGTCGGGC CCTGCCTTGCATCAACTGAA 0.9744 26 9

TCTGGATGACACAGGTGCCACT AATAAGTGGCACATGTGTCATC 0.9742 740 20
TCTTGCCTACACCGCTCATGCC CGTGAGCGGTGGGGAAAGATA 0.9727 20 11
CAAACAGATTACTTTTGCTGGT CAACGAAAGTAATCTGTTTGAT 0.9726 29 12
GGGTTACGGTGCCAAACTGC TTGGCATGGTAGCCCTATAA 0.9724 36 15

TCGCTTGGTGCAGGTCGGGAT CCCGCCTTGCATCAACTGAAT 0.9723 175 27
CTTAAAAGCTGGTCAAACTGAC AAGTCAGTTTAATCAGCTTTT 0.9717 20 5
TTTGGATGACACAGGTGCCACT AATAAGTGGCACATGTGTCATC 0.9715 22 10
TTCATGGGCCAACAAAGAAGAT TCTTTACCGTTGGTCCATGGAA 0.9695 20 6
CGGGTCCCACTGGGCGTGCCA TGATGCCTACTGGGTACCTGT 0.9694 79 16
CTTGGGACCAAAAGTCACCAAC TGGTGACTTTGATCTCAAAA 0.9656 58 12
TCGCTTGGTGCAGGTCAGGAC CCTGCCTTGCATCAACTGAA 0.9649 20 8
TGGCGCGAAGCTACCGTGTGC TTACACGGTAGTAAGGTGCTA 0.9640 76 6
CACGACCTCTCACTGGTGCTGC AGCACCACTGAGAGGTAGTGCT 0.9639 23 5
CCGCTTGGTGCAGGTCGGGAC TCCCGGCCGAGCATGAGGTGC 0.9637 38 27

ACACAGGTGCCACTTATTTA CCATAAATAAGTGGCACATGTG 0.9634 30 13
TATGTAGGGCCCATATGAGGAC CATTTCATGTGGGCCTAACATC 0.9630 23 7
TTTCTCAGGTGCTCACTCAGC TTGGCTGAGTGAGCATCACT 0.9610 66 6
TCGGTGCAGATCTTGGTGGT TCCGCCCTAGGTGTGCACCGG 0.9609 34 15

TCGTGTCCCACCGGGTGTGCCA TAAACACCCGGTGCGGATAA 0.9609 26 16
CTGGATGACACAGGTGCCACT AATAAGTGGCACATGTGTCATC 0.9602 28 10
TGATTGAGCCGTGTCAATATC TGATGTTGGAATGGCTCAAT 0.9593 28 8

CGTCGCGGTGACCGCCTTGAA TTGGCTAAGTCGCCGCGACGG 0.9593 28 16
TGGATTATGACTGAACGCCTCA GCTCAGTCATAATCCAGCACA 0.9592 45 5
GCTCCGGACGCTGGCCTGTG TATGGGTGCTCCGGTGCATG 0.9590 68 15

TCGGGTCCCACTGGGCGTGCCA CAGGTCTCGGTGGGACCTCCA 0.9590 27 17
TTGACAAGGTGGGTAATCTGG TAGATTATGTGCCTCGTTAAA 0.9583 103 5
GTCGGTGCAGATCTTGGTGGT TCCGCCCTAGGTGTGCACCGGC 0.9578 28 15
CGCGCTCCGGACGCTGGCCTG GCGTGGTGTCCGGTGCGCTC 0.9577 63 14
TTTCCGCCGGGTGCGCATTGGG CGGCGATGCGCCCCGGTCGGA 0.9551 20 9
TCGCTTGGTGCAGGTCGGGACC TCCCGGCCGAGCATGAGGTGCA 0.9504 1630 56
Continued on Next Page. . .
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TGAGATGGTAATAACGGTGAT CATCACCGTTATTACCACCTGG 0.9492 85 8
TGATTGAGCCGTGCCAATAAAA TATTGGTGCGGTTCAATGAG 0.9486 22 5
CGGCTCCCGGCAGACGCACCA TACGTCTGCCTGGGCGTCACGC 0.9485 21 7
CGCTTGGTGCAGGTCGGGAC TCCCGGCCGAGCATGAGGTGC 0.9479 84 9

CAGGTGCCACTTATTTATGA CCATAAATAAGTGGCACATGTG 0.9469 23 13
TCTGGATGACACAGGTGCCACC AATAAGTGGCACATGTGTCATC 0.9440 31 10
TCTGGATGACACAGGTGCCAC AATAAGTGGCACATGTGTCATC 0.9436 332 10
TGAGATGGTAATAACGGTGATA CATCACCGTTATTACCACCTGG 0.9425 37 8

TCGCTTGGTGCAGGTCGGGACA TCCCGGCCGAGCATGAGGTGCA 0.9421 851 18
TCGGTGCAGATCTTGGTGGTA TCCGCCCTAGGTGTGCACCGG 0.9419 50 15
TCCAGAAATTGTCGCCTTGGA CCAAGGTGAACAGCCTCTGG 0.9418 20 6
TCTAAGTCAGAATCCGGGCTAG TCTGGCTTGGAATTGGGCTTGG 0.9410 24 13
CGCTTGGTGCAGGTCGGGACC TCCCGGCCGAGCATGAGGTGC 0.9409 41 27
TTGGTGCCCTCGAAGACTCTCG GGGCCTTTGAGGTAGCACCAAC 0.9408 20 8

CAGGTGCCACTTATTTATGAA CCATAAATAAGTGGCACATGTG 0.9403 517 10
ATTTACGTGCAAGCGCAGTTGA ACTGCGCTTGCCCGTAAATGGA 0.9400 37 29

ATATTGGTGCGGTTCAATTAG TGATTGAGCCGTGCCAATACC 0.9396 35 35
TGATTGAGCCGTGCCAATATAA TGATGTTGGAATGGCTCAAT 0.9396 39 8
CGTCGCGGTGACCGCCTTGA TTGGCTAAGTCGCCGCGACGG 0.9393 22 16
TCGCTTGGTGCAGGTCGGAC TGCCGACCTGCAGTAGGGGCC 0.9392 27 9

TCGCTTGGTGCAGGTTGGGAC CCCGCCTTGCATCAACTGAAT 0.9386 161 27
TTTCCAATTCCACCCATTCCTA GGGATCGGTGAGTTGGAAAGC 0.9382 21 15

TCGCTTGGTGCAGGTCGGGACT TCCCGGCCGAGCATGAGGTGCA 0.9373 451 56
ACTAGGCTGTGTCTGGATGC TCATCCAGACACGTTGTCCTAA 0.9363 40 34

CGTTTCAAGACATGTTGCCTG TAGGACAACATGTCTGGATGA 0.9338 38 16
TGTTGGGCCCAAGCCTGTTAG TAAAAGATTGGGCCGAATAA 0.9337 35 6

GCGCTCCGGACGCTGGCCTGTG GCGTGGTGTCCGGTGCGCTC 0.9337 20 14
TCGTGACCTGCATGGGCCACCA TGGCTTGGTGCAGGTCGGGAC 0.9320 56 6
TCGGGACCTGCATGGGCCACCA TGGTGTCCGGTGCGCTCCCGG 0.9316 26 14

CAGGTGCCACTTATTTATGAAA CCATAAATAAGTGGCACATGTG 0.9304 429 10
CGTGACCTGCATGGGCCACCA TGGCTTGGTGCAGGTCGGGAC 0.9300 135 14
TTTACCAGGCACCCAGCAATG CCATGGCTGGGAGCTGCCTGA 0.9296 242 16

CGGGACCTGCATGGGCCACCA TGGTGTCCGGTGCGCTCCCA 0.9216 70 14
CAGGTGCCACTTATTTATGAAT CCATAAATAAGTGGCACATGTG 0.9215 38 10
TTTCTCTGGTGCTTACTCAAC TGAATGAAGTACTCAGAGAA 0.9214 20 20
CTGGATGACACAGGTGCCAC AATAAGTGGCACATGTGTCATC 0.9195 32 10

GGGTTACGGTGCCAAACTGCG TTGGCATGGTAGCCCTATAA 0.9191 43 15
GCTCCGGACGCTGGCCTGTGG CACGTCGCGTGGTGTCCGGA 0.9184 22 19

TGAGATGGTAATAACGGTGA CATCACCGTTATTACCACCTGG 0.9171 47 8
TGCGCCCGCCGTCCGCTTGCC GAGCGGCCGTCGGTGCAGAT 0.9146 29 8
CTTCAAAGTTTCCGACGGGTGC CACTTTGTTGGTGACTTTGAA 0.9138 28 5
TGTGGGTGGGGTGGAAAGATT TCCATCCCATGTACATCAAT 0.9135 33 9
CGTGGGGGCATGTGATTGAA TCAACCATGTGCCACTCTCGA 0.9113 296 36
GTTACGGTGCCAAACTGCGC TCAGTTTGGTGTTGCTGGCAA 0.9093 29 12
TTCAACCTAGTACGAGAGGAA CTCTCGTTTACGGTTGAGTCA 0.9083 24 7
TTCGTGCCTCATTGTGATGAT GAAATCATCAAAAATGAGGCA 0.9053 272 7

TTGCCTTGGTGCCCTCGAAGAC TTTTCAAGGGCCGCCGGGAGCA 0.9049 121 12
TCGCTTGGTGCATGTCGGGAC TGCCTCATGTACCAACGAAAG 0.8998 49 7
TTGCTTGGTGCAGGTCGGGAC TTTCCCGGCTGGTGCACCAA 0.8972 136 7
TCGCTTGGCGCAGGTCGGGAC TTCTCGTGGTGCGTCAAGCAG 0.8962 35 14



Appendix E

E.1 SBM Results

The following tabes show the full results of comparison between SBM and miRanda from Chapter 7.
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Target LOO score > LOO score miRanda(s) > miRanda(s) miRanda(e) > miRanda(e) > miRanda(se)

ZK792.6/247-264 0.9587762 3561 109 83402 -14.10 38347 19155
F38A6.1a/271-288 1.0000000 1708 92 390274 -10.15 273523 159046
C18D1.1.1/526-542 0.9064860 10458 123 25838 -11.21 170342 19261
ZK792.6/666-683 0.9588374 3522 120 37964 -14.88 24456 8034
ZK792.6/458-475 0.9286717 7311 127 15875 -13.18 63901 9280

F38A6.1a/133-150 0.8742177 19177 108 95809 -14.56 29677 16710
C01G8.9a/21-38 0.8496634 23906 123 25838 -15.23 19926 5901
ZK792.6/132-148 0.8591035 20570 112 66769 -12.00 117457 33464

C01G8.9a/159-175 0.8134508 30895 113 61153 -13.33 58770 21054
ZK792.6/190-207 0.8068349 41812 91 403453 -13.33 58770 46851

C12C8.3a/693-709 0.7908144 39369 151 888 -25.13 14 9
C12C8.3a/742-757 1.0000000 1499 163 84 -25.06 16 4
ZK792.6/484-499 0.8981500 10232 107 102609 -17.86 3488 2822

F11A1.3a/1007-1021 0.9483082 4658 128 13871 -17.91 3345 1340
ZK792.6/343-361 0.9552215 4352 113 61153 -13.94 41961 16950

Mean 0.9032357 14869 119 92332 -15.46 60266 23992

Table E.1: Summary of the results for let-7 target predictions in Caenorhabditis elegans. Column “target” lists accession of the location of
the validated target (UTR accession, start and end position), column “LOO score” shows the score for that target when left out of the SBM,
column “> LOO score” shows the number of regions scoring equal to or greater than the left out sequence, column “miRanda(s)” shows
the raw score of the miRanda hit corresponding to the target region, column “> miRanda(s)” shows the number of regions scoring equal
to or greater than the target region, column “miRanda(e)” shows the minimum free energy (MFE) of the miRanda hit corresponding to the
target region, column “> miRanda(e)” shows the number of regions with an equal or more stable MFE than the target region, column “>
miRanda(se)” shows the number of regions with an equal or more stable MFE and a score greater than or equal to the target region.
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Target LOO score > LOO score miRanda(s) > miRanda(s) miRanda(e) > miRanda(e) > miRanda(se)

ZK792.6/126-148 0.8042310 4970 103 149244 -7.50 432158 114090
ZK792.6/187-207 0.5515072 132626 84 612304 -10.95 74633 61242
ZK792.6/249-264 0.9471851 355 114 55099 -10.61 91546 23993
ZK792.6/342-361 0.7607794 12552 102 160281 -8.80 235444 88454
ZK792.6/460-475 0.8575555 2012 126 15024 -10.20 114702 12066
ZK792.6/479-499 0.7394901 18375 94 317848 -12.08 38304 27872
ZK792.6/665-683 0.7264934 15846 122 25051 -11.22 64174 12052

Mean 0.7696059 26677 106 190693 -10.19 150137 48538

Table E.2: Summary of the results for miR-84 target predictions in Caenorhabditis elegans. Column “target” lists accession of the location
of the validated target (UTR accession, start and end position), column “LOO score” shows the score for that target when left out of the
SBM, column “> LOO score” shows the number of regions scoring equal to or greater than the left out sequence, column “miRanda(s)”
shows the raw score of the miRanda hit corresponding to the target region, column “> miRanda(s)” shows the number of regions scoring
equal to or greater than the target region, column “miRanda(e)” shows the minimum free energy (MFE) of the miRanda hit corresponding
to the target region, column “> miRanda(e)” shows the number of regions with an equal or more stable MFE than the target region, column
“> miRanda(se)” shows the number of regions with an equal or more stable MFE and a score greater than or equal to the target region.
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Target LOO score > LOO score miRanda(s) > miRanda(s) miRanda(e) > miRanda(e) > miRanda(se)

CG12487.3/223-241 0.9464120 94 164 215 -22.76 127 44
CG5185.3/279-297 1.0000000 34 173 36 -24.25 45 10
CG3096.3/152-170 1.0000000 34 168 117 -24.14 46 16

CG12487.3/250-268 1.0000000 34 179 8 -24.71 38 6
CG3166.3/1100-1118 0.9505960 76 140 3490 -18.77 2322 621

CG6096.3/103-121 1.0000000 34 172 47 -23.80 63 12
CG8346.3/78-96 0.9659194 58 185 2 -28.03 2 1

CG5185.3/334-352 1.0000000 34 170 83 -23.24 93 25
CG6494.3/447-465 0.9188494 155 179 8 -25.24 25 3

CG6096.3/24-42 1.0000000 34 171 64 -23.71 72 19
CG6096.3/68-86 0.9614793 65 170 83 -23.71 72 21
CG8328.3/63-81 0.7726001 2015 145 2210 -16.48 10689 1001

CG3166.3/1586-1602 0.8547854 393 138 4162 -16.44 10990 1630
CG3166.3/29-46 0.8454907 513 130 11501 -16.84 8407 2226

CG3166.3/1294-1312 0.8607346 521 108 111001 -13.26 75409 26300
Mean 0.9384578 273 159 8868 -21.69 7227 2129

Table E.3: Summary of the results for mir-7 target predictions in Drosophila melanogaster. Column “target” lists accession of the location
of the validated target (UTR accession, start and end position), column “LOO score” shows the score for that target when left out of the
SBM, column “> LOO score” shows the number of regions scoring equal to or greater than the left out sequence, column “miRanda(s)”
shows the raw score of the miRanda hit corresponding to the target region, column “> miRanda(s)” shows the number of regions scoring
equal to or greater than the target region, column “miRanda(e)” shows the minimum free energy (MFE) of the miRanda hit corresponding
to the target region, column “> miRanda(e)” shows the number of regions with an equal or more stable MFE than the target region, column
“> miRanda(se)” shows the number of regions with an equal or more stable MFE and a score greater than or equal to the target region.
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Target LOO score > LOO score miRanda(s) > miRanda(s) miRanda(e) > miRanda(e) > miRanda(se)

CG6096.3/135-154 0.7550454 3118 143 735 -11.44 26630 491
CG8328.3/27-45 1.0000000 8 135 3154 -8.69 128342 2427
CG3096.3/33-52 0.9287263 161 130 6986 -7.00 305330 5993

CG3096.3/138-157 0.8767518 473 136 2730 -7.30 264578 2638
CG5185.3/46-65 0.9598055 64 139 1586 -8.84 118531 1390

CG12487.3/188-208 0.8200697 1298 112 56515 -8.54 138880 18111
CG12487.3/62-82 0.8714641 627 127 10317 -10.03 61435 3372

CG6096.3/210-230 0.9076755 207 128 9883 -6.26 429349 8181
Mean 0.8899422 745 131 11488 -8.51 184134 5325

Table E.4: Summary of the results for mir-4 target predictions in Drosophila melanogaster. Column “target” lists accession of the location
of the validated target (UTR accession, start and end position), column “LOO score” shows the score for that target when left out of the
SBM, column “> LOO score” shows the number of regions scoring equal to or greater than the left out sequence, column “miRanda(s)”
shows the raw score of the miRanda hit corresponding to the target region, column “> miRanda(s)” shows the number of regions scoring
equal to or greater than the target region, column “miRanda(e)” shows the minimum free energy (MFE) of the miRanda hit corresponding
to the target region, column “> miRanda(e)” shows the number of regions with an equal or more stable MFE than the target region, column
“> miRanda(se)” shows the number of regions with an equal or more stable MFE and a score greater than or equal to the target region.


