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Abstract

We find an analogue of Mertens’ Theorem of analytic number theory for S-integer dy-

namical systems, which are constructed from arithmetic data, namely K = ℚ, � = 2,

and S a subset of rational primes. The dynamical Mertens’ Theorem gives asymp-

totics for weighted averages of numbers of closed orbits. Everest, Miles, Stevens and

Ward have already proved such a theorem when S is finite. Here, we will be inter-

ested in the cases: i) S is co-finite, and ii) S and Sc are infinite. Moreover, we give

a dynamical Mertens’ Theorem for some toral automorphisms, improving previously

obtained error terms.



Chapter 1

Preliminaries

1.1 Introduction

In this thesis, certain growth problems in dynamical system are studied related to the

setting of work of Parry and Pollicott [25] drawing analogies between prime numbers

and closed orbits. These problems are modelled on Mertens’ Theorem.

In analytic number theory, Mertens’ Theorem is a formula for asymptotics of

the weighted sum over primes (Section 1.2). In this sense, it is concerned with the

distribution of prime numbers.

In a dynamical system, Mertens’ Theorem is motivated by Mertens’ Theorem

of analytic number theory so it is defined to be the sum of some positive function

concerning the topological entropy (Section 2.3) and the sum is taken over closed

orbits. There are several papers which have pointed to the similarity of Mertens’

Theorem in analytic number theory and in dynamics. The following list will show

some of these papers:

1. Parry and Pollicott [25], and Sharp [29] proved an analogue of the prime number
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theorem (see Section 1.2) for closed orbits of axiom A flows.

2. Parry [26] counted the number of closed orbits of a suspension of a shift of finite

type and gave the asymptotic formula by following the Wiener-Ikehara proof of

the prime number theorem.

3. Waddington [33] found asymptotics for an unweighted orbit-counting sum for

quasihyperbolic toral automorphisms (see Section 3.1).

4. Noorani [24] considered closed orbits of an ergodic toral automorphismand

proved an analogue of Mertens’ Theorem for closed orbits.

5. Everest, Miles, Stevens and Ward [8] studied the counting of closed orbits for S-

integer dynamical system (see Section 3.4) arising in non-hyperbolic dynamics.

Also, they have shown the asymptotic formula of a dynamical Mertens’ Theorem

when S is finite.

In this work, we begin by considering the circle doubling map (see Section 2.2),

which is the simplest example of a dynamical system. For this map, we can obtain

the dynamical Mertens’ Theorem formula directly and we improve the error terms in

the formula by applying the Euler-Maclaurin Summation Formula (see Section 1.4).

A toral endomorphism (see Section 3.1) is a generalization of the circle doubling map.

In Section 4.2, we improve the work of Noorani [24] by refining the error terms in the

formula for the hyperbolic and the quasihyperbolic toral automorphism (see Section

3.1) and correcting the constant in the main term. Again, we use the Euler-Maclaurin

Summation Formula to refine the error terms. In Section 5.3, we look at how the last

paper (in the above list) has been done for S-integer dynamical system, which is

another generalization of the circle doubling map. The case of S co-finite will be
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studied in Section 4.3 and we will notice that Mertens’ Theorem in its usual form

is not interesting. However, we change it to the suitable form in (40) (in Section

4.3) so that we can use it to derive an asymptotic expression of this form. Moreover,

by extending some results in this paper, we obtain an interesting Mertens’ Theorem

formula (see Section 5.4) when S and Sc are infinite by giving some explicit examples.

1.2 Prime Numbers

We start by describing some of the background in number theory. For instance, the

infinitude of prime numbers and the prime number theorem, which grow out of the

fundamental theorem of arithmetic. For every real x > 0, let �(x) be the number of

primes less than or equal to x. Thus � is the function counting the prime numbers.

The first natural question about prime numbers is: How many primes are there? The

Greek mathematician, Euclid, may have been the first to give a proof that there are

infinitely many prime numbers, which is equivalent to the following proposition.

Proposition 1.1. �(x)→∞ as x→∞.

Proof. �(x) is clearly monotone increasing. If it is bounded, then, for some n,

{p1, p2, . . . , pn}

comprises all the primes. Let

N = 1 + p1p2 ⋅ ⋅ ⋅ pn,

which is an integer bigger than 1. By the Fundamental Theorem of Arithmetic, N

can be factored into primes. Let p be a prime dividing N . If p∣p1p2 ⋅ ⋅ ⋅ pn, then

p∣N − p1p2 ⋅ ⋅ ⋅ pn = 1,
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which is impossible. Thus the prime p is another prime, not in {p1, p2, . . . , pn}, which

is absurd. Hence �(x) is an unbounded function.

We remark that a new prime can be generated from 1 + p1p2 ⋅ ⋅ ⋅ pn by factorizing,

but probably 1 + p1p2 ⋅ ⋅ ⋅ pn is not the next prime.

The next question arising naturally is: How are the primes distributed among the

natural numbers? Equivalently: What does the behaviour of � look like? and Can it

be compared with simpler functions? This approach leads to results of an asymptotic

nature. Returning to the proof of the previous proposition, this proof indeed says

more: if p1, p2, . . . are the primes listed in order of size, then the proof shows that

pn+1 ≤ 1 + p1p2 ⋅ ⋅ ⋅ pn.

So if u1 = 2, un+1 = u1 ⋅ ⋅ ⋅un + 1, then

�(x) ≥ min {n : un ≥ x}, (1)

giving a very weak rate of growth.

Attempts to improve (1) have been (and remain) a driving force in number theory.

According to [27], in 1798, C.F. Gauss (who was only 15 years old) conjectured that

�(x) ∼ x

log x
.

This assertion was proved by Hadamard and de la Vallée Poussin in 1896. (Previously,

P.L. Chebyshev had shown a weaker result which says that if limx→∞
�(x)
x/ log x

exists, it

must be 1.) Nowadays, we know this result as the Prime Number Theorem, giving a

rough description of how the primes are distributed:

lim
x→∞

�(x)

x/ log x
= 1.
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The proof of the Prime Number Theorem exploited analytical properties of the Rie-

mann zeta function,

�(s) =
∑
n≥1

1

ns
.

In 1874 [22], the Polish-Austrian mathematician Franciszek Mertens studied the

sum of the reciprocals of the prime numbers and he published the famous theorem

on the sum as follows.

Theorem 1.2 (Mertens (1874)). Let x ≥ 1 be the any real number. Then∑
p≤x

1

p
= log log[x] + 
 +

∞∑
m=2

�(m)
log{�(m)}

m
+ �, (2)

where 
 is the Euler constant, � is the Möbius function, � is the Riemann zeta function

and

∣�∣ < 4

log([x] + 1)
+

2

[x] log[x]
.

It follows that ∑
p≤x

1

p
= log log x+B +O

(
1

log x

)
,

where Mertens’ constant B = 
 +
∑

p

{
log(1− 1

p
) + 1

p

}
has the approximate value

0.2614972128...[32, page 16]. An equivalent form of Mertens’ Theorem given in terms

of the product taken over all primes p is∏
p≤x

(
1− 1

p

)
∼ e−


log(x)
. (3)

An elementary proof of this can be found in [15]. Both (2) and (3) are known as

Mertens’ Theorem of analytic number theory or, sometimes, the classical Mertens’

Theorem. These again say something about the distribution of prime numbers.

Another theme in number theory is the analogy between number fields (like ℚ)

and function fields (like Fp(t)). A particularly clear exposition of this may be found
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in [37]. The ring A = Fp[t], the polynomial ring over Fp, has many properties in

common with the ring of integers ℤ. Here we will be interested in an analogue of the

Prime Number Theorem obtained by using the zeta function associated to A, which

is an analogue of the classical zeta function.

Definition 1.3. The zeta function of A is defined by the infinite series

�A(s) =
∑
P∈A

P monic

1

∣P ∣s
,

where ∣P ∣ = pdeg(P ), and the sum is taken over all monic polynomials in A.

For a positive integer d, define ad to be the number of monic irreducible polyno-

mials in A of degree d. The statement of the classical Prime Number Theorem says

that �(x) is asymptotic to x/ log x as x → ∞. The analogue of the Prime Number

Theorem here gives the asymptotic expression of an, n ≥ 1 which is illustrated below.

Theorem 1.4 (The Prime Number Theorem for polynomials).

an =
pn

n
+O

(
p
n
2

n

)
.

If we set x = pn, then

an =
x

logp x
+O

( √
x

logp x

)
.

Proof. The unique factorization of elements in A into irreducibles shows that

�A(s) =
∏

P irreducible
P monic

(1− ∣P ∣−s)−1

=
∏

P irreducible
P monic

(1− p−sdeg(P ))−1

=
∞∏
d=1

(1− p−ds)−ad
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(the first two products and the sum below are taken over all monic irreducible poly-

nomials).

Since there are exactly pd monic polynomials of degree d in A, it follows that

∑
deg(P )≤d
P monic

∣P ∣−s = 1 +
p

ps
+
p2

p2s
+ ⋅ ⋅ ⋅+ pd

pds
.

Consequently,

�A(s) =
1

1− pu
,

where u = p−s.

Hence

1

1− pu
=
∞∏
d=1

(1− ud)−ad .

Taking the logarithmic derivative of both sides and then multiplying the result by u,

then we get

pu

1− pu
=
∞∑
d=1

dadu
d

1− ud

Expanding both sides into power series by using geometric series and then comparing

coefficients of un, we eventually get the following beautiful formula, which was known

to Gauss: ∑
d∣n

dad = pn. (4)

Applying the Möbius inversion formula to (4) in order to write an in general term,

which is

an =
1

n

∑
d∣n

�(d)p
n
d .

To see how big the sequence an is, we may write as

an =
pn

n
− p

n
2

n
+

1

n

∑
d∣n,
d∕=1,2

�(d)p
n
d . (5)
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Let N = {p1, p2, . . . , pt} be the set of distinct primes dividing n. Recall that, for

d ∣ n,

�(d) =

⎧⎨⎩ (−1)∣T ∣ if d =
∏

i∈T pi, for some T ⊆ {1, 2, . . . , t}

0 otherwise.

So the total of terms in the sum
∑

d∣n �(d) is 2t and it is easy to see that

2t ≤ p1p2 ⋅ ⋅ ⋅ pt ≤ n. Consequently,∣∣∣∣an − pn

n

∣∣∣∣ ≤ p
n
2

n
+

1

n

∑
d∣n,
d∕=1,2

∣�(d)∣p
n
d .

≤ p
n
2

n
+ p

n
3 .

Hence

an =
pn

n
+O

(
p
n
2

n

)
.

We note that the trick in (5) (where exponential growth allows the d = n term in a

sum over of n to dominate) will be repeatedly seen in this thesis.

1.3 Some Basic Definitions and Notation

1.3.1 Notation

The following notation and conventions are used systematically in this thesis.

∙ ℤ means the set of all integers.

∙ ℚ means the set of all rational numbers.

∙ ℚ× means the set of all non-zero rational numbers.
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∙ ℝ means the set of all real numbers.

∙ ℂ means the set of all complex numbers.

∙ ℕ means the set of all non-negative integers or all natural numbers.

∙ ℕ0 means the set of all negative integers or all natural numbers.

∙ Fp means a finite field p elements.

∙ ℙ means the set of all prime numbers.

∙ For any set A, B, BA means the set of all functions from A to B.

∙ a ∣ b means a divides b.

∙ [x], {x} is the integer and fractional parts of the real number x, respectively.

In fact, x = [x] + {x}.

∙ The letter p, with or without subscript, denotes a prime number.

∙ ∣ ⋅ ∣p is the p-adic valuation.

∙ mp := mp(2) is the multiplicative order of 2 (mod p).

∙ For T ⊆ ℙ, ∣x∣T =
∏

p∈T ∣x∣p for any x ∈ ℝ.

∙ For T ⊆ ℙ, oT = lcm{mp : p ∈ T}.

∙ ∣A∣ denotes the cardinality of a set A.

∙ Given a set U , for A ⊆ U , Ac = U ∖A, the complement of A with respect to U .

∙ ' is Euler’s totient function.
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∙ 
 is the Euler-Mascheroni constant.

∙ � is the Möbius function.

∙ Res(p, q) denotes the resultant of polynomials p, q in k[x], for k any field.

∙ Td = (ℝ/ℤ)d means the d-dimensional torus.

∙ (x1, x2)t =
(
x1
x2

)
for (x1, x2) ∈ T2.

Landau’s notation : the big O-notation, the little o-notation and ∼ are often used

and are defined as follows: Given two functions f and g from ℝ to ℝ:

∙ f = O(g) means that there exists A > 0 such that ∣f(x)∣ < A∣g(x)∣ for all

x > 0; that is the ratio f(x)
g(x)

stays bounded as x→∞.

∙ f = o(g) means that limx→∞
f(x)
g(x)

= 0; that is g(x) grows much faster than f(x).

∙ f ∼ g means that limx→∞
f(x)
g(x)

= 1.

1.3.2 Möbius Inversion Formula

Definition 1.5. A function f : ℕ→ ℂ is said to be an arithmetic function.

Definition 1.6. An arithmetic function f : ℕ → ℂ is multiplicative if for any rela-

tively prime m,n ∈ ℕ,

f(mn) = f(m)f(n).

Definition 1.7. The Möbius function �(n) is defined as follows:

1. �(1) = 1;

2. �(n) = 0 if n has a squared factor;
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3. �(p1p2 ⋅ ⋅ ⋅ pk) = (−1)k if all the primes p1, p2, . . . , pk are different.

For instance, �(2) = −1, �(4) = 0, �(6) = 1. Indeed, ∣�(n)∣ ≤ 1 for any natural

number n. The Möbius function is multiplicative. The sum over all positive divisors

of n of the Möbius function is zero except when n = 1.

Theorem 1.8. ∑
d∣n

�(d) =

⎧⎨⎩ 1 if n = 1,

0 n > 1,

or ∑
d∣n

�
(n
d

)
=

⎧⎨⎩ 1 if n = 1,

0 n > 1.
(6)

Proof. For each k ≥ 1, write

n = pa11 p
a2
2 ⋅ ⋅ ⋅ p

ak
k .

Then we have

∑
d∣n

�(d) = 1 +
k∑
i=1

�(pi) +
k∑

i,j=1

�(pipj) + ⋅ ⋅ ⋅+ �(p1p2...pk)

= 1− k +

(
k

2

)
−
(
k

3

)
+ ⋅ ⋅ ⋅+ (−1)k

= (1− 1)k = 0,

while, if n = 1, �(n) = 1.

The formula (6) is rich in application. For instance, it is applied for counting

closed orbits in a dynamical system.

Theorem 1.9 (Möbius Inversion Formula). Let f and g be arithmetic functions. The
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two following properties are equivalent:

(i) g(n) =
∑
d∣n

f(d) (n ≥ 1),

(ii) f(n) =
∑
d∣n

g(d)�
(n
d

)
(n ≥ 1).

Proof. ((i)⇒(ii)). In fact

∑
d∣n

g(d)�
(n
d

)
=

∑
d∣n

�(d)
∑
c∣n
d

f(c) (7)

=
∑
cd∣n

�(d)f(c) (8)

=
∑
c∣n

f(c)
∑
c∣n
c

�(d). (9)

By Theorem 1.8, the inner sum in (9) is 1 if n
c

= 1 (i.e n = c), and 0 otherwise so

that the repeated sum in (9) reduces to f(n).

((ii)⇒(i)). We have

∑
d∣n

f(d) =
∑
d∣n

f
(n
d

)
=

∑
d∣n

∑
c∣n
d

�
( n
cd

)
g(c)

=
∑
cd∣n

�
( n
cd

)
g(c)

=
∑
c∣n

g(c)
∑
d∣n
c

�
( n
cd

)
= g(n).

12



1.3.3 Bernoulli Numbers and the Bernoulli Functions

Let (br(x)) be the sequence of polynomial defined on [0, 1] by the conditions

b0(x) = 1,

b
′

r(x) = rbr−1(x) (r ≥ 1)∫ 1

0

br(x) = 0 (r ≥ 1).

It is given in terms of the generating function as

yexy

ey − 1
=
∞∑
r=0

br(x)
yr

r!
,

which allow us to calculate the br. Thus we have

b0(x) = 1,

b1(x) = x− 1

2

b2(x) = x2 − x+
1

6

b3(x) = x3 +
3

2
x2 − 1

2
x

b4(x) = x4 − 2x3 + x2 +
1

30

b5(x) = x5 − 5

2
x4 +

5

4
x3 − 1

6
x2,

and so on. Since bk(x) is continuous on a compact set, it is bounded: that is, for

x ∈ [0, 1],

∣bk(x)∣ ≤ Ck, (10)

for some constant Ck depending on k.

Definition 1.10. The rth Bernoulli function, denoted by Br(x), is the periodic func-

tion of period 1 on ℝ which coincides with br on [0, 1) (i.e. Br(x) := br({x}) for all

x ∈ ℝ). The rth Bernoulli number is denoted by Br where

Br := Br(0).
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We notice that B2r+1 = 0 for r > 0. Some values of B2r for r ≥ 0 and B1 are

illustrated in the table below:

r 0 1 2 4 6 8 10

Br 1 −1
2

1
6
− 1

30
1
42
− 1

30
5
66

1.3.4 Primitive Roots Modulo n

For n ∈ ℕ, the set

Z×n = {a ∈ ℕ : 1 ≤ a ≤ n− 1 and gcd(a, n) = 1}

forms a group with multiplication modulo n as the operation. It is equivalent to the

congruence classes coprime to n and it is sometimes called the group of units modulo

n or the group of primitive classes modulo n.

Lemma 1.11. [28, page 92] Z×n is cyclic if and only if n is equal to 1, 2, 4, pk, 2pk

where pk is a power of an odd prime number.

Definition 1.12. Suppose Z×n is a cyclic group. A primitive root modulo n (or

primitive element of Z×n ) is a generator of Z×n .

Definition 1.13. For a ∈ Z×n , the lowest power of a which is congruent to 1 (mod n)

is called the multiplicative order of a modulo n, denoted by mn(a).

Let '(n) be the number of elements in Z×n where '(n) is Euler’s totient function.

By Euler’s theorem, we have a'(n) ≡ 1 (mod n) for every element a in ∈ Z×n . This

implies that a is a primitive root modulo n if and only if mn(a) = '(n).

Example 1.14. For n = 14, we have

Z×14 = {1, 3, 5, 9, 11, 13}.
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Thus ∣Z×n ∣ = '(14) = 6. The following table will illustrate how to figure out the

primitive roots modulo 14.

n n, n2, n3, n4, n5, n6 , . . . (mod 14)

1 1,

3 3, 9, 13, 11, 5, 1,

5 5, 11, 13, 9, 3, 1,

9 9, 11, 1,

11 11, 9, 1,

13 13, 1,

From the above table, 3, 5 are primitive roots modulo 14 because they are generators

of Z×14, and m14(3) = m14(5) = 6. Also, we get m14(1) = 1, m14(9) = 3, m14(11) =

3, m14(13) = 2.

1.3.5 Resultants of Polynomials

Let k be any field. Define k[x] to be the set of all polynomials having coefficients

in k. Then k[x] is a commutative ring with identity and it is a unique factorization

domain.

Definition 1.15. For p, q ∈ k[x], we write p, q in terms of linear factors

p(x) = a0(x− r1)(x− r2) ⋅ ⋅ ⋅ (x− rn)

q(x) = b0(x− s1)(x− s2) ⋅ ⋅ ⋅ (x− sm),

for some natural numbers m,n. The resultant of p and q, denoted by Res(p, q) is

defined to be

Res(p, q) = am0 b
n
0

n∏
i=1

m∏
j=1

(ri − sj).
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By the above definition, we immediately obtain the following theorem.

Theorem 1.16. Given two polynomials p, q in k[x], Res(p, q) = 0 if and only if p, q

have at least one common root.

Moreover, according to [1, page 121], Sylvester gave an explicit formula for the

resultant of any two polynomials p, q having coefficients in k in terms of a determinant

in the coefficients as follow:

Definition 1.17. For p, q ∈ k[x], we write

p(x) = a0 + a1x+ a2x
2 + ⋅ ⋅ ⋅+ anx

n,

q(x) = b0 + b1x+ b2x
2 + ⋅ ⋅ ⋅+ bmx

m,

for some natural numbers m,n. Then Res(p, q) can be expressed as the (m + n) ×

(m+ n) determinant:

Res(f, g) =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

an an−1 ⋅ ⋅ ⋅ a1 a0 0 0 0

0 an ⋅ ⋅ ⋅ a2 a1 a0 0 0

. . . . . . . . . . . . . . .

0 0 0 an an−1 ⋅ ⋅ ⋅ a1 a0

bm bm−1 ⋅ ⋅ ⋅ b1 b0 0 0 0

0 bm ⋅ ⋅ ⋅ b2 b1 b0 0 0

. . . . . . . . . . . . . . .

0 0 0 bm bm−1 ⋅ ⋅ ⋅ b1 b0

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

This formula is known as Sylvester’s Form of the Resultant.

1.3.6 Roots of Unity

Definition 1.18. Let k be any field. The nth roots of unity in k are the elements !

in k such that !n = 1. Equivalently, they are all the roots of the polynomial xn − 1.

16



It is important that we have to be careful about which field k we are considering.

Here we are going to exhibit the nth roots of unity in k = ℝ and k = ℂ.

∙ If k = ℝ, then the nth roots of unity of this field are 1 and −1, when n is even;

just 1 when n is odd.

∙ If k = ℂ, the Fundamental Theorem of Algebra assures us that the polynomial

xn− 1 has exactly n roots (counting multiplicities). Comparing xn− 1 with its

formal derivative, nxn−1 , we see that they are coprime, and therefore all the

roots of xn − 1 are distinct. That is, there exist n distinct complex numbers !

such that !n = 1. All the nth roots of unity are:

�k = e2�ki/n = cos(2�k/n) + i sin(2�k/n),

for k = 1, 2, ..., n− 1, where

� = e2�i/n = cos(2�/n) + i sin(2�/n).

Definition 1.19. Let k be a field. We call an element ! in k a root of unity if there

exists a natural number n such that !n− 1 = 0. It means that an element ! is a root

of unity in k if ! is an nth root of unity in k, for some natural number n.

1.4 The Harmonic Series

The harmonic series is the infinite series

∞∑
n=1

1

n
= 1 +

1

2
+

1

3
+ ⋅ ⋅ ⋅

which is divergent. The partial sum is given by∑
n≤N

1

n
= logN + 
 +O(1/N), (11)
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where


 = 1−
∫ ∞

1

{t}
t2
dt

is the Euler-Mascheroni constant. The equation (11) may be proved by the Euler

Summation Formula (ESF). Since we will later use ESF, we indicate the proof of (11)

here. Before giving the proof, let us recall the statement of ESF as follows:

Theorem 1.20. [2, Theorem 3.1] Let a < b be real numbers, and suppose that f is a

complex valued function defined on [a, b] with a continuous derivative on (a, b). Then

∑
a<n≤b

f(n) =

∫ b

a

f(t) dt+

∫ b

a

{t}f ′(t) dt− f(b){b}+ f(a){a}.

Lemma 1.21. There is a constant 
, 0 < 
 < 1, with the property that

∑
n≤N

1

n
= logN + 
 +O(1/N).

Proof. We will prove this by using Euler’s Summation Formula with

f(t) =
1

t
and a = 1, b = N > 1.

Applying ESF,

∑
1<n≤N

1

n
=

∫ N

1

1

t
dt+

∫ N

1

{t}
t2

dt

= logN −
∫ N

1

{t}
t2

dt.

Then ∑
n≤N

1

n
= logN + 1−

∫ N

1

{t}
t2

dt.

∫ N

1

{t}
t2

dt =

∫ ∞
1

{t}
t2

dt−
∫ ∞
N

{t}
t2

dt. (12)
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The first term on the right hand side in (12) converges since it is bounded above by∫ ∞
1

1

t2
dt = 1.

Since ∫ ∞
N

{t}
t2

dt ≤
∫ ∞
N

1

t2
dt =

1

N
,

it follows that ∫ ∞
N

{t}
t2

dt = O(1/N).

Now we have ∑
n≤N

1

n
= logN + 1−

∫ ∞
1

{t}
t2

dt+O(1/N).

Hence ∑
n≤N

1

n
= logN + 
 +O(1/N),

where


 = 1−
∫ ∞

1

{t}
t2

dt.

Since

0 <

∫ ∞
1

{t}
t2

dt <

∫ ∞
1

1

t2
dt = 1,

it follows that

0 < 1−
∫ ∞

1

{t}
t2

dt < 1.
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In addition, Tom M. Apostol [3, page 410] has mentioned that 
 has a numerical

value correct to 20 decimals; that is 
 = 0.57721566490153286060 . . . and it is not

known whether it is rational or irrational.

In this section, we will refine the remainder term in (11) by using the Euler-

Maclaurin Summation Formula (EMSF) shown below.

Theorem 1.22 (Euler-Maclaurin Summation Formula). [32, Theorem 4] Let k be a

nonnegative integer and f be (k + 1)-times differentiable on [a, b] with a, b ∈ ℤ. Then

∑
a<n≤b

f(n) =

∫ b

a

f(t)dt+
k∑
r=0

(−1)r+1

(r + 1)!
(f r(b)− f r(a))Br+1

− (1)k

(k + 1)!

∫ b

a

Bk+1(t)f (k+1)(t)dt,

where B1 = −1
2
, B2 = 1

6
, B3 = 0, B4 = − 1

30
, ⋅ ⋅ ⋅ are the Bernoulli numbers.

Proof. The proof of this theorem may be seen in [32, pages 5, 6].

Now we will apply the EMSF to the partial sum of the diverging harmonic series

generalizing Lemma 1.21.

Lemma 1.23. For integers x > 0,

∑
n≤x

1

n
= log x+ 
 −

k−1∑
r=0

(
Br+1

r + 1

)
1

xr+1
+O(1/xk+1)

for any k ∈ ℕ0.

Proof. Put f(t) = 1
t
, a = 1 and b = x in Theorem 1.22. Then

∑
1<n≤x

1

n
= log x+

k∑
r=0

(−1)r+1

(r + 1)!

[
(−1)rr!

xr+1
− (−1)rr!

]
Br+1 −

∫ x

1

Bk+1(t)

tk+2
dt.
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Rearranging the middle term of the above equation in the right hand side and adding

1 to both side of this equation, we can reach

∑
1≤n≤x

1

n
= 1 + log x+

k∑
r=0

Br+1

r + 1
−

k∑
r=0

(
Br+1

r + 1

)
1

xr+1
−
∫ x

1

Bk+1(t)

tk+2
dt. (13)

For each k ≥ 0,∫ ∞
x

Bk+1(t)

tk+2
dt =

∫ ∞
x

bk+1({t})
tk+2

dt,

≤
∫ ∞
x

Ck+1

tk+2
dt by (10),

=

(
Ck+1

k + 1

)
1

xk+1
,

where Ck+1 is a constant. This yields∫ ∞
x

Bk+1(t)

tk+2
dt = O(1/xk+1). (14)

Thus, from (13) and (14), we have

∑
0<n≤x

1

n
= log x+

(
1 +

k∑
r=0

Br+1

r + 1
−
∫ ∞

1

Bk+1(t)

tk+2
dt

)
−

k∑
r=0

(
Br+1

r + 1

)
1

xr+1

+

∫ ∞
x

Bk+1(t)

tk+2
dt.

and, since


 = lim
x→∞

(∑
n≤x

1

n
− log x

)
,

we must have


 = 1 +
k∑
r=0

Br+1

r + 1
−
∫ ∞

1

Bk+1(t)

tk+2
dt.

= 1−
∫ ∞

1

{t}
t2
dt.
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Chapter 2

The Arithmetic of Dynamical

Systems

2.1 Dynamical Systems

A dynamical system is an abstract mathematical model describing the time depen-

dence of a point’s position in its space. Such a system is represented by a map whose

iterates denote the passage of time. Firstly, I shall give the notion of a discrete

dynamical system in general.

Definition 2.1. Let X be a non-empty set and a map � : X → X. The pair (X,�)

is said to be a dynamical system.

For t ∈ ℕ, the tth iterate of � is the t-fold composition �t = � ∘ � ∘ ⋅ ⋅ ⋅ ∘ �. We

define �0 to be the identity map and we have �t+s = �t ∘ �s for all t, s ∈ ℕ0. So

A = {�t : X → X ∣ t ∈ ℕ0}

with composition forms a monoid (a semigroup with an identity). If � is invertible
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then we can replace ℕ0 by ℤ in this definition, to get a group. We sometimes call

(X,�) a discrete-time dynamical system because we can think of � in terms of an

action of the discrete semigroup ℕ0 on X; that is, a map a : X × ℕ0 → X given by

a(x, t) = �t(x) for all, x ∈ X, t ∈ ℕ0, with the properties:

1. a(x, 0) = x,

2. a(a(x, t), s) = a(x, t+ s) for every x ∈ X and t, s ∈ ℕ0.

If we replaced ℕ0 by ℝ or the set of all non-negative real numbers, we would have a

continuous-time dynamical system.

In practice, the structure of X could be that of a topological space, a measure

space, a metric space or a smooth manifold, and � could be a measure-preserving

map, a continuous map, an isometry or a differentiable map, respectively.

In the setting of this thesis, X means a compact metric space with a continuous

map �, and from now on, all dynamical systems are of this form. Also we are

motivated by some specific discrete-time dynamical systems, for example the circle

doubling map, which will be explained later.

2.2 Periodic Points and Orbits

Let (X,�) be a dynamical system. For x ∈ X, the orbit of x is the set

{x, �(x), �2(x), . . . }.

If there exists a positive integer k such that �k(x) = x then this is a finite set

� := {x, �(x), . . . , �k(x) = x},
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and is called a closed orbit � of length k = ∣� ∣.

Define

ℒ�(n) = {x ∈ X ∣ #{�k(x)}k∈ℕ = n},

ℱ�(n) = {x ∈ X ∣ �n(x) = x}, and

O�(n) = { � ∣ � is a closed orbit of � of length ∣� ∣ = n}.

which are the set of points of least period n under �, the set of points of period n

under �, and the set of orbits of length n under �, respectively. We write

L�(n) = ∣ℒ�(n)∣ , the number of points of least period n,

F�(n) = ∣ℱ�(n)∣ , the number of points of period n and

O�(n) = ∣O�(n)∣ , the number of orbits of length n.

It follows from the above definition that

O�(n) = L�(n)/n. (15)

We notice that

ℱ�(n) =
⊔
d∣n

ℒ�(d).

Consequently,

F�(n) =
∑
d∣n

L�(d), (16)

since the ℒ�(n) are disjoint for distinct n. By (15) and (16), we have

F�(n) =
∑
d∣n

dO�(d) (17)

and so, by the Möbius inversion formula, we get

O�(n) =
1

n

∑
d∣n

�
(n
d

)
F�(d). (18)
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Example 2.2. Let X = T, where T = ℝ/ℤ. Define a continuous map � : X → X

by sending x into 2x (mod 1) on T, the circle doubling map. Then

F�(1) = 1, F�(2) = 3, F�(3) = 7, . . .

To get the general formula for F�(n), we consider 2nx = x (mod 1). Thus

(2n − 1)x = 0 (mod 1).

Define a map sending

x 7→ (2n − 1)x (mod 1).

The kernel of this map is

{0, 1
2n−1

, 2
2n−1

, ⋅ ⋅ ⋅ , 2n−2
2n−1
}

which is equal to ℱ�(n). Hence F�(n) = 2n − 1, so F� is the Mersenne sequence.

Remark 2.3. Since

T = {x+ ℤ : x ∈ [0, 1)},

we can think of T as [0, 1) with addition (mod 1). Thus the map � is given by

�(x) =

⎧⎨⎩ 2x 0 ≤ x < 1/2,

2x− 1 1/2 ≤ x < 1.

Example 2.4. From Example 2.2, we know that F�(n) = 2n − 1. We apply the

formula in (18) so that we derive the number of orbits of length n below.

O�(n) =
1

n

∑
d∣n

�
(n
d

)
(2d − 1).
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Then

O�(1) = 1,

O�(2) =
1

2
(�(2) + �(1)(3)) = 1,

O�(3) =
1

3
(�(3) + �(1)(7)) = 2,

O�(4) =
1

4
(�(4) + �(2)(3) + �(1)(15)) = 3,

O�(5) =
1

5
(�(5) + �(1)(31)) = 6,

O�(6) =
1

6
(�(6) + �(2)(3) + �(3)(7) + �(1)(63)) = 9.

In general,

O�(n) =
F�(n)

n
+

1

n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

=
F�(n)

n
+O(2n/2),

since ∣∣∣∣O�(n)− F�(n)

n

∣∣∣∣ ≤ 1

2
2n/2.

2.3 Topological Entropy

The topological entropy of a dynamical system (X,�), denoted by ℎ(�), is a nonnega-

tive real number that measures the complexity of the orbits in the system. There are

several different ways to define topological entropy. The original definition was intro-

duced in 1965 by Adler, Konheim and McAndrew, and this definition was modelled

after the definition of a measure-theoretic entropy given by Kolmogorov and Sinai.

Indeed, there is an analogy between the definition of the measure-theoretic entropy

and the topological entropy. A beautiful general relation between measure-theoretic
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and topological entropy was established through the work of Goodwyn [11]. Later,

Dinaburg [7] and Bowen [4] gave a definition which clarified the meaning of topo-

logical entropy: for a system given by an iterated function, the topological entropy

represents the exponential growth rate of the number of distinguishable orbits of the

iterates. Here, we will introduce the definition of topological entropy by following

Dinaburg and Bowen for a continuous function � : X → X, where (X, d) is a com-

pact metric space.

Let (X, d) be a compact metric space and � : X → X be a continuous map. For

each n ∈ ℕ, define

dn(x, y) = max{d(�i(x), �i(y)) : 0 ≤ i < n},

for any x, y ∈ X. Then dn is a metric on X, called a Bowen-Dinaburg metric.

Lemma 2.5. If (X, d) is a compact metric space, then so is (X, dn) for any positive

integer n.

Proof. Fix n ∈ ℕ. Assume that (X, d) is a compact metric space. To show that

(X, dn) is a compact metric space, we will prove the following statement: U is an

open set in X with respect to the metric d if and only if U is an open set in X with

respect to the metric dn. Let U be an open set in X with respect to d. Then every

point in U has a neighbourhood contained in U . Equivalently, for each point u in U ,

there exists a real number 
 > 0 such that, Bd

(u) ⊆ U . If dn(x, u) < 
, then clearly

d(x, u) < 
. Thus Bdn

 (u) ⊂ Bd


(u). It follows that given any point u in U , there

exists a real number 
 > 0 such that, Bdn

 (u) ⊆ U . Hence U is an open set in X with

respect to dn. Conversely, let U be an open set in X with respect the metric dn. Then

given any point u in U , there exists a real number 
 > 0 such that, Bdn

 (u) ⊆ U . We

can pick 0 < � < 
 so that, if d(x, u) < �, then d(�i(x), �i(u)) < 
 for all 0 ≤ i < n,
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as � is continuous. This implies that Bd
� (u) ⊆ Bdn


 (u). Hence U is open in X with

respect to d.

Fix � > 0 and n ≥ 1.

Definition 2.6. We say that x, y ∈ X are (n, �)-separated if dn(x, y) ≥ �. A subset E

of X is said to be (n, �)-separated if any two different points of E are (n, �)-separated.

Definition 2.7. A subset F of X is said to be (n, �)-spanning if, for any x ∈ X,

there is some y ∈ F with dn(x, y) < �.

Equivalently,

X =
∪
y∈F

n−1∩
i=0

�−iB�(�
iy).

Then the open cover of X by the set

n−1∩
i=0

�−iB�(�
iy)

for all y ∈ X has a finite subcover by compactness. It follows that there is a finite

(n, �)-spanning set.

Let ℛ(n, �) be the smallest cardinality of any (n, �)-spanning set under �, and let

N (n, �) be the maximal cardinality of any (n, �)-separated set under �. Note that

ℛ(n, �) is finite for any � > 0.

Remark 2.8. For � > �
′
, we have that N (n, �

′
) ≥ N (n, �) and ℛ(n, �

′
) ≥ ℛ(n, �).

In particular,

lim sup
n→∞

1

n
logN (n, �

′
) ≥ lim sup

n→∞

1

n
logN (n, �),

and

lim sup
n→∞

1

n
logℛ(n, �

′
) ≥ lim sup

n→∞

1

n
logℛ(n, �).
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Lemma 2.9. ℛ(n, �) ≤ N (n, �) ≤ ℛ(n, �
2
).

Proof. If E is an (n, �)-separated set of maximal cardinality then E is an (n, �)-

spanning set because if not, we could add another point to E and still be (n, �)-

separated. Thus the first inequality holds. For the second inequality, let E be (n, �)-

separated, and let F be an (n, �
2
)-spanning set. Define a map f : E → F by choosing

f(x) ∈ F so that

dn(x, f(x)) ≤ �

2
.

Since E is (n, �)-separated, f is injective. Hence ∣E∣ ≤ ∣F ∣.

Following Lemma 2.9, we know that N (n, �) is finite.

Definition 2.10. The topological entropy of the map � is defined by

ℎ(�) = lim
�→0

lim sup
n→∞

1

n
logN (n, �),

which is the average exponential growth of the number of distinguishable orbit seg-

ments.

Notice that the limit in � exists (and might be ∞) since N (n, �
′
) ≥ N (n, �) if �

′
< �.

Example 2.11. Let X = T and � be the circle doubling map as in Example 2.2.

Then ℎ(�) = log 2.

Proof. Let d be the Euclidean metric on T. We notice that if d(x, y) < 1
4
, then

d(�(x), �(y)) = 2d(x, y).

Given n ≥ 1, let x, y ∈ T be such that d(x, y) < 2−(n+1). Then d(�i(x), �i(y)) < 1
4
,

for any i = 1, 2, . . . , n− 1 and also

d(�i(x), �i(y)) = 2id(x, y).
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These imply that

dn(x, y) = d(�n−1(x), �n−1(y)) = 2n−1d(x, y).

If dn(x, y) ≥ �, for some � > 0, then d(x, y) ≥ �2−(n−1).

Given k ≥ 1, choose �k = 2−(k+1). Then any (n, �k)-separated set has cardinality

at most 2n+k. The reason is that if there is an (n, �k)-separated set E, which has

cardinality more than 2n+k, then by the pigeonhole principle, it follows that there is

an x in E with d(x, y) < 1
2n+k

for some y ∈ E. Then dn(x, y) < �k, which is absurd.

Consequently, the set {
0,

1

2n+k
,

2

2n+k
, . . . ,

2n+k − 1

2n+k

}
is a maximal (n, �k)-separated set. Thus N (n, �k) = 2n+k. Hence

ℎ(�) = lim
k→∞

lim
n→∞

n+ k

n
log 2 = log 2.

For each natural number N ≥ 2, let

ΩN = {x = (. . . , x−1, x0, x1, . . . ) ∣ xi ∈ {0, 1, 2, . . . , N − 1} for i ∈ ℤ}

= {0, 1, 2, . . . , N − 1}ℤ,

the space of two-sided sequences of N symbols. Fix integers n1 < n2 < ⋅ ⋅ ⋅ < nk and

ai ∈ {0, 1, 2, . . . , N − 1}, i = 1, 2, . . . , k. The subset

Cn1,n2,...,nk
a1,a2,...,ak

= {x ∈ ΩN ∣ xni = ai for i = 1, 2, . . . , k}

is called a cylinder, and the fixed number k is the rank of the cylinder. Then all

cylinders are open sets in the product topology for the discrete topology on the finite
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set {0, 1, 2, . . . , N − 1}. We can define a topology on the space ΩN by constructing a

base from such cylinders. Also, we define a metric on ΩN by

d(x, y) =
∞∑

n=−∞

∣xn − yn∣
(10N)∣n∣

<∞

and obtain the same topology.

For

a = (. . . , a−m, . . . , a0, . . . , am, . . . ),

the symmetric cylinder of rank 2m+ 1 is the cylinder

Cm
a := C−m,...,ma−m,...,am = {x ∈ ΩN ∣ xi = ai for ∣i∣ ≤ m},

which is an open metric ball of radius (10N)−m around a.

Example 2.12. For X = ΩN , let � be the shift action on X given by

(�(xn)) = xn+1 for all n ∈ ℤ.

Then ℎ(�) = logN.

Proof. Given m ≥ 1, let �m = (10N)−m/2. Now fix n ≥ 1. For x = (xi), y = (yi) ∈

ΩN , we have

dn(x, y) = max
0≤j≤n−1

(
∞∑

i=−∞

∣xi+j − yi+j∣
(10N)∣i∣

)
.

If dn(x, y) ≤ �m, then xi+j = yi+j for all ∣i∣ ≤ m and 0 ≤ j ≤ n− 1.

We fix

a = (. . . , a−m, . . . , am, . . . , am+n−1, . . . )

in order to define the cylinder

C−m,...,m,...,m+n−1
a−m,...,am,...,am+n−1

= {x ∈ ΩN ∣ xi = ai for −m ≤ i ≤ m+ n− 1},
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the ball of radius �m around a with respect to the metric dn associated with the map

�. We claim that any two balls of this radius with respect to the metric dn are either

identical or disjoint. Suppose a ∕= a
′
such that a = (. . . , a−m, . . . , am, . . . , am+n−1, . . . )

and a
′
= (. . . , a

′
−m, . . . , a

′
m, . . . , a

′
m+n−1, . . . ) for which

C−m,...,m,...,m+n−1
a−m,...,am,...,am+n−1

∩ C−m,...,m,...,m+n−1

a
′
−m,...,a

′
m,...,a

′
m+n−1

∕= ∅.

Then there exists x
′

such that dn(x
′
, a) < �m and dn(x

′
, a
′
) < �m.

Consequently,

max
0≤j≤n−1

(
∞∑

i=−∞

∣ai+j − a
′
i+j∣

(10N)∣i∣

)
= dn(a, a

′
)

< dn(a, x
′
) + dn(x

′
, a
′
) < (10N)−m.

Thus for each j = 0, 1, . . . , n− 1, ai+j = a
′
i+j for ∣i∣ ≤ m. This implies that

C−m,...,m,...,m+n−1
a = C−m,...,m,...,m+n−1

a′
.

If dn(x, y) ≥ �m, then x and y must not be in the same ball of radius �m around some

a (i.e. if x, y are in the same (n, �m)-separated set, both of them must stay in different

balls of radius �m around some a). Thus counting the points of a maximal (n, �m)-

separated set is the same as counting the number of balls of radius �m around points a.

Since the covering of ΩN by such balls is obviously minimal, so a maximal cardinality

of (n, �m)-separated set is equal to the number of choice of a−m, . . . , am, . . . , am+n−1.

Thus N (n, �m) = N2m+n. Hence we obtain

ℎ(�) = lim
m→∞

lim
n→∞

2m+ n

n
logN = logN.
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Chapter 3

S-integer Dynamical Systems

3.1 Toral Endomorphisms

We will first introduce a definition of a toral endomorphism, which generalizes the

circle-doubling map. For d ≥ 1, let Md(ℤ) be the set of all d × d matrices A having

integer entries and GLd(ℤ) be the set of all elements A in Md(ℤ) such that det(A) =

±1.

Definition 3.1. Each matrix A in Md(ℤ) such that det(A) ∕= 0 defines a linear map

on ℝd by x̄ 7→ Ax̄ for all x̄ ∈ ℝd. We define a toral endomorphism � : Td → Td by

�(x̄) = Ax̄ (mod 1)

for all x̄ ∈ Td where Td = ℝd/ℤd is the additive d-dimensional torus.

In general, the map � is not invertible. However, if det(A) = ±1 then A−1 exists

and is an integer matrix, hence we have a map �−1 given by

�−1(x̄) = A−1x̄ (mod 1)

for all x̄ ∈ Td. It is easy to see that �−1 is the inverse of �.
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Definition 3.2. Let A ∈ GLd(ℤ). We say that the map � (in Definition 3.1) is a

toral automorphism.

Example 3.3. The circle-doubling map is a toral endomorphism because the corre-

sponding matrix to this map is the 1× 1 matrix having entry 2 and its determinant

obviously is not equal to 0. But it’s not a toral automorphism as the determinant is

not ±1.

Example 3.4. Let

A =

⎛⎝ 2 1

1 1

⎞⎠ .

The associated map � : T2 → T2 takes the form

�(x1, x2) = (2x1 + x2, x1 + x2) (mod 1).

As det(A)=1, so � is a toral automorphism and it is known as Arnold’s cat map.

Let �A be the toral endomorphism corresponding to a matrix A and A� be the

matrix corresponding to a toral endomorphism �. Sometimes if we write just �,

in this section we mean that � is a toral endomorphism (or a toral automorphism)

corresponding to some matrix A. Similarly, A means A�.

Lemma 3.5. A toral automorphism �A : Td → Td is ergodic iff no eigenvalue �i of

A is a root of unity.

The proof of this lemma can be found in [34, page 29-32].

Definition 3.6. Suppose that A ∈ GLd(ℤ). We say that �A is a hyperbolic toral

automorphism if A does not have eigenvalues of modulus 1. Otherwise, �A is called

a non-hyperbolic toral automorphism and in particular, �A is quasihyperbolic if it is

ergodic and A has some eigenvalues of modulus 1.
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Example 3.7. Let � be the same map in Example 3.4. The eigenvalues are 3±
√

5
2
.

Thus � is hyperbolic, since A has no eigenvalues of modulus 1.

Example 3.8. Let � : T4 → T4 be the toral automorphism corresponding to the

matrix

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1

1 0 0 8

0 1 0 −6

0 0 1 8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
.

Then A has eigenvalues 2+
√

3±
√

6 + 4
√

3 and 2−
√

3±i
√

4
√

3− 6 which are two

real eigenvalues and two complex eigenvalues of modulus 1. So � is not hyperbolic,

but is ergodic.

Theorem 3.9. Let � be a hyperbolic or quasihyperbolic toral automorphism of Td

corresponding to a matrix A having eigenvalues �1, �2, . . . , �d. Then the number of

points fixed by �n is given by

F�(n) = ∣ det(An − I)∣ =
d∏
i=1

∣�ni − 1∣.

Proof. The sketch of this proof may be found in some part of the proof in Theorem

8.18 [34].

Let us consider the special case of a toral automorphism of the 2-dimensional torus

T2.

Proposition 3.10. Let � be a toral automorphism of T2 with corresponding matrix

A having eigenvalues �1, �2. Then the number of points fixed by �n is given by

F�(n) = ∣det(An − I)∣ = ∣�n1 + �n2 − 2∣ .
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Proof. Suppose that det(A) = 1. In fact, (x1, x2) ∈ T2 is a periodic point with period

n for � if and only if

(An − I)(x1, x2)t = (n1, n2)t (19)

for some integers n1, n2. We may write

An =

⎛⎝ an bn

cn dn

⎞⎠ .

and define the map � : ℝ2 → ℝ2 by

� : (x1, x2)t 7→ (An − I)(x1, x2)t

(i.e. � : (x1, x2)t 7→ ((an − 1)x1 + bnx2, cnx1 + (dn − 1)x2))t. This maps T2 onto the

parallelogram

ℛ = {
u+ �v : 0 ≤ 
, � < 1},

where u = �(0, 1)t and v = �(1, 0)t. It follows by (19) that a point (x1, x2) ∈ Tt is

periodic iff (An − I)(x1, x2)t is an integer point in ℛ. Thus the number of periodic

points of period n correspond to the number of integer points in ℛ. Therefore, the

number of such points is equal to the area of ℛ. Hence

F�(n) = ∣ det(An − I)∣.

It remains to calculate the eigenvalue of An − I. Let � be an eigenvalue of An − I

with an eigenvector v. Then

(An − I)v = �v ⇐⇒ Anv = (�+ 1)v

so that �+ 1 is an eigenvalue of An. The eigenvalues of An are given by �n1 , �
n
2 since

�1, �2 are eigenvalues of A. Recall that a determinant of a matrix is given by the
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product of the eigenvalues.

Consequently,

∣ det(An − I)∣ = ∣(�n1 − 1)(�n2 − 1)∣

= ∣(�1�2)n + 1− (�n1 + �n2 )∣

= ∣�n1 + �n2 − 2∣.

as �1�2 = det(A) = 1.

Theorem 3.11. Let � be a hyperbolic or quasihyperbolic toral automorphism of

Tdcorresponding to a matrix A having eigenvalues �1, �2, . . . , �d. Then

ℎ(�) =
∑
∣�i∣>1

log ∣�i∣.

Proof. See [34, Theorem 8.18].

3.2 Non-Archimedean Valuations

To understand how to construct S-integer dynamical systems in the later sections,

we shall first introduce the notion of a valuation on a field.

Definition 3.12. Let K be a field. A valuation on K is a function ∣ ⋅ ∣ : K → ℝ

satisfying the following properties:

(1) ∣x∣ ≥ 0 for all x ∈ K, with equality if and only if x = 0 (positive-definite);

(2) ∣xy∣ = ∣x∣ ⋅ ∣y∣ for all x, y ∈ K (multiplicative);

(3) ∣x+ y∣ ≤ ∣x∣+ ∣y∣ for all x, y ∈ K (triangle inequality).

A valuation on K is called non-archimedean if also,

(4) ∣x+ y∣ ≤ max{∣x∣, ∣y∣} for all x, y ∈ K, (ultrametric inequality).

Otherwise, we say that it is an archimedean valuation.
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Remark 3.13. i) Condition (4) implies condition (3).

ii) Any valuation defines a metric by d(x, y) = ∣x − y∣ and a metric is called non-

archimedean if

d(x, y) ≤ max{d(x, z), d(z, y)}.

We observe that, for a non-archimedean valuation

d(x, y) = ∣x− y∣ = ∣(x− z) + (z − y)∣ ≤ max{∣x− z∣, ∣z − y∣} = max{d(x, z), d(z, y)}

Indeed, the metric d is non-archimedean if and only if the valuation ∣ ⋅ ∣ is non-

archimedean.

Lemma 3.14. Let ∣ ⋅ ∣ be a non-archimedean valuation on a field K. If x, y ∈ K such

that ∣x∣ ∕= ∣y∣, then

∣x+ y∣ = max{∣x∣, ∣y∣}.

Proof. Without loss of generality, we assume that ∣y∣ < ∣x∣. Then we definitely have

∣x+ y∣ ≤ ∣x∣ = max{∣x∣, ∣y∣}.

To prove the other side, we write x = (x+ y)− y and we know ∣y∣ = ∣ − y∣. Thus we

obtain

∣x∣ ≤ max{∣x+ y∣, ∣y∣}.

This implies that

max{∣x∣, ∣y∣} = ∣x∣ ≤ ∣x+ y∣,

since ∣y∣ < ∣x∣.

The following corollary will be shown that for a non-archimedean valuation on a field

, every triangle is isosceles. This result immediately comes from Lemma 3.14.
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Corollary 3.15 (The Isosceles Triangle Principle). Let ∣ ⋅ ∣ be a non-archimedean

valuation on a field K and let d be the metric defined as in Remark 3.13(ii). If

x, y, z ∈ K such that d(x, y) ∕= d(z, x), then

d(x, y) = max{d(x, z), d(z, y)}.

Example 3.16. (1) The most familiar example of a valuation is the usual absolute

value on ℚ. It is an archimedean valuation and is often called the valuation at infinity

and denoted ∣ ⋅ ∣∞.

(2) The trivial valuation on any field K, given by ∣x∣ = 1, for all x ∕= 0, and ∣0∣ = 0.

It is non-archimedean, but we have to exclude it from most of the theory that we

devolop. It is called the discrete valuation.

Example 3.17. Now we come to the crucial example. Let K = ℚ, let p be a prime

and for a ∈ ℤ∖{0}, let ordp a be the highest power of p which divides a. For example,

ord3 25 = 0, ord2 50 = 1, ord2 10 = 1, ord7 98 = 2.

For any non-zero rational number x = a
b
, define ordp x = ordp a− ordp b. This gives a

notion of signed multiplicity : we say that 2 divides 8 with multiplicity 3 and divides

3
4

with multiplicity −2. It is very easy to check that ordp : ℚ→ ℤ ∪ {∞} by sending

a 7→ ordp a is well-defined. We also introduce the convention that ordp 0 =∞.

Proposition 3.18. If x, y ∈ ℚ, then ordp has the following properties:

(1) ordp(xy) = ordp(x) + ordp(y) ;

(2) ordp(x+ y) ≥ min {ordp(x), ordp(y)}.

Proof. It is easy to check that (1) holds; we will therefore only prove (2). If one of

x, y, x+y is 0, the inequality is clear. So let x, y be non-zero rational numbers. Write
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x = pr a
b

and y = ps c
d
, where a, b, c, d, r, s ∈ ℤ with p ∤ abcd. Now if r = s, we get

x+ y = pr
ad+ bc

bd
,

since p ∤ bd, ordp(x+ y) ≥ r. Suppose that r ∕= s. Without loss of generality, assume

s > r. Then

x+ y = pr
(
a

b
+
ps−rc

d

)
= pr

ad+ ps−rbc

bd
.

Then ordp(x+ y) = r = min {ordp(x), ordp(y)} as p ∤ ad+ ps−rbc.

Define ∣ ⋅ ∣p : ℚ→ ℝ by

∣x∣p =

⎧⎨⎩ p− ordp x if x ∕= 0,

0 if x = 0.

It is known as the p-adic valuation.

Proposition 3.19. ∣ . ∣p is a non-archimedean valuation on ℚ.

Proof. We can check the properties (1) and (2) directly. It remains to show just only

the property (4) as we know that the property (4) implies the property (3). If x = 0

or y = 0 or x + y = 0, then it easy to see that the property (4) is true. Assume

therefore that x, y and x+ y are all nonzero. By Proposition 3.18, we have

∣x+ y∣p = p− ordp(x+y)

≤ p−min {ordp(x),ordp(y)}

= max{p− ordp(x), p− ordp(y)}

= max{∣x∣p, ∣y∣p}.

Hence ∣ ⋅ ∣p is a non-archimedean valuation on ℚ.
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Example 3.20. For a prime number p, let Fp(t) be the field of rational functions

over a finite field of characteristic p, that is

Fp(t) =

{
f(t)

g(t)
: f, g ∈ Fp[t] such that g(t) ∕= 0

}
,

where

Fp[t] =

{
n∑
i=0

ait
i ∣ ai ∈ Fp, n ∈ ℕ0

}
. (20)

For each monic irreducible v(t) ∈ Fp(t), we define ∣ ⋅ ∣v : Fp(t)→ ℝ by

∣f ∣v = p− ordv(f). deg(v)

for all f ∈ Fp(t) and ordv(f) is the signed multiplicity with which v divides the

rational function f . The field Fp(t) also has a distinguished valuation called the

valuation at infinity defined by ∣∣∣∣f(t)

g(t)

∣∣∣∣
∞

=

∣∣∣∣f(t)

g(t)

∣∣∣∣
t−1

.

This is analogous to the infinite valuation on ℚ. Also, there is an analogy between

valuations ∣ . ∣v on Fp(t) and valuations ∣ ⋅ ∣p on ℚ, so that we may prove that ∣ ⋅ ∣v is

a non-archimedean valuation similarly to the proof in Proposition 3.19.

Lemma 3.21 (Artin-Whaples Product Formula). For any x in ℚ×, (or in Fp(t)) we

have ∏
p≤∞

∣x∣p = 1

where p ≤ ∞ means that we take the product over all of the primes of ℚ (or irreducible

polynomials in Fp[t]) and then multiply by the valuation at infinity.

Proof. We only need to prove the formula when x is a positive rational number as

∀p ∈ ℙ ∪ {∞}, ∣ − 1∣p = 1. So let x ∈ ℚ×, then it can be written as

x = pa11 p
a2
2 ⋅ ⋅ ⋅ p

ak
k ,
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where ai ∈ ℤ, pi ∈ ℙ, i = 1, 2, . . . , k and pi ∕= pj if i ∕= j.

Then we have⎧⎨⎩
∣x∣q = 1 if q ∕= pi for all i = 1, 2, . . . , k

∣x∣pi = p−aii for i = 1, 2, . . . , k

∣x∣∞ = pa11 p
a2
2 ⋅ ⋅ ⋅ p

ak
k .

The formula follows at once, and the case Fp(t) is the same.

The following lemma, which allows us to compute the p-adic valuation ∣an − 1∣p

for any odd prime number and gcd(a, p) = 1, will play a crucial role in Chapters 4

and 5.

For a prime p, let mp(a) be the multiplicative order of a (mod p).

Lemma 3.22. Let p be an odd prime and a be an integer such that gcd(a, p) = 1.

Then

∣an − 1∣p =

⎧⎨⎩ ∣n∣p∣amp(a) − 1∣p if mp(a) ∣ n,

1 if mp(a) ∤ n.

In other words,

ordp(a
n − 1) =

⎧⎨⎩ ordp(n) + ordp(a
mp(a) − 1) if mp(a) ∣ n,

0 if mp(a) ∤ n.

Proof. We consider ā ∈ ℤ×p , a group of p− 1 elements with multiplication modulo p.

Let mp(a) be the order of ā in ℤ×p . Thus

āmp(a) ≡ 1 mod p.

So

∣amp(a) − 1∣p ≤
1

p
< 1.
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Moreover,

ān ≡ 1 mod p⇔ mp(a) ∣ n⇔ ∣an − 1∣p < 1,

and

∣an − 1∣p = 1⇔ mp(a) ∤ n.

If mp(a)∣n, then write n = mp(a)per where e ≥ 0 and gcd(p, r) = 1.

Then, putting amp(a) = 1 + px, we have

∣an − 1∣p = ∣(amp(a))p
er − 1∣p

=

∣∣∣∣(per)px+

(
per

per − 2

)
(px)2 + ⋅ ⋅ ⋅+

(
per

1

)
(px)p

er−1 + (px)p
er

∣∣∣∣
p

.

Since ∣ ⋅ ∣p is a non-archimedean valuation and for each i = 0, 1, . . . , per − 2, we have

∣perpx∣p ≥
∣∣∣∣(peri

)
(px)p

er−i
∣∣∣∣
p

,

It follows that

∣an − 1∣p = ∣perpx∣p

= ∣per∣p∣px∣p = ∣n∣p∣amp(a) − 1∣p.

We notice that ordp(mp(a)) = 0 because mp(a) ∣ p− 1.

3.3 Completion and Places of A-fields

Definition 3.23. Let K be a finite algebraic extension of the rational field ℚ or of

Fp(t) for some rational prime p. In the sense of Weil [37], any such field K is called

an A-field. From here on, we use K to denote an A-field.
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A valuation ∣ ⋅ ∣ on K defines a metric as in Remark 3.13(ii), giving a notion of

open and closed sets and Cauchy sequences in K.

Definition 3.24. A sequence (xn) of elements of K is called a Cauchy sequence if,

for every � > 0, there exists M such that we have ∣xn − xm∣ < � for all n,m > M.

We recall that a sequence (xn) converges to x ∈ K if, for all � > 0, there exists N

such that, for all n > N , ∣xn − x∣ < �.

Lemma 3.25. Every Cauchy sequence of real numbers is bounded.

Proof. Let (xn) be a Cauchy sequence. Then there exists a natural number N such

that for all n,m ≥ N , we have ∣xn − xm∣ < 1. Taking m = N , we obtain that

∣xn∣ ≤ ∣xN ∣+ 1 for all n ≥ N . Let

M = max{∣x1∣, ∣x2∣, . . . , ∣xN−1∣, ∣xN ∣+ 1}.

It follows that ∣xn∣ ≤M for all n. Hence (xn) is bounded.

Lemma 3.26. Every convergent sequence is Cauchy.

The converse is not true in general, but it holds if K = ℝ with respect to ∣ ⋅ ∣∞.

Definition 3.27. We say that K is complete with respect to ∣ ⋅ ∣ if every Cauchy

sequence is convergent with respect to ∣ ⋅ ∣.

For example, ℝ with ∣ ⋅ ∣∞ is complete, but ℚ is not complete with respect to any

of its nontrivial valuations. The main point here will be to construct, for each prime

p or ∞, a complete field containing ℚ to which the valuation ∣ ⋅ ∣p extends. We first

need to recall some concepts from basic topology for any metric space.
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Definition 3.28. Let K be a field with valuation ∣ ⋅ ∣, let a ∈ K and r be a positive

real number. The open ball of radius r and centre a is the set

B(a, r) = {x ∈ K : ∣x− a∣ < r}.

The closed ball of radius r and centre a is the set

B̄(a, r) = {x ∈ K : ∣x− a∣ ≤ r}.

Definition 3.29. A subset S of K is called dense in K if every open ball around an

element of K contains an element of S; that is, if for every x ∈ K and every � > 0,

we have B(x, �) ∩ S ∕= ∅. Equivalently, S is dense in K if, for all x ∈ K, there exists

a sequence (xn) in S such that limn→∞ xn = x.

For example, ℚ is dense in ℝ with ∣ ⋅ ∣∞ as, given any irrational number x, there exists

a sequence (xn) in ℚ converging to x.

Definition 3.30. A field K̄ with valuation ∣∣ ⋅ ∣∣ is the completion of K with valuation

∣ ⋅ ∣ if

(i) there is an inclusion i : K → K̄ respecting the valuations;

(ii) the image i(K) is dense in K̄;

(iii) K̄ with ∣∣ ⋅ ∣∣ is complete.

Example 3.31. ℝ with respect to ∣ ⋅ ∣∞ is the completion of ℚ.

Example 3.32. For a prime p, the completion of ℚ with respect to ∣ ⋅ ∣p is denoted

by ℚp. What is ℚp? And how may we to construct it? The following process will

answer these questions.

For each prime p, define

Cp := Cp(ℚ) = {(xn) : (xn) is a Cauchy sequence in ℚ with respect to ∣ ⋅ ∣p},
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with the additive and multiplicative operations as follows:

(xn) + (yn) = (xn + yn),

(xn) ⋅ (yn) = (xnyn).

Then (Cp,+, ⋅) is a commutative ring with unity. To prove this statement, we only

need to check that (xn + yn) and (xnyn) are Cauchy. It is very easy to prove the sum

is Cauchy as

(xn + yn)− (xm + ym) = (xn − xm) + (yn + ym).

For the product, we need to use the fact in Lemma 3.25 and then apply it to the

identity

xnyn − xmym = xn(yn − ym) + ym(xn − xm).

We define ℳp ⊂ Cp to be the ideal

{(xn) ∈ Cp : xn → 0} = {(xn) ∈ Cp : lim
n→∞

∣xn∣p = 0}

of sequences that tend to zero with respect to ∣ ⋅ ∣p. By Lemma 3.2.8 in [12], ℳp

is a maximal ideal of Cp. Thus Cp/ℳp is a field which is defined to be the p-adic

field ℚp. So all elements of ℚp are equivalence classes of Cauchy sequences. For

x̄ = x+ℳp ∈ ℚp, where x = (xn) ∈ Cp, define

∣∣x̄∣∣p = lim
n→∞

∣xn∣p.

By Lemma 3.2.10 in [12], the limit defining ∣ ⋅ ∣p exists. It is also well defined: assume

that x+ℳp = y+ℳp, where x = (xn), y = (yn) ∈ Cp and x ∕= y. Then x−y ∈ℳp.

Thus

lim
n→∞

∣xn − yn∣p = 0.
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Consider

lim
n→∞

∣xn∣p = lim
n→∞

∣xn − yn + yn∣p

≤ lim
n→∞

∣xn − yn∣p + lim
n→∞

∣yn∣p

= lim
n→∞

∣yn∣p.

Similarly, we get

lim
n→∞

∣yn∣p ≤ lim
n→∞

∣xn∣p.

So

lim
n→∞

∣xn∣p = lim
n→∞

∣yn∣p.

Thus the valuation ∣∣⋅∣∣p on ℚp is well-defined. To prove that ℚp, ∣∣⋅∣∣p is the completion

of ℚ with respect to ∣ ⋅ ∣p, we need to check three properties in Definition 3.30. An

inclusion of ℚ into the field ℚp is given by sending q ∈ ℚ to the equivalence class of

the constant sequence (q, q, ..., q) +ℳp. It is clearly well-defined and also is injective.

We need to check the remaining two properties: that ℚ is dense in ℚp, and that ℚp

is complete. The proof of these properties may be found in [12, page 57-59]. Hence

we have proved that ℚp, ∣∣ ⋅ ∣∣p is the completion of ℚ with respect to ∣ ⋅ ∣p.

Definition 3.33. . Two valuations ∣ ⋅ ∣1 and ∣ ⋅ ∣2 on a field K are called equivalent

if the metrics defined by ∣ ⋅ ∣1 and ∣ ⋅ ∣2 as in Remark 3.13(ii) give the same convergent

sequences.

Proposition 3.34. Let ∣ ⋅ ∣1 and ∣ ⋅ ∣2 be valuations on K, with ∣ ⋅ ∣1 non-trivial. The

following are equivalent:

(i) ∣ ⋅ ∣1 and ∣ ⋅ ∣2 are equivalent;

(ii) for any x ∈ K, we have ∣x∣1 < 1⇔ ∣x∣2 < 1;

(iii) there exists a positive real number � such that, for all x ∈ K,

∣x∣1 = ∣x∣�2 ;
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(iv) if K̄i, ∣∣ ⋅ ∣∣i denotes the completion of K with respect to ∣ ⋅ ∣i, then there is an

isomorphism � : K̄1 → K̄2 such that ∣∣ ⋅ ∣∣1 and ∣∣�(⋅)∣∣2 are equivalent valuations on

K̄1.

Proof. The proof may be found in [12, Theorem 3.1.2].

Definition 3.35. Let K be an A-field. A place of K is an equivalence class of

valuations of K (in the sense of Proposition 3.34). Let P (K) denote the set of places

of K and P∞(K) denote the set of infinite places of K.

If characteristicK = 0, an infinite place means an equivalence class of an archimedean

valuation on K. For example, K = ℚ, we have P∞(K) = {∣.∣∞} because there is only

an archimedean valuation on ℚ. If characteristic K = p > 0, an infinite place can be

chosen arbitrarily as in Example 3.20. P∞(K) is always finite (see [37]). We will only

need these ideas for ℚ and Fp(t), where we have the following form of Ostrowski’s

Theorem.

Theorem 3.36 (Ostrowski). The places of ℚ are in one-to-one correspondence with

ℙ ∪ {∞}. The places of Fp(t) are in one-to-one correspondence with

{irreducible polynomials in Fp[t]} ∪ {∞}.

Proof. The proof may be found in [12, Theorem 3.1.3].

3.4 S-integer Dynamical Systems

Definition 3.37. Let K be an A-field. For any set S ⊆ P (K) ∖ P∞(K), define

RS = {x ∈ K : ∣x∣w ≤ 1 for all w /∈ S ∪ P∞(K)},
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the ring of S-integers. It is a discrete subgroup in K (in the discrete topology on K).

Write R̂S for the set of all homomorphisms from RS to S1 which is a compact abelian

group in the topology of uniform convergence on compact sets. That is, characters

are close if they are uniformly close on finite sets in RS.

Example 3.38. 1. K = ℚ and S = ∅, then

RS = {x ∈ ℚ : ∣x∣p ≤ 1 for all primes p} = ℤ.

2. K = ℚ and S = {2}, then

RS =
{ a

2n
: a, n ∈ ℤ

}
= ℤ

[
1
2

]
.

3. In general, if K = ℚ and S is a finite subset of rational primes, say {p1, p2, . . . , pr},

then

RS =
{a
b
∈ ℚ : primes dividing b lie in S

}
= ℤ

[
1

p1p2 ⋅ ⋅ ⋅ pr

]
.

4. K = Fp(t) and S = ∅, then RS = Fp[t].

5. K = Fp(t) and S = {t}, then RS = Fp[t±1].

Now, the S-integer dynamical systems, which generalize simple maps like the circle

doubling map or toral automorphisms, will be introduced by associating via duality

a dynamical system to each pair (RS, �) where � is an element of RS ∖ {0} (see [5]).

Definition 3.39. Let � be a non-zero element of RS and let � = �(K,S,�) be the

surjective endomorphism of the compact group X(K,S,�) = R̂S, dual to multiplication

by � on RS (i.e. the monomorphism �̂ : RS → RS defined by �̂(x) = �x). The pair

(X(K,S,�), �(K,S,�)) forms a dynamical system which is called an S-integer dynamical

system.
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In my work, we will only be concerned with two cases:

(1) If K = ℚ then � = a
b

is a rational, S is a subset of the rational primes ℙ

including all primes dividing b, and the compact group R̂S is one-dimensional. If �

is a unit in RS, then all primes dividing a are also in S and the resulting map is

invertible.

(2) If K = Fp(t) then � = a(t)
b(t)

is a rational function, S is a subset of the set of

irreducibles of Fp[t] together with the place at ∞, including all irreducibles dividing

b(t). In this case the compact group R̂S is zero-dimensional.

Example 3.40. (i) Let K = ℚ, S = ∅ and � = 2. By the above definition, �̂ : ℤ→ ℤ

is the map x 7→ 2x, and so the continuous group endomorphism � : T → T is the

circle doubling map, x 7→ 2x mod 1. We note that ℤ̂ = T.

(ii) Let K = ℚ, S = {2}, and � = 2. Then R̂S is the solenoid ℤ̂[1
2
] and � is the

automorphism of X dual to the automorphism x 7→ 2x on RS. This is the natural

invertible extension of the circle doubling map [18, Section2].

(iii) Let K = ℚ, S = {2, 3, 5, 7, 11, . . . } and � = 3
2
. Then RS = ℚ and � is the

automorphism of the full solenoid ℚ̂ dual to multiplication by 2
3

on ℚ [20, Section2].

(iv) If K = ℚ and S contains all primes but one prime (say 3) and � = 2 then

RS = ℤ
[

1

2
,
1

5
,
1

7
,

1

11
, . . .

]
= ℤ(3)

Then � is the automorphism of X = R̂S dual to the automorphism x 7→ 2x on RS.

(v) Let K = Fp(t), S = ∅ and � = t. Then R̂S =
∞∏
i=0

{0, 1, . . . , p − 1} and � is the

one-sided shift on p symbols.

(vi). Let K = Fp(t), S = {t} and � = t. Then R̂S =
∞∏

i=−∞
{0, 1, . . . , p− 1} and � is

the left shift on the space of two-sided sequences of p symbols.
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3.5 Periodic Points and Topological Entropy of S-

integer maps

The following lemma is a generalization of Example 2.2 in Section 2.1.

Theorem 3.41. Let (X,�) = (X(K,S,�), �(K,S,�)) be an S-integer dynamical system.

Then the number of periodic points n ≥ 1 is finite for all n if � is ergodic, and

F�(n) =
∏

w∈S∪P∞(K)

∣�n − 1∣w.

Proof. The proof may be found in [5, Theorem 5.2].

Theorem 3.42. The topological entropy of S-integer dynamical system (X(K,S,�), �(K,S,�))

is given by

ℎ(�(K,S,�)) =
∑

w∈S∪P∞(K)

log+ ∣�∣w,

where log+ ∣�∣w = max{log ∣�∣w, 0}.

Again, the proof can be found in [5, Theorem 4.1]. Example 2.11 is generalized

by this lemma.

Example 3.43. (i) Let K = ℚ, S = ∅ and � = 2. Then � is the circle doubling

map. So F�(n) = 2n − 1 and ℎ(�) = log 2

(ii) Let K = ℚ, S = {2}, and � = 2. Thus

F�(n) = (2n − 1)∣2n − 1∣2 = 2n − 1,

and ℎ(�) = log 2.

(iii) Let K = ℚ, S = {2, 3, 5, 7, 11, . . . } and � = 3
2
. The map � has only one periodic

point for any period by Lemma 3.41 and Lemma 3.21, and ℎ(�) = log 3.
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(iv) If K = ℚ and S contains all primes but one prime (say 3) and � = 2. By following

Lemma 3.41 and applying Lemma 3.21, we get F�(n) = ∣2n−1∣−1
3 . Here ℎ(�) = log 2.

(v) Let K = Fp(t), S = {t} and � = t. By Lemma 3.41,

F�(n) = ∣tn − 1∣∞ × ∣t
n − 1∣t

=
∣∣t−n − 1

∣∣
t
× 1

=

∣∣∣∣1− tntn

∣∣∣∣
t

= pn.

Thus F�(n) = pn for all n ≥ 1.

(vi). Let K = Fp(t), S = ∅ and � = t. The same calculation as in (v) shows that

Fn(�) = pn for all n ≥ 1.

3.6 Growth Rate of Periodic Points

Let (X,�) be a dynamical system, where � is a continuous map from a compact

metric space X = (X, d) to itself. We shall introduce upper and lower growth rates

of the number of periodic points p+ and p− in such a system as follows:

p+(�) = lim sup
n→∞

1

n
log ∣F�(n)∣,

and

p−(�) = lim inf
n→∞

1

n
log ∣F�(n)∣.

Definition 3.44. If

lim
n→∞

1

n
log ∣F�(n)∣

exists (i.e. p+(�) = p−(�)), then we say that it is the exponential growth rate of the

number of periodic points in a dynamical system.
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Following [5], we call any S-integer dynamical system arithmetic if it is built

from a field of characteristic zero, and geometric if not. Equivalently, an S-integer

dynamical system (X,�) is called arithmetic if X is connected, and geometric if X is

totally disconnected.

Theorem 3.45. Let (X(K,S,�), �(K,S,�)) be an ergodic arithmetic S-integer dynamical

system with S finite. Then the growth rate of the number of periodic points exists and

is given by

p+(�) = p−(�) = ℎ(�).

Proof. See [5, Theorem 6.1].

Theorem 3.46. Let (X(K,S,�), �(K,S,�)) be an ergodic geometric S-integer dynamical

system with S finite. Then

p+(�) = ℎ(�).

Proof. See [5, Theorem 6.2].

We will here restrict our interest to the case K = ℚ, � = 2. By following Theorem

3.45, we guarantee that the exponential growth rate of the number of periodic points

and the topological entropy in S-integer dynamical systems arising from the case

K = ℚ, � = 2 and ∣S∣ < ∞ are equal. However, if S is co-finite, they are not the

same. The following table taken from [30, page 29] will illustrate the exponential

growth rate of the number of periodic points and the topological entropy in the
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systems.

� S Periodic Points : F�(n) ℎ(�) limn→∞
1
n

log ∣F�(n)∣

2 ∅ 2n − 1 log 2 log 2

2 {3} ∣2n − 1∣ ∣2n − 1∣3 log 2 log 2

2 {3, 5} ∣2n − 1∣ ∣2n − 1∣3 ∣2n − 1∣5 log 2 log 2

...
...

...
...

...

2 {2, 5, 7, 11, . . . } ∣2n − 1∣
∏

p ∕=3 ∣2n − 1∣p log 2 0

2 {2, 7, 11, . . . } ∣2n − 1∣
∏

p ∕=3,5 ∣2n − 1∣p log 2 0

This table shows that the exponential growth rates of the number of periodic points

is understood when S is finite or co-finite. However, it is not clear in general. For a

“typical” (that is, random) set of primes S (see [35], [36], and [5]), the assumption of

Artin’s conjecture implies that

p−(�) = 0, and p+(�) = ℎ(�). (21)

More details can be found in [5].
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Chapter 4

Mertens’ Theorem in Zero

Characteristic

4.1 Prime Orbit Theorem and Mertens’ Theorem

for Orbits

Let (X,�) be a dynamical system where X is a compact metric space and � is a

continuous map. A dynamical analogue of the prime number theorem concerns the

asymptotic behaviour of expressions like

��(N) = ∣{ � is a closed orbit : ∣� ∣ ≤ N }∣ , (22)

and a dynamical analogue of Mertens’ theorem concerns asymptotic estimates for

expressions like

M�(N) =
∑
∣� ∣≤N

�(∣� ∣), (23)

where � is some positive function of ∣� ∣. For example, if �(∣� ∣) = 1 then M�(N) =

��(N). In the works of Parry [26], Parry and Pollicot [25], Sharp [29] and others, we
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may find results about the asymptotic behaviour of (22) and (23) with �(∣� ∣) = 1
eℎ(�)∣� ∣

where ℎ(�) denotes the topological entropy of � under the assumption that X has a

metric structure with respect to which � is hyperbolic. They show that

��(N) ∼ eℎ(N+1)

N(eℎ − 1)
,

the orbit counting function ��, and

M�(N) ∼ logN + C1, (24)

for some constant C1.

Everest, Miles, Stevens and Ward [8] considered the same question for the simplest

non-hyperbolic algebraic systems. In simple examples they exhibited uncountably

many different asymptotic growth rates for the orbit counting function �� and they

also have shown an explicit rational leading coefficient in the dynamical Mertens’

theorem (24) as follows.

Theorem 4.1. Let � : X → X be an S−integer map with X connected and with S

finite. Then there are constants kS ∈ ℚ, CS and � > 0 with

M�(N) = kS logN + CS +O(N−�).
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Example 4.2. Let � = 2, K = ℚ, and S be a finite subset of primes, so � is map

dual to x 7→ 2x on the ring RS = {p
q
∈ ℚ : primes dividing q lie in S}. The constant

kS for various simple sets S is shown below:

S value of kS

∅ 1

{3} 5
8

{3, 5} 55
96

{3, 7} 269
576

co-finite 0

In the hyperbolic setting, or for systems close to hyperbolic, F�(n) and O�(n)

typically grow exponentially fast. This means the natural normalization in Mertens’

theorem is a rapidly-decaying function of ∣� ∣.

Example 4.3. In the notation of Section 3.4 taking � = 2, K = ℚ, S = ∅ gives the

map x 7→ 2x on T (the circle doubling map). Hence

F�(n) = 2n − 1, ℎ(�) = log 2

and we claim that ∑
∣� ∣≤N

1

2∣� ∣
= logN + C2 +O(1/N), (25)

for some constant C2.

Proof of claim (25). This result may be seen by isolating dominant terms in M�(N).

Note that

M�(N) =
∑
∣� ∣≤N

1

2∣� ∣
=
∑
n≤N

O�(n)

2n
,
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where

O�(n) =
1

n

∑
d∣n

�
(n
d

)
(2d − 1),

and define

F (N) =
∑
n≤N

1

n
.

Now

M�(N)− F (N) =

⎛⎝∑
n≤N

1

n

∑
d∣n

�(n
d
)(2d − 1)

2n

⎞⎠−∑
n≤N

1

n

=
∑
n≤N

1

n

∑
d∣n

(
�(n

d
)(2d − 1)

2n
− 1

)

=
∑
n≤N

1

n

⎛⎝− 1

2n
+
∑

d∣n,d<n

�(n
d
)(2d − 1)

2n

⎞⎠
= −

∑
n≤N

1

n2n
+
∑
n≤N

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1).

We claim that ∑
n≤N

1

n2n
= log 2 +O(2−N), (26)

and ∑
n≤N

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1) = C3 +O(2−N/2) (27)

for some constant C3.

Firstly, we want to approximate the error terms of (26) and (27).

Consider ∣∣∣∣∣∑
n≤N

1

n2n
−
∞∑
n=1

1

n2n

∣∣∣∣∣ =

∣∣∣∣∣
∞∑

n=N+1

1

n2n

∣∣∣∣∣
≤

∞∑
n=N+1

1

2n

= 2−N .
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So ∑
n≤N

1

n2n
−
∞∑
n=1

1

n2n
= O(2−N).

Note that

∣�(n)∣ ≤ 1 and
∑

d∣n,d<n

(2d − 1) ≤ n(2n/2 − 1) ∀n ∈ ℕ. (28)

Hence∣∣∣∣∣∣
∞∑

n=N+1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1))

∣∣∣∣∣∣ ≤
∣∣∣∣∣
∞∑

n=N+1

1

n2n
n(2n/2 − 1)

∣∣∣∣∣
≤

∞∑
n=N+1

1

(
√

2)n
(a geometric series)

=
1

(
√

2)N+1

(
1

1− 1√
2

)

=
2−N/2√
2− 1

.

This implies that⎛⎝∑
n≤N

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

⎞⎠−
⎛⎝ ∞∑

n=0

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

⎞⎠ = O(2−N/2)

It remains to show that
∞∑
n=1

1

n2n
= log 2,

and
∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

converges. We notice that

log(1 + x) = x− x2

2
+
x3

3
− x4

4
+ ⋅ ⋅ ⋅ . (29)

Applying x = −1
2

in (29), we get

− log 2 = −1

2
− 1

2 ⋅ 22
− 1

3 ⋅ 23
− 1

3 ⋅ 23
− ⋅ ⋅ ⋅ .
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Thus
∞∑
n=1

1

n2n
= log 2.

Since

∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1) ≤

∞∑
n=1

1

n2n
n(2

n
2 − 1) (by (28))

=
∞∑
n=1

1

(
√

2)n
−
∞∑
n=1

1

(2)n
(a geometric series)

=
1√
2

(
1

1− 1√
2

)
− 1

2

(
1

1− 1
2

)
=
√

2,

it follows that
∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

converges to some constant C3.

Hence the proof of the claims in (26) and (27) is completed. Therefore, by these

claims, we get

M�(N)− F (N) = − log 2 + C3 +O(2−N/2).

By Lemma 1.21, we obtain that

M�(N) = logN + C2 +O(1/N),

where C2 = 
 − log 2 + C3.

As we have shown the partial sum of the diverging harmonic series by using the

EMSF in Lemma 1.23, an immediate consequence of Lemma 1.23 and Example 4.3

is the following corollary.
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Corollary 4.4. Let � be the circle doubling map. Then, for any k ≥ 0,∑
∣� ∣≤N

1

2∣� ∣
= logN + C2 −

k−1∑
r=0

(
Br+1

r + 1

)
1

N r+1
+O(1/Nk+1),

where Br+1 are the Bernoulli numbers.

Notice that if k = 0, the statements in Corollary 4.4 and Example 4.3 are the same.

Remark 4.5. The result in (25) is the same as (24) because the map � is hyperbolic.

The following example is the simplest non-hyperbolic map in such examples and we

can prove (24) directly as the above example. If � is the map in Example 4.2 and S is

a nonempty finite set (that is, � is non-hyperbolic), the leading coefficient of M�(N)

is rational less than 1 by Theorem 4.1.

Example 4.6. Taking � = 2, K = ℚ, S = {3} gives the endomorphism � : x 7→ 2x

on ℤ̂[1
3
]. Then by Theorem 3.41 and Theorem 3.42, we have

F�(n) = (2n − 1)∣2n − 1∣3, ℎ(�) = log 2

and [8] shows that (24) changes to become∑
∣� ∣≤N

1

2∣� ∣
=

5

8
logN + C5 +O(1/N),

for some constant C5.

The proof of the above example can be found in [8], or seen later in Example 5.11.

4.2 Mertens’ Theorem for Toral Automorphisms

Let � : Td → Td be a toral automorphism corresponding to a matrix A in GLd(ℤ).

Let {�i∣1 ≤ i ≤ d} be the set of eigenvalues of A which we may arrange as

∣�1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣�s∣ > 1 = ∣�s+1∣ = ⋅ ⋅ ⋅ = ∣�s+2t∣ > ∣�s+2t+1∣ ≥ ⋅ ⋅ ⋅ ≥ ∣�d∣. (30)
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By Theorem 3.9, we have

F�(n) =
d∏
i=1

∣�ni − 1∣.

and by Theorem 3.11, the topological entropy ℎ(�) is equal to log ∣Λ∣, where Λ =∏s
i=1 �i. The purpose of this section is to give an elementary proof of the dynamical

Mertens’ Theorem for toral automorphisms. Indeed, Noorani [24] already proved such

a theorem for a quasihyperbolic toral automorphism which is expressed as the form

M�(N) = m logN + C6 + o(1),

where the constant C6 is related to analytic data coming from the dynamical zeta

function and the constant m = 2t, where 2t is the number of eigenvalues modulus one

of the matrix A.

In our proof, we improve the error terms in the hyperbolic and the quasihyper-

bolic cases to O(N−k) for any k ≥ 0 and O(N−1), respectively. The result for such

toral automorphisms can be derived directly without the need for the dynamical zeta

function. Moreover, in the quasihyperbolic case, we will illustrate how to compute

the coefficient of the main term and indeed, this constant is not necessarily 2t as

mentioned above.

As mentioned above, we will prove a dynamical analogue of Mertens’ theorem for

toral automorphisms so let us write

M�(N) =
N∑
n=1

O�(n)

eℎn
.

Remark 4.7. In the quasihyperbolic case, we notice that the complex eigenvalues

appear in conjugate pairs. Thus we may arrange that �i+t = �̄i for s+ 1 ≤ i ≤ s+ t.
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Then

∣�ni − 1∣∣�ni+t − 1∣ = ∣2− (�ni + �ni+t)∣

= 2− (�ni + �ni+t)

= (�ni − 1)(�ni+t − 1).

So
s+2t∏
i=s+1

∣�ni − 1∣ =
s+2t∏
i=s+1

(�ni − 1).

Now, we will first prove the following two lemmas before we are going to prove

the main theorem. Let

� = min{∣�s∣, ∣�s+2t+1∣−1} > 1.

Lemma 4.8. Let � be an ergodic toral automorphism corresponding to a matrix

A ∈ GLd(ℤ) with topological entropy ℎ = log ∣Λ∣. There is an � > 0 such that(
F�(n)− ∣Λ∣n

s+2t∏
i=s+1

(�ni − 1)

)
⋅ ∣Λ∣−n = O(�−n), (31)

Proof. Firstly, let us divide the sequence
∏d

i=1(�ni − 1) into three parts:

d∏
i=1

(�ni − 1) =
s∏
i=1

(�ni − 1)︸ ︷︷ ︸
Un

s+2t∏
i=s+1

(�ni − 1)︸ ︷︷ ︸
Vn

d∏
i=2t+s+1

(�ni − 1)︸ ︷︷ ︸
Wn

.

Then we will consider each of these terms as follows:

(i) The term Un is equal to

Λn +
∑

D⊂{1,...,s}

(−1)s−∣D∣

(∏
i∈D

�ni

)
︸ ︷︷ ︸

A

,
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where for each D ⊂ {1, . . . , s}, ∏
i∈D �

n
i

∣Λ∣n
= O(�−n). (32)

(ii) The term Wn is equal to

(−1)d−s +
∑

∅∕=F⊆{2t+s+1,...,d}

(−1)d−2t−s−∣F ∣

(∏
i∈F

�ni

)
︸ ︷︷ ︸

B

,

where for each ∅ ∕= F ⊆ {2t+ s+ 1, . . . , d},

∏
i∈F

�ni = O(�−n). (33)

(iii) ∣Vn∣ ≤ 22t since ∣�i∣ = 1 for all i = s+ 1, . . . , s+ 2t.

In order to complete the result of this lemma, notice that

UnWn = (−1)d−sΛn + ΛnB + (−1)d−sA+ AB

= (−1)d−sΛn +O(Λn�−n) (by (32) and (33)).

Consequently,∣∣∣∣∣
∏d

i=1(�ni − 1)− (−1)d−sΛn
∏s+2t

i=s+1(�ni − 1)

∣Λ∣n

∣∣∣∣∣ =

∣∣∣∣Vn(UnWn − (−1)d−sΛn)

∣Λ∣n

∣∣∣∣
=

∣∣∣∣VnO(Λn�−n)

∣Λ∣n

∣∣∣∣
≤ C7�

−n,

for some constant C7.

Hence by the reverse triangle inequality, we can get the result as required.

In Lemma 4.8 we also may write the equation (31) as

F�(n)

∣Λ∣n
= Vn +O(�−n), (34)
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and particularly, if � is hyperbolic, then we have

F�(n)

∣Λ∣n
= 1 +O(�−n).

Lemma 4.9. If ! is a complex number of modulus one and is not a root of unity,

then
N∑
n=1

!n

n
= − log(1− !) +O(N−1). (35)

Proof. By [14, page 69-70], we know that
N∑
n=1

!n

n
converges and by the Abel continuity

theorem [14, Theorem 2.6.4], it converges to − log(1 − !). To get the error term

O(N−1) in (35), we will apply partial summation [23, Theorem 2.1.1] to the sum
N∑
n=1

!n

n
with an = !n and f(t) = 1

t
on [1, N ] as follows.

N∑
n=1

!n

n
=

1

N

N∑
n=1

!n︸ ︷︷ ︸
O(1)

+

∞∫
1

(
t∑

n=1

!n

)
1

t2
dt

︸ ︷︷ ︸
<∞

−
∞∫
N

(
t∑

n=1

!n

)
1

t2︸ ︷︷ ︸
O(t−2)

dt.

To get an alternative formula of Vn, we may put

Ω =

{∏
i∈I

�ni ∣ I ⊆ {s+ 1, . . . , s+ 2t}

}
,

ℐ(!) = {I ⊂ {s+ 1, . . . , s+ 2t} ∣
∏
i∈I

�ni = !},

and

K(!) =
∑
I∈ℐ(!)

(−1)∣I∣.

We notice that ℐ(!) = ∅ unless ! ∈ Ω.

Then we get

Vn =
∑
!∈Ω

K(!)!n.
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Lemma 4.10. Let � be a quasihyperbolic toral automorphism with topological entropy

ℎ. Then there is a constant m ≥ 1 with

F (N) = m logN +m
 −
∑

!∈Ω∖{1}

K(!) log(1− !) +O(N−1),

Proof. Since � is quasihyperbolic, t > 0 and the complex eigenvalues appear in con-

jugate pairs. It follows that

Vn =
∑
!∈Ω

K(!)!n

Consequently,

F (N) =
N∑
n=1

1

n

∑
!∈Ω

K(!)!n

=
∑
!∈Ω

K(!)
N∑
n=1

!n

n

= m
N∑
n=1

1

n
+

∑
!∈Ω∖{1}

K(!)
N∑
n=1

!n

n

= m logN +m
 −
∑

!∈Ω∖{1}

K(!) log(1− !) +O(N−1),

since
N∑
n=1

1

n
= logN + 
 +O(N−1),

by Lemma 1.21 and

N∑
n=1

!n

n
= − log(1− !) +O(N−1) by Lemma 4.9 .

Theorem 4.11. Let � be a quasihyperbolic toral automorphism with topological en-

tropy ℎ. Then there are constants C8 and m ≥ 1 with

M�(N) = m logN + C8 +O(N−1).
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Proof. Recall that

M�(N) =
N∑
n=1

O�(n)

eℎn

=
N∑
n=1

1

n∣Λ∣n
∑
d∣n

�
(n
d

)
F�(d),

and

Vn =
s+2t∏
i=s+1

(�ni − 1).

Define

F (N) =
∑
n≤N

Vn
n
.

Then

M�(N)− F (N) =
N∑
n=1

1

n∣Λ∣n
∑
d∣n

�
(n
d

)
F�(d)−

N∑
n=1

1

n
Vn

=
N∑
n=1

1

n

⎡⎣ ∑
d∣n,d<n

∣Λ∣−n�
(n
d

)
F�(d) + ∣Λ∣−nF�(n)− Vn

⎤⎦
=

N∑
n=1

1

n

⎡⎣ ∑
d∣n,d<n

∣Λ∣−n�
(n
d

)
F�(d) +O(�−n)

⎤⎦ (by (34) )

=
N∑
n=1

1

n∣Λ∣n
∑

d∣n,d<n

�
(n
d

)
F�(d) +

N∑
n=1

1

n
O(�−n),

which are the remainder terms of M�(N). So we claim that there are constants C9

and C10 such that

N∑
n=1

1

n∣Λ∣n
∑

d∣n,d<n

�
(n
d

)
F�(d) = C9 +O(Λ−N/2), (36)

and
N∑
n=1

1

n
O(�−n) = C10 +O(�−N). (37)
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Then let us consider how these error terms are obtained in the difference between

M�(N) and F (N). We observe that∣∣∣∣∣∣
∞∑
n=N

1

n∣Λ∣n
∑

d∣n,d<n

�
(n
d

)
F�(d)

∣∣∣∣∣∣ ≤ C11Λ−N/2,

for some constant C11, and ∣∣∣∣∣
∞∑
n=N

1

n
O(�−n)

∣∣∣∣∣ ≤ C12�
−N ,

for some constant C12.

Also, we notice that
∞∑
n=1

1

n∣Λ∣n
∑

d∣n,d<n

�
(n
d

)
F�(d)

and
∞∑
n=1

1

n
O(�−n)

are convergent, so they converge to constants C9 and C10, respectively. It follows that

there are constants C9 and C10 for which

N∑
n=1

1

n∣Λ∣n
∑

d∣n,d<n

�
(n
d

)
F�(d)− C9 = O(Λ−N/2),

and
N∑
n=1

1

n
O(�−n)− C10 = O(�−N).

Here we now complete the claims in (36) and (37). Hence

M�(N) = F (N) + C9 + C10 +O(R−N) (38)

where R = min{�, ∣Λ∣1/2}.

By Lemma 4.10, we finally conclude that

M�(N) = m logN + C8 +O(N−1),

where C8 = C9 + C10 +m
 −
∑

!∈Ω∖{1}K(!) log(1− !).
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Some notations in the above theorem will be needed again in the following corol-

lary.

Corollary 4.12. Let � be a hyperbolic toral automorphism with topological entropy

ℎ. Then for any k ≥ 0,

M�(N) = logN + C14 −
k−1∑
r=0

(
Br+1

r + 1

)
1

N r+1
+O(N−(k+1)),

where C14 = C9 + C10 + 
 and the Br+1 are the Bernoulli numbers.

Proof. Since � is hyperbolic, Vn = 1 and hence

F (N) =
∑
n≤N

1

n
.

Replacing F (N) in (38) of the above theorem, then we get

M�(N) =
∑
n≤N

1

n
+ C9 + C10 +O(R−N).

Then we apply Lemma 1.23 to F (N) and finally, we can complete the proof as re-

quired.

The following lemma is called the Kronecker-Weyl lemma, which will play an

important part in computing the constant m appearing in Theorem 4.11.

Lemma 4.13. Let g be an element of a compact abelian group G. Then the sequence

(gn) is uniformly distributed in the smallest closed subgroup of G containing g.

Proof. The proof may be found in [8, Lemma 4.1].

Corollary 4.14. Let � be the same map as in Theorem 4.11. The coefficient m in

the Theorem is given by

m =

∫
X

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt.
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where X ⊂ Td is the closure of {(n�1, . . . , n�t) ∣ n ∈ ℤ}, and e±2�i�1 , . . . , e±2�i�t are

the eigenvalues with unit modulus of the matrix defining �.

Proof. Let e±2�i�1 , . . . , e±2�i�t be the eigenvalues of modulus one of the matrix corre-

sponding to the map �. Then we may write

Vn =
t∏

j=1

(1− e2�i�jn)(1− e−2�i�jn)

=
t∏

j=1

(2− 2 cos(2��jn)).

Let X ⊆ Tt be the closure of {(n�1, . . . , n�t)∣n ∈ ℤ}. Then the Kronecker-Weyl lemma

may be applied to the element (�1, . . . , �t) ∈ X and we define the continuous function

f : X → ℂ by

(x1, . . . , xt) 7→
t∏
i=1

(2− 2 cos(2�xi)).

Thus

1

N

N∑
n=1

t∏
j=1

(2− 2 cos(2��jn))→
∫
X

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt

as N →∞. Then, by partial summation,

N∑
n=1

1

n
Vn =

N∑
n=1

(
1

n
− 1

n+ 1

) n∑
m=1

Vm +
1

N + 1

N∑
m=1

Vm

∼

(∫
X

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt

)
logN

so that

m =

∫
X

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt.

The value m depends on relations between arguments of eigenvalues of modulus

one. Indeed, the quantity of the constant m may not be the same as its generic

value 2t as illustrated in the following examples:
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Example 4.15. 1. If {�1, . . . , �t} is an independent set over ℚ, (the generic case)

then X = Tt, so

m =

∫ 1

0

. . .

∫ 1

0

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt

=

(∫ 1

0

(2− 2 cos(2�x1)) dx1

)t
= 2t,

as in Noorani [24].

2. Let � be the automorphism of T8 defined by the matrix A⊕ A, where

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎝
0 0 0 −1

1 0 0 8

0 1 0 −6

0 0 1 8

⎞⎟⎟⎟⎟⎟⎟⎟⎠
. (39)

Here X is a diagonally embedded circle, and

m =

∫∫
{x1=x2}

2∏
j=1

(2− 2 cos(2�jxj))dx1 . . . dx2

=

∫ 1

0

(2− 2 cos(2�x))2dx = 6 > 22.

3. Let A be the matrix as in the above Example and the map � : T4t → T4t be

the toral automorphism corresponding to the matrix A ⊕ ⋅ ⋅ ⋅ ⊕ A (t terms).

The matrix A has one pair of eigenvalues with modulus one, so there are 2t

eigenvalues with modulus one of the matrix corresponding to �. In this case X

is a diagonally embedded circle, and so

m =

∫
⋅ ⋅ ⋅
∫
{x1=⋅⋅⋅=xt}

t∏
i=1

(2− 2 cos(2�xi)) dx1 ⋅ ⋅ ⋅ dxt

=

∫ 1

0

(2− 2 cos(2�x1))t dx1 =
(2t)!

(t!)2
∼ 22t

√
�t
.
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by Stirling’s formula. This is much larger than 2t and it follows that m
2t

may be

arbitrarily large.

4.3 Mertens’ Theorem for Slow Growth

Our aim is to find dynamical analogues of Mertens’ theorem for dynamical systems

of slow growth, in which quantities like F�(n) and O�(n) are polynomially bounded,

even though the topological entropy ℎ(�) = ℎ is positive. The following lemma shows

that the usual function �(∣� ∣) = 1
eℎ∣� ∣

in Mertens’ Theorem in (23) is not interesting

when we have polynomially bounded growth.

Lemma 4.16. If O�(n) ≤ C15n
k for some k, C15, and ℎ > 0, then

∑
∣� ∣≤N

1

eℎ∣� ∣

is bounded.

Proof. ∑
∣� ∣≤N

1

eℎ∣� ∣
=
∑
n≤N

O�(n)

eℎn
≤ C15

∑
n≤N

nk

eℎn

converges as N →∞.

Example 4.17. In the same situation as Example 3.43(iv), that is if we take � =

2, K = ℚ, S = {p ∣ p ∕= 3}, Sc = ℙ∖S = {3} , then M�(N) is bounded.

Proof. From Example 3.43(iv), we know F�(n) = ∣2n − 1∣−1
3 and ℎ(�) = log 2. By

Lemma 3.22, F�(n) can be written as

F�(n) =

⎧⎨⎩ 1 if n is odd

3∣n∣−1
3 if n is even.
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Notice that for n ∈ ℕ,

F�(n) ≤ 3n,

since 1 ≤ ∣n∣−1
3 ≤ n for any natural number n.

From now on, Sc is a finite set of primes and ∣Sc∣ = m. From the above example,

changing Sc to be any finite subset of ℙ and following the same method as the proof

in the above example, we can see that M�(N) is bounded. More generally, we will

find a dynamical analogue of Mertens’ Theorem concerning asymptotic estimates for

expressions like

M�
�(N) =

∑
∣� ∣≤N

�(�), (40)

where � = 1
(log ∣� ∣)∣Sc∣ , a more appropriate rate function for these slowly growing sys-

tems. In orther words,

M�(N) := M�
�(N) =

N∑
n=2

O�(n)

(log n)∣Sc∣
.

As usual,

F�(n) =
∏
p∈Sc
∣an − 1∣−1

p , (41)

where a ∈ ℤ, ∣a∣ > 1, gcd(a, p) = 1 ∀p ∈ Sc. For the rest of this section, (X,�)

is a dynamical system with the property (41). Our interest in this section will be

specifically in case a = 2. These are examples of “co-finite” S-integer systems: in the

notation of [8], these have S containing all but finitely many primes instead of only

finitely many primes. Notice that the product formula for ℚ shows that if S, Sc are

disjoint and S ∪ Sc consists of all the primes [37], then

∏
p∈S∪{∞}

∣an − 1∣p ⋅
∏
p∈Sc
∣an − 1∣p = 1.
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In this sense the co-finite systems are complementary to the finite ones considered in

[8].

Lemma 4.18. Let T be a finite subset of primes. For a given a positive integer n, if

oT ∣ n, then we have

∣2n − 1∣T = ∣n∣T
∣∣∣∣2oT − 1

oT

∣∣∣∣
T

,

where oT = lcm{mp ∣ p ∈ T} and mp is the multiplicative order of 2 (mod p).

Proof. Let T ⊂ ℙ with ∣T ∣ < ∞ and n be a positive integer. For each p ∈ T , by

Lemma 3.22, we know that

∣2n − 1∣p =

⎧⎨⎩ ∣n∣p∣2mp − 1∣p if mp ∣ n,

1 if mp ∤ n,

and also we get

∣2oT − 1∣p = ∣oT ∣p∣2mp − 1∣p, (42)

as mp always divides oT .

Consequently,

∣2n − 1∣T = ∣n∣T
∣∣∣∣2oT − 1

oT

∣∣∣∣
T

.

By applying Lemma 4.18, we may write F�(n) (in (41)) as in the following lemma.

Lemma 4.19.

F�(n) = ∣n∣−1
U(n)

∣∣∣∣2oU(n) − 1

oU(n)

∣∣∣∣−1

U(n)

,

where U(n) = {p ∈ Sc : mp ∣ n} and oU(n) = lcm{mp : p ∈ U(n)}.
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Definition 4.20. The dynamical Dirichlet series associated to the map � is the

formal series

d�(z) =
∞∑
n=1

O�(n)

nz
. (43)

Alternatively, d�(z) can be expressed as

d�(z) =
1

�(z + 1)

∞∑
n=1

F�(n)/n

nz
,

by using convolution of Dirichlet series (see [31, Section 3.7]). The dynamical Dirichlet

series will play an important role in obtaining the formula for O�(n) by extracting

the coefficients from the series expression for d�.

The following theorem taken from [9, Theorem 3.3] will be specifically illustrated

here for a dynamical system (X,�) having the formula of F�(n) as in (41).

For a set A, define

ℕA
0 = {f : A→ ℕ0}.

Theorem 4.21. Let Sc be a finite subset of primes. Then d�(z) is a finite linear

combination of Dirichlet series of the form∑
e∈ℕW0

1

(b'W (e))z
(44)

where b ∈ ℕ, W ⊆ Sc, and 'W (e) =
∏

p∈W pep.

The (proof of the) above theorem allows us to derive the formula for O�(n). We

know that d�(z) is the sum in (43) and may then use it to compare with the expression

of d�(z) in this theorem so that the sum in (44) contributes 1 orbit of length n when

n = b
∏

p∈W pep , ep ≥ 0. This gives the following corollary.

Corollary 4.22. If d�(z) is expressed as in Theorem 4.21, then there is a finite

list W1,W2, . . . ,Wr of (not necessarily distinct) subsets of Sc and non-zero integer
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constants R1, R2, . . . , Rr, K1, K2, . . . , Kr such that

O�(n) =

⎧⎨⎩ Ri if n = Ki

∏
p∈Wi

pep , ep ∈ ℕ,

0 otherwise.

Moreover, Wi = Sc for some i.

Example 4.23. For Sc = {3}, we know that

F�(n) = ∣2n − 1∣−1
3 .

By Lemma 4.19, we can write

F�(n) = ∣n∣−1
U(n)

∣∣∣∣2oU(n) − 1

oU(n)

∣∣∣∣−1

U(n)

,

where U(n) = {p ∈ Sc : mp ∣ n}.

Note that m3 = 2. For n ≥ 1, if U(n) = ∅ (i.e. n is odd), then F�(n) = 1. On the

other hand, if U(n) ∕= ∅ then n can be written as n = 2 ⋅ 3ek with e ∈ ℕ0 and 3 ∤ k.

Thus we get

F�(n) = ∣2 ⋅ 3e ⋅ k∣−1
3

∣∣∣∣22 − 1

2

∣∣∣∣−1

3

= 3e+1.

Hence

F�(n) =

⎧⎨⎩ 3e+1 if n = 2 ⋅ k ⋅ 3e, e ≥ 0 and 3 ∤ k,

1 otherwise.

By [9, Example 4.1], we know that

d�(z) = 1 +
1

2z

(
1

1− 3−z

)
. (45)

Rearranging the terms on the right hand side of (45), the formula of d�(z) becomes

d�(z) = 1 +
∞∑
e=0

1

(2 ⋅ 3e)z
,
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and then we compare it with the equation (43).

Hence

O�(n) =

⎧⎨⎩ 1 if n = 2 ⋅ 3e, e ≥ 0 or n = 1,

0 otherwise.

Example 4.24. For Sc = {3, 5}, we know that

F�(n) = ∣2n − 1∣−1
3 ∣2n − 1∣−1

5 .

Note that m3 = 2, m5 = 4, and oSc = 4. For n ≥ 1, there are three possibilities for

U(n).

Case 1. U(n) = {3}, then we write n = 2.3ek for all e ∈ ℕ0 and 2 ∤ k, 3 ∤ k.

Following the same calculation as in Example 4.23, we reach F�(n) = 3e+1.

Case 2. U(n) = Sc. Then we write n = 4.k.3e15e2 where e1, e2 ∈ ℕ0 and 3 ∤ k, 5 ∤ k.

Then

F�(n) = ∣4 ⋅ k ⋅ 3e15e2∣−1
Sc

∣∣∣∣24 − 1

4

∣∣∣∣−1

Sc
= 3e1+15e2+1.

Case 3. U(n) = ∅. Clearly, F�(n) = 1. Additionally, U(n) = ∅ means that n must

not be written as in the cases 1 and 2. Thus

F�(n) =

⎧⎨⎩
3e+1 if n = 2 ⋅ k ⋅ 3e, e ≥ 0 and 2 ∤ k, 3 ∤ k,

3e1+15e2+1 if n = 4 ⋅ k ⋅ 3e15e2 , e1, e2 ≥ 0 and 3 ∤ k, 5 ∤ k,

1 otherwise.

By [9, Example 4.2], we know that

d�(z) = 1− 1

2z+1
+

3

2z+1

(
1− 1

3z+1
− 1

2z+1
+

1

6z+1

)
1

1− 3−z

+
15

4z+1

(
1− 1

3z+1
− 1

5z+1
+

1

15z+1

)
1

(1− 3−z)(1− 5−z)
.
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Rearranging the terms on the right hand side of the above equation, the formula of

d�(z) becomes

d�(z) = 1− 1

2z
+

3

4z
+
∞∑
e=1

1

(2 ⋅ 3e)z
+
∞∑
e=1

2

(4 ⋅ 3e)z

+
∞∑
e=1

3

(4 ⋅ 5e)z
+

∞∑
e1=1

2

(4 ⋅ 3e1)z
∞∑
e2=1

1

(5e2)z
,

and then we compare it with the equation (43).

Hence

O�(n) =

⎧⎨⎩

1 if n = 2 ⋅ 3e, e1 ≥ 0 or n = 1,

3 if n = 4 ⋅ 5e2 , e2 ≥ 0

2 if n = 12 ⋅ 3e15e2 , e1 ≥ 0, e2 ≥ 0,

0 otherwise.

Remark 4.25. Of course, it is easy to find a formula for F�(n) given the formula for

O�(n) using (17); that is

F�(n) =
∑
d∣n

dO�(d).

The next lemmas are simple illustrations of the kind of calculation that will come

later.

Lemma 4.26. For Sc = {3}, we have∑
1<n≤N

O�(n)

log n
=

1

log 3
log logN + C16 +O((logN)−1),

for some constant C16.

Proof. By Example 4.23, we have

O�(n) =

⎧⎨⎩ 1 if n = 2 ⋅ 3k, k ≥ 0 or n = 1,

0 otherwise.
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From the formula for the number of orbits of length n under �, we obtain

∑
1<n≤N

O�(n)

log n
=

∑
0≤k≤

log(N2 )
log 3

1

log 2 ⋅ 3k
(46)

=
1

log 2
+

∑
0<k≤

log(N2 )
log 3

1

log 2.3k
. (47)

Applying Lemma 1.20 to the summation in (47) with a = 0, b =
log(N2 )

log 3
and f(t) =

1
log 2+t log 3

, we get

∑
0<k≤

log(N2 )
log 3

1

log 2.3k
=

∫ log(N2 )
log 3

0

1

log 2 + t log 3
dt (48)

−
∫ log(N2 )

log 3

0

{t} log 3

(log 2 + t log 3)2
dt (49)

− f

(
log
(
N
2

)
log 3

){
log
(
N
2

)
log 3

}
. (50)

Firstly, we calculate the main term of this summation (48) so we obtain

∫ log(N2 )
log 3

0

1

log 2 + t log 3
dt =

log logN

log 3
− log log 2

log 3
.

Secondly, we consider (49),∣∣∣∣∣∣∣
∫ log(N2 )

log 3

0

{t} log 3

(log 2 + t log 3)2
dt−

∫ ∞
0

{t} log 3

(log 2 + t log 3)2
dt

∣∣∣∣∣∣∣
≤
∫ ∞

log(N2 )
log 3

log 3

(log 2 + t log 3)2
dt ≤ (logN)−1,

and we know that ∫ ∞
0

{t} log 3

(log 2 + t log 3)2
dt = C17
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for some constant C17.

Thus ∫ log(N2 )
log 3

0

{t} log 3

(log 2 + t log 3)2
dt = C17 +O((logN)−1).

Finally, for (50), it is easy to see that

f

(
log
(
N
2

)
log 3

){
log
(
N
2

)
log 3

}
= O((logN)−1).

Hence

∑
1<n≤N

O�(n)

log n
=

1

log 2
+

log logN

log 3
− log log 2

log 3
+ C17 +O((logN)−1)

=
log logN

log 3
+ C16 +O((logN)−1),

as required.

Lemma 4.27. For Sc = {3, 5}, we have

∑
1<n≤N

O�(n)

(log n)2
=

2 log logN

log 3 log 5
+ C18 +O((logN)−1)

for some constant C18.

Proof. By Example 4.24, we may write

O�(n) =

⎧⎨⎩

1 if n = 1 or n = 2,

3 if n = 4,

1 if n = 2 ⋅ 3e1 , e1 > 0,

2 if n = 4 ⋅ 3e1 , e1 > 0

3 if n = 4 ⋅ 5e2 , e2 > 0

2 if n = 4 ⋅ 3e15e2 , e1 > 0, e2 > 0,

0 otherwise.
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Then

∑
1<n≤N

O�(n)

(log n)2
=

1

(log 2)2
+

3

(log 4)2
(51)

+
∑

0<e1≤
log(N2 )

log 3

1

(log(2 ⋅ 3e1))2 (52)

+
∑

0<e1≤
log(N4 )

log 3

1

(log(4 ⋅ 3e1))2 (53)

+
∑

0<e2≤
log(N4 )

log 5

3

(log(4 ⋅ 5e2))2 (54)

+
∑

4⋅3e15e2≤N,
e1,e2∈ℕ

2

(log(4 ⋅ 3e15e2))2 (55)

Applying Lemma 1.20 to the summation in (52) with a = 0, b =
log(N2 )

log 3
and f(t) =

1
(log 2+t log 3)2

, we get

∑
0<e1≤

log(N2 )
log 3

1

(log(2 ⋅ 3e1))2 =

∫ log(N2 )
log 3

0

1

(log 2 + t log 3)2 dt (56)

−
∫ log(N2 )

log 3

0

2{t} log 3

(log 2 + t log 3)3 dt (57)

−f

(
log
(
N
2

)
log 3

){
log
(
N
2

)
log 3

}
. (58)

Firstly, we calculate the main term which is on the right hand side of (56) so we

obtain ∫ log(N2 )
log 3

0

1

(log 2 + t log 3)2 dt = − 1

log 3 logN
+

1

log 3 log 2
.
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Secondly, we consider (57),∣∣∣∣∣∣∣
∫ log(N2 )

log 3

0

2{t} log 3

(log 2 + t log 3)3
dt−

∫ ∞
0

2{t} log 3

(log 2 + t log 3)3
dt

∣∣∣∣∣∣∣
≤
∫ ∞

log(N2 )
log 3

2 log 3

(log 2 + t log 3)3
dt = (logN)−2,

and we know that ∫ ∞
0

{t} log 3

(log 2 + t log 3)2
dt = C19,

for some constant C19.

Thus ∫ log(N2 )
log 3

0

{t} log 3

(log 2 + t log 3)2
dt = C19 +O((logN)−2).

Finally, for (58), it is easy to see that

f

(
log
(
N
2

)
log 3

){
log
(
N
2

)
log 3

}
= O((logN)−2).

Thus ∑
0<e1≤

log(N2 )
log 3

1

(log(2 ⋅ 3e1))2 = − 1

log 3 logN
+ C20 +O((logN)−2),

for some constant C20.

Similarly, we can get the sum (53) and (54) as follows:

∑
0<e2≤

log(N4 )
log 5

3

(log(4 ⋅ 5e2))2 = − 3

log 5 logN
+ C21 +O((logN)−2),

and ∑
0<e1≤

log(N4 )
log 3

2

(log(4 ⋅ 3e1))2 = − 2

log 3 logN
+ C22 +O((logN)−2),
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for some constants C21, C22.

Consider (55):

∑
4⋅3e15e2≤N,
e1,e2∈ℕ

2

(log(4 ⋅ 3e15e2))2 = 2

log(N4 )
log 3∑
e1=1

log( N
4⋅3e1 )

log 5∑
e2=1

1

(log(4 ⋅ 3e1) + e2 log 5)2 (59)

= 2

log(N4 )
log 3∑
e1=1

⎛⎜⎝∫ log( N
4⋅3e1 )

log 5

0

1

(log(4 ⋅ 3e1) + t log 5)2 dt

⎞⎟⎠ (60)

−2

log(N4 )
log 3∑
e1=1

⎛⎜⎝∫ log( N
4⋅3e1 )

log 5

0

2{t} log 5

(log(4 ⋅ 3e1) + t log 5)3 dt

⎞⎟⎠(61)

−2

log(N4 )
log 3∑
e1=1

(
1

(logN)2

{
log
(

N
4⋅3e1

)
log 5

})
. (62)

The terms in (60), (61) and (62) come from applying Theorem 1.20 to the internal sum

on the right hand side of (59) with f(t) = 1
(log(4⋅3e1 )+t log 5)2

and a = 0, b =
log( N

4⋅3e1 )
log 5

.

We will first calculate the terms in (60) and then approximate the terms in (61) and

(62) as follows:

For the sum in (60),

log(N4 )
log 3∑
e1=1

⎛⎜⎝∫ log( N
4⋅3e1 )

log 5

0

2

(log(4 ⋅ 3e1) + t log 5)2 dt

⎞⎟⎠= − 2

log 5

log(N4 )
log 3∑
e1=1

1

logN
(63)

+
2

log 5

log(N4 )
log 3∑
e1=1

1

log(4 ⋅ 3e1)
(64)

= − 2

log 3 log 5
+

2 log 4

log 3 log 5 logN
(65)

+
2 log logN

log 3 log 5
+C23+O((logN)−1), (66)
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for some constant C23, since the terms in (66) come from applying Theorem 1.20 to

the sum in (64) with f(t) = 1
log(4⋅3t) and a = 0, b =

log(N4 )
log 3

.

Next, we consider (61),

log(N4 )
log 3∑
e1=1

⎛⎜⎝∫ log( N
4⋅3e1 )

log 5

0

4{t} log 5

(log(4 ⋅ 3e1) + t log 5)3 dt

⎞⎟⎠≤ +2

log(N4 )
log 3∑
e1=1

1

((log(4 ⋅ 3e1)2 (67)

−2

log(N4 )
log 3∑
e1=1

1

(logN)2
(68)

= − 2

log 3 logN
+ C24 +O((logN)−2) (69)

− 2

log 3 logN
+

2 log 4

log 3(logN)2
, (70)

where C24 is a constant, and the terms in (69) come from applying Theorem 1.20 to

the sum in (67) with f(t) = 1
(log(4⋅3t))2 and a = 0, b =

log(N4 )
log 3

.

Thus the sum in (61) is equal to C25 +O((logN)−1) for some constant C25.

Lastly, for (62), it is easy to see that

2

log(N4 )
log 3∑
e1=1

(
1

(logN)2

{
log
(

N
4⋅3e1

)
log 5

})
= O((logN)−1).

Hence ∑
1<n≤N

O�(n)

(log n)2
=

2 log logN

log 3 log 5
+ C26 +O((logN)−1),

as required.

Clearly, the constant terms C16 and C26 are very complicated even in these simple

examples.
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Before we go on to prove the main theorem below, we will define some notation

in order to write things down more conveniently as follows:

For each W ⊆ Sc (say W = {p1, p2, . . . , pk} and ∣W ∣ = k), we may write

n = KW ⋅
∏
p∈W

pep ,

for some constant KW and ep ≥ 0 for all p ∈ W , and we may write

log n = logKW +
∑
p∈W

ep log p.

For e ∈ ℕW
0 (or e ∈ ℕW ), that is

e = (ep)p∈W and ep ∈ ℕ0 (or ep ∈ ℕ),

we also write

'W (e) =
∏
p∈W

pep ,

 W (e) =
∑
p∈W

ep log p.

Lemma 4.28. For m ≥ 1, let W be a finite subset of primes such that ∣W ∣ ≤ m.

Then ∑
K'W (e)≤N,

e∈ℕW

1

(logN)m
= O(1), (71)

for any K ≥ 1.

Proof. For m ≥ 1 and K ≥ 1, let W be a finite subset of primes such that ∣W ∣ ≤ m.

Fix N > 1, we have∑
K'W (e)≤N,

e∈ℕW

1

(logN)m
=
∣∣{e ∈ ℕW : K'W (e) ≤ N}

∣∣× 1

(logN)m
.

85



If W = ∅, then (71) holds. For each p ∈ W , we have

pep ≤ N, ep > 0,

since

K'W (e) ≤ N.

Thus

ep ≤
logN

log p
, ep > 0.

It follows that ∣∣{e ∈ ℕW : K'W (e) ≤ N}
∣∣ ≤ ∏

p∈W

logN

log p
.

Thus

∑
K'W (e)≤N,

e∈ℕW

1

(logN)m
≤

(∏
p∈W

logN

log p

)
× 1

(logN)m

≤
∏
p∈W

1

log p

= O(1).

Hence we finish this lemma.

Lemma 4.29. For m ≥ 1, let W be a set of primes such that ∣W ∣ = k and k < m.

Then ∑
e∈ℕW0

1

(z +  W (e))m
= O(1), (72)

for any z ≥ 0.

Proof. We want to show this lemma by double induction on k and m such that k < m.

If k = 0 and m = 1, it is easy to see that (72) holds for any z ≥ 0. Assume that
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for any set of primes U of cardinality less than k, the equation in (72) holds for any

z ≥ 0, and also assume that for any set of primes V of cardinality less than m− 1,∑
e∈ℕV0

1

(z +  V (e))m−1
= O(1), (73)

for any z ≥ 0.

We claim that for any set W such that ∣W ∣ = k < m , equation (72) is true for

any z ≥ 0. For z ≥ 0, let W = {p1, p2, . . . , pk}) such that ∣W ∣ = k < m and let

U = W ∖ {pk}.

We note that ∑
e∈ℕU0

(
1

(z +  U(e))m

)
= O(1),

by using the inductive hypothesis on k for ∣U ∣ = k − 1 < k, and

1

(m− 1) log pk

∑
e∈ℕU0

1

(z +  U(e))m−1
= O(1),

by using the inductive hypothesis on m for ∣U ∣ = k − 1 < m− 1.

It follows that∑
e∈ℕU0

⎛⎝ ∞∑
epk=0

1

(z +  W (e))m

⎞⎠ ≤
∑
e∈ℕU0

(
1

(z +  U(e))m
+

∫ ∞
0

1

(z +  W (e))m
depk

)

=
∑
e∈ℕU0

(
1

(z +  U(e))m

+
1

(m− 1) log pk(z +  U(e))m−1

)
=

∑
e∈ℕU0

1

(z +  U(e))m

+
1

(m− 1) log pk

∑
e∈ℕU0

1

(z +  U(e))m−1

= O(1).

87



Lemma 4.30. For any z ≥ 1,

∑
z'Sc (e)≤N

e∈ℕSc

1

(log(z'Sc(e)))m
=

log logN

(m− 1)! log p1 ⋅ ⋅ ⋅ log pm
+O(1). (74)

Proof. We will prove this lemma by induction on m (recall Sc = {p1, p1, . . . , pm} and

∣Sc∣ = m). For z ≥ 1, following Lemma 4.26, it is obviously that (74) is true for the

case m = 1. Suppose that (74) holds for any finite set of primes having cardinality

less than m. Let U = Sc ∖ {pm} and ∣U ∣ = m− 1.

Consider

∑
z'Sc (e)≤N,

e∈ℕSc

1

(log(z'Sc(e)))m
=

∑
z'U (e)≤N

e∈ℕU

D(eU )∑
epm=1

1

(log(z'Sc(e)))m
(75)

=
∑

z'U (e)≤N
e∈ℕU

(∫ D(eU )

0

1

(log(z'Sc(e)))m
depm

)
(76)

− m log pm
∑

z'U (e)≤N
e∈ℕU

(∫ D(eU )

0

{em}
(log(z'Sc(e)))m+1depm

)
(77)

+
∑

z'U (e)≤N
e∈ℕU

⎧⎨⎩ log
(

N
z'U (e)

)
log pm

⎫⎬⎭ 1

(logN)m
, (78)

where D(eU) =
log

(
N

z'U (e)

)
log pm

. The equations in (76), (77) and (78) come from apply-

ing Theorem 1.20 to the internal sum on the right hand side of (75) with f(t) =

1
(log(z'Sc (e)))m

and a = 0, b = D(eU). We will approximate the terms in (76), (77)

and (78). The inductive hypothesis will play a central role for calculating the main

term in (76), while Lemma 4.29 and Lemma 4.28 will be used for estimating the error

terms (77) and (78) as shown below.
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Firstly, for (76), we have∑
z'U (e)≤N,

e∈ℕU

(∫ D(eU )

0

1

(log z +  S′ (e))m
dem

)
=

1

(m− 1) log pm

∑
z'U (e)≤N,

e∈ℕU

1

(log z +  U(e))m−1

− 1

(m− 1) log pm

∑
z'U (e)≤N,

e∈ℕU

1

(logN)m−1

=
1

(m− 1) log pm

∑
z'U (e)≤N,

e∈ℕU

1

(log z +  U(e))m−1

+O(1) (by Lemma 4.28)

=
1

(m− 1)! log pm ⋅ ⋅ ⋅ log p1

log logN+O(1),

by the inductive hypothesis.

Secondly, we consider (77),

m log pm
∑

z'U (e)≤N,
e∈ℕU

(∫ D(eU )

0

{em}
(log(z'Sc(e)))m+1depm

)

≤ m log pm
∑

z'U (e)≤N,
e∈ℕU

(∫ D(eU )

0

1

(log(z'Sc(e)))m+1depm

)

=
∑

z'U (e)≤N,
e∈ℕU

1

(log(z'Sc(e)))m
−

∑
z'U (e)≤N,

e∈ℕU

1

(logN)m
= O(1),

by Lemma 4.29 and Lemma 4.28.

Thus the term in (77) is equal to O(1).

Finally, for (78) we obtain

∑
z'U (e)≤N,

e∈ℕU

⎧⎨⎩ log
(

N
z'U (e)

)
log pm

⎫⎬⎭ 1

(logN)m
≤

∑
z'U (e)≤N,

e∈ℕU

1

(logN)m

= O(1),

by Lemma 4.28.

Hence this lemma is completed.
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Here we will show the main theorem which is the general case of Lemma 4.26 and

Lemma 4.27.

Theorem 4.31. There exists a constant CSc depending on the set Sc such that

∑
1<n≤N

O�(n)

(log n)∣Sc∣
= CSc log logN +O(1). (79)

Proof. For n > 1, let W be a subset of Sc and let KW be a constant depending on

W . If W ⊂ Sc (W ∕= Sc), applying Lemma 4.29, we get

∑
KW'W (e)≤N

e∈ℕW

1

(log(KW'W (e)))m
= O(1), (80)

since logKW ≥ 0.

Since KSc ≥ 1, by Lemma 4.30, we get

∑
KSc'Sc (e)≤N

e∈ℕSc

1

(log(KSc'Sc(e)))m
=

log logN

(m− 1)! log p1 ⋅ ⋅ ⋅ log pm
+O(1). (81)

By Corollary 4.22, M�(N) may be written as

∑
1<n≤N

O�(n)

(log n)∣Sc∣
=

r∑
i=1

∑
n=KWi

'Wi
(e)≤N,

e∈ℕWi

RWi

(log n)m
+

∑
n=KSc'Sc (e)≤N,

e∈ℕSc

RSc

(log n)m
, (82)

where r is a positive integer, and RWi
and RSc are constants depending on Wi and

Sc, respectively.

Applying (80) and (81) to (82), we deduce that

∑
1<n≤N

O�(n)

(log n)∣Sc∣
= CSc log logN +O(1),

for some constant CSc .
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Chapter 5

Intermediate Growth Examples

In Chapters 3 and 4, we saw some properties of a family of dynamical systems

parametrized by sets of primes in two special cases: a finite set of primes, and a

co-finite set of primes. In this chapter we find some examples of the (huge) “inter-

mediate” case – where the set of primes is infinite and has an infinite complement.

In this setting little is known apart from some crude estimates for a “typical” set of

primes (see [35] and [36]). Throughout this chapter, S is a subset of the set of prime

numbers ℙ, and Sc = ℙ ∖ S. Also, p always means an element in ℙ.

5.1 Density of Prime Numbers

The notion of density of S will be given in this section. In particular, we will focus

on the natural density of S in order to measure the size of S compared with the set

of all prime numbers.
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Definition 5.1. Define the natural density of S ⊆ ℙ to be

�(S) = lim
x→∞

∣{p ≤ x ∣ p ∈ S}∣
∣{p ≤ x ∣ p ∈ ℙ}∣

,

if it exists. In other words, the natural density of S is the proportion of primes in S.

Example 5.2. Let S1, S2 be the set all the primes congruent to 1 modulo 4 and the

set all the primes congruent to 3 modulo 4, respectively. So

S1 = {5, 13, 17, 29, 37, 41, 53, 61, 73, . . . }

S2 = {3, 7, 11, 19, 23, 31, 43, 47, 59, 67, 71, . . . }.

By Dirichlet’s Theorem [10, Theorem 10.5], S1 and S2 are infinite, and each has

density 1
2
.

Let m be an integer which is not a perfect square and not −1. Write m = ab2

with a square-free. Let S(m) be the set of prime numbers p such that m is a primitive

root modulo p. In 1927, Emil Artin conjectured the following statements.

1. S(m) has a positive natural density. In particular, S(m) is infinite.

2. Under the conditions that m is not a perfect power and that a is not congruent

to 1 modulo 4, this density is independent of m and equals Artin’s constant

which can be expressed as an infinite product

CArtin =
∏

q prime

(
1− 1

q(q − 1)

)
= 0.3739558136 . . .

In 1967, Hooley [19] proved the conjecture assuming certain cases of the Generalised

Riemann Hypothesis: if Artin’s conjecture is false, then the Generalised Riemann

Hypothesis is false. In 1984, R. Gupta and M. Ram Murty [13] showed uncondi-

tionally that Artin’s conjecture holds for almost all m using sieve methods. In 1985,
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Heath-Brown [17] demonstrated that there are at most two primes for which Artin’s

conjecture fails (i.e S(m) is finite for at most two exceptional prime numbers m). For

example, his work implies that at least one of 3, 5, and 7 is a primitive root modulo

p for infinitely many p.

For a prime p, let mp := mp(2), the multiplicative order of 2 (mod p).

Example 5.3. Let

S2 = {p : p is a prime and mp is even}

= {3, 5, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 83, 97, 101, 113, . . . }.

Its density is 17/24 by [21, Theorem A].

Example 5.4. Let

S(2) = {3, 5, 11, 13, 19, 29, 37, 53, 59, 61, 67, 83, 101, 107, 131, 139, 149, 163, 173, . . . }

= {p ∣ mp = p− 1}

In other words, S(2) is the set of primes p for which 2 is a primitive root modulo p. It

has 38 elements smaller than 500 and there are 95 primes smaller than 500. The ratio

(which conjecturally tends to CArtin) is 38/95 = 0.41051 . . .. In addition, we notice

that every element in S(2) lies in S2 and S2 is strictly bigger than S(2) because 17 is

in S2, but not in S(2). Thus the density of S(2) (if it exists) is not more than 17/24.

5.2 An Arithmetic Argument

A totally multiplicative function is a function f : ℕ→ ℂ with the property that

f(mn) = f(m)f(n)
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for all integers m,n. The following lemmas and proposition, taken from [8] in the

case K = ℚ, will play a crucial role in calculating the constant arising in Mertens’

Theorem.

In order to understand how to get the following lemmas, we shall recall a fact

from combinatorial mathematics, the inclusion-exclusion principle. Its statement is

that if A1, A2, . . . , An are finite sets, then

∣∪ni=1Ai∣ =
n∑
i=1

∣Ai∣ −
∑
i,j

1≤i<j≤n

∣Ai ∩ Aj∣

+
∑
i,j,k

1≤i<j<k≤n

∣Ai ∩ Aj ∩ Ak∣+ ⋅ ⋅ ⋅+ (−1)n−1∣A1 ∩ ⋅ ⋅ ⋅ ∩ An∣,

where ∣A∣ denotes the cardinality of the set A.

Lemma 5.5. Let f : ℕ→ ℂ and let E be a finite set of natural numbers. Then

∑
n≤N,

k∤n∀k∈E

f(n) =
∑
D⊆E

(−1)∣D∣
∑
n≤N,
nD ∣n

f(n),

where nD = lcm{n : n ∈ D}.

Proof. The proof is completed by applying the inclusion-exclusion principle.

Lemma 5.6. Let f : ℕ→ ℂ be a totally multiplicative function with

∑
n≤N

f(n) = kf logN + Cf +O(1/N),

for constants Cf and kf . Let E be a finite set of natural numbers and, for D ⊆ E,

let nD = lcm{n : n ∈ D}. Then

∑
n≤N,

k∤n∀k∈E

f(n) = kf,E logN + Cf,E +O(1/N),
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where

kf,E = kf
∑
D⊆E

(−1)∣D∣f(nD),

and

Cf,E =
∑
D⊆E

(−1)∣D∣ (Cf − kf log(nD)) f(nD).

Proof. From Lemma 5.5, we have∑
n≤N,

k∤n∀k∈E

f(n) =
∑
D⊆E

(−1)∣D∣
∑
n≤N,
nD ∣n

f(n).

For each D ⊆ E, we get∑
n≤N,
nD ∣n

f(n) = f(nD)
∑

n≤N/nD

f(n) as f is a totally multiplicative function,

= f(nD) [kf log(N/nD) + Cf +O(1/N)] ,

= kff(nD) logN + Cf,nD +O(1/N),

where Cf,nD = (Cf − kf log(nD)) f(nD).

Hence ∑
n≤N,

k∤n∀k∈E

f(n) =
∑
D⊆E

(−1)∣D∣ [kff(nD) logN + Cf,nD +O(1/N)]

=

[
kf
∑
D⊆E

(−1)∣D∣f(nD)

]
logN + Cf,E +O(1/N),

where Cf,E =
∑
D⊆E

(−1)∣D∣ (Cf − kf log(nD)) f(nD).

Note that the error remains O(1/N) since the sum is finite.

For any finite subset T of rational primes, we write ∣x∣T for
∏

p∈T ∣x∣p and put

fT (n) =
∣n∣T
n
.

Then fT (n) is a totally multiplicative function.
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Proposition 5.7. ∑
n≤N

fT (n) = kT logN + CT +O(1/N), (83)

where

kT =
∏
p∈T

p

p+ 1
and CT = kT

(

 −

∑
p∈T

p log p

p2 − 1

)
.

Proof. We will prove this by induction on m = ∣T ∣. If m = 0, then we get the familiar

statement ∑
n≤N

1

n
= logN + 
 +O(1/N),

where 
 is the Euler-Mascheroni constant. We first assume that (83) holds for any

positive integer less than m. Then we will show that (83) is true for m. Putting

T = {p1, . . . , pm} and T1 = T ∖ {p1}. Write n = pe1k such that gcd(p1, k) = 1. So

ordp1(n) = e. We observe that

fT (n) =
∣pe1k∣p1∣pe1k∣T1

pe1k

=
1

p2e
1

fT1(n).

Then

∑
n≤N

fT (n) =

⌊ logN
log p1

⌋∑
e=0

∑
n≤N,

ordp1 (n)=e

fT (n) (84)

=

⌊ logN
log p1

⌋∑
e=0

1

p2e
1

∑
n<N/pe1,

p1∤n

fT1(n), (85)

We have ∑
n≤N

fT1(n) = kT1 logN + CT1 +O(1/N),

where

kT1 := kfT1 =
∏
p∈T1

p

p+ 1
and CT1 := CfT1 = kT1

(

 −

∑
p∈T1

p log p

p2 − 1

)
,
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by using the inductive hypothesis.

Applying Lemma 5.6 to the sum
∑

n≤N fT1(n) (that is, with f = fT1 and E = {p1}),

we get ∑
n≤N
p1∤n

fT1(n) = kT1,E logN + CT1,E +O(1/N),

where

kT1,E := kfT1 ,E

= kT1
∑
D⊆E

(−1)∣D∣fT1(nD)

=

(
1− 1

p1

)
kT1 ,

and

CT1,E := CfT1 ,E

=
∑
D⊆E

(−1)∣D∣ (CT1 − kT1 log(nD)) fT1(nD)

= CT1

(
1− 1

p1

)
+

1

p1

kT1 log p1

= kT1

(
1− 1

p1

)

 − kT1

(
1− 1

p1

)∑
p∈T1

p log p

p2 − 1
+

1

p1

kT1 log p1.

Thus ∑
n<N/pe1
p1∤n

fT1(n) = kT1,E logN − kT1,Ee log p1 + CT1,E +O(pe1/N). (86)

Substituting (86) into (85), we have

∑
n≤N

fT (n) = kT1,E logN

⌊ logN
log p1

⌋∑
e=0

1

p2e
1

− kT1,E log p1

⌊ logN
log p1

⌋∑
e=0

e

p2e
1

+CT1,E

⌊ logN
log p1

⌋∑
e=0

1

p2e
1

+

⌊ logN
log p1

⌋∑
e=0

O(pe1/N)

p2e
1

.
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∣∣∣∣∣∑
n≤N

fT (n)− kT logN − CT

∣∣∣∣∣ =

∣∣∣∣∣∣∣kT1,E logN
∞∑

e=⌊ logN
log p1

⌋+1

1

p2e
1

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣kT1,E log p1

∞∑
e=⌊ logN

log p1
⌋+1

e

p2e
1

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣CT1,E
∞∑

e=⌊ logN
log p1

⌋+1

1

p2e
1

∣∣∣∣∣∣∣+

⌊ logN
log p1

⌋∑
e=0

O(pe1/N)

p2e
1

≤ C28

N
,

for some constant C28.

Here, the inductive hypothesis will be applied in order to get kT and CT as follows:

kT = kT1,E

∞∑
e=0

1

p2e
1

=
∞∑
e=0

1

p2e
1

(1− 1

p1

)kT1

=
∏
p∈T

p

p+ 1
,

and

CT = −kT1,E log p1

∞∑
e=0

e

p2e
1

+ CT1,E

∞∑
e=0

1

p2e
1

= −
(
p1 − 1

p1

)(
p2

1

(p2
1 − 1)2

)
kT1 log p1 + kT1


(
p1 − 1

p1

)(
p2

1

p2
1 − 1

)
−kT1

(
p1 − 1

p1

)(
p2

1

p2
1 − 1

)∑
p∈T1

p log p

p2 − 1
+ kT1

1

p1

(
p2

1

p2
1 − 1

)
log p1

= kT
p1

p2
1 − 1

log p1 + 
kT + kT
∑
p∈T1

p log p

p2 − 1

= kT

(

 −

∑
p∈T

p log p

p2 − 1

)
.

Hence we finish this proposition.
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5.3 Finite Sets of Primes

In a paper of Everest, Miles, Stevens, and Ward [8], a dynamical analogue of Mertens’

Theorem concerns the expressions like

M�(N) =
∑
∣� ∣≤N

�(∣� ∣),

where � is some positive function of ∣� ∣ and it has been studied for an ergodic S-

integer map � with ∣S∣ <∞. They considered K a number field (as well as ℚ) and in

particular they also have shown the recipe to compute the leading coefficient appear-

ing in Theorem 1.4 of [8] when K is a field of rational numbers (in principle). Such

coefficients may be found explicitly for any finite set S and fixed map � and indeed,

they are always rational.

The main goal of this chapter is to find out the leading coefficient for some exam-

ples with ∣S∣ =∞ and ∣Sc∣ =∞ under the same setting as above. Before working out

on this purpose, in this section, we shall understand how to get the leading coefficient

for ∣S∣ <∞ from [8] firstly.

In this setting (that is, for the maps � given by � = 2 and K = ℚ), we recall that

F�(n) = ∣2n − 1∣ ∣2n − 1∣S .

Then consider

M�(N) =
∑
n≤N

1

n2n

∑
d∣n

�
(n
d

) ∣∣2d − 1
∣∣ ∣∣2d − 1

∣∣
S

=
∑
n≤N

(2n − 1) ∣2n − 1∣S
n2n

+
∑
n≤N

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

∣∣2d − 1
∣∣
S

=
∑
n≤N

∣2n − 1∣S
n︸ ︷︷ ︸

F (N)

+ R(N),
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where

R(N) =
∑
n≤N

∣2n − 1∣S
n2n

+
∑
n≤N

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

∣∣2d − 1
∣∣
S
.

Lemma 5.8. For any S,

R(N) = C(S) +O(2−
N
2 ),

where ∣C(S)∣ ≤ 5 .

Proof. We first observe that
∞∑
n=1

∣2n − 1∣S
n2n

,

and
∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

∣∣2d − 1
∣∣
S

are bounded by the sums
∞∑
n=1

1
2n

and
∞∑
n=1

1
2n/2

, respectively, so they are convergent.

Recall that
∞∑
n=1

1

2n
= 1, (87)

and
∞∑
n=1

1

2n/2
=

√
2√

2− 1
. (88)

Consequently,
∞∑
n=1

∣2n − 1∣S
n2n

= C1(S) ≤ 1

and
∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

∣∣2d − 1
∣∣
S

= C2(S) ≤ 4,

where C1(S) and C2(S) are constants depending on S.

Then by (87) and (88), we have ∣C1(S) + C2(S)∣ ≤ 5.
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Next, we consider∣∣∣∣∣∣R(N)−
∞∑
n=1

∣2n − 1∣S
2n

−
∞∑
n=1

1

n2n

∑
d∣n,d<n

�
(n
d

)
(2d − 1)

∣∣2d−1
∣∣
S

∣∣∣∣∣∣ ≤
∞∑

n=N+1

1

2n
+

∞∑
n=N+1

1

2n/2

≤
√

2√
2− 1

2−N/2.

Thus

R(N)− C1(S)− C2(S) = O(2−N/2).

Hence

R(N) = C(S) +O(2−N/2),

where C(S) = C1(S) + C2(S).

This lemma leads us to view the first term F (N) as the main term and R(N) as

an error term. Consequently, we will need to focus on only the main term in order

to get the leading coefficients. From Proposition 5.3 in [8], for K = ℚ and ∣S∣ < ∞,

F (N) can be written as

∑
n≤N

∣2n − 1∣S
n

=
∑
T⊆S

∑
n≤N, oT ∣n
mp∤n∀p/∈T

∣2n − 1∣T
n

, (89)

where mp is the multiplicative order of 2 modulo p and oT = lcm{mp : p ∈ T}.

To work out on the internal sum on the right hand side in (89), we need to recall

Lemma 3.22 and from here on, we will specifically need the formula for ∣2n − 1∣p for

any odd prime number p.

We observe that for each T ⊆ S, if ∣S∣ is large, then the calculation becomes much

more complicated and also we have to spend a long time to complete it. Thus, we

try to find another formula for (89) so that the leading coefficients can be computed

more easily and more quickly. However, we will still follow the recipe in [8]. The idea
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comes from adding a new prime to Sk−1 (say Sk = {p1, . . . , pk}, k > 0 and S0 = ∅)

and then writing the sum
N∑
n=1

∣2n−1∣Sk
n

in terms of the previous sum
N∑
n=1

∣2n−1∣Sk−1

n
and

some other terms.

From here on, we shall set some notation so that we can write things down con-

veniently. Let E be a finite subset of the natural numbers. For T ⊂ S, let

kT = the leading coefficient in the sum
∑
t≤N

∣t∣T
t
,

kT,E = the leading coefficient in the sum
∑
t≤N

mp∤t ∀p∈E

∣t∣T
t
,

K�,S = the leading coefficient in the sum
∑
n≤N

∣2n − 1∣S
n

,

kS := k�,S = the leading coefficient in the sum M�(N),

and let us state and prove the result as follows.

Theorem 5.9. Let Sk be a set of primes having k distinct elements, k ≥ 1. Write

Sk = {p1, . . . , pk} = Sk−1 ∪ {pk} and, for any T ⊆ Sk−1, write T
′
= T ∪ {pk}. Then

∑
n≤N

∣2n − 1∣Sk
n

=
∑
n≤N

∣2n − 1∣Sk−1

n
−■

where

■ =
∑
T∈ℳ

∣2oT ′ − 1∣T
oT ′

⎛⎜⎜⎜⎝ ∑
t≤N/o

T
′

mp∤o
T
′ t ∀p∈Sk∖T

′

∣t∣T
t
− ∣oT ′ ∣pk ∣2mpk − 1∣pk

∑
t≤N/o

T
′

mp∤o
T
′ t ∀p∈Sk∖T

′

∣t∣T ′
t

⎞⎟⎟⎟⎠ , (90)

and

ℳ = {T ⊆ Sk−1 : ∀p ∈ Sk−1 ∖ T, mp ∤ oT ′}.
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Proof. By (89), we write

∑
n≤N

∣2n − 1∣Sk−1

n
=

∑
T⊆Sk−1

∑
n≤N, oT ∣n

mp∤n∀p∈Sk−1∖T

∣2n − 1∣T
n

(91)

=
∑

T⊆Sk−1

∑
n≤N, oT ∣n

mp∤n∀p∈Sk−1∖T,mpk ∤n

∣2n − 1∣T
n

(92)

+
∑

T⊆Sk−1

∑
n≤N, oT ∣n

mp∤n∀p∈Sk−1∖T,mpk ∣n

∣2n − 1∣T
n

. (93)

The sum in (93) may be divided into

∑
T∈ℳ

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T
n

, (94)

and ∑
T /∈ℳ

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T
n

. (95)

In (95), since T /∈ℳ, it follows that there exists q ∈ Sk−1 ∖T such that mq∣oT ′ . Since

oT ′ ∣n, we get mq∣n, which contradicts mp ∤ n ∀ p ∈ Sk ∖ T
′
. Thus the sum in (95) is

empty.

The sum in (94) is equal to

∑
T∈ℳ

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T ′
n

+■, (96)

where

■ =
∑
T∈ℳ

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T
n

−
∑
T∈ℳ

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T ′
n

. (97)

We notice that

P(Sk) = { T, T ∪ {pk} : T ∈ P(Sk−1) },
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where P(Sk−1) is the set of all subsets of Sk−1.

Thus

∑
n≤N

∣2n − 1∣Sk
n

=
∑

T⊆Sk−1

∑
n≤N, oT ∣n

mp∤n∀p∈Sk∖T

∣2n − 1∣T
n

(98)

+
∑

T⊆Sk−1

∑
n≤N, o

T
′ ∣n

mp∤n∀p∈Sk∖T
′

∣2n − 1∣T ′
n

. (99)

We assert that (98) is equal to the expression in (92), while (99) is the first term in

(96).

Hence ∑
n≤N

∣2n − 1∣Sk−1

n
=
∑
n≤N

∣2n − 1∣Sk
n

+■.

Moreover, by applying Lemma 4.18 to ■, it turns out to be the summation in (90)

in the statement of the theorem.

Corollary 5.10. In the same situation as Theorem 5.9,

K�,Sk < K�,Sk−1
.

Proof. It is easy to see that Sk−1 ∈ℳ, so ℳ ∕= ∅. Let T ∈ℳ.

By Proposition 5.7 and Lemma 5.6, we have

∑
t≤N/o

T
′

mp∤o
T
′ t ∀p∈Sk∖T

′

∣t∣T
t

= dT logN + C29 +O(1/N), (100)

and ∑
t≤N/o

T
′

mp∤o
T
′ t ∀p∈Sk∖T

′

∣t∣T ′
t

= dT ′ logN + C30 +O(1/N), (101)
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for some constants dT , dT ′ , C29, C30. Since ∣t∣T ′ ≤ ∣t∣T for all t, dT ′ ≤ dT .

From (101) and (100), we get

∑
t≤N/o

T
′

mp∤o
T
′ t ∀p∈Sk∖T

′

(
∣t∣T
t
− ∣t∣T

′

pjkt

)
=

(
dT −

dT ′

pjk

)
logN + C31 +O(1/N),

for some constant C31 and j = ordpk(2
mpk − 1) + ordpk(oT ′ ). Obviously, j ≥ 1. Thus

d
T
′

pjk
< dT ′ . This implies that dT −

d
T
′

pjk
> 0. By Theorem 5.9, we obtain that

K�,Sk = K�,Sk−1
−
∑
T∈ℳ

∣2oT ′ − 1∣T
oT ′

(
dT −

dT ′

pjk

)
.

Since all the terms in the sum are strictly positive and ℳ ∕= ∅,

K�,Sk < K�,Sk−1
.

The above theorem is illustated by the following examples.

Example 5.11. Let � be the same map as Example 4.6. Then∑
n≤N

∣2n − 1∣3
n

=
5

8
logN + C32 +O(1/N),

for some constant C32.

Proof. We note that m3 = 2 and ℳ = {∅}. By Theorem 5.9, we have

∑
n≤N

∣2n − 1∣3
n

=
∑
n≤N

1

n
−

⎛⎝1

2

∑
t≤N/2

1

t
− 1

2× 3

∑
t≤N/2

∣t∣3
t

⎞⎠
=

(
1− 1

2
+

3

24

)
logN + C32 +O(1/N),

since ∑
n≤N

1

n
= logN + 
 +O(1/N), (by Lemma 1.21)
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and ∑
t≤N/2

∣t∣3
t

=
3

4
logN + C33 +O(1/N) (by Proposition 5.7),

for some constant C33

Example 5.12. Let S = {3, 5}. Let � be the S-integer map dual to x 7→ 2x. Then∑
n≤N

∣2n − 1∣S
n

=
55

96
logN + C34 +O(1/N),

for some constant C34.

Proof. Note that m3 = 2, m5 = 4. We apply Theorem 5.9 with k = 2, S1 =

{3}, S2 = {3, 5} and using Example 5.11. We observe that there exists only one set

{3} ∈ ℳ, and ∅ /∈ℳ because m3 ∣ 4. For T = {3}, T ′ = {3, 5} and we have oT ′ = 4,

and ord3 (2oT ′ − 1) = ord5 (2oT ′ − 1) = 1. Replacing these things into the formula in

Theorem 5.9, then we get∑
n≤N

∣2n − 1∣{3,5}
n

=
∑
n≤N

∣2n − 1∣3
n

−

⎛⎝ 1

4× 3

∑
t≤N/4

∣t∣3
t
− 1

4× 3× 5

∑
t≤N/4

∣t∣{3,5}
t

⎞⎠
=

(
5

8
− 1

12

(
3

4

)
+

1

60

(
3

4

)(
5

6

))
logN + C34 +O(1/N),

as the coefficient of logN comes from applying Proposition 5.7 to the sum
∑

t≤N/4

∣t∣3
t

and to the sum
∑

t≤N/4

∣t∣{3,5}
t

.

From the above example, for T = {3}, T ′ = {3, 5}, we find that ord3 (2oT ′ − 1)

and ord5 (2oT ′ − 1) are equal to 1. However, for p ∈ T , ordp (2oT ′ − 1) is not necces-

sarily 1 generally. Recall that

ordp (2oT ′ − 1) = ordp(oT ′ ) + ordp(2
mp − 1). (102)
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There are two possibilities that may make ordp (2oT ′ − 1) ≥ 2 as follows:

1. If there exists a prime number q ∈ T ′ such that p ∣ mq, then p ∣ oT ′ so by (102)

we have

ordp (2oT ′ − 1) = ordp(oT ′ ) + ordp(2
mp − 1)

≥ 1 + 1,

as oT ′ = mpp
rt for some integers r ≥ 1, t with gcd(p, t) = 1.

2. If ordp (2mp − 1) = 2, then by (102) we get ordp (2oT ′ − 1) ≥ 2.

Primes for which the last property holds are called Wieferich prime numbers. That

is, a Wieferich prime number is a prime p such that 2p−1 ≡ 1 mod p2. In 1913,

Wieferich Meissner found that 1093 was Wieferich, and in 1922 N.G.W.H. Beeger

showed that 3511 was Wieferich as well. Since 1922, no new examples have been

found. According to http://mathworld.wolfram.com/WieferichPrime.html, the only

known Wieferich primes smaller than 4× 1020 are 1093 and 3511.

The following example illustrates how the first possibility may happen.

Example 5.13. Under the same condition as the previous examples, change S to be

{3, 7}. Then there exists a constant C35 with∑
n≤N

∣2n − 1∣{3,7}
n

=
269

576
logN + C35 +O(1/N).

Proof. Note that m3 = 2,m7 = 3, and ℳ = {∅, {3}}. The following table shows the

values of the notations appearing in Theorem 5.9.

T ⊆ {3} T
′

oT ′ 2oT ′ − 1

∅ {7} 3 7

{3} {3, 7} 6 63
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Thus ord3 (26 − 1) = 2 and ord7 (26 − 1) = ord7 (23 − 1) = 1. By following Theorem

5.9, we have∑
n≤N

∣2n − 1∣{3,7}
n

=
∑
n≤N

∣2n − 1∣3
n

(103)

−

⎛⎜⎜⎜⎜⎜⎝
1

3

∑
t≤N/3

2∤t

1

t︸ ︷︷ ︸
A

− 1

3× 7

∑
t≤N/3

2∤t

∣t∣7
t︸ ︷︷ ︸

B

⎞⎟⎟⎟⎟⎟⎠ (104)

−

⎛⎜⎜⎜⎜⎝ 1

6× 32

∑
t≤N/6

∣t∣3
t︸ ︷︷ ︸

C

− 1

6× 32 × 7

∑
t≤N/6

∣t∣{3,7}
t︸ ︷︷ ︸

D

⎞⎟⎟⎟⎟⎠ . (105)

For the sum in (103), we already know the coefficient of logN , which is 5
8
. And also,

the leading coefficient appearing in the sum
∑

t≤N/3

1
t

is 1 by Lemma 1.21. Proposition

5.7 and Lemma 5.6 yield the other coefficients of logN in (104) and (105). Applying

Proposition 5.7 to
∑

t≤N/3

∣t∣7
t
, to C and to D, we get

k{7} =
7

8
, k{3} =

3

4
, k{3,7} =

3

4
× 7

8
=

21

32
.

Then Lemma 5.6 may be applied to the terms A and B with k∅ = 1, and k{7} = 7
8

and E = {2} so that we can reach

k∅,{2} =
1

2
, and k{7},{2} =

7

16
.

Hence

K�,{3,7} =
5

8
− 1

3

(
1

2

)
+

1

3× 7

(
7

16

)
− 1

6× 32

(
3

4

)
+

1

6× 32 × 7

(
21

32

)
=

269

576
.
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5.4 Infinitely Many Primes

Fix p to be a prime and let n be an integer, so that n = pek for some k ∈ ℤ such that

p ∤ k and e ≥ 0. Also write

Sp = {l ∈ ℙ : p ∣ ml},

where ml is the multiplicative order of 2 (mod l), and

Φp(x) = xp−1 + xp−2 + ⋅ ⋅ ⋅+ x+ 1,

the pthcyclotomic polynomial. For each p ∕= 2, the density of Sp is p
p2−1

[16] and in

the case of p = 2, we recall that S2 has density 17
24
.

Lemma 5.14. For any e ≥ 1, we have

∣2n − 1∣Sp ≤
p�

Φp(2p
e−1k)

,

where � = ordp(2
n − 1).

Proof. For each e ≥ 1, we may first factorize the term 2n − 1 as

2n − 1 =
(

2p
e−1k − 1

)⎛⎜⎝2(p−1)pe−1k + 2(p−2)pe−1k + ⋅ ⋅ ⋅+ 2p
e−1k + 1︸ ︷︷ ︸

Φp(2pe−1k)

⎞⎟⎠ .

We note that Res(x − 1,Φp(x)) = p. By Proposition 3.5.7 and Proposition 3.5.8 in

[6], we deduce that the greatest common divisor of both factors of 2n − 1 must be

either 1 or p.

Consequently, we next claim that if l is any prime except p and Φp(2
pe−1k) is

divisible by l, then l belongs to Sp. Assume that l ∣ Φp(2
pe−1k) and l ∕= p. If ml ∣ k,

then l ∣ 2pe−1k − 1. So

l ∣ gcd(2p
e−1k − 1,Φp(2

pe−1k)) = 1 or p,
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which contradicts the assumption that l ∕= p. Thus ml ∤ k. Suppose p ∤ ml, then

gcd(p,ml) =1. Since ml ∣ n = pek, we get ml ∣ k, which is impossible. Thus p ∣ ml.

Hence we can finish the claim as required.

Finally,

∣2n − 1∣Sp =
∣∣∣2pe−1k − 1

∣∣∣
Sp

∣∣∣Φp(2
pe−1k)

∣∣∣
Sp

≤
∣∣∣Φp(2

pe−1k)
∣∣∣
Sp

=
1

∣Φp(2p
e−1k)∣Scp Φp(2p

e−1k)
(by Lemma 3.21)

=
p�

Φp(2p
e−1k)

(∵ p ∈ Scp and by applying the above claim)

where � = ordp(Φp(2
pe−1k)).

As we know from Lemma 3.22 that

ordp(2
n − 1) =

⎧⎨⎩ cp + e if mp ∣ n

0 elsewhere,

where cp = ordp(2
mp − 1) and in fact, ordp(Φp(2

pe−1k)) ≤ ordp(2
n − 1), it follows that

� ≤ cp + e if mp ∣ n and otherwise � = 0. Thus � ≤ �.

Lemma 5.15. For any e ≥ 1, let

Ae(N) =
∞∑

k≥⌊ N
pe
⌋+2

p∤k

p�

pekΦp(2p
e−1k)

.

Then

Ae(N) ≤ 2pcp

2N/22pe−1 ,

and � ≤ cp + e (where � and cp are defined in the proof of Lemma 5.14).
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Proof. Let e be a positive integer.

Then

Ae(N) ≤
∞∑

k≥⌊ N
pe
⌋+2

pcp+e

pek(2(p−1)pe−1k)

≤ pcp

2(p−1)pe−1(⌊ N
pe
⌋+2)

∞∑
j=0

1

2(p−1)pe−1j

≤ 2pcp

2(p−1)pe−1 N
pe

+(p−1)pe−1
(as⌊N

pe
⌋ ≥ N

pe
− 1, and

∞∑
j=0

1

2(p−1)pe−1j
≤ 2)

≤ 2pcp

2N/22pe−1 .

In particular, Ae(0) ≤ 2pcp

2pe−1 .

Theorem 5.16. There is a constant C36 with∑
n≤N

∣2n − 1∣Sp
n

=

(
1− 1

p

)
logN + C36 +O(1/N).

Proof. The sum
∑

n≤N
∣2n−1∣Sp

n
may be divided up according to the power of p which

divides n as shown below:

∑
n≤N

∣2n − 1∣Sp
n

=

⌊ logN
log p

⌋∑
e=0

∑
n<N

ordp(n)=e

∣2n − 1∣Sp
n

. (106)

If e = 0, 2k − 1 is made up only primes outside Sp since p ∤ k. In other words, if

l ∣ 2k − 1, then l /∈ Sp. Thus
∣∣2k − 1

∣∣
Sp

= 1. Hence the sum in (106) becomes

∑
n≤N

∣2n − 1∣Sp
n

=
∑
k<N
p∤k

1

k
+

⌊ logN
log p

⌋∑
e=1

∑
n<N

ordp(n)=e

∣2n − 1∣Sp
n

. (107)

For the case e = 0, we know the asymptotic expression of the first sum on the right

hand side in (107) is equal to(
1− 1

p

)
logN + C37 +O(1/N).
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for some constant C37 by Lemma 5.6.

For the case e ≥ 1, we may write

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

=
∑

1≤n≤N
pe∣n,pe+1∤n

∣2n − 1∣Sp
n

=
∑

1≤k≤⌊ N
pe
⌋

p∤k

∣∣2pek − 1
∣∣
Sp

pek

≤
∑

1≤k≤⌊ N
pe
⌋+1

p∤k

p�

pekΦp(2p
e−1k)

(by Lemma 5.14)

≤ pcp

Φp(2p
e−1)

+ Ae(0)− Ae(N) (as � ≤ cp + e, by Lemma 5.15).

Since Ae(N)→ 0 as N →∞,

∞∑
n=1

ordp(n)=e

∣2n − 1∣Sp
n

= �e ≤
pcp

Φp(2p
e−1)

+ Ae(0)

≤ 3pcp

2pe−1 .

Consequently, ∣∣∣∣∣∣∣
∑

1≤n≤N
ordp(n)=e

∣2n − 1∣Sp
n

− �e

∣∣∣∣∣∣∣ ≤
6pcp

2pe−1 + Ae(N).

This implies that

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

= �e +O(2−p
e−1

) +O(2−N/2 ⋅ 2−pe−1

). (108)

Now, we return to consider the sum

⌊ logN
log p

⌋∑
e=1

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

, (109)
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which converges as N →∞ because it is bounded by the sum

⌊ logN
log p

⌋∑
e=1

�e ≤ 3pcp

logN
log p∑
e=1

1

2pe−1 ,

and this sum converges as N →∞.

We write the sum in (109) as

∞∑
e=1

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

−
∞∑

e=⌊ logN
log p

⌋+1

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

, (110)

and the first sum in (110) converges to a constant C38.

We next substitute (108) to (110) so that we get∣∣∣∣∣∣∣
⌊ logN

log p
⌋∑

e=1

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

− C38

∣∣∣∣∣∣∣ ≤
∣∣∣∣∣∣∣

∞∑
e=⌊ logN

log p
⌋+1

�e

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
∞∑

e=⌊ logN
log p

⌋+1

O(2−p
e−1

)

∣∣∣∣∣∣∣
+

∣∣∣∣∣∣∣
∞∑

e=⌊ logN
log p

⌋+1

O(2−N/2.2−p
e−1

)

∣∣∣∣∣∣∣
≤ C39

2N
.

for some constant C39.

Hence
⌊ logN

log p
⌋∑

e=1

∑
1≤n≤N

ordp(n)=e

∣2n − 1∣Sp
n

= C38 +O(2−N).

The main result is completed.

Remark 5.17. We know that kS = 1 when S = ∅, and kS = 0 when S is a co-finite

subset of primes. In Example 5.13, for S = {3, 7}, we get kS < 1
2
. It is natural

to assume that kS might be close to zero when S is large, for example an infinite

subset of primes with strictly positive density. Surprisingly, S2 has density 17
24
> 1

2
,
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but kS = 1
2

is large, by Theorem 5.16 in the case p = 2. Thus we see that for any

S, kS depends fundamentally on the arithmetic of the primes in S, not just on the

density of primes in S.
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