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Abstract 

 

       A high resolution multiproxy investigation of two marine cores from the Gardar Drift in 

the Sub Polar North Atlantic, cores MD99-2251 and MD99-2252 has been undertaken to 

examine the extent of Holocene climate variability reflected by changes in diatom floral 

abundances and ice rafted debris flux. The results from this study provide both an overview 

of climate variability for the entire Holocene as recorded in the Sub Polar North Atlantic and 

a detailed high resolution study focussed around the 8.2kyr event. Sea surface temperature 

(SST) estimates are derived using a weighted average partial least squares (WAPLS) transfer 

function and a new regionally based diatom transfer function developed as part of this study. 

Principal component analysis and K-means cluster analysis were undertaken on core MD99-

2251 to identify floral groupings within the diatom taxa. The changing composition of diatom 

assemblages and SST records indicate a highly unstable early Holocene from 11.5 to 9.5kyr 

with switches in the dominance of cool Sub Arctic floras and warmer North Atlantic floras. 

The presence of high productivity events in the diatom floras during this interval suggests 

that the core locations were, at times, in close proximity of the Sub Arctic Front. A broad 

SST cooling from 9.5 to 7kyr is identified followed by a pronounced warming for 7 to 5kyr 

and more stable but cooler temperatures during the Late Holocene. Changes in sea surface 

hydrography, especially the relative strength of the warm Irminger Current, is considered to 

have had the greatest influence on the composition of diatom floral assemblages. The 8.2kyr 

event is not recognised as a discrete climate perturbation in either the diatom assemblage data 

or the IRD record, but is contained within the broad cooling event from 9.5-7kyr. Analysis of 

sea-ice and cold water flora however does indicate some increase in these species for the 

interval 8.8 to 7.8kyr. 
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     Chapter One  

     Introduction 

 

 

        “With unspeakable labour the eye of man has forced its way 

gradually towards the north, over mountains and forests, and 

tundra onward through the mists along the vacant shores of the 

polar seas...” 

 

Fridtjof Nansen  ‘In Northern Mists’ 
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Chapter One: Introduction 

 

1.1 Introduction 

        Interglacial climates such as the Holocene have long been considered to be more 

stable than glacial climates. However more recent studies have indicated that the Holocene 

has been subject to considerable variability if less pronounced than that of glacial climates. 

Mayewski et al.(2004) examining around fifty Holocene palaeoclimate records recognise 

six period of significant rapid climate change for the Holocene (Figure 1.1). These 

intervals of rapid climate change are recognisable in both marine and terrestrial records. 

Various studies have sought to define the nature and causality of these Holocene 

fluctuations and whether any cyclicites may be observed.  

 

 

 

 

 

 

 

Figure 1.1 Palaeoclimate records indicating Holocene climate variability. a) Gaussian smoothed (200 yr) 

GRIP δ
18

O (‰) proxy for temperature (Johnsen et al., 1992). b) Gaussian smoothed (200 yr) GISP2 

sodium Na+ ppb ion proxy for the Icelandic low (Mayewski et al., 1997; Meeker & Mayewski, 2002). c) 

Gaussian smoothed (200 yr) GISP2 potassium K
+
 ppb ion proxy for the Siberian High (Mayewski et al., 

1997; Meeker & Mayewski, 2002).  d) Norwegian glacier advance (Nesje et al., 2001). e) Treeline limit 

shifts in Sweden (Karlén & Kuylenstrierna, 1996) The green boxes indicate six intervals of Holocene 

rapid climate change recognised in this multiproxy review of Holocene climate variability (Mayewski et 

al., 2004). 

Age cal B2K 
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       Particular attention has been given to the 8.2kyr event, the largest climate perturbation 

during the Holocene. This perturbation has been recognised in a wide range of 

palaeoclimate records (Rea et al., 1994; Keigwin & Jones, 1995; Lamb et al., 1995; 

Hughen et al.,1996; Alley et al., 1997; Bond et al., 1997; Kleiven et al., 2008). The exact 

timing of this event however varies between records. Ellison et al. (2006) recognise a two 

stage event at 8490 and 8290 years ago. Rohling & Palike (2005) observe that where the 

8.2kyr event is recognised in the North Atlantic it is present with a more broad cooling 

occurring around 8.6 to 8.0kyr (Figure 1.2).  

 

 

 

 

 

 

 

 

 Figure 1.2  Collection of well-dated climate proxy records used to identify anomalies around 8.2 kyr BP 

indicating a braod cooling form 8.6-8.0kyr may better describe the ‘8.2kyr event’ in North Atlantic 

palaeoproxies. All smoothed records shown are based on a 50-yr moving gaussian filter. Coloured blocks 

identify the anomalies recognized in the various records: blue is statistically significant in digital records; 

green is visually identified in digital records; brown is estimated from published graphs. Heavy coloured 

blocks indicate peak events; lighter blocks highlight broader anomalies. The yellow band marks an interval 

spanning three conspicuous maxima in 14C production. The black diamond with error bar alongside the age 

axis indicates the best age estimate for the meltwater flood from lakes Agassiz and Ojibway  

a1 ice-δ
18

O series45 (GISP2), a2 electrical conductivity series13,14 (GISP2), a3 is a 50-yr smoothing of 

the ice-accumulation data set46 (GISP2) a4 GISP2 potassium ion series b1 δ18O of right-coiling 

Neogloboquadrina pachyderma, b2 δ
18

O of left-coiling N. pachyderma. c Norwegian glacier expansion 

index based on glacial lake cores investigated at a resolution better than 50 yr d IRD percentages in North 

Atlantic sediment cores VM29-191 (548 N, 158 E) & GGC-36 (458 N, 458 E). (Rohling & Palike, 2005). 
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        Various palaeoceanographic proxies have been employed to define this Holocene 

climate variability within North Atlantic marine cores. These proxies determine past 

changes in both North Atlantic deep water circulation, especially the pattern of deep water 

flow and strength of the meridional overturning circulation, and surface conditions, 

particularly variations in sea surface temperature. Proxies include grain size analysis, 

sediment lightness, stable isotope and alkenone studies, the relative abundance analysis of 

zooplankton and phytoplankton communities (Bianchi & McCave, 1999; Oppo et al., 

2003; Risebrobakken et al., 2003; Hall et al., 2004; Bendle & Rosell-Mele, 2007). In 

addition patterns of drift ice and past global ice volumes have been used to reconstruct 

wide scale variations in Holocene climate (Bond et al., 1997) (Figure 1.3). 

 

 

 

 

Figure 1.3 Holocene Ice rafted debris flux in North Atlantic in marine core VM 

29-191 (54° 16´ N 16° 47´ W) indicating cycles in Holocene ice drift input. 

Bond et al. (1997) 
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1.2 Research Aims 

 

        This study consists of a high resolution multiproxy study of two Holocene marine 

cores from the Gardar Drift in the Sub Polar North Atlantic; cores MD99-2251 and MD99-

2252 (Figure 1.4). The study presents both an overview of climate variability for the entire 

Holocene as recorded in the Sub Polar North Atlantic and a detailed high resolution study 

around the 8.2kyr event. Diatom assemblage data, ice rafted debris counts and stable 

isotope analyses of planktonic foraminifera are used to reconstruct.sea surface 

temperatures, palaeocurrent patterns and drift ice patterns over the core sites. 

 

 

 

 

 

        The Gardar Drift sites were chosen because of their high sedimentation rates which 

allow for high resolution sampling of the sores. Sedimentation rates for the Gardar drift at 

typically 10-20cm ka
-1 

but reaching maximum rate in excess of 100 cm ka
-1

. Holocene 

Figure 1.4 The location of cores MD99-2251 and MD99-2252 and the major surface 

currents influencing the core sites. NAC North Atlantic Current, IC Irminger Current, 

EGC East Greenland Current and WGC West Greenland Current 
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sedimentation rates are recorded as 5- 40cm ka
-1 

(Bianchii & McCave, 2000). Marine core 

MD99-2251 was sampled at decadal resolution from 7.8-8.8kyr to attempt to resolve the 

8.2kyr event and at approximately every 250 years for the remainder of the Holocene. 

Marine core MD99-2252 was sampled at a mean resolution of 180 years per sample. In 

addition to being a site of high sedimentation, the Gardar drift lies under the Irminger 

current, a branch of the North Atlantic Current, an important component of the 

thermohaline circulation of the oceans and so of key importance to our understanding of 

ocean circulation.  

        Previous analyses of planktonic foraminifera from marine core MD99-2251 (Ellison 

et al., 2006) show a relatively stable Holocene (Figure 1.5). Planktonic foraminifera 

derived sea surface temperatures (SSTs) are stable for most of the Holocene apart from the 

around the 8.2kyr event. Similarly percentage abundances of N.pachyderma sinistral which 

may be used as a proxy for temperature, are stable apart from the around the 8.2kyr event 

where a two stage event at 8490 and 8290 years ago is recognised (Figure 1.6) 

 

 

 

Figure 1.5 Planktonic foraminifera generated SSTs and percentage abundance of the 

planktonic foraminifera N.pachyderma sinistral in marine core MD99-2251  

(Ellison et al.,2006). 
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        Diatom flora show a higher diversity of species in high latitudes than planktonic 

foraminifera, which at low temperatures become dominated by the form N.pachyderma 

sinistral. Species abundance counts of diatom flora were undertaken in this study to 

determine whether the down core percentage abundance distribution of diatom floral 

assemblages better resolve the Holocene sea surface temperatures and the 

palaeoceanography of the Sub Polar North Atlantic. High resolution counts of diatom flora 

and ice rafted debris abundances were made from 7.8-8.8 kyr to determine if these two 

palaeoproxies support the idea of a single 8.2kyr event  or a broad cooling  

 

 

Figure 1.6 Percentage abundance of the planktonic foraminifera N.pachyderma and 

planktonic foraminifera generated SSTs for marine core MD99-2251 indicating a 

recognise a two stage event around 8200 years BP at 8490 and 8290 years BP. 

The events are characterised by decrease in SSTs and increase in the percentage 

abundance of N.pachyderma sinistral (Ellison et al.,2006) 

Age (years BP) 
 

7200      7600      8000      8400      8800     9200 
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         Core MD99-2251 (57°26.87' 027°54.47') extends for the entire Holocene and is 

sampled at decadal resolution for the 8.2kyr event and at least every 250yrs for the 

remainder of the Holocene. Core MD99-2252 (57°26.84' 027°55.83') provides a record of 

the last 7200yrs (perhaps 7.2kyr is more consistent) and is sampled at intervals of 

approximately every 180yr. Both cores are analysed for relative abundance of diatom 

floras, sea surface temperatures are reconstructed using a transfer function and variations 

in the distribution of different floral assemblages are assessed. Prinicpal compnent analysis 

and K-means cluster analysis are undertaken downcore for MD99-2251 and groupings 

compared with those identified in the published literature. A new regionally based diatom 

transfer function is developed. In addition, core MD99-2251 is analysed for ice rafted 

debris input for the high resolution 8.2kyr study and core MD99-2252 for stable isotope 

analysis of planktonic foraminifera. The study attempts to address a number of research 

questions. 

 

Research questions 

 Do sea surface temperature (SST) reconstructions from diatom abundance counts 

show a relatively stable Holocene or a more diverse temperatureregime?  

 Are the same trends reflected in diatom generated SSTs as in foraminifera 

generated SSTs and if not, why not?  

 Can diatom floral assemblages be used to reconstruct paleocurrent patterns for the 

Holocene? 

 Is the 8.2kyr event recorded in the diatom flora and the ice rafted debris record of 

the Gardar Drift?  

 If the 8.2kyr event is recorded in these proxies, is it seen as a single event or a 

broad cooling? 

 Are these variations found in the diatom flora and ice rafted debris abundances 

replicated on a regional scale?  
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1.3 Thesis Structure 

 

The first section of the thesis explores the scientific background to this study. Chapters 

two and three explore the oceanography and the palaeoceanography of the northern North 

Atlantic as the setting for the study sites. Chapter two includes an examination of the 

contemporary ocean floor topography, water masses and currents of the region. Chapter 

three reviews variations in North Atlantic deep, intermediate and surface water during the 

Holocene and possible mechanisms proposed for this variability. Chapter four examines 

ecology of marine planktonic diatoms with particular reference to the taxa considered in 

this study, those taxa are listed.  

        The second section of the thesis consists of an examination of the palaeoproxies 

employed in this study and the results of those analyses. Chapter five reviews the core site, 

the age models employed and the sampling techniques adopted.  In Chapter six the main 

methodologies for sample preparation and diatom abundance counting are presented as 

well as the results of diatom abundance counts for cores MD99-2251 and MD99-2252, 

including the high resolution 8.2kyr study. Chapter six also presents the results of the 

transfer function generated sea surface temperatures, diatom assemblage data and  down 

ycore multivariant analyses of species groupings found within the data. The stable isotope 

data for MD99-2252 is also presented in this chapter. Chapter seven explores the 

development of a new regionally based diatom transfer function using new core top diatom 

assemblage counts and previously published data (Jiang et al. 2001). Chapter eight reviews 

the use of ice rafted debris (IRD) abundance as a palaeoproxy and presents the IRD data 

for the high resolution 8.2kyr study.  

        The third section of the thesis consists of discussions and conclusion. A discussion of 

the key findings of this study and an examination of their wider significance occurs in 

Chapter nine. Conclusions are presented in Chapter ten. A bibliography, diatom plates and 

the raw data counts are included as appendicies. There are two appendices. Appendix one 

outlines the biology of diatom, frustule morphology and terminology. Appendix two 

consists of the rationale for the systematic adopted in this study and taxonomic 

descriptions of each of the species. 
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The Oceanography of the 

Sub Polar North Atlantic 

 

 

 

 

       “ Among our scientific pursuits may also be mentioned the 

determining of the temperature of the water and the degree of 

saltness at varying depth...” 

 

Fridtjof Nansen   „Farthest North‟ 
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Chapter Two: The Oceanography of the Sub Polar North Atlantic 
 

 

2.1 Introduction 

 

        The core sites in this study lie in the Icelandic basin in the northern North Atlantic. In 

this chapter there will be an overview of the importance of the northern North Atlantic to 

our understanding of the global thermohaline circulation, a study of the ocean floor 

topography of the northern North Atlantic emphasising the effect  ofthat topography on the 

thermohaline circulation and a review of the main water masses and surface currents 

effecting the core sites. These water masses include Sub Polar mode water, North Atlantic 

deep water, Denmark Straits overflow water, Iceland Scotland overflow water and 

Labrador sea water. The key currents influencing the core sites that are considered are the 

North Atlantic current, the Irminger current and the East Greenland current.  

 

2.1.1The global thermohaline circulation 

 

        The core sites in this study lie in the Icelandic basin. The northern North Atlantic is an 

area of fundamental importance to our understanding of ocean circulation as it is the region 

where North Atlantic Deep Water (NADW) is formed, a driver in the thermohaline 

circulation of the oceans. Broecker (1987) first suggested the concept of the ‘thermohaline 

conveyor belt’ (Figure 2.1). The thermohaline circulation of the oceans is forced by density 

differences caused by changes in temperature and salinity. These changes in temperature 

and salinity are the result of differences in surface heating and cooling, geothermal heating 

and freshwater flux. Salinity is enhanced by evaporation and the formation of sea-ice and 

decreased by ice-melt, runoff and precipitation.  
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Figure 2.1 Global Thermohaline Circulation. Indicating surface, deep and bottom currents, salinity and 

locations of deep water formation. After Rahmstorf (2002) 

             Salinity   > 36‰                    Surface 

             Salinity   < 34‰                    Deep 

                Deep Water Formation      Bottom 
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2.2 Ocean Floor Topography 

 

        The ocean floor topography of the Sub Polar North Atlantic is an important control of 

ocean circulation, especially as if effects the formation and flow of both deep and bottom 

waters. Deep water formation occurs in the North Atlantic as a result of both topographic 

and oceanographic reasons (Brown et al., 2001). The semi enclosed Nordic Seas allow 

water to accumulate at depth behind the sill of the Greenland-Scotland ridge. It is 

important to note however that deep water also forms in the Labrador Sea where there are 

no such topographic constraints and therefore topographic features should not be 

considered the only significant factor in the formation of deep waters.  In order for deep 

water to form the water column must become unstable due to increased surface densities 

from cooling and or increased salinity. An increase in surface densities occurs in the 

northern North Atlantic, Nordic and Labrador Seas due to intense cooling from to the 

passage of winter storms and the input of warm more saline water from lower latitudes.  

 

        The principle feature of the Atlantic Ocean floor is the Mid-Atlantic ridge running 

north-south approximately midway between the continental margins. The Mid-Atlantic 

ridge is flanked on either side by the abyssal plains. These in turn are broken up by 

transverse ridges, (those running perpendicular to the Mid-Ocean ridge), plateaus, hills and 

seamounts. At the margins of the abyssal plains the escarpments of the continent slope rise 

to the continental shelf.  In the Sub Polar North Atlantic the extension of the Mid-Atlantic 

Ridge north of the Charlie-Gibbs Fracture Zone and south of Iceland is referred to as the 

Reykjanes Ridge (Figure 2.2). Litvin (1980) describes the variation in morphology of the 

Reykjanes ridge along its length. To the north, adjacent to Iceland, the ridge is narrower 

with steep scarp slopes 600-650m high. The top of the ridge lies at a depth of 900-100m 

below sea level and is crested by peaks and seamounts. There is no distinct median valley, 

but deep linear depressions. South of 60
o
 latitude the ridge becomes wider, develops a 

wider rift zone and south of 58
o
 latitude a distinct median valley. The base of this valley 

lies at 2500-2900m and the crests at 1600-1800m depth. There are small displacements of 

the ridge and transverse depressions at 57
o
 and 55

o
N.  The margins of the ridge lie at 220-

2800m depth in this southern region. The Reykjanes Ridge divides the sea floor into the 

Iceland and Irminger Basins.  
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        The predominant transverse ridge in the Sub Polar North Atlantic is the Greenland-

Iceland-Faeroe-Scotland ridge (Figure 2.3) which extends from the Denmark Strait to the 

Scottish shelf and divides the Sub Polar North Atlantic from the Nordic Seas. The ridge is 

4000km long and, at its widest point on the Iceland plateau, 1500km wide. It may be 

divided into six distinct regions; the Denmark Straits, the Icelandic Plateau, the Iceland-

Faeroe Ridge, the Faeroe Islands, the Faeroe Bank Channel and the submarine banks and 

ridges lying southwest of the Faeroe Bank Channel (Nilsen, 1983). Of most importance to 

the circulation of the Sub Polar North Atlantic are the regions of the ridge that allow flow 

between the Nordic Seas and the North Atlantic, specifically the Denmark Straits, the 

Iceland-Faeroe Ridge and the Faeroe Bank Channel. The Denmark Strait is 110km wide 

and at its deepest point, 620m deep. It has a thick layer of sediments at its base derived 

both from the Greenland shelf and deposition from the deep water flow through the straits 

from the Nordic Seas.  The Iceland-Faeroe Ridge is flat topped feature with a maximum 

depth of approximately 500m (Wright, 1998).  Sediment deposition is thin over the ridge 

Figure 2.2   Bathymetry of the Sub Polar North Atlantic region. 200, 500, 1000, 

2000, and 3000 m isobaths are shown.  After Jakobsen et al.  (2003) 

MD99-2251 

MD99-2252 
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but increases on the margins towards Iceland and the Faeroe Islands. The Faeroe Bank 

Channel is the deepest part of the Greenland-Scotland ridge, reaching a maximum depth of 

1200m. It has around 400m of sediment at its base. 

 

 

) 

 

        Recent studies (Kuijpers et al., 2003; Belan, et al., 2004; Kristoffersen et al., 2004; 

Kuijpers & Werner 2007) have emphasised the role of deep-draft icebergs in scouring the 

seabed and maintaining the flow through these channels. Deep-draft icebergs leave a 

characteristic scour on sea bed sediments, referred to as an iceberg plough mark (IPM). At 

the southeast Greenland margin IPMs were found to 700m depth and immediately south of 

the Davis Strait at 800m and 850m on the northeastern Faeroe margin. 

Figure 2.3  a) Bathymetry of the Greenland-Scotland ridge. 200 and 500m contours shown then 

every subsequent 500m.  b)  Cross section through the Greenland-Scotland ridge. Sediment 

coverage is shown in shaded grey.  After Wright & Miller (1996) 
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   The Greenland- Scotland ridge acts as a barrier between water masses at depth. A cross 

section of the Greenland-Scotland ridge (Figure 2.4) indicates the temperatures and salinity 

differentials. To the south of the ridge the temperatures and salinities are high; 

temperatures are in excess of 5
o
C and salinities are in excess of 35 psu to depths of great 

than 1000m, except in a narrow layer adjacent to the ridge where overflow waters affect 

temperature and salinities. To the north of the ridge temperatures and salinities are low. 

Intermediate and deep water have temperatures that are less than 0
 o
C and salinities in the 

region of 34.9 psu (Hansen & Osterhus, 2000).  

 

 

Figure 2.4 Potential a)Temperature and b) Salinity across the Scotland Iceland Ridge. The 

location of the cross section is indicated on the insert map. After Hansen & Osterhus (2000) 

 

 

2.3  The Water Masses of the Sub Polar North Atlantic 

 

        Water masses are bodies of water that may be defined by identifiable conservative 

chemical and physical properties such as temperature and salinity (Table 2.). Conservative 

properties are those which only change at the boundaries of the water mass. Water masses 

may further be divided into surface, intermediate and deep water masses depending on 

their position in the water column. One of the complications inherent in discussing the 

water masses of the subpolar North Atlantic is that a plethora of names have been used to 

describe these different bodies of water. Where relevant therefore, alternative names are 

also noted in this discussion. 
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 Potential 

Temperature 
o
C 

Salinity 

psu 

Sub Polar Mode Water (SPMW) 8
1
 35.23

1
 

North Atlantic Deep Water (NADW) 2-3.5
4
 34.88-34.98

4
 

Denmark Straits Overflow Water (DSOW) 0.4-2
3 

< 1.5
4
 

34.8-34.9
3 

~34.9
4
 

Iceland Scotland Overflow Water (ISOW) 

 

2.42
1
 

2-3
2 

1.8-3.5
4
 

35.00
1
 

below 34.90
2 

~34.92
4
 

Labrador Sea Water (LSW) 3.4
1
 34.885

1
 

 

 

 

 

 

2.3.1  Sub Polar Mode Water 

 

        Water of Atlantic origin in the subpolar North Atlantic has been variously described 

by different authors as North Atlantic Central Water (NACW) eg Ruddick et al., (1997), 

Eastern North Atlantic Water (ENAW) eg Harvey (1982), North-East Atlantic Water 

(NEAW) eg Stocker et al.,(1998), Modified North Atlantic Water (MNAW), eg Martin 

(1986), Hansen & Osterhus (2000) and Sub Polar Mode Water (SPMW) eg McCartney & 

Talley (1996), Bersch et al.,(1999). While these definitions vary slightly; Hansen & 

Osterhus, (2000) do not for example recognise SPMW as synonymous with MNAW as 

SPMW includes Labrador Sea Water (LSW). Broadly speaking all these definitions refer 

to the properties of deep waters of Atlantic origin just prior to it crossing the Greenland-

Scotland ridge. The term Sub Polar Mode Water (SPMW) is adopted in this study as it 

represents the most recent research into the properties and origins of this water (Brambilla 

et al., 2008; Brambilla & Talley, 2008).   

 

        Mode waters are near surface water masses with near uniform properties of density 

salinity and temperature. Subpolar Mode Water (SPMW) was first described by 

McCartney & Talley (1982) and later modified by Talley (1999) and Read (2001). SPMW 

lies between the ocean surface and the permanent pycnocline and has representative 

potential densities of 27.3-27.5 kmg 
-3

. SPMW is significant in the transfer of warm salty 

Table 2.1. A summary of the temperature and salinity properties of the water 

masses considered in this study .(van Aken & deBoer, 1995
1
; Hansen & Osterhus, 

2000
2
; Maurtizen, 1996

 3
; Hunter et al., 2007

 4
). 
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North Atlantic water from the subtropical gyre to the Labrador and Nordic Seas. SPMW is 

formed during late winter convection. It increases in density due to cooling and transforms 

into Labrador Sea Water and the dense water masses of the Nordic Seas. Thus SPMW 

forms the upper limb of the meridional overturning circulation and contributes to the 

waters that become North Atlantic Deep Water (NADW). SPMW is found in several 

branches of the North Atlantic Current (NAC) in the eastern subpolar gyre, being 

recognised by its characteristic density (Brambilla et al., 2008; Brambilla & Talley, 2008).  

SPMW is also thought to be important in its possible influence on global atmospheric 

circulation as it represents a large near surface heat source (Hanawa & Talley, 2001).  

 

2.3.2  North Atlantic Deep Water (NADW) 

 

        NADW is an important component of the thermohaline circulation of the oceans. The 

thermohaline circulation is driven by inputs of cold dense water in high latitudes: NADW 

and Antarctic Bottom Water (AABW) (Dickson & Brown, 1994). Various theories have 

been expounded as to the origin and transport of NADW. Early studies of the origins and 

transport of NADW (Worthington, 1970; Swift et al., 1980; McCartney & Talley, 1982; 

Aargaard et al., 1985b) proposed that warm North Atlantic water becomes cooler and 

denser in the Greenland and Iceland Seas by atmospheric heat loss, mixing of intermediate 

water masses, vertical overturning and the formation and melting of sea ice resulting in 

deep convection. These processes were considered to be the principal means of formation 

for NADW. There were various objections to these scenarios including the fact that more 

dense water overflowed the Greenland-Scotland Ridge than was formed in the Greenland 

and Iceland Seas. Mauritzen (1996a) proposed that the Norwegian Atlantic Current 

becomes increasingly dense due to atmospheric heat loss and that deep water is transported 

at shallow and intermediate depths along the boundary currents of the Greenland and 

Iceland Seas. 
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Figure 2.5  Greenland-Scotland Ridge Overflows Denmark Straits (DS), Iceland-Faroe 

Ridge (IFR), Faroe Bank Channel (FBC),  Wyville-Thomson Ridge (WTR). 

After Olsen et al., (2008) 

 

 

        Dickson & Brown (1994) identified four main constituents to NADW: Denmark 

Straits Overflow Water (DSOW), Iceland Scotland Overflow Water (ISOW), Labrador Sea 

Water (LSW) and Antarctic Bottom Water (AABW) also known (McCartney, 1992) as 

Lower Deep Water (LDW). Of these, the overflow waters across the Greenland-Scotland 

Ridge DSOW and ISOW (as well as, to a lesser extent, the small overflow of water which 

passes through the Faroe-Shetland Channel and flows over the Wyville-Thomson Ridge), 

make up the majority of NADW (Hansen & Osterhus, 2000). Figure 2.5 shows the 

quantities of water contributing to each of these overflows. 
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Figure 2.6 The pathways of DSOW and ISOW through the Iceland and Irminger 

Basins and the entrainment of LSW as part of the formation of NADW. After 

Hunter et al. (2007). Norwegian Sea/Arctic Ocean Intermediate Water 

(NS/AOIW), Deep Western Boundary Current (DWBC). 

 

 

        After crossing the Greenland Iceland Scotland Ridge, DSOW and ISOW sink and 

follow pathways defined by the ocean floor topography to join the Deep Western 

Boundary Current (DWBC) (Figure 2.6) (Hunter et al., 2007).  As they pass through the 

Iceland and Irminger basins they then entrain LSW and Antarctic Bottom Water (AABW). 

The DWBC is therefore carrying DSOW, ISOW, LSW and AABW when it reaches 

southern Greenland. This water is considered to be nearly mature NADW (Hunter et 

al.,2007).  This proto NADW found off Cape Farewell is also sometimes referred to as 

lower NADW (Tanhua et al., 2005). Mature NADW is formed when the DWBC reaches 

the Grand Banks off Newfoundland and has received further inputs of LSW, AABW and 

ISOW in the Labrador Basin. 
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2.3.3     Denmark Strait Overflow Water (DSOW) 

 

         DSOW is a main contributor to North Atlantic Deep Water (NADW) (Dickson et al., 

1990: Dickson & Brown, 1994). There has been much recent debate as to the origins of 

Denmark Straits Overflow Water (DSOW). The traditional understanding was that these 

waters were formed in the Icelandic Basin (Swift, 1980). However more recent studies 

(Rudels et al., 2002; Mauritzen, 1996a, b; Jeansson et al., 2008), based on the properties of 

water masses in the Arctic and Nordic Seas, have identified the main source of DSOW as 

the East Greenland Current (EGC) with a minor component formed in the Iceland Sea. The 

EGC interacts with a number of surface, intermediate and deep water masses on its course 

from the Fram Strait to the Denmark Strait (Figure 2.10).  Rudels et al. (2002) recognises 

the densest portions of DSOW as being formed by isopycnal mixing in the EGC of Re-

circulating Atlantic Water (RAW) with Arctic Deep Water (AAW) and of upper Polar 

Deep Water (uPDW) with Arctic Intermediate Water (AIW). This conclusion is supported 

by subsequent studies (Olsen et al., 2005; Rudels et al., 2005;  Jeansson et al., 2008).  

 

   These studies also identify stratification of the DSOW overflow plume.  The two water 

bodies resultant from isopycnal mixing in the ECG mix at the Denmark Strait sill and as 

the overflow plume descends the sill form the dense component of DSOW. The less saline 

and dense upper layer of DSOW has properties characteristic of Polar Intermediate Water 

(PIW) (Rudels et al., 2002). Jeansson et al. (2008) identify a three layered structure to the 

overflow plume: the upper fresher PIW layer, an intermediate layer consisting of RAW and 

AAW and a dense deep layer of PDW, Greenland Sea Arctic Intermediate Water (GSAIW) 

and Nordic Seas Deep Water (NSDW). 

 

        An important proviso of these studies is that they only claim to have identified the 

source of DSOW for their particular duration of study and that they are based on the 

conservative properties of water masses. Jeansson et al. (2008) observe that once these 

different water masses from the Arctic Ocean, the Nordic Seas and the Re-circulating 

Atlantic Water have mixed in the EGC, it becomes extremely difficult to distinguish them 

on the basis of temperature and salinity alone. They therefore propose adding additional 

parameters, such as nutrient, oxygen and CFC content, to identify the separate water 

masses. Other authors still advocate an Iceland Sea origin for DSOW (Jonsson, 1999; 
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Jonsson & Valdimarisson, 2004) from studies using current measurements from the 

Greenland Iceland Seas and across the Denmark Straits.  

 

 

2.3.4  Iceland Scotland Overflow Water (ISOW) 

 

        Warm salty water enters the upper layers of the Norwegian Sea from the North 

Atlantic Current. This water is then modified in the Nordic and Artic Seas (Swift & 

Aagaard, 1981; Rudels & Quadfasel, 1991). This modified water then returns to the North 

Atlantic. The water that overflows across the Iceland-Faroe Ridge and through the Faroe 

Bank Channel from the Norwegian Sea into the Iceland Basin is referred to as Iceland 

Scotland Overflow Water (ISOW) (Van Aken & deBoer 1995). Hansen & Osterhus (2000) 

identify the water masses contributing to ISOW as Modified East Iceland Water (MEIW), 

Norwegian Sea Deep Water (NSDW) and Norwegian Sea Arctic Intermediate Water 

(NSAIW). Van Aken & deBoer (1995) argue that diapycnal mixing of these water masses 

as they flow across the Iceland-Faroe Ridge and through the Faroe Bank Channel causes 

them to form the homogeneous ISOW.  McCartney (1992) observes that this ISOW then 

mixes with Labrador Sea Water (LSW) and Lower Deep Water (LDW) in the Iceland 

Basin, the resulatant water mass flowing through the Charlie Gibbs Fracture Zone in the 

Western North Atlantic where it becomes a main contributor to North Atlantic Deep Water 

(NADW). 

 

2.3.5   Labrador Sea Water (LSW) 

 

        Labrador Sea Water (LSW) is an intermediate water mass formed through deep winter 

convection in the Labrador Sea (Lazier, 1980; Gascard & Clarke, 1983).  In summer, 

melting sea-ice freshens the surface waters of the Labrador Sea, thus lowering in density. 

In winter the surface waters experience significant heat loss as a result of dry Arctic air 

masses from Northern Canada passing over the surface waters and the formation of pack 

ice. This results in deep convection and the production of LSW (Brown et al., 2001). LSW 

is fresh, cold and high in dissolved gases. Pickart et al. (2003) argued that the Labrador 

Sea was not the only point of origin for LSW and that water with equivalent properties to 

LSW is also formed in the Irminger Sea. Kieke et al. (2006) distinguished between 
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classical (LSW) and upper (ULSW) Labrador Sea Water on the basis of density and CFC 

content. This distinction has not been accepted by all subsequent authors. 

 

        Yashayaev et al., (2007) recognise three ways in which LSW is important to North 

Atlantic circulation: by influencing mid-depth circulation, by controlling the exchanges 

between the subpolar and subtropical gyres at intermediate depth and by controlling the 

strength of the lower limb of the MOC as the dense waters that overflow the Greenland-

Scotland ridge, DSOW and ISOW, mix with LSW before entering the abyssal reservoirs of 

the North Atlantic.  

 

 

2.4  Currents of the Subpolar North Atlantic 

 

 Temperature Salinity  

North Atlantic Current
1
 ~8 °C 35.2–35.3 

Irminger Current
2
 4°-6°C 34.9-35.0psu 

East Greenland Current
3
 Upper 150m (Polar water) 

between 0 and -1.7°C (freezing 

point of low salinity sea water) 

150-800m  > 0°C 

>800m    < 0°C 

<30 psu at surface 

~ 40psu at 150m 

 

34.88 – 35 psu 

34.87 - 34.95 psu. 

 

 

 

 

 

2.4.1    North Atlantic Current (NAC) 

 

        The North Atlantic Current (NAC), also previously known as the North Atlantic Drift, 

brings warm and saline waters from the subpolar gyre into the eastern North Atlantic and 

Nordic Seas. (Figure 2.7) There have been many recent studies of the pathways of this 

current (Krauss, 1986; Sy, 1988; McCartney, 1992; Kase & Krauss, 1996). The NAC 

divides into a number of branches as it travels northwards. Above the Charlie-Gibbs 

fracture zone the current divides eastwards into the Irminger Current, discussed below. The 

remainder of the NAC continues northwards. 

Table 2.2 Temperatures and salinities of The North Atlantic Current, the Irminger 

Current and the East Greenland Current 

(WOA 98)
1
 (Reynaud et al. 1995)

 2 (
Aagaard and Coachman 1968a)

3
. 
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        McCartney & Mauritzen (2001) conclude that the NAC warm water enters the Nordic 

Seas from this northward branch of the NAC which joins the Rockall Slope Current. 

Together these currents form a thick warm pool of water which envelops the Rockall 

Trough and Rockall Hatton Plateau. This water then flows northwards through the Faroe-

Shetland Channel and north of the Faroe Islands. Hansen & Osterhus (2000) recognise two 

branches of the NAC crossing the Greenland-Scotland Ridge east of Iceland; one flowing 

over towards the Iceland Faroe region of the ridge and one through the Faroe-Shetland 

Figure 2.7. The currents of the northern North Atlantic.  

After Brown et al.(2001) 

MD99-2251 

MD99-2252 
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Channel. These two flows together with the Irminger Current west of Iceland, make up the 

branches of water from the Atlantic Ocean flowing into the Nordic Seas as shown in 

Figure 2.8. Hansen et al.(2003). Hansen & Osterhus (2000) observe that the NAC is not 

the only source of warm saline water crossing the Greenland-Scotland Ridge; the 

Continental Slope Current which flows along the Norwegian Coast also brings additional 

warm saline waters onto the Nordic Seas.  

 

 

  

 

 

2.4.2  The Irminger Current 

 

        The North Atlantic Current divides into branches shortly after it crosses the Mid 

Atlantic Ridge between 50
o 
and 52

 o
N above the Charlie-Gibbs fracture zone (Sy et al., 

1992).  Bersch et al. (1999) indicates that the Irminger Current separates from the North 

Atlantic Current at 26
 o
W transporting warm, saline, less dense Sub Polar Mode Water. 

West of the Rekyjanes Ridge, the current flows in a north to north-easterly direction 

through the Irminger Basin to the Scotland-Greenland Ridge. Bersch (1995) also 

recognises a southerly deflected flow of the Irminger Current east of the Rekyjanes Ridge. 

Figure 2.8 The inflow paths of warm, saline water from the Atlantic Ocean into the Nordic Seas. 

The broken and solid arrows indicate the pathways of the flow across the Greenland–Scotland 

Ridge. The shaded areas indicate regions shallower than 500m. After Hansen et al. (2003). 
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When it reaches the Greenland-Scotland Ridge just west of Iceland, the Irminger Current 

splits again into branches (Figure 2.9). One branch is deflected west and then south where 

it joins the East Greenland Current as a narrow 130m band of flow (Bersch, 1999).  The 

other branch is deflected eastward, north of Iceland where it forms the North Iceland 

Irminger Current. As the current travels eastward it gradually looses it characteristic higher 

salinities and temperatures (Hansen & Osterhus, 2000) so that northeast of Iceland where it 

encounters the East Icelandic Current the percentage of Atlantic water is less than 30%. 

 

 

 

 

Figure 2.9  The bifurcation of the Irminger Current west of Iceland. After 

Kristmannsson (1998) 

 

 

2.4.3     The East Greenland Current 

 

         The East Greenland Current (EGC) extends southward from the Fram Strait 79
o
N to 

Cape Farewell 60
o
N along the east coast of Greenland. The EGC may be considered in two 

sections: north of the Denmark Straits where it interacts and mixes with surface, 

intermediate and deep water from the Polar and Nordic Seas and south of the Denmark 

Straits where it is joined by the warmer more saline water of the Irminger Current (IR). 

The EGC transports both low salinity Polar Surface Water (PSW) and sea ice as well as 

deep and intermediate water from the Arctic Ocean and Nordic Seas southward into the 

North Atlantic (Rudels et al., 2002; Maurtitzen, 1996a b). Figure 2.10 indicates the waters 
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masses that interact with the East Greenland Current. These have been discussed in detail 

when considering the contribution of the EGC to DSOW. 

 

         Sutherland & Pickart (2008) recognise as third current that joins the ECG and the IR 

south of the Denmark Straits; the East Greenland Coastal Current (EGCC). The EGCC 

runs along the continental shelf inshore of the EGC and the IR as is a wedge of low salinity 

water. They argue that the EGCC is an inner branch of the EGC formed from the 

bifurcation of the EGC at the Denmark Straits. 

 

  

 

 

 

     

Figure 2.10  The East Greenland Current (EGC), Irminger Current (IC), West 

Spitbergen Current (WSC), Polar Surface Water (PSW), Re-circulating Atlantic 

Water (RAW), Arctic Atlantic Water (AAW), Labrador Sea Water (LSW), 

Arctic Intermediate Water (AIW), Polar Intermediate Water (PIW), Iceland Sea 

Arctic Intermediate Water (IAIW), Canadian Basin Deep Water (CBDW), 

Eurasian Basin Deep Water (EBDW), Nordic Deep Water (NDB), Northeast 

Atlantic Deep Water (NEADW), Upper Polar Deep Water (uPDW). 

After Rudels et al. (2002). 
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    Chapter Three  

The Palaeoceanography of 

the Sub Polar North Atlantic 

 

 

 

        “I could with a little imagination make every walk seem 

different.... an occasion the path led back down the eons while I 

watch the slow pulsations of the Ice Age...by speeding up the 

centuries I could visualise a tidal wave of ice flooding down from 

the Arctic forming towering barriers on the margins of the sea. For 

centuries nothing but obliterating ice...but finally the ice 

imperceptibly sinking, the oceans rising as the ice melted and the 

land resurrecting under the sun...” 

 

Richard E Byrd  „Alone‟ 
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Chapter Three:  The Palaeoceanography of the Sub Polar North Atlantic 

 

 
3.1 Introduction 
 

        Glacial climates are known to experience extreme quasi-cyclic fluctuations such as 

the approximately 1500 year Dansgaard Oeschger cycles recognised in the Greenland ice 

cores from the last glacial period (Dansgaard et al., 1993) (Figure 3.1). It was long 

considered that unlike glacial climates, interglacial climates such as the Holocene (11,500 

cal yr BP to present) were relatively stable. More recent studies have however shown that 

the Holocene has been subject to climate variability, if at a more muted amplitude to the 

fluctuations of the glacial periods. Pertinent to the study of these Holocene climate 

variations has been the question of whether or not these fluctuations show any pattern or 

cyclicity and what factors are forcing the changes.  

 

 

 

 

Figure 3.1  Continuous GRIP summit ice core δ
18

O record with 

numbered interstadials showing a ~1500yr cyclicity. MIS (Marine 

isotope stage). After Dansgaard et al. (1993). 

MIS number 
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3.2  Cyclicities in Holocene Climate variation 

 

        As climate variability in glacial cycles has been identified as exhibiting 1500 year 

cycle, the question was raised as to whether a similar cyclicity may be identified for 

interglacial periods. A study of Ice Rafted Debris (IRD) from two marine cores from the 

North Atlantic VM 28-14 (64
o
47´N, 29

o
34´W) and VM 29-191 (54

o
16´N, 16

o
47´W) by 

Bond et al. (1997) identified such a cycle.  Millennial scale peaks in IRD were found at 

11.1, 10.3, 9.4, 8.1, 5.9, 2.8 and 1.4kyr. This cycle may be summarised as 1370±500 yrs. 

Variations in ice rafted debris (IRD) input through the Holocene is discussed more fully in 

Chapter eight of this study. Similarly paced climate cycles have been recognised in 

subsequent studies of North Atlantic Holocene sediments (Bianchi & McCave, 1999; 

deMenocal et al., 2000) and from terrestrial records (Campbell et al., 1998; Yu et al., 

2003).  Bianchi & McCave (1999) using a sediment grain size proxy, sortable silt mean 

size, for flow of Iceland Scotland Overflow water (ISOW), recognise a quasi-periodicity of 

1500 years for the Holocene (Figure 3.2).  

 

 

 

 
Figure 3.2   a) GISP 2 ice core δ

18
O

  
b) mean sortable silt record from NEAP 15K c) 

Planktonic foraminfera δ
18

O
 
from the Sargasso Sea, indicating evidence of a quasi 1500 

periodicity through the Holocene (Bianchi & McCave, 1999) 
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        Notably this cyclicity was not recognised in the Greenland ice cores for the Holocene. 

Instead a 900 year cyclicity is recognised (Grootes & Stuiver, 1997). Chapman & 

Shackleton (2000) also recognise this 900-1000 year and a 550 year cyclicity in North 

Atlantic marine cores (Figure 3.2). Schultz & Paul (2002) argue in a review of a number of 

marine and terrestrial records that the 900 year cycle is prevalent in the Holocene. They 

further propose that the IRD cycles of Bond et al. (1997) with their cyclicity of 1370±500 

yrs may be considered to reflect the 900 year cycle.  

 

 

 

 

 

 

 

        Other authors identify no millennial or centennial scale cyclicity in Holocene sea 

surface temperatures. Risebrobrakken et al. (2003), in a study of foraminifera  from the 

Nordic Sea, marine core MD95-2011 (66
o
58´N, 07

o
38´E), identifies no millennial or 

centennial scale cyclicity in Holocene sea surface temperatures, but a consistent, 

multidecadal variability superimposed on a long term warming. A more recent overview of 

approximately fifty palaeoclimate records for the Holocene (Mayewski et al., 2004), rather 

than identifying specific periodicities of climate variation for the Holocene, recognises six 

Figure 3.3 A comparison of sediment lightness record NEAP 15K, residual atmospheric 
14

C 

(Stuiver & Braziunas, 1993) and GISP2 (Grootes et al., 1993) indicating evidence of 900 year 

cyclicities for the Holocene. From Chapman & Shackleton (2000) 
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intervals of polar cooling and major changes in atmospheric circulation. These intervals are 

identified as occurring at 9000-8000, 6000-5000, 4200-3800, 3500-2500, 1200-1000 and 

600-150 cal yr BP (Figure 3.4). With the exception of the most recent of these fluctuations, 

which shows an increase in moisture in some tropical regions, these periods also represent 

increased aridity at the tropics. Possible forcing mechanisms for these cyclicities are 

discussed at the end of this chapter. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.4   Northern hemisphere paleoclimate proxies. a) Gaussian smoothed (200 yr) GRIP δ
18 

O 

(‰) proxy for temperature (Johnsen et al., 1992.) b) Gaussian smoothed (200 yr) GISP2 sodium 

Na+ ppb ion proxy for the Icelandic low (Mayewski et al., 1997; Meeker & Mayewski, 2002). c) 

Gaussian smoothed (200 yr) GISP2 potassium K
+
 ppb ion proxy for the Siberian High (Mayewski 

et al., 1997; Meeker & Mayewski, 2002).  d) Norwegian glacier advance (Nesje et al., 2001). e) 

Treeline limit shifts in Sweden (Karlén & Kuylenstrierna, 1996).  f) X-ray density measurements 

for Lake Vuolep Alaskasjaure sediments Northern Sweden (Karlén & Larsson, in review) g) 

Northeast Atlantic overflow recorded in sortable silt particles for NEAP 15K (Bianchi & McCave, 

1999).  h) Summer Sea Surface Temperatures SSTs for the Irminger Sea from planktonic 

foraminifera modern analogue transfer function (Mayewski et al., 2004).  i) Abundance of volcanic 

glass and haematite stained IRD grains in sediment core GGC-36  45
o
N 45

o
W(Bond et al., 1997).  

j) Abundance of volcanic glass and haematite stained IRD grains in sediment core VM29-191 54
o
N 

15
o
W (Bond et al., 1997). k) Gaussian smoothed (200 yr) varve thickness Elk Lake MN USA 

(Bradbury et al., 1993).  l) Temperature based on δ
18 

O (‰) from lake carbonates Hongshui River 

China (Zang et al., 2000).  m)  Relative abundance of warm-water foraminifera Aegean Core LC21 

(Rohling et al., 2002).  n) δ
18 

O (‰) for Soreq Cave speleothem Israel (Bar-Matthews et al., 1999).   

o) δ
13

C for Soreq Cave speleothem Israel (Bar-Matthews et al., 1999). p) Arid episodes in Lake 

Tigalmanmmine Morocco (van Campo & Gasse, 1993). The green bars indicate periods of 

Holocene rapid climate change. After Mayewski et al., (2004) 
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3.3 The 8.2kyr event 

 

The most significant climate event in the Holocene has been widely recognised as the 

8.2kyr event. Present as the most prominent event in the Greenland ice cores (Figure 3.5), 

Alley et al. (1997) note that the 8.2kyr event is recognised in palaeoclimate proxies from 

the northern polar regions to the tropics; glacier advances (Karlen, 1976), cool fresh 

surface waters in the North Atlantic (Keigwin & Jones 1995), dry windy conditions in the 

Laurentide Great Lake regions (Rea et al., 1994), dry conditions in monsoonal regions 

(Lamb et al., 1995), and windy conditions in Caricao Basin (Hughen et al.,1996).  

 

 

 

 

 

 

Figure 3.5 Proxies showing evidence of the 8.2kyr event; GISP2 climate data a) approximately 50yr running means of 

accumulation (Alley et al., 1993; Spinelli, 1996). b) chloride and calcium fluctuations in GISP2. (Chlorine, primarily 

from sea salt, represents vigor of atmospheric circulation or distance from ocean source. Calcium primarily from 

continental dust is a proxy for dryness.) (O’Brien et al., 1995). c) 50 yr histogram of frequency of fall out from fires 

(Taylor et al., 1996). d) Temperature 
o
C calculated from δ

18
Oice (Stuiver et al, 1995). e) Methane concentrations in GRIP 

ice core (Chapallaz et al., 1993; Blunier et al., 1995).  After Alley et al. (1997) 

a 

b 

c 

d 

b 

e 
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        A number of causes were proposed for the 8.2 kyr event such as underlying 

periodicity in the climate system (Bond et al., 1995). It is now widely accepted that the 

event was caused by catastrophic discharges of meltwater from proglacial lakes Agassiz 

and Ojibway, associated with the decaying of the Laurentide Ice Sheet (Alley & 

Agustsdottir, 2005; Ellison et al., 2006). These meltwater pulses caused cooling and 

freshening of surface water, a significant reduction in North Atlantic Deepwater formation 

causing a slow down of the meridional over turning circulation (Rohling & Palike, 2005, 

Alley & Agustsdottir, 2005; Ellison et al., 2006). Ellison et al. (2006) from a study of the 

foraminifera and sortable silt from marine core MD99-2251 (one of the same cores 

analysed in this study), recognise a two pulsed drainage of the proglacial lakes (Figure 

3.6). A high resolution analysis is undertaken in this study to determine whether the 8.2kyr 

event is distinguishable in the North Atlantic Holocene diatom floras and ice rafted debris 

of MD99-2251.  

 

 

 

3.4  North Atlantic Variability 

Figure 3.6  Percentage abundance of  the planktonic foraminfera N.pachyderma sinistral coiling 

and δ
18

O data for planktonic foraminifera G.bulloides δ
18

O from marine core MD99-2251 

compared to GISP2 ice core temperature (δ
18

O). Dating errors around the 8.2 ky event are 

shown for each time series. From Ellison et al. (2006). 
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        The main characteristics of the present day ocean floor topography, circulation, 

currents and water masses of the subpolar North Atlantic have been discussed previously 

in sections 2.1-2.4 of this study.  A large number of studies have been undertaken to 

determine the variation of these systems within the Holocene and what factors may be 

forcing these changes. These studies have employed a variety of palaeoceoanographic 

proxies for both deepwater and surface conditions. This review will concentrate on those 

with greatest relevance to the data later presented in this study. A number of these proxies 

are also discussed in greater detail in subsequent chapters, notably the use of diatom 

assemblage counts to reconstruct sea surface temperatures in chapter seven and the use of 

IRD in chapter nine. 

 

 

3.4.1  Palaeoproxies of Deep and Intermediate Water Variability 

 

        The principal palaeoproxies adopted to determine variability in the strength of deep 

water circulation include grain size analyses, sediment lightness and carbon isotopes in 

benthic foraminifera. Mean sortable silt size, a grain size analysis, is a proxy for 

palaeocurrent speed (Bianchi & McCave 1999). Sediment lightness may be seen as 

reflecting the variations in deposition of silt and clay particles by bottom currents 

(Chapman & Shackleton 2000). The δ
13

C signal in benthic foraminifera is considered to be 

an indicator, in the Sub Polar North Atlantic, of the relative proportions of nutrient-

depleted North Atlantic Deep Water and nutrient-rich Southern South Water (Duplessy et 

al., 1992; Austin & Kroon, 2001; Oppo et al., 2003; Hall et al., 2004) (Figure 3.7). Other 

proxies for deepwater flow include coccolith and benthic foraminiferal assemblage data 

and the concentration of magnetic minerals in ocean floor sediments (Rousse et al., 2006; 

Giraudeau et al., 2004). 

 

        Sediment lightness analysis of marine core NEAP 15K from the Gardar drift found 

that when atmospheric temperatures, indicated by negative δ
18

O values in Greenland ice 

cores, are lower there is a reduction in North Atlantic Deep Water (NADW) circulation, as 

indicated by lighter sediments. The core is situated under the flow of Iceland Scotland 
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Overflow Water (ISOW) an important component of NADW. Mean sortable silt analyses 

for the same core also indicated a slowing in NADW circulation during cooler intervals 

(Bianchi & McCave, 1999; Chapman & Shackleton 2000).  Hall et al. (2004) carried out a 

mean sortable silt size and benthic foraminifera study of the strength of ISOW flow for 

marine core NEAP 4K from the Gardar Drift,  showed extreme variability of ISOW flow 

throughout the Holocene (Figure 3.7). The palaeocurrent proxy data did not correlate with 

the data derived from the  δ
13

C composition of the benthic foraminifera Cibiciboides 

wullerstorfii from the same site. However, a better correlation was found with the δ
13

C 

data from ODP Site 980, which lies further south and in deeper water (Oppo et al., 2003), 

and the paleocurrent data from NEAP 4K (62
o
30´N, 24

o
19´W)  (Figure 3.8).  

 

 

 

 

Figure 3.7.  Paleoproxies for fluctuations in paleocurrent; mean sortable silt and the δ
13

C 

values of the benthic foraminifera Cibiciboides wullerstorfii for marine cores NEAP 4K, 

NEAP 15K and ODP 980. After Hall et al. (2004). 
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3.4.2   Palaeoproxies of Surface Water Variability 

 

        Variations in sea surface temperatures have been studied using relatively abundance 

studies of zooplankton and phytoplankton populations. These studies have been undertaken 

for both foraminifera ( Bond et al., 1997; Chapman & Shackleton, 1998; deMenocal et al., 

2000, Sarnthein et al., 2003; Knudsen et al., 2008) and diatoms (Andersen et al., 2004; 

Jiang et al.,  2007; Berner et al., 2008; Justwan et al., 2008a). The alkenone ratios in the 

cell membranes of coccolithophores have also been analysed as a proxy for sea surface 

temperature, (Chapman et al., 1996; Rimbu et al., 2004; Bendle & Rosell-Mele, 2007).  

The relative abundance oxygen isotopes in planktonic foraminiferal tests also may be used 

as a proxy for paleotemperature and ice volume (Sarnthein et al., 1995; Risebrobakken et 

al., 2003; Ellison et al., 2006). Recent research has examined the magnesium:calcium 

(Mg/Ca) ratios in planktonic foraminiferal tests, a technique which enables the temperature 

Figure 3.8  Holocene fluctuations in the benthic δ
13

C and δ
18

O values of C. 

wuellerstorfii, GISP2 sea salt sodium flux, and percentage of haematite 

stained IRD grains for marine core ODP 980. After Oppo et al. (2003). 

C
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and ice volume signatures to be distinguished (Elderfield et al., 2006; Came et al., 2007; 

Farmer et al., 2008; Thornalley et al., 2009) (Figure 3.9). Other proxies consider the 

degree of stratification in the water column as a proxy for particular current flows 

(Ganssen & Kroon , 2000; Hall et al., 2004). 

 

 

 
 

 

 

 

 

 

       Significantly, the results of these studies do not all identify the same trends in 

Holocene sea surface temperatures. Mg/Ca analyses of the foraminifera Globigerina 

bulloides for marine core MD99-2251 (57°27´N, 27°54´W) and the foraminifera 

Neogloboquadrina pachyderma (dextral coiling) for marine core ODP site 984 (61°26N 

24°05W) both indicate a long term warming trend for Holocene sea surface temperatures 

(Came et al., 2007; Farmer et al., 2008). Other authors identify an early Holocene thermal 

optimum followed by a long term cooling trend. An alkenone-derived sea surface 

temperature record from the North Icelandic Shelf, marine core JR51-GC35 (Bendle & 

Rosell-Melé, 2007) identifies this cooling trend superimposed on millennial-scale 

oscillations which correlate with glacier advances in northern Iceland. Similarly alkenone 

derived sea surface temperatures from marine core MD95-2011 (66
o
58´N, 07

o
38´E) in the 

Norwegian Sea show a cooling trend in the Holocene (Moros et al., 2004). Marchal et al. 

Figure 3.9 Mg/Ca ratios used as palaeoproxy for sea surface temperatures. Here Holocene 

variations in the relative abundance of the planktonic foraminifera Neogloboquadrina 

pachyderma sinistral are compared to Mg/Ca ratios of planktonic foraminifera Globigerina 

bulloides for marine core MD99-2251. After Farmer et al. (2008). 
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(2002) studied seven alkenone derived paleotempertaure records from the northeast 

Atlantic and the Mediterranean which all show this same trend. 

 

        These differences between the foraminferal and alkenone/diatom proxy data may be 

explained by the sea surface temperatures being recorded at different depths and/or in 

different seasons by the different proxies. It is proposed that the diatom and alkenone 

derived SSTs represent summer temperatures in the euphotic zone which is strongly 

influenced by levels of summer insolation.  Denton et al. (2002) argue, in their study of 

radiolarian derived SSTs for core MD95-2011, that the difference between the diatom and 

radiolarian derived SSTs may be explained by their position in the water column. 

Radiolarians and foraminifera may live at greater depths than the phytoplankton, in 

subsurface waters and to the depth of the thermocline (the upper 50m). At these depths the 

temperatures are influenced by winter ventilation and less affected by seasonal surface 

variations. Liu et al. (2003) support this hypothesis in their study using different climate 

models. They conclude that at high latitudes sea surface temperatures are strongly 

influenced by summer insolation and will therefore decrease through the Holocene with 

decreasing levels of summer insolation. Whereas thermocline derived temperatures are 

influenced by winter ventilation and so will increase through the Holocene with increasing 

levels of winter insolation. 

 

        Changes in sea surface temperature have also been noted for studies at higher and 

lower latitudes than the subpolar North Atlantic, suggesting this is a global rather than a 

regional climate signal. Sarnthein et al. (2003) in a study of foraminifera and ice rafted 

debris from the Barents Sea, divide the Holocene into an early thermal optimum from 

10700-7700 yr BP with a short cooling from 8800 to 8200 yr BP and a general cooling in 

the middle and late Holocene with two warmer periods at 2200 and 1600 yr BP (Figure 

3.10). They identify cycles of 400-650 and 1000-1350 years throughout the Holocene. 

deMenocal et al.  (2000) identify similar cyclicity in sea surface temperatures 

reconstructed for foraminiferal faunal counts for marine core ODP 658C off the coast of 

West Africa (20
o
45´N 18

o
35´W). They defined six Holocene cooling events centred at 

10.2, 8.0, 6.0, 4.6, 3.0 and 1.9kyr. 
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         Ganssen & Kroon (2000) use a proxy for the amount of upper ocean stratification in 

the water column to identify the strength of the North Atlantic Current. They calculate the 

difference between the δ
18

O values in Globigerina bulloides and Globorotalia inflata 

(expressed as Δδ
18

OG. bulloides – G. inflata). G.bulloides is a surface dwelling form and G.inflata 

lives at the thermocline. A  Δδ
18

OG. bulloides – G. inflata  value of around zero indicates well 

mixed surface waters, whereas a more negative value indicates increased stratification and 

is associated with presence the North Atlantic Current. Hall et al. (2004) from their study 

of marine core NEAP 4K (62
o
30´N, 24

o
19´W)  identify increasing sea surface 

temperatures and stratification for the early Holocene with a thermal maximum from 

Figure 3.10  Planktonic and benthic foraminifera stable isotope records, sediment and grain size 

composition for the last 14kyr from a Barent Sea core showing a an early Holocene thermal 

optimum from 10700-7700 yr BP with a short cooling from 8800 to 8200 yr BP and a 

general cooling in the middle and late Holocene with two warmer periods at 2200 and 

1600 yr BP After Sarnthein et al. (2003). 
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around 8.0 to 4.8kyr BP. The influence of the North Atlantic Current then decreases from 

4.5 to 2.1kyr BP indicated by increased mixing of the upper water column. 

 

3.5  Proposed Mechanisms of Holocene Climate Variability 

 

        A number of possible mechanisms have been proposed for climate variability in the 

Holocene. These forcing mechanisms include variations in atmospheric and ocean 

circulation and the input of solar radiation. The input of solar radiation may vary due to 

earth orbital cycles, changes in sunspot activity, the input of volcanic aerosols and 

greenhouse gases. Some authors recognise a clear causal link between specific periodicities 

and forcing mechanisms, while others identify a correlation between particular climate 

proxies, but consider the causes of these correlations as yet uncertain. It is also recognised 

that local conditions and feedback mechanisms may amplify or dampen global climate 

signals at individual sites and for particular proxies. For this reason a synthesis of climate 

data from a wide range of sites and using multiple climate proxies is considered the most 

robust means of identifying mechanisms of Holocene climate variability. Mayewski et al., 

(2004) attempt to correlate the Holocene climate fluctuation considered in their review 

with potential forcing mechanisms including volcanic aerosols, winter and summer 

insolation at 60
o
N and 60

o
S, greenhouse gases CO2 and CH4 and 

10
Be and 

14
C as proxies of 

solar variation (Figure 3.11).Mayewski et al., (2004) conclude that for the six episodes of 

rapid climate change that they identify for the Holocene solar variability superimposed on 

long term changes in insolation is the most probable forcing mechanism for four of the 

episodes. The 9000-8000yr event is considered to be influenced by solar forcing combined 

with feedbacks from the break up of the Laurentide ice sheet. A forcing mechanism for the 

4200-3800 event is less easy to define. 

 

Figure 3.11 . a) Gaussian smoothed (220 yr) GISP2 Na
+
 (ppb) ion proxy for the Icelandic Low 

(Mayewski et al.,1997; Meeker & Mayewski, 2002). b) Gaussian smoothed (220 yr) GISP2 K
+
 

(ppb) ion proxy for the Seberian Low (Mayewski et al.,1997; Meeker & Mayewski, 2002). c) 

Episodes of distinct glacier advance (Denton & Karlen, 1973; Haug et al.,2001). d) Emerging tree-

stumps from retreating Swiss glaciers (Hormes et al.,2001). e) The meltwater outburst of Lake 

Agissiz (Barber et al.,1999). f) Winter insolation values at 60
o
N (black line) and 60

o
S (blue line). 

g) Summer insolation values at 60
o
N (black line) and 60

o
S (blue line) (Berger & Loutre, 1991). h) 

Δ
14

C residuals (Stuiver et al.,1998). i) 
10

Be concentrations in the GISP2 ice core (Finkel & 

Nishiizumi, 1997). j) Atmospheric CH4  (ppbv) concentrations in the GRIP ice core (Chappellaz et 

al., 1993). k) Atmospheric CO2  (ppmv) concentrations in the GRIP ice core in Taylor Dome Ice 

Core Antarctica (Indermuhle et al.,1999). l) SO4 
2-

 residuals (ppb) from the GISP2 ice core 

Greenland (Zielinski et al.,1996). The green bands represent the timings of rapid climate change. 

After Mayewski et al. (2004). 
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3.5.1 Variations in the Input of Solar Radiation  

 

        Bond et al. (2001) correlate IRD cycles in the North Atlantic with the flux in 

cosmogenic nuclides 
10

Be and 
14

C. Drift ice events of 200-500 years correlate closely with 

large changes in nuclide production. They therefore conclude that variations in solar output 

have influenced changes surface ocean hydrography and surface winds for the subpolar 

North Atlantic through the Holocene. While the study accepts that the magnitude of this 
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forcing is small, they argue that climate models suggest a decrease in solar activity of as 

little as 0.1% can produce a change in surface temperatures through the dynamic response 

of the atmosphere. Not all studies of drift-ice flux however identify this correlation. Moros 

et al. (2006) argue that variations in iceberg rafting were not uniform across the North 

Atlantic during the Holocene. From their study of four marine cores off Iceland, they 

record a long term increases in drift-ice input from 6-5kyr BP to the present in sites 

influenced by the East Greenland Current, but a decrease in those underlying the North 

Atlantic Drift. Andrews et al. (2009) confirm this regional variability in drift-ice flux. They 

do not identify a 1500 year periodicity in IRD signal but a multicentennial periodicity of 

around 670 years. 

 

        Other authors (Bianchi & McCave, 1999; deMenocal et al., 2000; Sarnthein et al., 

2003) have correlated their sea surface temperature results with the ice rafting records of 

Bond et al. (2001).  While Bendle & Rosell-Melé, (2007) note that their alkenone-derived 

sea surface temperature record from the North Iceland shelf does not correlate with the 

Bond record through the Holocene.  Mayewski et al. (2004) in their multiproxy review 

consider the 6000-5000, 4200-3800, 3500-2500 and 1200-1000 cal yr BP climate 

variations in the Holocene to have been most probably caused by orbital variations in solar 

radiation as there is no indication of increased volcanic aerosols, meltwater forcing events 

or strong variations in sunspots for these time intervals.  

 

 

3.5.2  Variations in Ocean Circulation 

 

        Some authors have argued that changes in North Atlantic ocean circulation may be 

correlated with climate fluctuations in the Holocene (Stuiver & Braziunas, 1993; Bjorck et 

al., 1996; Hughen et al.,1998; Stocker & Wright, 1996). They argue that changes in the 

rate of NADW production would influence the distribution of 
14

C between atmosphere and 

ocean. Sediment lightness studies from the Gardar drift (Chapman & Shackleton, 2000) 

identified periodicities of 550 and 1000 years in North Atlantic circulation during the 

Holocene. These periodicities correspond to those found on the GISP2 Greenland Ice core 

record (Stuiver et al., 1995) and the authors note that it also corresponds to the Δ
14

C flux in 
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the atmosphere, suggesting that changes in Δ
14

C may be related to changes in NADW 

flow. 

 

Alkenone derived sea surface temperatures from the North Iceland shelf (Bendle & Rosell-

Melé, 2007) correlate with data for the strength of NADW (Bianchi & McCave 1999; 

Oppo et al., 2003) for the later half of the Holocene. Thornalley et al. (2009) in their 

foraminiferal Mg/Ca study from marine core RAPID 12-1K (62
o
5´N, 49

o
18´W) identify 

millennial-scale variations in the inflow of warm saline water into the subpolar North 

Atlantic which they correlate with Arctic freshwater fluxes. 

 

        Mayewski et al. (2004) conclude that the 9000-8000 cal yr BP Holocene climate 

event must be considered as unique, as large ice sheets still existed in the Northern 

Hemisphere which influenced ocean and atmospheric circulation. This time interval 

includes the 8.2kyr event (Barber et al., 1999; Ellison et al., 2006; Kleiven et al., 2008).  

Changes in 
10

Be which would indicate variation in solar activity (Stuiver et al., 1997) are 

not indicated during this interval. There is however an increase in the input of volcanic 

aerosols which would have also resulted in significant cooling (Zielinski et al., 1996). 

However the most probable cause for this cooling event is changes in ocean circulation. 

 

 

3.5.3  The North Atlantic Oscillation 

 

        Another important atmospheric variation which may drive Holocene climate 

variability is the North Atlantic Oscillation (Hurrell, 1995; Marshall et al., 2001; Visbek et 

al., 2003; Hurrell et al., 2003). The North Atlantic winter index is defined as the average 

pressure difference between the Azores and Iceland in the winter. A positive NAO winter 

index means that there is a strong pressure gradient between the two regions, a strong 

atmospheric low over Iceland and strong mid-latitude westerlies (Rousse et al., 2004). It is 

uncertain how the NAO interacts with ocean circulation as the records of this index only 

extend back 500-600 years (Cook et al., 2002). However some authors have suggested that 

the strength of the NAO enhances or weakens the North Atlantic Drift (Taylor & Stephens, 

1998; Wanner et al., 2001) (Figure 3.12). Over this time scale the NAO may be identified 

as exhibiting decadal cycles of stability. Andersen et al. (2004) suggest that a persistent 
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positive NAO state could explain the warm and stable surface conditions during the 

Holocene climate  optimum over the Vøring Plateau. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.12 Graphical representation of NAO positive and negative modes, indicating the Sea Surface 

Temperatures (marked as cool in blue shading and warm in orange shading), ice extent, ocean and 

atmosphere flow (marked with red, orange, green and blue arrows) and high (H) and low (L) pressure 

zones. White rectangles describe characteristic climate conditions or important processes.  

After Wanner et al. (2001). 
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    Chapter Four  

Diatom Taxonomy and 

Ecology 

 

 

 

 

          “Clark finds that with returning daylight the diatoms are 

again appearing. His nets and line are stained a pale yellow and 

much of the newly formed ice has also a faint brown and yellow 

tinge. The diatoms cannot multiply without light...” 

 

Ernest Shackleton  „South‟ 

 

 

 

 



49 

 

4.1 Diatom taxa 

 

        The following diatom taxa were identified in this study (Table 4.1). Full taxonomic 

descriptions and discussion of the systematic adopted in this study are found in Appendix 

Two. A summary of recorded ecological tolerances for each taxa, where known, is also 

recorded in Table 4.1. 

  

 

   

Coscinodiscus asteromphalus Ehrenberg  

Coscinodiscus linearis Ehrenberg  

Coscinodiscus marginatus Ehrenberg Temperate to subtropical 

Temperature optimum 27°C 

Salinity optimum 36‰ 

Depth optimum 0 to 60m  

(Canadian diatom database) 

Coscinodiscus radiatus Ehrenberg Oceanic, temperate species 

Temperature optimum 25°C 

Salinity optimum 36‰  

Depth optimum 80 to 100m 

(Canadian diatom database)  

Coscinodiscus occulus-iridis Ehrenberg  

Stellarmina stellaris Roper Temperature optimum 24°C, 

Salinity optimum 36‰   

Depth optimum 60m 

(Canadian diatom database) 

Actinocyclus curvatulus Janisch Distribution imperfectly known, but 

fairly widespread 

(Canadian diatom database) 

Cosmopolitan  

(Hasle & Syvertsen, 1997) 

Actinocyclus kutzingii A.Schmidt Temperature optimum 25°C 

Salinity maximum 36‰ 

 Maximum depth 0 to 150 

(Canadian diatom database) 

Actinocyclus octinarius Ehrenberg World wide distribution in 

temperate seas.  

Temperature optimum 26°C 

Salinity optimum 36‰  

Depth range 20 to 130m 

(Canadian diatom database) 

Azpeitia Africana Janisch ex A. 

Schmidt 

Temperature optimum 25-27°C, 

salinity optimum 36‰  

Depth optimum 100-150m 

(Canadian diatom database) 
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Azpeitia neocrenulata VanLandingham Warm water region 

(Hasle & Syvertsen, 1997) 

Azpeitia nodulifera A.Schmidt 

G.Fryxell & P 

Sims in Fryxell et 

al. 

Temperature maximum 26°C 

Salinity maximum 36‰  

(Canadian diatom database) 

Warm water region 

(Hasle & Syvertsen, 1997) 

Hemidiscus cuneiformis Wallich Oceanic species, with a wide 

distribution in tropical and sub-

tropical waters 

Depth range 0 - 200m, optimally 40 

to 100m 

Temperatures range 12 - 29°C 

Optimum at 25°C  

Salinity from 34 - 36‰ 

(Canadian diatom database) 

Warm water region 

(Hasle & Syvertsen, 1997) 

Roperia tesselata (Roper) Grunow Cosmopolitan 

Found up to 66
o
N in Norwegian sea 

and as far south as 57
 o
S  

(Hasle 1976a) 

Proboscia alata Brightwell 

(Sündstrom) 

Temperature range 7 -29°C 

Temperature optimum 25°C 

Salinity was from 33 - 37‰ 

Salinity optimum 36‰ 

Optimum depth 0 to 90m 

(Canadian diatom database) 

Rhizosolenia bergonii Peragallo Relatively uncommon oceanic 

species, but is widely spread 

throughout warmer waters 

Temperature optimum 27°C, 

Salinity optimum 36‰ 

 Optimum depth 80m 

(Canadian diatom database) 

Rhizosolenia styliformis Brightwell Most common in temperate waters 

Temperature optimum 26°C  

Salinity optimum 36‰  

Optimum depth 0 to 110m 

(Canadian diatom database) 

Rhizosolenia hebetata 

hebetata 

Bailey Temperature optimum 24°C, 

salinity optimum 36 ‰ 

Depth 0 to 200m 

(Canadian diatom database) 

Rhizosolenia hebetata 

semispina 

(Hensen) Gran Oceanic, boreal-Arctic form. 

Distribution: Arctic seas, E. 

Greenland Sea, all parts of the 

North Sea 

Also observed in in the waters of 
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the tropical and subtropical zones 

(Canadian diatom database) 

 

Asteromphalus robustus Castracane  

Bacteriastrum hyalinum  Temperature optimum 26°C 

Depth optimum 0 to 20m 

(Canadian diatom database) 

Bacteriosira fragilis Gran Marine planktonic cold water 

species from the Northern 

hemisphere.  

Temperature mean of 1.4° C  

(Canadian diatom database) 

Porosira glacialis Grunow 

(Jorgensen) 

Cryoplanktonic diatom, common 

and often abundant in sea ice 

Marine planktonic cold water, 

bipolar species 

(Canadian diatom database) 

Thalassiosira angulata (Gregory) Hasle North Atlantic Ocean 

(Hasle 1978a) 

Thalassiosira auguste-lineata (S.Schmidt)  

Hasle & Fryxell 
 

Thalassiosira eccentrica (Gregory) Hasle Recorded as cosmopolitan species 

and as having  an Arctic ice 

association 

(Canadian diatom database) 

Thalassiosira ferelineata Hasle & Fryxell Mainly warm water region 

(Hasle & Syvertsen, 1997) 

Thalassiosira gravida Cleve Common in neritic plankton in all 

northern seas. Recorded as 

temperate to sub polar distribution 

and as Arctic-boreal-neritic species 

Temperature range -1.9-28.6°C. 

Temperature optimum 20°C, 

Salinity range is from 7-38.8‰ 

Salinity optimum 36‰ 

Maximum depth 20 to 120m 

(Canadian diatom database) 

Thalassiosira hyalina Grunow (Gran) Recorded as marine planktonic cold 

water species from the Northern 

hemisphere Boreal-Arctic-neritic 

and  an Arctic species, common in 

the North Atlantic.  

Observed only in waters with a 

salinity above 31 ‰ with a mean 

being 33.88‰. This mean value 

reflects the effect of melting ice and 

verifies its predominance in polar 

oceanic water masses 

(Canadian diatom database) 
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Thalassiosira lineata Jouse Warm-water species 

(Canadian diatom database) 

Warm water region  

(Hasle & Syvertsen, 1997) 

Thalassiosira nodulineata (Hendey) 

Hasle & Fryxell 
 

Thalassiosira nordenskioeldii Cleve Northern cold water region to 

temperate 

(Hasle & Syvertsen, 1997) 

Thalassiosira oestrupii (Ostenfeld) Hasle Temperature maximum 29°C, 

salinity maximum 36‰ 

(Canadian diatom database) 

Thalassiosira pacifica Angst & Gran Cosmopolitan except for polar 

regions 

(Hasle & Syvertsen, 1997) 

Thalassiosira trifulta G.Fryxell  

in Hasle & Fryxell 
 

Alveus marina Kaczmarska & 

Fryxell 

Reported as both marine neritic 

species inhabiting cold to warm 

waters, with a preference for cold 

waters and marine planktonic, 

warm-water species  

(Canadian diatom database) 

Fragilariopsis atlantica Paasche Wide distribution in the Norwegian 

Sea and recorded at numerous 

localities in Arctic and Polar water. 

A second centre of distribution n 

the warm Atlantic water masses in 

the south-eastern part of the 

Norwegian Sea. 

(Canadian diatom database) 

Fragilariopsis cylindrus Grunow 

Kreiger in 

Helmcke & 

Kreiger 

Cryoplanktonic diatom, abundant in 

some sea ice samples 

(Canadian diatom database) 

Fragilariopsis doliolus (Wallich) Medlin 

& Sims 

Marine planktonic, warm-water 

species. Most common in warmer 

seas 

Temperature  14 to 27°C 

Temperature optimum 26°C 

salinity 35-36‰ 

Salinity optimum 36‰  

Depth 40 to 110m 

(Canadian diatom database) 

Fragilariopsis rhombica (O’Meara) Hustedt Ice association: Arctic 

(Canadian diatom database) 

Fragilariopsis oceanica (Cleve) Hasle Marine planktonic cold water 

species Ice association:Arctic. 

(Canadian diatom database) 



53 

 

Nitzschia braarudii   Heiden & Kolbe  

Nitzschia bicapitata Cleve emend. 

G.Fryxell 

Marine planktonic, cosmopolitan 

species 

(Canadian diatom database) 

Nitzschia kolazczekii Grunow Marine planktonic, warm-water 

species 

(Canadian diatom database) 

Synedra spp Ehrenberg  

 

Thalassionema nitzschioides Grunow Neritic, Reported as North 

temperate and cosmopolitan 

species. A pronounced euryhaline 

species occurring at salinitites down 

to 4.13 o/oo in Portuguese Guinea 

and 3.60 o/oo in Tscheskaja Bay in 

the Barents Sea. 

(Canadian diatom database) 

Thalassionema nitzscihoides 

var. parva  

Heiden  

Thalassiothrix longissima  Reported as Boreal-Arctic oceanic 

and oceanic temperate species 

Temperature 13-29°C 

Temperature optimum 25°C, 

Salinity from 34-36‰ 

Salinity optimum 36‰ 

Depth 70 to 90m 

(Canadian diatom database) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table  4.1 Marine planktonic diatom taxa identified in marine cores MD99-2251 and MD99-2252 

and their ecological tolerances where known 
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4.2 Ecology 

 

4.2.1 Introduction 

. 

        Diatoms are primary producers requiring light for photosynthesis, nutrients and 

available silica to produce frustules. They can tolerate a wide range of temperatures and 

salinities and  in certain species, even long periods of desiccation. As a result of these 

tolerances, diatoms are found in wide range of physical environments as both attached and 

free floating forms. These include subaerial environments attached to rock, plant, dry 

mosses and animal, soils and in all but the most hypersaline and hottest water (Round et 

al., 1990). The diatoms in this study are marine planktonic forms. The particular ecological 

considerations for these forms are the need to remain buoyant within the marine photic 

zone, responses to changing nutrient supply within the oceans, tolerances to water 

turbulence, considerations regarding predation by other organisms and the availability of 

silica (Lee, 1999). 

 

4.2.2 Light 

 

        Diatoms require light for photosynthesis. For marine planktonic forms this means that 

they must maintain buoyancy within the photic zone. The density of seawater ranges from 

1021 to 1028 kg/m
3
. The density of the diatom silica frustule is around 2.600 and of the 

cytoplasm 1030 to 1100 kg/m
3
 (Smayda, 1970). Various strategies are therefore adopted by 

these diatoms in order to achieve neutral or positive buoyancy. These include small size, 

valve morphology, ionic variation of the cell sap and encasing frustules in low density 

mucilage sheaths. Adaptations of valve morphology that increase the ratio of surface area 

to volume and slow sinking rates include, the addition of setae, elongate and disc shaped 

cells and ribbon shaped colonies.  In addition to these morphological adaptations, marine 

diatoms are able to adopt ionic mechanisms of buoyancy by varying the composition of the 

vacuolar sap. The concentration of lighter Na
+
 ions in relation to heavier K

+
 ions is higher 

in the vacuole than in the surrounding seawater. The concentrations of light NH4
+
 ions also 

are greater and heavy divalent ions such as SO4
2-

 are absent. This ionic buoyancy is 

probably only significant in larger forms where the vacuole is of a sufficient size (Lee, 

1999). 
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        Moore & Villareal (1996) observed an inverse relationship between light levels and 

positive buoyancy in nutrient rich conditions for three species of Rhizosolenia. They 

concluded that at very high light intensities Rhizosolenia could undergo physiological 

changes resulting in negative buoyancy. They proposed that this negative buoyancy was 

the result of carbohydrate ballasting, a process documented in buoyant cynobacteria. Cells 

are also capable of exhibiting positive buoyancy and vertical migration around an optimum 

preferred depth or light level where maximum growth also occurs. Cell buoyancy is also 

able to respond to nutrient depletion.  The Rhizosolenia species studied appear to be part of 

the ‘shade flora’ which occurs at around 100m depth near the nutricline.  

 

        Waite et al. (1997) in a study of nine diatom species identified two controls on 

sinking rates. The first control is related to cell volume. Larger cells sink faster then 

smaller cells in accordance with Stokes’ Law. This control was found to apply to dead or 

severely metabolically distressed cells. Metabolically active cells however, showed no 

relationship between cell volume and sinking rate but were rather controlled by vacuole 

and protoplast modification. The study further suggests a minimum cell volume of 200µm
3 

as necessary for active sinking rate control.  

 

        The photic zone is frequently turbulent as a result of winds currents and convection. 

This turbulence acts to keep diatoms in suspension (Round et al., 1990). In addition to the 

effects of turbulence on diatom buoyancy, population dynamics of diatoms are influenced 

by stratification in the water column. The spring bloom in phytoplankton in the North 

Atlantic is associated with vertical stratification of the water column (Ducklow & 

Harris,1993). Studies of diatom populations around the Antarctic Polar Front show that an 

increase in phytoplankton occurs with stratification at the Polar Front in early November 

(Landry et al, 2002). The predominance of diatoms in the phytoplankton appears to be 

related to the extent of stratification, with diatoms dominating in stratified waters (Alvain 

et al., 2008). At the onset of the spring bloom diatoms dominate the phytoplankton with 

maximum stratification (Savidge et al.,1995). The limiting factor on diatom populations 

then becomes nutrient availability (which is discussed further in section 4.4.4 of this 

chapter). 
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4.2.3 Nutrient Supply and Silica Limitation 

 

        Diatoms play and important role in carbon fixation and therefore in the global carbon 

cycle. They are a major constituent of the ocean’s phytoplankton, contributing 40% of the 

total primary production (Sarthou et al. 2005). As a result there has been an increase in the 

number of studies attempting to define the temporal and special patterns of diatoms in the 

world’s oceans and the environmental constraints on those patterns, in order to better 

constrain global carbon models. These studies have been based largely on the culture of 

diatoms in laboratory in seawater with a range of different nutrient concentrations and on 

satellite data of phytoplankton concentrations under different oceanic conditions. 

 

 

 

 

 

 

 

 

 

        

 

        Diatoms dominate the ocean’s phytoplankton where nutrient levels are high. Moore et 

al. (2002) modelled the nutrient limitation on diatoms of various elements based on the 

half saturation level of the particular nutrient in the diatom cell (Figure 4.11). The authors 

demonstrate that the mid ocean gyres are nitrogen limited for diatoms. The high-nutrient 

low-chlorophyll (HNLC) regions of the Southern Ocean, equatorial Pacific and subarctic 

             Iron                    Nitrogen                  Silica                   Phosphorus  .............   Replete 

  

38.75%                50.04 %                     10.57%                 0.548%                     0.082% 

 

Figure 4.1Diatom nutrient limitation modelled for the world oceans indicating the regional 

distribultion and the total percentage of the oceans nutrient-limited for diatoms with respect to 

iron, nitrogen, silica and phosphorus  and ‘nutrient replete’ regions ie those with over 97%  of 

maximum cell quota for all nutrients (Moore et al.,2002). 
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are iron limited and well as parts of the North Atlantic the Equatorial Indian and Atlantic 

Oceans during the summer months.  The northern Sub Antarctic waters, parts of the North 

and equatorial Atlantic and the equatorial Pacific are silica limited. Small isolated regions 

of the ocean are phosphorus restricted with respect to diatom growth. Less than 1% of the 

world’s oceans are nutrient replete with respect to diatoms. These are areas of permanent 

heavy sea ice cover.  

 

        Silica is required not only for frustule growth but also for certain physiological 

functions in all diatoms. The relationship between silica availability and diatom growth has 

been extensively studied (Nelson & Treguer, 1992; Dugdale et al., 1995; Martin-Jezequel 

et al., 2000; Shipe et al., 2007). In the North Atlantic, unlike the HNLC regions, the spring 

plankton bloom depletes the macronutrients. Martin-Jezequel et al. (2000) propose that the 

surface silica pool by diatom production limits diatom growth rates and leads to the 

collapse of the spring bloom. Brown et al.(2003) in a study of ten sites in the Northeastern 

Atlantic Ocean, used a 
32

Si radiotracer to track the silica uptake through the spring bloom. 

The authors conclude that high surface silica availability (above 2µmol L
-1

) and high 

absolute and specific silica uptake rates, suggest that dissolved silica availability is the 

primary control on the diatom spring bloom evolution. 

 

        In addition to the modelling studies (Moore et al. 2002), iron concentrations in 

seawater have been demonstrated to have an effect on nearly all the biogeochemical 

properties of diatoms in laboratory experiments (Sarthou et al 2005; Timmermans et 

al.,2004).  Timmermans et al. (2004) undertook diatom culture studies on four large 

marine planktonic species under different concentrations of dissolved iron and the effect on 

both the growth rate and uptake of silicate, nitrate and phosphate. Growth rates increased 

three to six fold with increased iron concentrations, depending on the size of the diatom 

cell. Smaller species showed the greatest growth rate increase with additional iron 

concentrations. With a decrease in iron, nitrate consumption decreased, silicate 

consumption increased and phosphate consumption showed no clear relationship to iron 

concentration.  
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4.2.4  Monospecific diatom blooms  

 

        Diatom blooms have been identified in the contemporary strongly stratified surface 

waters of the equatorial Pacific (Yoder et al., 1994). The authors recognise high 

concentrations of Rhizosolenia spp at the convergence of warm and cold waters. Water 

mass boundaries in coastal waters had long been identified as associated with increased 

biological activity and so it was assumed that the same could be true of open ocean frontal 

systems. Archer et al. (1997) concluded that the diatoms were imported from the cooler 

South Equatorial Current waters and made up a surface layer on the warm side of the ocean 

front. Localised upwelling was thought to contribute iron which stimulated enhanced 

productions (Friedrichs & Hoffman, 2001). A number of different diatom genera have been 

recognised as exhibiting elevated production in the Southern ocean at the Antarctic Polar 

Front including Pseudo-nitzschia, Chaetoceros and Thalassiothrix (Smetacek et al., 2002). 

In the fossil record, monospecific blooms of Thalassiothrix have been found in Eemian 

North Atlantic sediments (Boden & Backman,1996) , Neogene eastern equatorial Pacific 

(Kemp & Baldauf, 1993) and southern ocean sediments (Grigorov et al. 2002). Kemp et al. 

(2006) conclude that giant diatom genera such as Thalassiothrix, Rhizosolenia and 

Ethmodiscus may become concentrated at major open ocean fronts. Although they may not 

be the dominant species when approaching the front they concentrate and then massively 

sediment. 

 

4.3  Floral Assemblages and water masses 

 

       A number of authors have linked diatom floral assemblages to water masses by factor 

analysis of core top data. Koç Karpuz and Schrader (1990) used the GINT2 transfer 

function, an Imbrie-Kipp Q-mode factor analysis, based on diatom assemblage data from 

104 core top samples from the Greenland Iceland Norwegian (GIN) Seas to identify six 

different assemblages each strongly reflecting surface water conditions; a Norwegian-

Atlantic current assemblage, an Arctic water assemblage, a Sea Ice assemblage, an Arctic-

Norwegian waters assemblage, an Atlantic assemblage and a Norwegian-Arctic water 

assemblage. These six assemblages together accounted for 91.7% of the recorded variance. 
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        Andersen et al. (2004a), using  an expanded core top data base andI&K analysis, 

identify eight specific diatom assemblages; an Arctic Greenland Assemblage, a North 

Atlantic Assemblage, a Sub-Arctic assemblage, a Norwegian Atlantic Current assemblage, 

a Sea ice Assemblage, an Arctic Assemblage, and East and West Greenland Current 

Assemblage and a Mixed Water Mass Assemblage. Figure 4.2 indicates the distribution of 

these floral assemblages. The key species identified as characteristic of each assemblage 

are indicated in Table 4.2. Based on the factor loading matrix the authors indentify both 

species which strongly reflect the assemblage (recorded here as Primary assemblage 

species) and species which also contribute to the assemblage (recorded here as Additional 

assemblage species). 

 

 

 

 

 

 

 

Figure 4.2  The modern distribution of the floral assemblage factors of Andersen et al. (2004a) 

(redrawn Justwan et al.,2008). Factor 1 Arctic Greenland Assemblage, Factor 2 North Atlantic 

Assemblage, Factor 3 Sub Arctic Assemblage, Factor 4 Norwegian Atlantic Current 

Assemblage, Factor 5 Sea-Ice Assemblage, Factor 6 Arctic Assemblage ,Factor 7 East and West 

Greenland Current Assemblage, Factor 8 Mixed Water Mass Assemblage. 
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Factor 

Number 

Factor Name Primary assemblage species Additional assemblage species 

1 Arctic Greenland 

Assemblage 

Thalassiosira auguste-lineata, 

Thalassiosira trifulta 

 

2 North Atlantic 

Assemblage 

Thalassiosira oestrupii Thalassiosira nitzschioides, 

Nitzschia bicapitata, 

Rhizosolenia bergonii, 

Roperia tesselata,  

Alveus marina
* 

3 Sub-Arctic 

Assemblage 

Rhizosolenia hebetata f. 

semispina  

Rhizosolenia borealis 

Thalssiosthrix longissima 

4 Norwegian Atlantic 

Current Assemblage 

Thalassionema nitzschioides 

 

Proboscia alata  

Thalassiosira angulata 

5 Sea Ice Assemblage Fragilariopsis oceanica* 

 

Thalassiosira hyalina 

Thalassiosira gravida resting 

spores 

Thalassiosira nordenskioeldii 

Bacterosira fragilis 

Fragilariopsis cylindrus* 

6 Arctic Assemblage Thalassiosira gravida resting 

spores 

 

 

Thalassiosira gravida 

vegetative cells 

 Actinocyclus curvatulus 

Rhizosolenia hebetata f. 

semispina 

Rhizosolenia hebetata f. 

hebetata 

7 East and West 

Greenland Current 

Assemblage 

Thalassiosira gravida 

vegetative cells 

 

 

8 Mixed Water Mass 

Assemblage 

Rhizosolenia borealis 

 

 

 

Table 4.2  Primary and additional species for the flora assemblages of Andersen et al. (2004a). 

(* taxonomic nomenclature employed in this study has been adopted. Andersen et al. (2004a) refers 

to Alveus marina as Nitzschia marina, Fragilariopsis oceanica as Nitzschia grunowii and 

Fragilariopsis cylindrus and Nitzschia cylindra) 

 

 

       Table 4.3 presents a simplified version of the factor score matrix produced by Berner 

et al. (2008) Down core mulitvariant analyses (principal component anlaysis and K-means 

cluster analysis) of the diatom floral counts in marine core MD99-2251 are presented in 

section 8.6.2 of this study. The groupings identified by these analyses are compared with 

the floral assemblages identified by Andersen et al. (2004a) and Berner et al. (2008) 
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 Factor 1 

Arctic 

Greenland 

Factor 2 

North 

Atlantic 

Current 

Factor 3 

Sub 

Arctic 

Factor 4 

Norwegian 

Atlantic 

Current 

Factor 5 

Sea Ice 

Factor 6 

Arctic 

Factor 7 

E & W 

Greenland 

Current  

T.longissima 0.0542 0.0544 0.1632 0.0272 -0.0068 -0.0011 -0.0020 

T.nitzschioides -0.0424 0.1752 -0.1045 0.8029 0.0173 -0.0083 -0.1515 

R.h.hebetata 0.0489 -0.0080 0.0401 0.0158 -0.0203 0.0679 -0.0224 

R.h.semispina -0.0112 -0.290 0.8861 -0.0016 0.0278 0.0764 -0.1574 

R.borealis -0.0375 0.0118 0.3720 0.1865 0.0263 -0.858 -0.0908 

P.alata 0.0392 -0.0370 -0.0066 0.3943 0.0008 -0.0463 -0.0738 

B.fragilis 0.0172 0.0014 -0.0040 -0.0041 0.0718 0.0113 0.0006 

R.tesselata 0.0002 0.0822 -0.0153 0.0495 0.0019 -0.0007 -0.0070 

A.curvatulus 0.1236 0.0102 -0.0107 0.0476 -0.0144 0.1322 -0.1135 

T.gravida resting 

spore 

0.0118 0.0308 -0.0836 -0.0267 0.1018 0.9384 -0.2259 

T.gravida veg 0.1752 -0.0580 0.1464 0.2055 -0.0217 0.2475 0.9118 

T.auguste-lineata 0.8742 0.0031 -0.0131 -0.0163 -0.0575 -0.0541 -0.1457 

T.trifulta 0.3740 0.0041 -0.0056 0.0155 -0.0575 -0.0233 -0.0656 

T.nordenskioeldii 0.0028 -0.0233 0.0362 0.0943 0.1006 0.0369 -0.0415 

T.oestrupii 0.0086 0.9550 0.0447 -0.1045 -0.0074 -0.0111 0.0815 

T.hyalina 0.1103 -0.0005 -0.0080 -0.0034 0.2090 -0.0402 -0.0032 

T.angulata -0.0225 -0.631 -0.0435 0.2154 0.0288 0.0038 -0.0164 

A.marina 0.0023 0.0592 0.0120 -0.0136 -0.0001 -0.0055 0.0045 

N.bicapitata 0.0035 0.1159 -0.0087 0.0055 -0.0003 0.0030 -0.0083 

F.cylindrus 0.1141 0.0011 -0.0130 -0.0114 0.2647 -0.0730 -0.0038 

 

 

 

Table 4.3 The factor score matrix for key species from factor analysis of surface sediments. 

After Berner et al. (2008). All positive scores over 0.1 are highlighted. 
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    Chapter Five  

Introduction to Results 

 

 

 

 

        “To these various employments was presently added, as the 

most important of all, the taking of scientific observation, which 

gave many of us constant occupation...” 

 

Fridjof  Nansen  „Farthest North‟ 
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Chapter  Five: Introduction to Results 

 

5.1  The Core sites 

 

        The two marine cores analysed in this study are situated on the Gardar Drift, a 

sedimentary drift deposit lying on the eastern side of the Rekyjanes Ridge in the Icelandic 

Basin (Figure 5.1). There are a number of sedimentary drifts in the North Atlantic.  Deep 

water flows provide fine silt and clays which make up the majority of the drift sediment.  

Keigwin & Jones (1989) assert that there is at least one drift deposit associated with every 

deep water flow of the North Atlantic. Larger than silt sized particles in drift deposits 

consist mostly of microfossil skeletons deposited in situ and augmented by ice rafted 

debris during glacial episodes. Drift deposits are particularly useful for palaeoceanographic 

studies as they have high sedimentation rates, up to 200cm/1000yrs during the last glacial 

period, allowing high resolution analysis of  past climate events. Unlike near shore 

continental sediments, which also have high sedimentation rates, drift deposits exhibit low 

rates of bioturbation, are not disrupted by down slope coarse sediment flows and better 

reflect open ocean conditions (Keigwin & Jones,1989). 

        

        Marine cores from sediment drift deposits may be analysed for number of different 

palaeoceanographic proxies. As deep water flows are considered to be the source of the silt 

and clay components of a drift deposit, their study may be used to infer provenance of 

these sediments and the strength of deep water flows, using mean sortable silt, the mean 

size of the 10-63µm terrigenous fraction, as a proxy for palaeocurrent strength, (Manighetti 

& McCave, 1995, McCave et al., 1995b; Hall et al., 1998; Bianchi et al., 1999; McCave & 

Hall, 2006; McCave et al., 2006).  The microfossils components of drift sediments are 

deposited in situ and therefore may be used to infer deep and surface ocean conditions at 

the time of deposition. Studies have been undertaken on analysis of the silt sized diatom 

flora (Andersen et al., 2004; Berner et al., 2008) and the larger foraminifera fauna (Ellison 

et al., 2006) of Gardar Drift deposits. Ice rafted debris (IRD), material deposited by drift 

ice passing over the core site, makes up an additional terrigneous component of drift 

deposits. Analysis of IRD, usually at the >63µm or >150µm size fraction, may be used to 

infer variations in drift ice patterns. 
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Figure 5.1 Sediment thickness in the Eastern Icelandic basin. (Bianchii & McCave, 2000 modified 

from Tucholke, 1989). MD99-2251 (57°26.87' 027°54.47') MD99-2252 (57°26.84' 027°55.83'). 

 

        The Gardar drift is over 1000km in length and stretches from the Icelandic margin to 

the Charles Gibbs Fracture Zone. It is 1300-1600m thick with an undulating crest. At its 

northern extent it is broken by abyssal hills and seamounts, which reflect the underlying 

topography not yet masked by sediment deposition. The drift exhibits large wave like bed 

forms of irregular size and shape; average heights of 10m and lengths of 1500m (Figure 

6.1). Sonar readings taken as part of DSDP Leg 94 indicate that these wave forms may 

reflect basement morphology. There is no evidence from this DSDP study (Kidd & Hill, 

1979) that the wave forms reflect current bottom water flow or have exhibited wave 

migration.  

 

        Bianchi and McCave (2000) however, in a study of 20 box and 18 Karsten cores 

across the Gardar and Bjorn drifts, identify different types of sediment wave occurring on 

MD99-2251 

MD99-2252 
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the Gardar drift. In the northern portion of the drift; regular migratory waves which form 

adjacent to the fast-flowing core of the ISOW and migrate down current and upslope, and 

non-migratory regular and irregular waves on the flanks of the drift. Migratory sediment 

waves are also observed to the south and at the base of the eastern Gardar drift. These 

waves are thought to be associated with strong baroclinic flow of the ISOW aligned 

subparallel to the bathymetric contours. In addition to wave forms they also identify areas 

of featureless flat seabed at the drift crest (Figure 5.2) 

 

 

 

 

Figure 5.2  A transect of echo-types of the Gardar drift showing different sedimentary forms. (BIB) 

regular migratory sediment waves.  (BIA) regular non migratory sediment waves.  (B2A)  irregular 

non migratory sediment waves.  (IB) flat sea bed.  ISOW (Iceland Scotland Overflow Water).   

From Bianchi & McCave (2000) 

 

        Sedimentation rates for the Gardar drift at typically 10-20cm ka
-1 

but reaching 

maximum rate in excess of 100 cm ka
-1

. Holocene sedimentation rates are recorded as 
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 5- 40cm ka
-1 

(Bianchii & McCave, 2000). As previously discussed, sedimentation is 

dominated by material transported by the Iceland Scotland Overflow Water (ISOW) 

principally from Iceland and Northwest Europe.  Jansen et al. (1996) from reports of ODP 

Leg 162 from the Gardar drift, record that the sediments contain laterally continuous 

reflectors throughout. These reflectors are thought to be the result of alternate glacial and 

interglacial conditions. Bianchi and McCave (2000) report that the eastern flank of the 

drift, which lies under the most intensive flow of the ISOW, exhibits stronger and more 

closely spaced subsurface and surface reflectors than the western flank.   

 

        The maximum sedimentation rates, as inferred from the spacing of internal reflectors, 

occur a few kilometres west of the ridge crest. They further divide the sediment regimes on 

the Gardar Drift into two areas; north and south of 58º30'N. The sediments to the north are 

highly terrigenous, with high levels of sortable silt. This is attributed to the strength of the 

near bottom current flow in this region and the proximity to the sediment source. The 

sediments south of 58º30'N have lower levels of terrigenous material and sortable silt 

attributed to a slower near-bottom current. The main flow of the ISOW current runs over 

the Björnsson Drift at these latitudes. The southern section of the Gardar drift also lacks 

the differences in sedimentation between the east and west sides of the ridge exhibited in 

the northern section.  

 

        Two marine sediment cores were analysed in this study, MD99-2251 (57°26.87' 

027°54.47') and MD99-2252 (57°26.84' 027°55.83') (Figure 5.3). Both cores were 

collected as part of Leg 2 of the IMAGES V cruise on July 21
st
 1999. Marine sediment 

core MD99-2252 is a Karsten core recovered in 2610m water depth. The core consists of a 

slab from which 10 sections were recovered to be processed in Cambridge. MD99-2251 is 

a 36.58 m Calypso core recovered in 2620m water depth. On recovery it was cut into 1.5m 

sections onboard and labelled but not described. Twenty-five sections were recovered, 

twenty-four of 1.5m and the final section of 58cm. All sections were reported to be in good 

condition. Both archive and working halves were sent to Gif-sur-Yvette. U-channel 

sections were made on all working half sections, also to be processed at Gif-sur-Yvette. In 

addition, several bags of sediment were recovered for core MD99-22521 2 tops, 1 core 

cutter and 1 core catcher (Images V Leg 2 cruise report, 1999).  
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Figure 5.3 The route and core sites of RV Marion Dufresne IMAGES V Leg 2 

(June 20
th
 – July 24

th
 1999). Blue circles indicate the core sites. (Cruise report 

Images V Leg 2 1999) 

 

              

         Measurements of whole core physical properties for marine core MD99-2251 were 

undertaken in 1.5m core sections onboard using a Geotek MultiSensor Track (MST) at a 

down core resolution of 2cm. These measurements include magnetic susceptibility, gamma 

ray attenuation and p-wave measurements (Figure 5.4). Magnetic susceptibility values 

varied from 50 to 250 x 10 
-5

SI.  Gamma ray attenuation is used to measure the bulk 

density of the sediment. Bulk density values varied from about 1.35 to 1.55 Mg/m
3
 P-wave 

travel time is measured to calculate the thickness of the sediment, p-wave velocities values 

ranged from 1475 to 1500 m/sec. In addition split core sections were measured with a 

spectrophotometer. Spectral reflectance can be used to identify detrital carbonate. Split 

sections were also logged with respect to sediment texture, biogenic sediment components, 

laminations and other sedimentary structures (Cruise report Images V Leg 2, 1999). 

MD99-2251 

MD99-2252 
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Figure 5.4 Whole core physical properties of MD99-2251 including magnetic susceptibility, 

density (Mg/m
3
) and sediment lightness. (Cruise report Images V Leg 2, 1999). 
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Figure 5.5 On board photograph of core top section 1a of 

core MD99-2251 (Ellison, 2006) 

Figure 5.6 Shipboard photograph of section 12a from 1644-1649cm (left to 

right) indicating colour change across the Holocene-deglacial boundary 

(Ellison, 2006) 
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         Two core breaks were identified in marine core MD99-2251 during sampling for 

foraminferal anaylsis at around 940cm and 1230cm. The breaks occurred during core 

recovery and polystyrene blocks were used to fill the gaps to prevent slippage of the 

sediment (Ellison et al., 2006). Both breaks are sharp, showing no apparent disturbance in 

the sedimentation or loss of core material. These breaks may be identified in the magnetic 

susceptibly, bulk density and p-wave data (Figure 5.4). Sediment sampled for diatom 

analysis was taken from the U-channels. The U channels are samples taken from the centre 

of the core with a 2cm
2 

cross section. Breaks in sediment were recorded at 936-984cm and 

at 1934-1954cm. For the purpose of presentation on of the data in this study, composite 

depth is recorded. That is depth excluding the breaks. Ellison et al., (2006) notes that there 

is a robust linear correlation of the AMS 
14

C dates show either side of the core break, 

indicating no significant in flow or disruption to the sediment at the point of breaking. 

However samples were not taken for diatom analysis directly adjacent to the core breaks as 

a further precaution against contamination. 

 

 

         Sediment breaks in Calypso cores are not uncommon. The Calypso corer is a simple 

non recoilless piston corer, particularly used for recovering very long cores. These corers 

maintain a piston inside the core barrel in order to counteract the frictional drag between 

the sediment core and the core barrel with relatively low pressure above the sediment 

column (Skinner & McCave, 2003). These corers can suffer from negative pressure 

anomalies inside the core barrel due to cable recoil when pressure on the cable is suddenly 

released, such as when the corer hits the sea bed. This usually results in sediments being 

over sampled as the net upward negative pressure causes suction on the sediments being 

sampled (Figure 5.7).  Magnetic susceptibility analysis may be used to detect this over 

sampling (Thouveny et al., 2000). Negative pressure anomalies can also cause breakages 

within the sediment in the core barrel as seen in MD99-2251. The Kasten coring process 

such as for MD99-2252 may cause sediments to be subject sediment thinning (Figure 5.5). 
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Figure 5.7 Possible over sampling and under sampling scenarios due to coring (Skinner & 

McCave, 2003) 
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5.2  Age Models for MD99-2251 and MD99-2252 

 

        Marine cores MD99-2251 and MD99-2252 were both dated using Accelerator Mass 

Spectrometry (AMS) radiocarbon (
14

C) dates.  Thirty monospecific samples of marine 

calcium carbonate were analysed for MD99-2251. Twenty-eight samples of Globigerina 

bulloides were analysed and two samples of Neogloboquadrina pachyderma (sinistral) 

(Ellison et al., 2006).  AMS radiocarbon ages obtained using marine calcium carbonate 

must be calibrated with respect to variations in the 
14

C content of the ocean reservoir. 

When carbon dioxide is absorbed into the oceans, fractionation occurs leading to a 15
o
/oo 

enrichment in 
14

C activity with respect to the atmosphere. This is the equivalent of 

approximately 120 years in the age of the sample (Bradley, 1999).  

 

        In addition to the effects of fractionation, corrections must be made for marine 

carbonate-derived radiocarbon dates with respect to geographic location. 
14

C in the surface 

ocean varies with the extent of mixing of 
14

C depleted water with surface waters (Bard et 

al., 1988). At low latitudes around 400 years must be added to the age of radiocarbon dates 

derived from marine calcium carbonate to account for this effect of mixing with 
14

C- 

depleted waters. At high latitudes the correction may be greater due to the effects of 

upwelling and sea ice. Sea ice restricts the ocean atmosphere exchanges. The North 

Atlantic however differs from other high latitude sites as relatively 
14

C-enriched warm 

water and deepwater formation restrict the extent of the upwelling of 
14

C-depleted waters. 

This gives the modern North Atlantic a reservoir correction similar to that of low latitude 

surface waters of around 400 yrs. Due to this influence of deepwater formation on 
14

C 

radiocarbon ages in the North Atlantic, palaeoceanographic studies must also take into 

account variations in deepwater formation over time. Bard et al.(1994) and Austin et al. 

(1995) compared marine and terrestrial 
14

C-derived dates associated with the Vedde ash, a 

definable layer of volcanic ash resulting from a volcanic eruption in Iceland at 

approximately 10,300 
14

C yr BP. They discovered that the marine 
14

C ages indicated a 

reservoir effect of 700 yrs which they conclude is the result of reduced deepwater 

formation at the time of the Vedde ash deposition, or increased sea ice cover.  

 

        Given the above consideration in marine calcium carbonate derived AMS ages, 

radiocarbon dates still need to be calibrated to give calendar ages. This is due to the fact 
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that levels of atmospheric 
14

C have varied over time (deVries, 1958). This variation is a 

result of variation in cosmic ray flux. Cosmic ray flux varies as a result of interstellar 

modulation, cosmic ray bursts from super novae and other stellar phenomenon, variations 

on solar activity, changes in the earth’s geomagnetic field and nuclear weapons testing. 

Calibrations sets have therefore been developed to take into account these atmospheric 

variations (Reimer et al., 2002; Reimer et al., 2004; Hughen et al. 2004) based on tree ring 

chronologies, coral and varved sediments. The calendar ages in this study have been 

calibrated using CALIB5. 

 

         Radiocarbon ages are statements of probability (Bradley, 1999) as they reflect the 

fact that a particular number of radioactive disintegrations will occur in a given time 

period. As a result radiocarbon dates are given as midpoints on a Poisson distribution 

probability curve with error bars of plus or minus one or two standard deviations from the 

mean. The calibrated calendar ages plus of minus two standard deviations (σ) are indicated 

for MD99-2251 (Table 5.1and Figure 5.8) and MD99-2252 (Table 5.2 and Figure 5.9) 

 

 

 

 

 

Figure 5.8 Calibrated calendar ages plus or minus two standard deviations for  marine carbonate 

derived AMS ages for MD99-2251 Ellison et al., 2006). 
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Laboratory 

Code 

Depth (cm) 
14

C date 

yr 

Standard 

deviation 

Calib5  

midpoint 

age 

-2sigma +2sigma 

SUERC-3063  

0 991 21 578 526 630 

SUERC-3067  

70 1006 18 587 537 637 

SUERC-3068  

40 1403 21 959 896 1022 

SUERC-3069  

230 1666 24 1224 1166 1282 

SUERC-5178  

280 1888 25 1433 1354 1512 

SUERC-5179  

354 2094 23 1675 1581 1768 

SUERC-3070  

410 2469 24 2138 2024 2251 

SUERC-5182  

484 2576 25 2240 2156 2323 

SUERC-3071  

560 2995 24 2774 2714 2833 

SUERC-5183  

650 3615 30 3514 3419 3609 

SUERC-3072  

740 4100 22 4151 4061 4241 

SUERC-5184  

800 4386 22 4525 4428 4621 

SUERC-3076  

860 4864 22 5166 5058 5273 

SUERC-5185  

910 5109 24 5485 5399 5570 

SUERC-5186  

944 5385 28 5759 5659 5859 

SUERC-3079  

1034 6341 31 6807 6709 6905 

SUERC-5188  

1094 6567 27 7078 6984 7171 

SUERC-5189  

1168 7340 26 7810 7720 7900 

SUERC-5192  

1220 7815 35 8275 8187 8362 

SUERC-3082  

1284 8474 27 9102 8995 9209 

SUERC-3086  

1364 8868 30 9526 9455 9596 

SUERC-3087  

1474 9365 34 10212 10139 10285 

SUERC-5193  

1534 9737 31 10596 10520 10671 

 1590    11600*  

 1604    12500*  

Table 5.1  Calibrated calendar ages plus or minus two standard deviations for marine carbonate 

derived AMS ages for MD99-2251 (Ellison et al., 2006). * The transition into the Younger Dryas 

stadial event was assigned ages derived from longer counts of Greenland ice cores (Alley et al. 

1997) 
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5.3  Core sampling strategies 

 

        Based on these reconstructions samples were selected to provide decadal records 

around the 8.2kyr event and at approximately every 250 years through the remainder of the 

Holocene in order to detect long term trends. Marine core MD99-2251 was specifically 

sampled at 2cm intervals between depths 1200-1336cm corresponding to ages of 

approximately 7600-8750yrs and at 1cm intervals between depths 1274-1318cms 

corresponding to ages of approximately 8100-8550yrs. The core was further sampled at 

2cm intervals between1645-1675cm corresponding to ages of approximately 11300-12500 

yrs to study the transition into the Younger Dryas.  For the reminder of the Holocene 

samples were taken at depth corresponding to approximately 250 year intervals (Table 

5.3).  

 

 

 

 

Figure 5.9  Calibrated calendar ages plus or minus two standard deviations for  

marine carbonate derived AMS ages for MD99-2252 

(Dr M.Chapman personal communication). 
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Lab Code 

 

 

Depth (cm) 
14

C date yr Standard 

deviation 

Calib5  

midpoint 

age 

-2sigma +2sigma 

KIA9189 
0 510 30 123 0 246 

KIA9805 
32 1550 30 1107.5 1010 1205 

KIA9806 
65 1855 35 1403 1308 1498 

KIA9807 
98 2595 40 2245.5 2141 2350 

KIA9808 
164 3900 40 3860 3725 3995 

KIA9809 
230 5305 40 5666.5 5573 5760 

KIA9190 
320 6815 45 7334 7249 7419 

 

 

 

 

        For marine core MD99-22521, diatom abundance counts were made at each of these 

depths, a total of 132 samples.  In addition counts of Ice Rafted Debris abundance and 

lithology were taken at 2cm intervals between depths1200-1284cm corresponding to ages 

of approximately 7600-8200yrs and at 1cm intervals between depths 1984-1336cm, 

corresponding to ages of approximately 8200-8850yrs; total of 76 samples. 

 

        Marine core MD99-2252 was sampled at 8cm intervals for the entire core length of  

0-336cm, corresponding to ages of 0-7200yrs, thus giving a mean resolution of around 180 

years per sample. Diatom abundance counts were made for each sample, a total of 40 

samples. MD99-2252 was further sampled at 2cm intervals,a total of 164 samples, for the 

planktonic foraminiferas Globigerina bulloides and Neogloboquadrina pachyderma 

dextral which were analysed for oxygen and carbon isotope analysis. 

 

 

 

 

 

 

 

 

Table 5.2  Calibrated calendar ages plus or minus two standard deviations for  marine carbonate 

derived AMS ages for MD99-2252 (Dr M.Chapman personal communication). 
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Age (yrs) Composite Depth (cm) Original depth(cm) 

558 0 0.0 

600 71.6184971 71.6 

850 122.196532 122.2 

1100 189.256757 189.3 

1350 261.868132 261.9 

1600 330.996255 331.0 

1850 375.748837 375.7 

2100 408.306977 408.3 

2350 494.482759 494.5 

2600 535.431035 535.4 

2850 572.211669 572.2 

3100 602.740841 602.7 

3350 633.270014 633.3 

3600 665.59816 665.6 

3850 700.107362 700.1 

4100 734.616565 734.6 

4350 773.492064 773.5 

4600 807.104137 807.1 

4850 828.50214 828.5 

5100 849.900143 849.9 

5350 886.612903 886.6 

5600 927 927.0 

5850 953.923954 999.9 

6100 975.311787 1021.3 

6350 996.69962 1042.7 

6600 1018.08745 1064.1 

6850 1046.75748 1092.8 

7100 1095.37822 1141.4 

7350 1121.88252 1167.9 

7600 1148.38682 1194.4 

7850 1174.65354 1220.7 

8100 1200.24409 1266.2 

8350 1225.57798 1291.6 

8600 1250.04281 1316.0 

8850 1274.50765 1340.5 

9100 1308.82759 1374.8 

9350 1349.39554 1415.4 

9600 1393.33333 1459.3 

9850 1439.16667 1505.2 

10100 1486.28669 1552.3 

10350 1534.75138 1600.8 

10600 1545.80111 1611.8 

10850 1556.85083 1622.9 

11100 1567.90055 1633.9 

11350 1578.95028 1645.0 

11600 1590 1656.0 

 

 

 Table 5.3 Sampling strategy for marine core MD99-2251 in order 

to produce a Holocene overview at least 250 year resolution 
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    Chapter Six  

Diatom Assemblage Data 

 

 

 

 

       “The scientific members of the expedition were busy all the 

time. The geologist was making the best of what to him was an 

unhappy situation, but not altogether without material. The pebbles 

found in the penguins were often of considerable interest... Clark 

was using the drag net frequently and secured good hauls of 

plankton, with occasion specimens of greater scientific interest...” 

 

 

Earnest Shackleton „South‟ 
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Chapter Six: Diatom Assemblage Data 

 

6.1  Introduction 

 

        When considering the sampled data it is important to examine certain issues; the 

methods of sample preparation and whether they add any bias to the sample, the data 

sampling strategies adopted and their statistical reliability and repeatability. In the case of a 

fossil assemblage data it is also important to address issues of taphonomy. Having obtained 

the raw sampled data it is then necessary to assess the nature of the statistical analyses and 

palaeoproxies used, their inherent presuppositions and any biases. 

 

        A number of different approaches to diatom sample preparation and their limitations 

are considered in this chapter (section 6.2.1), the sample preparation methodology adopted 

in this study is outlined (section 6.2.2). The nature of the data sampling is examined, both 

counting strategies (section 6.3.1) and their statistical reliability (section 6.3.2).  Issues of 

fossil assemblage preservation are addressed (section 6.4) and the nature of the transfer 

functions adopted (section 6.5). Results are presented of a Holocene overview (section 

6.6.1) and a high resolution study of the 8.2kyr event (section 6.6.2) from marine core 

MD99-2251. Results are then presented for the adjacent marine core MD99-2252 which 

extends through the middle and late Holocene (section 6.6.3). Finally there is a 

consideration of analyses relating diatom floral assemblages to water mass distribution 

(section 6.7.1) and their application to the data from this study (section 6.7.2). 

 

 

6.2  Sample Preparation         

 

6.2.1  Methods of sample preparation 

 

    A number of different methods have been developed for the preparation of core samples 

for the examination of diatom populations. Although these methods vary in their specifics, 

they all require that carbonates, organic material and clay be removed from the mud 

sample while the silt size silica frustules of the diatoms are retained. Having removed these 
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other materials, samples are then mounted on glass slides so that the diatoms may be 

examined under an optical microscope.  

 

        The first methodology for cleaning diatoms was published by Kanaya & Koizumi 

(1966). This involved the use of HCL to remove carbonates and H2O2 to remove organic 

material from a dried sample of known weight. Clay particles are removed by washing and 

fractionation. This methodology was widely adopted (Schrader & Schuette, 1968; 

Schrader, 1973a, Schrader & Gersonde, 1978; Zhute-Mukhina 1978).  While the 

methodology for the removal of carbonates and organic material remains largely 

unchanged in more recent publications, the approach to removing clays varies 

considerably. This is a function of the labour intensive and prolonged nature of this final 

stage. Many attempts have been made to decrease the length of time required for clay 

removal while not compromising the representative integrity of the sample. Abrantes et al. 

(2005) review seven different methods of diatom cleaning, the Abrantes (1988) method 

and six modifications of the Baron (1985) method for rapid sample preparation at sea. The 

methods variously use a 0.5% sodium pyrophosphate solution, distilled water washing, 

centrifuging and decanting for the removal of clay minerals. They assess the different 

preparation methods by statistically comparing the numbers centric, pennate, centric 

fragments, pennate fragments and Chaetoceros resting spores found in each sample and 

conclude that there is no significant difference in the methods except with respect to the 

concentration Chaetoceros resting spores, which increases where centrifuging was 

employed for the removal of clays. This is assumed to be the result of the destruction of 

more fragile pennate forms from the centrifuging increasing the relative abundance of the 

more robust Chaetoceros resting spores. The authors conclude therefore that a 

methodology avoiding centrifuging is the most effective. They further note that dispersal 

of the sample prior to the removal of carbonate and organic material results in a cleaner 

sample. The samples in this study are dispersed with heptane, prior to the removal of 

carbonate or organic material. 

 

        A study of the effect of four different stages of the diatom cleaning process; the 

amount of hydrogen peroxide used, the time allowed for digestion reaction, centrifuging 

and the method of settling frustules onto the cover slide, on the density, randomness and 

evenness of frustule distribution, the amounts of organic and inorganic material and the 
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quantity of broken frustules and girdle viewed forms on the microscope slide, was 

undertaken by Blanco et al. (2008). They concluded that increasing the quantity of 

hydrogen peroxide made no difference to the measured parameters beyond a ratio of 1:1 

and an oxidizing reaction time of six hours. The authors also found that none of the 

variables, including centrifuging, made a significant difference to the proportion of broken 

frustules.  

 

 

 

 
 

Figure 6.1  The effect of  a) Volume of hydrogen peroxide b) centrifuging and c) the frustules 

settling method on slide quality. Blanco et al. (2008) 

 

 

       This result contradicts Battarbee et al. (2001) and Abrantes et al. (2005) but supports 

earlier research (Owen et al., 1978), that centrifuging does not increase the proportion of 

frustule fragments. Blanco et al. (2008) do note however that the quality of the slide 

increased when decanting rather than centrifuging was used to remove clays, as there was 

an overall decrease in the concentrations of organic and inorganic material on slides where 

samples had been decanted (Figure 6.1). In a study of frustule breakage, Flowers (1993) 

attributes the presence of carbonate particles in a sample as a key cause of frustule 

fragmentation. Blanco et al. (2008) agree with Abrantes et al. (2005) that centrifuging 

increases frustule density on the slide. In the methodology outlined below and employed in 

this study, samples are both centrifuged and decanted for the removal of clays. 
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Figure 6.2  The modelled distribution of diatom frustules on a 22mm x 22mm cover 

slide. (The density was calculated by dividing the number of cells in a given field 

by the estimated total number of cells on the slide.) Alverson et al. (2003) 

 

 

        A number of different methods are employed to settle samples onto cover slides. A 

known volume of frustule suspension placed on a cover slide may be evaporated at room 

temperature, or by heating at a low temperature (Blanco et al., 2008). Studies have shown 

that when diatoms are dried on a cover slide that the distribution of frustules is non random 

due to the surface tension (Battarbee, 1973). Alverson et al. (2003) demonstrate that 

frustule density is greatest at the margins of the slide (Figure 6.2). Evaporation over a low 

heat has been demonstrated to result in size sorting and clumping as a result of convection 

currents created in the suspension (Schraeder, 1974; McBride, 1988). Air-dried cover 

slides exhibited the least disturbance in the study undertaken by Bianco et al. (2008).  In 

this study frustule were settled on to three cover slides placed in a Petri dish and Kodak 

photoflo added to the suspension to minimise the effects of surface tension on frustule 

distribution.  
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6.2.2  Methodology for preparation of core samples in this study 

 

        Mud samples were placed in labelled foil trays and then into an oven at 50-60˚C 

overnight to dry. They were then removed from the oven and placed in a desiccator for 15 

minutes in order for them to fully dry. The tray and samples were then weighed before the 

samples were transferred into dry clean labelled 100ml beakers. The foil trays were then 

reweighed in order to calculate the dry weight of the sample, which was then noted. In 

order to disaggregate the samples, approximately 10ml of heptane was added to each 

sample in a fume chamber and left to stand for 10-15 minutes. Warmed distilled water was 

then added to the beakers to a total volume of 25ml and the beakers returned to the hotplate 

and heated until all the heptane had evaporated. The samples are then left to stand and 

cool. 

 

                 Carbonates were removed from the samples by adding 10 drops of 36-38‰ HCl to 

each beaker in the fume chamber, stirring and leaving to stand for 15-20 minutes. If after 

15-20 minutes the sample was still showing signs of reaction, two more drops of HCl were 

added and the sample was left until no further reaction was noted. In a similar manner the 

organic matter is then removed from the samples by adding 10 drops of H2O2 to each 

beakers and returning the samples to hotplate at approx for approximately 15-20 minutes 

until sample turns yellow or yellow/green. The samples were then removed from hotplate 

and allowed to stand to cool. 

 

        The samples were then transferred to 15ml centrifuge tubes, using a separate pipette 

tip for each sample to avoid contamination, and placed in the centrifuge for three minutes 

at 2000rpm. After centrifuging the suspension was decanted off each sample and the 

centrifuge tube refilled from the original 100ml beaker. This process was repeated until the 

whole sample from the 100ml beaker had been centrifuged. The samples were then 

centrifuged a number of additional times using distilled water to top up the centrifuge tube 

and in order to ensure the removal of further clays. 

 

        At this point in the process, samples may be transferred to small labelled glass bottles 

for storage. For additional removal of clays the samples were then poured into 1000ml 

glass beakers which were filled to 400-500ml of distilled water, covered and left to settle 
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either all day or overnight. The clay suspension was decanted off and the process repeated 

four to five times until the samples were clean of clays. The sample is then centrifuged and 

decanted again and returned to the small glass bottles. 

 

        In order to make slides, rectangular slide covers are first coated in a mixture of 

gelatine distilled water and Kodak Photoflo to ensure the diatoms stick to and are evenly 

distributed across the cover slide. This coating is allowed to dry on the cover slips on the 

hotplate. For each sample a 100ml beaker was labelled and filled with approx 25ml of 

distilled water. Using a precision pipette 100µm of the bottled sample were added at a time 

to the beaker containing 25ml of distilled water for each sample: 100µm, 200µm or 300µm 

until the mixture appeared cloudy. Then using one labelled petri dish for each sample, 

three cover slides were stuck to the base of the dish by one drop of distilled water. The 

whole cloudy mixture was then pored over the Petri dish with cover slides and left to stand 

for 2 hours. This allows three slides to be prepared for each sample. After two hours the 

excess liquid was removed using a paper towel wick which was allowed to drain over the 

edge of the bench. 

 

        Once fully dry the coated cover slides were transferred to hotplate in the fume 

chamber with the coated side facing upwards. At the same time the glass slides were also 

placed on the hotplate to warm. A small quantity of naphrax optical fixative was added to 

the top of each cover slide and allowed to warm but not bubble. The glass slides were then 

placed on the cover slide and naphrax and using protective gloves the slides and cover 

slide picked up and using tweezers pressed until the naphrax had spread evenly over the 

whole cover slide area. The slides were then returned to the hotplate for around 30 minutes 

to allow the naphrax to cook and harden. The slides were then removed from the heat and 

allowed to harden for couple of hours across two glass rods. 
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6.3  Data Sampling 

 

6.3.1  Counting strategies  

 

        Using oil emersion phase contrast lenses, transects of each slide were counted to a 

total of 300 whole valves per sample, excluding Chaetoceros frustules. The number of 

transects or part transects required to reach 300 valves was noted. The protocol for the 

counting of valves and half valves is outlined in Figure 3 

 

 

 

Figure 6.3 Counting conventions for whole and partial valves. Shaded areas indicate the portion of 

the frustule found in the slide. A. circular centric diatoms (eg Thalassiosira) B. circular centric 

diatoms with a pseudonodulus (eg Actinocyclus) C. non circular centric diatoms with a 

pseudonodulus (eg Hemidiscus) D. angular centric diatoms (eg Triceratium) E. araphid pennate 

diatoms (eg Thalassionema) F. pennate diatoms with raphes (eg Diploneis) G. resting spores of 

centrics diatoms (eg Chaetoceros) H. centric diatoms with filaments (eg Chaetoceros).  

After Shraeder & Gersonde (1978). 
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      Alverson et al. (2003) assessed the variance of cell density, species composition and 

diversity for diatom samples counted from slide transects and nannoplankton chambers. 

They further compared slides counted of half transects, partial transects and random fields. 

They found very low variability between the counting methods for all three measured 

parameters. 

 

 

6.3.2  Reproducibility studies 

 

        In order to test the reliability of counting three hundred valves to produce a 

representatively diverse sample of the diatom flora, 50, then 100, then 150, 200, 250, 300 

and 350 valves were counted for the sample 2289-2290cm depth from MD99-2251 and the 

percentage of key species calculated for each count size. The total number of different 

species for each of these sample count sizes was also recorded in order to identify whether 

a count of three hundred valves is sufficient to include more rare species (Table 6.1). 

 

 50 100 150 200 250 300 350 

T.longissima 3.5 3.1 3.2 3.2 2.5 2.8 2.6 

R.h.hebetata 1.8 4.5 3.2 2.9 2.3 2.0 4.4 

R.h.semispina 10.6 11.6 12.7 11.7 10.9 11.8 12.2 

R.styliformis 12.3 12.5 14.6 13.7 15.2 16.0 12.3 

R.bergonii 0 3.6 3.2 3.4 2.3 1.9 1.7 

P.alata 0 3.6 2.5 2.4 2.3 2.0 1.7 

T.gravida veg 7.1 3.6 6.3 8.3 7.0 6.9 6.3 

T.gravida spore 5.3 3.6 3.2 3.4 3.1 2.9 3.4 

T.eccentrica 3.5 1.7 1.3 0.9 1.5 1.6 1.7 

T.oestrupii 42.5 42.9 39.3 40 39.8 39.9 39.1 

A.curvatulus 1.7 0.9 1.9 2.4 2.7 2.9 3.1 

C.marginatus 0 0.9 1.2 1.5 1.6 1.6 1.4 

Total no species 15 18 21 22 22 23 24 

 

 Table 6.1  Indicating the percentage abundance of twelve key species at sample 

count sizes of 50, 100, 150, 200, 250, 300 and 350 valves for sample MD99-2251 

2289-2290cm. 
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Figure 6.4  The number of species found in progressive counts of 50, 100, 150, 200, 250, 

300 and 350 frustules. 

 

 

 

MD99-2251 2289-2290 Slide One Slide Two Slide Three 

T.longissima 2.78 3.0 4.0 

R.h.hebetata 1.96 2.33 1.67 

R.h.semispina 11.76 12.0 15.0 

R.styliformis 16.01 11.67 11.67 

R.bergonii 1.96 1.33 1.67 

P.alata 4.58 1.33 1.67 

T.gravida veg 6.86 5.33 6.33 

T.gravida spore 2.94 4.0 6.33 

T.eccentrica 1.63 3.67 2.67 

T.oestrupii 39.87 45 39.67 

A.curvatulus 2.94 3.33 5.67 

C.marginatus 1.63 1.33 1.67 

 

 

 

 

 

 

Table 6.2  Relative percentage abundance of twelve key species from 

counts of three separate slides from sample MD99-2251 2289-2290 
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      As three slides are produced for each sample depth, all three samples were counted for 

sample 2289-2290cm depth from MD99-2251 to see if there were any significant 

differences between the three slides with regards to the percentage of thirteen key species 

(Table 7.2). Paired t-tests were used to analyse the similarity of the three counts and 

indicateded that there was no significant difference between the three counts (Table 6.3). 

 

 

 t value Degrees of freedom Significance 

Slide 1 and Slide 2 0.082 9 0.966 

Slide 1 and Slide 3 0.043 9 0.89 

Slide 2 and Slide 3 -0.142 9 0.937 

 

 

 

 

 

 

6.4  Taphonomy 

 

        Transfer functions make the basic assumption that the down core fossil assemblage 

represents the core top assemblage at the time of deposition of the fossil assemblage. There 

is some evidence however from lake studies that dissolution of the silica frustules of 

diatoms occurs within the sediment. This may result in a bias in favour of certain, usually 

more robust, species over time. Most of the quantitative work concerning diatom 

dissolution has been done with respect to lake sediments (Barker et al., 1994; Battarbee et 

al., 2005 Ryves et al., 2006). Ryves et al. (2009) developed a methodology for assessing 

the extent of diatom dissolution under light microscope conditions that can be applied to 

transfer functions to improve interpretation. Taphonomic studies on marine diatoms 

assemblages (Johnson, 1974; Pichon et al., 1992; Dixit et al., 2001) indicate that a number 

of factors influence the extent of dissolution; temperature, pressure and the surface area 

and aluminium content of the diatom frustule. The inclusion of aluminate ions in the silica 

matrix decreases the solubility of biogenic silica (Dixit et al., 2001). Pichon et al. (1992) 

developed a transfer function to quantify the extent of dissolution of biogenic in diatoms 

for Southern Ocean sediments. 

Table 6.3  Paired t-test results for comparison of the three counted samples of 

2289-2290cm. A significance value >0.05 indicates that there is no significant 

difference between the samples. The three slides therefore show a strong 

statistically significant similarity. 
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6.5   Transfer Functions 

 

6.5.1   Introduction to Transfer Functions 

 

  The first study to quantify the relationship between sea surface temperatures and 

palaeoassemblages was made by Imbrie and Kipp (1971) who studied foraminiferal 

assemblages in seventy-one core top samples from the Atlantic and Indian Ocean. The 

underlying presupposition of the transfer function method as applied in palaeoceanography 

is that a given species assemblage responded to the physical and chemical properties of the 

ocean in the same way in the past as it does in the present. Fossil assemblages may 

therefore be compared with modern core top assemblages in order to extrapolate past 

physical and chemical properties of the ocean at the time of the assemblage deposition. 

The Imbrie and Kipp (I&K) method employs a five step process; the counting of core top 

assemblages, the factor analysis of the core top data into recognised assemblages, a least 

squares analysis to produce palaeoecological equations which relate each of the recognised 

assemblages to observed oceanographic parameters, the description of down core fossil 

assemblages with respect to the core top assemblages and the use of the palaeoceological 

equations to extrapolate palaeoceanographic parameters. The five assemblages recognised 

were; tropical, subtropical, subpolar, polar and gyre margin, which relate to the large scale 

features of the ocean circulation. 

 

     Alternative methods for deriving oceanographic data from faunal assemblages include 

the Modern Analogue Technique (MAT) developed by Hutson (1980). This method 

compares the fossil assemblage with core top assemblages by using an index of faunal 

similarity. The fossil sample is compared to modern core tops and a subset of modern 

analogues identified which best represent the fossil assemblage. This subset is then used as 

an analogue for oceanographic parameters for the fossils sample. An average of different 

measured properties, such as temperature and salinity, is calculated for the subset, with a 

weighting factor giving more emphasis to those modern samples which are most similar to 

the fossil sample. This method is also therefore capable of generating confidence limits for 

the oceanographic data, based on the width of the range of the oceanographic variables 

within the subset. The MAT was further refined by Prell (1985) who used the method to 

evaluate the Climate: Long-range Investigation, Mapping, and Prediction (CLIMAP) sea 
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surface temperature reconstructions. He looked at different indices of similarity and 

concluded that the squared chord distance measure gave the most accurate results. 

 

        Waelbroeck et al. (1998) identified problems with both the I&K and the MAT 

approaches. They note a number of assumptions in both methods that may not reflect 

conditions in the real ocean.  The I&K method assumes the different oceanographic 

parameters may be defined with respect to their relationship to the end member 

assemblages produced by factor analysis and that these parameters respond independently 

of each other. The MAT method imposes thresholds of dissimilarity and on the selection of 

the modern analogues and limits the number of analogues selected. In addition the method 

is not always able to find an analogue for the fossil sample, due to the incomplete nature of 

the original core top data set.  The authors therefore propose the Revised Analogue Method 

(RAM) which differs from the MAT in the method of selection of analogues. RAM 

assumes that ‘jumps’ in the dissimilarity co-efficient may be interpreted as shifts between 

one ecological regime and another. Best analogues are chosen from those encountered 

before a ‘jump’. This method showed improved reconstruction of modern SSTs but was 

less effective in reconstructing sea surface temperatures from cold palaeoenvironments. 

 

        The SIMMAX transfer function developed by Pflaumann et al. (1996) is based on 738 

core top foraminiferal assemblage counts from the North and South Atlantic and the 

Levitus (1982) modern ocean temperature data, where temperatures were taken at 0m, 

30m, 50m and 75m. The SIMMAX transfer function is a modern analogue technique with 

a similarity index. Sea surface temperatures are derived by taking an average of the ten 

best analogues and weighting these analogues with respect to their inverse geographic 

distance from the site of the sample. Unlike the RAM, the SIMMAX technique provides 

optimum performance when reconstructing SST estimates for high latitudes during glacial 

periods. SIMMAX-28 (Pflaumann et al., 2003) further developed the transfer function by 

extending the number of modern analogues to 947, notably by the addition of cold samples 

from the Northern Hemisphere. 

 

        A comparison of the I&K, MAT, RAM and SIMMAX transfer functions with two 

Artificial Neural Network (ANN) techniques for estimating sea surface temperatures; ANN 

(Malmgren & Norlund, 1997) and ANND a modification of the ANN method using 
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additional geographical data, was undertaken by Malmgren et al. (2001). Artificial Neural 

Network techniques are computer systems with the ability to ‘learn’ target outcomes from 

a set of inputs, by a series of small adjustments of a set of internal parameters. A 

mathematical analysis of the different methods indicated that the I&K transfer function 

performed the most poorly, ANN and RAM  performed better than MAT, but the most 

accurate estimates were from the SIMMAX and ANND methods which incorporated 

geographic data. However when the estimated SSTs were compared with a fossil data set 

and an independent validation data set, it was found that the SST estimates based on 

Artificial Neural Network techniques gave significantly different results to those produced 

by RAM, MAT and SIMMAX.  

 

        Evaluations of these different transfer functions have also been made by considering 

their statistical performance. This is usually measured as root mean square error of 

prediction (RMSEP). The RMSEP is the square root of the mean of the squared differences 

between the predicted and observed SSTs. A low RMSEP indicates that the transfer 

function is performing well as it indicates little difference between predicted and observed 

values. Telford et al. (2004) assess the RMSEP for the MAT, RAM , SIMMAX and ANN 

transfer functions. They argue that RMSEP values are under-estimated when they are 

calculated using a non independent test set. They conclude that RMSEP values calculated 

for SIMMAX and RAM are often artificially low as a result of this use of non independent 

test sets and that ANN does not given better SST estimates than MAT when independent 

test sets are employed. Telford & Birks (2005) further explore the issue of autocorrelation 

error in these transfer functions, that is, the tendency of adjacent sites to resemble one 

another more closely than those which are randomly selected. They argue that the true 

RMSEP for these transfer functions may be double previous estimates. 
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6.5.2  Diatom transfer functions 

 

         Diatom transfer functions have been used to reconstruct a wide range of ecological 

parameters other than sea surface temperatures: acidification in lakes (Holden et al., 2008; 

Battarbee et al., 2005; Battarbee, 2008) phosphorus content of lakes (Bennion et al., 2005), 

salinity (Tibby et al., 2007), sea level (Hill, 2007; Zong & Horton, 1999) and paleodepth 

(Campeau et al., 1999).  In the North Atlantic diatom transfer functions have been used to 

reconstruct sea ice concentration (Justwan & Koç, 2008) as well as sea surface 

temperatures (De Seve, 1999; Jiang et al., 2001; Birks & Koç, 2002; Andersen et al., 2004, 

Abrantes et al., 2007; Berner et al., 2008).  The use of diatom assemblages to reconstruct 

sea surface temperatures can be considered preferable at high latitudes due to the tendency 

of foraminiferal assemblages to become monospecific as previously discussed. At high 

latitudes diatom floral assemblages remain diverse. Diatoms are present throughout the 

worlds oceans and dominate sediments in the Southern Oceans (Figure 6.5). 

 

 

 

 

Figure 6.5  Distribution of dominant sediment types in the global oceans 

 

                     A/E.Siliceous oozes (diatom and radiolarian )           C. Red Clay 

           B.Terrigeneous sediments             D..Calcareous oozes 
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        A number of different types of transfer function have been used to derive sea surface 

temperatures from diatom assemblage data. Koç & Schrader (1990) derived the GINT2 

transfer function, an Imbrie & Kipp Q-mode factor analysis, based on 104 core top samples 

from the Greenland Iceland Norwegian (GIN) Seas. The location, depth, diatom 

abundances and average February and August sea surface temperatures were recorded for 

each site. Six different assemblages were identified, each strongly reflecting surface water 

conditions; a Norwegian-Atlantic current assemblage, an Arctic water assemblage, a sea 

ice assemblage, an Arctic-Norwegian waters assemblage, an Atlantic assemblage and a 

Norwegian-Arctic water assemblage. These six assemblages together accounted for 91.7% 

of the recorded variance. This transfer function was applied in subsequent studies (Koç & 

Jansen, 1992; Koç & Jansen, 1993; Koç & Jansen 1994; Koç et al., 1996; Birks & Koç, 

2002) to reconstruct late glacial and Holocene temperature changes. 

 

        Q-mode analyses of diatom species abundance counts to identify ecological 

assemblages has been used by a number of other authors. Williams (1986) analysed 

seventy-four sea floor surface samples from Baffin Bay and the Davis Straits and identified 

five assemblages accounting for 87% of the observed variance. These assemblages also 

strongly represented surface water conditions. Factors included a Baffin Current 

Assemblage, a Summer Ice Pack Assemblage and a West Greenland Current Assemblage. 

De Sève (1999) analysed sixty-six surface sediment samples from the Labrador Sea and 

identified six assemblages accounting for 95.69% of the observed variance. Abrantes et al., 

(2007) identified five floral assemblages from analysis of forty-seven surface sediment 

samples from the Southeast Pacific.  

 

        Other statistical analyses have been used to identify different groupings of diatom 

flora. Witon et al. (2006) use maximum-likelihood factor analysis (MLFA) to identify 

diatom assemblages for four cores from the Faroe Island fjords. They recognise two factor 

assemblages; a warmer assemblage dominated by the plantktonic species Thalassionema 

nitzschioides and Thalassiosira angulata, which the authors equate to the Norwegian-

Atlantic Current assemblage of Koç Karpuz and Shrader (1990) and a cooler water 

assemblage dominated by the planktonic form Rhizosolenia hebetata which is equated with 

the Arctic-Norwegian Water mixing assemblage of Koç Karpuz and Shrader (1990). Ran 

et al. (2006) use cluster analysis (CA) and principal component analysis (PCA) to indentify 
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three diatom assemblages for a Holocene core from the North Atlantic Shelf. Some 

difficulty is encountered in equating their finding to adjacent records as a key species in 

their analysis is defined as Thalassiosira spp. The authors equate the three diatom 

assemblages to the relative influences of the warm Irminger Curent (IC), the cold East 

Icelandic Current (EIC) and East Greenland Current (EGC). 

 

 

 

 

 

Figure 6.6 CCA biplot of environmental variables and sites around Iceland. Summer sea-surface 

temperature (SST) Summer sea-Bottom Temperature (SBT)Winter Sea-Surface Temperature 

(WST) Summer Sea-Bottom salinity  (SBS) Summer Sea-Surface salinity (SSS) Winter Sea-

Bottom salinity (WBS) Winter Sea-Surface Salinity (WSS) I. Sea-ice diatom assemblage  II.  Cold-

water diatom assemblage III. Mixing diatom assemblage IV. Coastal diatom assemblage V. Warm-

water diatom assemblage. From Jiang et al. (2001). 

 

 

        Jiang et al. (2001) analysed diatom species abundance counts from surface sediments 

at fifty-three sites around Iceland to identify different floral assemblages with respect to 

nine environmental variables, using Canonical Correspondence Analysis (CCA) (ter Braak, 
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1990). The results are represented by different axes on a CCA biplot ( Figure 6.6 ). CCA is 

a direct gradient analysis which allows variation within the composition of a biological 

assemblage to be related to changes set of known environmental variables. Indirect 

gradient analyses, such as Principal Component Analysis (PCA) or Correspondence 

Analysis (CA), only allow the analysis of variation within the biological population.  The 

assemblages identified by Jiang et al. (2001) do not correspond to specific water masses, 

such as the Arctic water assemblage, or the West Greenland Current assemblage etc, but 

rather to broader environmental conditions. The sea-ice diatom assemblage, for example, 

shows extreme negative values on temperature and salinity axes suggesting it represents 

the coldest and least saline water masses. The five assemblages recognised are; the sea-ice 

diatom assemblage, the cold-water diatom assemblage, the mixing diatom assemblage, the 

coastal diatom assemblage and the warm-water diatom assemblage. Justwan & Koç (2008) 

also employ a CCA analysis to produce a diatom-based sea ice transfer function from 99 

North Atlantic surface sediment samples. 

 

 

6.5.3  WA-PLS The Transfer Function adopted in this study 

 

        The method used to reconstruct sea-surface temperatures from diatom assemblage 

counts in this study, is weighted averaging partial least squares regressions (WA-PLS).  

The method combines weighted averaging regression and calibration and partial least 

squares regression. The weighted averaging method (WA) assumes that species occupy 

different environmental niches and that these niches may be described by their centres (uk) 

and breadths (tk) The weighted averaging method has three components; a WA regression, 

a WA calibration and a deshrinking regression.  

 

        The WA regression assumes that a species with a particular optimum will show 

highest abundances at sites with x-values close to this optimum. The WA regression 

estimates the optima for species (uk) by weighted averaging the x-values of the sites. The 

WA calibration estimates the x-values for the sites by weighted averaging the species 

optima (ter Braak & Juggins, 1993). As averages are taken twice the range of estimated x-

values (xi*) is reduced. The quantity of this shrinking may be estimated by one of two 

methods; regressing (xi*) on (xi) or regressing (xi) on (xi*) (ter Braak, 1988; ter Braak & 
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Van Dam, 1989; Birks et al. 1990a). For the WAPLS method the (xi) on (xi*) deshrinking 

method is adopted as this establishes a link with the partial least squares method. Partial 

least squares (PLS) is a linear regression method for multivariate calibration (Wold et al., 

1984). 

 

        WA-PLS is a non-linear form of multivariant analysis proposed by ter Braak & 

Juggins (1993). It  has been favoured in palaeoenvironmental reconstructions using 

diatoms as it is effective in the analysis of populations with a large number of species,  

some of which may be absent in some samples. The method does not assume linearity and 

is therefore less sensitive to outliers The authors define an eight step calculation process 

for the WA-PLS method. 

 

Step 0 The environmental variable is centred by subtracting the weighted mean 

Step 1 The centred environmental variable (xi) as the initial site scores (ri) 

Step 2 (Steps 2-7 should be performed for each component) 

Calculate the new species score (uk) by weighed averaging of the site scores  

Step 3 Calculate the new site scores (ri) by weighed averaging of the species scores 

Step 4 For the first axis go to Step 5 

For subsequent components make the new site scores (ri) uncorrelated with the 

previous components by orthogonalization 

Step 5 Standardise the new site scores (ter Braak 1987 Table 5.2b) 

Step 6 Take the standardised scores as the new components 

Step 7 Regress (xi) the environmental variable on the components obtained so far in 

the regression and give the fitted values as current estimates (xi). Go to Step 2 

with the residuals of the regression as the new site scores (ri).  

Thus the first component is a two way weighed average for the original 

environmental variable and subsequent components are weighted averages for 

the residual of this variable. 

 

 

 

 

        The following species were included in the WA-PLS transfer function for this study 

(Table 6.5).  Rhizosolenia borealis  and Rhizosolenia styliformis were grouped as a single 

component. Thalassiosira gravida however was counted separately in vegetative and 

resting spore forms. Equally a distinction was made between Thalassionema nitzschoides 

and the smaller for Thalassionema nitzschoides var. parva for the purposes of the transfer 

function. In all cases the taxonomic groupings are identical to those employed for the 

Table 6.4 Weighted average partial Squares (WA-PLS) method. 

(ter Braak & Juggins, 1993). 
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GINT2 transfer function (Koç Karpuz & Schrader,1990), an Imbrie-Kipp Q-mode factor 

analysis, based on diatom assemblage data from 104 core top samples.  

 

        In addition to the above taxa, the transfer function includes a Thalassiosira sp. 

identified as ‘Sp Y’. This species is identified in only one species counts for core MD99-

2251(indentified by personal communication Dr Nalan Koç) and in no samples of species 

counts for core MD99-2252. Two forms of Nitzschia sp. also occur in the WA-PLS 

transfer functions. Only one of these two species is identified in this study. Similarly, this 

species is only one count for core MD99-2251(indentified by personal communication Dr 

Nalan Koç) and in no samples from core MD99-2252.  

 

Coscinodiscus asteromphalus 

Coscinodiscus linearis 

Coscinodiscus marginatus 

Coscinodiscus radiatuss 

Coscinodiscus occulus-iridis 

Stellarmina stellaris 

Actinocyclus curvatulus 

Actinocyclus kutzingii 

Actinocyclus octinarius 

Azpeitia africana 

Azpeitia neocrenulata 

Azpeitia nodulifera 

Hemidiscus cuneiformis 

Roperia tesselata 

Proboscia alata 

Rhizosolenia bergonii 

Rhizosolenia borealis 

Rhizosolenia styliformis 

Rhizosolenia hebetata hebetata 

Rhizosolenia hebetata semispina 

Asteromphalus robustus 

Bacteriastrum hyalinum 

Bacteriosira fragilis 

Porosira glacialis 

Thalassiosira angulata 
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Thalassiosira auguste-lineata 

Thalassiosira eccentrica 

Thalassiosira ferelineata 

Thalassiosira gravida 

Thalassiosira hyalina 

Thalassiosira lineata 

Thalassiosira nodulineata 

Thalassiosira nordenskioeldii 

Thalassiosira oestrupii 

Thalassiosira pacifica 

Thalassiosira trifulta 

Alveus marina 

Fragilariopsis atlantica 

Fragilariopsis cylindrus 

Fragilariopsis doliolus 

Fragilariopsis rhombica 

Fragilariopsis oceanica 

Nitzschia braarudii   

Nitzschia bicapitata 

Nitzschia kolazczekii 

Synedra spp 

Thalassionema nitzschoides 

Thalassiothrix longissima 

 

 

 

 

 

        In addition to the taxa listed in Table 6.5 an ‘others’ category was recorded for each 

of the down core diatom flora counts of three hundred individuals. This category included 

all planktonic diatom taxa not listed or discussed above. This category is not included in 

the WA-PLS transfer function. However as percentage abundance of each recorded species 

is used for the transfer function, rather than raw counts, the presence of the ‘others’ 

category is reflected in the data. The total number of the diatom Paralia sulcata in each 

sample was recorded but not included in the WA-PLS transfer function. Other benthic taxa 

were recorded on count sheets with hand drawn diagrams and species counts. Separate 

Table 6.5. Species used in the WA-PLS transfer function SST estimates for MD99-2251 and 

MD99-2252 in this study 
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counts were also made in this study of resting spores of Chaetoceros but not used as part of 

the WA-PLS transfer function. The total number of Chaetoceros resting spores within one 

quarter transect for each slide was recorded.  

 

        Jiang et al. (2002) tested weighted average (WA), weighted average with tolerance 

down weighting (WA (tol)), partial least squares (PLS) and weighted average partial least 

squares (WA-PLS) methods of SST reconstructions for a North Atlantic Shelf Holocene 

core using both root mean squared error (RMSE) and a leave-out-one jack-knifed root 

mean squared error of prediction (RMSEP(Jack)) tests. The authors found that the PLS 

reconstructions performed best under the RMSE test but the WA-PLS performed best with 

the more accurate RMSEP(Jack) test.  Similarly Knudsen et al. (2004) in a study of  two 

Holocene gravity cores from the North Atlantic Shelf,  tested six numerical reconstruction 

methods against a modern diatom-SST data set and found that the WA-PLS gave the best 

performance based on both the RMSE and RMSEP(Jack) tests. 

 

        Andersen et al. (2004b) applied three different transfer functions to estimate SSTs for 

sediment cores from the Vöring Plateau, the North Iceland Shelf and The East Greenland 

Shelf; the Imbrie & Kipp (I&K) Q-mode analysis, the Modern Analogue Technique 

(MAT) and the Weighted Averaging Partial Least Squares (WA-PLS) method (ter Braak & 

Juggins, 1993).  The WA-PLS and I&K methods produced similar SST estimates. The 

MAT method failed to reproduce low amplitude variability. Using I&K analysis, the 

authors identified eight specific diatom assemblages; an Arctic Greenland Assemblage, a 

North Atlantic Assemblage, a sub-Arctic assemblage, a Norwegian Atlantic Current 

assemblage, a Sea ice Assemblage, an Arctic Assemblage, and East and West Greenland 

Current Assemblage and a Mixed Water Mass Assemblage. These factors were also 

identified for a study of subpolar North Atlantic cores by the same authors (Andersen et 

al., 2004b). It is these assemblage groupings that are used this study (Figures 6.19-6.21). 

   

       Berner et al. (2008) compared the SST estimates from Q-mode factor analysis, a 

Maximum Likelihood (ML) transfer function (Upton & Cook, 2002) and the WA-PLS 

method for a Holocene sediment core from the Rekyjanes Ridge. The three methods 

showed broad agreement in SST reconstructions through the Holocene with variances of 

only ±1ºC for most intervals and ±2ºC in others. The authors conclude that the WA-PLS 
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method performs most accurately as the Q-mode analysis exhibited problems predicting 

SSTs above 14ºC and the ML transfer function had difficulties predicting temperatures 

below 5ºC.  Justwan et al. (2008) also compare I&K, ML and WA-PLS reconstructions of 

SSTs for a Holocene sediment core from the North Iceland Shelf. They concluded that 

while the results were broadly similar, the I&K method had difficulties reconstructing 

temperatures 16º - 20ºC and the ML method below 4ºC for August SSTs. 

 

 

6.6  Results 

 

6.6.1  MD99-2251 Data 

 

        Species percentage abundance counts for MD99-2251 are presented plotted against 

core depth (Figure 6.8 and Figure 6.10) and age (Figure 6.9 and Figure 6.11 ).  Key species 

were selected for plots on the basis of having represented over 10% of the total flora in at 

least one sample and reaching a mean representation of over 5% for the whole core. The 

species selected according to these criteria were Rhizosolenia hebetata semispina,  

Actinocyclus curvatulus, Thalassiosira gravida vegetative, Rhizosolenia 

styliformis/borealis and Thalassiosira oestrupii (Table 6.6)   

 

Species Average % in 

MD99-2251 

No samples exceeding 10% of the 

total flora  

Rhizosolenia hebetata semispina 6.4 12 

Actinocyclus curvatulus 5.9 9 

Thalassiosira gravida vegetative 11.4 61 

Rhizosolenia styliformis/borealis 16.3 117 

Thalassiosira oestrupii 28.4 133 

 

 

 

 

        As previously discussed, for the purposes of the transfer function analysis 

Rhizosolenia styliformis and Rhizosolenia borealis were counted jointly although factor 

analysis of Andersen et al. (2004b) indicate that Rhizosolenia styliformis is associated with 

a mixed water assemblage and Rhizosolenia borealis  with a sub Arctic assemblage.Ten 

Table 6.6  Species selected as ‘key species’ MD99-2251 with respect to 

their mean representation in the core and the number of sample in which 

they exceed 10% of the total flora. 
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additional species were plotted. These additional species were selected on the basis of 

being significant floral assemblage indicators according to the factor analysis of Andersen 

et al. (2004b) further discussed in section 7.7of this study. The key species and additional 

species were also plotted with the WAPLS generated SSTs. 

 

        The WAPLS generated SSTs and distribution of key species abundances indicate an 

initial warming in the early Holocene with relatively high variability until around 9kyr.  

A feature of this early Holocene variability is an increase in the number of single sample 

peaks of  Rhizosolenia hebetata semispina, Rhizosolenia styliformis/borealis and 

Proboscia alata (Figure 6.7). Berner et al. (2008) observe in their study of an adjacent core 

from the Reykanes Ridge, several intervals where Rhizosolenia borealis reaches between 

50% and 90% of the total flora; between 11 and 9kyr, 3.3 and 2,3 kyr, and 1.3 and 0.5kyr. 

Andersen et al.(2004a) record peaks of Rhizosolenia borealis and Thalassiosthrix longissima 

between 11 and 9.5kyr, 2.3 and 2.4 kyr and 1-3 and 0.5kyr.  In this study peaks of around 

40% or over are reached in Rhizosolenia styliformis/borealis and Rhizosolenia hebetata 

semispina between 8.3-11.4kyr. Peaks of between 20% and 30% occur between 8.2-8.1kyr 

and 3.6-4.6kyr. 

 

 

 

 

 

Figure 6.7 Single sample high abundance peaks of the forms Rhizosolenia hebetata 

semispina, Rhizosolenia styliformis/borealis and Proboscia alata. The dashed lines 

indicate the mean value for each species within marine core MD99-2251 
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        A broad cooling occurs between 9.5-7kyr.  This cooling is reflected in an increase in 

Thalssiosira gravida vegetative and Actinocyclus curvatulus and by lower SSTs (Figure 

7.9). Thalssiosira gravida vegetative is strongly associated with the cool East and West 

Greenland current. Actinocyclus curvatulus is associated with Arctic floral 

assemblages.There is also slight increase in colder forms, Thalssiosira gravida spore, 

Fragilariopsis oceanica, Thalssiosira trifulta and Thalassiosira nordenskioeldii associated 

with this cooling period and an increase in the percentage abundance of Synedra spp and 

Probosica alata a species associated with the Norwegian Atlantic current (Figure 6.11).  

 

        At around 7kyr there is a strong increase in the warmer flora Thalassiosira oestrupii, 

a species strongly associated with the North Atlantic Current, and the WAPLS generated 

SSTs increase significantly. The cooler Thalssiosira gravida vegetative decreases 

significantly at 7kyr and remains at low percentage abundances for the remainder of the 

Holocene (Figure 6.9). After this warming period from around 5-7kyr temperatures remain 

relatively stable. The overall temperature trend of the WAPLS SSTs for the Holocene is a 

slight increase of around 2-3 
o
C. 
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Figure 6.8 MD99-2251 key diatom species against depth 
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Figure 7.8 MD99-2251 key species against depth Figure 6.9 MD99-2251 key diatom species against age.  

The highlighted area indicates a broad cooling between 9.5-7kyr 
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Figure 6.10 MD99-2251 additional diatom species against depth 
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Figure 6.11 MD99-2251 additional diatom species against age. The 

highlighted area indicates a broad cooling between 9.5-7kyr 
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6.6.2  8.2kyr data from core MD99-2251 

 

        Data was plotted for the high resolution study of the 8.2kyr event as recorded in 

marine core MD99-2251for the same key species (Figure 6.12 and 6.13) and additional 

species (Figure 6.14 and Figure 6.15) as for the whole core. The data is plotted over an age 

range of 7.8-8.8yrs. The floral abundance and SSTs indicates a low level multidecadal to 

centennial variability through this time period, but no specific response at or around 

8.2kyr. The period 8100-8300yrs is highlighted in Figure 6.12 and Figure 6.14. There is 

some increase in Rhizosolenis styliformis/borealis during this interval and decrease in 

Proboscia alata but these variations are not outside of the range of the overall variation for 

the period7.8-8.8kyr. 
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Figure 6.12 MD99-2251 8.2kyr event key diatom species against 

depth 
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Figure 6.13 MD99-2251 8.2kyr event key diatom species against age.  

8.1-8.3kyr is highlighted 
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Figure 6.14 MD99-2251 8.2kyr event additional diatom species and 

WAPLS generated SSTs against depth 

 

%
  

A
b

u
n

d
a
n

c
e
 



 

 112 

 
Figure 6.15 MD99-2251 8.2kyr event additional diatom species and 

WAPLS generated SSTs against age. 8100-8300 is highlighted 

 

%
  

S
p

e
c
ie

s
 A

b
u

n
d

a
n

c
e
 

%
 A

b
u

n
d

a
n

c
e
 



 

 113 

6.6.3  MD 99-2252 diatom data 

 

        The same key species and additional species plotted for MD99-2251 were also plotted 

for MD99-2252 (Figures 6.17, 6.18, 6.19 and 6.20). The species abundance distribution 

and the WAPLS generated SSTs indicate similar trends in core MD99-2252 as in     

MD99-2251. While MD99-2252 only extends for the last 7.2kyr, the warming trend 5-7kyr 

is identifiable, highlighted in Figures 6.18 and 6.20. It is characterised by an increase in the 

SSTs and the relative abundance of Thalssiosira oestrupii and a corresponding decrease in 

Thalssiosira gravida vegetative and Rhizosolenia styliformis/borealis. Following this 

warmer period, temperatures remain higher and relatively stable for the remainder of the 

Holocene as also indicated in core MD99-2251.  

 

        A comparison of the percentage abundance distribution of the key species and the 

SSTs for MD99-2251 and MD99-2252 is shown in Figure 6.21. It can be seen that the two 

records generate highly consistent absolute percentage and temperature values and trends. 

The least consistent section of the record occurs at the onset of the warming period 

(highlighted in Figure 6.21). For the late Holocene Rhizosolenia hebetata semispina and 

Thalassiosira gravida vegetative show the most consistent similarity between the two 

cores. 

 

 

 6.6.4  MD99-2252  stable isotope data 

 

        In addition to the diatom abundance counts and SSTs estimates, stable isotope 

measurements were generated for marine core MD99-2252. Samples were taken every 

2cm, washed and sieved at 250-300 µm and 300-355µm. Each δ
18

O anlaysis was made 

using 30 specimens of the planktonic foraminifers Globigerina bulloides picked from the 

300-355µm size fraction and 30 specimens of Neogloboquadrina pachyderma dextral 

 (dextral coiling). Stable isotope measurements were made using a SIRA mass 

spectrometer fitted with the VG isocarb common acid bath system at the Godwin 

Laboratory, University of Cambridge. The analytical precision of laboratory standards is 

better than ±0.08‰ for δ
18

O.  Calibration to VPDB is via the NBS19 standard. 

 



 

 114 

        The stable isotope measurements are consistent with the WAPLS-generated SST 

estimates (Figure 6.16) reflecting a relatively stable mid and late Holocene climate. The 

range of temperature variation reflected in the stable isotope record is consistent with the 

temperature range of the SST estimates. Assuming the stable isotope variation is a 

temperature only signal, a decrease in stable isotope values of 0.25‰ equates 

approximately to a 1
o
C difference in temperature. Temperatures in this record vary in the 

range of 12-16
 o
C, a range of 4

 o
C. The isotope values vary from around 0.8-1.8‰, a range 

of 1.0‰ equating to approximately 4
 o
C.  The warmer period from 5-7kyr is shown in 

higher SSTs and a corresponding lower stable isotope values especially for 

Neogloboquadrina pachyderma dextral. 
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Figure 6.16 Oxygen isotope and WAPLS generated SST values for 

MD99-2252.  Oxygen isotopes are generated from the foraminfera 

Globigerina bulloides and Neogloboquadrina pachyderma dextral. 
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Figure 6.17 MD99-2252 key diatom species against depth 
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Figure 6.18 MD99-2252 key diatom species against age.  

Highlighted area indicates 7-5kyr warming 
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Figure 6.19 MD99-2252 additional diatom species against depth 
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Figure 6.20 MD99-2252 additional species against age. Highlighted area 

indicates 7-5kyr warming 
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Figure 6.21 Comparison of key diatom species percentage abundance and SSTs between  

MD99-2251 (in red) and MD99-2252 (in blue). Highlighted area indicates 7-5kyr warming 
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6.7    Floral Assemblages and water masses 

 

       In addition to the plots of key and additional species, plots were made of floral 

assemblages (Figures 6.23, 6.24 and 6.25). These floral assemblages are based on 

Andersen et al. (2004a). As previously discussed (section 4.7) , using I&K analysis, the 

authors identified eight specific diatom assemblages; an Arctic Greenland Assemblage, a 

North Atlantic Assemblage, a Sub-Arctic assemblage, a Norwegian Atlantic Current 

assemblage, a Sea ice Assemblage, an Arctic Assemblage, and East and West Greenland 

Current Assemblage and a Mixed Water Mass Assemblage.  Figure 6.22 indicates the 

distribution of these floral assemblages. The key species identified as characteristic of each 

assemblage are indicated in Table 6.5. The authors indentify both species which strongly 

reflect the assemblage (recorded here at Primary assemblage species) and species which 

also contribute to the assemblage (recorded here as Additional assemblage species). 

 

 

 

 

 

Figure 6.22  The modern distribution of the floral assemblage factors of Andersen et al. (2004a) 

(redrawn Justwan et al.,2008). Factor 1 Arctic Greenland Assemblage, Factor 2 North Atlantic 

Assemblage, Factor 3 Sub Arctic Assemblage, Factor 4 Norwegian Atlantic Current 

Assemblage, Factor 5 Sea-Ice Assemblage, Factor 6 Arctic Assemblage ,Factor 7 East and West 

Greenland Current Assemblage, Factor 8 Mixed Water Mass Assemblage. 
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Factor 

Number 

Factor Name Primary assemblage species Additional assemblage species 

1 Arctic Greenland 

Assemblage 

Thalassiosira auguste-lineata, 

Thalassiosira trifulta 

 

2 North Atlantic 

Assemblage 

Thalassiosira oestrupii Thalassiosira nitzschioides, 

Nitzschia bicapitata, 

Rhizosolenia bergonii, 

Roperia tesselata,  

Alveus marina
* 

3 Sub-Arctic 

Assemblage 

Rhizosolenia hebetata f. 

semispina  

Rhizosolenia borealis 

Thalssiosthrix longissima 

4 Norwegian Atlantic 

Current Assemblage 

Thalassionema nitzschioides 

 

Proboscia alata  

Thalassiosira angulata 

5 Sea Ice Assemblage Fragilariopsis oceanica* 

 

Thalassiosira hyalina 

Thalassiosira gravida resting 

spores 

Thalassiosira nordenskioeldii 

Bacterosira fragilis 

Fragilariopsis cylindrus* 

6 Arctic Assemblage Thalassiosira gravida resting 

spores 

 

 

Thalassiosira gravida 

vegetative cells 

 Actinocyclus curvatulus 

Rhizosolenia hebetata f. 

semispina 

Rhizosolenia hebetata f. 

hebetata 

7 East and West 

Greenland Current 

Assemblage 

Thalassiosira gravida 

vegetative cells 

 

 

8 Mixed Water Mass 

Assemblage 

Rhizosolenia borealis 

 

 

 

Table 6.7  Primary and additional species for the flora assemblages of Andersen et al. (2004a). 

(* taxonomic nomenclature employed in this study has been adopted. Andersen et al. (2004a) refers 

to Alveus marina as Nitzschia marina, Fragilariopsis oceanica as Nitzschia grunowii and 

Fragilariopsis cylindrus and Nitzschia cylindra) 

 

        For the purposes of this study the percentage abundance of each of the primary and 

additional species for the particular floral assemblage found in MD99-2251, for the 8.2 kyr 

event high resolution study and for MD99-2252 were summed and plotted. (As the East 

West Greenland Current assemblage is clearly synonymous with the abundance of 

Thalassiosira gravida vegetative cells, it was not included). The North Atlantic Current 

Assemblage strongly reflects the distribution of Thalassiosira oestrupii. It was not possible 

to plot the Factor 8, the Mixed Water Mass Assemblage as Rhizosolenia borealis was not 

distinguished from Rhizosolenia styliformis for the purposes of the transfer function 
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species abundance counts. Where the Sub Arctic assemblage identifies Rhizosolenia 

borealis, the joint counts of Rhizosolenia borealis and Rhizosolenia styliformis were used. 
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Figure 6.23 MD99-2251 floral assemblages. Highlighted area indicates the 

broad cooling 9.5-7kyr 
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Figure 6.24 MD99-2251 8.2kyr event floral assemblages  

8.1-8.3 kyrs is highlighted 
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Figure 6.25 MD99-2252 floral assemblages Highlighted area 

indicates 7-5kyr warming 
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        The floral assemblage data reflects the Holocene trends defined by analysis of the 

individual species abundance data and SST estimates. The initial warming at the beginning 

of the Holocene is reflected in the floral assemblage data as a decrease in the Arctic 

assemblage and an increase in the Norwegian Atlantic Current assemblage (Figure 6.23). 

The broad cooling at around 9.5-7kyr, highlighted in Figure 6.23, is marked by an increase 

in the Arctic assemblage and an increase in Norwegian Atlantic Current flora. Notably 

however within this broad cooling, the 8.2kyr event high resolution study from 7.8-8.8kyr 

(Figure 6.24) shows a broad increase in the Sub Arctic flora for the interval 8.15-8.42kyrs, 

highlighted in Figure 6.24. The pronounced warming 5-7kyr is marked by a significant 

increase in the North Atlantic Assemblage and a corresponding significant decrease in the 

Sub Arctic Assemblage (Figure 6.23). A trend also reflected in the assemblage data for 

MD99-2252 (Figure 6.25). Both cores indicate a relatively stable late Holocene although 

the record for MD99-2251 indicates a more pronounced gradual increase in the abundance 

of the Norwegian Atlantic Current flora for the late Holocene than does the record for 

 MD99-2252. 

 

        One problem that may be highlighted with this floral assemblage data employed so far 

in this study is that certain species are included in more than one assemblage. For example, 

Thalassionema nitzschioides is both a primary species for the Norwegian Current 

assemblage and an additonal species for the North Atlantic current assemblage; 

Thalassiosira gravida vegetative is the only species reflecting the East West Greenland 

Current assemblage but also a factor in the Arctic floral assemblage. In the case of this 

study, where the percentages of Thalassiosira gravida resting spore are very low, the 

vegetative form of Thalassiosira gravida becomes the dominant species for both the East 

and West Greenland and Arctic assemblages. In order to overcome this issue of repeat 

counting of species across the assemblages, the factor weightings from Berner et al. (2008) 

were examined (Table 6.6) and cold, intermediate and warm water floral grouping devised 

which included no repetition of species (Table 6.7) Species were selected that scored over 

0.1 on the factor weighting. Where a species scored more than 0.1 in two categories the 

highest score was used to assign it to an assemblage. The new assemblage data is plotted in 

Figures 6.26 and 6.28.  

 

 



 

 127 

 Factor 1 

Arctic 

Greenland 

Factor 2 

North 

Atlantic 

Current 

Factor 3 

Sub 

Arctic 

Factor 4 

Norwegian 

Atlantic 

Current 

Factor 5 

Sea Ice 

Factor 6 

Arctic 

Factor 7 

E & W 

Greenland 

Current  

T.longissima 0.0542 0.0544 0.1632 0.0272 -0.0068 -0.0011 -0.0020 

T.nitzschioides -0.0424 0.1752 -0.1045 0.8029 0.0173 -0.0083 -0.1515 

R.h.hebetata 0.0489 -0.0080 0.0401 0.0158 -0.0203 0.0679 -0.0224 

R.h.semispina -0.0112 -0.290 0.8861 -0.0016 0.0278 0.0764 -0.1574 

R.borealis -0.0375 0.0118 0.3720 0.1865 0.0263 -0.858 -0.0908 

P.alata 0.0392 -0.0370 -0.0066 0.3943 0.0008 -0.0463 -0.0738 

B.fragilis 0.0172 0.0014 -0.0040 -0.0041 0.0718 0.0113 0.0006 

R.tesselata 0.0002 0.0822 -0.0153 0.0495 0.0019 -0.0007 -0.0070 

A.curvatulus 0.1236 0.0102 -0.0107 0.0476 -0.0144 0.1322 -0.1135 

T.gravida resting 

spore 

0.0118 0.0308 -0.0836 -0.0267 0.1018 0.9384 -0.2259 

T.gravida veg 0.1752 -0.0580 0.1464 0.2055 -0.0217 0.2475 0.9118 

T.auguste-lineata 0.8742 0.0031 -0.0131 -0.0163 -0.0575 -0.0541 -0.1457 

T.trifulta 0.3740 0.0041 -0.0056 0.0155 -0.0575 -0.0233 -0.0656 

T.nordenskioeldii 0.0028 -0.0233 0.0362 0.0943 0.1006 0.0369 -0.0415 

T.oestrupii 0.0086 0.9550 0.0447 -0.1045 -0.0074 -0.0111 0.0815 

T.hyalina 0.1103 -0.0005 -0.0080 -0.0034 0.2090 -0.0402 -0.0032 

T.angulata -0.0225 -0.631 -0.0435 0.2154 0.0288 0.0038 -0.0164 

A.marina 0.0023 0.0592 0.0120 -0.0136 -0.0001 -0.0055 0.0045 

N.bicapitata 0.0035 0.1159 -0.0087 0.0055 -0.0003 0.0030 -0.0083 

F.cylindrus 0.1141 0.0011 -0.0130 -0.0114 0.2647 -0.0730 -0.0038 

 

 

 

 

 

 
Colder Species: those with 

highest factor scores for Arctic, 

Sea Ice, E&W Greenland 

Current and Arctic Greenland 

Assemblages 

Intermediate Species: those 

with highest factor scores for 

Sub Arctic and Norwegian 

Atlantic Assemblages 

Warmer Species: those with 

highest factor scores for North 

Atlantic Assemblage 

Actinocyclus curvatulus Thalassiothrix longissima Thalassiosira oestrupii 

Thalassiosira gravida resting 

spore 

Thalassionema nitzschioides Nitzschia bicapitata 

Thalassiosira gravida veg Rhizosolenia h.semispina  

Thalassiosira auguste-lineata Rhizosolenia borealis  

Thalassiosira trifulta Proboscia alata  

Thalassiosira nordenskioeldii Thalassiosira angulata  

Thalassiosira hyalina   

Fragilariopsis cylindrus   

 

 

 

 

Table 6.8 The factor score matrix for key species from factor analysis of surface sediments. 

After Berner et al. (2008). All positive scores over 0.1 are highlighted. 

Table 6.9 Species selected from varimax factor analysis (Berner et al.,2008) to 

reflect warm and cold water assemblages. Species are assigned according to the 

highest factor score they obtain in the matrix (Table 6.6) 
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Figure 6.26 The distribution of colder, intermediate and warmer water 

diatom species groupings in marine core MD99-2251 as derived from 

varimax factor analysis scores Berner et al.(2008) 

Figure 6.27 The distribution of Arctic SubArctic and North Atlantic Current 

Assemblages (Andersen et al., 2004a) in marine core MD99-2251 
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        Similar trends are observed with the new species groupings as with the raw species 

abundance data and the previous assemblage groupings, an initial warming at the 

beginning of the Holocene, a more variable early Holocene, a broad cooling around          

7-9.5kyr,  a warming around 5-7kyr and a relatively stable late Holocene. The most 

noticeably difference between the two assemblage groupings (Figure 6.26 and Figure 6.27) 

is that in the new assemblage groupings the late Holocene is dominated by an intermediate 

rather than warmer flora. 
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Figure 6.28 The distribution of colder, intermediate and warmer 

water diatom species for 8.2 kyr event in marine core MD99-2251 

as derived from varimax factor analysis scores Berner et al.(2008) 

 

Figure 6.29 The distribution of Arctic Subarctic and North Atlantic Current 

Assemblages (Andersen et al., 2004a) in marine core MD99-2251 for the 

8.2kyr event 
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        There is little difference between the distribution of the two assemblage groupings for 

the high resolution study, although again in the new groupings, as with the late Holocene, 

an intermediate flora is more dominant than a North Atlantic flora. There is no distinct 

event at 8.2kyr indentified in either assemblage grouping but rather a general decadal and 

centennial scale variability. 
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6.8  Multivariate analysis of down core diatom data 

 

        In order to examine down core zonations and species groupings within the diatom 

flora; for MD99-2251, two multivariate analyses were undertaken; a principal components 

analysis (PCA) and a K-means cluster analysis. The groupings identified from these 

analyses were then compared with the down core distribution of individual abundance 

diatom taxa in and diatom assemblages identified by Andersen et al. (2004a). 

 

6.8.1 Principal component analysis 

 

        Principal component analysis is a multivariant statistical technique for indentifying 

linear components within large data sets. With PCA, the large data matrix is reduced to 

two smaller ones that consist of principal component scores and loadings. PCA is based 

solely upon eigenanalysis of a correlation or covariance matrix. Principal component 

loadings are the eigenvectors of the correlation or covariance matrix (depending on which 

is used for the analysis). Eigenvalues define the amount of variance. They may be 

envisaged as describing the dimensions formed by a scatterplot of the variables (Field, 

1999).  Principal component scores contain information on all variables (in the case of this 

study, diatom taxa) and indicate the relative contribution each variable makes to that score 

(Farnham et al. 2003). Principal component analysis is used where it may be reasonably 

assumed that all variance is common variance. In factor analysis it is necessary to first 

estimate the amount of common variance within the data set by estimating communality 

values for each variable (Field, 1999). Studies have indicated however that with datasets of 

more than thirty variables and communalites of greater than 0.7 for all variables, there is 

little difference between the solutions for PCA and factor analysis (Stephens, 2002). 

 

        For these analyses the diatom count data for MD99-2251 was arranged into a data 

matrix with forty-eight columns representing diatom taxa. These forty-eight taxa are the 

same as those i+dentified in Table 6.4 with the exception of Actinocyclus kutzingii which 

was removed from the analysis as none were present in the floral counts. As for the 

transfer function, Thalassiosira gravida vegetative and Thalassiosira gravida resting spore 

were recorded separately as were Thalassionema nitzschioides and Thalassionema 

nitzschioides var. parva. Rhizosolenia styliformis and Rhizosolenia borealis were also 
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considered together as for the WA-PLS transfer function and Sp Y and Nitzschia sp 1 were 

similarly included. The data matrix consisted of one hundred and thirty-three rows, each 

representing individual depth percentage counts of the diatom taxa.  

 

        The analysis in this study was undertaken using a co-variance matrix, components 

were extracted on the basis of eigenvalues with twenty-five maximum iterations for 

convergence and a varimax rotation. Six components were extracted. A simplified version 

of the component score co-efficient matrix is displayed below. All species that received a 

component score of at least 0.01 for at least one of the components are shown (Table 6.10). 

These six components account for 91.5% of the variance. The first four factors account for 

85% of the variance (Table 6.11)  

 

Component Score Coefficient Matrix
a
 

 
Component 

1 2 3 4 5 6 

Thalassiothrix_longissima .044 -.030 -.005 .015 .052 .139 

Thalassionema_nitzschoides .615 -.149 .033 -.051 -.356 -.252 

Rhizosolenia_hebetata_semispina -.240 .675 -.009 -.223 -.635 -.052 

Rhizosolenia_styliformisborealis -.480 -.025 -.671 -.519 .200 -.227 

Proboscia_alata -.042 -.022 -.161 .081 .130 .898 

Rhizosolenia_bergonii .010 -.001 -.002 -.001 -.005 -.004 

Roperia_tesselata .025 -.006 .005 -.001 .000 -.013 

Actinocyclus_curvatulus -.317 .108 .261 .030 .651 -.401 

Thalassiosira_gravida_resting_spore .011 -.014 .006 -.009 -.031 -.045 

Thalassiosira_gravida_vegetative -.308 -.516 .450 -.188 -.482 .143 

Thalassiosira_trifulta -.001 .003 .002 .004 .009 -.014 

Thalassiosira_lineata .004 .009 .014 .005 .022 -.021 

Thalassiosira_oestrupii -.476 -.130 -.446 .683 -.142 .075 

Thalassiosira_ferelineata .035 -.012 -.003 .001 -.014 .000 

Coscinodiscus_marginatus .089 -.042 .019 -.015 -.063 -.080 

Azpeitia_nodulifera .011 -.003 -.004 -.005 -.030 -.013 

Bacteriastrum_hyalinum -.021 .018 .021 .001 .063 -.043 

Synedra_sp# .001 .011 .015 .010 .013 -.061 

Thalassionema_nitzschoides_parva -.002 .000 -.006 .015 .014 .008 

 

 

 

 

 

Table 6.10 Component score coefficient matrix for principal component 

analysis of down core diatom species counts for MD99-2251. Species 

selected as representative of each component are highlighted in yellow. 



 

 133 

 Percentage of variance Cumulative percentage of 

variance 

Component 1 30.761 30.761 

Component 2 26.261 57.021 

Component 3 19.524 76.545 

Component 4 8.736 85.281 

Component 5 3.391 88.672 

Component  6 2.816 91.488 

 

 

 

 

        Key species for each component were identified on the basis of those receiving a 

positive component score greater than 0.1 in the component score coefficient matrix (Table 

6.10). The species selected are highlighted on the Table 6.10 and listed in Table 6.12.  

 

Component  Species 

Component 1 Thalassionema nitzschioides 

Component 2 Rhizosolenia hebetata semispina 

Actinocyclus.curvatulus 

Component 3 Thalassiosira gravida vegetative 

Actinocyclus curvatulus 

Component 4 Thalassiosira oestrupii 

Component 5 Actinocyclus curvatulus 

Rhizosolenia styliformis/borealis 

Proboscia alata 

Component 6 Proboscia alata 

Thalassiosira gravida vegetative 

Thalassiothrix longissima 

 

 

 

  

        Components were plotted against age and key species as well as assemblages 

identified by Andersen et al. (2004a) which most closely corresponded to the species 

composition of the new components (Figures 6.30-6.37). Three of the components showed 

strong correlation to an individual species. Component one exhibits a strong correlation 

Table 6.11 The percentage of variance and cumulative variance of each component 

for the down core principal component analysis of MD99-2251 

Table 6.12 Key species associated with down core principal 

component analysis. Species were selected on the basis of positive 

component scores greater than 0.1 
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with the distribution of T.nitzschioides through the core (Figure 6.30). This is unsurprising 

as the Component score coefficient matrix
 
(Table 6.10) indicates the strongest weighting 

for this species in component one. Component one also shows a good correlation with the 

Norwegian Atlantic assemblage of Andersen et al. (2004a) (Figure 6.30). Thalassionema 

nitzschioides is recognised by the authors as the primary assemblage species and Proboscia 

alata and Thalassiosira angulata as secondary assemblage species (Table 6.7). 

 

        Component two exhibits a strong correlation with the down core distribution of 

Rhizosolenia hebetata semispina (Figure 30.1). Again the Component score coefficient 

matrix (Table 6.10) indicates this species as having the strongest weighting for the  
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Figure 6.30 Component one of the down core principal component 

analysis plotted against age and compared with T.nizschioides and 

Norwegian Atlantic flora Andersen et al. (2004a) 

Age yrs 
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component. Component two does not show a strong correlation with any of the 

assemblages of Andersen et al. (2004a). Both the Arctic and Sub Arctic assemblages show 

a peak in percentage abundance co-incident with the large Rhizosolenia hebetata  

semispina peak at around 9.5kyr, but otherwise the distribution patterns of the assemblages 

and component two are dissimilar (Figure 30.1). Rhizosolenia hebetata  semispina is a 

primary assemblage species for Sub Arctic flora and a secondary assemblage species for 

Arctic flora (Table 6.7). Component four shows a strong correlation with both the down 

core distribution of T.oestrupii and the North Atlantic Assemblage of Andersen et al. 

(2004a). (Figure 6.32). T.oestrupii is the primary assemblage species for the North Atlantic 

assemblage (Table 6.7) and the most weighted species in component score coefficient 

matrix (Table 6.10) for component four. 

 

        Components three, five and six show slightly more complex relationships to 

downcore species distribution and to the floral assemblages of Andersen et al. (2004a). 

The most weighed species in the component score coefficient matrix for component three 

are Actinocyclus curvatulus and Thalassiosira gravida vegetative (Table 6.10). The 

combined species abundance of these two taxa closely resembles the down core 

distribution of component three (Figure 6.33). The regional assemblage most similar to 

component three is the East and West Greenland current assemblage Andersen et al. 

(2004a). He only species identified as significant in this assemblage is Thalassiosira 

gravida vegetative (Table 6.7).and so the distribution of the East and West Greenland 

current assemblage mirrors that of Thalassiosira gravida vegetative. However in the 

analysis of MD99-2251 groupings alone, it can be seen that the East and West Greenland 

current assemblage best reflects a combined species abundance of Actinocyclus curvatulus 

and Thalassiosira gravida vegetative (Figure 6.33). 

 

        The most weighed species in the component score coefficient matrix for component 

three are Actinocyclus curvatulus Actinocyclus, Rhizosolenia styliformis/borealis and 

Proboscia alata (Table 6.10). The down core distribution of component five does not 

strongly represent the down core distribution of any of these individual species or of the 

combined percentage abundances of the three taxa. However component five does show a 

strong correlation to the Arctic assemblage of Andersen et al. (2004a). (Figure 6.34). 
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Figure 6.31 Component two of the down core principal component analysis plotted 

against age and compared with R.semispina Sub Arctic and Arctic flora  

Andersen et al. (2004a) 
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        Component six of the down core principal component analysis is plotted against age 

and compared with the down core species abundance for P.alata, T.gravida vegetative and 

T.longissima, a combined species abundance for the three species and the Arctic and Sub 

Arctic, and sea-ice assemblages of Andersen et al. (2004a). (Figure 6.35). The component 

shows the most correlation with the down core distribution of P.alata which is strongly 

weighed in the component score coefficient matrix (Table 6.10). It is important to note that 

both components five and six only represent a small amount of the variance in core MD99-

2251; 3.391% and 2.816% respectively (Table 6.11) so it may be unreasonable to draw any 

strong  conclusions for the correlations of these components. 
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Figure 6.32 Component four of the down core principal component analysis 

plotted against age and compared with R.semispina and North Atlantic 

Assemblage Andersen et al. (2004a) 
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Figure 6.33 Component three of the down core principal component analysis plotted against age 

and compared with percentage abundance of T.gravida vegetative, A.curvatulus, a combined 

species abundance for T.gravida vegetative A.curvatulus and East West Greenland Current flora 

Andersen et al. (2004a) 
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Figure 6.34 Component five of the down core principal component analysis plotted against age 

and compared with the down core distribution of Actinocyclus curvatulus, Rhizosolenia 

stlyliformis/borealis, Proboscia alata, a combined species abundance of the above three taxa 

and the Artcic assemblge Andersen et al. (2004a). 
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Figure 6.35 Component six of the down core principal component analysis plotted against age and 

compared with the down core species abundance for P.alata, T.gravida vegetative and 

T.longissima, a combined species abundance for the three species and the Arctic and Sub Arctic, 

and sea-ice assemblages of Andersen et al. (2004a). 
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6.8.2   K-means cluster analysis 

 

        A K-means cluster analysis was also undertaken for core MD99-2251. K-means 

cluster analysis divides observations (in this study each diatom species abundance count 

with depth) into a number of clusters ‘K’.  Each observation is then assigned to the cluster 

with the nearest mean using the K-means algorithm which seeks to minimise the squared 

error between of distance between the observation and the cluster centre (Johnson & 

Feldstein, 2010). 

 

        Six clusters were selected for analysis of the down core diatom species abundance 

counts for core MD99-2251. Table 6.13 indicates the final cluster centres with respect to 

diatom key species. 

Final Cluster Centers 

 

 
Cluster 

1 2 3 4 5 6 

Thalassiothrix_longissima 3.01 2.52 3.40 1.01 3.68 1.77 

Thalassionema_nitzschoides .81 1.04 1.63 2.69 3.59 2.02 

Rhizosolenia_hebetata_semispina 1.12 2.81 8.40 40.67 6.60 5.55 

Rhizosolenia_styliformisborealis 38.08 17.77 12.45 12.94 18.41 6.69 

Proboscia_alata 4.28 2.10 5.46 1.34 3.93 3.11 

Rhizosolenia_bergonii 1.05 .44 .69 1.68 1.11 .84 

Roperia_tesselata .51 .55 .98 .00 1.32 .59 

Actinocyclus_curvatulus 2.63 4.36 7.65 1.68 5.85 6.38 

Thalassiosira_gravida_resting_spore 2.80 2.37 .90 1.01 .62 .59 

Thalassiosira_gravida_vegetative 12.91 24.23 12.89 5.38 7.11 5.91 

Thalassiosira_trifulta .39 .46 .94 .00 1.14 1.01 

Thalassiosira_lineata .34 .72 2.19 1.68 1.95 2.86 

Thalassiosira_oestrupii 23.38 29.44 27.13 18.15 30.19 48.38 

Thalassiosira_ferelineata 1.61 1.51 1.73 1.34 1.97 2.18 

Coscinodiscus_marginatus 2.12 2.24 .46 .67 .85 .33 

Azpeitia_nodulifera .84 1.29 .56 2.69 .79 .25 

Bacteriastrum_hyalinum 1.12 .74 2.15 1.68 2.08 1.34 

Synedra_sp# .25 .38 1.61 .17 1.20 3.11 

Thalassionema_nitzschoides_parva .36 .82 1.06 .34 1.76 3.06 

 

 

 

 

Table 6.13 Cluster centres with respect to key diatom taxa for 

K-mean cluster analysis of core MD99-2251 
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Number of Cases in each 

Cluster 

Cluster 1 6.000 

2 19.000 

3 46.000 

4 1.000 

5 57.000 

6 4.000 

Valid 133.000 

Missing .000 

 

 

 

 

        The mean distance from the cluster centre and the assigned cluster for each diatom 

species abundance count were plotted against age (Figure 6.36a).An examination of 

species abundance for  each cluster indicates that clusterone represents those samples with 

a high abundance of R.styliformis/borealis as observed in the early Holocene. Cluster two 

represents samples with a high abundance of T.gravida vegetative. Cluster three represents 

a group of samples from 7-2-9.2 kyr in correspondence with the broad cooling previously 

identified for this interval. An expanded plot for this interval is represented in Figure 

6.36b). Cluster four is the single high abundance peak of R.hebetata semipina.having only 

one case to the cluster (Table 6.14). Cluster five represents dominance of T.oestrupii and 

cluster 6 extremes of the dominance of T.oestrupii. 

 

        The K-means cluster analysis may therefore be seen to support previous analyses in 

this study of down core species abundances in core MD99-2251. The early Holocene 

(11.5-9.5kyr) indicates an alternation between the cold T.gravida vegetative dominated 

assemblage of cluster two and the R.styliformis/borealis dominated events of cluster one 

which as previously discussed may be a response to stratification of the water column due 

to the proximity of the Sub Polar front. The broad cooling (9.5-7kyr) is represented by a 

dominance of cluster three alternating with cluster five. The warm 7-5kyr interval is 

represented by a dominance of cluster five. This is the cluster dominated by T.oestrupii, a 

taxa representative of input from the North Atlantic current. At the peak of this interval 

cluster six becomes dominant which represents the highest percentage abundances of 

Table 6.14 The number of cases assigned to each of the six clusters 

assigned for the K-means Cluster analysis of core MD99-2251 



 

 143 

T.oestrupii. and the warmest SSTs (Figure 6.21) around 6kyr. The late Holocene 5kyr to 

present is dominated by cluster five representing the North Atlantic flora. 

 

 

 

 

 

Figure 6.36 Cluster distance and cluster number against age for K-means 

cluster analysis of core MD99-2251 for a) the entire Holocene b) 7.8-

8.8kyr high resolution study. 

a 

b 
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    Chapter Seven  

Regional Analysis of 

Diatom Core Top Floras 

 

 

 

 

       “The swirl of the ship‟s wash brought diatomaceous scum 

from the sides of this ice. The water became thick with diatoms 

at 9am , and I ordered a cast to be made. No bottom was found 

at 210 fathoms...” 

 

Ernest Shackleton   „South‟ 

 

 

 

 

 



145 

 

Chapter Seven:  Regional Analysis of Diatom Core Top Floras 

 

7.1  NEAP Core top Study 

 

        The WAPLS transfer function employed to reconstruct SSTs for MD99-2251 

and MD99-2252 (ter Braak & Juggins, 1993) is based on core top data from the 

northern North Atlantic and Nordic seas (this transfer function has been discussed in 

section 7.3.2 of this study). In order to generate a more regionally focused transfer 

function for MD99-2251 and MD99-2252, eight new core tops were counted for 

diatom species assemblage abundance. These core top are NEAP 3B, NEAP 4B 

NEAP 11B, NEAP 12B, NEAP 15B, NEAP 16B, NEAP 18B and NEAP 20B  

(Figure 8.1). These eight core tops count were then combined with other published 

data (Jiang et al., 2001) to create a new regional transfer function. 

 

7.1.1  The NEAP Core Sites 

 

Core 

Name 

Lat N 

deg 

Long E 

deg 

Water 

Depth m 

Winter T 
o
C 0m 

Winter T 
o
C 10m 

Summer T 
o
C 0m 

Summer T 
o
C 10m 

NEAP 

3B 

 

61.87 

 

-23.94 

 

1502 

 

7.20 

 

7.22 

 

10.96 

 

10.88 

NEAP 

4B 

 

61.37 

 

-24.17 

 

1627 

 

7.39 

 

7.41 

 

11.16 

 

11.09 

NEAP 

11B 

 

59.79 -22.65 
 

2484 

 

8.11 

 

8.17 

 

11.85 

 

11.82 

NEAP 

12B 

 

58.64 

 

-23.99 

 

2786 

 

8.18 

 

8.25 

 

12.05 

 

12.02 

NEAP 

15B 

 

57.68 

 

-25.64 

 

2703 

 

8.07 

 

8.13 

 

12.05 

 

12.07 

NEAP 

16B 

 

56.37 

 

-27.82 

 

2847 

 

7.84 

 

7.92 

 

12.10 

 

12.09 

NEAP 

18B 

 

54.69 

 

-28.35 

 

2879 

 

8.19 

 

8.30 

 

12.67 

 

12.62 

NEAP 

20B 

 

42.49 

 

-28.42 

 

2878 

 

14.27 

 

14.31 

 

20.49 

 

20.32 

 

Table 7.1 Location and environmental data for NEAP box cores 3B, 4B, 11B, 12B, 15B, 18B 

and 20B in the subpolar North Atlantic. summer and winter sea surface temperatures are from 

Levitus & Boyer (1994) 
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      The eight NEAP cores were collected as part of the NEAPACC (North East 

Atlantic and Climate Change community research project) Cruise 88 of the RRS 

Charles Darwin July 25
th

 – August 15
th

 1994. The study was initiated to examine 

changes in the flow of Iceland Scotland Overflow Water (ISOW) over the last glacial 

interglacial cycle. The NEAP cores are located     (Figure ). Both kasten and box cores 

were recovered as part of the NEAPACC study. All the NEAP cores in this study are 

box cores. Standard sampling of the box cores was employed, two 10cm diameter 

drainpipes, two surface scrapes (of  approximately 0.5cm) for benthic foraminifera 

and the remainder of the top 0-5cm removed and stored in plastic bags. Eight of these 

NEAP box core, core top samples were analysed in this study. The location, water 

depth and Levitus & Boyer World Atlas 1994 winter and summer temperatures at 0m 

and 10m, are summarised in Table 7.1 

 

 

Figure 7.1 Location of MD99-2251, MD992252 (white circles) NEAP core tops (black 

black circles). After Farmer et al (2010). Sea surface temperatures based on WOA98 
NODC WOA98 http://www.esrl.noaa.gov/psd/ 
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7.1.2  Diatom abundance studies at the core top sites 

 

           Species abundance counts were undertaken for the eight NEAP core tops 

following the same procedure as for the down core diatom abundance studies for 

cores MD99-2251 and MD99-2252. A comparison of the WAPLS generated SSTS 

and the World Ocean Atlas (Levitus & Boyer, 1994) 0m and 10m summer and winter 

temperatures for each of the core sites indicates that the WAPLS SSTs most closely 

correspond to the WOA summer sea surface temperatures (Figure 7.1). In all but one 

case however the WAPLS generated SSTs are between 1-3º C higher than the WOA 

summer temperature.  

 

    The core top sample for NEAP 20B most closely corresponds to the WOA data. 

However this sample was significantly different to the other core top samples, being 

noticeably lighter in colour, less clay rich and drier. The diatoms counted were 

strongly biased towards more robust highly silicified forms and so the assemblage for 

this sample must be treated with some suspicion as it seem probable that there was 

selective preservation of taxa at this site. However it must also be noted that the WA-

PLS SST estimate most closely matches the atlas SST values, most probably on 

account of the adjacent two core tops at the limit of the calibration (Figure 7.2). 

 

Figure 7.2  World Ocean Atlas summer and winter and WAPLS generated SSTs for the NEAP 

box cores 3B, 4B, 11B, 12B, 15B, 18B and 20B in the Sub Polar North Atlantic 
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7.1.3  Generating a regionally derived core top transfer function 

 

       The eight core tops together with other published data (Jiang et al., 2001) were 

then used to generate a simple transfer function using the ‘Parks Distance Index’ 

(Hecht, 1973), which measures the similarity of the core top assemblage to a 

reference core top assemblage. The Parks Distance Index (Pd) for a given core top is 

derived by calculating the differences of the percentage abundance of each 

represented species in that core top assemblage (fi) with the percentage abundance of 

the same species in a reference core top assemblage (ri). This value is then squared 

and the squared values for each species in the core summed and divided by the 

number of species considered (n). The Parks Distance Index is the square root of the 

sum of the squared differences divided by the number of species. The Pd values for 

each core top sample are then plotted against sea surface temperature. The best fit 

regression line is calculated for the data set. This line is the transfer function in that 

sea surface temperatures may be calculated using from the equation of the line given 

the Parks Index. 

 

 

 

 

The Parks Distance Index Equation 

 

        For the purposes of constructing the regional transfer function using the 

combined data set. Core top 2748 (marked in red in Figure 7.3), was selected as the 

reference core for calculating the Parks Distance Index for both the Jiang et al., 

(2001) and the NEAP core tops. This core was chosen as the sea surface temperatures 

recorded at the site represented an extreme in the data set. In order to create a transfer 

function using both datasets this it was first necessary to create a consistent diatom 

taxonomy for Jiang et al. (2001) and the NEAP core top counts.  The existing diatom 

species lists for the two data sets were combined in the following manner; all species 

that appeared in both counts were first included in the new list. 
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Figure 7.3  The location of the northern North Atlantic core tops used in constructing the 

regional transfer function with the NEAP core top data. Core top 2748 marked in red is used 

as the reference core for the Parks Distance Index calculations.  The cores marked in blue 

were excluded from the data set on the grounds of not being fully open marine or sea-ice 

dominated assemblages. Cores marked with an open circle were excluded due to insufficient 

diatom data. After Jiang et al., (2001) 

 

        Where the NEAP core top counts recognised a subspecies which was not 

distinguished in Jiang et al. (2001), the percentage counts for the species and the 

subspecies were combined. This occurred only in two cases; Thalassionema 

nitzscihoides and Thalassionema nitzschioides var. parva were combined in the 

NEAP percentage counts and recorded as Thalassionema nitzschioides. Similarly 

percentage counts of  Rhizosolenia hebetata hebetata  and  Rhizosolenia hebetata 

semispina were combined in the NEAP counts and recorded as Rhizosolenia hebetata 

in the new list. The Jiang et al. (2001) species list only recognises Thalassiothrix to 

genus level, distinguishing both Thalassiothrix sp.. and Thalassiothrix? sp. The 

NEAP core top list recognises Thalassiothrix longissima only. The percentages for the 

two forms of Thalassiothrix recognised in Jiang et al. (2001) were combined and 

recorded in the new list as Thalassiothrix sp.. The percentage counts for 



150 

 

Thalassiothrix longissima in the NEAP core tops were also recorded as Thalassiothrix 

sp. in the new species list. Jiang et al. (2001) recognises both Thalassiosira eccentrica 

and Thalassiosira spp. eccentrica group. The percentage counts for these two forms 

were combined and recorded as Thalassiosira eccentrica in the new list. Only 

Thalassiosira eccentrica was recognised in the NEAP cores and recorded as such. 

Further, the Jiang et al. (2001) counts recognise Rhizosolenia borealis as a separate 

whereas the NEAP counts combine Rhizosolenia borealis with Rhizosolenia 

styliformis. In the new species list therefore these species are recorded as Rhizosolenia 

borealis/styliformis. Similarly Jiang et al. (2001) combine Thalassiosira gravida with 

Thalassiosira antarctica in both resting spore and vegetative form, while the NEAP 

count recognise only Thalassiosira gravida. In the new list therefore, the species are 

recorded as Thalassiosira gravida/antarctica as in the Jiang et al. (2001) list. 

 

        Having rationalised the diatom species appearing in both data sets, it was then 

necessary to examine all species not included in both data sets. Of all the remaining 

species in the NEAP list, none exceeded 5% of the total abundance of the diatom flora 

in any core except NEAP 20B. Due to other preservational concerns regarding NEAP 

20B, previously discussed, it was decided that it should be excluded from the 

combined data set. Of the species remaining in the Jiang et al. (2001) data set, only 

seven species exceeded 5% of the total abundance of the diatom flora in any core. Of 

these six species, four did not exceed 7.5% of total floral abundance; Pseudo-nitzschia 

seriata (6.2%) Podosira sp. (5.3%) and two unidentified species of Thalassiosira, 

Thalssiosira sp.  (7.3%) and Thalssiosira sp. < 10 (7.4%). These four species were 

also excluded from the joint list. Of the remaining three species exceeding 7.5% of 

floral abundance, Paralia sulcata reached 36.5% in a single core, 2960, and otherwise 

remained below 6% except in one other core, 2964, where it reached 11.6% 

abundance.  Paralia sulcata is a coastal species as is Odontella aurita which also 

reached > 30% abundance only in core 2960. As a result it was decided to remove 

core 2960 from the transfer function calculations as not representing a fully marine 

floral assemblage. The remaining species only represented in the Jiang et al., (2001) 

data set was Pseudo-nitzschia turgidula. As a fully marine species it was decided to 

leave this species in the joint list and simple record it as absent in the NEAP cores. 

The final species list for the joint data set is recorded in Table 7.2. 
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Thalassiothrix 

Thalassionema nitzschioides 

Rhizosolenia hebetata 

Proboscia alata 

Bacteriosira bathyomphala 

Roperia tesselata 

Porosira glacialis 

Actinocyclus curvatulus 

Asteromphalus robustus 

Thalassiosira gravida resting spore 

Thalassiosira gravida vegetative 

Thalassiosira auguste-lineata 

Thalassiosira eccentrica 

Thalassiosira trifulta 

Thalassiosira nordenskioeldii 

Thalassiosira oestrupii 

Thalassiosira hyalina 

Thalassiosira angulata 

Thalassiosira pacifica 

Coscinodiscus marginatus 

Coscinodiscus occuls-iridis 

Nitzschia bicapitata 

Fragilariopsis cylindrus 

Fragilairopsis oceanica 

Fragilairopsis atlantica 

Actinocyclus octonarius 

Rhizosolenia styliformis 

Pseudo-nitzschia cf.turgidula 

 

Table 7.2 The joint diatom species list used for the regional transfer function created from 

Jiang et al. (2001) and the NEAP core top data. 

 

 

        The final adjustment made to the data set was the removal of cores which 

exhibited a strong sea ice based floral assemblage; cores 12, 14 and 1229, indicated in 

Figure 7.2 in blue. Cores 14 and 1229 record percentages of Fragilariopsis oceanica 

above 50% with a 29.9% abundance in core 12. As the transfer function was designed 

to predict open marine conditions, these cores were excluded.  
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        The Pd values for each core top sample are then plotted against the sea surface 

temperature for that sample. A best fit regression line is calculated for the data set 

(Figure 7.4). The R value is statistically robust at 0.76632. The equation of this line, 

y= 1.1994 + 069327x, is the transfer function. A sea surface temperature may be 

calculated using the equation of the line for any given Parks Index. The R
2 

value for 

the relationship between the Pd values and Sea Surface Temperatures generated from 

the eight NEAP core tops was 0.0534 and so it was not possible to generate a 

statistically significant regression line for the data set. This was probably a result of 

the low sample size.  

 

 

 

Figure 7.4  A regional derived transfer function constructed from core top data from diatom 

floral counts for forty-eight northern North Atlantic marine cores 
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7.2  Validation of the Transfer Function 

 

         This transfer function was then applied to the down core floral abundance 

counts for MD99-2251 (Figure 7.5)  and MD99-2252 (Figure 7.6) and compared with 

the Sea Surface Temperature values derived using the WAPLS transfer function and a 

Nordic Sea based floral data set. The trends in the data are partially consistent 

between the two methods with high variability in the early Holocene, a broad decrease 

in SSTs between 9.5kyr and 7kyr, a marked increase around 7kyr resulting in 

optimum temperatures between 5 and 7kyr. There is lower variability in the late 

Holocene. One important difference between the two temperature estimates is that the 

WAPLS generated SSTs indicate an overall increase in temperatures throughout the 

Holocene, while the Pd generated SSTs show a slight overall cooling for the 

Holocene.  

 

 

 

Figure 7.5  SSTs for marine core MD99-2251 derived from WA-PLS and a Nordic Sea based 

floral data set and from a Parks Distance Index derived transfer function using a northern 

North Atlantic floral data set 

 

 

        In both cores however, the Parks Distance Index (Pd) derived transfer function 

using the northern North Atlantic floral data set, gave significantly lower temperatures 

than the WAPLS derived transfer function using a Nordic Sea based floral data set 

(Figure 7.5 and Figure 7.6). The Pd derived Sea Surface Temperatures (SST) more 

closely resemble the modern SST values.  

 

 Modern SST 
 

o
 C
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        An important consideration in evaluating the transfer function is to examine the 

percentage of the total floral assemblage used to calculate the Pd generated SST 

estimates. For MD99-2251 the percentages used are between 75-95% of the flora. 

There appears to be some correlation between the trends in the percentage of the floral 

used and the sea surface temperature. A higher percentage of the flora appears to have 

been employed at times of higher SSTs (Figure 7.7). However there is no direct 

correlation between higher temperatures and higher proportions of flora used. The 

highest temperature, around 17
o
C relate to an average percentage of flora used. 

 

 

 

Figure 7.6  SSTs for marine core MD99-2252 derived from WA-PLS and a Nordic Sea based 

floral data set and from a Parks Distance Index derived transfer function using a northern 

North Atlantic floral data set 

Figure 7.7 MD99-2251 Pd generate SSTs and the percentage of the total floral count 

used to generate the temperature. 
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.         For MD99-2252, the floral percentages used to generate the Pd SSTs are 

between 80-95% and there is a less direct correlation between the trends in the SSTs 

and the percentage of flora employed. For both cores the Pd generated SSTs closely 

follow the trends of the WAPLS generated SSTs while giving lower overall 

temperatures, as previously stated. The Pd temperatures are most significantly lower 

than the WAPLS temperatures during the late Holocene. The Pd temperatures for this 

time period are however generated from average to high percentages of the total flora 

and therefore cannot be assumed to be an artefact of the percentage of data employed. 

  

 

 

 

 

 

 

 

        Finally the Pd transfer function was reapplied to the NEAP cores to calculate a 

Pd derived temperature for those cores (Figure 7.9 and Table 7.3). The results indicate 

that for NEAP 3B and NEAP 4B the Pd transfer function performs as well as the 

WAPLS transfer function and for the remaining core tops the Pd transfer function 

performs better than the WAPLS transfer function at estimating summer sea surface 

temperatures.  

 

Figure 7.8 MD99-2251 Pd generate SSTs and the percentage of the total floral count 

used to generate the temperature. 

 

T
e
m

p
e
ra

tu
re

  
o
C

 
%

 flo
ra

 u
s

e
d

 



156 

 

 

 

 

 

 

 

Sample WOA Summer 

0m temperature 

WOA Winter 0m 

temperature 

WAPLS 

generated SST 

Pd  generated 

SSTS 

NEAP 3B 10.96 7.20 12.46 9.50 

NEAP 4B 11.16 7.39 12.35 10.21 

NEAP 11B 11.85 8.11 14.38 10.84 

NEAP 12B 12.01 8.18 15.19 12.80 

NEAP 15B 12.05 8.17 14.53 12.03 

NEAP 16B 12.10 7.84 14.68 11.90 

NEAP 18B 12.67 8.19 15.67 14.71 

 

 

 

 

 

 

 

 

 

Figure 7.9 shows the World Ocean Atlas 0m summer and winter and WAPLS and Pd 

generated SSTs for the NEAP box cores 3B, 4B, 11B, 12B, 15B, 18B and 20B in the 

subpolar North Atlantic 

 

Table 7.3 World Ocean Atlas 0m summer and winter and WAPLS and Pd 

generated SSTs for the NEAP box cores 3B, 4B, 11B, 12B, 15B, 18B and 20B 

in the subpolar North Atlantic 
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7.3  Discussion  

 

        The Parks Distance Index is clearly a far less advanced mathematical method 

than the WAPLS. However, these results suggests that regional constraint of the data 

set may be more important than the mathematical sophistication of the transfer 

function when deriving SSTS from diatom floral advance counts, as the Pd transfer 

function consistently produces SST values nearer the observed modern values. These 

results also highlight the need for further work on the distribution of diatom species in 

the mid latitudes. 
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    Chapter Eight  

Ice Rafted Debris Data 

 

 

 

 

    “ We climbed around ice foot and found it much broken up on the 

south side; the sea spray had washed far up on it...There is a 

curious weathering on the ice blocks on the North side; also the 

snow drifts show interesting dirt bands...” 

 

 

Robert Falcon Scott „Journals‟ 
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Chapter Eight:  Ice Rafted Debris 

 

 

8.1   Heinrich Events 

 

        Ruddiman (1977) first noted a distinct band of ice rafted deposition across the North 

Atlantic during the last glacial cycle. That this deposition was in distinct layers was first 

recognised by Heinrich in a study of fourteen marine from the Northeastern North Atlantic 

(Heinrich, 1988). Heinrich identified six well-defined peaks in lithic sediment input during 

the last glacial period between 14kyr and 70kyr (Figure 8.1). He concluded that these 

peaks were the result of periodic episodes of intense ice rafting. Further studies recognised 

these ‘Heinrich events’ across the whole North Atlantic in a band from approximately 

40°N to 55°N indicating that these were not localised events but regional events (Broecker 

et al. 1992; Grousset et al. 1993; Bond et al. 1993). 

 

 

Figure 81  The relationship between peaks in ice rafted debris input and abundances of the cold 

water planktonic foraminifera Neogloboquadrina pachyderma sinistral Peaks in the percentage IRD 

with depth match peaks in the percentage abundance of  Neogloboquadrina pachyderma sinistral 

(Heinrich, 1988). 
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        Studies of the composition of the lithic fragments in the Heinrich layers were then 

undertaken to determine their origin. Various evidence indicates an eastern Canadian 

source for all but Heinrich layer three (H3). In the western North Atlantic Heinrich layers 

have been identified as containing 20-25% detrital carbonate, with the percentage of 

carbonate diminishing eastwards. This concentration of carbonate is uncharacteristic of the 

background glacial sediment which consists predominantly of quartz, feldspar and volcanic 

glass (Bond et al.,1992; Bond & Lotti 1995). These carbonate sediments have been shown 

to be derived from limestone and dolomite bedrock in the Hudson Bay (Andrews & 

Tedesco, 1992). Strontium Neodymium isotope analyses indicate a different source for the 

sediments in H3 than for the other Heinrich layers (Grousset et al., 1993: Revel et al., 

1996).   Potassium Argon ages from the clay minerals in the detrital carbonate rich 

Heinrich layers indicate a Labrador Sea source (Huon & Ruch 1992; Jantschik & Huon, 

1992; Hemming et al., 1998; Hemming et al., 2002). Lead isotopes from the feldspar 

grains in the Heinrich layers indicate a Hudson Bay provenance for all Heinrich layers but 

H3 which shows a Scandinavian Greenland provenance (Gwiazda et al., 1996). 

 

        In addition to the increased input of sediment, the Heinrich layers are also 

characterised by changes to the sea surface hydrology and deep water circulation. These 

changes include significant reductions in sea surface temperature and salinity and reduced 

or even a shut down of North Atlantic Deep Water (NADW) formation in the North 

Atlantic.  Peaks in lower δ
18

O values for the planktonic foraminifera Neogloboquadrina 

pachderma sinistral correlate with peaks in ice rafted debris input suggesting meltwater 

pulses occurring concurrently with the Heinrich events (Bond et al., 1992; Bond et al., 

1993; Labeyrie et al., 1995; Vidal et al., 1997). Similar results were found from analysis of 

δ
18

O values for the planktonic formaninfera Globigerna bulloides (Chapman et al., 2000). 

Decreases in temperature of around 2°C were measured for Heinrich Event 4 (Cortijo et 

al., 1997). Negative peaks in δ
13

C values for the benthic foraminifera Cibicidoides 

wullerstorfii occurring simultaneously with Heinrich events indicate reductions in NADW 

(Vidal et al., 1997; Elliot et al., 2002) (Figure 8.2). A further characterictic of the Heinrich 

layers is a reduction in the concentration of foraminifera in the sediments.  It has also been 

argued that the peaks in concentration of lithic fragments during Heinrich events reflect 

extremely low foraminifera concentrations rather than unusually increased lithic input 

(Broecker at al., 1992).  
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Figure 8.2 Indicating the relationship between decreases in Summer SSTs, increases in the 

concentration of IRD in number of lithic grains (>150 µm) per gram and decreases in NADW flow 

as indicated by decreases in the δ
13

C of benthic forminifera  C. wuellerstorfi  (Elliot et al., 2002). 

 

 

        A number of mechanisms have been proposed to explain these abrupt increases in 

iceberg discharge. These include variations in solar radiation due to orbital patterns, 

internal ice sheet dynamics, changes in ocean circulation and sea-level changes. Heinrich 

proposed that the increased ice rafting was a response to changes in Northern hemisphere 

o
 C
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insolation due to orbital forcing, specifically the precessional orbital signal. He recognised 

a cyclicity of half the processional signal at 11,000 ± 1000yrs relating to maximum and 

minimum summer insolation (Heinrich 1988).  Internal dynamics of the ice sheet as a 

forcing mechanism for Heinrich cycles were suggested by MacAyeal (1993a), MacAyeal, 

(1993b). Alley & MacAyeal (1994) propose a binge-purge model for ice sheets to explain 

Heinrich events. They argue that the Laurentide Ice Sheet experienced long periods of slow 

ice accumulation (binge) followed by short periods of rapid discharge (purge). Geothermal 

heat heats the base of the ice sheet to the point where there is a catastrophic discharge of 

water saturated sub glacial till. This would explain the detrital carbonates in the Heinrich 

layers being derived from bedrock in the Hudson Bay and Labrador Sea. Once the ice sheet 

has thinned sufficiently from the discharge, it refreezes to the glacial bed and a new binge 

cycle begins. This model is seen as having a periodicity of approximately 7700 years. It 

requires no external forcing mechanism such as variations in the intensity of insolation. 

These conclusions are supported by more recent modelling studies of ice sheet dynamics. 

Marshall & Clark (2002) model the basal ice temperature for the Laurentide Ice sheet and 

conclude that as ice sheets mature they become independent of orbital forcing and surge 

due to internal feedback dynamics. Alvarez-Solas et al. (2009) model instabilities in 

northern hemisphere ice sheets and conclude that ice surges are the result of feedback 

mechanisms between the ocean, ice shelves and ice streams. It has also been suggested that 

surges may occur as a result of earthquake activity triggered by ice loading (Hunt & Malin, 

1998). 

 

        Another proposed mechanism to explain Heinrich events is global sea level change.  

Chappell (2002) recognises a correlation between sea level cycles shown in coral terraces 

of the Huon Peninsula, Papua New Guinea and 6000-7000 climate cycles recorded in 

marine sediments and ice cores during the last glacial. Each climate cycle culminates is sea 

level rises of 10-15m persisting for 1000-2000 years. All but one of these sea level rises 

correspond to a Heinrich event. Chappell proposes therefore that sea level rise may be the 

trigger for these ice calving events across the North Atlantic. He further notes that these 

sea level cycles can be correlated with cycles of oxygen isotope variations in benthic 

foraminifera from marine core MD99-2042 (Shackleton et al., 2000). The amplitude of the 

Oxygen isotope variations in this core suggests not only a variation in sea level but a 

cooling of the deep ocean of around 1-2°C for each of these 6000-7000 year climate 
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cycles. Similarly Arbic et al. (2004) suggest unusually large ocean tides in the Labrador 

Sea may have triggered Heinrich events. 

 

 

8.2   High Resolution Ice Rafting Events 

 

 

 

 

      Bond & Lotti (1995) in a high resolution study of North Atlantic marine cores DSDP 

609 and VM23-81, identified cycles of IRD deposition at a higher frequency than Heinrich 

event deposition . As the two cores were located in different depositional environments and 

at different latitudes, they concluded that the IRD cycles were not simply a product of local 

conditions but represented a more widespread climate signal. Heinrich events have a 

periodicity of 7000-10,000 years. The IRD deposition cycles identified in this study had a 

Figure 8.3 Cycles of increased IRD deposition at higher frequency than Heinrich events  

Bond & Lotti (1995) 
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periodicity of 2000-3000 years. This matches the periodicity of the Dansgaard-Oeschger 

temperature cycles identified from Greenland ice cores (Dansgaard et al., 1993). Bond & 

Lotti (1995) were able to correlate one of their IRD peaks to the Dansgaard-Oeschger 

events (Figure 8.3). Two IRD peaks occurred independently of Dansgaard-Oeschger 

events. They concluded that this is the result of the cooling signal being more strongly 

recorded in the ice rafting signal than in the Greenland ice core.  

 

     A study of the lithology of the IRD identified peaks in three grain types; basaltic glass 

(derived from Iceland), haematite stained quartz and feldspar (from various locations on 

either side of the North Atlantic) and detrital carbonate grains (derived from northeastern 

Canada). As these peaks in the different grain types were found to be synchronous, it was 

concluded that ice calving events occurred simultaneously from the Icelandic Ice cap and 

the Gulf of Lawrence every 2000-3000 years coincident with the Dansgaard-Oeschger 

cooling events identified in the Greenland ice cores. This simultaneous calving from more 

than one source suggests that the calving cycles resulted from a response to external 

forcing factors rather than internal physical processes within the glaciers, which is unlikely 

to have occurred simultaneously.  

 

   A number of other authors identified these millennial scale changes in terrigenous input 

into deep sea cores. Raymo et al. (1998) identify such a cyclicty in ice rafting during the 

early Pleistocene in the North Atlantic. Elliot et al. (1998) recognise these millennial scale 

ice discharge events in the Irminger Basin over the last 45kyr. McManus et al. (1999) 

identify a 0.5 million year record of millennial scale variability in ice sheet discharge into 

the North Atlantic.  

 

 

8.3   Holocene Ice Rafting Variability 

 

      In addition to the well documented Heinrich events ( Heinrich, 1988; Broecker et al., 

1992; Grousset et al., 1993; Bond et al., 1993) and higher resolution events of increased 

ice rafting  (Bond & Lotti, 1995; Oppo et al.,1998;  Elliot et al.,1998), certain authors have 

also recognised periodic increases in lithic sediment input during the Holocene.   
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Figure 8.4 Holocene Ice rafted debris flux in two North Atlantic marine cores 

VM 28-14 (64° 47´ N, 29° 34´ W) and VM 29-191 (54° 16´ N 16° 47´ W) 

Bond et al. (1997) 
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        Bond et al. (1997) recognise eight cycles of increased input from ice rafted material 

for the Holocene from cores VM 28-14 (64° 47´ N, 29° 34´ W) and VM 29-191 (54° 16´ N 

16° 47´ W) in the North Atlantic. These increases in input of ice rafted material occur at  

1400, 2800, 5900, 8100, 9400, 10300 and 11,100 yrs BP (Figure 8.4). The authors attribute 

these 1470 ± 500 year cycles to solar forcing, indicating the presence of a 1500 year 

climate cycle acting independently of glacial interglacial cycles. They measure IRD flux 

according to three proxies; concentration of grains > 150µm per gram and the percentages 

of glass lithics of Icelandic origin and haematite stained grains. The Icelandic glass 

includes both clear rhyolitic glass and dark basaltic glass. Haematite stained grains are 

considered to originate from the east coast of Greenland and Svalbard or from red beds 

around the Arctic Ocean. 

 

        Numerous studies have sought to identify these Holocene fluctuations in ice rafted 

debris input identified by Bond (Jennings et al., 2002; Reeh, 2004; Moros et al., 2004b; 

Moros et al., 2006; Andrews et al., 2009 ). These studies cover a variety of locations in the 

North Atlantic and Greenland, Iceland, Norwegian Seas and use differing proxies for 

measuring IRD input.  An Arctic Ocean study of two marine sediment cores from the 

Nansen Trough and the East Greenland shelf, JM96-1206/1-GC (68º 06.0'N, 29º25.5'W)  

and  JM96-1207/1-GC (68º 06.0'N, 29º21'W) looked at IRD flux, measured as the 

variations in the calcium carbonate content of the sediments (Jennings et al., 2002).  This 

Arctic Ocean IRD study shows no persistent 1500 year cyclicity in terrigenous input but 

rather a shift from early to mid Holocene warm conditions with low IRD input to colder 

fresher conditions with increased IRD input at around 5kyr. IRD appears in the East 

Greenland core between 6kyr and 4kyr with the first detrital carbonate peak at around 

4.7kyr. The authors conclude therefore that earlier Holocene coolings, such as the 8.2kyr 

event were not associated increases in terrgenious input. 

 

        An investigation of IRD in two Holocene marine cores, one from the Reykjanes Ridge 

(L009-14  59
o
N 31

o
W)  and one from the Norwegian Sea (MD95-2011 66

o 
58'N 7

o
38'W) 

(Moros et al., 2004b) also indicates long term variability in terrigenous input through the 

Holocene rather than the 1500 year cyclicity recognised by Bond et al. (1997). The authors 

measure IRD by sieving and counting the > 150µm and the > 63 µm fractions and by X- 

ray diffraction (XRD) measurements of the bulk sediment and the < 63 µm fraction.  
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The authors recognise four climatic phases for the Holocene; an early warm period with a 

thermal maximum around 6.5kyr, a cooler period which is associated with increased ice 

rafting from 6.5 to 3.7kyr, a warm unstable period from 3.7 to 2kyr and then a general; 

decline in sea surface temperatures from 2kyr to the present. The 8.2kyr event is marked in 

these cores by an increase in terrigenous input (Figure 8.5). 

 

 

Figure 8.5 Holocene IRD variability rafting reconstructed by measuring the quartz-to-plagioclase 

ratio using XRD from core MD95-2011 from the Norwegian Sea indicating an increase in 

terrigenous input between 6.5 and 3.7 kyr and associated with the 8.2kyr event. G. quinqueloba 

content (*) per g of sediment (Risebrobakken et al., 2003) is also shown.(Moros et al., 2004b) 
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        Further, Moros et al. (2006) in their study of ice rafted debris distribution, using XRD 

measurements of quartz content and the quartz plagioclase ratios for four cores off Iceland, 

conclude that patterns of iceberg rafting and sea ice advection were not uniform across the 

North Atlantic throughout the Holocene. The authors recognise two modes of variability; 

regions influenced by cold polar outflows and regions influenced by warm inflowing 

currents. They record long term increases in terrigenous input into the North Atlantic from 

approximately 6kyr in areas underlying the cold East Greenland Current but a contrasting 

decrease in terrigenous input for this period where sites are influenced by the warm North 

Atlantic Drift (Figure 8.6) 

 

        Andrews et al. (2009) in a study of drift ice quartz deposits in sixteen Holocene cores 

off northern Iceland, using XRD analysis of the < 2mm fraction, found no 1500 year 

periodicity as in the Bond et al. (1997) study, but rather an approximately 670 year 

periodicity. There was also indication of periodicities between 87 and 61 years which the 

authors suggest bear a resemblance to the North Atlantic Oscillation. They conclude with 

Moros et al. (2006) that the prevailing oceanographic conditions will have a greater 

influence on drift ice distribution than a prevailing climate signal. The area of their study is 

on the boundary of Polar/Arctic and Atlantic water masses and so, they argue, exhibits a 

different IRD signal to the VM129-191 core of Bond et al. (1997) which lie of Ireland in 

water predominantly influenced by the North Atlantic Current. 

 

        In summary, certain authors have found a peak in terrigenous input (Moros et al., 

2004), corresponding to the 8.1kyr IRD peak identified by Bond et al. (1997), while others 

have not (Jennings et al., 2002). It is important to note that both the location of these core 

and the method of counting IRD input varied between these studies. It is possible that both 

Holocene IRD peaks are only registering in certain regions and with certain methods of 

recording IRD. 

Figure 8.6 Down-core records of four cores off Iceland. (a) quartz content and (b) 

Quatz/Plagioclase ratio of north Iceland core MD99-2269 (Small vertical arrows in Figure 4a 

indicate positions of AMS 14C dates in MD99-2269). (c) Benthic foraminifer data of 

Cassidulina reniforme (reverse scaled) of MD99-2269[Giraudeau et al., 2004]. (d) Ice-rafting 

proxy data east Greenland shelf core [Andrews et al., 1997]. (e) VM29-191 [Bond et al., 

1997, 2001] (hematite-stained grains (HSG)) and (f) MD95-2011 [Moros et al., 2004a], 

taken at sites influenced by the warm North Atlantic Current. Planktic foraminifera 

abundance data of (g) N. pachyderma (sinistral) and (h) N. pachyderma (dextral,reverse 

scaled) of MD95-2011 [Risebrobakken et al., 2003]. After 3–4 ka. Moros et al . (2006) 
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8.4  Ice Rafted Debris Study for marine core MD99-2251 

 

 

8.4.1 Introduction 

        This study seeks to identify whether there is any increase in the input of ice rafted 

debris (IRD) recorded in marine core MD99-2251 (57°26.87 N 027°54.47 W) associated 

the 8.2 kyr event as would be expected from a period of significant cooling and inferred 

increased ice rafting; and corresponding to the 8.1kyr IRD event of Bond et al. (1997). As 

the Bond et al. (1997) study recognised peaks in specific lithologies; dark basaltic glass 

and haematite stained grains, not only were total IRD concentrations counted for this 

study, but the concentrations of specific lithologies. 

 

8.4.2 Methodology 

 

        MD99-2251 was sampled at 1cm intervals between the depths 1200-1336cm 

corresponding to ages of around 7.8 to 8.8kyr. Samples were sieved at 63µm and all lithic 

grains counted under a light microscope. The samples had been previously processed for 

diatom sampling. As this process involves the removal of carbonates, the ice rafted debris 

signal recorded therefore excludes any possible carbonate grains that may have been 

present. The following lithologies were identified; clear quartz, opaque quartz, haematite 

stained quartz, dark basaltic glass, vesicular volcanic, dark volcanic and ‘other lithologies’. 

The dark basaltic glass corresponds to corresponding to the ‘Icelandic Glass’ of Bond et 

al.(1997)  

 

        The total number of grains varied considerably. The variation in number of grains 

present and the concentration per gram (total number of grams divided by dry wt) are 

shown in Figure 8.7. The IRD concentration closely follows the number of grains counted 

indicating that there is no significant bias introduced by the difference in sample dry 

weight. The mean, maximum, minimum and standard deviation of grains per gram for each 

of the recognised lithologies were calculated and are presented in Table 8.1. 

 

 

 



 

 171 

8.4.3 Results 

 

 

 

 

 

Lithology Mean per g 

abundance 

Standard 

deviation 

Minimum per g 

abundance 

Maximum per g 

abundance 

Quartz 330 132.5 63 687 

Opaque quartz 28.5 15 6 63 

Haematite stained Quartz 64 26 6 147 

Dark Basaltic Glass 22.5 13 3 58 

Vesicular Volcanics 8.5 7.5 0 33 

Dark Volcanics 44 18 12 88 

Other  40 23 2.5 131 

Total IRD 537.5 192.5 114 1002.5 

 

 

 

 

 

        No significant increase was identified in IRD input with respect to quartz grains, 

haematite stained grains, dark basaltic glass or the total IRD content per gram, associated 

with the 8.2kyr event (Figure 8.8), but rather a multidecadal variability. The total IRD per 

gram signal is dominated by the concentration of quartz grains which make up around two 

thirds of the total IRD. Patterns of IRD show similar patterns for each lithology types. 

 

Figure 8.7 IRD per gram and total number of IRD grains counted for the interval 

7.8-8.8kyr in core MD99-2251 

Table 8.1 Mean, maximum, minimum and standard deviation of different 

IRD lithologies for MD99-2251 7.8-8.8kyr 
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Figure 8.8 MD99-2251 7.8-8.8kyrs study. Abundance per gram of 

IRD lithologies and total IRD per gram. 

  
  

  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
  

  
  
  

  
  
  

  
  

  
  

  
  
  

  
  

  
  
 G

ra
in

s
 p

e
r 

g
 



 

 173 

     If we accept the hypothesis of a prevalent 1500yr climate signal driving IRD flux (Bond 

et al., 1997), then this result is unexpected. There is also evidence that other records which 

do not show the prevalent 1500yr signal in IRD flux, do indicate a peak in input associated 

with the 8.2 kyr event (Moros et al., 2004b). However other interpretations attribute IRD 

flux to prevailing oceanographic conditions (Moros et al., 2006; Andrews et al., 2009). It 

may be suggested therefore that a dominance of warmer currents over the core site for the 

time period study had a stronger influence on IRD flux than the wider climate cooling. The 

diatom data for this interval indicates a predominance of North Atlantic Current flora. The 

multidecadal variability in the IRD signal of MD99-2251 may be related to multidecadal 

variability in the strength of the North Atlantic Current. 
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    Section Three 

    Discussion and Conclusions    

 

 Chapter Nine   Discussion 

Chapter Ten   Conclusions 
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    Chapter nine  

Discussion 

 

    “ As long as the human ear can hear the breaking of waves over 

deep seas, as long as the human eye can follow the track of the 

northern lights over silent snow-fields, as long as human thought 

seeks distant worlds in infinite space, so long will the fascination of 

the unknown carry the human mind forward and upward...” 

 

Fridtjop Nansen „In Northern Mists‟ 
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Chapter Nine: Discussion  

 

9.1  Holocene Overview 

 

9.1.1  Variations in Sea Surface Temperatures 

 

        The palaeoproxies used in this study reveal distinct climate variability for the 

Holocene. Diatom abundance counts for MD99-2251 are used to reconstruct sea surface 

temperature (SST) using two different transfer functions (Figure 9.1). The WAPLS transfer 

function is based on core top data from the northern North Atlantic and Nordic seas while 

the Pd transfer function is based on core top data from the subpolar North Atlantic. Both 

the WAPLS and the Pd generated SST estimates indicate an initial warming in the early 

Holocene followed by a period relatively high variability until around 9.5kyr, a broad 

cooling between 9.5 and 7kyr, a distinct warming between 7 and 5kyr and higher but less 

variable temperatures for the late Holocene. The significant difference between the two 

SST records being that the Pd generated temperatures are 2-3
o
C lower than the WAPLS 

generated temperatures. Also, the WAPLS generated temperatures indicate an overall 

warming of sea surface temperatures for the Holocene while the Pd temperatures indicate 

an overall cooling. This difference is especially pronounced in the late Holocene. These 

sea surface temperature trends are reproduced in nearby marine core MD99-2252 

indicating that the observed changes are at least of regional significance. Core MD99-2252 

only extends for the last 7.2kyr, however the warming at around 7kyr is clearly reflected in 

both the WAPLS and Pd generated SSTs for this core. 

 

        A number of similar investigations have been undertaken to generate sea surface 

temperatures using diatom assemblage data from the subpolar North Atlantic. Berner et al. 

(2008) uses three separate transfer functions to analyse marine core L009-14 (58
o 
56.3' N 

20
o
24.5' W) from the western side of the Rekyjanes Ridge (Figure 9.2). The different 

approaches used are: (i) I&K - Q-mode factor analysis (Imbrie & Kipp, 1971), (ii) ML -

maximum likelihood (Upton & Cook, 2002), and (iii) WAPLS (ter Braak & Juggins, 

1993). The authors summarise the SST history from this core as indicating a relatively cool 

and highly variable early Holocene (11-7kyr), a relatively warm mid Holocene Climate  
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Optimum (7-5kyr) and a more stable late Holocene (5kyr to present). SiZer analysis  

 

 

 Figure 9.2  Imbrie & Kipp, WAPLS and ML generated SSTs for core 

L009-14 (58
o 
56.3' N 20

o
24.5'W). From Berner et al. (2008). 

 

 

 

 

 

 

Figure 9.1  Sea surface temperature reconstruction for core MD99-2251 

(57°26.87' N 27°54.47' W) generated from foraminiferal analysis (Ellison et al. 

2006) plotted against SST estimates (WAPLS and Pd) from diatom analyses of 

cores MD99-2251 and MD99-2252 (57°26.84' N 27°55.83'W). 
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(Chardhuri & Marron, 1999) is applied to the Berner et al. (2008) sea surface temperature 

trends to identify significant trends. The analysis indicates a general temperature increase 

for the Holocene and two significant cooling periods from 10-9.4kyr and 8-7kyr, with 

significant warmings at 11-10kyr, 9.4-8kyr, and 7-5kyr. 

 

        This overall warming trend for the Holocene identified by Berner et al. (2008) agrees 

with the WAPLS transfer function results from core MD99-2251 but not the Pd results, as 

previously discussed. The sea surface temperatures generated from foraminifera for 

MD99-2251 (Ellison et al. 2006) suggest a more stable overall trend in SSTs for the 

Holocene (Figure 9.1). In addition the warming identified in the Berner et al. (2008) for the 

mid Holocene Climate Optimum (5-7kyr) is also clearly indicated in this study, though in a 

more pronounced manner with the WAPLS than the Pd transfer function (Figure 10.1). 

This warming event is observed in both MD99-2251 and MD99-2252. The warm, more 

stable late Holocene (5kyr to present) identified by Berner et al. (2008) is also a feature of 

the SST reconstructions of both cores examined in this study. 

 

       A detailed analysis of cooling events identified in this study with those recognised by 

Berner et al. (2008) reveals clear differences despite the proximity of cores L009-14 and 

MD99-2251; although, as for the warming events, the WAPLS generated temperatures 

show the greatest correlation between the two cores. The two significant cooling events 

identified by Berner et al. (2008) at 10-9.4kyr and 8-7kyr, are not replicated in MD99-

2251. The WAPLS generate SSTs for MD99-2251 do indicate significant decreases in 

SSTs around 9.7 and 7.7kyr, which may be the same events found in core L009-14 given 

uncertainties in chronology and sampling density of the cores. The 7.7kyr cooling episode 

records the lowest registered SSTs for MD99-2251, whereas the lowest temperatures are 

recorded for the 10-9.4kyr cooling event in core L009-14. It is also significant to note that 

the WAPLS generated temperature history from Berner et al. (2008) more closely 

resembles the Pd generated SST record of this study, being 2-3
o
C lower than the WAPLS 

generated temperatures from MD99-2251. The lowest WAPLS generated SSTs for L009-

14 are recorded at around 8-9
 o
C and at 10-11

 o
C for MD99-2251. Correspondingly the 

highest WAPLS generated Holocene SSTs for L009-14 are in the region of 14
 o
C and 

around 16
 o
C for MD99-2251. 
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         Andersen et al. (2004a), also in a study of core L009-14 from the Reykjanes Ridge, 

recognise relatively low highly variable SSTs for the early Holocene, a mid Holocene 

thermal optimum between 7.5-5kyr and a more stable late Holocene. This, unsurprisingly, 

concurs with the findings of Berner et al. (2008). However Andersen et al. (2004b) in a 

comparison three cores, from the Vøring Plateau, North Iceland Shelf and East Greenland 

Shelf, identify significantly different trends in diatom generated sea surface temperature 

for the Holocene. They identify a Holocene Climate Optimum at around 9.5-6.5kyr, a 

Holocene Transition Period 6.5-3kyr and a Cool Late Holocene period 3kyr to present, 

indicating distinct regional variation in diatom generated SSTs. 

 

 

 

 

 

Figure 9.3  Diatom abundance generated SSTs for three Nordic sea cores.                   

MD99-2269 from the North Iceland Shelf. CR19/5 from the East Greenland Shelf. 

CR948/2011 from the Vøring Plateau.                                                                               

Black dots indicate AMS-dates. After Andersen et al. (2004a). 
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        Justwan et al. (2008) in a more detailed study of core MD99-2269 from the North 

Icelandic shelf, use three methods to estimate SSTs from diatom assemblages (Figure 9.4). 

These authors recognise the Holocene climate optimum between 10.4-4.7kyr and August 

SSTs around 2
o
C cooler for the late Holocene than the early and middle Holocene. This 

SST pattern is very different from those observed to the south in the Iceland Basin (cores 

L009-14 and MD99-2251). These differences reflect the usefulness and sensitivity of 

diatom assemblage counts as a climate proxy but these studies also reveal the potential for 

inconsistencies in the usage of terms such as the “Holocene climate optimum”. 

 

 

 

 

 

 

 

9.1.2  Variations in Floral Assemblages and individual species distribution 

 

        Sea surface temperature reconstructions are important but not the only means of 

investigating the significance of variations in the Holocene diatom flora. Factor analysis 

identifying particular diatom floral grouping with surface water masses and currents can be 

informative, and has been applied here and in other studies (Jiang et al.,2001; Andersen 

etal.,2004a). The distribution of individual species also can provide important information 

about ecology and/or surface conditions. A summary of the distribution of three of the 

most abundant species found in MD99-2251, floral assemblage distributions after 

Andersen et al. (2004a), and floral assemblages as defined in section 7.7 of this study are 

Figure 9.4  MD99-2269 August SST reconstructions using WAPLS (red), ML (Blue) 

and I&K (black) transfer functions. After Justwan et al. (2008) 
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summarised in Figure 9.5. The trends evident in these records are reflected in the SST 

estimates. 

 

 

 

 

 

 

%
 A

b
u

n
d

a
n

c
e

 

Figure 9.5  Significant species and floral assemblage data from MD99-

2251. a) key abundant species. b) Floral assemblages after Andersen et 

al. (2004b). c) Floral assemblages based on temperature preference. 
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      The early Holocene interval shows the greatest variability, reflected in a fluctuation of 

dominance between North Atlantic, Arctic, Sub Arctic and Warm, Cool and Intermediate 

assemblages.  The broad cooling indentified in the SST data from 9.5-7kyr is reflected in 

an increase in the percentage abundance of Arctic assemblage flora and colder species. The 

only other times when the Arctic flora was as abundant occurred during the post Younger 

Dryas climatic amelioration and during the cooling episode at 9.7 kyr. The warming from 

7-5kyr is recognised by a decrease in Arctic assemblage flora and colder species and a 

corresponding increase in the North Atlantic Assemblage flora and warmer species, 

especially Thalassiosira oestrupii. The most recent 5kyr is identified by a mix of North 

Atlantic and Sub Arctic floral assemblages and warmer and intermediate species (Figure 

9.5). 

 

        Other similar approaches to diatom floral analysis have been undertaken by Jiang et 

al. (2001), Andersen et al. (2004a,b),  Witak et al. (2005), Ran et al. (2006), Witon et al. 

(2006), Berner et al. (2008), Justwan et al. (2008). Figure 10.6 summarises the floral 

assemblage data for L009-14 from the Reykjanes Ridge. These data agree with the findings 

of this study. The early Holocene shows the highest variability and a fluctuation of 

dominance between the Sub Arctic and North Atlantic assemblages and colder East and 

West Greenland current assemblage (an assemblage dominated by Thalassiosira gravida 

vegetative which is included in the „colder species‟ assemblage for this study and the 

Arctic assemblage of Andersen et al. 2004a). In both L009-14 and MD99-2251 the warmer 

mid Holocene 7-5kyr interval is dominated by the North Atlantic assemblage and exhibits 

a decrease in the colder assemblages; though the Sub Arctic assemblage also remains high 

during this interval. Both L009-14 data sets indicate that the Sub Arctic assemblage 

remains dominant for the last 5kyr, with a secondary influence of the Norwegian Atlantic 

current floral and the North Atlantic flora. This reflects the dominance of the intermediate 

species shown for the last 5yr, using the assemblage groupings developed in this study, and 

North Atlantic and Sub Arctic assemblages derived from the application of the Andersen et 

al. (2004a) assemblage groupings to the MD99-2251 data (Figure 9.5). 
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Figure 9.6  Floral assemblage abundances for core L009-14. A) from 

Andersen et al. ( 2004a). B) from Berner et al. (2008) 
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        Witak et al. (2005) analyse the relative diatom species abundance of a Holocene 

sediment core also from the Reykjanes Ridge, core DS97-2P (58
o
56‟33‟‟N, 30

o
24‟59‟‟). 

The authors identify a predominance of cold flora for the entire Holocene, usually in 

abundances over 70%, with warm water flora fluctuating between 2% and 35% (Figure 

9.7). The principal warm water species identified, as with the previous studies discussed is 

Thalassiosira oestrupii but Witak et al. (2005) also include Thalassiosira tetraoesturpii, 

which is not distinguished as a separate species in other studies, and Thalassiosira lineata 

in their warm grouping. Taxonomic issues concerning Thalassiosira oestrupii are 

discussed in section 5.2.13 of this study. Thalassiosira lineata is of minor importance in 

MD99-2251 and not included in any of the floral assemblage groupings, but this is unlikely 

to influence any comparison as the species constitutes only 1-3% of the total flora. 

 

        The key cold water flora identified by Witak et al. (2005) are consistent with Cold 

and Intermediate, Arctic, Sub Arctic and Norwegian Atlantic Current assemblage floras 

from previously discussed studies; Thalassiosthrix longissima, Actinocyclus curvatulus, 

Thalassiosira gravida (vegetative), Thalassiosira gravida (resting spore) Rhizosolenia 

styliformis, Rhizosolenia borealis, Rhizosolenia hebetata semispina, Proboscia alata and 

Thalassiosira trifulta. The timing of key changes in the diatom flora expressed on the basis 

of a 
14

C time scale in the original study have been converted to calendrical ages using 

Calib 5.1 (Reimer et al., 2004). Witak et al. (2005) identify the onset of the Holocene as 

being characterised by Arctic and sea-ice flora. At around 11.3kyr this flora is replaced by 

a more northern North Atlantic assemblage, especially, Thalassiosira gravida (vegetative) 

and Rhizosolenia styliformis, with an increase in warmer North Atlantic assemblage forms, 

especially Thalassiosira oestrupii at around 10.9kyr. The Arctic-boreal flora Rhizosolenia 

hebetata semispina dominates in the interval 9.8-9.1kyr and Rhizosolenia borealis 9.1-

6.8kyr in addition to various Arctic forms. Warm water floras peak in abundance at 6.8kyr 

with a distinct increase in colder-water taxa at 5.5kyr. These finding broadly reflect the 

floral sequence found in the previously considered studies; warming out of the Younger 

Dryas, a cooler flora then establishing round 9-7kyr, a distinct warming peaking at 6kyr 

and then a Sub Arctic flora dominating during the Late Holocene.  
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 Figure 9.7  Relative abundance of individual species and temperature 

groupings for Reykjanes Ridge core DS97-2P. After Witak et al. (2005). 
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        A number of related studies from the North Icelandic shelf (Jiang et al., 2001; Jiang et 

al., 2002;  Knudsen et al., 2004; Jiang et al., 2005; Ran et al., 2006; Knudsen et al., 2009) 

also reflect similar SST variability for the Holocene. Jiang et al., (2001) identify five 

diatom floral assemblages using canonical correspondence analysis (CCA) of fifty-three 

core top samples from around Iceland; a sea-ice diatom assemblage associated with the 

Polar waters of the East Greenland Current, a cold diatom assemblage associated with the 

East Icelandic Current, a warm diatom assemblage associated with the warm Irminger 

Current, a mixed diatom assemblage where these three currents interact and a coastal 

diatom assemblage. This modern data set is then applied to down core analyses of various 

Holocene marine cores. Jiang et al. (2002) examine core HM107-03 from the North 

Iceland shelf which extends for the last 4.6kyr and identify little variation in SSTs for this 

period 1-2
o
C but six diatom floral assemblages which reflect the relative strengths of cold 

and warm water current over the core site. Similarly Ran et al. (2006) interpret changes in 

diatom assemblages for core MD99-2275 on the North Icelandic shelf with respect to the 

relative strengths of the Irminger Current, East Greenland Current and East Icelandic 

Current. The results more closely resemble the Nordic Sea diatom records than those from 

the Reykjanes Ridge with a warmer Early and mid Holocene. MD99-2275 registers the 

8.2kyr event as an increase in colder flora and the influences of the colder East Greenland 

Current and East Icelandic Currents from 8.1 to 8.3kyr. 

 

 

9.1.3 Palaeoceanographic Variability 

 

        Variations in the SSTs and diatom floral assemblages for marine cores MD99-2251 

and MD99-2252 are interpreted as reflecting changes in surface oceanography over the 

core sites through the Holocene. The cores are situated on the Gardar Drift on the eastern 

side of the Reykjanes Ridge (section 6.1). In the present day surface hydrography, the core 

sites lie under the margins of the warm Irminger Current (section 2.4.2), a branch of the 

warm North Atlantic Current. However the site is also influenced by cooler Sub Arctic and 

Arctic waters brought into the Irminger Sea by the East Greenland Current (section 2.4.3) 

and lies close to the Sub Arctic Front (SAF) separating Sub Polar and Sub Arctic waters. 

The sites are therefore ideally situated to record changes in the strength of the North 

Atlantic Current and the position on the Sub Arctic Front through the Holocene. 
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Figure 9.8  Summary plot of MD99-2251 data. Data from this study are compared to the 

%N.pachyderma sinistral and SST data of Ellison et al., (2006). 
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Figure 9.9  Summary plot of MD99-2252 data. Data from this study are compared to 

the %N.pachyderma sinistral and SST data of Ellison et al., (2006). 
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       Sea surface temperatures and floral assemblage data from cores MD99-2251 and 

MD99-2252 indicate a warming out of the Younger Dryas, an unstable early Holocene, 

11.5-9kyr, a broad cooling form 9-7kyr, a warm interval 7-5kyr and a stable slightly cooler 

Late Holocene, 5kyr to present. Truly Arctic floras are only seen as dominant in this study 

during the Younger Dryas between 12.5 and 11.75kyr. Warming into the Holocene from 

around 12kyr sees the establishment of warmer flora by the onset of the Holocene at 

11.5kyr. It is important to note that while the Younger Dryas is clearly distinguished in the 

the floral assemblage data, it does not appear as a prominent event in the SST record. The 

Arctic assemblage for the Younger Dryas is dominated by both forms of Thalassiosira 

gravida and by Actinocyclus curvatulus, with negligible contribution for the Rhizosolenia 

hebetata subspecies. The sea-ice assemblage also reaches its highest levels for this interval 

with five of the eight Younger Dryas samples showing sea-ice flora at around or exceeding 

five percent, levels only reached elsewhere in the core at around 8.1kyr. The explanation 

for the relatively high SST estimates for the Younger Dryas may lie in the fact that the 

North Atlantic floras still constitute around 30% of the total flora for this interval.  

 

        The Early Holocene period, from around 11.5 to 9kyr, in core MD99-2251 exhibits 

high variability with fluctuations between Sub Arctic and North Atlantic floras. This 

period is also characterised by episodes of single species dominance of the floral 

assemblage (section 7.6.1). In the case of this study Rhizosolenia hebetata semispina, and 

Rhizosolenia styliformis/borealis reach 38-45% of the total flora on five occasions around 

8.9kyr, 9.9kyr, 10.9kyr and twice around11.3kyr (Figure 7.7). The 9.9kyr peak is of the 

species Rhizosolenia hebetata semispina. All other peaks are of Rhizosolenia 

styliformis/borealis. Rhizosolenia styliformis/borealis constitutes over 20% of the total 

flora for the entire interval 10.3-11.7kyr. 

 

        Similar peaks in Rhizosolenia styliformis/borealis and Thalassiothrix longissima have 

been identified for core L009-14 (Andersen et al., 2004a; Berner et al., 2008). The authors 

note that high concentrations of Rhizosolenia spp. have been identified at the convergence 

of warm and cold waters in the present day equatorial Pacific (Yoder et al., 1994, Dore et 

al., 2008). Water mass boundaries in coastal waters have long been identified as associated 

with increased biological activity. It is therefore suggested that these peaks in 

concentration of Rhisosolenia spp. (Yoder et al., 1994; Kemp et al. 2006) could reflect the 
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presence or close proximity of an open ocean front, in this case the Sub Arctic Front. There 

are no records of monospecific concentrations of Thalassiothrix longissima in the modern 

oceans as identified in Andersen et al. (2004a). However Neogene records from the Sub 

Polar North Atlantic and equatorial Pacific, report monospecific diatom mats of 

Thalassiothrix longissima that have been interpreted as marking the past position of an 

ocean frontal system (Boden & Backman, 1996; Kemp & Baldauf, 1993). There appear to 

be no contemporary records of monospecific blooms of Rhizosolenia hebetata semispina. 

The highly variable early Holocene in core MD99-2251 with intervals of monospecific 

blooms is therefore interpreted as a period of oscillating dominance of subpolar waters and 

warm waters as a result of the periodic eastward incursion of cooler waters from the East 

Greenland Current and with changes in the proximity to the site of the Sub Polar Front. 

 

        The interval 9.5-7kyr marks the lowest sea surface temperatures for the Holocene, but 

is not characterised by monospecific blooms. The last Rhizosolenia spp. peak occurs at 

around 8.9kyr in MD99-2251. Andersen et al. (2004a) suggest that cold intervals which do 

not exhibit these Rhizosolenia sp. peaks may be best interpreted as resulting from a 

reduction in the strength of Irminger Current, a branch of the North Atlantic Current, rather 

than a southward migration of the Sub Polar Front. The subsequent warming for 7kyr to 

5kyr is characterised by a corresponding increase in North Atlantic flora, especially 

Thalassiosira oestrupii which, as the dominant species of the North Atlantic assemblage, 

may be considered as an indicator of the strength of the Irminger Current. The Late 

Holocene (5kyr to present) may again be interpreted with respect to the relative strength of 

the Irminger Current, decreasing in this interval from the maximum strength of the 7-5kyr 

warming. 
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Figure 9.10  Summary plot of 8.2kyr data from MD99-2251. Percentage 

abundance N.pachyderma sinistral from Ellison et al. (2006) 
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9.2 The 8.2kyr event 

 

        A high resolution study of core MD99-2251 was undertaken for both diatom 

assemblage data and ice rafted debris flux. Figure 9.10 presents a synthesis of the data 

from this high resolution study as well as the percentage abundance of Neogloboquadrina 

pachyderma sinistral from MD99-2251 (Ellison et al., 2006). The 8.2kyr is widely 

accepted as the most significant climate perturbation of the Holocene. However it appears 

not to register as a distinct event outside the range of the recorded Holocene variability in 

either the SST, diatom floral assemblage, or the IRD record of MD99-2251. Rather a broad 

cooling is recognised in the diatom flora from 9.5-7kyr.This broad cooling is also observed 

in L009-14 (Berner et al.,2008) from the Reykjanes Ridge. Rohling & Palike (2005) 

observe that where the 8.2kyr event is recognised in the North Atlantic it is present with a 

more broad cooling anomaly identified by the authors as occurring around 8.6 to 8.0kyr. 

Certainly this is not inconsistent with the MD99-2251 SST and floral assemblage record as 

8.6 to 8.0kyr marks the centre of the broad 9.5 to 7kyr cooling already recognised. Some 

possible correlation may be drawn between the pattern of abundance of Sub Polar flora 

during the interval 8-8 to 7.8kyr and the percentage abundance of N. pachyderma sinistral 

with both records showing a general increase between 8.6 and 8.2kyr. This reflects the 

general cooling interval identified by Rohling & Palike (2005). 

 

        Where a discrete event may be recognised in MD99-2251 is in an examination of 

individual sea-ice and cold water species (Figure 9.10). It must be emphasised, however 

that while the percentage presence of a given species may double for the period 7.8 to 

8.8kyr, these changes reflect very small numerical increases as the particular species are 

poorly represented in any Holocene sample of MD99-2251. For example, Thalassiosira 

gravida resting spore exhibits a background presence for the Holocene of 1-3 frustules per 

sample with an increase to 4-7 frustules for period 7.8 to 8.8kyr.However K-means cluster 

analysis of MD99-2291 also recognises a unique floral cluster for the interval 7.8-8.8kyr 

(Figure 6.36). As previously discussed, Ran et al. (2006)  recognises an increase in 

individual sea-ice and cold water floras for the interval 8.3 to 8.1kyr in core MD99-2275 

from the North Iceland shelf.  . 
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        The high resolution interval analysed for IRD in MD99-2251 should identify the fifth 

of the cycles of increased Holocene IRD recognised by Bond et al. (1997). However no 

IRD peak is recognised in core MD99-2251 for the period 8.8 to 7.8kyr instead a low but 

variable input is identified for the entire interval. Studies of Holocene IRD from the 

Norwegian Sea (Moros et al., 2004b) and North Iceland Shelf cores (Andrews et al., 2009) 

conclude that the prevailing oceanographic conditions have a greater influence on the IRD 

signal than the prevailing climate signal. IRD is found at low and fluctuating levels 

throughout the Holocene in these locations. Moros et al. (2004b) identify a peak in IRD 

related to the 8.2kyr event (Figure 10.8). This is not recognised in the Iceland Shelf cores 

(Andrews et al., 2009) or this study. 

 

 
Figure 9.11 Holocene IRD variability from core MD95-2001 from the Norwegian Sea 

indicating an increase in terrigenous input between 6.5 and 3.7 kyr and associated with the 

8.2kyr event. (Moros et al., 2004b) 

(Moros et al., 2004b) 
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        The question remains as to why the 8.2kyr event is not recognised in MD99-2251 in 

the diatom and IRD records, but is clearly recognised in the foraminferal data. The 

difference in diatom and foraminifera generated SSTs may be a function of different 

organisms recording different climate signals. The diatom generated SSTs are widely 

considered to reflect summer values, whereas a winter and summer signal may be 

distinguished from the foraminiferal derived SSTs. It is improbable that the problem is an 

Figure 9.12  Holocene variations in sea-ice and colder water 

diatom species in core MD99-2251 around 7.8-8.8kyr. 
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issue of bioturbation blurring a discrete signal as the diatom and foraminiferal samples are 

taken from the same core. The sensitivity of the different transfer functions may be the key 

issue in the varying records. As has already been indicated, the diatom derived SSTs failed 

to indicate truly low values for the Younger Dryas despite high levels of Arctic and sea-ice 

flora. The same issues may apply to the diatom derived SSTs for the 8.2yrs event. 

Percentage abundances of North Atlantic flora remain high throughout the high resolution 

study interval 8.8 to 7.8kyr at around 20 to 35% , the same as for the Younger Dryas 

(which is robustly identified by the presence of the Vedde Ash).  

 

9.3 Correlation with Holocene Variability in other records 

 

        The question arises as to whether these palaeoceanographic interpretations of the 

variability of diatom floras and ice rafted debris flux for MD99-2251 and MD99-2252 may 

be related to wider climate variability observed for the North Atlantic Holocene and what 

forcing mechanisms may be considered to have caused this variability.  

 

        Previous analyses of core MD99-2251 have examined the relative foraminiferal 

abundances, oxygen isotope ratios and mean sortable silt (Ellison et al., 2006), as well as 

Magnesium/Calcium ratios (Farmer et al., 2008). Percentage abundances of the planktonic 

foraminifera Neogloboquadrina pachyderma sinistral, a cold water indicator and δ
18

O 

ratios in Globigerina bulloides, indicate a relatively stable Holocene climate with the 

exception of the 8.2kyr event (Figure 9.10). This is clearly significantly different from the 

results of this study. The Mg/Ca ratios in contrast show distinct temperature variations 

through the Holocene (Figure.9.11). An abrupt warming at the onset of the Holocene is 

followed by an increase in temperatures until around 9.5kyr. There is then a broad stable 

cool period until around 3.5kyr when temperatures show a stepped increase. While the 

Mg/Ca data for MD99-2251 therefore reflects the greater variability in temperatures shown 

in the diatom analyses, the timing and magnitude of those variations differs significantly. 

The onset of the broad cooling in the Mg/Ca record may be considered synchronous with 

the onset of the 9.5-7kyr cool period indicated in the diatom abundance data. However 

neither of the foraminiferal investigations for core MD99-2251 reflect the significant 

warming indicated in the diatom analyses from 7-5kyr.  
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        The diatom temperature trends shown in this study show a greater correlation with 

other diatom records from adjacent cores from the Reykjanes Ridge; L009-14 (Andersen et 

al. 2004a; Berner et al. 2008) and DS97-2P (Witak et al., 2005). However even between 

these records there is a notable variation in the percentage abundances of Thalassiosira 

oestrupii (the key North Atlantic Current indicator) between these Reykjanes Ridge cores. 

In this study the percentage abundance of Thalassiosira oestrupii remains consistently 

around 20-35% of the total flora with a mean of 28.5% in MD99-2251 and 31% for MD99-

2252 and a maximum abundance of 53.7% at around 6.1kyr in the MD99-2251 record. 

Although no absolute percentage data are available for the abundance of Thalassiosira 

oestrupii in L009-14, the percentage abundances of the North Atlantic Assemblage, which 

is dominated by Thalassiosira oestrupii, vary from around 20 to 35% with the mid 

Holocene maximum in the North Atlantic assemblage for L009-14 having values 

approaching 80% (labelled as Factor 2 in Figure 9.6). This contrasts with the record 

obtained from core DS97-2P, recovered from almost exactly the same location as core 

L009-14, where the percentage abundance of Thalassiosira oestrupii varies between only 5 

and 20%. These differences are interpreted as reflecting a high sensitivity of the diatom 

Figure 9.13  Holocene variations in the relative abundance of the planktonic foraminifera 

Neogloboquadrina pachyderma sinistral and Mg/Ca ratios measured for Globigerina 

bulloides in core MD99-2251. Lower Mg/Ca ratios reflect colder calcification 

temperatures. From Farmer et al. (2008). 
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flora to the position of the Irminger Current even across the restricted location of the 

Reykjanes Ridge. 

 

        Other diatom records from the Icelandic shelf and Nordic Seas (Andersen et al., 

2004b; Justwan et al., 2008) reveal a different pattern of sea surface temperature 

development during the Holocene than the Reykjanes Ridge diatom records (Figure 9.3). 

This suggests that diatom records may be best used as regional rather than global indicators 

of climate variability, recording changes in diatom flora as a proxy for changes in surface 

water circulation patterns. In support of this argument is the fact that neither the Reykjanes 

Ridge cores or those from the Iceland Shelf and Nordic seas considered in this study 

appear to record the 8.2kyr event as a significant climate Holocene perturbation within the 

scale of the overall Holocene variation. While cooling is recorded in the Reykjanes Ridge 

cores for the period approximately 9.5 to 7kyr there is no discrete event recorded around 

8.2kyr that does not fall within the range of the general Holocene variability for the cores. 

The Nordic Sea and Icelandic Shelf cores appear to be registering maximum Holocene 

temperatures for the period 10.5 to 4kyr.  

 

         The 8.2kyr event is best identified in these records in a detailed study of individual 

sea-ice and cold water species such as Fragilariopsis oceanica and Thalassiosira gravida 

resting spore. These increases are recorded in both core MD99-2275 from the Icelandic 

shelf (Ran et al., 2006) and in MD99-2251 (Figure 9.8). The 8.2kyr has been linked to 

catastrophic discharges of meltwater from proglacial lakes Agassiz and Ojibway, 

associated with the decaying of the Laurentide Ice Sheet. These meltwater pulses caused 

cooling and freshening of surface water, a significant reduction in North Atlantic 

Deepwater formation causing a slow down of the meridional over turning circulation 

(Rohling & Palike, 2005, Alley & Agustsdottir, 2005; Ellison et al., 2006). It is possible to 

hypothesise that fresher surface waters could result in the increased formation of sea-ice, as 

fresher water freezes at a lower temperature. This might explain the increase in sea-ice 

forms for this interval, although it has to be noted that the actual numerical increases are 

very low and in the region of less than five to less than ten frustules per sample. It would 

be useful to analyse the fresh water diatom species from the MD99-2251 to see if there is 

any significant increases in occurrence for the 8.8 to 7.8kyr interval.  
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Figure 9.14 MD99-2251 7.8-8.8kyrs study. Abundance per gram of IRD 

lithologies and total IRD per gram. No clear peak in IRD input is identified 

related to the 8.1kyr IRD peak of Bond et al. (1997) 
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        Berner et al. (2008) recognise an anticorrelation between solar radiation proxies (
14

C 

production rate and 
10

Be flux) and cooling events recorded in L009-14, indicating an 

underlying forcing of changes of solar insolation for the Holocene.  No such correlation is 

observed for MD99-2251. A cycle of increased IRD input for the Holocene has also been 

identified (Bond et al. 1997) and linked to solar forcing. These IRD cycles are not 

recognised in this study. A high resolution investigation of the 8.8-7.8kyr interval revealed 

a prevailing fluctuation in IRD input, but no increase related to the 8.1kyr peak identified 

by Bond et al. (1997) (Figure 9.12). The hypothesis that IRD flux in the Holocene is the 

result of prevailing oceanographic conditions (Moros et al., 2006; Andrews et al., 2009) 

appears to best explain the data from this study.  It is suggested that the dominance of 

warmer currents over the core site for the time period study had a stronger influence on 

IRD flux than the wider climate cooling. The diatom data for this interval indicates a 

predominance of North Atlantic Current flora.  

          Berner et al. (2008) also identify a correlation between Holocene cooling events in 

L009-14 and changes in North Atlantic deep-water (NADW) formation, arguing a strong 

coupling between the surface and deep ocean variability. As previously discussed there has 

not always been an exact correlation between the fluctuations of Holocene NADW as 

recorded by different palaeoproxies (Oppo et al., 2003, Hall et al., 2004), the relative 

strength of the North Atlantic Current over the core site appears to have the strongest 

influence on the diatom floras from 9.5kyr to the present. This strength of the surface 

currents is strongly influenced by the strength of deep water currents. Hall et al. (2004) 

recognise a strongest influence of the North Atlantic Current form around 4.8 to 8kyr 

which would coincide with the maximum temperatures recognised in MD99-2251 diatom 

generated SSTs.  
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9.4 Summary 

 

        This study presents a multiproxy reconstruction of the Holocene Sub Polar North 

Atlantic from diatom abundance data, ice rafted debris flux and stable isotope analysis of 

foraminifera. Two marine cores are studied, MD99-2251 which extends for the entire 

Holocene and MD99-2252 for the last 7.2kyr. The cores are sampled at least 250yr 

resolution and decadal resolution for a study of the 8.2kyr event. Diatom reconstructed sea 

surface temperatures indicate a highly variable early Holocene, a broad cooling from 9.5 to 

7kyr, a warming from 7kyr to 5kyr and a cooler more stable late Holocene. Two transfer 

functions were used to analyse the diatom abundance data. The WAPLs transfer function 

with a Nordic sea based core top data set gave higher SST estimates than would be 

expected for the Holocene North Atlantic. A regionally based data set was constructed 

from Sub Polar and northern North Atlantic core tops and the simpler Parks Index transfer 

function applied. Despite the less sophisticated mathematical procedure, the Parks Index 

transfer function gave a better estimate of Holocene SSTs according to World Ocean Atlas 

values (Levitus & Boyer, 1994). This result suggests that regional constraint of a transfer 

function is of more importance than the complexity of the mathematical technique.  

 

        The SST estimates were robustly repeatable between the two cores and also strongly 

reflect diatom based SST estimate from an adjacent core, L0009-14 form the Reykjanes 

Ridge (Berner et al. 2008). Diatom derived SSTs from the northern North Atlantic and 

Nordic Seas however (Andersen et al., 2004b; Justwan et al., 2008) show different patterns 

of Holocene variability suggesting that the diatom derived SSTs reflect a regional rather 

than wider climate signal. The diatom derived SSTs from MD99-2251 also differ from the 

temperature estimates derived from the same core from stable isotope and Mg/Ca ratios 

from planktonic foraminifera (Ellison et al. 2006; Farmer et al. 2008). The most probable 

explanation for this is that the two groups of organisms are registering different climate 

signals. It is possible to derive both winter and summer SST signals from foraminiferal 

analysis, whereas the diatoms are considered to reflect a summer SST signal. However it 

must also be noted that the diatom derived SSTs for MD99-2251 fail to record truly low 

temperatures for the Younger Dryas, the coldest interval in the study, and so the difference 

in foraminfera and diatom derived estimates may be a result of difficulties with the diatom 

SSTs in registering very low temperatures. 
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        Another analysis undertaken on the diatom floras was to relate assemblage groupings 

of floras to surface currents using factor analysis. This type of study has been undertaken 

by a number of authors (Koç & Schrader, 1990; Jiang et al., 2001; Andersen et al. 2004a). 

Palaeoceanographic reconstructions may be made on the basis of the relative abundance of 

these assemblage flora.  MD99-2251 may be seen to have a truly Arctic flora at the 

transition from the Younger Dryas to the Holocene. Sub Arctic and North Atlantic floras 

then remain the two dominant assemblages, with North Atlantic floras dominant during 

periods when SSTs are higher, such as the 7 to 5kyr interval . 

 

        The early Holocene (11.5 to 9.5kyr) in core MD99-2251 is best understood when 

considering the third analysis of diatom abundance data, the relative abundance of 

individual species. This interval is punctuated by a number of near monospecific peaks of 

pennate diatoms, chiefly Rhizosolenia styliformis/borealis. Peaks in Rhizosolenia spp. have 

been associated with open ocean fronts (Yoder et al., 1994; Kemp et al. 2006). In this 

instance the peaks are interpreted as indicating the proximity of the Sub Arctic Front 

(SAF). The highly variable early Holocene is interpreted as responding to strong shifts in 

surface circulation with the continued break up of the Laurentide ice sheet and migrations 

of the SAF. Similarly considering the distribution of individual diatom flora best reflects 

the response of MD99-2251 to the 8.2kyr event. Colder species associated with the East 

Greenland current such as T.gravida vegetative are in higher abundance (Figure 9.15). 

 



202 

 

 

 

 

 

 

 

 

 

 

        The SSTs indicate a broad cooling from 9.5 to 7kyr and the floral assemblage 

analyses show an increase in Sub Arctic flora for the same interval. The IRD record shows 

no distinct peak related to the event in correspondence to the IRD peak at 8.1kyr identified 

in North Atlantic sediments by Bond et al. (1997). However analysis of the relative 

abundance of sea-ice and cold water forms indicates a distinct peak in abundance from 8.8 

to 7.8kyr. It is hypothesised that the increase in sea-ice forms may be related to an increase 

in sea ice formation as a result of surface freshening from the catastrophic discharges of 

meltwater from proglacial lakes Agassiz and Ojibway. It is concluded therefore that the 

diatom palaeoproxies employed in this study best reflect variations in surface hydrography 

for the Holocene, particularly the strength of the Irminger Current over the core sites, the 

migration of the Sub Artic Front and sensitivity of diatom floras to the presence of sea ice.  

Figure 9.15 indicating the possible relative strength of surface currents influencing the core sites 

MD99-2251 and MD99-2252 for the early Holocene (11-5-9.5kyr) The East Greenland current 

is shown as stronger with thick green arrows. Diatom species abundance counts show an 

increase in taxa associated with the East Greenland current during this interval. Core sites 

MD99-2251 and MD99-2252 may also have been have been periodically adjacent to the Sub 

Arctic front causing stratification in the water column and parted increases in individual taxa, 

notably R.styliformis/borealis during the early Holocene. 
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       The mid and late Holocene for core MD99-2251 may be understood in terms of the 

relative abundance of the North Atlantic floras indicating the relative strength of the 

Irminger Current, a branch of the warm North Atlantic Current, over the core site. When 

the Irminger Current is strong the North Atlantic floras are dominant and SST estimates 

highest as in the 7-5kyr interval (Figure 6.16). When the Irminger Current is weaker Sub 

Arctic floras are dominant and the SSTs are lower Figure (6.17). This variation in the 

strength of the Irminger Current may also be correlated with variations in North Atlantic 

deep water  (NADW) indicating a strong coupling between surface and deep water 

circulation. 

 

Figure 6.16 indicating the possible relative strength of surface currents influencing the core 

sites MD99-2251 and MD99-2252 for the mid Holocene (5-7kyr) The North Atlantic and 

Irminger currents are shown as stronger with thick blue arrows. Diatom species abundance 

counts show an increase in taxa associated with these current during this interval especially 

T.oestrupii which exhibits its highest abundances around 6kyr when sea surface temperature 

estimates are highest. 
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Figure 6.17 indicating the possible relative strength of surface currents influencing the core 

sites MD99-2251 and MD99-2252 for the late Holocene (5kyr to present) The North Atlantic, 

Irminger current, and East Greenland currents are shown as equally influential with thick blue 

and green arrows. Diatom species abundance counts show a mix of both Sub Arctic taxa in this 

interval 
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    Chapter Ten  

Conclusions 

 

     “We must always remember with gratitude and admiration the 

first sailors who steered their vessels through storms and mists, and 

increased our knowledge of the lands of ice... 

 

Roald Amundsen 
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10.1 Chapter Ten Conclusions 

 

        Diatom assemblage data have been shown to be a powerful means of reconstructing past 

sea surface temperatures. In regions where they are the dominant organisms and where the 

foraminifera fauna become almost monospecific, with populations constituting over 95% 

Neogloboquadrina pachyderma sinistral, analysis of diatom floras can be particularly useful 

in constraining subtle temperature changes not recorded by the foraminifera.  

 

        However the sensitivity and accuracy of the temperature reconstructions appears to be 

highly dependant upon the constraints on the regional data set. The results discussed in 

Chapter eight of this study indicate a 2-3
o
C difference between SST estimates derived from a 

Nordic Sea dataset and a regionally focused northern North Atlantic dataset. Diatom derived 

sea surface temperatures also appear to give a regional rather than global signal, related to 

regional surface hydrography. 

 

        The tendency of certain diatom flora to bloom in response to conditions of ocean 

stratification can cause difficulties for the reconstruction of sea surface temperatures from 

diatom assemblage data. A single species may constitute over 50% of the total flora. In these 

circumstances the diatom flora is unlikely to be responding primarily to temperature but to 

ocean nutrient conditions. However these monospecific floral blooms may be a useful 

palaeoceanographic indicator of the proximity of an open ocean front. 

 

        Perhaps a more useful form of analysis of diatom floras, other than SST reconstructions, 

is the identification of groups of flora strongly associated with different water masses or 

currents. It is then possible to reconstruct patterns of surface circulation by applying these 

floral grouping down core. A number of such analyses have been presented in this study. A 

series of issues arise with this form of analysis however; as a result of these groupings being 

delineated by factor analysis of different data sets the choice of species selected as 

representative of a particular water mass or current can be inconsistent between studies. The 
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identification of water masses and currents also may be inconsistent and localised, for 

example the East Icelandic Current assemblage of Jiang et al. (2001). One drawback of this is 

that it becomes difficult to compare assemblage based studies without close examination of 

the original raw data. Another problem with these analyses is that in many cases an individual 

species may be identified as being associated with more than one water mass or current. In 

such cases a review of all the assemblages can give specious results as the percentage 

abundances of different assemblages represented involve the recounting of certain species. 

 

        The distribution of individual diatom species may also be analysed. However the 

ecological constraints on individual species are sometimes poorly understood consisting 

usually of reports of extant forms in plankton tows and a corresponding general geographic 

distribution. A better understanding of the tolerance of individual species to specific 

temperatures and salinities would allow for more detailed palaeoreconstructions. 
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10.2 Future research 

 

        The development of a more regionally constrained diatom core top data set for the Sub 

Polar North Atlantic would allow for more accurate SST reconstructions from diatom 

assemblages from the region.  

 

        An understanding of how particular floral assemblages related to water masses would 

enable better palaeoclimate reconstructions, specifically the importance of water column 

structure and nutrient availability which may be of more importance than temperature under 

certain circumstances 

 

        A better understanding of the ecological constraints of individual diatom species and the 

extant floral assemblages associated with particular water masses would also greatly assist on 

accurate paleoreconstructions using diatoms. 
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1.1 Biology of  diatoms ii 

  1.1.1   Silica Deposition and Frustule Structure ii 

   1.1.2   Colonial Organisation vi 

1.2      Frustule morphology and terminology vi 
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  1.2.2   Morphology and Terminology vii 

                1.3   Life cycle  x 

  1.3.1   Resting Stages and Resting Spores xi 

         1.3.2   Reproduction              xii 
 

 

1.1 The Biology of  Diatoms 

 

        The diatoms or Bacillariophyceae are unicellular, sometimes colonial algae of the 

phylum Heterkontophyta. The majority of species are photosynthetic autotrophs and as such 

are primary producers. A few species of Nitzchia and Handtzschia are heterotrophs and 

certain authors have recognised forms living as photosynthetic symbiotes. (Schmaljohann & 

Rottger, 1978). The cell is contained within a silica cell wall.  An organic coating covers the 

siliceous components. This coating is made up of two layers, an external membrane and an 

internal diatoteptic layer (von Stosch, 1981). 

 

 

1.1.1  Silica Deposition and Frustule Structure 

 

        The diatom cell secretes a rigid, two part, box-like cell wall of hydrated amorphous 

silica (SiO2 nH2O). This is the characteristic feature of the Bacillariophyceae. The silica is 

deposited within separate vesicles for each wall element. These are known as silica 

deposition vesicles (SDVs). Silica is not absorbed by the cell at a constant rate, but at an 

accelerated rate during growth cycles. The shape and nature of growth from the SDVs 

determines the basic division of diatoms between the centric and pennate forms. In centric 

forms the SDV begins as a small pancake-shaped structure. Ribs radiate out from this central 
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ring as the diatom grows. In pennate forms the SDV begins as a thin long tube. Subsequent 

ribs expand out from this central rib or sternum. (Figure 1.1) While this basic distinction 

between pennate and centric forms has been more recently shown to be of less taxonomic 

significance (Medlin et al., 1996a) it is still widely adopted in the literature. It is important to 

note therefore, that the distinction between centric and pennate forms is determined not by 

the outline of the mature form but by the central area of the diatom frustule (Round et al., 

1990). 

 

 

 

Fig 1.1 Three basic patterns of diatom growth a) centric, ribs radiating from a central ring or 

annulus b) simple pennate, ribs extending from both sides of a central longitudinal sternum c) 

raphid pennate, ribs extending from both sides of a longitudinal element that contains one or two 

slits (raphes). After Round et al. (1990) 
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        In simpler valve forms, silica is deposited in a lattice of primary ribs, growing from the 

central annulus or sternum and joined by shorter lateral ribs (Cox & Ross, 1980). In more 

complex forms an additional layer of silica is deposited parallel or perpendicular the primary 

framework causing the valves to become chambered or loculate. The primary structure may 

form the internal or external portion of the valve. The regularly repeated perforations in the 

valve wall are referred to as the areolae; the patterns of these areolae across the valve, the 

areolation. Areolae that are restricted at one surface of the valve and occluded at the other by 

a thin perforated layer of silica or velum, are called loculate areolae or loculi (Figure 1.2a). 

Areolae that are not restricted at one surface of the valve are poroid areolae or poroids 

(Figure 1.2b). A velum with regular perforations is referred to as a cribia. A velum consisting 

of a solid disc attached by spokes is a rota. A velum consisting of flaps and bars projecting 

from the areola wall. The restricted opening opposite the velum in loculate areolae is the 

foramen (Figure 1.2a). Rows of areolae are referred to as striae, the imperforated areas 

between the striae as interstriae. Areas of the valve that are not perforated by areolae are 

known as hyaline areas (Anonymous, 1975; Hasle & Syvertsen, 1997; Round et al., 1990). 

Recent work has shown that the species specific patterns of silica deposition are genetically 

determined (Kroger et al 2002; Wetherbee, 2002).  

 

 

 

Fig 1.2 Fine structures of the diatom frustule wall: foramen, areolae, velum, loculi and poroids 

a) loculate areolae structure b) poroid areolae structure (Hasle & Syvertsen, 1997). 

a) loculate areolae : loculi 

b) poroid areolae : poroids 
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        Two types of portule may also be precipitated, the fultoportula and the rimoportula (Fig 

1.3). Fultoportulae or strutted processes are found only in the order Thalassiosirales. They 

consist of a tube passing through the silica framework of the valve which is supported by two 

or more buttresses internally. Externally the tube may or may not extrude above the valve 

surface and usually has a simple opening. Internally the opening of the fultoportula is more 

complex, consisting of the main tube aperture and two to five satellite slits or holes. These 

holes or slits are the openings to passages which connect the central tube to the inside of the 

cell (Fig 1.3c). Round et al. (1990) recognises three main types of fultoportulae: those with 

simple openings and buttresses, those where the satellite passages extend into tubes running 

parallel to the central tube and those with lobed strips of silica in the apertures. The function 

of the fultoportula is uncertain. Herth & Barthlott (1979) showed that it is instrumental in the 

secretion of β-chitin fibrils in certain species. Scmind (1984a) proposed that it may function 

to anchor the protoplasm (Round et al., 1990)  

        

      The rimoportula or labiate process is a more simple structure opening internally as one, or 

rarely two slits and externally as a simple aperture or raised tube. The form of the internal 

lipped process differs being variously raised, flush with the valve surface, having a curved, 

straight or crenulated slit. The arrangement of these processes is often diagnostic. In some 

genera, such as Coscinodiscus, there may be one or more larger rimoportulae, referred to as 

macro-rimoportulae. The rimoportulae have been considered to be important in the secretion 

of the mucilage used to attach cells to each other or the substratum (Round et al., 1990) 

(Figure 1.3a). 

 

        Other processes include the occluded process, a hollow tube which is occluded at one 

end (Figure 1.3b). Spines are closed or solid structures protruding from the valve. These may 

be full spines, spinules or small spines or granules, which are small rounded projections on 

the valve face. Setae are hollow projections of the valve extending beyond the valve margin 

occurring in certain genera such as Chaetoceros. Where the setae are used to join adjacent 

valves in colonial forms, terminal setae may also occur, which facilitate a break in the 

colonial chain (Anonymous, 1975). 
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Fig 1.3 Variations in  frustule portule morphology a) rimoportula or labiate process b) occluded 

process c) strutted process or fultoportula  (Hasle & Syvertsen, 1997). 

 

 

4.1.3 Colonial organisation 

 

        Colonial forms employ a number of different modes of connection between individual 

frustules. These include linkages by siliceous structures such as spines, linkages by mucilage 

pads or stalks, the inclusion of cells within mucilage tubes, envelopes or sheaths and colonies 

held together by threads or filaments of polysaccharide (Round et al., 1990). 

 

 

4.2  Frustule Morphology and Terminology 

 

4.2.1  Introduction 

 

        With the advent of electron microscopy it became possible to identify ever more detailed 

morphology of the diatom frustule. Attempts were therefore made to standardise the 

terminology used to describe the frustule. Notable among these publications were ‘Proposals 

for the Standardization of Diatom Terminology’ (Anonymous, 1975), ‘An Ammended 

Terminology for the Siliceous Components of the Diatom Call Wall’ (Ross et al., 1979), and 

‘A Guide to the Morphology of the Diatom Frustule’ (Barber & Haworth, 1981). Further 

detailed terminologies have been developed specifically for both pennate (Mann, 1978, 1981; 

a. b. c. 
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Cox & Ross, 1981, Williams 1985, 1986) and centric diatoms (Hasle et al 1983; Sundstrőm, 

1986; Rine & Hargraves 1988). As the majority of species in this study are centric, an 

emphasis is placed on describing the morphology and terminology employed for these forms 

rather than for pennate forms. 

 

 

4.2.2 Morphology and Terminology 

 

        Valve outline varies greatly between diatom species. While pennate forms almost 

always exhibit bipolar symmetry, there are also tetrapolar and triradiate forms. Centric forms 

are predominantly circular. They may however maintain rotational symmetry with two or 

more poles, be semi circular, triangular and polygonal forms (Round, 1990).  The diagnostic 

features of the diatom frustule are further defined with respect to the angle from which they 

are viewed (Figure 1.4a). The valve outline in valve view may be determined by the outline 

of the valve face or by the valve face and valve mantle. The valve mantle is the marginal area 

of the valve face distinguished by a slope and also in certain forms by its structure 

(Anonymous, 1975). The dimensions of the diatom frustule may be defined with respect to 

the dimensions of defined planes and axes (Figures 1.4b and 1.4c). 

 

 

 

 
a 
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Figure 1.4 Views, axes and planes of the diatom frustule. a) views b) axes c) planes 

(Hasle & Syvertsen, 1997) 

 

 

 

        The two halves of the diatom cell or valves fit together in a similar manner to a pill box 

or petri dish (Figure 1.5). The larger of the two valves is referred to as the epitheca and the 

smaller the hypotheca. Attached to each of the valves are one or more connecting bands 

known as intercalary bands or copulae. The band immediately adjacent to the valve is 

referred to as the valvocopula and may have a distinct morphology from subsequent 

intercalary bands. The intercalary bands connected to the epivalve constitute the epicingulum 

and those connected to the hypovalve, the hypocingulum. The epicingulum and 

hypocingulum together make up the girdle. The two valves together with the girdle constitute 

the diatom frustule (Hasle & Silvertsen 1997).  

 

b 

c 
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Figure 1.5  Morphology of the diatom frustule (Hasle & Syvertsen, 

1997) 

 

 

        An important diagnostic feature of centric diatoms is the nature of their areolation. 

(Figure 1.6) Tangential areolation occurs where striae form lines across the valve. Where 

these are straight lines the areolation is referred to as linear. Where areolae run in spiralling 

arcs the areolation is referred to as decussate. Radial areolation occurs where the striae run 

from the valve centre to the margin. Fasiculate areolation is areolation that appears to be 

grouped into sections or bundles across the valve. This may occur with striae running parallel 

to the long edge of the bundle or with the longest striae running through the centre of the 

bundle.  

 

        Rhizosolenid centric forms have their own nomenclature which was developed largely 

by Sundström (1986) (Figure 1.7). The process is an elongated section of the valve fitting 

into a groove on the adjacent valve. The otaria are a pair of membranous costae situated near 

or at the base of the process. The claspers are membranous structures which clasp the otaria 

of the adjacent valve.  The contiguous area occurs on the ventral side of the valve and joins 
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the otaria to the claspers, usually has a low marginal ridge and marks the area in contact with 

the adjacent valve (Hasle & Silvertsen, 1997). 

 

 

 

Figure 1.6  Forms of valve striation in centric diatoms a) ‘curvatulus’ type fasiculation: striae are 

parallel to the long edge of the striae bundle b) fasiculation: striae parallel to central long stria 

c) radial striae running from the centre to valve margin with shorter striae inserted. d) linear or 

tangential straight striation e) tangential curved striae. After Hasle & Syvertsen (1997). 

 

 

4.3  Life cycle 

 

        The production of resting spores and the nature of the reproductive cycle, causing both 

an overall reduction in frustle size and the periodic production of auxospores, specialised 

cells developed to restore frustule size in some species, have taxonomic implications in 

diatoms as an individual species may exhibit different size ranges and morphologies.  
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Fig 1.7 Terminology for Rhizosolenid morphology (Halse & Syvertsen, 1997) 

 

 

4.3.1  Resting stages and resting spores 

 

        Diatoms are capable of exhibiting dormancy. In certain species, notably many marine 

centric and some few marine pennate forms, these resting stages result in the formation of a 

morphologically distinct resting spore (McQuoid & Hobson, 1996). In other species, 

predominantly subaerial and freshwater forms, the vegetative cell itself simply becomes 

dormant (Stockner & Lund, 1970). Some resting spores differ only marginally from their 

vegetative form eg Thalassiosora nordenskioeldii (Syvertsen, 1979). In other forms the 

resting spore is so morphologically distinct that it has resulted in it being classified in a 

different genera to the vegetative form (Hargreaves, 1986).  Resting spores, like vegetative 

forms, have two valves. These valves are usually simpler in shape, thicker and less porous 

than those of the vegetative form and often exhibit spines or nodules. They rarely exhibit a 

well-developed girdle (Round et al, 1990).   

 

        There has been limited study on the longevity of resting stages and resting spores. No 

morphologically differentiated marine centric resting spores are known to last longer than 

two years. Survival rates are best in these marine forms in low temperatures and light. 

However, their longevity is limited by anoxic conditions (Hargreaves & French, 1983). The 

reasons for resting spore development are debated. It is general accepted that resting spores 
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are formed as a response to environmental stress. Changes in a number of environmental 

factors have been found to trigger the development of resting spores. These include 

temperature, light intensity, nutrient availability and pH (Round et al., 1990). Nitrogen 

deficiency seems to be the key trigger in most resting spore forming species (Hargreaves & 

French, 1983). In marine forms, it is usually nutrient depletion that induces resting spore 

formation as other environmental variables such as light, temperature and salinity may be 

considered relatively stable (Davis et al., 1980). However, resting spore formation can be 

considered as a response to rapid environmental change as it involves the two mitoses and the 

deposition of two new valves a process for example in Chaetoceros didymium 6-48 h (von 

Stosch et al, 1983). Two main theories prevail, that resting spore formation is employed to 

induce sinking at the end of a diatom bloom when nutrient levels are limited and that resting 

spores are formed as a predation-resistant stage to reduce grazing (Hargreaves & French, 

1983). If resting spores are produced to induce sinking, it is unclear why the morphology of 

the resting spore cell should be so complex. Increased density and sinking rates as this could 

be achieved by simply thickening the vegetative cell and in many cases the resting spore cell 

remains encased in the parent vegetative cell (Round et al., 1990).  Resting spores germinate 

to produce vegetative cells in two ways after dormancy. Where the resting spore includes a 

girdle, the valves form the epitheca for two new vegetative cells eg in Thalassiosira (Hasle & 

Syvertsen, 1997). Where the resting spore has no girdle, the resting spore is shed during the 

production of new vegetative cells eg in Bacteriastrum and Chaetoceros (von Stosch et al., 

1973). 

 

 

4.3.2 Reproduction 

 

        The usual method of reproduction in diatoms is asexual cell division. The valves of the 

parent cell become the epithecas of the daughter cells. Each daughter cell then produces a 

new hypotheca. As a result of this form of cell division, one daughter cell will be the same 

size as the parent cell and the other will be smaller (Figure 1.8). This results in an overall 

reduction in valve size over time (Lee, 1999).  Size reduction is generally slight between 

generations, but over many generations can be significant. Studies on Coscinodiscus 

asteromphalus showed a decrease in valve diameter from 200 to 50μm (Werner, 1978). 
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        As previously noted, size reduction can cause problems with classification especially 

when the potential size range for a particular species is unknown. Furthermore, while in 

centric forms the valve dimensions are little changed by size reduction; in pennate forms 

there can often be a significant alteration in valve outline with size reduction. In general, the 

width of pennate forms decreases proportionately less than the length with each successive 

generation. This leads to a predictable pattern of change in the valve outline of pennates.  

Linear forms become linear-lanceolate, then oval and even circular (Geitler, 1932; Round et 

al., 1990). In some species of diatoms the daughter valves can also differ from the parent in 

their degree of silicification, also leading to difficulties with taxonomy. This has been noted 

to be a consideration in the genus Thalassiosira (Hasle et al 1971). 

 

 

 

Figure 1.8 Changes in frustule morphology with reduction in cell size resulting from asexual 

division. a) the division of one cell to form a chain of eight. Valves 1 and 2 are the epivalve 

and hypovalve of the original cell. b-g show size and shape variations with cell division in a 

number of different forms b)Stictodiscus c) Sellaphora d) Brachysira e) Nitzschia 

f) Epithemia g) Rhoicosphenia A large number of cell divisions are required to form the 

changes from largest to the smallest forms indicated. ( 
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      Sexual reproduction and the formation of auxospores restore valve size in diatoms after a 

period of asexual cell division. The auxospore first forms as an organic wall. A cell sheds its 

silica theca, forming a sphere surrounded by an organic membrane. In some centric genera 

this membrane also contains siliceous scale eg Melosira (Crawford, 1974a). A new diatom 

frustule of maximum size, the initial cell, is formed within the auxpspore. This initial cell 

Figure 1.9  The diatom life cycle, based on the form Stephanodiscus. a) formation of 

motile gametes b) formation of auxospore c) auxospore detaches from original cell d) 

auxospore wall breaks open to reveal initial cell e) first division of initial cell to form two 

normal new hypovalves f) one of the cells produced at stage ‘e’ consisting of a normal 

valve and an initial cell valve g) a cell formed following several divisions of  form ‘f’  

h)-i) vegetative size reduction leading to the smallest cell which gives rise to male or 

female gametes. After Round et al. (1990) 
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may vary morphologically from the normal vegetative cell (Figure 1.9). Auxospores may be 

exogenous, semi endogenous or fully endogenous even within the same species (Figure 1.10). 

This has had taxonomic implications within different forms being identified as different 

species (Hasle & Syvertsen, 1997). Auxospore development usually occurs when the 

vegetative cell has reduced to around one third of its maximum size. This appears to be a 

threshold size beyond which the vegetative cell continues to divide and reduce in size, but 

can no longer create an auxospore (Drebes,1977).  

 

 

 

 

 

 

Figure 1.10 The formation of vegetative cells, resting cells and resting spores 

from a vegetative parent cell for Thalassiosira nordenskioeldii.  (Hasle & 

Syvertesen, 1997) exogenous resting spores are formed externally from the 

parent cell. endogenous resting spores are formed internally from the parent cell. 
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Diatom Taxonomic 

Descriptions 

 

 

 

 

     “That evening Nelson gave us his second biological lecture, 

starting with a brief reference to the scientific classification of 

organisms into Kingdom, Phyllum, Group, Class, Order, Genus, 

Species...” 

 

Robert Falcon Scott  „Journals‟ 
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2.1 Diatom Systematics 

 

        Historic classification schemes for diatoms such as that of Schűtt (1896) were based 

on differences in the morphology of the silica frustule. In the late twentieth century, the 

advent of improved microscopy, both light and scanning electron microscopy and diatom 

culturing, led to a number of revised taxonomies (Ross & Sims, 1973; Simonsen, 1979; 

Gleser, 1985;  Nikolaev, 1988; Round & Crawford, 1981; Round & Crawford, 1984). 

These classification systems vary with respect to the emphasis they place on different 

morphological features but also with respect to reproductive strategies. The fundamental 

division between centric and pennate forms has, until recently, remained central to diatom 

classification systems.  Round et al. (1990) recognised three basic divisions, based on the 

morphology of the silica frustule, the type of reproduction and the plastid morphology; 

Coscinodiscophyceae (centric diatoms), Fragillariophyceae (araphid pennate diatoms) and 

Bacillariophyceae (raphid pennate diatoms). 

 

        Most recent research into RNA (Kooistra & Medlin, 1996; Medlin et al, 1996a; 

Medlin & Kacmarska 2004; Kooistra et al., 2007) has lead to further taxonomic revisions 

based on molecular rather than morphological relationships between species. Medlin et al. 

(1996a) analysed the RNA of thirty taxa from eleven different orders and concluded that 

neither the historically accepted subdivision of diatoms into pennate and centric forms, nor 

the three classes recognised by Round et al. (1990) had significance on a molecular level. 

Instead they proposed the basic subdivision of diatoms into two clades: Clade I consisting 

of the centric diatoms with labiate processes located peripherally in the cell wall, Clade II 

consisting of the pennate diatoms, centric diatoms with central strutted processes and 

bipolar and multipolar centric diatoms with central labiate processes.  Medlin & Kooistra 

(2004) proposed a revision of diatom taxonomy based on this research. This revision 

recognises two divisions of the diatoms (Bacillariophyta) the Coscinodiscophytina and the 

Bacillariophytina and three classes; the Coscinodiscophyceae the Mediophyceae and the 

Bacillariophyceae. They also define which orders of diatoms according to Round et al. 

(1990) should be assigned to each class. This is the taxonomy adopted in this study. 
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Division    Bacillariophyta 

                Subdivision  Coscinodiscophytina 

                                            Class          Coscinodiscophyceae 

                                            Order            Coscinodiscales, Corethrales, 

Rhizosoleniales, Melosirales, Orthpseirales,    

Aulacoseirales, Chrysanthemodiscales, 

Stictocyclales, Asterolamprales, 

Arachnoidiscales, Stictodiscales, 

Ethmodiscales and Leptocylindrales 

                Subdivision            Bacillariophytina  

                                            Class                   Mediophyceae 

                                            Order          Chaetocerotales, Biddulphiales, 

Cymatosirales, Thalassiosirales, 

Triceratiales, Hemiaulales, Lithodesmiales, 

Toxariales and a suspected bipolar centric 

(= Aridissoneales) 

                                           Class   Bacillariophyceae 

                                           Order   Fragilariales, Tabellariales, 

Licmophorales, Raphoneidales, 

Thalassionematales, Rhabdonematales, 

Eunotiales, Lyrellales, Mastogloiales, 

Dictyoneidales, Cymbellales, Achnathales, 

Naviculales, Thalassiophysales, 

Bacillariales, Rhopalodiales and Surirellales 

 

 

Table 5.1 Taxomic subdivisions of diatoms.  

After Medlin &Kooistra (2004). 
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A full list of the taxa encountered in this study is provided below. 

 

Subdivision Coscinodiscophytina 

Class  Coscinodiscophyceae 

Orders  Coscinodiscales, Rhizosoleniales, Asterolamprales 

  

Order Coscinodiscale 

Families Coscinodiscacae, Hemidiscaceae 

 

Family Coscinodiscacae   

Genera Coscinodiscus, Stellarmina 

 

2.1.1 Coscinodiscus 

  Coscinodiscus asteromphalus 

  Coscinodiscus linearis 

  Coscinodiscus marginatus 

  Coscinodiscus radiatus 

  Coscinodiscus occulus-iridis 

     2.1.2 Stellarmina 

  Stellarmina stellaris 

 

Family Hemidiscaceae  

Genera Actinocyclus, Azpeitia, Hemidiscus, Roperia 

 

     2.1.3 Actinocyclus 

  Actinocyclus curvatulus 

  Actinocyclus kutzingii 

  Actinocyclus octinarius 

2.1.4    Azpeitia 

  Azpeitia africana 

  Azpeitia neocrenulata 

  Azpeitia nodulifera 
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     5.2.5 Hemisdiscus 

  Hemidiscus cuneiformis 

5.2.6 Roperia 

  Roperia tesselata 

 

Order Rhizosoleniales 

Family     Rhizosoleniaceae 

Genera Proboscia, Rhizosolenia 

 

5.2.7 Proboscia 

  Proboscia alata 

5.2.8 Rhizosolenia 

 Rhizosolenia begonii 

 Rhizosolenia borealis 

  Rhizosolenia hebetata hebetata 

  Rhizosolenia hebetata semispina 

  Rhizosolenia styliformis 

 

Order Asterolamprales 

Family Asterolampraceae 

Genera Asteromphalus 

 

    5.2.9 Asteromphalus 

  Asteromphalus robustus 

 

 

Subdivision Bacillariophytina 

Classes  Mediophyceae, Bacillariophyceae 

 

Class  Mediophyceae 

Orders  Chaetocerotales, Thalssiosirales 

 

Order  Chaetocerotales 
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Family   Chaetocerotaceae 

Genera  Bacteriastrum 

5.2.10  Bacteriastrum 

  Bacteriastrum hyalinum 

 

Order  Thalassiosirales 

Family          Thalassiosiraceae 

Genera  Bacteriosira, Porosira, Thalassiosira 

 

5.2.11  Bacteriosira 

  Bacteriosira fragilis 

5.2.12  Porosira 

  Porosira glacialis 

5.2.13 Thalassiosira 

 Thalassiosira angulata 

 Thalassiosira auguste-lineata 

 Thalassiosira eccentrica 

  Thalassiosira ferelineata 

 Thalassiosira gravida 

 Thalassiosira hyalina 

 Thalassiosira lineata 

 Thalassiosira nodulineata 

 Thalassiosira nordenskioeldii 

 Thalassiosira oestrupii 

 Thalassiosira pacifica 

 Thalassiosira trifulta 

 

 

Class Bacillariophyceae 

Order Bacillariales, Fragilariales, Thalassionematales  

 

Order  Bacillariales 

Family Bacillariaceae  
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Genera Alveus, Fragilariopsis, Nitzschia 

 

     5.2.14   Alveus 

  Alveus marina 

 5.2.15 Fragilariopsis 

  Fragilariopsis atlantica 

  Fragilariopsis cylindrus 

  Fragilariopsis doliolus 

  Fragilariopsis rhombica 

  Fragilariopsis oceanica 

5.2.16 Nitzschia 

  Nitzschia braarudii   

  Nitzschia bicapitata 

  Nitzschia kolazczekii 

 

Order Fragilariales 

Family Fragilariaceae 

Genera Synedra 

   

5.2.17  Synedra 

  Synedra sp 

 

Order Thalassionematales 

Family Thalassionemataceae 

Genera    Thalassionema, Thalassiothrix 

 

5.2.18 Thalassionema 

 Thalassionema nitzschoides 

 Thalassionema nitzschoides var. parva  

5.2.19 Thalassiothrix 

  Thalassiothrix longissima 
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Subdivision Coscinodiscophytina 

Class  Coscinodiscophyceae 

Orders  Coscinodiscales, Rhizosoleniales, Asterolamprales 

 

Order  Coscinodiscales 

Family  Coscinodiscacae 

Genera      Coscinodiscus, Stellarmina 

 

 

2.1.1     Coscinodiscus  Ehrenberg 1839 amend. Hasle & Sims 1986 

 

Lectotype:   Coscinodiscus argus  Ehrenberg   

 

Generic Characteristics: Cells are discoid and vary from coin to barrel shaped. In some 

forms the valve mantle is deeper on one side. The valves are saucer shaped to petri-dish 

shaped. Valve faces are flat or sometimes centrally depressed. Extant forms are round in 

outline, but triangular and ovoid fossil forms occur. Areolae radiate from a central annulus 

and may be fasiculated or grouped in decussating arcs. This type of areolation necessitates 

the presence of incomplete striae. Sectors of striae are separated by more or less distinct 

unperforated radial areas (wide interstriae, hyaline spaces or lines). The valve centre is 

characterised by either a hyaline area or rosette of central larger areolae. The valves are 

loculate, with complex external vela and internal foramina which are often rimmed and 

smaller on the valve mantle. There is a marginal ring of smaller labiate process and two 

larger marginal labiate processes (macro-rimoportule) (Round et al., 1990; Hasle & 

Syvertsen, 1997). 

   

Characteristics distinguishing species: The cell shape and diameter. The valve shape. The 

pattern and size of areolae. The height of the mantle. The shape of central the area. The 

presence or absence of hyaline lines. The shape of and distance between larger processes. 

The distance between the smaller marginal processes. The presence or absence of 

processes on the valve face. The chloroplast outline. Summarised from Hasle & Syvertsen 

(1997). 
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Discussion: Coscinodiscus has historically been one of the largest marine planktonic 

genera. However, recent studies have transferred many of these species to other genera 

especially Thalassiosira, Azpeitia and Actinocyclus. Hasle & Sim (1986) suggested 

clarification of the generic characteristics of Coscinodiscus based on the morphology of the 

type species C.argus. Hasle & Lange (1992) note a number of problems with the 

identification of Coscinodiscus species. They suggest that for many Coscinodiscus species 

the original descriptions are insufficient to enable accurate identification of closely related 

forms and that species are identified on the basis of tradition rather than strict 

morphological data. Many fossil species described by Ehrenberg have been based on types 

and illustrations of valve fragments. Holotypes have not always designated for the original 

descriptions. Certain authors have solved this problem by assigning lectotypes, such as 

Boalch (1971) for C.concinnus W.Smith and C.granii Gough. Many species have been 

identified from the same type localities so recollecting original material may not be 

helpful. Ehrenberg (1844) described fifteen different Coscinodiscus species from 

Richmond Virginia. They therefore attempt to clarify the descriptions of five 

Coscinodiscus species with respect to recognisable morphological features (Halse & 

Lange, 1992). 

 

 

Coscinodiscus asteromphalus   Ehrenberg 1844a 

 

Description: Girdle view: valves are slightly depressed at the centre with a gently sloping 

mantle. There are two rows of areolae on the valve mantle. Valve view: The valves are 

circular, slightly convex, 80-400µm in diameter. Markov (1993) refers to the areolation 

pattern as radial with secondary decussate rows, Hasle & Syvertsen (1997) as decussate, 

with no hyaline lines. There are 3-5 areolae in 10µm near the centre of the valve and 6-7 at 

the valve margin. The centre of the valve has a rosette of somewhat larger areolae. The 

cribia have few pores with a larger ring of pores on the outside. There are two rows of 

areolae on the valve mantle. There is one ring of labiate processes close to valve margin,  

4-6 in 10μm with 4 areolae between processes. The larger labiate processes are 120-135˚ 

apart. The outer opening of the larger processes is circular, the inner opening a prolonged 

slit coiled into spirals (Markova, 1993; Hasle & Syvertsen 1997). 
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Discussion: C.asteromphalus may be distinguished from C.concinnus by the distinct 

central rosette of areolae, smaller areolae and a deeper mantle (Hasle & Lange, 1992). 

C.asteromphalus may be distinguished from C.argus and C.centralis by having the ring of 

labiate processes closer to the margin (Hasle & Syvertsen, 1997). 

 

 

Coscinodiscus marginatus  Ehrenberg 1844a 

 

Description: Girdle view: Valves are flat or nearly flat with a straight or deeply sloping 

mantle. There are two rows of large, elongated vertical pores on the mantle. Valve view: 

Valves are circular, 35-200µm in diameter.  There is no central rosette. Areolae are coarse 

and in irregular radial rows with no hyaline lines, 1-3 areolae in 10µm at the centre and 2-4 

near the margin. The cribia are in rings of pores with an outer ring of larger pores. There is 

one ring of marginal labiate processes, 2 in 10µm with 2 areolae between each process. 

The larger labiate processes have a circular or elongate external opening and an internal 

opening which is a short stalk with a strongly curved slit. Cribia resemble many pointed 

stars or flowers (Markova, 1993; Hasle & Syvertsen, 1997). 

 

Discussion: C.marginatus is distinguished by its very coarse areolation  

 

 

Coscinodiscus oculus-iridis 

 

Description: Valves are circular with a concave centre. Areolation is radial with shorter 

rows near the margin. There are 3-4 areolae in 10µm at the centre and 5-6 near the margin. 

The centre of the valve is hyaline or has a few larger areolae. Cribia have 4-9 (usually 7-8) 

pores arranged in a small flower shape. There are two rows of small elongate vertical 

areolae on the valve mantle.  

 

Coscinodiscus radiatus   Ehrenberg 1841a 

 

Description: Valves are circular, 30-180µm in diameter. In girdle view, valves are flat in 

with a concave centre and two rows of slightly elongate areolae on the valve mantle.  
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Areolation is characteristically regularly radial. Hasle & Syvertsen (1997) note that it may 

also sometimes appear indistinctly decussate. There are 3-4 areolae in 10μm at the centre 

and 5-6 near the margin. There are no hyaline lines. There is an indistinct central rosette of 

slightly larger areolae. One ring of small marginal labiate processes at the point of origin of 

incomplete striae 2-3 in 10µm and 3-4 areolae apart. There are two larger labiate processes 

135˚ apart with large circular external openings and opening with long curves flattened 

tubes internally (Markova, 1993; Hasle & Syvertsen, 1997). 

 

 

2.1.2  Stellarima  Hasle & Sims 1986 

 

Type:  Stellarima microtrias (Ehrenberg) Hasle & Sims 

Basionym: Symbolophora? microtrias Ehrenberg 

Synonyms: Cosconodiscus symbolophorus Grunow 

  Coscinodiscus furcatus Karsten  

  Symbolophora furcata  (Karsten) Nikolaev 

 

Generic Characteristics: Valves are circular and convex. There is no distinct mantle. 

Areolae are small, loculate, opening internally with domed closing plates and externally 

simply or as cribia.  Areolation is radial and fasiculate, striae are uniseriate. There are 1-15 

labiate processes located in a ring at the centre of the valve, opening externally with slit 

like openings. There are no marginal processes (Round et al, 1990; Hasle & Syvertsen 

1997). 

 

Characteristics distinguishing species: The convexity of valve, whether the areolation is 

fasciculate or furcate, the size of the areolae and the number of areolae per sector (Hasle & 

Syvertsen, 1997). 

 

Discussion: Coscinodiscus stellaris and C.stellaris var. symbolophora were moved to the 

genus Coscinosira on the basis of the central labiate processes. Coscinosira was then 

moved to the genus Thalassiosira on the basis of having strutted processes. Stellarmina 

was therefore proposed as a new genus (Hasle & Sims, 1986). 
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Stellarima stellaris   Roper 

 

Basionym: Coscinodiscus stellaris   Roper 

 

Description: Valves are lightly silicified, circular and convex, 40-115µm in diameter. 

Areolation is radial and fasiculate, with 18-22 striae in 10µm and 15-16 areolae in 10µm. 

There is a central ring of slit-like labiate processes and no marginal processes (Hasle & 

Syvertsen, 1997). 

 

Ecology: warm water region to temperate, planktonic (Hasle & Syvertsen, 1997). 

 

 

Family Hemidiscaceae  

Genera Actinocyclus, Azpeitia, Hemidiscus, Roperia 

 

 

2.1.3  Actinocyclus   Ehrenberg 1837 

Lectotype: Actinocyclus octonarius Ehrenberg   

 

Generic Characteristics: The valve outline is circular and the valve mantle deep and 

straight or stepped thus forming barrel-shaped cells. The valve face is planar or 

concentrically waved with a corrugate surface. The areola pattern is usually fasciculate, 

with a marginal zone often denser in areolation and/or aereolated in a different direction to 

the striae. The central annulus varies in size and presence. There is a marginal ring of 

labiate processes, but no labiate process in the valve centre. The single marginal 

pseudonodulus is variable in size (Round et al., 1990; Hasle & Syvertsen, 1997). 

 

Characteristics distinguishing species: The type of fasciculation. The position of the labiate 

processes, whether the annulus and pseudonodulus are distinct or indistinct and the 

position of pseudonodulus (Hasle & Syvertsen, 1997). 

 

Discussion: Simonsen (1975) defined the pseudonodulus as the key diagnostic feature in 

all Hemidiscaceae; all genera having a single marked pseudonodulus on each valve. 
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Actinocyclus being further defined as the genus in this family with a circular valve outline. 

As a result of this a number of species were transferred to the genus Actinocyclus on 

identification of a pseudonodulus with improved microscopy. Watkins and Fryxell (1986) 

however questioned the primary importance of the peseudonodulus as a diagnostic 

taxonomic feature in Actinocyclus. 

 

 

Actinocyclus curvatulus  Janisch 1878 

 

Synonyms:   Coscinodiscus curvatulus var subocellatus Grunow 

                  Actinocyclus subocellatus (Grunow) Rattray 

 

Description: Valves circular, 13-160µm in diameter. The areolation is radial and 

fasciculate with a marginal process at the end of each row of fascicles. Radial areola rows 

are parallel to edge (side) row with 8-18 areolae in 10µm. The areolae decrease in size 

towards the margin. There are10-12 marginal processes in 10µm. The central annulus is 

irregular in shape. A small irregular pseudonodulus is located close to the valve mantle. 

The fasiculate areolation is diagnostic in Actinocyclus curvatulus (Hasle & Syvertsen, 

1997). 

 

Ecology: Cosmopolitan (Hasle & Syvertsen, 1997). 

 

 

Actinocylclus kutzingii   A.Schmidt 1878 

 

Basionym:  Coscinodiscus kutzingii  A.Schmidt 1878 

 

Description: Valves are circular, 30-70µm in diameter. The areolation is fasiculated with 

secondary, curved rows. There are 7-8 areolae in 10µm. Radial areola rows are parallel to 

central row, with a marginal process at end of the central row of each fascicle. A.kutzingii 

has a fairly wide marginal zone with small areolae in two crossing systems. The central 

annulus is small. The pseudonodulus is very small and obscure (Hasle & Syvertsen, 1997).
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Ecology: Known from North Atlantic coastal waters (Hasle & Syvertsen, 1997). 

 

 

Actinocyclus octonarius  Ehrenberg 

 

Synonym: Actinocyclus ehrenbergii  Ralfs in Pritchard 

 

Description: Valves are circular, 50-300µm diameter with 6-8 areolae in 10μm. The 

areolation is distinctly fasciculate; the fascicles being separated by pronounced complete 

striae running from margin to central annulus. Fasiculation is further accentuated by 

hyaline areas adjacent to complete striae giving the appearance of the valve face being 

divided into distinct segments. There is a wide marginal zone with smaller areolae than on 

valve face. Processes positioned at the edge of end rows. The pseudonodulus is large and 

positioned on the junction of the valve face and mantle (Hasle & Syvertsen, 1997). 

 

Discussion: Hustedt (1930) identifies four subspecies of A.octinarius based on the size and 

development of the central annulus, the width of the marginal zone and the amount of 

hyaline spaces (Hasle & Syvertsen, 1997). 

 

Ecology: Cosmopolitan (Hasle & Syvertsen, 1997). 

 

 

2.1.4 Azpeitia  M.Peragallo in Tempére & Peragallo     

 

Type:    Azpeitia temperi  M. Pergallo 

   

Generic Characteristics: Valves are generally circular (although triangular and 

multiangular fossil forms occur) and flat. Areolae are in radiating rows. The valve mantle 

is shallow but distinct, (Round et al., 1990) with a clear difference in areola pattern 

between the valve face and the mantle. A large, nearly central labiate process occurs 

usually on the edge of the central annulus, with a ring of large labiate processes at the edge 

of the valve mantle (Hasle & Syvertsen, 1997).  The central labiate process often has a 

distinct raised external tube or nodule (Round et al., 1990). 
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Characteristics distinguishing species: The valve face areolation, the pattern and size of 

areolae, the position and shape of annulus and the size of labiate processes (Hasle & 

Syvertsen, 1997). 

 

Discusssion: Fryxell et al. (1986b) placed Azpeitia in the Hemidiscaceae on the basis of 

some fossil forms having a pseudonodulus. 

 

 

Azpeitia africana  (Janisch ex A.Schmidt) G.Fryxell & T.P. Watkins in Fryxell et al.  

 

Basionym: Coscinodiscus africanus  Janisch ex A.Schmidt  

 

Description: Valves are circular to slightly elliptical, 30-90µm in diameter. Distinct 

external marginal slits lead to labiate processes. The central labiate process is on the edge 

of an eccentric circle of linearly arranged areolae. Areola rows radiate from the central 

annulus, in larger specimens in spiralling rows. 5-10 areolae in 10µm (Hasle & Syvertsen, 

1997). 

 

Ecology: Warm water region (Hasle & Syvertsen, 1997). Found in Indian Ocean sediments 

(Schrader, 1974). Tropical East Pacific (Barron, 1980b) and in Gulf Stream core rings, 

Central Pacific and Gulf of Mexico plankton tows (Fryxell et al., 1986b). 

 

 

Azpeitia nodulifera   (A.Schmidt) G.Fryxell & P.A. Sims in Fryxell et al.        

 

Basionym:  Coscinodiscus nodulifer  Grunow 

 

Description: Valves are heavily silicified, flat, 20-102µm in diameter. The mantle is 

vertical. Areolation is radial with mixed large and small areolae. The mantle is vertical. 

(Halse & Syvertsen, 1997) The distinct ‘nodule’ on the valve surface is a nearly central 

labiate process with an external tube. The areola next to the process is notably depressed 
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and indicates where the process of the adjacent valve would have fitted (Fryxell et al., 

1986b). 

 

Discussion:  A.nodulifera has been confused with A.baronii as both species also have a 

distinct central nodule. (Fryxell et al., 1986b) 

 

Ecology:  Warm water region (Hasle & Syvertsen, 1997).  Found in plankton tows from 

the Central Pacific, Gulf of Mexico and Northwest Atlantic in Gulf Stream warm core 

rings (Fryxell et al., 1986b).  

 

 

Azpeitia neocrenulata  (VanLandingham) G.Fryxell and T.P.Watkins in Fryxell et al. 

 

Basionym: Coscinodiscus neocrenulatus Van Landingham 1968 

Synonym: Coscinodiscus crenulatus Grunow 1884 

 

Description: The valves are circular, 13-48µm in diameter. Areolation is fasiculate with 

radial rows of areolae usually parallel to an edge row, with a depression on the mantle at 

the edge of each row, 9-11 areolae in 10µm.  Marginal labiate processes, with one large 

labiate process at the edge of a central annulus. The mantle is extremely fine in structure 

with 20 striae in 10µm (Hasle & Syvertsen, 1997). The distinct feature of A.neocrenulata 

is that the depressions on the valve margin adjacent to the labiate processes, give the valve 

outline a scalloped or crenulated appearance (Fryxell et al., 1986b). 

 

Ecology: Warm water region (Hasle & Syvertsen, 1997).  Found in the tropical Indian 

Ocean (Schrader, 1974), the tropical Eastern Pacific (Barron, 1980b) and Gulf of Mexico, 

Central Pacific and Gulf Stream Core Ring in the North Atlantic (Fryxell et al., 1986b). 

 

 

2.1.5 Hemidiscus  Wallich 1860 

 

Type: Hemidiscus cuneiformis Wallach 1890 
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Generic characteristics: Girdle view: Valve face is flat with a shallow mantle with smaller 

areolae. Valve view: Valves are characteristically cuneiform often having a central 

swelling on the ventral margin. Areolation is radiate from an indistinct central annulus, 

irregularly fasiculate. Areolae are loculate opening externally as cribia, internally as 

foramina. There is a row of rimoportulae along the ventral margin which are expanded 

parallel to the valve margin. A single pseudonodulus is positioned slightly inward of the 

ventral line of rimoportulae. The copulae are more expanded dorsally then ventrally 

resulting in the two valves lying at an angle (Round et al., 1990). 

 

Characteristics distinguishing species: The size of the areolae. The distinction of the 

fasciculation and central annulus (Hasle & Syvertsen, 1997). 

 

Discussion: Hemidiscus though similar in outline to Palmeria may be distinguished by the 

presence of the pseudonodulus. Simonsen (1972) recognises only two species of 

Hemidiscus, H.kanayanus and H.cuneiformis (Hasle & Syvertsen, 1997). 

 

 

Hemidiscus cuneiformis   Wallich 1860 

 

Description: Valves are characteristically semi-circular, 58-288µm in length and 32.5-

158µm wide. There are 6-9 areolae in 10µm at the centre of the valve and  

10-13 areolae in 10µm at the margin (Hasle & Syvertsen, 1997). 

 

Ecology: marine planktonic, warm water region (Hasle & Syvertsen, 1997).  Hustedt 

(1930) notes that H.cuneiformis may be transported far north along the Norwegian coast 

 

 

2.1.6 Roperia  Grunow ex Pelletan 1889 

 

Type: Roperia tesselata (Roper) Grunow ex Pelletan 

Basionym:  Eupodiscus tesselatus  Roper  
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Generic Characteristics: Valves are circular. The valve face is flat with a distinct mantle. 

There is a characteristic large pseudonodulus near the valve rim, which is probably 

occluded by an organic wall or silica membrane in the living cell.  The areolae are loculate, 

circular on the valve face to diamond-shaped on the mantle. The loculi open externally as 

cribria and internally as foramina. The areolation is decussate (Round et al., 1990).  

 

Discussion: Originally described by Grunow (1884), Roperia is closely related to 

Actinocyclus but with an asymmetrical mantle suggesting a relationship with Hemidiscus. 

(Fryxell & Hasle, 1974) Lee & Lee (1990) in their review of Roperia tesselata note the 

extent of taxonomic confusion that has been caused by the variation of external 

morphology at a species level and that revisions of species synonyms for Roperia have 

been made by Hustedt (1930), Hendey (1964) and Simonsen (1974).  Lee & Lee (1990) 

recognise only three distinct species for the genus, R.tesselata (Roper) Grun, R.marginata 

Hanna (Hanna, 1931) and R.excentrica Cheng and Chin (Chin et al., 1980). 

 

 

Roperia tesselata  (Roper) Grunow ex Pelletan  

 

Description: The valve is circular to oval in outline, 40-70µm in diameter.  There is one 

ring of uniform marginal processes, two processes in 10µm, and a single prominent 

pseudonodulus. The areolation usually differs from the centre of valve to the margin. There 

6 areolae in 10µm at the centre of the valve (Hustedt, 1930; Tomas, 1997). Plate I 1-2 

 

Ecology: Warm water zone as far north as 66
o
 N in the Norwegian Sea and 57

o
S in the 

Subantarctic Pacific (Halse, 1976).  Lee & Lee (1990) recognise two habitats for Roperia 

tesselata, a warm water western hemisphere habitat and a cold water North Pacific habitat. 

They identified different forms of R.tesselata with respect to these different habitats. The 

cold water form is larger, has rimoportulae with simple external openings (giving the valve 

a smooth outline) and decussate areolation. The warm water form is smaller, has 

rimoportulae openings with horizontal slits, slightly widened at the centre, (giving the 

valve a conspicuously undulate outline) and areolation that is linear at the centre and radial 

at the margins. 
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Discussion: Lee & Lee (1990) reviewed the range of morphologies reported for Roperia 

tesselata. They note varying recorded valve outline forms for the species, Fenner et al. 

(1976) state that R.tesselata is circular to asymmetrical in outline, while Fryxell et al. 

(1986) refer to the outline as round, oval or tear-drop shaped. A variety of areolation 

patterns are also reported for the species; linear (Mann, 1925; Fryxell& Hasle 1974; 

Fryxell et al 1986b), decussate (Roper, 1858; Van Heurck 1896) and linear at the centre 

with radial rows at the margin (Hustedt, 1930). Simonsen (1974) considers all variations in 

outline and valve edge as a series of transitional forms (Lee & Lee, 1990). 

 

Order Rhizosoleniales 

Family Rhizosoleniaceae 

Genera    Proboscia, Rhizosolenia 

 

2.1.7 Probosica  Sündstrom 1986 

 

Type:  Probisica alata  (Brightwell) Sündstrom 

 

Generic Characteristics: Cells are long, cylindrical and usually solitary. Valves are 

concoid, tapering slightly into a curved proboscis. There is a groove at base of the 

proboscis partially covered by two lateral flaps, in which proboscis of sister cell lies. The 

apex of the proboscis is obliquely truncate. Copulae are in two rows, rhomboidal in 

outline, giving the appearance of triangular segments (Round et al., 1990). 

 

Discussion: The genus Proboscia was proposed by Sündstrom (1986) as part of his 

revision of the genus Rhizolsolenia. The new genera was created for the species Rh.alata 

which was therefore renamed Proboscia alata, the type species of Proboscia. Sündstrom 

(1986) distinguished Proboscia from Rhizolsolenia on the basis of forms possessing a 

proboscis rather than a process with otaria, the presence of interlocular pores and a 

terminal auxospore. When Proboscia was first described it was a monspecific genus. 

Subsequently other species have been assigned to the genus, notably Proboscia inermis 

and Proboscia truncata, both species having been reassigned from Rhizolsolenia (Jordan et 

al. 1991). 
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Proboscia alata  (Brightwell) Sündstrom 

  

Basionym: Rhizosolenia alata   Brightwell 1858 

Synonyms: Rhizosolenia bidens  Karsten 1905 

  

Description: Cells are cylindrical and long, 2.5-13μm in diameter. The valve is conical and 

asymmetrical tapering to a slightly curved proboscis with a truncated tip with a short 

longitudinal slit. The claspers are of unequal length protruding slightly at their distal end. 

The copulae are in two columns, numerous, rhomboidal and with scattered interloculate 

areolae. The auxospore is terminal and may exhibit a bifurcate proboscis. The cells are 

usually solitary but may form chains of up to four individuals joined by the insertion of the 

proboscis into the claspers (Jordan et al., 1991; Hasle & Syvertsen,  1997). Plate I 3-4 

 

Discussion: A number of subspecies have been proposed for Proboscia alata; P.alata var. 

corpulanta Cleve sensu Karsten (1905),  P.alata var. gracillima (Cleve) Gran sensu 

Hustedt (1905),  P.alata var. inermis (Castrcane) Mangin sensu Mangin (1915) and  

P.alata var. indica (H. Peragallo) Hustedt sensu Kopczynska et al. (1986).  Ferreyra & 

Ferrario (1983) proposed there was one Antarctic species P.alata which exhibits a wide 

range of morphologies including transitional forms between the named species P.alata var. 

inermis,  P.alata var. gracillima, and P.alata var. indica. 

 

Ecology: Sündstrom (1986) defined Proboscia from North Atlantic samples. Specimens 

have however been defined from the Antarctic (Jordan et al. 1991). 

 

 

 2.1.8 Rhizosolenia Brightwell 1858 

 

Type: Rhizosolenia styliformis  Brightwell  

 

Generic Characteristics: Valves are cone-shaped, asymmetrical, extending into a single 

process or spine at the valve apex with otaria at its base. There is a single rimoportula at 

the base of the spine. Valves have a groove on one side to accommodate the spine of the 

adjacent valve. There are numerous girdle bands in two or more longitudinal columns. The 
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girdle bands may be scale like, trapezoid, rhomboidal or wing like in outline. Areolae are 

small, round to quadrate and arranged in vertical rows. Rhizosolenia are straight or curved, 

free living or form long chains (Round et al., 1990; Hasle & Syvertsen, 1997). 

 

Characteristics distinguishing species: The shape of the valve and process, the number of 

columns in the arrangement of girdle bands, whether the bands are in dorsiventral or lateral 

columns, the position, extension size and shape of the otaria and the labiate structure 

(Hasle & Syvertsen,  1997) . 

 

Discussion: Sündstrom (1986) emended the description of Rhizosolenia to only include 

those forms with process, otaria and claspers and copulae perforated by loculate areolae. 

As a consequence of this revision a number of species were excluded form the genus. 

Jordan et al. (1991) note that resting stages of Rhizosolenia are more heavily silicified, lack 

otaria and claspers and have more rows of girdle bands. The lack of linking structures and 

heavier silicification suggest that the resting forms do not form chains and they may 

experience dormancy in deeper aphotic waters or on the sea-bed in shallow waters. This 

dimorphism has obvious taxonomic implications. Armand & Zielinski (2001) in their 

review of Rhizosolenia from Southern Ocean sediments, attempt to clarify the taxonomic 

descriptions of Rhizosolenia species by concentrating on the morphology of the otaria. 

 

 

Rhizosolenia bergonii   Peragallo 1892 

 

Description: The valves are narrow, 9-115μm in diameter and always have four columns of 

girdle bands. The apex is long and narrow, the process tip appears cleft. The process is  

10-20μm long. There are 19-24 areolae in 10μm. The valve and the valvocopula are deeply 

conical. Valves are usually heavily silicified. There are no otaria (Hasle & Syvertsen, 

1997). 

 

Ecology: warm water region (Hasle & Syvertsen, 1997). 
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Rhizosolenia borealis   Sundstrom 1986   

 

Synonym: Rhizosolenia styliformis var oceanica Wimpenny 1946 

 

Description: R.borealis has two dorsiventral columns of girdle segments, exhibits no 

dimorphism, is13-65μm in diameter, with a 15-28μm long process. There are 15-17 band 

areolae and 22-24 valve areolae in 10 μm. R.borealis is distinguished by the fact that the 

otaria extend to about half the length of the thicker basal part of the process (Hasle & 

Syvertsen, 1997). 

Plate I 6 

 

Discussion; Sündstrom (1986) considers R.borealis to be a distinct species from 

R.polydactyla on the basis of different distribution and that R.polydactyla is dimorphic 

 

Ecology:  Northern cold water region (Hasle & Syvertsen, 1997). 

 

 

Rhizosolenia hebetata hebetata   Bailey 1856 

 

Synonym: Rhizosolenia hebetata f. hiemalis  Gran 

 

Description: R. hebetata hebetata has two columns of segments and exhibits dimorphism. 

It is distinguished by having a heavily silicified process and no otaria. R. hebetata hebetata 

is 15-44µm in diameter. The process is 15-25µm in length (Hasle & Syvertsen, 1997). 

 

Ecology:  Northern cold water region (Hasle & Syvertsen, 1997). 

 

 

Rhizosolenia hebetata semispina  (Hensen) Gran 

 

Basionym: Rhizosolenia semispina Hensen 
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 Description: R.hebetata semispina has two columns of girdle segments and exhibits 

dimorphism. Forms have a pointed otaria extending at least 3µm along the basal part of the 

process. Valves are 6.5-42µm in diameter. There are 28-30 band areolae in 10µm (Hasle & 

Syvertsen, 1997). 

  

Discussion: Sündstrom (1986) distinguishes R.hebetata semispina from R.antennnata 

f.semispina on the basis of different distribution and dissimilar morphology of nominate 

forms.  

 

Ecology:  Northern cold water region (Hasle & Syvertsen, 1997). 

 

Rhizosolenia styliformis 

 

Description: R.styliformis has two dorsiventral columns of girdle segments and does not 

exhibit dimorphism. Valves are 23-90µm in diameter, with a process 15-28µm in length. 

There are 15-17 band areolae and 22-24 valve areolae in 10µm. The otaria are rounded 

usually ending at the base of the rimoportula, but may terminate below the process base 

and extend along the basal part of the process for a short distance (Sündstrom, 1986; Hasle 

& Syvertsen, 1997). Plate I 5 

 

Discussion: Hustedt (1930) recognised three forms of R.styliformis. R.styliformis 

styliformis with classically right angled otaria passing and joining into the rimoportula, 

R.styliformis var. longispina with otaria that terminate at the transition of the valve and the 

rimoportula and R.styliformis var. latissima with more rounded and less prominent otaria. 

Hasle (1975) recognised two forms of R.styliformis, R.styliformis Brightwell var. 

styliformis where the otaria attach below the rimoportula, and R.styliformis var. oceanica 

Wimpenny, where the otaria attach to the rimoportula. This form was later redefined as 

R.polydactyla f. poldactyla. Armand & Zielinski (2001) adopt the emended description of 

R.styliformis;  rounded otaria terminating below or slightly above the base of the 

rimoportula (Sündstrom, 1986; Priddle et al, 1990; Hasle & Syvertsen, 1997). They further 

argue that many forms of R.styliformis occurring in the Southern Ocean have been 

confused with R. polydactyla f. poldactyla, R.curvata and R.anntenata f. semispina 

(emend. Sündstrom, 1986). 
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Ecology:  The Northern North Atlantic (Hasle & Syvertsen, 1997). Given the 

misidentification of R.styliformis in the Southern Ocean, there has been some debate as to 

whether it occurs at all in this region. Ligowski (1993) reports its presence in open ocean 

area of the Bellinghausen and Weddell Seas.  

 

 

Order Asterolamprales 

Family Asterolampraceae 

Genera Asteromphalus 

 

 

2.1.9  Asteromphalus  Ehrenberg 1844  

 

Lectotype: Asteromphalus darwinii 

 

Generic Characteristics: Cells are discoid to slightly pear-shaped and rarely, naviculoid. 

The valve face is convex, without a distinct valve mantle. It is undulate in girdle view. 

Characteristic of Asteromphalus, is the pattern of hyaline rays alternating with areolate 

areas. One ray, the median ray, differs from the others in that it has a thinner distal section 

and forms a focus from which the other rays radiate. At the margin end of all but the 

median ray are the openings of rimoportulae. The areolae are loculate opening externally 

as cribia and internally as foramina (Round et al., 1990). 

 

Characteristics distinguishing species: The valve outline. The number of hyaline rays. 

Whether the central area is truly central or eccentric. The size of the central area as a 

proportion of the valve face. The shape of the separating lines and of the narrow hyaline 

ray within central area. The shape of the areolated sectors and the size of the areolae. 

(Hasle & Syvertsen, 1997) 

 

Discussion:  All Asterolampraceae have unique morphological features which require 

specific terminology. Greville (1860) was the first to formally distinguish these terms. The 

ray is defined as the structure corresponding to one areola occurring at regular spaced 

intervals around the valve surface. The ray has two openings, an interior elongate opening 
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or ray slit equivalent to a foramen and an exterior opening or ray-hole at the marginal end 

of each normal ray. Greville (1860) further defined the dark lines at the edge of rays as 

umbilical lines and the point where all separating lines join as the junction point. The area 

of the valve face where the centrally expanded rays form a circle is the central area. The 

portions of the valve face between the rays are referred to as the areolated segments  

(Gombos, 1980). 

 

 

Asteromphalus robustus  Castracane 

 

Synonym: Asteromphalus brookei var. robustus (Castracane) Rattray 

 

Description:  Valve view: Cells are subcircular to elliptical in outline, 67-79μm in 

diameter. The central area of the valve extends to about a third of the valve diameter.  

There are 8-10 robust hyaline rays of similar width and length and one thinner ray. 

Separating lines are bent. The areolation is coarse, slightly coarser at the centre 6-7 in 

10μm. The areolation pattern is quincunx with larger pores surrounding smaller poroids. 

Girdle view: Cells are drum shaped with slightly raised rays and a high mantle 

(Hernandez-Becerril, 1991a). 

 

Discussion: A. rombustus is similar to A.heptactis but distinguished with respect to the 

pattern of areolation, the high mantle and pattern of separating lines (Gombos, 1980). 

   

 

Subdivision Bacillariophytina 

Classes  Mediophyceae, Bacillariophyceae 

Class  Mediophyceae 

Orders  Chaetocerotales, Thalssiosirales 

Order  Chaetocerotales 

Family   Chaetocerotaceae 

Genera  Bacteriastrum 

 

2.1.10 Bacteriastrum  G.Shadbolt 1854   



 

280 

 

Lectotype: Bacteriastrum fulcatum Shadbolt 

Generic characteristics: Cells are cylindrical, linked to form filaments by long radiating, 

simple or bifurcate setae on each cell. The setae of adjacent cells are fused beyond their 

point of origin on the valve. Separation valves with modified setae occur at intervals. 

Terminal setae are not fused or branched and are often curved. Valves are centric with tiny 

simple areolae radiating from a central annulus, in a fan shaped pattern near the valve 

margin. Separation valves have one central simple rimoportula (Round et al., 1990; Hasle 

& Syvertsen, 1997).  

   

Characteristics distinguishing species: The morphology and position of the inner and 

terminal setae (Hasle & Syvertsen, 1997). 

 

 

Bacteriastrum hyalinium  Lauder 

 

Description: The frustule is short in girdle view and distinctly hyaline, 13-56μm in 

diameter.  Inner setae are bifurcate in the valvar plane, with 7-32 inner setae per valve. 

Terminal setae are umbrella shaped (Lauder, 1864; Hasle & Syvertsen, 1997).Plate II 1-2 

 

Discussion: Lauder (1864) described only two species of Bacteriastrum; Bacteriastrum 

varians and Bacteriastrum hyalinum. Boalch (1975) concluded that B.varians was 

synonymous with B.furcatum Shadbolt but retained B.hyalinum as a distinct species. 

Boalch (1975) designated illustrations of Lauder as types for the species as none of 

Lauder’s original material is known to survive. 

 

Ecology: Marine planktonic, common in temperate waters (Hasle & Syvertsen, 1997). 

Hendey (1964) and Drebes (1972) record it as the most common species of Bacteriatrum 

in the North Atlantic and North Sea, especially in summer. 

 

 

Order  Thalassiosirales 

Family          Thalassiosiraceae 

Genera  Bacteriosira, Porosira, Thalassiosira 
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2.1.11 Bacterosira    Gran 1900  

 

Type: Bacterosira fragilis (Gran) Gran 

Correct name: Bacterisira bathyomphala (Cleve) Syvertsen & Hasle. 

 

Discussion: Bacteriosira is a monospecific genus. Gran (1900) established Bacteriosira 

with the single species B.fragilis.  Syvertsen & Hasle (1993) identified Coscinodiscus 

bathyomphalus (Cleve) as identical to the secondary valve of the resting spores of 

B.fragilis therefore reassigning the generic type as Bacterisira bathyomphala (Cleve) 

Syvertsen & Hasle. 

 

 

Bacterosira bathyomphala Cleve 1883 

 

Basionym: Coscinodiscus bathyomphalus Cleve 

Synonyms: Lauderia fragilis Gran 

  Bacteriosira fragilis (Gran) Gran 

 

Description: Valve view: The vegetative cells are cylindrical with a tall valve mantle and 

are 18-24µm in diameter. Valves have one marginal ring of small strutted processes, 5-7 in 

10μm and one large labiate process between two strutted processes. There is a cluster of 

central strutted processes within a central depression each having 2-4 satellite pores. The 

central depression is surrounded by an irregularly silicified border. Radial striae of small 

areolae spread from the valve centre to valve margin. These are separated by pronounced 

interstriae.  There are more than 30 radial ribs in 10µm.  

Girdle view: The pervalvar axis is usually longer than the cell diameter. Valves form dense 

chains. The curved mantle and central depression of the vegetative valve lead to lense-

shaped openings between sibling cells in girdle view. The cell wall is weakly silicified. 

 

The resting spores are distinctive, semi-endogenous and heterovalvate (the resting spores 

were first described as Coscinodiscus Bathyomphalus Cleve) The primary valve has a 

flattened face, the secondary valve a pronounced central and conical protuberance and a 

horizontally flattened marginal brim. The valve mantle is shallower than that of the 
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vegetative cell and there are fewer central strutted processes (Hasle & Syvertsen 1993; 

Hasle & Syvertsen, 1997). 

 

Ecology:   Northern cold water region (Hasle & Syvertsen, 1997)  

 

 

2.1.12 Porosira   E.Jørgensen 1905 

 

Type: Porosira glacialis (Grunow) Jørgensen 

 

Generic Characteristics: Valves, discoid single or in loose chains. Areolae radiate from a 

central annulus. Areolae are loculate opening externally with elongate foramina, internally 

with cribia. There is one large labiate process in the marginal zone and many strutted 

processes over the valve face increasing in frequency towards the valve margin. There are 

numerous girdle bands with similar areolation to the valve face. Cells are single or in loose 

chains joined by polysaccharide threads extruding from the valve processes (Round et al., 

1990; Hasle & Syvertsen, 1997) 

 

Characteristics distinguishing species: Whether the valve areolae and central annulus are 

distinct or indistinct, the morphology and location of labiate process, the arrangement of 

the marginal processes, the form of striae and areolation (Hasle & Syvertsen, 1997). 

 

 

Porosira glacialis (Grunow) Jørgensen 

 

Basionym:   Podosira hormoides var. glacialis Grunow 1884 

Synonyms:   Podosira glacialis  Cleve 1896 

                   Lauderia glacialis  Gran 1900 

 Porosira antarctica  Kozlova 1963 

 

Description: Valves are circular, moderately convex 30-40µm in diameter. The pervalvar 

axis is 30-40µm, with 25-26 areolae in 10µm. The labiate process is some distance from 

valve margin. There is no regular arrangement of strutted processes close to labiate 
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process. The areolae pattern is very distinctive. The radial areolae walls, which run in 

wavy lines from the central annulus to the valve margin, are more strongly silicified than 

the transverse walls. The areolae are irregular is size and outline outside the central area of 

the valve where they are smaller and may be surrounded by a silicified ring. (Hasle, 1974; 

Hasle & Syvertsen, 1997) 

 

Ecology: Northern cold water to temperate region and Southern cold water region (Hasle 

& Syvertsen, 1997).  

 

2.1.13  Thalassiosira 

 

Generic Characteristics: Cells are in chains connected by organic threads which extrude 

from strutted process. Valves are circular, flat faced with short down turned mantles or 

watch-glass shaped. The mantle edge is often distinctly ribbed or rimmed. Areolae are 

loculate, opening externally as round foramina and internally as cribia. Areolation patterns 

are various. The girdle bands are numerous, the valvocopulae being more areolate than 

subsequent copulae (Round et al., 1990; Hasle & Syvertsen, 1997). 

 

Characteristics distinguishing species: The curvature of the valve face, shape and height of 

the mantle. The length, thickness and location of the connecting threads and the number, 

length and location of processes.  

 

Discussion: Hasle (1968a) produced the first SEM investigations of this large genus, 

noting that Cleve defined the genus with respect to the frustules being joined by a central 

fine thread of mucus to form chains. Species were identified in girdle view with respect to 

the shape of chains. This is a useful for some Thalassiosira species such as 

T.nordenskioeldii with its characteristic octagonal outline in girdle view, but unhelpful for 

other Thalassiosira species. Hasle defines species with respect to the presence, absence 

and position of processes and whether they have external process tubes. (Hasle 1968a) 

Various subsequent authors have attempted to subdivide Thalassiosira but have failed to 

agree on the most significant morphological features (Markova, 1988; Rivera, 1981; 

Johansen & Fryxell, 1985; Fryxell & Johansen, 1990; Hasle & Syvertsen, 1990a). No 

subdivision of the genus is adopted in this study. 
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Thalassiosira angulata  (Gregory) Hasle 

 

Basionym: Orthosira angulata Gregory 

 

Description:  The valve is 12-39µm in diameter, the valve face flat 8-18µm, with a 

smoothly curved mantle. There is a sharp distinction between the mantle and valvocopula. 

Areolae are hexagonal and arranged in curved tangential rows, straight rows or sectors, 

with 14-24 valve areolae in 10µm. There are no distinct central areolae. The marginal 

processes are widely spaced and have long external tubes. There is a large labiate process 

with a long external tube located close to a marginal strutted process. The pervalvar axis 

usually shorter than diameter.  The connecting threads are distinctly longer than pervalvar 

axis (Hasle & Syvertsen, 1997). 

 

Discussion: T. angulata may be distinguished from T.decipens by having more widely 

spaced marginal processes and a higher valve mantle. Hasle (1979) considers T.decipens to 

be more littoral than planktonic (Hasle & Syvertsen, 1997).  

 

Thalassiosira auguste-lineata  (A.Schmidt) Hasle and Fryxell 

 

Basionym:  Coscinodiscus auguste-lineata Schmidt  

Synonyms: Coscinodiscus polychordus Gran 

  Thalassiosira polychorda (Gran) Jorgensen 

  Coscinosira polychorda (Gran) Gran 

 

Description: Valves are circular, 14-78µm in diameter. The valve is face flat or slightly 

curved with a rounded mantle. The areolation varies from linear to eccentric to fasiculate 

with 8-18 areolae in 10µm. There are arcs of central strutted processes in a ring at some 

distance from valve centre, each arc having one to nine processes. The marginal strutted 

processes have conspicuous external tubes in one marginal ring including one radially 

orientated labiate process. There are many connecting threads in groups at some distance 

from valve centre (Fryxell & Hasle, 1977; Hasle & Syvertsen, 1997). 
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Discussion: The arrangement of central processes and the coarse marginal processes are 

diagnostic (Hasle & Syvertsen, 1997). 

 

Ecology: Found in the North Atlantic, Canadian Arctic and North West Pacific (Fryxell& 

Halse, 1977). 

 

 

Thalassiosira eccentrica   (Ehrenberg) Cleve 1904 

 

Basionym: Coscinodiscus eccentricus   Ehrenberg 1841a 

 

Description: Valves are circular, flat faced, 15-110µm in diameter, with a low rounded 

mantle.  The areolation is eccentric, tending to fasciculate, with 5-11 areolae in 10µm. 

There is one central strutted process adjacent to central areola, surrounded by a ring of 

seven areolae. There are scattered strutted processes on valve face, two rings of marginal 

strutted processes with short external tubes and one ring of pointed spines further from 

valve margin. There is one marginal labiate process. Cells are joined by a single 

connecting thread, approximately twice the cell diameter in length (Fryxell & Hasle, 1972; 

Hasle & Syvertsen, 1997). 

 

Discussion: Halse & Fryxell (1972) note that T.eccentrica may be distinguished from 

T.angulata and T.pacifica, which may also have eccentric areolation, by the presence of 

the central process, the arrangement of the processes across the valve and the ring of 

marginal spines. T.mendiolana has a similar pattern of processes to T.eccentrica but has 

smaller areolae with fasiculate areolation and is usually more weakly silicified (Hasle & 

Syvertsen, 1997). 

Ecology:  Cosmopolitan (Hasle & Syvertsen, 1997). 

 

 

Thalassiosira ferelineata  Hasle & Fryxell 

 

Description:  Valves are circular, 20-43µm in diameter. The valve face is flat with a sharp 

almost 90
o
 angle to the shallow rounded mantle. Areolae are hexagonal and loculate, with 
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6-7 areolae in 10µm on the main part of the valve. Shiono & Koizumi (2000) report much 

finer areolation at the valve margin, 15 areolae in 10µm. Areolation is linear to tangential. 

There is one central strutted process. The labiate and marginal processes are not extended 

externally but have long internal tubes. The one marginal labiate process is externally 

visible as a large oval hole, larger than an areola. There is one ring of marginal strutted 

processes, with processes lying approximately 6 areolae apart, 3-4 processes in 10µm. The 

edge of the valve mantle gives the appearance of ribbing. The mantle is areolated to the 

rim (Hasle & Fryxell, 1977b; Hasle & Syvertsen, 1997). 

  

Discussion: Hasle & Fryxell (1977b) note that T.ferelineata has the same pattern of 

processes and arrangement of areolae as T.tenera but is larger, coarser and lacks external 

process tubes (Hasle & Syvertsen, 1997).  

 

Ecology: Mainly warm water regions (Hasle & Syvertsen 1997). 

 

Thalassiosira gravida  Cleve 1896 

 

Description: (vegetative cell) Valves are circular and flat, 17-62µm in diameter with a low 

and slightly curving mantle. The areolae are hexagonal and arranged in radial rows. There 

are numerous central strutted processes, scattered strutted processes across valve face and 

mantle and one large marginal labiate process. The connecting thread between valves is 

thick, particularly close to the valve surface (Hasle & Syvertsen, 1997).Plate II 3-4 

Discussion:  The diatom originally described as Coscinodiscus subglobosus Cleve & 

Grunow is a coarsely silicified, highly vaulted form found in northern waters. This form 

was later interpreted as the resting spore of T.gravida by Meunier (1910) who reassigned 

forms with the morphology of Coscinodiscus subglobosus to two new species; T.fallax 

having semi-enogenous resting spores and T.gravida having endogenous resting spores.      

Syvertsen (1979) in a series of diatom culture studies noted that the endogenous resting 

spore of the southern form T.antarctica closely corresponded to the description of 

Coscinodiscus subglobosus. He further observes that Cleve described T.gravida from 

Arctic waters at the same time as Comber described T.antarctica from Antarctic waters. 

T.antarctica was not at the time recorded from northern waters. Hasle & Heimdel (1968) 

amended the description of T.antarctica with samples from northern seas. A northern form 
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of T.antarctica  has also been recognised T.antarctica var. borealis. Syvertsen (1979) 

concludes therefore that the forms corresponding to Coscinodiscus subglobosus should be 

considered as the endogenous resting spores of T.antarctica not of T.gravida and that the 

form designated by Meunier (1910) as T.fallax is in fact, the semi-endogenous resting 

spore of T.antarctica.  This taxonomic confusion has resulted from the fact that 

T.antarctica can form exogenous, semi-endogenous and endogenous resting spores. The 

vegetative forms of T.gravida differ from T.antarctica in that T.gravida has numerous 

strutted processes scattered across the whole valve, while T.antarctica has 2-3 rows of 

marginal strutted processes. Syvertsen (1977) found no resting spores of T.gravida in 

natural samples or cultures under suitable environmental conditions for resting spore 

formation. However he does note that Paasche (1961) identified four morphotypes of 

T.gravida from the Norwegian Sea including a resting spore form. Syvertsen (1977) 

concludes that T.gravida may form resting spores (Syvertsen, 1977; Syvertsen, 1979: 

Hasle & Syvertsen, 1997).  As the vegetative forms in this study are certainly T.gravida 

and not T.antarctica, the resting spore forms are also considered to be T.gravida. They are 

counted separately to the vegetative forms for the transfer function. 

 

Ecology: T.gravida is a northern and southern cold water form. Syvertsen (1977) suggests 

that T.gravida and T.rotala may be temperature dependent morphotypes of the same 

species.  T.rotala has a similar form to T.gravida except for an unevenly thickened 

intercalary band and that it is found in warmer waters. If these two species are simply 

morphotypes of the same species, that species has a cosmopolitan distribution (Syvertsen, 

1977). 

 

 

Thalassiosira hyalina  (Grunow) Gran 

 

Basionym: Coscinodiscus hyalinus Grunow in Cleve and Grunow 

Description: Valves are circular, 16-45µm in diameter. Valve faces are flat or slightly 

convex. The mantle is low or rounded. Areolation is radial in rows or ribs, with 13-24 

areolae in 10μm. The mantle is also always areolated, 5-9 areolae in 10μm. There are 2-15 

central strutted processes, one ring of marginal strutted processes and one labiate process 
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in place of a marginal process. The pervalvar axis is about one third of cell diameter. The 

connecting thread is thick.  

Ecology: Northern cold water form (Hasle & Syvertsen, 1997). 

 

 

Thalassiosira lineata  Jouse 1968 

 

Description: Valves are circular, flat and 9-45µm in diameter with a low mantle. The 

areolae are hexagonal and arranged in straight rows across whole valve face, with 8-16 

areolae in 10µm on the valve face, 5-6 on the mantle. Areolae are loculate opening 

externally as foramina and internally as round cribia. There are strutted processes over the 

whole valve face, two marginal rings of strutted processes and one large marginal labiate 

process (Hasle & Fryxell, 1977b; Hasle & Syvertsen, 1997). 

 

Discussion: Herzig & Fryxell (1986) note that T.lineata may be distinguished from 

T.lineoides by the structure and location of the scattered processes (Hasle & Syvertsen, 

1997). 

 

Ecology: Warm water region (hassle & Syvertsen, 1997). Jouse, Kozlova & Mukhina 

(1971) record the species as subtropical or tropical, Hasle (1976a) as a warm water species.  

 

 

Thalassiosira nodulineata  (Hendey) Hasle & G.Fryxell comb. nov 

Basionym: Coscinodiscus nodulolineatus Hendey 1957 

 

Description: Valves circular, 27-58μm in diameter. The areolation is linear with 3.5-6 

areolae in 10μm. There is one ring of marginal processes with 4 processes in 10μm and one 

labiate marginal process. Characteristic of the species is a central nodule, resembling an 

inverted cone, with 5-6 strutted processes, adjacent to a deep opening into the central 

areola. The valve mantle has 3-4 rows of tangential areolae (Hasle & Fryxell, 1977b). 

 

Discussion: Hendey (1957) considered T.nodulineata to be closely related to T.hendeyi but 

distinguished primarily by the latter species lacking the modified central areola. 
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T.densannula has a similarly modified central areola to T.nodulineata but may be 

distinguished by the density of the marginal process and by T.densannula having no 

occluded processes Hasle & Fryxell (1977b).  

 

 

Thalassiosira nordenskioeldii  Cleve 

 

Description: Valves are circular, 10-50µm in diameter, with 14-18 areolae in 10µm, 

centrally concave and with an oblique slanting mantle with a ribbed rim. Areolation is 

radiate. The valvocopula has rows of regular pores and an unperforated rim. There is a ring 

of prominent marginal processes with long, slender external tubes, located at the distinct 

bend between valve face and mantle. There are central strutted processes close to central 

areola and one labiate process within ring of marginal processes. The connecting thread is 

as long as or shorter than the pervalvar axis (Hasle, 1978a; Hasle & Syvertsen, 1997). 

 

Discussion:  T.nordenskioeldii may be distinguished from T.aestivalis by having smaller 

marginal processes and a narrower valve mantle (Hasle, 1978a). 

 

Ecology: Northern cold water region to temperate (Hasle & Syvertsen, 1997). 

 

 

Thalassiosira oestrupii  (Ostenfeld) Hasle  

 

Basionym: Coscinosira oestrupii Ostenfeld 

 

Description:  Valves are circular, 7-60µm in diameter. The valve face is flat or slightly 

convex, the mantle low and rounded. The valvocopula has vertical rows of pores giving the 

appearance of striation. Two coarse columns of pores, 9 pores in 1μm alternate with four 

fine columns, 14 pores in 1μm. The areolation is sublinear and usually coarser in central 

part of valve than closer to margin with 6-9 areolae in 10µm centrally and 9-12 at the 

margin. There is one ring of marginal labiate processes 0.8-1.9µm apart. There is a single 

central strutted process which is situated 1-3 areolae distant from a single labiate process 

(Fryxell & Hasle, 1980; Hasle & Syvertsen, 1997). Plate II 5-6 
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Discussion: Fryxell & Hasle (1980) in their overview of T.oestrupii from North and South 

Atlantic, Gulf of Mexico, Pacific Ocean, Weddell Sea and Indian Ocean samples, 

recognise two subspecies of T.oestrupii; T.oestrupii var. oestrupii and T.oestrupii var. 

venrickae. The latter form being distinguished by having more widely separated marginal 

processes and distinct eccentric areolation. Given the emended description of T.oestrupiii 

by Halse & Fryxell (1980), Boden (1993) noted that samples from the geological record 

could no longer be assigned to T.oestrupii sensu stricto. He establishes the new species T. 

tetraoestrupii and emends the description of T.praeoestrupii Dumont, Baldauf & Barron. 

Shiono & Koizumi (2000) in their study of Miocene, Pliocene and Pleistocene samples 

identify three forms of T.oestrupii; T.oestrupii sensu stricto, T.oestrupii early form, with 

an earlier geological range and a greater distance between marginal fultoportulae than 

T.oestrupii sensu stricto and  T.oestrupii (type 1) found a Pleistocene sediments and having 

a smaller valve and valve areolae size than T.oestrupii sensu stricto. They also emend the 

description of T.praeoestrupii.  

 

Ecology: T.oestrupii var. oestrupii is cosmopolitan and oceanic, T.oestrupii var. venrickae 

more often found on continental shelves and less commonly inshore and in open ocean 

samples (Fryxell & Hasle,1980). 

 

 

Thalassiosira pacifica  Angst & Gran 

 

Description: Valves are circular, 7-46µm in diameter, flat faced or slightly concave. 

Areolation is eccentric or fasiculate, depending on cell diameter. The valve margin is 

ribbed. Areolae are loculate with 20-28 areolae in 10µm. The mantle areolae are smaller 

than those on valve face. There is a single central process next to the central annulus, a ring 

of marginal strutted process with distinct coarse external tubes and a single labiate process 

within the ring marginal processes. The connecting thread is approximately as long as 

pervalvar axis (Hasle & Syvertsen, 1997). 

 

Discussion: T.angulata is distinguished from T.decipens by having a ribbed margin, the 

spacing and morphology of the marginal processes and a labiate process within the ring of 

marginal processes (Hasle & Syvertsen, 1997). 
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Ecology:  Cosmopolitan, except for polar regions (Hasle & Syvertsen, 1997). 

 

 

Thalassiosira trifulta  G.Fryxell in Fryxell and Hasle 

 

Synonyms:   Thalssiosira excentrica (Ehrenberg) Cleve sensu Jouse 1971 

                     Coscinodiscus excentricus var. jousei Kanaya sensu Koizumi 1973 

          Thalassiosira oestrupii (Ostenfeld) Hasle sensu Koizumi 1975 

 

Description: Valves are circular, flat faced, 16-58µm in diameter, with an evenly rounded 

mantle.  Forms are often coarsely silicified. The areolation is linear or in slightly curved 

tangential rows with 5-7 valve areolae in 10µm. There are 1-8 strutted processes in the 

centre of the valve positioned in one or two lines. The strutted processes in the marginal 

ring are 3-6µm apart. The strutted processes are trifultate that is, having three columnar 

supports connecting the process to the valve. The labiate process is usually located closer 

to valve mantle than centre, in larger valves 8-9 areolae from central processes. The 

pervalvar axis is shorter than cell diameter. The valvocopula is doubly septate and has one 

row of large pores next to the valve and a number of irregular rows further from the valve 

(Fryxell & Halse, 1979; Hasle & Syvertsen, 1997). 

 

Discussion: Smaller specimens of T.trifulta may be hard to distinguish from T.oestrupii. 

This can be done however on the basis of the trifultate fultoportulae which is smaller in 

T.oestrupii (Shiono & Koizumi, 2000).  

 

Ecology:    Cold water region (Shiono & Koizumi, 2000; Hasle & Syvertsen, 1997). 

 

 

Class Bacillariophyceae 

Order Bacillariales, Fragilariales, Thalassionematales  

 

Order  Bacillariales 

Family Bacillariaceae  

Genera Alveus, Fragilariopsis, Nitzschia 
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2.1.14  Alveus  Kaczmarska & Fryxell 1996 

 

Discussion: Nitschia angustata var. marina was first described by Grunow in Cleve and 

Moller (1878) from Mediterranean samples. Grunow later distinguished this taxon as 

distinct in its own right and in Van Heurk (1881) it appears as Nitschia marina. Heiden in 

Heiden and Kolbe (1928) described another species, Synedra gaussi from southern and 

equatorial Atlantic samples. This species was later considered to by synonymous with 

Nitschia marina. (Kolbe, 1954)  Simonsen (1974) noted that Nitschia marina has 

chambered striae similar to those in Pinnularia. Kaczmarska & Fryxell (1996) on further 

detailed study of the valve structure suggested that it was unique among nitzschoid genera 

and so proposed the new genus Alveus gen.nov.  

 

 

Alveus marina (Grunow) Kaczmarska and Fryxell 1996 

 

Basionym:  Nitzschia angustata var. marina Grunow in Cleve & Moller 

Synonyms: Synedra gaussi Heiden in Heiden & Kolbe 

  Pseudo-nitzschia hustedtii Meister 

 

Description:  The valve wall of Alveus marina is very heavily silicified and apparently 

double layered with the inner layer unperforated except along the non-raphe margin. The 

valve mantle is high and rounded. Both the valve face and mantle have biseriate striae and 

slightly raised interstriae. The raphe is not raised above the valve surface. The external 

canal wall is not perforated except for the raphe slit. Fibulae are strong and curved, 10-12 

fibulae and striae in 10μm. The valve outline is linear to lanceolate with rounded apices, 

53-353μm long and 8-12μm wide (Hasle & Syvertsen,1997). 

Ecology: Warm water region (Hasle & Syvertsen, 1997). Equatorial and Southern Atlantic 

and Mediterranean occurrence (Cleve& Grunow, 1880; Heiden & Kolbe, 1928; Hustedt, 

1958). Warm Core rings of the North Atlantic (Kaczmarska et al., 1986). Subtropical and 

Indian Oceans and Arabian Sea (Cleve & Grunow1880; Simonsen, 1974). Southern Pacific 

(Cleve & Grunow,1880). 
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2.1.15 Fragilariopsis    Hustedt in Schmidt emend. Hasle 1993 

  

Type:  Fragilariopsis antarctica (Castracane) Hustedt in Schmidt 

Basionym: Fragilaria antarctica Castracane 

 

Generic Characteristics: Valve faces are more or less flattened, not undulated and sharply 

differentiated from the mantle. Valve poles are usually bluntly rounded. Valves are linear, 

sublinear, linear-lanceolate, lanceolate, elliptical or subcircular in outline. They can be 

isopolar or heteropolar. The apical axis is often heteropolar. Striae are parallel except near 

the poles where they are radiate and usually consist of double rows of poroids. The raphe is 

strongly eccentric, positioned at the junction of the valve face and mantle. It is not raised 

above the valve surface. The raphe endings are simple. Cells are rectangular in girdle view, 

in ribbons united by the entire or greater part of the valve surface.  There are 

approximately equal numbers of interstriae and fibulae, with fibulae often more distinct 

than interstriae (Round et al., 1990; Hasle & Syvertsen, 1997). 

 

Characteristics distinguishing species: The valve outline, the structure of striae, the polarity 

of the apical axis and whether or not the valve has a central larger interspace (Hasle & 

Syvertsen, 1997). 

Discussion: Hasle (1972c, 1974) argued that Fragilariopsis should be considered as a 

section of the genus Nitzschia and so transferred Fragilariopsis to Nitzschia. This however 

was not widely accepted. Round et al. (1990) recognises Fragilariopsis as a distinct genus 

and this is the approach adopted in this study. The inclusion of Pseudoeunotia doliolus in 

Fragilariopsis extends the ecological boundaries of the genus to warm water regions 

(Medlin & Sims, 1993). 

 

 

Fragilariopsis atlantica   Paasche 1961 

Synonym: Nitzschia paaschei Hasle 

 

Description: Valve view: Valve outline varies with valve length. The largest specimens 

(around 40µm) are broadly linear with more or less blunted apices and a slightly 

heteropolar apical axis. Medium-sized valves are lanceolate with slightly pointed apices 
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and an isopolar apical axis. The smallest specimens broadly elliptical with broadly rounded 

apices. Valves are broad in relation to their length. They have a central larger interspace 

and central nodule. The transverse interstriae are more curved in smaller than in larger 

specimens. Girdle view: valves are flat, cells fairly low. The valves of sibling cells in 

colonial ribbons are joined along their whole length with no interspace. The interstriae are 

weak (Hasle & Syvertsen, 1997). 

 

Ecology:  Northern cold water region plankton (Hasle & Syvertsen, 1997). 

 

 

Fragilariopsis cylindrus (Grunow) Kreiger in Helmcke & Kreiger 

 

Basionym: Fragalaria cylindrus Grunow in Cleve 

Synonym: Nitzschia cylindrus (Grunow) Hasle 

 

Description: Valve view: Valves have straight parallel sides and broad rounded almost 

semicircular apices. The apical axis is 3-48μm in length, the transapical axis 2-4μm. The 

interstriae are transverse in rectangular portion of the valve. There are 13-17 striae and 

fibulae in 10μm. Oblique ribs run from the last interstria to the rounded apices. There is no 

central larger interspace. Girdle view: cells are rectangular. The pervalvar axis is fairly 

short. Valves are joined in ribbons with no interspace between adjacent valves (Hasle & 

Syvertsen, 1997). 

 

Ecology: Southern and Northern cold water regions, sea ice form and as plankton (Hasle & 

Syvertsen, 1997). 

 

 

Fragilariopsis doliolus  (Wallich) Medlin & Sims 

 

Basionym: Synedra doliolus  Wallich 

Synonym: Pseudoeunotia doliolus  (Wallich) Grunow in Van Heurck 
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                        Description: Valve view: Valves are semi-lanceolate with bluntly rounded apices. The 

ventral side of the valve is straight and seldom, slightly convex. The dorsal side of the 

valve is more strongly convex. The apical axis is 30-70µm in length, the transapical axis 5-

8µm. The transverse striae have two alternating rows of poroids. The interstriae are 

thickened vertically on the internal and external surfaces of valve face and mantle. The 

canal raphe is situated along junction of the valve face and mantle, on either the dorsal or 

ventral side. Girdle view: Cells are rectangular, joined in curved ribbons with no interspace 

between adjacent cells (Medlin & Sims, 1993; Hasle & Syvertsen, 1997). Plate III 1-2 

 

 Discussion:  Fragilariopsis doliolus was first described by Wallich as Synedra doliolus but 

later transferred to the genus Pseudoeunotia  by Grunow 1881 (in Van Heurck 1880-1883) 

Pseudoeunotia was established by Grunow 1881 on the basis of two species P.doliolus 

Wallach and P.hemicyclus Ehrenberg. Hustedt (1959) argued that the two species of 

Pseudoeunotia could not belong to the same genus on the basis of areola and striae 

construction and so he transferred P.hemicyclus to the genus Amphicampa thus leaving 

Pseudoeunotia as a monospecific genus. Medlin & Sims (1993) reassigned Pseudoeunotia 

doliolus to Fragilariopsis on the basis of it forming ribbon like colonies and having a 

reduced canal raphe. Hustedt (1913) established Fragilariopsis as an araphid genus, 

forming ribbon like colonies and having valve structure different to that of Fragalaria. He 

later acknowledged the presence of a a reduced canal raphe in both Fragilariopsis and 

Pseudoeunotia. Medlin & Sims (1993) argue that while Fragilariopsis forms curved 

ribbon like colonies, this is simply a consequence of the strongly asymmetrical cell shape 

and that Hasle (1965) identifies other heteropolar forms of extant Fragilariopsis. Therefore 

Pseudoeunotia doliolus could reasonably be considered to belong to the genus 

Fragilariopsis, there being no other morphological differences than colonies being curved 

(Medlin & Sims, 1993). 

 

Ecology:  Warm water region (Hasle & Syvertsen, 1997). 

  

 

Fragilariopsis oceanica  (Cleve) Hasle  

 

Basionym: Fragilaria oceanica Cleve 
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Synonym: Fragilaria arctica Grunow in Cleve&Grunow 

  Nitzschia grunowii Hasle    

 

Description: Valve view: Valve outline varies with valve length. The largest specimens 

are narrowly elliptical with slightly elongate ends, medium specimens are more lanceolate 

with rounded ends and the smallest specimens are broadly elliptical. The apical axis is 10-

41µm in length, the transapical axis approximately 6µm. The interstriae on the valve face 

are more weakly silicified than on valve mantle, with 12-15 striae and fibulae in 10µm. 

The raphe is situated at the junction of the valve face and mantle, or slightly displaced onto 

the mantle. There is a central larger interspace. Girdle view: The cells are joined in straight 

or sometimes curved ribbons with no interspace between adjacent valves. The pervavlar 

axis often high compared with other Fragilariopsis species. The mantle is fairly deep and 

more silicified than valve face (Hasle & Syvertsen, 1997). Plate III 5-6 

   

Ecology:   Northern cold water region, sea ice form and as plankton   

(Hasle & Syvertsen, 1997).   

 

 

Fragilariopsis rhombica  (O’Meara) Hustedt 

 

Basionym: Diatoma rhombica O’Meara 

Syonym: Nitzschia angulata Hasle 

 

Description: Valve view: Valve outline varies with length. The largest and medium sized 

specimens are either lanceolate or linear with parallel margins tapering towards pointed 

apices. The smallest specimens are almost circular. The valves are broad in relation to their 

length with an apical axis length of 8-53µm and a transapical axis length of 7-13µm. The 

interstriae are straight in the central linear or convex portion of the valve and curved 

towards the apices. The striae have two alternate rows of poroids. There is no central larger 

interspace (Hasle & Syvertsen, 1997). 

 

Ecology: Southern cold water region, plankton (Hasle & Syvertsen, 1997). 
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2.1.16 Nitzschia     A.H.Hassall 

 

Type: Nitzschia sigmoidea (Nitzsch) W.Smith 

Generic Charateristics: Cells are solitary, form stellate or chain colonies or live in mucilage 

tubes. The valves are straight or sigmoid in outline; narrow, linear, lanceolate or elliptical, 

sometimes centrally expanded. They are broadly symmetrical in outline with respect to 

apical plane, but often strongly asymmetrical in structure. The apices are various, often 

rostrate or capitate. The striae are usually uniseriate, not interrupted by lateral sterna and 

consist of small round poroids occluded by hymenes and sometimes cribra. The areolae are 

occasionally loculate in the larger sigmoid species. In some species there are marginal 

ridges. The raphe is situated in a slightly to strongly asymmetrical position. There are 

raphes on both valves, either on the same side (hantzschoid symmetry) or opposite sides 

(nitzschoid symmetry). In some species the raphe extends to the poles, in others there are 

central raphe endings. The girdle bands often have one or more rows of transverse poroids. 

The number of girdle bands varies (Round et al., 1990). 

 

 

Nitzschia bicapitata   Cleve emend. G.Fryxell 

 

Description: Valves are 8-23μm long and 4-5μm wide, widest at the centre, smoothly 

curved with isopolar, bicapitate ends. Poroid areolae 3-4 in 1μm . Areole and poroids on 

the proximal mantle are in a double row with the largest immediately next to the raphe and 

aligned with the striae on the valve face. 25-30 striae in 10μm. 12-16 fibulae in 10μm.  

Poroids on the distal mantle form a single row (Fryxell 2000). Plate III 3-4 

 

Discussion:  First described by Cleve (1900), bicapitate forms of the diatom Nizschia have 

been widely recorded. However there have also been attempts to subdivide these forms 

into a number of different species, subspecies and morphotypes. N.bicapitata has a 

characteristic length in the region of 8-22.5μm. Two bicapitate forms were distinguished as 

distinct from N.bicapitata on the basis of increased length, Nizschia capitata 40-84 μm 

(Heiden & Kolbe 1928) and Nizschia braarudii 35-65 μm (Hasle, 1960).  From a study of 

the literature concerning N.bicapitata, Kaczmarska and Fryxell defined three morphotypes 

of Nitzschia bicapitata Cleve sensu lato and a new species, Nitzschia bifurcata. 
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(Kaczmarska & Fryxell 1986.)  From a study of archived material and new samples from 

plankton tows, Fryxell amended the definition of N.bicapitata Cleve and further defined 

two subspecies of N.bicapitata,  N.bicapitata var bicapitata and N.bicapitata var 

faeroensis and two new species N.leehyi and N.villarealii. These distinctions were made on 

the basis of valve outline, length, width, number of fibulae and striae in 10μm and 

curvature of striae (Fryxell, 2000). 

 

Ecology: Forms of the N.bicapitata group are rarely found inshore and may be considered 

as open ocean species. They have been considered as cosmopolitan except for polar seas 

(Hasle, 1976) being found abundantly in tropical waters (Lee & Fryxell 1996; Semina, 

1977) but also in temperate waters (Kaczmarska & Fryxell 1986; Kaczmarska et al., 1986).  

Studies have shown that smaller cells are found in surface waters and larger forms in 

deeper water (Venrick, 1990; Blain et al., 1997). It need be noted that the abundance of 

bicapitate forms in sediment traps (Tanimura 1992, Lange et al., 1994) greatly exceeds that 

in the sediments (Fenner, 1991; Lee & Fryxell, 1996). Hasle (1976a) reports N. bicapitata 

from 66ºN to 62ºS.  

 

 

Nitzschia braarudii  Heiden & Kolbe 1928 

 

Synonym:  Nitzschia capitata  Heiden in Heiden & Kolbe 

 

Description:  Valves are 35-63μm long and 3-5μm wide, bicapitate, isopolar and lanceolate 

with longer forms have straight parallel sides in the central portion and in shorter forms 

slightly rounded margins. There is a slightly larger central interspace. Striae are in single 

rows of areolae with 22-30 striae and 10-15 fibulae in 10μm (Kaczmarska & Fryxell, 1986; 

Hasle & Syvertsen, 1997; Fryxell, 2000).  

 

Discussion: Simonsen (1992) from an examination of the type and isotype material for 

N.braarudii and N.capitata, concluded that they were the same species. Fryxell (2000) 

does not accept this on the basis of N.capitata having a finer structure (15-19 fibulae in 

10μm as opposed to 10-14 fibulae in 10μm in N.braarudii.) Both N.braarudii and 

N.capitata are distinctly longer forms of the bicapitate Nitzcshia taxa. N.braarudii is 35-
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65μm and N.capitata 22-68μm. Other bicapitate Nitzschia species are within the range of 

5-35μm in length. (Kaczmarska & Fryxell, 1986; Fryxell, 2000). Hasle & Syvertsen (1997) 

accepts that N.braarudii and N.capitata are the same species and that is also accepted in 

this study. 

 

 

Nitzschia kolaczeckii  Grunow 

 

Description: Valves lanceolate with slightly outstretched apices. Two raphes located 

diagonally. Valve with three striae systems, one transverse and two oblique. Central 

interspace slightly larger than the rest. Apical axis 67-120µm. Transapical axis 7.5-11µm. 

8-9 fibulae in 10µm. 13-16 oblique and 17-18 transverse striae in 10µm (Hasle & 

Syvertsen, 1997). 

 

Ecology: warm water region (Hasle & Syvertsen 1997). 

 

Order Fragilariales 

Family Fragilariaceae 

Genera Synedra 

 

2.1.17 Synedra  Ehrenberg 1830 

Type: Synedra ulna Ehrenberg 

 

Generic Characteristics: Valves linear, some capitate, some centrally inflated. Striae 

perpendicular to narrow sternum, sometimes absent or obscured from central area. Striae 

composed of rows of simple round or elongate areolae (Round et al., 1990). 

Discussion:  A number of taxonomic issues have influenced the classification of Synedra 

Ehrenberg. Historically, araphid, benthic diatoms from polar waters were rarely identified 

beyond the generic level. Forms of the genus Synedra Ehrenberg were therefore not 

identified beyond this generic classification. This was partly due to the difficulties 

involved in identifying species specific distinctions in this genus without electron 

microscopy (Hasle et al., 1994).  Attempts have subsequently been made to subdivide the 

genus into smaller genera, based on valve striation and the presence or absence and 
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structure of labiate processes. These genera include Neosynedra Williams & Round 1986, 

Tabularia (Kűtzing) William & Round 1986, Catacombas Williams & Round 1986 and 

Hyalosynedra Williams & Round 1986 . A number of species originally assigned to 

Synedra Ehrenberg were also reassigned to other genera, notably to Fragalaria Lyngbye 

(Williams & Round 1986, 1988a,1988b). In addition, the genus, Synedropsois  Hasle, 

Medlin & Syvertsen 1994 has been described as distinct from these subdivisions of 

Synedra Ehrenberg. Synedra is only identified to generic level in this study. 

 

Ecology: The genus Synedra Ehrenberg has been identified extensively from ice 

assemblages (Garrison et al., 1987).  The generitype of the new genera Synedropsis, 

Synedropsis hyperborea (Grunow) Hasle, Medlin & Syvertsen, is an Arctic species and 

characteristic of sea ice. Neosynedra Williams & Round 1986 and and Hyalosynedra 

Williams & Round 1986 are identified as widespread marine epiphytic genera, Tabularia 

(Kűtzing) William & Round 1986 a widespread marine, brackish and occasionally 

freshwater epiphytic and epilithic genera and Catacombas Williams & Round 1986 a 

cosmopolitan epiphyte on seaweeds.  

 

 

Order Thalassionematales 

Family Thalassionemataceae 

Genera    Thalassionema, Thalassiothrix 

 

 

2.1.18 Thalassionema Grunow ex Mereschkowsky 1902 

 

Type:  Thalassionema nitzscoides (Grunow) Mereschkowsky 

Basionym: Synedra nitzschoides Grunow 

Synonym: Thalassiothrix nitzschoides (Grunow) Grunow in Van Heurk  

 

Generic Characteristics: Valve view: cell shape varying from smoothly dilated in centre 

(acicular, spindle shaped) to linear or distinctly dilate in the centre and at the apices; or one 

apex rounded and the other slightly tapering. Wide sternum. One marginal row of circular 

areolae. External opening of areolae larger than internal openings (foramina) and crossed 
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by simple silicified bar (strut) or a pattern of crossing bars. Girdle view: cells rectangular, 

isopolar or heteropolar (Hasle & Syvertsen, 1997). Thalassionema form stellate, zig-zag or 

fan-shaped colonies joined by mucilage pads (Round et al., 1990). 

Characteristics distinguishing species: This genera was long thought to be monospecific    

(T. nitzscoides). VanLandingham recognised two further species (VanLandingham, 1978) 

A detailed study of the genus supported this view of their being three distinct species, T. 

nitzscoides, T.bacillaris and  T.frauenfeldii (Hallegraeff, 1986).  

 

 

Thalassionema nitzschoides (Grunow) Grunow 1881 

 

Basionym:  Synedra nitzschioides Grunow 1962 

Synonyms: Thalassiothrix nitzschioides Grunow in Van Heurck 1880-1885 

  Thalassiothrix curvata Castracane 1886 

 

Description: Valve view: the two sides of the valve are usually nearly parallel but can be 

slightly inflated in the middle. Isopolar, usually with blunt round ends, but capitate ends 

also occur. Marginal areolae (10-12 in 10μ) have small internal openings. Externally they 

open into depressions in the valve face and mantle which are partially occluded by 

triradiate struts which may have side-branches. Running down the central axis of the valve 

is a broad axial area (pseudoraphe) with no perforations. Valve pores open externally into a 

large circular hole in the valve face and internally into a slit-like labiate process 

(Hallegraeff, 1986). Plate IV 1-4 

 

Discussion:  While Thalassionema nitzschioides is commonly isopolar, heteropolar forms, 

with an arrow-head shaped spine at one end, have been reported. Hallegraef (1986) argued 

that these spined forms occur in the same colonies as isopolar forms and that their fine 

structure and other morphological features are consistent with T. nitzschioides. He 

therefore considered them to be variants not the distinct species, Thalassiothrix 

pseudonitzschioides, as previously suggested (Schutte & Schrader, 1982). Hallegraeff 

noted that where the heteropolar form occurs, the corresponding spineless valve pole was 

associated with the mucus pad, with the spineless ends occurring centrally in stellate 

colonies. He also recorded forms with spines at both ends of a valve which he noted allow 
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stellate colonies to change to zig-zag forms (Hallegraeff, 1986). However other authors 

have accepted the heteropolar distinction of the species T. pseudonitzschioides (Hasle & 

Syvertsen, 1997). Moreno-Ruiz & Licea (1994) further recognised ten subspecies of T. 

nitzschioides based on whether they were heteropolar or isopolar, the fine structure of the 

areolae and the valve outline. 

 

Ecology: Thalassionema nitzschioides is a cosmopolitan neritic species (Hallegraeff, 

1986).  

 

 

Thalssionema nitzschioides var. parva (Heiden)  

 

Basionym: Thalassionema nitzcshioides var. parva Heiden in Heiden & Kolbe (vide 

Simonsen 1992) 

 

Description:  Valve view: valves are small and linear. Length 5-9.5μm, width 2.3-4.0μm, 

9-12 central and terminal areolae in 10μm. Apices are rounded, isopolar, with two slit like 

rimoportulae at each pole, parallel or slightly oblique to the mid-line of the valve  

(Moreno-Ruiz & Licea, 1994). 

 

Discussion: Different authors have given assigned different lengths to this form. Hasle 

(1960) and Baron (1985) note forms up to 12 μm and Fenner (1978) lengths of 21μm to 

28μm. Moreno-Ruiz & Licea (1994) propose a maximum length of 10μm for this form. 

They further note that while T.nitzschioides var. incurvata can be of similar dimensions, it 

is distinguished by a concave outline (Moreno-Ruiz & Licea, 1994). 

 

 

2.1.19 Thalassiothrix Cleve & Grunow 1880 

 

Type:  Thalassiothrix longissima Cleve & Grunow 

Synonym: Synedra thalassiothrix Cleve 
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Generic Characteristics: Cells are solitary or in radiating colonies. Cells straight, slightly 

curved or sigmoid, usually strongly twisted, isopolar or heteropolar. Valves more or less 

inflated in the middle and at the apices. The sternum is wide and sometimes narrower near 

the apices.  External openings of the one row of marginal areolae are elongate and larger 

than internal openings (foramina); covered by reticulate vela divided more or less distinctly 

into two compartments by a longitudinal bar running parallel to valve margins. Marginal 

spines located in the middle of the vela on the longitudinal bars or on the border between 

the vela and the imperforate margin of the valve mantle (Hasle & Syvertsen, 1997). 

 

 

Thalassiothrix longissima  Cleve & Grunow  1880 (conservation proposed by Silva & 

Halse 1993)  

 

Description: Valves are narrow, linear and usually slightly heteropolar with a smooth 

rounded foot pole and a head pole with two ledge-like spines. The frustules are very long, 

up to 1-4mm in length and 1.5-5μm in width. Plate IV 5-6 

 

Discussion: Hallegraeff (1986) recognised four subspecies of Thalassiothrix longissima;  

Thalassiothrix longissima Cleve & Grunow 1880 var. longissima Grunow ex Van Heurck 

1880-5,  Thalassiothrix longissima var. lanceolata (Hustedt) comb.nov,  Thalassiothrix 

longissima var. gibberula (Hasle) comb.nov and  Thalassiothrix longissima var. antarctica  

Grunow ex Van Heurck 1880-5.  Later work by Halse and Semina (1987) on the original 

type material concluded that Thalassiothrix longissima and Thalassiothrix antarctica are 

sufficiently different to be considered separate species as originally suggested by Hustedt 

(1958). They argued that while both species were similar with respect to areolae structure, 

apical protrusions and marginal spines; only T. antarctica exhibited colony formation and 

produced both curved and straight cells. The apical spines also vary between the two 

species, T.antarctica having large winged spines at one pole and T.longissima serrated 

protrusions at both poles (Hasle & Semina 1987). 

 

Ecology: Cold water to temperate region (Hasle & Syvertsen, 1997). 
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Plate I 

  

1. Roperia tesselata (external) 2.Roperia tesselata (internal) 

  

3.Proboscia alata 4.Proboscia alata 

  

5.Rhizosolenia styliformis 6.Rhizosolenia borealis 



302 

 

  

1.Bacteriastrum hyalinum 2.Bacteriastrum hyalinum 

  

3.Thalassiosira gravida vegetative 4.Thalassiosira gravida spore 

  

5.Thalassiosira oestrupii (external) 6.Thalassiosira oestrupii (internal) 

 

Plate II 
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1.Fragilariopsis doliolus 2.Fragilariopsis dolious 

  

3.Nitzschia bicapitata 4. Nitzschia bicapitata 

  

5.Fragilariopsis oceanica 6.Fragilariopsis oceanica 

 

Plate III 
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1.Thalassionema nitzschoides 2. Thalassionema nitzschoides 

  

3. Thalassionema nitzschoides parva 4. Thalassionema nitzschoides parva 

  

5.Thalassiothrix longissima 6. Thalassiothrix longissima 

 

Plate IV 


