An Integrated Approach to
Speech Recognition using
Phrase-Based Units

Christopher James Watkins

A thesis submitted for the Degree of
Doctor of Philosophy

University of East Anglia
School of Computing Sciences

March, 2010

(©This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with the author and that no quotation from the
thesis, nor any information derived therefrom, may be published without the author’s prior
written consent.

Abstract

In human-to-human dialogue, formulaic sequences are used to minimise the effort
of both speech production and perception in the conversation. In production,
the speaker apparently retrieves such sequences whole from memory, without the
cognitive effort required for generation from a lexicon and grammar. In perception,
context determines a set of similar phrases that the listener expects to hear, and

this also reduces cognitive load.

This thesis describes techniques used to automatically acquire formulaic phrases
from transcriptions of speech, which are then used to define variable-length units
of speech and language. These are well suited for use in a template-based speech
recogniser, which can easily adjust its modelling units for the examples that are
found, with the aim of improving Automatic Speech Recognition (ASR) accuracy.
Language modelling techniques are described, such as the Word Phrase Link Bi-
gram (WPLB) language model, which combines words and phrases together, and
the Hybrid Syntactic Formulaic (HSF), which clusters semantically similar phrases
using syntax. The language models are then combined with speech, in both Hidden
Markov Model and template-based speech recognisers. Techniques to reduce the

complexity of the search space for the template-based recogniser are introduced,

such as the hierarchical LDA filter.

As expected, the techniques gave significant gains when the language used was
highly formulaic, and were less successful on a “standard” speech database which

consisted of highly artificial utterances.

Acknowledgements

I would first of all like to thank Professor Stephen Cox, for first of all suggesting
this work, and secondly for being a very optimistic and attentive supervisor. I
would like to thank Dr. Ben Milner, my co-supervisor, for his help with flat-start
labelling, and general availability for discussions about issues in my work. I would
also like thank Professor Dirk Van Compernolle who agreed to be the external

examiner for this thesis and Dr. Barry Theobald who was the internal examiner.

Thanks go out to my colleagues and friends that I have shared a lab with
over the past four years; Jacob Newman, Nick Wilkinson, Qiang Huang, Ibrahim
Almajai, Osama Dorgham, Ian Read, Alastair James, Mark Hadley, Jonathan
Darch, Omar Caballero and Sarah Hilder.

Finally, a special thanks go to my fiancée Yuxuan Lan whom has kept me calm
throughout these final few stressful months, cooking splendid cuisines for me, and
supported me even though I was in the lab day and night for most of the past

year!

i

Contents

List of Abbreviations

List of Figures

List of Algorithms

List of Tables

1 Introduction

1.1
1.2

Motivation and Aims

Thesis Overview

2 Technical Background

2.1
2.2

2.3

2.4

2.5
2.6

Introductiono
N-Gram Language Modelling
2.2.1 Katz-Backoff
2.2.2 Representing Backoff LMs with Stochastic Automata
2.2.3 Perplexityo
Template-Based Recognition
2.3.1 Definition of a Template
2.3.2 Frame-Based Distance Measures
2.3.3 Dynamic Time Warp (DTW)
2.3.4 Token Passing Algorithm
HMM-Based Recognition,
2.4.1 Decoding with Token Passing
Integrating the Language Model into the Recogniser
Vocal Tract Length Normalisation (VILN)

il

vi

viii

xi

xii

CONTENTS iv

2.6.1 Finding Optimal Warp Factors 37

2.6.1.1 Training Procedure 37

2.6.1.2 Recognition Procedure 38

2.7 Linear Discriminant Analysis (LDA) 38

3 Dataset Description 41
3.1 Imtroduction 41

3.2 Speaker-Dependant Call-Routing Data 41
3.3 Speaker-Independent Resource Management (RM) dataset 43
3.4 Feature Extraction, 43
3.5 HMM Baseline Recognisers 45
3.6 Template Information L. 45

4 Phrase-Based Language Modelling 47
4.1 Introduction 47

4.2 Literature Survey L 48
4.3 Phrase Acquisition using Multigrams 53
4.4 Phrase Clustering using a Hybrid Syntactic and Formulaic Approach 59
4.4.1 Clustering with Parse Trees 60

4.4.1.1 Class Merging 62

4.5 Integrating Phrases with N-Grams 64
4.5.1 Language Model Topologies 64

4.5.2 Integrating phrase classes 73

4.5.3 Adding a Bias to Phrase States 79

4.6 Baseline Evaluation L. 80
4.6.1 Speaker Dependent Results 80

4.6.2 Speaker Independent Results. 85

4.7 Conclusions 87

5 Bottom-up Template Selection 90
5.1 Introduction 90

5.2 Vector Quantisation for K Nearest Neighbours selection 92
5.3 Time Filter Algorithm 94

5.3.1 Adding a backward pass to time filter 100

CONTENTS

5.3.2 A length-based template score normalisation

5.4 Filtering Candidate Templates with Hierarchical LDA
5.4.1 Extracting Features for LDA
5.4.2 LDA Decision Tree

5.5 Ewvaluation oL
5.5.1 Template Selection
5.5.1.1 Sigmoid-Based Distance Normalisation

5.5.2 LDA Filtering
5.5.2.1 Classification Experiments

5.6 Conclusions s,

6 Template-Recognition Experiments
6.1 Introduction
6.2 Decoder Architecture — Extensions to the Template Decoder
6.2.1 Integrating Template Candidates
6.2.2 Token Merging
6.3 VTLN for Templates
6.4 Recognition Experiments L.
6.4.1 Speaker Dependent Results
6.4.2 Speaker Independent Results.

6.5 Conclusions and Discussion

7 Discussion and Conclusions
7.1 Summary and Discussiono L
7.2 Conclusion and Future Work
7.2.1 Future Work.

A Sample Output of Multigram Segmentation
A.1 Examples from SD Call-Routing Data.
A.2 Examples from SIRM data

B Penn Treebank
B.1 POS Tags
B.2 Phrase-Level Tags L
B.3 Clause-Level Tags

102
105
106
111
115
115
118
119
124
126

130
130

131

131
132
133
135
135
138
142

145
145
150
151

153
153
154

CONTENTS vi
C Sample Output for HSF Clustering of Phrases 160
D Gaussian Intersection: Derivation 163

Bibliography 166

List of Abbreviations

Abbreviation Meaning

ASR Automatic Speech Recognition
CD Context Dependent

CI Context Independent

DP Dynamic Programming

DTW Dynamic Time Warping

FNR False Negative Rate

FPR False Positive Rate

FSA Finite State Automoton / Automata
FSN Finite State Network

GMM Gaussian Mixture Model

HMM Hidden Markov Model

KNN K Nearest Neighbour

LDA Linear Discriminant Analysis

LM Language Model

ML Maximum Likelihood

NN Nearest Neighbour

010)% Out-of-vocabulary

PB Phrase Bigram

PDF Probability Density Function
POS Parts of Speech

RBF Radial Basis Function

RM Resource Mangagement

SD Speaker Dependent

SFSA Stochasic Finite State Automoton / Automata
SI Speaker Independent

SVM Support Vector Machine

VNSA Variable N-gram Stochastic Automata
VQ Vector Quantisation

VTLN Vocal Tract Length Normalisation
WB Word Bigram

WER Word Error Rate

WPB Word Phrase Bigram

WPCB Word Phrase Class Bigram

WPCLB Word Phrase Class Link Bigram

vil

CONTENTS viii

Abbreviation Meaning
WPLB Word Phrase Link Bigram

List of Figures

2.1
2.2
2.3
24
2.5

2.6
2.7
2.8
29
2.10
2.11
2.12

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12

Word-Bigram (WB) language model, 14
Template definition o 18
Itakura constraints. L 22
DTWonrealdata. 25
Template formulated as a series of connected states with transition

COSES . . o o 26
A template ergodic networko 27
Token Passing 28
HMM topology 30
Decoding network hierarchy. 0. 33
The effect of VTLN on the Mel-Scale filterbank 35
Piecewise linear warping function 36
LDA projection of samples onto a line. 39
The Multigram Production Model 54
A HMM for the multigram “i want my”. 56
A unigram decoding network for a restricted set of multigrams. . . 57
A parse tree for the utterance “i’d like to get my balance”. 60
Phrase labelling using parse trees 62
Phrase-Bigram (PB) language model 66
WPB (word + phrase bigram) language model. 69
WPLB (word phrase link bigram) language model (LM). 72
WPCLB (Word-Phrase Class Link Bigram) language model (LM). . 74
Class 174. e 75
A phrase class represented as an SFSA.o 76
Phrase class as an SFSA with whole phrases 7

X

LIST OF FIGURES

4.13

4.14

4.15

4.16

4.17

4.18

5.1

5.2
5.3

5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14

5.15
5.16
5.17

6.1

X
WPCLB (Word-Phrase Class Link Bigram) language model (LM)
with SFSAs to represent classes. 78
Word accuracy on the SD test-set for HSF clustering with the WP-
CLB language model over varying numbers of phrase classes. 82
Average perplexity per word on the SD test-set for HSF clustering
with the WPCLB language model over varying numbers of phrase
classes. WB, WPB, and WPLB are shown for comparison. 83
Histograms showing the number of words per phrase as a relative
frequency for SD data. 84

Histograms showing the number of words per phrase as a relative
frequency for the combined RM datasets oct89, feb91, and sep92. . 86

Histograms of chosen units by the HMM decoder on the SD training
data compared to the available units. 89

Vector Quantisation of frames in 3 different classes; aal4}], ah/3],

aef3] .. 93
The Time Filter Algorithm. 95
Activation regions. The effect of increasing the activation gap upon

the activation region.o 96
Local penalties within activation regions. 97
The backward pass for Time Filter. 101
General sigmoid function. L. 103
Sigmoid-based normalised distance function. 105
Template classification. 106
Gaussian Radial Basis Function. 110
Threshold selection: Distribution crossing point. 112
Histograms of LDA projected data. 113
The LDA decision tree. 114
Features for LDA. 120
Z-score (z(Y,t)) plotted against the probability of template candi-

dates (P(Y|t)) for SD training data. 121
Projection of template candidates into 1D for SD training data. . . 122
Distributions for correct and incorrect template candidates. 122
Distributions of template candidates. 123

A “dead-end” within an activation graph 131

LIST OF FIGURES xi

6.2

6.3

6.4

C.1
C.2
C.3
C4
C.5
C.6
C.7

The optimal warp factors selected for the RM training data. There
are 78 male speakers and 31 female speakers in the training data. . 135

Histograms of the length of phrase units chosen by the template-
decoder on the SD data during recognition with WPB and WPLB
language models. 138

Histograms of the length of phrase units chosen by the template-
decoder on the RM data during recognition with WPB and WPLB

language models. 141
Class 13. e 160
Class 14. e 161
Class 2. e 161
Class 499. 161
Class 1002. e 161
Class 1042. 161
Class 1090. 162

List of Algorithms

2.1
2.2
2.3
4.1
4.2
4.3
5.1

DTW algorithm with Itakura Constraints 23
Token Passing Algorithm 29
Token passing with probabilities, not distances 31
Constructing the initial set of multigrams. 55
Segmentation algorithm for the training data 58
Class merging process using cosine similarity 64
The Time Filter Algorithm. 99

x1i

List of Tables

3.1
3.2
3.3

4.1

4.2

4.3

5.1
5.2
5.3

5.4
5.5

6.1

6.2
6.3

6.4
6.5

6.6

SD call-routing data information. 42
RM dataset information., 43
Dataset template information. 45

SD perplexity and word accuracy on baseline HMM system for dif-
ferent language models. 81

Statistical significance tests on the SD test data. The Matched-Pairs
test was used to determine if gains / losses in accuracy for different
language models were statistically significant. 82

Word Accuracy and Perplexity on RM using HMM-based systems
with and without VILN. 85

Time Filter statistics for SD Test data. 116
Time Filter statistics for the RM evaluation set, with VILN applied.117

Time Filter statistics for the SD evaluation set when using Sigmoid-
based distance normalistion. 0L 118

LDA Filter classification results on the SD Test data. 124

LDA Filter classification results on the RM evaluation set using

Comparison of word accuracy on template-based system to HMM-
based system on SD data., 136

Average number of templates from the Time Filter for SD data. . . 136

Matched-Pairs tests on the SD test data for template-based and
hmm-based systems 137

Word Accuracy on RM using template-based decoder. 139

Average number of templates from the Time Filter for RM evalua-
tiondata. 139

Matched-Pairs tests on RM oct89 and feb91 for template-decoder. . 140

xiii

LIST OF TABLES Xiv

6.7 Matched-Pairs tests on RM sep92 for template-decoder. 140

6.8 Matched-Pairs test on RM evaluation sets for comparison of template-
based VTLN systems with and without LDA filtering. 141

Chapter 1

Introduction

1.1 Motivation and Aims

The data-driven, probabilistic-based paradigms that have been developed for ASR
(notably the hidden Markov model (HMM) framework) were highly successful in
advancing the technology during the 1980s and 1990s, but they contained simplifi-
cations and assumptions that are known to be untrue (for instance, the assumption
that speech is produced by a first-order Markov process, or that language can be
well modelled using n-grams of words). After years of intensive incremental devel-
opment of the models, it seems that these modelling assumptions are now limiting
the progress of ASR, and that these techniques may not be able to provide the
leap needed to move ASR performance up to the level required for it to be usable

in new applications [Moore, 2003].

One area in which the conventional approach to ASR may be questioned is in
the use of statistical distributions. Clearly probability density functions (PDFs)
constitute an essential element of hidden Markov modelling and provide a powerful
method of generalising from seen to unseen data. However, the use of PDFs does
represent a potential loss of information; the detail that is present in individual

data samples is sacrificed in order to pool information in a controlled fashion.

CHAPTER 1. INTRODUCTION 2

In ASR, this realisation has led to a resurgence of interest in template-based
recognition systems [De Wachter et al., 2003; Axelrod and Maison, 2004; Aradilla
et al., 2005; Maier and Moore, 2005; Demange and Van Compernolle, 2009a].

Another practice that simplifies conventional ASR is the use of fixed levels of
description, which enables a hierarchical and modular approach to recognition
in which words can be easily constructed as sequences of phonemes and lan-
guage models as n-grams of words. However, there is ample psycho-linguistic
evidence that humans recognise and generate a great deal of language in ready-
made chunks [Goldinger, 1996, 1998; Wray, 1999], which have been termed “for-
mulaic sequences” by some linguists [Wray, 2002]. These sequences “appear to be
pre-fabricated, that is stored and retrieved whole from memory rather than being
subject to generation or analysis by the language grammar” [Wray and Perkins,
2000]. It has been argued that these phrases serve the important purpose of avoid-
ing processing overload in both speaker and listener: the speaker retrieves them
whole from memory, and the listener is more likely to understand a message if it is
in a form that he/she has heard before. Analysis shows that much commonplace
language is highly formulaic, and this is especially true in ASR applications where
the application context is narrow and the discourse is goal-directed, factors that
apply to most telephony ASR applications that provide information provision and
booking services. Although many of these phrases have the status of “carrier”
phrases, and as such have a low information content associated with them [Huang
and Cox, 2006], recognition of them is essential for segmentation of the signal and

extraction of the information content.

The template-based approach to recognition fits very well with the idea that
the units used for recognition can be of different lengths: rather than insisting on
modelling an utterance as a sequence of phonemes, we can adjust the lengths of
our modelling units according to the examples we find. This has obvious benefits

in capturing the acoustic/phonetic variation in commonly occurring fragments.

These ideas give the motivation for the work presented in this thesis, which will

CHAPTER 1. INTRODUCTION 3

attempt to define templates explicitly from commonly-occurring phrases found in
transcriptions of speech which can then be used in a speech recogniser. This
approach differs from that of De Wachter et al. [2007] where templates are defined
at the phone level and then concatenated together based upon a set of costs.
By explicitly defining the templates before the recognition, language modelling
techniques can be investigated in an attempt to leverage prior information for
the decoder, offering strong predictions based on certain perceptual contexts, as
earlier described for human listeners in conversational dialogue. Thus, the aim
of this thesis is to integrate commonly-occurring phrase-based units, modelled by

language and speech, into a template-based speech recognition system.

1.2 Thesis Overview

This section will give an overview of each chapter presented in this thesis, starting
with prerequisites in Chapter 2 and Chapter 3, followed by the three main chap-
ters that define this work: Chapter 4 describes phrase-based language modelling,
Chapter 5 describes bottom-up template selection, which is used to reduce the
massive search space of the decoder in template-based recognition, and Chapter
6 describes the template-based decoder and recognition experiments which inte-
grate the language modelling techniques and template selections together with the

decoder. An overview of each chapter is now given.

Chapter 2 gives the required technical background for this thesis, including
N-Gram language modelling, speech recognition techniques such as the Dynamic
Time Warping (DTW) and Token Passing algorithms, integration of the language
model into a speech recogniser, Vocal Tract Length Normalisation (VTLN), and

Linear Discriminant Analysis (LDA) for a classifier.

Chapter 3 describes the datasets used in this thesis, including the feature vec-
tors that are extracted, the HMM-based systems that are built for each dataset to

act as baseline systems, and the number of templates that are contained in each

CHAPTER 1. INTRODUCTION 4

dataset.

Chapter 4 describes the methods used to acquire commonly-occurring phrases
from transcriptions of speech and then integrate them into language models. A
clustering algorithm is presented which groups phrases of a similar semantic func-
tion by using syntactic information. The individual phrases and classes of phrases
are combined into Stochastic Finite State Automata (SFSA) representations of
language models which can be later used to integrate the phrases with the models
and templates of speech in the recogniser. The chapter ends with the baseline
evaluation of the methods presented using a monophone HMM-based recogniser

and then a discussion of these results.

Chapter 5 presents methods used to reduce the complexity of the template-
based decoder, including an introduction to the Time Filter algorithm [De Wachter
et al., 2003] which is a bottom-up acoustic pass over the utterance to find approz-
imately matching templates. Extensions are made to the Time Filter algorithm,
including a Vector Quantisation (VQ) method which is an approximate method
to k-nearest neighbour (KNN) selection used in the Time Filter algorithm. A
backward pass of the Time Filter is suggested, with details given of the implemen-
tation, and a Sigmoid-based distance normalisation function is described which
is used to control the length of templates selected by the Time Filter for experi-
mental purposes. The chapter also describes a hierarchical LDA classifier which
is used to further filter the template candidates that are output from the Time
Filter, with details of feature extraction and classifier decision points given. The
chapter finishes by evaluating the performance of the described techniques for
template selection, with tests such as how well the selected templates match the

input utterances, and classification tests of the LDA filter.

Chapter 6 describes the template-recognition experiments, including the de-
coder architecture and how VTLN is applied to the templates. It also discusses

the results presented, and gives conclusions.

Finally, Chapter 7 summarises the work and findings presented in this thesis,

CHAPTER 1. INTRODUCTION)

integrating the conclusions of each chapter into a final conclusion which includes

a discussion of the possible directions this work could take in the future.

Chapter 2

Technical Background

2.1 Introduction

Speech recognition is the task of converting an audio waveform into a string of
words. The waveform is typically discretised into a sequence of vectors X, known
as observations, as part of a feature extraction process (more details are given in

Section 3.4), giving the observation sequence

T
X] =X1,X2,X3,...,X7_1,XT (2.1)

The word string w that represents the observation sequence X is given by:

m
w' = Wy, Wy, W3, ..., W1, Wy, (2.2)

The general problem for finding the correct word string @ for the current
observation sequence X, which entails searching over all possible word strings in

the language .2, can be formulated as finding w such that:

CHAPTER 2. TECHNICAL BACKGROUND 7

w = argmax Pr (w|X) (2.3)
we.?

Applying Bayes’ rule gives:
. Pr(X|w) Pr (w)

W = argmax

wey Pr (X>

(2.4)

The denominator in Equation (2.4) can be removed as it is constant over all

possible word strings for the current observation sequence, giving:

w = argmax Pr (X |w) Pr (w) (2.5)
we s

Equation (2.5) is the driving force for the emergence of two distinct research
fields within the area of automatic speech recognition (ASR): acoustic modelling
and language modelling. Pr(w) represents the prior probability of observing a
sequence of words w and is estimated using language modelling techniques, in
particular the N-gram language model which will be described in Section 2.2.
Pr (X |w) represents the probability of the observation sequence X given a hy-
pothesised word string and is estimated using acoustic matching and modelling
techniques which are described further in Section 2.3 and Section 2.4. Section 2.5
will describe the techniques that are required to integrate language models into
a speech recogniser. Section 2.6 will describe Vocal Tract Length Normalisation
(VTLN) which is a method used to warp a speakers frequency scale to try and
remove the variability introduced by different length vocal tracts. Finally, Section
2.7 will introduce and describe Linear Discriminant Analysis (LDA) which is used

to form a classifier in Section 5.4.

CHAPTER 2. TECHNICAL BACKGROUND 8

2.2 N-Gram Language Modelling

The N-gram is motivated from the idea that the probability of a word w; in
a sequence of words w{® can be estimated based on the previous words in the

sequence wi ! using a relative frequency approach, such that:

Pr (wijwi™) = (2.6)
where C'(+) represents the count of the given word string which is attained from
a collection of sentences known as the training text. The probability of a whole

word sequence can then be calculated by the product of each word probability:

Pr(wi") = H Pr (w;|wi™) (2.7)

Equation (2.6) is not tractable for real-world applications because as the word
history becomes longer and longer it is less likely to have occurred in training
data (and even on the web). As a solution to this problem, and the intuition for
the N-gram probability, the Markov assumption can be made which says that the
probability of a word can be calculated using the N — 1 previous words instead of

the whole history of the sequence, such that:

Pr (w;|wi™") &~ Pr (w;|w!_y,,) (2.8)

where

CHAPTER 2. TECHNICAL BACKGROUND 9

11—

1) — 7
i—N+1 C (U)

Pr (w;|w

such that the approximated probability of a word sequence is given by:

Pr(wi") = H Pr (wi|wi"\ 1) (2.10)
i=1

Although Equation (2.10) is given in general form for any N, the work reported

in this thesis is only concerned with the case where N = 2, i.e. the bigram!:

Pr(wi") ~ H Pr (w;|w;—1) (2.11)

where

C (wi_lw,-)
C (U}z’,l)

Pr (w;|w;—1) = (2.12)

2.2.1 Katz-Backoff

Even though the N-gram model reduces the data sparsity problem by, as discussed
earlier, using a reduced history for an approximation of the probability of a word,
there can still be cases when N-grams rarely or never occur in the training text
but are observed in the test data. This is usually because of sampling issues when

the vocabulary is large. If an N-gram in a test sentence has not been seen in the

"Word recognition experiments with the baseline HMM system were performed with the
trigram language model and did not give improved performance over the bigram language model.
It was concluded that this performance was due to the small size of the datasets used in this
work.

CHAPTER 2. TECHNICAL BACKGROUND 10

training text then Equation (2.10) will evaluate to zero.

Katz backoff [Katz, 1987] offers a solution to this problem by applying Good-
Turing smoothing [Good, 1953] (see also Lidstone [1920]; Witten and Bell [1991];
Kneser and Ney [1995] for alternative smoothing measures) to the counts of N-
grams that appear less than or equal to k£ and re-distributing the leftover “prob-
ability mass” to the unseen N-grams using a recursive model that contains lower
order N-gram distributions. The lower-order distributions (e.g. unigram and bi-
gram if using a trigram model) allow a “backoff” procedure to take place if the
current N-gram is not seen, thus reducing the context size of the current word by
one and giving a (N — 1)-gram, which makes it more likely to have been seen in

the training data.

The Good-Turing discount method, shown in Equation (2.13), employs a fre-
quency of frequency approach which estimates the probability of N-grams that

occur 7 times based on the probability of N-grams that occur r + 1 times:

'I"* = (T’ + 1) D41

o (2.13)
where r* is the “smoothed” count, r = C(w!_y.,), and n, is the number of N-
grams that occur r times in the training text. Good-Turing smoothing in the
Katz backoff model is only applied to counts that occur fewer than or equal to
k times (a good estimate for k is five but this may vary depending on the data),
because it is assumed that N-grams that appear more than £ times are reliably
estimated. The discount ratio d,, which is the ratio of the discounted counts r*
to the original counts r for N-grams appearing between 1 and & times (inclusive),
and shown in Equation (2.15), can be used to estimate the discounted probability

of the N-gram:

CHAPTER 2. TECHNICAL BACKGROUND 11

. C(wi_niy)
Pr* (w;|w!y,,) = d x A (2.14)
! C (win41)
where the discount ratio d, (adjusted for k) is calculated as:
r* (k4+1)np 4
Ll for1<r<k
d, = { 1-hmn (2.15)

1 for r > k

So far, Good-Turing smoothing has been described. The key part of Katz’s
work is in the backoff from higher order to lower order N-grams. Instead of re-
distributing the leftover probability mass equally, a backoff weight « is used to
transfer the mass to the lower order N-grams based on the (N — 1)-gram context,

such that:

i—1 — b Zwi:c(w§7N+1)>0 Prt (wi|w§:fl\/+1)
a(Wiy) = >
w;:C

. 2.16
Pr (ol L) (210

It should be noted that all of the distributions (N-gram, (N-1)-gram, ..., bigram)
are smoothed using Equation (2.14) except for the unigram distribution which is

smoothed by:

(2.17)

where n is the total number of words in the training text (including repetitions).
After smoothing, the leftover probability mass is passed to the next lower order

distribution using the backoff weights of Equation (2.16). The leftover mass from

CHAPTER 2. TECHNICAL BACKGROUND 12

the unigram distribution is then reserved for out-of-vocabulary (OOV) words if
they are permitted for the language model, else it is reabsorbed into the unigram

probabilities.

Equation (2.18), in its recursive form, shows how the Katz backoff model can
be used when estimating the probability of a test N-gram: if the N-gram is seen,
then the smoothed probability Pr* (w;|w!"}_,) is used, else a recursive backoff
procedure is started which uses the backoff weights and lower order smoothed

probabilities:

Prkatz (wl’wZ:]l\[+1) = Pr" (U)Z’U)Z:]l\url) + 0 (PI'* (wZ’wZ:IlVJrl)) (218)
& (WiZx11) Preats (wilw]Zx)

where

gy =4 b =0 (2.19)

0 otherwise

such that the probability of a given word sequence wf* is calculated as

Pr (qu,> ~ H Priat. (wz’wz:]lv_;_l) (220)

=1
2.2.2 Representing Backoff LMs with Stochastic Automata

To use the backoff N-gram language model in a speech recogniser, Riccardi et al.
[1996] introduced the Variable N-Gram Stochastic Automaton (VNSA) which al-
lows an N-gram of any order (any N), with a backoff mechanism, to be input to a

Viterbi-style decoder. This architecture is required for the Token Passing imple-

CHAPTER 2. TECHNICAL BACKGROUND 13

mentation of the Viterbi algorithm (see Section 2.3.4). As previously mentioned,
the work presented in this thesis uses bigram backoff language models, and thus

what follows is a simplified explanation of VNSA.

Figure 2.1 shows a real example of a section of a word bigram (WB) language
model using Katz backoff with Good-Turing smoothing built from one of the
datasets used in this work (see Section 3.2) represented in VNSA form. FEach
language model has a start and end state which represent the start and end of a
sentence of text. Each word in the vocabulary of the training text is represented
as a state — solid connections between word states represent bigram transitions,

such that the connection between the state “can” and the state “i”

represents
the bigram “can i” which was seen in the training data; the log of the smoothed
bigram probability is shown on the arc, defined by Equation (2.14) such that

log (Pr* (“can i”)) = —0.94.

Figure 2.1 also shows the backoff state?, represented by empty brackets, i.e. “(
)”. All arcs coming into the backoff state represent the backoff weight defined in
Equation (2.16), again in log form — for instance, the arc emanating from the
“get” state and terminating in the backoff state is defined as log (« (“get”)) =
—2.16. Arcs that are leaving the backoff state represent the smoothed unigram
(log) probabilities defined in Equation (2.17) — for example, the arc leaving the
backoff state and arriving at the “payment” state is defined as log (Pr* (“payment”)) =
—4.62.

Given the test utterance “can i get my payment address please”, Figure 2.1
shows the relevant section of the bigram backoff language model with some alter-
native paths that are connected to the chosen local states. The total log proba-
bility for the utterance given the WB model of Figure 2.1 is shown in Equation
(2.21). This is calculated by transitioning from the start state through each of the

word states that match the input using the bigram connections (solid arcs) and

2A bigram model only contains one backoff state, but for N > 2 there is a backoff state for
each context. For example, a state which represents the trigram context “i want” is connected
to an associated backoff state that represents “want”.

Gl¢

Figure 2.1: Word-Bigram (WB) language model. Log-likelihoods are shown on the arcs between nodes, and the backoff state is
represented by empty brackets “()7 with transitions to-and-from the backoff state shown in dashed lines.

ANNOYODMOVE TVOINHOAL ‘¢ H4.LdVHD

4!

CHAPTER 2. TECHNICAL BACKGROUND 15

terminating in the end state.

log(Pr(“can i get my payment address please” |lW B)) = (2.21)
(—=3.15) + (—0.94) + (—2.93) + (—2.19) + (—2.64) + (—2.86)+

(—2.83) + (=0.51) = —18.05

To take account of the log probabilities, Equation (2.20) is rewritten as:

log (Pr (w")) ~ Z 10g (Priar. (wilw!Zy.1)) (2.22)

=1

Because the VNSA was designed to integrate a multiple-level N-gram language
model with a speech recogniser, Equation (2.18) is not precisely how the language
model is used to provide the prior probability of Equation (2.5). Equation (2.18)
will only backoff to lower order N-gram if the current N-gram was not seen in the
training data. The VNSA, which is used with Viterbi algorithm, uses a Maximum-
Likelihood (ML) approach which means that all of the possible transitions are
taken into account, i.e. the automaton is non-deterministic, with the best path

chosen to be the one with the highest probability.

For example, following Figure 2.1, the bigram “get my” could be estimated
by following the path from the “get” state to the “my” state, which has a log
probability of —2.19; alternatively, the log probability could be the addition of
the backoff weight and the unigram for “my”, i.e. moving from the “get” state
to the backoff state, which gives the log of the backoff weight, and then following
the path to the “my” state, which represents the unigram log probability of “my”
— this gives a much lower log probability (—5.16), and so the bigram transition

would be preferred by the Viterbi algorithm (Section 2.3.4).

CHAPTER 2. TECHNICAL BACKGROUND 16

2.2.3 Perplexity

The effectiveness of the methods described in Chapter 4 is evaluated using per-
plezity which is the standard metric for evaluating language models [Jurafsky and
Martin, 2009]. The perplexity of a language or language model is the weighted
average number of choices per word for some unseen text — the lower the per-
plexity is, the better the language model is. The perplexity of a language model
Z with respect to a dataset S where |S| is the number of sentences in S is given

by:

PPy (S) = exp (—log (Pi (W) 10g1(2>> (2.23)
where
S|
log (Pr (w})) = Z log (Pr (w(")) (2.24)
i=1,m=]s
and
S|

t=> s, (2.25)
=1

where |s;| is the number of words in sentence s;, and thus ¢ is the total number of

words in S, and log (Pr (w]")) is estimated from Equation (2.22).

CHAPTER 2. TECHNICAL BACKGROUND 17

2.3 Template-Based Recognition

Template-based speech recognition using Dynamic Programming (DP) was popu-
lar for ASR almost 40 years ago [Sakoe and Chiba, 1971], gaining strength from
the late 1970s into the mid-1980’s [Sakoe and Chiba, 1978; Sakoe, 1979; Rabiner
and Shchmidt, 1980; Myers et al., 1980; Myers and Rabiner, 1981; Chamberlain
and Bridle, 1983; Ney, 1984]. In the past few years, template-based ASR has
seen a resurgence [De Wachter et al., 2003; Axelrod and Maison, 2004; Aradilla
et al., 2005; De Wachter et al., 2007] in an attempt to offer improvements over the
current HMM (Hidden Markov Model) approaches where progress appears to be
stalling [Moore, 2003].

This section is structured as follows: Section 2.3.1 will give a formal defini-
tion of the template. Section 2.3.2 will describe between-frame distance measures
that are required to match the stored templates to the input sequence. Section
2.3.3 describes the Dynamic Time Warping (DTW) algorithm which can be used
to find the distance between a reference template and the input sequence for
isolated speech recognition, with Section 2.3.4 introducing the Token Passing al-
gorithm [Young et al., 1989] which can be used to find the sequence of templates
that match the input for continuous speech recognition by introducing between-

template distances to complement the within-template distances of the DTW.

2.3.1 Definition of a Template

A template in ASR is loosley defined as a sequence of acoustic feature vectors,
or frames. In this thesis, we define a template as a sequence of frames from the
training data, termed the reference template. The sequence of frames correspond
to a defined unit of speech e.g. phone, syllable, word, or phrase. The frames
that define the template appear consecutively in the training data, with each

appearance of a given unit stored in a reference template database, i.e. there may

be 200 examples of the word “i” and therefore the database will contain 200 “i”

CHAPTER 2. TECHNICAL BACKGROUND 18

templates. Figure 2.2 shows template definition at the phone, word, and phrase

level.

T D R]
IL- LT[T -

=
-

sil i want my balance sil

sil i_want my_balance sil

Figure 2.2: Template definition. Templates at the phone, word, and phrase level for
the same sequence of training frames.

For the remainder of this thesis, a general reference template will be referred
to as Y, where the length of Y, in terms of the number of frames that define it, is
given as | Y|, such that {y; € Y : 1 <i <|Y|}. Additionally, all template-based
experiments reported in this thesis use word and phrase-level templates, i.e. no

sub-word templates are used.

2.3.2 Frame-Based Distance Measures

As mentioned previously, speech audio is converted into a stream of feature vectors,
otherwise known as frames. Because the input is split into a sequence of frames,
there needs to be some measure of similarity of the input frames to either stored

models (HMMs in Section 2.4) or reference templates to perform the decoding.

A standard measure between two vectors is the Euclidean distance. The (squared)
Euclidean distance between two vectors (frames) x and y of D dimensions is given

as

d(x,y) =Y (z; —)’ (2.26)

=1

which can be written in the general form

CHAPTER 2. TECHNICAL BACKGROUND 19

d(x,y)=(x—y) Alx—y) (2.27)

where A is the identity matrix I. If A = =1, the inverse diagonal covariance

matrix, then the Mahalanobis distance is obtained:

dxy) = @(j%y) (2.28)

The Euclidean and Mahalanobis distance measures of Equations (2.26) and
(2.28) are both examples of global distance measures where the space is trans-
formed by a global transformation matrix A (which is the identity matrix I for
the Euclidean distance and the inverse of the diagonal covariance matrix for the
Mahalanobis distance). Bocchieri and Doddington [1986] showed that it is im-
portant to use a locally based distance measure in template based recognition.
This distance can be estimated by defining an “average” template for each word,
aligning every template example of that word to the average template, and hence

estimating covariance information for each frame in each template.

HMM-based speech recognisers use local measures for each reference or training
frame where each state in a HMM defines a probability density function (pdf)
which gives a likelihood for a given input frame at that state (described further
in Section 2.4). The multivariate Gaussian function is given by [Jurafsky and

Martin, 2009]:

1 1 T—1,,
f<x|u,z>—mexp(—§<x—u> Sxew))

where x is the input frame, p is the mean vector at a given state, and 3 is the

CHAPTER 2. TECHNICAL BACKGROUND 20

covariance matrix of a group of training frames at the given state (¥ is often

diagonal).

De Wachter et al. [2004] have shown that the Gaussian function (Equation
(2.29)) can be equated to the distance function of Equation (2.27) by substituting
the mean frame p for a single reference frame y, taking the negative logarithm of
the likelihood, and removing constants, such that d(x,y) = —log (f (x|y, %)) is

given as

d(xy)=(x-y) S, (x—y)+log(|>.]) (2.30)

where the reference frame y belongs to a class ¢ from a set of M predefined classes,
giving ¥, as the covariance matrix of class c¢. This is termed the local Mahalanobis

distance and when s is diagonal is defined as

d(x,y) = XD: (:L‘O-;y)Q +log (ﬁ a2> (2.31)

=1

where, x is the input frame, y is the reference frame for a class ¢, and o2, is the

variance, for dimension i of D, of all reference frames contained in c.

Equations (2.30) and (2.31) both assume that all reference frames y in the
reference database R can be grouped into M classes. The partitioning of the
reference frames into M classes can be done using a HMM state alignment which
outputs the state that each training frame is distributed to for pdf estimation —
training frames in the same model (HMM) and state are grouped into the same

class for covariance estimation.

De Wachter [2007] uses a context-independent phone HMM recogniser (i.e. mono-
phones) to define the classes for the TIMIT dataset, which is small dataset of

“phonetically-balanced sentences” [De Wachter, 2007], while a context-dependent

CHAPTER 2. TECHNICAL BACKGROUND 21

phone (HMM) recogniser (i.e. bi-phones, tri-phones) is used to define the classes
for both the RM dataset (described in Section 3.3) and Wall Street Journal (WSJ)
corpus, which is a set of read sentences from the Wall Street Journal newspaper.
Both the RM and WSJ datasets are larger in size than TIMIT (in terms of the
amount of training data). In all cases, the number of state classes is doubled by
integrating gender information into the class distribution — each state class is
partitioned into male and female classes. In this thesis, all classes of reference
frames are defined using the state alignment from a context-independent mono-
phone HMM recogniser and experiments are reported with and without the use of
gender information. The number of classes without gender information is 135 for
the Speaker-Dependent (SD) set (from a set of 44 phonemes + silence, described
in Section 3.2) and 144 for the RM dataset (from a set of 47 phonemes + silence,
described in Section 3.3) with the number of classes for the RM set increasing to
285 when splitting states with gender information (the silence states are not split,

hence the number is not exactly doubled).

2.3.3 Dynamic Time Warp (DTW)

The Dynamic Time Warping (DTW) algorithm is a dynamic programming ap-
proach to matching two sequences of frames of (potentially) different lengths [Ra-
biner and Schafer, 1978]. Specifically, in isolated speech recognition, the task is to
match the input sequence of frames X to all stored reference templates Y € R,
where R represents the reference template database, and find the closest matching

reference template.

The DTW match is performed by “squashing” and “stretching” the reference
template so that it is “time-aligned” with the input sequence (i.e. the template is
warped to match the length of the input sequence) and then finding the distance
between the two sequences using a between-frame distance such as the Euclidean
distance (Equation (2.26)) or the local Mahalanobis distance measure (Equation

(2.31)). Typically local constraints are enforced upon the DTW algorithm that

CHAPTER 2. TECHNICAL BACKGROUND 22

° ° °

Figure 2.3: Itakura constraints. A transition to point (i,j) is accepted if originating
from points (i,j-1), (i-1,j-1), or (i-2,j-1). However, if transitioning from point (i,j-1),
the previous transition to (i,j-1) can not originate from point (i,j-2), i.e. consecutive
stalls are not allowed.

limits the amount of “squashing” and “stretching” upon the template — a popular
choice of constraints are the Itakura constraints [Itakura, 1975], as illustrated in

Figure 2.3.

The Itakura constraints allow three kinds of movement in the warp: a diagonal
move which means that there is no warp at that point in the template, a stall
move which keeps the alignment at the same frame of the template (a “stretch” of
the template), and a skip move which moves two frames through the template (a
“squash” of the template). The stall constraint also has an additional constraint
that does not allow two consecutive stalls in the warp. The DTW is formulated as
a search for the best warping path through a matrix D of between-frame distances
(template to input) that are appended with the relevant warping costs — at each
point in the matrix (starting at D;; and ending at Dy, x|, i.e. the start and
end frames of X and Y), the move (diagonal, stall, or skip) which gives the
minimum distance to the input is chosen. The best warping path can be found by
backtracking from the final element of the matrix Dy, x| by following the warping
moves that are stored during the main iteration. Algorithm 2.1 details the steps

of the DTW algorithm.

The results of matching a short input utterance “my balance” to a template
“my balance”, both spoken by the same speaker, are shown in Figure 2.4. Figures

2.4(a) and 2.4(b) both show the between-frame distance matrix for the reference

CHAPTER 2. TECHNICAL BACKGROUND 23

Algorithm 2.1 DTW algorithm with Itakura Constraints
1: {Initialisation — construct pairwise distance matrix M}
2: for i =1to |Y]| do

3 for j =1to|X| do

4 mi; = d(yi, ;)

5. end for

6: end for

. D=M

8

9: {Calculate alignment cost matrix}

10: {D_Cost, H_Cost, and S_Cost are costs for diagonal, stall, and skip moves
respectively. }

11: for i =1 to |Y| do

12: for j =1 to |X]| do

13: if D; ;1 not from stall then

14: Di,j = Dm-erin (Di—l,j—l + D_COSt, Di,j—l + H_COSt, Di—Z,j—l + S_COSt)
15: else

16: D,; =D;; +min(D;_; ;_1 + D_Cost,D;_ ;1 + S_Cost)

17: end if

18: Store move to D; ;

19: end for

20: end for

21: Backtrack from Djy| x| to Dy using stored moves for best alignment.

template Y, represented on the y-axis, and the input sequence X, shown on the
x-axis. The darker the shading is, the closer the frames that align in that matrix
element are (in terms of Euclidean distance) — the lighter the area, the further
the frames are from each other. Figure 2.4(b) shows the best warping path (red
line) using the previously described Itakura constraints, whereas the best warping
path in Figure 2.4(a) does not use the stall constraint, i.e. the difference between
Figures 2.4(a) and 2.4(b) is that the DTW in Figure 2.4(a) allows consecutive stalls
— this is illustrated by the more discrete nature of the best path compared to that
of the full Itakura constraints in Figure 2.4(b). Figure 2.4(c) shows the best path
set against the allowable paths when using Itakura constraints. It also displays,
what is termed here, the alignment cost matrix D which is the between-frame
distances of the template and test utterance, summed with the warping costs and

local path distances (each point in the matrix represents the total distance of the

CHAPTER 2. TECHNICAL BACKGROUND 24

path from D ; to that point) — again darker entries represent smaller distances.

CHAPTER 2. TECHNICAL BACKGROUND

a1
)

IS
N

N
N

Reference template (Y)

10 20 30 40 50
Input frames (X)

(a) Between-frame distance matriz with no stall
constraint.

a1
)

IS
N

N
N

Reference template (Y)

10 20 30 40 50
Input frames (X)

(b) Between-frame distance matriz with full
Itakura constraints.

a1
N}

IS
[N}

N
N

Reference template (Y)

10 20 30 40 50

Input frames (X)

(¢c) DTW alignment cost matriz showing allowable
entries with full Itakura constraints.

Figure 2.4: DTW of the reference template Y to the input sequence X — both
sequences are two instances of “my balance” uttered by the same speaker.

25

CHAPTER 2. TECHNICAL BACKGROUND 26

2.3.4 Token Passing Algorithm

Section 2.3.3 was concerned with the DTW algorithm for usolated speech recog-
nition, and thus each reference template is matched to the whole of the input
utterance. This is useful for applications such as recognition of isolated digits, but
the work presented in this thesis is concerned with continuous speech recognition

where the best matching sequence of templates to the input is required.

The Token Passing algorithm formulates the DTW into an abstract process
of passing tokens around a transition network [Young et al., 1989] which then
simplifies the extension to continuous speech recognition. Each template in the
reference database R is represented, as illustrated in Figure 2.5, as a sequence
of connected states, where each state represents a single frame of the template,
and connecting arcs between states represent the different costs associated with
DTW. The Itakura constraints (Figure 2.3) are built into the network explicitly,
with arcs representing the previously discussed diagonal, stall, and skip moves.
The constraint on consecutive stalls cannot be built into the network, but this can
be determined by examining the path history of a token which stores the states

visited by that token.

H_Cost H_Cost H_Cost H_Cost H_Cost H_Cost

Figure 2.5: Template formulated as a series of connected states with transition costs.
Each state represents one frame y; from template Y, with an additional start and end
state (all black) which are used to connected templates together in recognition.

A simple model for continuous speech recognition is to allow all templates in R
to follow any other template during the decoding process. This can be modelled

using an ergodic network which is illustrated in Figure 2.6 — this simple example

CHAPTER 2. TECHNICAL BACKGROUND 27

only contains four templates in R, with each state in the ergodic network an
abstract representation of each template state model as defined in Figure 2.5.
Each template is connected to another template via the start and end states with

the arcs connecting them holding zero cost.

i want

A A

balance my

Figure 2.6: A template ergodic network. A simple example of an ergodic network
that allows any template to follow any other template for continuous speech recogni-
tion — this simple example contains just four templates. FEach state is an abstract
representation of a template which is actually represented as in Figure 2.5.

Once the transition network (template state network + ergodic network) is
defined, each first state of each template is initialised with a token object which
is updated with the between-frame distance of the frame that the state represents
(frame 1 in this case) and the current input frame x; using a suitable distance
measure (e.g. Equations (2.26) or (2.31)); an identifier representing the state is
stored in the token’s path history. The main token passing algorithm then begins,
and is an iteration over the input frames X, where |X| = T, where a copy of each
token is made and then passed to all connecting states, incrementing the current
distance of the token with the transition cost along the arc that the token travelled,
and the distance of the next state’s frame to the current input frame; again the

receiving state’s identifier is stored in the path history. Figure 2.7 illustrates this.

It should be noted that each transition cost is now notated abstractly as a;;
where ¢ represents the state that the token is sent from and j represents the
state that receives the token, and that the distance between an input frame and

a reference frame is notated as b; (o;) where j is the template state (and thus

CHAPTER 2. TECHNICAL BACKGROUND 28

represents frame y;) and o; is the current input frame or observation (b; (o) is
equivalent to d (x;,y;) as in Equations (2.26) and (2.31)). This change of notation
makes the token passing algorithm more abstract and is required in Section 2.4
which shows how the token passing algorithm can also be applied to HMM-based

speech recognition.

Retain best
token, discard the
rest

Figure 2.7: Token Passing. State j receives tokens 1 and 2 from states i and k
respectively, and updates each token with the respective transition cost a;; and ay;, as
well as bj(o:) which is the distance between reference frame j and input frame t. The
token with the lowest score at state j is retained with all remaining tokens discarded.

Once all tokens have been copied to connecting states and updated with the
relevant between-frame distances and transition costs, the original tokens that
were copied are discarded. The next step is to, at every state, discard all but the
best token, where the best token is defined as the one with the lowest distance.
This step is equivalent to lines 14 and 16 in Algorithm 2.1, which selects the best
path from the previous steps of the algorithm to the current point. The algorithm
continues to iterate over the input frames with the best path chosen to be the
token with the lowest distance from the remaining tokens after all input frames
are processed. The best template sequence, which is the goal of the recognition
process, can be found by backtracking through the path history of the best token.

Algorithm 2.2 summarises the token passing process.

CHAPTER 2. TECHNICAL BACKGROUND 29

Algorithm 2.2 Token Passing Algorithm
1: {Main iteration of token passing algorithm}
2: fort=1to T do
for all states i do
Pass a copy of the token in 7 to all connecting states j.
Update the tokens distance by adding a;; + b; (o) to it.
Add 7 to the tokens path history.
end for
Discard the original tokens.
for all states i do
10: Search through the tokens at ¢ and discard all except the one with the
lowest distance.
11: end for
12: end for
13:
14: Find best token and backtrack through path history for the best warping path
and template sequence.

2.4 HMM-Based Recognition

Hidden Markov Models (HMMSs) have been the primary technique for speech recog-
nition research, taking over from DTW template-recognition in the mid-to-late
1980’s [Rabiner, 1989]. The HMM is a connected state model which is used
to represent speech sounds, such as the phone, by training pdfs and transition
probabilites from some training data. Unlike template-based recognition, there is
usually only one model to represent a sound, with each example of that sound in
the training data used to train the model parameters using the forward-backward
algorithm [Baum, 1972]. Figure 2.8 shows a typical topology for a HMM phoneme
model with three emitting states, each modelled with a Gaussian Mixture Model

(GMM) which is described below.

A simple HMM may use just a single multivariate Gaussian function at each
state, which was previously defined in Equation (2.29). During decoding, the pdfs

at each state are used to calculate an observation likelithood b; (o;) for an input

3The start and end state are used to link different HMMs together during decoding and do
not model any part of the speech sound

CHAPTER 2. TECHNICAL BACKGROUND 30

11 99 ass

a12 a923

A A A

Figure 2.8: HMM topology. The HMM has three emitting states (states 1,2,a and
3), where each state’s output is modelled by a GMM. Transition probabilities are given
on each arc between the states.

frame o; at a given HMM state j, which is re-formulated from Equation (2.29) as:

1

bj (o) = D - 1
(2m)2 22,12

1 T —1
ow (- w) S o)) 23
However, using a single Gaussian pdf at each state assumes that the distribu-
tion of the training data is Normal when this might not be the case. Often the
observation likelihood is modelled by mizing more than one multivariate Gaus-
sian together at each state to give a Gaussian Mizture Model (GMM), where the

multivariate Gaussian pdfs are mixed by a weighted summation, given by

S

b; (o)) = 2_:1 wmﬁ - (—% (0 — p) "S5 (0 ,u,jm)> (2.33)

where there are M mixture components each with an associated weight w,,. The
forward-backward algorithm can again be applied to train the HMMs using GMMs.
2.4.1 Decoding with Token Passing

Section 2.3.4 described how the token passing algorithm [Young et al., 1989 is used

in the decoding process for template-based continuous speech recognition. The

CHAPTER 2. TECHNICAL BACKGROUND 31

templates were formulated as N-state transition models, where N is the number of
frames in the given template, each with transition costs a;; from state i to state j
along each arc. The distance between the input frame and the reference frame was
also reformulated as b; (0;) to map to the equivalent measure in the HMM systems,
i.e. the pdf likelihood from Equations (2.32) and (2.33). In HMM-based systems,
the transition costs a are actually probabilities of moving between states in the
HMM, and are trained during the forward-backward algorithm, which also trains
the observation likelihoods. Figure 2.7 is the common topology for the HMM and
DTW-based template systems.

Once the transition probabilities and observation likelihoods are trained for
the HMMs, the decoding process is exactly the same as with the DTW template-
based decoder, i.e. an implementation of the token passing algorithm as defined
by Algorithm 2.2, except that the distances are reformulated as log probabilities.
This gives Algorithm 2.3. The “best” token is defined now by the token with the
highest log probability.

Algorithm 2.3 Token passing with probabilities, not distances
1: fort=1to T do
for all states 7 do
Pass a copy of the token in ¢ to all connecting states j.
Update the tokens logprob by adding log a;; + logb; (o) by it.
Add i to the tokens path history.
end for
Discard the original tokens.
for all states 7 do
Search through the tokens at ¢ and discard all except the one with the
highest logprob.
10: end for
11: end for
12:
13: Find best token and backtrack through path history for the best state se-
quence.

HTK (HMM toolkit) [Young et al., 2009] is a popular toolkit to build HMM-
based speech recognisers and then to decode an input sequence using trained

HMMs (using an implementation of the token passing algorithm). HTK was used

CHAPTER 2. TECHNICAL BACKGROUND 32

for all HMM-based speech recognition experiments reported in this thesis. This
section has provided a very brief overview of HMM-based speech recognition; the
interested reader should refer to Rabiner [1989] | for example, for a more in-depth
walk-through of techniques used in speech recognition, or alternatively Gales and

Young [2007] which offers a more up-to-date description.

2.5 Integrating the Language Model into the Recog-

niser

Sections 2.3 and 2.4 were concerned with the definition of the template and HMM,
describing how both approaches to speech recognition can be performed when
using an ergodic network, i.e. a network in which any template or HMM can
follow any other template or HMM when decoding, including itself. Typically in
speech recognition, as defined and described in Section 2.2, a language model is

used to constrain the sequence of templates or HMMs that is recognised.

To integrate the language model with the templates or HMMs, the language
model is viewed as being the top level of a hierarchy, with the templates or HMMs
at the bottom. Figure 2.9 shows how this hierarchy works for a small section of
a language model. The example uses phoneme HMMs, and thus the integration
with the language model requires a pronunciation dictionary where the sequence of
phonemes that define the pronunciation of each word is given. The templates used
in this example are at the word level, and for a simple template-based system, every
template representing a given word in the language model is loaded in parallel. A

backoff mechanism is also included in the figure for completeness.

The template-based system requires a further adjustment; the distances that
are output by the DTW need to be converted to log-likelihoods to fit correctly
with the language model probabilities (the Figure shows the language model
transitions as probabilities, but in reality these are converted to log probabil-

ities). In Section 2.3.2 it was shown how the distance measure of Equation

Top Level LM
a(i)

Pr (END | want)

HMM-Based

Pr (i | ISTART) Pr (END | want) @

Template-Based

Pr (i | ISTART) Pr (IEND | want)

Figure 2.9: The language model (LM) and HMM / Template Hierarchy. Shows the integration of the LM with the HMM-based
system and the template-based system.

ANNOYODMOVE TVOINHOAL ‘¢ H4.LdVHD

€€

CHAPTER 2. TECHNICAL BACKGROUND 34

(2.27) can be equated to the multivariate Gaussian function of (2.29), such that
d(x,y) = —log (f (x|y,x)). Thus, it can clearly be seen that by making the dis-
tance of Equation (2.31) negative an equivalent log-likelihood measure /[is found,

such that

Il=—d(x,y) = — [ZD: (”’"U_y)z +log (ID_[a2>] (2.34)

i=1 i=1

Finally, there are two more methods that are used when integrating the lan-
guage model with the speech “models”: a language model scaling factor (LMSF)
and a word insertion penalty (WIP) [Jurafsky and Martin, 2009]. The LMSF is
used to balance the probabilities between the language model and the acoustic
models by globally scaling all of the language model probabilities by the LMSF.
The WIP is required after the use of the LMSF because by adjusting the language
model probabilities, the natural “penalty” (e.g. word bigram probability) of tran-
siting from one word to another is reduced, and thus it is likely that the decoder
will prefer a higher number of shorter words (or templates). By adding in an extra

penalty (WIP) for word transitions, the effect of the LMSF can be rebalanced.

Equation (2.35) gives an updated version of Equation (2.5) to include the LMSF
and the WIP [Jurafsky and Martin, 2009):

W = argmax Pr (X |w) Pr (w)""*" wIpY (2.35)
we?
where N is the number of words in the word sequence w. In reality, the final term
in Equation (2.35), WIP" | is integrated into the decoding networks (Figure 2.9)
by taking the log of it and adding it to each arc of the LM level.

CHAPTER 2. TECHNICAL BACKGROUND 35

2.6 Vocal Tract Length Normalisation (VTLN)

In Chapter 6, the results of the methods described in Chapters 4 and 5 will be
presented for template-based recognition, including experiments on the speaker-
independent RM dataset (described in Section 3.3). A popular technique used for
speaker-independent speech recognition is called Vocal Tract Length Normalisation
which is used to compensate for the fact that different speakers have different
length vocal tracts — men typically have longer vocal tracts than women and
hence their formants are, on average, lower in frequency. The average length of
the vocal tract* for a male is 16.9 cm, while the average length for a female is 14.1
cm [Stevens, 2000]. By minimising the effects of the vocal tract, the difference

between two different speakers can be reduced.

14
1
Qmin
Frequency
1+
a=1.0
Frequency
1 3
1
anlax
F'requency

Figure 2.10: The effect of VI'LN on the Mel-Scale filterbank. The unwarped filter-
bank in the middle is expanded with a smaller warp factor aumin (top) and compressed
with a larger warp factor amax (bottom). The expanded filterbank (top) will typi-
cally represent a female’s voice, while the compressed filterbank (bottom) will typically
represent a male’s voice.

Experiments and results reported in Chapter 6 use a simple piecewise linear
warping function that is applied in the frequency domain during filterbank anal-
ysis as part of the feature extraction process [Hain et al., 1999], with the im-

plementation that is contained in HTK [Young et al., 2009] used for reported

4The average lengths for the vocal tract are given assuming that that the larynx and lips are
in a neutral position.

CHAPTER 2. TECHNICAL BACKGROUND 36

experiments. Each speaker is normalised by “warping” the frequency axis in the
filterbank analysis stage by the inverse of a warping factor a. Figure 2.10 shows
how the Mel-Scale filterbank is compressed and expanded (warped) depending on
the value of . The top filterbank represents a low warp factor (and hence high
inverse value) which typically represents a female’s voice, while the bottom filter-
bank represents a high warp factor (and hence low inverse value) which typically
represents a male’s voice. The middle filterbank represents the original unwarped
Mel-Scale filterbank.

A |
f scaled |

fAX ____________ .

................
"/

fB X

flower fA fB fupper

>
f original

Figure 2.11: Piecewise linear warping function. The original frequency azis foriginal
1s scaled by the inverse of the warp factor . amin and amax define the range of warp
factors. fupper and fiower define the region of the frequency axis that is scaled. Points
fa and fg are examples to show the effects of the warping function. This image is an
adapted version of the one found in Hain et al. [1999).

Figure 2.11 shows the warping function diagrammatically. The warping of the
frequency axis is applied to the axis between two pre-defined points, fypper and
fiower Which are upper and lower cut-off frequencies that are used as controls to
keep filters within the frequency range. Figure 2.11 shows two example frequencies
on the original axis, fy and fg warped by two different warp factors (aui, and

Qimax Tespectively).

CHAPTER 2. TECHNICAL BACKGROUND 37

2.6.1 Finding Optimal Warp Factors

The warp factor for each speaker is estimated using the technique described in Lee
and Rose [1998] for HMM-based recognition. The warp factor is chosen to be one
of 13 factors in the evenly spaced range 0.88 < o < 1.12 which is chosen to “reflect
the 25% range in vocal tract lengths found in adults” [Lee and Rose, 1998]. For
the training data, the optimal warp factor is estimated for each speaker, with all
warped training utterances used to train a final set of HMMs (described in Section
2.6.1.1), while for the recognition process, the optimal warp factor is estimated

for each utterance (described in Section 2.6.1.2).

2.6.1.1 Training Procedure

To find the optimal warping factors for the training data, the training utterances
for each speaker are split into two equal sets, T and A. T becomes an initial
training set, while A becomes the alignment set. A set of HMMs A (monophone
HMMs with a single component Gaussian pdf at each state for the application in
this thesis, which follows Lee and Rose [1998]) are built and trained for set 7', and
then used in a forced-alignment® of the utterances in set A for each warp factor,
with the best warp factor for each speaker chosen to be the one which results
in the highest probability from the forced-alignment, such that the best warping

factor q; for speaker ¢ is

&; = argmax Pr (X3 A\r, W;) (2.36)

where X¢ are the set of all utterances for speaker i in set A warped by «, A\r are
the set of HMMs trained on set 7', and W, are the word transcriptions for X$.

Sets T and A are then swapped and the training and forced-alignment process is

5Forced-Alignment is where the transcription of the input is already known, and so the process
is to find the correct boundaries between the sequence of models (HMMs or templates).

CHAPTER 2. TECHNICAL BACKGROUND 38

repeated (with set A now the training set and set T" the alignment set) and iterated
until the warping factors converge, i.e. there is no significant change in the warping
factors. At this stage, a final set of HMMs A\ are trained on the optimally warped

training utterances (using the optimal warping factors from Equation (2.36)).

2.6.1.2 Recognition Procedure

In the recognition process, i.e. with test data, each utterance is warped separately
(as the speaker identity is not known) using a similar technique to that used in
the training procedure described in the previous section. An initial transcription
of the test utterance is retrieved by passing the unwarped utterance X; through
the recogniser using the normalised models Ap. This hypothesised string W is
then used as the transcription for a forced-alignment of X for the set of warping

factors to find the best warping factor &; for utterance X, such that

d&; = argmax Pr (X§|\p, W) (2.37)

choses the best warping of utterance X; to be the one with the highest probability
when aligned using the normalised HMMs Ar. The warped utterance XJ‘?“ is then
passed through the recogniser using the A\r models to give the final hypothesised

string VV] for utterance j.

2.7 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [Webb, 2002; Duda et al., 2001] is a method
which is applied to n data samples belonging to K classes that linearly projects the
samples into a K —1 dimensional space that best separates the data by maximising
the ratio of the between-class scatter to the within-class scatter. Section 5.4 is

concerned with data of only two classes, a special case known as the two-class

CHAPTER 2. TECHNICAL BACKGROUND 39

problem, where K — 1 = 1, so the data is projected onto a line (see Figure 2.12).

V'S

Figure 2.12: LDA projection of data onto a 1D line defined by the vector w. Samples
to the left of (or above) a threshold ¢ are allocated to class Cy and samples to the
right of (or below) ¢ are allocated to class Cs.

For the two-class problem, we seek to find the projection w which maximises

J (W) _ |WT (l—l’l B I‘l’2)|2 (238)

wISyw

where p, and p, are the sample mean for classes C; and C5 , which contain n,

and ny samples respectively. p; and p, are defined as

w, = ni > x (2.39)

¢ xecC;

and Sy is the within-class scatter matrix defined as

CHAPTER 2. TECHNICAL BACKGROUND 40

Sw = Z Z (x — ;) (x = Hz‘)T (2.40)

i=1 xeC;

Because it is the direction of w that is required and not the magnitude, the
projection for the two-class problem can be simplified from a generalised eigenvalue

problem (in the multi-class case) [Duda et al., 2001] to

w =Sy (11 — 1) (2.41)

where the projected sample y of sample x is given by:

=w!x 2.42
y

Once all of the samples have been projected onto the line, a simple classifier
can be formed by selecting a threshold ¢ at some point on the projection line and
allocating all projected samples that lie to one side of the threshold to one class,
and all projected samples that lie to the other side of the threshold to the second
class (again, refer to Figure 2.12). The choice of ¢ will be discussed further in

Section 5.4.2.

Chapter 3

Dataset Description

3.1 Introduction

This chapter describes two datasets used for this work — one is a speaker-dependent
set originally used for an experimental call-routing system (Section 3.2), and the
other is the speaker-independent Resource Mangagement (RM) dataset (Section
3.3). A description of the feature extraction process (into MFCC vectors) is given
in Section 3.4, with Section 3.5 describing the HMM baseline systems. The chapter

ends with a comparison of the templates for each dataset in Section 3.6.

3.2 Speaker-Dependant Call-Routing Data

The first dataset used in this work consisted of transcriptions of telephone calls to
an experimental call-routing system. Customers were invited to call up the system
and to make the kind of enquiry they would normally make when talking to an
operator. Only their initial query utterance was transcribed. The transcriptions
were divided into a training-set of 4773 utterances and a testing set of 902. The
training set vocabulary size is 1504 words, and the test-set size is 569 words after

removal of any utterances that contained out-of-vocabulary (OOV) words.

41

CHAPTER 3. DATASET DESCRIPTION 42

The utterances themselves were of low quality because of factors such as re-
stricted bandwidth, noise and distortions. Because the low accuracy obtainable
from recognising this material could disguise the effects of the formulaic language
that is being investigated here, a single speaker re-recorded the transcriptions us-
ing high quality recording equipment. All original disfluencies in the speech, such
as pauses, repetitions, and grammatical errors, were retained in the recordings.
The original dataset, although read in (American) English, contained speakers
of foreign nationality and so there were observed grammatical errors such as “i

wanna know if if what ¢ do if my card has been stolen” — as stated before, these

grammatical errors were retained as much as possible.

This data was chosen because it contains many commonly occurring phrases
that act as whole utterances, such as “I would like my account balance” (54
instances) and “Can you give me my account balance” (31 instances). If minor
variants of theses phrases are included (e.g. the addition of “please”, substitution
of “I'd” for “I would” etc.), then a few phrases account for a high percentage of

the utterances.

Training data | Test data
Total length 3.5 h 40 min
utterances 4773 902
words 51,083 8639
unique words 1504 569

Table 3.1: SD call-routing data information. Shows the length of the training and
test data in hours and minutes, the total number of utterances, and the total number
of words and unique words.

Table 3.1 presents the information about the call-routing data such as number

of hours of speech and vocabulary size.

CHAPTER 3. DATASET DESCRIPTION 43

3.3 Speaker-Independent Resource Management

(RM) dataset

The Naval Resource Management (RM) task [Price et al., 1988] recorded a speaker
independent dataset, consisiting of 109 training speakers for the training set and
40 different speakers for the evaluation set. The speakers have a wide range of

U.S. dialects, with 78 male speakers and 31 female speakers in the training data.

The sentences that were spoken were generated artificially from a grammar,
and consisted of a query task to a naval database, containing information about
ships, and other related properties such as locations, propulsion types, and fuel
sizes. Each speaker was a naive user of the system, i.e. they had no previous

experience with the naval database.

Training feb89 oct89/feb91 /sep92
set (dev. set) (test set)
Total length 4.1h 16 min 50 min
utterances 4358 300 900
words 39,051 2561 7727
unique words 988 576 798

Table 3.2: RM dataset information. Shows the length of the training, development,
and test sets in hours and minutes, the total number of utterances, and the total
number of words and unique words.

Table 3.2 gives detailed information about the RM datasets used in experiments
throughout this thesis. Like De Wachter [2007], the original evaluation set is
partitioned so that a development set can be formed. The feb89 set becomes the

development set, with the oct89/feb91 /sep92 sets forming the test set.

3.4 Feature Extraction

Feature extraction is the process of converting the speech waveform into a sequence
of parameter vectors by positioning windows over segments of the waveform, usu-

ally overlapping. Each segment defined by the window is then used to calculate

CHAPTER 3. DATASET DESCRIPTION 44

the feature vector, known as a frame. The features extracted for all datasets in
this thesis are Mel-Frequency Cepstral Coefficients (MFCCs) [Davis and Mermel-
stein, 1980] and are calculated using HTK [Young et al., 2009]. The following are

the brief steps involved in MFCC feature extraction:

1. Preemphasis of the waveform. The energy of higher frequencies is

boosted by using a high-pass filter.

2. Windowing. Apply Hamming window to overlapping segments of the wave-

form.

3. Apply the Discrete Fourier Transform (DFT). The DFT is applied to
each windowed segment of the waveform to determine the energy at different

spectral bands.

4. Mel-Scale Filterbank. A bank of triangular filters (known as channels)
are placed evenly over the frequency bands from the DFT and then warped
by the Mel-Scale to provide the spectral magnitude within each channel. The
Mel-scale stretches the channels at higher frequencies modelling the property
of the human auditory system which is less sensitive at higher frequencies.

20 channels are used here.

5. Log. The log of each of the mel spectrum magnitudes is taken. This models
human hearing which is less sensitive to small changes in amplitude at high

amplitudes than at low amplitudes.

6. Calculate Cepstral Coefficients. Extract the first 12 cepstral coefficients

from the log filterbank magnitudes using the Discrete Cosine Transform.

7. Deltas and Energy. Add the energy of each frame to the 12 cepstral
features to give 13 feature dimensions and add velocity and acceleration
features (the deltas) for each of the 13 defined features to give a final feature
vector of 39 dimensions. The deltas model the change in features (over a

window of 2 frames) over time.

CHAPTER 3. DATASET DESCRIPTION 45

On both datasets, a Hamming window with a width of 20 milliseconds was used

while the frame-rate was set at 10 milliseconds resulting in overlapping windows.

3.5 HMM Baseline Recognisers

For both the SD call-routing and RM datasets, a set of 3-state (emitting) mono-
phone HMMs with 20 Gaussian mixture components defined at each state were
trained using HTK Young et al. [2009]. The number of mixture components was

arrived at experimentally.

The SD call-routing dataset used a set of 44 phones with the silence model
added. The RM dataset used a set of 47 phones with the silence and short-
pause models added. Both datasets were labelled automatically using flat-start

monophones from word transcriptions of each utterance.

3.6 Template Information

Table 3.3 shows the number of templates defined for both datasets used in this
thesis. Although the number of phrase templates is dependent on the acquisition
method to be described in Chapter 4, the final number used in the experiments
of Chapter 5 and Chapter 6 are displayed here to present the full-picture to the
reader. It should be noted that there are word templates that are also contained
within a phrase template, i.e. both templates contain the same sequence of refer-

ence frames.

Dataset] SD Call-Routing RM
Vocabulary Size 1505 991

Num. Word Templates 51,083 38,960
Num. Phrase Templates 12,899 11,354
Total Num. Templates + Silence 77,762 64,085

Table 3.3: Dataset template information. Shows the number of word templates,
phrases templates, and total number of templates when combined with silence tem-
plates for each dataset.

CHAPTER 3. DATASET DESCRIPTION 46

The total number of silence templates in each dataset are added to the total
number of word and phrase templates to give the total number of templates for
each system. However, in the experiments reported in Chapter 5 and Chapter
6, a subset of the silence templates are chosen with an even distribution over all
of the available lengths of the silence templates as it is not necessary to store
thousands of examples of the silence template. In reality, there are about 2000

silence templates selected for each dataset.

Chapter 4

Phrase-Based Language
Modelling

4.1 Introduction

As previously stated in Chapter 1, there is a significant amount of pyscho-linguistic
evidence [Goldinger, 1998; Wray, 1999] that suggests that, in production of speech,
humans use ready-made chunks termed, “formulaic sequences” [Wray, 2002], which
“appear to be pre-fabricated, that is stored and retrieved whole from memory
rather than being subject to generation or analysis by the language grammar”
[Wray and Perkins, 2000]. These formulaic sequences in turn lead to the human
listener being primed with a set of formulaic phrases, depending on the context
of the conversation, which can then be used in an efficient perception mechanism
[Pickering and Garrod, 2004]. Given that much of commonplace language is highly
formulaic, this chapter will aim to acquire a lexicon of commonly-occuring phrases
from transcriptions of speech, and then model the human listener by creating

language models that enable the prediction of the given phrases for given contexts.

This Chapter is structured as follows: Section 4.2 gives a survey of the liter-

ature related to phrase integration into language modelling with various applica-

47

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 48

tions such as speech recognition, call-routing, or just language modelling purposes.
Section 4.3 describes the Multigram segmentation model [Deligne and Bimbot,
1995] that is used for phrase acquisition in this study. Section 4.4 introduces a
new clustering algorithm for the acquired phrases called Hybrid Syntactic Formu-
laic (HSF) clustering which adapts Nasr et al. [1999] to use syntactic information
from Parse Trees [Charniak, 2000] to group frequently occuring phrases from the
multigram segmentation. Section 4.5 describes methods for integrating phrases
into the popular N-gram framework by formulating the problem as a language
model topology issue and describes how the phrase classes resulting from the HSF
clustering of Section 4.4 can be integrated into these language model topologies.
Section 4.6 gives the results of these methods in terms of language model perplex-
ity and a speech recognition word accuracy baseline measure using a HMM-based
system. Finally, Section 4.7 summarises the methods and results described in the

chapter.

4.2 Literature Survey

One method to model sequences of words, i.e. phrases, in a language model is
to model the phrases as individual dictionary items in an N-gram model. The
phrases are selected using a phrase acquisition algorithm, and then processed as
a single word would be in N-gram probability estimation. Giachin first applies
a word clustering algorithm®, so that each word is assigned to a class, then pro-
ceeds to acquire phrases which are actually sequences of classes [Giachin, 1995].
Giachin provides details of an optimal procedure and heuristic procedure to iden-
tify phrases. The optimal procedure cyclically determines the pair of words? that
when connected into a sequence of words results in the largest reduction of per-

plexity on the training text. This iteration repeats until the algorithm converges

!Giachin does not give details of the word clustering algorithm, but the interested reader
should refer to Brown et al. [1992] as an example of word clustering.

20nce words are clustered into classes, the word is replaced by the label of the class that
contains it in the training data, but word in this sense refers to an item in the dictionary.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 49

to minimum perplexity. The heuristic procedure combines words into phrases by
choosing the pair of words that have maximum mutual information. This algo-
rithm continues to iterate as long as the perplexity decreases. The point at which
the perplexity increases is chosen as the stopping point, but, in some cases the
number of phrases chosen can be high, so a second stopping point is introduced,
determined by the number of phrases. Both the optimal and heuristic algorithms
give almost identical performance in terms of perplexity reduction, both achieving
approximately a 20% reduction in test set perplexity relative to a baseline word
bigram model. The best WER achieved using the phrase bigrams reduced the
WER by 2% absolute over the word bigram baseline.

Nasr et al. [1999] describe a method that combines Stochastic Finite State Au-
tomata (SFSA) [Parekh and Honavar, 2000], which represent classes of phrases,
and N-grams which model the global relationships between the local SEFSA models.
Phrases are acquired from the training data by partially parsing the data (anno-
tated with Parts of Speech (POS) tags) with a greedy finite state parser. The
partial nature of the parser means that whole sentences are not parsed, while the
greedy nature of the parser means that the first rule that fits the data’s structure
is used to parse the data. The parser will only acquire phrases of recognised con-
stituents (e.g. a noun phrase). Phrases are then grouped into classes based on their
context, i.e. phrases of the same constituent appearing in the same left and right
context are grouped together. At this point, classes are discarded if the number
of phrase tokens® is less than a pre-defined threshold. A vector based (frequency
of each phrase) class merging procedure is then applied, which iteratively merges
the two closest classes until their distance is larger than a threshold. For each
class, an SFSA is built. The original training text is rewritten with class labels in
place of phrases, and an N-gram model is built. At the time of decoding, a phrase
has a global probability, represented by the N-gram probability of the label of the
class that contains it, and a local probability, which is the probability through

3The number of phrase tokens is the count of all phrases within the class including the number
of occurrences of each phrase. Phrase types refers to the number of different phrases within a
class.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 50

the SFSA that represents the class that contains it. The two probabilities are
combined to provide the overall probability of the phrase. It does not appear as
though the SFSAs are actually used for anything other than structural purposes,
i.e. the probabilities are in fact just relative frequency. Nasr et al. report an 8%
reduction in test set perplexity on a french dataset of telephone communications
(CNET’s AGS corpus), but report a 14.2% reduction in perplexity on sentences

containing eight or more words. No speech recognition experiments were reported.

Arai et al. [1999] describe a grammar fragment acquisition method which they
use in an automatic call-routing application. Phrases are first constructed from
the training data by counting all sequences of words up to three (this could be
any number, but three is chosen for their experiments). If these phrases have a
frequency greater than some threshold then the phrases become fragments. The
fragments represent the phrase in an FSA (Finite State Automaton). Each frag-
ment has a list of the preceding and succeeding phrases that surround it, and the
number of times that those phrases appear with the fragment. Each fragment also
contains a list of the call-types that it is used in — this is a semantic association
and is relevant for call-routing purposes. To cluster fragments, the most frequent
fragment that has not been clustered already is used as the reference, and the
remaining fragments are sorted by distance from the reference fragment. Three
distances are calculated (one for the preceding phrase distribution, one for the suc-
ceeding phrase distribution, and the final one for the call-type distribution) using
the Kullback-Leibler distance measure, and the fragments that commonly occur in
all three distance lists are considered a good match for the reference fragment and
are clustered together with the reference. The clustering continues to iterate until
all fragments have been clustered. Arai et al. also apply a generalisation method
to the fragments which finds substrings within the current fragment that are also
fragments which appear more frequently than the current fragment. If this is the
case, the label of the more frequent fragment replaces the substring in the current

fragment. This results in the modelling of unseen phrases from the training data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 51

Lin et al. [1997] describe a key-phrase spotting system that uses a combination
of N-grams and finite state grammar (FSG) models. The FSG models are used to
cover all of the key-phrases while the N-gram (specifically trigrams in experiments)
model is used for non-key-phrases. The FSG is triggered when the decoder spots a
word that starts the FSG — the FSG and N-gram model are then run side by side
in parallel. The two models essentially compete, with the likelihood scores being
compared. If the input can fully traverse the FSG and have a higher likelihood
than the N-gram, then a key-phrase is judged to have been found. The FSG has
an initial boost factor which determines how easy it is for the FSG to be entered,
and a selective penalty factor which provides varying levels of punishment for the
FSG depending on the depth of traversal through the FSG. These measures, which
are chosen by hand, were introduced to help generalise the model, i.e. to minimise
the effect of a change of application. On a task to detect and recognise 7-digit
telephone numbers within sentences of read speech, the model achieves a 4.8 %
word error rate which is a 69 % relative reduction to the baseline trigram model

which achieved a 15.3% word error rate.

Continuing with this hierarchical type language model, Galescu and Allen
[2000] describe an example of such a model that consists of a trigram layer at the
top and an SFSA underneath to model sub-word units for numbers. This model,
called the hierarchical hybrid statistical language model (HSLM), is an attempt to
improve adaptation of language models. The idea is that the top trigram layer
is adapted using current interpolation methods [Kneser and Ney, 1995], whereas
the sublanguage models (SFSAs) are left unchanged, although the sublanguage
models can be adapted with data from other sources, which does not affect the
trigram layer. The experimental model uses only one sublanguage model, for dec-
imal numbers, as mentioned earlier, which is trained using a regular expression to
identify all decimal numbers in the training data. The basic unit of the sublanguge
model is the grapheme, i.e. a character. The HSLM achieves small improvements

over the baseline adapted model in terms of adjusted perplexity*.

4 Adjusted perplexity is a measure introduced to accurately compare perplexity between mod-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 52

Solsona et al. [2002] propose a language model for a spoken dialogue system
which combines a state-independent N-gram model with a state-specific FSG.
The FSG is used to recognise commonly occuring phrases, and is run in a separate
recogniser in parallel with the N-gram-led recogniser. Using an acoustic confidence
measure (phone-based likelihood ratio) [Jiang et al., 2001], the “best” results from
one of the recognisers is chosen as the final decoding, i.e. the only combination of
the two recognisers (and thus language models) is the comparison of their results

using the confidence measure.

Deligne and Sagisaka [2000] describe a class-based n-multigram which retrieves
phrases of varying length (multigrams) and then estimates N-gram probabilities
between them. The clustering and phrase acquisition is an iterated two-step pro-
cedure. Step one finds the maximum likelihood (ML) segmentation of the training
data into phrases using N-gram estimations (for an initial segmentation, the rel-
ative frequency (unigram probability) is used). Step two finds the optimal mem-
bership of phrases into classes by moving each phrase from its current class to the
remaining classes and calculating the likelihood after each move (initially the N
most frequent phrases are added to their own class, and the remaining phrases are
all placed into one class from which phrases can only be removed). The phrase
exchange that results in the overall best likelihood is chosen for the current iter-
ation. The new N-gram distribution is then calculated and the algorithm repeats
until the likelihood has converged (i.e. no exchange of phrases results in an in-
crease in likelihood) or until a predefined number of steps are complete. Deligne
and Sagisaka construct a bi-multigram model (without classes, i.e. using just the
ML segmentation of the training data) and a class-based bi-multigram model and
interpolate the two models for speech recognition tests on the ATIS database®.
The interpolated model achieves a 10 % relative reduction in the word error rate

compared to that of the word trigram baseline.

els that contain a different lexicon. It adjusts the perplexity by a quantity based on the number
of unknown words in the test set, and the number of their occurrences.

°Air Travel Information System (ATIS) database. ATIS contains utterances of customers
speaking over the phone to make airline reservations.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 53

Wray et al. [2004] describe a speech translation system for sign language in a
post office which uses a speech recogniser to determine what the post office clerk
has said (decoded into an N-Best list, from which the clerk chooses the closest
match), and then translates the text into sign language via a computer generated
avatar. The system uses an FSA to represent hand-picked phrases which are chosen
as formulaic phrases [Wray, 2002] — the system attempts to model commonly
occurring phrases within the context of the post office, and includes open slots in

the phrases to allow for small variations in the wording [Cox, 2002].

Finally, it should be noted that all previously reported results in this literature
survey are on academic systems, and by no means represent an upper bound on
speech recognition performance. Nuance’s speech recognition software, Dragon
NaturallySpeaking 10, claims to achieve 99% accuracy while recognising upto 160
words per minute [Nuance, 2008]. The software allows users to dictate straight
into a word processor document and also control the operating system with simple
commands, such as “start menu”, “send an email to”, etc. While not specified, it
is clear that the command and control interface uses pre-defined phrases, although
it is not clear whether or not the phrases are defined soley at the grammar level

or at the acoustic level also.

4.3 Phrase Acquisition using Multigrams

The segmentation of utterances from transcriptions of speech is one method of
phrase acquisition (each segment being a group of one or more successive words
from an utterance). Outlined below is a Maximum Likelihood (ML) approach to
segmentation using variable-length word sequences which are known as Multigrams

[Deligne and Bimbot, 1995, 1997b; Deligne and Sagisaka, 1998, 2000].

The multigram model is designed to retrieve “sequential variable-length requ-
larities within streams of observations” [Deligne and Bimbot, 1997b]. This notion

/ model fits very well to the idea of formulaic phrases [Wray, 1999, 2002] in which

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING o4

phrases of different lengths repeatedly occur in a collection of utterances. The
multigram model is a general model that can be applied to any stream of obser-
vations — it has also been applied to vector quantised (VQ) audio speech data

[Deligne and Bimbot, 1997a].

In this work, the goal is to segment text utterances into phrases. The observa-
tion stream is the current utterance, and the words within the utterance are the
observation symbols. Deligne and Bimbot [1997b] describes the multigram model
as a production model (see Figure 4.1) where some source emits a sequence of
multigrams Z where each multigram is a variable-length sequence of observations.
The observation stream O is segmented into one or more segments in S, and each

segment equates to a multigram z; in Z.

Y/ Zgy Z Zy -
f f f
S: [opon]l € [04] @ [oy0404].
M
0: Y %P3 Y@ P %@

Figure 4.1: The Multigram Production Model (reproduced from Deligne and Bimbot
[1997b]). Each multigram z; emits a sequence of observation symbols which when
concatenated form the observation sequence O. The multigrams, Z, can be retrieved
from O by finding the correct segmentation S of O.

Before segmenting the utterances, several initialisation steps are performed.
The first step is to construct an initial set of multigrams. This is done by con-
structing sequences of words (phrases) of length 1 to L at each word in each
utterance of the training data. For example, the utterance “what is my account
balance” contains the following initial multigrams for L = 3: what, what is, what
15 my, s , 1§ my, s my account, my, my account, my account balance, account,
account balance, balance. For each of these constructed phrases, a frequency count

is made using a hash table. Algorithm 4.1 summarises the initial multigram con-

struction.

After the initial multigrams have been constructed, a threshold, 6y, is applied

so that any multigrams appearing in the training text less than #; times are

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 55

Algorithm 4.1 Constructing the initial set of multigrams.
1: {U is the set of utterances}
2: {|u;|) is the number of words in utterance u;}
3: for i =1 to |U| do

4: for j =1 to |u| do

5: curPhrase= ¢

6: for k =j to j+ L do

7 Add word k to curPhrase

8: if curPhrase exists in hash then
9: Increment the count C(curPhrase)
10: else

11: Add curPhrase to hash

12: end if

13: end for

14: end for

15: end for

discarded, except for single word multigrams (e.g. my, is, account etc.) which
are retained to ensure that an utterance can always be completely segmented. The
unigram probability of each of the remaining multigrams is then estimated using

the frequency counts:

C(mi)

Pr(m;) = —ZjeM Clmy)

(4.1)
where m; is the current multigram, C(m;) gives the number of occurences of m;,

and M is the total number of different multigrams.

Following the unigram estimation, each utterance can then be segmented using
the Viterbi algorithm. What follows is a description of the implementation of
the segmentation using Hidden Markov Models (HMMs) — using HMMs is a

convenient implementation, but not essential to the segmentation.

A HMM is constructed for each of the initial multigrams. In each model, there
is a separate state for each word with transition probabilities between each word

state being 1.0. Figure 4.2 shows the HMM that is constructed for the multigram

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 56

“I want my”. Each state also has a set of observation probabilities (shown above
the states), where each word in the vocabulary is given a probability of observing
that word given the current state. In this work, the observation probabilities have
a discrete distribution, such that the word that the current state represents has

an observation probability of one and all other words in the vocabulary have zero

a: 0.0 a: 0.0 a: 0.0
ir1.0 i:0.0 my: 1.0
want': 0.0 want: 1.0 want: 0.0

1.0 1.0

probability.

Figure 4.2: A HMM for the multigram “i want my”. Fach state contains a set of
discrete observation probabilities (shown above the states) where the word representing
the state has a probability of 1.0, and all other words have a probability of 0.0.

After the initialisation steps are complete, the iterative segmentation can begin.
For each utterance that is to be segmented, a decoding network is generated (see
Figure 4.3). This network, also known as an Ergodic network, allows any multi-
gram HMM to be connected to any other multigram HMM within the context of
the current utterance — the search space is pruned by only adding the multigram
HMDMs that can be applied to the utterance (using basic string comparison). For
example, the decoding network in Figure 4.3 has been constrained for the utter-
ance “i want my account balance”. It shows the transition probabilities between
states, where the first set of transitions leading from the start state® (state to far
left filled in black) are the unigram probabilities as calculated in Equation (4.1),
and the internal transition probabilities (between words) are 1.0 as previously
mentioned. The end state, on the far right, is used to either loop back to the

start, or to terminate the segmentation.

The decoding network is used to segment the utterance using the Viterbi search,

6This state is merely used a point to loop back to, and thus to connect multigrams. It has
no observation probabilities, and all arcs into it have a probability of 1.0.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 57

balance
balance

Figure 4.3: A unigram decoding network for a restricted set of multigrams. The
network is used to segment the utterance “i want my account balance”. The solid
black states are the start-state and end-state, with a loop-back connection from the
end-state to the start-state. The initial arcs from the start-state represent the unigram
probabilities of each multigram. Fach sequence of word-states between the start-state
and end-state represent seperate HMMs.

implemented with the Token Passing algorithm (Section 2.3.4), which chooses the
sequence of multigrams which gives the highest probability for the give utterance.
The discrete observation probabilities ensure that sequence of multigrams matches
the input utterance correctly (in terms of string matching). For the given network
in Figure 4.3, the Viterbi algorithm would find the best (in terms of maximum
likelihood (ML)) segmentation to be “[i want] [my account balance]” with a prob-
ability of 1.96 x 1073, Comparing that to the probability of the segmentation “[i]
[want] [my] [account] [balance]”, giving a probability of 7.87 x 1075 shows that

even though the unigram probabilities of each multigram in the segmentation are

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 58

higher than the multigrams in the best segmentation, when combined in to a se-
quence of multigrams, the probability of the sequence will increase when fewer

combinations of multigrams are used, and hence longer units will be chosen.

Algorithm 4.2 Segmentation algorithm for the training data
1: while Segmentation has not converged do

2: fori=1to |U|do

3 Create decoding network for u;.

4 Segment u; using Viterbi with decoding network.
5: end for
6

7

8
9:

Re-count multigrams in latest segmentation.
Apply threshold, 5, to multigram counts.
: Re-estimate unigram probabilities of remaining multigrams.
end while

After each utterance has been segmented, the number of occurrences of each
multigram appearing in the segmentation are found. A second threshold, 65, is
applied to the counts of multigrams of two or more words (only), and the unigram
probabilities are re-estimated as before. Any single word multigrams that are not
contained in the segmentation (but are contained in the vocabulary of the training
data) are re-introduced into the multigram vocabulary and are assigned a small

probability (1 x 107%?) to ensure that all utterances can be segmented fully.

The segmentation of the training utterances, followed by re-estimation of multi-
gram probabilities, continues to iterate until a convergence of the segmentation
is found: this is when the segmentation no longer changes, or when a pre-defined
number of iterations for the algorithm is reached. Algorithm 4.2 summarises this
process and Appendix A shows some samples of actual segmented utterances from

the datasets used in this work (Chapter 3).

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 59
4.4 Phrase Clustering using a Hybrid Syntactic

and Formulaic Approach

For human-to-human dialogue, there is pyscho-linguistic evidence that in a par-
ticular context in a dialogue, the human listener is primed with a set of semantic
expectations [Pickering and Garrod, 2004], and these in turn may prime an ap-

propriate set of formulaic phrases that the listener expects to hear.

Given this motivation, it is useful to try and define the semantic function of
the commonly-occurring phrases acquired by the multigram segmentation: for
instance, phrases such as “i'd like to”, “could i please”, and “may i” have the
same semantic function of expressing a desire for some action. Interpreting the
semantics of phrases is very difficult, due to factors such as ambiguous lexical
items, competing anaphoric references’[Nouwen, 2003], and ambiguous quantifier

scopes [Jurafsky and Martin, 2009].

So, we rely on the fact that, in the case of applications where ASR is used for
the provision of information and services over the telephone network (Section 3.2),
phrases that have similar semantics often also have a similar syntactic function:
for instance, the phrases previously defined all appear at the start of an utterance
and will be followed by some form of a verb phrase in which the speaker defines

his request.

As described in Section 4.2, Nasr et al. [1999] introduced a method for acquiring
and grouping phrases using only the information from the parse tree. Phrases are
extracted using a greedy parser, and then grouped into classes based on their
constituent type, and the surrounding context. Every phrase that is acquired in

this process is a legal constituent within the parse tree.

The remainder of this section describes a hybrid clustering method which

adapts the work of Nasr et al. [1999] and uses the phrases acquired from the multi-

7"An anaphoric reference is when a word or phrase refers to, or is related to other items in a
given text. For example, in the sentence “Jim was bored, so he turned on the t.v.”, the word
“he” refers to “Jim”.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 60

gram segmentation, described in the previous section (Section 4.3), and groups
together the phrases that have a similar syntactic use by extracting information

from parse trees.

4.4.1 Clustering with Parse Trees

Figure 4.4 shows the most probable parse tree generated by the Charniak parser
[Charniak, 2000] for the utterance “i’d like to get my balance”. Each leaf node of
the tree represents the words of the utterance, and each parent of the leaf nodes
represent the Parts of Speech (POS) tags for the given words. All levels above
that define different constituents, such as noun phrase (NP) or verb phrase (VP),
which are defined by a combination of POS tags. Appendix B gives the complete
list of POS tags and constituent definitions for the Penn Treebank which is used
by the Charniak parser.

0

41 i d VB S

5 like VP VP
T

6 TO VB NP
| N

7 to get PRP$ N‘N

8 m‘y balance

v
Level

Figure 4.4: A parse tree for the utterance “i’d like to get my balance”.

The clustering of phrases requires two inputs for each utterance: The corre-
sponding parse tree and maximum-likelihood (ML) segmentation. For the sen-
Lﬂij

tence “i’d like to get my balance”, a parse tree could look like that of Figure 4.4.

The ML segmentation of that utterance might be [i'd like to get] [my balance].

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 61

The phrases generated by the segmentation are then searched for in each parse
tree, and assigned a label. An example of the construction of this label is given

here for the utterance shown in Figure 4.5:

1. Find start and end word of the phrase and merge their POS tags: e.g. for
“’d like to get”, the POS for “i” is PRP, and the POS for “get” is VB. These
are merged together to form “(PRP_VB)”%.

2. Append contextual information to each phrase label. Take the initial label of
the phrases (from (1) above) to the left and right of each phrase and append
them to the current phrase label: e.g. the initial label of “i’d like to get” is
updated with the left context “Null”, and the right context “(PRP$_NN)”,
which represents “my balance”, to produce the final phrase label “Null-
(PRP_VB)-(PRP$_NN)”. “Null” is used whenever there is no context, i.e. at

the start and end of utterances.

This approach differs from that of Nasr et al. [1999] in that they attempt to
define phrases using the parse tree. Such phrases will conform to the analysis
of the parser, but may not be as frequently occurring as phrases found by the
multigram segmentation. In fact, many frequently occurring phrases occur across
the grammatical divisions defined by the parser and so would not be found using
their approach. For example, in Figure 4.5, “my balance” actually matches the

NP constituent perfectly, but “i’d like to get” crosses the division of NP and VP.

Once all phrases have been tagged with a label, the next step is to group all
phrases that have identical labels, ezcluding the right context: for example, the
phrase “my balance”, as shown in Figure 4.5, would be grouped with phrases
whose labels begin “(PRP_VB)-(PRP$_NN)”. After all phrases are grouped in
this manner the nitial classes have been created. Our method, which applies

tags based on POS tags, allows phrases to appear in more than one class because

8When the current multigram from the segmentation is a single word, the labels are treat
slightly differently: the constituent type, e.g. NP or VP, is used as the label.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 62

5 yE\\\\\
6 TO (VB NP

7 PRP$ NN’
get/
/ - l‘/F
84 my bgla@
Level (PRP_VB) — (PRP$_NN) - Null

Figure 4.5: Phrase labelling using parse trees.

of contextual grouping (i.e. phrases that contain the same words, not the same
phrase instance), and hence the fuzzy clustering produces a large number of initial

classes (approximately 12000).

To reduce the number of phrase classes, a similar method to Nasr et al. [1999] is
employed, where the classes are iteratively merged to a pre-defined number using
a vector-based approach. The following section describes this merging process in

more detail.

4.4.1.1 Class Merging

Given the initial classes, a class merging algorithm is applied which, with each
iteration, merges the “closest” pair of classes, until a pre-defined number of classes
is reached. This is achieved by using the cosine similarity measure: if V' is the
set of phrase types from the segmentation, then each class is represented as a
vector of length |V], where each element of the vector is the count of each phrase
within the current class. All classes are then processed in a pairwise manner, with

the most similar pair, in terms of cosine distance, being merged together. This

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 63

iterative process then continues until a pre-determined number of classes remain.

The cosine similarity of two classes C'; and C} is given by:

. C,eC
CosSim(Cy, Cy) = Ilell.TéfA (4.2)

where, C; and C, are the phrase vectors of classes C'; and (5 respectively, and

|C;| and |Cy| are the vector norms of classes C; and Cy respectively.

The vector norms, |Cy| and |Cy|, can be pre-calculated before the merging
process begins, but for each pair of merged classes, the vector norm of the newly
merged class needs to be recalculated for the new values. The vector norm for a

class, C,, is given by:

(4.3)

where, |V] is the size of the phrase vocabulary and thus the length of each vec-
tor, and C, (i) gives the count of phrase ¢ within the class C,. Algorithm 4.3

summarises the class merging procedure.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 64

Algorithm 4.3 Class merging process using cosine similarity
1: pre-calculate norms for all classes
2: while numOfClasses > finalNum do
3: closestSim = —o0

4: for i =1 to numOfClasses do

5: for j =i+ 1 to numO fClasses do
6: curSim = CosSim(C;, C;)

T if curSim > closestSim then

8: closestSim = curSim

9: iBest =1

10: jBest =3

11: end if

12: end for

13: end for

14: merge(CiBesta CjBest)

15: recalculate norm for new class
16: end while

4.5 Integrating Phrases with N-Grams

Given that we have acquired a set of frequently occurring phrases, this section
describes several methods that can be used to integrate the phrases into a language
model. Section 4.5.1 describes different topologies for language models that can
be used to integrate the phrases, while Section 4.5.2 describes the methods used

to integrate classes of phrases into the language model.

4.5.1 Language Model Topologies

Given that the training text utterances are segmented using the ML multigram
segmentation, a simple bigram language model can be built from that segmen-
tation, i.e. counting bigrams of phrases (which also includes one word phrases).
Figure 4.6 shows a section of that model, which we call the Phrase-Bigram (PB),
that is relevant to decoding a test utterance “can i get my payment address please”.
Arcs with solid lines connecting two states represent a bigram seen in the training

segmentation, while dashed-line arcs represent backoff transitions. Although the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 65

figure shows two backoff states, the reader should be aware that there is in fact
only one backoff state in the PB model — two backoff states are used to make
the figure clearer. The reader should be aware that in a backoff language model,
that all states contain a transition to the backoff state?, and all states contain
a transition from the backoff state!®, although Figure 4.6 only shows the backoff

transitions that are required for the given test sentence.

For the PB language model shown in Figure 4.6, it should be clear that there is
no direct path between word and phrase states to decode the given test utterance,
i.e. without using backoff. This is because in the training segmentation, there
is no context that exactly matches the test utterance — the closest matching
context is “[can you give me my| [payment address please|”. The bigrams “get
my” and “[can i get] [my account balance]” offer part of the context required for
the test utterance, but transitions through the backoff state are still required,
and as mentioned in Section 2.2, the unigram probabilities are then used. The
following group of equations show the log probabilities of the different decoding

paths through the PB language model of Figure 4.6 for the given test utterance:

log(Pr(“[can] [i] [get] [my] [payment] [address] [please]”| PB)) = —45.12 (4.4)
log(Pr(“[can i get] [my] [payment] [address] [please]”| PB)) = —32.19 (4.5)
log(Pr(“can] [i] [get] [my] [payment address please]”| PB)) = —34.53 (4.6)
log(Pr(“[can i get] [my] [payment address please]”| PB)) = —21.60 (4.7)

It is clear that if the training data does not contain the same or similar contexts
to the test data then, if the PB language model is used, there will be a poor
representation within the language model. Although the backoff allows any word
in the vocabulary to be recognised, it offers a poorer predictor as it then leads

to unigram probabilities guiding the search. Equation (4.4) summarises this by

9Except for the end state of the model (e.g. 'END).
10Except for the start state of the model (e.g. !START).

5.2 651
Cget D= —Cmy D S
D
/
/
KNS
- |
AR 5

/

. S
/Q / s /
7~ d -
'y address) (please

—— ——

my account
balance

payment
address pleasg

my balance

Figure 4.6: Phrase-Bigram (PB) language model. All transitions required to parse the input utterance “can i get my payment
address please” e.g. not all backoff transitions are shown. Log-likelihoods are shown on the arcs between nodes, and the backoff
state, represented by empty brackets “()", is shown twice for readability of the figure (it only occurs once in the actual model),
with transitions to-and-from the backoff state shown in dashed lines — note that transitions to the backoff state represent backoff
weights, hence why there are some arcs with values greater than zero.

ONITTAAOWN HOVAONVT AASVA-HSVHHd 7 H4.LdVHD

99

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 67

showing that the log probability of the sequence of all word states that match
the test utterance is —45.12: this sequence consists of mainly backoff transitions,
except for the transition from the start state to the state for “can”, and the
transition between the “get” and “my” states. The most probable sequence of
states for the test utterance “can i get my payment address please” is to start
in the “can i get” state, with a backoff to the “my” state, ending with another
backoff to the “payment address please” state (Equation (4.7)). This leads to
a much higher log probability compared to other sequences through the model
(Equations (4.4) to (4.6)).

If the phrases acquired from the multigram segmentation offer good coverage
for the test data, then the PB language model could provide a good basis for a
speech recogniser — the problem with the PB model is that it will start to fail
as the test data becomes more dissimilar to the training data, for two reasons:
the first reason is that the acquired phrases will be less likely to appear in the
test data, and thus the backoff transitions to word states will be required, and
the second reason is that if the backoff is used, it is not always the case that the

required word will exist as a distinct multigram.

For example, the number of distinct words in the SD training data is 1504,
but in the segmentation of the training data, there are only 1446 distinct words
(i.e. words that are not contained within a phrase). This results in 24 words in the
test data that are no longer represented by single words, i.e. there are effectively
24 out-of-vocabulary (OOV) words in the test data. This side effect means that,
in some cases, it will be impossible to accurately recognise an utterance perfectly.
To clarify, take the test utterance “i wanna add a one time buyer to my account”.
The word “buyer” is not contained as a single word in the training segmentation
— it is contained within the training phrases “as an authorized buyer”, “from
my account as an authorized buyer”, and “an authorized buyer”. The available
training phrases mean that it is impossible to recognise the given test utterance

perfectly.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 68

A simple solution to this problem is a language model that we term the Word-
Phrase Bigram (WPB). This model combines the word bigram (WB) model (de-
fined in Section 2.2) with the PB language model and is defined by the following

Set Theory expression:

WPB=WBU(PB\ (WBnN PB)) (4.8)

where W B is the set of all word bigrams in the training text, and PB is the set

of bigrams from the multigram segmentation.

Equation (4.8) essentially combines all of the bigram counts within the PB
framework with those of the WB model except those that also occur in the WB
language model, i.e. the counts of bigrams of words (or one-word phrases to fit
with previous language) remain the same for the WPB model as they do for the
WB model even if the bigrams were seen in the segmentation used to define the
PB model. This step is necessary because if all counts of bigrams (from WB and
PB) were just combined and then used to generate a language model, then some
of the word bigrams would be biased as they would have essentially been counted

twice.

Figure 4.7 shows, as with Figure 4.6 for the PB model, the section of the
WPB language model required for the example test utterance: “can i get my
payment address please”. Each state, as before, contains both a transition to the
backoff state and an incoming transition from the backoff state which represents
the unigram probability of the current state. In Figure 4.7 though, not all of the
backoff transitions are shown — only the transitions that are required to decode

the test utterance are shown.

It is clear to see from Figure 4.7, in comparsion to Figure 4.6, that there are now
bigram transitions between word states (because of the inclusion of WB counts)

as well as the previously existing phrase bigrams from PB. The model can traverse

-3.22

my account
balance

payment
address please

my balance

Figure 4.7: WPB (word + phrase bigram) language model. All transitions required to parse the input utterance “can i get my
payment address please” e.g. not all backoff transitions are shown. The backoff state is represented by empty brackets “()”, and
log-likelihoods are shown on the arcs between nodes.

ONITTAAOWN HOVAONVT AASVA-HSVHHd 7 H4.LdVHD

69

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 70

between the word states and the phrase states via the backoff state where a direct
bigram transition does not exist. As with Equations (4.4) to (4.7) for the PB
model, the following equations show log probabilities of different paths through
the WPB language model for the test utterance:

“[can] [i] [get] [my] [payment] [address] [please]’|WW PB)) = —17.53 (4.9)

(Pr(
log(Pr(“[can i get] [my] [payment] [address] [please]”|WW PB)) = —17.20 (4.10
(Pr(“can] [i] [get] [my] [payment address please]” |/ PB))

(Pr(

10)
—22.03 (4.11)
12)

“[can i get] [my] [payment address please]”|/W PB)) = —21.70 (4.12

Clearly, as Equation (4.9) shows compared to Equation (4.4), the probability
of an entire sequence of single word states given the WPB model for the test
utterance is much higher than in the PB language model due to the inclusion
of the word bigrams. Equations (4.10) and (4.11) also show a large increase in
probability compared to Equations (4.5) and (4.6) respectively — each sequence
essentially splits the test utterance in half, with one half of the parse using word
states and the other a phrase state, with a backoff transition connecting the two
“layers”. The sequence defined in Equation (4.12) actually has a slightly lower
probability than the same sequence in the PB model (Equation (4.7)) which is due
to the fact that the same backoff transitions are used and so the slight difference
in probability is due to the change in probability mass after the inclusion of the

word bigrams.

The WPB language model offers a more flexible and generalised topology than
the PB model, but still, a large number of transitions between word and phrase
states will take place via a backoff transition and thus the preferred route through
the language model during recognition will be, generally, to remain within the
word states or phrase states — with the word states becoming more likely as the

the test data becomes more diverse in comparison to the training data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 71

To offer more generalisation to the language model and to reduce the num-
ber of backoff transitions used, we define the Word Phrase Link Bigram (WPLB)
language model. The WPLB model extends the WPB language model by creat-
ing bigram connections between word states and phrase states (see Figure 4.8),
where none exist already, using the training segmentation: for every occurrence of
phrases of more than two words occurring next to each other in the segmentation
(i.e. phrase bigrams), new counts are made for the end word of the left phrase
and the whole of the right phrase, and then the whole left phrase with the start
word of the right phrase. For example, Figure 4.7 shows that the “[can i get] [my
account balance]” bigram is seen in the training data (and hence there is an arc
connecting the two states). This bigram then leads to two further bigrams, as
discussed, that were previously unseen — the end word of the left phrase “get”
and the whole right phrase gives the bigram “[get] [my account balance]”, and
then the whole left phrase with the start word of the right phrase “my” gives the

bigram “[can i get] [my]”. These new connections can be seen in Figure 4.8.

The effect of adding these bigrams to the model can be seen in Equations (4.13)
to (4.16). It can be seen that, in comparison to Equations (4.9) to (4.12) for the
WPB model, the probability has now been increased for sequences that contain
phrases, and in fact, all but one of the sequences containing phrases (Equation
(4.15)) has a higher probability than the sequence containing purely words (Equa-
tion (4.13)) — this is because the first part of the sequence (Equation (4.15))
transits through the word states “[can] [i] [get]” where the phrase state “[can i
get]” has a higher cumulative probability than the three word states due to it

being a common phrase (especially at the beginning of an utterance).

-3.27
-1.02 -3.01 251 M
Coan > % el 3y > Gocoun)” “alancs
///
&/ / \VL
AV v
. ~ -2.48 -3.01
o 7 o @ address please
&,
7
JSTARD ~
AN
e payment
O
. \ {9 address please
©
; \
\
-5.73 my account \ accoun
@ balance balance

my balance

Figure 4.8: WPLB (word phrase link bigram) language model (LM). All transitions required to parse the inputl utterance “can i
get my payment address please” e.g. not all backoff transitions are shown. The backoff state is represented by empty brackets “()”,
and log-likelihoods are shown on the arcs between nodes. Arcs in bold blue show the new transitions added to transform the WPB
LM into the WPLB LM.

ONITTAAOWN HOVAONVT AASVA-HSVHHd 7 H4.LdVHD

¢l

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 73

log(Pr(“[can] [i] [get] [my] [payment] [address] [please]”|W PLB)) = —18.53

log(Pr(“[can i get] [my] [payment] [address] [please]”|W PLB)) = —17.21

(4.13)
(4.14)
log(Pr(“[can] [i] [get] [my] [payment address please]”|W PLB)) = —19.64 (4.15)
log(Pr(“[can i get] [my] [payment address please]”|W PLB)) = —18.32 (4.16)

4.5.2 Integrating phrase classes

Given that the phrases (including single words contained in the training segmen-
tation) have been clustered using the method described in Section 4.4 (or any
other method for that matter), the question is how can these clusters be used for

language modelling?

A standard approach is to replace all phrases in the training segmentation
with their respective class label [Nasr et al., 1999], and then estimate N-gram
probabilities as before — all previously defined language models (WB, PB, WPB,
and WPLB) can be adapted in this way. Figure 4.9 is an adapted version of Figure
4.8 (the WPLB model) that shows how phrases are replaced with their class label
— this adapted model is termed the Word-Phrase Class Link Bigram (WPCLB)!!.

The states for concern in Figure 4.8 are all of the phrase states, i.e. “can i get”,
“my account balance”, “my balance”, “account balance”, and “payment address
please”. As shown in Figure 4.9, “can i get” is replaced by “[Class_499]”, “my
account balance” and “my balance” are both contained in the same class and are
replaced with “[Class_13]", “account balance” is replaced by “[Class_1042]”, and
finally “payment address please” is replaced by “[Class_1002]”. All of these classes,

as well as some other examples, are shown in Appendix C.

USimilarly there is the Phrase-Class Bigram (PCB) and the Word-Phrase Class Bigram
(WPCB).

-3.27
Cean < > ool 2(my Y “Gecoun)” alancd)
/
o
7
N
o -2.48 -3.01
i ' D address please
&<

-5.98

\
\
\
-3.16 \
Class_499 (Class_131>

Figure 4.9: WPCLB (Word-Phrase Class Link Bigram) language model (LM). Class labels replace phrases.

ONITTAAOWN HOVAONVT AASVA-HSVHHd 7 H4.LdVHD

22

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 75

The N-gram distribution of the newly introduced class labels defines a global
distribution for between-class likelihoods. To complete the representation of the
clusters, and to fully integrate the phrase clusters into the language model, a local
distribution is required for the within-class likelihoods. As with Nasr et al. [1999]
and Arai et al. [1999], a suitable representation of the clusters is the Stochastic

Finite State Automaton (SFSA).

Figure 4.10 shows an actual class obtained from the HSF' clustering method on
the SD data with the phrase occurrences shown in brackets. An SFSA can be built
for this class where each word in a phrase is represented by a separate state. The
SFSAs are built using a stochastic Grammatical Inference technique [Parekh and
Honavar, 2000] where each phrase is modelled as a separate string of word states
which are then combined together in a minimisation process. The likelihoods
are estimated by using every phrase in the class as a “positive example” [Parekh
and Honavar, 2000] where each example is used to traverse the automaton which
provides counts at each state — the likelihood on a given arc between two states
is the ratio of the number of times each of the two states are visited during the
traversal of the SFSA by each phrase token in the class. Figure 4.11 shows the
SFSA for the class in Figure 4.10 (note that the probabilities given are not log

probabilities).
can you get me (1) could you give me (4)
can you give me (9) could you please give me (3)
can you please give me (1) could you please tell me (6)
can you please tell me (3) could you tell me (9)
can you tell me (66) should i (1)

Figure 4.10: Class 174. Label after merging: [(PRP_NNP), (PRP$_NN), null,
NP, (AUX_VBN), (AUX.JJ), (VBG.IN), (WP_AUX), VP, SBAR, S, (TO_NN)]
— (MD_PRP) — [(WRB_AUX), null, (IN_.AUX), (WP_AUX), NP, (DT_NN),
(DT_NNS), (WRB_RB), (WRB_]J), (WP_]J), (WRB_VBN), WHNP, (WRB_VBP),
(WP_TO), (IN.MD), (DT.JJS), VP, (WRB.IN), (IN_PRP$), (WRB.NN),
(PRP$.NN), WHADVP, (JJRIN), (DT_CD), (PRP$_NNS), (PRP$_VB)]. This class
was generated when merging to 4000 classes using HSF clustering. The total number
of phrases in the class is 103, with the count of each phrase shown in brackets.

Using separate states in the SFSA for each word of a phrase means that the

network can be easily integrated into a phone speech recogniser because the pro-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 76

Figure 4.11: The phrase class of Figure 4.10 represented as an SFSA. Note that the
arcs hold probabilities, not log probabilities.

nunciation dictionary will typically already contain the sequence of phonemes that
represent a given word which means that SFSAs can fit into the hierarchy more eas-
ily. It also offers flexibility for modelling variations in phrases which are common
in formulaic language [Wray, 2002]. However, example-based speech recognition
requires that the SFSAs model the phrases as whole units, and thus the SFSA
construction becomes a much simpler task — each phrase in the class is repre-
sented as a whole state and not divided into word states, while the probabilities

of each phrase are estimated as their relative frequency.

Figure 4.12 shows the class of Figure 4.10 represented as an SFSA using a
single state for each phrase. Integration of this representation into a phone speech
recogniser now requires that the pronunciation dictionary contains every phrase
that is used in the language model so that the correct sequence of phoneme models

can be concatenated together to represent the phrase.

After the global and local probabilities are estimated for the phrases classes, the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 7

n can you please tell me .

can you tell me

could you give me

Figure 4.12: The phrase class of Figure 4.10 represented as an SFSA with whole
phrase states.

remaining step is to “plug-in” the SFSAs for each class in place of the states that
represented the classes. Figure 4.13 shows the result of integrating the relevant

SFSAs into the WPCLB language model of Figure 4.9.

To summarise the integration of the SFSAs (local) into the N-gram frame-
work (global), the following formal definition is given: the probability of a phrase
wi_ys4; of length M words given the previous phrase wj.; r+1 of length L words,

where w!_,, ; € [Classx| and w?_ 141 € [Class_y] is given by:

Pr (w}_ 41 |w§_L+1) =br ([Class_x]|[Class_y]) Pr (w}_, 4 |[Classx]) (4.17)

- \Q ~

glo\l,oal local

Equation (4.17) can be clarified with an example: given the previously defined

WPCLB language model, in particular the paritions defined by Figure 4.9 and

i\
/ v’i
' -2.48 -3.01
L @ address please
i
@ X

69 0

0! statement please
.—0.69 ‘0
payment address please

\ B payment due date
A H
\
ﬂ’

~
~
~
N
N
N

my account balance N\
N N

my available credi

my balance

&) 0,

=5

can you give payment address
G . 0
® :

Ccaniget >

our payment address

Figure 4.13: WPCLB (Word-Phrase Class Link Bigram) language model (LM) with SFSAs to represent classes.

ONITTAAOWN HOVAONVT AASVA-HSVHHd 7 H4.LdVHD

8L

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 79

Figure 4.13, the log probability of the phrase “my payment address” given the

previous phrase “can i get” can be calculated as:

log (Pr (“my payment address”|“can i get”)) = (4.18)
log (Pr ([Class_13]|[Class_499])) + log (Pr (“my payment address”|[Class_13]))
= —3.16 + (—4.49)

= —7.65

Once all of the phrase classes are integrated into the language model, the token
passing decoder can perform as normal because the structure of the language

model is built into the VNSA, and so no adaptation of the decoder is required.

4.5.3 Adding a Bias to Phrase States

Because the work presented in this thesis is interested in the effects of using phrases
with words in language modelling, compared to just words, a phrase weight is
now defined which is a constant log-probability that is added to each arc that

transitions to a phrase state.

The phrase weight is similar to the word insertion penalty (WIP) used in a
speech recognition decoder (described in Section 2.5), except it is only applied to
the phrase states, whereas the WIP is applied to all transitions in the language
model between states (which can be words or phrases). The phrase weight can be
viewed as a bias which either rewards or penalises the use of phrases depending on
whether the weight is positive or negative respectively. Unlike with the WIP, the
addition of the phrase weight is added to the language model before the decoding
begins to avoid searching for phrase states each time the language model is loaded

into the decoder.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 80

4.6 Baseline Evaluation

This section will describe the evaluation of the techniques described in this chapter.
The evaluation will use both language model perplezity (Section 2.2.3) and the

percentage measure speech recognition word accuracy, which is defined by:

N-S-D-1
word accuracy = I x 100 (4.19)

where N is the total number of word labels in the transcription files, S is the
number of substitutions, D is the number of deletions, and I is the number of
insertions when aligning the hypothesised word strings from the recogniser to the
actual word string transcriptions of each utterance using a dynamic programming
(DP) string alignment method. For comparison of results to other system settings
(i.e. different language models), the Matched Pairs statistical test [Gillick and Cox,
1989] is used to quantify whether or not the difference in the set of hypothesised

strings of two systems is statistically significant.

The remainder of this section is as follows: Section 4.6.1 will describe the ex-
periments and results on the SD call-routing data, while Section 4.6.2 will give the
results for the experiments run on the ST RM dataset. Both datasets will be evalu-
ated using HMM phone recognisers, previously described in Chapter 3, to provide
a baseline measure for comparison to template-based recognition experiments that

will be described in Chapter 6.

4.6.1 Speaker Dependent Results

Table 4.1 shows the word recognition accuracy for the SD call-routing data with
the HMM-based recogniser for the previously described language models; WB,
PB, WPB, WPLB, WPCB, and WPCLB. For the WPCB and WPCLB language

models, which were created with the HSF clustering process (Section 4.4), the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 81

optimal number of classes (in terms of word accuracy) is represented — for WPCB
this is 2000 classes and for WPCLB it is 4000 classes. Table 4.1 also shows the

average perplexity per word of each language model'2.

LM PP | word accuracy (%)
WB 13.1 86.92
PB n/a 86.79
WPB 11.56 87.52
WPLB 11.05 87.76
WPCBaooo | 11.56 87.41
WPCLByggo | 11.35 87.79

Table 4.1: SD perplexity (PP) and word accuracy on baseline HMM system for
the WB, PB, WPB, WPLB, WPCB, and WPCLB language models where the class
models reported are for the optimal number of classes, i.e. merged to 2000 and 4000
classes respectively. FEach of the phrase-based language models uses a phrase weight
of 0.5.

Table 4.2 shows the Matched-Pairs tests on the recognition hypotheses for each
language model. Each recognition system is compared to one another, and if
one system is better than the other statistically, then the name of the system is
entered into the table. For example, referring to Table 4.2, the WPB system is
statistically better than the WB system, and so the WPB name is entered into
row two, column four. When there is no statistical significance of the difference
between two systems, then “same” is entered into the table. For example, the WB
and PB systems are statistically equal (row two, column three). Taking a deeper
look into Table 4.2 shows that the WPB, WPLB, and WPCLB systems are all
judged to be significantly better than the WB baseline, but there is no statistical

difference between each of the WPB, WPLB, WPCLB, and WPCB systems.

Figure 4.14 shows how the number of classes in the WPCB and WPCLB lan-
guage models affect the word accuracy of each system, revealing a rise in the word
accuracy until the optimal number of classes is found which is then followed by

a rapid decline in the word accuracy when merging down to 500 classes from the

12The perplexity cannot be found for the PB model as it does not contain all of the vocabulary
items that occur in the test data, i.e. the PB model does not use all the words of the training
vocabulary; it combines them into phrases. Unless the test data contains exactly the same
distribution of words and phrases to that of the PB model, then the perplexity cannot be found
for the test data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 82
WB | PB WPB | WPLB | WPCB | WPCLB

WB same | WPB | WPLB same WPCLB

PB WPB | WPLB | WPCB WPCLB

WPB same same same

WPLB same same

WPCB same

WPCLB

Table 4.2: Statistical significance tests on the SD test data. The Matched-Pairs test
was used to determine if gains / losses in accuracy for different language models were
statistically significant.

initial number of classes which is 11,368 (right-to-left in the figure). As mentioned
before, the optimal number of classes is 2000 for the WPCB model and 4000 for
the WPCLB model. Figure 4.14 also shows the word accuracy when using the

other language models as reported in Table 4.1.

88
87.81 |
87.61 g
<o
S
)
Q 87.4r g
S
3 WPCLB
& WPCB
-087'27 i WB 7
S
o ‘= = PB
= - = =WPB
871 WPLB g
tggrrrered
2 TC X /U g
866 Il Il Il Il Il
0 2000 4000 6000 8000 10000 12000

Number of classes

Figure 4.14: Word accuracy on the SD test-set for HSF clustering with the WPCLB
language model over varying numbers of phrase classes. WB, PB, WPB, and WPLB
are shown for comparison.

It is useful to visualise the perplexity of the language models in the same
manner. Figure 4.15 shows how the perplexity decreases during the merging of

classes to a local minimum (at 2000 classes for WPCB and WPCLB) followed by a

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 83

rise in perplexity. It is clear to see, by comparing Figure 4.14 and Figure 4.15, that
the word accuracy is, to a certain extent, inversely proportional to the perplexity
— although the minimum perplexity for WPCLB occurs at 2000 classes, while the

maximum word accuracy occurs at 4000 classes.

trrerrrrrerrrrrrrerrerrrrrrrrrrrrrerrrrrrrrrrrrrrrrerrrrrrrrrrrrrrrrrrrrrre
B3y WPCLB | |

WPCB
e WB
- - -WPB
125F WPLB | A

12

Average perplexity (per word)

11

0 2000 4000 6000 8000 10000 12000
Number of classes

Figure 4.15: Awverage perplexity per word on the SD test-set for HSF clustering with
the WPCLB language model over varying numbers of phrase classes. WB, WPB, and
WPLB are shown for comparison.

Figure 4.16 shows a collection of histograms showing the distribution of phrasal
units on the training segmentation (Figure 4.16(a)) and used in recognition (on the
test set) with the WPB and WPLB language models (Figure 4.16(b) and Figure
4.16(c) respectively). It is interesting to note, for both WPB and WPLB, that
even though words (one-word phrase) account for only 40% of the phrases in the
training data (segmentation), during recognition the language models guide the
decoder to words over 70% of the time. This is likely to be because of a relatively
poor generalisation of the training phrases to the test data, and so the words in

the language models are used as a “backup” mechanism.

Comparing Figures 4.16(b) and 4.16(c) shows that there are some subtle dif-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 84

ferences between the distributions of the WPB and WPLB models. First of all,
the percentage of words drops from approximately 79% to 73% respectively. This
reduction of words in the WPLB recognition is due to an increase in the use of
phrases, particularly two-word (64 more examples), three-word (85 more), and
four-word phrases (48 more). The extra flexibility in the WPLB should allow
better generalisation to the test data, as the decoder is given more choices for
transiting between words and phrases which, as stated before, should mean that
the decoder can use its “backup” option (i.e. the words) when a given sequence
of the input is not well represented by the phrases, but it can then return to the
phrase level when the input becomes a closer match to the training data. That
said, it is important to stress, that although there is a big difference in perplexity
of the WPB and WPLB models, this does not transfer to the word recognition

accuracy which, as previously mentioned, sees no improvement statistically.

0.8

0.7
oy
206
g
205
(3]

o

L 04
$

203
Q
o2

0.1

1 3 4 5 6 7

2
Phrase Length (# words)

(a) All training phrases.

1 7 1 7

2 3 4 5 6
Phrase Length (# words)

2 3 4 5 6
Phrase Length (# words)

(b) Used phrases in WPB recognition. (c) Used phrases in WPLB recognition.

Figure 4.16: Histograms showing the number of words per phrase as a relative fre-
quency for SD data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 85

4.6.2 Speaker Independent Results

Table 4.3 shows the HMM baseline word accuracy results for the RM dataset along
with perplexity scores for the WB, WPB, and WPLB language models'3. Results
are shown for the development set (dev set) and evaluation sets (oct89, feb9l,
and sep92), with (O0) and without (0) Vocal Tract Length Normalisation (VTLN)
applied to the audio. All recognition parameters such as language model scaling
factor and word insertion penalty are optimised on the dev set and then applied

to the evaluation sets.

Dev (%) Evaluation (%)

LM PP | VILN | feb89 | oct89 | feb91 | sep92
WB3044) 5| g | soss | o105 | 505
WPB | 20T | 5| g | w02 |orar | 85
WPLB 243 | 5 | gk | soos | o207 | s7as

Table 4.3: Word Accuracy on the RM dev set feb89 and three test sets oct89, feb91,
and sep92 for WB, WPB, and WPLB language models with and without VTLN,
using HMM-based recogniser. Language model perplexity (PP) is also shown. The
WPB and WPLB based sytems use a phrase weight of 0.5 which was optimised on the
feb89 development set.

For the VTLN experiments, the HMMs are trained as described in Section
2.6.1.1, but for the recognition, there is a change to what was described in Section
2.6.1.2. Instead of optimally warping the input for each system (i.e. changing
language models), the input was only warped for the WB baseline system and then
stored. For the subsequent experiments with WPB and WPLB, the recognition
was run on the WB warped input as a normal recognition pass (i.e. just one pass,
and no warping). This approach was taken for consistency with the template-
based recognition which will be presented in Chapter 6. For now, the reader is
asked to accept this approach in the knowledge that justification will be given in

Chapter 6.

13The PB language model was not used in the experiments as it was clear that it was not a
good model for unseen data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 86

The Matched-Pairs test was used to compare the baseline recognition systems
for each language model within each evaluation set, both with and without VTLN
applied. All system comparisons were classified as statistically the same. To see
why there is so much parity with the HMM results on RM, it is useful to analyse
the phrase histograms, as with the SD data in Section 4.6.1.

1

I o o
> =) ©

Relative Frequency

©
[N}

o

1 7

2 3 4 5 6
Phrase Length (# words)

(a) All training phrases.

1 1
> 0.8 > 08
[S) (8]
c c
() [}
=} 3
o 0.6F T 0.6
< <
L [
Loat Loat
= =
[0] [}
X g2} o2
0 0
1 2 3 4 5 6 7 1 2 3 4 5 6 7
Phrase Length (# words) Phrase Length (# words)

(b) Used phrases in WPB recognition. (c) Used phrases in WPLB recognition.

Figure 4.17: Histograms showing the number of words per phrase as a relative fre-
quency for the combined RM datasets oct89, feb91, and sep92.

The first thing to note, from Figure 4.17(a), is that the distribution of the
training phrases tapers away much quicker than the SD data from phrases of three
or more words. There are more two-word phrases, but fewer three-word phrases.
The fact that there are more shorter phrases (and more words) indicates that the
RM data does not contain as much formulaic production as the SD call-routing
data. It is clear from Figures 4.17(b) and 4.17(c) that, as with the SD data, the
WPLB language model is constructed such that the best path will go through
longer phrases than when compared to the WPB language model. However, both

language models choose a higher number of words (85% for WPB, and 78% for

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 87

WPLB), and thus very few longer phrases of two or more words. This can be
contrasted to the SD decoder which chooses words 79% and 73% of the time for
WPB and WPLB respectively.

4.7 Conclusions

This Chapter attempted to, first of all, acquire frequently occurring phrases and
then integrate them into an architecture suitable for speech recognition. The chap-
ter began, in Section 4.2, by giving a survey of the literature related to phrase-
based language modelling, both within speech recognition applications, and purely
as language modelling techniques. Section 4.3 described how a multigram segmen-
tation algorithm could be used to acquire phrases, purely from transcriptions of
speech. Section 4.4 introduced a novel technique for clustering phrases, called the
Hybrid Syntactic Formulaic (HSF) clustering algorithm, that used the acquired
phrases from the multigram segmentation and combined them with parse-trees to
assign syntax-based labels which could then be used to group other phrases. The
clustering algorithm was complete with a class merging procedure which merged
the “closest” pair of classes until a pre-defined number of classes was reached —

a vector based approach with cosine similarity was used.

Section 4.5 was concerned with the integration of both the acquired phrases
and the phrase classes, previously grouped by the HSF clustering algorithm, into
the speech recognition architecture. It began by, in Section 4.5.1, formulating
the language models within different topology schemes, describing first of all the
Phrase Bigram (PB), followed by the Word Phrase Bigram (WPB), and finally the
Word Phrase Link Bigram (WPLB). Starting from a basic bigram distribution of
the phrases (PB), gradually more information was built into the language models,
such as word bigram (WB) information, and then new bigram transitions between
words and phrases within the language model, creating bigram transitions that

were previously unseen. Section 4.5.2 showed how the phrase classes, represented

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 88

by Stochastic Finite State Automota (SFSA) could be integrated into the N-gram
framework (bigram in this case), with the notion of global (between-class) and local
(within-class) probabilities, and Section 4.5.3 described a phrase weight which is
a log-probability that is added to all arcs (as a constant) in the language models
that transition into phrase states and acts as a bias to influence how a decoder

will use the phrases.

Finally, Section 4.6 gave the evaluation of the baseline models. The tech-
niques described in the chapter were applied to the SD call-routing data and RM
datasets (speaker independent), which were then used to run speech recognition
experiments using HMM monophone recognisers with multiple mixture compo-
nents. The recognition experiments were evaluated with word accuracy. Language
model perplexity was also calculated for each of the language models previously
described. For the SD data, both the WPB and WPLB language models gave
statistically significant improvements over the WB baseline measure, as did the
WPCLB for 4000 classes, although it was shown that the WPLB system gave no
significant improvement over the WPB system. For the RM evaluation set, it was
shown that the WPB and WPLB models gave no significant improvements over
the WB model. A suggestion for why there were no significant improvements on
the RM evaluation set was that the phrases available in the training data (from the
multigram segmentation) were shorter than for the SD data, with a large number
of words and two-word phrases. When the recognition outputs were analysed, it
was clear that the decoder had a preference for even shorter units — over 80%
of the recognised units were words when using the WPB and WPLB language
models while that figure was less than 80% for the SD data.

This implies that the reason the phrases are not chosen as often as words is
because the phrases do not generalise well to the unseen data. The methods
described in this chapter keep the acquired phrases fixed, and do not allow for any
small variations in the structure of the phrases which is likely to occur in the unseen

data. To validate this claim, a HMM-based speech recognition experiment was run

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 89

10000

Frequency
Frequency

7

1 7 1

2 3 4 5 6
Phrase Length (# words)

2 3 4 5 6
Phrase Length (# words)

(a) Awailable training phrases (from seg- (b) Used phrases in WPLB recognition
mentation). on training data.

Figure 4.18: Histograms of chosen units by the HMM decoder on the SD training
data compared to the available training phrases. Figure (a) actually just shows the
histogram of the training text segmentation, it does not include all of the individual
words from the original unsegmented text.

on the SD call-routing training data, giving a word accuracy of 96.81%. However,
the key information here is in the analysis of the units chosen by the recogniser,
shown in Figure 4.18. Clearly the decoder chooses a much higher number of longer
units than on the test data, resulting in a very similar distribution of unit length
to the training segmentation which provides the phrases (the histogram does not
contain the words of the training text that were combined with the phrases which
are also available to the decoder, hence the number of one-word phrases should
also be higher in Figure 4.18(a)). This is strong evidence of the chosen phrases

not generalising well to the test data.

Chapter 5

Bottom-up Template Selection

5.1 Introduction

The datasets used in this research are moderate in size (refer to Chapter 3),
yet still produce a large number of templates, with the RM and the SD (Speaker-
Dependent) call-routing datasets producing approximately 52,700 and 64,860 tem-
plates respectively, for only word and silence templates. When the phrase tem-
plates are used, there is a typical increase of 11,350 and 12,900 templates respec-

tively.

If the entire template database was to be used with a general token passing
decoder (Section 2.3.4) using an ergodic network!, then the branching factor at
the end of each template would be in the order of 2.8 billion (for the smaller RM
dataset), assuming that there is no pruning applied. Even with pruning, there
is a huge overhead when passing tokens from template to template — a token
that survives to the end of a template is then copied and passed to all other
templates in the reference database. Language models can reduce the branching
factor, although using backoff schemes means that the branching factor remains

high (Section 2.2).

'An ergodic network is a network that allows any template to be followed by any other
template, including itself.

90

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 91

To feasibly run a template-based decoder in reasonable time requires some
kind of reduction in the template search space. An acoustic look-ahead, or pre-
processing stage, has been popular in HMM systems, using simplified acoustic
matching to prune the search space [Bahl et al., 1993; Ortmanns et al., 1997]. De
Wachter et al. have applied this idea of an acoustic pre-decoding pass to a phone
template-based recogniser, searching for templates that are an approximate match

to the input [De Wachter et al., 2003].

The remainder of this chapter describes the template selection method of De
Wachter et al. [2007] in detail, and gives the details of the extensions and al-
ternatives to this method that have been developed in the work presented in
this thesis. The chapter is structured as follows: Section 5.2 describes a Vector
Quantisation (VQ) as an approximated k-nearest neighbours (KNNs) selection of
reference frames to the input. Section 5.3 describes the Time Filter algorithm [De
Wachter et al., 2003] as a method for selecting templates from evolving KNNs,
while also introducing a backward pass of the algorithm in Section 5.3.1, with an
alternative Sigmoid-based distance normalisation, which controls the strength of
normalisation dependent on template length and a pre-defined weight, presented
in Section 5.3.2. Section 5.4 describes a hierarchical LDA (Linear Discrimant
Analysis) classifier which acts as a filter to the selected template candidates, de-
scribing methods used to extract suitable features for the LDA (Section 5.4.1)
and the formulation of the hierarchical LDA into a decision tree (Section 5.4.2).
Section 5.5 describes the evaluation of the methods described in this chapter, not
with word recognition accuracy from a speech recogniser, but with methods such
as how well the selected templates match the input utterances, and classification
performance of the LDA filter. Finally Section 5.6 summarises the findings in this

chapter and gives conclusions.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 92
5.2 Vector Quantisation for K Nearest Neigh-

bours selection

The bottom-up template selection begins with the selection of a set of k reference
frames that are a close match to a given input frame, which are then used to
find approximately matching templates (Section 5.3). This selection of frames is
a K-Nearest Neighbour (KNN) problem, for which De Wachter et al. introduce an
extended version of the Roadmap algorithm [Povey and Woodland, 1999], called
the KNN Roadmap [De Wachter et al., 2004].

The KNN Roadmap, which is constructed in an offline training algorithm,
is a graph, where each frame in the reference database is a node in the graph.
Arcs between nodes are bi-directional, and connected using a hill-climbing search,
with connections forming between nodes that are similar. The KNN Roadmap is
actually built up of sub-graphs, where each state class, previously used for local
distance measures (Section 2.3.2), is connected separately. We chose not to adopt
this method for KNN selection, as it was reported that the KNN Roadmap “only
narrowly outperformed a simple brute force KNN calculation” [De Wachter, 2007]
for datasets of moderate size, such as those described in Chapter 3 (it is suggested
that the true benefit of the KNN Roadmap will be for much larger datasets, with

reference database sizes beyond 10,000,000 frames).

Our preferred approach is to use Vector Quantisation (VQ) implemented with
k-means clustering?, which aims to minimise the sum-squared distance within each
cluster [Webb, 2002]. As with the KNN Roadmap, each state class is clustered
separately, with the number of clusters dependent on the size of the class. The

sum-squared distance for a cluster C}, is given by:

2Tt should be noted that k for k means clustering and k nearest neighbour are not related
and are local to each algorithm or method.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 93

SSk = Z lyi _Nk’2 (5.1)

Yi€Cy

where y; is a frame within cluster C}, and pu; is the mean frame of Cj.

The technique uses the standard k-means clustering algorithm: within each
class, k random frames are chosen to be initial cluster centres — k is proportional
to the number of frames in each class. The remaining frames are assigned to the
nearest cluster, using a direct comparison to the cluster centre. The mean frame
is then calculated for each cluster and set to be the new centre. The algorithm
then iterates, with frames being assigned to the nearest cluster, and new mean
frames being calculated for the cluster centres until a convergence point is met,
or if no convergence is reached, until a maximum number of iterations is reached.
The algorithm converges when there is no change in the sum squared distance of
each cluster, or when the mean change per cluster is lower than some pre-assigned

threshold.

B ae[3]

\ m aa[4]
B ah[3]

Figure 5.1: Vector Quantisation of frames in 8 different classes; aaf4], ah[3], ae[3]

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 94

In terms of VQ, a cluster mean is a codeword and the set of cluster means is
the codebook. We formulate this problem as VQ, and not just k-means clustering,
as the selection of KNNs to an input frame is determined by the closeness of the
input frame to the cluster centres (codewords). At this stage of the processing the
frames within the clusters are temporarily ignored, and effectively reduced to one

codeword, i.e. the mean of their cluster.

To select the KNNs, the current input frame is compared to all codewords, over
all classes, with the codewords being ranked in order of closeness to the current
input frame. Each frame that was assigned to the codewords is then loaded into
the KNN list, in order of codeword closeness, until K is reached or exceeded —
every frame within the codewords is used, therefore K is an approximate target
because reading the last codeword will often cause more frames than K to be

loaded.

Figure 5.1 illustrates this process. It shows a subset of frames from the state
classes aa[4], ah[3], and ae[3], and the clusters that contain them. It is important
to note that the example gives idealised data, i.e. the frames are clearly separable.
What Figure 5.1 shows is that it is a possibility that frames within one class may
actually lie closer to frames, and thus clusters, from other classes. Using VQ for
KNN generation is an effective measure for efficiency, but by grouping frames into
potentially large clusters, it can only be used as an approrimate KNN selection

method because it is the cluster means that are used to select the KNNs.

5.3 Time Filter Algorithm

The aim of the time filter algorithm is to reduce the search space for the DTW
decoder. It iterates over the input frames, looking for reference templates that are
an approximate match to the input: When comparing the input to the templates,
using a distance matrix approach (refer to Section 2.3.3), an approximate match is

defined as one where the best path through the matrix is approximately diagonal

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 95

[De Wachter et al., 2003].

A
391

TAIL
390 : 4

389 -

Template becomes
a candidate

w

oo

oo
]

-1 NN miss Activation region

<«+—— Possible landing
point

w

1oy

&
|

REFERENCE TEMPLATE
(frame indices)
w
0o
\I

w

0o

o
]

—>
Activation gap

HEAD

| [| | | T g
X x+t1 x+2 x+3 x+4 x+5 x+6 x+7 X+8
INPUT FRAMES

Figure 5.2: The Time Filter Algorithm. White circles represent nearest neighbours
(NNs) and black dots represent legal entry points for NNs within the reference template
over time. Activations evolve over time from the head region to the tail region of the
template.

Both the time and memory consumption would be far too great if all templates
were used in the time filter algorithm. Therefore, for each input frame, a list
of k nearest neighbours (KNN) is generated (Section 5.2) and used to activate
templates that contain those KNN frames. Figure 5.2 gives an example of the
time filter in action, focused on one template. If one of the KNNs is contained
at the start of a template, known as the head region, then an activation region is
created. The head region is a pre-defined number of frames at the beginning of
a template which can vary from template to template, usually increasing in size
as the template length increases. The activation region spawns from the point at
which the nearest neighbour (NN) is contained, also known as a NN hit, and is

designed to be similar to the kind of region that would be defined by a DTW local

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 96

search, such as the Itakura Distance (Section 2.3.3).

A

y+10 —
y+9 —

Ag = Activation
y+8 — gap

y+7 =
y+6

y+d =

y+4 =

y+3 —

REFERENCE TEMPLATE FRAMES

y+2 <

y+1 =

A 4

y | | [| I
X Xx+1 x+2 x+3 x+4 x+5
INPUT FRAMES

Figure 5.3: Activation regions. The effect of increasing the activation gap upon the
activation region (shaded area).

The size of the activation region is determined by the activation gap, which is,
again, a pre-defined number of frames. Figure 5.3 shows the effect of increasing
the activation gap upon the activation region. Clearly, the larger the activation
gap is, the larger the activation area, and thus the higher the chance that one of
the KNNs will be contained within an activation region. In our experiments, the
activation gap can vary in size for differing template lengths, or can remain fixed
for all lengths. An activation region can only be created from within the head

region, or from within another activation region; if one of the KNNs lands outside

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 97

of the head region and other existing activation regions then it is ignored, and the

next NN is processed.

A
y+9 — @ = Skip penalty
@ = Stall penalty

y+8
y+7
y+6
y+d

GP = Gap

y+4 penalty

y+3

REFERENCE TEMPLATE FRAMES

y+2

y+1 = Activation gap =3~

y | [I
X Xx+1 x+2 x+3 x+4 x+5
INPUT FRAMES

Figure 5.4: Local penalties within activation regions. Stall and skip penalties are
multiplied by a factor (next to entry points) dependent on how far from the diagonal
of the region they are. A gap penalty (GP) is added to the score based on distance
from the start point of the region to the NN hit.

The generation of new activation regions from within existing activation regions
from the head to tail regions of the template define an activation path. Each
activation path originates from the activation regions that were created in the head
of the template, creating new paths that branch off from existing paths in different
directions, depending on the NN. Activation paths can also diverge back to the
same point, and as with the Viterbi and the Token Passing algorithms (Section

2.3.4), when an NN hit occurs in more than one activation region, the associated

paths of each region are effectively merged by retaining the activation region (and

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 98

its path) with the best score (lowest distance in our case) and destroying the

remaining activation regions (and thus paths) that contained the NN.

Every time an NN hit occurs in the head of a template, the current input frame
time is stored, and the distance between the current input frame and the NN is
calculated and stored (using measures defined in Section 2.3.2). When an NN
hit occurs in an existing activation region, the start time of the activation path
is passed to the new activation region and stored. Again, the distance between
the current input frame and NN is calculated, but this time additional penalties
(which are closely related to DTW penalties (Section 2.3.3)) are added and the

new distance is added to the existing distance for the current activation path.

Figure 5.4 shows the cases for applying penalties to the score of an activation
path. For a given activation region, all of the possible NN points are shown, with
the penalty that would be applied to them. Every point above the central diagonal
of the activation region is classed a skip penalty, and everything underneath the
diagonal is classed as a stall penalty. Each position has an associated factor with
it, which is determined by the distance from the diagonal, and used to increase
the penalty. There is also a gap penalty which is used to penalise gaps between
NNs in the iteration of the input frames. The gap penalty, like the skip and stall
penalties, has an associated factor which is determined from the distance of the

NN to the origin point of the activation region in terms of number of input frames.

To clarify the penalty measures, and application of, consider an example where
a NN hit occurs at (z + 2,y + 3) in Figure 5.4. The penalty score will consist of a
gap and stall penalty. In both cases the factor of the penalty is only one. Another
example could see a NN hit at point (z + 3,y + 8). This is at the far edge of the
activation region, and thus receives a heavy penalty. A skip penalty, multiplied
by the factor three, is added to the score along with a double gap penalty. A
final example covers NN hits that occur on the diagonal of the activation region.
Take point (x + 2,y + 4) to be NN hit: there are no skip or stall penalties for

this point, but there is still a gap penalty added (factor 1). It is important to pe-

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 99

nalise the NN hit on the diagonal, as it has not matched the input frame for frame.

Algorithm 5.1 The Time Filter Algorithm.
1: {X is the input frame sequence}
2: {NN(k) represents the kth nearest neighbour (NN)}
3: {template Look(N N (k)) is a lookup for the template containing the kth NN}
4: for i =1 to |X| do

5. Get KNNs for X(7)
6: for k=1to K do
7 {Check NN (k) for hit}
8: Y = template Look(N N (k))
9: if NN (k) in head of Y then
10: Create activation region
11: Update score
12: else if NN(k) contained in activation region of Y then
13: Update score
14: if NN(k) in tail of Y then
15: Select template Y as candidate
16: else
17: Create Activation
18: end if
19: end if
20: end for
21: end for

The process of finding KNN hits inside activation regions continues until there
is an NN hit that lands within the tail region of a template, within an existing
activation region: the tail region, like the head region, is a pre-defined number of
frames, typically dependent on the length of the template, and in this work, the
tail is the same length as its corresponding head region. At this point, the current
input frame number is stored as the end time, and the template in question is
selected to become a candidate for the decoder (Chapter 6). For the example in
Figure 5.2, the template is selected as a candidate with a start time at x and end
time at © + 7. De Wachter et al. use both the start and end time to construct
an activation graph, which connects templates by their start and end times and is
used in a hierarchy of graphs within the decoder architecture [De Wachter, 2007].
Although we store both the start and end times for a selected template, only the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 100

start time is currently used in the decoder (see Chapter 6).

Figure 5.2 shows an example of just one template within a subset of the input
sequence. The Time Filter algorithm operates over all reference templates for
each frame of the input. Using a simple lookup, the template that contains a
NN (which is a frame within one of the reference templates) can be found quickly
and the NN hits can be processed for each template. The KNN list can contain
frames from many different templates, so it is important to note that at any one
time (input frame) there are many activation regions within each template that
contains hits from the KNNs. Algorithm 5.1 gives a summary of the basic Time

Filter algorithm.

Once all input frames have been processed, there remains a list, for each input
frame, that contains the selected templates for their given start time. At this
point, the template lists for each time frame can be thresholded. In this work we
use a Gaussian distribution of the activation path scores at each time frame, with

the threshold set at a pre-defined number of standard deviations from the mean.

5.3.1 Adding a backward pass to time filter

The minimal template unit used in this work is the word-level template with
phrase-level units of up to seven words as the maximum length; this means that
the number of frames in each template, in most cases, is much larger than that of
phone-length templates. This can cause a potential problem with the Time Filter
algorithm. For a template to be selected as a candidate for the decoder, at the
very least an NN has to occur within the head region of a template. If the head
region is too small, then there is a strong possibility that a good template match
is not selected — it may be that most of the template matches very well with a
sequence of the input except the head region. If, for example 90% of a template is
a match, then this template is a very good candidate for the decoder, but if there
is no NN hit in the head region then the Time Filter would ingnore it; the closely

matching portion of the reference template is never actually reached by the Time

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 101

Filter.

391
TAIL

— 390

| |
w w
® o0
@ ©

|
)
®
N

(s@21pul swedy)
ALVIdINTL IONTHT 43

I
w
®
>

|
w
®
o

384

HEAD
| | | | | I 383
X Xx+1 x+2 x+3 x+4 x+5 x+6 x+7 X+8
INPUT FRAMES

Figure 5.5: The backward pass for Time Filter. Unlike the forward pass (see Figure
5.2), the input frames are processed in reverse order with activations initialised in the
tail region and templates selected as candidates when a nearest neighbour (NN) hit
occurs in the head region of the template within an existing activation. White circles
represent NNs, while black circles represent legal landing points of NNs.

To try and combat this side-effect of the Time Filter, we introduce a backward
pass to the algorithm. The motivation is that if a template is a good match to the
input, apart from the first few frames (which cover the head region), then doing
a backward pass of the Time Filter algorithm will allow activation paths to cover
a significant portion of the template before arriving at the sparser (in terms of
NN hits) section of the template. By allowing the activation paths to evolve (as
opposed to not creating any activation regions at all) from the tail, there will be
an increased chance that one of the activation paths deviates enough to allow a

NN hit in the head region of the template.

Figure 5.5 shows an example of an activation path evolving from the tail of the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 102

template to the head, iterating backwards over the input frames. The activations
follow the same constraints as the forward-pass, but effectively flipped upside
down (visually), which leads to slightly different activation paths for the same set
of KNNs. The implementation of the backward algorithm is an inversion of the
forward pass: for an activation path to be created, a NN has to create a hit in the
tail, and for a template to be selected as a candidate, a NN hit has to occur inside
an existing activation region within the head region. The start time and end time
of an activation path are inverted for the backward pass, with the time at which the
template is selected being the start time within the head region, and the end time
is the time at which the first activation region was created within the tail region
for the selected activation path. Penalty scores are also inverted in the sense that
NN hits, within an activation region, below the diagonal of the activation region,
are penalised with the skip penalty (the stall penalty for the forward pass), and
NN hits above the diagonal are penalised with the stall penalty (the skip penalty

for the forward pass).

Once the forward and backward pass of the Time Filter are completed, the two
sets of selected template candidates are merged by start time (more precisely, the
time at which a NN hit occurs within the head region, i.e. when the activation is
created for the forward pass, and when the activation path is terminated for the
backward pass). For every time frame, the template candidates from the forward
and backward pass are combined into one list, and where identical candidates exist
(i.e. the same template with the same start times), the candidate with the highest
score is discarded. Once both passes are merged, thresholding can be applied as

before.

5.3.2 A length-based template score normalisation

As the time filter algorithm is based on DTW, a template’s distance is based
on the distance between input frames and template frames, as well as additional

penalties for skips and stalls. This means that longer templates will accumulate

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 103

more penalties as the input is processed (unless they are perfect matches). To
normalise a template’s score, De Wachter et al. store the number of NN hits along
the activation path of the selected template [De Wachter, 2007]. It is not explicitly
stated how this is used, but the author of this thesis has made the assumption that
the distance for the template’s activation path is divided by the number of NN
hits. So, the normalised distance, Dyn(Y,t), of a template Y, using the number

of NN hits for the templates activation path at start time t is given by:

D(Y,t)
Dyn(Y,t) = ———— 5.2
NN()) CNN(Y,t) ()
where, Y is the reference template, D(Y,) is the pre-normalised acoustic distance

of Y at start time ¢, and Cyy(Y,?) is the number of NN hits for the activation

path of template Y at time t.

(o=}

= ==t
~
~Nw
\
\
1

1
1
> >

\
\
\\\\\

Figure 5.6: General sigmoid function. By varying A in Equation (5.3), the slope of
the curve can be adjusted.
In this work, we are interested in the effects of using phrases within speech
recognition and how the different lengths of templates affect the recognition of

an input sequence. To investigate these effects, we introduce a heuristic-based

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 104

normalised distance measure which uses a form of the sigmoid function [Mitchell,
1997], which is often used in neural networks as a non-linear transfer function that
is used to isolate input pathways from neurons [Anderson, 1995]. Figure 5.6 shows
an example of the general sigmoid function for L € [—10, 10] with varying weights

A, and is defined by Equation (5.3):

1

S =

(5.3)

By varying A, the sigmoid can be controlled to be anywhere between a linear
function (A =~ 1/7 in Figure 5.6) and an “on-off” function (A =~ 50 in Figure
5.6). The normalised distance measure, D,(Y,t), uses the sigmoid form of Equa-
tion (5.3) to incorporate the length of the template. The exponential term is no
longer negative as we are seeking to lower the score of longer templates so that
more phrase templates can be selected as candidates for the decoder, and hence
the effects of using phrasal templates within the decoder can be more throughly

investigated:

D(Y. 1)
(1 + YL+ VYD)

Dy(Y,t) = (5.4)
where, |Y| represents the length of template Y, A is a user-defined weight, and
Y and D(Y,t) are defined as before. The extra term, (1 + A|Y]), is added to the
denominator as a scalar to emphasise the length of the template and to introduce
greater separation for varying values of . Figure 5.7 shows the effect of Equation
(5.4) for varying lengths of templates. The linear normalisation method, where
the template’s score is divided by the template’s length, is also shown for compar-
ison. It is important to note that only the positive part of the sigmoid is shown in
Figure 5.7, unlike in Figure 5.6, as there are no negative template lengths, i.e. we

are only concerned with templates of length greater than one.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 105

Normalised distance

~

o o a .
0 50 MY, 150 | e

00
Template length (num frames)

Figure 5.7: Sigmoid-based normalised distance function for (in this case) a distance
(unnormalised) of 350. The effect of varying A upon the normalised distance (Equa-
tion (5.4)) is shown over different template lengths. The linear function is also shown
(the distance is normalised by dividing by the number of frames in the template).

5.4 Filtering Candidate Templates with Hierar-
chical LDA

The Time Filter algorithm produces a list of approximately matching template
candidates. A side-effect of this is that, along with correctly matching templates,
there are also incorrect templates: A “correct” template is defined as having a
matching word string to the annotation that defines the current utterance and a
start time that must be within a given number of frames from the start time in the
annotation. Conversely, an “incorrect” template either has a correctly matching
word string, but is outside of the frame window, or does not have a matching word

string. Figure 5.8 shows a frame window of 5 frames centered around frame ¢.

Clearly, if the number of incorrect templates selected as candidates for the

decoder was reduced, then the chance of increasing recognition accuracy is in-

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 106

Window = 5 frames

A
v

Y1 Y2 Y3||Y4 Y5
| | | | | | | |

t-4 t3 t2 t1 ¢ t+1 t+2 t+3 t+4

Figure 5.8: Template classification. If the template is within the window (centered
at frame t) and it’s word label matches the annotation, then it is classed as correct.
Templates Y1 and Y5 are classed as incorrect whether or not their word strings match
the annotation.

creased. This can be quantified by performing an Oracle test which removes all
incorrect templates from the template candidates: For the Oracle test, templates
were classed as incorrect only if their word strings did not match the transcription
/ annotation of the utterance, that is, no time information was used to eliminate
templates. By removing incorrect templates, an increase in recognition accuracy

of around 12% absolute is seen for the data used in this work3.

To reduce the number of incorrect templates selected as candidates, some kind
of classification method is required. Given a template candidate for a given ut-
terance, the classifier needs to classify the template as correct or incorrect, with
the incorrect templates being discarded. This problem is a binary problem, also
known as a two-class problem (a template is either correct or incorrect) and is

well-suited to the use of Linear Discriminant Analysis (LDA)* [Webb, 2002].

5.4.1 Extracting Features for LDA

To be able to use LDA on the selected template candidates, the first step is
to extract a set of features from the selections. This requires some insight into
what features may be useful for this task. An observation made on the template

candidates from the training data is that when a template candidate is “correct”,

3Chapter 6 will give more detail about the results and recognition experiments.
4Section 2.7 gives a more thorough technical background to LDA.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 107

there are often many similar correct templates representing the same word string
with the same start frame, or with a start frame that is within a few frames
of that given template. This is less likely to occur for incorrect templates. To
exploit this property, the first feature that can be extracted is simply the number

of occurrences of a template, which is expressed as a probability.

A simple relative frequency probability could be defined for a template can-
didate by counting the total number of templates that represent the same word
string and dividing by the total number of template candidates for the current

utterance:

i)

PrY) = Cwer)

(5.5)
where, Y is the template candidate, WY is the word string that Y represents,
Vwev represents all words W in the vocabulary V', and C(-) is the number of oc-
currences of template candidates that represent the given parameter. If we match
word strings exactly, then the count for a template candidate can be underesti-
mated because there may be many more template candidates that have the same
first word but different subsequent words (if phrases). A first word match is im-
portant because a candidate’s start time is determined by part of the first word, so
lots of template candidates appearing with the same first word and similar start
times gives good confidence of correctness, and hence should result in a higher
probability for a given template candidate. Equation (5.5) is easily adapted to

use only the first word for counts:

C(Wh)

PrY) = Cwer)

(5.6)

where C'(W7) gives the number of template candidates that start with word W;. As

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 108

mentioned before, observations of the training data showed that correct template
candidates usually appear in groups of templates with matching or similar word
strings within a few frames of each other. To extract this information, a window,
which is +y frames around the start frame of the current template candidate Y
(and includes the start frame), can be incorporated into Equation (5.6), which

leads to:

C(Wh ta X)

Pr(Yt) = = LX)
r(|t> C(VWG‘/at?X)

(5.7)
where C(W1,t, x) gives the number of occurrences for all candidates with a first
word Wi and a start frame that is within 4+y frames from the start frame t of

Y, and C(Ywev,t, x) is the number of occurrences of all candidates within £y

frames of Y (including Y).

A further improvement that can be made to Equation (5.7) is to smooth the
counts within the window defined by y. Using a Gaussian Radial Basis func-
tion (RBF) [Buhmann, 2003], the counts of template candidates can be reduced
smoothly the further they are from the centre of the current window (see Figure
5.9). Smoothing with an RBF is useful in the situation where a template candi-
date is surrounded only by a small number of matching templates within a few
frames of the central frame of the window, but with a larger number of match-
ing templates at the outer regions of the window. In this situation, the current
template candidate may be given a high probability (using Equation (5.7)) as all
positions within the window are taken to be equal. By smoothing the counts,
the further they are from the centre of the window, the lower is the probability
of the template candidate (at the centre of the window). Conversely, a template
candidate with the same number of matching candidates within the window will
receive a higher probability if those matching templates are closer to the centre of
the window. Equation (5.8) is the smoothed probability of a template candidate

Y given the current time ¢:

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 109

Crop(W1,t,X)
Cror(Vwev, t, X)

Pr(Y|t) = (5.8)
where, t, Y, Wi, Viwev, and x are defined as before, and Ci¢(-) is the weighted

count function given by:

Crf(Z,t,x) = ZC’Zt—i—z (i, p,0) (5.9)

i=—X

where C(Z,t + i) is the count of templates with a word string beginning with
word Z and a start frame of ¢ + 4, and (1, 4, o) gives the likelihood weight for a
sample ¢ from an un-normalised Gaussian distribution with a mean p and standard

deviation o defined by:

pli, i, 0) = e 2207 (5.10)

To clarify, at each frame ¢, the RBF function is centered at frame ¢, and the
counts of templates that are within +x frames of ¢t are weighted by the likelihood
from the RBF: templates that have a start time outside of the given window are
given zero counts. In all cases, u is set to zero as templates with the same start
frame as the centre of the window have a distance of zero from the centre, and o

is pre-defined.

By using an un-normalised Gaussian RBF, the counts of templates that occur
at frame ¢ (the centre of the window) will remain the same because the RBF
returns a likelihood of 1.0. Figure 5.9 shows an example of the RBF applied to
template counts, where x = 3 and o0 = 1. The original counts at each frame are

shown in dark blue, with the resulting weighted counts shown in yellow. Again

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 110

250r

Il original counts
[Iweighted counts
— rbf window

200

150+

Template Count
)
o

50r

|

(-)6 -4 -2 0 2 4 6
Frame Distance

Figure 5.9: Gaussian Radial Basis Function: A un-normalised Gaussian is used to
weight counts of templates by distance from the centre frame. Here, the window is 7
frames, with +3 frames from the centre frame, and the standard deviation o of the
Gaussian is 1.

note that the counts at the centre of the window remain the same and counts

outside of the window become zero.

Another property of the template selections on the training data is that when
a template is correctly selected for a given time, then its score for that activation
time is generally lower than an incorrect template as there is a closer match be-
tween the input and the template. To extract this information as a feature, the

z-score for each template activation is calculated:

D(Y7t> — KD

2(Y,t) = p

(5.11)
where D(Y,t) is the score of template Y for a given activation starting at time
t, and pup and op are the mean and standard deviation, respectively, over all
template scores within the selections for a given training utterance. The z-score

of template activation scores gives the number of standard deviations from the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 111

mean, thus providing a reasonable measure of how close a given template is to a
sequence of the input relative to all other template selections. It should be noted
that the distance measure D(Y,t) in Equation (5.11) can be replaced with the

normalised distance measures of Equations (5.2) and (5.4).

A final observation of the template selections for the training data shows that
even with normalisation methods for template scores (Section 5.3.2), there are
examples of “incorrect” template selections with lower scores occurring when the
template length is shorter. A shorter template candidate will almost always have
a smaller score as there are less penalties to be added to the score, although
normalisation should reduce the effect somewhat. To extract this information, a

third feature, the template length L(Y), is found for each template candidate.

Combining the three features discussed above provides the following feature
vector F(Y,t) which can be extracted for each template candidate selection Y at

time ¢:

Pr(Y|t)
F(Y,t) = | 2(Y,?) (5.12)
L(Y)

5.4.2 LDA Decision Tree

Once the features for the template selections on the training data are extracted,
LDA can be used to find the projection that best separates the two classes of data.
Each template activation is labelled as correct or incorrect based on its word string
and suggested start time as discussed at the beginning of Section 5.4 and shown
in Figure 5.8. Using Fisher’s Linear Discriminant (Section 2.7), each template
selection (represented by the features described in Section 5.4.1) is projected onto
a line (or into 1D space) which best maximises the ratio of between-class scatter

to within-class scatter using the eigenvector w,.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 112

1.8 ¥
P]
160 orrect 1]
m——|nCOrrect 1
--- 1
14l Threshold ' |
]
1.2 1 i
1
1r 4
0.8} B
0.6 4
0.4¢f B
0.2 B
) .
-1 -0.5 0 0.5 1 15 2

Figure 5.10: Threshold selection: Distribution crossing point. Threshold chosen to
be the point at which the correct (blue, right) and incorrect (red, left) distributions
CTOoSS.

After projecting the data, the next step is to find a threshold ¢, which will
be used to classify samples as correct or incorrect depending which side of the
threshold the samples lie on the line. A threshold can be placed anywhere along
the projection line to control the acceptance / rejection of candidate templates: We
choose to use the optimum decision point where the distributions of the correct and
incorrect samples cross (see Figure 5.10 for an example). By assuming a Gaussian

distribution, the threshold is determined by solving the following quadratic for x:

1 1N o (1 e ;o
e — R K-tL %) 5.13
(2a%+2a§)“<a%)*(207 " 203 (5:13)

_ 1 1 .
where K = In (W) —In (%) , 41 and o are the mean and standard deviation
for the incorrect distribution, and po and o5 are the mean and standard deviation
for the correct distribution. As there are two roots when solving a quadratic, the
root chosen to be the threshold will lie between 1y and py: the means of both

distributions. The derivation of Equation (5.13) can be found in Appendix D.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 113

Figure 5.11 shows the histograms of the projected data used to generate Figure
5.10 — this shows that the assumption of a Gaussian distribution for the data is

valid.

2500

‘
I Correct
[TIncorrect

2000 1

1500 1

1000

500

Figure 5.11: Histograms of LDA projected data. Shows the correct (blue) and in-
correct (yellow) samples after projection into 1D. The means and standard deviations
of the sample sets were used to generate the Gaussian distributions in Figure 5.10.

To apply the LDA classifier to an evaluation set, each selected template ac-
tivation is represented by its extracted feature vector (Equation (5.12)) that is
multiplied by the eigenvector w, which projects the training template activations
to the space that gives maximum separation between correct and incorrect classes.
After the projection, each projected sample from the evaluation set is compared to
the threshold ¢,, with samples above ¢, classified as correct, and samples below

¢, classified as incorrect.

After the projection of data to one-dimensional space there will often be an
overlap of the class samples and the choice of threshold attempts to find the point
where this overlap is minimised (Figure 5.10). Choosing the threshold to be the
point where the two class distributions cross means that correct samples will be
misclassified as incorrect, and likewise, incorrect samples misclassified as correct.
By performing LDA once more on the samples that lie below threshold ¢, it may

be possible to classify more samples accurately.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 114

Figure 5.12: The LDA decision tree. The LDA is first applied to all training samples,
x, then to all samples 'y, where {y C x:X; < ¢o}. Wq and Wy are the eigenvectors,
with ¢o and ¢y the thresholds, for each LDA.

Figure 5.12 shows a 2-level decision tree framework that can be used to imple-
ment the applications of multiple LDA to the data: The node at the top of the tree
describes the first stage of the LDA mentioned before, which finds the best projec-
tion (i.e. eigenvector w,) for a template activation feature point {x; € x}, where x
is all the template samples, and thresholds at the point at which the distributions
of the correct and incorrect samples for the training data cross. If the sample val-
ues in the projected space are greater than threshold ¢, then they are classified as
correct (left node on the middle level in Figure 5.12), otherwise they are initially

pooled together in the incorrect class of samples y, where {y C x : x; < ¢}

The LDA is then applied to all samples in y (right node on middle level in
Figure 5.12), giving the new projection w,, and the value of sample y; after pro-
jection is compared to a second threshold ¢, which is calculated using the correct
and incorrect distributions of the training data samples that lie below ¢, i.e. all
samples in y. Samples projected above ¢, are now re-classified as correct, leaving

the remaining samples to be classified as incorrect.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 115

5.5 Evaluation

Ultimately the success of the example-based system is evaluated on word recog-
nition accuracy, or word error rate (WER), but it is also useful to determine how
well the Time Filter (Section 5.3), and LDA decision tree (Section 5.4) perform.
Section 5.5.1 will give an analysis of the Time Filter output, looking at details
such as how well the selected templates fit to the utterance transcription, and
the average number of templates the Time Filter finds. Section 5.5.2 will analyse
the effectiveness of applying LDA as a filter to the selected template candidates,

focusing on the classification accuracy and the suitability of the selected features.

5.5.1 Template Selection

An obvious measurement for evaluating the output of the Time Filter, independent
to the decoder (Chapter 6), is to see how well the template selections fit the
annotation of the utterance: This includes both word string and time information,
and is termed template coverage. For an utterance to have full-coverage by the
template selections, all of the words within the annotation for that utterance must

be represented within the given time window.

Determining whether a word template matches the utterance is trivial as it is
a one-to-one mapping within the given time window (£x). However, phrases are
matched to the utterance as whole tokens, i.e. all words within the phrase must
be contained within the utterance, in the same sequence. Clearly the coverage
estimate is not as accurate as it could be because of the way the phrase tem-
plates are handled. When calculating WER on a hypothesis from the decoder, the
phrases are expanded into their word form, and words in the recognition output
are aligned to the transcription of the utterance. This means that phrase tem-
plates that contain only some of the words within the utterance (e.g. “I’d like my
account balance” matching to the utterance “I'd like my balance”) could still lead

to a decrease in WER (although insertions from incorrect words in the phrases

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 116

can also push the WER back up).

Another interesting evaluation measure is the ratio of correct template selec-
tions to incorrect template selections. This provides extra information about how
successfully the Time Filter is selecting candidates and can also augment the
recognition results later, giving insight into how the ratio of correct to incorrect

selections affects the decoder, if it does at all.

Time Filter Average

Templates Method Coverage (%) | C/I Ratio | Num. Templates
Backwards 94.90 1.28 1986
Words Forwards 94.87 1.86 1976
Merged 94.96 1.81 2047
Words Backwards 96.6 1.28 2100
+ Forwards 96.67 1.84 2092
Phrases Merged 96.69 1.79 2167

Table 5.1: Time Filter statistics for SD Test data. The Time Filter methods are the
forwards and backwards passes of the Time Filter algorithm, while “merged” represents
the the union of the two passes. C/I Ratio is the correct to incorrect template ratio.

Table 5.1 shows some of the statistics, previously described, for the Time Filter
algorithm on the SD test data’®. It shows that when phrase and word templates
are used the coverage rises by about 1.8% over the word-only templates, with an
increase in the average number of templates selected per utterance. The perfor-
mance of the backward and forward pass is given, as well as the merged results
which is union of the two sets of template selections. It can be seen for word-only
and word + phrase templates that the correct to incorrect ratio (C/I Ratio) is
lower for the backwards Time Filter than the forward pass, although on average,

the backward pass selects more templates.

For the word-only templates, the coverage is marginally better for the back-
wards pass, which implies, with the knowledge of the C/I Ratio and the average
number of templates, that the backward pass finds fewer correct templates than
the forward pass, and thus a greater number of incorrect templates. For the word

+ phrase templates, the backward pass coverage is slightly lower than that of the

5 All experiments reported use the local Mahalanobis distance (Equation (2.31)) for calculat-
ing between-frame distances while the distance normalisation of Equation (5.2) is applied to a
templates total distance.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 117

forward pass, although the C/I Ratio and average number of templates follow a
similar pattern to that of the word-only templates which again implies that fewer
correct templates are found in the backward pass. When combining the template
selections of the forward and backward passes together (the merged selections),
in both the word-only and word + phrase templates selections, the coverage in-
creases, although the C/I Ratio drops slightly which is due to the backward pass

bringing a larger number of incorrect templates.

Time Filter Average

Templates Method Coverage (%) | C/I Ratio | Num. Templates
Backwards 93.17 0.33 1665
Words Forwards 93.36 0.48 1656
Merged 93.45 0.47 1726
Words Backwards 95.25 0.33 1775
+ Forwards 95.47 0.48 1767
Phrases Merged 95.51 0.48 1842

Table 5.2: Time Filter statistics for the RM evaluation set, with VI'LN applied.
The Time Filter methods are the forwards and backwards passes of the Time Filter
algorithm, while “merged” represents the the union of the two passes. C/I Ratio is
the correct to incorrect template ratio.

Table 5.2 shows the template selection statistics for the RM evaluation set
(the combined oct89, feb91, and sep92) after Vocal Tract Length Normalisation
(VTLN) is applied (see Section 2.6 for more information). Like with the SD
data (Table 5.1), the word + phrase template selections increase the coverage
percentage, this time by over 2%. However, the C/I Ratio for all selection methods
is much lower on the RM data. This must be due to the inherent problem of
speaker independence for template-based approaches, even after VITLN, which
requires lots of examples to match the variation in speaker, especially if, like in
this case, the smallest template unit used is the word. It is interesting to point
out that for the word + phrase merged template selections, without VTLN (not
shown in the table) the coverage drops to 95.29% while the C/I Ratio drops to
0.33.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 118

5.5.1.1 Sigmoid-Based Distance Normalisation

In Section 5.3.2, a sigmoid-based distance normalisation function for template
activations scores was introduced (defined in Equation (5.4)). In template selection
experiments, the A weight was varied from 0.025 in roughly even steps to 0.8 for
the SD data to evaluate the effects of how the distance curve affects the template

selection. Table 5.3 shows the results.

A 0.025 | 0.075 | 0.125 | 0.2 04 | 0.8

Coverage (%) 95.76 | 95.86 | 95.88 | 95.88 | 95.9 | 95.9
C/I Ratio 1.79 1.84 1.85 1.86 | 1.88 | 1.89

Avg. Num. Templates | 1981 | 1979 | 1979 | 1977 | 1977 | 1983

Table 5.3: Time Filter statistics for the SD evaluation set when using Sigmoid-based
distance normalistion.

It is clear from Table 5.3 that, although there are slight improvements in the
coverage percentage and C/I Ratio, the sigmoid-based normalisation is not very
effective in terms of varying the template selection. The average phrase length in
each utterance for the template selections also shows very little change. Clearly
the Sigmoid distance normalisation did not work as hoped. It seems that although
the normalisation function is a useful formulation, it matters where it is applied

in the Time Filter algorithm.

Currently the normalisation is applied to the template activation score after the
Time Filter completes, but before thresholding is applied at each frame. Actually,
the normalisation should be applied at the selection of the k-nearest neighbours
(KNN). By applying the normalisation after the nearest neighbours have been
selected has a minimal effect because the available template selections have already
been defined, and thus the length of the chosen templates can not be greatly

influenced.

The problem that applying the Sigmoid normalisation to the KNN selection
might introduce is that, when using word and phrases templates, a nearest neigh-
bour (reference frame) that is contained in a phrase template will also be contained

in a word template (both templates are defined over the same frame in a given

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 119

utterance). By reducing the distance of the nearest neighbour with the sigmoid
normalisation, it helps that frame be selected as one of the KNN if it belongs to
a longer template, but that also means that the equivalent word template will
be initialised with an activation region from the nearest neighbour hit. Due to
time constraints, this problem could not be addressed, and thus all experiments
reported use the distance normalisation that divides by the number of nearest

neighbour hits, previously defined in Equation (5.2).

5.5.2 LDA Filtering

Figures 5.13 — 5.17 show various plots for the features extracted from template
selections for the SD training data. Figure 5.13 shows the features of Equation
(5.12) in 3D space, with the correct samples in blue and incorrect samples in
red. Because this is the training data, the class of each template feature vector is
determined using the annotation of each utterance as explained at the beginning
of Section 5.4, with both word string and time information used to classify: in the
given figures, a frame window of 15 frames, i.e. x = £7, was used to classify the

samples as correct or incorrect.

Figure 5.14 shows just two of the features, Pr(Y|t) and z(Y,t), which effec-
tively gives an overhead view of Figure 5.13. Visually, it is clear from the figure
that the occurrence based probability, Pr(Y|t), provides more discrimination for
the two classes (incorrect and correct) than the z-score, z(Y,t), and indeed the
eigenvector, w, = [0.99 -0.14 0.01], confirms this as the corresponding dimension
to the occurrence probability is 0.99, which means that the transformed samples
will keep a similar spread to the occurrence dimension. Figure 5.15 shows the 1st
level LDA projection of the template selections. It is clear that although there is
large overlap between the two classes, there is separation at either end of the line

(which is also visible in Figures 5.13 and 5.14).

Figures 5.13 — 5.17 represent a total of 20.8 million template selections (over all

utterances in the training data), with 12 million labelled as correct, and 8.8 million

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 120

1504| - Correct >
Incorrect

Pr(Y|t) (Y1)

Figure 5.13: Features for LDA: The features (defined by Equation (5.12))for correct
(blue) and incorrect (red) template candidates in 3D space. The data is the SD training
data.

labelled incorrect. After the first application of LDA, there are approximately
10.6 million correct and 2.1 million incorrect template selections that lie above ¢,,.
Applying the 2nd level LDA to the template selections that lie below ¢, results in
1.2 million correct and 2 million incorrect samples projected above threshold ¢
which means that about 11.7 million correct templates selections (out of 12 million)
are classified by the LDA decision tree as correct, whereas 4 million incorrect
template selections are classified correct (above the thresholds ¢, and ¢), which
is just under half of all incorrect template selections. This means that the ratio of
correct to incorrect template candidates rises from approximately 1.36 before the

LDA to 2.93 after the 2-level LDA is applied.

Figure 5.16 shows the distributions of the two classes within the first LDA
projection space (for all template selections), while Figure 5.17 shows the distri-

butions of the two classes within the second projection space (for all template

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 121

8 :

Incorrect
Correct

0 0.2 014 016 0.8 1
Pr(Yt)

Figure 5.14: Z-score (2(Y,t)) plotted against the probability of template candidates
(P(Yt)) for SD training data.

selections that were projected below ¢, in the first LDA). The distributions in
both figures confirm that there is an overlap of the classes, although the correct
template selections have a lower variance from the mean compared to the incorrect
template selections. The narrower variance (of the correct samples), in agreement
with the plots in Figures 5.13 and 5.14, means that the features of Equation (5.12)
provide a good extraction for correct selections, but do not necessarily represent
the incorrect selections well: clearly a large number of incorrect samples lie at the
opposite end of the sample space to the correct samples, but there are also a large
number of incorrect samples that exhibit the same, or similar properties to the

correct samples, hence the overlap of the two classes.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 122

2
Incorrect
; - Correct
1.5¢) —9, 5
()
=
©
> 1f :
©
L
&)
QD 0.5f 1
o
o
0, a
-0.5

Figure 5.15: Projection of template candidates into 1D for SD training data. Pro-
jection of the incorrect (red, left) and correct (blue, right) shown separately. ¢, is the
threshold for classification.

2
—— Correct :
— Incorrect !
1
15 ! ,
1
1
1 L 4
0.51 1
0
-1 2

Figure 5.16: Distributions for correct and incorrect template candidates, showing
1st level threshold ¢, with the 2nd level threshold, and ¢y, which is calculated from the
distributions shown in Figure 5.17.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION

2.5

1.5¢

0.5¢

—— Correct
—— |[ncorrect

%

0
-0.5

Figure 5.17: Distributions of template candidates 'y where {y C x:x; < ¢q} with

threshold ¢, shown.

15

123

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 124

5.5.2.1 Classification Experiments

Tables 5.4 and 5.5 shows the results of applying the 2-level Hierarchical LDA
classifier to the SD Test data and RM evaluation set respectively. For each dataset,
a window of 15 frames is used to label a training template as correct or incorrect.
For the evaluation data, an RBF window of 15 frames (x = £7) is used, with a
standard deviation o = 0.25 for the SD data and o = 1 for the RM data®.

Templates Words | Words + Phrases
Classification Acc. (%) 76.30 76.33
FNR (%) 1.91 1.88
FPR (%) 63.23 62.74
Average Num. Templates | 1713 1804
Average Reduction (%) 16 17
C/I Ratio 2.81 2.80
Coverage (%) 89.70 93.77

Table 5.4: LDA Filter classification results on the SD Test data. Shows the clas-
sification accuracy of the Hierarchical LDA classifier, False Negative Rate (FNR),
Fualse Positive Rate (FPR), average number of template selections per utterance, the
average reduction in the number of templates compared to before filtering, the correct
to incorrect template ratio (C/I Ratio) and the coverage of the template selections to
the input utterances.

Each table gives the evaluation of the classifier on word-only template selections
and word + phrase template selections (Row one). Row two gives the classification
accuracy of the classifier which is defined as the number of correctly classified
templates divided by the total number of templates. Row three gives the False
Negative Rate (FNR) which is a measure of how many times a template that
should be classified as correct is misclassified as incorrect. Similarly, row four
gives the False Positive Rate (FPR) which measures how many times an incorrect
template is misclassified as correct. Rows five, seven, and eight were previously
defined in Section 5.5.1, with row six defining the reduction in the average number
of templates per utterance compared to before filtering (refer to Tables 5.1 and

5.2 for original values).

SFor the SD data, these values were experimentally found on the test data, while for the RM
data, the parameters were optimised on the feb89 development data

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 125

Templates Words | Words + Phrases
Classification Acc. (%) 56.29 56.18
FNR (%) 3.22 3.30
FPR (%) 62.76 63.01
Average Num. Templates | 1247 1317

Average Reduction (%) 28 29

C/I Ratio 0.72 0.72
Coverage (%) 85.93 91.68

Table 5.5: LDA Filter classification results on the RM evaluation set using VTLN.

It can be seen from Table 5.4 that the classifier achieves a high accuracy on
the SD data (76%), with a low FNR but high FPR. As mentioned before, the
features were selected to represent correct template selections, thus the low FNR,
but the features don’t directly model the incorrect template selections, hence the
high FPR. This results in most of the correct templates being accepted, but with
a large number of incorrect templates also being accepted. The average number
of templates, C/I Ratio, and template coverage can all be directly compared to

Table 5.1 to see the effects of filtering with the LDA classifer.

The coverage when using word-only templates and word + phrase templates
both drop after filtering. It is clear that the correct templates that are misclassi-
fied, and hence filtered out of the template selections, directly affect the coverage
percentage. However, even though the FNR on the word + phrase template selec-
tions is only marginally lower than that on the word-only templates, the difference
in coverage percentage between word-only and word + phrase templates is more
than double than before filtering. This same effect is seen on the RM data, in
Table 5.5, where the difference on coverage between word-only and word + phrase
templates compared to before filtering in Table 5.2 is almost trebled, even though

the FNR is higher on the word + phrase templates than the word-only templates.

Even though the classifiers perform similarly on word-only and word 4 phrase
templates in terms of classification accuracy, the difference in template coverage
between the two sets of templates implies that template length has a significant

effect upon the classifier. Figure 5.13 showed that there is a significant number of

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 126

correct templates in the training data that are longer than 40 frames, and although
there are incorrect templates of this length, they are not as numerous, and it can
be seen that the incorrect template lengths generally are below 40 frames. This
means that, when word 4+ phrase template selections are used in the Test sets,
that the longer templates (i.e. phrases), if they have a high occurrence probability
and lower z-score, are more likely to be classified as correct than shorter templates

(i.e. words) with similar z-scores and occurrence probabilities.

5.6 Conclusions

This chapter introduced an approximate method of KNN selection using Vector
Quantisation (VQ) (Section 5.2) for input into the Time Filter algorithm which
was described in Section 5.3. The Time Filter was described in detail, giving
information on how local activation regions are formed and how local costs are
applied within each activation region. An additional backward pass of the Time
Filter was suggested and described in Section 5.3.1. An alternative method to
normalising the distance score of template activations was described in Section
5.3.2, using a Sigmoid-based method, where the normalisation strength was based
upon the template length (in terms of number of frames) and a pre-defined weight

so that the effect of using longer templates could be seen.

In Section 5.4, a hierarchical LDA filter was introduced which was used to
further filter the list of template selections output from the Time Filter. To train
the LDA classifier, three features were extracted from the template selections for
the training data”. Based on observations, the first feature was an occurrence-
based probability, which counted the number of template selections within a given
window that all contained the same first word and divided that count by the total
number of templates within that window. The window was applied over each

template selection (which was at the centre of the window), and the counts were

"The Time Filter is run on the training utterances to get the template candidates for the
training data.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 127

then smoothed using a Gaussian RBF (Radial Basis Function) that was placed
at the centre of the window. The RBF allowed a more accurate probability to
be estimated by assigning lower probabilities to templates that were further away
from high occurrence regions. The second feature was the z-score of the distances
of each template selection, calculated over all template selections, observing the
fact that, generally, correct templates have smaller distance scores. Finally the
third feature was the length of the template selection, in terms of the number
of frames it contains, observing the fact that the Time Filter introduced short

incorrect templates.

The extracted features were then used to train the hierarchical LDA filter which
was formulated as a two-level decision tree, with a projection vector and threshold
at each level — thresholds, used to determine which class the template belongs
to, were calculated as the intersection point of the distributions for the correct
and incorrect classes of the projected training samples. For classification, the test
data was first classified as correct or incorrect based on the top-level LDA classifier,
with the template samples that were classed as incorrect then undergoing a second

classification at the second level of the decision tree.

Section 5.5 provided evaluation of the methods described in the chapter. It was
shown that the word + phrase templates result in a better coverage of the test
utterances, with a 1.8% increase in word coverage on the SD test data, and over
2% for the RM evaluation set. The performance of the backward pass of the Time
Filter was compared to the original forward pass of the algorithm and the merged
set of template selections from both passes. It was shown that the backward pass
typically resulted in a marginally worse template coverage of the input, although
the C/I Ratio (Correct to Incorrect Ratio) was significantly lower for the back-
ward pass, which also selects, on average, more templates per utterance. When
merging the two sets of template selections (i.e. the union of the two sets), the
template coverage was always better than the individual sets, although the C/I
Ratio dropped slightly below that of the forward pass template selections. This

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 128

implies that the backward pass, although it has very similar template coverage,
is actually finding less correct templates, and thus more incorrect templates than
the forward pass, hence the slight drop in C/I Ratio on the merged set. How-
ever, because the template coverage improves after merging, the backward pass is

clearly finding unique correct templates to the forward pass.

It was shown in Section 5.5.1.1 that the Sigmoid-based distance normalisation,
which was introduced to control the length of the selected templates by the Time
Filter, was not effective. It was shown that by applying the normalisation at
the end of the Time Filter algorithm, but before thresholding is applied at each
frame, has very little effect on the final set of template selections because it is
the KNN selection that determines the available templates for selection, as well as
the defined constraints and sizes of the activation regions created by each nearest
neighbour hit. It was suggested that applying the normalisation method at the
KNN selection stage would allow control over the template lengths, but because
each phrase template shares its frames with word templates, there would be an
added problem of normalising each word template with the same function as the
phrase templates. Due to time constraints, the improvements to the Sigmoid

distance normalisation were left to a future date.

Section 5.5.2 gave evaluation of the hierarchical LDA filter through classification
experiments. It was shown that on both the SD call-routing and RM evaluation
data, that the application of the LDA filter led to a decrease in template coverage,
with a reduction in the average number of templates per utterance of 17% and
29% for the word + phrase templates on the SD and RM data respectively. The
classifiers, on both datasets, gave a low False Negative Rate (FNR) and high
False Positive Rate (FPR), although it is the FNR which directly affects the
template coverage. This means that the majority of filtered templates are incorrect
templates, but it is not yet clear how the loss of correct templates will effect the

recognition word accuracy — this will be addressed in Chapter 6.

It was shown that when comparing the difference in template coverage on the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 129

word-only templates to the word + phrase templates, before and after the LDA
filtering, that the difference became greater after the filtering; in the case of the
SD data it doubled, and for the RM data it was almost treble the pre-filtered
difference. This was attributed to the template length feature which is extracted
for the LDA. Because the classification performance was almost the same on the
word-only templates and the word + phrase templates, the conclusion must be
that the longer templates are not lost in the filtering process, but in fact it is
the shorter correct templates that are filtered away — this is a side effect of the
Time Filter introducing many incorrect templates that are short in length, thus
training the LDA to prefer longer templates. Thus, one can conclude, that a longer
template with a similar z-score and occurrence probability to a shorter template

is less likely to be filtered by the classifier than the shorter template.

Chapter 6

Template-Recognition

Experiments

6.1 Introduction

Section 2.3 introduced and described the techniques used in a basic Template-
Recogniser where all reference templates are loaded into the decoding network,
which as Section 2.5 showed, can be defined by the language model. Loading all
reference templates into the decoder is impossible because of memory limitations,
thus Chapter 5 described methods that can be applied (in a bottom-up manner)

to reduce the number of templates loaded into the decoder for any one utterance.

This Chapter is structured as follows: Section 6.2 describes how the information
from the bottom-up processing can be integrated into the template-decoder and
will go into finer detail about sections of the decoder that were not covered in
Section 2.3. Section 6.3 describes the method used for speaker normalisation of
the templates using a VTLN approach. Section 6.4 provides a detailed results
section for template-based recognition using phrase-based units, and shows how
the results compare with the baseline results that were evaluated with a HMM-

based monophone recogniser (Section 4.6). Finally, Section 6.5 gives conclusions

130

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 131

to the chapter.

6.2 Decoder Architecture — Extensions to the

Template Decoder

6.2.1 Integrating Template Candidates

As described in Section 5.3, the Time Filter algorithm [De Wachter et al., 2003]
outputs an activation graph which contains a list of candidate templates with a
given start and end time for the given utterance. De Wachter [2007] uses the
activation graph directly in the decoder, i.e. a token transitioning from the end
of one template can only move to other templates that begin at the time (frame)
that the current template ends in the activation graph. This approach, although
efficient, can lead to “dead-ends” [De Wachter, 2007] in the graph, where there
is no template to move to, i.e. there are no outgoing arcs at a given frame state.

Figure 6.1 shows an example of a “dead-end” occurring in an activation graph.

1 wanna know if / 4.21 should / 42.46

sil / 127.70 i/32.81 1/65.97

Figure 6.1: Shows an example of an activation graph with a “dead-end” at frame

47.

De Wachter et al. [2007] introduce “natural successors”, which are the templates
that follow a given template in the reference database (i.e. they are adjacent in
the same reference utterance), into the activation graph to minimise the number
of “dead-ends”, although they can still occasionally occur. The solution that is
applied in the experiments reported here is to simply use the start frame of the
template only. By not specifying the end frame of a template candidate as a con-
straint, the token passing algorithm (with DTW) can determine the segmentation

point. The token passing algorithm is implemented as described in Section 2.3.4

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 132

except for when passing a token into a template. At this point a “lookup” is
performed to check that the given template can start at the current time frame —
if the template’s candidate start time matches the current time then the token is
passed into the template, and the DTW can begin, otherwise no token is passed

to the current template.

It should be pointed out that this does not fully remove the problem of “dead-
ends”: if the Itakura constraints are used, then the token passing algorithm will
allow at most one stall in a given state, and thus removing the end constraint does
not guarantee the dismissal of all “dead-ends”. To fully remove the problem of
“dead-ends”, the Itakura constraints are eased on the stall transitions, i.e. consec-
utive stalls are accepted. The effects of this change upon the DTW was previously
illustrated in Figure 2.4.

6.2.2 Token Merging

The process of selecting the best token at each state within the token passing
algorithm is known as token merging'. It equates to choosing the best decoding
path to the current state at the current time and is one of the key processes of
the Viterbi algorithm. For the template decoder, at a certain state the collection
of tokens at a given time will contain a high number of identical paths. This
is because, even with a constrained network (using the activation graph), there
are multiple templates representing the same word or phrase, and so the tokens
arriving at the current state are likely to have travelled through these different

template examples while containing the same “word” history.

Because the end-goal of the experiments presented here is to find the string of
words for a given utterance, before the token merging is performed, tokens with
an identical “word” history, i.e. tokens holding template sequences with identical

label sequences, are combined together into one token with their total probabilities

IThe tokens are not actually “merged”, but it appears from outside view as if they do because
multiple tokens are reduced to one remaining token (or N tokens in N-Best recognition).

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 133

added together. Templates representing phrases keep a whole label string which

C(i?? , “Want” ,

means that a token that has visited, for example, the word templates
and “my” will not be combined with a token that has visited, for example, the
phrase template “i_want_my”. Because log-probabilities are used in the decoder,

the sum of Pr (a) + Pr(b) for two tokens a and b is calculated in log space as

log (Pr (a) + Pr (b)) = log Pr (a) + log (1 + exp (log Pr (b) — log Pr (a))) (6.1)

where log Pr (a) and log Pr (b) are the log-probabilities of token a and token b re-
spectively. Equation (6.1) is used in all template-based recognition experiments
reported later in Section 6.4 although it was found to give no statistically signifi-
cant improvements over the traditional Viterbi recognition (no merging of identical

hypotheses).

Equation (6.1) could be improved by integrating prior probabilities as a weight-
ing mechanism — there are words and phrases that are represented by many tem-
plates in the reference database which could bias the token merging of Equation
(6.1). The prior probabilities, estimated from word / phrase frequency (the in-
verse of), could be used essentially to normalise the probabilities when merging,

although this is not implemented in the reported work.

6.3 VTLN for Templates

For the RM dataset, which is a speaker independent dataset containing both male
and female speakers, Vocal Tract Length Normalisation (VTLN) was applied in
order to reduce the variability introduced by the different lengths of vocal tracts
in different speakers (on average, males have longer vocal tracts then women).
Previously, the VTLN method for HMMs was described (Section 2.6), where a

piecewise linear warping function [Hain et al., 1999] is used to warp the frequency

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 134

axis by the the inverse of a warp factor a which can be optimally found using the

method described in Lee and Rose [1998].

Using VTLN on templates is not straight-forward. The number of reference
templates is too large to choose the optimal warping factor by cycling through all
of the possible warp factors?. For the experiments presented in this chapter, the
application of VTLN to the reference templates is performed by using the HMM-
based method (which was already performed for the baseline measure) to find the
best warping factor for each speaker, which is then used to warp that speakers
templates. For the recognition stage of VILN, again the HMM-based approach
was used: the Word-Bigram (WB) language model was used to find the best
warping factor for each utterance in reference to the HMMs that were previously
trained on the normalised speakers. Each warped utterance is then stored and
can be used as input into the template-based Time Filter and decoder. Figure 6.2
shows the distribution of the optimal warp factors for each speaker in the training
data (and thus reference template database). It shows the distribution of the male

speaker warping factors and the female warping factors separately.

The application of speaker normalisation to template-based recognition was
suggested in De Wachter et al. [2007] and recently Demange and Van Compernolle
[2009b] have investigated VTLN for template-based recognition, using an on-line
estimation of the warping factors on a sentence by sentence basis [Duchateau
et al., 2006]. This method uses Gaussian mixture models (GMMs), trained on
generic speech, to determine whether or not the input sentence is male or female.
The warping factor is then based on how probable a speaker’s sentence is to
being male or female, and is also controlled with an extra parameter. Demange
and Van Compernolle [2009b] was published after the work presented here was
completed, and so represents a future improvement of the adopted HMM-based

VTLN approach.

2There are thirteen warp factors spaced evenly in the range 0.88 < a < 1.12

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 135

Male Speakers

920t
[J]
X
o
& 10t
H*

O I I

0.9 0.95 1 1.05 1.1
Female Speakers

920t
)
&
& 10t
H*

0

0.9 0.95 1 1.05 1.1
Warp Factor

Figure 6.2: The optimal warp factors selected for the RM training data. There are
78 male speakers and 31 female speakers in the training data.

6.4 Recognition Experiments

6.4.1 Speaker Dependent Results

Table 6.1 shows the template recognition results for the SD test data as well as the
HMM baseline results (previously presented in Section 4.6) for comparison. For the
WB model, only word templates were loaded into the decoder (and Time Filter),
while for the WPB and WPLB language models, word and phrase templates were
used (the same set of activation graphs from the Time Filter are used by the
decoder when using WPB or WPLB). Results are shown for all three language
models with and without the LDA filtering — the LDA filter uses a window of
15 frames (x = £7 around the centre frame) for the RBF which has a standard
deviation of 0.25. For the Time Filter pass that was used to generate activation

graphs for the decoder, the number of nearest neighbours was chosen to be 10,000.

Table 6.2 shows the average number of templates per utterance contained in

the activation graphs for Time Filter passes with word-only templates, as well as

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 136

HMM
Templates LM | Word Acc.(%) | Word Acc. (%)

words WB 83.88 86.92

words + phrases WPB 85.6 87.52
words + phrases WPLB 86.07 87.76
words + LDA WB 80.96 n/a
words + phrases + LDA | WPB 83.85 n/a
words + phrases + LDA | WPLB 84.59 n/a

Table 6.1: Word Accuracy on SD data for WB, WPB, and WPLB language models
using template-based decoder using phrase weights of 20. Word accuracy is also shown
after filtering the templates with the Hierarchical LDA method of Section 5.4. The
results using HMMs (which use a phrase weight of 0.5), previously presented in Table
4.1, are also shown for comparison.

word and phrases templates. The average number of templates remaining after

the LDA filtering is applied is also shown.

Average Relative
Templates Num. Templates | Reduction
words 2047 n/a
words + phrases 2167 n/a
words + LDA 1713 16%
words + phrases + LDA 1804 17%

Table 6.2: Shows the average number of templates per utterance for the SD Test data
as candidates for the decoder from the Time Filter and the reduction in the number
of templates when LDA filtering is applied.

As with the results using the HMM-based recogniser, both WPB and WPLB
achieve a higher performance than the WB baseline. WPLB, as with the HMMs,
also performs better than WPB. It is clear to see from Table 6.1 that the LDA
filtering has a negative effect upon the recognition accuracy, and is clearly a sig-
nificant degradation in performance compared to the the pre-filtered templates.
Table 6.3 shows the Matched-Pairs test for the pre-filtered template systems and
baseline HMM systems.

First of all, Table 6.3 shows that WPB and WPLB are in fact significant
improvements over the template WB system, and also that WPLB does indeed
achieve significant improvements over the WPB system (which was not observed

for the HMM-based equivalents). It can also be seen that the baseline HMM

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 137

WB | WPB | WPLB | WBym | WPBLum | WPLBLLm
WB WPB | WPLB | WBumm | WPBumm | WPLBhmm
WPB WPLB | WBuom | WPBimm | WPLBLmm
WPLB same WPBumm | WPLBhmm
WBLum WPBymm | WPLBhmm
WPBLum same
WPLBLm

Table 6.3: Statistical significance tests on the SD test data. The Matched-Pairs test
for hypotheses from the template-based systems and comparable HMM-based systems.

output performs competing systems that used the same language model) in the
template systems, although the template-based WPLB is judged to give, statisti-
cally, the same level of performance as the HMM-based WB system (WBp, in
Table 6.3).

Figure 6.3 shows the histograms of the length of units (in terms of number of
words) used by the template-based decoder when using WPB and WPLB language
models®. As with analysis provided in Section 4.6 for language units selected
by the HMM decoder, it is clear to see that the WPLB language model forces
the template-based decoder to select fewer words, and thus longer phrases. The
template-based decoder does select a higher number of words for WPB (81% of
recognised units) and WPLB (76% of recognised units) than the HMM decoder
(which uses 79% for WPB and 73% for WPLB), but of course the HMM decoder
is concatenating phone models together, whereas for the template-based decoder

each word and each phrase corresponds to a whole template example.

Returning to Table 6.1 and Table 6.2, the LDA filtering method is clearly
degrading the performance of the recogniser, even though the number of templates
is reduced. It seems likely that the templates that were filtered out were in fact
“correct” templates, and thus there is a decrease in performance. As previously
reported [Watkins and Cox, 2009], for a reduced-performance system?® (79.41%

word accuracy using an average 4773 templates (words 4+ phrases) per utterance),

3The reader is reminded that the WPB and WPLB systems both have available exactly the
same set of templates, i.e. they use the same activation graphs.
4At the time this was our best result for the SD data.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 138

5000 5000

4000 4000(-
& &

© 3000 © 3000
(] (]
=} =]
o o

D 2000 D 2000+
[T [T

1000 1000}

0 0

1

1

2 3 4 5 6 2 3 4 5 6
Phrase Length (# words) Phrase Length (# words)

(a) Used phrases in WPB recognition. (b) Used phrases in WPLB recognition.

Figure 6.3: Histograms of the length of phrase units chosen by the template-decoder
on the SD data during recognition with WPB and WPLB language models.

the LDA filter reduces the number of templates by 37% while increasing the word
accuracy (80.07%). Because of the lower performance it is important not to over-
emphasise the LDA filter performance, but it does show that the LDA filter can
be effective if the Time Filter introduces a larger number of (incorrect) template

candidates.

6.4.2 Speaker Independent Results

Table 6.4 shows the template recognition results for the RM evaluation sets (0ct89,
feb91, and sep92). The HMM baseline results were all better than the template-
based results by at least 10% absolute (word accuracy) and are not included in
the table for comparison, but the interested reader can refer back to Table 4.3
for the HMM-based word accuracy results. The same set of experiments as for
the SD data were run, with the addition of VTLN. The LDA filtering experiment
results are only reported for the normalised (VTLN) templates as these systems
performed significantly better than the unnormalised templates. The LDA filter
window used in the experiments was set to 15 frames again (x = %7), but this
time a standard deviation of one was used. The Time Filter used to generate the
template candidates used 20,000 nearest neighbours. All of the parameters were

optimised on the RM development set (feb89).

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 139

Word Accuracy (%)

Templates LM | VTLN | oct89 | feb91 | sep92
words WB U 75.78 | 76.85 | 71.24

words + phrases WPB U 75.48 | 76.61 | 71.08
words + phrases WPLB U 75.41 | 77.13 | 71.79
words WB [78.06 | 79.43 | 73.43

words + phrases WPB H 78.69 | 79.79 | 75.69
words + phrases WPLB 0 78.54 | 80.15 | 75.65
words + LDA WB [74.14 | 76.13 | 69.75
words + phrases + LDA | WPB [76.86 | 78.66 | 74.36
words + phrases + LDA | WPLB [77.35 | 78.99 | 74.33

Table 6.4: Word Accuracy on the three test sets oct89, feb91, and sep92 for WB,
WPB, and WPLB language models, with and without VI'LN. Word accuracy after
applying Hierarchical LDA filtering to the templates is also shown for each LM with
VTLN. The WPB and WPLB language models use a phrase weight of 15.

Table 6.5 gives the average number of templates per utterance as delivered from
the Time Filter for each of the systems reported in Table 6.4. The fourth column
in Table 6.5 gives the reduction in the average number of templates per utterance
for the word-only templates with VTLN and LDA filtering (row four), and the
word+phrase templates with VTLN and LDA filtering (row five) relative to the

normalised templates without LDA filtering.

Average Relative
Templates VTLN | Num. Templates | Reduction
words O 1756 n/a
O 1726 n/a
words + phrases S gig E?Z
words + lda] 1247 28%
words + phrases + lda O 1317 29%

Table 6.5: Shows the average number of templates per utterance for the RM evalua-
tion data (oct89, feb91, and sep92) as candidates for the decoder from the Time Filter
and also the reduction (%) of the number of templates when using LDA filtering.

It is clear from Table 6.4, that as with the HMM-based experiments, for the
original templates (i.e. not normalised), the different language models (WB, WPB,
and WPLB) have very little effect upon the final word accuracy. This is confirmed
with the Matched-Pairs tests presented in Table 6.6 (oct89 and feb91) and Table

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 140

6.7 (sep92) which shows that the WB, WPB, and WPLB systems are all statisti-

cally equivalent.

WB | WPB | WPLB | WBiin | WPByiw | WPLBin
WB same same WBytln | WPByiin | WPLByt1n
WPB same WByiln | WPByiin | WPLByyg1n
WPLB WBytin | WPBytin | WPLBytin
WB,im same same
WPB, i, same
WPLthln

Table 6.6: Matched-Pairs test on template-based systems using language models WB,
WPB, and WPLB, with and without VILN for the RM oct89 and feb91 evaluation
sets.

When using VTLN on the templates, there is a large increase in word accuracy,
as can be seen in Table 6.4, in comparison to the same system without VILN —
there is an absolute improvement of at least 2% in each system. This is confirmed
as significant by the Matched-Pairs test in tables 6.6 and 6.7. For the oct89 and
feb91 evaluation sets (see Table 6.6), the VTLN systems again are statistically
the same for changing language models (the same pattern as for the original tem-
plates). For the sep92 evaluation set, the VTLN WPB and VTLN WPLB systems
both achieve a significant increase over the VITLN WB system (see Table 6.7).

WB | WPB | WPLB | WByiin | WPByiiw | WPLBin
WB same same WByin | WPByin | WPLByun,
WPB same same WPByin | WPLByn
WPLB same WPByiin | WPLB1n
Wthln WPthln WPLthln
WPB, 1, same
WPLB, i1,

Table 6.7: Matched-Pairs test on template-based systems using language models WB,
WPB, and WPLB, with and without VTLN for the RM sep92 evaluation set.

Figure 6.4 shows the familiar analysis of the length of unit used in recognition.
As before, it can be seen that the WPLB model decreases the number of words
chosen, which thus results in more longer phrases (typically of two or three words).
The important thing to note is that, for the WPB system, 93% of the used units
by the decoder are words, and for the WPLB system that figure becomes 90%.
This contrasts to the units used by the HMM-based decoder which were 85% and

79% respectively.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 141

7000 7000
6000 6000}
5000 5000}

) oy

c

< 4000 £ 4000

=} =]

3 3000 3 3000

@ o

[T [T
2000 2000}
1000 1000}

1

1

2 3 4 5 6 2 3 4 5 6
Phrase Length (# words) Phrase Length (# words)

(a) Used phrases in WPB recognition. (b) Used phrases in WPLB recognition.

Figure 6.4: Histograms of the length of phrase units chosen by the template-decoder
on the RM data during recognition with WPB and WPLB language models.

Finally in this section, we return to the LDA filter results presented in Table
6.4. It is clear that, as with the SD data, the application of the LDA filter leads
to a reduction in word accuracy, albeit with a large reduction in the number of
template candidates for the decoder, as shown in Table 6.5. The degradation of
performance on the RM data is not as great as on the SD data, and thus Matched-
Pairs tests were performed to see if the LDA filtering led to a significant reduction

in word accuracy. These are presented in Table 6.8.

Dataset | System 1 System 2 Significance

Wthln Wthanrlda Wthln

oct89 WPthln WPthln—Hda WPthln

WPLthln WPLthln—Hda WPLthln

Wthln Wthanrlda Wthln
feb91 WPB i WPB,tin+1da same
WPLBytin | WPLBytin+1da same

Wthln Wthln+lda Wthln
sep92 WPBytin WPB,tin+1da same
WPLByt1n | WPLBytint1da same

Table 6.8: Matched-Puairs test on RM evaluation sets for comparison of template-
based VTLN systems with and without LDA filtering. Fach system after LDA filtering
(system 2) is compared to the same system before filtering (system 1).
Table 6.8 compares each of the template-based systems (WB,WPB, and WPLB)
with VTLN (e.g. WBy,) to the same systems after LDA filtering (e.g. WBytint1da)-
For the oct89 evaluation set, it can be seen that the LDA filtering does result in

a significant degradation in word accuracy for each language model. However, for

the feb91 and sep92 sets, the WPB and WPLB systems do not give a significant

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 142

drop in accuracy after LDA filtering, even though the LDA filtering reduces the
number of template candidates in the decoder for WPB and WPLB by 29% (Table
6.5).

6.5 Conclusions and Discussion

This chapter described the template-based decoder and the recognition exper-
iments that were used to evaluate the template-based approach to continuous
speech recognition. Section 6.2 described how the classic Token Passing decoder
was adapted to deal with the bottom-up template selections from the Time Filter,
including how the activation graph was used by the decoder. The token merging
method within the token passing algorithm was also adapted so that tokens that
had visited different template examples with the same word string were merged
when the tokens arrived at the same state for a given time, with their probabilities
summed together. Section 6.3 described how a HMM-based Vocal Tract Length
Normalisation (VTLN) technique was used for the template-based approach to
speaker normalisation, with the optimal warping of the reference speakers per-
formed on a HMM system, and the optimal warping of the input utterances per-
formed once using HMMs trained on normalised speech, with the normalised input

utterances then used for all experiments.

The experiments, described in Section 6.4, were performed on the speaker de-
pendent (SD) call routing data and the speaker independent RM data. For the SD
data, it was shown that template-based results were approaching the HMM base-
line results, in particular with the WPLB system which was judged to be statis-
tically the same as the HMM WB system. The comparison of the template-based
systems showed that the WPB and WPLB systems both achieved (statistically)
significant improvements compared to word-only templates with the WB language
model, while the increase in word accuracy from the WPB system to the WPLB

system was also a statistical improvement.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 143

For the RM dataset, the results of the template-based recognition were someway
behind that of the HMM baseline results (an absolute difference in word accuracy
of at least 10% after applying VTLN). For comparison of the template-based re-
sults, the WB, WPB, and WPLB systems (without VTLN) all gave statistically
equivalent word accuracy — it was shown that for WPB and WPLB, over 90%
of the recognised units were infact words which could be one reason for the par-
ity. After applying VTLN to the reference templates and input utterances, large
increases were found for each template-based system (at least 2% absolute com-
pared to without VTLN), with the WPB and WPLB VTLN systems achieving
statistically significant improvements over the WB VTLN system on the sep92
evaluation set only. The average number of reference speakers available to the
decoder (i.e. contained in the activation graphs) per utterance rose from 103.8
to 108.4 when using VTLN (the total number of reference speakers available is
109) — while this seems to be a small increase, it is averaged over 900 utterances
(0ct89, feb91, and sep92 were combined togther). It was shown that using VTLN
reduced the average number of templates per utterance by about 50 when using
word and phrase templates with the Time Filter (Table 6.5). Recall from Sec-
tion 5.3, that after the activation graph is formed by the Time Filter, a threshold
is applied on the distance scores at each frame. Because the application of the
VTLN reduces the average number of templates per utterance while increasing
the word accuracy suggest that the VI'LN reduces the distance of the “correct”
templates® closer to the input, and thus the “incorrect” templates move further
away, hence when thresholding is performed, the number of templates remaining
decreases. Reducing the spectral variability with VTLN thus results in the tem-
plates that were similar to the input by spectral properties only being removed

from the activation graph (after thresholding the distances).

Finally, it was shown that the LDA filter (described in Section 5.4) was gen-
erally unsuccessful in reducing the number of templates in the activation graph

and increasing the word accuracy. On the SD call-routing data the average num-

5Correct in the sense that the word strings of the template match that of the input.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 144

ber of templates per utterance were reduced by 17%, but this reduction led to
statistically significant reductions in recognition performance. On the RM data,
the average number of templates were reduced by 29% on the word + phrase
templates with VTLN, with the WPB and WPLB systems achieving statistically
equivalent performance to the unfiltered WB system (with VTLN) on the feb91
and sep92 datasets. It was shown that the LDA filter performs well when applied
to an activation graph with a high number of incorrect templates — this result
suggests that the features that were extracted for the LDA filter (Section 5.4.1)
are suitable for identifying a large number of incorrect templates, but require a
higher level of detail to make sure that correct templates are not removed from

the activation graphs which is vital to maximising word recognition performance.

Chapter 7

Discussion and Conclusions

7.1 Summary and Discussion

This thesis was motivated by the idea of improving ASR accuracy by exploiting
formulaic sequences in language, which occur in human-to-human dialogue. To
minimise the effort of both speech production and perception in the conversation,
the human speaker will retrieve chunks of speech “whole from memory rather
than being subject to generation or analysis by the language grammar” [Wray
and Perkins, 2000]. This production in turn seems to prime the human listener
with a set of semantic expectations [Pickering and Garrod, 2004] which then may
prime an appropriate set of formulaic sequences that the listener expects to hear

to enable quick and efficient perception.

The aim of this thesis was firstly to acquire formulaic sequences or phrases
from transcriptions of speech and then to use them to define units of language
and speech that have a variable length in a speech recogniser, with the aim of im-
proving recognition accuracy. A summary of each chapter is given below, including

methods and findings.

Chapter 2 gave the technical background required for the methods presented

in this thesis. It gave a thorough background into N-gram language modelling,

145

CHAPTER 7. DISCUSSION AND CONCLUSIONS 146

including backoff models, representation within Stochastic Finite State Automata
(SFSA), and the evaluation metric perplexity. It also described key techniques
required in template-based recognition including frame-based distance measures,
DTW (Dynamic Time Warping), and the token passing algorithm, which it was
shown could be applied to HMM-based recognition also. It was also shown how
to integrate language model SFSAs with HMMs and templates to construct the
decoding network. A HMM-based method to perform Vocal Tract Length Nor-
malisation (VITLN) was also described, and finally, Linear Discriminant Analysis

(LDA) was described for constructing a simple binary classifier.

Chapter 3 described the data used to evaluate the methods in this thesis. A
speaker dependent (SD) dataset, originally recorded by multiple speakers in a call-
routing environment, was introduced, and was shown to contain a high frequency
of commonly-occurring phrases. The Resource Management (RM) dataset, which
contains multiple training and test speakers, was also detailed. The methods used
for feature extraction and HMM training for each dataset were described, as well

as information about the number of templates that both datasets contained.

Chapter 4 was concerned with acquiring commonly-occurring phrases from
transcriptions of speech and investigating ways to model these in language mod-
els. A multigram segmentation framework [Deligne and Bimbot, 1995] was used
to acquire the phrases, by finding the best segmentation of a given utterance. In
an attempt to cluster phrases with a similar semantic function, and hence provide
a set of “primed” phrases for a given context, a simplified syntactic approach was
used, termed Hybrid Syntactic Formulaic (HSF) clustering, which combined the
commonly-occurring phrases with the information from syntactic parse trees to
assign phrases to classes based on their context. The acquired phrases and phrase
classes were then integrated into the N-gram framework using different language
model topologies, including the Word Phrase Link Bigram (WPLB) which com-
bined word N-gram models with phrase N-gram models, linking the two with new

unseen bigram transitions between the two model layers. The phrase classes were

CHAPTER 7. DISCUSSION AND CONCLUSIONS 147

integrated seamlessly into the WPLB model by representing each class as local
models using SFSAs — this language model was termed the Word Phrase Class
Link Bigram (WPCLB).

Using the baseline HMM-based monophone recogniser, it was shown that the
WPLB model gave statistically significant improvements over the word bigram
(WB) model, for the SD call-routing data, improving the word accuracy to 87.76%
from 86.92% The WPLB model also gave a significant decrease in perplexity, from
13.1 to 11.05. The WPCLB model also gave a signficant increase over the WB
model, achieving a word accuracy of 87.79% (not significantly better than WPLB)
and a perplexity of 11.35. However, the same improvements in word accuracy of
the recogniser were not observed on the RM dataset. In fact, there were no sta-
tistically significant improvements on any of the methods presented. An analysis
of the (language) units chosen by the decoder showed that a high proportion of
the units were in fact at the word level on both the SD and RM datasets, which
implied that the chosen phrases did not generalise well to the unseen data, forcing
the recogniser to fall-back onto the words. A recognition experiment on the call-
routing training data showed that a much higher proportion of the units chosen
by the decoder were phrases (greater than one word) which is strong evidence to

suggest that the phrases do not generalise well to unseen data.

Chapter 5 described methods for the bottom-up selection of templates for the
decoder. These were required to reduce the massive search space when using all
templates defined by words and phrases acquired in Chapter 4. Because of memory
limitations, it is impossible to use all templates on standard desktop computers.
Extensions to the Time Filter algorithm [De Wachter et al., 2003] were defined
including a new backwards pass of the algorithm and a distance normalisation
method based on a Sigmoid function to control the length of templates selected.
The normalisation method was shown to be ineffective, concluding that it should
be applied at the selection of the KNNs. The backward pass was shown to find
templates that the forward pass did not find, although this included a larger

CHAPTER 7. DISCUSSION AND CONCLUSIONS 148

number of incorrect templates than correct templates.

A second template filter, a hierarchical LDA filter, was introduced to further
filter the templates after the Time Filter was applied, i.e. to filter the template
selections. This was motivated by an Oracle test which showed that removing
the incorrect template selections led to a large increase in speech recognition word
accuracy. The LDA filter used features based on observations of the template
selections, such as occurrence probability, to train two LDA classifiers which were
placed in a decision tree, classifying a template as correct or incorrect depending
on a threshold. Templates classed as incorrect were then classified again on the

second level of the decision tree.

Evaluation of the hierarchical LDA filter was done with template coverage and
classification accuracy. The LDA filter was found to remove a high number of
incorrect template selections but also to remove some correct templates which led
to a drop in template coverage accuracy to the input utterances. The classification
performance of the LDA decision tree showed that indeed low False Negative Rates
(FNR) were observed (1.8% on the SD data and 3.3% on RM), while False Positive
Rates (FPR) were high (62.74% and 63.01% respectively). A key finding was that
the difference in template coverage accuracy between word-only templates and
word + phrases templates increased after the LDA filtering was applied (double
the difference on the SD data and almost treble on the RM data). This was
evidence that, generally, the longer templates that survived the Time Filter were
correct selections, which influenced the LDA classification as template length was
a feature used to train the LDA. It was suggested that length feature had a strong

effect on filtering shorter correct templates.

Chapter 6 defined how the template-based decoder integrated the template
selections from Chapter 5 and the phrase-based language models from Chapter 4
into a recognition system which was then used to perform recognition experiments.

VTLN for templates in the RM dataset was described and the HMM-based method

for selecting warping factors, described in Chapter 2, was used to normalise the

CHAPTER 7. DISCUSSION AND CONCLUSIONS 149

templates. Each experiment thus used the same templates and test utterances.
It was shown that the template-based recogniser with the WPLB language model
on the SD data, achieved a recognition accuracy of 86.07% which was statistically
equivalent to the baseline HMM system using the WB model. It was also shown
that the WPLB template-based system achieved a much higher word accuracy
than the word-only template system using the WB model, which performed at
83.88% word accuracy.

For the experiments on the RM data, it was shown that, even after VILN was
applied to the templates and input utterances, the word accuracy for the template-
decoder was much lower than the baseline HMM systems, with an absolute dif-
ference of at least 10%. It was shown that over 90% of the recognised units were
words, and that, as with the HMM-based results, there were no statistical differ-
ences in performance when changing the language model (before VTLN). However,
when VTLN was applied, the smallest improvement compared to template-based
systems without VTLN was 2% absolute, with the WPLB template system achiev-
ing a significant increase over the WB template system (with VTLN) on the sep92
evaluation set. The WPLB template system achieved the highest overall word
accuracy of 80.15% on the feb91 set, which was an improvement of 3.02% absolute
over the same system without VTLN (77.13%). The largest improvement observed
from using VTLN was about 4% absolute.

Experiments were also performed using the LDA filtered template selections,
with the SD data showing significant degradation in word accuracy. However, on
the RM feb91 and sep92 datasets, with a reduction of 29% in the average number
of templates per utterance, the WPLB system with VTLN achieved statistically
equivalent performance to the template WB system with VITLN and no LDA
filtering.

CHAPTER 7. DISCUSSION AND CONCLUSIONS 150

7.2 Conclusion and Future Work

Selecting variable length units of speech and language for speech recognition, by
segmenting transcriptions of speech shows promise for a template-based speaker
dependent recognition system, but template-based performance falls some way
short of a baseline phone HMM performance on speaker independent systems. It
was shown that by using the word as the minimal unit and supplementing that with
commonly-occurring phrase-based units, a recognition word accuracy of 86.07%
could be achieved, which was shown to be statistically equivalent to the HMM-
baseline results when using a simpler language model. However, experiments on a
speaker independent system gave best results of 80.15% word accuracy after VTLN
was applied which was over 12% (absolute) lower than the baseline HMM-system.
It was shown that the poor generalisation of the phrases to unseen data was a
major factor in poorer recognition peformace. The synthetic nature (sentences
produced from a grammar) of the RM datset means that the data contains fewer
formulaic phrases. This was observed in the segmentation of the transcriptions,
which gave a higher proportion of shorter phrases than the segmentation of the
highly formulaic call-routing dataset. This was a factor in the poorer performance

on the RM dataset.

Efforts to improve the recognition accuracy were made with a hierarchical LDA
filter which attempted to remove incorrect template candidates from the Time Fil-
ter selections by using a linear classifier to separate correct and incorrect templates
based on features of occurrence, score, and length. This was shown to work well
at removing a high number of incorrect templates, but also removed a (much)
smaller number of correct templates, and this resulted in lower speech recognition

performance.

Section 7.2.1 addresses the issues raised in this chapter, and indeed this thesis,

with improvements that could be made in the future.

CHAPTER 7. DISCUSSION AND CONCLUSIONS 151

7.2.1 Future Work

Certainly the first issue that needs to be addressed is the minimum template unit
length. It has been shown that by using phone templates and then concatenating
these templates, with various associated concatenation costs, that high speaker
independent performance can be achieved [De Wachter et al., 2007]. This is a
commonly-known problem in template-based recognition where there usually are
not enough examples of words, and certainly phrases, to accurately recognise
speech from different speakers, and so reverting to phones provides a much higher
number of template examples. Incorporating this idea [De Wachter et al., 2007]
into the work presented here is a viable option: the segmentation of transcriptions
of speech could be performed at the phone level, resulting in phones, words, and
phrase units — words and phrases could be constructed from the phone sequence
using a pronunciation dictionary. These units could then be used in the same way
as described in this thesis, with all phones used as a backoff mechanism for unseen

speech that does not match well to the reference speakers.

Another big problem in this work was shown to be the poor generalisation of
the acquired phrases to unseen data. By using fixed phrases, any minor variants
of the phrases in the test data will not be recognised at the phrase level, but at the
word level. This leaves a large number of reference templates unused, which will
become an even higher number the more the test data differs from the training
data. One method to model the variations in phrases, would be to model things
such as open-class items using slots in the phrases that allow different words to
be inserted within a basic structure for a phrase. For example, a phrase structure
such as “X catch+TENSE Y red-handed” [Wray, 1999] can allow phrases such as
“he caught her red-handed”, “Bob is going to catch Linda red-handed”, and so
on. Each individual phrase structure could be modelled as fragments [Arai et al.,
1999] and integrated into an N-gram framework using SFSAs, as was shown for
phrase classes in Chapter 4. Integrating clustering with the fragments can then

result in modelling phrases that were unseen in the training data, thus addressing

CHAPTER 7. DISCUSSION AND CONCLUSIONS 152

the issue of generalisation to the test data.

Chapter 5 described a number of techniques that were tried to improve the
performance of the Time Filter algorithm [De Wachter et al., 2003]. The new
backward pass of the Time Filter algorithm essentially was a “mirror-image” of the
forward pass, using the same constraints and costs as the forward pass. Different
constraints on the backward pass could be investigated, investigating patterns
in the speech that the forward pass misses. The backward pass could also be
assigned less weight than the forward pass, employing it to select only the highest
scoring templates. The hierarchical LDA filter showed some promise, but was
found to be too aggressive. One of the reasons stated for this was the choice of
features used in the LDA. While new features such as a prior probability based on
a template’s occurrence in the training data and a windowed z-score, or optimised
features and threshold calculation on a development set could improve the LDA
performance, attention would focus on whether a non-linear classifier, such as
a Support Vector Machine (SVM) [Cristianini and Shawe-Taylor, 2000], could

improve the separation of the correct and incorrect template classes.

Appendix A

Sample Output of Multigram

Segmentation

A.1 Examples from SD Call-Routing Data

The following segmented utterances are actual examples chosen at random from
the SD call-routing data. The maximum number of words per phrase L is set to 7,
with the initial threshold 0 set to 3, and the iterating threshold 5 set to 1 (refer

to Section 4.3 for more information on parameters):

<s> [i've| [to pay] [something] [i mean] [do i have] [something] [due] [in my account] < /s>
<s> [i have a maintenance agreement] [so] [can you transfer me to some| [agent] < /s>

<s> [my account balance] </s>

<s> [i need to know] [my account balance] </s>

<s> [i would like to] [talk to] [an agent] </s>

<s> [parts] [info] </s>

<s> [i’d like to add] [add somebody to my account] [so] [they] [can use my card] [too] </s>
<s> [i] [actually] [want] [to order a part] </s>

<s> [how] [i] [how do i] [add another person to my account] </s>

153

APPENDIX A. SAMPLE OUTPUT OF MULTIGRAM SEGMENTATION 154

<s> [how many points do i have] [right now] </s>

<s> [yes| [i was wondering] [what] [your] [mailing address] [is] </s>
<s> [how can i get] [a premier card] </s>

<s> [what are the last few] [charges on my card] </s>

<s> [on] [what day] [did] [my check] [clear| < /s>

<s> [how much do i owe] [now] </s>

<s> [where can i] [send my payment] < /s>

<s> [has my]| [check cleared] < /s>

<s> [i want to] [raise my credit limit] </s>

<s> [how do i get] [another person] [to be able to use] [this account] < /s>
<s> [how can i get] [more credit] </s>

<s> [where do i send my] [check] </s>

<s> [i] [bought something] [and i returned] [it and] [the] [the credit] [for it] [isn’t] [showing] [up]

[on my bill] </s>
<s> [i lost my] [credit] </s>

<s> [yeah] [you] [you have] [a] [sale] [oh] [coming up] [and i believe] [it’s] [the end of] [october]
[how long] [do you] [plan] [it to] [last] [i did] [i don’t] [i don’t know] [the] [date thank you] < /s>

<s> [duplicate statement] [please| < /s>

<s> [can you enroll me] [in] [rewards program] </s>

A.2 Examples from SI RM data

Sample segmented utterances from the RM data: L =7, 6; = 3, and 6, = 1:

<s> [show] [only] [the] [visual] [sensor] [latitudes and longitudes] [available] [on] [hawkbill] </s>
<s> [what if] [plunger| [replaced] [the pollack] [in china sea] < /s>

<s> [when is] [puffer] [arriving in port] </s>

<s> [what was] [ranger’s| [readiness] [june] [fourteenth] < /s>

<s> [give me] [sps-48 capable] [cruisers] [at sea] [today] </s>

APPENDIX A. SAMPLE OUTPUT OF MULTIGRAM SEGMENTATION 155

<s> [list the| [carriers that] [were deployed on the] [eighth] [of september] </s>
<s> [what if] [queenfish] [increased] [its] [average cruising speed] [by one] [knot] </s>
<s> [get all] [c-codes for] [seawolf] < /s>

<s> [find] [speeds for] [the ships] [that are in siberian sea] </s>

<s> [when’s| [swordfish] [due in port] </s>

<s> [start editing] [position data for] [arkansas’s] [track] </s>

<s> [who] [had the] [highest] [average] [c-rating] [during the last] [year] </s>
<s> [when is] [badger| [changing fleets] < /s>

<s> [show]| [areas] </s>

<s> [never mind] [the] [next] [chart] [display] </s>

<s> [give] [speeds] [of the] [c2] [submarines] < /s>

<s> [review]| [cheshire] [area alerts] </s>

<s> [what is] [bainbridge’s] [propulsion] < /s>

<s> [list] [pacflt] [ships that] [are ¢3 on equipment] </s>

<s> [get me] [lats and lons] [and] [speeds] [for the] [subs in] [gulf of tonkin] < /s>
<s> [find] [latitudes] [and] [names of] [vessels that are in] [sea of japan] </s>
<s> [give me a list of] [longitudes] [of tracks that are in] [the formosa strait] </s>

<s> [get a list of] [positions for] [ships in gulf of california] [that went to] [c4] [nine] [january]

< /s>
<s> [show all] [locations of] [tracks for] [usn] [frigates] </s>

<s> [give] [latitudes and longitudes| [and] [names of any] [of eastpac’s] [cruisers that were] [in

the] [philippine sea] [on] [november] [twentieth] < /s>
<s> [list the| [carrier’s] [positions for] [april] </s>

<s> [what is the] [frigate’s] [home port] </s>

Appendix B

Penn Treebank

This chapter contains the definitions of tags used in the Penn Treebank — the

following tags and their respective definitions were all taken from Bies et al. [1995].

B.1 POS Tags

CC — Coordinating conjunction.

CD — Cardinal number.

DT — Determiner.

EX — Existential there.

FW — Foreign word.

IN — Preposition or subordinating conjunction.
JJ — Adjective.

JJR — Adjective, comparative.

JJS — Adjective, superlative.

LS — List item marker.

MD — Modal.

156

APPENDIX B. PENN TREEBANK

NN — Noun, singular or mass.

NNS — Noun, plural.

NNP — Proper noun, singular.

NNPS — Proper noun, plural.

PDT — Predeterminer.

POS — Possessive ending.

PRP — Personal pronoun.

PRP$ — Possessive pronoun (prolog version PRP-S).
RB — Adverb.

RBR — Adverb, comparative.

RBS — Adverb, superlative.

RP — Particle.

SYM — Symbol.

TO — to.

UH — Interjection.

VB — Verb, base form.

VBD — Verb, past tense.

VBG — Verb, gerund or present participle.
VBN — Verb, past participle.

VBP — Verb, non-3rd person singular present.
VBZ — Verb, 3rd person singular present.
WDT — Wh-determiner.

WP — Wh-pronoun.

WP$ — Possessive wh-pronoun (prolog version WP-S).

157

APPENDIX B. PENN TREEBANK 158

WRB — Wh-adverb.

B.2 Phrase-Level Tags

ADJP — Adjective Phrase.

ADVP — Adverb Phrase.

CONJP — Conjunction Phrase.

FRAG — Fragment.

INTJ — Interjection. Corresponds approximately to the part-of-speech tag UH.
LST — List marker. Includes surrounding punctuation.

NAC — Not a Constituent; used to show the scope of certain prenominal modifiers

within an NP.
NP — Noun Phrase.

NX — Used within certain complex NPs to mark the head of the NP. Corresponds

very roughly to N-bar level but used quite differently.

PP — Prepositional Phrase.

PRN — Parenthetical.

PRT — Particle. Category for words that should be tagged RP.

QP — Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.
RRC — Reduced Relative Clause.

UCP — Unlike Coordinated Phrase.

VP — Vereb Phrase.

WHADJP — Wh-adjective Phrase. Adjectival phrase containing a wh-adverb,

as in how hot.

WHAVP — Wh-adverb Phrase. Introduces a clause with an NP gap. May be

null (containing the 0 complementizer) or lexical, containing a wh-adverb such as

APPENDIX B. PENN TREEBANK 159

how or why.

WHNP — Wh-noun Phrase. Introduces a clause with an NP gap. May be null
(containing the 0 complementizer) or lexical, containing some wh-word, e.g. who,

which book, whose daughter, none of which, or how many leopards.

WHPP — Wh-prepositional Phrase. Prepositional phrase containing a wh-noun
phrase (such as of which or by whose authority) that either introduces a PP gap
or is contained by a WHNP.

X — Unknown, uncertain, or unbracketable. X is often used for bracketing typos

and in bracketing the. . .the-constructions.

B.3 Clause-Level Tags

S — simple declarative clause, i.e. one that is not introduced by a (possible empty)
subordinating conjunction or a wh-word and that does not exhibit subject-verb

inversion.
SBAR — Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ — Direct question introduced by a wh-word or a wh-phrase. Indirect
questions and relative clauses should be bracketed as SBAR, not SBARQ.

SINV — Inverted declarative sentence, i.e. one in which the subject follows the
tensed verb or modal. SQ - Inverted yes/no question, or main clause of a wh-

question, following the wh-phrase in SBARQ.

Appendix C

Sample Output for HSF

Clustering of Phrases

Below are examples of phrase classes from the Hybrid Syntactic Formulaic (HSF)

clustering algorithm presented in Section 4.4.

my account balance (32) my current balance (2)
my account information (3) my last transaction (1)
my account number (3) my line of credit (2)
my address (1) my minimum payment (1)
my available credit (6) my next payment (1)
my balance (15) my payment address (1)
my bill (1) my payment date (3)
my billing date (1) my payment due date (2)
my card (2) my payment mailing address (1)
my check (1) my rewards status (6)
my credit limit (1) your payment address (2)
my current account balance (1)

Figure C.1: Class 13 [(PRP_VB), (PRP_VBP), SINV, (VB_PRP), (WRB_RP),
(NNSIN), (TORP), (VBP.N), (WRB.VBG), (UH.VBP), (PRP_.VBG),
(AUX_AUX), (WRB_VB), (PRP_AUX), (MD_VB), (PRP_WP)] — (PRP$_NN) —
[null,(VB_PRP), (PRP_VB), VP, (MD_AUX)|. Total number of phrases = 89.

160

APPENDIX C. SAMPLE OUTPUT FOR HSF CLUSTERING OF PHRASES161

’d like to (44) i wanted to (3)
’m calling to (1) i wanted to be able to (1)
i’'m trying to (3) i want to (26)
i need the address to (2) i would like to (25)
i need to (34)

Figure C.2: Class 14: [null, (PRP.NN)] — (PRP_TO) — [(VB_.TO), (VBNN),
(VB_PRP), (VB_AUX)]. Total number of phrases = 159.

add an additional user to my card(2) get a new credit card (1)
add another person to my account (2) get another copy of my statement (2)
add another user to my account (1) get another one (2)
add my wife to my account (2) get a replacement card (4)
add my wife to my card (1) get a replacement credit card (1)
add somebody to my account (2) increase my credit limit (2)
add someone to my account (1) increase my credit line (1)
add someone to my card (1) increase my line of credit (1)
cancel my credit card (1) know where i can send my payment (2)
change my address (1) make a payment (3)
change my due date (2) pay my bill (1)
change my line of credit (1) raise my credit limit (3)
change my payment address (2) receive a duplicate statement (1)
change my payment date (1) replace my credit card (2)
check my account balance (2) report a lost card (5)
close my account (2) request a credit limit increase (2)
enroll in the rewards program (5) schedule a maintenance appointment (1)
get a copy of my statement (2) schedule a repair (1)
get a higher credit limit (1) speak to an agent (1)
get a line of credit increase (2) speak with someone (1)

Figure C.3: Class 52: [[PRP_TO)] — (VB_NN) — [null]. Total number of phrases
=71.

can i get (44) can you give (2)
can i hear (1) can you replace (1)
can i use (1) can you tell (1)
can you explain (1) could you send (1)

Figure C.4: C(lass 499: [null, INTJ, ADJP, NP, WHNP] — (MD_VB) —
[(DTNN), (NN_IN), (DT_VB), (PRP$_VBN), (PRP$_.VB), (DT.IN), (VBNN),
(NN_NN), (NNS_VBN), (DT_UH), (DT_PRPS), (JJR.NN), (IN.NNS), (PRP$.NN),
(DT_NNS)]. Total number of phrases = 52.

payment address please (1)
statement please(1)

Figure C.5: Class 1002: [(MD_PRP$)] — (NN_VB) — [null]. Total number of
phrases = 2.

account balance (5)
maintenance agreement (1)
payment due date (1)

Figure C.6: Class 1042: [INTJ, SQ, (MD_VB), null] — (NN_NN) — [null, VP].
Total number of phrases = 7.

APPENDIX C. SAMPLE OUTPUT FOR HSF CLUSTERING OF PHRASES162

a new (1)
an extra (3)
a second (4)

Figure C.7: Class 1090: [(PRP_VB), (MD_VB)] — (DT_JJ) — [(NN_NN)]. Total
number of phrases = 8.

Appendix D

Gaussian Intersection: Derivation

Given two Gaussian distributions that intersect with one another (see Figure 5.10
for an example), the goal is to find the sample value x where the distributions
overlap. The likelihood of a point y at a certain position on the surface of a

Gaussian distribution can be given by:

_ b G

(2m02)2

(D.1)

where, z is the value of the sample in the distribution that gives y, mu is the

mean, and o? is the variance.

The point at which two Gaussian distributions cross can be defined by:

1 e—ﬁ(l‘—m)2 1 —%(I—M)Q

JE— — e
v 2moq V2710

Take natural log of both sides of Equation (D.2) to remove e:

163

APPENDIX D. GAUSSIAN INTERSECTION: DERIVATION 164

)) () o)

Rearrange Equation (D.3) to equal zero:

(7o) " (5

L) with K and expanding gives:

Replacing In (ﬁ) —1In < Toroa

1
(@2 b)) =0 (09

1
K—(—(a?-2 : —

Multiplying within two main brackets:

2 2 2 2 2 2
(S Y (o) g
207 207 207 205 205 205
Expand and group terms to give:
1 1 M1 e i 15
K —— t+ = | 2? —-=lJz—-—+-—==0 D.7
(apra) e (5 5) o o 0
Equation (D.7) can be written in quadratic form (az? + bz + ¢ = 0)
11N 5, (i B s
———+— = - = K—-—+-—=]=0 D.8
\(207 * 203)J:B * (J% o3 * 207 * 203 /| (D-8)
« b b

APPENDIX D. GAUSSIAN INTERSECTION: DERIVATION 165

where the two roots z; and x5 can be found by substituting Equation (D.8) into

the quadratic formula and solving:

. —b+Vb? — 4dac

2 (D.9)

The final choice for x is taken to be the one which lies between p; and ps, the

means of the two distributions.

Bibliography

Anderson, J. A. (1995). An Introduction to Neural Networks. MIT-Press.

Aradilla, G., Vepa, J., and Bourlard, H. (2005). Improving Speech Recognition
Using a Data-Driven Approach. In Proceedings of Interpseech, pages 3333-3336.

Arai, K., Wright, J., Riccardi, G., and Gorin, A. (1999). Grammar Fragment
acquisition using syntactic and semantic clustering. Speech Communication,
27:43-62.

Axelrod, S. and Maison, B. (2004). Combination of Hidden Markov Models
with Dynamic Time Warping for Speech Recognition. In Proceedings of IEEE
ICASSP, pages 173-176.

Bahl, L. R., De Gennaro, S. V., Gopalakrishnan, P. S., and Mercer, R. L. (1993).
A Fast Approximate Acoustic Match for Large Vocabulary Speech Recognition.
IEEE Transactions on Speech and Audio Processing, 1(1):59-67.

Baum, L. E. (1972). An Inequality and Associated Maximization Technique in Sta-
tistical Estimation for Probabilistic Functions of Markov Processes. In Shisha,
O., editor, Inequalities III: Proceedings of the 3rd Symposium on Inequalities,
pages 1-8. Academic Press, University of California.

Bies, A., Ferguson, M., Katz, K., and MacIntrye, R. (1995). Bracketing Guidelines
for Treebank IT Style Penn Treebank Project. Technical report, University of

Pennsylvania. ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual /root.ps.gz,
12th October 2009.

Bocchieri, E. L. and Doddington, G. R. (1986). Frame-Specific Statistical Features
for Speaker Independent Speech Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34:755-764.

Brown, P., deSouza, P., Mercer, R., Pietra, V. D., and Lai, J. (1992). Class-Based
n-gram Models of Natural Language. Computational Linguistics, 18(4):467-479.

Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations.
Cambridge University Press, Cambridge.

166

BIBLIOGRAPHY 167

Chamberlain, R. M. and Bridle, J. S. (1983). Zip: A Dynamic Programming
Algorithm for Time-Aligning Two Indefinitely Long Utterances. In Proceedings
of ICASSP, pages 816-819.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In First Meeting of
the North American Chapter of the Association for Computational Linguistics
(NAACL), pages 132-139, Seattle, Washington.

Cox, S. (2002). Speech and Language Processing for a Constrained Speech Trans-
lation System. In Proceedings of ICSLP, pages 1149-1152.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vec-
tor Machines and other Kernel-based Learning Methods. Cambridge University
Press.

Davis, S. B. and Mermelstein, P. (1980). Comparison of Parametric Represen-
tations for Monosyllabic Word Recognition in Continuously Spoken Sentences.
IEEE Transactions on Acoustic Speech and Signal Processing, 28:357-366.

De Wachter, M. (2007). Ezample Based Continuous Speech Recognition. PhD
thesis, Katholieke Universiteit Leuven, Belgium.

De Wachter, M., Demuynck, K., Van Compernolle, D., and Wambacq, P. (2003).
Data Driven Example Based Continuous Speech Recognition. In Proceedings of
FEurospeech, pages 1133-1136.

De Wachter, M., Demuynck, K., Wambacq, P., and Van Compernolle, D. (2004).
A Locally Weighted Distance Measure for Example Based Speech Recognition.
In Proceedings of ICASSP, pages 181-184.

De Wachter, M., Matton, M., Demuynck, K., Wambacq, P., Cools, R., and Van
Compernolle, D. (2007). Template-Based Continuous Speech Recognition. IEEE
Transactions on Audio, Speech and Language Processing, 15(4):1377-1390.

Deligne, S. and Bimbot, F. (1995). Language Modelling by Variable Length Se-
quences: Theoretical Formulation and Evaluation of Multigrams. In Proceedings
of ICASSP, pages 169-172.

Deligne, S. and Bimbot, F. (1997a). Inference of Variable-Length Acoustic Units
for Continuous Speech Recognition. In Proceedings of ICASSP, pages 1731—
1734.

Deligne, S. and Bimbot, F. (1997b). Inference of Variable-Length Linguistic and
Acoustic Units by Multigrams. Speech Communication, 23:223-241.

Deligne, S. and Sagisaka, Y. (1998). Learning a Syntagmatic and Paradigmatic
Structure from Language Data with a Bi-Multigram Model. In Proceedings of
COLING-ACL, pages 300-306.

BIBLIOGRAPHY 168

Deligne, S. and Sagisaka, Y. (2000). Statistical Language Modelling with a Class-
Based N-Multigram Model. Computer Speech and Language, 14:261-279.

Demange, S. and Van Compernolle, D. (2009a). HEAR: An Hybrid Episodic-
Abstract Speech Recogniser. In Proceedings of Interpseech, pages 3067-3070.

Demange, S. and Van Compernolle, D. (2009b). Speaker Normalization for Tem-
palte Based Speech Recognition. In Proceedings of Interpseech, pages 560-563.

Duchateau, J., Wigham, M., Demuynck, K., and Van hamme, H. (2006). A
Flexible Recogniser Architecture in a Reading Tutor for Children. In Proceedings
of ITRW on Speech Recognition and Intrinsic Variation, pages 59-64, Toulouse,
France.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. John
Wiley & Sons, Inc., 2nd edition.

Gales, M. and Young, S. (2007). The Application of Hidden Markov Models in
Speech Recognition. Foundations and Trends in Signal Processing, 1(3):195—
304.

Galescu, L. and Allen, J. (2000). Hierarchical Statistical Language Models: Ex-
periments on In-Domain Adaptation. In Proceedings of ICSLP, pages 186—189.

Giachin, E. P. (1995). Phrase Bigrams for Continuous Speech Recognition. In
Proceedings of ICASSP, pages 225-228.

Gillick, L. and Cox, S. J. (1989). Some Statistical Issues in the Comparison of
Speech Recognition Algorithms. In Proceedings of ICASSP, volume 1, pages
532-535.

Goldinger, S. D. (1996). Words and Voices: Episodic Traces in Spoken Word
Identification and Recognition Memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 22(5):1166-1183.

Goldinger, S. D. (1998). Echoes of Echoes? An Episodic Theory of Lexical Access.
Psychological Review, 105(2):251-279.

Good, I. J. (1953). The Population Frequencies of Species and the Estimation of
Population Parameters. Biometrika, 40(3 and 4):237-264.

Hain, T., Woodland, P. C., Niesler, T. R., and Whittaker, E. W. D. (1999). The
1998 HTK System for Transcription of Conversational Telephone Speech. In
Proceedings of ICASSP, pages 57-60.

Huang, Q. and Cox, S. J. (2006). Task independent call routing. Speech Commu-
nication, 48(3-4):374-389.

BIBLIOGRAPHY 169

Itakura, F. (1975). Minimum Prediction Residual Principle Applied to Speech
Recognition. IEEFE Transactions on Acoustics, Speech, and Signal Processing,
23:57-72.

Jiang, H., Soong, F., and Lee, C.-H. (2001). A Data Selection Strategy for Ut-
terance Verification in Continuous Speech Recognition. In Proceedings of Eu-
rospeech, pages 2573-2576.

Jurafsky, D. and Martin, J. (2009). Speech and Language Processing. Prentice-
Hall, New Jersey, 2nd edition.

Katz, S. M. (1987). Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recogniser. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(3):400-401.

Kneser, R. and Ney, H. (1995). Improved Backing-Off for M-gram Language
Modelling. In Proceedings of ICASSP, volume 1, pages 181-184.

Lee, L. and Rose, R. (1998). A Frequency Warping Approach to Speaker Normal-
ization. IEEE Transactions on Speech and Audio Processing, 6(1):49-60.

Lidstone, G. J. (1920). Note on General Case of the Bayes-Laplace Formula for
Inductive or a Posteriori Probabilities. Transactions of the Faculty of Actuaries,
8:182-192.

Lin, Q., Lubensky, D., Picheny, M., and Srinivasa Rao, P. (1997). Key-Phrase
Spotting using an Integrated Language Model of N-Grams and Finite-State
Grammar. In Proceedings of Eurospeech, pages 255—258.

Maier, V. and Moore, R. K. (2005). An Investigation into a Simulation of Episodic
Memory for Automatic Speech Recognition. In Proceedings of Interspeech, pages
1245-1248.

Mitchell, T. (1997). Machine Learning, chapter 4. WCB-McGraw-Hill.

Moore, R. K. (2003). A Comparison of the Data Requirements of Automatic
Speech Recognition Systems and Human Listeners. In Proceedings of Fu-
rospeech, pages 2581-2584.

Myers, C. and Rabiner, L. R. (1981). A Level Building Dynamic Time Warping
Algorithm for Connected Word Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 29(2):284-297.

Myers, C., Rabiner, L. R., and Rosenberg, A. E. (1980). Performance Tradeoffs
in Dynamic Time Warping Algorithms for Isolated Word Recognition. [EEE
Transactions on Acoustics, Speech, and Signal Processing, 28(6):623-635.

Nasr, A., Esteve, Y., Béchet, F., Spriet, T., and de Mori, R. (1999). A Lan-
guage Model Combining N-Grams and Stochastic Finite State Automata. In
Proceedings of Furospeech, volume 5, pages 2175-2178.

BIBLIOGRAPHY 170

Ney, H. (1984). The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 32(2):263-271.

Nouwen, R. (2003). Complement Anaphora and Interpretation. J Semantics,
20(1):73-113.

Nuance (2008). Dragon NaturallySpeaking 10. Press Release, Burlington, Mass.
http://www.nuance.com/news/pressreleases/2008,/20080807_dns10.asp.

Ortmanns, S., Eiden, A., Ney, H., and Coenen, N. (1997). Look-Ahead Techniques
for Fast Beam Search. In Proceedings of ICASSP, volume 3, pages 1783-1786.

Parekh, R. and Honavar, V. (2000). Grammar Inference, Automata Induction,
and Language Acquisition. In Dale, Moisle, and Somers, editors, Handbook of
Natural Language Processing. Marcel Dekker.

Pickering, M. J. and Garrod, S. (2004). Toward a Mechanistic Psychology of
Dialogue. Behavioral and Brain Sciences, 27:169—-226.

Povey, D. and Woodland, P. (1999). Frame Discrimination Training of HMMs for
Large Vocabulary Speech Recognition. In Proceedings of ICASSP, volume 1,
pages 333-336.

Price, P., Fisher, W. M., Bernstein, J., and Pallet, D. S. (1988). The DARPA 1000-
Word Resource Management Database for Continuous Speech Recognition. In
Proceedings of ICASSP, pages 651-654.

Rabiner, L. and Schafer, R. (1978). Digital Processing of Speech Signals. Prentice-
Hall, New Jersey.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. Proceedings of the IEEE, 77(1):257-286.

Rabiner, L. R. and Shchmidt, C. E. (1980). Application of Dynamic Time Warping
to Connected Digit Recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 28(4):377-388.

Riccardi, G., Pieraccini, R., and Bocchieri, E. (1996). Stochastic Automata for
Language Modelling. Computer Speech and Language, 10:265-293.

Sakoe, H. (1979). Two-Level DP-Matching—A Dynamic Programming—Based
Pattern Matching Algorithm for Connected Word Recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 27(6):588-595.

Sakoe, H. and Chiba, S. (1971). A Dynamic Programming Approach to Continuous
Speech Recognition. In Proceedings of International Congress on Acoustics,
paper 20 C-13.

BIBLIOGRAPHY 171

Sakoe, H. and Chiba, S. (1978). Dynamic Programming Algorithm Optimisation
for Spoken Word Recognition. IFEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43-49.

Solsona, R. A., Fosler-Lussier, E., Kuo, H.-K. J., Potamianos, A., and Zitouni, I.
(2002). Adaptive Language Models for Spoken Dialogue Systems. In Proceedings
of ICASSP, pages 37-40.

Stevens, K. N. (2000). Acoustic Phonetics. MIT-Press.

Watkins, C. J. and Cox, S. J. (2009). Example-Based Speech Recognition using
Formulaic Phrases. In Proceedings of Interspeech, pages 3043-3046.

Webb, A. (2002). Statistical Pattern Recognition. John Wiley & Sons, Ltd., 2nd
edition.

Witten, I. H. and Bell, T. C. (1991). The Zero Frequency Problem: Estimating the
Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions
on Information Theory, 37(4):1085-1093.

Wray, A. (1999). Formulaic language in learners and native speakers. Language
Teaching, 32(1):213-231.

Wray, A. (2002). Formulaic Language and the Lexicon. Cambridge University
Press.

Wray, A., Cox, S., Lincoln, M., and Tryggvason, J. (2004). A formulaic approach
to translation at the post office: reading the signs. Language € Communication,
24:59-75.

Wray, A. and Perkins, M. (2000). The Functions of Formulaic Language: an
Integrated Model. Language and Communication, 20:1-28.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G.,
Odell, J., Ollason, D., Povey, D., Valtchev, V., and Woodland, P. (2009). The
HTK Book (for HTK version 3.4). Cambridge University, Cambridge.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). Token Passing: A
Simple Conceptual Model for Connected Speech Recognition Systems. Technical
Report CUED/F-INFENG/TR38, Cambridge University Engineering Dept.

