
An Integrated Approach to
Speech Recognition using

Phrase-Based Units

Christopher James Watkins

A thesis submitted for the Degree of

Doctor of Philosophy

University of East Anglia

School of Computing Sciences

March, 2010

c©This copy of the thesis has been supplied on condition that anyone who consults it is un-
derstood to recognise that its copyright rests with the author and that no quotation from the
thesis, nor any information derived therefrom, may be published without the author’s prior
written consent.

Abstract

In human-to-human dialogue, formulaic sequences are used to minimise the effort

of both speech production and perception in the conversation. In production,

the speaker apparently retrieves such sequences whole from memory, without the

cognitive effort required for generation from a lexicon and grammar. In perception,

context determines a set of similar phrases that the listener expects to hear, and

this also reduces cognitive load.

This thesis describes techniques used to automatically acquire formulaic phrases

from transcriptions of speech, which are then used to define variable-length units

of speech and language. These are well suited for use in a template-based speech

recogniser, which can easily adjust its modelling units for the examples that are

found, with the aim of improving Automatic Speech Recognition (ASR) accuracy.

Language modelling techniques are described, such as the Word Phrase Link Bi-

gram (WPLB) language model, which combines words and phrases together, and

the Hybrid Syntactic Formulaic (HSF), which clusters semantically similar phrases

using syntax. The language models are then combined with speech, in both Hidden

Markov Model and template-based speech recognisers. Techniques to reduce the

complexity of the search space for the template-based recogniser are introduced,

such as the hierarchical LDA filter.

As expected, the techniques gave significant gains when the language used was

highly formulaic, and were less successful on a “standard” speech database which

consisted of highly artificial utterances.

i

Acknowledgements

I would first of all like to thank Professor Stephen Cox, for first of all suggesting

this work, and secondly for being a very optimistic and attentive supervisor. I

would like to thank Dr. Ben Milner, my co-supervisor, for his help with flat-start

labelling, and general availability for discussions about issues in my work. I would

also like thank Professor Dirk Van Compernolle who agreed to be the external

examiner for this thesis and Dr. Barry Theobald who was the internal examiner.

Thanks go out to my colleagues and friends that I have shared a lab with

over the past four years; Jacob Newman, Nick Wilkinson, Qiang Huang, Ibrahim

Almajai, Osama Dorgham, Ian Read, Alastair James, Mark Hadley, Jonathan

Darch, Omar Caballero and Sarah Hilder.

Finally, a special thanks go to my fiancée Yuxuan Lan whom has kept me calm

throughout these final few stressful months, cooking splendid cuisines for me, and

supported me even though I was in the lab day and night for most of the past

year!

ii

Contents

List of Abbreviations vi

List of Figures viii

List of Algorithms xi

List of Tables xii

1 Introduction 1

1.1 Motivation and Aims . 1

1.2 Thesis Overview . 3

2 Technical Background 6

2.1 Introduction . 6

2.2 N-Gram Language Modelling . 8

2.2.1 Katz-Backoff . 9

2.2.2 Representing Backoff LMs with Stochastic Automata 12

2.2.3 Perplexity . 16

2.3 Template-Based Recognition . 17

2.3.1 Definition of a Template . 17

2.3.2 Frame-Based Distance Measures 18

2.3.3 Dynamic Time Warp (DTW) 21

2.3.4 Token Passing Algorithm . 26

2.4 HMM-Based Recognition . 29

2.4.1 Decoding with Token Passing 30

2.5 Integrating the Language Model into the Recogniser 32

2.6 Vocal Tract Length Normalisation (VTLN) 35

iii

CONTENTS iv

2.6.1 Finding Optimal Warp Factors 37

2.6.1.1 Training Procedure 37

2.6.1.2 Recognition Procedure 38

2.7 Linear Discriminant Analysis (LDA) 38

3 Dataset Description 41

3.1 Introduction . 41

3.2 Speaker-Dependant Call-Routing Data 41

3.3 Speaker-Independent Resource Management (RM) dataset 43

3.4 Feature Extraction . 43

3.5 HMM Baseline Recognisers . 45

3.6 Template Information . 45

4 Phrase-Based Language Modelling 47

4.1 Introduction . 47

4.2 Literature Survey . 48

4.3 Phrase Acquisition using Multigrams 53

4.4 Phrase Clustering using a Hybrid Syntactic and Formulaic Approach 59

4.4.1 Clustering with Parse Trees 60

4.4.1.1 Class Merging . 62

4.5 Integrating Phrases with N-Grams 64

4.5.1 Language Model Topologies 64

4.5.2 Integrating phrase classes 73

4.5.3 Adding a Bias to Phrase States 79

4.6 Baseline Evaluation . 80

4.6.1 Speaker Dependent Results 80

4.6.2 Speaker Independent Results 85

4.7 Conclusions . 87

5 Bottom-up Template Selection 90

5.1 Introduction . 90

5.2 Vector Quantisation for K Nearest Neighbours selection 92

5.3 Time Filter Algorithm . 94

5.3.1 Adding a backward pass to time filter 100

CONTENTS v

5.3.2 A length-based template score normalisation 102

5.4 Filtering Candidate Templates with Hierarchical LDA 105

5.4.1 Extracting Features for LDA 106

5.4.2 LDA Decision Tree . 111

5.5 Evaluation . 115

5.5.1 Template Selection . 115

5.5.1.1 Sigmoid-Based Distance Normalisation 118

5.5.2 LDA Filtering . 119

5.5.2.1 Classification Experiments 124

5.6 Conclusions . 126

6 Template-Recognition Experiments 130

6.1 Introduction . 130

6.2 Decoder Architecture — Extensions to the Template Decoder . . . 131

6.2.1 Integrating Template Candidates 131

6.2.2 Token Merging . 132

6.3 VTLN for Templates . 133

6.4 Recognition Experiments . 135

6.4.1 Speaker Dependent Results 135

6.4.2 Speaker Independent Results 138

6.5 Conclusions and Discussion . 142

7 Discussion and Conclusions 145

7.1 Summary and Discussion . 145

7.2 Conclusion and Future Work . 150

7.2.1 Future Work . 151

A Sample Output of Multigram Segmentation 153

A.1 Examples from SD Call-Routing Data 153

A.2 Examples from SI RM data . 154

B Penn Treebank 156

B.1 POS Tags . 156

B.2 Phrase-Level Tags . 158

B.3 Clause-Level Tags . 159

CONTENTS vi

C Sample Output for HSF Clustering of Phrases 160

D Gaussian Intersection: Derivation 163

Bibliography 166

List of Abbreviations

Abbreviation Meaning
ASR Automatic Speech Recognition
CD Context Dependent
CI Context Independent
DP Dynamic Programming
DTW Dynamic Time Warping
FNR False Negative Rate
FPR False Positive Rate
FSA Finite State Automoton / Automata
FSN Finite State Network
GMM Gaussian Mixture Model
HMM Hidden Markov Model
KNN K Nearest Neighbour
LDA Linear Discriminant Analysis
LM Language Model
ML Maximum Likelihood
NN Nearest Neighbour
OOV Out-of-vocabulary
PB Phrase Bigram
PDF Probability Density Function
POS Parts of Speech
RBF Radial Basis Function
RM Resource Mangagement
SD Speaker Dependent
SFSA Stochasic Finite State Automoton / Automata
SI Speaker Independent
SVM Support Vector Machine
VNSA Variable N-gram Stochastic Automata
VQ Vector Quantisation
VTLN Vocal Tract Length Normalisation
WB Word Bigram
WER Word Error Rate
WPB Word Phrase Bigram
WPCB Word Phrase Class Bigram
WPCLB Word Phrase Class Link Bigram

vii

CONTENTS viii

Abbreviation Meaning
WPLB Word Phrase Link Bigram

List of Figures

2.1 Word-Bigram (WB) language model 14

2.2 Template definition . 18

2.3 Itakura constraints. 22

2.4 DTW on real data. 25

2.5 Template formulated as a series of connected states with transition
costs . 26

2.6 A template ergodic network . 27

2.7 Token Passing . 28

2.8 HMM topology . 30

2.9 Decoding network hierarchy. 33

2.10 The effect of VTLN on the Mel-Scale filterbank 35

2.11 Piecewise linear warping function 36

2.12 LDA projection of samples onto a line. 39

4.1 The Multigram Production Model 54

4.2 A HMM for the multigram “i want my”. 56

4.3 A unigram decoding network for a restricted set of multigrams. . . 57

4.4 A parse tree for the utterance “i’d like to get my balance”. 60

4.5 Phrase labelling using parse trees 62

4.6 Phrase-Bigram (PB) language model 66

4.7 WPB (word + phrase bigram) language model. 69

4.8 WPLB (word phrase link bigram) language model (LM). 72

4.9 WPCLB (Word-Phrase Class Link Bigram) language model (LM). . 74

4.10 Class 174. 75

4.11 A phrase class represented as an SFSA. 76

4.12 Phrase class as an SFSA with whole phrases 77

ix

LIST OF FIGURES x

4.13 WPCLB (Word-Phrase Class Link Bigram) language model (LM)
with SFSAs to represent classes. 78

4.14 Word accuracy on the SD test-set for HSF clustering with the WP-
CLB language model over varying numbers of phrase classes. 82

4.15 Average perplexity per word on the SD test-set for HSF clustering
with the WPCLB language model over varying numbers of phrase
classes. WB, WPB, and WPLB are shown for comparison. 83

4.16 Histograms showing the number of words per phrase as a relative
frequency for SD data. 84

4.17 Histograms showing the number of words per phrase as a relative
frequency for the combined RM datasets oct89, feb91, and sep92. . 86

4.18 Histograms of chosen units by the HMM decoder on the SD training
data compared to the available units. 89

5.1 Vector Quantisation of frames in 3 different classes; aa[4], ah[3],
ae[3] . 93

5.2 The Time Filter Algorithm. 95

5.3 Activation regions. The effect of increasing the activation gap upon
the activation region. 96

5.4 Local penalties within activation regions. 97

5.5 The backward pass for Time Filter. 101

5.6 General sigmoid function. 103

5.7 Sigmoid-based normalised distance function. 105

5.8 Template classification. 106

5.9 Gaussian Radial Basis Function. 110

5.10 Threshold selection: Distribution crossing point. 112

5.11 Histograms of LDA projected data. 113

5.12 The LDA decision tree. 114

5.13 Features for LDA. 120

5.14 Z-score (z(Y, t)) plotted against the probability of template candi-
dates (P (Y|t)) for SD training data. 121

5.15 Projection of template candidates into 1D for SD training data. . . 122

5.16 Distributions for correct and incorrect template candidates. 122

5.17 Distributions of template candidates. 123

6.1 A “dead-end” within an activation graph 131

LIST OF FIGURES xi

6.2 The optimal warp factors selected for the RM training data. There
are 78 male speakers and 31 female speakers in the training data. . 135

6.3 Histograms of the length of phrase units chosen by the template-
decoder on the SD data during recognition with WPB and WPLB
language models. 138

6.4 Histograms of the length of phrase units chosen by the template-
decoder on the RM data during recognition with WPB and WPLB
language models. 141

C.1 Class 13. 160

C.2 Class 14. 161

C.3 Class 52. 161

C.4 Class 499. 161

C.5 Class 1002. 161

C.6 Class 1042. 161

C.7 Class 1090. 162

List of Algorithms

2.1 DTW algorithm with Itakura Constraints 23
2.2 Token Passing Algorithm . 29
2.3 Token passing with probabilities, not distances 31
4.1 Constructing the initial set of multigrams. 55
4.2 Segmentation algorithm for the training data 58
4.3 Class merging process using cosine similarity 64
5.1 The Time Filter Algorithm. 99

xii

List of Tables

3.1 SD call-routing data information. 42

3.2 RM dataset information. 43

3.3 Dataset template information. 45

4.1 SD perplexity and word accuracy on baseline HMM system for dif-
ferent language models. 81

4.2 Statistical significance tests on the SD test data. The Matched-Pairs
test was used to determine if gains / losses in accuracy for different
language models were statistically significant. 82

4.3 Word Accuracy and Perplexity on RM using HMM-based systems
with and without VTLN. 85

5.1 Time Filter statistics for SD Test data. 116

5.2 Time Filter statistics for the RM evaluation set, with VTLN applied.117

5.3 Time Filter statistics for the SD evaluation set when using Sigmoid-
based distance normalistion. 118

5.4 LDA Filter classification results on the SD Test data. 124

5.5 LDA Filter classification results on the RM evaluation set using
VTLN. 125

6.1 Comparison of word accuracy on template-based system to HMM-
based system on SD data. 136

6.2 Average number of templates from the Time Filter for SD data. . . 136

6.3 Matched-Pairs tests on the SD test data for template-based and
hmm-based systems . 137

6.4 Word Accuracy on RM using template-based decoder. 139

6.5 Average number of templates from the Time Filter for RM evalua-
tion data. 139

6.6 Matched-Pairs tests on RM oct89 and feb91 for template-decoder. . 140

xiii

LIST OF TABLES xiv

6.7 Matched-Pairs tests on RM sep92 for template-decoder. 140

6.8 Matched-Pairs test on RM evaluation sets for comparison of template-
based VTLN systems with and without LDA filtering. 141

Chapter 1

Introduction

1.1 Motivation and Aims

The data-driven, probabilistic-based paradigms that have been developed for ASR

(notably the hidden Markov model (HMM) framework) were highly successful in

advancing the technology during the 1980s and 1990s, but they contained simplifi-

cations and assumptions that are known to be untrue (for instance, the assumption

that speech is produced by a first-order Markov process, or that language can be

well modelled using n-grams of words). After years of intensive incremental devel-

opment of the models, it seems that these modelling assumptions are now limiting

the progress of ASR, and that these techniques may not be able to provide the

leap needed to move ASR performance up to the level required for it to be usable

in new applications [Moore, 2003].

One area in which the conventional approach to ASR may be questioned is in

the use of statistical distributions. Clearly probability density functions (PDFs)

constitute an essential element of hidden Markov modelling and provide a powerful

method of generalising from seen to unseen data. However, the use of PDFs does

represent a potential loss of information; the detail that is present in individual

data samples is sacrificed in order to pool information in a controlled fashion.

1

CHAPTER 1. INTRODUCTION 2

In ASR, this realisation has led to a resurgence of interest in template-based

recognition systems [De Wachter et al., 2003; Axelrod and Maison, 2004; Aradilla

et al., 2005; Maier and Moore, 2005; Demange and Van Compernolle, 2009a].

Another practice that simplifies conventional ASR is the use of fixed levels of

description, which enables a hierarchical and modular approach to recognition

in which words can be easily constructed as sequences of phonemes and lan-

guage models as n-grams of words. However, there is ample psycho-linguistic

evidence that humans recognise and generate a great deal of language in ready-

made chunks [Goldinger, 1996, 1998; Wray, 1999], which have been termed “for-

mulaic sequences” by some linguists [Wray, 2002]. These sequences “appear to be

pre-fabricated, that is stored and retrieved whole from memory rather than being

subject to generation or analysis by the language grammar” [Wray and Perkins,

2000]. It has been argued that these phrases serve the important purpose of avoid-

ing processing overload in both speaker and listener: the speaker retrieves them

whole from memory, and the listener is more likely to understand a message if it is

in a form that he/she has heard before. Analysis shows that much commonplace

language is highly formulaic, and this is especially true in ASR applications where

the application context is narrow and the discourse is goal-directed, factors that

apply to most telephony ASR applications that provide information provision and

booking services. Although many of these phrases have the status of “carrier”

phrases, and as such have a low information content associated with them [Huang

and Cox, 2006], recognition of them is essential for segmentation of the signal and

extraction of the information content.

The template-based approach to recognition fits very well with the idea that

the units used for recognition can be of different lengths: rather than insisting on

modelling an utterance as a sequence of phonemes, we can adjust the lengths of

our modelling units according to the examples we find. This has obvious benefits

in capturing the acoustic/phonetic variation in commonly occurring fragments.

These ideas give the motivation for the work presented in this thesis, which will

CHAPTER 1. INTRODUCTION 3

attempt to define templates explicitly from commonly-occurring phrases found in

transcriptions of speech which can then be used in a speech recogniser. This

approach differs from that of De Wachter et al. [2007] where templates are defined

at the phone level and then concatenated together based upon a set of costs.

By explicitly defining the templates before the recognition, language modelling

techniques can be investigated in an attempt to leverage prior information for

the decoder, offering strong predictions based on certain perceptual contexts, as

earlier described for human listeners in conversational dialogue. Thus, the aim

of this thesis is to integrate commonly-occurring phrase-based units, modelled by

language and speech, into a template-based speech recognition system.

1.2 Thesis Overview

This section will give an overview of each chapter presented in this thesis, starting

with prerequisites in Chapter 2 and Chapter 3, followed by the three main chap-

ters that define this work: Chapter 4 describes phrase-based language modelling,

Chapter 5 describes bottom-up template selection, which is used to reduce the

massive search space of the decoder in template-based recognition, and Chapter

6 describes the template-based decoder and recognition experiments which inte-

grate the language modelling techniques and template selections together with the

decoder. An overview of each chapter is now given.

Chapter 2 gives the required technical background for this thesis, including

N-Gram language modelling, speech recognition techniques such as the Dynamic

Time Warping (DTW) and Token Passing algorithms, integration of the language

model into a speech recogniser, Vocal Tract Length Normalisation (VTLN), and

Linear Discriminant Analysis (LDA) for a classifier.

Chapter 3 describes the datasets used in this thesis, including the feature vec-

tors that are extracted, the HMM-based systems that are built for each dataset to

act as baseline systems, and the number of templates that are contained in each

CHAPTER 1. INTRODUCTION 4

dataset.

Chapter 4 describes the methods used to acquire commonly-occurring phrases

from transcriptions of speech and then integrate them into language models. A

clustering algorithm is presented which groups phrases of a similar semantic func-

tion by using syntactic information. The individual phrases and classes of phrases

are combined into Stochastic Finite State Automata (SFSA) representations of

language models which can be later used to integrate the phrases with the models

and templates of speech in the recogniser. The chapter ends with the baseline

evaluation of the methods presented using a monophone HMM-based recogniser

and then a discussion of these results.

Chapter 5 presents methods used to reduce the complexity of the template-

based decoder, including an introduction to the Time Filter algorithm [De Wachter

et al., 2003] which is a bottom-up acoustic pass over the utterance to find approx-

imately matching templates. Extensions are made to the Time Filter algorithm,

including a Vector Quantisation (VQ) method which is an approximate method

to k-nearest neighbour (KNN) selection used in the Time Filter algorithm. A

backward pass of the Time Filter is suggested, with details given of the implemen-

tation, and a Sigmoid-based distance normalisation function is described which

is used to control the length of templates selected by the Time Filter for experi-

mental purposes. The chapter also describes a hierarchical LDA classifier which

is used to further filter the template candidates that are output from the Time

Filter, with details of feature extraction and classifier decision points given. The

chapter finishes by evaluating the performance of the described techniques for

template selection, with tests such as how well the selected templates match the

input utterances, and classification tests of the LDA filter.

Chapter 6 describes the template-recognition experiments, including the de-

coder architecture and how VTLN is applied to the templates. It also discusses

the results presented, and gives conclusions.

Finally, Chapter 7 summarises the work and findings presented in this thesis,

CHAPTER 1. INTRODUCTION 5

integrating the conclusions of each chapter into a final conclusion which includes

a discussion of the possible directions this work could take in the future.

Chapter 2

Technical Background

2.1 Introduction

Speech recognition is the task of converting an audio waveform into a string of

words. The waveform is typically discretised into a sequence of vectors X, known

as observations, as part of a feature extraction process (more details are given in

Section 3.4), giving the observation sequence

XT
1 = x1,x2,x3, . . . ,xT−1,xT (2.1)

The word string w that represents the observation sequence X is given by:

wm
1 = w1, w2, w3, . . . , wm−1, wm (2.2)

The general problem for finding the correct word string ŵ for the current

observation sequence X, which entails searching over all possible word strings in

the language L , can be formulated as finding ŵ such that:

6

CHAPTER 2. TECHNICAL BACKGROUND 7

ŵ = argmax
w∈L

Pr (w|X) (2.3)

Applying Bayes’ rule gives:

ŵ = argmax
w∈L

Pr (X|w) Pr (w)

Pr (X)
(2.4)

The denominator in Equation (2.4) can be removed as it is constant over all

possible word strings for the current observation sequence, giving:

ŵ = argmax
w∈L

Pr (X|w) Pr (w) (2.5)

Equation (2.5) is the driving force for the emergence of two distinct research

fields within the area of automatic speech recognition (ASR): acoustic modelling

and language modelling. Pr (w) represents the prior probability of observing a

sequence of words w and is estimated using language modelling techniques, in

particular the N-gram language model which will be described in Section 2.2.

Pr (X|w) represents the probability of the observation sequence X given a hy-

pothesised word string and is estimated using acoustic matching and modelling

techniques which are described further in Section 2.3 and Section 2.4. Section 2.5

will describe the techniques that are required to integrate language models into

a speech recogniser. Section 2.6 will describe Vocal Tract Length Normalisation

(VTLN) which is a method used to warp a speakers frequency scale to try and

remove the variability introduced by different length vocal tracts. Finally, Section

2.7 will introduce and describe Linear Discriminant Analysis (LDA) which is used

to form a classifier in Section 5.4.

CHAPTER 2. TECHNICAL BACKGROUND 8

2.2 N-Gram Language Modelling

The N-gram is motivated from the idea that the probability of a word wi in

a sequence of words wm
1 can be estimated based on the previous words in the

sequence wi−1
1 using a relative frequency approach, such that:

Pr
(
wi|wi−1

1

)
=

C (wi
1)

C
(
wi−1

1

) (2.6)

where C (·) represents the count of the given word string which is attained from

a collection of sentences known as the training text. The probability of a whole

word sequence can then be calculated by the product of each word probability:

Pr (wm
1) =

m∏

i=1

Pr
(
wi|wi−1

1

)
(2.7)

Equation (2.6) is not tractable for real-world applications because as the word

history becomes longer and longer it is less likely to have occurred in training

data (and even on the web). As a solution to this problem, and the intuition for

the N-gram probability, the Markov assumption can be made which says that the

probability of a word can be calculated using the N − 1 previous words instead of

the whole history of the sequence, such that:

Pr
(
wi|wi−1

1

)
≈ Pr

(
wi|wi−1

i−N+1

)
(2.8)

where

CHAPTER 2. TECHNICAL BACKGROUND 9

Pr
(
wi|wi−1

i−N+1

)
=

C
(
wi

i−N+1

)

C
(
wi−1

i−N+1

) (2.9)

such that the approximated probability of a word sequence is given by:

Pr (wm
1) ≈

m∏

i=1

Pr
(
wi|wi−1

i−N+1

)
(2.10)

Although Equation (2.10) is given in general form for any N , the work reported

in this thesis is only concerned with the case where N = 2, i.e. the bigram1:

Pr (wm
1) ≈

m∏

i=1

Pr (wi|wi−1) (2.11)

where

Pr (wi|wi−1) =
C (wi−1wi)

C (wi−1)
(2.12)

2.2.1 Katz-Backoff

Even though the N-gram model reduces the data sparsity problem by, as discussed

earlier, using a reduced history for an approximation of the probability of a word,

there can still be cases when N-grams rarely or never occur in the training text

but are observed in the test data. This is usually because of sampling issues when

the vocabulary is large. If an N-gram in a test sentence has not been seen in the

1Word recognition experiments with the baseline HMM system were performed with the
trigram language model and did not give improved performance over the bigram language model.
It was concluded that this performance was due to the small size of the datasets used in this
work.

CHAPTER 2. TECHNICAL BACKGROUND 10

training text then Equation (2.10) will evaluate to zero.

Katz backoff [Katz, 1987] offers a solution to this problem by applying Good-

Turing smoothing [Good, 1953] (see also Lidstone [1920]; Witten and Bell [1991];

Kneser and Ney [1995] for alternative smoothing measures) to the counts of N-

grams that appear less than or equal to k and re-distributing the leftover “prob-

ability mass” to the unseen N-grams using a recursive model that contains lower

order N-gram distributions. The lower-order distributions (e.g. unigram and bi-

gram if using a trigram model) allow a “backoff” procedure to take place if the

current N-gram is not seen, thus reducing the context size of the current word by

one and giving a (N − 1)-gram, which makes it more likely to have been seen in

the training data.

The Good-Turing discount method, shown in Equation (2.13), employs a fre-

quency of frequency approach which estimates the probability of N-grams that

occur r times based on the probability of N-grams that occur r + 1 times:

r∗ = (r + 1)
nr+1

nr

(2.13)

where r∗ is the “smoothed” count, r = C(wi
i−N+1), and nr is the number of N-

grams that occur r times in the training text. Good-Turing smoothing in the

Katz backoff model is only applied to counts that occur fewer than or equal to

k times (a good estimate for k is five but this may vary depending on the data),

because it is assumed that N-grams that appear more than k times are reliably

estimated. The discount ratio dr, which is the ratio of the discounted counts r∗

to the original counts r for N-grams appearing between 1 and k times (inclusive),

and shown in Equation (2.15), can be used to estimate the discounted probability

of the N-gram:

CHAPTER 2. TECHNICAL BACKGROUND 11

Pr∗
(
wi|wi−1

i−N+1

)
= dr ×

C
(
wi

i−N+1

)

C
(
wi−1

i−N+1

) (2.14)

where the discount ratio dr (adjusted for k) is calculated as:

dr =







r
∗

r
− (k+1)nk+1

n1

1− (k+1)nk+1
n1

for 1 ≤ r ≤ k

1 for r > k

(2.15)

So far, Good-Turing smoothing has been described. The key part of Katz’s

work is in the backoff from higher order to lower order N-grams. Instead of re-

distributing the leftover probability mass equally, a backoff weight α is used to

transfer the mass to the lower order N-grams based on the (N − 1)-gram context,

such that:

α
(
wi−1

i−N+1

)
=

1 −
∑

wi:C(wi

i−N+1)>0 Pr∗
(
wi|wi−1

i−N+1

)

1 −
∑

wi:C(wi

i−N+1)>0 Pr∗
(
wi|wi−1

i−N+2

) (2.16)

It should be noted that all of the distributions (N-gram, (N-1)-gram, ..., bigram)

are smoothed using Equation (2.14) except for the unigram distribution which is

smoothed by:

Pr∗(wi) = dr ×
C (wi)

n
(2.17)

where n is the total number of words in the training text (including repetitions).

After smoothing, the leftover probability mass is passed to the next lower order

distribution using the backoff weights of Equation (2.16). The leftover mass from

CHAPTER 2. TECHNICAL BACKGROUND 12

the unigram distribution is then reserved for out-of-vocabulary (OOV) words if

they are permitted for the language model, else it is reabsorbed into the unigram

probabilities.

Equation (2.18), in its recursive form, shows how the Katz backoff model can

be used when estimating the probability of a test N-gram: if the N-gram is seen,

then the smoothed probability Pr∗
(
wi|wi−1

i−N+1

)
is used, else a recursive backoff

procedure is started which uses the backoff weights and lower order smoothed

probabilities:

Prkatz
(
wi|wi−1

i−N+1

)
= Pr∗

(
wi|wi−1

i−N+1

)
+ θ

(
Pr∗

(
wi|wi−1

i−N+1

))
(2.18)

α
(
wi−1

i−N+1

)
Prkatz

(
wi|wi−1

i−N+2

)

where

θ (x) =







1 if x = 0

0 otherwise
(2.19)

such that the probability of a given word sequence wm
1 is calculated as

Pr (wm
1) ≈

m∏

i=1

Prkatz
(
wi|wi−1

i−N+1

)
(2.20)

2.2.2 Representing Backoff LMs with Stochastic Automata

To use the backoff N-gram language model in a speech recogniser, Riccardi et al.

[1996] introduced the Variable N-Gram Stochastic Automaton (VNSA) which al-

lows an N-gram of any order (any N), with a backoff mechanism, to be input to a

Viterbi-style decoder. This architecture is required for the Token Passing imple-

CHAPTER 2. TECHNICAL BACKGROUND 13

mentation of the Viterbi algorithm (see Section 2.3.4). As previously mentioned,

the work presented in this thesis uses bigram backoff language models, and thus

what follows is a simplified explanation of VNSA.

Figure 2.1 shows a real example of a section of a word bigram (WB) language

model using Katz backoff with Good-Turing smoothing built from one of the

datasets used in this work (see Section 3.2) represented in VNSA form. Each

language model has a start and end state which represent the start and end of a

sentence of text. Each word in the vocabulary of the training text is represented

as a state — solid connections between word states represent bigram transitions,

such that the connection between the state “can” and the state “i” represents

the bigram “can i” which was seen in the training data; the log of the smoothed

bigram probability is shown on the arc, defined by Equation (2.14) such that

log (Pr∗ (“can i”)) = −0.94.

Figure 2.1 also shows the backoff state2, represented by empty brackets, i.e. “(

)”. All arcs coming into the backoff state represent the backoff weight defined in

Equation (2.16), again in log form — for instance, the arc emanating from the

“get” state and terminating in the backoff state is defined as log (α (“get”)) =

−2.16. Arcs that are leaving the backoff state represent the smoothed unigram

(log) probabilities defined in Equation (2.17) — for example, the arc leaving the

backoff state and arriving at the “payment” state is defined as log (Pr∗ (“payment”)) =

−4.62.

Given the test utterance “can i get my payment address please”, Figure 2.1

shows the relevant section of the bigram backoff language model with some alter-

native paths that are connected to the chosen local states. The total log proba-

bility for the utterance given the WB model of Figure 2.1 is shown in Equation

(2.21). This is calculated by transitioning from the start state through each of the

word states that match the input using the bigram connections (solid arcs) and

2A bigram model only contains one backoff state, but for N > 2 there is a backoff state for
each context. For example, a state which represents the trigram context “i want” is connected
to an associated backoff state that represents “want”.

C
H

A
P

T
E

R
2
.

T
E

C
H

N
IC

A
L

B
A

C
K

G
R

O
U

N
D

14

Figure 2.1: Word-Bigram (WB) language model. Log-likelihoods are shown on the arcs between nodes, and the backoff state is
represented by empty brackets “()” with transitions to-and-from the backoff state shown in dashed lines.

CHAPTER 2. TECHNICAL BACKGROUND 15

terminating in the end state.

log(Pr(“can i get my payment address please”|WB)) = (2.21)

(−3.15) + (−0.94) + (−2.93) + (−2.19) + (−2.64) + (−2.86)+

(−2.83) + (−0.51) = −18.05

To take account of the log probabilities, Equation (2.20) is rewritten as:

log (Pr (wm
1)) ≈

m∑

i=1

log
(
Prkatz

(
wi|wi−1

i−N+1

))
(2.22)

Because the VNSA was designed to integrate a multiple-level N-gram language

model with a speech recogniser, Equation (2.18) is not precisely how the language

model is used to provide the prior probability of Equation (2.5). Equation (2.18)

will only backoff to lower order N-gram if the current N-gram was not seen in the

training data. The VNSA, which is used with Viterbi algorithm, uses a Maximum-

Likelihood (ML) approach which means that all of the possible transitions are

taken into account, i.e. the automaton is non-deterministic, with the best path

chosen to be the one with the highest probability.

For example, following Figure 2.1, the bigram “get my” could be estimated

by following the path from the “get” state to the “my” state, which has a log

probability of −2.19; alternatively, the log probability could be the addition of

the backoff weight and the unigram for “my”, i.e. moving from the “get” state

to the backoff state, which gives the log of the backoff weight, and then following

the path to the “my” state, which represents the unigram log probability of “my”

— this gives a much lower log probability (−5.16), and so the bigram transition

would be preferred by the Viterbi algorithm (Section 2.3.4).

CHAPTER 2. TECHNICAL BACKGROUND 16

2.2.3 Perplexity

The effectiveness of the methods described in Chapter 4 is evaluated using per-

plexity which is the standard metric for evaluating language models [Jurafsky and

Martin, 2009]. The perplexity of a language or language model is the weighted

average number of choices per word for some unseen text — the lower the per-

plexity is, the better the language model is. The perplexity of a language model

L with respect to a dataset S where |S| is the number of sentences in S is given

by:

PPL (S) = exp

(

− log (Pr (wt
1))

t
× 1

log (2)

)

(2.23)

where

log
(
Pr

(
wt

1

))
=

|S|
∑

i=1,m=|si|
log (Pr (wm

1)) (2.24)

and

t =

|S|
∑

i=1

|si| , (2.25)

where |si| is the number of words in sentence si, and thus t is the total number of

words in S, and log (Pr (wm
1)) is estimated from Equation (2.22).

CHAPTER 2. TECHNICAL BACKGROUND 17

2.3 Template-Based Recognition

Template-based speech recognition using Dynamic Programming (DP) was popu-

lar for ASR almost 40 years ago [Sakoe and Chiba, 1971], gaining strength from

the late 1970s into the mid-1980’s [Sakoe and Chiba, 1978; Sakoe, 1979; Rabiner

and Shchmidt, 1980; Myers et al., 1980; Myers and Rabiner, 1981; Chamberlain

and Bridle, 1983; Ney, 1984]. In the past few years, template-based ASR has

seen a resurgence [De Wachter et al., 2003; Axelrod and Maison, 2004; Aradilla

et al., 2005; De Wachter et al., 2007] in an attempt to offer improvements over the

current HMM (Hidden Markov Model) approaches where progress appears to be

stalling [Moore, 2003].

This section is structured as follows: Section 2.3.1 will give a formal defini-

tion of the template. Section 2.3.2 will describe between-frame distance measures

that are required to match the stored templates to the input sequence. Section

2.3.3 describes the Dynamic Time Warping (DTW) algorithm which can be used

to find the distance between a reference template and the input sequence for

isolated speech recognition, with Section 2.3.4 introducing the Token Passing al-

gorithm [Young et al., 1989] which can be used to find the sequence of templates

that match the input for continuous speech recognition by introducing between-

template distances to complement the within-template distances of the DTW.

2.3.1 Definition of a Template

A template in ASR is loosley defined as a sequence of acoustic feature vectors,

or frames. In this thesis, we define a template as a sequence of frames from the

training data, termed the reference template. The sequence of frames correspond

to a defined unit of speech e.g. phone, syllable, word, or phrase. The frames

that define the template appear consecutively in the training data, with each

appearance of a given unit stored in a reference template database, i.e. there may

be 200 examples of the word “i” and therefore the database will contain 200 “i”

CHAPTER 2. TECHNICAL BACKGROUND 18

templates. Figure 2.2 shows template definition at the phone, word, and phrase

level.

Figure 2.2: Template definition. Templates at the phone, word, and phrase level for
the same sequence of training frames.

For the remainder of this thesis, a general reference template will be referred

to as Y, where the length of Y, in terms of the number of frames that define it, is

given as |Y|, such that {yi ∈ Y : 1 ≤ i ≤ |Y|}. Additionally, all template-based

experiments reported in this thesis use word and phrase-level templates, i.e. no

sub-word templates are used.

2.3.2 Frame-Based Distance Measures

As mentioned previously, speech audio is converted into a stream of feature vectors,

otherwise known as frames. Because the input is split into a sequence of frames,

there needs to be some measure of similarity of the input frames to either stored

models (HMMs in Section 2.4) or reference templates to perform the decoding.

A standard measure between two vectors is the Euclidean distance. The (squared)

Euclidean distance between two vectors (frames) x and y of D dimensions is given

as

d(x,y) =
D∑

i=1

(xi − yi)
2 (2.26)

which can be written in the general form

CHAPTER 2. TECHNICAL BACKGROUND 19

d (x,y) = (x − y)T Λ (x − y) (2.27)

where Λ is the identity matrix I. If Λ = ∑−1, the inverse diagonal covariance

matrix, then the Mahalanobis distance is obtained:

d(x,y) =
D∑

i=1

(xi − yi)
2

σ2
i

(2.28)

The Euclidean and Mahalanobis distance measures of Equations (2.26) and

(2.28) are both examples of global distance measures where the space is trans-

formed by a global transformation matrix Λ (which is the identity matrix I for

the Euclidean distance and the inverse of the diagonal covariance matrix for the

Mahalanobis distance). Bocchieri and Doddington [1986] showed that it is im-

portant to use a locally based distance measure in template based recognition.

This distance can be estimated by defining an “average” template for each word,

aligning every template example of that word to the average template, and hence

estimating covariance information for each frame in each template.

HMM-based speech recognisers use local measures for each reference or training

frame where each state in a HMM defines a probability density function (pdf)

which gives a likelihood for a given input frame at that state (described further

in Section 2.4). The multivariate Gaussian function is given by [Jurafsky and

Martin, 2009]:

f (x|µ,
∑

) =
1

(2π)
D

2 |∑| 12
exp

(

−1

2
(x − µ)T ∑−1 (x − µ)

)

(2.29)

where x is the input frame, µ is the mean vector at a given state, and ∑ is the

CHAPTER 2. TECHNICAL BACKGROUND 20

covariance matrix of a group of training frames at the given state (
∑

is often

diagonal).

De Wachter et al. [2004] have shown that the Gaussian function (Equation

(2.29)) can be equated to the distance function of Equation (2.27) by substituting

the mean frame µ for a single reference frame y, taking the negative logarithm of

the likelihood, and removing constants, such that d (x,y) = − log (f (x|y, ∑)) is

given as

d (x,y) = (x − y)T ∑−1
c (x − y) + log (|∑c|) (2.30)

where the reference frame y belongs to a class c from a set of M predefined classes,

giving
∑

c as the covariance matrix of class c. This is termed the local Mahalanobis

distance and when ∑ is diagonal is defined as

d (x,y) =
D∑

i=1

(
xi − yi

σc,i

)2

+ log

(
D∏

i=1

σ2
c,i

)

(2.31)

where, x is the input frame, y is the reference frame for a class c, and σ2
c,i is the

variance, for dimension i of D, of all reference frames contained in c.

Equations (2.30) and (2.31) both assume that all reference frames y in the

reference database R can be grouped into M classes. The partitioning of the

reference frames into M classes can be done using a HMM state alignment which

outputs the state that each training frame is distributed to for pdf estimation —

training frames in the same model (HMM) and state are grouped into the same

class for covariance estimation.

De Wachter [2007] uses a context-independent phone HMM recogniser (i.e. mono-

phones) to define the classes for the TIMIT dataset, which is small dataset of

“phonetically-balanced sentences” [De Wachter, 2007], while a context-dependent

CHAPTER 2. TECHNICAL BACKGROUND 21

phone (HMM) recogniser (i.e. bi-phones, tri-phones) is used to define the classes

for both the RM dataset (described in Section 3.3) and Wall Street Journal (WSJ)

corpus, which is a set of read sentences from the Wall Street Journal newspaper.

Both the RM and WSJ datasets are larger in size than TIMIT (in terms of the

amount of training data). In all cases, the number of state classes is doubled by

integrating gender information into the class distribution — each state class is

partitioned into male and female classes. In this thesis, all classes of reference

frames are defined using the state alignment from a context-independent mono-

phone HMM recogniser and experiments are reported with and without the use of

gender information. The number of classes without gender information is 135 for

the Speaker-Dependent (SD) set (from a set of 44 phonemes + silence, described

in Section 3.2) and 144 for the RM dataset (from a set of 47 phonemes + silence,

described in Section 3.3) with the number of classes for the RM set increasing to

285 when splitting states with gender information (the silence states are not split,

hence the number is not exactly doubled).

2.3.3 Dynamic Time Warp (DTW)

The Dynamic Time Warping (DTW) algorithm is a dynamic programming ap-

proach to matching two sequences of frames of (potentially) different lengths [Ra-

biner and Schafer, 1978]. Specifically, in isolated speech recognition, the task is to

match the input sequence of frames X to all stored reference templates Y ∈ R,

where R represents the reference template database, and find the closest matching

reference template.

The DTW match is performed by “squashing” and “stretching” the reference

template so that it is “time-aligned” with the input sequence (i.e. the template is

warped to match the length of the input sequence) and then finding the distance

between the two sequences using a between-frame distance such as the Euclidean

distance (Equation (2.26)) or the local Mahalanobis distance measure (Equation

(2.31)). Typically local constraints are enforced upon the DTW algorithm that

CHAPTER 2. TECHNICAL BACKGROUND 22

Figure 2.3: Itakura constraints. A transition to point (i, j) is accepted if originating
from points (i,j-1), (i-1,j-1), or (i-2,j-1). However, if transitioning from point (i,j-1),
the previous transition to (i,j-1) can not originate from point (i,j-2), i.e. consecutive
stalls are not allowed.

limits the amount of “squashing” and “stretching” upon the template — a popular

choice of constraints are the Itakura constraints [Itakura, 1975], as illustrated in

Figure 2.3.

The Itakura constraints allow three kinds of movement in the warp: a diagonal

move which means that there is no warp at that point in the template, a stall

move which keeps the alignment at the same frame of the template (a “stretch” of

the template), and a skip move which moves two frames through the template (a

“squash” of the template). The stall constraint also has an additional constraint

that does not allow two consecutive stalls in the warp. The DTW is formulated as

a search for the best warping path through a matrix D of between-frame distances

(template to input) that are appended with the relevant warping costs — at each

point in the matrix (starting at D1,1 and ending at D|Y|,|X|, i.e. the start and

end frames of X and Y), the move (diagonal, stall, or skip) which gives the

minimum distance to the input is chosen. The best warping path can be found by

backtracking from the final element of the matrix D|Y|,|X| by following the warping

moves that are stored during the main iteration. Algorithm 2.1 details the steps

of the DTW algorithm.

The results of matching a short input utterance “my balance” to a template

“my balance”, both spoken by the same speaker, are shown in Figure 2.4. Figures

2.4(a) and 2.4(b) both show the between-frame distance matrix for the reference

CHAPTER 2. TECHNICAL BACKGROUND 23

Algorithm 2.1 DTW algorithm with Itakura Constraints

1: {Initialisation — construct pairwise distance matrix M}
2: for i = 1 to |Y| do
3: for j = 1 to |X| do
4: mi,j = d (yi,xj)
5: end for
6: end for
7: D = M
8:

9: {Calculate alignment cost matrix}
10: {D Cost, H Cost, and S Cost are costs for diagonal, stall, and skip moves

respectively.}
11: for i = 1 to |Y| do
12: for j = 1 to |X| do
13: if Di,j−1 not from stall then
14: Di,j = Di,j+min (Di−1,j−1 + D Cost,Di,j−1 + H Cost,Di−2,j−1 + S Cost)
15: else
16: Di,j = Di,j + min (Di−1,j−1 + D Cost,Di−2,j−1 + S Cost)
17: end if
18: Store move to Di,j

19: end for
20: end for
21: Backtrack from D|Y|,|X| to D1,1 using stored moves for best alignment.

template Y, represented on the y-axis, and the input sequence X, shown on the

x-axis. The darker the shading is, the closer the frames that align in that matrix

element are (in terms of Euclidean distance) — the lighter the area, the further

the frames are from each other. Figure 2.4(b) shows the best warping path (red

line) using the previously described Itakura constraints, whereas the best warping

path in Figure 2.4(a) does not use the stall constraint, i.e. the difference between

Figures 2.4(a) and 2.4(b) is that the DTW in Figure 2.4(a) allows consecutive stalls

— this is illustrated by the more discrete nature of the best path compared to that

of the full Itakura constraints in Figure 2.4(b). Figure 2.4(c) shows the best path

set against the allowable paths when using Itakura constraints. It also displays,

what is termed here, the alignment cost matrix D which is the between-frame

distances of the template and test utterance, summed with the warping costs and

local path distances (each point in the matrix represents the total distance of the

CHAPTER 2. TECHNICAL BACKGROUND 24

path from D1,1 to that point) — again darker entries represent smaller distances.

CHAPTER 2. TECHNICAL BACKGROUND 25

R
ef

er
en

ce
te

m
p
la

te
(Y

)
Input frames (X)

10 20 30 40 50

52

42

32

22

12

2

(a) Between-frame distance matrix with no stall
constraint.

R
ef

er
en

ce
te

m
p
la

te
(Y

)

Input frames (X)
10 20 30 40 50

52

42

32

22

12

2

(b) Between-frame distance matrix with full
Itakura constraints.

R
ef

er
en

ce
te

m
p
la

te
(Y

)

Input frames (X)
10 20 30 40 50

52

42

32

22

12

2

(c) DTW alignment cost matrix showing allowable
entries with full Itakura constraints.

Figure 2.4: DTW of the reference template Y to the input sequence X — both
sequences are two instances of “my balance” uttered by the same speaker.

CHAPTER 2. TECHNICAL BACKGROUND 26

2.3.4 Token Passing Algorithm

Section 2.3.3 was concerned with the DTW algorithm for isolated speech recog-

nition, and thus each reference template is matched to the whole of the input

utterance. This is useful for applications such as recognition of isolated digits, but

the work presented in this thesis is concerned with continuous speech recognition

where the best matching sequence of templates to the input is required.

The Token Passing algorithm formulates the DTW into an abstract process

of passing tokens around a transition network [Young et al., 1989] which then

simplifies the extension to continuous speech recognition. Each template in the

reference database R is represented, as illustrated in Figure 2.5, as a sequence

of connected states, where each state represents a single frame of the template,

and connecting arcs between states represent the different costs associated with

DTW. The Itakura constraints (Figure 2.3) are built into the network explicitly,

with arcs representing the previously discussed diagonal, stall, and skip moves.

The constraint on consecutive stalls cannot be built into the network, but this can

be determined by examining the path history of a token which stores the states

visited by that token.

Figure 2.5: Template formulated as a series of connected states with transition costs.
Each state represents one frame yi from template Y, with an additional start and end
state (all black) which are used to connected templates together in recognition.

A simple model for continuous speech recognition is to allow all templates in R

to follow any other template during the decoding process. This can be modelled

using an ergodic network which is illustrated in Figure 2.6 — this simple example

CHAPTER 2. TECHNICAL BACKGROUND 27

only contains four templates in R, with each state in the ergodic network an

abstract representation of each template state model as defined in Figure 2.5.

Each template is connected to another template via the start and end states with

the arcs connecting them holding zero cost.

Figure 2.6: A template ergodic network. A simple example of an ergodic network
that allows any template to follow any other template for continuous speech recogni-
tion — this simple example contains just four templates. Each state is an abstract
representation of a template which is actually represented as in Figure 2.5.

Once the transition network (template state network + ergodic network) is

defined, each first state of each template is initialised with a token object which

is updated with the between-frame distance of the frame that the state represents

(frame 1 in this case) and the current input frame xt using a suitable distance

measure (e.g. Equations (2.26) or (2.31)); an identifier representing the state is

stored in the token’s path history. The main token passing algorithm then begins,

and is an iteration over the input frames X, where |X| = T , where a copy of each

token is made and then passed to all connecting states, incrementing the current

distance of the token with the transition cost along the arc that the token travelled,

and the distance of the next state’s frame to the current input frame; again the

receiving state’s identifier is stored in the path history. Figure 2.7 illustrates this.

It should be noted that each transition cost is now notated abstractly as aij

where i represents the state that the token is sent from and j represents the

state that receives the token, and that the distance between an input frame and

a reference frame is notated as bj (ot) where j is the template state (and thus

CHAPTER 2. TECHNICAL BACKGROUND 28

represents frame yj) and ot is the current input frame or observation (bj (ot) is

equivalent to d (xt,yj) as in Equations (2.26) and (2.31)). This change of notation

makes the token passing algorithm more abstract and is required in Section 2.4

which shows how the token passing algorithm can also be applied to HMM-based

speech recognition.

Figure 2.7: Token Passing. State j receives tokens 1 and 2 from states i and k

respectively, and updates each token with the respective transition cost aij and akj, as
well as bj(ot) which is the distance between reference frame j and input frame t. The
token with the lowest score at state j is retained with all remaining tokens discarded.

Once all tokens have been copied to connecting states and updated with the

relevant between-frame distances and transition costs, the original tokens that

were copied are discarded. The next step is to, at every state, discard all but the

best token, where the best token is defined as the one with the lowest distance.

This step is equivalent to lines 14 and 16 in Algorithm 2.1, which selects the best

path from the previous steps of the algorithm to the current point. The algorithm

continues to iterate over the input frames with the best path chosen to be the

token with the lowest distance from the remaining tokens after all input frames

are processed. The best template sequence, which is the goal of the recognition

process, can be found by backtracking through the path history of the best token.

Algorithm 2.2 summarises the token passing process.

CHAPTER 2. TECHNICAL BACKGROUND 29

Algorithm 2.2 Token Passing Algorithm

1: {Main iteration of token passing algorithm}
2: for t = 1 to T do
3: for all states i do
4: Pass a copy of the token in i to all connecting states j.
5: Update the tokens distance by adding aij + bj (ot) to it.
6: Add i to the tokens path history.
7: end for
8: Discard the original tokens.
9: for all states i do

10: Search through the tokens at i and discard all except the one with the
lowest distance.

11: end for
12: end for
13:

14: Find best token and backtrack through path history for the best warping path
and template sequence.

2.4 HMM-Based Recognition

Hidden Markov Models (HMMs) have been the primary technique for speech recog-

nition research, taking over from DTW template-recognition in the mid-to-late

1980’s [Rabiner, 1989]. The HMM is a connected state model which is used

to represent speech sounds, such as the phone, by training pdfs and transition

probabilites from some training data. Unlike template-based recognition, there is

usually only one model to represent a sound, with each example of that sound in

the training data used to train the model parameters using the forward-backward

algorithm [Baum, 1972]. Figure 2.8 shows a typical topology for a HMM phoneme

model with three emitting states3, each modelled with a Gaussian Mixture Model

(GMM) which is described below.

A simple HMM may use just a single multivariate Gaussian function at each

state, which was previously defined in Equation (2.29). During decoding, the pdfs

at each state are used to calculate an observation likelihood bj (ot) for an input

3The start and end state are used to link different HMMs together during decoding and do
not model any part of the speech sound

CHAPTER 2. TECHNICAL BACKGROUND 30

Figure 2.8: HMM topology. The HMM has three emitting states (states 1,2,a and
3), where each state’s output is modelled by a GMM. Transition probabilities are given
on each arc between the states.

frame ot at a given HMM state j, which is re-formulated from Equation (2.29) as:

bj (ot) =
1

(2π)
D

2 |∑j|
1
2

exp

(

−1

2

(
ot − µj

)T ∑−1
j

(
ot − µj

)
)

(2.32)

However, using a single Gaussian pdf at each state assumes that the distribu-

tion of the training data is Normal when this might not be the case. Often the

observation likelihood is modelled by mixing more than one multivariate Gaus-

sian together at each state to give a Gaussian Mixture Model (GMM), where the

multivariate Gaussian pdfs are mixed by a weighted summation, given by

bj (ot) =
M∑

m=1

wm

1

(2π)
D

2 |∑jm|
1
2

exp

(

−1

2

(
ot − µjm

)T ∑−1
jm

(
ot − µjm

)
)

(2.33)

where there are M mixture components each with an associated weight wm. The

forward-backward algorithm can again be applied to train the HMMs using GMMs.

2.4.1 Decoding with Token Passing

Section 2.3.4 described how the token passing algorithm [Young et al., 1989] is used

in the decoding process for template-based continuous speech recognition. The

CHAPTER 2. TECHNICAL BACKGROUND 31

templates were formulated as N-state transition models, where N is the number of

frames in the given template, each with transition costs aij from state i to state j

along each arc. The distance between the input frame and the reference frame was

also reformulated as bj (ot) to map to the equivalent measure in the HMM systems,

i.e. the pdf likelihood from Equations (2.32) and (2.33). In HMM-based systems,

the transition costs a are actually probabilities of moving between states in the

HMM, and are trained during the forward-backward algorithm, which also trains

the observation likelihoods. Figure 2.7 is the common topology for the HMM and

DTW-based template systems.

Once the transition probabilities and observation likelihoods are trained for

the HMMs, the decoding process is exactly the same as with the DTW template-

based decoder, i.e. an implementation of the token passing algorithm as defined

by Algorithm 2.2, except that the distances are reformulated as log probabilities.

This gives Algorithm 2.3. The “best” token is defined now by the token with the

highest log probability.

Algorithm 2.3 Token passing with probabilities, not distances

1: for t = 1 to T do
2: for all states i do
3: Pass a copy of the token in i to all connecting states j.
4: Update the tokens logprob by adding log aij + log bj (ot) by it.
5: Add i to the tokens path history.
6: end for
7: Discard the original tokens.
8: for all states i do
9: Search through the tokens at i and discard all except the one with the

highest logprob.
10: end for
11: end for
12:

13: Find best token and backtrack through path history for the best state se-
quence.

HTK (HMM toolkit) [Young et al., 2009] is a popular toolkit to build HMM-

based speech recognisers and then to decode an input sequence using trained

HMMs (using an implementation of the token passing algorithm). HTK was used

CHAPTER 2. TECHNICAL BACKGROUND 32

for all HMM-based speech recognition experiments reported in this thesis. This

section has provided a very brief overview of HMM-based speech recognition; the

interested reader should refer to Rabiner [1989] , for example, for a more in-depth

walk-through of techniques used in speech recognition, or alternatively Gales and

Young [2007] which offers a more up-to-date description.

2.5 Integrating the Language Model into the Recog-

niser

Sections 2.3 and 2.4 were concerned with the definition of the template and HMM,

describing how both approaches to speech recognition can be performed when

using an ergodic network, i.e. a network in which any template or HMM can

follow any other template or HMM when decoding, including itself. Typically in

speech recognition, as defined and described in Section 2.2, a language model is

used to constrain the sequence of templates or HMMs that is recognised.

To integrate the language model with the templates or HMMs, the language

model is viewed as being the top level of a hierarchy, with the templates or HMMs

at the bottom. Figure 2.9 shows how this hierarchy works for a small section of

a language model. The example uses phoneme HMMs, and thus the integration

with the language model requires a pronunciation dictionary where the sequence of

phonemes that define the pronunciation of each word is given. The templates used

in this example are at the word level, and for a simple template-based system, every

template representing a given word in the language model is loaded in parallel. A

backoff mechanism is also included in the figure for completeness.

The template-based system requires a further adjustment; the distances that

are output by the DTW need to be converted to log-likelihoods to fit correctly

with the language model probabilities (the Figure shows the language model

transitions as probabilities, but in reality these are converted to log probabil-

ities). In Section 2.3.2 it was shown how the distance measure of Equation

C
H

A
P

T
E

R
2
.

T
E

C
H

N
IC

A
L

B
A

C
K

G
R

O
U

N
D

33

Figure 2.9: The language model (LM) and HMM / Template Hierarchy. Shows the integration of the LM with the HMM-based
system and the template-based system.

CHAPTER 2. TECHNICAL BACKGROUND 34

(2.27) can be equated to the multivariate Gaussian function of (2.29), such that

d (x,y) = − log (f (x|y, ∑)). Thus, it can clearly be seen that by making the dis-

tance of Equation (2.31) negative an equivalent log-likelihood measure ll is found,

such that

ll = −d (x,y) = −
[

D∑

i=1

(
xi − yi

σc,i

)2

+ log

(
D∏

i=1

σ2
c,i

)]

(2.34)

Finally, there are two more methods that are used when integrating the lan-

guage model with the speech “models”: a language model scaling factor (LMSF)

and a word insertion penalty (WIP) [Jurafsky and Martin, 2009]. The LMSF is

used to balance the probabilities between the language model and the acoustic

models by globally scaling all of the language model probabilities by the LMSF.

The WIP is required after the use of the LMSF because by adjusting the language

model probabilities, the natural “penalty” (e.g. word bigram probability) of tran-

siting from one word to another is reduced, and thus it is likely that the decoder

will prefer a higher number of shorter words (or templates). By adding in an extra

penalty (WIP) for word transitions, the effect of the LMSF can be rebalanced.

Equation (2.35) gives an updated version of Equation (2.5) to include the LMSF

and the WIP [Jurafsky and Martin, 2009]:

ŵ = argmax
w∈L

Pr (X|w) Pr (w)LMSF WIPN (2.35)

where N is the number of words in the word sequence w. In reality, the final term

in Equation (2.35), WIPN , is integrated into the decoding networks (Figure 2.9)

by taking the log of it and adding it to each arc of the LM level.

CHAPTER 2. TECHNICAL BACKGROUND 35

2.6 Vocal Tract Length Normalisation (VTLN)

In Chapter 6, the results of the methods described in Chapters 4 and 5 will be

presented for template-based recognition, including experiments on the speaker-

independent RM dataset (described in Section 3.3). A popular technique used for

speaker-independent speech recognition is called Vocal Tract Length Normalisation

which is used to compensate for the fact that different speakers have different

length vocal tracts — men typically have longer vocal tracts than women and

hence their formants are, on average, lower in frequency. The average length of

the vocal tract4 for a male is 16.9 cm, while the average length for a female is 14.1

cm [Stevens, 2000]. By minimising the effects of the vocal tract, the difference

between two different speakers can be reduced.

Figure 2.10: The effect of VTLN on the Mel-Scale filterbank. The unwarped filter-
bank in the middle is expanded with a smaller warp factor αmin(top) and compressed
with a larger warp factor αmax (bottom). The expanded filterbank (top) will typi-
cally represent a female’s voice, while the compressed filterbank (bottom) will typically
represent a male’s voice.

Experiments and results reported in Chapter 6 use a simple piecewise linear

warping function that is applied in the frequency domain during filterbank anal-

ysis as part of the feature extraction process [Hain et al., 1999], with the im-

plementation that is contained in HTK [Young et al., 2009] used for reported

4The average lengths for the vocal tract are given assuming that that the larynx and lips are
in a neutral position.

CHAPTER 2. TECHNICAL BACKGROUND 36

experiments. Each speaker is normalised by “warping” the frequency axis in the

filterbank analysis stage by the inverse of a warping factor α. Figure 2.10 shows

how the Mel-Scale filterbank is compressed and expanded (warped) depending on

the value of α. The top filterbank represents a low warp factor (and hence high

inverse value) which typically represents a female’s voice, while the bottom filter-

bank represents a high warp factor (and hence low inverse value) which typically

represents a male’s voice. The middle filterbank represents the original unwarped

Mel-Scale filterbank.

Figure 2.11: Piecewise linear warping function. The original frequency axis foriginal

is scaled by the inverse of the warp factor α. αmin and αmax define the range of warp
factors. fupper and flower define the region of the frequency axis that is scaled. Points
fA and fB are examples to show the effects of the warping function. This image is an
adapted version of the one found in Hain et al. [1999].

Figure 2.11 shows the warping function diagrammatically. The warping of the

frequency axis is applied to the axis between two pre-defined points, fupper and

flower which are upper and lower cut-off frequencies that are used as controls to

keep filters within the frequency range. Figure 2.11 shows two example frequencies

on the original axis, fA and fB warped by two different warp factors (αmin and

αmax respectively).

CHAPTER 2. TECHNICAL BACKGROUND 37

2.6.1 Finding Optimal Warp Factors

The warp factor for each speaker is estimated using the technique described in Lee

and Rose [1998] for HMM-based recognition. The warp factor is chosen to be one

of 13 factors in the evenly spaced range 0.88 ≤ α ≤ 1.12 which is chosen to “reflect

the 25% range in vocal tract lengths found in adults” [Lee and Rose, 1998]. For

the training data, the optimal warp factor is estimated for each speaker, with all

warped training utterances used to train a final set of HMMs (described in Section

2.6.1.1), while for the recognition process, the optimal warp factor is estimated

for each utterance (described in Section 2.6.1.2).

2.6.1.1 Training Procedure

To find the optimal warping factors for the training data, the training utterances

for each speaker are split into two equal sets, T and A. T becomes an initial

training set, while A becomes the alignment set. A set of HMMs λ (monophone

HMMs with a single component Gaussian pdf at each state for the application in

this thesis, which follows Lee and Rose [1998]) are built and trained for set T , and

then used in a forced-alignment5 of the utterances in set A for each warp factor,

with the best warp factor for each speaker chosen to be the one which results

in the highest probability from the forced-alignment, such that the best warping

factor α̂i for speaker i is

α̂i = argmax
α

Pr (Xα
i |λT ,Wi) (2.36)

where Xα
i are the set of all utterances for speaker i in set A warped by α, λT are

the set of HMMs trained on set T , and Wi are the word transcriptions for Xα
i .

Sets T and A are then swapped and the training and forced-alignment process is

5Forced-Alignment is where the transcription of the input is already known, and so the process
is to find the correct boundaries between the sequence of models (HMMs or templates).

CHAPTER 2. TECHNICAL BACKGROUND 38

repeated (with set A now the training set and set T the alignment set) and iterated

until the warping factors converge, i.e. there is no significant change in the warping

factors. At this stage, a final set of HMMs λF are trained on the optimally warped

training utterances (using the optimal warping factors from Equation (2.36)).

2.6.1.2 Recognition Procedure

In the recognition process, i.e. with test data, each utterance is warped separately

(as the speaker identity is not known) using a similar technique to that used in

the training procedure described in the previous section. An initial transcription

of the test utterance is retrieved by passing the unwarped utterance Xj through

the recogniser using the normalised models λF . This hypothesised string Wj is

then used as the transcription for a forced-alignment of Xj for the set of warping

factors to find the best warping factor α̂j for utterance Xj, such that

α̂j = argmax
α

Pr
(
Xα

j |λF ,Wj

)
(2.37)

choses the best warping of utterance Xj to be the one with the highest probability

when aligned using the normalised HMMs λF . The warped utterance X α̂
j is then

passed through the recogniser using the λF models to give the final hypothesised

string Ŵj for utterance j.

2.7 Linear Discriminant Analysis (LDA)

Linear Discriminant Analysis (LDA) [Webb, 2002; Duda et al., 2001] is a method

which is applied to n data samples belonging to K classes that linearly projects the

samples into a K−1 dimensional space that best separates the data by maximising

the ratio of the between-class scatter to the within-class scatter. Section 5.4 is

concerned with data of only two classes, a special case known as the two-class

CHAPTER 2. TECHNICAL BACKGROUND 39

problem, where K − 1 = 1, so the data is projected onto a line (see Figure 2.12).

Figure 2.12: LDA projection of data onto a 1D line defined by the vector w. Samples
to the left of (or above) a threshold φ are allocated to class C1 and samples to the
right of (or below) φ are allocated to class C2.

For the two-class problem, we seek to find the projection w which maximises

J (w) =
|wT (µ1 − µ2)|2

wTSWw
(2.38)

where µ1 and µ2 are the sample mean for classes C1 and C2 , which contain n1

and n2 samples respectively. µ1 and µ2 are defined as

µi =
1

ni

∑

x∈Ci

x (2.39)

and SW is the within-class scatter matrix defined as

CHAPTER 2. TECHNICAL BACKGROUND 40

SW =
2∑

i=1

∑

x∈Ci

(x − µi) (x − µi)
T (2.40)

Because it is the direction of w that is required and not the magnitude, the

projection for the two-class problem can be simplified from a generalised eigenvalue

problem (in the multi-class case) [Duda et al., 2001] to

w = S−1
W (µ1 − µ2) (2.41)

where the projected sample y of sample x is given by:

y = wTx (2.42)

Once all of the samples have been projected onto the line, a simple classifier

can be formed by selecting a threshold φ at some point on the projection line and

allocating all projected samples that lie to one side of the threshold to one class,

and all projected samples that lie to the other side of the threshold to the second

class (again, refer to Figure 2.12). The choice of φ will be discussed further in

Section 5.4.2.

Chapter 3

Dataset Description

3.1 Introduction

This chapter describes two datasets used for this work — one is a speaker-dependent

set originally used for an experimental call-routing system (Section 3.2), and the

other is the speaker-independent Resource Mangagement (RM) dataset (Section

3.3). A description of the feature extraction process (into MFCC vectors) is given

in Section 3.4, with Section 3.5 describing the HMM baseline systems. The chapter

ends with a comparison of the templates for each dataset in Section 3.6.

3.2 Speaker-Dependant Call-Routing Data

The first dataset used in this work consisted of transcriptions of telephone calls to

an experimental call-routing system. Customers were invited to call up the system

and to make the kind of enquiry they would normally make when talking to an

operator. Only their initial query utterance was transcribed. The transcriptions

were divided into a training-set of 4773 utterances and a testing set of 902. The

training set vocabulary size is 1504 words, and the test-set size is 569 words after

removal of any utterances that contained out-of-vocabulary (OOV) words.

41

CHAPTER 3. DATASET DESCRIPTION 42

The utterances themselves were of low quality because of factors such as re-

stricted bandwidth, noise and distortions. Because the low accuracy obtainable

from recognising this material could disguise the effects of the formulaic language

that is being investigated here, a single speaker re-recorded the transcriptions us-

ing high quality recording equipment. All original disfluencies in the speech, such

as pauses, repetitions, and grammatical errors, were retained in the recordings.

The original dataset, although read in (American) English, contained speakers

of foreign nationality and so there were observed grammatical errors such as “i

wanna know if if what i do if my card has been stolen” — as stated before, these

grammatical errors were retained as much as possible.

This data was chosen because it contains many commonly occurring phrases

that act as whole utterances, such as “I would like my account balance” (54

instances) and “Can you give me my account balance” (31 instances). If minor

variants of theses phrases are included (e.g. the addition of “please”, substitution

of “I’d” for “I would” etc.), then a few phrases account for a high percentage of

the utterances.

Training data Test data
Total length 3.5 h 40 min
utterances 4773 902
words 51,083 8639
unique words 1504 569

Table 3.1: SD call-routing data information. Shows the length of the training and
test data in hours and minutes, the total number of utterances, and the total number
of words and unique words.

Table 3.1 presents the information about the call-routing data such as number

of hours of speech and vocabulary size.

CHAPTER 3. DATASET DESCRIPTION 43

3.3 Speaker-Independent Resource Management

(RM) dataset

The Naval Resource Management (RM) task [Price et al., 1988] recorded a speaker

independent dataset, consisiting of 109 training speakers for the training set and

40 different speakers for the evaluation set. The speakers have a wide range of

U.S. dialects, with 78 male speakers and 31 female speakers in the training data.

The sentences that were spoken were generated artificially from a grammar,

and consisted of a query task to a naval database, containing information about

ships, and other related properties such as locations, propulsion types, and fuel

sizes. Each speaker was a naive user of the system, i.e. they had no previous

experience with the naval database.

Training feb89 oct89/feb91/sep92
set (dev. set) (test set)

Total length 4.1 h 16 min 50 min
utterances 4358 300 900
words 39,051 2561 7727
unique words 988 576 798

Table 3.2: RM dataset information. Shows the length of the training, development,
and test sets in hours and minutes, the total number of utterances, and the total
number of words and unique words.

Table 3.2 gives detailed information about the RM datasets used in experiments

throughout this thesis. Like De Wachter [2007], the original evaluation set is

partitioned so that a development set can be formed. The feb89 set becomes the

development set, with the oct89/feb91/sep92 sets forming the test set.

3.4 Feature Extraction

Feature extraction is the process of converting the speech waveform into a sequence

of parameter vectors by positioning windows over segments of the waveform, usu-

ally overlapping. Each segment defined by the window is then used to calculate

CHAPTER 3. DATASET DESCRIPTION 44

the feature vector, known as a frame. The features extracted for all datasets in

this thesis are Mel-Frequency Cepstral Coefficients (MFCCs) [Davis and Mermel-

stein, 1980] and are calculated using HTK [Young et al., 2009]. The following are

the brief steps involved in MFCC feature extraction:

1. Preemphasis of the waveform. The energy of higher frequencies is

boosted by using a high-pass filter.

2. Windowing. Apply Hamming window to overlapping segments of the wave-

form.

3. Apply the Discrete Fourier Transform (DFT). The DFT is applied to

each windowed segment of the waveform to determine the energy at different

spectral bands.

4. Mel-Scale Filterbank. A bank of triangular filters (known as channels)

are placed evenly over the frequency bands from the DFT and then warped

by the Mel-Scale to provide the spectral magnitude within each channel. The

Mel-scale stretches the channels at higher frequencies modelling the property

of the human auditory system which is less sensitive at higher frequencies.

20 channels are used here.

5. Log. The log of each of the mel spectrum magnitudes is taken. This models

human hearing which is less sensitive to small changes in amplitude at high

amplitudes than at low amplitudes.

6. Calculate Cepstral Coefficients. Extract the first 12 cepstral coefficients

from the log filterbank magnitudes using the Discrete Cosine Transform.

7. Deltas and Energy. Add the energy of each frame to the 12 cepstral

features to give 13 feature dimensions and add velocity and acceleration

features (the deltas) for each of the 13 defined features to give a final feature

vector of 39 dimensions. The deltas model the change in features (over a

window of 2 frames) over time.

CHAPTER 3. DATASET DESCRIPTION 45

On both datasets, a Hamming window with a width of 20 milliseconds was used

while the frame-rate was set at 10 milliseconds resulting in overlapping windows.

3.5 HMM Baseline Recognisers

For both the SD call-routing and RM datasets, a set of 3-state (emitting) mono-

phone HMMs with 20 Gaussian mixture components defined at each state were

trained using HTK Young et al. [2009]. The number of mixture components was

arrived at experimentally.

The SD call-routing dataset used a set of 44 phones with the silence model

added. The RM dataset used a set of 47 phones with the silence and short-

pause models added. Both datasets were labelled automatically using flat-start

monophones from word transcriptions of each utterance.

3.6 Template Information

Table 3.3 shows the number of templates defined for both datasets used in this

thesis. Although the number of phrase templates is dependent on the acquisition

method to be described in Chapter 4, the final number used in the experiments

of Chapter 5 and Chapter 6 are displayed here to present the full-picture to the

reader. It should be noted that there are word templates that are also contained

within a phrase template, i.e. both templates contain the same sequence of refer-

ence frames.

Dataset SD Call-Routing RM

Vocabulary Size 1505 991
Num. Word Templates 51,083 38,960
Num. Phrase Templates 12,899 11,354
Total Num. Templates + Silence 77,762 64,085

Table 3.3: Dataset template information. Shows the number of word templates,
phrases templates, and total number of templates when combined with silence tem-
plates for each dataset.

CHAPTER 3. DATASET DESCRIPTION 46

The total number of silence templates in each dataset are added to the total

number of word and phrase templates to give the total number of templates for

each system. However, in the experiments reported in Chapter 5 and Chapter

6, a subset of the silence templates are chosen with an even distribution over all

of the available lengths of the silence templates as it is not necessary to store

thousands of examples of the silence template. In reality, there are about 2000

silence templates selected for each dataset.

Chapter 4

Phrase-Based Language

Modelling

4.1 Introduction

As previously stated in Chapter 1, there is a significant amount of pyscho-linguistic

evidence [Goldinger, 1998; Wray, 1999] that suggests that, in production of speech,

humans use ready-made chunks termed, “formulaic sequences” [Wray, 2002], which

“appear to be pre-fabricated, that is stored and retrieved whole from memory

rather than being subject to generation or analysis by the language grammar”

[Wray and Perkins, 2000]. These formulaic sequences in turn lead to the human

listener being primed with a set of formulaic phrases, depending on the context

of the conversation, which can then be used in an efficient perception mechanism

[Pickering and Garrod, 2004]. Given that much of commonplace language is highly

formulaic, this chapter will aim to acquire a lexicon of commonly-occuring phrases

from transcriptions of speech, and then model the human listener by creating

language models that enable the prediction of the given phrases for given contexts.

This Chapter is structured as follows: Section 4.2 gives a survey of the liter-

ature related to phrase integration into language modelling with various applica-

47

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 48

tions such as speech recognition, call-routing, or just language modelling purposes.

Section 4.3 describes the Multigram segmentation model [Deligne and Bimbot,

1995] that is used for phrase acquisition in this study. Section 4.4 introduces a

new clustering algorithm for the acquired phrases called Hybrid Syntactic Formu-

laic (HSF) clustering which adapts Nasr et al. [1999] to use syntactic information

from Parse Trees [Charniak, 2000] to group frequently occuring phrases from the

multigram segmentation. Section 4.5 describes methods for integrating phrases

into the popular N-gram framework by formulating the problem as a language

model topology issue and describes how the phrase classes resulting from the HSF

clustering of Section 4.4 can be integrated into these language model topologies.

Section 4.6 gives the results of these methods in terms of language model perplex-

ity and a speech recognition word accuracy baseline measure using a HMM-based

system. Finally, Section 4.7 summarises the methods and results described in the

chapter.

4.2 Literature Survey

One method to model sequences of words, i.e. phrases, in a language model is

to model the phrases as individual dictionary items in an N-gram model. The

phrases are selected using a phrase acquisition algorithm, and then processed as

a single word would be in N-gram probability estimation. Giachin first applies

a word clustering algorithm1, so that each word is assigned to a class, then pro-

ceeds to acquire phrases which are actually sequences of classes [Giachin, 1995].

Giachin provides details of an optimal procedure and heuristic procedure to iden-

tify phrases. The optimal procedure cyclically determines the pair of words2 that

when connected into a sequence of words results in the largest reduction of per-

plexity on the training text. This iteration repeats until the algorithm converges

1Giachin does not give details of the word clustering algorithm, but the interested reader
should refer to Brown et al. [1992] as an example of word clustering.

2Once words are clustered into classes, the word is replaced by the label of the class that
contains it in the training data, but word in this sense refers to an item in the dictionary.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 49

to minimum perplexity. The heuristic procedure combines words into phrases by

choosing the pair of words that have maximum mutual information. This algo-

rithm continues to iterate as long as the perplexity decreases. The point at which

the perplexity increases is chosen as the stopping point, but, in some cases the

number of phrases chosen can be high, so a second stopping point is introduced,

determined by the number of phrases. Both the optimal and heuristic algorithms

give almost identical performance in terms of perplexity reduction, both achieving

approximately a 20% reduction in test set perplexity relative to a baseline word

bigram model. The best WER achieved using the phrase bigrams reduced the

WER by 2% absolute over the word bigram baseline.

Nasr et al. [1999] describe a method that combines Stochastic Finite State Au-

tomata (SFSA) [Parekh and Honavar, 2000], which represent classes of phrases,

and N-grams which model the global relationships between the local SFSA models.

Phrases are acquired from the training data by partially parsing the data (anno-

tated with Parts of Speech (POS) tags) with a greedy finite state parser. The

partial nature of the parser means that whole sentences are not parsed, while the

greedy nature of the parser means that the first rule that fits the data’s structure

is used to parse the data. The parser will only acquire phrases of recognised con-

stituents (e.g. a noun phrase). Phrases are then grouped into classes based on their

context, i.e. phrases of the same constituent appearing in the same left and right

context are grouped together. At this point, classes are discarded if the number

of phrase tokens3 is less than a pre-defined threshold. A vector based (frequency

of each phrase) class merging procedure is then applied, which iteratively merges

the two closest classes until their distance is larger than a threshold. For each

class, an SFSA is built. The original training text is rewritten with class labels in

place of phrases, and an N-gram model is built. At the time of decoding, a phrase

has a global probability, represented by the N-gram probability of the label of the

class that contains it, and a local probability, which is the probability through

3The number of phrase tokens is the count of all phrases within the class including the number
of occurrences of each phrase. Phrase types refers to the number of different phrases within a
class.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 50

the SFSA that represents the class that contains it. The two probabilities are

combined to provide the overall probability of the phrase. It does not appear as

though the SFSAs are actually used for anything other than structural purposes,

i.e. the probabilities are in fact just relative frequency. Nasr et al. report an 8%

reduction in test set perplexity on a french dataset of telephone communications

(CNET’s AGS corpus), but report a 14.2% reduction in perplexity on sentences

containing eight or more words. No speech recognition experiments were reported.

Arai et al. [1999] describe a grammar fragment acquisition method which they

use in an automatic call-routing application. Phrases are first constructed from

the training data by counting all sequences of words up to three (this could be

any number, but three is chosen for their experiments). If these phrases have a

frequency greater than some threshold then the phrases become fragments. The

fragments represent the phrase in an FSA (Finite State Automaton). Each frag-

ment has a list of the preceding and succeeding phrases that surround it, and the

number of times that those phrases appear with the fragment. Each fragment also

contains a list of the call-types that it is used in — this is a semantic association

and is relevant for call-routing purposes. To cluster fragments, the most frequent

fragment that has not been clustered already is used as the reference, and the

remaining fragments are sorted by distance from the reference fragment. Three

distances are calculated (one for the preceding phrase distribution, one for the suc-

ceeding phrase distribution, and the final one for the call-type distribution) using

the Kullback-Leibler distance measure, and the fragments that commonly occur in

all three distance lists are considered a good match for the reference fragment and

are clustered together with the reference. The clustering continues to iterate until

all fragments have been clustered. Arai et al. also apply a generalisation method

to the fragments which finds substrings within the current fragment that are also

fragments which appear more frequently than the current fragment. If this is the

case, the label of the more frequent fragment replaces the substring in the current

fragment. This results in the modelling of unseen phrases from the training data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 51

Lin et al. [1997] describe a key-phrase spotting system that uses a combination

of N-grams and finite state grammar (FSG) models. The FSG models are used to

cover all of the key-phrases while the N-gram (specifically trigrams in experiments)

model is used for non-key-phrases. The FSG is triggered when the decoder spots a

word that starts the FSG — the FSG and N-gram model are then run side by side

in parallel. The two models essentially compete, with the likelihood scores being

compared. If the input can fully traverse the FSG and have a higher likelihood

than the N-gram, then a key-phrase is judged to have been found. The FSG has

an initial boost factor which determines how easy it is for the FSG to be entered,

and a selective penalty factor which provides varying levels of punishment for the

FSG depending on the depth of traversal through the FSG. These measures, which

are chosen by hand, were introduced to help generalise the model, i.e. to minimise

the effect of a change of application. On a task to detect and recognise 7-digit

telephone numbers within sentences of read speech, the model achieves a 4.8 %

word error rate which is a 69 % relative reduction to the baseline trigram model

which achieved a 15.3% word error rate.

Continuing with this hierarchical type language model, Galescu and Allen

[2000] describe an example of such a model that consists of a trigram layer at the

top and an SFSA underneath to model sub-word units for numbers. This model,

called the hierarchical hybrid statistical language model (HSLM), is an attempt to

improve adaptation of language models. The idea is that the top trigram layer

is adapted using current interpolation methods [Kneser and Ney, 1995], whereas

the sublanguage models (SFSAs) are left unchanged, although the sublanguage

models can be adapted with data from other sources, which does not affect the

trigram layer. The experimental model uses only one sublanguage model, for dec-

imal numbers, as mentioned earlier, which is trained using a regular expression to

identify all decimal numbers in the training data. The basic unit of the sublanguge

model is the grapheme, i.e. a character. The HSLM achieves small improvements

over the baseline adapted model in terms of adjusted perplexity4.

4Adjusted perplexity is a measure introduced to accurately compare perplexity between mod-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 52

Solsona et al. [2002] propose a language model for a spoken dialogue system

which combines a state-independent N-gram model with a state-specific FSG.

The FSG is used to recognise commonly occuring phrases, and is run in a separate

recogniser in parallel with the N-gram-led recogniser. Using an acoustic confidence

measure (phone-based likelihood ratio) [Jiang et al., 2001], the “best” results from

one of the recognisers is chosen as the final decoding, i.e. the only combination of

the two recognisers (and thus language models) is the comparison of their results

using the confidence measure.

Deligne and Sagisaka [2000] describe a class-based n-multigram which retrieves

phrases of varying length (multigrams) and then estimates N-gram probabilities

between them. The clustering and phrase acquisition is an iterated two-step pro-

cedure. Step one finds the maximum likelihood (ML) segmentation of the training

data into phrases using N-gram estimations (for an initial segmentation, the rel-

ative frequency (unigram probability) is used). Step two finds the optimal mem-

bership of phrases into classes by moving each phrase from its current class to the

remaining classes and calculating the likelihood after each move (initially the N

most frequent phrases are added to their own class, and the remaining phrases are

all placed into one class from which phrases can only be removed). The phrase

exchange that results in the overall best likelihood is chosen for the current iter-

ation. The new N-gram distribution is then calculated and the algorithm repeats

until the likelihood has converged (i.e. no exchange of phrases results in an in-

crease in likelihood) or until a predefined number of steps are complete. Deligne

and Sagisaka construct a bi-multigram model (without classes, i.e. using just the

ML segmentation of the training data) and a class-based bi-multigram model and

interpolate the two models for speech recognition tests on the ATIS database5.

The interpolated model achieves a 10 % relative reduction in the word error rate

compared to that of the word trigram baseline.

els that contain a different lexicon. It adjusts the perplexity by a quantity based on the number
of unknown words in the test set, and the number of their occurrences.

5Air Travel Information System (ATIS) database. ATIS contains utterances of customers
speaking over the phone to make airline reservations.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 53

Wray et al. [2004] describe a speech translation system for sign language in a

post office which uses a speech recogniser to determine what the post office clerk

has said (decoded into an N-Best list, from which the clerk chooses the closest

match), and then translates the text into sign language via a computer generated

avatar. The system uses an FSA to represent hand-picked phrases which are chosen

as formulaic phrases [Wray, 2002] — the system attempts to model commonly

occurring phrases within the context of the post office, and includes open slots in

the phrases to allow for small variations in the wording [Cox, 2002].

Finally, it should be noted that all previously reported results in this literature

survey are on academic systems, and by no means represent an upper bound on

speech recognition performance. Nuance’s speech recognition software, Dragon

NaturallySpeaking 10, claims to achieve 99% accuracy while recognising upto 160

words per minute [Nuance, 2008]. The software allows users to dictate straight

into a word processor document and also control the operating system with simple

commands, such as “start menu”, “send an email to”, etc. While not specified, it

is clear that the command and control interface uses pre-defined phrases, although

it is not clear whether or not the phrases are defined soley at the grammar level

or at the acoustic level also.

4.3 Phrase Acquisition using Multigrams

The segmentation of utterances from transcriptions of speech is one method of

phrase acquisition (each segment being a group of one or more successive words

from an utterance). Outlined below is a Maximum Likelihood (ML) approach to

segmentation using variable-length word sequences which are known as Multigrams

[Deligne and Bimbot, 1995, 1997b; Deligne and Sagisaka, 1998, 2000].

The multigram model is designed to retrieve “sequential variable-length regu-

larities within streams of observations” [Deligne and Bimbot, 1997b]. This notion

/ model fits very well to the idea of formulaic phrases [Wray, 1999, 2002] in which

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 54

phrases of different lengths repeatedly occur in a collection of utterances. The

multigram model is a general model that can be applied to any stream of obser-

vations — it has also been applied to vector quantised (VQ) audio speech data

[Deligne and Bimbot, 1997a].

In this work, the goal is to segment text utterances into phrases. The observa-

tion stream is the current utterance, and the words within the utterance are the

observation symbols. Deligne and Bimbot [1997b] describes the multigram model

as a production model (see Figure 4.1) where some source emits a sequence of

multigrams Z where each multigram is a variable-length sequence of observations.

The observation stream O is segmented into one or more segments in S, and each

segment equates to a multigram zi in Z.

Figure 4.1: The Multigram Production Model (reproduced from Deligne and Bimbot
[1997b]). Each multigram zi emits a sequence of observation symbols which when
concatenated form the observation sequence O. The multigrams, Z, can be retrieved
from O by finding the correct segmentation S of O.

Before segmenting the utterances, several initialisation steps are performed.

The first step is to construct an initial set of multigrams. This is done by con-

structing sequences of words (phrases) of length 1 to L at each word in each

utterance of the training data. For example, the utterance “what is my account

balance” contains the following initial multigrams for L = 3: what, what is, what

is my, is , is my, is my account, my, my account, my account balance, account,

account balance, balance. For each of these constructed phrases, a frequency count

is made using a hash table. Algorithm 4.1 summarises the initial multigram con-

struction.

After the initial multigrams have been constructed, a threshold, θ1, is applied

so that any multigrams appearing in the training text less than θ1 times are

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 55

Algorithm 4.1 Constructing the initial set of multigrams.

1: {U is the set of utterances}
2: {|ui|) is the number of words in utterance ui}
3: for i = 1 to |U| do
4: for j = 1 to |ui| do
5: curPhrase= ǫ
6: for k = j to j + L do
7: Add word k to curPhrase
8: if curPhrase exists in hash then
9: Increment the count C(curPhrase)

10: else
11: Add curPhrase to hash
12: end if
13: end for
14: end for
15: end for

discarded, except for single word multigrams (e.g. my, is, account etc.) which

are retained to ensure that an utterance can always be completely segmented. The

unigram probability of each of the remaining multigrams is then estimated using

the frequency counts:

Pr(mi) =
C(mi)

∑

j∈M C(mj)
(4.1)

where mi is the current multigram, C(mi) gives the number of occurences of mi,

and M is the total number of different multigrams.

Following the unigram estimation, each utterance can then be segmented using

the Viterbi algorithm. What follows is a description of the implementation of

the segmentation using Hidden Markov Models (HMMs) — using HMMs is a

convenient implementation, but not essential to the segmentation.

A HMM is constructed for each of the initial multigrams. In each model, there

is a separate state for each word with transition probabilities between each word

state being 1.0. Figure 4.2 shows the HMM that is constructed for the multigram

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 56

“i want my”. Each state also has a set of observation probabilities (shown above

the states), where each word in the vocabulary is given a probability of observing

that word given the current state. In this work, the observation probabilities have

a discrete distribution, such that the word that the current state represents has

an observation probability of one and all other words in the vocabulary have zero

probability.

Figure 4.2: A HMM for the multigram “i want my”. Each state contains a set of
discrete observation probabilities (shown above the states) where the word representing
the state has a probability of 1.0, and all other words have a probability of 0.0.

After the initialisation steps are complete, the iterative segmentation can begin.

For each utterance that is to be segmented, a decoding network is generated (see

Figure 4.3). This network, also known as an Ergodic network, allows any multi-

gram HMM to be connected to any other multigram HMM within the context of

the current utterance — the search space is pruned by only adding the multigram

HMMs that can be applied to the utterance (using basic string comparison). For

example, the decoding network in Figure 4.3 has been constrained for the utter-

ance “i want my account balance”. It shows the transition probabilities between

states, where the first set of transitions leading from the start state6 (state to far

left filled in black) are the unigram probabilities as calculated in Equation (4.1),

and the internal transition probabilities (between words) are 1.0 as previously

mentioned. The end state, on the far right, is used to either loop back to the

start, or to terminate the segmentation.

The decoding network is used to segment the utterance using the Viterbi search,

6This state is merely used a point to loop back to, and thus to connect multigrams. It has
no observation probabilities, and all arcs into it have a probability of 1.0.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 57

Figure 4.3: A unigram decoding network for a restricted set of multigrams. The
network is used to segment the utterance “i want my account balance”. The solid
black states are the start-state and end-state, with a loop-back connection from the
end-state to the start-state. The initial arcs from the start-state represent the unigram
probabilities of each multigram. Each sequence of word-states between the start-state
and end-state represent seperate HMMs.

implemented with the Token Passing algorithm (Section 2.3.4), which chooses the

sequence of multigrams which gives the highest probability for the give utterance.

The discrete observation probabilities ensure that sequence of multigrams matches

the input utterance correctly (in terms of string matching). For the given network

in Figure 4.3, the Viterbi algorithm would find the best (in terms of maximum

likelihood (ML)) segmentation to be “[i want] [my account balance]” with a prob-

ability of 1.96× 10−3. Comparing that to the probability of the segmentation “[i]

[want] [my] [account] [balance]”, giving a probability of 7.87 × 10−6, shows that

even though the unigram probabilities of each multigram in the segmentation are

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 58

higher than the multigrams in the best segmentation, when combined in to a se-

quence of multigrams, the probability of the sequence will increase when fewer

combinations of multigrams are used, and hence longer units will be chosen.

Algorithm 4.2 Segmentation algorithm for the training data

1: while Segmentation has not converged do
2: for i = 1 to |U| do
3: Create decoding network for ui.
4: Segment ui using Viterbi with decoding network.
5: end for
6: Re-count multigrams in latest segmentation.
7: Apply threshold, θ2, to multigram counts.
8: Re-estimate unigram probabilities of remaining multigrams.
9: end while

After each utterance has been segmented, the number of occurrences of each

multigram appearing in the segmentation are found. A second threshold, θ2, is

applied to the counts of multigrams of two or more words (only), and the unigram

probabilities are re-estimated as before. Any single word multigrams that are not

contained in the segmentation (but are contained in the vocabulary of the training

data) are re-introduced into the multigram vocabulary and are assigned a small

probability (1 × 10−99) to ensure that all utterances can be segmented fully.

The segmentation of the training utterances, followed by re-estimation of multi-

gram probabilities, continues to iterate until a convergence of the segmentation

is found: this is when the segmentation no longer changes, or when a pre-defined

number of iterations for the algorithm is reached. Algorithm 4.2 summarises this

process and Appendix A shows some samples of actual segmented utterances from

the datasets used in this work (Chapter 3).

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 59

4.4 Phrase Clustering using a Hybrid Syntactic

and Formulaic Approach

For human-to-human dialogue, there is pyscho-linguistic evidence that in a par-

ticular context in a dialogue, the human listener is primed with a set of semantic

expectations [Pickering and Garrod, 2004], and these in turn may prime an ap-

propriate set of formulaic phrases that the listener expects to hear.

Given this motivation, it is useful to try and define the semantic function of

the commonly-occurring phrases acquired by the multigram segmentation: for

instance, phrases such as “i’d like to”, “could i please”, and “may i” have the

same semantic function of expressing a desire for some action. Interpreting the

semantics of phrases is very difficult, due to factors such as ambiguous lexical

items, competing anaphoric references7[Nouwen, 2003], and ambiguous quantifier

scopes [Jurafsky and Martin, 2009].

So, we rely on the fact that, in the case of applications where ASR is used for

the provision of information and services over the telephone network (Section 3.2),

phrases that have similar semantics often also have a similar syntactic function:

for instance, the phrases previously defined all appear at the start of an utterance

and will be followed by some form of a verb phrase in which the speaker defines

his request.

As described in Section 4.2, Nasr et al. [1999] introduced a method for acquiring

and grouping phrases using only the information from the parse tree. Phrases are

extracted using a greedy parser, and then grouped into classes based on their

constituent type, and the surrounding context. Every phrase that is acquired in

this process is a legal constituent within the parse tree.

The remainder of this section describes a hybrid clustering method which

adapts the work of Nasr et al. [1999] and uses the phrases acquired from the multi-

7An anaphoric reference is when a word or phrase refers to, or is related to other items in a
given text. For example, in the sentence “Jim was bored, so he turned on the t.v.”, the word
“he” refers to “Jim”.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 60

gram segmentation, described in the previous section (Section 4.3), and groups

together the phrases that have a similar syntactic use by extracting information

from parse trees.

4.4.1 Clustering with Parse Trees

Figure 4.4 shows the most probable parse tree generated by the Charniak parser

[Charniak, 2000] for the utterance “i’d like to get my balance”. Each leaf node of

the tree represents the words of the utterance, and each parent of the leaf nodes

represent the Parts of Speech (POS) tags for the given words. All levels above

that define different constituents, such as noun phrase (NP) or verb phrase (VP),

which are defined by a combination of POS tags. Appendix B gives the complete

list of POS tags and constituent definitions for the Penn Treebank which is used

by the Charniak parser.

Figure 4.4: A parse tree for the utterance “i’d like to get my balance”.

The clustering of phrases requires two inputs for each utterance: The corre-

sponding parse tree and maximum-likelihood (ML) segmentation. For the sen-

tence “i’d like to get my balance”, a parse tree could look like that of Figure 4.4.

The ML segmentation of that utterance might be [i’d like to get] [my balance].

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 61

The phrases generated by the segmentation are then searched for in each parse

tree, and assigned a label. An example of the construction of this label is given

here for the utterance shown in Figure 4.5:

1. Find start and end word of the phrase and merge their POS tags: e.g. for

“i’d like to get”, the POS for “i” is PRP, and the POS for “get” is VB. These

are merged together to form “(PRP VB)”8.

2. Append contextual information to each phrase label. Take the initial label of

the phrases (from (1) above) to the left and right of each phrase and append

them to the current phrase label: e.g. the initial label of “i’d like to get” is

updated with the left context “Null”, and the right context “(PRP$ NN)”,

which represents “my balance”, to produce the final phrase label “Null-

(PRP VB)-(PRP$ NN)”. “Null” is used whenever there is no context, i.e. at

the start and end of utterances.

This approach differs from that of Nasr et al. [1999] in that they attempt to

define phrases using the parse tree. Such phrases will conform to the analysis

of the parser, but may not be as frequently occurring as phrases found by the

multigram segmentation. In fact, many frequently occurring phrases occur across

the grammatical divisions defined by the parser and so would not be found using

their approach. For example, in Figure 4.5, “my balance” actually matches the

NP constituent perfectly, but “i’d like to get” crosses the division of NP and VP.

Once all phrases have been tagged with a label, the next step is to group all

phrases that have identical labels, excluding the right context: for example, the

phrase “my balance”, as shown in Figure 4.5, would be grouped with phrases

whose labels begin “(PRP VB)-(PRP$ NN)”. After all phrases are grouped in

this manner the initial classes have been created. Our method, which applies

tags based on POS tags, allows phrases to appear in more than one class because

8When the current multigram from the segmentation is a single word, the labels are treat
slightly differently: the constituent type, e.g. NP or VP, is used as the label.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 62

Figure 4.5: Phrase labelling using parse trees.

of contextual grouping (i.e. phrases that contain the same words, not the same

phrase instance), and hence the fuzzy clustering produces a large number of initial

classes (approximately 12000).

To reduce the number of phrase classes, a similar method to Nasr et al. [1999] is

employed, where the classes are iteratively merged to a pre-defined number using

a vector-based approach. The following section describes this merging process in

more detail.

4.4.1.1 Class Merging

Given the initial classes, a class merging algorithm is applied which, with each

iteration, merges the “closest” pair of classes, until a pre-defined number of classes

is reached. This is achieved by using the cosine similarity measure: if V is the

set of phrase types from the segmentation, then each class is represented as a

vector of length |V |, where each element of the vector is the count of each phrase

within the current class. All classes are then processed in a pairwise manner, with

the most similar pair, in terms of cosine distance, being merged together. This

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 63

iterative process then continues until a pre-determined number of classes remain.

The cosine similarity of two classes C1 and C2 is given by:

CosSim(C1, C2) =
C1 • C2

|C1| × |C2|
(4.2)

where, C1 and C2 are the phrase vectors of classes C1 and C2 respectively, and

|C1| and |C2| are the vector norms of classes C1 and C2 respectively.

The vector norms, |C1| and |C2|, can be pre-calculated before the merging

process begins, but for each pair of merged classes, the vector norm of the newly

merged class needs to be recalculated for the new values. The vector norm for a

class, Cx, is given by:

|Cx| =

√
√
√
√

|V |
∑

i=1

Cx (i)2 (4.3)

where, |V | is the size of the phrase vocabulary and thus the length of each vec-

tor, and Cx (i) gives the count of phrase i within the class Cx. Algorithm 4.3

summarises the class merging procedure.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 64

Algorithm 4.3 Class merging process using cosine similarity

1: pre-calculate norms for all classes
2: while numOfClasses > finalNum do
3: closestSim = −∞
4: for i = 1 to numOfClasses do
5: for j = i + 1 to numOfClasses do
6: curSim = CosSim(Ci, Cj)
7: if curSim ≥ closestSim then
8: closestSim = curSim
9: iBest = i

10: jBest = j
11: end if
12: end for
13: end for
14: merge(CiBest, CjBest)
15: recalculate norm for new class
16: end while

4.5 Integrating Phrases with N-Grams

Given that we have acquired a set of frequently occurring phrases, this section

describes several methods that can be used to integrate the phrases into a language

model. Section 4.5.1 describes different topologies for language models that can

be used to integrate the phrases, while Section 4.5.2 describes the methods used

to integrate classes of phrases into the language model.

4.5.1 Language Model Topologies

Given that the training text utterances are segmented using the ML multigram

segmentation, a simple bigram language model can be built from that segmen-

tation, i.e. counting bigrams of phrases (which also includes one word phrases).

Figure 4.6 shows a section of that model, which we call the Phrase-Bigram (PB),

that is relevant to decoding a test utterance “can i get my payment address please”.

Arcs with solid lines connecting two states represent a bigram seen in the training

segmentation, while dashed-line arcs represent backoff transitions. Although the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 65

figure shows two backoff states, the reader should be aware that there is in fact

only one backoff state in the PB model — two backoff states are used to make

the figure clearer. The reader should be aware that in a backoff language model,

that all states contain a transition to the backoff state9, and all states contain

a transition from the backoff state10, although Figure 4.6 only shows the backoff

transitions that are required for the given test sentence.

For the PB language model shown in Figure 4.6, it should be clear that there is

no direct path between word and phrase states to decode the given test utterance,

i.e. without using backoff. This is because in the training segmentation, there

is no context that exactly matches the test utterance — the closest matching

context is “[can you give me my] [payment address please]”. The bigrams “get

my” and “[can i get] [my account balance]” offer part of the context required for

the test utterance, but transitions through the backoff state are still required,

and as mentioned in Section 2.2, the unigram probabilities are then used. The

following group of equations show the log probabilities of the different decoding

paths through the PB language model of Figure 4.6 for the given test utterance:

log(Pr(“[can] [i] [get] [my] [payment] [address] [please]”|PB)) = −45.12 (4.4)

log(Pr(“[can i get] [my] [payment] [address] [please]”|PB)) = −32.19 (4.5)

log(Pr(“[can] [i] [get] [my] [payment address please]”|PB)) = −34.53 (4.6)

log(Pr(“[can i get] [my] [payment address please]”|PB)) = −21.60 (4.7)

It is clear that if the training data does not contain the same or similar contexts

to the test data then, if the PB language model is used, there will be a poor

representation within the language model. Although the backoff allows any word

in the vocabulary to be recognised, it offers a poorer predictor as it then leads

to unigram probabilities guiding the search. Equation (4.4) summarises this by

9Except for the end state of the model (e.g. !END).
10Except for the start state of the model (e.g. !START).

C
H

A
P

T
E

R
4
.

P
H

R
A

S
E

-B
A

S
E

D
L
A

N
G

U
A

G
E

M
O

D
E

L
L
IN

G
66

Figure 4.6: Phrase-Bigram (PB) language model. All transitions required to parse the input utterance “can i get my payment
address please” e.g. not all backoff transitions are shown. Log-likelihoods are shown on the arcs between nodes, and the backoff
state, represented by empty brackets “()”, is shown twice for readability of the figure (it only occurs once in the actual model),
with transitions to-and-from the backoff state shown in dashed lines — note that transitions to the backoff state represent backoff
weights, hence why there are some arcs with values greater than zero.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 67

showing that the log probability of the sequence of all word states that match

the test utterance is −45.12: this sequence consists of mainly backoff transitions,

except for the transition from the start state to the state for “can”, and the

transition between the “get” and “my” states. The most probable sequence of

states for the test utterance “can i get my payment address please” is to start

in the “can i get” state, with a backoff to the “my” state, ending with another

backoff to the “payment address please” state (Equation (4.7)). This leads to

a much higher log probability compared to other sequences through the model

(Equations (4.4) to (4.6)).

If the phrases acquired from the multigram segmentation offer good coverage

for the test data, then the PB language model could provide a good basis for a

speech recogniser — the problem with the PB model is that it will start to fail

as the test data becomes more dissimilar to the training data, for two reasons:

the first reason is that the acquired phrases will be less likely to appear in the

test data, and thus the backoff transitions to word states will be required, and

the second reason is that if the backoff is used, it is not always the case that the

required word will exist as a distinct multigram.

For example, the number of distinct words in the SD training data is 1504,

but in the segmentation of the training data, there are only 1446 distinct words

(i.e. words that are not contained within a phrase). This results in 24 words in the

test data that are no longer represented by single words, i.e. there are effectively

24 out-of-vocabulary (OOV) words in the test data. This side effect means that,

in some cases, it will be impossible to accurately recognise an utterance perfectly.

To clarify, take the test utterance “i wanna add a one time buyer to my account”.

The word “buyer” is not contained as a single word in the training segmentation

— it is contained within the training phrases “as an authorized buyer”, “from

my account as an authorized buyer”, and “an authorized buyer”. The available

training phrases mean that it is impossible to recognise the given test utterance

perfectly.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 68

A simple solution to this problem is a language model that we term the Word-

Phrase Bigram (WPB). This model combines the word bigram (WB) model (de-

fined in Section 2.2) with the PB language model and is defined by the following

Set Theory expression:

WPB = WB ∪ (PB \ (WB ∩ PB)) (4.8)

where WB is the set of all word bigrams in the training text, and PB is the set

of bigrams from the multigram segmentation.

Equation (4.8) essentially combines all of the bigram counts within the PB

framework with those of the WB model except those that also occur in the WB

language model, i.e. the counts of bigrams of words (or one-word phrases to fit

with previous language) remain the same for the WPB model as they do for the

WB model even if the bigrams were seen in the segmentation used to define the

PB model. This step is necessary because if all counts of bigrams (from WB and

PB) were just combined and then used to generate a language model, then some

of the word bigrams would be biased as they would have essentially been counted

twice.

Figure 4.7 shows, as with Figure 4.6 for the PB model, the section of the

WPB language model required for the example test utterance: “can i get my

payment address please”. Each state, as before, contains both a transition to the

backoff state and an incoming transition from the backoff state which represents

the unigram probability of the current state. In Figure 4.7 though, not all of the

backoff transitions are shown — only the transitions that are required to decode

the test utterance are shown.

It is clear to see from Figure 4.7, in comparsion to Figure 4.6, that there are now

bigram transitions between word states (because of the inclusion of WB counts)

as well as the previously existing phrase bigrams from PB. The model can traverse

C
H

A
P

T
E

R
4
.

P
H

R
A

S
E

-B
A

S
E

D
L
A

N
G

U
A

G
E

M
O

D
E

L
L
IN

G
69

Figure 4.7: WPB (word + phrase bigram) language model. All transitions required to parse the input utterance “can i get my
payment address please” e.g. not all backoff transitions are shown. The backoff state is represented by empty brackets “()”, and
log-likelihoods are shown on the arcs between nodes.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 70

between the word states and the phrase states via the backoff state where a direct

bigram transition does not exist. As with Equations (4.4) to (4.7) for the PB

model, the following equations show log probabilities of different paths through

the WPB language model for the test utterance:

log(Pr(“[can] [i] [get] [my] [payment] [address] [please]”|WPB)) = −17.53 (4.9)

log(Pr(“[can i get] [my] [payment] [address] [please]”|WPB)) = −17.20 (4.10)

log(Pr(“[can] [i] [get] [my] [payment address please]”|WPB)) = −22.03 (4.11)

log(Pr(“[can i get] [my] [payment address please]”|WPB)) = −21.70 (4.12)

Clearly, as Equation (4.9) shows compared to Equation (4.4), the probability

of an entire sequence of single word states given the WPB model for the test

utterance is much higher than in the PB language model due to the inclusion

of the word bigrams. Equations (4.10) and (4.11) also show a large increase in

probability compared to Equations (4.5) and (4.6) respectively — each sequence

essentially splits the test utterance in half, with one half of the parse using word

states and the other a phrase state, with a backoff transition connecting the two

“layers”. The sequence defined in Equation (4.12) actually has a slightly lower

probability than the same sequence in the PB model (Equation (4.7)) which is due

to the fact that the same backoff transitions are used and so the slight difference

in probability is due to the change in probability mass after the inclusion of the

word bigrams.

The WPB language model offers a more flexible and generalised topology than

the PB model, but still, a large number of transitions between word and phrase

states will take place via a backoff transition and thus the preferred route through

the language model during recognition will be, generally, to remain within the

word states or phrase states — with the word states becoming more likely as the

the test data becomes more diverse in comparison to the training data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 71

To offer more generalisation to the language model and to reduce the num-

ber of backoff transitions used, we define the Word Phrase Link Bigram (WPLB)

language model. The WPLB model extends the WPB language model by creat-

ing bigram connections between word states and phrase states (see Figure 4.8),

where none exist already, using the training segmentation: for every occurrence of

phrases of more than two words occurring next to each other in the segmentation

(i.e. phrase bigrams), new counts are made for the end word of the left phrase

and the whole of the right phrase, and then the whole left phrase with the start

word of the right phrase. For example, Figure 4.7 shows that the “[can i get] [my

account balance]” bigram is seen in the training data (and hence there is an arc

connecting the two states). This bigram then leads to two further bigrams, as

discussed, that were previously unseen — the end word of the left phrase “get”

and the whole right phrase gives the bigram “[get] [my account balance]”, and

then the whole left phrase with the start word of the right phrase “my” gives the

bigram “[can i get] [my]”. These new connections can be seen in Figure 4.8.

The effect of adding these bigrams to the model can be seen in Equations (4.13)

to (4.16). It can be seen that, in comparison to Equations (4.9) to (4.12) for the

WPB model, the probability has now been increased for sequences that contain

phrases, and in fact, all but one of the sequences containing phrases (Equation

(4.15)) has a higher probability than the sequence containing purely words (Equa-

tion (4.13)) — this is because the first part of the sequence (Equation (4.15))

transits through the word states “[can] [i] [get]” where the phrase state “[can i

get]” has a higher cumulative probability than the three word states due to it

being a common phrase (especially at the beginning of an utterance).

C
H

A
P

T
E

R
4
.

P
H

R
A

S
E

-B
A

S
E

D
L
A

N
G

U
A

G
E

M
O

D
E

L
L
IN

G
72

Figure 4.8: WPLB (word phrase link bigram) language model (LM). All transitions required to parse the input utterance “can i
get my payment address please” e.g. not all backoff transitions are shown. The backoff state is represented by empty brackets “()”,
and log-likelihoods are shown on the arcs between nodes. Arcs in bold blue show the new transitions added to transform the WPB
LM into the WPLB LM.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 73

log(Pr(“[can] [i] [get] [my] [payment] [address] [please]”|WPLB)) = −18.53

(4.13)

log(Pr(“[can i get] [my] [payment] [address] [please]”|WPLB)) = −17.21 (4.14)

log(Pr(“[can] [i] [get] [my] [payment address please]”|WPLB)) = −19.64 (4.15)

log(Pr(“[can i get] [my] [payment address please]”|WPLB)) = −18.32 (4.16)

4.5.2 Integrating phrase classes

Given that the phrases (including single words contained in the training segmen-

tation) have been clustered using the method described in Section 4.4 (or any

other method for that matter), the question is how can these clusters be used for

language modelling?

A standard approach is to replace all phrases in the training segmentation

with their respective class label [Nasr et al., 1999], and then estimate N-gram

probabilities as before — all previously defined language models (WB, PB, WPB,

and WPLB) can be adapted in this way. Figure 4.9 is an adapted version of Figure

4.8 (the WPLB model) that shows how phrases are replaced with their class label

— this adapted model is termed the Word-Phrase Class Link Bigram (WPCLB)11.

The states for concern in Figure 4.8 are all of the phrase states, i.e. “can i get”,

“my account balance”, “my balance”, “account balance”, and “payment address

please”. As shown in Figure 4.9, “can i get” is replaced by “[Class 499]”, “my

account balance” and “my balance” are both contained in the same class and are

replaced with “[Class 13]”, “account balance” is replaced by “[Class 1042]”, and

finally “payment address please” is replaced by “[Class 1002]”. All of these classes,

as well as some other examples, are shown in Appendix C.

11Similarly there is the Phrase-Class Bigram (PCB) and the Word-Phrase Class Bigram
(WPCB).

C
H

A
P

T
E

R
4
.

P
H

R
A

S
E

-B
A

S
E

D
L
A

N
G

U
A

G
E

M
O

D
E

L
L
IN

G
74

Figure 4.9: WPCLB (Word-Phrase Class Link Bigram) language model (LM). Class labels replace phrases.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 75

The N-gram distribution of the newly introduced class labels defines a global

distribution for between-class likelihoods. To complete the representation of the

clusters, and to fully integrate the phrase clusters into the language model, a local

distribution is required for the within-class likelihoods. As with Nasr et al. [1999]

and Arai et al. [1999], a suitable representation of the clusters is the Stochastic

Finite State Automaton (SFSA).

Figure 4.10 shows an actual class obtained from the HSF clustering method on

the SD data with the phrase occurrences shown in brackets. An SFSA can be built

for this class where each word in a phrase is represented by a separate state. The

SFSAs are built using a stochastic Grammatical Inference technique [Parekh and

Honavar, 2000] where each phrase is modelled as a separate string of word states

which are then combined together in a minimisation process. The likelihoods

are estimated by using every phrase in the class as a “positive example” [Parekh

and Honavar, 2000] where each example is used to traverse the automaton which

provides counts at each state — the likelihood on a given arc between two states

is the ratio of the number of times each of the two states are visited during the

traversal of the SFSA by each phrase token in the class. Figure 4.11 shows the

SFSA for the class in Figure 4.10 (note that the probabilities given are not log

probabilities).

can you get me (1) could you give me (4)
can you give me (9) could you please give me (3)

can you please give me (1) could you please tell me (6)
can you please tell me (3) could you tell me (9)

can you tell me (66) should i (1)

Figure 4.10: Class 174. Label after merging: [(PRP NNP), (PRP$ NN), null,
NP, (AUX VBN), (AUX JJ), (VBG IN), (WP AUX), VP, SBAR, S, (TO NN)]
— (MD PRP) — [(WRB AUX), null, (IN AUX), (WP AUX), NP, (DT NN),
(DT NNS), (WRB RB), (WRB JJ), (WP JJ), (WRB VBN), WHNP, (WRB VBP),
(WP TO), (IN MD), (DT JJS), VP, (WRB IN), (IN PRP$), (WRB NN),
(PRP$ NN), WHADVP, (JJR IN), (DT CD), (PRP$ NNS), (PRP$ VB)]. This class
was generated when merging to 4000 classes using HSF clustering. The total number
of phrases in the class is 103, with the count of each phrase shown in brackets.

Using separate states in the SFSA for each word of a phrase means that the

network can be easily integrated into a phone speech recogniser because the pro-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 76

Figure 4.11: The phrase class of Figure 4.10 represented as an SFSA. Note that the
arcs hold probabilities, not log probabilities.

nunciation dictionary will typically already contain the sequence of phonemes that

represent a given word which means that SFSAs can fit into the hierarchy more eas-

ily. It also offers flexibility for modelling variations in phrases which are common

in formulaic language [Wray, 2002]. However, example-based speech recognition

requires that the SFSAs model the phrases as whole units, and thus the SFSA

construction becomes a much simpler task — each phrase in the class is repre-

sented as a whole state and not divided into word states, while the probabilities

of each phrase are estimated as their relative frequency.

Figure 4.12 shows the class of Figure 4.10 represented as an SFSA using a

single state for each phrase. Integration of this representation into a phone speech

recogniser now requires that the pronunciation dictionary contains every phrase

that is used in the language model so that the correct sequence of phoneme models

can be concatenated together to represent the phrase.

After the global and local probabilities are estimated for the phrases classes, the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 77

Figure 4.12: The phrase class of Figure 4.10 represented as an SFSA with whole
phrase states.

remaining step is to “plug-in” the SFSAs for each class in place of the states that

represented the classes. Figure 4.13 shows the result of integrating the relevant

SFSAs into the WPCLB language model of Figure 4.9.

To summarise the integration of the SFSAs (local) into the N-gram frame-

work (global), the following formal definition is given: the probability of a phrase

wi
i−M+1 of length M words given the previous phrase wj

j−L+1 of length L words,

where wi
i−M+1 ∈ [Class x] and wj

j−L+1 ∈ [Class y] is given by:

Pr
(
wi

i−M+1

∣
∣wj

j−L+1

)
= Pr ([Class x]|[Class y])

︸ ︷︷ ︸

global

Pr
(
wi

i−M+1

∣
∣[Class x]

)

︸ ︷︷ ︸

local

(4.17)

Equation (4.17) can be clarified with an example: given the previously defined

WPCLB language model, in particular the paritions defined by Figure 4.9 and

C
H

A
P

T
E

R
4
.

P
H

R
A

S
E

-B
A

S
E

D
L
A

N
G

U
A

G
E

M
O

D
E

L
L
IN

G
78

Figure 4.13: WPCLB (Word-Phrase Class Link Bigram) language model (LM) with SFSAs to represent classes.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 79

Figure 4.13, the log probability of the phrase “my payment address” given the

previous phrase “can i get” can be calculated as:

log (Pr (“my payment address”|“can i get”)) = (4.18)

log (Pr ([Class 13]|[Class 499])) + log (Pr (“my payment address”|[Class 13]))

= −3.16 + (−4.49)

= −7.65

Once all of the phrase classes are integrated into the language model, the token

passing decoder can perform as normal because the structure of the language

model is built into the VNSA, and so no adaptation of the decoder is required.

4.5.3 Adding a Bias to Phrase States

Because the work presented in this thesis is interested in the effects of using phrases

with words in language modelling, compared to just words, a phrase weight is

now defined which is a constant log-probability that is added to each arc that

transitions to a phrase state.

The phrase weight is similar to the word insertion penalty (WIP) used in a

speech recognition decoder (described in Section 2.5), except it is only applied to

the phrase states, whereas the WIP is applied to all transitions in the language

model between states (which can be words or phrases). The phrase weight can be

viewed as a bias which either rewards or penalises the use of phrases depending on

whether the weight is positive or negative respectively. Unlike with the WIP, the

addition of the phrase weight is added to the language model before the decoding

begins to avoid searching for phrase states each time the language model is loaded

into the decoder.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 80

4.6 Baseline Evaluation

This section will describe the evaluation of the techniques described in this chapter.

The evaluation will use both language model perplexity (Section 2.2.3) and the

percentage measure speech recognition word accuracy, which is defined by:

word accuracy =
N − S − D − I

N
× 100 (4.19)

where N is the total number of word labels in the transcription files, S is the

number of substitutions, D is the number of deletions, and I is the number of

insertions when aligning the hypothesised word strings from the recogniser to the

actual word string transcriptions of each utterance using a dynamic programming

(DP) string alignment method. For comparison of results to other system settings

(i.e. different language models), the Matched Pairs statistical test [Gillick and Cox,

1989] is used to quantify whether or not the difference in the set of hypothesised

strings of two systems is statistically significant.

The remainder of this section is as follows: Section 4.6.1 will describe the ex-

periments and results on the SD call-routing data, while Section 4.6.2 will give the

results for the experiments run on the SI RM dataset. Both datasets will be evalu-

ated using HMM phone recognisers, previously described in Chapter 3, to provide

a baseline measure for comparison to template-based recognition experiments that

will be described in Chapter 6.

4.6.1 Speaker Dependent Results

Table 4.1 shows the word recognition accuracy for the SD call-routing data with

the HMM-based recogniser for the previously described language models; WB,

PB, WPB, WPLB, WPCB, and WPCLB. For the WPCB and WPCLB language

models, which were created with the HSF clustering process (Section 4.4), the

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 81

optimal number of classes (in terms of word accuracy) is represented — for WPCB

this is 2000 classes and for WPCLB it is 4000 classes. Table 4.1 also shows the

average perplexity per word of each language model12.

LM PP word accuracy (%)
WB 13.1 86.92
PB n/a 86.79

WPB 11.56 87.52
WPLB 11.05 87.76

WPCB2000 11.56 87.41
WPCLB4000 11.35 87.79

Table 4.1: SD perplexity (PP) and word accuracy on baseline HMM system for
the WB, PB, WPB, WPLB, WPCB, and WPCLB language models where the class
models reported are for the optimal number of classes, i.e. merged to 2000 and 4000
classes respectively. Each of the phrase-based language models uses a phrase weight
of 0.5.

Table 4.2 shows the Matched-Pairs tests on the recognition hypotheses for each

language model. Each recognition system is compared to one another, and if

one system is better than the other statistically, then the name of the system is

entered into the table. For example, referring to Table 4.2, the WPB system is

statistically better than the WB system, and so the WPB name is entered into

row two, column four. When there is no statistical significance of the difference

between two systems, then “same” is entered into the table. For example, the WB

and PB systems are statistically equal (row two, column three). Taking a deeper

look into Table 4.2 shows that the WPB, WPLB, and WPCLB systems are all

judged to be significantly better than the WB baseline, but there is no statistical

difference between each of the WPB, WPLB, WPCLB, and WPCB systems.

Figure 4.14 shows how the number of classes in the WPCB and WPCLB lan-

guage models affect the word accuracy of each system, revealing a rise in the word

accuracy until the optimal number of classes is found which is then followed by

a rapid decline in the word accuracy when merging down to 500 classes from the

12The perplexity cannot be found for the PB model as it does not contain all of the vocabulary
items that occur in the test data, i.e. the PB model does not use all the words of the training
vocabulary; it combines them into phrases. Unless the test data contains exactly the same
distribution of words and phrases to that of the PB model, then the perplexity cannot be found
for the test data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 82

WB PB WPB WPLB WPCB WPCLB
WB same WPB WPLB same WPCLB
PB WPB WPLB WPCB WPCLB
WPB same same same
WPLB same same
WPCB same
WPCLB

Table 4.2: Statistical significance tests on the SD test data. The Matched-Pairs test
was used to determine if gains / losses in accuracy for different language models were
statistically significant.

initial number of classes which is 11,368 (right-to-left in the figure). As mentioned

before, the optimal number of classes is 2000 for the WPCB model and 4000 for

the WPCLB model. Figure 4.14 also shows the word accuracy when using the

other language models as reported in Table 4.1.

0 2000 4000 6000 8000 10000 12000
86.6

86.8

87

87.2

87.4

87.6

87.8

88

Number of classes

W
or

d
ac

cu
ra

cy
 (

%
)

WPCLB
WPCB
WB
PB
WPB
WPLB

Figure 4.14: Word accuracy on the SD test-set for HSF clustering with the WPCLB
language model over varying numbers of phrase classes. WB, PB, WPB, and WPLB
are shown for comparison.

It is useful to visualise the perplexity of the language models in the same

manner. Figure 4.15 shows how the perplexity decreases during the merging of

classes to a local minimum (at 2000 classes for WPCB and WPCLB) followed by a

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 83

rise in perplexity. It is clear to see, by comparing Figure 4.14 and Figure 4.15, that

the word accuracy is, to a certain extent, inversely proportional to the perplexity

— although the minimum perplexity for WPCLB occurs at 2000 classes, while the

maximum word accuracy occurs at 4000 classes.

0 2000 4000 6000 8000 10000 12000
11

11.5

12

12.5

13

13.5

Number of classes

A
ve

ra
ge

 p
er

pl
ex

ity
 (

pe
r

w
or

d)

WPCLB
WPCB
WB
WPB
WPLB

Figure 4.15: Average perplexity per word on the SD test-set for HSF clustering with
the WPCLB language model over varying numbers of phrase classes. WB, WPB, and
WPLB are shown for comparison.

Figure 4.16 shows a collection of histograms showing the distribution of phrasal

units on the training segmentation (Figure 4.16(a)) and used in recognition (on the

test set) with the WPB and WPLB language models (Figure 4.16(b) and Figure

4.16(c) respectively). It is interesting to note, for both WPB and WPLB, that

even though words (one-word phrase) account for only 40% of the phrases in the

training data (segmentation), during recognition the language models guide the

decoder to words over 70% of the time. This is likely to be because of a relatively

poor generalisation of the training phrases to the test data, and so the words in

the language models are used as a “backup” mechanism.

Comparing Figures 4.16(b) and 4.16(c) shows that there are some subtle dif-

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 84

ferences between the distributions of the WPB and WPLB models. First of all,

the percentage of words drops from approximately 79% to 73% respectively. This

reduction of words in the WPLB recognition is due to an increase in the use of

phrases, particularly two-word (64 more examples), three-word (85 more), and

four-word phrases (48 more). The extra flexibility in the WPLB should allow

better generalisation to the test data, as the decoder is given more choices for

transiting between words and phrases which, as stated before, should mean that

the decoder can use its “backup” option (i.e. the words) when a given sequence

of the input is not well represented by the phrases, but it can then return to the

phrase level when the input becomes a closer match to the training data. That

said, it is important to stress, that although there is a big difference in perplexity

of the WPB and WPLB models, this does not transfer to the word recognition

accuracy which, as previously mentioned, sees no improvement statistically.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(a) All training phrases.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(b) Used phrases in WPB recognition.

1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(c) Used phrases in WPLB recognition.

Figure 4.16: Histograms showing the number of words per phrase as a relative fre-
quency for SD data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 85

4.6.2 Speaker Independent Results

Table 4.3 shows the HMM baseline word accuracy results for the RM dataset along

with perplexity scores for the WB, WPB, and WPLB language models13. Results

are shown for the development set (dev set) and evaluation sets (oct89, feb91,

and sep92), with (✓) and without (✗) Vocal Tract Length Normalisation (VTLN)

applied to the audio. All recognition parameters such as language model scaling

factor and word insertion penalty are optimised on the dev set and then applied

to the evaluation sets.

Dev (%) Evaluation (%)
LM PP VTLN feb89 oct89 feb91 sep92

WB 30.44
✗ 91.33 89.94 92.11 86.32
✓ 91.76 89.34 91.95 86.32

WPB 27.7
✗ 91.88 90.09 92.59 86.95
✓ 92.66 89.2 91.87 87.5

WPLB 27.43
✗ 92.07 89.9 92.59 86.6
✓ 92.82 89.64 92.27 87.38

Table 4.3: Word Accuracy on the RM dev set feb89 and three test sets oct89, feb91,
and sep92 for WB, WPB, and WPLB language models with and without VTLN,
using HMM-based recogniser. Language model perplexity (PP) is also shown. The
WPB and WPLB based sytems use a phrase weight of 0.5 which was optimised on the
feb89 development set.

For the VTLN experiments, the HMMs are trained as described in Section

2.6.1.1, but for the recognition, there is a change to what was described in Section

2.6.1.2. Instead of optimally warping the input for each system (i.e. changing

language models), the input was only warped for the WB baseline system and then

stored. For the subsequent experiments with WPB and WPLB, the recognition

was run on the WB warped input as a normal recognition pass (i.e. just one pass,

and no warping). This approach was taken for consistency with the template-

based recognition which will be presented in Chapter 6. For now, the reader is

asked to accept this approach in the knowledge that justification will be given in

Chapter 6.

13The PB language model was not used in the experiments as it was clear that it was not a
good model for unseen data.

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 86

The Matched-Pairs test was used to compare the baseline recognition systems

for each language model within each evaluation set, both with and without VTLN

applied. All system comparisons were classified as statistically the same. To see

why there is so much parity with the HMM results on RM, it is useful to analyse

the phrase histograms, as with the SD data in Section 4.6.1.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(a) All training phrases.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(b) Used phrases in WPB recognition.

1 2 3 4 5 6 7
0

0.2

0.4

0.6

0.8

1

Phrase Length (# words)

R
el

at
iv

e
F

re
qu

en
cy

(c) Used phrases in WPLB recognition.

Figure 4.17: Histograms showing the number of words per phrase as a relative fre-
quency for the combined RM datasets oct89, feb91, and sep92.

The first thing to note, from Figure 4.17(a), is that the distribution of the

training phrases tapers away much quicker than the SD data from phrases of three

or more words. There are more two-word phrases, but fewer three-word phrases.

The fact that there are more shorter phrases (and more words) indicates that the

RM data does not contain as much formulaic production as the SD call-routing

data. It is clear from Figures 4.17(b) and 4.17(c) that, as with the SD data, the

WPLB language model is constructed such that the best path will go through

longer phrases than when compared to the WPB language model. However, both

language models choose a higher number of words (85% for WPB, and 78% for

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 87

WPLB), and thus very few longer phrases of two or more words. This can be

contrasted to the SD decoder which chooses words 79% and 73% of the time for

WPB and WPLB respectively.

4.7 Conclusions

This Chapter attempted to, first of all, acquire frequently occurring phrases and

then integrate them into an architecture suitable for speech recognition. The chap-

ter began, in Section 4.2, by giving a survey of the literature related to phrase-

based language modelling, both within speech recognition applications, and purely

as language modelling techniques. Section 4.3 described how a multigram segmen-

tation algorithm could be used to acquire phrases, purely from transcriptions of

speech. Section 4.4 introduced a novel technique for clustering phrases, called the

Hybrid Syntactic Formulaic (HSF) clustering algorithm, that used the acquired

phrases from the multigram segmentation and combined them with parse-trees to

assign syntax-based labels which could then be used to group other phrases. The

clustering algorithm was complete with a class merging procedure which merged

the “closest” pair of classes until a pre-defined number of classes was reached —

a vector based approach with cosine similarity was used.

Section 4.5 was concerned with the integration of both the acquired phrases

and the phrase classes, previously grouped by the HSF clustering algorithm, into

the speech recognition architecture. It began by, in Section 4.5.1, formulating

the language models within different topology schemes, describing first of all the

Phrase Bigram (PB), followed by the Word Phrase Bigram (WPB), and finally the

Word Phrase Link Bigram (WPLB). Starting from a basic bigram distribution of

the phrases (PB), gradually more information was built into the language models,

such as word bigram (WB) information, and then new bigram transitions between

words and phrases within the language model, creating bigram transitions that

were previously unseen. Section 4.5.2 showed how the phrase classes, represented

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 88

by Stochastic Finite State Automota (SFSA) could be integrated into the N-gram

framework (bigram in this case), with the notion of global (between-class) and local

(within-class) probabilities, and Section 4.5.3 described a phrase weight which is

a log-probability that is added to all arcs (as a constant) in the language models

that transition into phrase states and acts as a bias to influence how a decoder

will use the phrases.

Finally, Section 4.6 gave the evaluation of the baseline models. The tech-

niques described in the chapter were applied to the SD call-routing data and RM

datasets (speaker independent), which were then used to run speech recognition

experiments using HMM monophone recognisers with multiple mixture compo-

nents. The recognition experiments were evaluated with word accuracy. Language

model perplexity was also calculated for each of the language models previously

described. For the SD data, both the WPB and WPLB language models gave

statistically significant improvements over the WB baseline measure, as did the

WPCLB for 4000 classes, although it was shown that the WPLB system gave no

significant improvement over the WPB system. For the RM evaluation set, it was

shown that the WPB and WPLB models gave no significant improvements over

the WB model. A suggestion for why there were no significant improvements on

the RM evaluation set was that the phrases available in the training data (from the

multigram segmentation) were shorter than for the SD data, with a large number

of words and two-word phrases. When the recognition outputs were analysed, it

was clear that the decoder had a preference for even shorter units — over 80%

of the recognised units were words when using the WPB and WPLB language

models while that figure was less than 80% for the SD data.

This implies that the reason the phrases are not chosen as often as words is

because the phrases do not generalise well to the unseen data. The methods

described in this chapter keep the acquired phrases fixed, and do not allow for any

small variations in the structure of the phrases which is likely to occur in the unseen

data. To validate this claim, a HMM-based speech recognition experiment was run

CHAPTER 4. PHRASE-BASED LANGUAGE MODELLING 89

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

Phrase Length (# words)

F
re

qu
en

cy

(a) Available training phrases (from seg-
mentation).

1 2 3 4 5 6 7
0

2000

4000

6000

8000

10000

Phrase Length (# words)

F
re

qu
en

cy

(b) Used phrases in WPLB recognition
on training data.

Figure 4.18: Histograms of chosen units by the HMM decoder on the SD training
data compared to the available training phrases. Figure (a) actually just shows the
histogram of the training text segmentation, it does not include all of the individual
words from the original unsegmented text.

on the SD call-routing training data, giving a word accuracy of 96.81%. However,

the key information here is in the analysis of the units chosen by the recogniser,

shown in Figure 4.18. Clearly the decoder chooses a much higher number of longer

units than on the test data, resulting in a very similar distribution of unit length

to the training segmentation which provides the phrases (the histogram does not

contain the words of the training text that were combined with the phrases which

are also available to the decoder, hence the number of one-word phrases should

also be higher in Figure 4.18(a)). This is strong evidence of the chosen phrases

not generalising well to the test data.

Chapter 5

Bottom-up Template Selection

5.1 Introduction

The datasets used in this research are moderate in size (refer to Chapter 3),

yet still produce a large number of templates, with the RM and the SD (Speaker-

Dependent) call-routing datasets producing approximately 52,700 and 64,860 tem-

plates respectively, for only word and silence templates. When the phrase tem-

plates are used, there is a typical increase of 11,350 and 12,900 templates respec-

tively.

If the entire template database was to be used with a general token passing

decoder (Section 2.3.4) using an ergodic network1, then the branching factor at

the end of each template would be in the order of 2.8 billion (for the smaller RM

dataset), assuming that there is no pruning applied. Even with pruning, there

is a huge overhead when passing tokens from template to template — a token

that survives to the end of a template is then copied and passed to all other

templates in the reference database. Language models can reduce the branching

factor, although using backoff schemes means that the branching factor remains

high (Section 2.2).

1An ergodic network is a network that allows any template to be followed by any other
template, including itself.

90

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 91

To feasibly run a template-based decoder in reasonable time requires some

kind of reduction in the template search space. An acoustic look-ahead, or pre-

processing stage, has been popular in HMM systems, using simplified acoustic

matching to prune the search space [Bahl et al., 1993; Ortmanns et al., 1997]. De

Wachter et al. have applied this idea of an acoustic pre-decoding pass to a phone

template-based recogniser, searching for templates that are an approximate match

to the input [De Wachter et al., 2003].

The remainder of this chapter describes the template selection method of De

Wachter et al. [2007] in detail, and gives the details of the extensions and al-

ternatives to this method that have been developed in the work presented in

this thesis. The chapter is structured as follows: Section 5.2 describes a Vector

Quantisation (VQ) as an approximated k-nearest neighbours (KNNs) selection of

reference frames to the input. Section 5.3 describes the Time Filter algorithm [De

Wachter et al., 2003] as a method for selecting templates from evolving KNNs,

while also introducing a backward pass of the algorithm in Section 5.3.1, with an

alternative Sigmoid-based distance normalisation, which controls the strength of

normalisation dependent on template length and a pre-defined weight, presented

in Section 5.3.2. Section 5.4 describes a hierarchical LDA (Linear Discrimant

Analysis) classifier which acts as a filter to the selected template candidates, de-

scribing methods used to extract suitable features for the LDA (Section 5.4.1)

and the formulation of the hierarchical LDA into a decision tree (Section 5.4.2).

Section 5.5 describes the evaluation of the methods described in this chapter, not

with word recognition accuracy from a speech recogniser, but with methods such

as how well the selected templates match the input utterances, and classification

performance of the LDA filter. Finally Section 5.6 summarises the findings in this

chapter and gives conclusions.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 92

5.2 Vector Quantisation for K Nearest Neigh-

bours selection

The bottom-up template selection begins with the selection of a set of k reference

frames that are a close match to a given input frame, which are then used to

find approximately matching templates (Section 5.3). This selection of frames is

a K-Nearest Neighbour (KNN) problem, for which De Wachter et al. introduce an

extended version of the Roadmap algorithm [Povey and Woodland, 1999], called

the KNN Roadmap [De Wachter et al., 2004].

The KNN Roadmap, which is constructed in an offline training algorithm,

is a graph, where each frame in the reference database is a node in the graph.

Arcs between nodes are bi-directional, and connected using a hill-climbing search,

with connections forming between nodes that are similar. The KNN Roadmap is

actually built up of sub-graphs, where each state class, previously used for local

distance measures (Section 2.3.2), is connected separately. We chose not to adopt

this method for KNN selection, as it was reported that the KNN Roadmap “only

narrowly outperformed a simple brute force KNN calculation” [De Wachter, 2007]

for datasets of moderate size, such as those described in Chapter 3 (it is suggested

that the true benefit of the KNN Roadmap will be for much larger datasets, with

reference database sizes beyond 10,000,000 frames).

Our preferred approach is to use Vector Quantisation (VQ) implemented with

k-means clustering2, which aims to minimise the sum-squared distance within each

cluster [Webb, 2002]. As with the KNN Roadmap, each state class is clustered

separately, with the number of clusters dependent on the size of the class. The

sum-squared distance for a cluster Ck is given by:

2It should be noted that k for k means clustering and k nearest neighbour are not related
and are local to each algorithm or method.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 93

SSk =
∑

yi∈Ck

|yi − µk|2 (5.1)

where yi is a frame within cluster Ck, and µk is the mean frame of Ck.

The technique uses the standard k-means clustering algorithm: within each

class, k random frames are chosen to be initial cluster centres — k is proportional

to the number of frames in each class. The remaining frames are assigned to the

nearest cluster, using a direct comparison to the cluster centre. The mean frame

is then calculated for each cluster and set to be the new centre. The algorithm

then iterates, with frames being assigned to the nearest cluster, and new mean

frames being calculated for the cluster centres until a convergence point is met,

or if no convergence is reached, until a maximum number of iterations is reached.

The algorithm converges when there is no change in the sum squared distance of

each cluster, or when the mean change per cluster is lower than some pre-assigned

threshold.

Figure 5.1: Vector Quantisation of frames in 3 different classes; aa[4], ah[3], ae[3]

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 94

In terms of VQ, a cluster mean is a codeword and the set of cluster means is

the codebook. We formulate this problem as VQ, and not just k-means clustering,

as the selection of KNNs to an input frame is determined by the closeness of the

input frame to the cluster centres (codewords). At this stage of the processing the

frames within the clusters are temporarily ignored, and effectively reduced to one

codeword, i.e. the mean of their cluster.

To select the KNNs, the current input frame is compared to all codewords, over

all classes, with the codewords being ranked in order of closeness to the current

input frame. Each frame that was assigned to the codewords is then loaded into

the KNN list, in order of codeword closeness, until K is reached or exceeded —

every frame within the codewords is used, therefore K is an approximate target

because reading the last codeword will often cause more frames than K to be

loaded.

Figure 5.1 illustrates this process. It shows a subset of frames from the state

classes aa[4], ah[3], and ae[3], and the clusters that contain them. It is important

to note that the example gives idealised data, i.e. the frames are clearly separable.

What Figure 5.1 shows is that it is a possibility that frames within one class may

actually lie closer to frames, and thus clusters, from other classes. Using VQ for

KNN generation is an effective measure for efficiency, but by grouping frames into

potentially large clusters, it can only be used as an approximate KNN selection

method because it is the cluster means that are used to select the KNNs.

5.3 Time Filter Algorithm

The aim of the time filter algorithm is to reduce the search space for the DTW

decoder. It iterates over the input frames, looking for reference templates that are

an approximate match to the input: When comparing the input to the templates,

using a distance matrix approach (refer to Section 2.3.3), an approximate match is

defined as one where the best path through the matrix is approximately diagonal

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 95

[De Wachter et al., 2003].

Figure 5.2: The Time Filter Algorithm. White circles represent nearest neighbours
(NNs) and black dots represent legal entry points for NNs within the reference template
over time. Activations evolve over time from the head region to the tail region of the
template.

Both the time and memory consumption would be far too great if all templates

were used in the time filter algorithm. Therefore, for each input frame, a list

of k nearest neighbours (KNN) is generated (Section 5.2) and used to activate

templates that contain those KNN frames. Figure 5.2 gives an example of the

time filter in action, focused on one template. If one of the KNNs is contained

at the start of a template, known as the head region, then an activation region is

created. The head region is a pre-defined number of frames at the beginning of

a template which can vary from template to template, usually increasing in size

as the template length increases. The activation region spawns from the point at

which the nearest neighbour (NN) is contained, also known as a NN hit, and is

designed to be similar to the kind of region that would be defined by a DTW local

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 96

search, such as the Itakura Distance (Section 2.3.3).

Figure 5.3: Activation regions. The effect of increasing the activation gap upon the
activation region (shaded area).

The size of the activation region is determined by the activation gap, which is,

again, a pre-defined number of frames. Figure 5.3 shows the effect of increasing

the activation gap upon the activation region. Clearly, the larger the activation

gap is, the larger the activation area, and thus the higher the chance that one of

the KNNs will be contained within an activation region. In our experiments, the

activation gap can vary in size for differing template lengths, or can remain fixed

for all lengths. An activation region can only be created from within the head

region, or from within another activation region; if one of the KNNs lands outside

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 97

of the head region and other existing activation regions then it is ignored, and the

next NN is processed.

Figure 5.4: Local penalties within activation regions. Stall and skip penalties are
multiplied by a factor (next to entry points) dependent on how far from the diagonal
of the region they are. A gap penalty (GP) is added to the score based on distance
from the start point of the region to the NN hit.

The generation of new activation regions from within existing activation regions

from the head to tail regions of the template define an activation path. Each

activation path originates from the activation regions that were created in the head

of the template, creating new paths that branch off from existing paths in different

directions, depending on the NN. Activation paths can also diverge back to the

same point, and as with the Viterbi and the Token Passing algorithms (Section

2.3.4), when an NN hit occurs in more than one activation region, the associated

paths of each region are effectively merged by retaining the activation region (and

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 98

its path) with the best score (lowest distance in our case) and destroying the

remaining activation regions (and thus paths) that contained the NN.

Every time an NN hit occurs in the head of a template, the current input frame

time is stored, and the distance between the current input frame and the NN is

calculated and stored (using measures defined in Section 2.3.2). When an NN

hit occurs in an existing activation region, the start time of the activation path

is passed to the new activation region and stored. Again, the distance between

the current input frame and NN is calculated, but this time additional penalties

(which are closely related to DTW penalties (Section 2.3.3)) are added and the

new distance is added to the existing distance for the current activation path.

Figure 5.4 shows the cases for applying penalties to the score of an activation

path. For a given activation region, all of the possible NN points are shown, with

the penalty that would be applied to them. Every point above the central diagonal

of the activation region is classed a skip penalty, and everything underneath the

diagonal is classed as a stall penalty. Each position has an associated factor with

it, which is determined by the distance from the diagonal, and used to increase

the penalty. There is also a gap penalty which is used to penalise gaps between

NNs in the iteration of the input frames. The gap penalty, like the skip and stall

penalties, has an associated factor which is determined from the distance of the

NN to the origin point of the activation region in terms of number of input frames.

To clarify the penalty measures, and application of, consider an example where

a NN hit occurs at (x + 2, y + 3) in Figure 5.4. The penalty score will consist of a

gap and stall penalty. In both cases the factor of the penalty is only one. Another

example could see a NN hit at point (x + 3, y + 8). This is at the far edge of the

activation region, and thus receives a heavy penalty. A skip penalty, multiplied

by the factor three, is added to the score along with a double gap penalty. A

final example covers NN hits that occur on the diagonal of the activation region.

Take point (x + 2, y + 4) to be NN hit: there are no skip or stall penalties for

this point, but there is still a gap penalty added (factor 1). It is important to pe-

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 99

nalise the NN hit on the diagonal, as it has not matched the input frame for frame.

Algorithm 5.1 The Time Filter Algorithm.

1: {X is the input frame sequence}
2: {NN(k) represents the kth nearest neighbour (NN)}
3: {templateLook(NN(k)) is a lookup for the template containing the kth NN}
4: for i = 1 to |X| do
5: Get KNNs for X(i)
6: for k = 1 to K do
7: {Check NN(k) for hit}
8: Y = templateLook(NN(k))
9: if NN(k) in head of Y then

10: Create activation region
11: Update score
12: else if NN(k) contained in activation region of Y then
13: Update score
14: if NN(k) in tail of Y then
15: Select template Y as candidate
16: else
17: Create Activation
18: end if
19: end if
20: end for
21: end for

The process of finding KNN hits inside activation regions continues until there

is an NN hit that lands within the tail region of a template, within an existing

activation region: the tail region, like the head region, is a pre-defined number of

frames, typically dependent on the length of the template, and in this work, the

tail is the same length as its corresponding head region. At this point, the current

input frame number is stored as the end time, and the template in question is

selected to become a candidate for the decoder (Chapter 6). For the example in

Figure 5.2, the template is selected as a candidate with a start time at x and end

time at x + 7. De Wachter et al. use both the start and end time to construct

an activation graph, which connects templates by their start and end times and is

used in a hierarchy of graphs within the decoder architecture [De Wachter, 2007].

Although we store both the start and end times for a selected template, only the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 100

start time is currently used in the decoder (see Chapter 6).

Figure 5.2 shows an example of just one template within a subset of the input

sequence. The Time Filter algorithm operates over all reference templates for

each frame of the input. Using a simple lookup, the template that contains a

NN (which is a frame within one of the reference templates) can be found quickly

and the NN hits can be processed for each template. The KNN list can contain

frames from many different templates, so it is important to note that at any one

time (input frame) there are many activation regions within each template that

contains hits from the KNNs. Algorithm 5.1 gives a summary of the basic Time

Filter algorithm.

Once all input frames have been processed, there remains a list, for each input

frame, that contains the selected templates for their given start time. At this

point, the template lists for each time frame can be thresholded. In this work we

use a Gaussian distribution of the activation path scores at each time frame, with

the threshold set at a pre-defined number of standard deviations from the mean.

5.3.1 Adding a backward pass to time filter

The minimal template unit used in this work is the word-level template with

phrase-level units of up to seven words as the maximum length; this means that

the number of frames in each template, in most cases, is much larger than that of

phone-length templates. This can cause a potential problem with the Time Filter

algorithm. For a template to be selected as a candidate for the decoder, at the

very least an NN has to occur within the head region of a template. If the head

region is too small, then there is a strong possibility that a good template match

is not selected — it may be that most of the template matches very well with a

sequence of the input except the head region. If, for example 90% of a template is

a match, then this template is a very good candidate for the decoder, but if there

is no NN hit in the head region then the Time Filter would ingnore it; the closely

matching portion of the reference template is never actually reached by the Time

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 101

Filter.

Figure 5.5: The backward pass for Time Filter. Unlike the forward pass (see Figure
5.2), the input frames are processed in reverse order with activations initialised in the
tail region and templates selected as candidates when a nearest neighbour (NN) hit
occurs in the head region of the template within an existing activation. White circles
represent NNs, while black circles represent legal landing points of NNs.

To try and combat this side-effect of the Time Filter, we introduce a backward

pass to the algorithm. The motivation is that if a template is a good match to the

input, apart from the first few frames (which cover the head region), then doing

a backward pass of the Time Filter algorithm will allow activation paths to cover

a significant portion of the template before arriving at the sparser (in terms of

NN hits) section of the template. By allowing the activation paths to evolve (as

opposed to not creating any activation regions at all) from the tail, there will be

an increased chance that one of the activation paths deviates enough to allow a

NN hit in the head region of the template.

Figure 5.5 shows an example of an activation path evolving from the tail of the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 102

template to the head, iterating backwards over the input frames. The activations

follow the same constraints as the forward-pass, but effectively flipped upside

down (visually), which leads to slightly different activation paths for the same set

of KNNs. The implementation of the backward algorithm is an inversion of the

forward pass: for an activation path to be created, a NN has to create a hit in the

tail, and for a template to be selected as a candidate, a NN hit has to occur inside

an existing activation region within the head region. The start time and end time

of an activation path are inverted for the backward pass, with the time at which the

template is selected being the start time within the head region, and the end time

is the time at which the first activation region was created within the tail region

for the selected activation path. Penalty scores are also inverted in the sense that

NN hits, within an activation region, below the diagonal of the activation region,

are penalised with the skip penalty (the stall penalty for the forward pass), and

NN hits above the diagonal are penalised with the stall penalty (the skip penalty

for the forward pass).

Once the forward and backward pass of the Time Filter are completed, the two

sets of selected template candidates are merged by start time (more precisely, the

time at which a NN hit occurs within the head region, i.e. when the activation is

created for the forward pass, and when the activation path is terminated for the

backward pass). For every time frame, the template candidates from the forward

and backward pass are combined into one list, and where identical candidates exist

(i.e. the same template with the same start times), the candidate with the highest

score is discarded. Once both passes are merged, thresholding can be applied as

before.

5.3.2 A length-based template score normalisation

As the time filter algorithm is based on DTW, a template’s distance is based

on the distance between input frames and template frames, as well as additional

penalties for skips and stalls. This means that longer templates will accumulate

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 103

more penalties as the input is processed (unless they are perfect matches). To

normalise a template’s score, De Wachter et al. store the number of NN hits along

the activation path of the selected template [De Wachter, 2007]. It is not explicitly

stated how this is used, but the author of this thesis has made the assumption that

the distance for the template’s activation path is divided by the number of NN

hits. So, the normalised distance, DNN(Y, t), of a template Y, using the number

of NN hits for the templates activation path at start time t is given by:

DNN(Y, t) =
D(Y, t)

CNN(Y, t)
(5.2)

where, Y is the reference template, D(Y, t) is the pre-normalised acoustic distance

of Y at start time t, and CNN(Y, t) is the number of NN hits for the activation

path of template Y at time t.

−10 −5 0 5 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

L

S
(L

)

λ = 50
λ = 1
λ = 1/3
λ = 1/7

Figure 5.6: General sigmoid function. By varying λ in Equation (5.3), the slope of
the curve can be adjusted.

In this work, we are interested in the effects of using phrases within speech

recognition and how the different lengths of templates affect the recognition of

an input sequence. To investigate these effects, we introduce a heuristic-based

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 104

normalised distance measure which uses a form of the sigmoid function [Mitchell,

1997], which is often used in neural networks as a non-linear transfer function that

is used to isolate input pathways from neurons [Anderson, 1995]. Figure 5.6 shows

an example of the general sigmoid function for L ∈ [−10, 10] with varying weights

λ, and is defined by Equation (5.3):

S(L) =
1

1 + e−λL
(5.3)

By varying λ, the sigmoid can be controlled to be anywhere between a linear

function (λ ≈ 1/7 in Figure 5.6) and an “on-off” function (λ ≈ 50 in Figure

5.6). The normalised distance measure, Dλ(Y, t), uses the sigmoid form of Equa-

tion (5.3) to incorporate the length of the template. The exponential term is no

longer negative as we are seeking to lower the score of longer templates so that

more phrase templates can be selected as candidates for the decoder, and hence

the effects of using phrasal templates within the decoder can be more throughly

investigated:

Dλ(Y, t) =
D(Y, t)

(1 + λ|Y|)(1 + eλ|Y|)
(5.4)

where, |Y| represents the length of template Y, λ is a user-defined weight, and

Y and D(Y, t) are defined as before. The extra term, (1 + λ|Y|), is added to the

denominator as a scalar to emphasise the length of the template and to introduce

greater separation for varying values of λ. Figure 5.7 shows the effect of Equation

(5.4) for varying lengths of templates. The linear normalisation method, where

the template’s score is divided by the template’s length, is also shown for compar-

ison. It is important to note that only the positive part of the sigmoid is shown in

Figure 5.7, unlike in Figure 5.6, as there are no negative template lengths, i.e. we

are only concerned with templates of length greater than one.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 105

0 50 100 150 200
0

20

40

60

80

100

120

140

160

Template length (num frames)

N
or

m
al

is
ed

 d
is

ta
nc

e

λ = 0.025
λ = 0.05
λ = 0.075
λ = 0.125
Linear Normalisation

Figure 5.7: Sigmoid-based normalised distance function for (in this case) a distance
(unnormalised) of 350. The effect of varying λ upon the normalised distance (Equa-
tion (5.4)) is shown over different template lengths. The linear function is also shown
(the distance is normalised by dividing by the number of frames in the template).

5.4 Filtering Candidate Templates with Hierar-

chical LDA

The Time Filter algorithm produces a list of approximately matching template

candidates. A side-effect of this is that, along with correctly matching templates,

there are also incorrect templates: A “correct” template is defined as having a

matching word string to the annotation that defines the current utterance and a

start time that must be within a given number of frames from the start time in the

annotation. Conversely, an “incorrect” template either has a correctly matching

word string, but is outside of the frame window, or does not have a matching word

string. Figure 5.8 shows a frame window of 5 frames centered around frame t.

Clearly, if the number of incorrect templates selected as candidates for the

decoder was reduced, then the chance of increasing recognition accuracy is in-

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 106

Figure 5.8: Template classification. If the template is within the window (centered
at frame t) and it’s word label matches the annotation, then it is classed as correct.
Templates Y 1 and Y 5 are classed as incorrect whether or not their word strings match
the annotation.

creased. This can be quantified by performing an Oracle test which removes all

incorrect templates from the template candidates: For the Oracle test, templates

were classed as incorrect only if their word strings did not match the transcription

/ annotation of the utterance, that is, no time information was used to eliminate

templates. By removing incorrect templates, an increase in recognition accuracy

of around 12% absolute is seen for the data used in this work3.

To reduce the number of incorrect templates selected as candidates, some kind

of classification method is required. Given a template candidate for a given ut-

terance, the classifier needs to classify the template as correct or incorrect, with

the incorrect templates being discarded. This problem is a binary problem, also

known as a two-class problem (a template is either correct or incorrect) and is

well-suited to the use of Linear Discriminant Analysis (LDA)4 [Webb, 2002].

5.4.1 Extracting Features for LDA

To be able to use LDA on the selected template candidates, the first step is

to extract a set of features from the selections. This requires some insight into

what features may be useful for this task. An observation made on the template

candidates from the training data is that when a template candidate is “correct”,

3Chapter 6 will give more detail about the results and recognition experiments.
4Section 2.7 gives a more thorough technical background to LDA.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 107

there are often many similar correct templates representing the same word string

with the same start frame, or with a start frame that is within a few frames

of that given template. This is less likely to occur for incorrect templates. To

exploit this property, the first feature that can be extracted is simply the number

of occurrences of a template, which is expressed as a probability.

A simple relative frequency probability could be defined for a template can-

didate by counting the total number of templates that represent the same word

string and dividing by the total number of template candidates for the current

utterance:

Pr(Y) =
C(WM

1)

C(∀W∈V)
(5.5)

where, Y is the template candidate, WM
1 is the word string that Y represents,

∀W∈V represents all words W in the vocabulary V , and C(·) is the number of oc-

currences of template candidates that represent the given parameter. If we match

word strings exactly, then the count for a template candidate can be underesti-

mated because there may be many more template candidates that have the same

first word but different subsequent words (if phrases). A first word match is im-

portant because a candidate’s start time is determined by part of the first word, so

lots of template candidates appearing with the same first word and similar start

times gives good confidence of correctness, and hence should result in a higher

probability for a given template candidate. Equation (5.5) is easily adapted to

use only the first word for counts:

Pr(Y) =
C(W1)

C(∀W∈V)
(5.6)

where C(W1) gives the number of template candidates that start with word W1. As

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 108

mentioned before, observations of the training data showed that correct template

candidates usually appear in groups of templates with matching or similar word

strings within a few frames of each other. To extract this information, a window,

which is ±χ frames around the start frame of the current template candidate Y

(and includes the start frame), can be incorporated into Equation (5.6), which

leads to:

Pr(Y|t) =
C(W1, t, χ)

C(∀W∈V , t, χ)
(5.7)

where C(W1, t, χ) gives the number of occurrences for all candidates with a first

word W1 and a start frame that is within ±χ frames from the start frame t of

Y, and C(∀W∈V , t, χ) is the number of occurrences of all candidates within ±χ

frames of Y (including Y).

A further improvement that can be made to Equation (5.7) is to smooth the

counts within the window defined by χ. Using a Gaussian Radial Basis func-

tion (RBF) [Buhmann, 2003], the counts of template candidates can be reduced

smoothly the further they are from the centre of the current window (see Figure

5.9). Smoothing with an RBF is useful in the situation where a template candi-

date is surrounded only by a small number of matching templates within a few

frames of the central frame of the window, but with a larger number of match-

ing templates at the outer regions of the window. In this situation, the current

template candidate may be given a high probability (using Equation (5.7)) as all

positions within the window are taken to be equal. By smoothing the counts,

the further they are from the centre of the window, the lower is the probability

of the template candidate (at the centre of the window). Conversely, a template

candidate with the same number of matching candidates within the window will

receive a higher probability if those matching templates are closer to the centre of

the window. Equation (5.8) is the smoothed probability of a template candidate

Y given the current time t:

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 109

Pr(Y|t) =
Crbf (W1, t, χ)

Crbf (∀W∈V , t, χ)
(5.8)

where, t, Y, W1, ∀W∈V , and χ are defined as before, and Crbf (·) is the weighted

count function given by:

Crbf (Z, t, χ) =

+χ
∑

i=−χ

C(Z, t + i)ϕ(i, µ, σ) (5.9)

where C(Z, t + i) is the count of templates with a word string beginning with

word Z and a start frame of t + i, and ϕ(i, µ, σ) gives the likelihood weight for a

sample i from an un-normalised Gaussian distribution with a mean µ and standard

deviation σ defined by:

ϕ(i, µ, σ) = e−
1

2σ2 (i−µ)2 (5.10)

To clarify, at each frame t, the RBF function is centered at frame t, and the

counts of templates that are within ±χ frames of t are weighted by the likelihood

from the RBF: templates that have a start time outside of the given window are

given zero counts. In all cases, µ is set to zero as templates with the same start

frame as the centre of the window have a distance of zero from the centre, and σ

is pre-defined.

By using an un-normalised Gaussian RBF, the counts of templates that occur

at frame t (the centre of the window) will remain the same because the RBF

returns a likelihood of 1.0. Figure 5.9 shows an example of the RBF applied to

template counts, where χ = 3 and σ = 1. The original counts at each frame are

shown in dark blue, with the resulting weighted counts shown in yellow. Again

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 110

Figure 5.9: Gaussian Radial Basis Function: A un-normalised Gaussian is used to
weight counts of templates by distance from the centre frame. Here, the window is 7
frames, with ±3 frames from the centre frame, and the standard deviation σ of the
Gaussian is 1.

note that the counts at the centre of the window remain the same and counts

outside of the window become zero.

Another property of the template selections on the training data is that when

a template is correctly selected for a given time, then its score for that activation

time is generally lower than an incorrect template as there is a closer match be-

tween the input and the template. To extract this information as a feature, the

z-score for each template activation is calculated:

z(Y, t) =
D(Y, t) − µD

σD

(5.11)

where D(Y, t) is the score of template Y for a given activation starting at time

t, and µD and σD are the mean and standard deviation, respectively, over all

template scores within the selections for a given training utterance. The z-score

of template activation scores gives the number of standard deviations from the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 111

mean, thus providing a reasonable measure of how close a given template is to a

sequence of the input relative to all other template selections. It should be noted

that the distance measure D(Y, t) in Equation (5.11) can be replaced with the

normalised distance measures of Equations (5.2) and (5.4).

A final observation of the template selections for the training data shows that

even with normalisation methods for template scores (Section 5.3.2), there are

examples of “incorrect” template selections with lower scores occurring when the

template length is shorter. A shorter template candidate will almost always have

a smaller score as there are less penalties to be added to the score, although

normalisation should reduce the effect somewhat. To extract this information, a

third feature, the template length L(Y), is found for each template candidate.

Combining the three features discussed above provides the following feature

vector F(Y, t) which can be extracted for each template candidate selection Y at

time t:

F(Y, t) =








Pr(Y|t)
z(Y, t)

L(Y)








(5.12)

5.4.2 LDA Decision Tree

Once the features for the template selections on the training data are extracted,

LDA can be used to find the projection that best separates the two classes of data.

Each template activation is labelled as correct or incorrect based on its word string

and suggested start time as discussed at the beginning of Section 5.4 and shown

in Figure 5.8. Using Fisher’s Linear Discriminant (Section 2.7), each template

selection (represented by the features described in Section 5.4.1) is projected onto

a line (or into 1D space) which best maximises the ratio of between-class scatter

to within-class scatter using the eigenvector wa.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 112

−1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

Correct
Incorrect
Threshold

Figure 5.10: Threshold selection: Distribution crossing point. Threshold chosen to
be the point at which the correct (blue, right) and incorrect (red, left) distributions
cross.

After projecting the data, the next step is to find a threshold φa which will

be used to classify samples as correct or incorrect depending which side of the

threshold the samples lie on the line. A threshold can be placed anywhere along

the projection line to control the acceptance / rejection of candidate templates: We

choose to use the optimum decision point where the distributions of the correct and

incorrect samples cross (see Figure 5.10 for an example). By assuming a Gaussian

distribution, the threshold is determined by solving the following quadratic for x:

(

− 1

2σ2
1

+
1

2σ2
2

)

x2 +

(
µ1

σ2
1

− µ2

σ2
2

)

x +

(

K − µ2
1

2σ2
1

+
µ2

2

2σ2
2

)

= 0 (5.13)

where K = ln
(

1√
2πσ1

)

−ln
(

1√
2πσ2

)

, µ1 and σ1 are the mean and standard deviation

for the incorrect distribution, and µ2 and σ2 are the mean and standard deviation

for the correct distribution. As there are two roots when solving a quadratic, the

root chosen to be the threshold will lie between µ1 and µ2: the means of both

distributions. The derivation of Equation (5.13) can be found in Appendix D.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 113

Figure 5.11 shows the histograms of the projected data used to generate Figure

5.10 — this shows that the assumption of a Gaussian distribution for the data is

valid.

−1 −0.5 0 0.5 1 1.5 2
0

500

1000

1500

2000

2500

Correct
Incorrect

Figure 5.11: Histograms of LDA projected data. Shows the correct (blue) and in-
correct (yellow) samples after projection into 1D. The means and standard deviations
of the sample sets were used to generate the Gaussian distributions in Figure 5.10.

To apply the LDA classifier to an evaluation set, each selected template ac-

tivation is represented by its extracted feature vector (Equation (5.12)) that is

multiplied by the eigenvector wa which projects the training template activations

to the space that gives maximum separation between correct and incorrect classes.

After the projection, each projected sample from the evaluation set is compared to

the threshold φa, with samples above φa classified as correct, and samples below

φa classified as incorrect.

After the projection of data to one-dimensional space there will often be an

overlap of the class samples and the choice of threshold attempts to find the point

where this overlap is minimised (Figure 5.10). Choosing the threshold to be the

point where the two class distributions cross means that correct samples will be

misclassified as incorrect, and likewise, incorrect samples misclassified as correct.

By performing LDA once more on the samples that lie below threshold φa it may

be possible to classify more samples accurately.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 114

Figure 5.12: The LDA decision tree. The LDA is first applied to all training samples,
x, then to all samples y, where {y ⊆ x : xi < φa}. wa and wb are the eigenvectors,
with φa and φb the thresholds, for each LDA.

Figure 5.12 shows a 2-level decision tree framework that can be used to imple-

ment the applications of multiple LDA to the data: The node at the top of the tree

describes the first stage of the LDA mentioned before, which finds the best projec-

tion (i.e. eigenvector wa) for a template activation feature point {xi ∈ x}, where x

is all the template samples, and thresholds at the point at which the distributions

of the correct and incorrect samples for the training data cross. If the sample val-

ues in the projected space are greater than threshold φa then they are classified as

correct (left node on the middle level in Figure 5.12), otherwise they are initially

pooled together in the incorrect class of samples y, where {y ⊆ x : xi < φa}.

The LDA is then applied to all samples in y (right node on middle level in

Figure 5.12), giving the new projection wb, and the value of sample yi after pro-

jection is compared to a second threshold φb which is calculated using the correct

and incorrect distributions of the training data samples that lie below φa, i.e. all

samples in y. Samples projected above φb are now re-classified as correct, leaving

the remaining samples to be classified as incorrect.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 115

5.5 Evaluation

Ultimately the success of the example-based system is evaluated on word recog-

nition accuracy, or word error rate (WER), but it is also useful to determine how

well the Time Filter (Section 5.3), and LDA decision tree (Section 5.4) perform.

Section 5.5.1 will give an analysis of the Time Filter output, looking at details

such as how well the selected templates fit to the utterance transcription, and

the average number of templates the Time Filter finds. Section 5.5.2 will analyse

the effectiveness of applying LDA as a filter to the selected template candidates,

focusing on the classification accuracy and the suitability of the selected features.

5.5.1 Template Selection

An obvious measurement for evaluating the output of the Time Filter, independent

to the decoder (Chapter 6), is to see how well the template selections fit the

annotation of the utterance: This includes both word string and time information,

and is termed template coverage. For an utterance to have full-coverage by the

template selections, all of the words within the annotation for that utterance must

be represented within the given time window.

Determining whether a word template matches the utterance is trivial as it is

a one-to-one mapping within the given time window (±χ). However, phrases are

matched to the utterance as whole tokens, i.e. all words within the phrase must

be contained within the utterance, in the same sequence. Clearly the coverage

estimate is not as accurate as it could be because of the way the phrase tem-

plates are handled. When calculating WER on a hypothesis from the decoder, the

phrases are expanded into their word form, and words in the recognition output

are aligned to the transcription of the utterance. This means that phrase tem-

plates that contain only some of the words within the utterance (e.g. “I’d like my

account balance” matching to the utterance “I’d like my balance”) could still lead

to a decrease in WER (although insertions from incorrect words in the phrases

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 116

can also push the WER back up).

Another interesting evaluation measure is the ratio of correct template selec-

tions to incorrect template selections. This provides extra information about how

successfully the Time Filter is selecting candidates and can also augment the

recognition results later, giving insight into how the ratio of correct to incorrect

selections affects the decoder, if it does at all.

Time Filter Average
Templates Method Coverage (%) C/I Ratio Num. Templates

Backwards 94.90 1.28 1986
Words Forwards 94.87 1.86 1976

Merged 94.96 1.81 2047
Words Backwards 96.6 1.28 2100

+ Forwards 96.67 1.84 2092
Phrases Merged 96.69 1.79 2167

Table 5.1: Time Filter statistics for SD Test data. The Time Filter methods are the
forwards and backwards passes of the Time Filter algorithm, while “merged” represents
the the union of the two passes. C/I Ratio is the correct to incorrect template ratio.

Table 5.1 shows some of the statistics, previously described, for the Time Filter

algorithm on the SD test data5. It shows that when phrase and word templates

are used the coverage rises by about 1.8% over the word-only templates, with an

increase in the average number of templates selected per utterance. The perfor-

mance of the backward and forward pass is given, as well as the merged results

which is union of the two sets of template selections. It can be seen for word-only

and word + phrase templates that the correct to incorrect ratio (C/I Ratio) is

lower for the backwards Time Filter than the forward pass, although on average,

the backward pass selects more templates.

For the word-only templates, the coverage is marginally better for the back-

wards pass, which implies, with the knowledge of the C/I Ratio and the average

number of templates, that the backward pass finds fewer correct templates than

the forward pass, and thus a greater number of incorrect templates. For the word

+ phrase templates, the backward pass coverage is slightly lower than that of the

5All experiments reported use the local Mahalanobis distance (Equation (2.31)) for calculat-
ing between-frame distances while the distance normalisation of Equation (5.2) is applied to a
templates total distance.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 117

forward pass, although the C/I Ratio and average number of templates follow a

similar pattern to that of the word-only templates which again implies that fewer

correct templates are found in the backward pass. When combining the template

selections of the forward and backward passes together (the merged selections),

in both the word-only and word + phrase templates selections, the coverage in-

creases, although the C/I Ratio drops slightly which is due to the backward pass

bringing a larger number of incorrect templates.

Time Filter Average
Templates Method Coverage (%) C/I Ratio Num. Templates

Backwards 93.17 0.33 1665
Words Forwards 93.36 0.48 1656

Merged 93.45 0.47 1726
Words Backwards 95.25 0.33 1775

+ Forwards 95.47 0.48 1767
Phrases Merged 95.51 0.48 1842

Table 5.2: Time Filter statistics for the RM evaluation set, with VTLN applied.
The Time Filter methods are the forwards and backwards passes of the Time Filter
algorithm, while “merged” represents the the union of the two passes. C/I Ratio is
the correct to incorrect template ratio.

Table 5.2 shows the template selection statistics for the RM evaluation set

(the combined oct89, feb91, and sep92) after Vocal Tract Length Normalisation

(VTLN) is applied (see Section 2.6 for more information). Like with the SD

data (Table 5.1), the word + phrase template selections increase the coverage

percentage, this time by over 2%. However, the C/I Ratio for all selection methods

is much lower on the RM data. This must be due to the inherent problem of

speaker independence for template-based approaches, even after VTLN, which

requires lots of examples to match the variation in speaker, especially if, like in

this case, the smallest template unit used is the word. It is interesting to point

out that for the word + phrase merged template selections, without VTLN (not

shown in the table) the coverage drops to 95.29% while the C/I Ratio drops to

0.33.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 118

5.5.1.1 Sigmoid-Based Distance Normalisation

In Section 5.3.2, a sigmoid-based distance normalisation function for template

activations scores was introduced (defined in Equation (5.4)). In template selection

experiments, the λ weight was varied from 0.025 in roughly even steps to 0.8 for

the SD data to evaluate the effects of how the distance curve affects the template

selection. Table 5.3 shows the results.

λ 0.025 0.075 0.125 0.2 0.4 0.8
Coverage (%) 95.76 95.86 95.88 95.88 95.9 95.9

C/I Ratio 1.79 1.84 1.85 1.86 1.88 1.89
Avg. Num. Templates 1981 1979 1979 1977 1977 1983

Table 5.3: Time Filter statistics for the SD evaluation set when using Sigmoid-based
distance normalistion.

It is clear from Table 5.3 that, although there are slight improvements in the

coverage percentage and C/I Ratio, the sigmoid-based normalisation is not very

effective in terms of varying the template selection. The average phrase length in

each utterance for the template selections also shows very little change. Clearly

the Sigmoid distance normalisation did not work as hoped. It seems that although

the normalisation function is a useful formulation, it matters where it is applied

in the Time Filter algorithm.

Currently the normalisation is applied to the template activation score after the

Time Filter completes, but before thresholding is applied at each frame. Actually,

the normalisation should be applied at the selection of the k-nearest neighbours

(KNN). By applying the normalisation after the nearest neighbours have been

selected has a minimal effect because the available template selections have already

been defined, and thus the length of the chosen templates can not be greatly

influenced.

The problem that applying the Sigmoid normalisation to the KNN selection

might introduce is that, when using word and phrases templates, a nearest neigh-

bour (reference frame) that is contained in a phrase template will also be contained

in a word template (both templates are defined over the same frame in a given

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 119

utterance). By reducing the distance of the nearest neighbour with the sigmoid

normalisation, it helps that frame be selected as one of the KNN if it belongs to

a longer template, but that also means that the equivalent word template will

be initialised with an activation region from the nearest neighbour hit. Due to

time constraints, this problem could not be addressed, and thus all experiments

reported use the distance normalisation that divides by the number of nearest

neighbour hits, previously defined in Equation (5.2).

5.5.2 LDA Filtering

Figures 5.13 – 5.17 show various plots for the features extracted from template

selections for the SD training data. Figure 5.13 shows the features of Equation

(5.12) in 3D space, with the correct samples in blue and incorrect samples in

red. Because this is the training data, the class of each template feature vector is

determined using the annotation of each utterance as explained at the beginning

of Section 5.4, with both word string and time information used to classify: in the

given figures, a frame window of 15 frames, i.e. χ = ±7, was used to classify the

samples as correct or incorrect.

Figure 5.14 shows just two of the features, Pr(Y|t) and z(Y, t), which effec-

tively gives an overhead view of Figure 5.13. Visually, it is clear from the figure

that the occurrence based probability, Pr(Y|t), provides more discrimination for

the two classes (incorrect and correct) than the z-score, z(Y, t), and indeed the

eigenvector, wa = [0.99 -0.14 0.01], confirms this as the corresponding dimension

to the occurrence probability is 0.99, which means that the transformed samples

will keep a similar spread to the occurrence dimension. Figure 5.15 shows the 1st

level LDA projection of the template selections. It is clear that although there is

large overlap between the two classes, there is separation at either end of the line

(which is also visible in Figures 5.13 and 5.14).

Figures 5.13 – 5.17 represent a total of 20.8 million template selections (over all

utterances in the training data), with 12 million labelled as correct, and 8.8 million

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 120

0
0.5

1 −5
0

5
10

50

100

150

z(Y, t)Pr(Y|t)

L
(Y

)

Correct
Incorrect

Figure 5.13: Features for LDA: The features (defined by Equation (5.12))for correct
(blue) and incorrect (red) template candidates in 3D space. The data is the SD training
data.

labelled incorrect. After the first application of LDA, there are approximately

10.6 million correct and 2.1 million incorrect template selections that lie above φa.

Applying the 2nd level LDA to the template selections that lie below φa results in

1.2 million correct and 2 million incorrect samples projected above threshold φb

which means that about 11.7 million correct templates selections (out of 12 million)

are classified by the LDA decision tree as correct, whereas 4 million incorrect

template selections are classified correct (above the thresholds φa and φb), which

is just under half of all incorrect template selections. This means that the ratio of

correct to incorrect template candidates rises from approximately 1.36 before the

LDA to 2.93 after the 2-level LDA is applied.

Figure 5.16 shows the distributions of the two classes within the first LDA

projection space (for all template selections), while Figure 5.17 shows the distri-

butions of the two classes within the second projection space (for all template

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 121

0 0.2 0.4 0.6 0.8 1
−4

−2

0

2

4

6

8

Pr(Y|t)

z
(Y

,
t)

Incorrect
Correct

Figure 5.14: Z-score (z(Y, t)) plotted against the probability of template candidates
(P (Y|t)) for SD training data.

selections that were projected below φa in the first LDA). The distributions in

both figures confirm that there is an overlap of the classes, although the correct

template selections have a lower variance from the mean compared to the incorrect

template selections. The narrower variance (of the correct samples), in agreement

with the plots in Figures 5.13 and 5.14, means that the features of Equation (5.12)

provide a good extraction for correct selections, but do not necessarily represent

the incorrect selections well: clearly a large number of incorrect samples lie at the

opposite end of the sample space to the correct samples, but there are also a large

number of incorrect samples that exhibit the same, or similar properties to the

correct samples, hence the overlap of the two classes.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 122

−0.5

0

0.5

1

1.5

2

P
ro

je
ct

ed
 V

al
ue

Incorrect
Correct
φ

a

Figure 5.15: Projection of template candidates into 1D for SD training data. Pro-
jection of the incorrect (red, left) and correct (blue, right) shown separately. φa is the
threshold for classification.

−1 −0.5 0 0.5 1 1.5 2
0

0.5

1

1.5

2

Correct
Incorrect
φ

a

φ
b

Figure 5.16: Distributions for correct and incorrect template candidates, showing
1st level threshold φa with the 2nd level threshold, and φb which is calculated from the
distributions shown in Figure 5.17.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 123

−0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

Correct
Incorrect
φ

b

Figure 5.17: Distributions of template candidates y where {y ⊆ x : xi < φa} with
threshold φb shown.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 124

5.5.2.1 Classification Experiments

Tables 5.4 and 5.5 shows the results of applying the 2-level Hierarchical LDA

classifier to the SD Test data and RM evaluation set respectively. For each dataset,

a window of 15 frames is used to label a training template as correct or incorrect.

For the evaluation data, an RBF window of 15 frames (χ = ±7) is used, with a

standard deviation σ = 0.25 for the SD data and σ = 1 for the RM data6.

Templates Words Words + Phrases
Classification Acc. (%) 76.30 76.33

FNR (%) 1.91 1.88
FPR (%) 63.23 62.74

Average Num. Templates 1713 1804
Average Reduction (%) 16 17

C/I Ratio 2.81 2.80
Coverage (%) 89.70 93.77

Table 5.4: LDA Filter classification results on the SD Test data. Shows the clas-
sification accuracy of the Hierarchical LDA classifier, False Negative Rate (FNR),
False Positive Rate (FPR), average number of template selections per utterance, the
average reduction in the number of templates compared to before filtering, the correct
to incorrect template ratio (C/I Ratio) and the coverage of the template selections to
the input utterances.

Each table gives the evaluation of the classifier on word-only template selections

and word + phrase template selections (Row one). Row two gives the classification

accuracy of the classifier which is defined as the number of correctly classified

templates divided by the total number of templates. Row three gives the False

Negative Rate (FNR) which is a measure of how many times a template that

should be classified as correct is misclassified as incorrect. Similarly, row four

gives the False Positive Rate (FPR) which measures how many times an incorrect

template is misclassified as correct. Rows five, seven, and eight were previously

defined in Section 5.5.1, with row six defining the reduction in the average number

of templates per utterance compared to before filtering (refer to Tables 5.1 and

5.2 for original values).

6For the SD data, these values were experimentally found on the test data, while for the RM
data, the parameters were optimised on the feb89 development data

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 125

Templates Words Words + Phrases
Classification Acc. (%) 56.29 56.18

FNR (%) 3.22 3.30
FPR (%) 62.76 63.01

Average Num. Templates 1247 1317
Average Reduction (%) 28 29

C/I Ratio 0.72 0.72
Coverage (%) 85.93 91.68

Table 5.5: LDA Filter classification results on the RM evaluation set using VTLN.

It can be seen from Table 5.4 that the classifier achieves a high accuracy on

the SD data (76%), with a low FNR but high FPR. As mentioned before, the

features were selected to represent correct template selections, thus the low FNR,

but the features don’t directly model the incorrect template selections, hence the

high FPR. This results in most of the correct templates being accepted, but with

a large number of incorrect templates also being accepted. The average number

of templates, C/I Ratio, and template coverage can all be directly compared to

Table 5.1 to see the effects of filtering with the LDA classifer.

The coverage when using word-only templates and word + phrase templates

both drop after filtering. It is clear that the correct templates that are misclassi-

fied, and hence filtered out of the template selections, directly affect the coverage

percentage. However, even though the FNR on the word + phrase template selec-

tions is only marginally lower than that on the word-only templates, the difference

in coverage percentage between word-only and word + phrase templates is more

than double than before filtering. This same effect is seen on the RM data, in

Table 5.5, where the difference on coverage between word-only and word + phrase

templates compared to before filtering in Table 5.2 is almost trebled, even though

the FNR is higher on the word + phrase templates than the word-only templates.

Even though the classifiers perform similarly on word-only and word + phrase

templates in terms of classification accuracy, the difference in template coverage

between the two sets of templates implies that template length has a significant

effect upon the classifier. Figure 5.13 showed that there is a significant number of

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 126

correct templates in the training data that are longer than 40 frames, and although

there are incorrect templates of this length, they are not as numerous, and it can

be seen that the incorrect template lengths generally are below 40 frames. This

means that, when word + phrase template selections are used in the Test sets,

that the longer templates (i.e. phrases), if they have a high occurrence probability

and lower z-score, are more likely to be classified as correct than shorter templates

(i.e. words) with similar z-scores and occurrence probabilities.

5.6 Conclusions

This chapter introduced an approximate method of KNN selection using Vector

Quantisation (VQ) (Section 5.2) for input into the Time Filter algorithm which

was described in Section 5.3. The Time Filter was described in detail, giving

information on how local activation regions are formed and how local costs are

applied within each activation region. An additional backward pass of the Time

Filter was suggested and described in Section 5.3.1. An alternative method to

normalising the distance score of template activations was described in Section

5.3.2, using a Sigmoid-based method, where the normalisation strength was based

upon the template length (in terms of number of frames) and a pre-defined weight

so that the effect of using longer templates could be seen.

In Section 5.4, a hierarchical LDA filter was introduced which was used to

further filter the list of template selections output from the Time Filter. To train

the LDA classifier, three features were extracted from the template selections for

the training data7. Based on observations, the first feature was an occurrence-

based probability, which counted the number of template selections within a given

window that all contained the same first word and divided that count by the total

number of templates within that window. The window was applied over each

template selection (which was at the centre of the window), and the counts were

7The Time Filter is run on the training utterances to get the template candidates for the
training data.

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 127

then smoothed using a Gaussian RBF (Radial Basis Function) that was placed

at the centre of the window. The RBF allowed a more accurate probability to

be estimated by assigning lower probabilities to templates that were further away

from high occurrence regions. The second feature was the z-score of the distances

of each template selection, calculated over all template selections, observing the

fact that, generally, correct templates have smaller distance scores. Finally the

third feature was the length of the template selection, in terms of the number

of frames it contains, observing the fact that the Time Filter introduced short

incorrect templates.

The extracted features were then used to train the hierarchical LDA filter which

was formulated as a two-level decision tree, with a projection vector and threshold

at each level — thresholds, used to determine which class the template belongs

to, were calculated as the intersection point of the distributions for the correct

and incorrect classes of the projected training samples. For classification, the test

data was first classified as correct or incorrect based on the top-level LDA classifier,

with the template samples that were classed as incorrect then undergoing a second

classification at the second level of the decision tree.

Section 5.5 provided evaluation of the methods described in the chapter. It was

shown that the word + phrase templates result in a better coverage of the test

utterances, with a 1.8% increase in word coverage on the SD test data, and over

2% for the RM evaluation set. The performance of the backward pass of the Time

Filter was compared to the original forward pass of the algorithm and the merged

set of template selections from both passes. It was shown that the backward pass

typically resulted in a marginally worse template coverage of the input, although

the C/I Ratio (Correct to Incorrect Ratio) was significantly lower for the back-

ward pass, which also selects, on average, more templates per utterance. When

merging the two sets of template selections (i.e. the union of the two sets), the

template coverage was always better than the individual sets, although the C/I

Ratio dropped slightly below that of the forward pass template selections. This

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 128

implies that the backward pass, although it has very similar template coverage,

is actually finding less correct templates, and thus more incorrect templates than

the forward pass, hence the slight drop in C/I Ratio on the merged set. How-

ever, because the template coverage improves after merging, the backward pass is

clearly finding unique correct templates to the forward pass.

It was shown in Section 5.5.1.1 that the Sigmoid-based distance normalisation,

which was introduced to control the length of the selected templates by the Time

Filter, was not effective. It was shown that by applying the normalisation at

the end of the Time Filter algorithm, but before thresholding is applied at each

frame, has very little effect on the final set of template selections because it is

the KNN selection that determines the available templates for selection, as well as

the defined constraints and sizes of the activation regions created by each nearest

neighbour hit. It was suggested that applying the normalisation method at the

KNN selection stage would allow control over the template lengths, but because

each phrase template shares its frames with word templates, there would be an

added problem of normalising each word template with the same function as the

phrase templates. Due to time constraints, the improvements to the Sigmoid

distance normalisation were left to a future date.

Section 5.5.2 gave evaluation of the hierarchical LDA filter through classification

experiments. It was shown that on both the SD call-routing and RM evaluation

data, that the application of the LDA filter led to a decrease in template coverage,

with a reduction in the average number of templates per utterance of 17% and

29% for the word + phrase templates on the SD and RM data respectively. The

classifiers, on both datasets, gave a low False Negative Rate (FNR) and high

False Positive Rate (FPR), although it is the FNR which directly affects the

template coverage. This means that the majority of filtered templates are incorrect

templates, but it is not yet clear how the loss of correct templates will effect the

recognition word accuracy — this will be addressed in Chapter 6.

It was shown that when comparing the difference in template coverage on the

CHAPTER 5. BOTTOM-UP TEMPLATE SELECTION 129

word-only templates to the word + phrase templates, before and after the LDA

filtering, that the difference became greater after the filtering; in the case of the

SD data it doubled, and for the RM data it was almost treble the pre-filtered

difference. This was attributed to the template length feature which is extracted

for the LDA. Because the classification performance was almost the same on the

word-only templates and the word + phrase templates, the conclusion must be

that the longer templates are not lost in the filtering process, but in fact it is

the shorter correct templates that are filtered away — this is a side effect of the

Time Filter introducing many incorrect templates that are short in length, thus

training the LDA to prefer longer templates. Thus, one can conclude, that a longer

template with a similar z-score and occurrence probability to a shorter template

is less likely to be filtered by the classifier than the shorter template.

Chapter 6

Template-Recognition

Experiments

6.1 Introduction

Section 2.3 introduced and described the techniques used in a basic Template-

Recogniser where all reference templates are loaded into the decoding network,

which as Section 2.5 showed, can be defined by the language model. Loading all

reference templates into the decoder is impossible because of memory limitations,

thus Chapter 5 described methods that can be applied (in a bottom-up manner)

to reduce the number of templates loaded into the decoder for any one utterance.

This Chapter is structured as follows: Section 6.2 describes how the information

from the bottom-up processing can be integrated into the template-decoder and

will go into finer detail about sections of the decoder that were not covered in

Section 2.3. Section 6.3 describes the method used for speaker normalisation of

the templates using a VTLN approach. Section 6.4 provides a detailed results

section for template-based recognition using phrase-based units, and shows how

the results compare with the baseline results that were evaluated with a HMM-

based monophone recogniser (Section 4.6). Finally, Section 6.5 gives conclusions

130

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 131

to the chapter.

6.2 Decoder Architecture — Extensions to the

Template Decoder

6.2.1 Integrating Template Candidates

As described in Section 5.3, the Time Filter algorithm [De Wachter et al., 2003]

outputs an activation graph which contains a list of candidate templates with a

given start and end time for the given utterance. De Wachter [2007] uses the

activation graph directly in the decoder, i.e. a token transitioning from the end

of one template can only move to other templates that begin at the time (frame)

that the current template ends in the activation graph. This approach, although

efficient, can lead to “dead-ends” [De Wachter, 2007] in the graph, where there

is no template to move to, i.e. there are no outgoing arcs at a given frame state.

Figure 6.1 shows an example of a “dead-end” occurring in an activation graph.

Figure 6.1: Shows an example of an activation graph with a “dead-end” at frame
47.

De Wachter et al. [2007] introduce “natural successors”, which are the templates

that follow a given template in the reference database (i.e. they are adjacent in

the same reference utterance), into the activation graph to minimise the number

of “dead-ends”, although they can still occasionally occur. The solution that is

applied in the experiments reported here is to simply use the start frame of the

template only. By not specifying the end frame of a template candidate as a con-

straint, the token passing algorithm (with DTW) can determine the segmentation

point. The token passing algorithm is implemented as described in Section 2.3.4

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 132

except for when passing a token into a template. At this point a “lookup” is

performed to check that the given template can start at the current time frame —

if the template’s candidate start time matches the current time then the token is

passed into the template, and the DTW can begin, otherwise no token is passed

to the current template.

It should be pointed out that this does not fully remove the problem of “dead-

ends”: if the Itakura constraints are used, then the token passing algorithm will

allow at most one stall in a given state, and thus removing the end constraint does

not guarantee the dismissal of all “dead-ends”. To fully remove the problem of

“dead-ends”, the Itakura constraints are eased on the stall transitions, i.e. consec-

utive stalls are accepted. The effects of this change upon the DTW was previously

illustrated in Figure 2.4.

6.2.2 Token Merging

The process of selecting the best token at each state within the token passing

algorithm is known as token merging1. It equates to choosing the best decoding

path to the current state at the current time and is one of the key processes of

the Viterbi algorithm. For the template decoder, at a certain state the collection

of tokens at a given time will contain a high number of identical paths. This

is because, even with a constrained network (using the activation graph), there

are multiple templates representing the same word or phrase, and so the tokens

arriving at the current state are likely to have travelled through these different

template examples while containing the same “word” history.

Because the end-goal of the experiments presented here is to find the string of

words for a given utterance, before the token merging is performed, tokens with

an identical “word” history, i.e. tokens holding template sequences with identical

label sequences, are combined together into one token with their total probabilities

1The tokens are not actually “merged”, but it appears from outside view as if they do because
multiple tokens are reduced to one remaining token (or N tokens in N-Best recognition).

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 133

added together. Templates representing phrases keep a whole label string which

means that a token that has visited, for example, the word templates “i”, “want”,

and “my” will not be combined with a token that has visited, for example, the

phrase template “i want my”. Because log-probabilities are used in the decoder,

the sum of Pr (a) + Pr (b) for two tokens a and b is calculated in log space as

log (Pr (a) + Pr (b)) = log Pr (a) + log (1 + exp (log Pr (b) − log Pr (a))) (6.1)

where log Pr (a) and log Pr (b) are the log-probabilities of token a and token b re-

spectively. Equation (6.1) is used in all template-based recognition experiments

reported later in Section 6.4 although it was found to give no statistically signifi-

cant improvements over the traditional Viterbi recognition (no merging of identical

hypotheses).

Equation (6.1) could be improved by integrating prior probabilities as a weight-

ing mechanism — there are words and phrases that are represented by many tem-

plates in the reference database which could bias the token merging of Equation

(6.1). The prior probabilities, estimated from word / phrase frequency (the in-

verse of), could be used essentially to normalise the probabilities when merging,

although this is not implemented in the reported work.

6.3 VTLN for Templates

For the RM dataset, which is a speaker independent dataset containing both male

and female speakers, Vocal Tract Length Normalisation (VTLN) was applied in

order to reduce the variability introduced by the different lengths of vocal tracts

in different speakers (on average, males have longer vocal tracts then women).

Previously, the VTLN method for HMMs was described (Section 2.6), where a

piecewise linear warping function [Hain et al., 1999] is used to warp the frequency

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 134

axis by the the inverse of a warp factor α which can be optimally found using the

method described in Lee and Rose [1998].

Using VTLN on templates is not straight-forward. The number of reference

templates is too large to choose the optimal warping factor by cycling through all

of the possible warp factors2. For the experiments presented in this chapter, the

application of VTLN to the reference templates is performed by using the HMM-

based method (which was already performed for the baseline measure) to find the

best warping factor for each speaker, which is then used to warp that speakers

templates. For the recognition stage of VTLN, again the HMM-based approach

was used: the Word-Bigram (WB) language model was used to find the best

warping factor for each utterance in reference to the HMMs that were previously

trained on the normalised speakers. Each warped utterance is then stored and

can be used as input into the template-based Time Filter and decoder. Figure 6.2

shows the distribution of the optimal warp factors for each speaker in the training

data (and thus reference template database). It shows the distribution of the male

speaker warping factors and the female warping factors separately.

The application of speaker normalisation to template-based recognition was

suggested in De Wachter et al. [2007] and recently Demange and Van Compernolle

[2009b] have investigated VTLN for template-based recognition, using an on-line

estimation of the warping factors on a sentence by sentence basis [Duchateau

et al., 2006]. This method uses Gaussian mixture models (GMMs), trained on

generic speech, to determine whether or not the input sentence is male or female.

The warping factor is then based on how probable a speaker’s sentence is to

being male or female, and is also controlled with an extra parameter. Demange

and Van Compernolle [2009b] was published after the work presented here was

completed, and so represents a future improvement of the adopted HMM-based

VTLN approach.

2There are thirteen warp factors spaced evenly in the range 0.88 ≤ α ≤ 1.12

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 135

0.9 0.95 1 1.05 1.1
0

10

20

Male Speakers

S

pe
ak

er
s

0.9 0.95 1 1.05 1.1
0

10

20

Female Speakers

S

pe
ak

er
s

Warp Factor

Figure 6.2: The optimal warp factors selected for the RM training data. There are
78 male speakers and 31 female speakers in the training data.

6.4 Recognition Experiments

6.4.1 Speaker Dependent Results

Table 6.1 shows the template recognition results for the SD test data as well as the

HMM baseline results (previously presented in Section 4.6) for comparison. For the

WB model, only word templates were loaded into the decoder (and Time Filter),

while for the WPB and WPLB language models, word and phrase templates were

used (the same set of activation graphs from the Time Filter are used by the

decoder when using WPB or WPLB). Results are shown for all three language

models with and without the LDA filtering — the LDA filter uses a window of

15 frames (χ = ±7 around the centre frame) for the RBF which has a standard

deviation of 0.25. For the Time Filter pass that was used to generate activation

graphs for the decoder, the number of nearest neighbours was chosen to be 10,000.

Table 6.2 shows the average number of templates per utterance contained in

the activation graphs for Time Filter passes with word-only templates, as well as

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 136

HMM
Templates LM Word Acc.(%) Word Acc. (%)

words WB 83.88 86.92
words + phrases WPB 85.6 87.52
words + phrases WPLB 86.07 87.76
words + LDA WB 80.96 n/a

words + phrases + LDA WPB 83.85 n/a
words + phrases + LDA WPLB 84.59 n/a

Table 6.1: Word Accuracy on SD data for WB, WPB, and WPLB language models
using template-based decoder using phrase weights of 20. Word accuracy is also shown
after filtering the templates with the Hierarchical LDA method of Section 5.4. The
results using HMMs (which use a phrase weight of 0.5), previously presented in Table
4.1, are also shown for comparison.

word and phrases templates. The average number of templates remaining after

the LDA filtering is applied is also shown.

Average Relative
Templates Num. Templates Reduction

words 2047 n/a
words + phrases 2167 n/a
words + LDA 1713 16%

words + phrases + LDA 1804 17%

Table 6.2: Shows the average number of templates per utterance for the SD Test data
as candidates for the decoder from the Time Filter and the reduction in the number
of templates when LDA filtering is applied.

As with the results using the HMM-based recogniser, both WPB and WPLB

achieve a higher performance than the WB baseline. WPLB, as with the HMMs,

also performs better than WPB. It is clear to see from Table 6.1 that the LDA

filtering has a negative effect upon the recognition accuracy, and is clearly a sig-

nificant degradation in performance compared to the the pre-filtered templates.

Table 6.3 shows the Matched-Pairs test for the pre-filtered template systems and

baseline HMM systems.

First of all, Table 6.3 shows that WPB and WPLB are in fact significant

improvements over the template WB system, and also that WPLB does indeed

achieve significant improvements over the WPB system (which was not observed

for the HMM-based equivalents). It can also be seen that the baseline HMM

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 137

WB WPB WPLB WBhmm WPBhmm WPLBhmm

WB WPB WPLB WBhmm WPBhmm WPLBhmm

WPB WPLB WBhmm WPBhmm WPLBhmm

WPLB same WPBhmm WPLBhmm

WBhmm WPBhmm WPLBhmm

WPBhmm same
WPLBhmm

Table 6.3: Statistical significance tests on the SD test data. The Matched-Pairs test
for hypotheses from the template-based systems and comparable HMM-based systems.

output performs competing systems that used the same language model) in the

template systems, although the template-based WPLB is judged to give, statisti-

cally, the same level of performance as the HMM-based WB system (WBhmm in

Table 6.3).

Figure 6.3 shows the histograms of the length of units (in terms of number of

words) used by the template-based decoder when using WPB and WPLB language

models3. As with analysis provided in Section 4.6 for language units selected

by the HMM decoder, it is clear to see that the WPLB language model forces

the template-based decoder to select fewer words, and thus longer phrases. The

template-based decoder does select a higher number of words for WPB (81% of

recognised units) and WPLB (76% of recognised units) than the HMM decoder

(which uses 79% for WPB and 73% for WPLB), but of course the HMM decoder

is concatenating phone models together, whereas for the template-based decoder

each word and each phrase corresponds to a whole template example.

Returning to Table 6.1 and Table 6.2, the LDA filtering method is clearly

degrading the performance of the recogniser, even though the number of templates

is reduced. It seems likely that the templates that were filtered out were in fact

“correct” templates, and thus there is a decrease in performance. As previously

reported [Watkins and Cox, 2009], for a reduced-performance system4 (79.41%

word accuracy using an average 4773 templates (words + phrases) per utterance),

3The reader is reminded that the WPB and WPLB systems both have available exactly the
same set of templates, i.e. they use the same activation graphs.

4At the time this was our best result for the SD data.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 138

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

Phrase Length (# words)

F
re

qu
en

cy

(a) Used phrases in WPB recognition.

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

Phrase Length (# words)

F
re

qu
en

cy

(b) Used phrases in WPLB recognition.

Figure 6.3: Histograms of the length of phrase units chosen by the template-decoder
on the SD data during recognition with WPB and WPLB language models.

the LDA filter reduces the number of templates by 37% while increasing the word

accuracy (80.07%). Because of the lower performance it is important not to over-

emphasise the LDA filter performance, but it does show that the LDA filter can

be effective if the Time Filter introduces a larger number of (incorrect) template

candidates.

6.4.2 Speaker Independent Results

Table 6.4 shows the template recognition results for the RM evaluation sets (oct89,

feb91, and sep92). The HMM baseline results were all better than the template-

based results by at least 10% absolute (word accuracy) and are not included in

the table for comparison, but the interested reader can refer back to Table 4.3

for the HMM-based word accuracy results. The same set of experiments as for

the SD data were run, with the addition of VTLN. The LDA filtering experiment

results are only reported for the normalised (VTLN) templates as these systems

performed significantly better than the unnormalised templates. The LDA filter

window used in the experiments was set to 15 frames again (χ = ±7), but this

time a standard deviation of one was used. The Time Filter used to generate the

template candidates used 20,000 nearest neighbours. All of the parameters were

optimised on the RM development set (feb89).

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 139

Word Accuracy (%)
Templates LM VTLN oct89 feb91 sep92

words WB ✗ 75.78 76.85 71.24
words + phrases WPB ✗ 75.48 76.61 71.08
words + phrases WPLB ✗ 75.41 77.13 71.79

words WB ✓ 78.06 79.43 73.43
words + phrases WPB ✓ 78.69 79.79 75.69
words + phrases WPLB ✓ 78.54 80.15 75.65
words + LDA WB ✓ 74.14 76.13 69.75

words + phrases + LDA WPB ✓ 76.86 78.66 74.36
words + phrases + LDA WPLB ✓ 77.35 78.99 74.33

Table 6.4: Word Accuracy on the three test sets oct89, feb91, and sep92 for WB,
WPB, and WPLB language models, with and without VTLN. Word accuracy after
applying Hierarchical LDA filtering to the templates is also shown for each LM with
VTLN. The WPB and WPLB language models use a phrase weight of 15.

Table 6.5 gives the average number of templates per utterance as delivered from

the Time Filter for each of the systems reported in Table 6.4. The fourth column

in Table 6.5 gives the reduction in the average number of templates per utterance

for the word-only templates with VTLN and LDA filtering (row four), and the

word+phrase templates with VTLN and LDA filtering (row five) relative to the

normalised templates without LDA filtering.

Average Relative
Templates VTLN Num. Templates Reduction

words
✗ 1756 n/a
✓ 1726 n/a

words + phrases
✗ 1894 n/a
✓ 1842 n/a

words + lda ✓ 1247 28%
words + phrases + lda ✓ 1317 29%

Table 6.5: Shows the average number of templates per utterance for the RM evalua-
tion data (oct89, feb91, and sep92) as candidates for the decoder from the Time Filter
and also the reduction (%) of the number of templates when using LDA filtering.

It is clear from Table 6.4, that as with the HMM-based experiments, for the

original templates (i.e. not normalised), the different language models (WB, WPB,

and WPLB) have very little effect upon the final word accuracy. This is confirmed

with the Matched-Pairs tests presented in Table 6.6 (oct89 and feb91) and Table

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 140

6.7 (sep92) which shows that the WB, WPB, and WPLB systems are all statisti-

cally equivalent.

WB WPB WPLB WBvtln WPBvtln WPLBvtln

WB same same WBvtln WPBvtln WPLBvtln

WPB same WBvtln WPBvtln WPLBvtln

WPLB WBvtln WPBvtln WPLBvtln

WBvtln same same
WPBvtln same
WPLBvtln

Table 6.6: Matched-Pairs test on template-based systems using language models WB,
WPB, and WPLB, with and without VTLN for the RM oct89 and feb91 evaluation
sets.

When using VTLN on the templates, there is a large increase in word accuracy,

as can be seen in Table 6.4, in comparison to the same system without VTLN —

there is an absolute improvement of at least 2% in each system. This is confirmed

as significant by the Matched-Pairs test in tables 6.6 and 6.7. For the oct89 and

feb91 evaluation sets (see Table 6.6), the VTLN systems again are statistically

the same for changing language models (the same pattern as for the original tem-

plates). For the sep92 evaluation set, the VTLN WPB and VTLN WPLB systems

both achieve a significant increase over the VTLN WB system (see Table 6.7).

WB WPB WPLB WBvtln WPBvtln WPLBvtln

WB same same WBvtln WPBvtln WPLBvtln

WPB same same WPBvtln WPLBvtln

WPLB same WPBvtln WPLBvtln

WBvtln WPBvtln WPLBvtln

WPBvtln same
WPLBvtln

Table 6.7: Matched-Pairs test on template-based systems using language models WB,
WPB, and WPLB, with and without VTLN for the RM sep92 evaluation set.

Figure 6.4 shows the familiar analysis of the length of unit used in recognition.

As before, it can be seen that the WPLB model decreases the number of words

chosen, which thus results in more longer phrases (typically of two or three words).

The important thing to note is that, for the WPB system, 93% of the used units

by the decoder are words, and for the WPLB system that figure becomes 90%.

This contrasts to the units used by the HMM-based decoder which were 85% and

79% respectively.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 141

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

7000

Phrase Length (# words)

F
re

qu
en

cy

(a) Used phrases in WPB recognition.

1 2 3 4 5 6 7
0

1000

2000

3000

4000

5000

6000

7000

Phrase Length (# words)

F
re

qu
en

cy

(b) Used phrases in WPLB recognition.

Figure 6.4: Histograms of the length of phrase units chosen by the template-decoder
on the RM data during recognition with WPB and WPLB language models.

Finally in this section, we return to the LDA filter results presented in Table

6.4. It is clear that, as with the SD data, the application of the LDA filter leads

to a reduction in word accuracy, albeit with a large reduction in the number of

template candidates for the decoder, as shown in Table 6.5. The degradation of

performance on the RM data is not as great as on the SD data, and thus Matched-

Pairs tests were performed to see if the LDA filtering led to a significant reduction

in word accuracy. These are presented in Table 6.8.

Dataset System 1 System 2 Significance

oct89
WBvtln WBvtln+lda WBvtln

WPBvtln WPBvtln+lda WPBvtln

WPLBvtln WPLBvtln+lda WPLBvtln

feb91
WBvtln WBvtln+lda WBvtln

WPBvtln WPBvtln+lda same
WPLBvtln WPLBvtln+lda same

sep92
WBvtln WBvtln+lda WBvtln

WPBvtln WPBvtln+lda same
WPLBvtln WPLBvtln+lda same

Table 6.8: Matched-Pairs test on RM evaluation sets for comparison of template-
based VTLN systems with and without LDA filtering. Each system after LDA filtering
(system 2) is compared to the same system before filtering (system 1).

Table 6.8 compares each of the template-based systems (WB,WPB, and WPLB)

with VTLN (e.g. WBvtln) to the same systems after LDA filtering (e.g. WBvtln+lda).

For the oct89 evaluation set, it can be seen that the LDA filtering does result in

a significant degradation in word accuracy for each language model. However, for

the feb91 and sep92 sets, the WPB and WPLB systems do not give a significant

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 142

drop in accuracy after LDA filtering, even though the LDA filtering reduces the

number of template candidates in the decoder for WPB and WPLB by 29% (Table

6.5).

6.5 Conclusions and Discussion

This chapter described the template-based decoder and the recognition exper-

iments that were used to evaluate the template-based approach to continuous

speech recognition. Section 6.2 described how the classic Token Passing decoder

was adapted to deal with the bottom-up template selections from the Time Filter,

including how the activation graph was used by the decoder. The token merging

method within the token passing algorithm was also adapted so that tokens that

had visited different template examples with the same word string were merged

when the tokens arrived at the same state for a given time, with their probabilities

summed together. Section 6.3 described how a HMM-based Vocal Tract Length

Normalisation (VTLN) technique was used for the template-based approach to

speaker normalisation, with the optimal warping of the reference speakers per-

formed on a HMM system, and the optimal warping of the input utterances per-

formed once using HMMs trained on normalised speech, with the normalised input

utterances then used for all experiments.

The experiments, described in Section 6.4, were performed on the speaker de-

pendent (SD) call routing data and the speaker independent RM data. For the SD

data, it was shown that template-based results were approaching the HMM base-

line results, in particular with the WPLB system which was judged to be statis-

tically the same as the HMM WB system. The comparison of the template-based

systems showed that the WPB and WPLB systems both achieved (statistically)

significant improvements compared to word-only templates with the WB language

model, while the increase in word accuracy from the WPB system to the WPLB

system was also a statistical improvement.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 143

For the RM dataset, the results of the template-based recognition were someway

behind that of the HMM baseline results (an absolute difference in word accuracy

of at least 10% after applying VTLN). For comparison of the template-based re-

sults, the WB, WPB, and WPLB systems (without VTLN) all gave statistically

equivalent word accuracy — it was shown that for WPB and WPLB, over 90%

of the recognised units were infact words which could be one reason for the par-

ity. After applying VTLN to the reference templates and input utterances, large

increases were found for each template-based system (at least 2% absolute com-

pared to without VTLN), with the WPB and WPLB VTLN systems achieving

statistically significant improvements over the WB VTLN system on the sep92

evaluation set only. The average number of reference speakers available to the

decoder (i.e. contained in the activation graphs) per utterance rose from 103.8

to 108.4 when using VTLN (the total number of reference speakers available is

109) — while this seems to be a small increase, it is averaged over 900 utterances

(oct89, feb91, and sep92 were combined togther). It was shown that using VTLN

reduced the average number of templates per utterance by about 50 when using

word and phrase templates with the Time Filter (Table 6.5). Recall from Sec-

tion 5.3, that after the activation graph is formed by the Time Filter, a threshold

is applied on the distance scores at each frame. Because the application of the

VTLN reduces the average number of templates per utterance while increasing

the word accuracy suggest that the VTLN reduces the distance of the “correct”

templates5 closer to the input, and thus the “incorrect” templates move further

away, hence when thresholding is performed, the number of templates remaining

decreases. Reducing the spectral variability with VTLN thus results in the tem-

plates that were similar to the input by spectral properties only being removed

from the activation graph (after thresholding the distances).

Finally, it was shown that the LDA filter (described in Section 5.4) was gen-

erally unsuccessful in reducing the number of templates in the activation graph

and increasing the word accuracy. On the SD call-routing data the average num-

5Correct in the sense that the word strings of the template match that of the input.

CHAPTER 6. TEMPLATE-RECOGNITION EXPERIMENTS 144

ber of templates per utterance were reduced by 17%, but this reduction led to

statistically significant reductions in recognition performance. On the RM data,

the average number of templates were reduced by 29% on the word + phrase

templates with VTLN, with the WPB and WPLB systems achieving statistically

equivalent performance to the unfiltered WB system (with VTLN) on the feb91

and sep92 datasets. It was shown that the LDA filter performs well when applied

to an activation graph with a high number of incorrect templates — this result

suggests that the features that were extracted for the LDA filter (Section 5.4.1)

are suitable for identifying a large number of incorrect templates, but require a

higher level of detail to make sure that correct templates are not removed from

the activation graphs which is vital to maximising word recognition performance.

Chapter 7

Discussion and Conclusions

7.1 Summary and Discussion

This thesis was motivated by the idea of improving ASR accuracy by exploiting

formulaic sequences in language, which occur in human-to-human dialogue. To

minimise the effort of both speech production and perception in the conversation,

the human speaker will retrieve chunks of speech “whole from memory rather

than being subject to generation or analysis by the language grammar” [Wray

and Perkins, 2000]. This production in turn seems to prime the human listener

with a set of semantic expectations [Pickering and Garrod, 2004] which then may

prime an appropriate set of formulaic sequences that the listener expects to hear

to enable quick and efficient perception.

The aim of this thesis was firstly to acquire formulaic sequences or phrases

from transcriptions of speech and then to use them to define units of language

and speech that have a variable length in a speech recogniser, with the aim of im-

proving recognition accuracy. A summary of each chapter is given below, including

methods and findings.

Chapter 2 gave the technical background required for the methods presented

in this thesis. It gave a thorough background into N-gram language modelling,

145

CHAPTER 7. DISCUSSION AND CONCLUSIONS 146

including backoff models, representation within Stochastic Finite State Automata

(SFSA), and the evaluation metric perplexity. It also described key techniques

required in template-based recognition including frame-based distance measures,

DTW (Dynamic Time Warping), and the token passing algorithm, which it was

shown could be applied to HMM-based recognition also. It was also shown how

to integrate language model SFSAs with HMMs and templates to construct the

decoding network. A HMM-based method to perform Vocal Tract Length Nor-

malisation (VTLN) was also described, and finally, Linear Discriminant Analysis

(LDA) was described for constructing a simple binary classifier.

Chapter 3 described the data used to evaluate the methods in this thesis. A

speaker dependent (SD) dataset, originally recorded by multiple speakers in a call-

routing environment, was introduced, and was shown to contain a high frequency

of commonly-occurring phrases. The Resource Management (RM) dataset, which

contains multiple training and test speakers, was also detailed. The methods used

for feature extraction and HMM training for each dataset were described, as well

as information about the number of templates that both datasets contained.

Chapter 4 was concerned with acquiring commonly-occurring phrases from

transcriptions of speech and investigating ways to model these in language mod-

els. A multigram segmentation framework [Deligne and Bimbot, 1995] was used

to acquire the phrases, by finding the best segmentation of a given utterance. In

an attempt to cluster phrases with a similar semantic function, and hence provide

a set of “primed” phrases for a given context, a simplified syntactic approach was

used, termed Hybrid Syntactic Formulaic (HSF) clustering, which combined the

commonly-occurring phrases with the information from syntactic parse trees to

assign phrases to classes based on their context. The acquired phrases and phrase

classes were then integrated into the N-gram framework using different language

model topologies, including the Word Phrase Link Bigram (WPLB) which com-

bined word N-gram models with phrase N-gram models, linking the two with new

unseen bigram transitions between the two model layers. The phrase classes were

CHAPTER 7. DISCUSSION AND CONCLUSIONS 147

integrated seamlessly into the WPLB model by representing each class as local

models using SFSAs — this language model was termed the Word Phrase Class

Link Bigram (WPCLB).

Using the baseline HMM-based monophone recogniser, it was shown that the

WPLB model gave statistically significant improvements over the word bigram

(WB) model, for the SD call-routing data, improving the word accuracy to 87.76%

from 86.92% The WPLB model also gave a significant decrease in perplexity, from

13.1 to 11.05. The WPCLB model also gave a signficant increase over the WB

model, achieving a word accuracy of 87.79% (not significantly better than WPLB)

and a perplexity of 11.35. However, the same improvements in word accuracy of

the recogniser were not observed on the RM dataset. In fact, there were no sta-

tistically significant improvements on any of the methods presented. An analysis

of the (language) units chosen by the decoder showed that a high proportion of

the units were in fact at the word level on both the SD and RM datasets, which

implied that the chosen phrases did not generalise well to the unseen data, forcing

the recogniser to fall-back onto the words. A recognition experiment on the call-

routing training data showed that a much higher proportion of the units chosen

by the decoder were phrases (greater than one word) which is strong evidence to

suggest that the phrases do not generalise well to unseen data.

Chapter 5 described methods for the bottom-up selection of templates for the

decoder. These were required to reduce the massive search space when using all

templates defined by words and phrases acquired in Chapter 4. Because of memory

limitations, it is impossible to use all templates on standard desktop computers.

Extensions to the Time Filter algorithm [De Wachter et al., 2003] were defined

including a new backwards pass of the algorithm and a distance normalisation

method based on a Sigmoid function to control the length of templates selected.

The normalisation method was shown to be ineffective, concluding that it should

be applied at the selection of the KNNs. The backward pass was shown to find

templates that the forward pass did not find, although this included a larger

CHAPTER 7. DISCUSSION AND CONCLUSIONS 148

number of incorrect templates than correct templates.

A second template filter, a hierarchical LDA filter, was introduced to further

filter the templates after the Time Filter was applied, i.e. to filter the template

selections. This was motivated by an Oracle test which showed that removing

the incorrect template selections led to a large increase in speech recognition word

accuracy. The LDA filter used features based on observations of the template

selections, such as occurrence probability, to train two LDA classifiers which were

placed in a decision tree, classifying a template as correct or incorrect depending

on a threshold. Templates classed as incorrect were then classified again on the

second level of the decision tree.

Evaluation of the hierarchical LDA filter was done with template coverage and

classification accuracy. The LDA filter was found to remove a high number of

incorrect template selections but also to remove some correct templates which led

to a drop in template coverage accuracy to the input utterances. The classification

performance of the LDA decision tree showed that indeed low False Negative Rates

(FNR) were observed (1.8% on the SD data and 3.3% on RM), while False Positive

Rates (FPR) were high (62.74% and 63.01% respectively). A key finding was that

the difference in template coverage accuracy between word-only templates and

word + phrases templates increased after the LDA filtering was applied (double

the difference on the SD data and almost treble on the RM data). This was

evidence that, generally, the longer templates that survived the Time Filter were

correct selections, which influenced the LDA classification as template length was

a feature used to train the LDA. It was suggested that length feature had a strong

effect on filtering shorter correct templates.

Chapter 6 defined how the template-based decoder integrated the template

selections from Chapter 5 and the phrase-based language models from Chapter 4

into a recognition system which was then used to perform recognition experiments.

VTLN for templates in the RM dataset was described and the HMM-based method

for selecting warping factors, described in Chapter 2, was used to normalise the

CHAPTER 7. DISCUSSION AND CONCLUSIONS 149

templates. Each experiment thus used the same templates and test utterances.

It was shown that the template-based recogniser with the WPLB language model

on the SD data, achieved a recognition accuracy of 86.07% which was statistically

equivalent to the baseline HMM system using the WB model. It was also shown

that the WPLB template-based system achieved a much higher word accuracy

than the word-only template system using the WB model, which performed at

83.88% word accuracy.

For the experiments on the RM data, it was shown that, even after VTLN was

applied to the templates and input utterances, the word accuracy for the template-

decoder was much lower than the baseline HMM systems, with an absolute dif-

ference of at least 10%. It was shown that over 90% of the recognised units were

words, and that, as with the HMM-based results, there were no statistical differ-

ences in performance when changing the language model (before VTLN). However,

when VTLN was applied, the smallest improvement compared to template-based

systems without VTLN was 2% absolute, with the WPLB template system achiev-

ing a significant increase over the WB template system (with VTLN) on the sep92

evaluation set. The WPLB template system achieved the highest overall word

accuracy of 80.15% on the feb91 set, which was an improvement of 3.02% absolute

over the same system without VTLN (77.13%). The largest improvement observed

from using VTLN was about 4% absolute.

Experiments were also performed using the LDA filtered template selections,

with the SD data showing significant degradation in word accuracy. However, on

the RM feb91 and sep92 datasets, with a reduction of 29% in the average number

of templates per utterance, the WPLB system with VTLN achieved statistically

equivalent performance to the template WB system with VTLN and no LDA

filtering.

CHAPTER 7. DISCUSSION AND CONCLUSIONS 150

7.2 Conclusion and Future Work

Selecting variable length units of speech and language for speech recognition, by

segmenting transcriptions of speech shows promise for a template-based speaker

dependent recognition system, but template-based performance falls some way

short of a baseline phone HMM performance on speaker independent systems. It

was shown that by using the word as the minimal unit and supplementing that with

commonly-occurring phrase-based units, a recognition word accuracy of 86.07%

could be achieved, which was shown to be statistically equivalent to the HMM-

baseline results when using a simpler language model. However, experiments on a

speaker independent system gave best results of 80.15% word accuracy after VTLN

was applied which was over 12% (absolute) lower than the baseline HMM-system.

It was shown that the poor generalisation of the phrases to unseen data was a

major factor in poorer recognition peformace. The synthetic nature (sentences

produced from a grammar) of the RM datset means that the data contains fewer

formulaic phrases. This was observed in the segmentation of the transcriptions,

which gave a higher proportion of shorter phrases than the segmentation of the

highly formulaic call-routing dataset. This was a factor in the poorer performance

on the RM dataset.

Efforts to improve the recognition accuracy were made with a hierarchical LDA

filter which attempted to remove incorrect template candidates from the Time Fil-

ter selections by using a linear classifier to separate correct and incorrect templates

based on features of occurrence, score, and length. This was shown to work well

at removing a high number of incorrect templates, but also removed a (much)

smaller number of correct templates, and this resulted in lower speech recognition

performance.

Section 7.2.1 addresses the issues raised in this chapter, and indeed this thesis,

with improvements that could be made in the future.

CHAPTER 7. DISCUSSION AND CONCLUSIONS 151

7.2.1 Future Work

Certainly the first issue that needs to be addressed is the minimum template unit

length. It has been shown that by using phone templates and then concatenating

these templates, with various associated concatenation costs, that high speaker

independent performance can be achieved [De Wachter et al., 2007]. This is a

commonly-known problem in template-based recognition where there usually are

not enough examples of words, and certainly phrases, to accurately recognise

speech from different speakers, and so reverting to phones provides a much higher

number of template examples. Incorporating this idea [De Wachter et al., 2007]

into the work presented here is a viable option: the segmentation of transcriptions

of speech could be performed at the phone level, resulting in phones, words, and

phrase units — words and phrases could be constructed from the phone sequence

using a pronunciation dictionary. These units could then be used in the same way

as described in this thesis, with all phones used as a backoff mechanism for unseen

speech that does not match well to the reference speakers.

Another big problem in this work was shown to be the poor generalisation of

the acquired phrases to unseen data. By using fixed phrases, any minor variants

of the phrases in the test data will not be recognised at the phrase level, but at the

word level. This leaves a large number of reference templates unused, which will

become an even higher number the more the test data differs from the training

data. One method to model the variations in phrases, would be to model things

such as open-class items using slots in the phrases that allow different words to

be inserted within a basic structure for a phrase. For example, a phrase structure

such as “X catch+TENSE Y red-handed” [Wray, 1999] can allow phrases such as

“he caught her red-handed”, “Bob is going to catch Linda red-handed”, and so

on. Each individual phrase structure could be modelled as fragments [Arai et al.,

1999] and integrated into an N-gram framework using SFSAs, as was shown for

phrase classes in Chapter 4. Integrating clustering with the fragments can then

result in modelling phrases that were unseen in the training data, thus addressing

CHAPTER 7. DISCUSSION AND CONCLUSIONS 152

the issue of generalisation to the test data.

Chapter 5 described a number of techniques that were tried to improve the

performance of the Time Filter algorithm [De Wachter et al., 2003]. The new

backward pass of the Time Filter algorithm essentially was a “mirror-image” of the

forward pass, using the same constraints and costs as the forward pass. Different

constraints on the backward pass could be investigated, investigating patterns

in the speech that the forward pass misses. The backward pass could also be

assigned less weight than the forward pass, employing it to select only the highest

scoring templates. The hierarchical LDA filter showed some promise, but was

found to be too aggressive. One of the reasons stated for this was the choice of

features used in the LDA. While new features such as a prior probability based on

a template’s occurrence in the training data and a windowed z-score, or optimised

features and threshold calculation on a development set could improve the LDA

performance, attention would focus on whether a non-linear classifier, such as

a Support Vector Machine (SVM) [Cristianini and Shawe-Taylor, 2000], could

improve the separation of the correct and incorrect template classes.

Appendix A

Sample Output of Multigram

Segmentation

A.1 Examples from SD Call-Routing Data

The following segmented utterances are actual examples chosen at random from

the SD call-routing data. The maximum number of words per phrase L is set to 7,

with the initial threshold θ1 set to 3, and the iterating threshold θ2 set to 1 (refer

to Section 4.3 for more information on parameters):

<s> [i’ve] [to pay] [something] [i mean] [do i have] [something] [due] [in my account] </s>

<s> [i have a maintenance agreement] [so] [can you transfer me to some] [agent] </s>

<s> [my account balance] </s>

<s> [i need to know] [my account balance] </s>

<s> [i would like to] [talk to] [an agent] </s>

<s> [parts] [info] </s>

<s> [i’d like to add] [add somebody to my account] [so] [they] [can use my card] [too] </s>

<s> [i] [actually] [want] [to order a part] </s>

<s> [how] [i] [how do i] [add another person to my account] </s>

153

APPENDIX A. SAMPLE OUTPUT OF MULTIGRAM SEGMENTATION 154

<s> [how many points do i have] [right now] </s>

<s> [yes] [i was wondering] [what] [your] [mailing address] [is] </s>

<s> [how can i get] [a premier card] </s>

<s> [what are the last few] [charges on my card] </s>

<s> [on] [what day] [did] [my check] [clear] </s>

<s> [how much do i owe] [now] </s>

<s> [where can i] [send my payment] </s>

<s> [has my] [check cleared] </s>

<s> [i want to] [raise my credit limit] </s>

<s> [how do i get] [another person] [to be able to use] [this account] </s>

<s> [how can i get] [more credit] </s>

<s> [where do i send my] [check] </s>

<s> [i] [bought something] [and i returned] [it and] [the] [the credit] [for it] [isn’t] [showing] [up]

[on my bill] </s>

<s> [i lost my] [credit] </s>

<s> [yeah] [you] [you have] [a] [sale] [oh] [coming up] [and i believe] [it’s] [the end of] [october]

[how long] [do you] [plan] [it to] [last] [i did] [i don’t] [i don’t know] [the] [date thank you] </s>

<s> [duplicate statement] [please] </s>

<s> [can you enroll me] [in] [rewards program] </s>

A.2 Examples from SI RM data

Sample segmented utterances from the RM data: L = 7, θ1 = 3, and θ2 = 1:

<s> [show] [only] [the] [visual] [sensor] [latitudes and longitudes] [available] [on] [hawkbill] </s>

<s> [what if] [plunger] [replaced] [the pollack] [in china sea] </s>

<s> [when is] [puffer] [arriving in port] </s>

<s> [what was] [ranger’s] [readiness] [june] [fourteenth] </s>

<s> [give me] [sps-48 capable] [cruisers] [at sea] [today] </s>

APPENDIX A. SAMPLE OUTPUT OF MULTIGRAM SEGMENTATION 155

<s> [list the] [carriers that] [were deployed on the] [eighth] [of september] </s>

<s> [what if] [queenfish] [increased] [its] [average cruising speed] [by one] [knot] </s>

<s> [get all] [c-codes for] [seawolf] </s>

<s> [find] [speeds for] [the ships] [that are in siberian sea] </s>

<s> [when’s] [swordfish] [due in port] </s>

<s> [start editing] [position data for] [arkansas’s] [track] </s>

<s> [who] [had the] [highest] [average] [c-rating] [during the last] [year] </s>

<s> [when is] [badger] [changing fleets] </s>

<s> [show] [areas] </s>

<s> [never mind] [the] [next] [chart] [display] </s>

<s> [give] [speeds] [of the] [c2] [submarines] </s>

<s> [review] [cheshire] [area alerts] </s>

<s> [what is] [bainbridge’s] [propulsion] </s>

<s> [list] [pacflt] [ships that] [are c3 on equipment] </s>

<s> [get me] [lats and lons] [and] [speeds] [for the] [subs in] [gulf of tonkin] </s>

<s> [find] [latitudes] [and] [names of] [vessels that are in] [sea of japan] </s>

<s> [give me a list of] [longitudes] [of tracks that are in] [the formosa strait] </s>

<s> [get a list of] [positions for] [ships in gulf of california] [that went to] [c4] [nine] [january]

</s>

<s> [show all] [locations of] [tracks for] [usn] [frigates] </s>

<s> [give] [latitudes and longitudes] [and] [names of any] [of eastpac’s] [cruisers that were] [in

the] [philippine sea] [on] [november] [twentieth] </s>

<s> [list the] [carrier’s] [positions for] [april] </s>

<s> [what is the] [frigate’s] [home port] </s>

Appendix B

Penn Treebank

This chapter contains the definitions of tags used in the Penn Treebank — the

following tags and their respective definitions were all taken from Bies et al. [1995].

B.1 POS Tags

CC — Coordinating conjunction.

CD — Cardinal number.

DT — Determiner.

EX — Existential there.

FW — Foreign word.

IN — Preposition or subordinating conjunction.

JJ — Adjective.

JJR — Adjective, comparative.

JJS — Adjective, superlative.

LS — List item marker.

MD — Modal.

156

APPENDIX B. PENN TREEBANK 157

NN — Noun, singular or mass.

NNS — Noun, plural.

NNP — Proper noun, singular.

NNPS — Proper noun, plural.

PDT — Predeterminer.

POS — Possessive ending.

PRP — Personal pronoun.

PRP$ — Possessive pronoun (prolog version PRP-S).

RB — Adverb.

RBR — Adverb, comparative.

RBS — Adverb, superlative.

RP — Particle.

SYM — Symbol.

TO — to.

UH — Interjection.

VB — Verb, base form.

VBD — Verb, past tense.

VBG — Verb, gerund or present participle.

VBN — Verb, past participle.

VBP — Verb, non-3rd person singular present.

VBZ — Verb, 3rd person singular present.

WDT — Wh-determiner.

WP — Wh-pronoun.

WP$ — Possessive wh-pronoun (prolog version WP-S).

APPENDIX B. PENN TREEBANK 158

WRB — Wh-adverb.

B.2 Phrase-Level Tags

ADJP — Adjective Phrase.

ADVP — Adverb Phrase.

CONJP — Conjunction Phrase.

FRAG — Fragment.

INTJ — Interjection. Corresponds approximately to the part-of-speech tag UH.

LST — List marker. Includes surrounding punctuation.

NAC — Not a Constituent; used to show the scope of certain prenominal modifiers

within an NP.

NP — Noun Phrase.

NX — Used within certain complex NPs to mark the head of the NP. Corresponds

very roughly to N-bar level but used quite differently.

PP — Prepositional Phrase.

PRN — Parenthetical.

PRT — Particle. Category for words that should be tagged RP.

QP — Quantifier Phrase (i.e. complex measure/amount phrase); used within NP.

RRC — Reduced Relative Clause.

UCP — Unlike Coordinated Phrase.

VP — Vereb Phrase.

WHADJP — Wh-adjective Phrase. Adjectival phrase containing a wh-adverb,

as in how hot.

WHAVP — Wh-adverb Phrase. Introduces a clause with an NP gap. May be

null (containing the 0 complementizer) or lexical, containing a wh-adverb such as

APPENDIX B. PENN TREEBANK 159

how or why.

WHNP — Wh-noun Phrase. Introduces a clause with an NP gap. May be null

(containing the 0 complementizer) or lexical, containing some wh-word, e.g. who,

which book, whose daughter, none of which, or how many leopards.

WHPP — Wh-prepositional Phrase. Prepositional phrase containing a wh-noun

phrase (such as of which or by whose authority) that either introduces a PP gap

or is contained by a WHNP.

X — Unknown, uncertain, or unbracketable. X is often used for bracketing typos

and in bracketing the. . . the-constructions.

B.3 Clause-Level Tags

S — simple declarative clause, i.e. one that is not introduced by a (possible empty)

subordinating conjunction or a wh-word and that does not exhibit subject-verb

inversion.

SBAR — Clause introduced by a (possibly empty) subordinating conjunction.

SBARQ — Direct question introduced by a wh-word or a wh-phrase. Indirect

questions and relative clauses should be bracketed as SBAR, not SBARQ.

SINV — Inverted declarative sentence, i.e. one in which the subject follows the

tensed verb or modal. SQ - Inverted yes/no question, or main clause of a wh-

question, following the wh-phrase in SBARQ.

Appendix C

Sample Output for HSF

Clustering of Phrases

Below are examples of phrase classes from the Hybrid Syntactic Formulaic (HSF)

clustering algorithm presented in Section 4.4.

my account balance (32) my current balance (2)
my account information (3) my last transaction (1)

my account number (3) my line of credit (2)
my address (1) my minimum payment (1)

my available credit (6) my next payment (1)
my balance (15) my payment address (1)

my bill (1) my payment date (3)
my billing date (1) my payment due date (2)

my card (2) my payment mailing address (1)
my check (1) my rewards status (6)

my credit limit (1) your payment address (2)
my current account balance (1)

Figure C.1: Class 13: [(PRP VB), (PRP VBP), SINV, (VB PRP), (WRB RP),
(NNS IN), (TO RP), (VBP IN), (WRB VBG), (UH VBP), (PRP VBG),
(AUX AUX), (WRB VB), (PRP AUX), (MD VB), (PRP WP)] — (PRP$ NN) —
[null,(VB PRP), (PRP VB), VP, (MD AUX)]. Total number of phrases = 89.

160

APPENDIX C. SAMPLE OUTPUT FOR HSF CLUSTERING OF PHRASES161

i’d like to (44) i wanted to (3)
i’m calling to (1) i wanted to be able to (1)
i’m trying to (3) i want to (26)

i need the address to (2) i would like to (25)
i need to (34)

Figure C.2: Class 14: [null, (PRP NN)] — (PRP TO) — [(VB TO), (VB NN),
(VB PRP), (VB AUX)]. Total number of phrases = 139.

add an additional user to my card(2) get a new credit card (1)
add another person to my account (2) get another copy of my statement (2)
add another user to my account (1) get another one (2)

add my wife to my account (2) get a replacement card (4)
add my wife to my card (1) get a replacement credit card (1)

add somebody to my account (2) increase my credit limit (2)
add someone to my account (1) increase my credit line (1)

add someone to my card (1) increase my line of credit (1)
cancel my credit card (1) know where i can send my payment (2)
change my address (1) make a payment (3)
change my due date (2) pay my bill (1)

change my line of credit (1) raise my credit limit (3)
change my payment address (2) receive a duplicate statement (1)

change my payment date (1) replace my credit card (2)
check my account balance (2) report a lost card (5)

close my account (2) request a credit limit increase (2)
enroll in the rewards program (5) schedule a maintenance appointment (1)
get a copy of my statement (2) schedule a repair (1)

get a higher credit limit (1) speak to an agent (1)
get a line of credit increase (2) speak with someone (1)

Figure C.3: Class 52: [(PRP TO)] — (VB NN) — [null]. Total number of phrases
= 71.

can i get (44) can you give (2)
can i hear (1) can you replace (1)
can i use (1) can you tell (1)

can you explain (1) could you send (1)

Figure C.4: Class 499: [null, INTJ, ADJP, NP, WHNP] — (MD VB) —
[(DT NN), (NN IN), (DT VB), (PRP$ VBN), (PRP$ VB), (DT IN), (VB NN),
(NN NN), (NNS VBN), (DT UH), (DT PRP$), (JJR NN), (IN NNS), (PRP$ NN),
(DT NNS)]. Total number of phrases = 52.

payment address please (1)
statement please(1)

Figure C.5: Class 1002: [(MD PRP$)] — (NN VB) — [null]. Total number of
phrases = 2.

account balance (5)
maintenance agreement (1)

payment due date (1)

Figure C.6: Class 1042: [INTJ, SQ, (MD VB), null] — (NN NN) — [null, VP].
Total number of phrases = 7.

APPENDIX C. SAMPLE OUTPUT FOR HSF CLUSTERING OF PHRASES162

a new (1)
an extra (3)
a second (4)

Figure C.7: Class 1090: [(PRP VB), (MD VB)] — (DT JJ) — [(NN NN)]. Total
number of phrases = 8.

Appendix D

Gaussian Intersection: Derivation

Given two Gaussian distributions that intersect with one another (see Figure 5.10

for an example), the goal is to find the sample value x where the distributions

overlap. The likelihood of a point y at a certain position on the surface of a

Gaussian distribution can be given by:

y =
1

(2πσ2)
1
2

e−
1

2σ2 (x−µ)2 (D.1)

where, x is the value of the sample in the distribution that gives y, mu is the

mean, and σ2 is the variance.

The point at which two Gaussian distributions cross can be defined by:

1√
2πσ1

e
− 1

2σ2
1

(x−µ1)2

=
1√

2πσ2

e
− 1

2σ2
2

(x−µ2)2

(D.2)

Take natural log of both sides of Equation (D.2) to remove e:

163

APPENDIX D. GAUSSIAN INTERSECTION: DERIVATION 164

ln

(
1√

2πσ1

)

−
(

1

2σ2
1

(x − µ1)
2

)

= ln

(
1√

2πσ2

)

−
(

1

2σ2
2

(x − µ2)
2

)

(D.3)

Rearrange Equation (D.3) to equal zero:

ln

(
1√

2πσ1

)

− ln

(
1√

2πσ2

)

−
(

1

2σ2
1

(x − µ1)
2

)

−
(

1

2σ2
2

(x − µ2)
2

)

= 0 (D.4)

Replacing ln
(

1√
2πσ1

)

− ln
(

1√
2πσ2

)

with K and expanding gives:

K −
(

1

2σ2
1

(x2 − 2µ1x + µ2
1)

)

+

(
1

2σ2
2

(x2 − 2µ2x + µ2
2)

)

= 0 (D.5)

Multiplying within two main brackets:

K −
(

x2

2σ2
1

− 2µ1x

2σ2
1

+
µ2

1

2σ2
1

)

+

(
x2

2σ2
2

− 2µ2x

2σ2
2

+
µ2

2

2σ2
2

)

= 0 (D.6)

Expand and group terms to give:

K +

(

− 1

2σ2
1

+
1

2σ2
2

)

x2 +

(
µ1

σ2
1

− µ2

σ2
2

)

x − µ2
1

2σ2
1

+
µ2

2

2σ2
2

= 0 (D.7)

Equation (D.7) can be written in quadratic form (ax2 + bx + c = 0):

(

− 1

2σ2
1

+
1

2σ2
2

)

︸ ︷︷ ︸

a

x2 +

(
µ1

σ2
1

− µ2

σ2
2

)

︸ ︷︷ ︸

b

x +

(

K − µ2
1

2σ2
1

+
µ2

2

2σ2
2

)

︸ ︷︷ ︸

c

= 0 (D.8)

APPENDIX D. GAUSSIAN INTERSECTION: DERIVATION 165

where the two roots x1 and x2 can be found by substituting Equation (D.8) into

the quadratic formula and solving:

x =
−b ±

√
b2 − 4ac

2a
(D.9)

The final choice for x is taken to be the one which lies between µ1 and µ2, the

means of the two distributions.

Bibliography

Anderson, J. A. (1995). An Introduction to Neural Networks. MIT-Press.

Aradilla, G., Vepa, J., and Bourlard, H. (2005). Improving Speech Recognition
Using a Data-Driven Approach. In Proceedings of Interpseech, pages 3333–3336.

Arai, K., Wright, J., Riccardi, G., and Gorin, A. (1999). Grammar Fragment
acquisition using syntactic and semantic clustering. Speech Communication,
27:43–62.

Axelrod, S. and Maison, B. (2004). Combination of Hidden Markov Models
with Dynamic Time Warping for Speech Recognition. In Proceedings of IEEE
ICASSP, pages 173–176.

Bahl, L. R., De Gennaro, S. V., Gopalakrishnan, P. S., and Mercer, R. L. (1993).
A Fast Approximate Acoustic Match for Large Vocabulary Speech Recognition.
IEEE Transactions on Speech and Audio Processing, 1(1):59–67.

Baum, L. E. (1972). An Inequality and Associated Maximization Technique in Sta-
tistical Estimation for Probabilistic Functions of Markov Processes. In Shisha,
O., editor, Inequalities III: Proceedings of the 3rd Symposium on Inequalities,
pages 1–8. Academic Press, University of California.

Bies, A., Ferguson, M., Katz, K., and MacIntrye, R. (1995). Bracketing Guidelines
for Treebank II Style Penn Treebank Project. Technical report, University of
Pennsylvania. ftp://ftp.cis.upenn.edu/pub/treebank/doc/manual/root.ps.gz,
12th October 2009.

Bocchieri, E. L. and Doddington, G. R. (1986). Frame-Specific Statistical Features
for Speaker Independent Speech Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 34:755–764.

Brown, P., deSouza, P., Mercer, R., Pietra, V. D., and Lai, J. (1992). Class-Based
n-gram Models of Natural Language. Computational Linguistics, 18(4):467–479.

Buhmann, M. D. (2003). Radial Basis Functions: Theory and Implementations.
Cambridge University Press, Cambridge.

166

BIBLIOGRAPHY 167

Chamberlain, R. M. and Bridle, J. S. (1983). Zip: A Dynamic Programming
Algorithm for Time-Aligning Two Indefinitely Long Utterances. In Proceedings
of ICASSP, pages 816–819.

Charniak, E. (2000). A Maximum-Entropy-Inspired Parser. In First Meeting of
the North American Chapter of the Association for Computational Linguistics
(NAACL), pages 132–139, Seattle, Washington.

Cox, S. (2002). Speech and Language Processing for a Constrained Speech Trans-
lation System. In Proceedings of ICSLP, pages 1149–1152.

Cristianini, N. and Shawe-Taylor, J. (2000). An Introduction to Support Vec-
tor Machines and other Kernel-based Learning Methods. Cambridge University
Press.

Davis, S. B. and Mermelstein, P. (1980). Comparison of Parametric Represen-
tations for Monosyllabic Word Recognition in Continuously Spoken Sentences.
IEEE Transactions on Acoustic Speech and Signal Processing, 28:357–366.

De Wachter, M. (2007). Example Based Continuous Speech Recognition. PhD
thesis, Katholieke Universiteit Leuven, Belgium.

De Wachter, M., Demuynck, K., Van Compernolle, D., and Wambacq, P. (2003).
Data Driven Example Based Continuous Speech Recognition. In Proceedings of
Eurospeech, pages 1133–1136.

De Wachter, M., Demuynck, K., Wambacq, P., and Van Compernolle, D. (2004).
A Locally Weighted Distance Measure for Example Based Speech Recognition.
In Proceedings of ICASSP, pages 181–184.

De Wachter, M., Matton, M., Demuynck, K., Wambacq, P., Cools, R., and Van
Compernolle, D. (2007). Template-Based Continuous Speech Recognition. IEEE
Transactions on Audio, Speech and Language Processing, 15(4):1377–1390.

Deligne, S. and Bimbot, F. (1995). Language Modelling by Variable Length Se-
quences: Theoretical Formulation and Evaluation of Multigrams. In Proceedings
of ICASSP, pages 169–172.

Deligne, S. and Bimbot, F. (1997a). Inference of Variable-Length Acoustic Units
for Continuous Speech Recognition. In Proceedings of ICASSP, pages 1731–
1734.

Deligne, S. and Bimbot, F. (1997b). Inference of Variable-Length Linguistic and
Acoustic Units by Multigrams. Speech Communication, 23:223–241.

Deligne, S. and Sagisaka, Y. (1998). Learning a Syntagmatic and Paradigmatic
Structure from Language Data with a Bi-Multigram Model. In Proceedings of
COLING-ACL, pages 300–306.

BIBLIOGRAPHY 168

Deligne, S. and Sagisaka, Y. (2000). Statistical Language Modelling with a Class-
Based N-Multigram Model. Computer Speech and Language, 14:261–279.

Demange, S. and Van Compernolle, D. (2009a). HEAR: An Hybrid Episodic-
Abstract Speech Recogniser. In Proceedings of Interpseech, pages 3067–3070.

Demange, S. and Van Compernolle, D. (2009b). Speaker Normalization for Tem-
palte Based Speech Recognition. In Proceedings of Interpseech, pages 560–563.

Duchateau, J., Wigham, M., Demuynck, K., and Van hamme, H. (2006). A
Flexible Recogniser Architecture in a Reading Tutor for Children. In Proceedings
of ITRW on Speech Recognition and Intrinsic Variation, pages 59–64, Toulouse,
France.

Duda, R. O., Hart, P. E., and Stork, D. G. (2001). Pattern Classification. John
Wiley & Sons, Inc., 2nd edition.

Gales, M. and Young, S. (2007). The Application of Hidden Markov Models in
Speech Recognition. Foundations and Trends in Signal Processing, 1(3):195–
304.

Galescu, L. and Allen, J. (2000). Hierarchical Statistical Language Models: Ex-
periments on In-Domain Adaptation. In Proceedings of ICSLP, pages 186–189.

Giachin, E. P. (1995). Phrase Bigrams for Continuous Speech Recognition. In
Proceedings of ICASSP, pages 225–228.

Gillick, L. and Cox, S. J. (1989). Some Statistical Issues in the Comparison of
Speech Recognition Algorithms. In Proceedings of ICASSP, volume 1, pages
532–535.

Goldinger, S. D. (1996). Words and Voices: Episodic Traces in Spoken Word
Identification and Recognition Memory. Journal of Experimental Psychology:
Learning, Memory, and Cognition, 22(5):1166–1183.

Goldinger, S. D. (1998). Echoes of Echoes? An Episodic Theory of Lexical Access.
Psychological Review, 105(2):251–279.

Good, I. J. (1953). The Population Frequencies of Species and the Estimation of
Population Parameters. Biometrika, 40(3 and 4):237–264.

Hain, T., Woodland, P. C., Niesler, T. R., and Whittaker, E. W. D. (1999). The
1998 HTK System for Transcription of Conversational Telephone Speech. In
Proceedings of ICASSP, pages 57–60.

Huang, Q. and Cox, S. J. (2006). Task independent call routing. Speech Commu-
nication, 48(3–4):374–389.

BIBLIOGRAPHY 169

Itakura, F. (1975). Minimum Prediction Residual Principle Applied to Speech
Recognition. IEEE Transactions on Acoustics, Speech, and Signal Processing,
23:57–72.

Jiang, H., Soong, F., and Lee, C.-H. (2001). A Data Selection Strategy for Ut-
terance Verification in Continuous Speech Recognition. In Proceedings of Eu-
rospeech, pages 2573–2576.

Jurafsky, D. and Martin, J. (2009). Speech and Language Processing. Prentice-
Hall, New Jersey, 2nd edition.

Katz, S. M. (1987). Estimation of Probabilities from Sparse Data for the Language
Model Component of a Speech Recogniser. IEEE Transactions on Acoustics,
Speech, and Signal Processing, ASSP-35(3):400–401.

Kneser, R. and Ney, H. (1995). Improved Backing-Off for M-gram Language
Modelling. In Proceedings of ICASSP, volume 1, pages 181–184.

Lee, L. and Rose, R. (1998). A Frequency Warping Approach to Speaker Normal-
ization. IEEE Transactions on Speech and Audio Processing, 6(1):49–60.

Lidstone, G. J. (1920). Note on General Case of the Bayes-Laplace Formula for
Inductive or a Posteriori Probabilities. Transactions of the Faculty of Actuaries,
8:182–192.

Lin, Q., Lubensky, D., Picheny, M., and Srinivasa Rao, P. (1997). Key-Phrase
Spotting using an Integrated Language Model of N-Grams and Finite-State
Grammar. In Proceedings of Eurospeech, pages 255–258.

Maier, V. and Moore, R. K. (2005). An Investigation into a Simulation of Episodic
Memory for Automatic Speech Recognition. In Proceedings of Interspeech, pages
1245–1248.

Mitchell, T. (1997). Machine Learning, chapter 4. WCB-McGraw-Hill.

Moore, R. K. (2003). A Comparison of the Data Requirements of Automatic
Speech Recognition Systems and Human Listeners. In Proceedings of Eu-
rospeech, pages 2581–2584.

Myers, C. and Rabiner, L. R. (1981). A Level Building Dynamic Time Warping
Algorithm for Connected Word Recognition. IEEE Transactions on Acoustics,
Speech, and Signal Processing, 29(2):284–297.

Myers, C., Rabiner, L. R., and Rosenberg, A. E. (1980). Performance Tradeoffs
in Dynamic Time Warping Algorithms for Isolated Word Recognition. IEEE
Transactions on Acoustics, Speech, and Signal Processing, 28(6):623–635.

Nasr, A., Estève, Y., Béchet, F., Spriet, T., and de Mori, R. (1999). A Lan-
guage Model Combining N-Grams and Stochastic Finite State Automata. In
Proceedings of Eurospeech, volume 5, pages 2175–2178.

BIBLIOGRAPHY 170

Ney, H. (1984). The Use of a One-Stage Dynamic Programming Algorithm for
Connected Word Recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 32(2):263–271.

Nouwen, R. (2003). Complement Anaphora and Interpretation. J Semantics,
20(1):73–113.

Nuance (2008). Dragon NaturallySpeaking 10. Press Release, Burlington, Mass.
http://www.nuance.com/news/pressreleases/2008/20080807 dns10.asp.

Ortmanns, S., Eiden, A., Ney, H., and Coenen, N. (1997). Look-Ahead Techniques
for Fast Beam Search. In Proceedings of ICASSP, volume 3, pages 1783–1786.

Parekh, R. and Honavar, V. (2000). Grammar Inference, Automata Induction,
and Language Acquisition. In Dale, Moisle, and Somers, editors, Handbook of
Natural Language Processing. Marcel Dekker.

Pickering, M. J. and Garrod, S. (2004). Toward a Mechanistic Psychology of
Dialogue. Behavioral and Brain Sciences, 27:169–226.

Povey, D. and Woodland, P. (1999). Frame Discrimination Training of HMMs for
Large Vocabulary Speech Recognition. In Proceedings of ICASSP, volume 1,
pages 333–336.

Price, P., Fisher, W. M., Bernstein, J., and Pallet, D. S. (1988). The DARPA 1000-
Word Resource Management Database for Continuous Speech Recognition. In
Proceedings of ICASSP, pages 651–654.

Rabiner, L. and Schafer, R. (1978). Digital Processing of Speech Signals. Prentice-
Hall, New Jersey.

Rabiner, L. R. (1989). A Tutorial on Hidden Markov Models and Selected Appli-
cations in Speech Recognition. Proceedings of the IEEE, 77(1):257–286.

Rabiner, L. R. and Shchmidt, C. E. (1980). Application of Dynamic Time Warping
to Connected Digit Recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 28(4):377–388.

Riccardi, G., Pieraccini, R., and Bocchieri, E. (1996). Stochastic Automata for
Language Modelling. Computer Speech and Language, 10:265–293.

Sakoe, H. (1979). Two–Level DP–Matching—A Dynamic Programming–Based
Pattern Matching Algorithm for Connected Word Recognition. IEEE Transac-
tions on Acoustics, Speech, and Signal Processing, 27(6):588–595.

Sakoe, H. and Chiba, S. (1971). A Dynamic Programming Approach to Continuous
Speech Recognition. In Proceedings of International Congress on Acoustics,
paper 20 C–13.

BIBLIOGRAPHY 171

Sakoe, H. and Chiba, S. (1978). Dynamic Programming Algorithm Optimisation
for Spoken Word Recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43–49.

Solsona, R. A., Fosler-Lussier, E., Kuo, H.-K. J., Potamianos, A., and Zitouni, I.
(2002). Adaptive Language Models for Spoken Dialogue Systems. In Proceedings
of ICASSP, pages 37–40.

Stevens, K. N. (2000). Acoustic Phonetics. MIT-Press.

Watkins, C. J. and Cox, S. J. (2009). Example-Based Speech Recognition using
Formulaic Phrases. In Proceedings of Interspeech, pages 3043–3046.

Webb, A. (2002). Statistical Pattern Recognition. John Wiley & Sons, Ltd., 2nd
edition.

Witten, I. H. and Bell, T. C. (1991). The Zero Frequency Problem: Estimating the
Probabilities of Novel Events in Adaptive Text Compression. IEEE Transactions
on Information Theory, 37(4):1085–1093.

Wray, A. (1999). Formulaic language in learners and native speakers. Language
Teaching, 32(1):213–231.

Wray, A. (2002). Formulaic Language and the Lexicon. Cambridge University
Press.

Wray, A., Cox, S., Lincoln, M., and Tryggvason, J. (2004). A formulaic approach
to translation at the post office: reading the signs. Language & Communication,
24:59–75.

Wray, A. and Perkins, M. (2000). The Functions of Formulaic Language: an
Integrated Model. Language and Communication, 20:1–28.

Young, S., Evermann, G., Gales, M., Hain, T., Kershaw, D., Liu, X., Moore, G.,
Odell, J., Ollason, D., Povey, D., Valtchev, V., and Woodland, P. (2009). The
HTK Book (for HTK version 3.4). Cambridge University, Cambridge.

Young, S. J., Russell, N. H., and Thornton, J. H. S. (1989). Token Passing: A
Simple Conceptual Model for Connected Speech Recognition Systems. Technical
Report CUED/F-INFENG/TR38, Cambridge University Engineering Dept.

