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Abstract

Calculus has an image problem in life science undergraduate studies. Students are anxious about
taking it, due to tricky past experiences and because calculus as a major gateway course
contributes to attrition in biology. Calculus teaching to life science students often does not
convey its utility in problem solving and graphical interpretation. This problem is exacerbated by
the increasing focus on big data and computational skills rather than proofs and algebraic
techniques which have traditionally dominated calculus teaching. We present one solution to this
problem: “Biocalculus”, an approach to teaching calculus to life science students which
incorporates modeling, computational tools, lab activities, authentic problem solving,
interdisciplinary language, and an asset-based mindset. We outline the benefits of biocalculus as
enabling students’ connections to the theory of their disciplines, increased retention (particularly
of students with identities often marginalized in STEM), and higher learning gains. We
acknowledge Biocalculus implementation challenges such as instructor professional
development and infrastructure that supports interdisciplinary initiatives. We conclude stressing
the importance of the epistemological shifts required of both the Biology and Mathematics
communities in order to tackle the disciplinary microaggressions that impede acknowledging the
reciprocal meaning-making gains that Biocalculus can make possible for life science (and other)
students.

Keywords: biocalculus, calculus, biology, life science, inclusive, modeling

1. Introduction

To understand Biocalculus education and research is to understand the space of tension between
calculus requirements and biology education needs. Research into the mathematical needs of
non-mathematics majors has been around for some time (Kent & Noss, 2003) with the students’
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disciplinary specialism often just a background to studies conducted by Mathematics Education
researchers (Biza et al., 2016). For example, Klein’s double discontinuity (1908/1931) between
school, university, and workplace mathematics is often the focus of these studies. In this paper,
we explore the multiple ways calculus instruction feeds into this discontinuity with biology. We
also explore the reasons why biology students still need calculus. For example, mathematical
modeling can help make connections between mathematics and the real world (Chiel et al., 2010;
Jungck & Schaefer, 2011; Svoboda & Passmore, 2013; Viirman & Nardi, 2019, 2021), and
calculus often is a tool through which students are expected to engage in mathematical modeling
activities (Maal}, 2006). We suggest that calculus has an image problem in biology and biology
education. To address this, in this paper we propose that we need to cross interdisciplinary
boundaries, be willing to listen to the concerns of life science students, faculty, and practitioners,
and stretch our imagination of what calculus for life science students can be.

1.1 Calculus is failing to address critical needs in biology education

Courses addressing specific mathematical skills for undergraduate biology students have been
around for decades, and interest around calculus education for biology, specifically, increased at
the turn of the century (Diaz Eaton et al., 2020). In the US, for example, this was primarily due
to the release of several reports on biology education which alerted programs to the rising use of
big data and modeling in the field This was accompanied by a call for reform in how
mathematics was integrated into biology (Brewer & Smith, 2011; Edelstein-Keshet, 2005; Steen,
2005), and Marshall & Duran (2018) investigated the types of skills emerging in published life
science research for the purposes of designing more relevant quantitative biology courses.

For all fields, there is a growing demand for computing, data, and modeling skills in the era of
machine learning and artificial intelligence. Medical school entrance requirements are one way
to track sentiment towards calculus in this rapidly changing technological landscape. The
Medical College Admission Test (MCAT) in the US no longer recommends calculus and many
medical schools have also dropped calculus as an entrance requirement (Emanuel, 2006). Now
medical schools are allowing students to complete the requirement through computer science and
statistics courses (Association of American Medical Colleges, 2025). Given also that there has
been a notable increase in the enrollment of historically excluded and underrepresented students
in medical schools in recent years, the need to address aforementioned interrelated issues in
education by integrating calculus and biological sciences in a way that is relevant and accessible
is even more pronounced (Association of American Medical Colleges, 2022).

On the surface, trading calculus for statistics was an attractive offer for undergraduate biology
programs as the role of data and computation became more visible in biology research. Biology
faculty familiar with traditional calculus courses, deemed the emphasis on algebraic calculation
and proofs of convergence holding little connection. Therefore, links to calculus in their courses
were often overlooked, whereas statistics often took a prominent role in laboratory courses
(Neitzel et al., 2023). In addition, calculus acted as a “gatekeeper" or “filtering” (Biza et al.,
2022) for students in biology. If students failed in calculus, they were also much more likely to
not complete their major (Voigt et al., 2022). This is true even in biology, which has long been
perceived as a science major with the lowest mathematics requirements compared to other
programs in STEM. As Steen (2005) points out, “biology education is burdened by habits from a
past where biology was seen as a safe harbour for math-averse science students” (p. 14).
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Compounding this, studies of calculus show that students with marginalized gender, race and
ethnicity are more likely to fail calculus (Hatfield et al., 2022). A 2015 Mathematical
Association of America (MAA) study of the state of calculus instruction in the US revealed that
among all Black and Hispanic students in Calculus I, 33% and 36%, respectively, were
biological science majors (Bressoud et al., 2015, p. 11). A key study by Ellis et al. (2016)
showed that women were 1.5 times more likely to leave STEM after taking Calculus and that,
among women taking Calculus I, 43% were biological science majors (p. 12). Failing to meet the
needs of women, ethnic and racial minorities and failing to meet the needs of biology students
are interrelated issues which contribute to a lack of diversity in STEM overall. More recent
studies on the effect of the COVID-19 pandemic has only indicated that this gap could get worse
in the near future (Alabdulaziz, 2021).

In summary, despite the urgent call for more modeling, data skills and understanding, the poor
reputation - due to the failure of calculus courses for Biology students to meet student, faculty,
and program needs - has stifled this progress. Calculus has an image problem in the biological
sciences that desperately needs to be addressed.

1.2 Biocalculus as an opportunity for better mathematics and life science education

This conversation takes place at a time when, within the field of university mathematics
education, student-centered strategies - such as inquiry-based learning and active learning
approaches that are designed to address attrition, promote equity and strengthen meaningful
engagement with mathematical and other content - have been gaining traction (Reinholz et al.,
2020). In recent years evidence of their positive impact has also been growing (Freeman et al.,
2014; Laursen et al., 2014). A further observation is that the need to reform calculus courses for
Biology students resonates with modeling-infused perspectives on undergraduate calculus
(Carlson et al., 2010), which emphasize calculus as a tool for interpreting dynamic systems.
Modeling education in mathematics has matured, and the related modeling reform movement in
calculus was in its infancy when many of the key reports of the early 21st century were
produced, but now is enjoying maturity at an opportune moment in calculus education (Bressoud
et al., 2015). Biocalculus is an approach to teaching calculus to life science students which
integrates these developments.

Biocalculus aims to show life science students how calculus relates to biology in a rigorous, yet
informal, manner and through drawing examples from a range of biology topics. As an approach
that propagates reformed and rigorous calculus teaching, it leans heavily on modeling-oriented
reforms of calculus, providing opportunities for students to engage meaningfully in theoretical
biology, programming, and data skills which are important to life scientists. In this context, the
Biocalculus movement aims to transform calculus education to better prepare biology students
for the modeling and data-driven world of the 21st century. In contrast to calculus as “filtering”,
Biocalculus instead aspires to be about “scaffolding” (Biza et al., 2022).

Madlung et al. (2011) and Powell et al. (2012) outline the complexity of the mathematical
landscape in biology. Multiple special issues have been devoted to curricular reform for biology
(Comar, 2008; R. Robeva et al., 2022). The mathematical modeling education community has
matured with the creation of the Society for Industrial and Applied Mathematics Education
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subgroup and the release of the Guidelines for Assessment and Instruction in Mathematical
Modeling Education [GAIMME] report (Bliss et al., 2019). Mathematical modeling has also
been studied as an important vehicle for the integration of mathematics and biology (Angra &
Gardner, 2017; Bowen et al., 1999; Glazer, 2011; Harsh & Schmitt-Harsh, 2016). For example,
Viirman & Nardi (2019, 2021) wrote about Biology students’ navigating between mathematical
and biological discourse as they work on mathematical modeling activities. Their focus is on
where students draw to build the assumptions underpinning their emerging mathematical models
of a biological situation (Viirman & Nardi, 2019) and how their graphing skills develop as they
engage with said mathematical modeling tasks (Viirman & Nardi, 2021).

While the Biocalculus movement is promising, it has its own set of challenges. Some consider
Biocalculus to be a watered-down calculus option that is easier to pass (Diaz Eaton &
Highlander, 2017). There are also concerns in the mathematics education literature about further
distancing between the what/how of mathematics for Biology and the why/when (Viirman &
Nardi, 2021), a somewhat antiquated conflict within the binary of conceptual understanding and
procedural fluency (Osterman & and Brating, 2019). Finally, who can teach Biocalculus well is
complicated as it requires content knowledge about modeling and biology, which may be less
likely for theoretical mathematicians who may be teaching a calculus course (Aikens et al.,
2021). Ideally, the biology context of the calculus topics should reflect the diverse interests and
career path needs of the students and this can vary extensively within biology (Neitzel et al.,
2023). The good news is that there is promising research which can help dispel myths and
suggest ways to overcome these challenges.

In this paper, we review current research and reform activities in Biocalculus education. We
show how Biocalculus can help re-narrate beliefs about the role of calculus in biology education.
We also propose that making space for a Biocalculus that challenges mainstream calculus
epistemology will help ensure the place of calculus in the future of biology education.

2. From Calculus to Biocalculus

2.1 What is Calculus?

Calculus designed for the needs of life science students is typically different from a “traditional”
calculus course, and as such, we emphasize this comparison. This “Traditional Calculus” is
sometimes known as “Stewart’s Calculus,” which leans on a reference to the popular use of the
calculus textbook authored by Stewart throughout calculus classrooms in the United States (US)
(e.g., Stewart, 2012). The table of contents of this book (Table 1) is the dominant syllabus for the
Calculus I, II, and Multivariate courses in the US.

Chapter | Title Traditional Course (US context)
1 Functions and Limits (includes continuity) Precalculus and/or Calculus I

2 Derivatives Calculus I

3 Applications of Differentiation Calculus I
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4 Integrals Calculus I* or Calculus IT
5 Applications of Integration Calculus I* or Calculus II
6 Exponential, Logarithmic, and Inverse Trigonometric | Calculus II
Functions
7 Techniques of Integration Calculus I
8 Further Applications of Integration Calculus I
9 Differential Equations Calculus IT* or ODE course
10 Parametric Equations and Polar Coordinates Calculus IT* or Calculus III
11 Infinite Sequences and Series Calculus I
12 Vectors and the Geometry of Space Calculus 111
13 Vector Functions Calculus III
14 Partial Derivatives (includes multivariable functions) Calculus III
15 Multiple Integrals Calculus IIT
16 Vector Calculus Calculus III
17 Second-Order Differential Equations Calculus III* or ODE course

Table 1: Above are the chapter numbers in the 7th edition and their traditionally corresponding
US course designations. Chapters with a * indicate that this is often considered optional content
for that course. While not always included in the “calculus” umbrella, ordinary differential
equations (ODE) courses are courses which might also cover some of the chapters in Stewart
(2011).

Another way that calculus is defined, is through some broad statement of cohesive conceptual
knowledge. One possible unifying concept of the study of calculus in Calculus I is the concept of
the derivative. For example, a research study on conceptual understanding in Calculus I used the
prompt:

“Explain what a derivative is to someone who hasnt encountered it before. Use

diagrams, examples and writing to include everything you know about derivatives”
(Bisson et al., 2016, 2020).

Often the unifying concept of Calculus II in the US context is considered the accumulation of
change and Calculus I1I is the calculus of multivariable functions. However, these boundaries are
somewhat artificial and, for example, several authors in the IIRUME Special Issue edited by Ely
and Jones (2023), make the case for the centrality of the concept of integral (Bajracharya et al.,
2023; Dray & Manogue, 2023; Ely & Jones, 2023). For example, modeling with ordinary
differential equations could then reasonably fall under Calculus I theme if the rate of change is
emphasized and under Calculus II if the emphasis is on deriving analytic solutions or numerical
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approximations. Partial derivatives could fall under Calculus I as rate of change, but just as
easily fall under Calculus III for discussion of multivariate functions. In this paper, we use the
term “calculus” in the postsecondary instructional context as the mathematical study of rates of
change and accumulations of rates of change encompassing broadly the conceptual ideas
typically presented in a year-long sequence of Calculus I and II.

2.2 What is Biocalculus?

Biocalculus courses are quite varied. Some carry the name Calculus or Calculus for Life
Science. Some are named more broadly, such as Mathematics for Life Science. Some of these are
one year sequences of Calculus I and II, some are reimaginings into one semester of calculus and
one semester of statistics, and some eschew calculus boundaries altogether. While the umbrella
of Biocalculus is broad, overall there is an understanding that Biocalculus is more than just
traditional “Stewart Calculus” with some biology examples (Akyen-Odoom et al., 2024). While
adding examples of biology applications is often a step to a broader transformation for many, this
is seen as a very limited change. Below we introduce nine common features which distinguish
Biocalculus courses: modeling approaches, integrating data and statistics, programming and/or
algebraic solvers, lab activities and active learning, Rule-of-Five, discrete modeling, big
problem-driven, asset-based, and translating across disciplinary boundaries. We intersperse
examples as boxed vignettes which utilize these strategies in a particular mathematical and
biological context. The mathematical concepts or biological contexts introduced in a particular
Biocalculus instance are often customized to cater towards the specific mathematical skills that
may be demanded by particular life science majors and in the life science contexts which are
most relevant (Diaz Eaton & Highlander, 2017; Ganter & Haver, 2011; Marshall & Duréan,
2018), so we have endeavored to showcase a range in our boxed vignettes.

2.2.1 Modeling approaches

From a content perspective, many Biocalculus courses offer a perspective focused on the
learning of concepts and motivated by the use of calculus for modeling. This is not specific to
Biocalculus, but rather was championed by waves of “Calculus Reform” driven by mathematics
researchers such as the Gleason-Hallett Calculus Consortium (Bressoud et al., 2015). Mumford
(1997) wrote of this movement in the Notices of the American Mathematical Society (AMS):

“Are we teaching calculus in the hope that a small percentage of our students will catch
our love of rigor, or so that most of our students will emerge with the ability to use
calculus in their specialties?” (p. 563).

Resulting calculus textbooks of the reform movement included the version authored by
Hughes-Hallett, which continued to maintain a similar set of topics as Stewart, but with this
more conceptual and modeling approach. Biocalculus courses have largely adopted at least this
calculus for modeling framework - leveraging models to understand biology and leveraging
calculus as a tool for understanding these dynamical system models (Carlson et al., 2010). Many
adaptations have focused on how to make the modeling more authentic, make modeling more
accessible, and rethink the traditional calculus table of contents to provide the necessary space
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and scaffolding. As a result, modeling techniques such as difference equations and differential
equations are also introduced. This is particularly valuable because students can understand the
linkage between foundational models such as the exponential and logistic equation and theory in
population dynamics (Diaz Eaton & Highlander, 2017). See the Boxes integrated throughout this
section for additional examples.

Box 1. Example - The logistic growth model
This is an example of a module used in Bodine et al. (2014), and utilized by many experienced
Biocalculus instructors. This module is particularly effective for students who are familiar with
the conceptual model of logistic growth, but can also be used to motivate the relevance of
calculus for future biology courses.

Biology context: The logistic growth model is a well-known model of limited population
growth, typically introduced in an introductory biology course which covers concepts in
population ecology. In this context, students learn that logistic growth in populations is
characterized by exponential-like growth for low population sizes. However, as the population
size (P) reaches its intrinsic carrying capacity (K), intraspecific competition (competition
within a species), leads to a plateau in the population growth. Some students may also be
introduced to the differential equation version of the logistic growth model, though this may
happen in a later course focused specifically on ecology.

Calculus context: The analytic form of the logistic growth model is:
P K
P(t) = +,
© (K—P e "+P,
where P, is the initial population size at time # = 0. Sometimes, this version of the model
appears in the discussion of limits, as lim P(t) = K.
t

—00

The first-order ordinary differential equation form is commonly written either as:
. ., dP 2
(i) 5, = P(K = P)or (i) 5—=rP — P,
where r is the rate of growth.

In a traditional calculus approach, this version of the model, if discussed, is typically in the
context of solving separable ordinary differential equations (ODEs).

Biocalculus integration: In Biocalculus, the ideas presented in biology are connected to the
ideas presented in calculus. Students would have already discussed exponential models as a
very simple ODE. The version (ii) of the ODE can be leaned into to make this connection. We
can interpret the ODE as positive change factors - negative change pressure in a “bathtub
model” approach, or

dp

T T Pin N Pout'
In this scenario, we can see that Pm in Equation (ii) is the exponential ODE. The

. . 2. . . :
Pout term is proportional to P, in other words, the growth is moderated by the interaction
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between members of the population. For small population sizes, the “out” term is much
smaller than the “in” term, so indeed, the population grows approximately exponentially. This
can also be seen clearly from the version (i) of the equation. The version (i) of the equation can
also be used to show how, for values of P near K, the derivative gets close to 0, leading to the
plateau effect.

In the ODE version (i), one can quickly infer the equilibrium solutions as P* = (), which is
unstable, and P* = K, which is stable. Equilibrium analysis helps connect the ideas of
derivatives and limits, but is rarely introduced in traditional calculus experiences.

By analyzing this and other limited growth models this way, students begin to understand that
these models are chosen not just for the fact that they lead to limited growth, but that the
model choice implies that certain mechanisms are responsible for the type of limited growth
being observed.

2.2.2 Integrating data and statistics

The use of real data is prevalent in all branches in biology, whereas in mathematics it is often the
case that data is generated in silico from models. This makes it difficult for students and faculty
to understand how mathematical theory directly supports and connects to observation and
experiment (Diaz Eaton et al., 2019). Multiple studies point to data and statistics as a top most
valuable skill out of their quantitative courses (Bennoun, 2022; Diaz Eaton & Highlander, 2017).
Biocalculus adoptions vary in their approach to considering data. Garfinkel focuses on modeling
and the resulting numerical [in silico] data generated by said models for the purposes of graphing
solutions and comparing trends. The Bodine et al., (2014) book integrates biostatistics into the
first semester and first half of the book. That is because the “Mathematics for Life Sciences”
curriculum at the University of Tennessee serves as a combined one year substitute for Statistics,
Calculus I and Calculus II. In one of the most integrated cases, Robeva et al. (2022) introduces
statistical perspectives alongside modeling perspectives. For example, Chapter 9 examines
endocrinology and period cycling from a statistical perspective, then Chapter 10 introduces a
mathematical modeling perspective (Robeva et al., 2008).

2.2.3 Programming and/or algebraic solvers

Most Biocalculus revisions include Matlab/Octave (Bodine et al., 2014; Diaz Eaton &
Highlander, 2017; Robeva et al., 2022), Excel/Google Spreadsheets (Diaz Eaton & Highlander,
2017), R (Bodine et al., 2014; Diaz Eaton & Highlander, 2017), Mathematica (Bodine et al.,
2014), SageMath (Garfinkel et al., 2017) and/or Python (Bodine et al., 2014; Garfinkel et al.,
2017; Robeva et al., 2022). Statistical software and spreadsheets can be used to connect data to
mathematical models (Box 2). Computer algebra solvers are introduced to overcome barriers
related to algebra and to better focus on patterns in the algebraic results - for example,
illustrating why certain differentiation “shortcuts” work (e.g., Box 2). Computer programming
languages are typically introduced for the purposes of numerical approximation of solutions to
differential equations and integrals (e.g., Box 3). In some renditions of Biocalculus, a lab is
introduced which is to support the programming aspects of the course. This feature is not unique
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to Biocalculus as many versions of “applied calculus” also incorporate technological tools.
However, the introduction of programming languages and/or spreadsheets can also be used to fit
models to data, supporting other goals above.

Box 2. Example - The Keeling Curve
In a survey of biology and environmental science faculty, feedback loops and fitting data to
models were identified as the two most important topics that should appear in a calculus course
(Diaz Eaton & Highlander, 2017). This module meets these needs and is particularly applicable
for students who are interested in sustainability and climate change and additional details about
its adaptation for and use in Biocalculus can be found in Diaz Eaton (2023).

Biology context: Feedback loops are important to understanding population dynamics and
climate change because of the rapid acceleration that builds over time without limits if kept
unchecked. In the context of climate change, increasing carbon dioxide concentration ([CO,])
levels present a threat because carbon dioxide accumulation in the atmosphere traps heat. The
greenhouse gas effect refers to the feedback loop caused by the increase in [CO,].

Data for [CO,] concentration levels has been recorded by the Mauna Loa Observatory in the
Hawaiian Islands, United States since 1958 (NOAA, 2024). The exponential model is the best
fit model for this data, and is referred to as the Keeling Curve (see Figure 1). The words
“exponential growth” are used often colloquially to describe an observed increase that is faster
than linear growth. Students seeing the exponential model as the best fit for the [CO,] data are
then alerted to the idea that [CO,] levels could spiral out of control.
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Figure 1. Carbon dioxide concentration, [CO,], levels obtained from the Moana Loa
observatory, plotted with the Keeling Curve fit in Excel with an exponential fit. The Excel file
is included as Supplementary 1.
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. . k .
Calculus context: Exponential functions, y = Y, " are typically relegated to a

“pre-calculus” course in the US, though many calculus texts, including Stewart (2012, p32),
have versions that include exponential and trigonometric functions as the first chapter. In
Stewart and other traditional textbooks, software expertise and datasets are not integrated, so
students are not asked to perform model fitting or model selection. Occasionally, the
exponential function invoked to ask students what the [C02] levels in parts per trillion (ppm)
are predicted to be in 2030. In Stewart, derivatives of exponential functions are not discussed
until Chapter 6. Here, the early treatment focuses on the derivation of the derivative, but in
Section 6.5 eventually introduces the autonomous ordinary differential equation that
characterizes the exponential function as the simplest feedback loop:

Ay _
= ky.

Note that because the discussion of exponential function growth is delayed until after
integration, it is likely that a Calculus I course following the Stewart textbook would not touch
the two calculus topics deemed most important to biology faculty.

Biocalculus integration: In the first semester of Biocalculus offered by Diaz Eaton (Diaz
Eaton, 2025), the motivation for students to learn derivatives is to better understand and
describe how things change. This idea is incredibly important to all natural systems. This
change is explored at first through discrete models. For example, adding two individuals to a

population each year (anr =X+ 2 or Axn = 2 ) is a constant rate of change, and the

resulting arithmetic model is similar to a linear continuous function. Reproduction, which
increases population size by a fixed 5% each year (xn+1 =1. Oan or Axn =0. 05xn ), results

in a yearly change proportional to the current population size, also known as the geometric
model. Here, students are introduced to spreadsheets and/or computer programming to explore
calculations and visualizations of these models.

To understand change in continuous and compelling contexts such as global climate change
and ocean acidification, we need additional ways to talk about change. The same
computational skills can be used to introduce numerical approximation methods in addition to
algebraic methods to calculate instantaneous change at a point, i.e.

fl(@ = lim JXO-f@)
xXx—a
x—a
As students move from derivatives at a point to determining functions which describe the
change at any point, visual representations are sketched at a few points using (x, approximate
slope at x) to visually estimate what these derivatives might look like, providing some

intuition.

It is at this point that students are presented with the Mauna Loa data and its context. Student
teams are asked to use numerical methods to help understand how fast [CO2] levels have
changed (and may continue to change) over time. First, they will need to estimate the function
that describes this data, by fitting curves - and students are encouraged to try a few. The best fit
exponential function they derive forms the basis for the rest of their investigation, which is to
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numerically approximate the derivative at each year. For this, it is a bit easier to implement
using the Ax form of the instantaneous rate of change:

lim f(a+Ax)—f(a)
Ax—0 Ax ’

For example, each row an x value with each column representing a Ax of 1, 0.1, 0.001, etc.
Students are likely to observe that the rate of change is similar to that of the original function -
both begin to climb rapidly. Students can even fit the exponential function to one of their
derivative estimates.

As students begin writing up their results from this lab, it is natural to start thinking about
generalizations. After exploring algebraic derivations of derivatives for simple polynomial or

. 2 . o
power functions (e.g.,y = mx + b, y = x ), one can present a list of derivatives for other

common functions (e.g.,y =sinxandy = ex) and look to visual or numerical methods to
confirm the accuracy. This allows for a more rapid introduction of the derivative of the natural
exponential. As soon as the chain rule is introduced, students are given the general form for the

. k . ..
natural exponential, y = Y8 * and are stepped through an in-class activity to get them to
derive the feedback loop equation —ny— = ky. Students may even notice the similarity to the
discrete geometric model.

The take-home idea is that we use exponential models not just because they increase rapidly,
but because more specifically the rate of change is proportional to current size. This removes
the black box of why the “ugly” exponential function with the “made up number” e is so
common in living systems. This helps students relate a mathematical concept to an existing
biological concept with which they are already familiar.

2.2.4 Lab activities and active learning

Labs for introductory science courses are extremely common. For many science majors, this is
the most exciting part of the course and can bring science to life (Diaz Eaton et al., 2019). In
some renditions of Biocalculus, a lab is introduced which is to support the programming aspects
of the course. This can be an in-class lab over one or more classes or a dedicated lab section.
Labs can be computational, as in the Keeling Curve lab described in Box 2. However, some
programs use labs as an opportunity to engage in experiential perspectives on the models and
concepts discussed (Diaz Eaton et al., 2019). For example, Diaz Eaton has brought Calculus 11
students to a nearby natural area to sketch land topography and draw cross-sections and slopes.
This is the first activity in an introduction to multivariate functions and partial derivatives.
Students then move back into the classroom to study topographical maps of the local National
Park. Labs are one, but not the only way, in which Biocalculus courses engage students heavily
in active learning. Numerous studies have suggested that active learning approaches can improve

conceptual understanding and improve student retention (Freeman et al., 2014; Laursen et al.,
2014).
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2.2.5 Rule-of-Five

The Rule-of-Three and Rule-of-Four are well known in calculus communities for connecting
representations of calculus ideas in textbooks across verbal, numerical, algebraic, and visual
representations. The sequence of activities in Box 2 illustrates how important it is to introduce
these multiple representations for increased understanding of the concept of derivative (Silver &
Charles, 1989), and more specifically the relationship between exponential growth and feedback
loops. However, as seen in the discussion of laboratory and field activities, the experiential
experience is of utmost importance to biology students. Diaz Eaton et al. (2019) expanded the
Rule-of-Four to a Rule-of-Five, distinguishing many Biocalculus classrooms by adding
experiential models to the list of model representations that appear in life science education and
Biocalculus classrooms (Table 2). The addition of experiential, while newer to mainstream
calculus and modeling education, was already established in mathematics education research in
grade schools and adopted in precalculus (Simundza, 2006). Another advantage of integrating
the Rule-of-Five framework is that it can help students understand how calculus informs biology
theory in a manner complementary, but different to the way that statistics informs theory
(investigating a hypothesis via algebraic methods versus data methods, respectively).

Model Representation | Examples

Experiential Animations, simulations, physical models, experiments, observations

Verbal Hypotheses, predictions, qualitative data, descriptions of data trends
Numerical Simulated data, quantitative experimental data, quantitative observational data
Symbolic Equations, state variables, parameters

Visual Graphs, schematics

Modeling Activities Description

Reality-to-model Moving from observations of reality to an abstracted model, either as an initial
step in developing a model or as part of a model revision.

Between representations Moving from one model representation to another representation of the same
model.
Comparing models Comparing different models to each other or to reality, for example model

selection and model validation.

Table 2. Model representations and model activities as described in Diaz Eaton et al. (2019).

2.2.6 Discrete modeling

Several versions of Biocalculus include discrete models. While sequences and series are
commonly a part of the “traditional” Calculus II, discrete difference equations are also included.
Diaz Eaton & Highlander (2017) point out that difference equations play an important role in
wildlife management models, making them particularly important to some subdisciplines of life
science. As described in Box 3, discrete models are often included at the beginning of
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Biocalculus courses to help develop skills for students to discuss change. Introducing discrete
difference equations at the start of Biocalculus can also create a more even playing field between
students who are new to calculus and students who have taken a calculus course in high school.
Difference equations are new to almost all students, provide an easy on-ramp towards modeling
for students to start asking questions about equilibrium and stability, which students might not
have access to otherwise until a course in differential equations, can be explored easily with tools
as accessible as spreadsheets. Discrete sequences are built, convergence is explored but with the
lens of equilibria and stability, and then notions of measuring change are developed (Diaz Eaton,
2023; Robeva et al., 2022). This leads into conversations about continuity. While this order may
be newer for the introductory calculus curriculum, many undergraduate real analysis courses
already use a progression from sequences to develop notions of continuity as that change gets
small. The Bodine, Gross and Lenhart (2014) text introduces discrete before continuous, but in
its implementation appears towards the end of the first semester of Biocalculus after statistics
instead of the beginning of the second semester before derivatives. Robeva et al. (2008) covers
other discrete models beyond 1-dimensional linear models (see for example Box 3). Finally, as
programming skills are becoming more common in biology, understanding the relationship
between continuous models and their discretized analogs becomes more important.

2.2.7 Big problem-driven

Biocalculus is more than just some homework problems at the end of a section. Big questions or
“wicked problems” in life, health, and environmental science can be the source of synthesis
projects or motivating the introduction of new mathematical ideas. Garfinkel has an associated
project with each chapter. Diaz Eaton (2023) discusses the use of starting the unit on derivatives
with the context of rising carbon dioxide levels and coral reef health. The project to be
completed at the conclusion of this chapter asks students to fit a curve of carbon dioxide levels to
the Mauna Loa observatory historical data set, which finds the best fit model, namely a function
describing exponential growth. This is indicative of a feedback loop, described by a simple
differential equation. Then, students numerically estimate the rate of change. However, this
context is used as motivation to engage students early, rather than just to add context to a project
at the end of the unit. Research from Aikens (2020) points to the importance of including these
authentic problems. Robeva begins each chapter with a key biological context: Chapter 5 is
entitled “Risk Analysis of Blood Glucose Data” (2008). Bodine et al. (2014), Garfinkel et al.
(2017), and Robeva et al. (2008) focus on the modeling and build programming skills so that
students have the time and skills to computationally explore models which exhibit oscillatory
and/or chaotic behavior. Oscillations are related to many biological functions: having exposure
to these ideas is highly valued in a Biocalculus experience (Bennoun, 2022). Garfinkel et al.
(2017) include a project which relates chaotic behavior to the study of cardiac rhythms and
supply chains. The biological contexts chosen for these motivating problems are ideally chosen
based on the interests and majors of the students. Diaz Eaton and Highlander (2017) discuss this
extensively in the curriculum design as Diaz Eaton’s wildlife and environmental science students
had differing interests from Highlander’s primarily pre-medical students. In addition to what
appears in textbooks, there is an extensive amount of scholarship devoted to creating such
tailored syllabi and in-depth examples for particular institutional and student contexts (Ledder,
2013; Stoner & Joyner, 2022). Many resources for teaching Biocalculus can be also found as
Open Educational Resources (OER), which are free for instructors to download, adapt and use
(Diaz Eaton et al., 2022). For example, the Calculus group on QUBESHub
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(https://qubeshub.org/community/groups/calculus/) has example syllabi, and other resources.
There are also many more, found by searching the full database of OER for Calculus and related
topics (Quantitative Undergraduate Biology Education & Synthesis [QUBES] Project, 2025).

Box 3. Example - Drug dosing
A significant portion of life science students are students interested in health professions, for
example nursing, dentistry, physical therapy, veterinary school, and medical school. Some
texts particularly cater to these students, such as Robeva et al. (2008). Here, we discuss an
example from this text which uses exponential decay and discrete models to model how drugs
are metabolized (Robeva et al., 2008). Although still only in Chapter One, at this point,
students have already been exposed to the differential equation for exponential growth.

Biology context: Understanding the implications of drug dosing within a calculus perspective
allows future health care providers to accurately assess how drugs behave within the human
body over time, pharmacokinetics (Ernstmeyer & Christman, 2023). By utilizing a calculus
framework, these future health professionals can analyze rates of change, which again is
important for understanding how the human body behaves in response to administered drugs
as well as the concentration of the drug and time dependent implications. Calculus models that
emphasize dose optimization and intervals using differential equations aid in ensuring safe and
efficient drug concentration levels in the bloodstream - therefore, determining the therapeutic
amounts of drugs and preventing drug toxicity.

Calculus context: A dosage, C, of a drug is delivered at intervals of time, 7, and the amount of
drug remaining in the body after the nth interval can be described as:

_ " —Tr k
Rn = C[El (e )

This drug dosing example utilizes an understanding of discrete time models (to describe the
drug intake), exponential functions (exponential decay to describe drug metabolization). The
resulting equilibrium is discussed (where the “steady state” is periodic) and visualized through
computer simulation. These are all considered important mathematical topics to biologists.
While exponential growth models are associated with population growth (see Box 2),
exponential decay is often more associated with ideas like Carbon-dating, which are useful
also for scientists. However, it would be unusual for a traditional calculus class to consider a
continuous and discrete combination model. Periodic behavior as a type of stability is also not
commonly described in traditional calculus texts. However, recall that periodicity and
nonlinear systems have a key importance to those studying life science.

Biocalculus integration: Robeva et al. (2008) prompts students to ask themselves:
“Why do you need to take two acetaminophen [paracetamol] tablets every 4-6 hours
when you have a headache? Why is there a warning label that cautions you not to take
any more than four doses in a given 24-hour period? And why does your head start to
ache again after four hours when the warning suggests you really ought to wait six
hours before you take the next dose?”
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The above leverages student curiosity about the natural world. In addition, it has the
underlying message that understanding drug dosing is not just a medical student or
mathematics student interest, it also has personal implications. Other examples mathematically
similar to drug dosing may include alcohol metabolism, or snow accumulation with some
percentage melting between snowfall.

In this activity, students are introduced to different types of absorption methods for drugs (oral,
intravenous, intramuscular, transdermal, and inhalation). Some of these would result in an
nearly instantaneous uptake, motivating the need for a discrete modeling approach. Then
students discuss how drugs are eliminated. Instead of it being instantaneous, there may be
transport required, there will be some metabolized into the body, and there will be some
excreted. In this context, students are reminded about exponential models as a way we can
perhaps model this elimination. If C(z) is the concentration in the bloodstream at time, ¢, then
the rate of elimination could be modeled as proportional to the current concentration, i.e.,

4O —_ o).

dt

The half-life of a drug, t = In(2)/r, can also be discussed in this context, relating this to carbon
isotope half-life which many students may have seen in chemistry, physics or precalculus.
Here, the half-life of a drug means the amount of time it takes for the body to eliminate half of
the drug in the system. Students may notice that it is not a constant amount in the half-life or
specific time interval that is eliminated, but rather half of whatever exists. Once you are in an
equilibrium pattern, the drug level to maintain should be the same, but what about trying to
reach and establish that equilibrium level?

Students are then brought through some calculations to imagine the amount in the body after

one dose,

—rT
R1= Ce

then two doses,
R,= (R, + 0 =Cle ) +ce

and can try to generalize a pattern based on this. This formula generalization uses ideas of
geometric series to leverage a closed form solution. That closed-form solution can then be
used to explore the limit.

Before or after developing a closed form solution, students can be introduced to computer
programming options to develop a numerical simulation for their model (see Figure 2). This
would allow students to explore the effect of changing initial conditions, 7, 7, or a number of
other ideas, leveraging that natural curiosity, and providing an opportunity for them to notice
patterns.
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Figure 2. Drug concentration over time, for a drug with a half-life of 12 hours, taken in a 10
mg dose every 24 hours. The simulation was performed in Google Colab using Python, and the
file is provided as Supplement 2.

2.2.8 Asset-based

Being authentic-problem driven is more than just engaging students with questions that matter to
them. Mathematicians typically rely on foundational mathematics knowledge to abstract into
pattern and show support for advanced ideas (Tall, 1991; 2013). With this narrow perspective of
foundational skill ability, life science students are often perceived as coming to calculus with
deficits in what they need to know. For example, Diaz Eaton & Highlander (2017) noted that
biology students performed significantly worse on the first exam in Calculus I covering primarily
precalculus review skills. However, life science students come with a vast knowledge of
expertise in their own fields, which can also be leveraged to help them understand advanced
mathematical concepts. For example, life science students often hear about exponential and
logistic growth. They can sketch both the population size curve and verbally explain the rate of
change even without the graph. Using their existing knowledge to build skills sketching graphs
of derivatives is an asset-based approach to calculus instruction for life and environmental
science students (see Box 1 and 2). Likewise, geology and environmental studies students'
familiarity with transects and topographic maps can be leveraged to teach multivariate surfaces.
Asset-based approaches are part of broader theories of inclusive instructional strategies (Yosso,
2005). Students come with a conocimiento, a body of knowledge that encompasses a broad range
of experiences entangled with social identity (Diaz Eaton, 2023; Gutiérrez et al., 2024). As all
students in Biocalculus share some interest, enthusiasm, and knowledge of life science, this
aspect of their social identity may be more effectively leveraged in a Biocalculus course (Diaz
Eaton, 2023; Silver & Charles, 1989). Also, many life science issues are broader community or
individual issues, such as understanding climate change (Box 2) and personal health (Box 3),
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which may appeal to other identities and interests. Diaz Eaton (2023) discusses in depth how the
carbon dioxide example in Box 2 evolved over time to become more relevant and authentic, as
well as to engage students in questions about power and privilege as a newly proposed
observatory at Mauna Kea was met with resistance from Native Hawaiian protectors (Garcia
Chua et al., 2022).

2.2.9 Translating across disciplinary boundaries

Language to describe calculus concepts may vary across disciplinary boundaries (Redish & Kuo,
2015). For example, “rate of change,” “rate equation,” or “velocity” are used throughout their
introductory science courses, but derivative notation and the word “derivative” is unlikely to
appear. Biocalculus courses focus on making these connections clear (e.g., Box 1) and helping
students understand the different languages used in their worlds to describe the same underlying
concepts. Many life science students take statistics courses or are introduced to statistics in early
laboratory courses. Connecting finite integrals to area under the curve calculations for
probability distributions helps students better understand statistical tables, critical values, and
calculators. Introducing students to the Rule-of-Five for models and modeling can help students
understand how their calculus theory is part of a broader set of scientific approaches used to
understand complex phenomena (Diaz Eaton et al., 2019). Through metacognitive reflection
exercises, students can be asked to reflect on how topics discussed in class relate to their other
classes, their research interests, or their passions (Diaz Eaton & Highlander, 2017). Independent
choice projects can further help. For example, Diaz Eaton assigns as a final project that students
choose an article in their major discipline to class which uses an idea from calculus, and then
summarize and present that article to the class. Students value these experiences, but also
professors in their major disciplines value calculus instruction more when students develop the
ability to translate ideas from calculus to their classes. Developing a deeper translation fluency
among mathematics instructors is an open area of research and a top challenge in building
capacity for teaching Biocalculus. Neitzel et al., (2023) used a database of calculus ideas used in
a Marine Biology course after the instructor sat in on Calculus I and found that quantitative
language seemed more developed in the lecture content closest to the instructor’s own research
area. This suggests that offering differentiated opportunities in various subject areas to learn and
integrate mathematics and biology together may be a successful tactic.

In summary, Biocalculus challenges the epistemological values of traditional calculus courses.
Some use the language of rigor to describe adherence to a particular established textbook, though
in research on epistemology, qualitative research suggests they actually value problem solving,
which Biocalculus does (Stockton, 2010). Biocalculus also adheres to best practices in calculus
education. Even the latest guide by the MAA Committee on the Undergraduate Program in
Mathematics (CUPM) of what mathematics education researchers and respected mathematics
educators say should be in the calculus classroom matches more with forms of Biocalculus rather
than many publisher-backed popular texts (Bressoud et al., 2015). Biocalculus educators should
be considered innovative frontliners pushing best practices in calculus education.

17


https://www.zotero.org/google-docs/?SPHDMZ
https://www.zotero.org/google-docs/?SPHDMZ
https://www.zotero.org/google-docs/?wFTzZA
https://www.zotero.org/google-docs/?wFTzZA
https://www.zotero.org/google-docs/?NbhqeJ
https://www.zotero.org/google-docs/?XovSmM
https://www.zotero.org/google-docs/?NPHibL
https://www.zotero.org/google-docs/?Kjb6er
https://www.zotero.org/google-docs/?wEcUcq
https://www.zotero.org/google-docs/?1hY6d3

3. The Benefits of a Biocalculus approach

3.1 Usefulness, Values and Language

For Biocalculus to stay relevant in the curriculum, life science program faculty must see what it
helps their students do and understand. When life and environmental faculty were initially
surveyed using calculus language such as “derivative”, the results for usefulness were much
lower than when they were queried using the language of calculus often used by biologists, such
as “rates of change” (Diaz Eaton & Highlander, 2017). When courses were changed to reflect the
cultural values of surveyed faculty, these faculty responded positively - to both the process which
garnered buy-in and collaboration as well as to what their students were able to do as a result.

Qualitative research comparing pre-post student responses indicated that after a Biocalculus
course, students could articulate specific examples of the role of calculus in biology, for example
models and modeling, making predictions, explaining patterns, evaluating change, and forming
hypotheses (Aikens et al., 2021). O’Leary et al. (2021) noted that enrollment in Biocalculus was
associated with increased grades in science courses where traditional calculus was not. Students
vote with their enrollment as well, with many programs noting increased enrollment in
Biocalculus over the traditional (Diaz Eaton & Highlander, 2017; O’Leary et al., 2021). One
marine biology program re-added Biocalculus to their list of program requirements after initial
elimination and multiple programs highlighted it in program reviews (Diaz Eaton & Highlander,
2017). Mathematics departments that rely on calculus as a primary source of ultimately funding
faculty lines, should see Biocalculus as an opportunity to partner.

Students also picked up on how Biocalculus courses were relevant and applicable - citing it as a
top factor in what helped them learn (Aikens et al., 2021). Their responses indicated that
mathematics was more accessible and that they developed a sense of agency around their ability
to use mathematics. Interestingly, they also talked about how their professors cared. Discussion
of care is often associated with student evaluations of women professors (Sprague & Massoni,
2005). However, Aikens et al. (2021) suggested that translating calculus - tailoring courses and
speaking in their language - may be also contributing to students' perception of instructor care.
Disciplinary language can be a powerful tool academics use to indicate their epistemological
stance and values, and can be used as a “disciplinary microaggression,” adding to feelings of not
belonging (Diaz Eaton et al., 2019). This could be an avenue for further research. However it
points to the importance of seeing our students not just as knowledge containers, but as people
whose identities and presence crave to be acknowledged and valued.

3.2 Inclusion and Exclusion in Calculus drives Biology (and STEM)

Calculus attrition is a problem for all STEM programs (Ellis et al., 2016). If you do not pass
calculus, there is a trickle down effect to the rest of the major. One measure of attrition is DFW
rate, which compiles course grades below a 70% (D or F) or course withdrawal (W). The DFW
percentage indicates how many students will need to repeat the course if it is needed as a
prerequisite or program requirement (Diaz Eaton & Highlander, 2017). Diaz Eaton & Highlander
(2017) reported Biocalculus as reducing DWF rates by half or more, from 25-30% DFW rates to
5-10%. These findings indicate that Biocalculus has the potential to reposition calculus as a
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gateway to STEM instead of a gatekeeper. When mathematics programs are slow to respond to
this research and life science program needs, life science departments have hired the expertise to
teach it within their departments (Diaz Eaton & Highlander, 2017) - a practice already common
for biostatistics.

Biocalculus is not just a “watered-down” version of calculus. This myth assumes that the reason
for closing gaps in DWF is that students are held to a mathematically lower standard. This is a
fundamental misunderstanding about what Biocalculus is. In fact, most of the Biocalculus
courses described in literature are quite the opposite: they are designed to meet the needs of
biology programs and allow students to successfully transition into calculus II (Robeva et al.,
2022). This is often because, even if differentiated Biocalculus classes may be economically
feasible at the Calculus I level due to high enrollment, not all institutions can offer a
differentiated Calculus II. Success in later Calc II courses has been demonstrated by both Comar
(2008) and in (Uhl & Holdener, 2013). Diaz Eaton & Highlander used common exams between
calculus and Biocalculus sections to demonstrate “rigor” (2017). Students in the regular calculus
statistically out performed students enrolled in Biocalculus on the common precalculus exam at
the beginning of the semester. By halfway through the semester, traditional calculus students
outperformed Biocalculus students in the differentiation exam on average, but the difference was
no longer statistically significant. By the end of the term, the Biocalculus students were
outperforming the traditional calculus students. This signal was not statistically significant, but
even no statistical difference between classes, successfully dispels this myth. The findings
support the idea that Biocalculus can build a better scaffold for students, rather than serve a filter
(Biza et al., 2022).

We also know that success in calculus is un-equitably related to various social characteristics
such as socioeconomic status, gender, first-generation to college status, race, and ethnicity.
Biocalculus studies are only now starting to disaggregate student data. A more recent study by
O’Leary et al. (2021) suggested a meaningful, but not statistically significant impact on grades of
low SES, first gen, and underrepresented minority students. An open avenue for research is to
see whether Biocalculus is making an impact on disproportionately affected students. For
example, Diaz Eaton (2023) suggested that epistemological violence and disciplinary
microaggressions are not neutral, i.e. our scientific constructs are not independent of our social
constructs. In addition, several of the course reforms which Biocalculus employs are also
considered inclusive pedagogical practices, e.g., asset-based perspectives. The Biocalculus
community needs to think about employing a more intersectional analysis of student identity as
their disciplinary identities grow and use this analysis to discuss how race, gender and class
identities introduce multiple, intersecting, and potentially multiplicative axes of oppression
(Crenshaw, 1991).

There are also opportunities to analyze the effect of specific instructional strategies. For example,
some courses with a systems perspective and programming employ “just-in-time” calculus
instruction. Does the relevance and new focus of the models and systems perspective outweigh
social characteristics related to the likelihood of prior exposure to calculus and programming?
Are students who have already taken calculus or programming at their high school given an
advantage that is difficult to overcome. Could students’ diverse cultural wealth be more valued
and leveraged by certain choices of the authentic problems which drive instructional units?
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Biocalculus approaches to teaching are by definition more drawn towards learning through active
participation, which are associated with lower attrition (Freeman et al., 2014; Laursen et al.,
2014). This will help the ongoing struggles in mathematics departments move away from chalk
and talk approaches (Cevikbas & Kaiser, 2023). In this way, Biocalculus offers a blueprint for
approaches to inclusion and access issues that can be useful in mathematics departments which
increasingly are learning to address these issues.

4. Beyond epistemological violence and disciplinary microaggressions:
future directions for a Biocalculus approach

“Like all people, we perceive the version of reality that our culture communicates. Like others
having or living in more than one culture, we get multiple, often opposing messages. The coming
together of two self-consistent but habitually incomparable frames of reference causes un
choque, a cultural collision.” - Anzaldaa (1987, p. 3)

4.1 Challenges

Why has the Biocalculus movement not become more universal? Resistance to change may be
due to deeply-embedded institutional and cultural barriers, the lack of intercommunity
involvement (e.g. of mathematics educators in course development) and the fact that
mathematicians teaching calculus are not necessarily trained as applied mathematicians and
modelers; they may feel that they are asked to contribute to teaching this new kind of course and
feel unprepared to do so (Bressoud, 2020; Schoenfeld, 2013). A flawed narrative about what
Biocalculus is (a fundamental redesign and translation) and what it is not (watered down
calculus, the traditional text with a few biology examples) may also be a key obstacle.

Some departments in the US hire specialized faculty with research areas in mathematical biology
to teach Biocalculus courses. The BIO2010 report (National Research Council, 2003) and the
Vision and Change report (AAAS, 2011), both foundational to setting postsecondary biology
education agendas in the US, helped spur an infusion of grants and initiatives to create curricula
(Diaz Eaton et al., 2020). These resources can help provide support for instructors and students
to make connections. However, those without understanding of the deeper Biocalculus
philosophy may still struggle. Some models for peer support and resource sharing have been
particularly fruitful; QUBESHub pairs open educational resources with professional
development to support instructors in the process of implementation (Akman et al., 2020;
Gutiérrez et al., 2024).

However, even reform calculus uptake is still in progress (Bressoud, 2021), without the
complications of adding biology. As we move to a modeling and computational framework for
calculus, is it still calculus as we have come to know it? While originally the push to incorporate
more programming and data into calculus was because of the specific needs of biologists
contributing to bioinformatics and ecoinformatics, these skills have become increasingly called
for in the newest big data and artificial intelligence push. We have to confront the relevance of
the current curriculum to meet these broad challenges and needs in its foundational service
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courses. We also need to confront how our abstractness and neutrality may not be leaving room
for aspects of calculus that could be relevant and humanizing (Diaz Eaton, 2023).

4.2 Opportunities

Instead of asking why we do not change, we might ask: what are we trying to preserve by
continuing to leave calculus as is? We have the opportunity and call to enhance our mission as
mathematics educators to help improve the transfer of knowledge across disciplines, contribute
our techniques to science to create a broader understanding, and care for our students as people
with identities that matter and as people who shape our future. (Gutiérrez et al., 2024) define
conocimiento in the context of teaching mathematics as a form of relational knowing that
intertwines mathematics, pedagogies, students, and politics. A conocimiento lens “brings the
margins to the center by recognizing political issues cannot be separated from other dimensions
or added on, as if politics are not already present in mathematics teaching and learning”
(Gutiérrez et al., 2024, p.755).

There are still many avenues open for researchers in Biocalculus to understand what helps create
successful Biocalculus experiences, particularly among students who are often left behind in
traditional calculus instruction. We propose Biocalculus as a unique setting to explore the
teaching of social justice, environmental awareness, sustainability and biodiversity topics,
opening new avenues for educational research on these topics. As more modeling and
meaning-making versions of calculus have been introduced, there are new research questions
available about how to assess this type of applied and meaning-making calculus understanding
across these multiple instances. There are new assessment alternatives for calculus that could be
applied across many calculus contexts. Finally, as Biocalculus moves to be more relevant in an
age of big data and computing, there are epistemological and pedagogical shifts for mathematics
and biology educators alike that are probable as well as necessary.

4.3 Pedagogical and Epistemological Shifts

At the heart of the "What is Biocalculus" section in our paper are nine approaches that make a
strong case for its pedagogical potency. For each, we dive into one specific example (of a
particular problem in biology modeled through particular calculus techniques) and/or we present
evidence of specific learning outcomes for students. We see student learning as making new
narratives: about biology; about calculus; about the purpose and utility of calculus in biology;
about their own interest in, and appreciation for, this purpose and utility; about their self-efficacy
as users of calculus in biology and so on.

Also encoded are the necessary pedagogical and epistemological shifts that the use of these
approaches entails. For example, we aimed that our vignettes have mathematical and biological
specificity and we see many places where all (not life science only) students can benefit from
approaches that

o connect hitherto sparsely-connected mathematical topics (such as limits and
derivatives in the “logistic growth” example) and
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o provide opportunities to see a tangible example that showcases the differences
between mathematical objects (such as exponential and logistic growth in the
“logistic growth” example)

4.3.1 Cultivating Deep Mathematical Connections Across Disciplines

The need to see connections between mathematical topics - appreciate what the distinctive
features of a mathematical object are - is present in the learning experiences of a// mathematical
learners. And therein lies an epistemological and pedagogical shift that considering Biocalculus
approaches may imply for Mathematics educators mainly trained as mathematicians: “carrying
capacity”, say, is not a mere realization of the abstract mathematical object of “limit” that has
relevance and significance to life science students only. What Biocalculus approaches teach us is
that, through engaging in an activity that involves, say, the concept of “carrying capacity”,
calculus learners and users across disciplines - including in Mathematics itself - may learn
something about the mathematical object of “limit” they would not learn otherwise. This idea has
been explored extensively by those working at the interface of physics and mathematics
education (e.g. Redish & Kuo, 2015).

Interdisciplinary learning communities can help instructors practise this reciprocity of learning
benefits (Soares et al., 2024). We see in Biocalculus approaches an opportunity for making “fuel”
narratives about mathematics - meaningful engagement with a variety of mathematical, and
other, “realisations” of a mathematical object as opposed to “fossil” narratives about
mathematics - externally imposed, and often abstract, reverence for a mathematical object, yet
alienation from its meaning, utility and purpose (Nardi, 2023).

The Biocalculus approaches we make a case for in this paper aim to humanize calculus for life
science students via “translating dialects” (where, for example, a conversation about limits
becomes a conversation about carrying capacity). The mathematical modeling intervention study
in Viirman and Nardi (2019, 2021) is an example that lends additional support for this claim. In
that study, the participating students often talked about whether what they were being asked to do
was mathematics or biology and, at least at the start, they felt more comfortable when they
perceived their task as biological rather than mathematical. As the intervention progressed, the
boundaries - and their anxiety or concern about these boundaries - started to fade.

4.3.2 Leveraging the Breadth of Calculus

Another set of boundaries that our paper navigates across is between an exclusive focus on
Calculus, while simultaneously defining Biocalculus, as including mathematical modeling,
discrete mathematics, and data science. We take issue with “applicationism”, a Stewart-like
canon narrative about calculus that marvels at its beauty, elegance and powerful abstraction and
where applications are just a cheerleading periphery for Mathematics celebrated as the centre.
We see taking a pluralist and centrist view in a typically polarised landscape as potentially more
productive than a somewhat obsolete bras de fer between “applicationism” and a less precious
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narrative about the rigour and abstraction of mathematics in which mathematics is a useful
instrument for advancing work in the disciplines. A more centrist view celebrates beauty and
elegance and so on in the way mathematics helps make meaning in applications. The examples in
Boxes 1-3 illustrate that applications can be an excellent opportunity to introduce higher order
mathematical thinking skills.

Instead of trimming what we know as calculus down to a few theorems, we play in the ways that
thinking about change has itself changed. We compare and contrast continuous and discrete
approaches and, in so doing, aim to help students understand why it was so groundbreaking to
consider what happens when the width of intervals goes to zero. Introducing mechanics of
finding derivatives helps us understand the approaches of mathematicians - often very different
from the approaches of empiricists, but this appreciation is earned because we have also centered
and embraced the power and ubiquity of simple ordinary differential equations in biology. We
invite students to play in these spaces with us, ask why, explore ideas with technology, even
collect data - moving our classrooms to spaces of active and curious inquiry where students
become mathematicians for a moment. By seeing the spaces between the “canon” calculus and
biology, not as a cultural choque (Anzaldaa, 1987), but instead as a space of connections that can
lead to collaborative innovation, we hope to foster a new generation of scientific possibilities.

4.4 Connecting to Current Conversations in the Field

The Biocalculus approaches highlighted in our paper may face epistemological and institutional
barriers to change in calculus. There are forces that hold the “canon" sacred. At the Calculus
conferences (Dreyfus et al., 2023) that inspired this Special Issue, we sensed some defensiveness
on this from some attendees from the mathematics education research community, where many
researchers from the “other disciplines” communities seemed less committed to the “canon” and
therefore more comfortable questioning it. But there is space now for this conversation to be had.
For example, in 2024 at the INDRUM (International Network for Didactic Research in
University Mathematics) conference (Florensa et al., 2024), a gathering mostly of mathematics
educators, the panel discussion highlighted assumptions that merit questioning about the what
and how of Calculus in other disciplines; our paper does some of that questioning for the life
sciences.

The panel session was entitled ‘“Mathematics and other disciplines: epistemological issues and
their impact on teaching practices at tertiary level”. The panelists (chaired by Laura Branchetti,
its members were Frank Feudel, Felix Ho, Ricardo Karam and Noemi Ruiz Munzén) had diverse
areas of expertise and zoomed in well-known challenges in university mathematics education
such as that the perception that mathematics courses at university are of little use for succeeding
in subsequent disciplinary courses, as well as in the practice of professional fields. In tandem
with our scepticism about “applicationism” (see earlier comment), the panelists shared examples
of how professionals in different fields have their own aims and values, necessitating a departure
from an “applicationist” and instrumental approach to mathematics courses—an approach
predicated on the “illusion of prerequisites” (ibid, p. 50), viewing mathematics as merely a
toolbox. Their examples offered designs of interdisciplinary teaching and learning activities, as
well as disciplinary teaching that aimed at better integration with other subjects. They spoke of
the need for multiple perspectives in a respectful and inclusive environment and stressed several
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aspects of the disciplines such as reasoning, modeling, and the relationship between the
disciplinary knowledge as well as societal and professional priorities.

We see the Biocalculus proposition in our paper as aligned with the efforts described, and
examples offered, by the INDRUM2024 panelists - as well as the authors of another IRUME
Special Issue the papers of which resonate greatly with ours (Biza et al., 2022). Biza et al. (2022)
use the “filtering” (calculus as a filter, a cause for diminished access and dropping out) /
“scaffolding” (calculus taught in ways that allow students to scaffold their appreciation for, and
confidence in, mathematical methods, reasoning and abstraction) metaphor to problematise the
canonical version of mathematics typically mathematicians have been trying to bring on
curricula and students in other disciplines while appreciating some elements of this
“preciousness”. They make the case that there is intrinsic tension between the scaffolding and
filtering institutional roles of calculus and alert the mathematics education research community
to the need for interdisciplinary research that resolves this tension. If the inter-community
goodwill evidenced in the INDRUM?2024 panel discussion - and the works reported in the
Calculus at the intersection of institutions, disciplines and communities JRUME Special Issue
(Biza et al., 2022) - is anything to go by, a convergence towards calculus teaching that is
empowered by its meaningfulness in other disciplinary contexts (as we hope our paper shows in
the disciplinary context of life sciences) may not be that far fetched an aspiration.
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Al feature, making it easy also for students to generate on their own. This .ipbyn used this
generated code as a foundation, but co-authors reformatted and reorganized it for clarity.
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