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Abstract

Gut microbiomes (GMs) — microbes living in the intestine — play a central role in host
health, survival and evolution, yet what affects their dynamics, and how that impacts
host individuals in wild populations remains poorly understood. This thesis
investigates host—GM interactions in a natural population of Seychelles warblers,
integrating longitudinal sampling, shotgun metagenomics, and host genomic
analyses to identify ecological, genetic, and social drivers of GM variation and their

consequences for host survival.

| show that both taxonomic and functional GM diversity decline progressively with
age, with compositional shifts and an age-related increase in transposase
abundance. Host immunogenetics, measured through major histocompatibility
complex (MHC) variation, shaped GM structure, revealing trade-offs between
microbial defence and microbial metabolic function. Social interactions also
influenced the GM: individuals sharing space harboured more similar GMs, and
individuals that interact closely (e.g. breeding pairs and helpers) shared more similar
anaerobic, but not aerotolerant, taxa. Host inbreeding effects were detectable at
both individual and parental levels, correlating with GM taxonomic and functional
composition. Genome-wide association analysis further identified nine loci linked to
GM composition, the genes these loci encompass implicate host immune and gut
physiological pathways shaping the GM. All nine loci were associated with microbial
taxa that are related to survival in the warbler, and two loci were directly linked to
host survival, demonstrating genomic pathways through which host-GM

interactions influence fitness.

Overall, this thesis demonstrates that age, host genetics, and social environment all
shape the GM through distinct but interacting mechanisms. By integrating ecological
and genomic perspectives, this thesis advances understanding of how GMs are
structured in the wild and their potential fithess consequences. More broadly, it
emphasises the importance of viewing the hosts and their microbiomes as an
interconnected system, with implications for both evolutionary biology and

conservation.
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Chapter 1 |

General Introduction

. - ' .
* Credit: Claire Lok Sze Tsui

Perched quietly among the branches, this Seychelles warbler appears deep in
thought—perhaps contemplating its life-history, genetic makeup, social bonds, and
the hidden world of its gut microbiome!
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“How far along the gut have we gone?”
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1.1 History of microbiome research

The microbiome refers to all microbes living in or on a body that can influence host
health and disease (Round and Mazmanian, 2009). It encompasses bacteria,
viruses, fungi, and protozoa (Weinstock, 2012) and is defined (Berg et al., 2020) as:

. a characteristic microbial community occupying a reasonably well-defined
habitat that has distinct physio-chemical properties. The term thus not only refers
to the microorganisms involved but also encompasses their theatre of activity”
(Whipps et al., 1988).

This definition captures not only the organisms present but also their ecological and

functional roles.

Microbiome research began with Antonie van Leeuwenhoek’s observations of
bacteria under a handmade microscope, describing them as animalcules (a
microscopic animal) (Leeuwenhoek, 1677). Subsequent advances included
microbial culturing techniques, which revealed discrepancies between the number
of observed bacterial cells (under the microscope) and those successfully grown in
the lab (Stewart, 2012). The sequencing of 16S ribosomal RNA genes (16S rRNA)
by Carl Woese and George Fox (1977) enabled taxonomic identification of bacteria.
The human gut microbiome (GM) was then studied with the 16S rRNA, uncovering
substantial inter-individual variation (Eckburg, 2005). More recently, shotgun
metagenomics, metatranscriptomics, and metabolomics have expanded GM
research beyond taxonomy, providing insights into microbial function, host-microbe

interactions, and links to health and disease (Worsley et al., 2024c).

Research has subsequently shifted toward host-centric perspectives, examining
how microbiomes influence host physiology, behaviour, health and fithess
(Claesson et al., 2012; Langille et al.,, 2014). In vertebrates, work has largely
focused on the microbiome of the gastrointestinal tract (gut microbiome, GM), a
dense community (107 — 10'#) normally dominated by mutualistic taxa (Ferranti et
al.,, 2014; A. R. Wang et al., 2018). Oxygen availability declines along the gut,
allowing both aerotolerant (oxygen-resistant) and anaerobic (oxygen-sensitive)
microbes to thrive (Chikina and Matic Vignjevic, 2021). Some microbes anchor in
the gut and form mutualistic relationships with the host’'s mucosal layer, where the
mucus protects them. The microbes then provide nutrients and metabolites to the

host and prevent pathogen colonisation (Rathore et al., 2025). Over time, gut
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microbial taxa form stable populations in individuals and become personalised gut
microbes (Claesson et al., 2011; Ghosh et al., 2020).

To date, most GM studies have been performed on humans or captive and model
organisms (Sharma, 2022). However, studies on humans are often confounded by
lifestyle factors such as antibiotics, malnutrition, and residential care (DeJong et al.,
2020). With captive animals, captivity influences the GM through differences in
environmental and social conditions (Oliveira et al., 2020; San Juan et al., 2021),
and is associated with often extensive differences in GM diversity and composition.
Effects of captivity have been repeatedly shown in birds (Oliveira et al., 2020; San
Juan et al., 2021; Wang et al., 2016), fish (Dhanasiri et al., 2011), reptiles (Keenan
et al., 2013), amphibians (Bataille et al., 2016), and mammals (Clayton et al., 2016;
Delport et al., 2016; Gibson et al., 2019). Thus, captive animal studies cannot
accurately portray the GM in wild populations (Hird, 2017). Research on wild animal
populations is necessary to fully understand natural GM changes associated with

age and senescence, host genetics, and sociality (Hird, 2017).

While work on humans and captive animals has provided a wealth of important
information, it is important to recognise these limitations. Accordingly, | deliberately
diversify the examples to assess whether findings from humans and captive animals
are confirmed in wild systems. Despite substantial progress, we still know relatively
little about how these factors interact in natural populations, or the extent to which
patterns observed in controlled settings translate to the wild. This review
synthesises current GM research, focusing on how senescence, sociality, and host
genetics shape the GM. It also explores the consequences of GM changes, the
importance of selecting an appropriate study population, and the methodologies

used to investigate the GM effectively.
1.2 Environmental factors affecting the GM

1.2.1 Diet

Diet is one of the most influential factors shaping the GM (Albenberg and Wu, 2014;
Cotillard et al., 2013; Wolters et al., 2019), due to both external dietary inputs and
intrinsic host factors that determine what the host can eat (Trevelline and Kohl,
2022). This influence is evident at multiple levels, including animal dietary
classification, differences among species, among populations, and even among
individuals within a population (Baniel et al., 2021; Bodawatta et al., 2021; Griffin et

al., 2017; Zoelzer et al., 2021). Numerous studies have shown that shifts in diet can
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rapidly and predictably alter gut microbial composition, diversity, and function,
highlighting the strong and dynamic link between what hosts consume and their
microbiome across ecological and evolutionary contexts (Bodawatta et al., 2021,
Cotillard et al., 2013; Suriano et al., 2022; van Leeuwen et al., 2020).

In wild animals, changes in diet also impact GM composition (Amato et al., 2015;
Ren et al., 2016; Springer et al., 2017). For instance, the GM structure of lowland
gorillas (Gorilla gorilla gorilla), mice (Mus musculus), and myrmecophagous
mammals (Orycteropus afer, Vermilingua and Proteles cristata) is highly dependent
on their diet (Carmody et al., 2015; Delsuc et al., 2014; Hicks et al., 2018). However,
in some species, the GM does not reflect dietary input (Youngblut et al., 2019), for
example, Giant Pandas (Ailuropoda melanoleuca) subsist almost entirely on a
herbivorous diet, yet their digestive system and GM resemble those of carnivores
(Guo et al., 2020).

Additionally, the GM plays a critical functional role in host digestion and nutrition.
For example, the mammal GM aids in the degradation of xyloglucans, which are
found in vegetables (Larsbrink et al., 2014) and the degradation of cellulose, which
is found in grass and most plants (Cholewinska et al., 2020). Thus, allowing
herbivorous mammals to access otherwise inaccessible sources of nutrients
(Froidurot and Julliand, 2022). Short-chain fatty acids, produced via fermentation of
indigestible dietary fibres by gut microbes, serve as the primary source of energy
for colonocytes- absorptive epithelial cells lining the large intestine (Ahmad, 2000).
Ultimately, the interplay between diet, host physiology, and microbial function not
only shapes the composition of the GM but also influences the host's overall health

and metabolic efficiency.

1.2.2 Temporal environmental factors

Seasonal changes are associated with GM composition in wild animals (Amato et
al., 2016; Ren et al., 2017; Wang et al., 2015), largely attributed to fluctuations in
diet, i.e. resource abundance and diversity (David et al., 2014; Gongora et al., 2021;
Schmiedova et al., 2022). However, these seasonal shifts also encompass broader
environmental changes, including shifts in temperature, humidity, rainfall, and the
start or end of breeding seasons, all of which may also shape the GM (Baniel et al.,
2021; Gongora et al., 2021; Marsh et al., 2022).
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In addition to these broader seasonal influences, finer-scale temporal factors such
as host circadian rhythm can also modulate GM communities (Voigt et al., 2016).
Multiple studies have shown that the GM taxonomic composition changes
throughout the day (Schmid et al., 2023; Voigt et al., 2016; Zhang et al., 2023), with
up to 60% of GM composition oscillating over 24 hours in mice (Thaiss et al., 2014).
Moreover, microbial gene expression in mice varies by time of day (light-dark cycle):
microbial gene functions such as energy metabolism, DNA repair and cell growth
are upregulated in the dark phase (lights off), whereas genes such as detoxification,
motility, and environmental sensing are upregulated in the light phase (lights on) of
mice (Thaiss et al., 2014). Similarly, in wild meerkats (Suricata suricatta), GM
Clostridium abundance peaked at dawn, aligning with the species’ foraging
schedule (Risely et al., 2021).

1.2.3 Pathogens

Viral outbreaks, such as the avian flu H5N1 in seabirds and chickens or the COVID-
19 pandemic in humans, are factors that can alter the GM by activating host immune
response and inducing inflammation (Chakraborty et al., 2022; Huang et al., 2023).
Bacterial outbreaks, such as a pathogenic strain of Escherichia coli, could also
directly lead to changes in the GM, especially if commensals are outcompeted by

the pathogenic strain (Doranga et al., 2024).

Climate change has the potential to impact the GM through changes in abundance
and quality of food, altering host physiology, and potentially increasing pathogenic
microbes (Litchman, 2025). Global warming may increase enteric pathogens as
microbes that previously could not survive in vertebrate systems (e.g., many fungi)
adapt to higher viable temperatures. Such shifts could enable colonisation of hosts,
while existing microbiota may fail to tolerate these changes, weakening colonisation
resistance and increasing disease outbreaks (Konkel Neabore, 2024). Furthermore,
climate change could impact host physiology, such as reduced hormonal expression
due to increasing temperature, which could be associated with changes in GM
composition (Maeng and Beumer, 2023; Santos-Marcos et al., 2023). Therefore,
GM dynamics are not only a reflection of host biology, but are also deeply

intertwined with broader environmental, ecological, and anthropogenic influences.
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1.3 Intrinsic host factors and the GM

1.3.1 Age

Numerous studies link the GM with host age (Claesson et al., 2012; Xu and Zhang,
2021). At birth, gut microbial loads are low and gradually increase with age in
mammals (Du et al., 2023; Shi et al., 2018; Wampach et al., 2017; J. Wang et al.,
2018). Aerotolerant taxa (e.g. Staphylococcus, Streptococcus, Escherichia coli and
Enterobacteria) are first to colonise the gut, with the role of consuming oxygen,
producing a suitable environment for obligate anaerobic bacteria (e.g. Bacteroides,
Clostridium, Actinomyces and Fusobacterium) to grow (Clemente et al., 2012a; Du
et al., 2023; Minato et al., 1992). Therefore, the GM of human infants is typically of
low diversity, dominated by Bifidobacteria and Bacteroidetes (Mitsuoka, 1996). At
one to three years, the human GM shifts towards an adult-like state (Clemente et
al., 2012b; Tamburini et al., 2016). Similarly, in other vertebrates — Koala
(Phascolarctos cinereus), dog (Canis lupus familiaris), Great tit (Parus major), and
ostrich (Struthio camelus) - the developmental GM gradually increases in diversity
and converges compositionally to resemble an adult GM (Blyton et al., 2022; Dong
et al., 2022; Teyssier et al., 2018; Videvall et al., 2019).

1.3.2 Senescence

Senescence is an age-related decline in host function (Monaghan et al., 2008;
Nussey et al., 2008), which varies in onset and rate across and within species and
across traits (Jones et al., 2014; Nussey et al., 2013). The GM is thought to be one
such trait. In mammals, the GM remains relatively stable over long periods of the
adult life (Becker et al., 2015; Martinez et al., 2013), but changes in later life, often
becoming dysbiotic — characterised by an imbalanced or disrupted GM community
(Biagi et al., 2016; Luan et al., 2020). These shifts are associated with age-related
declines in beneficial bacterial taxa like Bifidobacteria and increases in potentially
harmful groups like Gammaproteobacteria (Claesson et al., 2011). Experimental
studies support the idea that age-related changes in the GM impact health. Faecal
microbiota transplants from older donors shorten lifespan, while those from younger
donors extend it (Barcena et al., 2019; Fransen et al., 2017; Smith et al., 2017). This
may be due to reduced microbial production of short-chain fatty acids, vital microbial
metabolites (Lee et al., 2020a, 2020b; Nagpal et al., 2018; Spychala et al., 2018).

23



In wild vertebrates, age-related GM studies have been mostly cross-sectional,
comparing juveniles and adults (Funosas et al., 2021; Reese et al., 2021). Few
studies include elderly individuals, and often yield mixed results (Reese et al., 2021).
Such cross-sectional studies are limited by inter-individual variation and selective
disappearance effects (Benson et al., 2010; Dzierozynski et al., 2023; Nussey et al.,
2013). Therefore, a longitudinal approach is needed to better understand age-
related GM changes in wild vertebrates. Several studies on wild mammalian species
using longitudinal sampling have reported that ageing is associated with small shifts
in GM composition (Reese et al., 2021; Risely et al., 2021; Sadoughi et al., 2022).

1.3.3 Sex

Sex-related GM differences are found in most vertebrates but vary across host
species (Valeri and Endres, 2021; Xu and Zhang, 2021). Hormonal differences likely
explain many of these patterns, as hormones can directly modulate bacterial
metabolism via steroid receptors (Menon et al., 2013). However, sex hormones
could also influence behavioural differences in animals, leading to differences in
dietary choices, consequently influencing GM characteristics (Ma et al., 2020;
Zucker et al., 1972). Sex differences in the GM may also reflect energy investment
strategies, such as in yellow-bellied marmots (Marmota flaviventer), where males
invest in mass gain for hibernation, while females are focused on nursing (Pfau et
al., 2024).

1.3.4 Host genetics and the GM

1.3.4.1 Host and GM phylogenies

Phylosymbiosis describes evolutionary alignment between host species and their
GM, arising from the close coevolution of the hosts and microbes, whereby microbial
communities adapt alongside host physiology, immunity, and diet (Lim and
Bordenstein, 2020). This has been observed in several mammals (Brooks et al.,
2016a; Kohl et al., 2018b, 2018a) and birds (Hird et al., 2015; Laviad-Shitrit et al.,
2019) and may be driven by coevolution between host and microbes (see below
Vertical Transmission). Alternatively, it could be caused by environmental filtering,
I.e. the host may filter for specific microbes that can adapt to their gastrointestinal
system (Moran and Sloan, 2015). Similarly, host phylogeny at the vertebrate classes

and between species has repeatedly been shown to be associated with the GM,
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though this doesn’t necessarily indicate phylosymbiosis — as they may arise from
correlated factors such as shared diet, geographic distribution or amount of social
interactions (Gomez et al., 2019; Knowles et al., 2019; Sherrill-Mix et al., 2018; Song
et al., 2020; Trevelline et al., 2020; Youngblut et al., 2019). While host-GM
phylogenetic congruence captures long-term evolutionary influences on the GM
across species, genetic variation within a species may also shape the GM in

important ways.

1.3.4.2 Host immune system

The GM and the host immune system influence each other bidirectionally (Russler-
Germain et al., 2017; Zheng et al., 2020). Host immune genes may shape GM
composition (Dzierozynski et al., 2023; Marietta et al., 2015; Zheng et al., 2020), as
immune activation must balance defending against pathogens while tolerating
commensals (Fuess et al., 2021; Tanoue et al., 2010). In particular, immune
receptor genes (pathogen detection) could preferentially affect certain microbes,
shaping the GM (Kurilshikov et al., 2017).

Further, in humans, growing evidence links the GM to diseases such as colorectal
cancer (Wong and Yu, 2019), inflammatory bowel disease (Khan et al., 2019),
obesity (Ley et al., 2005), diabetes (Gurung et al., 2020; J. Wang et al., 2018), and
Clostridium difficile infection (Kelly et al., 2014). It has been suggested that
ulcerative colitis may result from a disrupted host-GM interaction (Bullard et al.,
2022). Germ-free animals show underdeveloped immune systems and reduced
immune activity, likely due to the absence of a healthy GM (Sommer and Backhed,
2013). A major reason for this is that the GM plays a central role in shaping and
maintaining host immune defences (Fuess et al., 2021; Tanoue et al., 2010). This
can occur directly, through microbial stimulation of immune cells and the production
of metabolites such as short-chain fatty acids that modulate inflammation, or
indirectly by maintaining gut barrier integrity (Mann et al., 2024; Takiishi et al., 2017,
Tanoue et al., 2010; Wu and Wu, 2012; Zhao et al., 2023). In addition, commensal
microbes enhance colonisation resistance by preventing pathogens from
establishing in the gut by competing with pathogens for nutrients and niches
(Caballero-Flores et al., 2023; Tanoue et al., 2010).

1.3.4.3 Host genetics

Beyond the host immune system, specific host genes such as those involved in gut
physiology, nutrient production, and antimicrobial properties could also shape the

GM (Cornick et al., 2015; Ridlon et al., 2014; Rowland et al., 2018). For example,
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genes regulating mucus production (e.g. MUC2) and epithelial barrier integrity can
influence microbial colonisation (Birchenough et al., 2023; Cornick et al., 2015; Song
et al., 2023). Similarly, genes linked to nutrient availability (e.g. ABO and FUTZ2 in
humans) determine the abundance of microbes such as Faecalibacterium
prausnitzii due to the utilisation of N-acetylgalactosamine (GalNAc), a sugar
molecule (Zhang et al., 2024; Zhernakova et al., 2024). Genes linked to bile acid
synthesis and detoxification (e.g. FXR, UGT family genes) also affect GM
community structure, since bile acids have strong antimicrobial properties (Collins
etal., 2023; Ridlon et al., 2014). Even taste receptors and olfactory genes can shape
diet choice, indirectly modifying the GM. Together, these pathways illustrate that
host control of the microbiome extends beyond the immune function, supporting the
view that the GM is a polygenic trait (Benson et al., 2010; Liu et al., 2024).

Conversely, the GM can also mediate host genetic expression via microbial short-
chain fatty acids, immune signalling and epigenetic mechanisms (Nichols and
Davenport, 2021). These interactions highlight the importance of within-species or
within-population studies for disentangling the nuanced host genetic and GM drivers

of host health and fitness.

1.3.4.4 Host inbreeding

Within a species, inbreeding can expose deleterious recessive alleles and reduce
heterosis, leading to inbreeding depression, causing a shorter lifespan and reduced
fertility (Bertorelle et al., 2022; Charlesworth and Willis, 2009). Inbreeding may also
affect the GM directly, by altering the expression of genes that regulate them
(Bonder et al., 2016; Melis et al., 2023) or indirectly, through loss of heterosis at key
GM-associated loci, such as immune genes, which are frequently under balancing
selection (Spurgin and Richardson, 2010). Related individuals tend to have more
similar GMs due to shared environment, thus making it difficult to disentangle
relatedness from environmental effects (Yuan et al., 2015). Consequently, inbred
offspring may inherit less diverse sets of genes and microbes (Grieneisen et al.,
2021; Roche et al., 2023; Turnbaugh et al., 2009).
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1.4 Transmission of the GM

1.4.1 Vertical transmission of the GM

Vertical transmission refers to the direct transfer of microbes from parent to
offspring, shaping the early GM (Sarkar et al., 2024, 2020). In asexually reproducing
organisms, microbes are transferred as tissues are separated during the vegetative
reproduction, such as producing runners and budding (Rosenberg and Zilber-
Rosenberg, 2021). In egg-laying animals, transfer occurs from the egg white before
hatching and from the eggshell (Bunker and Weiss, 2024; Ding et al., 2017,
Perlmutter and Bordenstein, 2020; Wilkinson et al., 2003). Eggs of birds showed a
proportion of microbiota originating at the yolk sac and embryonic gut, suggesting
vertical transmission before egg shelling (Bunker and Weiss, 2024; Gao et al., 2025;
Trevelline et al., 2018). In mammals, vaginal birth plays an important role in GM
transfer (Dominguez-Bello et al., 2010) and the maturation of the GM (Stewart et
al., 2018), as shown by the depauperate GM of caesarean-born individuals
(Inchingolo et al., 2024). Postnatal behaviours such as coprophagy, regurgitation,
and nursing also contribute to vertical transmission of microbes (Daft et al., 2015;
Rosenberg and Zilber-Rosenberg, 2021; Soave and Brand, 1991; van Dongen et
al., 2013). Close physical contact, such as hugging and kissing, has also been linked
to the transmission of microbes between parents and offspring (Reyman et al., 2019;
Sakwinska et al., 2017; van den Elsen et al., 2019).

Vertical transmission will lead to greater congruence between host and the GM,
because microbial lineages are passed along host lineages (Funkhouser and
Bordenstein, 2013; Moran et al., 2008). Hence, closely related hosts often harbour
more similar GM, a pattern that has been observed across species and higher
taxonomic levels (Lim and Bordenstein, 2020; Mallott and Amato, 2020; Yuan et al.,
2015). This phylogenetic concordance facilitates tighter coevolution between hosts
and their GM, potentially reinforcing host-specific adaptations and contributing to
the stability and functional integration of the holobiont (Brooks et al., 2016b; Lim and
Bordenstein, 2020).

1.4.2 Horizontal transmission of the GM

Horizontal transmission refers to the transfer of microbes from the environment and

may be mediated by direct (close physical contact) with other con- and hetero-
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specifics and indirect (shared environment) mechanisms (Sarkar et al., 2024).
Indeed, research has shown that conspecific social interactions are a driving force
for GM convergence in animals (Archie and Tung, 2015; Raulo et al., 2018; Sarkar
et al., 2020). For instance, cohabitation leads to more similar GMs than living apart
(Dill-McFarland et al., 2019; Griffin et al., 2017; Hildebrand et al., 2013; Seedorf et
al., 2014). Several studies in wild mammals have also found that the GM is
correlated with the host’s social networks, with individuals who interact frequently
having more similar GM compositions (Archie and Tung, 2015; Degnan et al., 2012;
Raulo et al., 2018; Tung et al., 2015). However, social species that have close
interactions often share physical space/environment, making it challenging to
disentangle direct and indirect social transmission components of the GM (Raulo et
al., 2024). To address this, studies in baboons (Papio) and wild mice (Apodemus
sylvaticus) used behavioural scores and GPS tracking, respectively, to quantify
social intimacy (Raulo et al., 2024; Tung et al., 2015). These studies found that
individuals who socially interact more intimately tend to share more anaerobic
(oxygen-sensitive) bacteria (Raulo et al., 2024; Tung et al., 2015), highlighting the

role of close interaction in microbial sharing.

The interaction between hetero-specific has also been shown to increase GM
similarities, which suggests that spatial proximity between host species promotes
convergence in the GM (Moeller et al., 2017, 2013; Song et al., 2013). Although,
much of the work on hetero-specific has focused on the transfer of pathogens
between species, such as the spread of tuberculosis or SARS-CoV-2 between
mammals (Gryseels et al., 2021; Torgerson et al., 2024). However, hetero-specific
interactions may be beneficial; in one case, mice exposed to dog-associated house
dust had reduced inflammation and were protected against respiratory infection and

pathology (Fujimura et al., 2014).

1.5 Techniques used to characterise the GM

1.5.1 Amplicon Sequencing

The introduction of next-generation sequencing (NGS) enabled high-throughput
amplicon sequencing of the 16S rRNA gene, allowing culture-independent profiling
of bacterial communities (Clarridge, 2004). This technique revolutionised
microbiome research (MacLeod et al., 2022; Wu et al., 2022; Zhu et al., 2022), but

it has several limitations. Quantitative bias arises from DNA extraction efficiency,
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PCR amplification, and primer specificity (Sinha et al., 2017). For instance, some
bacteria (e.g. Gram-negative) are easier to lyse than others (e.g. Gram-positive),
therefore, the DNA yield of some bacteria may be higher than others (Costea et al.,
2017; Morgan et al., 2010). The inability to accurately determine microbial function
is another limitation of amplicon sequencing (ARhauer et al., 2015). This is because
microbial function can differ between species and strains (Chang et al., 2022;
Worsley et al., 2024c), but 16S rRNA (V3-V4 region) sequencing is only accurate to
the genus level (Frioux et al., 2020; Srinivas et al., 2025). For example, most
Escherichia coli strains are harmless, but some cause disease (Nataro and Kaper,
1998). Additionally, microbial functions are inferred from reference genomes, so
poorly characterised genera often result in unreliable or incomplete functional
annotations (ARBhauer et al., 2015). To access accurate functional data of the
microbiome, other -omics options are preferred (Sharpton, 2014; Worsley et al.,
2024c).

1.5.2 Metagenomic Sequencing

Shotgun metagenomic sequencing includes all DNA in the GM, which enables
detection of all microbes, including fungi, bacteria, archaea and viruses (Yang et al.,
2018). However, analyses typically focus on bacteria, as bacterial DNA dominates
the GM metagenomic datasets (Xie et al., 2023). Shotgun sequencing also enables
lower-level taxonomic assignment — often to species and strain level and is
important for accurate functional assignment (Ferrer et al., 2012; Frioux et al., 2020).
Additionally, any genes identified can be traced back to the microbes that carry them
(Ferrer et al., 2012). The importance of understanding and preserving microbial
function is discussed in Box 1.1. Finally, shotgun sequencing also reduces PCR-
related bias, although sample handling and DNA extraction still affect results
(McLaren et al., 2019). However, despite its strengths, shotgun sequencing is costly,
technically challenging, and lacks standardised workflows. Therefore, most studies
of microbiome research utilise 16S sequencing to determine the bacterial

community before proceeding with metagenomics.

1.5.3 Other -omic options

Several other -omic approaches have been used to study the GM, including
metatranscriptomics, = metaproteomics, = metabolomics, and  culturomics.
Metatranscriptomics is the shotgun sequencing of all expressed genes (RNA to

cDNA) in a microbiome sample, which provides excellent data on gene activity in a
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sample but is expensive (relative to amplicon and shotgun metagenomics).
Furthermore, the bioinformatics steps are not well developed to filter out host
transcripts, especially in non-model organisms (Worsley et al., 2024c). Similarly,
metaproteomics and metabolomics provide even stronger evidence of functional
profiles by directly measuring proteins and metabolites, respectively, but are also
expensive and have much lower throughput than other methods (Worsley et al.,
2024c). Additionally, there is a high number of unknown metabolites, further
reducing metabolomics’ ability to accurately measure GM function. Culturomics is a
technique that isolates the microbe from the sample, followed by whole-genome or
amplicon sequencing (Worsley et al., 2024c). However, culturomics underestimates
the true GM composition because only culturable microbes will be characterised
(Worsley et al., 2024c).
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Box 1.1. Preserving microbial functional biodiversity (Lee, 2025)
First published in Nature Reviews Biodiversity, 1, 212, 2025. Reproduced with permission
from Springer Nature.

When thinking of conservation, people often picture elephants roaming the savannah, sea
turtles on beaches, or lush rainforests. Although these species and ecosystems are
undeniably important, people often overlook another vital, smaller world — the realm of
microorganisms. In 2021, a paper by Dodd and Grueber highlighted the importance of
conserving the microbial ecosystems that exist in, or on, animals in natural populations
(Dodd and Grueber, 2021). This exciting paper inspired me to pursue a PhD in wildlife
functional microbiomes.

In addition to providing a useful summary of emerging techniques in functional
microbiome research, Dodd and Grueber offer a compelling description of the key
functions of host microbial communities and their importance to species’ conservation.
Human activity can disrupt microbial ecosystems, which affects species’ health and
survival. For example, rhinoceroses are endangered primarily owing to poaching, but
deforestation and pollution has led to dietary changes and exposure to pathogens, which
alters their microbiomes and contributes to the declining population. Therefore, the
authors emphasize that understanding the association between functional microbiomes
and host health would help to identify host species that might suffer most from microbiome
change. With this knowledge, informed conservation actions — such as introducing
beneficial microorganisms — can be taken to help species to maintain a healthy wild
microbiome.

The authors also made an unexpected point that well-intentioned conservation efforts can
inadvertently harm host microbiomes and, therefore, the host species itself. For example,
the process of translocating individuals — a common tool in animal conservation — could
damage the vertebrate gut microbiome if it involves a period of captivity, supplementary
feeding or antibiotic treatment. By highlighting the complexity of host—microorganism
interactions and their implications for host health (and, thus, conservation), the authors
illustrate the importance of understanding of the host microbiome’s role in guiding
effective conservation strategies.

To date, microbial function in wild animal hosts remains poorly understood, primarily
owing to the costs associated with sampling, sequencing and analysis (Worsley et al.,
2024c). Dodd and Grueber point out that research on wild endangered species is
constrained by the difficulty of obtaining sufficient sample sizes. Analysing these samples
presents further challenges, as the field is still relatively new — particularly in the context
of wild systems. Moreover, changes in the wild animal microbiome are often influenced
by many interacting variables, including biotic and abiotic environmental factors and
intrinsic host factors, which must be accounted for in analyses to ensure accurate
interpretations.

Dodd and Grueber recommend thoughtful study designs to reduce costs and optimize
insights when studying wild animal microbiomes. They suggest reusing genomic and
microbiome data from well-studied species to aid decision-making in small, isolated
populations and speed up research. Given the complexity of host—microorganism
interactions in wild populations, it is essential to develop effective strategies to protect life
across all scales — from taxonomy to functional diversity.
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1.6 The Seychelles warbler as a model system

The Seychelles warbler (Acrocephalus sechellensis) is a wild-living passerine
endemic to the Seychelles archipelago (Figure 1.1AB; Spurgin et al., 2014). In 1968,
only a single population of less than 30 warblers remained on Cousin Island,
following anthropogenic destruction of their natural habitat (Crook, 1960; Loustau-
Lalanne, 1968; Vesey-Fitzgerald, 1940). Subsequently, total population size has
been increased by conservation efforts, including habitat restoration and
translocations of Seychelles warblers to other islands: Cousine Island in 1988, Aride
Island in 1990, Denis Island in 2004 and Fregate Island in 2011 (Komdeur, 1994;
Richardson et al., 2006; Wright et al., 2014). Translocation is necessary to establish
new populations of this species as there is virtually no inter-island dispersal
(Komdeur et al., 2004). These successful conservation efforts have moved the
Seychelles warblers from a critically endangered species to a near-threatened
species, which now consists of over 3000 individuals spread across five islands
(BirdLife International, 2022).

The Seychelles warbler population on Cousin Island (Figure 1.1C; 29 ha; 04° 20’ S,
55° 40' E) has been monitored continuously since 1985. From 1997, even more
extensive monitoring has been undertaken covering both the minor (January-March)
and major (June-October) breeding seasons (Barrett et al., 2013; Brown et al., 2022;
Komdeur, 1992). Each season, as many birds as possible are caught with mist nets
or at the nest (chicks) and ringed with a British Trust of Ornithology metal ring and
a unique combination of three colour rings (Figure 1.1B). Individuals are normally
ringed as a nestling or as a still dependent fledgling on their natal territory (Komdeur,
1992). As Seychelles warblers do not disperse to other islands (Komdeur et al.,
2004), each individual within this small population can be closely monitored

throughout its life.
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Figure 1.1. The Seychelles warbler study system. (A) A begging fledgling.
https://youtu.be/zITCOINGhPM , (B) An adult with a BTO metal ring and colour rings
(Black-white (M)/orange(O) orange(O)/metal(X)). (C) Cousin Island, Republic of
Seychelles. 29 ha in size and 69 m elevation.

The extensive long-term monitoring of the Cousin Island Seychelles warbler
population has created a valuable extensive dataset, including accurate survival,
reproductive success and social status data, alongside biological samples (blood
and faeces) (Davies et al., 2022; Hammers et al., 2015a; D S Richardson et al.,
2003). Birth and death dates of individual birds can be accurately estimated
(Hammers et al., 2015), as individuals are first identified at their nest, and 98 + 1%
of adult Seychelles warblers are resighted each season (Brouwer et al., 2010a).
Therefore, if an individual is not sighted for more than one year, they are presumed
dead (Brouwer et al., 2010b). There are no natural adult predators; hence, extrinsic
mortality is low (Komdeur, 1999). Seychelles warblers have an average lifespan of
5.5 years, with one individual previously documented living to 19 years (Barrett et
al., 2013). On Cousin Island, there have been up to 115 territories, varying in quality
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based on foliage cover, insect availability, and territory size (Komdeur and Pels,
2005).

Seychelles warblers are facultative cooperative breeders, with social groups
comprising a monogamous dominant pair and subordinate individuals (Komdeur,
1991; Komdeur and Pels, 2005). The dominant pair usually pair for life and defends
their territory year-round (Komdeur, 1992; Richardson et al.,, 2007). Some
subordinates act as helpers, helping to raise the offspring of the dominant pair, while
others (non-helpers) share the territory but do not contribute to breeding (Komdeur,
1991). Subordinates likely occur due to the population reaching carrying capacity
(Komdeur and Pels, 2005). Helpers significantly improve the reproductive success
of the breeding pair (Richardson et al., 2002, 2001). This system enables the
disentangling of genetics from social interactions because subordinates vary
extensively in how related they are to the dominant pair (Richardson et al., 2003b),
partly due to the frequent dispersal of offspring into non-natal groups to become
helpers (Groenewoud et al., 2018). Even subordinates originating from within their
natal group could be the result of extra-pair paternity (EPP) and/or cobreeding
(Hadfield et al., 2006; Raj Pant et al., 2019; Richardson et al., 2003b, 2002; Sparks
et al., 2022).

The intensive monitoring of the Seychelles warblers enables long-term studies and
represents a valuable model system for studies of ageing in a wild population. In
this population, actuarial senescence begins at approximately seven years of age
in both sexes (Hammers et al., 2013). For females, reproductive senescence begins
at ca. six years, while in males it begins ca. eight years (Hammers et al., 2012; Raj
Pant et al., 2020). In line with previous studies on other species (McCleery et al.,
1996; Orell and Belda, 2002; Reed et al., 2008; Reid et al., 2003), early-life
reproductive investment affects senescence in the Seychelles warbler (Hammers et
al., 2013).

The Seychelles warbler system is well-suited for studying the GM because of the
long-term individual-level data, including age, survival, social groups, genetic and
social parents, territory quality, immunogenetics, and whole genome variation (Raj
Pant et al., 2019; Wright et al., 2016). Faecal specimens for GM assessment have
also been collected since 2017, so a relatively large, partially longitudinal sample is
now available (Davies et al., 2022). This longitudinal dataset allows me to identify
within individual changes in the GM, which is especially crucial for studies on

senescence and sociality. In addition, as warblers are tree-foraging insectivores,
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they are rarely exposed to conspecific faeces, thus limiting non-contact horizontal
transfer post-fledging. Additionally, low extrinsic mortality allows warblers to reach
remarkably old ages, increasing the likelihood of detecting GM-mediated fitness

consequences.

A limitation of the Seychelles warbler system is the inability to manipulate the
population, such as creating germ-free individuals or performing microbiome
transplantation experiments to determine functional mechanisms. Nonetheless, the
Seychelles warbler is a very tractable population to study the GM due to the
availability of longitudinal sampling and extensive ecological, demographic, and

environmental data.

Prior to my work in this system, studies on the Seychelles warbler GM had shown
that the GM composition is correlated with adult host survival (Worsley et al., 2021)
and Major Histocompatibility Complex (MHC) gene variation (Davies et al., 2022).
In addition, adult birds that died the next breeding season carried a higher number
of opportunistic bacteria compared to adult birds that survived the next breeding
season (Worsley et al., 2021). Since | have begun working on the system, a study
on the gut mycobiome (fungal component of the GM) has shown that the MHC is
associated with alpha diversity and composition of the gut mycobiome (Worsley et
al., 2022). Additionally, 16S rRNA has been used to examine the gut microbiome in
relation to ageing (Worsley et al., 2024b), fine-scale geographic variation (Worsley
et al., 2025), and the effects of translocation (Worsley et al., 2024a). The GM was
not associated with GM diversity and had small effects on composition (Worsley et
al., 2024b). Despite the small size of Cousin Island, the GM beta diversity was
associated in a quadratic manner with geographic distance, suggesting more similar
GMs between coastal territories than coastal-inland territories (Worsley et al., 2025).
Additionally, the GM had lower alpha diversity in all translocated populations and
varied in GM composition compared to the source Cousin Island population
(Worsley et al., 2024a).

1.6.1 Conclusions and Perspectives

The past two decades of GM research have made it clear that animals live in a
symbiotic relationship with microorganisms (Lim and Bordenstein, 2020). Gut
microbe variation has been linked with environmental factors, host physiology,
genetics, senescence, and social interactions (Biagi et al., 2010; Bonder et al., 2016;
Hicks et al., 2018; Raulo et al., 2024; Sharma, 2022). The complexity of these
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associations highlights the need for continued, in-depth research. Given that the GM
can vary significantly between individuals, repeated longitudinal sampling is
necessary to track changes within individuals over time, and to understand why they
occur (Levy et al., 2020). Furthermore, captivity drastically changes the GM (Hird,
2017), highlighting the need to study GMs in wild populations to reveal true fitness
effects and the evolutionary significance of host-microbe interactions. Such studies
will allow a better understanding of host-microbe interactions, deciphering factors
that shape the GM and uncovering the consequences of these changes on host
senescence, reproductive success and mortality — and thus host evolution.
Integration of metagenomic approaches will deepen functional GM insights, and
long-term research in wild systems could ultimately identify the microbial factors
critical for maintaining host health.

1.6.2: Thesis aims
Overall aim:

| use the Seychelles warbler as a model system to investigate the causes and
consequences of GM variation within a wild vertebrate population. My research uses
both amplicon and shotgun sequencing to explore what may generate differences
among and within individual hosts in terms of GM taxonomy and function. The

following chapters each aim to address a key aspect:

Chapter 2 will test how the GM taxonomy and functionality changes within
individuals in relation to age and senescence using a longitudinal sampling

approach.

Chapter 3 aims to determine the role of host immunogenetics in shaping the GM.
Specifically, how Major Histocompatibility Complex (MHC) variation influences the

GM taxonomy and function.

Chapter 4 endeavours to disentangle how close social contact and shared
environment affect horizontal transmission of the GM in the cooperatively breeding
Seychelles warblers. Specifically, | will also investigate how the transmission
dynamics of both aerotolerant and anaerobic microbes differ with social contact to

understand how social structures influence microbial exchange.

Chapter 5 aims to test the association between host inbreeding, including

intergenerational inbreeding, and GM variation. By integrating host genomic
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sequencing, accurate pedigree data, and amplicon and shotgun metagenomics GM
sequencing, | will determine if and how levels of inbreeding are linked to variations

in GM taxonomy and function.

Chapter 6 will identify host genomic loci that are associated with GM composition,
and determine if these loci mediate host survival through the GM.

Discussion synthesises the findings from Chapters 2-6, highlighting the key

contributions, identifying recurring themes, and proposing avenues for future
research.
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Metagenomic analyses of gut microbiome
composition and function with age in a wild bird;
little change, except increased transposase gene

abundance
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2.1 Abstract

Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded
ambiguous evidence regarding changes in the gut microbiome (GM) with age and
senescence. Furthermore, variation in GM function has rarely been studied in such
wild populations, despite GM metabolic characteristics potentially being associated
with host senescent declines. Here, we used seven years of repeated sampling of
individuals and shotgun metagenomic sequencing to investigate taxonomic and
functional changes in the GM of Seychelles warblers (Acrocephalus sechellensis)
with age. Our results suggest that taxonomic GM species richness declines with age
and in the terminal year, with this terminal decline occurring consistently across all
ages. Taxonomic and functional GM composition also shifted with host age.
However, the changes we identified occurred linearly with age (or even mainly
during early years prior to the onset of senescence in this species) with little
evidence of accelerated change in later life or during their terminal year. Therefore,
the results suggest that changes in the GM with age are not linked to senescence.
Interestingly, we found a significant increase in the abundance of a group of
transposase genes with age, which may accumulate passively or due to increased
transposition induced as a result of stressors that arise with age. These findings
reveal taxonomic and functional GM changes with age, but not senescence, in a
wild vertebrate and provide a blueprint for future wild functional GM studies linked
to age and senescence.

Keywords: gut microbiome, age, senescence, metagenomics, transposase,

Acrocephalus sechellensis
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2.2 Introduction

Senescence - a decline in physiological function in later life- occurs in most
organisms (Jones et al., 2014; Nussey et al., 2013). However, its onset and rate
often differ greatly among individuals within populations (Hammers et al., 2015;
Nussey et al., 2013). One factor that may contribute to individual differences in
senescence is variation in host-associated microbial communities. The intestinal
tract of animals contains a diverse collection of microbes and their genomes (the
gut microbiome; GM), which play an important role in host adaptation and fithess
(Hildebrand et al., 2021; Petersen et al., 2023). The GM influences the regulation of
essential processes, such as digestion, reproduction, and immune function
(Caviedes-Vidal et al., 2007; Cholewinska et al., 2020). However, shifts in GM
composition can be detrimental to the host; certain microbes may be pathogenic,
while overall dysbiosis may impair host function (Davenport et al., 2017;

Thevaranjan et al., 2017).

Studies in humans and laboratory animals have shown that GM composition
generally changes rapidly in early life (Blyton et al., 2022; Guard et al., 2017) before
stabilising during adulthood (Dong et al., 2022). This is often followed by greater GM
instability in advanced age including a loss of diversity and changes to composition
(Biagi et al., 2016; Dillin et al., 2017; Maynard & Weinkove, 2018). These late-life
compositional shifts are generally characterised by a loss of commensal or probiotic
bacteria and an increase in pathogenic microbes (Ghosh et al., 2022). GM functional
changes with age have also been identified. For example, healthy ageing has been
associated with microbes that enable increased biodegradation and metabolism of
xenobiotics (Ghosh et al., 2022; Rampelli et al., 2020), whereas unhealthy ageing
has been linked to increased production of detrimental microbial metabolites (Ghosh
et al., 2022).

Studies have demonstrated links between the GM and senescence in humans and
laboratory animals, however, their GM composition varies markedly from their
counterparts living in natural environments because of the artificial environments

they are exposed to (Gibson et al., 2019; Reese et al., 2021). It remains unclear if

62



these effects can be generalised to wild animals (Gibson et al., 2019; Oliveira et al.,
2020; Reese et al., 2021).

Recent studies on wild organisms have not reached a consensus on what
characterises the ageing microbiome. Some have documented altered GM
composition (Fenn et al., 2023; Pannoni et al., 2022; Ren et al., 2017), increased
GM diversity (Fenn et al., 2023; Hernandez et al., 2021), and reduced GM stability
(Sadoughi et al., 2022) with increasing age. Other studies have indicated that GM
characteristics remain relatively stable throughout adulthood (Baniel et al., 2021;
Sadoughi et al., 2022; Worsley, Davies, et al., 2024). However, these studies have
been based on 16S rRNA gene metabarcoding, which is limited in resolution
(Durazzi et al., 2021; Scholz et al., 2012; Worsley, Mazel, et al., 2024). Shotgun
metagenomic sequencing enables higher taxonomic resolution (species or strain
level), as well as informing on the functional potential of microbial communities
based on gene content (Cerk et al., 2024; Frioux et al., 2020; Hugenholtz & Tyson,
2008). In humans and captive primates, metagenomics has revealed an increase in
pathogenic microbial genes, and a decrease in beneficial genes, with age (Duan et
al., 2019; Rampelli et al., 2013, 2020). To our knowledge, no previous studies have
investigated GM functional changes with age and senescence using shotgun

metagenomics in a wild population.

Also, most GM studies on wild animals have relied on a cross-sectional sampling of
differently aged individuals (Bennett et al., 2016; Janiak et al., 2021; Pereira et al.,
2020) and, therefore, may be confounded by the selective
appearance/disappearance of individuals with particular GM characteristics. A lack
of longitudinal samples also makes it difficult to infer changes in GM stability with
age (Chen et al., 2021). Understanding what drives this GM variation is important,
as it may lead to a deeper comprehension of the evolution of senescence and life-
history trade-offs (Hammers et al., 2015), and enhance our ability to prolong healthy
lifespans. As senescence occurs at different rates across individuals, a longitudinal
approach is crucial for accurately evaluating age-associated effects (Nussey et al.,
2008). Given this rate variation, and because declines are expected to be greatest
at the end of life, GM changes may be more closely associated with proximity to
death than chronological age. Including such information in analyses requires

accurate estimates of the point of death that are not confounded by dispersal.
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The long-term study of the Seychelles warbler population on Cousin Island provides
a powerful natural system to study GM variation and host senescence (Hammers et
al., 2015). Its isolated nature allows for the longitudinal sampling of uniquely marked,
known-age individuals across their entire lifespan and the collection of accurate
survival and reproductive success data (Raj Pant et al., 2020; Richardson et al.,
2001). Previous studies using 16S metabarcoding have demonstrated that
Seychelles warbler GM composition is linked to subsequent survival (Worsley et al.,
2021) but identified no overall patterns of GM senescence (Worsley, Davies, et al.,
2024). Additionally, host age was not associated with GM diversity, but a very
marginal effect of host age on GM composition was reported (Worsley, Davies, et
al., 2024).

Here, we use shotgun metagenomics to assess fine-scale changes in the GM with
age and senescence in the Seychelles warbler. First, we determine how GM
taxonomic diversity and composition change with host age, particularly in a bird’s
terminal year when GM dysregulation is expected to be at its greatest. Then we test
the hypothesis that GM functional characteristics (assessed via microbiome gene

content) will change with age, senescence, and in the terminal year.
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2.3 Materials and Methods

2.3.1 Study system and sample collection

Seychelles warblers are insectivorous passerines endemic to the Seychelles
archipelago. The population on Cousin Island (29 ha; 04° 20' S, 55° 40’ E) has been
extensively monitored since 1985 in the winter (January — March) and summer
(June — October) breeding seasons (Brown et al., 2022; Hammers et al., 2015;
Komdeur, 1992). Each season nearly all new birds (offspring) are caught, in the nest
or as dependent fledglings in the natal territory (Komdeur, 1992). As many adult
birds as possible are re-caught each season using mist nets. Bird age is determined
using either lay/fledgling date (Komdeur, 1992) for the majority of individuals, if birds
are first caught without a fledging date being recorded, eye colour is used to
estimate age instead (see (Komdeur, 1992)).

The population on Cousin Island consists of ca. 320 individuals grouped into ca. 115
territories, defended year-round by a dominant breeding pair (Hammers et al., 2019;
Komdeur & Pels, 2005). Territory quality is calculated each season using arthropod
counts, vegetation density, and territory size information (Brouwer et al., 2009;
Komdeur, 1992).

Nearly every bird in the population (> 96% since 1997 (Raj Pant et al., 2019)) has
been caught and marked with a unique combination of a British Trust for Ornithology
(BTO) metal ring and three plastic colour rings, which enables them to be monitored
throughout their lives (Davies et al., 2021; Hammers et al., 2015). Individuals almost
never disperse between islands and the annual resighting probability is around 98%
+ 1% (Komdeur et al., 2004; Raj Pant et al., 2020; Richardson et al., 2001). If an
individual is not seen for two consecutive seasons it is assumed to have died (an
error rate of 0.04%) (Raj Pant et al., 2020; Richardson et al., 2001). Death dates for
individuals were set as the final day of the season in which the bird was last seen.
Benign climatic conditions and a lack of predators result in relatively long-lived
individuals (median lifespan 5.5 years, max lifespan 19 years) (Hammers et al.,
2019; Sparks et al., 2022). Previous studies have found that male and female

Seychelles warblers are sexually mature at one-year-old, and senescence (survival
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and reproductive) begins at ca. 6 years of age (Hammers et al., 2015, 2019, 2021;
Raj Pant et al., 2020). The annual survival of adults does not differ between sexes,
remaining around 80% up to six years of age and then decreasing (Brouwer et al.,
2006; Hammers et al., 2015). Thus, there were no differences in survival
senescence between the sexes (Hammers et al., 2015, 2019, 2021). In addition,
elderly females in their last year of life (terminal year) had reduced reproductive
success (Hammers et al., 2012).

Faecal samples were collected from caught birds and stored as described
previously (see (Worsley, Davies, et al., 2024)). Between 2017 and 2023 all caught
birds were placed in a disposable flat-bottom waxed paper bag containing a
sterilised plastic weighing tray underneath a sterilised metal grate (Davies et al.,
2022). This allows the bird to stand on the grate and faeces to fall into the sterile
tray, minimising contact with the bird’s surface. After ca 15 minutes (after
defaecation) the bird was removed. The sample was collected, using a sterile
flocked swab, and placed into a microcentrifuge tube containing 1 mL of absolute
ethanol. Samples were stored at 4°C in the field before being transferred to -80°C
for long-term storage. Contamination (hand) controls were collected from
fieldworkers each season. The time-of-day that samples were collected and the
number of days for which samples were stored at 4°C, were recorded. A ca 25 pl
blood sample was also taken via brachial venepuncture and stored in 1 mL of

absolute ethanol at 4°C.

2.3.2 DNA extraction and sequencing

Blood samples were processed with a salt extraction method (Richardson et al.,
2001) or Qiagen DNeasy Blood and Tissue Kit and the resulting DNA was used for
molecular sexing (Griffiths et al., 1998; Sparks et al., 2022).

DNA from faecal samples was extracted using the Qiagen DNeasy PowerSoil Kit
with a modified protocol (see (Davies et al., 2022)). Samples were lysed using both
mechanical agitation and enzymic processes (Davies et al., 2022). Individuals for
which multiple longitudinal samples were available were prioritised for metagenomic
sequencing to capture within-individual changes. In total, 155 faecal samples from
92 individuals across 7 years were sequenced, as well as three positive controls
(two extractions from a ZymoBIOMICS Microbial Community Standard (D6300), and
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one extraction from a ZymoBIOMICS Fecal Reference with TruMatrix™ Technology
(D6323)), and six hand controls. Library preparation was performed in two lanes per
run using the LITE protocol (Perez-Sepulveda et al., 2021) and sequencing
undertaken in two runs of 2 x 150 bp NovaSeq X platform. The D6300 extraction
control was sequenced on both runs to compare extraction and batch effects.

2.3.3 Bioinformatics

Shotgun metagenomic sequence analysis was carried out using the MATAFILER
pipeline (see (Hildebrand et al.,, 2021) and supplementary materials). Briefly,
MATAFILER removes host reads, assembles reads, predicts and annotates genes,
builds metagenome-assembled genomes (MAGs) and metagenomic species
(MGSs), and taxonomically assigned MGSs. Due to the high individuality of the
Seychelles warbler GM and the high sequencing coverage required to assign MGS,
Metaphlan4 was also used to taxonomically classify reads (see supplementary

materials for details).

2.3.4 Gut microbiome analyses

A total of 162 samples were successfully processed bioinformatically (153 faecal
samples, 4 controls). Positive controls were successfully recovered, and hand

controls did not contribute to substantial contamination in samples (Figure S2.1).

The 153 faecal samples (Figure S2.2) included 71 from 40 females and 82 from 51
males. In total, 41 individuals had one sample, 41 had two, eight individuals had
three, and one individual had four samples. Age at sampling ranged from 0.6-17.0
years (mean 5.7 £ 0.3 SE). Of these, 48 were from 22 individuals in their terminal
year (the year in which they died); with ages in terminal year ranging from 1.4-17.0
years. From all these samples, 1025 unique metaphlan4 species-genome-bins
assignments were used for the subsequent taxonomic analysis (mean 29.3 + 2.0

SE per sample).

All statistical analysis was performed using R version 4.33 (Posit team, 2024; R

Core Team, 2024). Variance Inflation Factor (VIF) scores (car version 3.1.2) were
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used to test for collinearity between variables in all models; all had a score <3

indicating no issues with collinearity (Fox John & Weisberg Sanford, 2019).

2.3.5 Taxonomic GM changes with age

2.3.5.1 Taxonomic GM alpha diversity

A rarefaction curve of Metaphlan4 species was constructed with INEXT version
3.0.1 to determine the read depth required to recover 95% of theoretically present
species (Figure S2.3) (Chao et al., 2014). Taxonomic classifications were rarefied
to a depth of 5500 reads before alpha diversity analysis; two samples were
removed due to insufficient read depth. Species richness and Shannon diversity
metrics were calculated per sample using R packages phyloseq version 1.46.0 and
microbiome 1.24.0 (Leo Lahti & Sudarshan Shetty, 2019; McMurdie & Holmes,
2013). Wilcoxon rank sum tests were used to examine whether different sequencing
plates affected species diversity (Shannon index, p = 0.353) and species richness

(Observed index, p = 0.124), both were not significantly different.

A linear mixed effect model with a Gaussian distribution (Imer), and a generalised
linear mixed effect model with a negative binomial distribution (glmer.nb), were used
to model changes in species diversity (Shannon index) and richness (observed
taxa), respectively, using Ime4 version 1.1-35.5 (Bates et al., 2015). Fixed effect
variables included in models were: host age (years); terminal year (yes/no); sex
(male/female); breeding season (winter/summer); sample year (as a factor: 2017-
2023); territory quality; storage days at 4°C (days); time of day collected (minutes

since sunrise at 6:00 am). Bird ID was included as a random effect.

Storage at 4°C in the field ranged from 4 days to 104 days (mean 36.3 + 1.8 SE). A
guadratic age term, and an interaction between terminal year and host age, were
tested to assess whether GM changes became more extreme with age or if GM
changes in the terminal year differ depending on age. These terms were dropped
if not significant to allow interpretation of the main effects. Age was measured in
years, but all samples taken when birds were >12 years of age were designated as
12 years because these samples were rare (n = 9, max age = 17 years). Previous

analysis shows that body condition is not associated with Seychelles warbler gut
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microbiome diversity and composition, thus, it was not included in analysis (Worsley
et al., 2021). Model diagnostics were run using DHARMa version 0.4.6, with no
significant issues in each chosen model (Florian Hartig, 2022). Herein, all models
were tested with the same variables unless stated otherwise.

A within-subject centering approach was used to separate between-individual
(cross-sectional) GM differences with age (which could be driven by the selective
appearance/disappearance of individuals with particular GM characteristics), from
within-individual (longitudinal) change (which could indicate senescence) (van de
Pol & Verhulst, 2006). This involves calculating the mean age of each individual
across all its sampling events (mean age) and the within-individual deviation from
that mean age at each separate sampling event (delta age). These terms replace
host age in the model. The fixed effect of terminal year was also replaced by a
“terminal year bird” term (yes/no) which indicates whether individuals have at least
one sample collected in the terminal year or not. An interaction between the terminal
year bird and delta age, as well as quadratic delta age, were tested to assess
whether within-individual GM changes were more extreme in birds with a sample
taken in the terminal year of life and/or in older individuals, respectively (which would
be indicative of senescence). In addition, an interaction between delta age and
mean age was included in the models to test if within-individual changes with time
occur differently depending on host age. The analysis was repeated with non-
rarefied reads to determine if rarefaction influenced the results. These terms were

dropped if not significant to allow interpretation of the main effects.

2.3.5.2 Taxonomic GM composition

A permutational multivariate analysis of variances (PERMANOVA) was carried out
on a Euclidean distance matrix calculated using centered log ratio (CLR)-
transformed reads, using the adonis2() function in vegan version 2.6.6 (Oksanen
Jari et al., 2024). A blocking effect of Bird ID was used to account for repeated
measures. The same predictors were included as for the main model in the Alpha
diversity analysis above. Differences in composition were visualised with a principal

component analysis (PCA) in phyloseq version 1.46.0 (McMurdie & Holmes, 2013).
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2.3.5.3 Taxonomic GM differential abundance analysis (DAA)

Two different DAA methods were used to identify differentially abundant GM species
with host age (as recommended by (Cappellato et al., 2022; Nearing et al., 2022);
ANCOMBC?2 version 2.4.0 and GLLVM version 1.4.3 (Lin & Peddada, 2024; Niku et
al., 2019). ANCOMBC?2 calculates log fold change of species one at a time before
adjusting p-values, whereas GLLVM calculates log fold change of all species all at
the same time, accounting for correlation between species (Lin & Peddada, 2024;
Niku et al., 2019). A total of 22 common species, defined as species found in 20%
of the population at more than 0.01% abundance, were retained. Species that were
significantly differentially abundant in the same direction using both DAA methods
were considered robustly significant. Variables included in each model were the

same as in models above.

2.3.6 Functional GM changes with age

2.3.6.1 Functional GM alpha diversity

Initially, 4727 different eggNOG orthologues (mean = 3616.6 + 64.4 SE per sthe
ample) were identified in our gene catalogues. A rarefaction curve of eggNOG
orthologues was constructed using INEXT to determine sample completeness
(Chao et al., 2014). Samples were then rarefied to 100,000 reads based on >95%
completeness. One sample was removed due to insufficient reads. Following
rarefication, 4685 eggNOG orthologues were retained (mean = 3054.3 + 47.1 SE
per sample). Due to the (negative) skewness of the observed richness and Shannon
diversity of eggNOG annotations, a scaled exponential transformation and an
exponential transformation were used for analyses, respectively, to improve residual
fit. Both these alpha diversity indices were then analysed with linear mixed models

containing the same predictors as for taxonomic alpha diversity above.

2.3.6.2 Functional GM composition

To test for changes in functional microbiome beta diversity, a PERMANOVA of

Euclidean distances calculated from CLR-transformed read abundances per
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orthologue was used, using the same model structure as for taxonomic
compositional analysis (described above). Differences in composition were
visualized with a PCA plot as above.

2.3.6.3 Functional GM differential abundance analysis (DAA)

Differential abundance analysis was performed on eggNOG annotations using their
assigned categories from the database of clusters of orthologous genes (COG)
(Supplementary Table S2.1) (Tatusov et al., 2000) using ANCOMBC2 and GLLVM
as described above (Lin & Peddada, 2024; Niku et al., 2019). Post-hoc DAA were
performed on individual eggNOG members found within differentially abundant
COG categories to establish the drivers of any significant differences (see
Supplementary material for details).
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2.4 Results

2.4.1 Taxonomic GM changes with age

2.4.1.1 Taxonomic GM alpha diversity

GM species richness declines with host age, and individuals in their terminal year
had significantly lower species richness than those in a non-terminal year (Table
S2.2 & Figure S2.4). However, Shannon diversity was not significantly associated
with host age, and did not differ between samples taken in a terminal or non-terminal
year (Table S2.3). A quadratic age term, and an interaction between host age and
terminal year were not significantly associated with species richness or Shannon

diversity (p > 0.05) and were dropped from the final model.

The within-individual centering approach revealed that a decline in GM species
richness with host age occurred longitudinally within individuals (Table 2.1, Figure
2.1). However, the slope of declining species richness within an individual (delta
age) decreases with increasing mean age, i.e. a decline in GM species richness
with time occurs more at earlier host ages than in later life (Table 2.1, Figure 2.1).
Indeed, after the age of 6 there doesn’t appear to be any significant decline in GM
species richness with increasing age (Figure 2.1). This shows that contrary to our
prediction that GM may show senescent effects, within-individual changes were less
extreme in older individuals (in the ages we know senescence is occurring). There
was also no evidence of between-individual selective disappearance effects (Table
2.1). Shannon diversity did not change significantly with mean or delta age (Table
S2.4). There was also no evidence of a quadratic relationship between within-
individual delta age and species richness or Shannon diversity, hence the quadratic
age term was dropped from the final model. We also tested for an interaction
between within-individual age and whether an individual’s final sample was in their
terminal year, but this was not significant (p > 0.05) and was dropped. Additionally,
the results were consistent with Table 2.1 when non-rarefied reads were used
(Table S2.5). This result indicates that within-individual changes in species richness
with age had a similar slope whether the bird was sampled in its terminal year or

not.
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Table 2.1 A generalised linear mixed effect model with a negative binomial
distribution (glmer.nb) investigating gut microbiome species richness in relation to
within- (delta) and between- (mean) individual variation in age amongst Seychelles
warblers (n = 151 samples, 91 individuals). Conditional R? = 53.1%. Reference

categories for categorical variables are shown in brackets.

Predictor Estimate SE z P
(Intercept) 2.705 0.317 8.536 <0.001
Delta Age -0.308 0.095 -3.233 0.001
Mean Age -0.036 0.023 -1.534 0.125
Terminal Year
-0.189 0.142 -1.329 0.184
Bird (yes)
Season (winter) 0.020 0.157 0.126 0.900
Sex (female) -0.020 0.144 -0.139 0.889
Days at 4°C -0.238 0.137 -1.734 0.083
Time of day 0.237 0.122 1.938 0.053
Territory quality -0.081 0.125 -0.645 0.519
Sample Year (2017)
2018 0.439 0.280 1.568 0.117
2019 0.399 0.323 1.233 0.217
2020 0.701 0.351 1.997 0.046
2021 0.755 0.338 2.231 0.026
2022 0.725 0.346 2.099 0.036
2023 0.879 0.400 2.197 0.028
Delta Age * Mean Age 0.034 0.014 2.440 0.015
Random
Individual ID 151 observations | 91 individuals | Variance 0.2321

Note: Significant (p < 0.05) predictors are shown in bold.
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Figure 2.1. Gut microbiome species richness in relation to within-individual,
longitudinal differences in age (delta age in years) in Seychelles warblers. The solid
lines represent model predictions with 95% confidence intervals calculated from the
generalised linear mixed effect model (Table 2.1). Coloured lines are model
predictions at mean age of 3 (black) and 7 (gold) points before and after the start of
senescence in this species (Hammers et al., 2015). Each point represents an
individual gut microbiome sample, coloured by mean age of less than 6 (black) and
greater or equal to 6 (gold), and the dashed grey lines connect samples from the
same individual (n = 151 samples, 91 individuals).

2.4.1.2 Taxonomic GM composition

A PERMANOVA analysis found that cross-sectional host age was a marginally
significant predictor of GM taxonomic composition (Table 2.2), but terminal year was
not (Table 2.2). Sample year, season, and catch time were significant and explain
the largest proportion of GM compositional variance (Table 2.2) followed by days
sample stored at 4°C and sex. An interaction between age and terminal year was
not significant (p > 0.05). A PCA showed limited sample clustering according to age,
which is consistent with the small amount of variance explained in the PERMANOVA
(Figure S2.5).
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Table 2.2. A PERMANOVA analysis of gut microbiome taxonomic composition in
relation to age and terminal year in the Seychelles warbler. The PERMANOVA was
performed using a Euclidean distance matrix of CLR-transformed taxon
abundances. N = 153 samples from 91 individuals. Bird ID was included as a

blocking factor.

Predictor df R? F P
Age 1 0.009 1.368 0.043
Terminal Year 1 0.007 1.051 0.569
Season 1 0.013 2.021 0.001
Sample Year 6 0.056 1.479 <0.001
Sex 1 0.007 1.096 0.064
Days at 4°C 1 0.008 1.193 0.034
Time of day 1 0.010 1.583 < 0.001
Territory Quality 1 0.005 0.813 0.982

Note: Significant (p < 0.05) predictors are shown in bold.

2.4.1.3 Taxonomic GM differential abundance analysis (DAA)

Five of the 22 common GM species found in the Seychelles warbler population (i.e.
in >20% individuals) differed significantly in relative abundance with age in the
GLLVM  analysis  (Escherichia  coli, Lactococcus  lactis, Brucella
pseudogrignonensis, Lactococcus garvieae, Microbacterium enclense), but none
were differentially abundant with age in the ANCOMBC2 analysis (Figure S2.6A &
S2.6B). Similarly, six species were differentially abundant in the terminal year in the
GLLVM analysis (Lactococcus garvieae, Pantoea anthophila, Escherichia coli,
Rothia sp ARO01, Microbacterium enclense, Brucella pseudogrignonensis), but none
were differentially abundant with terminal year in the ANCOMBC?2 analysis (Figure
S2.6C & S2.6D). Thus, there is no clear consensus of significant variation in the

abundance of specific GM species with age or in the terminal year.

2.4.2 Functional GM changes with age
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2.4.2.1 Functional GM alpha diversity

Alpha diversity of eggNOG gene orthologues declined significantly with host age for
both observed richness and Shannon diversity metrics (Table S2.6, Figure S2.7).
Alpha diversity of eggNOG orthologues did not differ between terminal year and
non-terminal year samples (Table S2.6). Additionally, the interaction between host
age (or quadratic age) and terminal year was not significant (p > 0.05).

The decrease in functional alpha diversity with host age is best explained by within-
individual longitudinal changes with age for both tested indices (Table 2.3, Figure
2.2). Cross-sectional, between-individual age was a marginally significant predictor
of Shannon diversity but not observed richness (Table 2.3). Alpha diversity did not
differ between individuals that had at least one sample taken in their terminal year
and those that did not. The interaction of terminal year bird and within-individual
age, quadratic within-individual age, and the interaction between within-individual
age and mean age were also not significant (p > 0.05) predictors of either index.
Sample year was a significant variable of both eggNOG observed richness and

Shannon diversity.

Table 2.3. A linear mixed effect model investigating variation in gut microbiome
functional diversity (observed richness and Shannon diversity) in relation to within-
(delta) and between- (mean) individual age in Seychelles warblers (n = 152
samples, 90 individuals). Functional diversity is based on eggNOG annotations.

Observed richness and Shannon diversity were transformed using a scaled
exponential and exponential function, respectively. Conditional R? = 35.6% and
13.7% respectively. Reference categories for categorical variables are shown in
brackets.

Observed Richness

Predictor Estimate SE df t P
(Intercept) 0.99 0.17 12477 5.68 <0.001
Delta Age -0.12 0.04 137.00 -3.31 0.001
Mean Age -0.03 0.01 89.42 -1.97 0.052
Terminal Year Bird (yes) 0.01 0.08 83.34 0.17 0.870
Season (winter) -0.06 0.10 136.94 -0.64 0.525
Sex (female) -0.06 0.08 81.33 -0.79 0.430
Days at 4°C -0.19 0.09 127.35 -2.23 0.028
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Time of day -0.07 0.08 137.00 -0.88 0.381
Territory quality -0.07 0.08 129.62 -0.88 0.381
Sample Year (2017)
2018 0.13 0.15 135.76 0.82 0.416
2019 0.08 0.18 135.88 0.46 0.647
2020 0.36 0.20 136.54 1.82 0.071
2021 0.39 0.19 136.94 2.04 0.044
2022 0.56 0.19 128.48 2.90 0.004
2023 0.57 0.23 12281 2.50 0.014
Random
Individual ID 152 observations | 90 individuals | Variance 0.050
Shannon Diversity
Predictor Estimate SE df t P
(Intercept) 757.59 182.06 119.47 4.16 <0.001
Delta Age -117.01 41.06 135.71 -2.85 0.005
Mean Age -27.30 13.54 83.56 -2.02 0.047
Terminal Year Bird (yes) 17.93 79.75 76.74 0.23 0.823
Season (winter) 173.07 104.67 127.74 1.65 0.101
Sex (female) -4.98 80.46 69.67 -0.06 0.951
Days at 4°C -48.55 95.70 133.26 -0.51 0.613
Time of day -21.18 81.57 132.14 -0.26 0.796
Territory quality -0.74 85.97 136.99 -0.01 0.993
Sample Year (2017)
2018 88.02 168.08 136.67 0.52 0.601
2019 32.22 200.48 136.71 0.16 0.873
2020 169.50 210.62 131.73 0.81 0.422
2021 464.12 206.85 136.39 2.24 0.026
2022 484.95 202.78 124.82 2.39 0.018
2023 453.37 238,55 116.14 1.90 0.060
Random
Individual ID 152 observations | 90 individuals | Variance 5046

Note: Significant (p < 0.05) predictors are shown in bold.
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Figure 2.2. Gut microbiome functional diversity measured as (A) observed richness
and (B) Shannon diversity in relation to within-individual host age (years). Functional
diversity calculations are based on eggNOG orthologue groups. Solid lines
represent model predictions (+ 95% confidence interval) from linear mixed effects
models (Table 2.3). Each point represents a unique gut microbiome sample, and
the dashed grey lines connect samples collected from the same individual (n = 152
samples, 90 individuals).

2.4.2.2 Functional GM beta diversity

A PERMANOVA analysis identified factors that were significantly related to GM
functional composition (Table 2.4). Host age, but not terminal year, was a marginally
significant predictor of functional composition (Table 2.4). An interaction between
age and terminal year was not significant (p > 0.05). The largest effect sizes were
found in relation to season, sample year, sex, and days stored at 4°C (Table 2.4).
Time of day was not significantly related to GM functional composition (in contrast

to GM taxonomic composition). A PCA plot showed limited clustering of GM samples
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according to age, consistent with the small amount of variance explained by this

variable (Figure S2.8).

Table 2.4. A PERMANOVA analysis of gut microbiome functional composition in
relation to age (and other factors) in the Seychelles warbler. The PERMANOVA was
performed using a Euclidean distance matrix calculated using CLR-transformed
(eggNOG) abundances. N = 153 samples. 91 individuals. Bird ID was included as a
blocking factor.

Predictor df R? F P
Age 1 0.007 1.096 0.044
Terminal Year 1 0.006 0.890 0.292
Season 1 0.011 1.823 0.042
Sample Year 6 0.052 1.374 0.020
Sex 1 0.008 1.250 0.001
Days at 4°C 1 0.010 1.569 0.007
Time of day 1 0.008 1.200 0.139
Territory quality 1 0.007 1.094 0.413

Note: Significant (p < 0.05) predictors are shown in bold.

2.4.2.3 Functional GM differential abundance analysis (DAA)

Only one cluster of orthologous genes (COG) category was differentially abundant
in relation to age. The COG category “X”, which represents mobilome COGs such
as prophages and transposons, significantly increased in abundance with age in
both the ANCOMBC2 and the GLLVM analyses (Figure 2.3). Several COG
categories were significantly differentially abundant with environmental variables
including Cat A (RNA processing and modification) with season and Cat C (Energy

production and conversion) with sample year (Figure S2.9, Figure S2.10).

Within category X (mobilome), only COG2801 (transposase genes) was found to
significantly increase in abundance with age in both GLLVM and ANCOMBC2
analyses (Figure S2.11, Table S2.1). A within-subject centering approach within a
linear mixed model showed an increase in COG2801 was associated with both
within-individual (longitudinal) age and between-individual (cross-sectional) age
(Table S2.7, Figure 2.4). However, the interaction between within-individual age and
terminal year, as well as the interaction between within-individual age and mean

age, was not significant (p > 0.05).
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Figure 2.3. Differential abundance analysis of functional gut microbiome cluster of
orthologous genes (COG) categories in Seychelles warblers using (A) ANCOMBC2
and (B) GLLVM. Each COG category is represented on the y-axis. Points and error
bars are coloured according to significance (green: p < 0.05; grey: p > 0.05).

COG2801 located within MGSs (509 COG2801 copies from 160 MGS) were most
closely related to the group insertion sequences (IS) 3 family of transposases (30%),
other IS family transposases (12%), partial or putative transposases (33%) or
other/unknown function (25%; Table S2.8). An increased abundance of COG2801
in the GM may be due to either an increase in the abundance of COG2801-carrying
microbes or increased replication of the transposase gene itself. However, contrary
to the first hypothesis, we found no relationship between the total abundance of
COG2801-carrying MGSs (n = 160) and host age (Table S2.9). To further test this,
COG2801-MGSs were matched with metaphlan4 annotations at the genus level,
the abundance of COG2801-metaphlan4 genera was not significantly associated
with host age (Table S2.10). Hence, the increase in COG2801 abundance with host
age could not be attributed to an increased abundance of COG2801-carrying
bacteria. Additionally, within COG2801, ten gene catalogues were commonly

shared across 50% of samples. Each of these ten COG2801 gene catalogues was
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not significantly (p > 0.05) differentially abundant with age individually when tested
using both ANCOMBC2 or GLLVM analysis (Figure S2.12). Thus, the increase in
abundance of COG2801 with age was not being driven by the abundance of a single

prevalent, gene catalogue but rather the cumulative abundance of many.

o
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Figure 2.4. CLR-transformed COG2801 abundance in relation to (A) within-
individual (delta) host age and (B) between-individual (mean) host age in the gut
microbiome of Seychelles warblers. The solid line represents model predictions (£
95% confidence intervals) from a linear mixed effect model (Table S2.7). Each point
represents a gut microbiome sample with dashed grey lines connecting samples
from the same individual (n = 153 samples, 91 individuals).
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2.5 Discussion

We used a repeated metagenomic dataset from individuals in a Seychelles warbler
population to investigate how GM taxonomic and functional characteristics varied
with host age. We identified a linear decrease in species richness, and small shifts
in GM taxonomic composition, with host age. Additionally, species richness was
lower in samples taken during an individual’s terminal year, but taxonomic
composition did not differ between terminal and non-terminal samples. We also
identified a linear decrease in the GM'’s functional richness and diversity, and
differences in functional GM composition, with host age. Finally, COG categories
representing the mobilome increased in prevalence with bird age, driven by an
increase in the abundance of COG2801, a group of transposases.

The small reduction in GM richness, but not Shannon diversity, with age suggests
a loss of rare taxa that is not linked with a major restructuring of the evenness of the
GM. The reduction in species richness was also age-dependent, with younger
individuals experiencing greater reduction in species richness over time compared
to older individuals, indicating that changes in GM species richness is not associated
with senescence. This also concurs with the small changes in GM composition with
age we identified; i.e showing a limited number of differentially abundant taxa with
increasing host age. This result is consistent with a previous 16S metabarcoding
analysis of senescence of the Seychelles warbler GM despite the increased
taxonomic resolution afforded by a metagenomics approach (Worsley, Davies, et
al., 2024). Additionally, the three dominant phyla identified in the metagenomics
analysis (accounts for 95.6% of all taxonomic assignments) were the same three
dominant phyla identified through the 16S analysis (Proteobacteria, Actinobacteria,
and Firmicutes) (Worsley, Davies, et al., 2024). Overall, the results support the
conclusion that, taxonomically, most of the GM stays the same with increasing age,

apart from the loss of a few rare taxa.

Taxonomic changes in GM species diversity and composition with age have been
repeatedly demonstrated in humans and captive animals (Ghosh et al., 2022).
However, in these species, late-life changes in the GM may be due to external
factors such as antibiotic use, lifestyle, and dietary changes (Gibson et al., 2019;
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Oliveira et al., 2020). An increasing number of wild animal studies are finding little
evidence of a late-life shift in GM taxonomic diversity without such external factors
(see (Risely et al., 2022; Worsley, Davies, et al., 2024)). Our study supports this
conclusion despite the repeated sampling and increased resolution yielded by
shotgun metagenomics, which can potentially reveal more nuanced changes at

lower taxonomic levels.

Few studies have directly investigated functional changes in the GM with age in wild
animals (Levin et al., 2021). Some studies have been undertaken using functional
inferences from metabarcoding sequence homology. However, this can be
misleading due to being limited to variation within the same genus thus providing
potentially inaccurate functional profiles. (Chang et al., 2022; Wilson & Nicholson,
2017). In our study using a higher resolution metagenomic approach, we found
evidence of small, linear, changes in GM functional diversity and composition with
age in the Seychelles warbler. Functional observed richness and Shannon diversity
declined with age, which suggests not only that rare functions are lost, but that the
evenness of these GM functions also changes linearly with adult age. Age-related
decreases in functional richness and shifts in functional composition have previously
been identified in elderly humans (Armour et al., 2019; Mosca et al., 2016). Such
changes have been linked to the onset of specific disease states, such as
inflammation and pathogenesis and changes to diet degradation and digestion, in
humans and laboratory mice (Singh et al., 2021). However, other studies have either
found no change in functional alpha diversity, or even an increase in microbial
functional richness and diversity with age (Rampelli et al., 2013; Ruiz-Ruiz et al.,
2020). Whether the loss of functional diversity, and minor changes in functional
composition, with host age in Seychelles warbler is linked to declines in health and
condition remains unclear and requires further study. The decline in taxonomic
richness (but not taxonomic diversity) along with declines of functional richness and
diversity with host age suggests that as the host age, less rare taxa contribute to the

number and evenness of functional genes in the GM.

Despite the small changes in functional diversity and composition with age in the
Seychelles warbler, we only identified one specific functional category whose
abundance was significantly associated with host age. An increase in the

abundance of COG2801 transposases occurred with age. However, this was not
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due to an increase in COG2801-carrying microbes. COG2801 are a group of
transposases that are primarily found in bacteria (89.5%) and have been shown to
be the most widely transferred genes among prokaryotes (Powell et al., 2014). Most
COG2801 genes found within MGSs were group insertion sequences 3 (IS3), which
use a copy-out-paste-in mechanism to replicate (Ohtsubo et al., 2004). This could
lead to an increased number of transposon copies in the same individual bacterial
genome over time, or to horizontally transfer to other bacterial genomes. (Siguier et
al., 2015; Wells & Feschotte, 2020). Thus, the increased abundance of COG2801
with age in Seychelles warbler GM's may be the result of self-replication,
independent of microbial host cell DNA replication. An increase in transposition has
been observed when bacteria are stressed and COG2801 is one of the most
horizontally transferable eggNOG genes (Lysnyansky et al., 2009; Nakamura,
2018). Therefore, as vertebrate hosts get older, the GM may be exposed to a greater
number or intensity of stressors, such as mucus barrier thinning or inflammation,
which may induce activation of COG2801 (Elderman et al., 2017). However, there
was not an accelerated increase (i.e. a quadratic relationship) of COG2801
abundance with host age, which would be expected if the cumulative effects of host
senescence were driving these changes. Therefore, stressors to the host that occur
linearly in adulthood, such as cell death in the gastrointestinal autonomic nervous
system (Phillips et al., 2007; Phillips & Powley, 2001), may better explain the
increased abundance of COG2801 with host age.

We also focused on assessing terminal year effects in the Seychelles warbler GM.
Only species richness was found to be significantly lower in the final year of a bird’s
life. Moreover, the effect of terminal year was uniform across age, i.e. it was not
more extreme in older individuals. Previous research has identified age-dependent
terminal-declines in fithess components (reproductive success and survival
probability) in the Seychelles warbler (Hammers et al., 2012). However, the lack of
age-dependent terminal changes in GM characteristics identified in our study
suggests that the GM does not undergo senescence in association with these other
traits. As such, the declines in microbial species richness in terminal year samples
(and linearly with age) may rather reflect the stabilisation of the GM with age rather
than a senescence effect. These results concur with the previous 16S
metabarcoding analysis of the Seychelles warbler GM which found little evidence of

GM senescence (Worsley, Davies, et al., 2024).
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Across analyses, environmental factors explained most of the variance in the
Seychelles warbler GM. This concurs with previous research on this species (Davies
et al., 2022; Worsley, Davies, et al., 2024; Worsley et al., 2021) as well as studies
of other taxa (Gacesa et al., 2022; Ren et al., 2017; Wang et al., 2023). Temporal
variation -specifically year and season- explained the most variance in both
taxonomic and functional GM composition. This may be explained by many factors
including climate variability, differences in insect prey availability, or host population
density (Foster et al., 2012; Li et al., 2016; Sepulveda & Moeller, 2020). Most
Seychelles warbler individuals breed in the summer rather than the winter season,
and GM shifts may therefore reflect reproductive activity and related hormonal
changes (Hernandez et al., 2021). Time of day was also associated with GM
composition. Differences in insect activity might drive this pattern due to light
availability and/or temperature (Totland & Totland, 1994; Welti et al.,, 2022).
However, such patterns could also be due to host intrinsic circadian rhythms
(Schmid et al., 2023). In addition, differences in the amount of time samples were
stored at 4°C resulted in differences in the GM characteristics and it is very important
that these are controlled for. Given that samples are stored directly in absolute
ethanol, the changes related to the time in storage at 4°C are likely to do with DNA
degradation affecting the assignment of reads rather than an actual biological

change in storage.

These factors lead to a substantial amount of noise in GM studies that can confound
studies on ageing, reproduction, and disease outcomes in wild populations.
Therefore, accounting for these factors is important when investigating the GM in

natural systems.

Our findings highlight the need for more studies investigating the functional
characteristics of wild microbiomes as taxonomic relationships might not capture
functional GM changes that occur (e.g. the increased prevalence of COG2801).
However, researchers should not totally discount the utility of 16S metabarcoding
for investigating general GM questions, as it may, in many cases, provide sufficient
taxonomic resolution to answer specific questions (Durazzi et al., 2021). Indeed, we
identified similar taxonomic patterns using shotgun metagenomics to those revealed
by a previous metabarcoding study on the Seychelles warbler (Worsley, Davies, et

al., 2024). The cost-effectiveness of 16S rRNA allows greater sample sizes, and
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thus power, to resolve certain questions. A combination approach that harmonises
both 16S metabarcoding and shotgun metagenomics has been proposed to
maximise sample size, although such analyses are limited to genus-level
comparisons (Usyk et al., 2023). On the other hand, shotgun metagenomics not only
allows higher taxonomic resolution and functional analysis of the GM, but also an
assessment of the interaction between taxa and their functions. As described with
transposable elements, our functional analysis uncovered changes in GM function

that were not detectable using 16S metabarcoding analysis.

In conclusion, while we found that the Seychelles warbler GM changes in terms of
diversity, composition and even function with age, this happens gradually over the
adult lifespan and there is little evidence of late-life GM senescence. Whilst species
richness is lower in the terminal year, this occurs at all ages and is not more extreme
in the oldest individuals. Interestingly, we found that the abundance of a group of
transposase gene increases considerably with age in the GM, probably because of
more frequent transposition within the GM community over time. Future work is
required to determine exactly why these transposable element changes occur and
what impact they may have. Additionally, work should investigate the generality of
these conclusions by assessing whether functional changes occur in the GM of

other wild vertebrates.
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2.7 Supplementary material

2.7.1 Supplementary methods

2.7.1.1 Bioinformatics

Briefly, host reads were removed by mapping sequences to the Seychelles warbler
genome (unpublished; complete BUSCO = 96.0% with a total length =
1,081,018,985 bp), using Kraken 2 (version 2.1.3). Remaining reads underwent
quality filtering using sdm software version 2.14 beta [101,102]. After trimming, two
samples and five hand controls were removed because they did not return enough
reads for subsequent analysis (< 300,000 reads). An average of 20,481,040
(1,109,059 SE) paired-end reads per sample were retained across the remaining
samples.

The same trimmed reads were also used for de novo metagenome assembly, as
implemented in MATAFILER: MEGAHIT version 1.2.9 [103] was used for
metagenomic assemblies, on these genes were predicted using Prodigal version
2.6.3 [104] and clustered into a gene catalogue (95 % identity) of 19,527,109 gene
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clusters, and a gene abundance matrix created using rtk2 [105]. Functional
annotations of clustered genes were done using eggNOGmapper version 2.1.12
and the evolutionary genealogy of genes: Non-supervised Orthologous Groups
(eggNOG) database version 4 [82,106]. Subsequently, genome binning was done
with SemiBin which created 4,176 bins (mean completeness = 34.95%, mean
contamination = 1.41%) [107]. The bins were then filtered based on >80%
completeness and <5% contamination using CheckM2 [108]; this retained 824
metagenome-assembled genomes (MAGs). MAGs were dereplicated across
samples to generate 323 non-redundant metagenomic species (MGS) level bins,
using clusterMAGs (https://github.com/hildebra/clusterMAGs). For MGSs,
taxonomic assignment was performed using a marker-based approach with GTDB
database version 214 [109]. Due to the high individuality of the warbler GM and the
high sequencing coverage required to assign MGS, only one MGS was present in
more than 50% of sequenced samples and relatively fewer MGSs were identified
per sample (average 17 + 1.3 SE per sample) which is likely to be an underestimate
of the true diversity of the GM.

Therefore, Metaphlan4 version 4.1.0 (which is assembly-free and therefore requires
lower coverage) was used to taxonomically classify reads using the default
parameters [110]. Metaphlan4 assignments identified an average of 29.3 + 2.0
species genome bins per sample and were used for the subsequent taxonomic
analysis and MGS was only used for tracking functional annotations back to their
taxonomy.

2.7.1.2 Post-hoc functional differential abundance analysis

Posthoc investigations were performed on individual eggNOG members found
within the COG categories that were significantly differentially abundant with age.
Firstly, a linear model was performed for each significant eggNOG member to test
whether age-related changes were driven by between- or within-individual
processes. Second, we tested if changes in the abundance of significant eggNOG
members could be driven by changes in the abundance of the taxa from which these
genes originate. To test this, the total abundance of MGSs carrying the eggNOG
gene orthologs of interest was used as the response variable and age was included
as a predictor in a Imer model. Furthermore, genera of eggNOG-carrying MGSs
were matched with metaphlan4 genera to test whether the total abundance of known
eggNOG-carrying genera was significantly associated with host age. Lastly, a
protein-protein Basic Local Alignment Search Tool (BLASTp) analysis of each
eggNOG gene ortholog of interest embedded within each MGS was performed to
determine the identity of genes [111,112]. To test if the differential abundance of
eggNOG members was driven by changes in the abundance of a specific gene
(versus the cumulative abundance of many genes), gene catalogues assigned to
the eggNOG cluster of interest (filtered to those with > 20% prevalence and 0.1%
detection) were tested for differential abundance.
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2.7.2 Supplementary Figures and Tables

Components of positive controls were successfully recovered as high-quality MGSs
in acceptable relative abundances (Figure S2.2). Only 2 out of the 18 MGS from
controls were found in faecal samples, both were widespread species Enterococcus
faecalis and Klebsiella pneumoniae [113,114]. E. faecalis was part of the positive
control but not found in the hand controls. K. pneumoniae was found in hand controls
as well as samples but due to the low abundance in hand controls, we decided to
retain all species for taxonomic analysis.

1.00-

Tax
0.75- Bacillus spizizenii B Morganella morganii_B
B citrobacter freundii Other
. Cutibacterium acnes Priestia megaterium
o] . Enterococcus faecalis . Proteus vulgaris
g Escherichia coli . Pseudomonas aeruginosa
T 050 I Kiebsiella aerogenes [l salinisphaera orenii
a2 Klebsiella oxytoca Salmonella enterica
< Klebsiella pneumoniae B serratia_F odorifera
B Leminorella richardii [l staphylococcus aureus

Limosilactobacillus fermentum [Jll Staphylococeus hominis
Listeria monocylogenes_B . Streptococcus dysgalactiae
. Moellerella wisconsensis unclass

0.25-

I

SWControl SWzymo SWagd SWi421
Sample

Figure S2.1. Controls and relative abundance of MGS at the species level.
SWControl is positive control (ZymoBIOMICS Fecal Reference with TruMatrix™
Technology), SW984 and SWzymo are positive controls (ZymoBIOMICS Microbial
Community Standard) sequenced separately, and SW1421 is a contamination
(hand) control from 2023. We identified subspecies of Bacillus subtilis - Bacillus
spizizenii and Lactobacillus fermentum - Limosilactobacillus fermentum . In
SW1421 hand control, Cutibacterium acnes is linked to acne, Klebsiella
pneumoniae is commonly found in the gut, Salinisphaera orenii are bacteria
commonly isolated in high salinity environments, Staphylococcus hominis is
commonly found to be harmless on human and animal skin.
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Figure S2.2. Seychelles warbler gut microbiome samples that were retained for
analysis after sequencing and bioinformatics (n = 153 from 91 individuals). Points
represent each sample, the x-axis represents individual’s age at sampling, whilst
the y-axis represents individuals. Solid lines connect samples that were collected
from the same individual. Colours represent the different sex (black = female, gold
= male). Shape represents whether the sample was collected in the individual’s
terminal year (circle = no, triangle = yes).
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Figure S2.3. Sequencing depth against number of observed (metaphlan4)
assembly-free taxonomic assignments (left) and read count against sample
completeness (right) of each gut microbiome sample from Seychelles warblers (n =
153). 5500 reads at 95% completeness.

Table S2.1. COG functional categories [71]

Abbreviation | COG Functional Categories

A RNA processing and modification

K Transcription

L Replication, recombination and repair

B Chromatin structure and dynamics

D Cell cycle control, cell division, chromosome
partitioning

Vv Defense mechanisms

Y Nuclear structure

T Signal transduction mechanisms

M Cell wall/membrane/envelope biogenesis

N Cell motility

Z Cytoskeleton

w Extracellular structures

U Intracellular trafficking, secretion, and vesicular
transport

@) Posttranslational modification, protein turnover,
chaperones

X Mobilome: prophages, transposons
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Energy production and conversion

Carbohydrate transport and metabolism

Amino acid transport and metabolism

Nucleotide transport and metabolism

I T m O O

Coenzyme transport and metabolism

Lipid transport and metabolism

Inorganic ion transport and metabolism

General function prediction only

Q| Al T

Secondary metabolites biosynthesis, transport and
catabolism

S Function unknown

Unassigned

Table S2.2. A generalised linear mixed effect model with a negative binomial
distribution investigating the relationship between age, terminal year, and species
richness in the gut microbiome of Seychelles warblers (n = 151 samples, 91
individuals). Significant (p < 0.05) predictors are shown in bold. Conditional R? =
38.9%.

Predictor Estimate SE z P

(Intercept) -125.20 71.62 -1.75 0.081
Age -0.04 0.02 -2.10 0.036
Terminal Year (yes) -0.26 0.13 -2.06 0.039
Season (winter) 0.01 0.13 0.09 0.932
Sex (female) 0.01 0.13 0.05 0.959
Time at 4°C -0.18 0.14 -1.33 0.183
Time of day 0.22 0.12 1.82 0.069
Territory quality -0.08 0.12 -0.67 0.506
Sample Year 0.06 0.04 1.79 0.073
Random

Individual ID 151 observations 91 individuals | Variance 0.14

99



g 5
%07 >
()] )]
w 2]
Q Q0
=) =2
7 7
0601 . 3
c 2 e c
~ * -
.9 b . . * 1 .9
— ot . . —_
) : o' . j . . i )
.0_330 } N -, 2
O i ‘-‘:—"'k'-—-__ e e ~; '. .. . 1 o
8 - ’ L .h‘;::.‘..{*":n—-:____ i | 8
(O . P D"...... < o —_— w
. :‘.. .‘: g
O i .
00 25 60 7.5 10.0 125

Age (years)

W
o
1

N
o
L

—
o
L

0

Terminal Year

Figure S2.4. Species richness prediction from glmer.nb of the gut microbiome in the
Seychelles warblers (n = 151 samples from 91 individuals). (A) Species richness
against host age in years, solid black line and grey shaded area represent model
predictions and confidence intervals respectively (Table S2.1, p = 0.036), points
represent raw data. (B) Species richness against terminal year (0: No, 1: Yes), black
dot and lines represent model predictions and error bars respectively, grey dots
represent raw data points (Table S2.1, p = 0.039).

Table S2.3. Alinear mixed effect model of Shannon diversity with chronological age
and terminal year in the gut microbiome of Seychelles warblers (n = 151 samples,
91 individuals). Significant (p < 0.05) predictors are shown in bold. Conditional R? =

46.4%.

Predictor Estimate SE df

(Intercept) -152.40 76.85 142.00 -1.98 0.049
Age -0.01 0.02 86.36 -0.46 0.644
Terminal Year (yes) -0.16 0.14 133.79 -1.17 0.244
Season (winter) -0.12 0.17 130.60 -0.69 0.491
Sex (female) 0.10 0.16 74.64 0.63 0.529
Time at 4°C -0.32 0.15 113.36 -2.15 0.034
Time of day -0.01 0.13 133.62 -0.10 0.920
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Territory quality -0.14 0.14 124.33 -1.02 0.311
Sample Year 0.08 0.04 142.00 2.00 0.047
Random

Individual ID 151 observations 91 individuals | Variance 0.27

Table S2.4. A linear mixed effect model of Shannon diversity within- and between-
individual age analysis, accounting for subsequent close-to-death samples in the
gut microbiome of Seychelles warblers (n = 151 samples, 91 individuals). Significant
(p < 0.05) predictors are shown in bold. Conditional R? = 49.7%.

Predictor Estimate SE df z P
(Intercept) 0.95 0.35 129.65 2.75 0.007
Delta Age -0.07 0.07 135.41 -1.12 0.265
Mean Age -0.18 0.16 77.16 -1.14 0.257
Gy Yo -0.01 0.03 8130  -0.24 0.809
Sample Year 0.09 0.06 105.90 1.60 0.11
Season (winter) -0.12 0.17 128.97 -0.72 0.470
Sex (female) 0.10 0.16 75.58 0.62 0.535
Time at 4°C -0.33 0.15 112.75 -2.24 0.027
Time of day -0.02 0.13 131.47 -0.12 0.908
Territory quality -0.15 0.14 122.92 -1.08 0.281
Random

Individual 1D 151 observations individu:Ii Variance 0.3003

Table S2.5. A linear mixed effect model of non-rarefied reads species richness

within- and between- individual age analysis, accounting for subsequent close-to-

death samples in the gut microbiome of Seychelles warblers (n = 151 samples, 91
individuals). Significant (p < 0.05) predictors are shown in bold. R2 = 0.4587057

Predictor

Estimate

SE

z

[

(Intercept)
Delta Age
Mean Age

Terminal Year

2.809

-0.320

-0.035

-0.170

0.336

0.105

0.024

0.147

8.362

-3.043

-1.432

-1.161

<0.001

0.002

0.152

0.246
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Bird (yes)

Season (winter) 0.008 0.170 0.046 0.963
Sex (female) -0.063 0.149 -0.424 0.672
Days at 4°C -0.188 0.149 -1.259 0.208
Time of day 0.240 0.132 1.819 0.069
Territory quality -0.099 0.136 -0.724 0.469
Sample Year (2017)
2018 0.461 0.297 1.552 0.121
2019 0.556 0.345 1.611 0.107
2020 0.851 0.373 2.283 0.022
2021 0.917 0.358 2.561 0.010
2022 0.834 0.362 2.302 0.021
2023 0.953 0.418 2.280 0.023
Delta Age * Mean Age 0.033 0.016 2.118 0.034
Random
Individual ID 153 observations | 91 individuals | Variance 0.2119
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Figure S2.6. Taxonomic differential abundance analysis for common species (>
20% prevalence in the population). (A) ANCOMBC2 with age, (B) GLLVM with age,
(C) ANCOMBC2 with terminal year, (D) GLLVM with terminal year. Significant (p <
0.05). Green = significant (p < 0.05) log fold change, grey = insignificant log fold

change.
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Table S2.6. A linear mixed effect model testing for age-related changes in functional
scaled exponentially transformed observed richness and exponentially transformed
Shannon diversity of eggNOG annotations in the gut microbiome of Seychelles
warblers (n = 152 samples, 90 individuals). Conditional R? = 33.7% and 9.2%
respectively.

Observed Richness

Predictor Estimate SE df t P
(Intercept) -109.417 42.293 142.715 -2.587 0.011
Age (years) -0.036 0.013 92.620  -2.877 0.005
(Tyeergi”a' vear -0.124 0.077 142.784  -1.605 0.111
Season (winter) -0.080 0.078 141.089 -1.024 0.307
Sex (female) -0.080 0.080 78.890 -1.008 0.317
Days at 4°C -0.198 0.082 130.818 -2.422 0.017
Time of day -0.027 0.071 142.930 -0.373 0.710
Territory quality -0.074 0.072 134.361 -1.030 0.305
Sample Year 0.055 0.021 142.686 2.618 0.010
Random

Individual ID observatiiii indivi due?lg Variance 0.047

Shannon Diversity

Predictor Estimate SE df t P
(Intercept) -92473.06 46119.45 143.00 -2.01 0.047
Age (years) -31.31 12.59 143.00 -2.49 0.014
(T;rgi”a' vear -20.41 83.74 143.00  -0.24 0.808
Season (winter) 105.32 85.76 143.00 1.23 0.221
Sex (female) -21.32 78.14 143.00 -0.27 0.785
Time at 4°C -36.85 92.11 143.00 -0.40 0.690
Time of day 27.32 76.97 143.00 0.36 0.723
Territory quality -1.21 79.70 143.00 -0.02 0.988
Sample Year 46.31 22.85 143.00 2.03 0.045
Random

Individual ID .152 90 individuals | Variance 108.9

observations
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Figure S2.7. Evolutionary genealogy of genes: Non-supervised Orthologous Groups
(eggNOG) (A) observed richness and (B) Shannon diversity against host age
(years) model prediction from linear mixed effect model in the gut microbiome of
Seychelles warblers (Table S2.4, p = 0.005 in A and p = 0.014 in B). The solid line
represents model predictions and ribbon-shadding represent confidence intervals
from model predictions. Each point represents a sample, and the dashed grey lines
connect samples collected from the same individual (n = 152 samples from 90
individuals).
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Figure S2.9. Differential abundance analysis of functional gut microbiome cluster of
orthologous genes (COG) categories in Seychelles warblers using ANCOMBC2
with season and sample year. Each COG category is represented by a letter on the
y-axis. Details of all COG categories are given in Table S2.5[71]. “Cat_"" represents
eggNOG annotations that were not assigned a COG category. Points and error bars
are coloured according to significance (green: p < 0.05; grey: p > 0.05).
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Figure S2.10. Differential abundance analysis of functional gut microbiome cluster
of orthologous genes (COG) categories in Seychelles warblers using GLLVM with
season and sample year. Each COG category is represented by a letter on the y-
axis. Details of all COG categories are given in Table S2.5 [71]. “Cat_"" represents
eggNOG annotations that were not assigned a COG category. Points and error bars
are coloured according to significance (black: p < 0.05; grey: p > 0.05).
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Figure S2.11. Differential abundance of COG X eggNOG members (A) ANCOMBC2

and (B) GLLVM.
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Table S2.7. A linear mixed effect model of COG2801 abundance in the gut
microbiome of Seychelles warblers in relation to within- (delta) and between-
individual (mean) age. n = 153 samples, 91 individuals. Significant (p < 0.05)
predictors in bold. Conditional R? = 14.7%. Reference categories for categorical
variables are shown in brackets

Predictor Estimate SE df t P
115.37 <
(Intercept) 9.700 0.971 9.989
0 0.001
141.99
Delta Age 0.549 0.218 1 2516 0.013
Mean Age 0.157 0.062 85.606 2.534 0.013
Terminal Year Bird
0.028 0.420 69.803 0.067 0.947
(ves)
_ 132.36
Season (winter) -0.502 0.553 g -0.908 0.365
Sex (female) 0.219 0.422 63.434 0.520 0.605
136.50
Days at 4°C -0.196 0.495 9 -0.396  0.693
. 136.42
Time of day -0.313 0.428 1 -0.730  0.466
_ _ 141.90
Territory quality -0.315 0.452 1 -0.697  0.487
Sample Year (2017)
140.92
2018 -1.662 0.902 1 -1.844  0.067
141.64
2019 -1.457 1.068 . -1.363  0.175
134.38
2020 -2.200 1.129 4 -1.949  0.053
140.58
2021 -2.911 1.119 . -2.601  0.010
118.24
2022 -3.341 1.098 3 -3.042  0.003
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111.44
2023 -3.215 1.289 -2.495 0.014
Random
153 91 Varianc
Individual ID 0.1776
observations individuals e

Table S2.8. BLASTp top hits for each COG2801 found in the genomes of all
constructed metagenomics species (MGS) from the gut microbiome of Seychelles
warblers (n = 153 from 91 individuals).

Top hit (contains keyword) | Count Percentage
IS3 transposase 154 30%
otherlS transposase 64 13%
transposase 170 33%
integrase 30 6%

Mobile element protein 4 1%
Helix-turn-helix 19 4%
Hypothetical protein 45 9%
Unknown 23 5%

Table S2.9. Linear mixed model

on the CLR-transformed abundance of

metagenomic species in the gut microbiome of Seychelles warblers (n = 2589 from
89 individuals). To test if COG2801-carrying MGS significantly differed in
abundance with host age. Significant (p < 0.05) predictors are shown in bold.

Conditional R? = 46.9%.

Predictor Estimate SE df t P

(Intercept) 5.44 0.41 233.52 13.34 <0.001
Age 0.03 0.04 69.32 0.79 0.432
(T;fgi”a' vear 0.24 0.19 339.71 1.26 0.210
Season (winter) -0.09 0.22 394.36 -0.43 0.671
Sex (female) 0.01 0.26 69.10 0.02 0.982
Time at 4°C -0.44 0.18 434.74 -2.40 0.017
Time of day -0.35 0.18 395.12 -2.01 0.045
Territory quality -0.47 0.17 379.46 -2.85 0.005
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Sample Year

(2017)

2018 -0.77 0.41 402.12 -1.90 0.059

2019 -1.69 0.46 416.15 -3.71 0.000

2020 -1.19 0.48 360.43 -2.50 0.013

2021 -0.70 0.46 334.48 -1.53 0.127

2022 -0.56 0.45 266.74 -1.25 0.213

2023 -0.65 0.49 239.09 -1.33 0.186

Random

Individual ID 874 85 individuals Variance 1.042
observations

Table S2.10. Linear mixed model

on the CLR-transformed abundance of

metaphlan4 genera in the gut microbiome of Seychelles warblers (n = 4477 from 91
individuals). To test if known COG2801-carrying genera significantly differed in
abundance with host age. Significant (p < 0.05) predictors are shown in bold.
Conditional R? = 16.8%.

Predictor Estimate SE df t P
(Intercept) 9.08 0.45 316.13 20.37 <0.001
Age 0.04 0.04 77.18 0.91 0.363
Terminal Year

(yes) 0.30 0.22 272.48 1.37 0.173
Season (winter) -0.30 0.27 271.10 -1.09 0.276
Sex (female) 0.15 0.27 70.01 0.54 0.589
Time at 4°C -0.52 0.22 373.62 -2.34 0.020
Time of day -0.60 0.21 224.79 -2.82 0.005
Territory quality 0.03 0.21 486.10 0.13 0.898
Sample Year (2017)

2018 -0.15 0.47 519.08 -0.33 0.745
2019 -0.85 0.54 423.70 -1.57 0.116
2020 -0.80 0.55 380.92 -1.46 0.145
2021 -1.13 0.52 377.58 -2.20 0.029
2022 -0.56 0.49 363.36 -1.14 0.254
2023 -0.06 0.55 281.62 -0.11 0.916
Random

Individual 1D 1794 observations 89 individuals Variance 0.995
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Figure S2.12. Differential abundance analysis of functional gut microbiome
COG2801 gene catalogue that were commonly (20% prevalence) found in
Seychelles warblers using (A) ANCOMBC2 and (B) GLLVM. Each gene catalogue
(95% average nucleotide identity) are represented on the y-axis by their gene
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catalogue number. Points and error bars are coloured according to significance
(black: p < 0.05; grey: p > 0.05).
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Chapter 3 |

Host immunogenetic variation and gut microbiome

functionality in a wild vertebrate population

Promoting  diversity and safeguarding communities for enhanced

interconnectedness.
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3.1 Abstract

Background: The gut microbiome (GM) —important for host health and survival— is
partially shaped by host immunogenetics. However, to date, no study has
investigated the influence of host Major Histocompatibility Complex (MHC) genes
on gut microbiome functionality in a wild population. Here we use a natural
population of the Seychelles warbler (Acrocephalus sechellensis) to assess the
effects of MHC genes on GM taxonomy and functionality using shotgun

metagenomics.

Results: Our results show that taxonomic GM composition was associated with
MHC-II diversity and the presence of one specific MHC-I allele (Ase-ua 7).
Specifically, MHC-II diversity was associated with decreased Lactococcus lactis and
increased Staphylococcus lloydii abundance, while Ase-ua 7 was linked to reduced
Enterococcus casselifavus and Gordonia sp OPL2 but increased Escherichia coli
and Vulcaniibacterium thermophilum. These taxonomic changes may reflect
differences in MHC-mediated microbial recognition. In contrast, functional GM
composition was significantly associated with increasing individual MHC-I diversity
but not MHC-II diversity. Potentially importantly, MHC-I diversity was associated
with an increased prevalence of microbial defence genes but a reduced prevalence
of microbial metabolism genes. Analysis also revealed that taxonomic and
functional GM networks were more fragmented but had stronger connections in high
compared to low MHC-I diversity hosts, suggesting higher GM resilience in high

MHC-I1 diversity individuals.

Conclusion: These results suggest that MHC-I variation (surprisingly more than
MHC-I1I variation) is important in shaping the GM in this wild vertebrate population.
MHC-I1 diversity induces microbial defence and metabolism trade-offs and increases
GM resilience, which may, in turn, result in individual variation in health and survival
in the Seychelles warbler. Consequently, this study highlights the importance of host
immunogenetics in shaping the gut microbiome, both taxonomically and

functionally.

Keywords: Acrocephalus sechellensis; Metagenomics; Gut microbiome; Major

Histocompatibility Complex; wild population.
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3.2 Introduction

The vertebrate gut microbiome (GM), a complex ecosystem of microorganisms
inhabiting the gastrointestinal tract, is increasingly recognised as a critical
determinant of host health and fitness (Zhu et al., 2021). However, the composition
and function of the GM exhibit extensive variability across individuals, particularly in
natural populations (Fenn et al., 2023; Ren et al., 2016; Worsley et al., 2021). This
variation has been attributed to a range of factors, such as diet, age, sex, location
and host genetic variation (Davies et al., 2022; Worsley et al., 2025; Zoelzer et al.,
2021).

A growing body of evidence links GM characteristics to host immunogenetic
variation (Dzierozynski et al., 2023; Zheng et al., 2020). Immune genes influence
the immune system’s ability to recognise, tolerate, or eliminate microbial populations
(Criscitiello & de Figueiredo, 2013; McConnell et al., 2023). Therefore, the immune
system must maintain a balance — tolerating beneficial microbes while combating
pathogens- to optimise host health (Fuess et al., 2021; Tanoue et al., 2010).
Furthermore, the GM also appears to play a role in the immune defences of the host,
with GM dysbiosis (an imbalance in the composition of microbes) resulting in a
reduction of host immune function, emphasising the interconnected nature of
immune health and GM stability (Kuhn & Stappenbeck, 2013; Reikvam et al., 2011).

The major histocompatibility complex (MHC) is a family of immune genes, forming
part of the vertebrate acquired immune system (Piertney & Oliver, 2006). These
genes encode cell-surface glycoprotein receptor molecules that bind to antigens
before presenting them to T lymphocytes and B cell receptors, which trigger an
immune or tolerogenic response (Blum et al., 2013; Roland et al., 2020). The MHC
has two main classes, MHC-I and MHC-II, based on the encoded receptors
presenting intracellular or extracellular antigens, respectively (Rock et al., 2016;
Roland et al., 2020). The role of the MHC in combating pathogens has been well-
studied (Janeway et al., 2001; Ozer & Lenz, 2021), with the extraordinarily high
polymorphism of MHC genes observed in natural populations thought to be driven
by pathogen-mediated selection mechanisms and sexual selection (Spurgin &
Richardson, 2010). Individual MHC variation determines the range of microbial
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antigens recognised by the immune system (Bolnick et al., 2014), and is associated
with variation in commensal gut microbial communities (Davies et al., 2022; Kubinak
et al., 2015; Silverman et al., 2017; Toivanen et al., 2001). Thus, different MHC
genotypes could shape individual GM variation by initiating immune responses to
potentially pathogenic microbes while maintaining beneficial species (Russell et al.,
2019; Silverman et al., 2017).

Previous studies examining the impact of MHC variation on the GM in wild animals
using 16s metabacoding, have reported mixed findings. Several have found that
increased MHC diversity is associated with decreased microbiome diversity (Bolnick
et al., 2014; Leclaire et al., 2019; Uren Webster et al., 2018) but others associated
it with increased (Hernandez-Gomez et al., 2018) or unchanged GM diversity
(Davies et al., 2022; Montero et al., 2021). Similarly, some studies have observed
shifts in taxonomic composition with MHC diversity (Bolnick et al., 2014; Hernandez-
Gomez et al., 2018; Montero et al., 2021), while others have not (Davies et al., 2022;
Fleischer et al.,, 2020, 2022; Uren Webster et al., 2018). Additionally, the
presence/absence of specific MHC alleles (rather than the overall diversity of
alleles) has been found to be correlated with GM taxonomic composition (Bolnick et
al., 2014; Davies et al., 2022).

The functional composition of the GM — represented through microbial genes —
could provide a more direct representation of host-microbe interactions (Worsley,
Mazel, et al., 2024). However, the consequences of MHC variation for GM
functionality have remained underexplored so far (Fuess et al., 2021). Many
microbes share genes and, consequently, have similar functional roles (Louca et
al., 2018). Therefore, changes in microbial taxa do not always result in altered GM
function — i.e. there is functional redundancy (Louca et al., 2018; Worsley, Mazel, et
al., 2024). Functional redundancy refers to the ecological concept that multiple
species within an ecosystem can perform similar roles, encoding the same gene
and/or different genes with the same function, buffering against species loss (Louca
et al., 2018; Worsley, Mazel, et al., 2024). Studying functionality is important for
understanding if and how host genetic variation interacts with the GM to influence
host fithess and evolutionary trajectories (Worsley, Mazel, et al., 2024). Most studies
on MHC and microbial functionality rely on 16S metabarcoding markers and infer

function based on known microbial taxa-function association (Gill et al., 2018, 2019;
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Sun et al., 2020; Wadud Khan et al., 2019). However, in less studied systems, such
as wild animals, functional inferences from 16S metabarcoding markers may lead
to misassignments due to the lack of representation of the specific microbes
observed in existing databases (Sun et al., 2020; Toole et al., 2021).

In humans and transgenic captive mice (Mus musculus), MHC haplotype is
associated with GM functional composition (Berryman et al., 2024; Bonder et al.,
2016). However, captive/domesticated populations often harbour greatly reduced
genetic variation and microbial diversity compared to natural populations (Williams
et al., 2024); thus, these results may not be transferable to wild systems. To our
knowledge, the only pioneering study of host MHC and GM function in a wild animal
so far used 16S functional inferences (Montero et al., 2021), which are likely to lead
to inaccuracies (Sun et al., 2020; Toole et al., 2021). Shotgun metagenomics or
transcriptomic approaches are needed to accurately determine gut microbiome

function in response to host MHC variation in wild animal populations.

Here, we investigate the relationship between MHC and GM variation in a population
of Seychelles warblers (Acrocephalus sechellensis). Despite reduced neutral
genetic variation due to past population bottlenecks (Spurgin et al., 2014), the
Seychelles warbler has maintained variation (albeit reduced) at MHC-1 and MHC-II
loci (Davies et al., 2022; Hansson & Richardson, 2005; Richardson & Westerdahl,
2003). Furthermore, one specific MHC allele (Ase-ua 4) and MHC-I diversity overall
have been positively correlated with survival and reproductive success (Brouwer et
al., 2010; Richardson et al., 2005). A previous 16S-based analysis of this population
has demonstrated that MHC alleles are associated with changes in bacterial GM
taxonomic diversity and composition (Davies et al., 2022). An analysis of the fungal
mycobiome also reported changes in species diversity and composition associated
with MHC alleles and MHC-I diversity, respectively (Worsley et al., 2022). Since
these studies, we have greatly expanded our sample size, identified key
environmental control variables, and conducted shotgun sequencing for

metagenomic analysis (Lee et al., 2024).

We leverage a powerful combination of both 16S rRNA metabarcoding (larger

sample size) and shotgun metagenomics to provide a comprehensive and high-

119



resolution assessment of the association between host MHC variation and both
taxonomic and, importantly, functional components of the bacterial GM in adult
Seychelles warblers. First, we test if GM taxonomic diversity and composition
correlate with MHC-1 and MHC-II diversity or alleles. Next, we test if GM functional
diversity and functional composition are associated with this MHC variation. Finally,
we assess the role of functional redundancy in preserving the functionality of the

GM despite changes in host MHC variation.
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3.3 Methods

3.3.1 Study system

The population of insectivorous Seychelles warblers on Cousin Island (29 ha; 04°
20' S, 55° 40’ E) has been extensively monitored since 1985 (Brown et al., 2022;
Komdeur, 1992) Two field seasons are undertaken annually from ca. January to
March (minor) and June to September (major). Each season, as many individuals
as possible are caught in the nest (chicks) or using mist nets and sampled (see
below). New individuals are marked with a British Trust for Ornithology (BTO) metal
ring and a unique combination of three colour rings, allowing them to be monitored
throughout their lives. Almost every bird (>96%) on Cousin has been marked this
way since 1997 (Raj Pant et al., 2019; Richardson et al., 2007). Age is calculated
based on fledge or hatch dates, or eye colour at first catch (Komdeur, 1991). This
population includes ca. 320 individuals in approximately 115 territories (Hammers
et al., 2019; Komdeur & Pels, 2005).

3.3.2 Sample collection

Faecal sample collection, storage, DNA extraction, library preparation and
sequencing were conducted between 2017 and 2023, as part of (and described in
full in) previous studies using 16S rRNA metabarcoding (Davies et al., 2022;
Worsley, Davies, et al., 2024) and shotgun metagenomics (Lee et al., 2024). In brief,
caught birds were placed in a flat-bottom paper bag with a sterilised weigh boat
under a metal grate, allowing faeces to drop to the weigh boat, while minimising
contact with the birds’ surface. Faecal matter was transferred into a sterile
microcentrifuge tube containing 1 mL of absolute ethanol, stored at 4°C during
fieldwork and then at -80°C for long-term storage at the University of East Anglia
(UEA). The time-of-day (minutes after sunrise; 06:00 AM) of sampling was recorded.
Each season, control samples were also taken from the hands of fieldworkers using
a sterile swab and stored in the same manner. A small (ca 25 uL) blood sample was
also collected from each bird via brachial venepuncture and stored in 0.7 ml of
absolute ethanol at 4°C. Samples may be collected from the same individual in
different field seasons; thus, the identify of each individual sampled (Bird ID) is

recorded and used to control for these repeated measures in statistical analyses.
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3.3.3 Molecular genotyping

Total genomic DNA was extracted from blood samples using the DNeasy Blood and
Tissue kit (Qiagen, Crawley, UK) according to the manufacturer’s protocol. All
Individuals were genotyped using up to 30 polymorphic microsatellite loci and 3
sexing markers following (Hadfield et al., 2006; Richardson et al., 2001; Sparks et
al., 2022) as part of the ongoing determination of parentage and pedigree within this
population (Raj Pant et al., 2022). Individual genome-wide heterozygosity (Hs) at
these neutral loci was calculated using genhet 3.1 in R 4.33 (COULON, 2010; R
Core Team, 2024) as per (Wright et al., 2016).

Sequencing of amplified MHC-1 exon 3 and MHC-II exon 2 variants using lllumina
MiSeq technology had already been undertaken for 314 warblers (Davies et al.,
2022). All confirmed variants (20 MHC-1 and 14 MHC-II; hereafter termed alleles)
at each of these MHC regions (which contain 4 replicated loci) (Hutchings, 2009;
Richardson & Westerdahl, 2003) were used to calculate individual MHC diversity.
However, due to statistical power limitations, only alleles present in >5% and <95%
of individuals were included in the presence/absence analysis. Two MHC-I alleles
(Ase-ual and Ase-ualO) were co-occurring; thus, only one of them, Ase-ual, was
retained for downstream analyses. Therefore, nine MHC-I alleles and three MHC-II
alleles were used in the presence/absence statistical analyses. Each allele in the
presence/absence analysis each translates to unique amino acid sequences with

different antigen-binding properties (Davies et al., 2022).

3.3.4 Gut microbiome screening

Microbial DNA from faecal samples was extracted using the DNeasy PowerSoil Kit
(Qiagen, Crawley, UK) and a modified version of the manufacturer’s protocol
(described in detail (Davies et al.,, 2022)). Samples were randomised across

extractions to minimise batch effects.

Faecal DNA samples were submitted for 16S rRNA amplicon sequencing. Amplicon
sequencing libraries were generated wusing the V4 primers 515F
(5'TGCCAGCMGCCGCGGTAAZ’) and 806R (5’ GGACTACHVGGGTWTCTAATS3’).

Libraries were sequenced across seven batches using 2 x 250bp, paired-end
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sequencing on an lllumina MiSeq Platform (see (Davies et al., 2022; Worsley,
Davies, et al., 2024)). Control samples were also extracted, library prepped and
sequenced the same way (n = 21 hand controls, 15 negative controls, and 10
positive ZymoBIOMICS Microbial Community Standard (D6300) controls).

Faecal DNA samples underwent library preparation using the LITE protocol (Perez-
Sepulveda et al., 2021) and were sequenced using 2 x 150 bp, paired-end shotgun
metagenomic sequencing in two runs on an Illlumina NovaSeq X platform (see (Lee
et al., 2024)). Hand controls (n =6) and positive controls (n =3, two ZymoBIOMICS
Microbial Community Standard (D6300), and one ZymoBIOMICS Fecal Reference
with TruMatrix™ Technology (D6323)) were also prepped and sequenced as part

of the metagenomic samples sequencing.

3.3.5 Bioinformatics

Read processing for 16S metabarcoding was performed as previously described
(Worsley, Davies, et al., 2024). Briefly, 16S rRNA reads were processed using
QIIME2 2019.10; reads were truncated, filtered, and classified into amplicon
sequencing variants (ASV) using DADA2 (Callahan et al., 2016). ASVs were then
taxonomically assigned using the naive-Bayes classifier on the SILVA 132 reference
database for 16S rRNA gene sequences (Bolyen et al., 2019). These ASVs were
then imported into R 4.3.3 using phyloseq 1.46.0 (Callahan et al., 2016; McMurdie
& Holmes, 2013), then filtered to remove non-bacterial sequences, reads
unassigned to phylum level, and potential contaminants (based on hand controls).
Rarefaction curves were constructed with INEXT version 3.0.1 with the default 50
bootstrap replications (Chao et al., 2014), reaching an asymptote at 8000 reads,
indicating sample completeness (Figure S3.1A). In addition, 27 faecal samples with
<8000 reads were removed and ASVs with <50 reads across all samples were also

removed.

Shotgun metagenomic sequence processing was performed using MATAFILER
(Hildebrand et al., 2021) as previously described (Lee et al., 2024). Host reads were
removed by mapping reads with Kraken2 2.1.3 to the Seychelles warbler genome
(unpublished; complete BUSCO = 96.0% with a total length = 1,081,018,985 bp),

followed by read quality filtering using sdm 2.14 beta; minimum sequence length of
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50, minimum average quality of 27 (Hildebrand et al., 2014; Wood et al., 2019), an
average of 21% (+0.07SE) reads were removed. After trimming, two samples and
five hand controls were removed because they did not have enough reads for
metagenome assembly. An average of 20,481,040 (SD = 13,718,305) paired-end
reads per sample were retained for de novo metagenome assembly using
MEGAHIT 1.2.9 with default parameters and kmer-list of 25,43,67,87,111,131 (Li et
al., 2015). Using the resulting assemblies, genes were predicted using Prodigal
2.6.3 (Hyatt et al., 2010) and clustered into gene catalogues (95% identity). Genes
were functionally annotated using eggNOGmapper 2.1.12 with default parameters
and the eggNOG database 4 (Cantalapiedra et al., 2021; Powell et al., 2014).
Functional categories were also assigned to each functional annotation based on
the cluster of gene orthologs (COG) database (Tatusov et al., 2000). Metaphlan4
assignments were used to taxonomically assign shotgun sequencing reads.
Rarefaction curves were constructed for metagenomics taxonomy and functional
reads with INEXT version 3.0.1 with the default 50 bootstrap replications (Chao et
al.,, 2014) and showed an asymptote and sample completeness at 5,500 and
100,000 reads, respectively (Figure S3.1B-C).

3.3.6 Statistical analysis

Adult warblers with both microbiome and MHC data were analysed. For 16S
analysis, 253 samples from 149 individuals were included in this study. Of these, 99
samples from 57 adult individuals also had GM shotgun metagenomic data.
Individuals carried a mean of 5.13 (SE: 0.088, range 2-7) MHC-I alleles and 2.88
(SE: 0.060, range 1-5) MHC-II alleles. Due to the low number of samples for which
we had shotgun metagenomic data, we had to limit the number of predictor variables
(i.e. <9) in each model to avoid overfitting and unreliable estimates. Thus, for MHC
diversity models, all control variables (see below) were included, but we first used
the 16S metabarcoding dataset to shortlist which genetic metrics (including specific
MHC alleles) should be included in the shotgun metagenomic models. Unless stated
otherwise, all statistical analyses were conducted in R 4.3.3 in R Studio
2024.12.0+467 (Posit team, 2024; R Core Team, 2024) and linear mixed effect
(LMMs) and generalised linear mixed effect models (GLMMs) were constructed
using Ime4 1.1-35.5 (Bates et al., 2015).
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3.3.6.1 GM diversity

3.3.6.1.1 16S rRNA metabarcoding diversity

Reads were rarefied to 8,000 reads with the rarefy_even_depth function in vegan
2.6.6 (Oksanen Jari et al., 2024) — the point at which the number of ASVs identified
reached an asymptote in rarefaction curves (Figure S3.1A) - before calculation of
alpha diversity metrics. Both ASV richness and Shannon diversity were calculated
for each sample using phyloseq 1.46.0 (McMurdie & Holmes, 2013).

A GLMM with a negative binomial distribution was constructed with ASV richness
as a response variable. An LMM with a Gaussian distribution was used to model
Shannon diversity. Hereafter, all 16S models were tested with the same set of
variables (described below) with either MHC alleles or MHC diversity as the
response unless stated otherwise. MHC-I and MHC-II diversity (i.e. the number of
alleles per individual) were included as predictors, along with genome-wide
heterozygosity, age, season, sample year, sex, sample days at 4°C, and time of day
sampled, as fixed-term control variables and bird ID as a random effect. Quadratic
effects of MHC-I diversity and MHC-II diversity were included to test if an
intermediate number of alleles influenced GM characteristics, but were dropped if
not significant, least significant first, to allow interpretation of the main terms.

Standardised effect sizes of each fixed effect were determined using partial R2.

To determine if specific MHC alleles were shaping the GM, a second model was
constructed using the presence/absence of MHC-I (Ase-ua 1, Ase-ua 3, Ase-ua 4,
Ase-ua 5, Ase-ua 6, Ase-ua 7, Ase-ua 8, Ase-ua 9, Ase-ua 11) and MHC-II alleles

(Ase-dab 3, Ase-dab 4, Ase-dab 5) as predictors in place of MHC diversity.

3.3.6.1.2 Metagenomic taxonomic diversity

Metaphlan4 assignments were rarefied to 5,500 reads (Figure S3.1B) — prior to
alpha diversity analysis. A GLMM with a negative binomial distribution was then
used to model species richness, and an LMM was used to model Shannon diversity.
All metagenomics analyses were performed with the same structure (described
below, i.e. MHC diversity models included all terms, while MHC presence/absence
models only included genetic variables that were identified as significant in the

corresponding 16S analysis).
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A second model with the presence/absence of specific MHC alleles (identified as
significant in the 16S metabarcoding model above) was constructed.

3.3.6.1.3 Metagenomic functional diversity

Functional gene annotations (determined using eggNOG mapper described above)
were rarefied to 100,000 reads (Figure S3.1C) before functional alpha diversity
analysis. Scaled exponentially transformed functional gene richness and
exponentially transformed functional Shannon diversity were modelled separately
with LMMs, with either the MHC diversity or the presence/absence of MHC alleles,
along with genome-wide heterozygosity and environmental control variables (as
described for 16S analyses above).

3.3.6.2 GM composition

3.3.6.2.1 16S rRNA metabarcoding composition

Unrarefied reads were used. Rare ASVs (<5% prevalence) were removed prior to
analysis, and a centred log ratio (CLR) transformation was applied to the remaining
ASV abundances using microbiome 1.24.0 (Leo Lahti & Sudarshan Shetty, 2019).
Pairwise Aitchison distances (i.e. composition differences) among GM samples
were then modelled via a PERMANOVA using the adonis2() function in vegan 2.6.6
with 9999 permutations. A blocking effect of bird ID was included to account for
repeated sampling (Oksanen Jari et al., 2024). The first PERMANOVA model
included MHC diversity, genome-wide heterozygosity, age, season, sample year,
sex, days at 4°C and time of day as predictors. The second PERMANOVA model
had the presence/absence of individual MHC alleles instead of MHC diversity. Both
these and all subsequent GM composition models were set up in the same way and
visualised with a PCA generated in phyloseq 1.46.0 (McMurdie & Holmes, 2013)

unless stated otherwise.

Metagenomic taxonomic composition

Rare species were removed (<5% prevalence), the remaining unrarefied reads were
CLR transformed and used in a PERMANOVA to identify differences in taxonomic
composition associated with MHC variation (as described for 16S analysis above).

For the MHC alleles model, only genetic predictors identified as significant in the
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16S rRNA metabarcoding composition analysis were included, along with all control

variables (as described for 16S analyses above).

3.3.6.2.3 Metagenomic functional composition

Rare functional genes (<5% prevalence) were removed and the remaining
unrarefied reads were CLR transformed and used in a PERMANOVA to test for
differences in functional composition linked to MHC variation (as described for

metagenomic taxonomic composition analyses above).

3.3.6.3 Differential abundance analyses

3.3.6.3.1 Differential abundance of metagenomic taxonomic species

Differential abundance tests were carried out using ALDEx2 1.34.0 (Fernandes et
al., 2013). Only common species (>10% prevalence and >0.001% abundance
resulting in 49 metagenomic identified species) were included. Abundances were
CLR transformed as part of the ALDEx2 method (Fernandes et al., 2013). Genome-
wide heterozygosity, MHC-1 and MHC-II diversity as well as significant variables
identified in the metagenomic taxonomic composition analysis were included as

predictors.

3.3.6.3.2 Differential abundance of metagenomic functional genes

Abundances of common functional genes (>50% prevalence, >0.1% abundance
resulting in 94 eggNOG members) were CLR-transformed using ALDEx2 1.34.0
(Fernandes et al., 2013) and included in this analysis. Predictors were included as
above but based on significant variables in metagenomic functional composition

analysis.

3.3.6.4 Network analysis

3.3.6.4.1 Network analysis of metagenomic taxonomic species

Networks of metagenomic taxonomic species were constructed with SParse
Inversk Covariance Estimation for Ecological Association Inference (SPIEC-EASI)
version 1.0.7 (Kurtz et al., 2015). The samples were split into two categories based
on average MHC diversity (see above): low (<6) and high (=6) MHC-I diversity, or

low (<3) and high (=3) MHC-II diversity. The raw counts of common bacterial species
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were used as inputs, with SPIEC-EASI applying a CLR transformation. Common
species were used to capture relevant, stable GM species and minimise the
influence of rare taxa (Fabbrini et al., 2023). The number of nodes (species), the
number of edges (interaction between species), the average number of connections
per node, modularity and negative-to-positive ratios were calculated. The networks
were then plotted with the ggnet2 function in ggnet 0.1.0 (Briatte, 2025). Nodes were
coloured by Phylum, and size was based on mean abundance per species.

3.3.6.4.2 Network analysis of metagenomic functional genes

Networks were constructed exactly as described above but using Metagenomic
functional genes (eggNOG genes) instead of metagenomic species.
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3.4 Results

3.4.1 GM diversity

3.4.1.1 16S rRNA metabarcoding diversity

GM alpha diversity (Shannon diversity or richness) was not significantly associated
with MHC-I or MHC-II diversity (Table 3.1A, Table S3.1A & S3.2A & S3.3A). The
presence of the MHC-I allele Ase-ua 11 - but no other MHC allele - was significantly
positively associated with 16S richness (Table 3.1B, Table S3.1B & S3.2B & S3.3B).
No alleles were associated with Shannon diversity.

129



Table 3.1. The relationship between gut microbiome alpha diversity (richness) and variation in host (A) Major histocompatibility complex (MHC)
diversity and (B) the presence/absence of specific MHC alleles in adult Seychelles warblers. Generalised linear mixed models with a negative
binomial distribution were used for 16S ASV diversity (N = 253 samples from 149 individuals) and metagenomics taxonomy diversity (N = 99
samples, 57 individuals), and linear mixed models were used for metagenomics functional diversity (N = 99 samples, 57 individuals). Reference
categories for categorical variables were as follows: Female (sex), winter (season), 2017 (Sample year), and absent (in all MHC alleles).
Significant (P < 0.05) variables are shown in bold. Shannon diversity results are similar and shown in Supplementary Table S3.1.

S 16S ASV diversity Metagenomics taxonomic diversity Metagenomics functional diversity

Est‘ SE| z’ P Est| SE| z‘ P Est‘ SE‘ t‘ P
A) MHC Diversity
(Intercept) 5.37 0.32 16.82 < 0.001 3.23 0.70 4.62 < 0.001 1.06 0.45 2.39 0.02
Heterozygosity -0.19 0.21 -0.93 0.35 0.43 0.43 1.02 0.31 -0.13 0.28 -0.46 0.65
MHC-I Diversity 0.04 0.03 1.26 0.21 -0.01 0.06 -0.18 0.85 0.07 0.04 1.60 0.12
MHC-II Diversity -0.01 0.04 -0.23 0.82 -0.14 0.08 -1.83 0.07 -0.02 0.06 -0.26 0.79
Age -0.02 0.02 -1.28 0.20 -0.04 0.03 -1.12 0.26 -0.04 0.02 -2.07 0.04
Season (summer) 0.04 0.12 0.30 0.76 0.19 0.22 0.90 0.37 -0.04 0.14 -0.26 0.79
Sex (male) -0.22 0.09 -2.51 0.01 0.15 0.17 0.90 0.37 -0.04 0.12 -0.31 0.76
Days at 4°C -0.01 0.09 -0.05 0.96 0.02 0.19 0.13 0.90 -0.07 0.10 -0.63 0.53
Time of day 0.02 0.08 0.19 0.85 0.26 0.18 1.46 0.15 -0.06 0.10 -0.60 0.55
Sample Year (2018) -0.03 0.13 -0.27 0.79 0.01 0.27 0.05 0.96 0.13 0.16 0.84 0.40
Sample Year (2019) 0.14 0.16 0.87 0.39 -0.29 0.37 -0.79 0.43 -0.03 0.21 -0.13 0.90
Sample Year (2020) 0.48 0.21 2.29 0.02 -0.02 0.45 -0.05 0.96 0.08 0.26 0.31 0.76
Sample Year (2021) 0.21 0.16 1.32 0.19 0.00 0.37 -0.01 0.99 0.07 0.20 0.33 0.75
Sample Year (2022) 0.14 0.16 0.88 0.38 0.45 0.31 1.44 0.15 0.31 0.18 1.70 0.09
Sample Year (2023) 0.08 0.36 0.22 0.83 -0.05 0.21 -0.25 0.81
B) Presence/absence of MHC alleles
(Intercept) 5.66 0.33 17.37 <0.001 3.24 0.29 11.15 < 0.001 1.24 0.17 7.41 <0.001
Heterozygosity -0.09 0.21 -0.42 0.68




Ase-dab3

Ase-dab4

Ase-dab5

Ase-ual

Ase-ua3

Ase-uad

Ase-ua5

Ase-uab

Ase-ua’

Ase-ua8

Ase-ua9

Ase-uall

Age

Season (summer)
Sex (male)

Days at 4°C

Time of day

Sample Year (2018)
Sample Year (2019)
Sample Year (2020)
Sample Year (2021)
Sample Year (2022)
Sample Year (2023)

0.29
-0.27
0.18
0.12
-0.11
-0.19
-0.09
-0.18
-0.16
-0.04
-0.07
0.38
-0.03
0.04
-0.25
-0.03
0.08
-0.06
0.09
0.42
0.21
0.12

0.15
0.15
0.16
0.18
0.19
0.14
0.18
0.17
0.20
0.14
0.17
0.18
0.02
0.12
0.09
0.09
0.08
0.12
0.16
0.21
0.16
0.15

1.95
-1.76
1.15
0.64
-0.60
-1.37
-0.52
-1.04
-0.80
-0.29
-0.39
2.07
-1.63
0.31
-2.88
-0.33
0.92
-0.45
0.56
2.02
1.30
0.79

0.05
0.08
0.25
0.52
0.55
0.17
0.60
0.30
0.43
0.78
0.70
0.04
0.10
0.75
<0.001
0.75
0.36
0.65
0.58
0.04
0.19
0.43

0.00
-0.06
0.09
0.12
-0.03
0.27
0.08
-0.13
-0.08
0.14
0.57
0.29

0.16
0.03
0.22
0.17
0.19
0.18
0.28
0.37
0.46
0.37
0.32
0.37

0.01
-1.67
0.42
0.75
-0.16
1.48
0.30
-0.35
-0.18
0.38
1.79
0.78

0.99
0.10
0.68
0.45
0.88
0.14
0.76
0.73
0.86
0.71
0.07
0.43

0.05
-0.05
-0.01
-0.08
-0.07
-0.05

0.13
-0.05

0.08

0.10

0.34
-0.05

0.11
0.02
0.13
0.11
0.10
0.10
0.16
0.21
0.26
0.20
0.18
0.21

0.44
-2.38
-0.10
-0.73
-0.68
-0.52

0.85
-0.22

0.31

0.50

1.86
-0.23

0.66
0.02
0.92
0.47
0.50
0.61
0.40
0.83
0.76
0.62
0.07
0.82
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3.4.1.2 Metagenomic taxonomic diversity

Taxonomic alpha diversity (Shannon diversity or richness) calculated using shotgun
metagenomics data was not associated with MHC-I or MHC-II diversity (Table 3.1A,
Table S3.1A & S3.2A & S3.3A), nor with the presence/absence of Ase-ua 11 (the
MHC variant identified in the 16S analysis above (Table 3.1B, Table S3.1B & S3.2B
& S3.3B)).

3.4.1.3 Metagenomic functional diversity

Functional alpha diversity (Shannon diversity or richness) of gene annotations
derived from shotgun metagenomics data was not associated with MHC-I or MHC-
Il diversity (Table 3.1A, Table S3.1A & S3.2A & S3.3A) nor with Ase-ua 11 (Table
3.1B, Table S3.1B & S3.2B & S3.3B).

3.4.2 GM composition

3.4.2.1 16S rRNA metabarcoding composition

16S GM composition was associated with both a quadratic function of MHC-I
diversity and of MHC-II diversity (Table 3.2A, Figure 3.1A-B). It was also associated
with season, sample year, days at 4°C, and time of day (Table 3.2A) but not with

genome-wide heterozygosity, age, and sex.



Table 3.2. PERMANOVA analyses of gut microbiome composition in relation to individual major histocompatibility complex (MHC) characteristics
in adult Seychelles warblers. Performed using Euclidean distance matrices of CLR-transformed abundances of (I) 16S amplicon sequencing
variants (ASV) composition, (II) metagenomic taxonomic composition, (lll) metagenomic functional gene composition categories. Separate
models included (A) MHC diversity and (B) the presence/absence of MHC alleles. Significant predictors (p<0.05) are in bold. N=253 samples
from 149 individuals were included in the 16S metabarcoding analyses. N=99 samples from 57 individuals were used for analyses of
metagenomic taxonomic and functional composition. Bird ID was included as a blocking factor.

ety (I) 16S ASV composition (1) Metagenomics taxonomic composition | (llI) Metagenomics functional gene composition
df R? F p| df R? F p df R? F p

A) MHC Diversity
Heterozygosity 1 0.003 0.719 0.067 1 0.008 0.797 0.030 1 0.015 1.485 0.052
MHC-I Diversity 1 0.003 0.919 0.007 1 0.010 1.034 0.626 1 0.014 1.423 0.045
MHC-| Diversity"2 1 0.004 0.951 0.006 - -
MHC-II Diversity 1 0.003 0.839 0.036 1 0.009 0.925 0.034 1 0.011 1.069 0.642
MHC-II Diversity"2 1 0.003 0.913 0.028 - -
Age 1 0.003 0.918 0.930 1 0.015 1.625 0.528 0.010 0.976 0.893
Season 1 0.007 1.955 <0.001 1 0.019 1.995 0.001 1 0.014 1.368 0.155
Sample Year 5 0.038 2.023 <0.001 6 0.085 1.492  <0.001 6 0.063 1.044 0.202
Sex 1 0.003 0.914 0.870 1 0.012 1.228  <0.001 1 0.012 1.206 0.185
Days at 4°C 1 0.010 2.618 0.008 1 0.011 1.116 0.494 1 0.014 1.394 0.015
Time of day 1 0.010 2.525 0.001 1 0.017 1.773  <0.001 1 0.013 1.325 0.168
B) Presence/absence of MHC alleles
Heterozygosity 1 0.003 0.679 0.246 - -
Ase-dab3 1 0.004 1.004 0.999 - -
Ase-dab4 1 0.003 0.894 0.371 - -
Ase-dab5 1 0.004 0.991 0.740 - -
Ase-ual 1 0.004 1.107 0.084 - -
Ase-ua3 1 0.004 0.934 1.000 - -




Ase-ua4d
Ase-ua5
Ase-uab
Ase-ua’7
Ase-ua8
Ase-ua9
Ase-uall
Age
Season
Sample Year
Sex

Days at 4°C
Time of day

[ N S = S i e N Y

0.005
0.004
0.003
0.004
0.006
0.003
0.007
0.004
0.007
0.038
0.003
0.010
0.009

1.273
0.986
0.873
1.150
1514
0.899
1.743
0.937
1.966
1.986
0.889
2.543
2.401

0.876
0.048
0.185
0.010
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16S GM composition was associated with the MHC-| variants, Ase-ua 5, Ase-ua 7,
and Ase-ua 9 (Table 3.2B, Figure 3.1C-E), and also season, sample year, days at
4°C, and time of day (Table 3.2B), but not genome-wide heterozygosity, age, and
sex. Despite these significant associations between GM composition and MHC
variation, the overall effect sizes were small across all MHC variables (R?<0.4%,

Table 3.2, Figure 3.1).
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Figure 3.1. Principal Component Analyses (PCA) of gut microbiome compositional
variation determined using 16S rRNA metabarcoding of adult Seychelles warbler
faecal samples in relation to (A) MHC-I diversity, (B) MHC-II diversity, and the
presence/absence (1/0) of (C) MHC-I allele Ase-ua 5, (D) MHC-I allele Ase-ua 7,
(E) MHC-I allele Ase-ua 9. N=253 from 149 birds. Large diamonds represent the
group centroids. For clarity, samples were grouped into discrete categories for
plotting. In plots A-B, the coloured points represent low (green), medium (blue), and
high (red) MHC diversity. In plots C-E, blue = absence, red = presence of the allele.
Ellipses of 95% confidence intervals of each group are drawn around the points.
Principal components 1 and 2 explained 14.1% and 4% of the variation in gut

microbiome structure, respectively.

3.4.2.2 Metagenomic taxonomic composition

Variation in GM metagenomic taxonomic composition was associated with genome-
wide heterozygosity and MHC-II diversity, but not MHC-I diversity (Table 3.2A,

Figure 3.2A-B). Of the control variables, sex, sample year, and time of day were



associated with metagenomics taxonomic composition (Table 3.2A), but age,

season, and days at 4°C were not.

When assessing MHC variants identified in the 16S analysis, GM metagenomic
taxonomic composition was associated with the presence of MHC-I Ase-ua 7 (Table
3.2B, Figure 3.2C) but not Ase-ua 5 and Ase-ua 9. Sex, season, sample year, and
time of day were also associated with metagenomic taxonomic composition (Table
3.2B), but age and days at 4°C were not. Despite significant differences in GM
composition, the overall effect sizes were small across all MHC variables (R?<0.9%,
Table 3.2, Figure 3.2).
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Figure 3.2. Principal Component Analyses (PCA) of gut microbiome metagenomic
taxonomic compositional variation of Seychelles warbler faecal samples in relation
to (A) genome-wide heterozygosity, (B) MHC-II diversity, and (C) MHC-I allele Ase-
ua 7. N=99 from 57 birds. Large diamonds represent the group centroids. For clarity,
samples were grouped into discrete categories for plotting. In plots A and B, the
coloured points indicate low (green), middle (blue), and high (red) genome-wide
heterozygosity (Heterozygosity) and MHC-II diversity, respectively. In plot C, blue =
absence (0) and red = presence (1) of Ase-ua 7. Ellipses of each group are drawn
around the points.
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3.4.2.3 Metagenomics functional composition

Functional GM composition was significantly associated with increasing individual
MHC-I diversity (Table 3.2A, Figure 3.3) and with days at 4°C (Table 3.2A).
However, genome-wide heterozygosity, MHC-II diversity and all other control
variables (age, sex, season, sample year, and time of day) were not (Table 3.2A).

Functional GM composition was not significantly associated with the MHC alleles
Ase-ua 5, Ase-ua 7, and Ase-ua 9 identified in the 16S analysis above (Table 3.2B).
Functional GM composition was associated with days stored at 4°C (Table 3.2B),
but not with any other control variables (age, sex, season, sample year, time of day)
(Table 3.2B). Despite significant differences in GM composition, the overall effect
sizes were small across all MHC variables (R?<1.4%, Table 3.2, Figure 3.3), but the

MHC-I1 diversity effect size is the largest among GM compositional analyses.
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Figure 3.3. Principal Component Analyses (PCA) of gut microbiome compositional
variation determined using metagenomics function with MHC-I diversity in the gut
microbiome of Seychelles warblers (n = 99 from 57 birds). Large diamonds
represent the group centroids. For clarity, samples were grouped into discrete
categories for plotting. The coloured points represent the count <4 (green), 4-6
(blue), and 7 (red) of MHC-I diversity. Principal components 1 and 2 explained
18.3% and 8.6% of gut microbiome structure, respectively.
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3.4.3 Differential abundance analysis

3.4.3.1 Differential abundance of metagenomic taxonomic species

The abundance of some individual bacterial species (identified using
metagenomics) varied in relation to MHC characteristics (Figure 3.4AB); the
abundance of Enterococcus casselifavus decreased, and Microbacterium enclense
increased with increasing MHC-I diversity (Figure 3.4A). The abundance of
Lactococcus lactis decreased, and the abundance of Staphylococcus lloydii
increased with increasing MHC-I1I diversity (Figure 3.4B).

The abundances of four bacterial species were significantly associated with the
presence/absence of the MHC-I allele Ase-ua 7 (identified as associated with GM
taxonomy composition), i.e. there was decreased prevalence of Enterococcus
casselifavus and Gordonia sp OPL2, and an increased prevalence of Escherichia
coli and Vulcaniibacterium thermophilum, when Ase-ua 7 was present (Figure 3.4C).
The abundance of bacterial species was not significantly related to host genome-

wide heterozygosity (Figure 3.4D).
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Figure 3.4. Differential abundance of metagenomically identified bacterial species
in adult Seychelles warblers according to host (A) genome-wide heterozygosity, (B)
MHC-I1 diversity, (C) MHC-II diversity, and (D) presence of MHC-I Ase-ua 7 (n=99
from 57 birds). Points represent bacterial species and are coloured according to
significance; green points (with species-level taxonomic annotations) are
significantly differentially abundant (p<0.05), and grey points are not.

3.4.3.2 Differential abundance of metagenomic functional genes

Abundances of 24 GM functional gene annotations differed significantly in relation
to individual host MHC-I diversity (Table S3.4, Figure 3.5A). In total, 9 GM genes

increased in abundance and 15 genes decreased in abundance with increasing
MHC-I diversity.
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The 24 gene annotations were derived from 13 functional gene categories (defined
by Cluster of Gene Orthologs (COG)). With increasing MHC-I diversity, two COG
categories only increased in prevalence, four COG categories increased and
decreased in prevalence, and seven COG categories only decreased in prevalence
(Figure 3.5B). Five of the seven COG categories that only decreased in prevalence
are involved in bacterial metabolism. In addition, one GM functional gene annotation

(COG1216) increased in prevalence with increasing genome-wide heterozygosity.

The KEGG pathways of MHC-I diversity associated genes (Table S3.4) further
support the findings, as core microbial function pathways decreased in prevalence;
Carbohydrate metabolism (K01885, K01886, K01652, K06131, K01115), lipid
metabolism (K00666), amino acid metabolism (K00852, K00847, K00874),
transcription (K03043, K02335, K04799), translation (K08832, K15409), and
replication and repair (K03581, K04043, K03283) (Table S3.4). In addition, MHC-I
diversity was positively associated with KEGG pathways involved in environmental
defence or stress adaptation (K02004, K18138, K09800, K04763; Table S3.4).

Three GM functional gene annotations were differentially abundant with increasing
MHC-I1I diversity: decreased in COG0318 (K0O0666 — fatty-acyl-CoA synthase), and
increased in COG1609 (K02529 — Lacl family transcriptional regulator, galactose
operon repressor) and COG1653 (K02027 — multiple sugar transport system

substrate-binding protein).
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Figure 3.5. Variation in the abundance of bacterial functional genes (determined
using eggNOG) in the gut microbiome of adult Seychelles warblers in relation to
individual MHC-I diversity (n=99 from 57 birds). (A) The results of an ALDEXx2
differential abundance test showing the log fold change in abundance of each
eggNOG gene annotation with increasing MHC-I diversity. Blue points are
significantly (p<0.05) more abundant, red points are significantly (p<0.05) less
abundant, and grey points do not differ significantly with MHC-I diversity. Labels on
significant points represent eggNOG members. (B) Counts of functional genes per
eggNOG category that demonstrated a significant positive (blue) or negative (red)
log fold change with increasing MHC-I1 diversity, respectively.

3.4.4 Network analysis

3.4.4.1 Network analysis of metagenomic taxonomic species

The metagenomic taxonomic species network had a higher number of connected
nodes and edges in low MHC-I diversity (19 nodes, 13 edges) compared to high (2
nodes, 1 edge) MHC-I diversity individuals (Figure 3.6AB). The average number of
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edges per connected node was also higher in low (mean = 1.4 edges per node) than
in high MHC-I diversity (mean = 1.0 edges per node). Modularity was 0.82 in low
MHC-I diversity, but zero in high MHC-I diversity due to only having one edge. The
ratio of negative to positive edges in low MHC-I diversity was 0.3; there was only a
single positive edge and no negative edges in MHC-I diversity. This shows that the
metagenomic taxonomic species network is more fragmented in high MHC-I
diversity individuals than in low MHC-I diversity individuals.

In relation to MHC-II diversity, the metagenomic taxonomic species network had a
higher number of connected nodes in low (14 nodes) than in high (10 nodes) MHC-
Il diversity individuals (Figure 3.6CD). However, the number of edges did not differ
between low (8 edges) and high (8 edges) MHC-II diversity (Figure 3.6CD). The
average number of edges per connected node was lower in low (mean = 1.1 edges
per node) than in high (mean = 1.6 edges per node) MHC-II diversity. Modularity
was also higher in low (0.81) than in high (0.59) MHC-II diversity. The ratio of
negative to positive edges was 0.33 in low MHC-I1I diversity and was 0.14 in high
MHC-I1I diversity. This shows that the metagenomic taxonomic species network of
individuals with high MHC-II diversity is slightly more fragmented and has weaker

connections than in individuals with low MHC-II diversity.
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Seychelles warblers (n=99 from 57 birds). Each node represents A-D) metagenomic
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taxonomic species or E-H) metagenomic functional genes. ABEF) MHC-I diversity,
CDGH) MHC-II diversity, ACEG) low MHC diversity, BDFH) high MHC diversity.
Nodes (species/genes) are coloured by A-D) Phylum and E-H) functional category.
The size of the nodes is proportional to the mean abundance. Lines are edges
(interaction between species/genes), connecting nodes that are linked.

3.4.4.2 Network analysis of metagenomic functional genes

The metagenomic functional genes network had a higher number of connected
nodes and edges in individuals with low MHC-I (76 nodes, 87 edges) than high
MHC-1 (56 nodes, 44 edges) diversity (Figure 3.6EF). The average number of edges
per connected node was also higher in low MHC-I (mean = 2.3 edges per node)
than in high MHC-I diversity (mean = 1.6 edges per node). Modularity was lower in
low MHC-1 (0.72) than in high (0.85) MHC-I diversity. The ratio of negative to positive
edges was 0.45 in low MHC-I diversity and 0.19 in high MHC-I diversity. This shows
that the metagenomically derived functional genes network is more fragmented in
high MHC-I1 diversity individuals, but has stronger connections than in low MHC-I

diversity individuals.

In relation to MHC-II diversity, the metagenomic functional genes network had a
higher number of connected nodes and edges in low (74 nodes, 83 edges) than in
high MHC-II diversity individuals (55 nodes, 62 edges) (Figure 3.6GH). The average
number of edges per connected node was very similar between low (mean = 2.2
edges per node) and high (mean = 2.3 edges per node) MHC-II diversity individuals.
Modularity was also higher in low (0.76) than in high (0.65) MHC-II diversity
individuals. The ratio of negative to positive edges was 0.26 in low MHC-II diversity
and was 0.44 in high MHC-II diversity. This suggests that the metagenomic
functional genes network of high MHC-II diversity individuals is more fragmented

and has weaker connections than in low MHC-II diversity individuals.
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3.5 Discussion

Our study shows that in adult Seychelles warblers, there was no association
between GM diversity (characterised by either 16S ASV or metagenomics) and
MHC diversity, though one specific MHC variant (MHC-I allele Ase-ua 11) was
associated with 16S GM richness but not metagenomic GM diversity. However, GM
composition (16S and metagenomic-derived) was associated with MHC diversity.
The 16S GM composition was associated with MHC-I and MHC-II diversity in a non-
linear (quadratic function) manner, and with the MHC-I alleles Ase-ua 5, Ase-ua 7,
and Ase-ua 9. The metagenomic taxonomic composition was associated with MHC-
Il diversity and the MHC-I allele Ase-ua 7. Furthermore, the functional composition
of the GM (metagenomically derived) was associated with MHC-I diversity.
Additionally, two metagenomic bacterial species were differentially abundant with
increasing MHC-I and MHC-I1 diversity, and four bacterial species differed in relation
to the presence/absence of MHC-I allele Ase-ua 7. Furthermore, 24 were
differentially abundant with increasing MHC-I diversity (driving increases in microbial
defence mechanisms and decreases in microbial metabolism) and three with
increasing MHC-II diversity. Network analysis showed that high (compared to low)
MHC-I1 diversity was associated with greater fragmentation in both taxonomic and
functional GM structure, higher modularity, and a lower negative-to-positive
interaction ratio, indicating fewer but strongly interconnected nodes in high MHC-I
diversity individuals. In contrast, individuals with high MHC-II diversity were
associated with slightly more fragmentation, lower modularity, and a higher

negative-to-positive interaction ratio, suggesting fewer and weaker connections.

Consistent with previous findings on the Seychelles warbler, we found that MHC
diversity (either class-I or class-Il) was not significantly associated with GM diversity
(Davies et al., 2022; Worsley et al., 2022). This contradicts results found in other
wild populations (Bolnick et al., 2014; Hernandez-Gomez et al., 2018; Leclaire et
al., 2019; Uren Webster et al.,, 2018). For example, in giant salamanders
(Cryptobranchus alleganiensis bishopi and C. a. alleganiensis) and sticklebacks
(Gasterosteus aculeatus), increasing MHC allelic diversity is correlated with
increases and decreases in overall skin microbiome diversity, respectively (Bolnick
et al., 2014; Hernandez-Gomez et al., 2018). Given that the Seychelles warblers
had a recent population bottleneck (<50 individuals in the 1960s, Spurgin et al.,

2014), the MHC is less diverse than similar species (Richardson & Westerdahl,
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2003), and may therefore have a reduced impact on the GM diversity. However, the
MHC region in the Seychelles warblers maintains considerable variation despite the
population bottleneck (Richardson & Westerdahl, 2003). Thus, the MHC and GM
diversity association may be host-species dependent, regardless of overall MHC

variation levels.

In contrast to the GM diversity results, shifts in GM composition (both 16S and
metagenomic) were associated with MHC characteristics. An association between
MHC-I1I diversity and GM taxonomic composition, as seen in our study, has been
shown multiple times in captive and wild systems (see review (Roland et al., 2020)).
In our study, only two bacterial species were differentially abundant (increased
Staphylococcus loydii and decreased Lactococcus lactis). There is evidence of
Lactococcus lactis causing detrimental infections in avian species (Goyache et al.,
2001), but it has also been used as a probiotic for broiler chickens (Gallus gallus
domesticus) (Boodhoo et al., 2023; Navale et al., 2024). Staphylococcus loydii
hasn’t been observed to cause infections in any species. These results may suggest
that in the Seychelles warblers, increasing MHC-II diversity may suppress
pathogenic species. In addition, the MHC-I allele Ase-ua 7 was significantly
correlated with GM composition, consistent with previous work on this population
(Davies et al., 2022). Ase-ua 7 was associated with decreases in Enterococcus
casselifavus and Gordonia sp OPL2, (gram-positive bacteria), but increased
prevalence of the gram-negative bacteria, Escherichia coli and Vulcaniibacterium
thermophilum, (Larke-Mejia et al., 2020; Lim et al., 2010; Niu et al., 2020; Yoshino,
2023). The World Health Organization (WHO) priority list of pathogens primarily
consists of Gram-negative bacteria (Breijyeh et al., 2020). Therefore, we speculate
that the effect of Ase-ua 7 on GM composition could be based on microbial cell wall
structure and could be important in controlling pathogens. Indeed, during
inflammation, MHC expression was upregulated in the small intestinal stem cells of

humans and mice (Mus musculus) (Heuberger et al., 2021).

In our study, the effects of MHC-II diversity and the MHC-I allele Ase-ua 7 on
taxonomic GM are relatively small (two and four, out of 49, core species were
differentially abundant, respectively). Such limited effects have also been found in
the few previous similar studies, with the MHC variations influencing only a very

small number of bacterial species rather than the overall composition (Bolnick et al.,
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2014; Montero et al., 2021; Worsley et al., 2022). This small taxonomic effect could
explain why both MHC-II diversity and MHC-I allele Ase-ua 7 were not significantly
associated with metagenomic function (see below). As only a few species are
influenced, other microbes may replace their function through functional redundancy
(Loucaetal., 2018; Worsley, Mazel, et al., 2024). Although network analyses of both
taxonomic and functional GM revealed that high MHC-II diversity was associated
with greater fragmentation, lower modularity, and a higher negative-to-positive
interaction ratio, these differences were less pronounced than those observed for
MHC-I diversity. This further supports the conclusion that MHC-II diversity has a
relatively small effect on the gut microbiome.

In contrast, the diversity of MHC-I alleles (but not class-Il) did appear to influence
GM functional differences (determined metagenomically), with higher MHC-I
diversity leading to the presence of an increased number of microbial defence
genes, whilst decreasing the number of metabolism-related genes. This is further
shown in network analysis, where taxonomic and functional microbial networks
appear more fragmented in individuals with high MHC-I diversity, indicating reduced
microbial interactions. These patterns may reflect increased microbial competition
or immune-mediated disruption under high MHC-I diversity. In addition, high MHC-
diversity also had higher modularity, suggesting higher resilience to environmental
perturbations (Coyte et al., 2022; Fabbrini et al., 2023), which supports the findings
of increased genes involved in defence in our study. Trade-offs between defence
and growth are common (although not ubiquitous) in microbial species (Ferenci,
2016; Liu et al., 2024). Our results suggest that these microbial trade-offs can also
amount to costs for the host, whereby control of the microbiome (via the immune
system) can resultin a reduction in the GM’s metabolic potential. Presumably, these
costs may be outweighed by the benefits of eliminating pathogens and maintaining
a healthy microbiome (Gillingham et al.,, 2025; Metcalf & Koskella, 2019).
Quantifying the relative costs and benefits of maintaining a dynamic microbiome
remains largely unexplored but is essential for understanding how host-microbiome
interactions, and host control mechanisms (including the immune system) evolve
(Gillingham et al., 2025; Metcalf & Koskella, 2019; Wilde et al., 2024).

Overall, our study indicates that MHC-I, not the MHC-II, plays a greater role in

shaping the GM, both taxonomically and functionally. This is consistent with
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previous findings in the Seychelles warbler (Davies et al., 2022; Worsley et al.,
2022), as well as in the reddish-gray mouse lemur (Microcebus griseorufus)
(Montero et al.,, 2021). MHC-I molecules encode receptors that typically act
intracellularly, while MHC-II receptors interact extracellularly, therefore, one would
think that the class-Il receptors should have greater interaction with and influence
over gut microbes (Rock et al., 2016). However, the mechanisms by which MHC-I
alleles and diversity influence the GM functions remain unclear. MHC-I receptors
can be triggered by bacteriophages (Bazan et al., 2012), which play an important
role in shaping bacterial composition (Hughes & Yeager, 1998). Future work on host
MHC and the gut virome in the Seychelles warbler could help understand the
mechanisms behind how MHC-I affect GM composition. It is still surprising to have
detected less of an effect of the extracellular-acting MHC-1l on the GM (Rock et al.,
2016; Roland et al., 2020). However, spatial segregation of microbes and epithelial
cells, suppression of the hostimmune system, and peripheral tolerance (elimination
of self-reactive immune cells) could be potential mechanisms in maintaining a

mutualistic relationship between the host and the GM (Roland et al., 2020).

In the Seychelles warblers, MHC-I diversity has been positively correlated with both
survival and reproductive success (Brouwer et al., 2010; Richardson et al., 2005;
Richardson & Westerdahl, 2003). In the current study, we also found that MHC-I
diversity was associated with GM metagenomics function. It is plausible that MHC-
| diversity affects the GM functionality by controlling mutualistic bacteria, indirectly
influencing host survival. However, MHC-I variation could affect other components
of the host’s overall health, indirectly leading to differences in the GM function.
Consequently, multiple mechanisms may be involved in the relationship between

MHC-I1 diversity and individual differences in the GM.

An individual’s sex and genome-wide heterozygosity, independent of MHC
variation, were also associated with shifts in GM metagenomic species. However,
these changes were not detectable in terms of 16S ASVs and metagenomics
function, which indicates that the changes are species/strain specific and do not
influence microbial function. This result is reinforced by the fact that no common
species were differentially abundant with increasing levels of genome-wide
heterozygosity. Various other variables including sample year, season, and time of

day, were also predictors of 16S ASVs and metagenomic species, but not
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metagenomic function. The fact that so many factors affect the species present in
the GM, but not the overall GM functionality is likely attributed to functional
redundancy, as the types of environmental microbes change with time, the overall
GM function is replaced by other microbes (potentially due to changes in diet),
thereby preserving the overall GM function (Louca et al., 2018; Worsley, Mazel, et
al., 2024).

Interestingly, the number of days stored at 4°C was associated with shifts in
metagenomics function but not 16S ASVs and metagenomic species. Larger DNA
fragments degrade quicker in storage, and these larger DNA fragments are required
for accurate gene recognition and gene annotation, as these steps require a start
codon followed by an open reading frame (Hyatt et al., 2010). Whereas smaller DNA
fragments may still be sufficient for accurate taxonomic assignments in both 16S
ASV and metagenomic species, as specific marker genes are typically used for
taxonomic annotations (Blanco-Miguez et al., 2023; Parks et al., 2022).

One limitation of our study on this wild population of Seychelles warbler is that it is
purely correlative, and we are unable to validate our findings experimentally.
Nonetheless, our findings in both datasets (16S and metagenomic methods) are
comparable despite the smaller sample size in the metagenomic work. Future
experimental work in more amenable study systems could investigate potential
pathways by which host MHC-I diversity and alleles may affect the GM, for example
by introducing immune-triggering bacteriophages and measuring their impact on the
gut bacteriophage and bacteria community. (Gonzalez-Mora et al., 2020; Wan et
al., 2001). However, such experiments are likely lab-based and the GM would be
radically altered (van Leeuwen et al., 2020), hence the generalisation to natural
populations would be limited. A further limitation of our study is that it lacks gene
expression data for the MHC and the GM. Therefore, the functional relevance is only
on the DNA level, reflecting potential rather than actual function of the MHC and
GM. However, in the bottlenecked Seychelles warbler population, the few remaining
MHC alleles are highly divergent, preventing further reduction into functional
supertypes (Davies et al., 2022; Richardson & Westerdahl, 2003; Wright et al.,
2016). Future research could use transcriptomics and proteomics to quantify both
MHC and GM function. The lack of expression data could plausibly explain the

modest effect sizes in this study as a locus could be present but not expressing. In
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addition, although multiple studies have found that MHC is associated with the
microbiome (Bolnick et al., 2014; Hernandez-Gémez et al., 2018; Leclaire et al.,
2019; Uren Webster et al., 2018), the host regulation of the GM may be more directly
shaped by innate immunity, such as by toll-like receptors, NOD-like receptors or
defensins (Wilde et al., 2024). However, a previous study in the Seychelles warbler
found no associations between toll-like receptor 3 (variation at which influences host
survival in this species) and the GM alpha diversity or composition (Davies et al.,
2022). Therefore, while the MHC may only explain a limited amount of variation in
the GM (as shown in this study and (Davies et al., 2022; Worsley et al., 2022)), this

variation may still be important.

We found an association between three MHC-I alleles and GM 16S taxonomy, but
only one MHC-I allele Ase-ua 7 was associated with GM metagenomic taxonomy,
none with GM function. The lack of associations in metagenomic dataset may be
due to the limited sample size, constraining our ability to assess all other MHC
alleles. To robustly assess all 12 MHC alleles and to include seven essential control
variables in the same model, we would need at least 190 samples from different

individuals (10 samples per variable, (Kelly et al., 2015)).

Despite reporting several associations between MHC characteristics and the GM,
our study is limited to only assessing genome-wide heterozygosity and the specific
MHC candidate alleles we had already screened for. A genome-wide association
study on the host and its GM could reveal more loci, and potentially more nuanced
or polygenic effects by accounting for multiple genes concurrently (Xiang et al.,
2024). However, this requires whole-genome data on a large number of individual
birds, in combination with metagenomic sequencing of their GM, which would be
very costly and labour-intensive (La Reau et al., 2023; Yoshida et al., 2019).
Leveraging a sequencing approach that targets specific individuals and utilises
recent technological advances, such as the imputation of low-coverage samples,
could be a feasible way to conduct such studies (Yoshida et al., 2019). In the same
vein, while heterozygosity measured using 30 neutral microsatellite loci does reflect
genome-wide heterozygosity/inbreeding in this species (Spurgin et al.,, 2014),
whole-genome sequencing of individuals would be a more accurate measure. It

would enable us to determine runs of homozygosity, and thus provide the resolution
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needed for a powerful investigation of the effect of host inbreeding on the GM
(Ceballos et al., 2018).

In conclusion, our study suggests that both MHC class | and Il influence an
individual’s GM in the Seychelles warbler, but that despite being an intracellular
receptor, MHC-I has a greater influence on GM composition, than MHC-II. We also
found that MHC-I allele Ase-ua 7 changes the GM taxonomic composition, while
MHC-I1 diversity alters GM function. These results may explain previous findings that
MHC-I diversity is positively correlated with fitness in this population (Brouwer et al.,
2010; Richardson et al., 2005), potentially as a result of inducing changes in the GM
functionality. GM functional network analyses further support the increased GM
resilience with high MHC-I diversity, which could be important for host health
(Fassarella et al., 2021). However, this could be an indirect effect, rather than the
GM actively contributing to increased fitness. Various pathways are involved in
regulating the immune system, underscoring the need for host and gut
transcriptomics and metabolomic data to enable mechanistic investigation of

immunogenetics and the GM (Eshleman et al., 2023; Roland et al., 2020).
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3.7 Supplementary material

Table S3.1. The relationship between gut microbiome alpha diversity (Shannon) and variation in host (A) MHC diversity and (B) the
presence/absence of specific MHC alleles in Seychelles warblers. Linear mixed models were used for all models. N = 253 samples from 149
individuals in 16S ASV diversity and N = 99 samples from 57 individuals in metagenomic taxonomy diversity and functional diversity. Reference
categories for categorical variables were as follows: Female (sex), winter (season), 2017 (Sample year), and absent (0) in all MHC alleles.
Significant (P < 0.05) variables are shown in bold.

Model Predictor 16S ASV Shannon Metagenomics Taxonomy Shannon Metagenomics Functional Shannon

Est]| SE] df | t] P Est| SE | df | t ] P Est | SE | df | t] P

(Intercept) 3.256 0.609 151.658 5.344 <0.001 0.707 0.843 51.987 0.838 0.406 810.308 458.228 63.471 1.768 0.082
Heterozygosity 0.035 0.400 127.858 0.087 0.931 0.549 0.529 43.259 1.039 0.304 84.219 284505 56.648 0.296 0.768
MHC-I Diversity 0.043 0.059 126.354 0.726 0.470 0.056 0.079 39.364 0.705 0.485 18.886 41.001 47.343 0.461 0.647
MHC-II Diversity -0.038 0.085 107.453 -0.444 0.658 | -0.106 0.101 36.388 -1.043 0.304 -8.708 54.004 49.176 -0.161 0.873

%‘ Age -0.026 0.034 167.775 -0.742 0.459 | -0.015 0.040 54.211 -0.383 0.703 -41.418 22.222 64.476 -1.864 0.067
’Q Season -0.152  0.218 232.175 -0.698 0.486 0.002 0.246 81.629 0.007 0.994 147.236 147.488 69.650 0.998 0.322
& Sex -0.276  0.164 116.709 -1.677 0.096 0.204 0.217 37.363 0.941 0.353 4794 113.824 47.563 0.042 0.967
(®) Days in fridge -0.084 0.177 237.601 -0.475 0.635| -0.235 0.191 65.090 -1.232 0.222 30.756 124.123  75.900 0.248 0.805
g Catch Time -0.023 0.159 238.584 -0.145 0.885 0.112 0.188 74.829 0.594 0.554 79.915 117.418 78.638 0.681 0.498
z SampleYear2018 0.168 0.237 232.771 0.710 0.478 0.216 0.299 81.766 0.721 0.473 95.562 172.637 76.217 0.554 0.582

SampleYear2019 | -0.092 0.306 238.742 -0.301 0.764 | -0.188 0.397 79.019 -0.473 0.637 90.988 238.156 78.404 0.382 0.704
SampleYear2020 0.488 0.393 232913 1.243 0.215 0.353 0.482 75.198 0.733 0.466 -75.215 292.792 78.329 -0.257 0.798
SampleYear2021 | -0.179 0.300 238.987 -0.597 0.551 0.074 0.375 67.298 0.198 0.844 84.213 237.966  75.655 0.354 0.724
SampleYear2022 0.114 0.292 232.157 0.391 0.696 0.270 0.347 81.205 0.778 0.439 285.653 202.309 76.433 1.412 0.162

SampleYear2023 0.425 0.391 81.858 1.087 0.280 133.373 243.410 78.918 0.548 0.585

s (Intercept) 3.770 0.643 133.977 5.864 < 0.001 1.262 0.314 82917 4.018 <0.001 | 1024.450 184.100 80.340 5,565 <0.001
o | Heterozygosity 0.119 0.411 111.652 0.291 0.772
% 4 Ase-dab3 0.306 0.289 142.300 1.061 0.290
2 d Ase-dab4 -0.288 0.301 126.639 -0.958 0.340
Eg 8 Ase-dab5 -0.031 0.304 146.426 -0.103 0.918
© 3 Ase-ual 0.153 0.360 123.331 0.424 0.672
= Ase-ua3 -0.332 0.370 122950 -0.898 0.371
&’ Ase-uad -0.277 0.276 107.669 -1.005 0.317

Ase-uab -0.240 0.348 133.132 -0.690 0.491




Ase-uab
Ase-ua7
Ase-ua8
Ase-ua9
Ase-uall

Age

Season

Sex

Days in fridge
Catch Time
SampleYear2018
SampleYear2019
SampleYear2020
SampleYear2021
SampleYear2022
SampleYear2023

-0.004 0.342 140.968 -0.012
-0.272  0.401 118.988 -0.679
0.004 0.284 127.433 0.013
-0.188 0.337 115.587  -0.557
0.494 0.363 115.143 1.359
-0.027 0.036 170.485 -0.753
-0.208 0.222 223919 -0.939
-0.268 0.171 114.037 -1.565
-0.155 0.179 228.097 -0.866
0.045 0.161 228.854 0.279
0.147 0.238 226.562 0.615
-0.099 0.306 228.897 -0.325
0.479 0.398 226.558 1.203
-0.164 0.304 228.678 -0.538
0.087 0.300 218.106 0.291

0.991
0.499
0.990
0.579
0.177
0.453
0.349
0.120
0.387
0.780
0.539
0.746
0.230
0.591
0.771

0.199
-0.034
-0.010

0.102
-0.264

0.123

0.242
-0.173

0.331

0.205

0.333

0.514

0.203  41.077
0.039 59.801
0.243 83.916
0.210 42.108
0.187 67.914
0.187  75.298
0.299  83.252
0.392 80.974
0.478 76.291
0.370 69.594
0.346  83.825
0.388  83.636

0.977 0.334 -60.530 103.310 48.260
-0.857 0.395 -41.700 21.230 64.560
-0.040 0.968 125.180 141.490 70.070

0.487 0.628 -8.360 107.100 48.910
-1.406 0.164 12.680 121.900 78.130

0.658 0.513 88.540 115.770 80.730

0.810 0.420 79.380 171.340 78.680
-0.440 0.661 94.310 232.050 79.830

0.693 0.491 -99.300 288.020 80.150

0.553 0.582 99.280 232.440 78.440

0.964 0.338 283.560 198.730 78.970

1.325 0.189 141.400 234.950 80.630

-0.586
-1.964
0.885
-0.078
0.104
0.765
0.463
0.406
-0.345
0.427
1.427
0.602

0.561
0.054
0.379
0.938
0.917
0.447
0.644
0.686
0.731
0.671
0.158
0.549

Table S3.2. The standardised effect sizes (partial R?) of the relationship between gut microbiome alpha diversity (richness) and variation in host

(A) Major histocompatibility complex (MHC) diversity and (B) the presence/absence of specific MHC alleles in Seychelles warblers (Table 3.1 in

main text).
16S ASV diversity Metagengs;zis\x onomic Metagenomics functional diversity
Model | Predictor
upper. upper.C upper.C

Rsq CL | lower.CL Rsq L lower.CL Rsq L lower.CL
O = Model 0.088 0.202 0.067 0.128 0.357 0.114| 0.169 0.397 0.140
g g - Heterozygosity 0.003 0.032 <0.001 0.011 0.089 <0.001 | 0.003 0.066 <0.001
,\E MHC-I Diversity 0.006 0.039 <0.001 | <0.001 0.052 <0.001 | 0.034 0.139 <0.001
< MHC-II Diversity <0.001 0.021 <0.001 0.028 0.125 <0.001 | 0.001 0.058 <0.001
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Age 0.007 0.043 <0.001 0.013 0.094 <0.001 0.049 0.165 0.001
Season (summer) <0.001 0.021 <0.001 0.008 0.081 <0.001| 0.001 0.057 <0.001
Sex (male) 0.024 0.075 0.001 0.006 0.074 <0.001| 0.001 0.060 <0.001
Days at 4°C <0.001 0.020 <0.001 | <0.001 0.052 <0.001 0.004 0.069 <0.001
Time of day <0.001 0.020 <0.001 0.024 0.119 <0.001 0.003 0.068 <0.001
Sample Year
(2018) 0.036 0.110 0.015 0.043 0.207 0.024 | 0.064 0.236 0.032
Model 0.130 0.273 0.122 0.090 0.309 0.082 | 0.139 0.359 0.109
Heterozygosity <0.001 0.022 <0.001
Ase-dab3 0.013 0.055 <0.001

& Ase-dab4 0.011 0.050 <0.001

o Ase-dab5 0.004 0.036 <0.001

8 Ase-ual 0.002  0.027 <0.001

T Ase-ua3 0.001 0.025 <0.001

= | Ase-ua4 0.006  0.041  <0.001

8 Ase-uab 0.001 0.024 <0.001

o Ase-uab 0.004 0.034 <0.001

o Ase-ua7 0.002 0.029 <0.001

= Ase-ua8 <0.001 0.021 <0.001

@ | Ase-ua9 0.001 0023  <0.001

S Ase-uall 0.015 0.059 <0.001 0.002 0.060 <0.001| 0.003 0.065 <0.001

§ Age 0.010 0.049 <0.001 0.026 0.121 <0.001| 0.065 0.188 0.004

o Season <0.001 0.021 <0.001 0.004 0.068 <0.001 | <0.001 0.054 <0.001

) Sex 0.028 0.081 0.002 0.001 0.056 <0.001| 0.007 0.081 <0.001
Days at 4°C <0.001 0.022 <0.001 0.001 0.057 <0.001| 0.004 0.071 <0.001
Time of day 0.003 0.030 <0.001 0.028 0.126 <0.001| 0.003 0.065 <0.001
Sample Year 0.031 0.103 0.012 0.037 0.198 0.022 | 0.074 0.248 0.036

Table S3.3. Differentially abundant eggNOG members with increasing MHC-I Diversity in the gut microbiome of the Seychelles warblers (n = 99

from 57 birds). Categories are COG functional categories: E - Amino acid transport and metabolism, G - Carbohydrate transport and metabolism,
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| - Lipid transport and metabolism, J — Translation, ribosomal structure and biogenesis, K - Transcription, L - Replication, recombination and

repair, M - Cell wall/membrane/envelope biogenesis, O - Posttranslational modification, protein turnover, chaperones, P - Inorganic ion transport

and metabolism, R - General function prediction only, T - Signal transduction mechanisms, V - Defense mechanisms.

Direction
eggNOG )
of log fold | Annotation Category | KEGG pathways KEGG pathway names
members
change
) Glutamyl- or glutaminyl-tRNA glutamyl-tRNA synthetase [EC:6.1.1.17] & glutaminyl-
COGO0008 Negative J K01885, K01886
synthetase tRNA synthetase [EC:6.1.1.18]
Acetolactate synthase large subunit or
COG0028 Negative other thiamine pyrophosphate- | E H K01652 acetolactate synthase I/1I/11l large subunit [EC:2.2.1.6]
requiring enzyme
] DNA-directed RNA polymerase, beta ] ]
COG0085 Negative ) ) K K03043 DNA-directed RNA polymerase subunit beta [EC:2.7.7.6]
subunit/140 kD subunit
) 5'-3' exonuclease Xni/ExolX (flap DNA polymerase | [EC:2.7.7.7] & RAD2; flap
COG0258 Negative L K02335, K04799
endonuclease) endonuclease-1 [EC:3.1.-.-]
O-succinylbenzoic acid-CoA ligase
COG0318 Negative MenE or related acyl-CoA synthetase | | K00666 fatty-acyl-CoA synthase [EC:6.2.1.-]

(AMP-forming)
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molecular chaperone DnaK & heat shock 70kDa protein

COG0443 Negative Molecular chaperone DnaK (HSP70) | O K04043, K03283 W
MFS family permease, includes
CcoG0477 Negative anhydromuropeptide permease | GEPR None
AmpG
ATPase components of ABC o ]
) ) ) ATP-binding cassette, subfamily F, member 3 & ABC
COG0488 Negative transporters with duplicated ATPase | R K06158, K15738 o .
i transport system ATP-binding/permease protein
domains
ATPase/5'-3' helicase helicase
COG0507 Negative subunit RecD of the DNA repair | L K03581 exodeoxyribonuclease V alpha subunit [EC:3.1.11.5]
enzyme RecBCD (exonuclease V)
COG0513 Negative Superfamily [ DNA and RNA helicase | L None
] } } o serine/threonine-protein kinase SRPK3 [EC:2.7.11.1] &
COGO0515 Negative Serine/threonine protein kinase T K08832, K15409
SRPK1 [EC:2.7.11.1]
) Sugar or nucleoside  kinase, ribokinase [EC:2.7.1.15] & fructokinase [EC:2.7.1.4] & 2-
COG0524 Negative o } G K00852, KO0847, KO0874 .
ribokinase family dehydro-3-deoxygluconokinase [EC:2.7.1.45]
ABC-type antimicrobial peptide
COGO0577 Positive transport system, permease | V K02004 putative ABC transport system permease protein
component
. Predicted PurR-regulated permease
COG0628 Positive R None

PerM
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COG0642 Positive Signal transduction histidine kinase T None
) Permease of the drug/metabolite
COG0697 Negative ) GER None
transporter (DMT) superfamily
DNA-binding response regulator,
COGO0745 Positive OmpR family, contains REC and | KT None
winged-helix (WHTH) domain
COG0841 Positive Multidrug efflux pump subunit AcrB Y K18138 multidrug efflux pump
. Multidrug efflux pump subunit AcrA
COG0845 Positive i ) VM None
(membrane-fusion protein)
Phosphatidylserine/phosphatidylglyce cardiolipin synthase A/B [EC:2.7.8.-] & phospholipase
COG1502 Negative P Y ) p P oy I K06131, K01115 pin sy [ I & phospholip
rophosphate/cardiolipin synthase D1/2 [EC:3.1.4.4]
. Phospholipid transport to the outer )
COG2911 Positive ) M K09800 translocation and assembly module TamB
membrane protein TamB
. Uncharacterized conserved protein
COG3209 Positive ) R None
RhaS, contains 28 RHS repeats
COG4886 Negative Leucine-rich repeat (LRR) protein K None
COG4974 Positive Site-specific recombinase XerD L K04763 integrase/recombinase XerD

167



168



A
1.004
800 4
600 % ]
o 6004
% s
< o
[=%
® € 0504
2 4004 =]
o o
2 )
[=%
(o] €
200 & 0251
0+ 0.004
0 5000 10000 15000 20000 0 5000 10000 15000 20000
Sequencing depth Read count
B 125 7
1.00 4 -
@ H
o '
qc’ 1004 <
L '
w '
2 2 0754 :
2 c '
54 ] '
g 75 o Y
c [=% \
2 S !
8 8 0501 i
g 504 o !
[=%
<} £ '
5 3 !
8 254 0.254 ]
0) '
= H
04 H
. T A T = T T T T T s T T
0 2500 5000 7500 10000 0 2500 5000 7500 10000
Sequencing depth Read count
c ;
604 1.004 =
» H
2 :
o i
£ !
7] H
g« g |
= ® !
e g :
i § 0504
L 2 H
£ | [=%
S 20 £
5 2 -
_g 0.254 '
Q il
= ;
0 }
T t T T * T + T T T
0Oe+00 1e+05 2e+05 3e+05 4e+05 Oe+00 1e+05 2e+05 3e+05 4e+05
Sequencing depth Read count

Figure S3.1. Rarefaction curve of 16S gut microbiome sequencing of the Seychelles

warbler.




Chapter 4 |

Social interactions shape anaerobic, but not
aerotolerant, gut microbiome composition in a

cooperative breeding species

Image edited by Google Gemini.
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4.1 Abstract

Background

Social transmission of microbes has profound impacts on disease epidemiology and
host health. However, how social factors influence gut microbiome (GM)
transmission in wild populations is not well understood. Here, we use a wild
population of the Seychelles warbler, a facultative cooperatively breeding passerine,
to determine whether cooperative breeding behaviour influences the GM.
Specifically we hypothesis that close social interactions as part of cooperative
breeding should encourage the sharing of anaerobic microbes, that may be less
likely to transmit indirectly through the environment.

Results

We found that GM composition was more similar within versus between social
groups, and this effect was driven by sharing both aerotolerant and anaerobic
bacterial genera. GM diversity was also more similar between dominant individuals
and helpers than between the dominant male and female mates within a breeding
group. As predicted, the similarity of anaerobic, but not aerotolerant, GM
communities between pairs of individuals within a group was positively correlated
with the strength of their social interactions (defined by their cooperative breeding
status). Specifically, anaerobic GM composition was more similar between pairs of
individuals that cooperate at the nest (dominant breeders and dominant-helper
pairs) than for non-cooperative pairs (involving non-helping subordinate individuals).
This is likely because breeders and helpers directly interact while caring for offspring

at a nest.

Conclusions

This work reveals how cooperative social interactions lead to microbial transmission

and thus contribute to shaping specific components of a host’s gut microbiome.

Keywords: Acrocephalus sechellensis; Cooperative breeding; Gut microbiome;

social transmission; wild population.
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Less similar aerotolerant and anaerobic
gut microbiome composition

A
's \
More similar aerotolerant gut
microbiome composition
A
f \
Breeding male Breeding female Helpers Subordinate Breeding male Breeding female
J
Y
More similar anaerobic gut
microbiome composition
Group A Group B

Graphical abstract. Individuals within groups were more similar in aerotolerant and
anaerobic gut microbiome composition than between groups. Breeders and helpers
share more similar anaerobic gut microbiome composition than with subordinates.
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4.2 Introduction

The vertebrate gut microbiota (GM) —the ecosystem of microbes that live within the
gastrointestinal tract— plays a role in many important processes within the host,
including metabolism, immune defences, and cognition (Corbin et al., 2023; Davies
et al., 2022; Foster & McVey Neufeld, 2013; Zheng et al., 2020). In turn, many
factors, such as host genetics, environment, and diet, are important in shaping the
GM (Bonder et al., 2016; Davies et al., 2022; Grieneisen et al., 2021; Hicks et al.,
2018). Consequently, the GM can vary significantly not just across species and
populations but also across individuals within populations (Hicks et al., 2018).
Individual variation in GM composition has been associated with host health, being
linked to, for example, nutrient extraction and immune function in vertebrates and,
therefore, survival and reproductive success in wild animals (Cholewinska et al.,
2020; Worsley et al., 2021; Zheng et al., 2020).

Despite evidence of the GM'’s significant role in host health and fithess (de Vos et
al., 2022; Gould et al., 2018), there are still substantial gaps in our understanding of
the factors that shape individual variation in GM composition. Among the least
understood, yet potentially most important, factors is host sociality. The microbial
metacommunity within social networks of hosts (the social microbiome) needs to be
investigated to understand how social microbial transmission impacts host health
and disease (Sarkar et al., 2024). To date, most research on microbial transmission
across social networks has focused on pathogens, neglecting commensal microbes
(Sarkar et al., 2020). In most vertebrates, the GM s initially acquired through
parental transmission and then quickly becomes shaped by a combination of direct
(via physical contact) and indirect (via the environment) transmission (see (Sarkar
et al., 2024)). However, it is often difficult to distinguish between these mechanisms
as socially interacting individuals also normally share the same environment (Raulo
et al., 2024).

In captivity, conspecifics that socially interact share a more similar GM composition
than those that do not (Bensch et al., 2023; Hildebrand et al., 2013; Hufeldt et al.,
2010). However, captive animals are exposed to much less microbial diversity than
their wild counterparts, which likely contributes to greater microbial sharing.
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Consequently, the GM of captive animals may be simpler (lower diversity and
variation) than in nature and show many artefacts (Bensch et al., 2023). In contrast,
wild animals encounter a much broader range of microbes due to factors such as
exposure to other species, diverse and variable food sources, habitat and climatic
variation and anthropogenic influences (Bensch et al., 2023; White et al., 2023).
Very few studies have investigated the role of sociality in shaping the GM of wild
animals, but see (Archie & Tung, 2015; Raulo et al., 2018, 2024). Most work has
focused on differences in GM between social groups (Antwis et al., 2018; Bennett
et al., 2016; Raulo et al., 2018; Theis et al., 2012; Tung et al., 2015), but now we
need to understand the links between GM and the degree of sociality within highly

social animals.

Social organisation has also been associated with the microbiome communities of
social insects (Gamboa et al., 2025; Jones et al., 2018; Shimoiji et al., 2021) and
non-group-living mice (Raulo et al., 2021, 2024), with individuals that interact more
frequently having more similar microbial communities. Socially acquired GM
similarity is likely driven by having a shared environment (indirect) and repeated
social interactions (direct), such as grooming, food sharing and close contact
(including copulations), which facilitate microbial transmission (Dill-McFarland et al.,
2019; Raulo et al., 2018, 2024). Related individuals that are from the same social
group also have a more similar GM composition than unrelated individuals,
highlighting the importance of host genetics in shaping the microbiome in groups
(Grieneisen et al., 2021; Roche et al., 2023; Turnbaugh et al., 2009).

Aerotolerance may play a significant role in determining the likelihood of
environmental versus direct transfer of microbial species (Raulo et al., 2024).
Aerotolerant (aerobic and facultatively anaerobic) bacteria may grow outside the
host and are therefore more likely to survive long enough to undergo indirect
environmental social transmission (Mazel et al., 2024). By contrast, anaerobic
bacteria survive less well outside the body and are likely limited to vertical and close-
contact transmission (Mazel et al., 2024; Moeller et al., 2018). Consistent with this,
a couple of studies have suggested that social proximity facilitates the transfer of
anaerobic bacteria (Dill-McFarland et al., 2019; Raulo et al., 2024).
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Some group-living vertebrates practice cooperative breeding, whereby additional
adult group members provide care to offspring produced by a limited number of
breeders (often just a dominant pair) (Cockburn, 1998; Garcia-Ruiz et al., 2022;
Koenig & Dickinson, 2016). Such subordinate ‘helpers’ enable dominant breeders
to increase their reproductive success, while potentially providing the helpers with
inclusive fitness benefits (including indirect (kin-selected) and direct benefits (e.g
(Cockburn, 1998; Koenig & Dickinson, 2016; Richardson et al., 2002)). These
‘helpers’ interact closely with the breeders, potentially facilitating the direct
transmission of microbes (Sarkar et al., 2024). However, given that helpers normally
share the same space/territory and may be genetically related to the dominants
(Cockburn, 1998), separating the role of direct and indirect transmission in shaping
the GM can be difficult. Research using suitable cooperative systems which allow

these routes of transmission to be untangled and better understood is now needed.

Here, we use the facultatively cooperative breeding Seychelles warbler
(Acrocephalus sechellensis) to assess how cooperative interactions shape
individual GM variation. This system enables us to disentangle the effects of genetic
relatedness from social interactions, as subordinates vary extensively in how related
they are to the dominant breeders due to the frequent dispersal of offspring into non-
natal groups to become subordinates (Groenewoud et al., 2018), and even
subordinates within their natal group being the result of extra-pair paternity (Hadfield
et al., 2006) and/or cobreeding (Raj Pant et al., 2019). In addition, as warblers are
tree-foraging insectivores, they are rarely exposed to other conspecifics’ faeces,
thus limiting non-contact horizontal transfer post-fledging. The insects they eat
typically contain a high proportion of aerotolerant bacteria (Engel & Moran, 2013;
Yun et al., 2014). Therefore, we hypothesise that warblers will share aerotolerant
bacteria through a shared environment, whereas close physical contact is needed
to transfer anaerobic bacteria. We test the following predictions: (1) Individuals
sharing a territory have more similar GM than those who do not. (2) Individual GM
similarity is correlated with the closeness of the social relationship within the
cooperative breeding system. (3) The cooperative relationship between individuals
will more strongly affect the anaerobic, rather than the aerotolerant, GM

components.
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4.3 Materials and Methods

4.3.1 Study systems

The Seychelles warbler population on Cousin Island (29 ha; 04° 20’ S, 55° 40' E)
has consisted of ca. 320 individuals from ca. 115 territories since 1985 (Brouwer et
al., 2009; Kingma et al., 2016). This population has been extensively monitored
during the minor (January—March) and major (June—October) breeding season each
year, with the major season accounting for 94% of breeding (Brown et al., 2022;
Hammers et al., 2015; Komdeur, 1992). Since 1997, nearly all individuals (>96%)
have been uniquely marked with a combination of three colour rings and a British
Trust for Ornithology metal ring (Davies et al., 2021; Hammers et al., 2015). The
age of individuals is determined during their first catch, either directly when
accessing them in the nest, or as begging fledglings, or using their eye colour
(Komdeur, 1992). Individuals almost never disperse between islands (Komdeur,
Piersma, et al., 2004) and the annual resighting rate is high (98% + 1% SE) (Raj
Pant et al., 2020; Richardson et al., 2001).

Seychelles warblers often breed successfully in socially monogamous pairs
(Komdeur, 1996). Individuals who attain a breeding position typically remain in the
same territory, defending it with the same partner until their death (Richardson et
al., 2007). However, due to a shortage of suitable breeding opportunities, some
individuals delay independent breeding and become subordinates, often, but not
always, in their natal territory (Groenewoud et al., 2018; Komdeur, 1992). In any
given breeding event, some subordinates (20% males and 42% females (Hammers
et al., 2019)) contribute to alloparental care (defined as ‘helpers’), assisting with
incubation (only females) and provisioning (both sexes), while others do not (non-
helper subordinates) (Komdeur, 1992). Helpers benefit by gaining breeding
experience, through indirect fitness benefits (kin-selected). Each season, every
group member is given a breeding status: dominant male, dominant female, helper,
non-helper subordinate. Breeding attempts normally produce single egg clutches
(80%) (Richardson et al., 2001). Extra-group paternity occurs frequently (~44%)
(Hadfield et al., 2006; Richardson et al., 2001). Fledglings leave the nest after 18-
20 days but are provided with extended post-fledgling care for up to three months
(Komdeur, 1996; Komdeur et al., 2016; Richardson et al., 2001).
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Genetic relatedness of individuals within a group varies considerably (mean 0.26 +
0.23 SD, range 0.00-0.77) because, (a) not all subordinates are from the natal
territory (Komdeur, 1992), (b) subordinates hatched in the territory may be the result
of extra-pair paternity (Hadfield et al., 2006; Richardson et al., 2001) or subordinate
maternity (Raj Pant et al., 2019; Richardson et al., 2001, 2002) and (c) dominant
breeders are replaced over time when individuals die or are deposed (Richardson
et al., 2007).

4.3.2 Sample collection

Faecal samples were collected from 2017-2022 across ten breeding seasons
(Worsley, Davies, et al., 2024). Birds were captured in mist nets and placed in a
clean disposable flat-bottom paper bag containing a sterile metal grate covering a
sterile plastic tray. This established protocol (Davies et al., 2022; Knutie & Gotanda,
2018) allows and any faecal sample that is produced by the bird to fall onto the
plastic tray, minimising contact with the outside of the bird and the bag. After
defaecation (ca. 15 min), the bird was released and the sample collected using a
sterile flocked swab and placed in 1ml of absolute ethanol in a sterile screw-cap
microcentrifuge tube. Control microbiome samples were taken from each
fieldworker’s hands by swabbing with a sterile flocked swab. Samples were stored
at 4°C during the field season and transferred to -80°C for long-term storage on
reaching UEA. The time-of-day of each sample was recorded (minutes after sunrise
— 06.00 h GMT+4), and the number of days between sampling and -80°C storage
was recorded. A blood sample (ca. 25upl) was collected through brachial

venipuncture and stored in 1ml of absolute ethanol at 4°C.

4.3.3 Molecular methods

Total genomic DNA was extracted from faecal samples using the Qiagen DNeasy
PowerSoil Kit with a modified version of the manufacturer’s protocol (see (Davies et
al., 2022)). To minimise batch effects of extraction, samples were randomised. DNA
was submitted for 16S rRNA amplicon sequencing using the amplicon libraries of
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V4 primers 515F (5 TGCCAGCMGCCGCGGTAAZ) and 806R
(5GGACTACHVGGGTWTCTAATZ3’) and sequenced across seven batches using
2x250bp, paired-end sequencing on an lllumina MiSeq Platform (see detailed
methodology in (Davies et al., 2022; Worsley, Davies, et al., 2024)). Control samples
were also extracted and sequenced this way (n=21 hand controls, 15 negative
controls, and 10 positive, ZymoBIOMICS Microbial Community Standard (D6300),
controls).

DNA had previously been extracted from blood with the DNeasy blood and tissue
kit (Qiagen) and used in molecular sexing (Griffiths et al., 1998; Sparks et al., 2022)
and microsatellite genotyping for parentage analyses (Richardson et al., 2001;
Sparks et al., 2022). All offspring hatched between 1991 and 2022 (2282 offspring,
1935 (85%) mothers, 2016 (88%) fathers had been assigned parentage at >80%
confidence using MasterBayes 2.52 as part of previous studies (detailed in
(Edwards et al., 2018; Hadfield et al., 2006; Sparks et al., 2022)). Relatedness
between individuals was calculated from the MasterBayes pedigree using sequoia
2.11.4in R Studio 2024.12.0+467 (Huisman, 2017; Posit team, 2024; R Core Team,
2024).

4.3.4 Bioinformatics

The processing of DNA reads followed previously described steps using QIIME2
2019.10 (Bolyen et al., 2019; Worsley, Davies, et al., 2024). In brief, read truncation,
filtering and classification into amplicon sequencing variants (ASV) was undertaken
using DADA2 (Callahan et al., 2016). Taxonomic assignment of ASVs was
performed using the naive-Bayes classifier on the SILVA 132 reference database
(Quast et al., 2012). The resulting ASVs were imported to R using phyloseq 1.46.0
(Leo Lahti & Sudarshan Shetty, 2019; McMurdie & Holmes, 2013). Samples were
filtered to remove non-bacterial sequences, reads not assigned to phylum level, and
potential contaminants (based on hand and lab controls). Based on evidence from
rarefaction curves showing sample completeness of 95% at 8000 reads (Worsley,
Davies, et al., 2024), 27 faecal samples with less than 8000 reads were removed.
ASVs that had fewer than 50 reads across all samples were also removed, as these
represented possible sequencing errors.
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The aerotolerance status of each bacterial genus (1111 genera) was assigned using
both Google Gemini 2.0 and ChatGPT 3.5 on 215t January 2025. The text used was
“Assign aerotolerance status for the following genera”, followed by the list of genera.
Google Gemini returned a table of genera and aerotolerance statuses, while
ChatGPT responded with text. ‘Facultative anaerobic’ and ‘Aerobic’ were
categorised as ‘Aerotolerant’, ‘Anaerobic’ was categorised as ‘Anaerobic’, and
everything else was categorised as ‘Unknowns’. After excluding unknown or
unassigned genera (n = 891 genera assigned), the accuracy of these assignments
was checked by comparing the assignments obtained with the manually assigned
genera in Raulo et al. (2024) using Bergey’s Manual of Systematics of Archaea and
Bacteria (Trujillo et al., 2015). The correspondence to the previous manual
assignment in Raulo et al. (2024) using Google Gemini was 92.5% and ChatGPT
was 74.2% (n =160 or n = 98 genera, respectively). However, the assignments in
(Raulo et al., 2024) could also have been incorrect or out of date. So, in addition, 80
random genera were manually checked using Bergey’s Manual of Systematics of
Archaea and Bacteria (Trujillo et al., 2015) by CL, and the correspondence was
96.3% for Google Gemini and 73.4% for ChatGPT. The assignments from Google

Gemini were therefore used for subsequent analysis.

4.3.5 Statistics

4.3.5.1 GM similarity within and between breeding groups

4.3.5.1.1 Alpha diversity

Both ASV richness and Shannon diversity were calculated for each sample (after
rarefication) using phyloseq 1.46.0 (McMurdie & Holmes, 2013). A pairwise alpha
diversity difference was calculated for ASV richness and Shannon diversity, which
were made negative to reflect alpha diversity similarity. Importantly, samples were
then filtered to include only sample pairs from individuals from the same field period
(n=27,821 pairwise comparisons across 648 samples from 345 birds) to control for
temporal variation. A linear mixed effect multi-membership model (Imer with
ImerMultiMember) using Ime4 1.1-35.5 (Bates et al., 2015) was used to test whether
the difference in alpha diversity was smaller when pairs were from the same
breeding group than between breeding groups. Breeding group status (within a

group, between groups), the age difference of individuals (0-16.7 years), sex
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difference (no/yes), the number of days apart samples were collected (0-97 days),
the difference in the time of day samples were collected (0-634 minutes), season
(minor/major), present in nest at hatch (whether one individual was present in the
other’s nest at hatch e.g. as a sibling, helper or parent), and relatedness were
included as explanatory variables. Sample year and a multi-membership ID
(calculated using ImerMultiMember to account for the repeated occurrences of
individual 1D in both columns, and suitable for dyadic models (van Paridon et al.,
2023)), were used as random variables. Hereafter, all models included the same
explanatory and random variables unless stated otherwise. Variance inflation factor
(VIF) scores were computed to test for collinearity among the terms (all VIF scores

were <3).

4.3.5.1.2 GM composition

Differences in GM composition were modelled using the same pairwise approach
as for Alpha diversity. Unrarefied raw reads were filtered to remove rare taxa (<5%
occurrence), and then centred log ratio (CLR) transformed using microbiome 1.20.0,
which controls for differences in library size and is suitable for compositional
datasets (Gloor et al., 2017). A pairwise Aitchinson distance matrix was then
calculated using phyloseq 1.46.0 (Callahan et al., 2016; McMurdie & Holmes, 2013),
which was made negative to reflect GM composition similarity. A multi-membership
Imer was used to test if samples from individuals within a group had more similar
GM composition compared to those outside of the group, where GM Aitchison
distance was used as a response variable and the explanatory and random

variables were as described for alpha diversity above.

4.3.5.1.3 Aerotolerance

Bacterial taxa were split into an anaerobic dataset (205 anaerobic genera), and an
aerotolerant dataset (686 aerotolerant genera). The same model structure
(between/within breeding group GM composition model) was used to determine if
within-group changes in GM composition were dependent on aerotolerance

capability.

4.3.5.2 The GM and social status categories
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4.3.5.2.1 Alpha diversity

A second alpha diversity model was constructed as above but replacing breeding
group status with individual status. Pairs of samples were filtered from distance
matrices to only include comparisons made within the same breeding group (n =
279 pairwise comparisons across 322 samples from 204 individual birds). There
were five groupings for individual status pairs: (1) dominant breeding pair (Dom-
Dom), (2) breeders—helpers (Dom-Help), (3) dominant breeders— other
subordinates (Dom-Sub), (4) helpers—other subordinates (Help-Sub), (5)
subordinates—subordinates (Sub-Sub). If the overall individual status pair predictor
term was significant, a post-hoc pairwise comparison was performed using a Tukey

test.

4.3.5.2.2 Overall GM composition

A social status category model was constructed (as above) to assess the impact of
individual status on GM composition by replacing breeding group status with

individual status comparisons and restricting comparisons to within-breeding group.

4.3.5.2.3 Aerotolerance vs. Anaerobic GM composition

The same model structure as directly above was used to test whether patterns of
GM variation associated with within-group social status categories differed
according to bacterial aerotolerance capability. Finally, the same model was run but
lumping the within group social status categories to compare all categories that
involved the pair of individuals interacting at a shared nest (Dom-Dom and Dom-
Help combined) with all pairs that did not (Dom-Sub, Help-Sub, Sub-Sub combined),

using the same model structure as above.
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4.4 Results

4.4.1 GM similarity within versus between breeding groups

4.4.1.1 Alpha diversity

The observed ASV richness and Shannon diversity similarity did not significantly
differ between pairs of individuals from within the same breeding group versus pairs
from different breeding groups (Table S4.1, Table 4.1). ASV richness and Shannon
diversity similarity did decline as the number of days between sampling points
increased (Table S4.1, Table 4.1). Shannon diversity similarity was also marginally

associated with season (positively) and time in season (negatively) (Table 4.1).

Table 4.1. A linear mixed effect model (Imer) investigating the relationship between
breeding group membership and gut microbiome ASV Shannon diversity similarity
in pairs of Seychelles warblers (N=27,821 pairwise comparisons across 648
samples from 345 individual birds). Significant terms (P <0.05) are in bold, marginal
terms (P<0.10) in italics. Reference categories for categorical variables were the
first term in brackets. Time of day was measured as minutes apart, and time in
season was measured as days apart.

Characteristic Beta SE! | Statistic df >

value
(Intercept) -1.279 0.072 -17.7 12.5 <0.001
Breeding group

o -0.012 0.058 -0.206 27,548 0.837
(Between/Within)

Age difference 0.001 0.003 0.496 24,508 0.620
Sex (same/different) -0.006  0.011 -0.567 27,560 0.571
Season (major/minor) -0.065  0.033 -1.94 1,654 0.053
Time of day <0.001 <0.001 -1.96 27,712 0.050
Time in season -0.001  <0.001 -3.98 27,775 <0.001
Relatedness -0.029 0.087 -0.333 27,582 0.739

Shared nest at hatch (no/yes) -0.010 0.025 -0.381 26,525 0.703

Random 27,821 observations Variance
Multi membership ID (Intercept) 345 groups 0.374
Sample Year (Intercept) 6 years 0.137
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Residual 0.880

4.4.1.2 GM composition

Pairs within breeding groups had a more similar GM composition than pairs in
different breeding groups (Table 4.2, Figure 4.1). Additionally, pairs sampled in the
minor season had a more similar GM composition compared to pairs sampled in the
major season (Table 4.2). GM composition became increasingly different between
individuals as the number of days between sampling of each of the pair increased.
Moreover, individuals that shared a nest at hatch (including from different seasons;
as either siblings, parents or helpers) had a significantly more similar GM

composition.

Table 4.2. A linear mixed effect model investigating gut microbiome composition
similarity in Seychelles warbler pairs from the same versus pairs from different
breeding groups (N =27821 pairwise comparisons across 648 samples from 345
individual birds). Significant terms (P <0.05) are in bold. Reference categories for
categorical variables were the first term in the brackets. Time of day was measured
as minutes apart, and time in season was measured as days apart.

Characteristic Beta SE!? Statistic | df p-value
(Intercept) -83.21 2.38 -35.0 6.17 <0.001
Breeding group Pair

S 3.683 0.581 6.34 27,490 <0.001
(Between/Within)
Age difference 0.016 0.028 0.556 27,767 0.578
Sex (same/different) -0.123 0.109 -1.13 27,493 0.259
Season (major/minor) 2.062 0.353 5.84 25,345 <0.001
Time of day <0.001 <0.001 -0.304 27,572 0.761
Time in season -0.007 0.003 -2.08 27,590 0.038
Relatedness 0.494 0.870 0.568 27,502 0.570
Shared nest at hatch

0.538 0.257  2.09 27,806 0.036

(nolyes)
Random 27,821 observations Variance
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Multi membership ID (Intercept) 345 groups 6.898
Sample Year (Intercept) 6 years 5.514
Residual 8.808
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Figure 4.1. Gut microbiome composition similarity of pairs of individuals from the
same versus pairs of individuals taken from different breeding groups in the
Seychelles warbler (N = 27821 pairwise comparisons across 683 samples from 345
individual birds). Dots and lines represent model predictions with 95% confidence
intervals calculated from Imer models. The density plot represents the distribution
of raw data. *** represent p<0.001.
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4.4.1.3 Aerotolerant vs. Anaerobic bacteria

Considering aerotolerant bacterial genera, GM compositional similarity was
significantly higher in pairs from the same breeding group compared to pairs from
different breeding groups (Table 4.3). Aerotolerant GM composition was also
significantly less similar with increasing age differences, time of day difference, and
time in season difference, but more similar if the pair shared a nest at hatch (Table
4.3).

Table 4.3. A linear mixed effect model (Imer) investigating the relationship between
aerotolerant gut microbiome composition similarity in pairs of Seychelles warblers
from the same breeding group versus pairs generated from individuals sampled
from different breeding groups (N=27821 pairwise comparisons across 648
samples from 345 individual birds). Significant terms (P <0.05) are in bold.
Reference categories for categorical variables were the first term in the bracket.
Time of day was measured as minutes apart, and time in season was measured as
days apart.

Estimate SE df t P
(Intercept) -46.49 1.10 7.04 -42.4 <0.001
Breeding group Pair
o 1.957 0.325 27,489 6.02 <0.001
(Between/Within)
Age difference -0.098 0.007 27,603 -13.3 <0.001
Sex (same/different)  -0.019 0.061 27,492 -0.317  0.752
Season (major/minor) 0.273 0.197 22,916 1.38 0.167
Time of day <0.001 <0.001 27,566 -2.13 0.033
Time in season -0.006 0.002 27,583 -3.41 0.001
Relatedness 0.756 0.486 27,498 1.55 0.120
Shared nest at
0.312 0.145 27,803 2.16 0.031
hatch (no/yes)
Random 27821 observations Variance
_ _ (Intercept
Multi membership ID ) 345 groups 16.018
(Intercept
Sample Year 6 years 6.029

)
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Residual 24.243

Considering only anaerobic bacterial genera, pairs within the same breeding group
had more similar GM compositions compared to pairs from separate breeding
groups (Table 4.4). The anaerobic GM composition was significantly negatively
associated with increasing time of day difference, and time in season difference but
more similar if the pair shared a nest at hatch (Table 4.4).

Table 4.4. A linear mixed effect model (Imer) investigating the relationship between
anaerobic gut microbiome composition similarity in pairs of Seychelles warblers
from the same breeding group versus pairs generated from individuals sampled in
different breeding groups (N =27821 pairwise comparisons across 648 samples
from 345 individual birds). Significant terms (P <0.05) are indicated in bold.
Reference categories for categorical variables were the first term in brackets. Time
of day was measured as minutes apart, and time in season was measured as days
apart.

Estimat
SE df t P
e

<0.00
(Intercept) -24.53 0.807 6.45 -30.4

Breeding group Pair
o 0.844 0.285 27,179 296 0.003
(Between/Within)

Age difference -0.002 0.006 27,370 0.714
0.366

Sex (same/different) 0.061 0.0563 27,185 1.14 0.255

Season (major/minor) -0.247 0.170 19,017 -1.45 0.147

Time of day -0.001 0.000 27,310 -3.38 0.001
<0.00

Time in season -0.007 0.002 27,337 -4.34 1

Relatedness -0.431 0425 27,196 -1.01 0.310

Shared nest at hatch (no/yes) 0.266 0.126 27,326 211 0.035
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27,821
Random Variance

observations

Multi membership ID (Intercept) 345 groups  6.342

Sample Year (Intercept) 6 years 3.408
18.29

Residual 3

4.4.2 The GM and within-group social status cateqgories

4.4.2.1 Alpha diversity

We assessed similarity in ASV richness (Table S4.2) and Shannon diversity (Table
S4.3) between pairs of birds with different statuses within the same breeding group.
Only Shannon diversity was significantly more similar for dominant-helper status
pairs than for dominant pairs (Table S4.3, Figure 4.2). All other pairwise
comparisons were not significantly different from each other (Tables S4.2, S4.3 &

S4.4) and lower than for dominant-helper status pairs.
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68 50 109 18 34

Shannon diversity similarity

Dom-Dom Dom-Help Dom-Sub Help-Sub Sub-Sub
Groups

Figure 4.2. Gut microbiome Shannon diversity similarity of different breeding group
status pairs of Seychelles warblers. Dots and lines represent model predictions with
95% confidence intervals calculated from Imer models. The density plot represents
the distribution of raw data. N = 279 pairwise comparisons across 322 samples from
204 individual birds.

4.4.2.2 Overall GM composition

None of the social status pair categories significantly differed in overall GM

composition similarity (Table S4.5).

4.4.2.3 Aerotolerant vs. Anaerobic GM composition

Pairwise similarities in aerotolerant GM composition did not differ between social
status pair categories (Table S4.6). The only significant effect in this model was a
negative association between aerotolerant GM composition similarity and

increasing differences in host age (Table S4.6).
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In contrast, anaerobic GM composition similarity did significantly differ between
social status pair categories (Table 4.5, Figure 4.3). Specifically, the anaerobic GM
compositional similarity of dominant-dominant and dominant-helper categories did
not differ (Table 4.5, Figure 4.3). However, anaerobic GM composition was
significantly more similar in dominant-dominant pairs than for pairs in the other three
categories (dominant-subordinate (marginal), helper-subordinate, and subordinate-
subordinate pairs) (Table 4.5, Figure 4.3). The anaerobic GM composition was not
significantly different in all other pairwise comparisons (Table S4.7).

Finally, when combining the nest-sharing pairs and the non-nest-sharing pairs into
two overall categories, anaerobic GM composition similarity was higher for nest-
sharing pairs (Dom-Dom and Dom-Help) than for non-nest-sharing pairs (Dom-Sub,
Help-Sub, Sub-Sub) (Estimate=-2.317, p=0.003, Table S4.8, Figure 4.3).

Table 4.5. A linear mixed effect model (Imer) investigating the relationship between
individual breeding group status pairs and anaerobic GM composition similarity of
Seychelles warblers (N =279 pairwise comparisons across 320 samples from 204
individual birds). Significant terms (P <0.05) are indicated in bold, marginal terms (P
<0.1 are indicated in italics. Reference categories for categorical variables were the
first term in brackets. Time of day was measured as minutes apart, and time in
season was measured as days apart.

Characteristic Beta SE!? Statistic df p-value
(Intercept) -22.44 1.30 -17.3 39.0 <0.001
Individual Status Pair

Dom - Dom — — —

Dom - Help -0.661 1.23 -0.539 209 0.590

Dom - Sub -2.231 1.14 -1.96 194  0.051

Help - Sub -3.483 1.63 -2.13 160 0.034

Sub - Sub -3.319 1.34 -2.47 189 0.014
Age difference 0.009 0.067 0.135 258 0.893
Sex (same/different) 0.335 0.735 0.456 239 0.649
Season (major/minor)  0.049 1.05 0.046 91.8 0.963
Time of day -0.002 0.003 -0.591 250 0.555
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Time in season 0.001 0.018 0.083 260 0.934

Relatedness 1.622 1.82 0.893 194 0.373
Shared nest at hatch
-0.283 0.863 -0.328 233 0.743
(nolyes)
Random 274 observations Variance
Multi membership ID (Intercept) 204 groups 1.836
Sample Year (Intercept) 6 years 1.576
Residual 4.341
68 50 109 18 34
0 p=0.014
| |
p=0.034
|
p = 0.051
|
> -104
5
£
H]
£
S
8 20
S
£ l ) |
o
0
o
8
< 304
-40 4
p=0.003
Dom:Dom Dom:HeIp Dom.-Sub Help'-Sub Sub:Sub
Groups

Figure 4.3. Anaerobic gut microbiome composition similarity of different social status
pair categories of Seychelles warblers (comparison within groups). Dots and lines
represent model predictions with 95% confidence intervals calculated from Imer
models. The density plot represents the distribution of raw data. N =279 pairwise
comparisons across 322 samples from 204 individual birds. P-values between
categories shown above the plots (Table 4.5) and nest-sharing groups of categories
shown below the plots (Table S4.7) are shown with brackets.
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4.5 Discussion

We investigated how sociality GM shapes the GM in the cooperative breeding
Seychelles warbler. GM alpha diversity did not differ between individuals from the
same breeding group or individuals from different breeding groups. However,
individuals within a group had a more similar GM composition compared to
individuals from different groups. When separating aerotolerant from anaerobic
bacteria, individuals within a breeding group shared more of both categories than
did individuals from different groups. When we focus on cooperative breeding status
differences within breeding groups, dominants and helpers shared a more similar
GM Alpha diversity than the dominant pair, but no other pairs were significantly more
similar in terms of GM diversity. When looking at all GM genera we found no
differences in GM compositional similarity between any of the within group social
status categories. However, when separating aerotolerant and anaerobic bacterial
genera we find that, as predicted, anaerobic GM composition was more similar
between birds that directly cooperate during breeding and thus interact closely at

the nest than between categories of pairs that interact less.

Seychelles warbler groups have defined territory boundaries that they defend year-
round to secure resources (Hammers et al., 2019). Individuals from the same group
do not differ in how similar their GM alpha diversity is compared to pairs of
individuals from different groups, which suggests that social transmission does not
influence the overall diversity of the GM. This is not surprising, as GM alpha diversity
is highly variable and may not reflect GM composition; individuals that live in
different territories can have differing GM composition but still retain the same alpha
diversity (Johnson & Burnet, 2016; Worsley, Lee, et al., 2024). However, as
predicted, GM composition was more similar for individuals from the same groups
than individuals from different groups, even when controlling for relatedness. Recent
research on the social transmission of microbes in other group-living animals has
yielded similar results (Raulo et al., 2018; Tung et al., 2015). This increase in GM
composition similarity within groups likely arises from such individuals sharing the
same resources, but also because of increased physical interaction among
individuals. Indeed, non-group living wild mice (Apodemus sylvaticus) that interact

more frequently tend to share a more similar microbiome composition (Raulo et al.,
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2021, 2024). In our results, that both aerotolerant and anaerobic bacterial
communities were more similar within than between breeding groups further
supports the idea that shared microbes occur because of a combination of shared
environment/diet (e.g. aerobes from insects) and close physical contact (e.g. the
transmission of anaerobes). However, it would be challenging to distinguish
between resource sharing and social contact modes of transmission when only
comparing between and within social groups, as the two modes would overlap (but
see below).

Associations between GM characteristics and social interactions have been
previously reported in social insects, the harvester ants (Veromessor andrei) and
honey bees (Apis mellifera) (Gamboa et al., 2025; Jones et al., 2018), wild baboons
(Papio cynocephalus) (Tung et al., 2015) and wild mice (Raulo et al., 2024), but
researchers have not directly investigated social interactions within cooperative
breeders. In social systems where cooperative breeding occurs, a hierarchy of
closeness of interactions between individuals exists, with the dominant breeding pair
interacting most frequently, followed by breeders-helpers, breeders-non-helping
subordinates, helpers-non-helping subordinates, and subordinates-subordinates
(Cant & Field, 2005; Komdeur, 1994). Interestingly, in Seychelles warblers,
breeders-helpers have a more similar GM diversity than do the dominant breeding
pair. This may be because the helpers (who are normally female) also share in
incubating with the dominant female (Richardson et al., 2001) while male dominants
do not. Importantly, when comparing all bacterial genera, GM compositional
similarity was not associated with the closeness of cooperative breeding
relationships within a group. This may be because individuals from the same
environment tend to have a similar diet, which leads to homogenisation of the GM
irrespective of social interactions. However, as predicted, if we only focus on
anaerobic genera we do find that the closeness of cooperative breeding
relationships influences GM composition similarity. This was not the case for the
aerotolerant GM. These results support the hypothesis that aerotolerant microbes
are likely transmitted through a shared general environment (i.e. the territory), while
anaerobic microbes require closer social interactions, such as direct interactions at
the nest, for transmission. The logic being that oxygen-sensitive anaerobic bacteria
do not survive long outside of a host and therefore require close direct contact for

transmission (Raulo et al., 2024). Our findings concur with previous work that
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investigated anaerobic versus aerotolerant GM similarity in relation to social
intimacy using GPS data tracking or grooming behaviour (Raulo et al., 2024; Tung
et al., 2015).

Is there likely to be any benefit of GM transmission through close social interactions
in cooperatively breeding species? One benefit may be gaining beneficial anaerobic
microbes (as observed in the Seychelles warbler). Anaerobic gut microbes are more
likely to form close symbiotic relationships with their host as they cannot survive in
the aerotolerant conditions outside of the intestinal tract. Indeed, most probiotics —
living microbes that provide health benefits - are anaerobic bacteria (El Enshasy et
al., 2015). Benefits include aiding gut homeostasis and aid digestion (Kelsey &
Colpoys, 2018; Nalla et al., 2022; Zhang et al., 2016) and supporting the host’s
immune system by preventing pathogens from colonising the GM (Murata et al.,
2025; Wells et al., 1988). However, there are also potential downsides to increased
transmission, such as pathogen transmission. Although many life-threatening
pathogens are aerotolerant (André et al., 2021), previous studies tracking pathogen
transmission have suggested that there is an increased risk of spread in animals
due to social proximity and shared resources (Duncan et al., 2021; Lebarbenchon
et al., 2015).

The Seychelles warbler is an excellent system for studying the social transmission
of the GM. However, several limitations exist, such as samples not always being
collected from all individuals within a breeding group within the same field period.
All tests were restricted to samples within the same field seasons to ensure that
individuals had the opportunity to interact recently, and in a similar environment, as
temporal effects are known to influence GM communities in the Seychelles warbler,
as well as other wild animals (Hicks et al., 2018; Marsh et al., 2022; Worsley, Davies,
et al., 2024). Furthermore, although the finding that social closeness makes
anaerobic GM composition more similar is clear and important, incorporating
shotgun metagenomic data would help determine whether differences in taxonomy
alter GM function and the possible contribution of these microbes to host health
(Worsley, Mazel, et al., 2024). Additionally, metagenomics would enable the
analysis of the GM at the species or strain-level (Anyansi et al., 2020), which would
provide higher resolution when asking how GM components are correlated with

social closeness rather than environmental transmission. Strain-tracking between
194



family members and how long strains persist in the GM during an individual life
would also improve our understanding of how social closeness shapes the GM
(Hildebrand et al., 2021). However, the overall patterns as detected in our study are
still valid and shotgun metagenomics for the number of samples required would be
very costly. In addition, the use of GPS logger data would allow us to generate more
nuanced social networks and determine the strength of social relationships (Kingma
et al., 2016). Unfortunately, GPS monitoring of Seychelles warblers within territories
IS not yet effective, as the accuracy of current tracking technology (that is sufficiently
light weight to use on the birds) relative to the size of the Seychelles warbler’s
extremely small territories (0.18-0.46 ha per territory)(Komdeur & Pels, 2005), limits
our ability to track individual interactions. Given the quality of the data on the
Seychelles warblers gained through intense fieldwork observations, we are
confident of the reliability of our estimates used here regarding the closeness of
relationships between individuals (Brouwer et al., 2009; Hammers et al., 2019;
Komdeur, 1994).

Overall GM composition was also more similar when one individual (parent/helper)
attended the other when they were a nestling,suggesting that the developmental
GM tends to persist into later life and remains more similar due to a shared natal
environment. This finding is consistent with that found in humans, where an
individual shares gut microbial strains with their mothers, and these are maintained
throughout life (Eikenaar et al., 2007; Valles-Colomer et al., 2023).

In the present study on the Seychelles warbler when assessing the GM both within
and across groups relatedness was not a predictor of GM composition similarity.
This may be because highly related individuals, such as siblings, may not share the
same territory later in life when we sample them (all samples were post-fledgling),
especially since most individuals disperse from their natal territory as soon as a
breeding opportunity elsewhere becomes available (Eikenaar et al., 2007). In wild
mice and Verreaux's sifaka (Propithecus verreauxi), kinship and relatedness did not
predict GM similarity (Perofsky et al., 2017; Raulo et al., 2021). However, in humans
and wild baboons, related individuals share more similar GMs (Grieneisen et al.,
2021; Roche et al., 2023; Turnbaugh et al., 2009).
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The Seychelles warbler GM was also influenced by environmental variables,
especially the number of days apart that samples were collected, which is consistent
with previous studies on this species (Lee et al., 2025; Worsley, Davies, et al., 2024;
Worsley, Lee, et al., 2024). The effect of this variable on GM diversity and
composition could be explained by changes in weather and food availability
throughout the season or the storage time of our samples (Cunningham et al.,
2020). However, we cannot separate these two possibilities as they are strongly
correlated. Additionally, GM composition was more similar between pairs sampled
within the minor breeding season than in the major breeding season. The more
relaxed territory boundaries in the minor breeding season and possibly fewer
seasonal changes due to a shorter minor season, as well as less breeding attempts,
could explain this, as groups are likely to share more of their geographic range and
diet and, hence, a more similar GM (Komdeur, 1992, 2001).

In conclusion, our study has been able to separate the effect of sharing habitat from
the effect of close social interactions (within cooperative breeding) in shaping the
GM of a wild vertebrate. Importantly we show that different components of the GM
are differentially affected by such social interactions: anaerobic microbes are more
likely to be transmitted through the cooperative breeding behaviours. Further
research is needed to determine whether this elevated sharing of specific microbes

due to cooperative breeding is beneficial or detrimental to host fitness.
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4.7 Supplementary material

Table S4.1. A linear mixed effect model investigating the relationship between
breeding group membership and gut microbiome ASV richness similarity in pairs of
Seychelles warblers (N =27,821 pairwise comparisons across 648 samples from
345 individual birds). Significant terms (P <0.05) are indicated in bold. Reference
categories for categorical variables were the first term in brackets. Time of day was
measured as minutes apart, and time in season was measured as days apart.

Characteristic Beta SE! | Statistic df >

value
(Intercept) -125.7 9.14 -13.8 13.4 <0.001
Breeding group

. -0.995 6.43 -0.155 27,528 0.877
(Between/Within)

Age difference -0.067 0.308 -0.217 26,377 0.828
Sex (same/different) -0.636 1.21 -0.527 27,537 0.598
Season (major/minor) -7.117  3.76 -1.89 2,446 0.059
Time of day -0.003 0.004 -0.675 27,669 0.500
Time in season -0.157 0.035 -4.50 27,719 <0.001
Relatedness 6.394 9.63 0.664 27,553 0.507

Shared nest at hatch (no/yes)  2.631 2.83 0.931 27,372 0.352

Random 27,821 observations Variance

Multi membership ID (Intercept) 345 groups 49.49
Sample Year (Intercept) 6 years 17.19
Residual 97.56

Table S4.2. Alinear mixed effect model (Imer) investigating the relationship between
the social status categories of pairs of Seychelles warblers within breeding groups
and the gut microbiome ASV richness similarity between them (N =279 pairwise
comparisons across 322 samples from 204 individual birds). Significant terms (P
<0.05) are indicated in bold. Reference categories for categorical variables were the
first term in brackets. Time of day was measured as minutes apart, and time in
season was measured as days apart.
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Characteristic Beta SE! | Statistic df p-value

(Intercept) -128.9 31.2 -4.13 107 <0.001

Individual Status Pair

Dom - Dom — — —

Dom - Help 13.04 31.0 0.420 217 0.675

Dom - Sub -29.20 28.5 -1.02 200 0.308

Help - Sub -4.601 41.2 -0.112 163 0.911

Sub - Sub 46.08 34.6 1.33 193 0.185
Age difference -2.380 3.20 -0.743 136 0.459
Sex (same/different) -2.730 18.6 -0.147 243 0.884
Season (major/minor) -11.05 23.1 -0.479 43.8 0.635
Time of day 0.099 0.077 1.29 262 0.199
Time in season -0.176 0.441 -0.398 267 0.691
Relatedness -41.71 44.4 -0.940 187 0.348
Shared nest at hatch
(nolyes) 42.05 21.7 1.94 243 0.053
Random 279 observations Variance
Multi membership ID (Intercept) 204 groups 47.05
Sample Year (Intercept) 6 years 18.09
Residual 109.5

Table S4.3. Alinear mixed effect model (Imer) investigating the relationship between
the social status categories of pairs of Seychelles warblers within breeding groups
and the gut microbiome ASV Shannon diversity similarity between them (N =279
pairwise comparisons across 322 samples from 204 individual birds). Significant
terms (P <0.05) are in bold. Reference categories for categorical variables were the
first term in brackets. Time of day was measured as minutes apart, and time in
season was measured as days apart.

Characteristic Beta SE! | Statistic df p-value

(Intercept) -1.425 0.230 -6.18 78.3 <0.001
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Individual Status Pair

Dom - Dom — —

Dom - Help 0.542 0.226 2.40 219 0.017

Dom - Sub 0.200 0.208 0.963 204 0.337

Help - Sub 0.288 0.303 0.950 169 0.344

Sub - Sub 0.359 0.254 142 194 0.159
Age difference -0.012 0.024 -0.510 142 0.611
Sex (same/different) -0.077 0.135 -0.570 243 0.569
Season (major/minor) -0.075 0.173 -0.436 46.3 0.665
Time of day 0.001 0.001 1.37 265 0.170
Time in season <0.001 0.003 0.059 264 0.953
Relatedness -0.613 0.324 -1.89 191 0.060
Shared nest at hatch
(nolyes) 0.129 0.157 0.820 247 0.413
Random 279 observations Variance
Multi membership ID (Intercept) 204 groups 0.376
Sample Year (Intercept) 6 years 0.166
Residual 0.762

Table S4.4. Pairwise comparison of social status categories of pairs of Seychelles
warblers within breeding groups and the gut microbiome ASV Shannon diversity
similarity between them using Tukey method p-values (from Table S4.2; N =279
pairwise comparisons across 322 samples from 204 individual birds). Significant
terms (P <0.05) are indicated in bold.

Contrast Estimate SE df t.ratio | p.value
Dom-Dom vs Dom-Help 0.542 0.229 217  2.364 0.129
Dom-Dom vs Dom-Sub 0.200 0.210 202 0954 0.875
Dom-Dom vs Help-Sub 0.288 0.307 166 0.938 0.882
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Dom-Dom vs Sub-Sub 0.359 0.260 192  1.384 0.639

Dom-Help vs Dom-Sub -0.342 0.190 212 -1.805 0.374
Dom-Help vs Help-Sub -0.255 0.291 192 -0.876 0.906
Dom-Help vs Sub-Sub -0.183 0.267 214  -0.687 0.959
Dom-Sub vs Help-Sub 0.087 0.282 177  0.310 0.998
Dom-Sub vs Sub-Sub 0.159 0.247 206 0.642 0.968
Help-Sub vs Sub-Sub 0.072 0.333 196  0.215 1.000

Table S4.5. A linear mixed effect model (Imer) investigating the relationship between
social status pair categories within a breeding group and GM composition similarity
in Seychelles warblers (N = 279 pairwise comparisons across 322 samples from 204
individual birds). Significant terms (P <0.05) are indicated in bold. Reference
categories for categorical variables were the first term in brackets. Time of day was
measured as minutes apart, and time in season was measured as days apart.

Characteristic Beta SE Statistic | df p-value

(Intercept) -75.42 3.30 -22.8 24.2  <0.001

Individual Status Pair

Dom - Dom — — —

Dom - Help -0.841 291 -0.289 237 0.773

Dom - Sub -2.150 2.69 -0.799 228 0.425

Help - Sub -2.380 4.02 -0.592 198 0.555

Sub - Sub -2.352 3.35 -0.702 209 0.483
Age difference -0.451 0.322 -1.40 174 0.163
Sex (same/different) -0.199 1.69 -0.117 249  0.907
Season (major/minor) 3.977 2.39 1.66 92.6 0.100
Time of day -0.001 0.007 -0.222 254 0.824
Time in season 0.002 0.037 0.065 222 0.948
Relatedness -3.252 4.23 -0.768 220 0.443

Shared nest at hatch
1.368 1.95 0.701 262 0.484
(nolyes)
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Random 279 observations Variance

Multi membership ID (Intercept) 204 groups 6.449
Sample Year (Intercept) 6 years 4.151
Residual 8.037

Table S4.6. A linear mixed effect model (Imer) investigating the relationship between
individual status pairs and aerotolerant GM composition similarity of Seychelles
warblers (N =279 pairwise comparisons across 322 samples from 204 individual
birds). Significant terms (P <0.05) are indicated in bold. Reference categories for
categorical variables were the first term in brackets. Time of day was measured as
minutes apart, and time in season was measured as days apart.

Characteristic Beta SE! Statistic | df p-value

(Intercept) -41.42 1.86 -22.2 18.7 <0.001

Individual Status Pair

Dom - Dom —_ — —
Dom - Help -0.831 1.68 -0.495 232 0.621
Dom - Sub -1.804 1.56 -1.16 227 0.248
Help - Sub -3.017 2.33 -1.29 198 0.197
Sub - Sub -1.902 1.88 -1.01 207 0.313
Age difference -0.245 0.074 -3.29 212 <0.001
Sex (same/different) -1.102 0.973 -1.13 245 0.258
Season (major/minor) 1.833 1.40 1.31 116 0.192
Time of day <0.001 0.004 -0.040 254 0.968
Time in season -0.001 0.021  -0.055 224  0.956
Relatedness -2.428 2.45 -0.991 221 0.323

Shared nest at hatch
-0.389 1.12 -0.346 261 0.729

(nolyes)

Random 279 observations Variance
Multi membership ID (Intercept) 204 groups 3.785
Sample Year (Intercept) 6 years 2.638
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Residual 4,588

Table S4.7. A pairwise comparison with Tukey method p-values of the relationship
between individual status pairs and anaerobic GM composition dissimilarity of
Seychelles warblers (from Table 4.5) (N =279 pairwise comparisons across 322
samples from 204 individual birds). Significant terms (P <0.05) are indicated in bold.

Contrast Estimate SE df t.ratio | p.value
Dom-Dom vs Dom-Help -0.661 1.240 202 -0.534 0.984
Dom-Dom vs Dom-Sub -2.231 1.150 186 -1.945 0.297
Dom-Dom vs Help-Sub -3.483 1.650 150 -2.110 0.221
Dom-Dom vs Sub-Sub -3.319 1.360 179 -2.434 0.111
Dom-Help vs Dom-Sub -1.570 1.030 205 -1.521 0.550
Dom-Help vs Help-Sub -2.822 1.580 182 -1.790 0.383
Dom-Help vs Sub-Sub -2.658 1.440 204 -1.841 0.353
Dom-Sub vs Help-Sub -1.252 1.530 169 -0.819 0.925
Dom-Sub vs Sub-Sub -1.088 1.310 200 -0.829 0.921
Help-Sub vs Sub-Sub 0.164 1.790 190 0.092 1.000

Table S4.8. Allinear mixed effect model (Imer) investigating the relationship between
the anaerobic GM composition similarity of nest-sharing pairs of Seychelles
warblers compared to non-nest-sharing pairs (N = 279 pairwise comparisons across
320 samples from 204 individual birds). Significant terms (P <0.05) are indicated in
bold. Reference categories for categorical variables were the first term in brackets.
Time of day was measured as minutes apart, and time in season was measured as
days apart.

Characteristic Beta SE!? Statistic | df | p-value
(Intercept) 22970  1.141 -20.135 30 <0.001
Nest sharing group (yes/no) -2.317 0.778 -2.977 197 0.003
Age difference 0.015 0.066 0.223 261 0.824
Sex (same/different) 0.490 0.694 0.706 240 0.481
Season (major/minor) 0.157 1.040 0.151 84 0.880
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Time of day -0.001 0.003 -0.463 254 0.644

Time in season <0.001 0.018 -0.024 263 0.981
Relatedness 1.622 1.754 0.925 206 0.356
Shared nest at hatch (no/yes) -0.096 0.730 -0.131 242 0.896
Random 274 observations  Variance
Multi membership ID (Intercept) 204 groups 3.432
Sample Year (Intercept) 6 years 2.180
Residual
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Chapter 5 |

Inbreeding, intergenerational inbreeding and the

gut microbiome

Photo of a demographic rescue event in the Cousin Island population of Seychelles
warbler fieldworkers (n =3 + 1)
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5.1 Abstract

Background

Inbreeding can detrimentally impact the fitness of individuals and their offspring
(inbreeding depression). However, whether being inbred impacts the gut
microbiome (GM) of individuals in natural populations remains largely unexplored,
despite this being a potentially important cause of reduced host health and fitness.
Moreover, the intergenerational effects of having inbred parents on the GM have

never been explored.

Methods

We used a natural, closed population of Seychelles warblers (Acrocephalus
sechellensis) to investigate how host inbreeding impacts GM communities.
Inbreeding avoidance does not occur in this population, leading to high variance in
individual inbreeding coefficients (FRoH). Furthermore, extra-pair paternity is high
(~44%) in this socially monogamous species, which helps us separate genetic and
social effects influencing the GM. Using faecal samples, we undertook both 16S
rRNA amplicon sequencing variants (ASV) metabarcoding (n = 439 from 235
individuals) and metagenomic sequencing (n = 143 from 80 individuals) to
investigate how being inbred, or having inbred parents, affects an individual’s

taxonomic and functional GM variation.

Results

Individuals with higher FRoH had lower metagenomic taxonomic alpha diversity and
distinct shifts in ASV and functional composition, although no specific taxa or

functions differed in abundance, and GM stability was unaffected.

Intergenerational effects were also evident: genetic father FRoH was positively
associated with offspring functional richness, while maternal and social father FRoH
influenced offspring species composition. However, no specific taxa or functions and

GM stability were associated with parental inbreeding.

Conclusions
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Individuals with a higher inbreeding coefficient showed a small but detectable effect
on the GM, particularly in relation to alpha diversity and composition. Likewise,
intergenerational inbreeding had some limited effects on microbiome
characteristics. Together, these findings provide evidence that inbreeding can

influence (albeit with small effect sizes) not only an individual’s microbiome but also

that of their offspring.
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5.2 Introduction

The gut microbiome (GM) plays a key role in many host processes, including
metabolic functions, immune defence and cognition (Ross et al., 2024; Zhu et al.,
2021). Studies of wild animals have shown that the GM varies amongst individuals
in association with environmental differences (Hicks et al., 2018; Marsh et al., 2022;
Schmid et al., 2023) as well as host factors such as age, sex, and sociality (C. Lee
et al., 2025; Raulo et al., 2021; Risely et al., 2022; Tung et al., 2015; Xu and Zhang,
2021). Fine-scale within-population studies, where environmental factors (such as
diet) remain relatively constant, and where individual variation in these other host
factors is known, provide the best opportunity to reveal the effects of among-
individual host genetic variation on the GM (Dzierozynski et al., 2023).

A few studies in natural populations have shown that individual differences in host
genetics are associated with variation in the GM (Davies et al., 2022; Flynn et al.,
2023; Grieneisen et al., 2021). For example, a study on baboons (Papio
cynocephalus) revealed that the GM is significantly heritable (Grieneisen et al.,
2021). Furthermore, host immunogenetic diversity has been associated with
differences in GM diversity and composition in several species (Bolnick et al., 2014;
Davies et al., 2022; Fuess et al., 2021; Tanoue et al., 2010), and specific host genes
that shape gut physiology and nutrient metabolism may also shape the GM (Bonder
et al., 2016; Kurilshikov et al., 2017; Schroeder, 2019). However, powerful studies
that address host genetic variation across the entire genome are now needed to

resolve if, to what extent, and why, host genetic characteristics impact the GM.

Inbreeding results in higher homozygosity across the genome in offspring, which,
through greater expression of recessive deleterious alleles and a loss of heterosis,
can lead to reduced health and fitness, i.e. inbreeding depression (Charlesworth
and Willis, 2009). Despite these detrimental effects, inbreeding may become
inevitable in small, isolated populations due to increasing relatedness among
individuals (Ralls et al., 2007), especially where effective inbreeding avoidance

mechanisms do not exist (Dorsey and Rosenthal, 2023; Eikenaar et al., 2008).
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The GM may be affected by inbreeding through both direct and indirect effects.

Increased homozygosity can lead to the expression of deleterious alleles at loci that
are directly involved in regulating the GM (Bonder et al., 2016; Melis et al., 2023) or
lead to a loss of heterosis/heterozygote advantage at key genes that interact with
the GM, e.g. immune genes under balancing selection (Spurgin and Richardson,
2010). Alternatively, the expression of deleterious alleles and loss of heterosis
across loci may detrimentally impact the general physiological health of an individual
(Fareed and Afzal, 2014). That reduced health may subsequently lead to differences
in GM composition and stability (Keller, 2002), potentially leading to dysbiosis and
more negative host health effects (Hooks and O’Malley, 2017; Martinez et al., 2021,
Videvall et al., 2020).

Given that being inbred reduces individual health and condition, it is also possible
that the offspring of inbred individuals may also suffer fitness loss independent of
their own genetics (Ford et al., 2018). For example, such intergenerational
inbreeding depression can occur due to reduced parental care quality, a key
contributor to offspring fithess (Vedder et al., 2021). Another possible route is that
inbred parents have differences in epigenetic regulation of genetic expression
(Achrem et al.,, 2023; Vergeer et al.,, 2012), which may influence offspring
development and health (Xu et al., 2021). Furthermore, given that the GM is to some
degree vertically transmitted in many species (Sarkar et al., 2024, 2020), inbred
parents with poorer GM characteristics may pass on a weaker initial GM to their
offspring (Choo et al., 2017; Sarkar et al., 2024).

Links between inbreeding and GM variation are still not well characterised or
understood. Studies on inbred captive animals suggest that inbreeding is associated
with reduced GM alpha diversity and changes in GM composition, with decreases
in probiotic, and increases in potentially pathogenic microbes (Hufeldt et al., 2010;
Melis et al., 2023; Drsted et al., 2022; Wei et al., 2020). However, captive animals
harbour a simpler and different (artificial) GM compared to their wild counterparts
(Gibson et al., 2019; Ning et al., 2020; Oliveira et al., 2020). Thus, findings from
captive animals may not reflect what is occurring in natural populations.
Furthermore, long-term captive host lines are often purged of recessive deleterious

alleles and hence capable of surviving incredibly high inbreeding coefficients
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(Festing and Lutz, 2010; Wei et al., 2020). Therefore, studies on these lines are

unlikely to reflect how inbreeding affects GM characteristics in the wild.

In wild populations, some studies have shown that genome-wide heterozygosity is
associated with increased GM alpha diversity (Davies et al., 2022; Yuan et al.,
2015), while others have not (Guimaraes Sales et al., 2024). Additionally, genome-
wide heterozygosity has been associated with differences in GM composition
(Guimaraes Sales et al., 2024; Steury et al., 2019). However, overall, the effects of
inbreeding on the GM in wild animals. has received little, or in the case of

intergenerational effects, no attention.

The power of modern sequencing methodologies enables us to accurately and
efficiently assess both host inbreeding and GM characteristics. Whole-genome
sequencing allows for accurate quantification of recent inbreeding via inbreeding
coefficients (e.g. the fraction of genome in runs of homozygosity; FRoH (Ceballos
et al., 2018)). GM composition can be determined in a cost-effective manner using
16S rRNA metabarcoding, which allows for low-resolution taxonomic analysis of the
bacterial GM across many samples due to its low sequencing cost (Worsley et al.,
2024d). Additionally, shotgun metagenomic sequencing, though much more
expensive, can be used to analyse the GM at a higher taxonomic resolution (species
or strain level) and can shed light on GM functional characteristics via information
on gene content (Worsley et al., 2024d). An assessment of GM function could
extend our insights into the mechanisms by which GM variation influences the host
or vice versa (C. Z. Lee et al., 2025b, 2025a; Worsley et al., 2024d, 2021).

Here, we use the Seychelles warblers (Acrocephalus sechellensis) on Cousin Island
to investigate how inbreeding affects the GM in a wild vertebrate population. This
isolated population of ca. 300 individuals has been intensively monitored since 1997
(Hammers et al., 2015; Richardson et al., 2001; Speelman et al., 2025). Over 2500
individuals have been followed throughout their lives and an extensive genetically
verified pedigree generated (Hadfield et al.,, 2006; Sparks et al., 2022). In this
socially monogamous, territorial species, extra-pair paternity (EPP) is common
(~44% of offspring) (Raj Pant et al., 2019; Richardson et al., 2001), and nearly all
genetic fathers are assigned (Hadfield et al., 2006; Sparks et al., 2022), thus
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enabling us to separate genetic and environmental paternal effects. The small size
and lack of inbreeding avoidance in this population (Eikenaar et al., 2008) have
resulted in a high variance of inbreeding (Richardson et al., 2004) and inbreeding
depression (Bebbington et al., 2016; Richardson et al., 2004). Prior GM studies on
this population have shown that genome-wide heterozygosity is positively
associated with 16S GM diversity (Davies et al., 2022), and major histocompatibility
complex (MHC) diversity with GM composition (Davies et al., 2022; C. Z. Lee et al.,
2025b; Worsley et al., 2022). Additionally, GM differences have been associated
with several host factors, including relatedness and sociality(C. Lee et al., 2025;
Worsley et al., 2024c), as well as environmental factors including season, sampling
year, and time of day (Davies et al., 2022; C. Z. Lee et al., 2025a, 2025b; Worsley
et al., 2024c, 2024b, 2021). Importantly, another study also identified 28 ASVs
whose abundances were associated with differential survival (22 negatively and 6
positively), suggesting pathogenic or beneficial microbes (Worsley et al., 2021).

Here, we utilise individual inbreeding coefficients (FRoH) derived from whole
genome sequencing of 1900 Seychelles warblers in combination with previously
generated 16S metabarcoding (Worsley et al., 2024b) and metagenomic data (C. Z.
Lee et al., 2025a) to investigate the effects of host inbreeding, and intergenerational
inbreeding, on the GM. We hypothesise that inbreeding will lead to lower quality
hosts and GMs. Specifically, we predict that i) individual FRoH will be associated
with lower GM diversity and ii) negative changes in GM taxonomical and functional
composition, and reduced GM stability. Specifically, inbred individuals will show an
increased prevalence of negative/pathogenic microbes, reduced beneficial
functional genes, and greater inter-individual variation. We also predict that iii)
offspring of inbred social parents will have lower GM diversity and differences in GM

taxonomical and functional compositions, and reduced GM stability.
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5.3 Methods

5.3.1 Study system

The Seychelles warblers on Cousin Island, Republic of Seychelles (29 ha; 04° 20’
S, 55° 40’ E) are a population of small, insectivorous passerines that has been
monitored since 1985 (Hammers et al., 2015; Komdeur, 1992; Speelman et al.,
2025). The population consists of ca. 300 individuals inhabiting ca 100 territories
(Komdeur, 1992) and is closed, with virtually no dispersal to other islands (Komdeur
et al., 2004). Two field seasons are conducted per year: January to March (minor
breeding season) and June to September (major breeding season). During these as
many individuals as possible are caught using mist nets or in the nest (chicks), and
new individuals are marked using a British Trust for Ornithology (BTO) metal ring
and a unique combination of three colour rings. Since 1997, almost every individual
(>98%) has been marked and monitored throughout their life (Brown et al., 2022).
Age is calculated from an individual’s hatch or fledge date and eye colour (Komdeur,
1991).

A 12-generation, genetically verified pedigree has been constructed from this
population (Hadfield et al., 2006; Sparks et al., 2022), allowing accurate assignment
of parentage and detection of inbreeding events (Figure 5.1A). The pedigree also

informs intergenerational inbreeding events (Figure 5.1B) and EPP (Figure 5.1C).
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A. Inbreeding B. Intergenerational inbreeding C. Extra-pair paternity
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Figure 5.1. Representation of a focal individual resulting from (A) inbreeding, (B)
intergenerational inbreeding and (C) extra-pair paternity. Focal individuals are in
gold.

5.3.2 Sample collection

Faecal and blood samples were collected from caught individuals. Briefly, birds were
placed in a flat-bottom paper bag with a sterilised plastic tray under a metal grate
allowing faeces to drop onto the plastic, while minimising contact with the birds’
surface (Davies et al., 2022; Knutie and Gotanda, 2018). Faecal samples are placed
into a sterile microcentrifuge tube containing 1 mL of absolute ethanol, stored at 4°C
during fieldwork and then at -80°C for long-term storage. Each season, control
samples were collected by swabbing collection bags and fieldworker hands. The
time of day (minutes after sunrise; 06:00 AM) of sampling was recorded, as was
faecal storage time (days) at 4°C. A small (ca. 25 ul) blood sample was also
collected from each bird via brachial venepuncture and stored in 0.7 ml of absolute
ethanol at 4°C.

5.3.3 Gut (bacterial) microbiome molecular methods

Microbial DNA were extracted from faecal samples using the DNeasy PowerSoil Kit
(Qiagen, Crawley, UK) with a modified version of the manufacturer’s protocol
(described in (C. S. Davies et al., 2022)). Microbial DNA were sequenced as part of
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previous studies using 16S rRNA amplicon (Worsley et al., 2024b) and shotgun

sequencing for metagenomics (C. Z. Lee et al., 2025a).

Briefly, microbial DNA samples were submitted for 16S rRNA amplicon sequencing
across seven batches from libraries generated with V4 primers 515F
(5'TGCCAGCMGCCGCGGTAAY) and 806R (5’ GGACTACHVGGGTWTCTAAT3)
(Worsley et al., 2024b). Libraries were sequenced with 2 x 250 bp paired end reads
on an lllumina MiSeq Platform. Control samples were extracted, and amplicon
sequenced in the same way (n = 21 hand controls, 15 negative controls, and 10
positive ZymoBIOMICS Microbial Community Standard (D6300) controls).

A subset of DNA samples was submitted for shotgun sequencing in two batches
from libraries generated with the LITE protocol (Perez-Sepulveda et al., 2021).
Libraries were sequenced using 2 x 150 bp paired end sequencing on an Illlumina
NovaSeq X platform. Controls samples were library prepped and sequenced in the
same way (n = 6 hand controls, n =2 ZymoBIOMICS Microbial Community Standard
(D6300), and n = 1 ZymoBIOMICS Fecal Reference with TruMatrix™ Technology
(D6323)).

5.3.4 Host genome molecular methods

Genomic DNA was extracted from blood samples using the DNeasy Blood and
Tissue kit (Qiagen, Crawley, UK) or a salt extraction protocol (Richardson et al.,
2001) according to the manufacturer’'s protocol. Genomic DNA was used for
molecular sexing following (Griffiths et al., 1998) and microsatellite genotyping for
parentage analyses (Richardson et al., 2001; Sparks et al., 2022).. Genomic DNA
was submitted for whole genome sequencing in 20 batches (detailed in Kiran Lee
et al., 2025 — in prep) from randomly selected libraries generated with NEBNext
Ultra I FS DNA Library Prep (New England Biolabs). Libraries were sequenced

using 2 x 150 bp, paired-end sequencing on an lllumina NovaSeq 6000 platform.

5.3.5 Bioinformatics

Amplicon sequenced reads were processed as described in (Worsley et al., 2024b).

Briefly, 16S rRNA reads were truncated, filtered, and classified in amplicon
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sequencing variants (ASV) using DADA2 as part of QIIME2 (Bolyen et al., 2019).
ASVs were taxonomically assigned with the naive-Bayes classifier on the SILVA
132 reference database for 16S rRNA gene sequences (Quast et al., 2012). The
resulting ASVs were imported to R using phyloseq 1.46.0 (Leo Lahti and Sudarshan
Shetty, 2019; McMurdie and Holmes, 2013) and filtered to remove ASVs that were
non-bacterial, unassigned to phylum level, or had less than 50 reads, as well as
potential contaminants (based on controls). Amplicon sequencing reads were
rarefied to 8,000 reads, based on samples reaching >95% completeness in
rarefaction curves (Worsley et al., 2024b). ASV richness and Shannon diversity
were calculated using phyloseq version 1.46.0 (McMurdie and Holmes, 2013).

Shotgun sequence processing was performed using MATAFILER (Hildebrand et al.,
2021) as previously described in detail (C. Lee et al., 2024). Briefly, host reads were
removed by mapping reads to the Seychelles warbler genome (see below) with
Kraken 2 (version 2.1.3), followed by read quality filtering using sdm software
version 2.14 beta (Hildebrand et al., 2014; Wood et al., 2019). After removing host
reads and read trimming, two samples and five hand controls were removed
because they did not have enough reads for metagenome assembly. An average of
20,481,040 (SD = 13,718,305) paired end reads per sample were retained for de
novo metagenome assembly using MEGAHIT version 1.2.9 (Li et al., 2015). Genes
were predicted from the resulting assembly using Prodigal version 2.6.3 (Hyatt et
al., 2010) and clustered into gene catalogues (95% identity). Functional annotations
of genes were performed using eggNOGmapper version 2.1.12 and the eggNOG
database version 4 (Cantalapiedra et al., 2021; Powell et al., 2014). Metaphlan4
assignments were used to taxonomically assign shotgun sequencing reads.
Metagenomic species reads were rarefied to 5500 reads, the point of asymptote of
the metagenomic species rarefaction curve (C. Z. Lee et al., 2025a). Metagenomic
functional annotation reads were rarefied to 100,000 reads, the point of asymptote

of the metagenomic functional annotation rarefaction curve (C. Z. Lee et al., 2025a).

Whole host genome sequencing reads were processed as described previously
(Kiran Lee, et al., 2025). Briefly, reads were filtered to keep only high-quality reads
(Phred quality score of >33 and a minimum length of 80 bp)
using Trimmomatic version 0.39 (Bolger et al., 2014). These reads were mapped to

the Seychelles warbler reference genome (Kiran Lee, et al., 2025; BUSCO: 96.0%
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with a total length = 1,081,018,985 bp) before imputation with STITCH version 1.7.0
(Davies et al.,, 2016), with the following parameters: diploid, eight founding
haplotypes, and 25 generations since founding (Kiran Lee, et al., 2025). Runs of
homozygosity (ROH) were then calculated for each sample using PLINK version 2.0
(Purcell et al., 2007) by including SNPs with genotyping rate >99% and minor allele
frequency >99% as well as a maximum allowed density of heterozygous SNPs of
200 kb, maximum allowed gap of 300 kb, minimum length of 3750 kb, minimum
number of SNPs of 50, maximum number of heterozygous SNPs in a sliding window
of 2, maximum number of missing genotypes within the sliding window of 4, and
minimum number of SNPs required in a sliding window of 50 (Kiran Lee, et al.,
2025). The fraction of the genome in ROH (FROH) was calculated by dividing the
ROH length by genome size.

5.3.6 Pedigree

Parentage assignment was generated with MasterBayes 2.5.2 (Hadfield et al.,
2006) using microsatellites (Richardson et al., 2001; Sparks et al., 2022). All
offspring hatched between 1991 and 2022 (2282 offspring, 1935 (85%) mothers,
2016 (88%) fathers were assigned parentage at >80% confidence using
MasterBayes 2.52 as part of previous studies (Hadfield et al., 2006; C. Lee et al.,
2025; Sparks et al., 2022)).

In addition, parentage assignment was also performed with sequoia version 2.11.4
(Huisman, 2017) using SNPs filtered in PLINK for genotyping rate of >99.9 %, minor
allele frequency of >30% and linkage of 1000 SNP window, 2 step size, 0.1 pairwise
r’, sex chromosomes and chromosomes with <90% imputation accuracy were
excluded. Both pedigrees showed excellent consistency (>95% concordance; Kiran
Lee et al., 2025). Therefore, the genomic pedigree was used for all subsequent

analyses.

5.3.7 Statistical analysis

Individuals >0.5 years age (when the mature GM stabilises (Worsley et al.,
2021)).for which we had gut microbiome samples, genomic data, and known parents

were included (16S, n = 439 samples from 235 individuals; Metagenomics, n = 143
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samples from 80 individuals). All statistical analysis was conducted in R 4.3.3 (Posit
team, 2024; R Core Team, 2024). Linear mixed effect (LMMs) and Generalised
linear mixed effect models (GLMMs) were constructed using Ime4 version 1.1-35.5
(Bates et al., 2015), and PERMANOVAs were constructed using the adonis2()
function in vegan version 2.6.6 with 9999 permutations and a blocking effect of bird

ID to account for repeated measures (Oksanen Jari et al., 2024).

5.3.7.1 Inbreeding and GM alpha diversity

16S rRNA metabarcoding diversity: A GLMM with negative binomial distribution
was constructed with ASV richness as the response variable and the individual’s,
mother’s, genetic father’s, social father’s inbreeding coefficient and extra-pair
paternity (no/yes) as predictor variables. Age (years), sex, season, sample year,
days at 4°C, and time of day were also included as fixed-term control variables, and
bird ID, mother ID, genetic father ID and social father ID were included as random
variables. An interaction between inbreeding coefficient of genetic father and EPP
is tested to determine if the effect was only present only during EPP, but the
interaction was dropped if it was not significant to allow interpretation of the main
effects. Shannon diversity was also then modelled with an LMM including the same

variables.

All subsequent models of GM diversity (below) included the same control variables

unless stated otherwise.

For all analyses, if any inbreeding coefficient had a significant (P < 0.05) effect on
the dependent variable, then an additional model was constructed with only extra-
pair offspring included to confirm results using only cases where the social and

genetic fathers were different.

Metagenomic taxonomic diversity: A GLMM with negative binomial distribution
was constructed with metagenomic species richness as the dependent variable, and

an LMM was constructed with metagenomic species Shannon diversity.
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Metagenomic functional diversity: LMMs were constructed for scaled
exponentially transformed functional richness and exponentially transformed

functional Shannon diversity.

5.3.7.2 Inbreeding and GM composition

16S rRNA metabarcoding composition: Unrarefied amplicon sequencing reads
were filtered to remove rare ASVs (<5% prevalence), and a centred log ratio (CLR)
transformation was applied to the ASVs abundance using microbiome 1.24.0
package (Leo Lahti & Sudarshan Shetty, 2019). A PERMANOVA was constructed
using pairwise Aitchison distance with the inbreeding coefficient of the focal
individual, and its mother, genetic father, social father and extra-pair paternity (EPP;
no/yes) as predictors, along with control variables (age, sex (female/male), season
(major/minor), sample year, days at 4°C, and catch time). An interaction between
inbreeding coefficient of genetic father and EPP is tested to determine if the effect
was only present only during EPP, but the interaction was dropped if it was not
significant to allow interpretation of the main effects. PCA was generated using
phyloseq version 1.46.0 (McMurdie & Holmes, 2013) to visualise compositional

changes.

Metagenomic taxonomic composition: Unrarefied metagenomic species reads
were filtered, and a CLR transformation was applied to species abundance as for
ASV composition above. A PERMANOVA (also as described above), was
constructed to test for inbreeding and intergenerational inbreeding coefficient effects

on metagenomic species compaosition.

Metagenomic functional composition: Unrarefied metagenomic functional
annotations were filtered and a CLR transformation was applied to functional
annotation abundance as for ASV composition above. A PERMANOVA (also as
described above) was constructed to test for intergenerational inbreeding coefficient

effects on metagenomic functional annotation composition.
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5.3.7.3 Inbreeding and GM differential abundance analysis

16S rRNA metabarcoding abundance: Differential abundance analysis was
performed using ALDEx2 1.34.0 (Fernandes et al., 2013). CLR transformed ASVs
from GM composition were used as the response variable with the inbreeding
coefficient of the focal individual and its mother, genetic father and social father as
predictors, along with control variables (age, sex, season, sample year, days at 4°C,
and catch time). The differential abundant ASVs were then compared to previously
identified survival-related ASVs (Worsley et al., 2021), to assess whether inbreeding
Is associated with an increase in potentially pathogenic microbes and/or a decrease

in beneficial ones.

Metagenomic taxonomic abundance: Metagenomic species and metagenomic

function were also analysed with ALDEx2 as described for ASV abundance above.

5.3.7.4 Inbreeding and GM stability
16S rRNA metabarcoding GM stability: Pairwise Aitchison distances of CLR-

transformed reads from between samples were scaled to similarity values (0-1)
using the formula as previously described (Worsley et al., 2024b): similarity = 1-
(distance/maximum distance), where a value closer to one indicates samples are
identical in GM composition. We then modelled pairwise GM similarities using a
LMM multi-membership model (Imer with ImerMultiMember) using Ime4 1.1-35.5
(Bates et al., 2015). Inbreeding coefficients were categories by the average
population FRoH (low < 0.25 and high >0.25) to assess whether inbreeding of the
focal individual or its parents had more or less stable GMs. A total of 96141 pairwise
comparisons of individual inbreeding category (low-low, high-high, and mixed),
mother inbreeding category, genetic father inbreeding category, social inbreeding
category, age difference (in years) and temporal distance (days between sampling)
were included as fixed effects in the model. A multi-membership ID variable
(calculated using ImerMultiMember to account for the repeated occurrences of
individual 1D in both columns, and suitable for dyadic models (van Paridon et al.,

2023)) was used as a random variable.

Metagenomic GM stability: Metagenomic species and metagenomic function were
analysed as for ASV GM stability (as described above).
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5.4 Results

5.4.1 Inbreeding and GM alpha diversity

16S rRNA metabarcoding diversity: An individual’'s GM ASV alpha diversity
(richness or Shannon diversity) was not significantly associated with the individual’s
inbreeding coefficient, nor that of its mother, genetic or social father (Table 5.1AB,
Table S5.1-5.2), but was (both richness and Shannon) negatively associated with
age (Table S5.1). GM ASV richness was also associated with sample year, while
Shannon diversity was also significantly negatively associated with days at 4°C
(Tables S5.1-S5.2).
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Table 5.1. Models investigating associations between gut microbiome (GM) alpha
diversity and inbreeding (of individuals and their parents) in the Seychelles warbler.
The inbreeding coefficient (FROH) predictors in all models are shown on the left
side of the table: the inbreeding coefficient of 1) the focal individual, and its 2)
mother, 3) genetic father, and 4) social father. The different metrics describing GM
characteristics used as the dependent variables are given along the top. The
estimate (Est), P-value (P), and sample size (N) of each predictor in each model are
represented by the numbers in the boxes. An asterisk (*) denotes predictors that
were also significant (P < 0.05) in an extra-pair only model (Table S5.5 & S5.8).
Significant (P < 0.05) effects of the inbreeding coefficients with the GM characteristic
in each model are shown by bold text and shading the box in blue (positive
relationship) or orange (negative relationship).

Model
(7)) (=
£q £c &g &5 88 828
§8 8: S5E£ §§5 5§55 6§ ¢
Inbreeding coefficient| 3 & & S g 2 S & g = g O
s 838 g9 g9 g T
o > o > Q5 o 2@ © O O O
=S n =0 = 9 = 9 = B s 8
~ < ~ < ~ ~ o —~ Cc —~ 8
<€ m O 2 (a) n L E LL E
Est: Est: - Est: - Est: - Est: - Est: -
o 0.22 0.84 3.09 2.46 1.75 1206
1) Individual
P: 0.744 P: 0.489 P:0.046* P: 0.184 P: 0.061 P: 0.205
N: 439 N: 439 N: 141 N: 141 N: 139 N: 139
Est:
0.31 Est:0.05 Est: 2.19 Est:1.70 Est: 1.12 Est: 175
2) Mother P" 0.606 P: 0.962 P: 0.057 P:0.238 P: 0.103 P: 0.798
T N:439  N:141 N:141  N:139  N: 139
N: 439
Est: - Est: - Est:
Est: 0.52 Est: 0.20 Est: 904
; 0.06 0.53 1.54
3) Genetic Father P: 0.611 P: 0.861 P: 0.212
P: 0.920 P: 0.710 P: 0.027
N: 439 N: 141 N: 139
N: 439 N: 141 N: 139
Est: Est: - Est: - Est: -
Est: 0.58 Est: 0.31
) 0.30 0.16 0.92 1167
4) Social Father P: 0.605 P: 0.840
P: 0.628 P: 0.894 1 P: 0.208 P: 0.117

N: 439 N: 14
N: 439 N: 141 N: 139 N: 139
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Metagenomics taxonomic alpha diversity: Species richness (but not Shannon
diversity) was significantly negatively associated with the focal individual's
inbreeding coefficient (Table 5.1C, Table S5.3 & S5.4, Figure 5.2A). Using only
extra-pair offspring, metagenomic species richness remained significantly
associated with individual inbreeding coefficient, despite the smaller sample size
(Table S5.5). Neither Richness or Shannon diversity were associated with the
inbreeding coefficient of the focal individual’s mother, genetic or social father (Table
5.1C, Table S5.3 & S5.4). In terms of the other control variables, metagenomic
species richness was significantly negatively associated with age (Table S5.3), and
metagenomic species Shannon diversity was significantly negatively associated
with days at 4°C (Table S5.4), but no other variables.

Metagenomic functional diversity: Functional richness and Shannon diversity
was not associated with inbreeding coefficient of the focal individual or its mother or
social father, but functional richness was significantly positively associated with the
inbreeding coefficient of the genetic father’s (Table 5.1E, Table S5.6 & S5.7, Figure
5.2B). Using only extra-pair offspring, metagenomic functional richness remained
related to the genetic father’s inbreeding coefficient (with a similar positive effect
size), though this was no longer significant in this reduced sample size model (Table
S5.8), which suggests that, despite a lack of power, the results remain consistent.
Metagenomic functional richness and Shannon diversity were both significantly
negatively associated with age (Table S5.6 & S5.7) and metagenomic functional

richness was also significantly associated with sample year (Table S5.6).
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Figure 5.2. Seychelles warbler gut microbiome metagenomic-derived (A) species
richness in relation to individual inbreeding coefficient (FROH), and (B) functional
richness and genetic father’s inbreeding coefficient. Solid lines represent model
predictions (£95% confidence interval) from a generalised linear mixed effect model
with negative binomial distribution (Table S5.3) and a linear mixed effects model
(Table S5.6), respectively. Each point represents a unique gut microbiome sample
(n = 141 samples from 80 individuals).

5.4.2 Inbreeding and GM composition

16S rRNA metabarcoding composition: GM ASV composition was significantly
associated with the inbreeding coefficient of an individual, though it only explained
a small amount of the overall GM variance (R? = 0.002, Tables 5.2 & 5.3A, Figure
S5.3). Using only extra-pair offspring, GM ASV composition was still significantly
associated with individual inbreeding coefficient (Table S5.9). GM ASV composition
was also significantly associated with season, sample year, days at 4°C, and time
of day (Table 5.2). The inbreeding coefficient of the focal individual’s mother, genetic
and social father was not associated with GM composition, nor was age and sex
(Table 5.2 & 5.3A).

Table 5.2. A PERMANOVA of the relationship between gut microbiome (GM) ASV
compositional differences and the inbreeding coefficients (FROH) of Seychelles
warblers and its mother, genetic and social fathers. The analysis was performed
using Aitchison distances calculated using centred log ratio (CLR) transformed
amplicon sequencing variant (ASV) abundances. Significant predictors (P < 0.05)
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are shown in bold. N = 439 samples from 235 individuals. Bird ID was included as
a blocking factor to control for repeated measures.

Df R? F P
Individual inbreeding coefficient 1 0.002 0.855 0.005
Mother inbreeding coefficient 1 0.003 1.147 0.872
Genetic Father Inbreeding coefficient 1 0.003 1.495 0.653
Social Father Inbreeding coefficient 1 0.002 1.058 0.648
Extra-pair paternity 1 0.002 0.995 0.448
Age 1 0.002 1.106 0.973
Sex 1 0.003 1.188 0.523
Season 1 0.005 2.197 <0.001
Sample Year 5 0.024 2.137 <0.001
Days at 4°C 1 0.005 2.344 <0.001
Time of day 1 0.008 3.496 <0.001
Residual 424 0.935
Total 438 1

Table 5.3. The relationship between GM composition and inbreeding in the
Seychelles warbler. The inbreeding coefficient (FROH) predictors in all models are
shown on the left side of the plot: the inbreeding coefficient of 1) the individual and
that of its, 2) mother, 3) genetic father, and 4) social father. The different metrics
describing GM characteristics used as the dependent variables are given along the
top: A) ASV composition (Table 5.2), B) Metagenomic species composition (Table
S5.10), C) Metagenomic functional composition (Table S5.12). The effect size (R?),
P-value, and sample size (N) of each predictor in each model are represented by
the numbers in the boxes. An asterisk (*) denotes predictors that were also
significant (P < 0.05) in an extra-pair only model (Table S5.9 & S5.11 & S5.13).
Significant (P < 0.05) effects of the inbreeding coefficients with the GM composition
in each model are shown by bold text and box shaded in light green.

Model

232



Inbreeding coefficient

A) Metabarcoding ASV composition

B) Metagenomics species composition

C) Metagenomics functional compaosition

Individual

Mother

Genetic Father

Social Father

Genetic Father * EPP

R?: 0.002
P: 0.005*
N: 439

R2:0.003
P:0.872
N: 439

R?:0.003
P: 0.653
N: 439

R2: 0.002

N: 439

R2: 0.007 RZ% 0.010

P: 0.314*
N: 143

P: 0.020
N: 143

R% 0.008 R? 0.008

P: 0.024
N: 143

P: 0.553
N: 143

R% 0.009 R? 0.007
P:0.648 P:<0.001*

N: 143

P:0.238
N: 143

R 0.006 R2 0.006

P: <0.001
N: 143

P: 0.028
N: 143

Metagenomic taxonomic composition: This was not significantly associated with

inbreeding coefficient of individual’s (Table S5.10) but was significantly associated

with the inbreeding coefficient of the mother and social father as well as the
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interaction between the inbreeding coefficient of genetic father and EPP (R? = 0.008,
0.009, and 0.006, respectively, Table 5.3B, Table S5.10, Figure S5.4). Metagenomic
taxonomic composition was also significantly associated with sex, season, days at
4°C, and time of day (Table S5.7). The overall effect sizes were small for inbreeding
coefficient of the mother and social father (R?> = 0.007 and 0.008, respectively).
Metagenomic species composition within an individual was not significantly
associated with age and sample year. Using only extra-pair offspring (N=64),
metagenomic species composition was still significantly associated with the social
fathers’ inbreeding coefficient (Table S5.11) but not with the inbreeding coefficient
of mothers. In addition, using only extra-pair offspring, metagenomic species
composition was also significantly associated with individual inbreeding coefficient
(Table S5.11). Metagenomic species composition was also not related to age or
sample year (Table 5.3B, Table S5.10).

Metagenomic functional composition: This was significantly associated with
increases in the inbreeding coefficient of individuals, explaining a small amount of
the overall variance (R? = 0.01, Table 5.3C, Table S5.12, Figure S5.5).
Metagenomic functional composition was also significantly associated with the
interaction between the inbreeding coefficient of genetic fathers and EPP but was
not associated with the inbreeding coefficient of mothers or social fathers (Table
5.3C, Table S5.12). Using only extra-pair offspring (N=64), metagenomic functional
composition was not significantly associated with the inbreeding coefficient of
individuals or any other parent (Table S5.13). Metagenomic functional composition

was significantly associated with age, sample year and days at 4°C (Table S5.12).

5.4.3 Inbreeding and differential abundance analysis

16S rRNA metabarcoding abundance: No differentially abundant ASVs, were
identified as changing in abundance in association with the inbreeding coefficients
of the individual, mother, genetic father or social father. Thus, the absence of
differentially abundant ASVs suggests that inbreeding is not linked to survival-
related ASVs.
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Metagenomic abundance: No metagenomic species or functions were identified
as changing in abundance in association with the inbreeding coefficients of the

individual, mother, genetic father or social father.

5.4.4 Inbreeding and GM stability

16S rRNA metabarcoding GM stability: GM ASV stability was not associated with
the inbreeding coefficients of the individual, mother, genetic father or social father
(Table S5.14). GM ASV stability was significantly negatively associated with age

difference and positively associated with temporal difference (Table S5.14).

Metagenomic GM stability:

GM metagenomic species and function stability was not associated with the
inbreeding coefficients of the individual, mother, genetic father or social father
(Table S5.15 & S5.16). GM Metagenomic species was significantly negatively
associated with temporal difference (Table S5.15). GM metagenomic function was
significantly positively associated with age difference and negatively associated with

temporal difference (Table S5.16).
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5.5 Discussion

In the Seychelles warbler, we found that the individual inbreeding coefficient was
negatively associated with metagenomic species richness but was not associated
with species Shannon diversity, ASV or functional GM alpha diversity. Individual
inbreeding was also associated with changes in ASV and functional GM
composition, but not metagenomic species composition. However, no specific taxa
(ASV or metagenomics) or function varied significantly in abundance with increasing
individual inbreeding. Additionally, individuals with low and high inbreeding
coefficients did not differ in GM stability (metabarcoding ASV, metagenomic species

or metagenomic function).

In terms of intergenerational effects, none of the parents’ inbreeding coefficients
were associated with ASV or metagenomic species alpha diversity. However, the
genetic father’s (but not the mother’s or social father’s) inbreeding coefficient was
positively associated with metagenomic functional richness. Furthermore, the
inbreeding coefficient of both the mother and social father was significantly
associated with differences in metagenomic species composition. None of the
parental inbreeding coefficients were significantly associated with changes in the
abundance of any specific taxa or function. Finally, parental inbreeding coefficients
were not associated with changes in GM stability (metabarcoding ASV,

metagenomic species and metagenomic function).

The evidence from the few previous studies undertaken on inbreeding in wild
animals is mixed on whether individual inbreeding is linked to lower GM diversity.
We found increased individual inbreeding to be linked to decreased metagenomic
species richness in the Seychelles warbler. However, individual inbreeding was not
associated with ASV or functional GM alpha diversity. This contrasts with a previous
study on the Seychelles warbler, which reported that lower microsatellite
heterozygosity was associated with lower ASV GM bacterial richness (Davies et al.,
2022). However, microsatellite variation offers low-resolution estimates of genome-
wide heterozygosity and shows limited correlation with inbreeding in the Seychelles
warbler, thus, it has been replaced by the more powerful whole-genome sequencing
approach used in this study. The evidence is equally ambiguous in other species;
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captive studies in house mice (Mus musculus), wild and inbred populations did not
differ in GM alpha diversity (Kreisinger et al., 2014; Wang et al., 2015), but a different
study in mice, and studies in banna minipig (Sus scrofa domesticus), and fruit flies
(Drosophila melanogaster) identified significant differences (Hanski et al., 2025,
2024; Qrsted et al., 2022; Wei et al., 2020). In wild animals, a study on northern
muriqui (Brachyteles hypoxanthus) found no link between heterozygosity and GM
diversity (Guimaraes Sales et al., 2024), while a study on three-spined stickleback
(Gasterosteus aculeatus) found a positive association (Steury et al., 2019). Further
research is needed to fully understand how inbreeding affects GM alpha diversity in

animals (especially wild animals), but this metric may be species-specific.

In the Seychelles warbler, we also found that the individual inbreeding was
associated with variation in both ASV and functional GM composition. Consistent
with our results, inbred individuals in previous captive studies also displayed
changes in ASV (Hanski et al., 2025, 2024; Wang et al., 2015) and functional GM
composition (Hanski et al., 2025; Wang et al., 2015). Similarly in wild animals, inbred
individuals showed changes in ASV GM composition ((Guimaraes Sales et al.,
2024; Yuan et al., 2015). However, in the Seychelles warbler, inbreeding was not
associated with differences in the abundance of any specific ASVs; thus, we found
no evidence that inbreeding alters any previously identified survival-related ASVs
(potentially pathogenic or beneficial ASVs; (Worsley et al.,, 2021)). Although
inbreeding was significantly associated with GM composition, it accounted for very
little variance, which may explain the absence of differentially abundant taxa. This
may also suggest that inbreeding likely influences a broad spectrum of microbes
rather than impacting particular ones. The small effects across many taxa/function
may arise from systemic host physiology changes that alter the gut environment,
thereby reshaping GM composition without consistently affecting specific taxa or

function (Nearing et al., 2022).

The effects of parental inbreeding varied by GM metric and by parent. The genetic
father’s inbreeding coefficient was positively correlated with functional richness but
showed no association with GM composition. Since the GM can mediate genetic
influences on social behaviour (Jin et al., 2021; Smith et al., 2023), the increase in
functional richness may reflect a compensatory response to inherited genetic

deficits. For example, juvenile Hihi’s (Notiomystis cincta) sociability was associated
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with father’s inbreeding but not mother’s inbreeding, suggesting that inbred fathers
may shape the social behaviour of juveniles through genetics (Franks et al., 2023).
However, in Seychelles warblers, it remains unclear whether fathers’ inbreeding
affects offspring social behaviour or fitness. Thus, whether the GM is compensating
for genetic deficits or responding to another mechanism requires further

investigation.

The inbreeding coefficient of mothers and social fathers was associated with
metagenomic species composition. Social parents could be correlated with their
offspring’s GM as a result of physical contact or because they experience a shared
environment (Sarkar et al., 2020; Tochitani et al., 2024). In other species, the GM
composition of cross-fostered offspring quickly changes to reflect their foster siblings
(Daft et al., 2015; Teyssier et al., 2018), indicating that parental transmission and
natal environment play an important role in shaping the GM. Social parents that are
inbred may have a dysbiotic GM, and this may be transferred to offspring (leading
to compositional correlations with parental inbreeding), which may, in turn, impact
the offspring’s health and fithess (Argaw-Denboba et al., 2024). This highlights the
importance of considering social parental effects on GM characteristics and how

these may subsequently influence offspring health and fitness.

Inbred parents were not associated with the abundance of any specific taxa or
function. This may be due to different sets of inbred parents passing on different
sets of gut microbes. Thus, the changes would be individual-specific and would not
be detected. Similarly, inbred parents were not associated with changes in GM
stability, which is consistent with individual inbreeding coefficients, suggesting that

GM stability is not linked to inbreeding.

One limitation of our study on the Seychelles warbler is that inbreeding coefficients
can only be calculated from individuals that hatch and survive until being sampled.
If inbreeding leads to higher mortality in our population (Pinto et al., 2026 — in prep,
Kiran Lee et al., 2025 — in prep), then our results will be impacted by the selective
disappearance of highly inbred individuals from our dataset. This may then reduce
our statistical power to assess the effect of inbreeding on the GM, which could

explain the small effect sizes. Despite that, we still detected individual inbreeding
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effects on ASV and functional GM composition, as well as intergenerational
inbreeding effects on metagenomic species GM composition. Future studies on the
GM of wild animals where the individuals could be repeatedly sampled in early life
(before mortality) may provide further resolution of this question.

Beyond genetic effects, environmental variables emerged as crucial factors shaping
the GM. Specifically, temporal factors such as season and time of day explain a
significant proportion of ASV and metagenomic species GM composition. In
addition, sampling year was also a significant predictor of ASV GM composition.
Similarly, the sampling year and host age were significant predictors of
metagenomic functional GM composition. Temporal factors have previously been
shown to affect GM composition in Seychelles warblers (C. Z. Lee et al., 20253a;
Worsley et al., 2024b) as well as in other wild animals (Hicks et al., 2018; Marsh et
al., 2022; Schmid et al., 2023; Xu and Zhang, 2021). Across GM compositional
analyses, the number of days samples were stored at 4°C was also a significant
predictor; hence, it was included as a control variable and has been found in
previous studies (C. Z. Lee et al., 2025a; Worsley et al., 2024b). This underscores
the importance of accounting for relevant confounding variables such as storage

time to improve model reliability and reproducibility (Holzhausen et al., 2021).

5.6.1 Conclusion

Greater habitat fragmentation and escalating climate change will likely result in an
increasing number of small, isolated populations, potentially leading to more
inbreeding events in animals (Pinto et al., 2024; Surina et al., 2024). Population
bottlenecks have been shown to contribute to lower GM diversity (drsted et al.,
2022; Worsley et al., 2024a), which could compound the effects of inbreeding
depression. Given the negative consequences of inbreeding, it is crucial to
understand the mechanisms that lead to inbreeding depression. Our study highlights
the importance of host genetics, specifically individual and parental inbreeding, in

shaping the GM, which may have downstream consequences for influencing fitness.
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5.8 Supplementary material

16s richness

Table S5.1. A generalised linear mixed effect model with a negative binomial
distribution (glmer.nb) investigating GM ASV richness in relation to intergenerational
inbreeding coefficient among Seychelles warblers (n=439 samples, 235
individuals). Conditional R?=.09. Significant (P<.05) terms are indicated in bold.
Reference categories for categorical variables are shown as the first term in
brackets and are as follows: no (EPP), major (Season), female (Sex), 2017 (Sample

Year).
Characteristic Beta SE! | Statistic| p-value
(Intercept) 5.16 0.26 20.10 <0.001
Individual inbreeding coefficient 0.22 0.68 0.33 0.744
Mother inbreeding coefficient 0.31 0.60 0.52 0.606
cenete  Father Inbreedng 506 0,57 010  0.920
Social Father Inbreeding coefficient 0.30 0.63 0.49 0.628
EPP (nolyes) 0.09 0.07 -1.35 0.179
Age -0.04 0.01 -2.64 0.008
Season (major/minor) 0.15 0.09 1.72 0.085
Sex (female/male) -0.12 0.07 -1.79 0.073
Days at 4°C -0.04 0.08 -0.55 0.585
Time of day 0.01 0.07 0.15 0.882
Sample Year
2017 — — —
2018 0.04 0.11 0.36 0.719
2019 0.17 0.13 1.38 0.169
2020 0.46 0.17 2.78 0.006
2021 0.31 0.13 2.37 0.018
2022 0.12 0.13 0.91 0.364
Random variables Variance SD n
Bird ID <0.001 <0.001 235
Mother ID <0.001 <0.001 139
Genetic Father ID <0.001 <0.001 131
Social Father ID <0.001 <0.001 134

16s Shannon
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Table S5.2. A linear mixed effect model investigating GM ASV Shannon diversity in
relation to intergenerational inbreeding coefficient among Seychelles warblers
(n =439 samples, 235 individuals). Conditional R?=.06. Significant (P<.05) terms
are indicated in bold. Reference categories for categorical variables are shown as
the firstterm in brackets and are as follows: no (EPP), major (Season), female (Sex),
2017 (Sample Year).

Characteristic Beta SE! | Statistic | p-value
(Intercept) 3.36 0.46 7.32 <0.001
Individual inbreeding coefficient -0.84 1.21 -0.69 0.489
Mother inbreeding coefficient 0.05 1.06 0.05 0.962
Genetic Father Inbreeding coefficient  0.52 1.01 0.51 0.611
Social Father Inbreeding coefficient 0.58 1.12 0.52 0.605
EPP (nolyes) 0.13 0.12 -1.10 0.271
Age -0.06 0.02 -2.41 0.017
Season (major/minor) 0.10 0.16 0.65 0.517
Sex (female/male) -0.20 0.12 -1.67 0.096
Days at 4°C -0.31 0.14 -2.23 0.027
Time of day -0.10 0.12 -0.82 0.413
Sample Year
2017 — — —
2018 0.13 0.19 0.66 0.508
2019 0.01 0.23 0.04 0.971
2020 0.31 0.30 1.05 0.296
2021 0.09 0.24 0.38 0.702
2022 0.20 0.24 0.82 0.414
Random variables Variance SD n
Bird ID <0.001 <0.001 235
Mother ID <0.001 <0.001 139
Genetic Father ID <0.001 <0.001 131
Social Father ID <0.001 <0.001 134
Mpa obs

Table S5.3. A generalised linear mixed effect model with a negative binomial
distribution (glmer.nb) investigating GM species richness in relation to
intergenerational inbreeding coefficient among Seychelles warblers (n=141
samples, 80 individuals). Conditional R?=.35. Significant (P<.05) terms are
indicated in bold. Reference categories for categorical variables are shown as the
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first term in brackets and are as follows: no (EPP) major (Season), female (Sex),
2017 (Sample Year).

Characteristic Beta SE! | Statistic | p-value
(Intercept) 3.36 0.54 6.27 <0.001
Individual inbreeding coefficient -3.09 1.55 -2.00 0.046
Mother inbreeding coefficient 2.19 1.15 191 0.057
Genetic Father Inbreeding coefficient  0.20 1.14 0.18 0.861
Social Father Inbreeding coefficient -0.16 1.22 -0.13 0.894
EPP (nolyes) -0.04 0.15 0.23 0.815
Age -0.05 0.02 -2.35 0.019
Season (major/minor) -0.02 0.16 -0.09 0.927
Sex (female/male) 0.02 0.14 0.14 0.893
Days at 4°C -0.16 0.14 -1.19 0.235
Time of day 0.10 0.12 0.84 0.402
Sample Year
2017 — — —
2018 0.06 0.24 0.25 0.806
2019 0.07 0.29 0.23 0.821
2020 0.28 0.32 0.87 0.383
2021 0.31 0.28 1.11 0.269
2022 0.41 0.27 151 0.132
2023 0.20 0.28 0.71 0.477
Random variables Variance SD N
Bird ID 0.129 0.359 80
Mother ID <0.001 0.008 68
Genetic Father ID <0.001 <0.001 60
Social Father ID <0.001 0.003 67

Mpa Shannon

Table S5.4. A linear mixed effect model (Imer) investigating GM species Shannon
diversity in relation to intergenerational inbreeding coefficient among Seychelles
warblers (n =141 samples, 80 individuals). Conditional R?=.57. Significant (P<.05)
terms are indicated in bold. Reference categories for categorical variables are
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shown as the first term in brackets and are as follows: no (EPP), major (Season),
female (Sex), 2017 (Sample Year).

Characteristic Beta SE?! df | Statistics valupe
(Intercept) 1.60 0.64 69.41 2.49 0.015
Individual inbreeding coefficient  -2.46 1.84 7272 -1.34 0.184
Mother inbreeding coefficient 1.70 1.42 5143 1.19 0.238
Genetic  Father  Inbreeding
coefficient -0.53 1.42 57.37 -0.37 0.710
Social Father Inbreeding
coefficient 0.31 1.53 49.04 0.20 0.840
EPP (nolyes) 0.17 0.18 66.28 -0.95 0.348
Age -0.03 0.02 72.68 -1.06 0.293
Season (major/minor -0.16 0.17 114.38 -0.92 0.357
Sex (female/male) 0.18 0.17 64.27 1.05 0.297
Days at 4°C -0.41 0.14 105.16 -2.87 0.005
Time of day -0.02 0.13 111.76 -0.14 0.892
Sample Year
2017 — — —
2018 0.16 0.25 112.81 0.65 0.516
2019 0.00 0.30 105.77 0.01 0.989
2020 0.24 0.33 109.79 0.73 0.470
2021 0.23 0.28 106.93 0.80 0.426
2022 0.36 0.28 114.30 1.28 0.204
2023 0.51 0.30 118,99 1.71 0.091
Random variables Variance SD N
Bird ID 0.264 0.514 80
Mother ID 0.071 0.267 68
Genetic Father ID <0.001 <0.001 60
Social Father ID <0.001 <0.001 67
Mpa obs EPP

Table S5.5. A generalised linear mixed effect model with a negative binomial
distribution (glmer.nb) investigating GM species richness in relation to
intergenerational inbreeding coefficient among Seychelles warblers that were born
in extra-pair paternity (n=64 samples, 38 individuals). Conditional R?=.28.
Significant (P<.05) terms are indicated in bold. Reference categories for categorical
variables are shown as the first term in brackets and are as follows: major (Season),
female (Sex), 2017 (Sample Year).
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Characteristic Beta SE! | Statistic | p-value

(Intercept) 3.377 0.600 5.625 <0.001
Individual inbreeding coefficient -3.876 1.608 -2.411 0.016
Mother inbreeding coefficient 0.941 1.247 0.755 0.450

Genetic Father Inbreeding coefficient  1.484 1.028 1.443 0.149
Social Father Inbreeding coefficient 0.667 1.136 0.587 0.557

Age -0.024 0.023 -1.037 0.300

Season (major/minor) 0.520 0.224 2.323 0.020

Sex (female/male) 0.136 0.169 0.801 0.423

Days at 4°C -0.219 0.181 -1.211 0.226

Time of day -0.063 0.159 -0.398 0.691

Sample Year -0.481 0.294 -1.640 0.101
2017 -0.675 0.367 -1.837 0.066
2018 -0.768 0.380 -2.022 0.043
2019 0.276 0.345 0.798 0.425
2020 0.274 0.314 0.872 0.383
2021 -0.130 0.364 -0.357 0.721
2022 3.377 0.600 5.625 <0.001
2023 -3.876 1.608 -2.411 0.016

Random variables Variance SD N

Bird ID 0.129 0.359 80

Mother ID <0.001 0.008 68

Genetic Father ID <0.001 <0.001 60

Social Father ID <0.001 0.003 67

NOG richness

Table S5.6. A linear mixed effect model (Imer) investigating GM functional richness
in relation to intergenerational inbreeding coefficient among Seychelles warblers
(n =139 samples, 79 individuals). Conditional R? = .31. Significant (P<.05) terms are
indicated in bold. Reference categories for categorical variables are shown as the
first term in brackets and are as follows: no (EPP), major (Season), female (Sex),
2017 (Sample Year).

Characteristic Beta SE! df | Statistics P-
value
(Intercept) 1.19 0.32 66.76 3.71 <0.001
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Individual inbreeding
coefficient -1.75 0.92 70.73 -1.91 0.061
Mother inbreeding coefficient  1.12 0.68 48.14 1.66 0.103
Genetic Father Inbreeding
coefficient 1.54 0.67 44,44  2.29 0.027
Social  Father Inbreeding
coefficient -0.92 0.72 35.27 -1.28 0.208
EPP (nolyes) -0.07 0.09 56.59 0.84 0.405
Age -0.04 0.01 69.26 -3.06 0.003
Season (major/minor -0.10 0.10 116.37 -1.02 0.309
Sex (female/male) 0.01 0.09 50.54 0.07 0.942
Days at 4°C -0.13 0.09 117.20 -1.56 0.121
Time of day -0.05 0.08 117.66 -0.62 0.535
Sample Year
2017 — — —
2018 0.04 0.14 120.44 0.25 0.804
2019 0.02 0.17 116.76 0.13 0.895
2020 0.22 0.19 121.86 1.16 0.248
2021 0.18 0.17 115.74 1.04 0.300
2022 0.38 0.16 120.36 2.35 0.021
2023 0.22 0.17 117.86 1.27 0.207
Random variables Variance SD N
Bird ID 0.023 0.173 79
Mother ID <0.001 <0.001 67
Genetic Father ID <0.001 <0.001 59
Social Father ID <0.001 0.080 66

NOG Shannon

Table S5.7. A linear mixed effect model (Imer) investigating GM functional Shannon
diversity in relation to intergenerational inbreeding coefficient among Seychelles
warblers (n =139 samples, 79 individuals). Conditional R?=.18. Significant (P<.05)
terms are indicated in bold. Reference categories for categorical variables are
shown as the first term in brackets and are as follows: no (EPP) major (Season),
female (Sex), 2017 (Sample Year).

. 1 . p-
Characteristic Beta SE df | Statistics value
(Intercept) 1276.67 334.95 69.41 381 <0.001

Individual inbreeding coefficient -1206.09 945.01 100.55 -1.28 0.205
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Mother inbreeding coefficient 175.47 684.02 83.04 0.26 0.798
Genetic  Father Inbreeding
coefficient 903.98 707.96 29.11 1.28 0.212
Social Father Inbreeding
coefficient -1167.24 730.92 48.63 -1.60 0.117
EPP (nolyes) -45.37 90.11 75.46 0.50 0.616
Age -36.33 1258 72.85 -2.89 0.005
Season (major/minor 164.00 107.25 118.11 1.53 0.129
Sex (female/male) 58.06 87.07 99.35 0.67 0.506
Days at 4°C 28.16 93.46 120.10 0.30 0.764
Time of day -26.54 80.38 121.30 -0.33 0.742
Sample Year
2017 — — —
2018 -45.50 154.14 118.67 -0.30 0.768
2019 -136.02 187.36 121.08 -0.73 0.469
2020 36.93 206.39 120.98 0.18 0.858
2021 22396 182,90 120.46 1.22 0.223
2022 210.22  176.02 121.52 1.19 0.235
2023 12193 18543 121.31 0.66 0.512
Random variables Variance SD N
Bird ID <0.001 <0.001 79
Mother ID <0.001 <0.001 67
Genetic Father ID 13610 116.7 59
Social Father ID <0.001 <0.001 66

Table S5.8. A linear mixed effect model (Imer) investigating GM functional richness
in relation to intergenerational inbreeding coefficient among Seychelles warblers
that were born in extra-pair paternity (n =64 samples, 38 individuals). Conditional
R?=.65. Significant (P<.05) terms are indicated in bold. Reference categories for
categorical variables are shown as the first term in brackets and are as follows:
major (Season), female (Sex), 2017 (Sample Year).

. 1 I p-
Characteristic Beta SE df | Statistics value
(Intercept) 1.136 0.561 23.795 2.023 0.054
Individual inbreeding coefficient -1.731 1.378 31.604 -1.255 0.219
Mother inbreeding coefficient 1.873 1.140 28.375 1.643 0.111
Genetic  Father Inbreeding , 505, 7099 15006 1.194  0.250
coefficient

Social  Father Inbreeding ;459 3170 19449 0879  0.390
coefficient
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Age -0.010 0.021 26.114 -0.497 0.623
Season (major/minor 0.314 0.153 42.929 2.049 0.047
Sex (female/male) 0.031 0.149 26.395 0.206 0.839
Days at 4°C 0.041 0.113 35.760 0.362 0.720
Time of day -0.136 0.104 41.387 -1.308 0.198
Sample Year
2017 — — —
2018 -0.307 0.204 44.658 -1.506 0.139
2019 -0.509 0.233 36.265 -2.185 0.036
2020 -0.445 0.253 39.905 -1.763 0.086
2021 -0.170 0.223 40.254 -0.764 0.449
2022 -0.041 0.205 41.652 -0.199 0.843
2023 -0.335 0.239 45.020 -1.404 0.167
Random variables Variance SD N
Bird ID 0.032 0.180 38
Mother ID <0.001 <0.001 36
Genetic Father ID <0.001 <0.001 35
Social Father ID <0.001 0.080 31

Intergenerational inbreeding on GM composition
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Figure S5.3. Principal Components Analyses (PCA) of gut microbiome 16S rRNA
amplicon sequencing variants of Seychelles warbler faecal samples in relation to
host inbreeding coefficient, N=439 from 235 birds. Large diamonds represent the
group centroids. For clarity, samples were grouped into discrete categories for
plotting. In plots, the coloured points indicate low (black) and high (orange) individual
inbreeding coefficient.

ASV EPP

Table S5.9. APERMANOVA of the relationship between gut microbiome (GM) ASV
compositional differences and the inbreeding coefficients (FROH) of Seychelles
warblers that were born in extra-pair paternity. The analysis was performed using
Aitchison distances calculated using centred log ratio (CLR) transformed amplicon
sequencing variant (ASV) abundances. Significant predictors (P < 0.05) are shown
in bold. N = 183 samples from 101 individuals. Bird ID was included as a blocking
factor to control for repeated measures.

Df R2 F| Pr(>F)

Individual inbreeding coefficient 1 0.005 0.871 0.004
Mother inbreeding coefficient 1 0.005 1.034 0.974
Genetic Father Inbreeding coefficient 1 0.008 1.577 0.107
Social Father Inbreeding coefficient 1 0.005 0.981 0.053
Age 1 0.006 1.049 0.571
Sex 1 0.007 1.267 0.176
Season 1 0.007 1.239 0.079
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Sample Year 0.041 1.568 0.001
Days at 4°C 0.009 1.660 0.104
Time of day 0.012 2.309 <0.001
Residual 168 0.887
Total 182 1

Mpa

Table S5.10. A permutational multivariate analysis of variance analysis of the
relationship between metagenomics species gut microbiome compositional
differences and individual, mother’s, genetic father’'s and social father’s inbreeding
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers.
The analysis was performed using Aitchison distances calculated using centred log
ratio (CLR) transformed amplicon sequencing variant (ASV) abundances.
Significant predictors (P<0.05) are shown in bold. N=143 samples from 80
individuals. Bird ID was included as a blocking factor to control for repeated

measures.
Df R2 F| Pr(>F)
Inbreeding coefficient 1 0.007 1.031 0.314
Mother inbreeding coefficient 1 0.008 1.191 0.024
Social Father Inbreeding coefficient 1 0.009 1.437 <0.001
Age 1 0.011 1.625 0.196
Sex 1 0.017 2.541 <0.001
Season 6 0.065 1.671 <0.001
Sample Year 1 0.005 0.772 0.455
Days at 4°C 1 0.008 1.294 0.008
Time of day 1 0.012 1.866 0.001
Genetic Father Inbreeding coefficient * EPP 1 0.006 0.958 <0.001
Residual 127 0.828
Total 142 1
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Figure S5.4. Principal Components Analyses (PCA) of gut microbiome
metagenomic taxonomic composition of Seychelles warbler faecal samples in
relation to (A) mother’s and (B) social father’s inbreeding coefficient, N=143 from 80
birds. Large diamonds represent the group centroids. For clarity, samples were
grouped into discrete categories for plotting. In plots, the coloured points indicate
low (black) and high (orange) inbreeding coefficient.

Table S5.11. A permutational multivariate analysis of variance analysis of the
relationship between metagenomics species gut microbiome compositional
differences and individual, mother’s, genetic father’s and social father’s inbreeding
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers
that were born in extra-pair paternity. The analysis was performed using Aitchison
distances calculated using centred log ratio (CLR) transformed amplicon
sequencing variant (ASV) abundances. Significant predictors (P<0.05) are shown
in bold. N=64 samples from 38 individuals. Bird ID was included as a blocking factor
to control for repeated measures.

Df R2 F Pr(>F)
Inbreeding coefficient 1 0.022 1.483 0.005
Mother inbreeding coefficient 1 0.017 1.201 0.073
Genetic Father Inbreeding coefficient 1 0.022 1.505 0.187
Social Father Inbreeding coefficient 1 0.020 1.372 0.006
Age 1 0.025 1.706 0.222
Sex 1 0.027 1.844 0.018
Season 6 0.123 1.414 0.010
Sample Year 1 0.011 0.779 0.292
Days at 4°C 1 0.017 1.137 0.356
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Time of day 1 0.020 1.344 0.114
Residual 48 0.698
Total 63 1

NOG

Table S5.12. A permutational multivariate analysis of variance analysis of the
relationship between metagenomics functional gut microbiome compositional
differences and individual, mother’s, genetic father’s and social father’s inbreeding
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers.
The analysis was performed using Aitchison distances calculated using centred log
ratio (CLR) transformed amplicon sequencing variant (ASV) abundances.
Significant predictors (P<0.05) are shown in bold. N=143 samples from 80
individuals. Bird ID was included as a blocking factor to control for repeated
measures.

Df R2 F| Pr(>F)
1 0.010 1.465 0.020
1 0008 1128 0.553
1 0.007 0.978 0.238
1 0009 1.259 0.033
Sex 1 0013 1.868 0.050
Season 6 0051 1.249 0.147
1
1
1
1

Inbreeding coefficient

Mother inbreeding coefficient
Social Father Inbreeding coefficient
Age

Sample Year 0.007 0.988 0.001

Days at 4°C 0.013 1.891 0.001
Time of day 0.009 1.290 0.072
Genetic Father Inbreeding coefficient * EPP 0.006 0.924 0.028
Residual 127 0.867

Total 142 1
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Figure S5.5. Principal Components Analyses (PCA) of gut microbiome
metagenomic functional composition of Seychelles warbler faecal samples in
relation to host inbreeding coefficient, N=143 from 80 birds. Large diamonds
represent the group centroids. For clarity, samples were grouped into discrete
categories for plotting. In plots, the coloured points indicate low (black) and high
(orange) individual inbreeding coefficient.

NOG EPP

Table S5.13. A permutational multivariate analysis of variance analysis of the
relationship between metagenomics functional gut microbiome compositional
differences and individual, mother’s, genetic father’s and social father’s inbreeding
coefficients (fraction of the genome in runs of homozygosity) in Seychelles warblers
that were born in extra-pair paternity. The analysis was performed using Aitchison
distances calculated using centred log ratio (CLR) transformed amplicon
sequencing variant (ASV) abundances. Significant predictors (P<0.05) are shown
in bold. N=64 samples from 38 individuals. Bird ID was included as a blocking factor
to control for repeated measures.

Df R2 F| Pr(>F)
0.021  1.418 0.198
0.014 0930  0.752
0.019  1.272  0.211
0.015 0987  0.699
0.013 0.840  0.577

Inbreeding coefficient

Mother inbreeding coefficient
Genetic Father Inbreeding coefficient
Social Father Inbreeding coefficient

N T

Age
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0.030 1.987 0.167
Season 0.102 1.123 0.408

Sex 1
6

Sample Year 1 0.011 0.720 0.266
1
1

Days at 4°C 0.027 1.765 0.036
Time of day 0.019 1.230 0.043
Residual 48 0.726
Total 63 1.000

Intergeneration inbreeding and Differential abundance analysis

All DAA not significant.

Inbreeding and GM stability

Table S5.14. A linear mixed effect model (Imer) investigating the relationship
between metabarcoding amplicon sequencing variant (ASV) gut microbiome
composition similarity in pairs of Seychelles warblers from individuals with low
individual inbreeding coefficient versus high individual inbreeding coefficient (N =
96141 pairwise comparisons across 439 samples from 235 individual birds).
Significant terms (P <0.05) are indicated in bold. Reference categories for
inbreeding are low inbred individuals.

EStima; SE df t P

(Intercept) 28.00 <0.00

0.354 0.013 231 2 1
Individual inbreeding (High) -0.007 0.014 230 -0.487 0.627
Individual inbreeding (Mix) -0.003 0.007 232 -0.460 0.646
Mother inbreeding (High) -0.027 0.015 230 -1.755 0.081
Mother inbreeding (Mix) -0.013 0.008 231 -1.755 0.081
Genetic father inbreeding
(High) 0.001 0.018 230 0.056 0.955
Genetic father inbreeding (Mix) 0.000 0.009 231 0.049 0.961
Social father inbreeding (High) -0.005 0.018 230 -0.276 0.783
Social father inbreeding (Mix)  -0.002 0.009 231 -0.265 0.791
Age difference -0.0003 0.000 96130 -2.630 0.009
Temporal difference <0.001 0.000 95960 3.384 0.001
Random gééi?vations Variance
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Multi membership ID (Intercept) 235 groups 0.003
Residual 0.005

Table S5.15. A linear mixed effect model (Imer) investigating the relationship
between metagenomic functional gut microbiome composition similarity in pairs
of Seychelles warblers from mothers and social fathers with low inbreeding
coefficient versus high inbreeding coefficient (N=10153 pairwise comparisons
across 141 samples from 80 individual birds). Significant terms (P <0.05) are
indicated in bold. Reference categories for categorical variables were the first term
in brackets.

Estimat SE df i p
e

(Intercept) 0.344 0025 75 o0 T
Individual inbreeding (High) 0.028 0.028 75 0.969 0.336
Individual inbreeding (Mix) 0.014 0.014 76 0.960 0.340
Mother inbreeding (High) -0.004  0.030 75 -0.126 0.900
Mother inbreeding (Mix) -0.002 0.015 76 -0.104 0.917
Genetic father inbreeding
(High) 0.006 0.033 75 0.175 0.861
Genetic father inbreeding (Mix) -0.001 0.017 76 -0.054 0.957
Social father inbreeding (High) 0.004 0.033 75 0.121 0.904
Social father inbreeding (Mix)  0.002 0.017 76 0.104 0.918
Age difference <0.001 0.000 10130 -1.554 0.120
Temporal difference <0.001 0.000 10080  -7.406 IO'OO
Random gf;zgvations Variance
Multi membership ID (Intercept) 235 groups 0.003
Residual 0.005

Table S5.16. A linear mixed effect model (Imer) investigating the relationship
between metagenomic functional gut microbiome composition similarity in pairs
of Seychelles warblers from individuals with low individual inbreeding coefficient
versus high individual inbreeding coefficient (N =10153 pairwise comparisons
across 141 samples from 80 individual birds). Significant terms (P <0.05) are
indicated in bold. Reference categories for categorical variables were the first term
in brackets.
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Estimat SE df t p
e

(Intercept) 0.443 0029 75 3o T
Individual inbreeding (High) -0.041 0.034 75 -1.219 0.227
Individual inbreeding (Mix) -0.023 0.017 76 -1.362 0.177
Mother inbreeding (High) -0.005 0.036 75 -0.152 0.880
Mother inbreeding (Mix) -0.003 0.018 76 -0.185 0.854
Genetic  father inbreeding
(High) 0.004 0.039 75 0.109 0.913
Genetic father inbreeding (Mix) 0.003 0.020 76 0.139 0.890
Social father inbreeding (High) -0.014  0.039 75 -0.353 0.725
Social father inbreeding (Mix)  -0.009 0.020 76 -0.447 0.656
Age difference 0001 0000 10130 4139 1
Temporal difference <0.00

<0.001 0.000 10080 -6.764 1
Random gﬁ?s,gvations Variance
Multi membership ID (Intercept) 235 groups 0.003
Residual 0.005
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Chapter 6 |

The holobiont and survival in a wild vertebrate

population

“On Cousin Island, the night sky mirrors the challenge of microbiome—genome

research: just as stars become constellations when connected, individual data

points only reveal their true meaning when viewed as part of a larger pattern.”
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6.1 Abstract

Background

The gut microbiome (GM) plays a key role in host health, influencing digestion,
immunity, cognition, and survival. While environmental factors like diet and age
affect GM composition, host genetics also play an important role. However, which
loci across the host genome are key to shaping the GM, and the extent to which
host genomic variation contributes to GM-mediated survival remains unclear—

especially in natural populations.

Method

Here, we use a natural population of the Seychelles warbler (Acrocephalus
sechellensis) on Cousin Island to investigate host genome-mediated GM
compositional differences (including survival-related microbes) among individuals,
and whether these differences are associated with host survival. This population
provides exceptionally accurate survival data, as the small size and a lack of
migration allows life-long monitoring of individuals. We analyse 205 individuals for
which both whole-genome sequences and gut microbiome 16S rRNA amplicon

sequencing profiles are available to address these questions.

Results

Our study provides some of the first evidence in a wild population that host genomic
variation shapes gut microbiome composition. Nine host genome loci, spanning 14
genes, were strongly associated with GM composition. Variation at these loci was
correlated with significant differences in the abundance of 107 unique GM ASVSs.
Ten out of the 107 ASVs were also differentially abundant in relation to host survival
to the next season. Importantly, all nine host loci were linked to the differential
abundance of at least one of these survival-related ASVs. In addition, two of the loci,
rs95 2409799 and rs728642, were linked to opposing effects on survival-related

ASVs, and also directly on host survival.

Discussion
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Our study demonstrates that the host genome influences GM composition via
multiple pathways, including the immune system and gut physiology. Host loci were
linked to survival-associated microbes, and the opposing effects of rs95_ 2409799
and rs728642 on both GM and host survival underscores the complex and
potentially consequential role of host genomic variation in shaping microbiome—
fitness relationships. These findings highlight the importance of exploring host
genetic influences on the GM to better understand host health and survival.
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6.2 Introduction

The gut microbiome (GM) has been linked with a multitude of important host
processes such as digestion, immunity, behaviour and cognition (Archie and Tung,
2015; Cholewinska et al., 2020; Davidson et al., 2018; Davies et al., 2022).
Therefore, it is important that we also understand what factors shape individual
variation in the GM. Recent studies have identified various such factors, including
diet, host age, sex, and social interactions (Bonder et al., 2016; Davies et al., 2022;
Lee et al., 2025; Ruiz-Ruiz et al., 2020; Worsley et al., 2022; Xu and Zhang, 2021).
Research has also highlighted the role of host genetics in shaping individual
variation in the GM (Bonder et al., 2016; Goodrich et al., 2014; Melis et al., 2023).
For example, host immunogenetic variation can alter the GM composition by
favouring or eliminating specific microbes (Davies et al., 2022; Roland et al., 2020;
Worsley et al.,, 2022). In turn, changes to the GM can alter the immunological
function of the host, for example, by fostering beneficial microbes which prevent
pathogenic microbe colonisation (Noh, 2021; Sommer and Béackhed, 2013).
Therefore, the GM may be an integral part of a host’s defences. Indeed, the host
genome and GM may interact to form a functional unit termed “the hologenome”;
this is a potentially important concept that could improve our understanding of host
traits, disease and fitness (Zilber-Rosenberg and Rosenberg, 2008). Growing
evidence for this hologenome concept has significantly expanded our understanding
of host—microbe coevolution (Lan et al., 2021; Rosenberg and Zilber-Rosenberg,
2018).

Given the GM is a determinant of host evolution, an important next step is to
determine how host genetics influences the component of the microbiome that
impacts host survival. Studies in humans and captive animals have shown that a
reduction in GM diversity and a dysbiotic GM composition are correlated with poor
health and the onset of diseases (Shreiner et al., 2015; Sommer et al., 2017,
Videvall et al., 2020). Additionally, work on a wide range of human conditions has
demonstrated that host genetic factors shape health outcomes partly through their
interactions with the GM (Liu et al., 2024; Park et al., 2020). Microbiome genome
wide association studies (GWAS) in humans have identified numerous genomic
regions and GM characteristics that are associated with diseases (Liu et al., 2024;
Markowitz et al., 2022; Priya et al., 2022; Xu et al., 2020). A common set of these

loci collectively regulate the host immune response, gut physiology, and gut-microbe
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interactions (Hao et al., 2025; Ntunzwenimana et al., 2021; Priya et al., 2022). Such
findings highlight that neither host genetics nor the GM alone fully explain variation
in health. and underscore the importance of adopting a hologenome perspective to
understand health and fithess outcomes.

While valuable, humans and captive animals often have a very different GM
community compared to their wild counterparts (Clayton et al., 2016; Malukiewicz
et al., 2022; van Leeuwen et al., 2020). Captive animals, normally exhibit a reduced
GM diversity, which may not provide a representative model for detecting natural
(and/or subtle) GM shifts that precede disease in wild populations (Gibson et al.,
2019; Ning et al., 2020; Oliveira et al., 2020). Wild animals tend to have a more
diverse GM, and, unlike in captive animals, diversity alone is often not been a good
indicator of health (Davidson et al., 2021; Williams et al., 2024; Worsley et al., 2021).
In addition, captive animals often harbour limited genomic variation, further
restricting the generalisation of findings to wild populations (Festing and Lutz, 2010;
Wei et al., 2020). Finally, human/captive GM studies are limited by confounding
variables such as medical intervention and lifestyle changes (Haran et al., 2021;
Konstantinidis et al., 2020; Martinez et al., 2021; Thorburn et al., 2014). Direct
studies on wild animals are needed to fully understand the complex co-evolutionary

relationship between host genetics, the GM, and host survival.

Quantifying survival in wild animals is inherently challenging because it requires
accurate, individual-level survival data, which is often confounded by dispersal and
imperfect detection. Despite these challenges, a few studies have investigated how
the GM is associated with host survival in wild animals, but the evidence remains
mixed. One study found that higher alpha diversity is correlated with higher survival
(Bestion et al., 2017), while three others did not (Davidson et al., 2021; Stothart et
al., 2024; Worsley et al., 2021) In addition, two studies reported association between
GM composition and host survival (Stothart et al., 2024; Worsley et al., 2021) but
not one other one (Davidson et al., 2021). Furthermore, a study in feral horses
(Equus ferus caballus) also reported functional GM differences related to host
survival (Stothart et al.,, 2024). However, to our knowledge, no studies have
investigated the influence of the host genome on the gut microbes that influence

survival in a wild population.
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Whether variation in the host genome contributes to the strength or direction of any
GM-host survival associations is unexplored in the wild. This represents a major gap
in our understanding, as linking host genetics with the microbiome and survival
could reveal fundamental mechanisms of host-microbe coevolution. A microbiome
GWAS approach offers a powerful way to pinpoint host loci that shape microbial
community structure (Hua et al., 2022), enabling us to link specific genetic variants
with survival-associated microbes. To our knowledge, ours is the first study to take
such an approach in a wild species, providing a unique window into how natural
genetic variation interacts with the GM to influence fitness. Such knowledge could
inform targeted interventions, such as personalised probiotics to support survival,
when the natural GM is disturbed (e.g. in captivity or during translocation events)
(Chong et al., 2019).

Here, we use a population of the Seychelles warbler (Acrocephalus sechellensis) to
investigate links between individual host genomic variation and GM composition,
including specifically with survival-related gut microbes. The Seychelles warbler
provides an excellent system for such a study as intensive long-term monitoring,
provides accurate survival data, while extensive whole genome resequencing
provides aligned genetic data (Kiran Lee et al., 2025, in prep). A previous analysis
on this population has demonstrated that adult survival is associated with GM
composition (Worsley et al., 2021). We hypothesise that host genomic variation is
linked to GM composition, leading to differences in survival. Specifically, we aim to
determine, 1) which host loci are correlated with GM composition, 2) more
specifically, which host loci are associated with variation in the abundance of
survival-related ASVs, and 3) to what extent that host genomic variation is

associated directly with host survival.
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6.3 Method

6.3.1 Study system

The Seychelles warblers on Cousin Island have been monitored since 1985 during
both the January to March (minor) and June to October (major) breeding seasons
that occur each year (Brown et al., 2022; Komdeur, 1992). Individuals are caught
using mist nets or in the nest (age is determined based on hatch/lay dates and eye
colour (Komdeur, 1992)), and all new individuals are marked using a British Trust
for Ornithology (BTO) metal ring and a unique combination of three colour rings.
Since 1997, nearly all individuals have been marked (>96%), allowing them to be
closely monitored throughout their lives (Richardson et al., 2001). The annual
resighting rate of individuals is high at 98% + 1% SE (Brouwer et al., 2010) and
there is virtually no dispersal between islands (Komdeur et al., 2004), therefore, if
an individual has not been sighted during a breeding season, it is confidently
presumed dead. The population normally consists of ca. 300 individuals from ca.
110 stable year-round territories (Kingma et al., 2016; Komdeur, 1992). Seychelles
warblers are monogamous facultative cooperative breeders, whereby the dominant
breeding pair in each territory may be joined by other subordinate adult individuals
that may also help (Komdeur, 1991; Richardson et al., 2003, 2002). Cobreeding and
extra-pair paternity occur frequently (~44%) (Hadfield et al., 2006; Richardson et al.,
2001), thus, all parentage is genetically verified thus allowing a multi-generation

pedigree to be generated (Sparks et al., 2022).

6.3.2 Sample collection

Faecal samples were collected by placing caught birds in a flat-bottom paper bag
with a sterilised weigh boat under a metal grate, thus allowing faeces to drop to the
plastic, while minimising contact with the birds’ surface (Davies et al., 2022; Knutie
and Gotanda, 2018). Faecal samples were stored in a microcentrifuge tube
containing 1 mL of absolute ethanol, at 4°C during fieldwork and then at -80°C for
long-term storage at UEA. Each season, control samples were collected by
swabbing the insides of collection bags and fieldworker hands. A small (ca. 25 pl)
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blood sample was collected from each bird via brachial venepuncture and stored in
0.7 ml of absolute ethanol at 4°C. The time of day (minutes after sunrise; 06:00 AM)
of sampling and the number of days faecal samples were kept at 4°C during
fieldwork were recorded.

6.3.3 DNA extraction and sequencing

Microbial DNA from faecal samples were extracted using the DNeasy PowerSoil Kit
(Qiagen, Crawley, UK) with a modified version of the manufacturer’s protocol
(described in (Davies et al., 2022)). Samples were extracted in a random order to
minimise batch effects. Microbial DNA samples were submitted for 16S rRNA gene
amplicon sequencing in seven batches. Libraries were generated with V4 primers
515F (5'TGCCAGCMGCCGCGGTAA3) and 806R
(5°GGACTACHVGGGTWTCTAAT3’) and sequenced using 2 x 250 bp paired-end
sequencing on an lIllumina MiSeq platform. Control samples were also DNA
extracted, amplified and sequenced in the same way (n = 21 hand controls, 15
negative controls, and 10 positive ZymoBIOMICS Microbial Community Standard
(D6300) controls).

Total host genomic DNA from blood samples was extracted using the DNeasy Blood
and Tissue kit (Qiagen, Crawley, UK) according to the manufacturer’s protocol, or a
salt extraction protocol (Richardson et al., 2001). Extracted DNA was used for
molecular sexing following (Griffiths et al., 1998) and microsatellite genotyping for
parentage analyses (Richardson et al., 2001; Sparks et al., 2022b). Genomic DNA
was submitted for whole genome sequencing in 20 batches (detailed in Kiran Lee
et al., 2025 — in prep) from randomly selected libraries generated with NEBNext
Ultra Il FS DNA Library Prep (New England Biolabs). Libraries were sequenced

using 2 x 150 bp, paired-end sequencing on an lllumina NovaSeq 6000 platform.

6.3.4 Bioinformatics
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Microbial 16S amplicon sequenced reads were processed as described in detail in
(Worsley et al., 2024b). Briefly, 16S rRNA reads were truncated, filtered, and
classified as amplicon sequencing variants (ASVs) using DADAZ2 as part of QIIME2
(Bolyenetal., 2019; S. F. Worsley et al., 2024a). ASVs were taxonomically assigned
using a naive-Bayes classifier on the SILVA 132 reference database for 16S rRNA
gene sequences (Quast et al., 2012). The resulting ASVs were imported into R using
phyloseq 1.46.0 (Leo Lahti and Sudarshan Shetty, 2019; McMurdie and Holmes,
2013). ASVs were filtered to remove non-bacterial sequences, those unassigned to
the phylum level, or with fewer than 50 reads (which may represent sequencing
errors). Potential contaminants were also filtered with decontam 1.18.0 (Davis et al.,
2018) using negative lab and collection controls as a reference. Samples with fewer
than 8000 reads were also removed based on samples reaching >95%
completeness in rarefaction curves (Worsley et al., 2024b). In total, 205 adult
samples/individuals remained with both gut microbiome and host genomic samples.
Rare ASVs (<5% prevalence) were then removed, and pairwise UniFrac distances
(beta diversity) were calculated using the distance() function in phyloseq (Leo Lahti
and Sudarshan Shetty, 2019; McMurdie and Holmes, 2013).

Whole-genome sequencing reads were processed as described previously (Kiran
Lee et al., 2025). Briefly, reads were filtered to remove low-quality reads (Phred
quality score of 33 and a minimum length of 80 bp) using Trimmomatic version 0.39
(Bolger et al., 2014). The remaining reads were mapped to the Seychelles warbler
reference genome (Kiran Lee et al., 2025; BUSCO: 96.0% with a total length =
1,081,018,985 bp) before imputation with STITCH version 1.7.0 (Davies et al.,
2016), with the following parameters: diploid, eight founding haplotypes, and 25
generations since founding (Kiran Lee, et al., 2025). The accuracy of imputation was
tested by down sampling high coverage samples (n = 57), imputing the reduced
sample, and then comparing the imputed genotypes against the original high-
coverage genotypes at each site (accuracy = 96%). Linkage disequilibrium (LD) was
then calculated in PLINK version 2.0 (Purcell et al., 2007) with these high coverage
samples using a genotyping rate of >99%, minor allele frequency of >30%, LD
window of 5 Mb and LD of 0.

274



6.3.5 Statistical methods

All statistical analyses were conducted in R 4.3.3 on R Studio 2024.12.0+467 unless
stated otherwise (Posit team, 2024; R Core Team, 2024).

6.3.5.1 Genome wide association study (GWAS) of GM composition

A GWAS was carried out using MicrobiomeGWAS (Hua et al., 2022) with GM beta
diversity (UniFrac distance matrix) as the response variable. Firstly, the imputed
host SNPs were filtered for >0.4 STITCH imputation INFO score, autosomes, >95%
genotyping rate, and >5% minor allele frequency (no. of SNPs = 2,720,843). A minor
allele frequency of 5% was chosen because this coincides with the most accurate
p-values (lowest skewness and kurtosis) for small sample sizes in
MicrobiomeGWAS (Hua et al., 2022). To account for relatedness, we calculated the
top five principal components of host genome variation using --pca function in PLINK
(Purcell et al., 2007). These and variables identified as important in previous
Seychelles warbler GM studies (Lee et al., 2025; Worsley et al., 2024b, 2024c) (i.e.
host age, sex, individual inbreeding coefficient, sample year, season (major/minor),
time at 4°C, and time of day), were included as control variables in the GWAS.
Significant SNPS were determined by applying a false discovery rate (FDR)
correction with the gvalue package (Storey et al., 2024); giving g < 0.05. The highest
SNP per peak in the GWAS (smallest g-value) that are also not co-occurring (i.e.
VIF < 3) (Fox and Weisberg, 2019), were selected for downstream analysis. Genes
within +75 kb (half-LD, Figure S6.1) of all the significant SNPs were identified using
the functionally annotated Seychelles warbler reference genome (Kiran Lee, et al.,
2025).

6.3.5.2 Determining ASVs associated with GM-associated SNPs

To determine how the GM-associated SNPs (identified above) impacted the
abundance of specific bacterial ASVs, an analysis of Compositions of Microbiomes
with Bias Correction (ANCOM-BC2) (Lin and Peddada, 2024) was conducted. This
included the presence/absence of all identified GM-associated SNPs as the primary
independent variables, followed by host age, sex, individual inbreeding coefficient,
sample year, season, storage time at 4°C, and the time-of-day samples were
collected as control variables. The Holm method was used to correct P-values for

multiple testing (g<0.05).
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6.3.5.3 GM-associated SNPs and host survival to the next season

ASVs determined to be associated with any GM-associated SNPs were then tested
to establish if they differed in abundance across hosts that survived or died by the
following breeding season. Adult warblers with GM samples (including individuals
without whole-genome sequencing data) and accurate survival records (excluding
birds sampled in 2020 due to incomplete censusing during the covid pandemic)
were selected. Only one sample per bird was used in this analysis as described
previously (Worsley et al.,, 2021). In total, N = 266 samples/individuals were
included in the analysis. An analysis of ANCOM-BC2 was conducted with survival
to the next season (yes/no) as the primary variable, and the control variables,
sample year and season as described previously (Worsley et al., 2021). Significance

was determined following a Holm correction for multiple testing correction (q<0.05).

6.3.5.4 GM-associated SNPs and host survival (lifespan)

A Cox-regression mixed effect model was conducted to test if any of the GM-
associated SNPs was directly associated with host survival using the long-term
dataset of individuals with survival and genomic data. Annual survival from birth
(lifespan) was the response variable, with individuals right censored if still alive (N
= 1340 samples/individuals; 57 right censored), and the presence of the minor allele
at all GM-associated SNPs was the predictor. Variables previous identified as
important for Seychelles warblers’ survival were included as control variables
(Borger et al., 2023; Brouwer et al., 2006; Davies et al., 2021; Sparks et al., 2022a):
sex (female/male), individual inbreeding coefficient, mother's age, group size,
helper presence at birth (no/yes), sibling presence at birth (no/yes), and mean
rainfall (the average annual rainfall experience by the bird in its lifetime) were
included as control variables. Birth year was included as a random effect. A second
model was constructed with the same structure, replacing presence of minor allele

with allele genotypes.
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6.4 Results

6.4.1 Genome wide association study (GWAS) of GM composition

In the Seychelles warbler's genome we identified 393 SNPs, spanning 9 peaks
(labelled after and represented by the highest SNP (Table 6.1)), significantly (q <
0.05) associated with overall GM composition (Table S6.1, Figure 6.1). The peaks,
-one in chromosome three, one in chromosome six, one in chromosome 12, and 11
in chromosome 17, -are in or close to 14 known genes (Table S6.1). Two peaks
were not in or near any genes (Table 6.1). Three peaks were single SNPs, whereas
six peaks consist of more than one SNP (Table 6.1). Gene functions are
summarised in Table S6.2.

¢ rs95_2940759

g—rs95_974945

6 1$750388 rs95_2409799 —e

+—rs1220065
rs95_1075473 —= (798642 —e b rs95_965036

-logio P

6
Chromosome position

8 9 1 13 15 17 19 22 26

Figure 6.1. Genome-wide association analysis (GWAS) of host genetic variants and
gut microbiome (GM) composition in Seychelles warblers (N = 205 individuals).
Differences in GM composition were calculated using pairwise UniFrac distances.
GWAS signals (-logioP) are reported for SNP markers across all chromosomes
(displayed with alternating colours). SNPs that are significantly associated (q < 0.05)
with differences in GM composition are coloured in red. Labelled SNPs represent
the highest points (largest -logioP value) that are not collinear (VIF < 3) with any
other SNP.

277



Table 6.1. Host genetic variants associated with differences in gut microbiome (GM)
composition among adult Seychelles warblers (N = 205). Associations were
identified via a Genome-wide Association analysis (GWAS)- see Figure 6.1. The
chromosome (Chr) number, position, number of SNPs, and minor allele freqeuncy
are presented, as well as the genes encoded within that region. Gene functions are
summarised in Table S6.2.

No.
. Ch o of Minor allele
Region name . Position SNP E Genes
S
rs95 1075473 | 2 3,156,468 1 0.23 Unknown gene
rs728642 3 65,229,635 1 0.32 Unknown gene
77,394,794 -
rs750388 3 78.619 451 86 0.41 GRIK2
rs95 2409799 6 2,239,609 — 2,278,765 | 15 0.18 CACHD1
57,461,779 -
rs1220065 6 57.462.611 4 0.25 Not near any genes
31,789,764 -
rs95 2940759 @ 8 31,799,923 68 0.31 Not near any genes
rs1657804 12 | 13,802,557 1 0.18 MED7
12,982,837 -
rs95_965036 | 17 12,986,427 12 0.43 SEC16A
SARDH, FAM163B,
ADAMTSLZ,
14,084,350 - TMEMSC, SLC2A6,
rs95_974945 | 17 14.617.185 205 | 0.21 SPACA9. AKS,
DDX31, BARHL1,
CFAPT77

6.4.2 Determining ASVs associated with GM-associated SNPs

The abundance of 107 unique ASVs differed significantly in association with the
presence/absence of the minor allele at the nine identified loci (Figure 6.2). These
ASVs are assigned to six phyla, 24 orders, and 37 families (differentially abundant
ASV taxonomy is presented in full in Table S6.2). An average of 23.4 + 3.67 SE
ASVs (range = 7-44 ASVs) were associated with each GM-associated SNP. Each
ASV was associated with 1-7 loci (average of 1.97 + 0.12 SE); 49.5% of ASVs were

associated with one locus.
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Figure 6.2. Differentially abundant amplicon sequencing variants (ASVs) in the gut
microbiome (GM) of adult Seychelles warblers harbouring (or not) the minor allele
at nine genomic loci. Host loci were selected based on a GWAS of GM composition
(see Figure 6.1, Table 6.1). Points and error bars represent the log fold change in
abundance of significant ASVs (Pag¢<0.05) associated with each host genomic loci.
A positive log fold change indicates that an ASV is more abundant in individuals
containing the minor allele and a negative log fold change indicates a higher
prevalence in individuals without the minor allele. ASVs are classified by bacterial
order and coloured by bacterial phylum. Results of differential abundance tests and
ASV taxonomies are presented in full in Table S6.3. N = 205 individuals were
included in the analysis.

6.4.3 GM-associated SNPs and host survival to the next season

Analysis revealed 10 out of the 107 differentially abundant ASVs were also linked
to host survival: five were more abundant in the GM of those that survived to the

next breeding season, and five were more abundant in those that died (Figure 6.3,
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Table S6.4). These ASVs were from seven bacterial orders (see Figure 6.3), nine
bacterial families, and 10 bacterial genera (taxonomy of survival-related ASVs is
presented in full in Table S6.4). All nine genomic loci identified in the GWAS were
associated with at least one survival-related ASV; the presence of the minor allele
in six loci was associated with both positive and negative survival-related ASVs
(r95_1075473, rs728642, rs95 2409799, rs95 2940759, rs95 965036,
rs95 974945), one locus was associated with only positive survival-related ASVs
(rs750388), and two loci were associated with only negative survival-related ASVs
(rs1220065 and rs1657804) (Figure 6.3, Table S6.5).
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Figure 6.3. Gut microbiome (GM) amplicon sequencing variants (ASVs) associated
with host genetic variants (Table S6.3,4.2) and with the differential survival of
Seychelles warblers (N = 205 individuals). Survival was defined based on whether
an individual survived to the breeding season following gut microbiome sampling.
Skulls and smiley faces designate where ASV abundance was negatively or
positively associated with survival, respectively. The allele with increased ASV
abundance is coloured in black (without minor allele) and blue (presence of minor
allele). ASV taxonomies are shown in bacterial order, family, genus (y-axis).

6.4.4 GM-associated SNPs and direct host survival

The presence of the minor allele at rs95 2409799 was associated with significantly
lower mortality risks, while the presence of the minor allele at rs728642 was
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significantly associated with higher mortality risks (indicated by a negative and
positive coefficient, and a higher hazard ratio, respectively; Table 6.2A, Figure 6.4).
The minor allele of both loci was inversely associated with survival-related
Clostridiales ASVs- rs95 2409799 was associated with increased abundance of
Family XIIl; Anaerovorax and a decrease in Ruminococcaceae; uncultured,
whereas rs728642 was associated with decreased abundance of Family XIll;
Anaerovorax and an increase in Ruminococcaceae; uncultured (Figure 6.3, Table
S6.5). No other GM-associated loci were significantly associated survival (Table
6.2A).

The heterozygous genotype of rs95 2409799 was significantly associated with a
lower mortality risk (Table 6.2B, Figure S6.2A). In addition, the heterozygous
genotype of rs728642 was marginally associated with a higher mortality risk (Table
6.2B, Figure S6.2B). However, the genotypes of other loci were not significantly
associated with survival (Table 6.2B).
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Table 6.2. Cox proportional hazard model to test the effects of (A) allelic variation
and (B) the genotype of SNPs associated with gut microbiome composition, on
survival in the Seychelles warbler (N = 1340). Individuals still alive at the end of the
study are right censored (N = 57). Significant terms (P < 0.05) are indicated in bold,
marginal and significant alleles (P < 0.1) are underlined. Reference categorical
variables are as follows: (A) absence of minor allele, (B) major allele homozygous,
sex (female), helper presence in natal territory (no), and sibling presence in natal
territory (no). Abbreviations: Coef, hazard rate; HR, hazard ratio; SE(coef), standard
error of the hazard rate.

Predictors Coef HR | SE(coef) z p

(A) Presence/absence of minor allele

rs95_2940759 0.05 1.05 0.06 0.80 0.424
rs95_974945 0.09 1.09 0.06 1.39 0.163
rs95 2409799 -0.14 0.87 0.06 -2.27 0.023
rs750388 -0.10 0.90 0.06 -1.66 0.097
rs1220065 -0.06 0.94 0.06 -1.03 0.304
rs95_1075473 -0.01 0.99 0.06 -0.09 0.931
rs728642 0.12 1.12 0.06 1.97 0.048
rs95_965036 -0.02 0.98 0.06 -0.37 0.715
rs1657804 -0.01 0.99 0.06 -0.21 0.835
Sex (male) 0.09 1.10 0.06 159 0.112
Inbreeding coefficient 2.20 9.07 0.49 450 <0.001
Mother’'s age 0.01 1.01 0.01 1.13 0.260
Helper (yes) 0.13 1.14 0.09 142 0.154
Sibling (yes) -0.08 0.93 0.06 -1.23  0.220
Group Size 0.02 1.02 0.05 0.51 0.612
Mean rainfall <0.01 1.00 <0.01 10.43 <0.001
Random effects Variance SD

Birth Year 0.078 0.278

(B) SNP genotypes

rs95_2940759
Hz 0.07 1.07 0.07 0.96 0.335

Hm 0.02 1.02 0.07 0.28 0.782
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rs95_974945

rs95 2409799

rs750388

rs1220065

rs95 1075473

rs728642

rs95_965036

rs1657804

Sex (male)

Inbreeding coefficient

Mother’s age
Helper

Sibling

Hz

Hm

Hz

Hm

Hz

Hm

Hz

Hm

Hz

Hm

Hz

Hm

0.08 1.09 0.07
0.20 122 0.13
-0.14 0.87 0.07
-0.17 0.85 0.21
-0.11 0.90 0.06
-0.07 0.93 0.09
-0.07 0.94 0.06
-0.02 0.98 0.15
-0.01 0.99 0.06
0.05 1.05 0.13
0.12 1.13 0.06
0.11 1.12 0.09
0.01 1.01 0.07
-0.14 0.87 0.09
-0.01 0.99 0.06
0.01 1.01 0.14
0.10 1.10 0.06
2.21 9.07 0.50
0.01 1.01 0.01
0.14 1.15 0.09
-0.07 0.93 0.06

1.25

1.50

-2.18

-0.78

-1.66

-0.82

-1.04

-0.11

-0.14

0.39

1.23

0.22

-1.57

-0.10
0.05
1.66
4.44
1.12
1.49

-1.09

0.211

0.133

0.097

0.411

0.299

0.910

0.887

0.694

0.829

0.116

0.920

0.962

0.098

<0.001

0.262

0.136

0.275
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Group size

Mean rainfall
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Figure 6.4. Survival probability in relation to variation at the genomic loci A)
rs95 2409799 and B) rs728642 in Seychelles warblers (N=1340). Lifetime survival
probabilities are denoted with different colours: absence of minor allele (black) and
presence of minor allele (blue). The number of alive/at-risk individuals at each
interval of 5 years is shown at the bottom of the plot. Individuals still alive at the end
of the study are right censored (indicated with the symbol “+”, N=57).

Individual inbreeding coefficient and mean rainfall (average yearly rainfall the bird

experiences over its lifetime) were significantly associated with increased mortality

in both the minor allele and genotype analyses (Table 6.2A&B).
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6.5 Discussion

Nine host loci (encompassing 393 SNPs) were correlated with GM composition;
these loci included 14 known genes. There were 107 unique differentially abundant
ASVs associated with variation at these nine loci. Ten of these 107 ASVs were also
linked to host survival to the next breeding season. Notably, the minor allele at two
of these host loci rs95_ 2409799 and rs728642 was also directly associated with
higher and lower host survival, respectively. These two loci were inversely
associated with survival-related Clostridiales ASVs- rs95 2409799 increases
Family XIII; Anaerovorax and decreases Ruminococcaceae; uncultured, while
rs728642 decreases Family Xlll; Anaerovorax and increases Ruminococcaceae;

uncultured.

6.5.1 Host genomic regions and the GM

The finding that nine host genomic loci are associated with differences in GM
composition in the Seychelles warbler and is in line with previous studies on
humans, cows (Bos taurus), shrimp (Litopenaeus vannamei) and wild mice (Mus
musculus) showing associations between host genome and the GM (Bonder et al.,
2016; Brulin et al., 2025; Cornejo-Granados et al., 2025; Kurilshikov et al., 2021;
Suzuki et al., 2019). However, such genome—GM comparisons remain rare in wild
animal systems (but see (Suzuki et al., 2019)), making our study one of the first to
demonstrate these links in a natural population. The nine loci identified in our study
encompassed 14 known genes, each of which could be directly or indirectly linked
to the GM.

The GRIK2 (glutamate ionotropic receptor kainite type subunit 2) gene (rs750388;
chromosome 3) plays a role in glutamatergic neurotransmission in which variation
has been linked to changes in intestinal motility, secretions, and gut barrier function,
all of which can shape microbial communities (Hamnett et al., 2025). Variation at
GRIK2 has also been associated with the presence of Faecalibacterium in the
human gut (Boulund et al., 2022).
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The CACHD1 (Cache Domain Containing 1) gene (rs95_2409799; Chromosome 6),
which modulates voltage-gated calcium channel activity (Powell et al., 2024) is
expressed in multiple tissues, including the gut (Dahimene et al., 2018; Powell et
al., 2024). Given its role in calcium channel function, this locus could indirectly shape
the GM through changes in mucus secretion, gut motility, and immune response
(Diercks, 2024; Kirchhoff, 2006; Song et al., 2023).

The MED7 (Mediator Complex Subunit 7) gene (rs1657804; Chromosome 12)
encodes a component of the Mediator complex, important for DNA-bound
transcription and RNA polymerase Il (Kim et al., 1994; Kornberg, 2005). MED7 has
been associated with immune responses and may influence the GM via host
transcriptional responses to microbial signals (Wu et al., 2023). Downregulation of
MED7 in humans has also been associated with increased gastrointestinal stromal
tumour risk (Hur et al., 2010).

The SEC16A gene (rs95_965036; Chromosome 17) is involved in protein transport
from the endoplasmic reticulum to the Golgi apparatus (Piao et al., 2017). Variants
of this gene have been associated with inflammatory bowel disease (Hu et al.,
2020). SEC16A is crucial in COPII vesicle formation, which is a target of some
gastrointestinal pathogens such as Escherichia coli and Norovirus (Sharp and
Estes, 2010; Wang et al., 2024).

The second locus identified in chromosome 17 (rs95 974945) encompasses 10
genes. Of these, the gene SLC2A6, involved in extracellular glucose uptake
(DOEGE et al., 2000; Jiang et al., 2022), has been associated with the human
intestinal-type alkaline phosphatase measurement (Loya et al., 2025) and thus, is
the most plausibly linked to GM variation. The other genes do not appear to be
directly linked to the GM but could also influence the GM pleiotropically. For
instance, genomic regions in mice (Mus musculus) that were associated with body
fat were also associated with GM composition (Leamy et al., 2014). Therefore, even
in the absence of a direct association, the identified genes may still impact the GM

indirectly through shared genetic architecture with other host traits.
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Many of the genes we identify (GRIK2, CACHD1, MED7, SEC16A, and SLC2A6),
appear to have been previously associated with the gastrointestinal tract, influencing
the GM primarily through pathways related to gut physiology, immunity, and host-
microbes interactions (see above). These findings suggest that host genetic effects
on the GM are multifaceted, acting through diverse host systems but converging on
pathways that alter the gut environment and immune system. This is consistent with
previous findings, where immune-related genes and gut physiology are known to
shape the GM of humans and captive animals (Bonder et al., 2016; Prochazkova et
al., 2024; Tanoue et al., 2010). Similarly, studies on wild animals have shown that
the host’s immunogenetics also shape the GM (Davies et al., 2022; Marietta et al.,
2015; Montero et al., 2021).

The loci we identified in chromosome two and one locus in chromosome three were
in unknown genes, and hence, we are unable to speculate on potential pathways
that could link the gene to the GM. In addition, there were two other loci (in
chromosomes 6 and 8) that were not near any genes. These intergenic SNPs could
be part of promoters, enhancers, transposable elements and tandem repeats, which
can have significant influences on genome function (Pagni et al., 2022). However,
since the reference genome of Seychelles warblers is only annotated with functional

genes, we are unable to identify the gene regulatory impact of these regions.

6.5.2 Survival and GM-associated SNPs

Among the 107 ASVs that are associated with variation at GM-associated host loci,
10 were also linked with host survival to the next season. Five out of ten of these
host survival-related ASVs were in the same bacterial order as identified in a
previous study in the Seychelles warbler carried out using a smaller dataset
(Worsley et al., 2021). Five ASVs were positively associated with survival, and five
were negatively associated with survival, which suggests the GM could be
associated with host survival through a variety of mechanisms (Shealy et al., 2021;
Tanoue et al., 2010; Wang et al., 2015).

One ASV from an unknown genus (family: Enterobacteriaceae, order:
Enterobacteriales), one from Leifsonia (family:  Microbacteriaceae, order:

Micrococcales), and one from Oxalobacter (family: Burkholderiaceae, order:
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Betaproteobacteriales) were negatively linked to survival in the warbler.
Enterobacteriaceae and M. Leifsonia are known opportunistic pathogens in humans
(Al-Sardi et al., 2021; Shealy et al., 2021). However, Oxalobacter is not known to be
pathogenic in any species and instead is important for preventing kidney stones in
humans (Duncan et al.,, 2002). In the warbler, these ASVs identified from
Enterobacteriales and Micrococcales could infect hosts that are already weakened
by other infections. This is consistent with previous findings in feral horses, where
opportunistic pathogens were associated with reduced survival (Stothart et al.,
2024).

The three ASVs from the Clostridiales order (two Ruminococcaceae with unknown
genus and one Family XIII, Anaerovorax genus) were identified as being positively
linked to survival in the warbler. Clostridiales is a bacterial order found in other
insectivorous passerines (Bodawatta et al., 2021, 2018), and is capable of
fermenting carbohydrates and proteins and degrading toxic by-products (Yang et
al., 2022). The Ruminococcaceae and Anerovorax are known producers of the
short-chain fatty acids acetate and butyrate, which play key roles in maintaining gut
health and homeostasis (Gonzalez Hernandez et al., 2019; Kim et al., 2024; Liu et
al., 2018; Matthies et al., 2000). Both genera have also been positively associated
with physical activity in humans, further supporting their potential beneficial roles in
host physiology and fithess (Santarossa et al., 2021; Zhong et al., 2021). A reduction
in Clostridiales was detected in the GM of juvenile ostriches (Struthio camelus) that
subsequently died (Videvall et al., 2020), suggesting that it may be beneficial to the
host. Collectively, these findings suggest that Clostridiales may represent an
important microbial group mediating links between gut community composition, host

condition, and survival in wild populations.

Finally, we also identified four Seychelles warbler survival-related ASVs that did not
have a clear biological link to host health. The ASV from the bacterial order
Thermomicrobiales and one ASV from Rhizobiales were negatively associated with
host survival, and the one ASV in each of the orders Rhizobiales and
Xanthomonadales (genus Vulcaniibacterium) was positively associated with
survival. The Vulcaniibacterium and Thermomicrobiales are frequently found in
high-temperature environments and are important for biofilm formation and nutrient

cycling (Niu et al., 2020) but have no clear association with vertebrate GM or host
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survival. Similarly, the ASVs Rhizobiales are typically environmental and have not
been reported to be associated with host survival (Garrido-Oter et al., 2018).
However, the ASVs identified in our study have not been functionally characterised
in Seychelles warblers, and most inferred functions are derived from non-avian

systems; therefore, these interpretations remain speculative.

All nine host genomic loci identified as being linked GM variation were associated
with at least one, but no more than four, survival-related ASVs, suggesting that host
genomic effects on survival may be mediated, at least in part, through the GM. In
addition, five loci were associated with ASVs showing both positive and negative
associations with survival. This pattern suggests that a given host locus may
selectively suppress certain microbes while simultaneously tolerating others. Such
contrasting effects could mask clear functional outcomes, as functional redundancy
within the GM may buffer against the loss or gain of individual taxa (Louca et al.,
2018; Worsley et al., 2024d). Therefore, while the host genome is associated with
survival-related ASVs, whether the consequences of these associations are likely
to depend on the functional roles of the specific ASVs involved, but the exact

mechanisms remain to be determined.

Two GM-associated host loci (rs95 2409799 and rs728642) were also directly
associated with host survival, where the presence of the minor allele was associated
with an increase and decrease in survival probability, respectively. The two loci
involved showed opposite associations with the beneficial Clostridiales ASVs: the
minor allele of rs95 2409799 was linked to an increase in Family XIlI (Anaerovorax)
and a decrease in Ruminococcaceae (uncultured), whereas the minor allele of
rs728642 was associated with the reverse pattern, an increase in Ruminococcaceae
(uncultured) and a decrease in Family Xl (Anaerovorax) (Table S6.5). Although
both ASVs are positively associated with survival, the effect of Family XIll
(Anaerovorax) on survival is stronger than Ruminococcaceae (uncultured),
suggesting that survival not only depends on harbouring beneficial microbes, but on
which beneficial microbe is favoured. These opposing effects underscore the role of
host genomic variation in shaping specific GM components, which may ultimately

influence host survival.
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Our study highlights the intricate interplay between host genetics, the GM, and host
survival. However, identifying causal mechanisms in wild populations remains
challenging. While our analyses provide an important starting point, the analyses
were based on independent associations, rather than an integrative framework,
meaning that the effects of host genetic variants on survival could be dependent or
independent of their effects on survival-related ASVs. It is also possible that
changes in ASV abundance reflect declines in host health caused by genetic
variants rather than the ASVs driving mortality themselves (i.e. they are a
consequence, not a cause of imminent mortality). To establish this directionality
would require future research that functionally characterises ASVs (e.g.
metagenomics), employs experimental manipulation, for example, to test whether
altering ASV abundance affects mortality, or with structural equation modelling in
wild populations. Another limitation is that all analyses were conducted within a
single population, which may restrict the generalisability of our findings to other
populations and species. The influence of the host genome on GM composition
could vary across populations due to differences in environmental conditions,
ecological pressures, and local selection regimes (Degregori et al., 2025; Worsley
et al., 2024a).

6.5.3 Conclusion

Our study provides evidence that the host genome is linked to GM variation through
various pathways, including elements of the host immune system and gut
physiology. In addition, host loci were associated with some host survival-related
gut microbes, suggesting that the host genome interacts with the GM to influence
host survival in this species. Two host loci, rs95 2409799 and rs728642, exhibited
opposing associations with the survival-related ASVs Anaerovorax and
Ruminococcaceae, mirroring their opposite effects on host survival. These findings
highlight the complexity of host-GM-fithess relationships and underscore the
importance of integrating genomics and microbial perspectives to gain deeper

insights into the evolution of host traits in natural populations.
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6.7 Supplementary material

Table S6.1. Host single-nucleotide polymorphisms (SNP) that were significantly (g<0.05) associated with gut microbiome composition of
Seychelles warblers (n=205). Abbreviations: SNP position (Pos) on the chromosome (Chr), major allele (A1), minor allele (A2), minor allele
frequency (MAF), whether the SNP is in a gene or near (Inside Gene). The representative SNP of the locus is in bold.

SNP Chr Pos q MAF Inside Gene Gene ID Gene start Gene end
rs95 1075473 2 3156468 0.039 0.227 near Unknown 3156527 3170101
rs728642 3 65229635 0.039 0.317 near Unknown 65221342 65226115
rs95_1854197 3 77314535 0.039 0.418 None None - -
rs95_1854198 3 77314702 0.039 0.418 None None - -
rs746442 3 77358510 0.039 0.419 None None - -
rs746475 3 77376834 0.039 0.419 None None - -
rs746535 3 77390364 0.043 0.416 None None - -
rs746540 3 77393927 0.043 0.416 None None - -
rs746545 3 77394450 0.039 0.418 None None - -
rs746547 3 77394794 0.039 0.419 None None - -
rs746649 3 77496766 0.039 0.419 None None - -
rs746696 3 77520320 0.039 0.419 None None - -
rs746781 3 77565911 0.043 0.420 None None - -
rs746782 3 77566060 0.039 0.419 None None - -
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0.320
0.320
0.321
0.321

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
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rs95_2940696
rs95_2940697
rs1441408
rs95_2940699
rs1441409
rs1441410
rs95 2940702
rs95_2940703
rs95_2940704
rs1441411
rs1441412
rs1441413
rs95_ 2940708
rs1441416
rs95_ 2940712
rs95_ 2940716
rs95_2940717
rs1441418
rs1441419

O 00 0O 0 0 O 0 0 0 0 00 0 O 0 0 0 0 0 o

31791756
31791764
31791834
31791971
31792197
31792206
31792242
31792251
31792263
31792295
31792306
31792322
31792329
31793250
31793286
31793896
31793899
31794311
31794583

0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013

0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.320
0.320
0.320
0.320
0.321
0.321
0.321
0.321

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
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rs95 2940720
rs95 2940721
rs1441420

rs1441421

rs1441422

rs1441423

rs95_2940730
rs95 2940731
rs95_ 2940732
rs95_2940733
rs95_2940734
rs95_ 2940735
rs95_ 2940736
rs95_ 2940753
rs95_2940754
rs95_ 2940755
rs95_2940756
rs1441425

rs95_ 2940758

O 00 0O 0 0 O 0 0 0 0 00 0 O 0 0 0 0 0 o

31795075
31795204
31795465
31795523
31795682
31795751
31797035
31797093
31797112
31797262
31797312
31797320
31797327
31798961
31798962
31799330
31799339
31799395
31799409

0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.013
0.002
0.002
0.002
0.002
0.002
0.002

0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.321
0.317
0.317
0.317
0.317
0.317
0.317

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None

None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None
None

None
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rs95 2940759
rs1441426
rs1441427
rs95 2940762
rs1441428
rs1441429
rs1441430
rs95_2940766
rs1441431
rs1657804
rs95_965023
rs95_965026
rs95_965028
rs95_965029
rs95_965030
rs95_965031
rs95_965033
rs95_965034
rs95_965035

cO 0O 0 0 0 0 0 0 o0

e e e e e e T e
N NN NN NN N NN

31799410
31799423
31799557
31799587
31799612
31799627
31799660
31799917
31799923
13802557
12982837
12982958
12983044
12983134
12983137
12983143
12983214
12983220
12983244

0.001
0.002
0.002
0.001
0.001
0.001
0.001
0.001
0.001
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

0.314
0.312
0.313
0.311
0.311
0.311
0.311
0.311
0.310
0.177
0.428
0.428
0.428
0.428
0.428
0.428
0.428
0.428
0.428

None
None
None
None
None
None
None
None
None
near
yes
yes
yes
yes
yes
yes
yes
yes

yes

None
None
None
None
None
None
None
None
None
MED7
SEC16A
SEC16A
SEC16A
SEC16A
SEC16A
SEC16A
SEC16A
SEC16A
SEC16A

13800481
12972402
12972402
12972402
12972402
12972402
12972402
12972402
12972402
12972402

13801173
12994093
12994093
12994093
12994093
12994093
12994093
12994093
12994093
12994093
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rs95_965036
rs95 965037
rs95 965056
rs95 972005
rs95_972008
rs95_972010
rs95_972020
rs95_ 972024
rs95_972025
rs95_972027
rs95_ 972034
rs95_972042
rs95 972044
rs95_972058
rs95_972060
rs95_972062
rs95_972063
rs95_972069
rs1798058

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

12983248
12983250
12986427
14081628
14081657
14081694
14081844
14081886
14081927
14082509
14083501
14084350
14085154
14091248
14091351
14091383
14091386
14091513
14095417

0.039
0.039
0.039
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.045
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039

0.428
0.428
0.428
0.267
0.267
0.267
0.267
0.267
0.267
0.267
0.267
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

SEC16A
SEC16A
SEC16A
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH

12972402
12972402
12972402
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427

12994093
12994093
12994093
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674

312



rs95 972103
rs95 972104
rs1798061

rs1798064

rs95 972114
rs95 972116
rs95 972117
rs95 972123
rs95_972128
rs95_972133
rs1798081

rs95_972155
rs95_972157
rs95_972162
rs95_ 972213
rs95_ 972860
rs95_972864
rs95_972982
rs95_972993

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14096077
14096086
14096292
14097611
14097842
14098231
14098233
14098783
14099069
14099631
14100140
14100509
14100579
14100632
14101729
14151891
14151910
14171133
14171308

0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.046
0.044
0.039
0.039

0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.268
0.229
0.228
0.268
0.268

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
near
near
yes

yes

SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
SARDH
FAM163B
FAM163B
ADAMTSL?2
ADAMTSL?2

14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14075427
14155387
14155387
14159465
14159465

14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14102674
14156086
14156086
14187958
14187958
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rs95 972994
rs1798266
rs95_973009
rs95 973014
rs1798277
rs1798278
rs95_ 973024
rs1798282
rs95_973156
rs95_973182
rs95_973258
rs95_973259
rs1798330
rs1798331
rs1798332
rs1798333
rs95_973286
rs1798334
rs95 973294

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14171400
14172197
14174018
14176049
14177662
14177912
14179230
14179790
14191099
14194687
14205945
14206027
14208180
14208270
14208282
14208290
14208764
14208857
14209272

0.043
0.043
0.043
0.039
0.039
0.039
0.039
0.039
0.029
0.022
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039

0.270
0.270
0.270
0.268
0.268
0.270
0.268
0.268
0.268
0.265
0.221
0.219
0.223
0.223
0.223
0.223
0.223
0.223
0.223

yes
yes
yes
yes
yes
yes
yes
yes
near
near
yes
yes
near
near
near
near
near
near

near

ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
ADAMTSL?2
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C
TMEMS8C

14159465
14159465
14159465
14159465
14159465
14159465
14159465
14159465
14198859
14198859
14198859
14198859
14198859
14198859
14198859
14198859
14198859
14198859
14198859

14187958
14187958
14187958
14187958
14187958
14187958
14187958
14187958
14206190
14206190
14206190
14206190
14206190
14206190
14206190
14206190
14206190
14206190
14206190
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rs95 973295
rs95_973298
rs95_973299
rs1798363

rs95 974880
rs95 974884
rs95_974887
rs95_974888
rs95_974889
rs95_974893
rs95_ 974894
rs95_974896
rs95_974909
rs1799056

rs95_974913
rs95_974916
rs95_974920
rs95_974921
rs95_974922

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14209295
14209312
14209388
14219256
14468396
14468545
14468599
14468600
14468618
14469387
14469436
14469923
14473367
14473444
14473708
14473984
14474951
14474983
14474985

0.039
0.039
0.039
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

0.223
0.223
0.223
0.223
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.225
0.223
0.223
0.223
0.223
0.223
0.223
0.223

near
near
near
near
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

TMEMS8C
TMEMS8C
TMEMS8C
SLC2A6
SPACA9
SPACA9
SPACA9
SPACA9
SPACA9
SPACA9
SPACA9
SPACA9
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8

14198859
14198859
14198859
14226604
14465731
14465731
14465731
14465731
14465731
14465731
14465731
14465731
14473227
14473227
14473227
14473227
14473227
14473227
14473227

14206190
14206190
14206190
14233714
14472331
14472331
14472331
14472331
14472331
14472331
14472331
14472331
14541222
14541222
14541222
14541222
14541222
14541222
14541222
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rs95 974923
rs95 974924
rs95 974925
rs95 974926
rs95 974936
rs95_974937
rs95 974941
rs95_974945
rs1799063
rs95_974957
rs1799065
rs1799066
rs1799070
rs1799071
rs1799072
rs1799073
rs1799074
rs1799075
rs1799076

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14474995
14475025
14475193
14475817
14477367
14477368
14477653
14478560
14479233
14479671
14479840
14479854
14480129
14480240
14480272
14480426
14481005
14481137
14481138

0.043
0.043
0.043
0.039
0.043
0.043
0.037
0.019
0.029
0.039
0.029
0.029
0.039
0.039
0.039
0.039
0.039
0.039
0.039

0.223
0.223
0.223
0.222
0.221
0.221
0.219
0.212
0.203
0.219
0.219
0.219
0.221
0.221
0.221
0.221
0.221
0.221
0.221

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8

14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227

14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
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rs1799077
rs1799078
rs1799079
rs1799081
rs1799083
rs1799084
rs95_974980
rs95 974981
rs95_974982
rs1799085
rs95_ 974984
rs1799087
rs1799088
rs1799089
rs1799090
rs1799091
rs1799092
rs1799093
rs1799095

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14481139
14481185
14481202
14481515
14481549
14481738
14482056
14482067
14482632
14482660
14482944
14483507
14483550
14484068
14484420
14484738
14484874
14484924
14485290

0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.029
0.029
0.029
0.029
0.029
0.029
0.029
0.039

0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.219
0.219
0.219
0.219
0.219
0.219
0.219
0.221

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8

14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227

14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
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rs1799099
rs1799100
rs1799102
rs1799104
rs1799106
rs1799107
rs1799108
rs1799109
rs1799110
rs1799111
rs1799112
rs1799113
rs1799115
rs1799116
rs1799117
rs1799118
rs1799119
rs1799121
rs1799122

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14486057
14486371
14487108
14488156
14488432
14488867
14489466
14489640
14489794
14489805
14490111
14490376
14491819
14492597
14495656
14496885
14497167
14497235
14497253

0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039

0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8

14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227

14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
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rs1799123
rs1799124
rs1799125
rs1799126
rs1799128
rs1799129
rs1799133

rs95 975042
rs95_ 975046
rs95 975048

rs1799142
rs1799172
rs1799176

rs95_975282
rs95_975287
rs95_975294

rs1799295
rs1799297
rs1799300

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14497973
14499286
14499369
14499603
14499963
14499997
14500768
14507911
14508098
14508758
14509273
14514614
14514662
14559320
14560260
14560700
14562827
14563103
14563140

0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.039
0.043
0.043
0.043
0.043
0.043
0.043

0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.221
0.222
0.222
0.222
0.222
0.222
0.222

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
AKS8
DDX31
DDX31
DDX31
DDX31
DDX31
DDX31

14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14473227
14554666
14554666
14554666
14554666
14554666
14554666

14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14541222
14597701
14597701
14597701
14597701
14597701
14597701
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rs1799322
rs1799326
rs1799336
rs1799345
rs1799353
rs1799374
rs1799377
rs1799631
rs1799649
rs1799686
rs1799688
rs1799693
rs1799694
rs1799695
rs1799696
rs1799698
rs1799699
rs1799700
rs1799701

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14564959
14565480
14566686
14567503
14568483
14570796
14571418
14603792
14605681
14610211
14610768
14611471
14611504
14611571
14611582
14611723
14611811
14612045
14612202

0.043
0.043
0.043
0.043
0.043
0.035
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

0.222
0.222
0.222
0.222
0.222
0.218
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222

yes
yes
yes
yes
yes
yes
yes
near
yes
near
near
near
near
near
near
near
near
near

near

DDX31
DDX31
DDX31
DDX31
DDX31
DDX31
DDX31
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1

14554666
14554666
14554666
14554666
14554666
14554666
14554666
14603834
14603834
14603834
14603834
14603834
14603834
14603834
14603834
14603834
14603834
14603834
14603834

14597701
14597701
14597701
14597701
14597701
14597701
14597701
14609469
14609469
14609469
14609469
14609469
14609469
14609469
14609469
14609469
14609469
14609469
14609469
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rs1799702
rs1799703
rs1799704
rs1799705
rs1799706
rs1799708
rs95_975783
rs95 975787
rs95_975797
rs95_975798
rs1799732
rs1799738
rs95 975814
rs1799742
rs1799743
rs1799744
rs95_975819
rs95_975821
rs1799745

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14612383
14612741
14612820
14612880
14612899
14612953
14617185
14617524
14619749
14619765
14619829
14620366
14622240
14622481
14622673
14623060
14625251
14625428
14625615

0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222

near
near
near
near
near
near
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
BARHL1
CFAP77
CFAP77
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT77
CFAPT77
CFAPT77

14603834
14603834
14603834
14603834
14603834
14603834
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352

14609469
14609469
14609469
14609469
14609469
14609469
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
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rs95 975824
rs1799747
rs95 975827
rs95 975828
rs95 975829
rs1799748
rs95_975831
rs95_975832
rs1799749
rs95_ 975834
rs1799750
rs1799751
rs95_975837
rs95_975838
rs95_975846
rs1799758
rs1799763
rs1799766

17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17
17

14626261
14627154
14627368
14627419
14627532
14627600
14627609
14627788
14627990
14628065
14628521
14629076
14629894
14630263
14632389
14632570
14634026
14634409

0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043
0.043

0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222
0.222

yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes
yes

yes

CFAPT77
CFAPT77
CFAPT77
CFAPT77
CFAPT77
CFAP77
CFAP77
CFAP77
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT7
CFAPT77
CFAPT77

14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352
14615352

14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
14671769
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Table S6.2. Host genes and gene functions that were associated with gut microbiome composition of Seychelles warblers (n=205).

Genes Full Gene name NCBI Refseq Gene Summary (https://www.ncbi.nlm.nih.gov/datasets/gene/)
Glutamate receptors are the predominant excitatory neurotransmitter receptors in the mammalian
brain and are activated in a variety of normal neurophysiologic processes. This gene product
) _ belongs to the kainate family of glutamate receptors, which are composed of four subunits and
Glutamate ionotropic ) ) _ i _ ) ) )
) function as ligand-activated ion channels. The subunit encoded by this gene is subject to RNA
GRIK2 receptor kainate type N _ . o , , o
bunit 2 editing at multiple sites within the first and second transmembrane domains, which is thought to
subuni
alter the structure and function of the receptor complex. Alternatively spliced transcript variants
encoding different isoforms have also been described for this gene. Mutations in this gene have
been associated with autosomal recessive cognitive disability. [provided by RefSeq, Jul 2008]
_ o Predicted to enable voltage-gated calcium channel activity. Predicted to be involved in calcium ion
Cache domain containing ' . _
CACHD1 1 transmembrane transport. Predicted to be located in membrane. Predicted to be part of voltage-
gated calcium channel complex. [provided by Alliance of Genome Resources, Jul 2025]
The activation of gene transcription is a multistep process that is triggered by factors that
. recognize transcriptional enhancer sites in DNA. These factors work with co-activators to direct
Mediator complex
MED7 subunit 7 transcriptional initiation by the RNA polymerase Il apparatus. The protein encoded by this gene is
a subunit of the CRSP (cofactor required for SP1 activation) complex, which, along with TFIID, is
required for efficient activation by SP1. This protein is also a component of other multisubunit
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complexes e.g. thyroid hormone receptor-(TR-) associated proteins which interact with TR and
facilitate TR function on DNA templates in conjunction with initiation factors and cofactors. Two
transcript variants encoding the same protein have been found for this gene. [provided by RefSeq,
Jul 2008]

This gene encodes a protein that forms part of the Sec16 complex. This protein has a role in
SEC16 homolog A, _ _ _ _ _ _
) _ protein transport from the endoplasmic reticulum (ER) to the Golgi and mediates COPII vesicle
SEC16A endoplasmic reticulum _ N _ o _ _ _ _
¢ fact formation at the transitional ER. Alternative splicing results in multiple transcript variants that
export factor _ o _
encode different protein isoforms. [provided by RefSeq, Feb 2013]

This gene encodes an enzyme localized to the mitochondrial matrix which catalyzes the oxidative

s ' demethylation of sarcosine. This enzyme is distinct from another mitochondrial matrix enzyme,
arcosine
SARDH dimethylglycine dehydrogenase, which catalyzes a reaction resulting in the formation of sarcosine.
dehydrogenase o . . — : : . .
Mutations in this gene are associated with sarcosinemia. Alternatively spliced transcript variants

have been described. [provided by RefSeq, Oct 2008]

Family with sequence _ . ' _
FAM163B o Predicted to be located in membrane. [provided by Alliance of Genome Resources, Jul 2025]
similarity 163 member B

This gene encodes a member of the ADAMTS (a disintegrin and metalloproteinase with
ADAMTSL? ADAMTS like 2 thrombospondin motifs) and ADAMTS-like protein family. Members of the family share several
distinct protein modules, including a propeptide region, a metalloproteinase domain, a disintegrin-

like domain, and a thrombospondin type 1 (TS) motif. Individual members of this family differ in the
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number of C-terminal TS motifs, and some have unique C-terminal domains. The protein encoded
by this gene lacks the protease domain, and is therefore of a member of the the ADAMTS-like
protein subfamily. It is a secreted glycoprotein that binds the cell surface and extracellular matrix; it
also interacts with latent transforming growth factor beta binding protein 1. Mutations in this gene
have been associated with geleophysic dysplasia. [provided by RefSeq, Feb 2009]

Transmembrane protein

TMEMS8C 8c Provisional gene — unknown function
_ . Hexose transport into mammalian cells is catalyzed by a family of membrane proteins, including
Solute carrier family 2 _ ' N
SLC2A6 ber 6 SLC2AG6, that contain 12 transmembrane domains and a number of critical conserved
member
residues.[supplied by OMIM, Jul 2002]
SPACAQ Sperm acrosome Enables microtubule binding activity. Involved in axoneme assembly. Located in axonemal
associated 9 microtubule. [provided by Alliance of Genome Resources, Jul 2025]
Enables AMP binding activity and nucleobase-containing compound kinase activity. Predicted to
_ be involved in nucleoside monophosphate phosphorylation. Predicted to act upstream of or within
AK8 Adenylate kinase 8 . . - . .
ventricular system development. Located in 9+2 motile cilium. [provided by Alliance of Genome
Resources, Apr 2025]
DDX31 DEAD-box helicase 31 DEAD box proteins, characterized by the conserved motif Asp-Glu-Ala-Asp (DEAD), are putative

RNA helicases. They are implicated in a number of cellular processes involving alteration of RNA
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secondary structure such as translation initiation, nuclear and mitochondrial splicing, and ribosome
and spliceosome assembly. Based on their distribution patterns, some members of this DEAD box
protein family are believed to be involved in embryogenesis, spermatogenesis, and cellular growth
and division. This gene encodes a member of this family. The function of this member has not
been determined. Alternative splicing of this gene generates multiple transcript variants encoding
different isoforms. [provided by RefSeq, Apr 2016]

Enables sequence-specific double-stranded DNA binding activity. Predicted to be involved in
regulation of transcription by RNA polymerase Il. Predicted to act upstream of or within several
' processes, including negative regulation of outer hair cell apoptotic process; nervous system
BARHL1 BarH like homeobox 1 . _ . ' _
development; and sensory perception of sound. Predicted to be located in chromatin. Predicted to
be active in nucleus. Biomarker of Alzheimer's disease; high grade glioma; and triple-receptor

negative breast cancer. [provided by Alliance of Genome Resources, Jul 2025]

CEAPT7 Cilia and flagella Predicted to be involved in flagellated sperm motility. Located in axonemal microtubule. [provided
associated protein 77 by Alliance of Genome Resources, Jul 2025]

Table S6.3. Differentially abundant amplicon sequencing variants (ASVs) in the gut microbiome significantly (Pagj<0.05) associated with nine

genomic loci in adult Seychelles warblers (N=204).
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Kingdo

ASV SNP Ifc se |q m Phylum Class Order Family
8f7c737007cfbed8b5eal7503e45 rs95 10754 - 0.2 0.01 Bacteri Actinobacter . . . .

- . Actinobacteria Corynebacteriales Nocardiaceae
422c 73 1.35 3 0 a ia
df98b3d20eafc1a8628a93e7b04a rs95 10754 0.1 0.03 Bacteri Actinobacter . . . . .

- 1.86 . Actinobacteria Micrococcales Microbacteriaceae
3325 73 6 1 a ia
€019a4db05822cabb7c9b4c2d16 rs95 10754 0.2 0.02 Bacteri Actinobacter . . Propionibacteriale -

0.99 . Actinobacteria Nocardioidaceae

03056 73 1 8 a ia S
155fc453a9b2083b2246927750b3 rs95 10754 - 0.2 0.00 Bacteri Bacteroidet Bacteroidia Bacteroidales Dvsaonomonadaceae
adb? 73 248 3 1 a es ysg
d9072elcebd91a61f8afcadf8963b rs95 10754 - 0.2 0.01 Bacteri Bacteroidet . .

- Bacteroidia Bacteroidales Dysgonomonadaceae
5be 73 1.68 7 2 a es
d8bla77dfc5fcc46c34936ac6d56¢c  rs95 10754 - 0.3 0.02 Bacteri Bacteroidet . .

- Bacteroidia Bacteroidales Tannerellaceae
848 73 154 3 0 a es
52e0efeb21d0e7d271464fbd25¢c1 rs95 10754 - 0.2 0.00 Bacteri Bacteroidet o . .

- Bacteroidia Bacteroidales Bacteroidaceae
9f2c 73 1.48 7 4 a es
bfb3000539dcc3f92f5596f1902ae  rs95 10754 - 0.3 0.00 Bacteri Bacteroidet o . .

- Bacteroidia Bacteroidales Bacteroidaceae
cc9 73 2.07 O 0 a es
68e632a89a7b3a65e318d15bd6a rs95 10754 - 0.1 0.00 Bacteri Bacteroidet o .

- Bacteroidia Bacteroidales Tannerellaceae
24af9 73 1.90 6 3 a es
38f39d32b69c25e9c315a57df4cd  rs95 10754 - 0.2 0.00 Bacteri Chloroflexi Chloroflexia Thermomicrobiale JG30-KE-CM45
6529 73 215 3 5 a S
44b093eb341528171b8bf175602 rs95 10754 - 0.1 0.00 Bacteri Firmicutes Clostridia Clostridiales Lachnospiraceae
a3eb3 73 181 8 7 a P
a7bc7all4d44fc504e29440deaal rs95 10754 - 0.2 0.00 Bacteri Firmicutes Clostridia Clostridiales Lachnospiraceae
77d4 73 231 6 0 a P
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Table S6.4. Differentially abundant amplicon sequencing variants were significantly (q<0.05) associated with the host’s survival to the next

season in the gut microbiome of adult Seychelles warblers (N=266).
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Table S6.5. Differentially abundant amplicon sequencing variants (ASVs) significantly (q<0.05) associated with both the presence of the minor

allele of genomic loci (Table S6.3) and host’s survival to the next season (Table S6.4) in the gut microbiome of adult Seychelles warblers.
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Figure S6.1. Linkage disequilibrium (LD) decay of Seychelles warblers. LD plotted
using a random subsample consisting of approximately 1% of pairwise SNP
comparisons from each chromosome. Maximum distance between SNPs for LD
estimation: 5 Mbp (plotted to 2.5 Mbp). Red solid line represents model fit, red dotted

line represent where LD decayed to 50%.
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Figure S6.2. Survival probability in relation to variation at the genomic loci A)
rs95 2409799 and B) rs728642 in Seychelles warblers (N=1340). Lifetime survival
probabilities are denoted with different colours: homozygous major allele (black),
heterozygous (orange), homozygous minor allele (blue). The number of alive/at-risk
individuals at each interval of 5 years is shown at the bottom of the plot. Individuals
still alive at the end of the study are right censored (indicated with the symbol “+”,
N=57).

349



Chapter 7 |

General Discussion
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Photo Credit: Sen Dong — Seychelles Warbler-s, having a pleasant viva discussion
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7.1 Overview

The aim of this thesis was to investigate the relationship between the host and its
gut microbiome (GM) in a natural vertebrate population. Building upon existing
research, incorporating shotgun metagenomics, and using modern computational
methods, the aim was to extend our understanding of the factors that shape, and
are shaped by, the GM using the Seychelles warbler. In this final chapter, | bring
together results from earlier chapters to discuss what they may reveal about the GM
in Seychelles warblers, their wider relevance to the field and possible directions for

future research.

Chapter two aimed at identifying age and senescence-related changes in the GM
using longitudinal sampling and shotgun metagenomics. | showed that the GM
decreases linearly with age in both taxonomic and functional alpha diversity and
change in composition within individuals. This provides support for a consistent
change of the GM with age, rather than a sudden drop-off in alpha diversity or
composition linked to senescence. | also showed that a group of microbial
transposases (COG2801) increases linearly with age. This is despite functional

alpha diversity decreasing with age, suggesting fewer functions are present.

Chapter three explored how different aspects of host immunogenetics could
modulate the GM. | showed that variation on the host major histocompatibility
complex (MHC) shapes the GM — both in terms of taxonomic and functional
characteristics. Moreover, | identified a trade-off between microbial defence and

metabolism in relation to increasing MHC-I diversity.

Chapter four assessed how social interactions influence the GM within a cooperative
breeding population. | showed that individuals who shared space had a more similar
GM composition, and that individuals who interact closely (i.e. breeding pair and

helpers) shared more anaerobic GM composition.

Chapter five investigated the effects of inbreeding (including intergenerational
inbreeding) on the GM. | found that the inbreeding coefficient of individuals was
correlated with amplicon sequencing variants (ASVs) and functional GM
composition. Additionally, | showed that the inbreeding coefficient of mothers and

social fathers was correlated with the taxonomic GM composition.

Chapter six aimed to identify host loci that are associated with GM composition and
determine if those loci contribute to GM-associated survival. | showed that nine
genomic loci from 14 known genes were correlated with the GM, suggesting multiple

352



genetic pathways (immune-related genes and gut physiology), through which host
genetics modulate the GM. All nine loci were also correlated with at least one
survival-related ASV. Two of these loci were also directly associated with host

survival.

Overall, this thesis presents a coherent research programme aimed at identifying
the key drivers that shape the GM in a wild population. By integrating ecological,
genetic, and social perspectives, it offers new insights into processes shaping GM

taxonomy and function, within and between individuals.

7.2 Synthesis

Each chapter provides an in-depth discussion of its key findings. Thus, here, | focus
more on connecting and synthesising the findings across chapters. | explain how
my findings confirm and build upon previous work in the Seychelles warbler and in

the broader field of wild animal GM research.

7.2.1 External environmental effects

Before my project began, temporal environmental effects on the GM in the
Seychelles warbler had already been documented (Davies et al., 2022; Worsley et
al., 2021, 2022). Across all of my chapters, | found consistent support for these
effects in shaping the GM (including GM function newly revealed through my
metagonomics approach). Sample year, season, and time of day were significant
across multiple analyses, indicating that temporal variation at both broad (year and
season) and fine (time of day) scales influences GM composition. These temporal
factors affecting the GM have been seen in many other wild animal systems (Hicks
et al., 2018; Marsh et al., 2022; Risely et al., 2022; Schmid et al., 2023; Voigt et al.,
2016), revealing the importance of controlling for environmental variables in wild
animal GM research. Unexpectedly, territory quality — a proxy for food abundance
(Komdeur, 1992) — was not significantly associated with the GM, shown in two
papers (Worsley, Davies, et al., 2024; Worsley et al., 2021) and Chapter 2. This
contrasts with the frequent suggestion that diet is the major driver of GM variation
in both wild and captive systems (Bodawatta, Freiberga, et al., 2021; Cotillard et al.,
2013; Loo et al., 2019; Suriano et al., 2022; van Leeuwen et al., 2020). However,
most of these studies examined dietary changes (e.g. seasonal shifts,
supplementation, or replacement), rather than food abundance per se, so direct

comparisons may be limited. Together, these results suggest that seasonal and
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interannual differences are important contributors to GM variation in the Seychelles

warbler, but that the underlying mechanisms may not involve food abundance.

7.2.2 Gut microbiome diversity

GM alpha diversity measures have been linked to host health and mortality in
several captive species (Shreiner et al., 2015; Sommer et al., 2017; Videvall et al.,
2020). In my chapters, | showed within-individual but limited between-individual
effects. Age (Chapter 2) and environmental variables (across chapters) were
significantly associated with GM alpha diversity, but host genetics and sociality had
limited effects. This suggests that within-individual temporal changes had a larger
influence on alpha diversity than between-individual host factors — revealing the
importance of within-individual measures of GM alpha diversity. Additionally,
previous studies support our findings as environmental variables are frequently
associated with GM alpha diversity across diverse taxa, such as great tits (Parus
major), giant panda (Ailuropoda melanoleuca) and meerkats (Suricata suricatta)
(Liukkonen et al., 2024; Risely et al., 2021; Xue et al., 2015). However, studies into
the role of between-individual host factors, such as host genetics, on GM alpha
diversity have reported mixed findings (Bolnick et al., 2014; Hernandez-Gomez et
al., 2018; Leclaire et al., 2019; Montero et al., 2021; Uren Webster et al., 2018), with
effects apparently species dependent (Williams et al., 2024). Thus, GM alpha
diversity may be a valuable indicator for tracking within-individual changes in the
GM but is less informative for between-individual comparisons in the Seychelles
warbler. Additionally, GM alpha diversity may be limited in response in Seychelles
warblers, where GM composition appears to be a better measure of individual

differences (see below).

7.2.3 Gut microbiome composition

The GM composition of Seychelles warblers was associated with multiple variables:
age (Chapter 2), immunogenetics (Chapter 3), sociality (Chapter 4), inbreeding
(Chapter 5), and nine host genomic loci (Chapter 6), as well as environmental
variables (discussed above). Indeed, all main variables tested impacted the GM
composition in some way. However, as expected, each variable was associated with
different sets of GM taxa and functions, indicating that their effects on the GM are
distinct and act on different pathways. Although many previous separate studies
across many species have suggested that the GM is shaped by many different
factors (Bonder et al., 2016; Raulo et al., 2018; Xu & Zhang, 2021), here we show
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that the GM of a single wild species/population was shaped by many of these same
factors. This shows studying the GM of a single population in depth, as we did here,
provides rare evidence that the GM is shaped by multiple interacting factors. It also
points to the fact that these factors need to be considered together to avoid

oversimplification and to more accurately interpret host—microbe dynamics.

Although multiple factors shape the GM, changes in GM composition do not
necessarily indicate host deterioration, unless they have been directly linked to
survival (Williams et al., 2024). Instead, these shifts in taxa and functional GM are
often adaptive adjustments of the GM to differences in the host’s physiological state,
with certain GM taxa or functions selectively maintained to support host health and
resilience (Williams et al., 2024). Therefore, in the Seychelles warbler, the GM shifts
we observe may represent subtle compensatory mechanisms that buffer the effects

of, for example, ageing, inbreeding, or environmental stress on host fitness.

The MHC was identified as a key factor shaping the GM in Chapter 3, but it was not
identified as a significant locus in the GM genome-wide association study (GWAS)
presented in Chapter 6. This is likely because the MHC is a highly repetitive region
of the genome that is notoriously difficult to assemble and accurately map using
standard short-read sequencing techniques (Vekemans et al., 2021). In the
Seychelles warbler, the whole genome sequencing was performed with short-read
sequencing. Thus, there are regions of the genome that are not assembled, and so
it is impossible to include such regions in the GWAS. Therefore, while the nine
genomic loci identified as being linked to GM variation in Chapter 6 highlight multiple
genetic pathways by which the host genome may impact the GM, the true extent of
host genetic influence on the GM may be underestimated. Future research using
long-read whole-genome sequencing could assemble a better genome, improve
mapping quality, and provide a more complete picture of these host-GM

relationships.

7.2.4 Decoupling of gut microbiome taxonomy and function

While certain results showed agreement between differences in GM taxonomy and
differences in GM function, other findings do not, highlighting discrepancies between
the GM taxonomy and function. This is not surprising due to functional redundancy,
where changes in taxa do not alter GM function because different taxa can carry the
same genes/function or changes in function are not reflected in changes in taxa

because many species can contribute to the functional change (Worsley, Mazel, et
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al., 2024). For example, the increase in COG2801 (transposase) with age (see
Chapter 2) was not linked to an increase in any one specific microbe. Therefore, the
increase in COG2801 with age likely reflects shifts across multiple microbial
species, with functional redundancy potentially masking these changes when

examined solely from a taxonomic perspective.

In chapters three and five, taxonomic and functional GM composition were
associated with different variables; taxonomic GM composition was associated with
MHC-II diversity, whereas functional GM composition was associated with MHC-I
diversity. Similarly, taxonomic GM composition was associated with the inbreeding
coefficient of social fathers and mothers, whereas functional GM composition was
associated with the inbreeding coefficient of the individual. These results indicate
that taxonomic and functional GM composition can vary independently, suggesting
that some taxa are able to functionally adapt to host requirements, while certain
functions are maintained despite shifts in taxonomic composition. Whether the GM
taxa or function changes likely depend on the selection pressures and the
adaptability of the available bacterial species (Kohl et al., 2018; Petersen et al.,
2023).

7.2.5 The benefits of metagenomics

Metagenomic data provides valuable insights into the functional aspects of the GM,
but its high cost often limits sample size. In contrast, the more cost-effective 16S
data, with its larger dataset, can be crucial for building large sample sizes and
detecting small effect sizes, which are characteristic of host-GM relationships in wild
birds (see below). Using both synergistically can be a good strategy. This is evident
in Chapter 3, where | first used 16S data to identify specific MHC loci, which were
then validated with the more detailed metagenomic dataset. Interestingly, there
were some discrepancies between 16S data and metagenomic taxonomy (e.g.
MHC-I1 allele Ase-ua 11 was significantin 16S but not metagenomic taxonomy alpha
diversity). This could be due to a few factors, such as primer bias in 16S sequencing,
differing copy number variation of the 16S rRNA gene in bacteria, taxonomic
resolution, and sample size. However, 16S data was also comparable to the
metagenomic taxonomy data (e.g. ageing and MHC diversity), which is expected as
both methods are comparing GM taxonomy. This combined approach allowed for
deeper explorations that would have been missed with either dataset alone,
demonstrating that both methods are essential but serve different, complementary

purposes.
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7.2.6 Peculiarities of the avian GM

The effect sizes of GM associations were small in my studies compared to those
reported in mammalian, reptiles and amphibian studies (Marsh et al., 2022; Mazel
et al., 2024; Song et al., 2020; Tung et al., 2015). This is consistent with other wild
avian GM studies, often reporting modest effect sizes (Bodawatta, Koane, et al.,
2021; Somers et al., 2023; Song et al., 2020). The effect sizes may also reflect the
high variability of the GM both within and between individuals, which is likely driven
by short gut retention times in passerines and a diverse insect-based diet in the
Seychelles warbler (each type of insect carrying its unique microbiome) (Engel &
Moran, 2013). Additionally, the GM may also be less important to a passerine
compared to a ruminant that relies on the GM for digestion (Cholewinska et al.,
2020). The detection of significant associations in my studies—despite relatively
small effect sizes—emphasises the importance of a large dataset to robustly detect
true associations, as smaller sample sizes typically fail to detect such effects (Kelly
et al., 2015; Serdar et al., 2021). These results underscore the need, at least in
avian studies, for large, well-powered datasets such as the Seychelles warbler to

reliably detect subtle host-GM relationships.

7.2.7 Advances made

Across chapters, | have identified a suite of variables that have shaped the GM. This
thesis advances the field by demonstrating within-host temporal changes (Chapter
2), host genetic influences (Chapters 3, 5, and 6) and social (Chapter 4)
associations with the GM factors rarely integrated into a single wild vertebrate
system. Synthesising these findings, | show that temporal variation consistently
impacts the GM, and that composition offers a more powerful lens than alpha
diversity for detecting host effects. Moreover, taxonomic and functional profiles often
diverged due to redundancy, underscoring the need for integrative approaches.
Together, these findings highlight the value of multi-faceted, longitudinal
approaches and open new questions about the mechanisms driving GM stability,

functional resilience, and their consequences for host fitness in natural populations.

7.3 Limitations

A central question | originally aimed to address—though ultimately decided | could

not—was whether the GM contributes to reproductive success. The primary
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limitation was sample size. The GM samples we collect linked to reproduction are
largely restricted to the major breeding season (June to October), because the GM
varies between the major and minor breeding seasons. Additionally, ideally, we
would collect samples just before breeding begins to assess their predictive value.
Post-breeding samples may reflect changes in the GM driven by behaviours like
offspring care (Antwis et al., 2019; Sarkar et al., 2020, 2024). Compounding this,
nest numbers were low during the years | participated in fieldwork, further limiting
the availability of samples from successful breeders. In the larger 16S dataset, GM
samples were available for 193 breeding birds, but only 16 of these successfully
reproduced in the major season and had samples collected before reproduction.
Hence, | decided to focus my energy elsewhere. However, the Seychelles warbler
research project has continued to collect samples, thus, this idea may be possible
once enough samples have been collected

In the same vein, the final chapter had a small sample size for GWAS (n=205), as
although we have GM samples, we do not have the whole genome sequencing data
from recent Seychelles warblers. Most human GWAS studies have sample sizes
>1000 (Hong & Park, 2012). Future research could incorporate more samples into
a GM composition GWAS, which should identify a greater number of loci that are
correlated with the GM. Nonetheless, my sample size was greater than the
recommended 100 samples for a GWAS study (Hong & Park, 2012), and, while |
recognise that some loci may have been missed, it does not undermine the fact that

nine genomic regions that are strongly associated with the GM were detected.

The correlative nature of this thesis is a key limitation, as the underlying causal
mechanisms remain unknown. Future research should focus on uncovering the
specific pathways through which each variable influences the GM. This is
particularly relevant for Chapter 6, as each host genomic loci were associated with
a different or multiple genes. Thus, pinpointing the causal gene(s) within these
genomic regions could improve our understanding of how the host genome
regulates the GM. Targeted resequencing of candidate regions in a larger sample
panel would enhance resolution and validate the associations identified.
Furthermore, experimental manipulations—such as transplanting GMs between
hosts of different genotypes—could test whether specific taxa are selectively

retained or excluded by the host genetics.
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7.4 Future research

| see several other promising directions for future research on the Seychelles
warbler GM, which | did not have time to investigate. One intriguing avenue involves
the relationship between breeding pair divorce in this socially monogamous species
and the duration the GM remains the same. In Chapter 4, | found that breeding pairs
tend to share more similar GM, raising the question: Does pair separation also lead
to GM divergence, and to what extent is the shared GM retained after divorce?
However, given that divorce is rare (14%) in this species (Speelman et al., 2024),
this question may be better suited to a system where divorce occurs more
frequently, such as Ciconiiformes (Jeschke & Kokko, 2008). Similarly, future
research could explore GM retention following dispersal from a territory (i.e in
offspring)—investigating how much of an individual’s GM remains the same when it

moves to a new social and ecological environment.

Additionally, the potential link between the GM and personality traits in the
Seychelles warbler remains unexplored. In Seychelles warblers, how individuals
explore novel environments and objects is associated with their dispersal patterns:
males with higher exploratory tendencies often delay natal territory dispersal,
whereas highly exploratory females tend to disperse farther from their natal territory
(Coxetal., 2023). While an exploratory personality is not associated with Seychelles
warbler fitness (Edwards et al., 2018), the personality differences could be
associated with the GM, perhaps through the microbiome-gut-brain axis (Davidson
et al., 2018). This research idea may elucidate the associations between specific
GM profiles and behavioural syndromes or competitive phenotypes, offering insights

into physiological fitness, health outcomes, and social hierarchy dynamics.

An underexplored area of GM research is how microbial communities differ between
growing and stable populations. A growing population may reflect an environment
with higher resource availability and low competition, which may reduce conspecific
social interactions, subsequently leading to reduced GM diversity (Archie & Tung,
2015; Raulo et al., 2024). Additionally, growing populations may have healthier
individuals, hence GM stability and resilience may be higher. While direct
experimental manipulation is not currently feasible in the Seychelles warbler, natural
translocations provide a valuable pseudo-experimental framework to examine how
a growing population influences GM composition. One hypothesis is that individuals
in growing populations—facing less competition and greater food availability—can

select preferred dietary items, leading to a more diverse or beneficial GM. If such a
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"healthier" GM can be identified, it could potentially be used in future translocations
via faecal microbiota transplants to provide a microbial “kickstart,” supporting the

health and growth of new populations.

Epigenetics (such as telomere length and DNA methylation) has recently been
bidirectionally associated with the GM (Pepke et al., 2024). GM metabolites may act
as signalling molecules that can modify the host epigenome (Ha et al., 2025), and
thus, may lead to differential host senescence patterns (Adams et al.,, 2025).
Additionally, host epigenetics can influence the GM through a range of host genes
and proteins (e.g. genes/proteins involved in gut barrier function, sirtuin proteins,
and CHD1) (Pepke et al., 2024). In addition, recent tools such as Computel
(Nersisyan & Arakelyan, 2015) and TelSeq (Ding et al., 2014) have enabled
estimating telomere length from whole genome sequencing. In addition, the
Seychelles warbler telomere length has also been estimated with quantitative
polymerase chain reaction (QPCR) in past papers (Barrett et al., 2013; Bebbington
et al., 2016; Sparks et al., 2022). Together, these approaches offer a promising
research idea to explore how host biological age, mediated through epigenetic
mechanisms, interacts with the GM to influence health, fithess, and ageing in the

Seychelles warbler.

A key goal for future work is to integrate all the identified variables—age, host
genetics, sociality, and environmental factors—into a single, powerful model. This
approach would allow for a direct comparison of the relative influence of each driver
on the GM, providing a more complete picture of host-GM interactions. This kind of
multi-faceted analysis would require significantly more data, but would also be the
most powerful. Integrating longitudinal microbiome data with host genomic,
epigenetic, and ecological covariates would enable partitioning of variance
attributable to each factor and testing for interactions, revealing the relative and
combined effects of multiple drivers on GM structure and function. Ultimately, this
integrative approach could provide predictive insights into how host biology and
environment jointly shape GM communities and influence fithess in natural

populations.

7.5 Final remarks

In conclusion, the exceptional long-term Seychelles warbler project has provided —
and will continue to provide — a unique opportunity to investigate the factors shaping

the GM in a wild vertebrate population. Beyond identifying individual drivers, it offers
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the potential to integrate these factors to improve the predictive power of GM
models. Collectively, my findings demonstrate that age, host genetics, sociality, and
environmental variables all contribute to variation in the Seychelles warbler GM.
This thesis underscores the value of a detailed, fine-scale approach to studying the
GM within a single, well-characterised wild population. More broadly, it highlights
the importance of embracing the complex, multi-faceted relationship between hosts
and their GM in natural systems.
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Preserving microbial functional biodiversity

When thinking of conservation, people
often picture elephants roaming the
savannah, sea turtles on beaches, orlush
rainforests. Although these species and
ecosystems are undeniably important,
people often overlook another vital, smaller
world —the realm of microorganisms. In
2021, apaper by Dodd and Grueber high-
lighted the importance of conserving the
microbial ecosystems that exist in, or on,
animals in natural populations. This exciting
paper inspired me to pursue a PhD in wildlife
functional microbiomes.

In addition to providing a useful sum-
mary of emerging techniques in functional
microbiome research, Dodd and Grueber
offer a compelling description of the key
functions of host microbial communities
and theirimportance to species’ conserva-
tion. Human activity can disrupt microbial
ecosystems, which affects species’ health
and survival. For example, rhinoceroses are
endangered primarily owing to poaching,
but deforestation and pollution has led to
dietary changes and exposure to patho-
gens, which alters their microbiomes and
contributes to the declining population.
Therefore, the authors emphasize that
understanding the association between
functional microbiomes and host health
would help to identify host species that
might suffer most from microbiome
change. With this knowledge, informed
conservation actions — such asintroducing
beneficial microorganisms — can be taken

to help species to maintain a healthy wild
microbiome.

Theauthorsalsomade an unexpected
point that well-intentioned conservation
efforts caninadvertently harm host microbi-
omes and, therefore, the host species itself.
Forexample, the process of translocating
individuals —acommon tool in animal
conservation — could damage the vertebrate
gutmicrobiome ifitinvolves a period of cap-
tivity, supplementary feeding or antibiotic
treatment. By highlighting the complexity
of host-microorganism interactions and
theirimplications for host health (and,
thus, conservation), the authorsillustrate
theimportance of understanding of the
host microbiome’s role in guiding effective
conservationstrategies.

To date, microbial functionin wild
animal hosts remains poorly understood,
primarily owing to the costs associated
with sampling, sequencing and analysis.
Dodd and Grueber point out that research
onwild endangered species is constrained
by the difficulty of obtaining sufficient
sample sizes. Analysing these samples
presents further challenges, as the field
isstill relatively new — particularly inthe
context of wild systems. Moreover, changes
in the wild animal microbiome are often
influenced by many interacting variables,
including biotic and abiotic environmental
factors and intrinsic host factors, which
must be accounted for inanalyses to ensure
accurateinterpretations.

“the authors illustrate
the importance of
understanding of the
host microbiome’s role
in guiding effective
conservation strategies”

Dodd and Grueber recommend thoughtful
study designs to reduce costs and optimize
insights when studying wild animal micro-
biomes. They suggest reusing genomic and
microbiome datafrom well-studied species
to aid decision-makingin small, isolated
populations and speed up research. Given
the complexity of host-microorganism
interactions inwild populations, itis essen-
tial to develop effective strategies to protect
life across all scales — from taxonomy to
functional diversity.
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Abstract

Studies on wild animals, mostly undertaken using 16S metabarcoding, have yielded ambiguous evidence regarding changes in the gut
microbiome (GM) with age and senescence. Furthermore, variation in GM function has rarely been studied in such wild populations,
despite GM metabolic characteristics potentially being associated with host senescent declines. Here, we used 7 years of repeated
sampling of individuals and shotgun metagenomic sequencing to investigate taxonomic and functional changes in the GM of Seychelles
warblers (Acrocephalus sechellensis) with age. Our results suggest that taxonomic GM species richness declines with age and in the
terminal year, with this terminal decline occurring consistently across all ages. Taxonomic and functional GM composition also shifted
with host age. However, the changes we identified occurred linearly with age (or even mainly during early years prior to the onset of
senescence in this species) with little evidence of accelerated change in later life or during their terminal year. Therefore, the results
suggest that changes in the GM with age are not linked to senescence. Interestingly, we found a significant increase in the abundance
of a group of transposase genes with age, which may accumulate passively or due to increased transposition induced as a result of
stressors that arise with age. These findings reveal taxonomic and functional GM changes with age, but not senescence, in a wild
vertebrate and provide a blueprint for future wild functional GM studies linked to age and senescence.

Keywords: gut microbiome, age, senescence, metagenomics, transposase, Acrocephalus sechellensis

greater GM instability in advanced age including a loss of diversity

Introduction and changes to composition [13-15]. These late-life compositional

Senescence—a decline in physiological function in later life—
occurs in most organisms [1, 2]. However, its onset and rate often
differ greatly among individuals within populations [1, 3]. One
factor that may contribute toindividual differences in senescence
is variation in host-associated microbial communities. The
intestinal tract of animals contains a diverse collection of
microbes and their genomes (the gut microbiome; GM), which play
an important role in host adaptation and fitness [4, 5]. The GM
influences the regulation of essential processes, such as digestion,
reproduction, and immune function [6, 7]. However, shifts in GM
composition can be detrimental to the host; certain microbes
may be pathogenic, while overall dysbiosis may impair host
function [8, 9].

Studies in humans and laboratory animals have shown that
GM composition generally changes rapidly in early life [10, 11]
before stabilizing during adulthood [12]. This is often followed by

shifts are generally characterized by a loss of commensal or
probiotic bacteria and an increase in pathogenic microbes [16].
GM functional changes with age have also been identified. For
example, healthy aging has been associated with microbes that
enable increased biodegradation and metabolism of xenobiotics
[16, 17], whereas unhealthy aging has been linked to increased
production of detrimental microbial metabolites [16].

Studies have demonstrated links between the GM and senes-
cence in humans and laboratory animals, however, their GM
composition varies markedly from their counterparts living in
natural environments because of the artificial environments they
are exposed to [18, 19]. It remains unclear if these effects can be
generalized to wild animals [18-20].

Recent studies on wild organisms have not reached a
consensus on what characterizes the aging microbiome. Some
have documented altered GM composition [21-23], increased GM
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diversity [22, 24], and reduced GM stability [25] with increasing
age. Other studies have indicated that GM characteristics remain
relatively stable throughout adulthood [25-27]. However, these
studies have been based on 16S ribosomal ribonucleic acid
(rRNA) gene metabarcoding, which is limited in resolution [28-
30]. Shotgun metagenomic sequencing enables higher taxonomic
resolution (species or strain level), as well as informing on the
functional potential of microbial communities based on gene
content [31-33]. In humans and captive primates, metagenomics
has revealed an increase in pathogenic microbial genes, and
a decrease in beneficial genes, with age [17, 34, 35]. To our
knowledge, no previous studies have investigated GM functional
changes with age and senescence using shotgun metagenomics
in a wild population.

Also, most GM studies on wild animals have relied on a cross-
sectional sampling of differently aged individuals [36-38] and,
therefore, may be confounded by the selective appearance/disap-
pearance of individuals with particular GM characteristics. Alack
of longitudinal samples also makes it difficult to infer changes
in GM stability with age [39]. Understanding what drives this
GM variation is important, as it may lead to a deeper compre-
hension of the evolution of senescence and life-history trade-
offs [3], and enhance our ability to prolong healthy lifespans. As
senescence occurs at different rates across individuals, a longitu-
dinal approach is crucial for accurately evaluating age-associated
effects [40]. Given this rate variation, and because declines are
expected to be greatest at the end of life, GM changes may be
more closely associated with proximity to death than chronolog-
ical age. Including such information in analyses requires accu-
rate estimates of the point of death that are not confounded by
dispersal.

The long-term study of the Seychelles warbler population on
Cousin Island provides a powerful natural system to study GM
variation and host senescence [3]. Its isolated nature allows for the
longitudinal sampling of uniquely marked, known-age individuals
across their entire lifespan and the collection of accurate survival
and reproductive success data [41, 42]. Previous studies using 16S
metabarcoding have demonstrated that Seychelles warbler GM
composition is linked to subsequent survival [43] but identified
no overall patterns of GM senescence [26]. Additionally, host age
was not associated with GM diversity, but a very marginal effect
of host age on GM composition was reported [26].

Here, we use shotgun metagenomics to assess fine-scale
changes in the GM with age and senescence in the Seychelles
warbler. First, we determine how GM taxonomic diversity and
composition change with host age, particularlyin a bird’s terminal
year when GM dysregulation is expected to be at its greatest.
Then we test the hypothesis that GM functional characteristics
(assessed via microbiome gene content) will change with age,
senescence, and in the terminal year.

Materials and methods

Study system and sample collection

Seychelles warblers are insectivorous passerines endemic to the
Seychelles archipelago. The population on Cousin Island (29 ha;
04° 20’ S, 55° 40’ E) has been extensively monitored since 1985 in
the winter (January-March) and summer (June-October) breeding
seasons [3, 44, 45]. Each season nearly all new birds (offspring) are
caught, in the nest or as dependent fledglings in the natal territory
[45]. As many adult birds as possible are re-caught each season
using mist nets. Bird age is determined using either lay/fledgling
date [45] for the majority of individuals, if birds are first caught

without a fledging date being recorded, eye color is used to
estimate age instead (see [45]).

The population on Cousin Island consists of ca. 320 individuals
grouped into ca. 115 territories, defended year-round by a dom-
inant breeding pair [46, 47]. Territory quality is calculated each
season using arthropod counts, vegetation density, and territory
size information [45, 48].

Nearly every bird in the population (> 96% since 1997 [49])
has been caught and marked with a unique combination of a
British Trust for Ornithology (BTO) metal ring and three plastic
color rings, which enables them to be monitored throughout their
lives [3, 50]. Individuals almost never disperse between islands
and the annual resighting probability is ~98% +£1% [41, 42, 51].
If an individual is not seen for two consecutive seasons it is
assumed to have died (an error rate of 0.04%) [41, 42]. Death
dates for individuals were set as the final day of the season in
which the bird was last seen. Benign climatic conditions and a lack
of predators result in relatively long-lived individuals (median
lifespan 5.5 years, max lifespan 19 years) [46, 52]. Previous studies
have found that male and female Seychelles warblers are sexually
mature at 1-year-old, and senescence (survival and reproductive)
begins at ca. 6 years of age [3, 41, 46, 53]. The annual survival
of adults does not differ between sexes, remaining ~80% up to
6 years of age and then decreasing [3, 54]. Thus, there were no
differences in survival senescence between the sexes [3, 46, 53]. In
addition, elderly females in their last year of life (terminal year)
had reduced reproductive success [55].

Fecal samples were collected from caught birds and stored
as described previously (see [26]). Between 2017 and 2023 all
caught birds were placed in a disposable flat-bottom waxed paper
bag containing a sterilized plastic weighing tray underneath a
sterilized metal grate [56]. This allows the bird to stand on the
grate and feces to fall into the sterile tray, minimizing contact with
the bird's surface. After ca 15 minutes (after defecation) the bird
was removed. The sample was collected, using a sterile flocked
swab, and placed into a microcentrifuge tube containing 1 ml of
absolute ethanol. Samples were stored at 4°C in the field before
being transferred to —80°C for long-term storage. Contamination
(hand) controls were collected from fieldworkers each season.
The time-of-day that samples were collected and the number of
days for which samples were stored at 4°C, were recorded. A ca
25 pl blood sample was also taken via brachial venepuncture and
stored in 1 ml of absolute ethanol at 4°C.

Deoxyribonucleic acid extraction and sequencing
Blood samples were processed with a salt extraction method
[42] or Qiagen DNeasy Blood and Tissue Kit and the resulting
deoxyribonucleic acid (DNA) was used for molecular sexing
[52, 57].

DNA from fecal samples was extracted using the Qiagen
DNeasy PowerSoil Kit with a modified protocol (see [56]). Samples
were lysed using both mechanical agitation and enzymic pro-
cesses [56]. Individuals for which multiple longitudinal samples
were available were prioritized for metagenomic sequencing to
capture within-individual changes. In total, 155 fecal samples
from 92 individuals across 7 years were sequenced, as well as
three positive controls (two extractions from a ZymoBIOMICS
Microbial Community Standard [D6300], and one extraction from
a ZymoBIOMICS Fecal Reference with TruMatrix™ Technology
[D6323]), and six hand controls. Library preparation was per-
formed in two lanes per run using the LITE protocol [58] and
sequencing undertaken in two runs of 2x 150 bp NovaSeq X
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platform. The D6300 extraction control was sequenced on both
runs to compare extraction and batch effects.

Bioinformatics

Shotgun metagenomic sequence analysis was carried out using
the MATAFILER pipeline (see [5] and supplementary materials).
Briefly, MATAFILER removes host reads, assembles reads, predicts,
and annotates genes, builds metagenome-assembled genomes
(MAGs) and metagenomic species (MGSs), and taxonomically
assigned MGSs. Due to the high individuality of the Seychelles
warbler GM and the high sequencing coverage required to assign
MGS, Metaphlan4 was also used to taxonomically classify reads
(see supplementary materials for details).

Gut microbiome analyses

A total of 162 samples were successfully processed bioinformat-
ically (153 fecal samples, 4 controls). Positive controls were suc-
cessfully recovered, and hand controls did not contribute to sub-
stantial contamination in samples (Fig. S1).

The 153 fecal samples (Fig. S2) included 71 from 40 females
and 82 from 51 males. In total, 41 individuals had one sample,
41 had two, eight individuals had three, and one individual had
four samples. Age at sampling ranged from 0.6-17.0 years (mean
5.7 £0.3 SE). Of these, 48 were from 22 individuals in their terminal
year (the year in which they died); with ages in terminal year
ranging from 1.4-17.0 years. From all these samples, 1025 unique
metaphlan4 species-genome-bins assignments were used for the
subsequent taxonomic analysis (mean 29.3+2.0 SE per sample).

All statistical analysis was performed using R version 4.33 [59,
60). variance inflation factor scores (car version 3.1.2) were used
to test for collinearity between variables in all models; all had a
score < 3 indicating no issues with collinearity [61].

Taxonomic gut microbiome changes with age
Taxonomic gut microbiome alpha diversity

A rarefaction curve of Metaphlan4 species was constructed with
INEXT version 3.0.1 to determine the read depth required to
recover 95% of theoretically present species (Fig. S3) [62]. Tax-
onomic classifications were rarefied to a depth of 5500 reads
before alpha diversity analysis; two samples were removed due to
insufficient read depth. Species richness and Shannon diversity
metrics were calculated per sample using R packages phyloseq
version 1.46.0 and microbiome 1.24.0 [63, 64]. Wilcoxon rank sum
tests were used to examine whether different sequencing plates
affected species diversity (Shannon index, P=.353) and species
richness (Observed index, P=.124), both were not significantly
different.

Alinear mixed effect model with a Gaussian distribution (Imer),
and a generalized linear mixed effect model with a negative
binomial distribution (glmer.nb), were used to model changes in
species diversity (Shannon index) and richness (observed taxa),
respectively, using Ime4 version 1.1-35.5 [65]. Fixed effect vari-
ables included in models were: host age (years); terminal year
(yes/no); sex (male/female); breeding season (winter/summer);
sample year (as a factor: 2017-2023); territory quality; storage
days at 4°C (days); time of day collected (minutes since sunrise
at 6:00 a.m.). Bird ID was included as a random effect.

Storage at 4°Cin the field ranged from 4 days to 104 days (mean
36.34 1.8 SE). A quadratic age term, and an interaction between
terminal year and host age, were tested to assess whether GM
changes became more extreme with age or if GM changes in
the terminal year differ depending on age. These terms were
dropped if not significant to allow interpretation of the main

effects. Age was measured in years, but all samples taken when
birds were > 12 years of age were designated as 12 years because
these samples were rare (n =9, max age= 17 years). Previous anal-
ysis shows that body condition is not associated with Seychelles
warbler GM diversity and composition, thus, it was notincluded in
analysis [43]. Model diagnostics were run using DHARMa version
0.4.6, with no significantissues in each chosen model [66]. Herein,
all models were tested with the same variables unless stated
otherwise.

A within-subject centering approach was used to separate
between-individual (cross-sectional) GM differences with age
(which could be driven by the selective appearance/disappear-
ance of individuals with particular GM characteristics), from
within-individual (longitudinal) change (which could indicate
senescence) [67]. This involves calculating the mean age of each
individual across all its sampling events (mean age) and the
within-individual deviation from that mean age at each separate
sampling event (delta age). These terms replace host age in the
model. The fixed effect of terminal year was also replaced by
a “terminal year bird” term (yes/no) which indicates whether
individuals have at least one sample collected in the terminal
year or not. An interaction between the terminal year bird and
delta age, as well as quadratic delta age, were tested to assess
whether within-individual GM changes were more extreme in
birds with a sample taken in the terminal year of life and/or
in older individuals, respectively (which would be indicative of
senescence). In addition, an interaction between delta age and
mean age was included in the models to test if within-individual
changes with time occur differently depending on host age. The
analysis was repeated with non-rarefied reads to determine if
rarefaction influenced the results. These terms were dropped if
not significant to allow interpretation of the main effects.

Taxonomic gut microbiome composition

A permutational multivariate analysis of variances (PERMANOVA)
was carried out on a Euclidean distance matrix calculated using
centered log ratio (CLR)-transformed reads, using the adonis2()
function in vegan version 2.6.6 [68]. A blocking effect of Bird ID was
used to account for repeated measures. The same predictors were
included as for the main model in the Alpha diversity analysis
above. Differences in composition were visualized with a principal
compenent analysis (PCA) in phyloseq version 1.46.0 [64].

Taxonomic gut microbiome differential abundance analysis
Two different differential abundance analysis (DAA) methods
were used to identify differentially abundant GM species with
host age (as recommended by [69, 70]; ANCOMBC2 version 2.4.0
and GLLVM version 1.4.3 [71, 72]. ANCOMBC?2 calculates log fold
change of species one at a time before adjusting p-values, whereas
GLLVM calculates log fold change of all species all at the same
time, accounting for correlation between species [71, 72]. A total
of 22 common species, defined as species found in 20% of the
population at >0.01% abundance, were retained. Species that
were significantly differentially abundant in the same direction
using both DAA methods were considered robustly significant.
Variables included in each model were the same as in models
above.

Functional gut microbiome changes with age
Functional gut microbiome alpha diversity

Initially, 4727 different eggNOG orthologues (mean=3616.6 +64.4
SE per sthe ample) were identified in our gene catalogs. A rarefac-
tion curve of eggNOG orthologues was constructed using INEXT to
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Table 1. A generalized linear mixed effect model with a negative binomial distribution (glmer.nb) investigating GM species richness in
relation to within-(delta) and between-(mean) individual variation in age among Seychelles warblers (n=151 samples, 91 individuals)
Conditional R? =53.1%. Reference categories for categorical variables are shown in brackets.

Predictor Estimate SE z P
(Intercept) 2.705 0.317 8.536 <.001
Delta Age —0.308 0.095 —3.233 .001
Mean age —0.036 0.023 —1.534 125
Terminal year bird (yes) —0.189 0.142 -1.329 184
Season (winter) 0.020 0.157 0.126 900
Sex (female) —0.020 0.144 -0.139 .889
Days at 4°C —0.238 0.137 -1.734 .083
Time of day 0.237 0.122 1.938 053
Territory quality -0.081 0.125 ~0.645 519
Sample year (2017)
2018 0.439 0.280 1.568 117
2019 0.399 0.323 1.233 217
2020 0.701 0.351 1.997 .046
2021 0.755 0.338 2.231 .026
2022 0.725 0.346 2.099 .036
2023 0.879 0.400 2.197 .028
Delta age * mean age 0.034 0.014 2.440 .015
Random
Individual ID 151 observations 91 individuals Variance 2321

Note: Significant (P < .05) predictors are shown in bold.

determine sample completeness [62]. Samples were then rarefied
to 100000 reads based on >95% completeness. One sample was
removed due to insufficient reads. Following rarefication, 4685
eggNOG orthologues were retained (mean=3054.34+47.1 SE per
sample). Due to the (negative) skewness of the observed richness
and Shannon diversity of eggNOG annotations, a scaled exponen-
tial transformation and an exponential transformation were used
for analyses, respectively, to improve residual fit. Both these alpha
diversity indices were then analysed with linear mixed models
containing the same predictors as for taxonomic alpha diversity
above.

Functional gut microbiome composition

To test for changes in functional microbiome beta diversity,
a PERMANOVA of Euclidean distances calculated from CLR-
transformed read abundances per orthologue was used, using the
same model structure as for taxonomic compositional analysis
(described above). Differences in composition were visualized
with a PCA plot as above

Functional gut microbiome differential abundance analysis
DAA was performed on eggNOG annotations using their assigned
categories from the database of clusters of orthologous genes
(COG; Supplementary Table S1) [73] using ANCOMBC2 and GLLVM
as described above [/1, 72]. Post-hoc DAA were performed on
individual eggNOG members found within differentially abun-
dant COG categories to establish the drivers of any significant
differences (see Supplementary material for details).

Results

Taxonomic gut microbiome changes with age
Taxonomic gut microbiome alpha diversity

GM species richness declines with host age, and individuals in
their terminal year had significantly lower species richness than
those in a non-terminal year (Table S2 and Fig. S4). However,
Shannon diversity was not significantly associated with host age,

and did not differ between samples taken in a terminal or non-
terminal year (Table S3). A quadratic age term, and an interaction
between host age and terminal year were not significantly associ-
ated with species richness or Shannon diversity (P > .05) and were
dropped from the final model.

The within-individual centering approach revealed that
a decline in GM species richness with host age occurred
longitudinally within individuals (Table 1, Fig. 1). However, the
slope of declining species richness within an individual (delta
age) decreases with increasing mean age, i.e. a decline in GM
species richness with time occurs more at earlier host ages than
in later life (Table 1, Fig. 1). Indeed, after the age of 6 there doesn't
appear to be any significant decline in GM species richness with
increasing age (Fig. 1). This shows that contrary to our prediction
that GM may show senescent effects, within-individual changes
were less extreme in older individuals (in the ages we know
senescence is occurring). There was also no evidence of between-
individual selective disappearance effects (Table 1). Shannon
diversity did not change significantly with mean or delta age
(Table S4). There was also no evidence of a quadratic relationship
between within-individual delta age and species richness or
Shannon diversity, hence the quadratic age term was dropped
from the final model. We also tested for an interaction between
within-individual age and whether an individual’s final sample
was in their terminal year, but this was not significant (P> .05)
and was dropped. Additionally, the results were consistent with
Table 1 when non-rarefied reads were used (Table S5). This result
indicates that within-individual changes in species richness with
age had a similar slope whether the bird was sampled in its
terminal year or not.

Taxonomic gut microbiome composition

A PERMANOVA analysis found that cross-sectional host age was
a marginally significant predictor of GM taxenomic composition
(Table 2), but terminal year was not (Table 2). Sample year, season,
and catch time were significant and explain the largest proportion
of GM compositional variance (Table 2) followed by days sample
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Figure 1. GM species richness in relation to within-individual, longitudinal differences in age (delta age in years) in Seychelles warblers. The solid lines
represent model predictions with 95% confidence intervals calculated from the generalized linear mixed effect model (Table 1). Lines are model
predictions at mean age of 3 and 7 before and after the start of senescence in this species [3]. Each point represents an individual GM sample,
distinguished by mean age of <6 and greater or equal to 6, and the dashed lines connect samples from the same individual (n=151 samples, 91

individuals).

stored at 4°C and sex. An interaction between age and terminal
year was not significant (P> 0.05). A PCA showed limited sample
clustering according to age, which is consistent with the small
amount of variance explained in the PERMANOVA (Fig. S5).

Taxonomic gut microbiome differential abundance analysis

Five of the 22 common GM species found in the Seychelles warbler
population (i.e.in >20% individuals) differed significantly in rela-
tive abundance with age in the GLLVM analysis (Escherichia coli,
Lactococcus lactis, Brucella pseudogrignonensis, Lactococcus garvieae,
Microbacterium enclense), but none were differentially abundant
with age in the ANCOMBC? analysis (Fig. S6A and B). Similarly,
six species were differentially abundant in the terminal year in
the GLLVM analysis (L. garvieae, Pantoea anthophila, E. coli, Rothia
sp ARO1, M. enclense, B. pseudogrignonensis), but none were differ-
entially abundant with terminal year in the ANCOMBC2 analysis
(Fig. S6C and D). Thus, there is no clear consensus of significant
variation in the abundance of specific GM species with age or in
the terminal year.

Functional gut microbiome changes with age
Functional gut microbiome alpha diversity
Alpha diversity of eggNOG gene orthologues declined significantly
with host age for both observed richness and Shannon diversity
metrics (Table S6, Fig, S7). Alpha diversity of eggNOG orthologues
did not differ between terminal year and non-terminal year sam-
ples (Table S6). Additionally, the interaction between host age (or
quadratic age) and terminal year was not significant (P > .05).
The decrease in functional alpha diversity with host age is
best explained by within-individual longitudinal changes with age

for both tested indices (Table 3, Fig. 2). Cross-sectional, between-
individual age was a marginally significant predictor of Shannon
diversity but not observed richness (Table 3). Alpha diversity did
not differ between individuals that had at least one sample taken
in their terminal year and those that did not. The interaction of
terminal year bird and within-individual age, quadratic within-
individual age, and the interaction between within-individual
age and mean age were also not significant (P> .05) predictors
of either index. Sample year was a significant variable of both
eggNOG observed richness and Shannon diversity.

Functional gut microbiome beta diversity

A PERMANOVA analysis identified factors that were significantly
related to GM functional composition (Table 4). Host age, but not
terminal year, was a marginally significant predictor of functional
composition (Table 4). An interaction between age and terminal
year was not significant (P> .05). The largest effect sizes were
found in relation to season, sample year, sex, and days stored at
4°C (Table 4). Time of day was not significant related to GM func-
tional composition (in contrast to GM taxonomic composition). A
PCA plot showed limited clustering of GM samples according to
age, consistent with the small amount of variance explained by
this variable (Fig. S8).

Functional gut microbiome differential abundance analysis
Only one cluster of orthologous genes (COG) category was dif-
ferentially abundant in relation to age. The COG category ‘X,
which represents mobilome COGs such as prophages and trans-
posons, significantly increased in abundance with age in both
the ANCOMBC2 and the GLLVM analyses (Fig. 3). Several COG
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Table 2. A PERMANOVA analysis of GM taxonomic composition in relation to age and terminal year in the Seychelles warbler. The
PERMANOVA was performed using a Euclidean distance matrix of CLR-transformed taxon abundances. N=153 samples from 91

individuals. Bird ID was included as a blocking factor.

Predictor df R? F P

Age 1 0.009 1.368 .043
Terminal year 1 0.007 1.051 .569
Season 1 0.013 2.021 .001
Sample year 6 0.056 1.479 <.001
Sex 1 0.007 1.096 .064
Days at 4°C 1 0.008 1.193 .034
Time of day 1 0.010 1.583 <.001
Territory quality 1 0.005 0.813 982

Note: Significant (P <.05) predictors are shown in bold.

Table 3. A linear mixed effect model investigating variation in GM functional diversity (observed richness and Shannon diversity) in

relation to within-(delta) and between-(mean) individual age in Seychelles warblers (n=152 samples, 90 individuals). Functional

diversity is based on eggNOG annotations. Observed richness and Shannon diversity were transformed using a scaled exponential and
exponential function, respectively. Conditional R? =35.6% and 13.7%, respectively. Reference categories for categorical variables are

shown in brackets.

Observed richness

Predictor Estimate SE df t P
(Intercept) 0.99 0.17 124.77 5.68 <.001
Delta age -0.12 0.04 137.00 -3.31 .001
Mean age —0.03 0.01 89.42 -1.97 052
Terminal year bird (yes) 0.01 0.08 83.34 0.17 .870
Season (winter) —0.06 0.10 136.94 —0.64 525
Sex (female) —0.06 0.08 81.33 -0.79 430
Days at 4°C —-0.19 0.09 127.35 —2.23 .028
Time of day —0.07 0.08 137.00 —0.88 381
Territory quality -0.07 0.08 129.62 —0.88 381
Sample year (2017)
2018 0.13 0.15 135.76 0.82 416
2019 0.08 0.18 135.88 0.46 647
2020 0.36 0.20 136.54 1.82 071
2021 0.39 0.19 136.94 2.04 .044
2022 0.56 0.19 128.48 2.90 .004
2023 0.57 0.23 122.81 2.50 .014
Random
Individual ID 152 observations 90 individuals Variance 0.050
Shannon diversity
Predictor Estimate SE df t P
(Intercept) 757.59 182.06 119.47 4.16 <.001
Delta age -117.01 41.06 135.71 —2.85 .005
Mean age —27.30 13.54 83.56 —2.02 .047
Terminal year bird (yes) 17.93 79.75 76.74 023 823
Season (winter) 173.07 104.67 127.74 1.65 101
Sex (female) —4.98 80.46 69.67 —0.06 951
Days at 4°C —48.55 95.70 133.26 —0.51 613
Time of day —-21.18 81.57 132.14 —0.26 796
Territory quality —0.74 85.97 136.99 —0.01 993
Sample year (2017)
2018 88.02 168.08 136.67 0.52 .601
2019 32.22 200.48 136.71 0.16 873
2020 169.50 210.62 131.73 0.81 422
2021 464.12 206.85 136.39 2.24 .026
2022 484.95 202.78 124.82 2.39 .018
2023 453.37 238.55 116.14 1.90 .060
Random
Individual ID 152 observations 90 individuals Variance 5046

Note: Significant (P < .05) predictors are shown in bold.
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Figure 2, GM functional diversity measured as (A) observed richness and (B) Shannon diversity in relation to within-individual host age (years).
Functional diversity calculations are based on eggNOG orthologue groups. Solid lines represent model predictions (+ 95% confidence interval) from
linear mixed effects models (Table 3). Each point represents a unique GM sample, and the dashed gray lines connect samples collected from the same

individual (n=152 samples, 90 individuals).

Table 4. A PERMANOVA analysis of GM functional composition in relation to age (and other factors) in the Seychelles warbler. The
PERMANOVA was performed using a Euclidean distance matrix calculated using CLR-transformed (eggNOG) abundances. N=153

samples; 91 individuals; bird ID was included as a blocking factor.

Predictor af R? F P

Age 1 0.007 1.096 0.044
Terminal year 1 0.006 0.890 0.292
Season 1 0.011 1.823 0.042
Sample year 6 0.052 1.374 0.020
Sex 1 0.008 1.250 0.001
Days at4°C 1 0.010 1.569 0.007
Time of day 1 0.008 1.200 0.139
Territory quality 1 0.007 1.094 0.413

Note: Significant (P < .05) predictors are shown in bold.

categories were significantly differentially abundant with envi-
ronmental variables including Cat A (RNA processing and modifi-
cation) with season and Cat C (Energy production and conversion)
with sample year (Figs S9 and S10).

Within category X (mobilome), only COG2801 (transposase
genes) was found to significantly increase in abundance with
age in both GLLVM and ANCOMBC?2 analyses (Fig. 511, Table S1).
A within-subject centering approach within a linear mixed model
showed an increase in COG2801 was associated with both within-
individual (longitudinal) age and between-individual (cross-
sectional) age (Table S7, Fig. 4). However, the interaction between
within-individual age and terminal year, as well as the interaction
between within-individual age and mean age, was not significant
(P>0.05).

COG2801 located within MGSs (509 COG2801 copies from 160
MGS) were most closely related to the group insertion sequences
(IS) 3 family of transposases (30%), other IS family transposases
(12%), partial or putative transposases (33%) or other/unknown
function (25%; Table S8). An increased abundance of COG2801 in
the GM may be due to either an increase in the abundance of
COG2801-carrying microbes or increased replication of the trans-
posase gene itself, However, contrary to the first hypothesis, we
found no relationship between the total abundance of COG2801-
carrying MGSs (n=160) and host age (Table S9). To further test this,
COG2801-MGSs were matched with metaphlan4 annotations at
the genus level; the abundance of COG2801-metaphlan4 genera
was not significantly associated with host age (Table 510). Hence,
the increase in COG2801 abundance with host age could not be
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attributed to an increased abundance of COG2801-cartying bac-
teria. Additionally, within COG2801, ten gene catalogs were com-
monly shared across 50% of samples. Each of these ten COG2801
gene catalogs was not significantly (p> 0.05) differentially abun-
dant with age individually when tested using both ANCOMBC2
or GLLVM analysis (Fig. S12). Thus, the increase in abundance
of COG2801 with age was not being driven by the abundance
of a single prevalent, gene catalog but rather the cumulative
abundance of many.

Discussion

We used a repeated metagenomic dataset from individuals in a
Seychelles warbler population to investigate how GM taxonomic
and functional characteristics varied with host age. We identified
a linear decrease in species richness, and small shifts in GM
taxonomic cornposition, with host age. Additionally, species rich-
ness was lower in samples taken during an individual’s terminal
year, but taxonomic composition did not differ between terminal
and non-terminal samples. We also identified a linear decrease
in the GM’s functional richness and diversity, and differences in
functional GM composition, with host age. Finally, COG categories
representing the mobilome increased in prevalence with bird age,
driven by an increase in the abundance of COG2801, a group of
transposases

The small reduction in GM richness, but not Shannon diversity,
with age suggests a loss of rare taxa that is not linked with a major
restructuring of the evenness of the GM. The reduction in species
richness was also age-dependent, with younger individuals expe-
riencing greater reduction in species richness over time compared
to older individuals, indicating that changes in GM species rich-
ness is not associated with senescence. This also concurs with
the small changes in GM composition with age we identified; i.e.
showing a limited number of differentially abundant taxa with
increasing host age. This result is consistent with a previous 16S
metabarcoding analysis of senescence of the Seychelles warbler
GM despite the increased taxonomic resolution afforded by a
metagenomics approach [26]. Additionally, the three dominant
phylaidentified in the metagenomics analysis (accounts for 95.6%
of all taxonomic assignments) were the same three dominant
phyla identified through the 16S analysis (Protecbacteria, Acti-
nobacteria, and Firmicutes) [26, 43]. Overall, the results support
the conclusion that, taxonomically, most of the GM stays the same
with increasing age, apart from the loss of a few rare taxa.

Taxonomic changes in GM species diversity and composition
with age have been repeatedly demonstrated in humans and
captive animals [16]. However, in these species, late-life changes
in the GM may be due to external factors such as antibiotic use,
lifestyle, and dietary changes [18, 20]. An increasing number of
wild animal studies are finding little evidence of a late-life shift
in GM taxonomic diversity without such external factors (see
[26,74]). Our study supports this conclusion despite the repeated
sampling and increased resolution yielded by shotgun metage-
nomics, which can potentially reveal more nuanced changes at
lower taxonomic levels.

Few studies have directly investigated functional changes in
the GM with age in wild animals [75]. Some studies have been
undertaken using functional inferences from metabarcoding
sequence homology. However, this can be misleading due to
being limited to variation within the same genus thus providing
potentially inaccurate functional profiles. [76,77]. In our study
using a higher resolution metagenomic approach, we found
evidence of small, linear, changes in GM functional diversity

and composition with age in the Seychelles warbler. Functional
cbserved richness and Shannon diversity declined with age,
which suggests not only that rare functions are lost, but that the
evenness of these GM functions also changes linearly with adult
age. Age-related decreases in functional richness and shifts in
functional composition have previously been identified in elderly
humans [78,79]. Such changes have been linked to the onset of
specific disease states, such as inflammation and pathogenesis
and changes to diet degradation and digestion, in humans and
laboratory mice [80]. However, other studies have either found
no change in functional alpha diversity, or even an increase
in microbial functional richness and diversity with age [35,81].
Whether the loss of functional diversity, and minor changes in
functional composition, with host age in Seychelles warbler is
linked to declines in health and condition remains unclear and
requires further study. The decline in taxonomic richness (but not
taxonomic diversity) along with declines of functional richness
and diversity with host age suggests that as the host age, less rare
taxa contribute to the number and evenness of functional genes
in the GM.

Despite the small changes in functional diversity and com-
position with age in the Seychelles warbler, we only identified
one specific functional category whose abundance was signifi-
cantly associated with host age. An increase in the abundance
of COG2801 transposases occurred with age. However, this was
not due to an increase in COG2801-carrying microbes. COG2801
are a group of transposases that are primarily found in bacteria
(89.5%) and have been shown to be the most widely transferred
genes among prokaryotes [82]. Most COG2801 genes found within
MGSs were group 1S3, which use a copy-out-paste-in mechanism
to replicate [83]. This could lead to an increased number of trans-
poson copies in the same individual bacterial genome over time,
or to horizontally transfer to other bacterial genomes. [84,85].
Thus, the increased abundance of COG2801 with age in Seychelles
warbler GM's may be the result of self-replication, independent of
microbial host cell DNA replication. An increase in transposition
has been observed when bacteria are stressed and COG2801 is
one of the most horizontally transferable eggNOG genes [86,87].
Therefore, as vertebrate hosts get older, the GM may be exposed
to a greater number or intensity of stressors, such as mucus
barrier thinning or inflammation, which may induce activation
of COG2801 [88]. However, there was not an accelerated increase
(i.e. a quadratic relationship) of COG2801 abundance with host
age, which would be expected if the cumulative effects of host
senescence were driving these changes. Therefore, stressors to
the host that occur linearly in adulthood, such as cell death
in the gastrointestinal autonomic nervous system [89,90], may
better explain the increased abundance of COG2801 with host
age.

We also focused on assessing terminal year effects in the
Seychelles warbler GM. Only species richness was found to be
significantly lower in the final year of a bird’s life. Moreover, the
effect of terminal year was uniform across age,i.e. it was not more
extreme in older individuals. Previous research has identified age-
dependent terminal-declines in fitness components (reproductive
success and survival probability) in the Seychelles warbler [55].
However, the lack of age-dependent terminal changes in GM
characteristics identified in our study suggests that the GM does
not undergo senescence in association with these other traits. As
such, the declines in microbial species richness in terminal year
samples (and linearly with age) may rather reflect the stabiliza-
tion of the GM with age rather than a senescence effect. These
results concur with the previous 16S metabarcoding analysis of
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the Seychelles warbler GM which found little evidence of GM
senescence [26].

Across analyses, environmental factors explained most of the
variance in the Seychelles warbler GM. This concurs with previous
research on this species [26, 43, 56] as well as studies of other
taxa [21,91,92]. Temporal variation -specifically year and season-
explained the most variance in both taxonomic and functional
GM composition. This may be explained by many factors includ-
ing climate variability, differences in insect prey availability, or
host population density [93-95]. Most Seychelles warbler individ-
uals breed in the summer rather than the winter season, and
GM shifts may therefore reflect reproductive activity and related
hormonal changes [24]. Time of day was also associated with GM
composition. Differences in insect activity might drive this pattern
due to light availability and/or temperature [96,97]. However, such
patterns could also be due to host intrinsic circadian rhythms [98].
In addition, differences in the amount of time samples were stored
at 4°C resulted in differences in the GM characteristics and it is
very important that these are controlled for. Given that samples
are stored directly in absolute ethanol, the changes related to
the time in storage at 4°C are likely to do with DNA degradation
affecting the assignment of reads rather than an actual biological
change in storage.

These factors lead to a substantial amount of noise in GM
studies that can confound studies on aging, reproduction, and
disease outcomes in wild populations. Therefore, accounting for
these factors is important when investigating the GM in natural
systems.

QOur findings highlight the need for more studies investigat-
ing the functional characteristics of wild microbiomes as taxo-
nomic relationships might not capture functional GM changes
that occur (e.g. the increased prevalence of COG2801). However,
researchers should not totally discount the utility of 16S metabar-
coding for investigating general GM questions, as it may, in many
cases, provide sufficient taxonomic resolution to answer specific
questions [28]. Indeed, we identified similar taxcnomic patterns
using shotgun metagenomics to those revealed by a previous
metabarcoding study on the Seychelles warbler [26]. The cost-
effectiveness of 16S rRNA allows greater sample sizes, and thus
powetr, to resolve certain questions. A combination approach that
harmonizes both 16S metabarcoding and shotgun metagenomics
has been proposed to maximize sample size, although such anal-
yses are limited to genus-level comparisons [99]. On the other
hand, shotgun metagenomics not only allows higher taxonomic
resolution and functional analysis of the GM, but also an assess-
ment of the interaction between taxa and their functions. As
described with transposable elements, our functional analysis
uncovered changes in GM function that were not detectable using
165 metabarcoding analysis.

In conclusion, while we found that the Seychelles warbler GM
changes in terms of diversity, composition, and even function with
age, this happens gradually over the adult lifespan and there is
little evidence of late-life GM senescence. While species richness
is lower in the terminal year, this occurs at all ages and is not
more extreme in the oldest individuals. Interestingly, we found
that the abundance of a group of transposase gene increases con-
siderably with age in the GM, probably because of more frequent
transposition within the GM community over time. Future work
is required to determine exactly why these transposable element
changes occur and what impact they may have. Additionally,
work should investigate the generality of these conclusions by
assessing whether functional changes occur in the GM of other
wild vertebrates.
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