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The evolution equation for the film thickness is solved
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frequency. A blow-up map charted in amplitude-
frequency space reveals highly intricate fractal-like
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initial condition numerical computations indicate that
the film surface reaches a slope singularity at a finite
time and tends to overturn. The high-frequency and
low-frequency limits are examined asymptotically
using a multiple-scales approach. At high frequency
the analysis suggests that an appropriate choice of
initial profile can substantially delay the overturning
time, and even yield a time-periodic solution. In
the low-frequency limit it is possible to construct a
quasi-periodic solution that does not overturn if the
oscillation amplitude lies below a threshold value.
Above this value the solution tends inexorably toward
blow-up. It is shown how solutions exhibiting either a
single-shock or a double-shock may be constructed in
common with the steadily rotating cylinder problem.
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1. Introduction

Moffat [1] studied the dynamics of a thin viscous liquid film coating the outside of a horizontal
circular cylinder that is rotating about its axis at a constant rate. This problem has important
practical applications ranging from industrial processes (Ribatski & Jacobi [3]) to applications in
the art world (Herczynski et al. [4]). In the absence of rotation the film will eventually drip under
the action of gravity. Moffatt showed that rotation prevents dripping if the angular velocity of
the cylinder exceeds a threshold value that depends on the kinematic viscosity of the liquid, the
radius of the cylinder, and the acceleration due to gravity. This is in line with everyday experience:
we can prevent honey from dripping off a spoon by rotating the spoon. However, it is tricky to
rotate the spoon continuously at a constant rate, and in practice one tends rather to twist it back
and forth, endowing the spoon with a time-dependent angular velocity.

Working on the basis of lubrication theory, Moffatt [1] derived a nonlinear model equation
for the film thickness and showed that it has a steady solution if the aforementioned threshold
criterion is met. Working around the same time, Pukhnachev [2] derived a more general version
of the governing equation that incorporated the effect of surface tension, and also demonstrated
the existence and uniqueness of a steady solution. The steady solution describes a film profile
which is stationary in the laboratory frame. Assuming counterclockwise rotation, the film exhibits
a bulge in thickness on the right side of the cylinder and is thinner on the left side (see figure 1).
Moffatt [1] also described the results of experiments that revealed the importance of transverse
instability, which manifests as a sequence of liquid lobes spaced out along the axis of the cylinder.

Numerous papers have followed examining various aspects of a problem that has proved to
be very rich from a dynamics perspective. Hinch and Kelmanson [5] used asymptotic methods to
show that surface perturbations decay and drift over a four time-scale cascade. Hinch, Kelmanson
& Metcalfe [6] probed these results further, focusing on shock formation in the zero surface-
tension case and providing an estimate of the shock formation time. Hansen & Kelmanson [7]
used a boundary integral formulation to compute surface profiles under conditions of Stokes
flow, allowing for films of arbitrary thickness and including surface tension. Peterson et al. [8]
carried out a comprehensive linear stability analysis and revealed the parameter regimes in which
steady-state solutions are stable. Duffy and Wilson [9] analysed both attached films and curtain
flows (for which a film falls onto the cylinder from above, curves around, and falls off the bottom),
developed analytical approximations, and identified critical flow transitions. Evans, Schwartz
and Roy [10,11] presented both two- and three-dimensional models for coating flow on a rotating
cylinder. Noakes, King & Riley [12] examined the film stability to three-dimensional modes in
the absence of gravity. Lopes et al. [13] introduced a new model equation, derived on the basis of
Onsager’s variational principle, which includes the full expression for the surface curvature in the
capillary stress term. These authors also compared the model predictions for steady flow with full
computations of the Stokes equations. Kelmanson [14] extended the Moffatt—-Pukhnachev model
to include the effect of inertia. Noakes, King & Riley [15] used the method of multiple scales to
analyse inertial effects for three-dimensional flows. Wray and Cimpeanu [16] used reduced-order
techniques to incorporate thick films with inertia. Karabut [17] explored two distinct flow regimes
depending on the angular velocity and allowing for the effect of surface tension. Gorla [18]
examined the rupture dynamics of non-Newtonian, power-law films.

Weak solutions exhibiting shocks were first introduced for the steady Moffatt-Pukhnachev
flow by Johnson [19]; see also Badali et al. [20] and Benilov et al. [21]. Such solutions allow the
cylinder to support a greater liquid volume than the smooth Moffatt solutions [1]. The stability of
these weak solutions was studied by O’Brien [22] and Villegas-Diaz at al. [23], who demonstrated
that stable configurations occur only when the shock is located in the fourth quadrant of the plane.

The problem of rimming flow, in which the liquid film coats the inside of the cylinder, is
also of interest. As highlighted by Lopes [24] the thin-film equations for rimming flow and
for the exterior flow problem are identical up to a certain order of approximation in the film
thickness parameter, although key differences appear at higher order. Johnson [19] presented an
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analysis of steady-state coating flows inside rotating horizontal cylinders. O’'Brien and Gath [25]
identified the formation and position of shocks in rimming flows, addressing the occurrence of
sharp transitions in film thickness. O’Brien [22] further contributed a linear stability analysis of
rimming flows, describing conditions under which small disturbances may be amplified. The
effect of inertia on rimming flow was incorporated by Benilov & O’Brien [26] and Benilov &
Lapin [27]. Villegas-Diaz, Power and Riley [23,28] examined the stability of rimming flows to
two-dimensional perturbations, combining analytical and numerical techniques and exploring
the impact of surface shear on flow stability.

The present paper is devoted to the study of a viscous liquid film that coats the outside of
a horizontal cylinder which rotates at a constant rate onto which is superimposed oscillations
of a certain amplitude and frequency. We assume that the thickness of the liquid film is
everywhere much smaller than the radius of the cylinder and employ lubrication theory to derive
a generalisation of the Moffatt-Pukhnachev equation, which incorporates a time-dependent
modulation to the rotation rate. Although we discuss the subsequent dynamics in the context
of the film coating the exterior of the cylinder, the aforementioned equivalence (up to some order
in the film thickness parameter) between this and the rimming flow problem means that our
observations are equally valid for rimming flow.

The paper is organised as follows. In section 2 we derive the thin-film equation that forms the
basis of our model. In section 3, we briefly review the Moffatt-Puckhnachev flow for constant
rotation, taking a dynamical system perspective. In section 4, the dynamical system formed from
the characteristic equations of our model equation is studied and discussed. In section 5 we
present solutions to the model equation and study the asymptotic limits of high frequency and
low frequency oscillations. Finally, in section 6 we summarise our results.

2. Problem statement

We consider the flow of a liquid film of viscosity i and density p that coats the exterior of a
circular cylinder of radius a, as is illustrated in figure 1. The motion in the liquid is driven by
the downwards force of gravity, which acts in the negative y direction, and by torsional rotations
of the cylinder whose angular velocity is a prescribed periodic function of time, ¢. The flow is
assumed to be two-dimensional in the zy-plane of the cylinder cross-section. The dynamics are
described with reference to plane polar coordinates (r, 6) centred at the cylinder axis with 6 =0
aligned with the horizontal. Using thin-film theory Pukhnachev [2] and Moffatt [1] derived an
equation for the film thickness when the cylinder rotates at a constant speed. Our first goal is to
derive a modified version of this equation which accounts for a general angular velocity of the
cylinder.
We define the dimensionless thin-film coordinate, ¢, such that

r=a(l+ €(), 2.1)
where € = (uf2+/ pga)l/ 2 Here g is the acceleration due to gravity and (2 is a reference angular
velocity. The film surface is located at { = h(0,t), where h is to be found. In the sequel it will be
assumed that € <1 so that the average film thickness, which is on the order of ea, is small in
comparison with the cylinder radius, a. The velocity (u, v) in the (r, #) directions, the pressure p,
and time ¢ are non-dimensionalised by making the replacements

u— eaf2su, v af2y, pl—)eiZ(M-Q*)pa tes 027 (2.2)
To leading order in € the dimensionless Navier-Stokes equations are
0=p¢, 0=—pg — cos O + v¢¢, 0=wu¢ + vg. (2.3)

The inertia terms have been neglected in these equations. Defining the Reynolds number Re =
p$2.a>/p, this is justified provided that Re < € or, equivalently, a?/g< 1.
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Figure 1. Sketch of the flow configuration: a thin viscous liquid film coats the outside of a circular cylinder of radius a,
which is rotating with angular velocity §2(¢), where t is time. Gravity acts in the downward vertical direction as shown.

At the film surface, { = h(6,t), we impose the kinematic condition at leading order,
ht + vhg —u=0, (2.4)
as well as the normal and tangential stress conditions
p=0, ve =0, 25)

respectively. The pressure in the air outside of the film has been taken to be zero. Moreover the
contributions of both the viscous normal stress and the capillary stress in the first condition in
(2.5) have been neglected. Neglecting the viscous normal stress requires that e < 1, which has
already been assumed. Dropping the capillary stress is justified if C > >, where the capillary
number C = uf2+a/v with v the coefficient of surface tension, and this is assumed henceforth.
The boundary condition on the cylinder, { =0, is

u=0, v=0(t), (2.6)
where 2(¢) is assumed to take the form
2()=1+bcosat 2.7)

for given constants b > 0 and o > 0. If b = 0 then the cylinder is rotating at a constant rate; this is
the case originally studied by Moffatt and Pukhnachev and we shall henceforth refer to it as the
MP problem.

It would appear, then, that there are two relevant time scales in the problem: first, there is the
time taken for a fluid particle to complete one circuit of the cylinder under steady rotation, i.e.
for the MP problem which has a steady flow solution (see [1]), and, second, there is the time scale
associated with the modulational frequency o.

Integrating the governing equations (2.3), applying the boundary conditions (2.5)-(2.6), and
inserting the resulting expressions into the kinematic condition (2.4), we obtain the evolution
equation

ht + Qg =0, (2.8)

where

h 1.3
Q:J vd(=2(t)h — =h” cosb (2.9)
0 3
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Figure 2. One period, 6 € [—, ), of the phase portrait for the system (3.3) corresponding to the steady MP problem
with 2 =1 (b= 0). Each trajectory is described by (3.2) and corresponds to a particular value of Q). Black lines show
Q@ > 2/3, blue lines show 0 < Q < 2/3, and magenta lines show @ < 0. The blue dashed lines indicate @ = 0. The
separatrix, shown with a thick gold line (both solid and dashed), corresponds to @ = Q* = 2/3; the solid part delineates
the boundary between regular solutions to the characteristic equations (3.3) and those exhibiting finite-time blow-up.
The minimum value of h along the separatrix occurs at € = &7 and is hAmin :p1/3 - 1/;[)1/3 ~ 0.5961, where p =
1+ ﬁ. The red dots indicate the location of the saddle points for (3.3), and the arrows on the trajectories indicate the
direction of travel as 7 increases. The broken red line indicates a typical initial film profile, H (), bounded by envelope
trajectories shown with thick blue lines.

is the dimensionless flux in the film. The initial condition is
h(6,0) =hy(0) (2.10)

for some appropriate choice of the function hg.

In summary we aim to solve (2.8) with initial condition (2.10) to determine the surface profile
h(0,t) for different choices of the parameters b and o. Before doing this, however, it is instructive
to recall the salient details of the steady flow for the MP problem. We do this in the next section
from a dynamical systems perspective which provides a novel and intuitive way of visualising
the solution space.

3. The steady Moffatt-Pukhnachev flow

The steady MP problem is recovered by setting b = 0 so that the cylinder is rotating at a constant
rate. Although it is strictly equal to unity in this case, we find it convenient to retain (2 in the
relevant equations to facilitate later discussion. The governing equation (2.8) is

he + (Qh - %h‘? cos 9> =0, 3.1)
0

with initial condition given by (2.10). Moffatt [1] showed that, if a certain criterion is met, there

exists a steady solution describing a fully attached film. Integrating the steady version of (3.1)

with respect to 6, we obtain

Qh — %hg cos=Q, (3.2)

where () coincides with its definition in (2.9) and is herein constant. The constant @ level curves
for (3.2) are shown in the phase portrait in figure 2. Critical to note in this figure is the separatrix
curve, shown with a solid gold line, which divides level curves that correspond to physical, fully-
attached solutions (those below the solid gold curve) from those that correspond to unphysical

10000000 V¥ 90 4 90id Edsi/feunol/Bio-BuiysigndAiaioosieos



0.8
(a) (b)? :
0.7} ‘
0.8} !
0.6 |
v 05F 1 0.6 '
2T 04l IS
0.3} 04
0.2
0.2}
0.1
0 L . . . . I 0 | L .
0 01 02 03 04 05 06 07 0 0.2 0.4 0.6 0.8
Q Q

Figure 3. (a) The scaled fluid volume, V/(27), plotted against Q. The red dot indicates the limiting steady volume
that obtains at the separatrix in Figure 2 when Q = 2/3. (b) The dependence wx (Q) for the MP problem (3.1). The
base frequency, w*, is related to the period P = 27 /w*, being the time taken for a point (6(7), k(7)) obeying (3.3) to
complete one 27-period in € of a fixed-Q trajectory in the phase plane shown in Figure 2.

solutions (those above it) for which h blows up; in the latter case the blow-up has the local form
h ~ al6. — 6]~/? for constant a, where 6. = —m/2 or m/2. Solutions with shocks, which include
sections of level curves above and below the solid separatrix, are also possible and have been
discussed by previous workers (e.g. Johnson [19], O'Brien & Gath [25]). We will touch upon these
later for the case b > 0.

A parametric description of the level curves is obtained by solving the characteristic equations
for equation (3.1), namely

dh 1,3 . o, o _ dt

i 3h sin 6, dT_Q h*cosf = M(0), dT—l,
where the independent variable 7 varies continuously along a characteristic. It is straightforward
to check that (3.2) is a first integral of (3.3). We define the period P(Q) of a steady orbit to be the

time taken for 6 to change by 27 radians. By integrating the second equation in (3.3), we find

(3.3)

P(Q) = J% 1 (3.4)
T Jo 2—h%cosf '

This fixes a base frequency associated with the steady flow, given by w*(Q) =27/P(Q). The
dependence of w* on Q is graphed in figure 3(b) where it can be seen that w* € [0,1] and it is
monotone decreasing in Q. We note the limits w* — 1 (P — 27) as @ — 0, and w* — 0 (P — 00) as
Q — Q¥ that is as the separatrix in Figure 2 is approached.

Viewed as a two-dimensional dynamical system (3.3) has a saddle point at (h, 8) = (1, 0). Its
stable and unstable manifolds are the level curves of (3.2) with Q = Q*, where

Q=202 (3.5)

They are shown with solid gold and dashed gold lines in figure 2. An initial condition for (3.3)
at 7 =0 which corresponds to a point (h, ) lying beneath the solid separatrix will trace out a
physically acceptable, fully attached solution for some Q < Q*. The requirement that Q < Q*
coincides with the criterion given by Moffatt [1] for a steady solution, namely (explicitly here
setting {2 =1),

pg \'? - 2
(ua?’ﬁi’) Q<§7 (3.6)

where Q is the dimensional flux, with Q = e(a2 2:)Q.

10000000 V¥ 90 4 90id Edsi/feunol/Bio-BuiysigndAiaioosieos



In Figure 3(a) we show the variation with the dimensionless flux @ of the dimensionless fluid
volume,

27
V= J h(6) df. (3.7)
0

The plot assumes a smooth solution with no shocks. The maximum volume, attained when @ =
Q*, is given by

1
V=120 J du (3.8)

h (x4 2)1/2(23 + 3z — 2)1/27
where h,y, is the minimum value of h/ Y/ 2 which occurs at 0 = +. In the case of 2=1,
Poin :p1/3 — 1/pl/3 ~0.5961, where p=1+ /2. The integral (3.8) can be calculated exactly
but the resulting expression in terms of elliptic integrals is unwieldy and is not included here.
Numerically we calculate V*/ (27r(21/ 2) ~0.70708140, which agrees with the value quoted by
O’Brien & Gath [25].

If at t = 0 the starting profile hg(¢) in the initial condition (2.10) coincides with one of the phase
plane trajectories with Q < Q™ in figure 2, H(0), say, then h(6,t) = H(0) for all ¢t > 0. Consider
instead a starting profile hg that does not coincide with a steady solution such as that shown with
a dashed red line in figure 2. If all or part of the profile crosses the solid gold separatrix then h(0, t)
will blow up at a finite-time singularity. Assume that hg(6) is everywhere underneath the solid
gold separatrix. Then h(6,t) will be confined between the two osculating trajectories which are
just tangent to the maximum and minimum of hg (these trajectories are shown with heavier solid
blue lines in figure 2). This is clear since each point on the initial profile hg must traverse one of
the level curves sandwiched between the two osculating curves. Since the period P increases with
Q (see figure 3b) points following trajectories for lower @ tend to catch up with those following
trajectories for larger (), and steepening of the wave profile occurs leading to a discontinuity in
the film thickness (Moffatt [1]). This heralds the onset of film overturning and shock formation, a
phenomenon captured by the analysis of Hinch, Kelmanson & Metcalfe [6].

For the time-dependent problem it is worth recording that, with {2 constant, equation (2.8)
possesses an infinite set of conserved quantities. We fix {2 =1 and define, for integer n > 0, xn =
J Q"dh, where Q is defined in (2.9) and where we treat h and 6§ as being independent in the
integration. Then x;, = j‘gw Xn d0 is a conserved quantity for (2.8). To see this, differentiate x;,
with respect to ¢ and use the fact that hy = —Qy and the 27-periodicity of @ in 6. The case n =0
corresponds to volume conservation, but n > 1 do not have an obvious physical interpretation.
We also note that with 2 constant (2.8) can be put into the Hamiltonian form

b+ 2 (%) o, 3.9)

where —x] plays the role of the Hamiltonian.

(a) Stability of the steady solution

The linear stability of the steady solutions described above for constant {2 has been discussed
by O’Brien [22] for rimming flow, and the same analysis carries over here. We review briefly the
essential details as these will prove useful in the ensuing analysis.

Writing h = hs(0) + n(6,t), where hs(6) is a steady solution of the MP problem for Q < Q,
and 7n(#, t) is a small perturbation, we substitute into (3.1). Neglecting higher order terms,

Nt + (Msn)g =0, (3.10)

where M;(#) = — h?cosf and, we emphasise, {2 is constant. Assuming that Q < Q* it is
straightforward to show that Ms > 0 (see Appendix A).

Since the coefficients in (3.10) are 27-periodic in §, we can use Floquet theory to justify writing
n=e"“!f(6) + c.c., where c.c. means complex conjugate, and where the 27-periodic in 6 function
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f(0) and the constant w are to be found. Substituting into (3.10), and integrating, we find f(6) =
cp(0) for arbitrary constant ¢, where

P(0) = 1 o iwr(0) v(h) = Je _dg (3.11)
M ’ e Ms(§) '

The integrand in (3.11) can be expressed as the Fourier series 1/Ms(§) => 02 an exp(inf)
with a,, =a_,,. The zeroth mode has ag = P(Q) /27, where P(Q) was defined in (3.4). It is clear
from (3.11) that the required periodicity of f is assured only if wag =m for m € NU {0}. Since
ag is real it follows that w is real and the MP solution is neutrally stable (O'Brien [22]). This
neutral stability was also previously noted by Villegas-Diaz et al. [23], who used the method of
characteristics to obtain the solution of (3.10),

B 1 O g
W0 = s U <t - LU i £)> , (3.12)

where 6 is an arbitrary constant. The function U is set by the disturbance to the steady surface
profile at t = 0. Villegas-Diaz et al. [23] also discussed the stability of the steady MP solution for
the special case @ = Q*.

The fact that linear perturbations are stable, taken together with the observation from the
previous section that any perturbation from a steady solution will lead to a finite-time slope
singularity, makes clear that nonlinearity plays an important role in the dynamics, even for
arbitrarily small perturbations. In passing it is interesting to note that an extended form of (3.1)
that incorporates higher order terms in the lubrication approximation was derived by Benilov et
al. [29] and was also shown to have neutrally stable steady solutions. Despite the neutrality of
its eigenmodes, Benilov ef al. [29] showed that the linearisation of the extended equation about a
steady state admits a so-called ‘explosive instability”: despite the linearised problem yielding an
infinite number of bounded harmonic modes (which would normally be taken to imply stability)
it supports explosive disturbances that blow up in finite time.

4. The characteristic dynamical system

In general a numerical approach is required to handle the case of a time-dependent angular
velocity, £2 = £2(t). In this section we carry out a numerical investigation of the dynamical system
(3.3) with £2(¢) given by (2.7). The problem may be put into the form of the time-periodically
perturbed Hamiltonian system

du —bcosot 0 -1
J?:vHP + D, pP= ’ J= ) (41)
t 0 1 0

where u = (h, 0)T and V = (),, 95)* . The Hamiltonian, Hp, is such that
—Hp=h— %h?’ cos 6. (4.2)

The form of £2(¢) is given in (2.7). When b= 0 the perturbation vanishes, p =0, and the system
(4.1) is integrable. This corresponds to the steady flow MP problem discussed in section 3.

To construct the film profile at time ¢, we could integrate (4.1) forwards in time from a discrete
set of starting values h(0), 6(0) chosen to approximate a chosen initial profile. However, to help
build intuition it is instructive to first view (4.1) as a standalone dynamical system and carry out
a study of the dynamics for a single starting value. To do this we select the starting point

9:7; h=h* 4.3)
at t =0, and integrate (4.1) forwards in ¢t numerically for a range of values of b and ¢ using the
Matlab routine ode45. In so doing we build up a map of the solution space, distinguishing

between solutions that remain bounded and those that blow up in finite time. The latter is
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detected by testing when h exceeds a selected value. This is sufficient to give an accurate picture:
blow-up is initiated when the solution trajectory of (4.1) latches onto the unstable manifold
(leftmost dashed part of the gold separatrix in figure 2) and it occurs very rapidly thereafter and
on a much shorter timescale than the time period of the cylinder oscillations. In our computations
we deemed blow-up to have occurred when h > 5.0.

Figure 4 shows the behavioural map in the bo-plane for h* = 1/+/3. The blue shading indicates
the blow-up time with darker blue corresponding to later blow-up times. In the white region no
blow-up was encountered in 0 <t <3500, and we take this to mean that the solution remains
regular and bounded. Since the chosen h* is below Q* =2/3, the solution at b=0 traverses
one of the level curves below the solid gold separatrix in figure 2 and is therefore bounded.
The complexity of the map is apparent and some of the features are reminiscent of the complex
structures created by discrete one-dimensional maps, including highly intricate boundaries and
the emergence of apparent self-similarity upon zooming in to certain parts of the picture. The
latter phenomenon is seen in the various subsidiary panels in figure 4.

The red marker point at (o, b) = (0,0.317) indicates the threshold for blow-up predicted by
the small-o analysis to be discussed in section 5(b). When ¢ is small the solution is found to be
quasiperiodic in nature. This is illustrated in figure 5 for the point (b, o) = (0.25, 0.01) in figure 4.
The integration was carried out up to ¢t = 5000.0. Panel (a) shows the time signal over the last
1000 time units, and panel (b) shows a return map with (h;", h}"} 1), where " is the ith local
maximum of the time signal, shown with dots. The appearance of an almost complete closed
loop in the return map is the classic hallmark of quasiperiodic dynamics (e.g. Guckenheimer &
Holmes [30]).

A particularly interesting feature of the map is that there appears to be some sort of resonance
manifesting as a sequence of sharp protrusions extending to the left. With h* = 1/+/3 the unforced
oscillator (viz (4.1) with p=0) has the natural frequency w*(1/+v/3) =0.877. The uppermost
protrusion in figure 4 has its apex at a value of the forcing frequency, o, that is close to this.
Moreover, the various protrusions below occur at values of o that are close to rational multiples of
w™. The fact that these apparently resonant values of o do not quite coincide with w™* (or a rational
multiple thereof) is presumably attributable to the nonlinearity of the underlying oscillator.

5. The Moffatt-Pukhnachev flow with periodic modulation

Since the original partial differential equation, (2.8), for the cylinder flow problem is hyperbolic,
the appearance of shocks is expected. Therefore, while indicative, the results of the previous
section, which followed single-trajectory solutions of the Hamiltonian system (4.1), should be
interpreted with some care in the context of the rotating cylinder problem. In this section we
study solutions to the initial value problem (2.8), (2.10) with 2(t) given in (2.7). It will be
important to distinguish between initial conditions that correspond to solutions of the equivalent
instantaneous steady problem and those that do not. To this end we define the class of functions

A ={h(6): 2oh— %h?’ cos 0 = Qg for some Qg € [0,2/3]}, (5.1)
where 29 = 2(0) =1+ b. If we write h= Qé/ ’H and Qo =qo Qg/ 2 then the restriction in J#
reduces to H — %H 3cosf= qo, contours of which correspond to solutions of the steady MP
problem and are shown in figure 2.

Intuitively we might expect the b# 0 oscillations to cause the film surface to overturn and
become multi-valued signifying the breakdown of (2.8). This is indeed the case, and for a general
choice of modulation frequency o and amplitude b the solution ~(6, ) develops an infinite slope
singularity at some time ¢* > 0. Sample profiles are shown in figure 6 for the case Qp =+/2/3
(black curve) taking b=0.25 and o =0.5. The numerical computations were carried out by
integrating the characteristic system (4.1) forward in time from the starting profile using the
Matlab routine ode45. A parametric representation is introduced in which (6(&;,t), h(&;,1))
is tracked in time for ¢=1,..., N, where ¢; is one of N equally-spaced points in the range
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Figure 4. The blow-up map obtained by integrating the characteristic equations (3.3) with the initial condition (4.3) taking
h* = 1/+/3, with £2(t) given by (2.7). Points in the bo-plane are coloured white if the solution remains bounded occurs
and blue if blow-up occurs. The shade of blue is determined by the time at which blow-up occurs indicated in the colour bar:
darker blue corresponds to later blow-up times. Here blow-up is deemed to have occurred when h = 5.0 is reached. The
red marker point at (o, b) = (0, 0.317) indicates the predicted blow-up threshold from the small-o analysis of section 5(b).

[0,27). The onset of overturning is detected by monitoring if there is a sign change in 6, the
differentiation in £ being done with spectral accuracy using a FFT. Typically we found that using
a grid with 128 equally-spaced points in ¢ is sufficient to get an accurate solution; the Matlab
integrator ode45 uses an adaptive time step that, in the results to be presented, typically varies
between 10~3 and 107°.

In figure 7(a-c) we show how the overturning time t* varies with o for two cases chosen so
that hg € 5 in one and hg ¢ 7 in the other. The modulation amplitude is set at b=0.3. The
asymptotic results shown in this figure will be discussed in a later section. It is quite striking,
particularly in figure 7(a), that the t*(o) curve exhibits numerous jump discontinuities. The
presence of these discontinuities has been confirmed by meticulous numerical computations,
including a very careful convergence study using up to N =1024 points in £ and a time step
of size 107°.

To explain the jump discontinuities, and with reference to the system (4.1), we regard the
Hamiltonian Hy (0, h) given in (4.2) as the stream function for a two-dimensional incompressible
fluid flow in the fh-plane. In this interpretation the flow occupies the whole plane and is not
confined to the domain of the liquid for the cylinder problem. Solving (4.1) elicits the trajectories
of individual particles advected passively within this flow, with the liquid surface corresponding
to a material line. As it moves with the flow, this material line is stretched and distorted by the
flow’s strain and vorticity fields. These fields, which are independent of time, are illustrated in
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Figure 5. Integration at the point (b, o) = (0.25,0.01) in figure 4 up to ¢ = 5000.0. (a) Time signal over the later stages

of the integration; the red markers indicate the local maxima. (b) The return map (A", hﬁ_l), where h7" is the ith local

maximum of the time signal.

Figure 6. (a) Typical solution behaviour for the model equation (2.8) in the presence of modulation, here with b = 0.25
and o = 0.5. The computation was carried out by solving the characteristic system (4.1) numerically using Matlab routine
ode45. The initial profile (black curve) hg € 7 has Qo = \/5/3. The profile at the occurrence of the slope singularity at
t ~ 55.4 is shown in red. The blue curve shows the film profile predicted by (4.1) at ¢ = 60; the blue dotted line indicates
how a shock could be introduced to interpret the profile as a single-valued solution of (2.8). (b) The strain and vorticity
fields for the flow with streamfunction H,, given in (4.2). The arrows show the dominant eigenvector of the associated
rate of strain tensor and the continuous lines show contours of constant positive (solid lines) and negative (dashed lines)
vorticity. The solid red line shows a steady solution (see figure 2) solving (3.2) with 2 =1 and @ = 0.57.

figure 6(b): the arrows show the direction of dominant strain corresponding to the eigenvector of
the rate of strain tensor with positive eigenvalue (we recall that since the rate of strain tensor is
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Figure 7. The overturning time, t*, shown against modulation frequency o, for the governing equation (2.8) with initial
condition (2.10) and starting profile ho. (a) b= 0.3, ho(6) € J with Qo = qo82e'2, go = 0.5, (b) b=0.3, ho & A
solving hg — (1/3)h3 cos 6 = 1/2,and () b= 0.5, hy € with Qo = g0 25/, qo = v/2/3 = 0.471. For (a) the point
(b,q0) = (0.3,0.5) lies in the white region in figure 10 corresponding to a regular asymptotic solution in the small-c
limit (refer to section 5(b)). In (b) the black dashed line indicates the overturning time obtained by integrating (5.16) with
Q(T) frozen at {2p; the red dashed line shows the curve t* = 16002, the coefficient having been chosen to obtain a
reasonable fit. In (c) the point (b, go) = (0.5, 0.471) lies in the blue blow-up region in figure 10, and the red dashed line
shows the curve t* = T*o~ 1, where T} = 2.270 is computed by integrating (5.26) subject to ¢(0) = v/2/3. (d) The
overturning time ¢* versus qo for b= 0.5 and o = 0.6. The initial condition is (2.10) with hg € ¢ and Qo = qo 93/2,
where 29 = £2(0); the red dashed line shows the curve t* = 0.27q56, the coefficient having been chosen to obtain a
reasonable fit.

symmetric its two eigenvalues, which are real, sum to zero, and its two eigenvectors are mutually
orthogonal). In general, material elements tend to align with the dominant strain eigenvector
whilst being rotated one way or another according to the sign of the vorticity. The constant
vorticity contours are solid where the vorticity is positive, promoting counterclockwise rotation,
and dashed where the vorticity is negative, promoting clockwise rotation. (For b=0 a steady
solution has a surface profile that stays fixed as the competitive effects of strain and rotation are
in perfect balance; see the solid red line in figure 6b.)

Certain parts of the strain-vorticity field promote steepening of the material surface and others
promote flattening. The region around 6 = —7/2 presents a particular danger zone for surface
steepening. Here the magnitude of the vorticity is small and the dominant strain eigenvectors are
almost vertical. In contrast, the region around 6 = /2 has weak vorticity and almost horizontal
strain vectors, and therefore this region strongly encourages flattening of the surface. It appears
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that we get a jump discontinuity in ¢* at a certain o because, just below this frequency, the surface
overturns near to 6 = —m/2; but for a slightly larger ¢ the overturning is just avoided and the
surface must travel a further distance through a less dangerous region before overturning is
finally induced in the danger zone some time units later.

In figure 7(d) we show the overturning time ¢* for the case b= 0.5 and o = 0.6 and for a range
of different initial conditions. The latter are given by (2.10) with hg € 7 and Qy = qo QS’/ % The
panel shows t* plotted against gp, and we see the occurrence of jump discontinuities at certain
values of gg. Some of these are highlighted in the inset. Since gg — 0 corresponds to taking an
initial profile that is close to the wall and almost flat (see figure 2), we expect the overturning time
to diverge in this limit. The dashed red line in figure 7(d) suggests that this is indeed what occurs
and, moreover, it happens such that t* ~ q 6,

To further understand the dynamics it is instructive to consider the flow in the high frequency
(o> 1) and low frequency (¢ < 1) limits. These are examined in the following subsections.

(a) High frequency limit (o > 1)

Our numerical results suggest that the flow is periodic in time if ¢ is sufficiently large, and this
motivates an investigation of the dynamics when o > 1. In this limit there are two naturally
disparate time scales in the problem: an O(1) time scale associated with the steady part of (2,
that is the continuous rotation, and an O(1/0) timescale associated with the rapid superimposed
oscillations. Having said this, we might intuit that for an initial condition corresponding to a
steady Moffatt-Pukhnachev solution, the former timescale is essentially removed and the flow
will develop on timescales of the rapid oscillation.

Keeping the preceding comments in mind, we perform a multiple-scales analysis
incorporating both time scales. Let h = h(0,t,T) with T = ot acting as the fast time variable and
t acting as the slow time variable. Assuming in the usual way that ¢t and 7" are independent (2.8)
becomes

hi + ochr + <Q(T)h - %h?’ cos 0> =0, (5.2)
0
where 2(T') =1 + bcos T. We expand by writing

h(0,t,T)=ho(0,t,T) + 0 *hi(0,t,T) + 0 2ho(0,t,T) + 0 >h3(6,t,T) + O(c™ ).  (5.3)

Introducing this expansion into (5.2), at leading order, O(o), we find that hyr = 0, which implies
ho =ho(6,t). At order O(1) we obtain hyp = —bhgg cos T — F'(0,t), where

F(0,t)=ho + (ho - %h% cos 0) . (5.4)
4

Integrating with respect to T,
h1(0,t,T) = —bhogsinT — F(6,t)T + A1(6,1), (5.5)

where A1 (0, t) is an arbitrary function of integration. In order to avoid secular terms, we demand
that F' = 0. Then the leading order term hg satisfies the original equation (2.8) with constant unit
forcing frequency, {2 = 1, that is it corresponds to a solution of the constant rotation rate Moffatt-
Pukhnachev problem. To prevent hg(6,t) from developing a slope singularity (a possibility
discussed in section 3), we take hg = hs(¢), where the steady solution hs satisfies (3.2) with 2 =1
for some flux Q < 2/3.

Proceeding, we have

h1(0,t,T) = —bhggsin T + A1(0,1). (5.6)
Atorder O(c™1),

hop = —hys — ((Q(T) — K2 cos Q)hl) (5.7)

0
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Substituting (5.6) into the right hand side of (5.7), we see that secular terms in hy will not arise if
the T' independent terms vanish, that is if

Arp + (MA1)y =0, (58)

where M =1 — h3 cos 0. This is the same as the equation that governs the linear stability of the
MP problem, namely (3.10). Since hq has been chosen to be a steady solution of the MP problem,
according to the results of section 3(a), A; is t-periodic with frequency w =m/ag, where ag is
given in section 3(a) and m € NU {0}. Hence we have

A1(6,1) = Xe“"p(6) + c.c., (5.9)

where A is an arbitrary constant. The 27-periodic function () was given in (3.11).
Integrating (5.7),

hg = —ithog‘g cos 2T — b(Mhgg)g cosT — bA1gsinT + Az (6,1), (5.10)
where As(6, ) is an arbitrary function of integration. At order O (o~ 2)
haq = —hay — ((Q(T) — h3 cos0)ha — hoh? cos 9)3 . (5.11)

The secularity condition requiring that the T-independent terms on the right hand side of (5.11)
be eliminated takes the form

Aoy + (MA2), = ds + AZe2iwt (1p2h0 cos 0) +c.c., (5.12)
dé 0
where
S(0) = %bQ (ho(h0h09)9 cos — hogg — h2hgg sin 9) . (5.13)

We seek a solution in the form As (6, ) = a0 (0) + eZ“tage(0) + c. ¢., with agg and agy required

to be 27-periodic in 6. It is clear from (5.12) that aag (0) has this property. Solving for a2 (6) using
an integrating factor, we find that it is 27-periodic if

27
A2 J (1% hg cos 0) (Y M)?dl = 0. (5.14)
0

This holds if w =0 (so that ¥ < 1/M) in which case A; = x1/M(6) and Ay = (S(0) + k2)/ M (0)
for arbitrary constants 1 and 2. Thus the slow timescale ¢t-dependence drops out to the current
order of approximation, as was anticipated.

In the light of the preceding discussion, and recognising that the first term on the right hand
side of (5.6) represents a translation in # by an amount o 0r, we may now revise the expansion
(5.3) to read
K1

-2

h0,t,T)=hs(0 +0 *02p)+0
This represents a time-periodic asymptotic solution valid when ¢ >> 1. Suppose that we compute
a numerical solution to the governing equation (2.8) for a particular choice of parameter values
and taking hg(6) in the initial condition (2.10) to be a steady solution hs(#). Since 27-(T'=0) =0,
we can fit (5.15) to the initial profile at t =7 =0 up to the second order in o by setting x1 =0.
However, at second order there is no way to choose the constant k2 such that ho(T' =0) =0. We
therefore have a discrepancy between the numerical solution and the asymptotic approximation
of O(0~2). In figure 8 we demonstrate agreement between the numerical computation and the
asymptotic solution (5.15) with «1 = 0. Here the numerical solution was obtained by integrating
the characteristic system (4.1) forward in time from the starting profile hs(6), where hs(6) solves
(3.2) with 2=1 and @ =0.5. The vertical axis shows the norm hp defined to be the maximum
value of h — hs(0 + o~ 1027) over 6 € [0,27) during the time integration period ¢ € [0,10/5]. A
best fit curve hyy =0.1/02 is shown with a dashed red line.
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Figure 8. Log-log plot of the norm hy (blue solid line) defined to be the maximum value of h(6,t) — hs(0 + o~ 1027)
over 6 € [0, 27) during the time period ¢ € [0, 10/c] (here T = ot). The function h (6, t) was computed by solving (4.1)
numerically with the initial profile (6, 0) = hs(0), where hs(0) solves (3.2) with £2 =1 and Q = 0.5. The modulation
amplitude b = 0.2. A best fit curve hy = 0.1/c2 is shown with a dashed red line.

The above discussion suggests that, for large o at least, for a sufficiently carefully chosen initial
condition it should be possible to obtain a time-periodic solution to (2.8) which does not overturn.
However, overturning is expected for a general initial condition and we can use our theory to
estimate the overturning time, ¢t*. In general the starting profile ho(6) in the initial condition
(2.10) will not exactly meet the requirement that 7' =0, and so we expect transient growth in T’
according to (5.5). If we identify hg with hs, where hs solves (3.2) with 2 =1, it follows from
(5.4) that F = O(0~2), and the asymptotic theory predicts transient growth so that the uniformity
of the expansion (5.3) is destroyed when ¢ = O(c?). If instead we identify hy with a profile that
does not solve (3.2) with 2 =1, then F'=O(1) and the expansion (5.3) fails when ¢t = O(1). We
interpret the failure of the expansion as the signature of overturning. This viewpoint is supported
by our numerical solutions to the full governing equation (2.8). For the overturning times reported
in figure 7 we see that in panel (a), for which F'= O(1), t* approaches a constant as o — oo in
agreement with the preceding remarks. In panel (b), for which F' = O(s~2), t* grows apparently
like 0. Evidently the onset of overturning can be considerably delayed in the high frequency
limit by a judicious choice of the initial condition.

(b) Low frequency limit (0 < 1)

The numerical results shown in figure 4 suggest that when o < 1 blow-up occurs when b exceeds
a threshold value. This motivates an analysis in the low frequency limit. As in the previous
subsection, we follow a multiple scales approach, in this case with ¢ as the fast time scale and
T = ot as the slow time scale.

It is convenient at the outset to rescale the film thickness, writing h(6,¢,T) = o2 (0,¢,7),
where 2(T) =1+ bcosT. We assume |b| < 1 so that {2 > 0 for all 7. We then posit the expansion

H(9,t,T) = Ho(0,t,T) + cHy(0,t,T) + 0> Ho(0,t,T) + O(c>), (5.16)
assuming o < 1. Inserting into (5.2) we obtain at leading order, O(1),
Ho + 2(T) (Ho - %HS’ cos 9) =0. (5.17)
0

Following the discussion in section 3, for a general initial condition we expect that Ho will reach a
slope singularity at a finite time ¢. However the solution will remain regular if at ¢ = 0 the profile
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Hj coincides with a t-independent solution of (5.17), namely one that satisfies
Ho — éHg cos 0 = q(T), (5.18)

for some ¢(7T) to be determined later. We therefore insist that Hy(0,T) solves (5.18). We note
that this is essentially the same as the cubic equation (3.2) for the steady MP problem, with T
playing the role of a parameter, and with the relationship Q = 23/ 2. A question of interest, then,
is whether ¢(T") can reach the threshold value of 2/3 identified in section 3, and so drive the
leading order solution toward blow-up.

At first order, O(o),

Hi+ Q(MoHy)g = 27 Y2R(0,T),  Ri=—(2?Ho)r, (5.19)

where My(0,T) =1 — Hj cos . This essentially presents a forced version of the linear stability
equation (3.10). The solution is

1 N
= 0 + g | P9 (5:20
where the function U is arbitrary, z = Q2(T')t — vp(0), and
0
dg
vy (0) = . 5.21
0= T 620

We require H; to be 2m-periodic in 6. To check this we first differentiate (5.18) with respect to
T, and rearrange to get

MoHor =qr- (5.22)

Integrating this with respect to 6,

0
J HOT df = llo(e)qT. (523)

s

With reference to section 3(a) we notice that v (6) is composed of agé plus a periodic function of
6. Rearranging (5.18), using the definition of My and integrating with respect to 6, we find

6 0
J Hydo=3v9(0)q — 2J % dé. (5.24)
T T 0
Using (5.23) and (5.24) we may write
6 6
_ol/2 3 O Or Ho
L Ry (§) d€=£27""vo(0) <QT 37 Q) GIVE L My dg. (5.25)

If g < 2/3 then Hy satisfying (5.18) is bounded and 27-periodic in 6. The right hand side of (5.25),
and hence H, has the same properties if

7 3
T = 7l (H(Q) - §Q) ) (5.26)
where
1 27 HO 27 1
= — _— P, = —df. 5.27
() Py L 1-— Hg cosf ' 0(9) L 1-— Hg cos ( )

The solution for Hj is then given by

! 2r J"@

Hi=3r0) = i | e 46 (5.28)

It is clear from (5.28) that Hg is bounded. Furthermore, H;r is bounded for all 7" provided that
lgr| < oo by virtue of (5.22).
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Figure 9. (a, b) Numerical solution of (5.26) (solid blue curves) for g(0) = 0.48 and b = 0.5. The integration is stopped at
T =T where q(Ts) = 2/3. In this case Ts = 2.2. The solid red curve shows the approximate g(7") given in (5.35). (c)
Numerical solution of (5.26) (solid blue curve) for b= 0.5 and g(0) = ¢*(0.5) & 0.4063, with the approximate solution
(5.35) shown with a red curve. (d) Comparison between H as defined in (5.27), shown with a blue solid line, and the
approximation for H valid as ¢ — 2/3 given by (5.30), shown with a red dashed line.

The solution to the problem at O(¢") has the form
1 0
Ho= 3 (Un() + | Rl de (529)
0 T

with Uy, arbitrary, and R, = —(QI/QH(n_l))T + (Fn cosf)y/3, where the Fr,(Ho, H1, ..., Hyp—1)
are known (for example, F» =3HoH 12). Let us assume that the Uy, are given for n > 0, for example
by setting an appropriate initial condition at ¢ =7 = 0. Since, if |¢7| < 0o, Hn and H,,p are both
bounded for n =0, 1, it is clear that the same property holds for n > 2. Given these remarks we
expect the expansion (5.16) to remain uniform as time increases.

The nonlinear ordinary differential equation (5.26) determines ¢(T"). It has the invariant
0?2 fgﬂ Hodf, which means that fluid volume is conserved at leading order (this can be
shown by differentiating (5.18) with respect to 7" and then by straightforward manipulations).
Furthermore we can show that when 2/3 — ¢ < 1

2-(2/3-¢)/?
2log (2/3—q)

Inserting this result into (5.26) we can then see that ¢ — 0 as ¢ —2/3 and, moreover, grr —
—oo in the same limit. This behaviour is demonstrated numerically in figure 9(a,b) for b=0.5
and initial condition ¢(0) = 0.48. Good agreement between the approximation (5.30), valid when
2/3 — ¢ < 1, and the numerically computed 7(g), is shown in figure 9(d).

When ¢ = 2/3 the leading order profile H is described by the the heteroclinic connection along
the separatrix that connects the saddle points at 8 =0, 27 (see figure 1). In this case vy (0) — oo as
0 — 0. A slight rearrangement of (5.25) is

0 (1 —
| e e =2 2(0) (ar + G [ 301 ) + o5 [ G e G31)

Hl+ (5.30)

0.4
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Figure 10. Regularity map for ¢(T") solving (5.26) in the limit o — 0. The black curve delineates the boundary g¢* (b)
between regular behaviour (¢(7") periodic in T) and blow-up behaviour (¢(T") — 2/3 as T'— Ts). The red curve
shows the approximation to the ¢* (b) boundary given in (5.36). The dashed red line shows 1/qo = /3(1 + b), whose
intersection with the black line at b= 0.317, shown with a red marker point, determines the location of the red marker
point in figure 4.

With the help of (5.18) written for ¢ = 2/3 we can deduce that

us us
(1-Ho) ., 1 J
Jo o do = 3, Hpdf < o0, (5.32)
the inequality being clear given that the integral represents one half of the total fluid volume on
the cylinder. Setting ¢ = 2/3 in (5.31), and taking the limit # — 0, we observe that the terms in the
large curved bracket on the right hand side of (5.31) must vanish. Therefore in this case (cf. (5.26)
for ¢ < 2/3) we have

gr =0, (5.33)

and it follows that ¢ =2/3 for all T'. Unlike (5.26), this equation does not conserve the quantity
0?2 fgw Hd# since in this case the integral has a fixed value and {2 varies with T'.

Next we integrate (5.26) numerically starting from some ¢(0). For ¢(0) < ¢* (b), where ¢* (b) is
to be determined, g is periodic in time T For ¢(0) = ¢* (b), we find that ¢(7) =2/3 and g7 () = 0.
If ¢(0) > q*(b) then ¢(Ts) =2/3 with gp(Ts) >0 at some Ts =Ts(qo,b) > 0. This heralds the
breakdown of the approximation since a smooth solution of (5.18) ceases to exist (see the
discussion in section 3). Accordingly ¢*(b) descirbes a curve in the (b, go) plane which divides
regular solutions of (5.26) from those which blow up. The implicit nonlinear relation for ¢* (b),

2/3 _
o Ha) — 54 L+

follows on integrating (5.26) from 7' = 0 to T' = w. We solve this using Newton’s method to obtain
the ¢* (b) curve shown with a black solid line in figure 10.

As an alternative to integrating (5.26) numerically, a simple approximation to ¢(7") can be
found by first noting that the one-term Taylor expansion about ¢ = 0, given by H ~ ¢, holds good
unless ¢ is very close to 2/3 (this is confirmed by comparison with the numerical solution to
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Figure 11. Numerical integration (blue curves) of (5.26) for b= 0.5 and and ¢(0) = 0.1, 0.2, 0.3, 0.4 (bottom to top).
The dashed red lines show the approximation (5.35). In this case ¢*(0.5) = 0.4063.

(5.34)). With this approximation (5.26) simplifies to gy = —(§27/262)q, which can be integrated
exactly to yield

L2
a(T) = a0 51750 (5.35)

where ¢o = ¢(0) and 2y = £2(0) = 1 + b. This result immediately provides the approximation to
the ¢* (b) curve shown with a solid red line in figure 10,

N\ 1/2
q*(@z%(%) . (5.36)

In figure 11 we compare the approximation (5.35) with the solution of the full equation (5.26) for
the case b = 0.5 and for a number of different initial conditions, ¢(0). Evidently the approximation
performs very well with the greatest discrepancy occurring at the maxima for the larger values of
q(0).

It is instructive to compare the present small-o asymptotic results with numerical solutions to
the full governing equation (2.8). First, we note that for gg < ¢*(b) the dependence of the solution
on both ¢t and T indicates that the small-o solution will in general be quasiperiodic, and this
is consistent with the comment made earlier in section 4 (see also figure 5). Figure 12 shows
time snapshots of the surface profiles obtained by integrating the full governing equation (2.8)
numerically for a variety of initial conditions (2.10) with hg € J#. The leading order asymptotic
solution, using the approximation (5.35) for ¢(7), is included for comparison. The agreement
between the two sets of results is generally excellent, but with some discrepancy at the surface
maximum seen when ¢ gets close to 2/3.

In figure 7(a) we showed the numerically computed overturning time t* for the case b=0.5
and gg =0.5. These parameter values correspond to a point in the white regular region in
figure 10. We can match the expansion (5.16) to the initial condition used in figure 7(a) by taking
Hy(6,0,0) =hg, and Hy(6,0,0) =0 for n > 1 (the latter can be effected by choosing the arbitrary
functions Uy, in (5.29) appropriately). Accordingly the asymptotics predict no overturning in the
limit ¢ — 0 and this is in line with the very rapid growth of t* observed in figure 7(a) in this
limit. In contrast figure 7(b) shows the overturning time for the same value of b but with the
initial profile solving hg — (1/3)h§ cos @ = 1/2. Matching the asymptotic expansion (5.16) to this
initial condition, at leading order we find that (5.18) is not satisfied at 7"= 0 and, consequently,
the solution of the leading order equation (5.17) will develop a slope singularity at a finite time,
as was discussed in section 3. The predicted overturning time ¢* = 242 obtained by integrating
(5.17) with {2 fixed at its initial value £2(0) =1 + b, is shown with a dashed line in figure 7(b).

The blow-up that occurs at Ts = Ts(qo, b) in the blue region in figure 10 (i.e. for ¢*(b) < go <
2/3) can be interpreted as the overturning of the film profile in the full problem. At T'=Ts we
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Figure 12. Film profiles (solid red curves) obtained by integrating (2.8) numerically up to teng = Tena /o = 2000/ o for the
case b= 0.25 and o = 0.01. The initial condition is (2.10) with ho € . and Qo = qo 25/ where 2o = £2(0) =1+ b
and (a) go = 0.1, (b) go = 0.2, (c) go = 0.3, (d) go = 0.4, (e) go = 0.5, and (f) go = 0.5385. For panel (f) qo is very
close to the critical value ¢*(0.25) ~ 0.538725. The dashed blue lines show 0Y/2Hy, where Hy is the leading order
solution in the small-o analysis of section 5(b), satisfying (5.18) with ¢(0) = go and using the approximate solution (5.35)
for q(T).

expect the expansion (5.16) to disorder, yielding the approximation to the overturning time for
the full problem t* = Ts(qo,b)o ! valid for o < 1. In figure 7(c) we showed the overturning
time for the case b=0.5, go = /2/3 =0.471 corresponding to a point in the blow-up region in
figure 10. With this value of g, integrating (5.26) we compute T’s = 2.270 and hence the prediction
t* =2.2700 L. This is shown with a red dashed line in figure 7(c). At sufficiently small o It is
in excellent agreement with the numerically computed overturning time for the full governing
equation.

Finally, we note that the present results are consistent with the blow-up map shown earlier
in figure 4. For this figure, trajectories solving (4.1) were computed with the initial condition
(4.3)and h* =1/ V/3. This means that, in the context of the present small ¢ analysis, the relevant
trajectories start on the (6, Hg) curve with go =1/4/3(1 + b). This curves is shown with a red
dashed line in figure 10, and where it intersects the black curve representing ¢*(b) gives the
threshold b value for small-o blow-up in figure 4. The intersection is found to occur at b= 0.317.
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This is shown with a red marker in figure 4, where it can be seen to be in good agreement with
the boundary curve between regular and blow-up behaviour at small .

(i) Single shock solution for ¢ =2/3

Under the small-o assumption, according to (5.33) if ¢(0) =2/3 then ¢=2/3 for all T If we
take the surface profile for ¢ =2/3 to be Hy satisfying (5.18) and given by the solid gold
separatrix curve in figure 2, a contradiction arises since conservation of mass at leading order
requires 12 J"gﬂ Hydf and {2 is T-dependent. We can circumvent the mass conservation issue
by following Johnson [19] to introduce a shock at a location §°(T") > 0. The film profile follows
the solid separatrix curve in figure 2 over —m < 6 < 6° (proceeding smoothly through the saddle
at @ =0 onto the dashed part of the separatrix curve where Hy > 1) and then, at § = 6°, it drops
vertically down to the solid part of the separatrix below and continues along this up to 6 = .

A shock solution allows the cylinder to support a larger liquid volume than a smooth solution.
The liquid volume increases monotonically as 6, varies from 0 for which V* /2 ~ 0.70708140, up
to s = /2 for which value the film has infinite thickness at the shock but the finite volume

12 o= [ dH
Vinax = 621% 3 Ln (H +2)Y/2(H3 + 3H — 2)1/2 (5:37)

n=1

where (a1, b1) = (Hm, 1), (a2,b2) = (1,00), (a3, b3) = (Hm, 2/3). Here Hy, is the minimum of H
on the separatrix which occurs at § = £7. We calculate Vinax/ (27r_(21/ %) ~ 1.102317, which agrees
with the value quoted by Villegas-Diaz et al. [28].

Suppose that we start at 7'=0 with a leading order profile Hg featuring a shock located
at 0=06°(0) with 0<6°(0) < /2. The fluid volume V(T)= g” Hydf. As time increases the
shock location 6°(T") must adjust to ensure mass conservation, i.e. such that Y 2v(r)y=(1+
b)'/2V(0). The requirement that |¢°| < 7/2 imposes the constraint

1+6\ 2 v(0)
(1 — b) Vmax =t (538)

This places an upper limit on the modulation amplitude, b, for a given initial volume.

(i) Double shock solution for ¢ < 2/3

Up to this point the discussion for ¢(7') < 2/3 has assumed that the leading order term Hj is
such that 21/ 2Hoe # at t=T =0 with Hy a smooth function (i-e. no shocks). Johnson [19]
demonstrated that one can construct double-shock solutions for which the film profile exhibits
a bulge in fluid thickness enclosed by the two shocks. Referring to the phase portrait in figure 2,
we see that a double-shock solution can be put together by following one of the blue trajectories
at the bottom of the figure for a chosen @, and then, somewhere in the interval —7/2 <6 < 7/2,
jumping up to and then back down from the equivalent () curve at the top of the figure, and then
continuing along the original trajectory to complete the profile. It is not necessary that the jumps
be located symmetrically about 6 = 0.

A case of particular interest is that of zero flux, Q =0, indicated by the broken blue line in
figure 2. For @ = 0, and in the absence of shocks, the only static solution is a film of zero thickness.
For the double-shock solution a solitary mass of fluid with compact support is carried around by
the cylinder, with the fluid inside recirculating (Johnson [19] describes how to extend the thin-
film model to include next order terms and allow for a boundary layer around each shock to
facilitate this recirculation). The maximum scaled volume that can be supported in this case can
be expressed by

Vrgax _ V3 J'ﬂ-/2 do . 2v/3 ., ~
or 7)o Veos§ 7 F(4,\/§)~1.44562, (5.39)

where F is the incomplete elliptic integral of the first kind (e.g. Olver et al. [31]).
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Assume for our small-o problem that a double shock is present in the leading order profile
Hy. Let the jumps be located at 6 = 07, <0 and §r > 0 with |07, g| < /2. Since /2 fﬁ” Hod0 is
automatically conserved as g evolves according to (5.26), the shock locations 67, r do not depend
on T and so remain fixed. If ¢(0) < ¢*(b) then ¢(T) is T-periodic and will oscillate in the range
(0,2/3) with the double shock profile adjusting accordingly. If ¢(0) > ¢*(b) then ¢(T') —2/3 as
T — T, for some finite T, with g7 (T7) > 0; in this case, we jump to the single shock solution
described in the previous subsection.

6. Conclusion

We have examined the dynamics of a thin viscous liquid film flowing on the outside of a
horizontal cylinder which is rotating about its axis with an angular velocity that includes a
steady part and a time-periodic part. Surface tension has been neglected. If the time-periodic
component of the angular velocity is removed, the problem reduces to that studied by Moffatt [1]
and Pukhnachev [2], and subsequent authors.

Our review of the constant rotation rate Moffatt-Pukhnachev problem included a novel
perspective on describing steady solutions using a phase-plane analysis. This perspective makes
plain visually the steady solution space, including both smooth solutions and those exhibiting
shocks. It also makes clear graphically the threshold on the rotation rate for a steady solution
to exist, and the onset of dripping that is expected if this threshold is exceeded. A separatrix in
the relevant phase portrait delineates a boundary representing the extreme continuous steady
solution which supports the maximum fluid volume (although larger volumes are possible for
solutions with shocks).

The introduction of a time-periodic part into the angular velocity fundamentally alters the
behaviour of the system. In this case it appears that in general it is not possible to choose an initial
condition such that the slope of the film profile remains finite for all time. Rather it seems that the
dynamics inevitably progress to a point where the film starts to overturn and a shock is formed.
Numerical investigation of the characteristic dynamical system revealed a highly intricate and
complex blow-up map showing the tendency toward blow-up depending on the amplitude and
frequency of the angular velocity modulation. Notably, sharp protrusion-like structures in these
maps appear near to the base frequency w* of the Moffatt-Puchnachev system and, seemingly, at
rational multiples thereof.

To develop a deeper understanding of the dynamics we also performed asymptotic analyses
in the limits of high and low forcing frequency. In latter case a multiple-scales analysis suggested
that the flow is time-periodic if the initial condition is chosen sufficiently carefully. For a general
initial condition the film profile will overturn; but this overturning can be considerably delayed by
choosing the initial condition to coincide with a Moffatt-Puchnachev steady profile. A multiple-
scales approach was also used in the low-frequency limit. In this case we derived a secularity
condition which reveals a threshold modulation amplitude beyond which a singularity is reached
at some time. This singularity, which heralds the breakdown of the multiple-scales expansion, was
interpreted as indicating the blow-up of the solution to the full problem, and confirmation of this
point was provided through comparison with numerical solutions of the full problem. Regular,
bounded solutions exist below the threshold amplitude, and it was shown that these correspond
to quasiperiodic solutions of the full problem. Single-shock and double- shock solutions for which
the film jumps instantaneously in height, were also discussed. In both cases the abrupt change in
height can be smoothed by introducing boundary layers as discussed by Johnson [19].

In summary our results have revealed a complex interplay between the amplitude and
frequency of the torsional movement of the cylinder and the stability and regularity of the liquid
film. As in Moffatt’s original work we have herein neglected the effect of surface tension. The
influence of this force on the dynamics of the film in the presence of a modulated rotation rate is
the subject of our ongoing research.
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Appendix

We demonstrate that M = 2 — h2 cos 0 is positive for all § € [0, 2), where h(6) satisfies
1.3
hs — ghs cos=Q, (6.1)

for constant {2, provided that Q < (2/ 3)02%/2, Writing hs = Q2V2H,Q=2%?g,and manipulating
(6.1), we have

202 (3

where ¢ < 2/3. The case cos @ =0 is clear since then H = ¢q. Assuming cos # > 0 and writing H =
(cos 9)_1/2R, (6.1) becomes

g(R)= A, (6.3)

where A= (cos6)'/%q < 2/3 and g(z) =z — x°/3. The cubic equation (6.3) has three real roots,

and it’s clear that the root of interest is that for which 0 < R < 1 (refer to Figure 2; the other positive
root has R > 1 and will produce blow-up). Evidently g(z) > 2x/3 for 0 <« < 1 since over this
range g(z) — 2z/3 ==z(1 — 2%)/3 > 0. It follows that A > 2R/3 and, consequently, H < 3¢/2 so
that M > 0. A similar, but slightly simpler, argument applies in the case when cos 6 < 0.
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