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 A B S T R A C T

I present a model of infectious disease transmission with asymptomatic carriers, social distancing, and 
diagnostic testing. First, I study the impact of asymptomatic carriers on the spread of an infectious disease 
in the absence of testing, to determine when their presence increases the overall prevalence of symptomatic 
infection and hence unhealthy agents. Then, I consider mass testing and isolation policies to identify and isolate 
asymptomatic carriers, and incorporate them into my model. I establish that diagnostic testing successfully 
reduces steady state disease prevalence. I then explore the implications of testing accuracy, explicitly studying 
the impact of false positive and false negative test results. I find that reducing the rate of false negatives 
is unambiguously beneficial, since it improves the identification and isolation of asymptomatic carriers. In 
contrast, reducing the rate of false positives can be detrimental: by limiting the unintended isolation of 
susceptible individuals, lower rates of false positives reduce the overall level of social distancing in the 
population and increase disease spread. Hence, I demonstrate how, under certain conditions, false positive 
results can improve social welfare.
1. Introduction

As the first cases of Covid-19 were recorded in China, experts 
worried the outbreak could not be contained. Of concern were alleged 
asymptomatic carriers: people displaying no symptoms, but nonethe-
less contagious. In their presence, standard symptom-based detection 
measures would hardly be effective in limiting transmission, as these 
individuals show no sign of infection. As the virus spread around 
the world, studies confirmed the existence of asymptomatic infections. 
Thus, health authorities repeatedly warned countries of the threat 
posed by asymptomatic carriers and recommended mass testing policies 
to identify and isolate such cases.

This paper studies the impact of asymptomatic carriers on the 
spread of an infectious disease and the mitigating role of diagnostic 
testing. To this end, I extend the model proposed by Chen et al. 
(2011). In an otherwise standard framework, the authors endogenize 
the contact rate between individuals, the main driver of epidemics. In 
particular, they assume that health authorities detect all infected agents 
in each period and place them in quarantine. Susceptible individuals, 
by contrast, choose their level of social activity to balance the benefits 
of interacting with others against the risk of infection.

In my model, I let a share of new infections to be asymptomatic. This 
type of infections do not affect an individual’s health and are there-
fore unobservable, without testing, both to health authorities and to 
asymptomatic agents themselves. Symptomatic infections, on the other 
hand, make an individual unhealthy. Following Chen et al. (2011), I 
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assume that health authorities detect and quarantine all symptomatic 
agents in each period. Healthy agents, comprising both susceptible and 
asymptomatic individuals, instead choose their level of social activity.

Without testing, health authorities cannot identify and isolate
asymptomatic carriers. First, I show that asymptomatic carriers can 
thus play a crucial role in sustaining disease transmission and causing 
an otherwise containable outbreak to become endemic. By raising 
the basic reproduction number of an infectious disease, asymptomatic 
infections can be key for a disease to take root in the population 
and become endemic, even when traditional symptom-based detection 
strategies are in place. This dynamic plausibly contributed to the 
early spread of Covid-19 in China, where asymptomatic carriers likely 
undermined the extensive containment efforts.

I then examine the effect of asymptomatic carriers on the long-
run evolution of an epidemic, focusing on their implications for public 
health, defined as the long-run prevalence of unhealthy agents in 
the population, and the degree of social distancing. To this end, I 
characterize the steady state of the model. I show that both variables 
can be jointly determined as a solution to a system of two equations. 
These equations define curves with a simple and intuitive graphical 
representation, especially convenient for deriving comparative statics.

Thus, I highlight a clear trade-off stemming from asymptomatic 
transmission. All else equal, more asymptomatic infections mean fewer 
symptomatic ones, which improves public health. Still, asymptomatic 
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agents boost disease transmission, raising the total number of infec-
tions. These opposing effects imply that the long-run prevalence of un-
healthy individuals can be non-monotonic in the share of asymptomatic 
cases, and I provide conditions under which this occurs.

Given the limitations of symptom-based detection, the second part 
of the paper explicitly incorporates diagnostic testing. I assume that 
health authorities test every healthy individual in each period and iso-
late those who test positive. Importantly, I allow tests to be imperfect, 
producing both false positive and false negative results, and examine 
their implications, which is the main contribution of my paper.

Testing and isolation policies reduce steady state disease prevalence. 
Tests producing fewer false negative results are better at identifying and 
isolating infectious individuals and are unambiguously beneficial, as 
they reduce disease transmission and lower the steady state prevalence 
of unhealthy agents. In contrast, tests producing fewer false positive 
results lead to the isolation of fewer susceptible individuals. I show 
that reducing the rate of false positives can raise steady state disease 
prevalence and even reduce overall welfare in the population.

False positive results lead to the unintended isolation of some 
susceptible agents. By reducing the exposure of these individuals at 
risk of infection, false positive results slow transmission and can re-
duce overall disease prevalence. Yet, since these individuals are not 
infectious, one may question the efficiency of restricting their activity. I 
find that false positives can improve social welfare when the disease is 
highly transmissible and severe, which are conditions under which the 
negative externality of individual social activity is plausibly stronger.

1.1. Literature review

The mathematical analysis of the evolution of an epidemic rests 
upon compartmental models, first introduced by Kermack and McK-
endrick (1927). Among the most widely used frameworks are the 
Susceptible–Infected–Susceptible (SIS) and Susceptible-Infected-
Recovered (SIR) models. The SIS model applies to diseases that do 
not confer immunity after recovery, allowing recovered individuals 
to become susceptible again. The SIR model assumes instead that 
individuals gain immunity upon recovery, effectively removing them 
from the susceptible population.

Both models share the same underlying logic: at the onset of an 
epidemic, a small share of the population is infected, while the re-
mainder is susceptible. Over time, interactions between these groups 
produce new infections, potentially causing the epidemic to expand. 
The main insight from the most standard models is that the long-run 
outcome of an epidemic is fully determined by the basic reproduction 
number 𝑅0 of the disease, defined as the expected number of secondary 
infections generated by a single infected individual in a fully susceptible 
population. When 𝑅0 < 1, the epidemic tends to die out rapidly. 
Conversely, when 𝑅0 > 1, a substantial fraction of the population 
eventually becomes infected, and such proportion increases with 𝑅0.

Building on this foundation, and following the interest brought 
about by the HIV epidemic first and more recently by the COVID-
19 pandemic, significant research has focused on incorporating more 
realistic features into these basic models. By introducing asymptomatic 
carriers, social distancing and diagnostic testing, my work contributes 
to this literature on economic epidemiology, extensively reviewed 
in McAdams (2021).
Social Distancing. The main extension relative to the standard mod-
els concerns individuals’ behavior during epidemics. Many works use 
expected utility theory to incorporate individuals’ incentives to sponta-
neously reduce their contact rate with others during epidemics.

Kremer (1996) is an early paper incorporating people’s incentives to 
change the amount of sexual partners during an HIV/AIDS epidemic, 
to show that imperfect vaccines may increase the prevalence of the 
disease. Then, Chen et al. (2011) and Chen (2012) let susceptible 
agents engage in social distancing in an SIS model, to show that 
2 
it decreases the size of an epidemic and changes some predictions. 
More recently, Toxvaerd (2020) and Toxvaerd and Makris (2020) in-
corporate social distancing in an SIR model. The former work points 
out how agents spontaneously behave as to ‘‘flatten the curve’’. The 
latter considers the anticipated arrival of vaccines and treatments, 
highlighting their different implications for social distancing. Other 
papers incorporating social distancing in an SIR model are Leung 
et al. (2018), Eichenbaum et al. (2021), Farboodi et al. (2021), Gans 
(2022), Maloney and Taskin (2020) and Acemoglu et al. (2023). This 
latter work is particularly closest to my paper, as I discuss more in a 
few paragraphs.
Asymptomatic Infections. The standard models neglect asymptomatic 
carriers. Aguilar et al. (2020) and Aguilar and Gutierrez (2020) intro-
duce them into an SIR model and derive an expression for the basic 
reproduction number explicitly accounting for the impact of asymp-
tomatic infections. The authors then also consider social distancing, but 
model it as mechanical reduction in individuals’ contact rate, and not 
as endogenous behavior, like in my paper.
Diagnostic Testing. Several recent works introduce diagnostic testing 
into epidemic models, including Alvarez et al. (2021), Piguillem and Shi 
(2022), Brotherhood et al. (2020), Deb et al. (2022), and Drakopoulos 
and Randhawa (2021). While these papers consider the impacts of 
testing, none explicitly model how testing influences individuals’ social 
distancing behavior. Philipson and Posner (1993) is an early work 
considering testing during an epidemic. However, the focus is quite 
different from mine, as the authors consider voluntary testing and 
disclosure decisions in the HIV epidemic.

The paper most closely related to mine is Acemoglu et al. (2023), 
which studies the interplay between testing and social distancing in a 
network-structured epidemic. The key distinctions are that Acemoglu 
et al. (2023) model transmission on a network rather than within a stan-
dard compartmental model, and most notably, they do not explore the 
effects of false positive and false negative test results. My paper’s main 
contribution is explicitly accounting for test imperfections (i.e., false 
negative and false positive test results) and studying their implications 
for the steady state prevalence of unhealthy agents and social welfare 
in the population. False positives and false negatives play a role in Ely 
et al. (2021). However, their work is very different from mine, as it 
considers a test allocation problem in a static setting.

2. Model without testing

I adapt the SIS model in Chen et al. (2011) to incorporate asymp-
tomatic infections. The SIS model studies infectious diseases that do 
not provide immunity upon recovery. If recovered individuals become 
instead immune to reinfection, then the SIR model is more suitable. 
In this work, I consider the former as (i) Covid-19 infections do not 
provide permanent immunity and (ii) working with this model is 
convenient, as it can be solved analytically.

2.1. An SIS model with social distancing

Let time be discrete and consider a continuum of agents. At each 
point in time, every agent is either susceptible or infected, where the 
measure of the two compartments is 𝑆𝑡 and 𝐼𝑡, respectively. Infected 
agents recover with probability 𝜌 ∈ (0, 1) at the end of each period, to 
become fully susceptible again. Susceptible agents get the disease only 
if they meet an infected individual. In this case, contagion occurs with 
probability 𝛽 ∈ (0, 1], which is the transmission rate of the disease.

Chen et al. (2011) assume that all infected agents are put into
quarantine, which restricts their contact rate to some 𝛾 ∈ (0, 1). Instead, 
susceptible agents choose a level of social activity 𝑞𝑡 ∈ [0, 1], balancing 
the benefits of going out with the cost of potentially contracting the 
disease. For each unit of activity, the likelihood of meeting an infected 



L. Zamboni BioSystems 258 (2025) 105615 
Fig. 1. Transition probability tree. Transition probabilities in arbitrary pe-
riod 𝑡 from the susceptible (𝑆) state to the symptomatic (𝐼) and asymptomatic 
(𝐴) ones, and vice-versa.

agent is equal to their activity-weighted proportion in the population, 
as shown in the expression for next-period infections 

𝐼𝑡+1 = 𝑆𝑡 𝑞𝑡 𝜆𝑡 𝛽 + (1 − 𝜌) 𝐼𝑡, where 𝜆𝑡 =
𝛾 𝐼𝑡

𝛾 𝐼𝑡 + 𝑞𝑡 𝑆𝑡
. (1)

Variable 𝜆𝑡 ∈ [0, 1] is the risk in the environment, increasing in 
the share of infected agents and their activity level under quarantine, 
but decreasing in the share of susceptible individuals and their social 
activity level, as greater exposure by this latter group lowers the 
likelihood of meeting an agent that is infected, conditional on making 
a contact.

Susceptible agents are 𝑚𝑦𝑜𝑝𝑖𝑐: in each period, they choose a level of 
activity 𝑞𝑡 to maximize their expected utility within that period. More 
activity is preferred to less, but it also raises the risk of infection, which 
is associated to a health cost 𝑐 > 0. In particular, the authors assume 
that susceptible agents maximize in every period the utility function 
𝑈𝑡(𝑞𝑡) = 𝑢(𝑞𝑡) − 𝑞𝑡 𝜆𝑒𝑡 𝛽 𝑐, where 𝑢(𝑞) is increasing and concave and 𝜆𝑒𝑡  is 
their expectation of the risk in the environment.

To estimate the latter, susceptible agents must know the share of 
infected agents (𝐼𝑡) and anticipate the activity level (𝑞𝑡) of her suscep-
tible peers. However, the authors let susceptible agents have adaptive 
expectations, which eliminates any strategic interaction, since suscepti-
ble agents then simply best-respond to the activity level observed in the 
previous period.

2.2. An SIS model with social distancing and asymptomatic carriers

In my model, I also incorporate asymptomatic carriers. Conditional 
on getting infected, I let an agent be asymptomatic (𝐴) with probability 
𝛼 ∈ [0, 1) and symptomatic (𝐼) otherwise. I let the recovery rate 𝜌 be 
the same for both types of infection and assume no transition between 
them. Hence, the dynamics are as shown in Fig.  1.

Symptomatic cases are observable, as these agents become un-
healthy. Thus, health authorities detect all symptomatic agents in every 
period and place them into quarantine, which restricts their contact rate 
to 𝛾 ∈ (0, 1). Asymptomatic cases are instead unobservable. Asymp-
tomatic agents remain healthy throughout and are thus only carriers of 
the disease, making them indistinguishable from susceptible ones. In 
each period, healthy agents, which are both asymptomatic carriers and 
susceptible individuals, choose a social activity level 𝑞𝑡 ∈ [0, 1].

Asymptomatic infections affect healthy agents’ decision problem in 
two direct ways. First, conditional on getting infected, a healthy agent 
incurs the health cost only if the infection is symptomatic, and thus with 
probability (1 − 𝛼). Second, a healthy agent is not necessarily at risk of 
infection. Indeed, with probability 𝜇𝑡 = 𝐴𝑡∕(𝑆𝑡+𝐴𝑡), the healthy agent is 
currently asymptomatic, and the only possible transition for the agent 
is into the susceptible compartment. Let 𝜇𝑒

𝑡  denote an healthy agent’s 
belief over the likelihood of being asymptomatic in period 𝑡. Assuming 
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that 𝑢(𝑞) = −(1 − 𝑞)2∕2, the optimal level of activity for a healthy agent 
is determined in each period as 

𝑞𝑡 = argmax
𝑞

−
(1 − 𝑞)2

2
− 𝑞 (1 − 𝜇𝑒

𝑡 ) 𝜆
𝑒
𝑡 𝛽 (1 − 𝛼) 𝑐. (2)

I assume this specific functional form for the benefit component 𝑢(𝑞)
of a healthy agent’s utility function as it is convenient to work with: it 
ensures existence of a unique optimum and its simple derivative yields 
an intuitive closed-form solution for the optimal activity level, of the 
form 𝑞∗ = 1 − 𝑀𝐶, where MC refers to the marginal cost of exposure 
to the population.

Asymptomatic infections affect healthy agents’ choice of a social 
activity level also indirectly, through their effect on the risk in the 
environment. This is now given by the following ratio 

𝜆𝑡 =
𝛾𝐼𝑡 + 𝑞𝑡𝐴𝑡

𝛾𝐼𝑡 + 𝑞𝑡(𝑆𝑡 + 𝐴𝑡)
. (3)

When 𝛼 = 0, only unhealthy agents are infected, and these are 
detected and put into quarantine. When 𝛼 > 0, some healthy individuals 
are instead asymptomatic carriers. As it can be shown by taking the 
derivative of expression (3), an increase in healthy agents’ activity level 
𝑞𝑡 still decreases the environment risk, but to a lesser extent. Indeed, it 
also raises the likelihood of meeting an asymptomatic carrier.

As in Chen et al. (2011), I assume that healthy agents have adap-
tive expectations. Therefore, their belief over the likelihood of being 
asymptomatic is 𝜇𝑒

𝑡 = 𝜇𝑡−1 and their expectation of the risk in the 
environment is 𝜆𝑒𝑡 = 𝜆𝑡−1. I discuss the significance of this assumption 
in Section 2.4. Finally, I let the population have a measure of one, 
whereby 𝑆𝑡 = 1 − 𝐼𝑡 − 𝐴𝑡.

2.3. Dynamic system without testing

Putting everything together, the model reduces to a dynamic sys-
tem. This requires two initial conditions: 𝐼0 and 𝑞0. I assume that 𝐼0 ≈ 0
and 𝑞0 = 1, to capture the onset of an outbreak. The initial conditions 
then determine

𝐴0 =
𝛼

1 − 𝛼
𝐼0, 𝑆0 = 1 − 𝐼0 − 𝐴0 and 𝜆0 =

(𝛾 𝐼0 + 𝑞0 𝐴0)
𝛾 𝐼0 + 𝑞0 (1 − 𝐼0)

.

Then, in every period 𝑡 ≥ 0, we have 
𝐼𝑡+1 = (1 − 𝜌)𝐼𝑡 + (1 − 𝛼)𝑆𝑡 𝑞𝑡 𝜆𝑡 𝛽, (4)

𝐴𝑡+1 = (1 − 𝜌)𝐴𝑡 + 𝛼𝑆𝑡𝑞𝑡𝜆𝑡 𝛽, (5)

𝑆𝑡+1 = 1 − 𝐼𝑡+1 − 𝐴𝑡+1, (6)

1 − 𝜇𝑒
𝑡+1 = 1 −

𝐴𝑡
1 − 𝐼𝑡

, (7)

𝑞𝑡+1 = max{0, 1 − (1 − 𝜇𝑒
𝑡+1) 𝜆𝑡 𝛽 (1 − 𝛼) 𝑐}, (8)

𝜆𝑡+1 =
𝛾 𝐼𝑡+1 + 𝑞𝑡+1 𝐴𝑡+1

𝛾 𝐼𝑡+1 + 𝑞𝑡+1 (1 − 𝐼𝑡+1)
. (9)

Eq.  (8) is healthy agents’ optimal decision rule and follows from 
their decision problem in (2). Note that my model reduces to the 
standard SIS one when every infection is symptomatic (𝛼 = 0), there 
is no quarantine (𝛾 = 𝑞𝑡) and all agents engage in full activity (𝑞𝑡 = 1).

2.4. Discussion

To incorporate asymptomatic carriers, I assumed that some infec-
tions present clear and recognizable symptoms while others leave an 
individual completely unaffected. In practice, infections can be asso-
ciated with a wide spectrum of symptoms. Still, I believe modeling 
such heterogeneity is not necessary to study the role of asymptomatic 
carriers. Also, I let every symptomatic individual incur a health cost 𝑐. 
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This captures the severity of the disease, which depends on the extent 
to which its symptoms are debilitating, as well as on its fatality rate. 
The latter could be explicitly included in the model without substantial 
changes to its workings.

This binary characterization implies that symptom-based detection 
strategies allow health authorities to detect only symptomatic infec-
tions, without testing. The most they can do, then, to limit transmission 
is systematically force symptomatic agents to isolate. As these indi-
viduals face no risk of infection, successfully isolating them requires 
strong enforcement powers, as China demonstrated during Covid-19. 
Otherwise, by the assumption of a continuum of agents, parameter 𝛾
can be interpreted as the average contact rate under quarantine, when 
enforcement is imperfect.

Without testing, asymptomatic carriers cannot be detected. Thus, 
they belong to the same pool as susceptible individuals: that of healthy 
individuals. Full activity is optimal in the absence of disease, and an 
activity level can thus be interpreted as a degree of social distancing
(1 − 𝑞𝑡). This might correspond to a percentage reduction in the fre-
quency/duration of social activities, like meetings with friends and 
relatives, or visits to shops and entertainment venues.

A healthy agent selects their social activity level to maximize their 
own utility. However, their social distancing also affects the utility to 
other individuals in the population, through its impact on future disease 
prevalence. This positive externality implies that healthy agents engage 
in too little socially distancing, relative to what a social planner would 
prescribe.

I assume healthy individuals are boundedly rational when choosing 
a social activity level: they are myopic and rely on adaptive expecta-
tions. Myopia means that they select an activity level in period 𝑡 to 
maximize their utility within that period, thus neglecting the impact of 
their decisions on their future utility and hence the full intertemporal 
dimension of their problem. As McAdams (2021) points out, this is a 
reasonable middle ground between entirely naive behavior (i.e., ignor-
ing social distancing altogether) and fully forward-looking rationality, 
which may be unrealistic given its high cognitive burden. 

Adaptive expectations imply that individuals use data from period 
𝑡 − 1 as estimates of the variables influencing their decision in period 
𝑡, which are the share of infected agents and the social activity level 
of their healthy peers. Instead of forming accurate expectations, they 
adopt simple heuristics serving as cognitive shortcuts to reduce com-
plexity. This behavior can be justified by the cognitive load involved 
in accurately estimating these variables and a lack of experience with 
epidemics, which are complex and infrequent events. Alternatively, 
individuals might misinterpret recent data as current, not recognizing 
that reports reflect past infection rates due to incubation periods or 
reporting delays.

As shown in the next section, this bounded rationality means indi-
viduals fail to fully maximize their utility in the short-term, when the 
epidemic is not in a steady state, whereas utility is instead maximized 
in the long run, when the epidemic reaches its steady state.

3. Analysis of model without testing

Before introducing testing, I study the case in which asymptomatic 
carriers cannot be detected. I consider the implications for the Steady 
State of the dynamic model in 2.3.

3.1. Disease-free and endemic steady state

Some time following the outbreak of an epidemic, the share of 
infected agents stops changing over time and the system reaches a 
Steady State (SS). Formally, a SS of the dynamical system in (4)–(9) 
is a vector (𝐼∗, 𝐴∗, 𝑆∗, 𝜇∗, 𝑞∗, 𝜆∗) such that, if (𝐼𝑡, 𝐴𝑡, 𝑆𝑡, 𝜇𝑡, 𝑞𝑡, 𝜆𝑡) =
(𝐼∗, 𝐴∗, 𝑆∗, 𝜇∗, 𝑞∗, 𝜆∗) for some 𝑡 > 0, then (𝐼𝑠, 𝐴𝑠, 𝑆𝑠, 𝜇𝑠, 𝑞𝑠, 𝜆𝑠) =
(𝐼∗, 𝐴∗, 𝑆∗, 𝜇∗, 𝑞∗, 𝜆∗) for every 𝑠 > 𝑡.
4 
Fig. 2. Epidemic evolution simulation. Evolution of the prevalence of 
unhealthy agents (𝐼𝑡) and of the level of social distancing (𝑞𝑡) of healthy agents 
for every 𝑡 = 1,… , 80, given parameter values (𝜌, 𝛽, 𝛾, 𝛼, 𝑐) = (.2, .7, .3, .6, 2).

Of interest is the prevalence of unhealthy agents 𝐼∗ and the degree 
of social distancing 𝑞∗ in the population. Importantly, the prevalence 
of unhealthy agents corresponds to the fraction of the population with 
a symptomatic infection at each point in time. This measure does 
not include asymptomatic agents, since these individuals are healthy 
throughout. Asymptomatic agents are important only as vehicles for 
the disease to spread further, potentially affecting the overall number 
of symptomatic and hence unhealthy individuals in the population.

An epidemic either converges to the Disease-Free SS, where the dis-
ease is eradicated (𝐼∗ = 0) and people stop distancing (𝑞∗ = 1), or to an
Endemic SS, where a share 𝐼∗ > 0 of the population is unhealthy at each 
point in time and people perpetually transition between the susceptible 
and infected state, maintaining some degree of social distancing.

Fig.  2 plots the evolution of the prevalence of unhealthy agents 𝐼𝑡
and the social activity level 𝑞𝑡 of healthy individuals given (𝜌, 𝛽, 𝛾, 𝛼, 𝑐) =
(.2, .7, .3, .6, 2). Under this plausible set of parameters, inspired by the 
simulations in Chen et al. (2011) and used throughout this article to 
provide intuitions for my results, the system converges to an Endemic 
SS: about 25% of the population is unhealthy in each period and the 
level of social activity is reduced by about 15%.

In Fig.  2, the epidemic converges to an Endemic SS. Notice that 
healthy agents are not fully maximizing their utility during conver-
gence. This is because adaptive expectations lead to inaccurate esti-
mates of infection levels and of the activity level of the other healthy 
individuals. At the Endemic SS, variables are constant over time and 
expectations become instead accurate. Thus, individuals are maximiz-
ing their actual expected utility in the Endemic SS. Moreover, healthy 
agents’ choices of a social activity level constitute a Nash equilib-
rium, as each agent is indeed best responding to others. The same 
considerations apply also to the Disease-Free SS.

The Disease-Free SS always exists. Proposition  1 characterizes the 
Endemic SS.

Proposition 1.  (i) An Endemic SS exists if and only if 

𝑅0 =
𝛼𝛽 + (1 − 𝛼)𝛽𝛾

𝜌
≥ 1. (10)

(ii) If an Endemic SS exists, then (𝐼∗, 𝑞∗) can be determined as a solution 
to 
⎧

⎪

⎨

⎪

⎩

𝐼 =
(1 − 𝛼) 𝑞 (𝛼 𝛽 𝑞 + (1 − 𝛼) 𝛽 𝛾 − 𝜌)

𝑞(𝛼 𝛽 𝑞 + (1 − 𝛼) 𝛽 𝛾) − (1 − 𝛼) 𝜌 (𝑞 − 𝛾)
;

𝐼 =
𝑞 (1 − 𝑞)

𝑞 (1 − 𝑞) + 𝑐 𝜌
.

(11)

Then, 𝐴∗ =
[

𝛼∕(1 − 𝛼)
]

𝐼∗, and 𝑆∗, 𝜇∗ and 𝜆∗ can be found through 
Eqs. (6), (7) and (9).
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Fig. 3. Characterization of endemic SS and graphical analysis. The graph 
shows functions 𝑓 (𝑞) and 𝑔(𝑞), as defined by the first and second lines of the 
RHS of Eq.  (11). The first function describes an increasing curve. The second 
a parabola, which is always positive and crosses the origin and point (1, 0). 
When 𝑅0 > 1, function 𝑓 (𝑞) is positive at 𝑞 = 1, and the two curves intersect. 
In this case, an Endemic SS exists, with prevalence of unhealthy agents and 
activity level of healthy individuals corresponding to the coordinates of the 
intersection point. Intersection point A pins down the Endemic SS in Fig.  2. 
Increasing the transmissibility 𝛽 of the disease sifts curve 𝑓 (𝑞) upwards and 
moves the Endemic SS to point C.

When 𝑅0 < 1, there exists only the Disease-Free SS: more people 
recover in each period than get infected, and the disease eventually 
dies out. When 𝑅0 ≥ 1, there exists also an Endemic SS, characterized 
by a pair of values (𝐼∗, 𝑞∗) solving system (11). In this case, the disease 
may spread further and take root in the population, therefore becoming 
endemic.

Without quarantine and asymptomatic carriers, a disease has its
natural basic reproduction number 𝑅0 = 𝛽∕𝜌. Symptom-based detection 
and isolation measures lower this to 𝑅0 = (𝛽𝛾)∕𝜌. As asymptomatic 
carriers cannot be detected and put into quarantine, their presence 
raises the value of 𝑅0 back towards its natural value.

Corollary 1.  For some set of parameters’ values, the dynamic system in 
(4) to (9) converges to the Disease-Free SS when 𝛼 = 0, but can converge 
to an Endemic SS when 𝛼 > 0.

Hence, the outbreak of an infectious disease that could be neutral-
ized through symptoms-based detection and isolation measures may 
spread out of control when some infections are instead asymptomatic, 
as it presumably happened with Covid-19 in China.1

3.2. Endemic steady state and asymptomatic carriers

In an Endemic SS, the prevalence of unhealthy agents and the 
activity level of the healthy ones solve system (11). Define function 𝑓 (𝑞)
and 𝑔(𝑞) by the top and bottom lines of the RHS of (11), respectively. 
As shown in Fig.  3, the first function describes an increasing curve. The 
second describes a parabola, which is always positive and crosses the 
origin and point (1, 0). If 𝑅0 ≥ 1, then 𝑓 (𝑞) is positive at 𝑞 = 1. The two 
curves intersect, and the intersection is the Endemic SS.

Intersection point 𝐴 in Fig.  3 pins down the Endemic SS in Fig.  2. 
Higher transmissibility 𝛽 shifts curve 𝑓 (𝑞) upwards. All else equal, the 
prevalence of unhealthy agents rises to 𝐵. However, healthy individuals 
react by reducing activity, dampening the effect (point 𝐶).

1  see Figs.  9 and 10 in Appendix  A.
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Simulating the model suggests that the case in Fig.  3 with a unique 
intersection point at some 𝑞 > .5 is the common one to arise. Still, the 
existence of multiple Endemic SSs cannot be ruled out theoretically. 
The two curves might intersect more than once, both to the left of 
the parabola’s vertex and to its right. Alternatively, the two curves 
might intersect only once at some 𝑞 < .5. This is problematic, since 
the location of the intersection point relative to the parabola’s vertex 
can affect the direction of comparative statics.

For example, in Fig.  3, a higher transmissibility rate 𝛽 would have 
resulted in a decrease in the prevalence of unhealthy agents, rather than 
an increase, if the original intersection point had occurred at some 𝑞 <
.5. In this case, individuals’ social distancing response would have more 
than offset the increased transmission potential of the disease, leading 
to a lower prevalence of infections in the SS. This is an interesting 
feature of the model: a higher 𝑅0 can, under certain conditions, result 
in a lower prevalence of infection once behavioral responses are taken 
into account, which is a phenomenon already noted in previous work 
(e.g., Chen et al. 2012).

My simulations suggest that intersection points to the left of the 
parabola’s vertex represent special cases, in my model. To sharpen the 
main intuition of the paper, I therefore rule out this possibility and 
focus only on Endemic SSs where 𝑞∗ > .5.. If such an Endemic SS exists, 
then it is the unique one with this characteristic, as the two curves have 
opposite slope when 𝑞 > .5. Also, I restrict attention to Endemic SSs 
such that 𝑞∗ > 𝛾, i.e., where the activity level of healthy individuals 
is higher than that under quarantine, which seems plausible. Overall, 
I therefore restrict attention to Endemic SS such that 𝑞∗ > max{𝛾, .5}. 
Although violations of this restriction appear rare in my simulations, it 
nonetheless limits the generality of the results.
Asymptomatic Carriers. Consider an infectious disease where
(𝛽 𝛾)∕𝜌 ≥ 1. In this case, an Endemic SS exists, even when all infec-
tions are symptomatic.2 I am interested in determining the impact of 
increasing the fraction of asymptomatic infections on the prevalence of 
unhealthy agents in the Endemic SS.

All else equal, a higher share of asymptomatic infections necessar-
ily translates into a lower share of symptomatic ones, and hence of 
unhealthy agents. Still, asymptomatic carriers boost the spread of a 
disease, therefore increasing the number of total infections. The overall 
impact on the prevalence of unhealthy agents then depends on which 
of these two effects dominates.

For the same set of parameters as in Fig.  2, Fig.  4 plots the SS 
prevalence of unhealthy agents for all 𝛼 ∈ [0, 1]. Relative to the 
case in which all infections are symptomatic, this more than doubles 
when 1 out of 4 infections is instead asymptomatic. The prevalence 
of unhealthy agents is obviously zero when 𝛼 = 1. This highlights 
an interesting non-monotonic relationship between the fraction of new 
asymptomatic infections and the prevalence of unhealthy agents.

Suppose we replaced a symptomatic agent with an asymptomatic 
carrier. For the prevalence of unhealthy agents to rise, adding the 
asymptomatic carrier must boost disease transmission at least to com-
pensate for the lost symptomatic infection. The higher the share 𝛼 of 
new infections that are asymptomatic, the harder it is to produce one 
that is instead symptomatic.

Next, I establish when this non-monotonicity result arises.

Proposition 2.  The SS prevalence of unhealthy agents is non-monotonic 
in the fraction of new asymptomatic infections if and only if 
𝛽𝛾
𝜌

< 1 +
𝑞∗0 − 𝛾
𝑞∗0

, (12)

where 𝑞∗0 is the activity level of healthy agents in the Endemic SS with 𝛼 = 0.

2  Otherwise, the epidemic converges to the Disease-Free SS when all 
infections are symptomatic. In this case, if inequality (10) does not hold at 
𝛼 = 1, then the prevalence of unhealthy agents is equal to zero for any fraction 
of asymptomatic infections. Otherwise, this is either zero or it jumps at some 
value of 𝛼 < 1.
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Fig. 4. Non-monotonic relationship between SS prevalence of unhealthy 
agents and share of asymptomatic infections. For the same set of param-
eters as in Fig.  2, this graph plots the SS prevalence of unhealthy agents 𝐼∗

𝛼
as a function of the fraction 𝛼 of new infections that are asymptomatic. The 
relationship is non-monotonic. Relative to the case where all infections are 
symptomatic, the SS prevalence of unhealthy agents rises substantially as the 
fraction of new asymptomatic infections increases to about 1/4. Then, the SS 
prevalence of unhealthy agents decreases in 𝛼 and reaches zero when 𝛼 = 1.

Fig. 5. Non-monotonicity in the endemic SS diagram. Relative to the case 
𝛼 = 0, curve 𝑓 (𝑞) shifts upwards when 𝛼 = .25. The new intersection point lies 
north of the old one and the prevalence of unhealthy agent increases. Still, a 
further increase to 𝛼 = .6 yields the opposite: curve 𝑓 (𝑞) shifts downwards and 
the new intersection point lies south of the old one.

As Fig.  5 shows, changing 𝛼 does not affect parabola 𝑔(𝑞), but shifts 
curve 𝑓 (𝑞). The curve shifts upwards when 𝛼 increases from 0 to 25% 
and the prevalence of unhealthy agents rises. A further increase to 60% 
produces instead the opposite effect.

For the result to hold, curve 𝑓 (𝑞) must shift upwards for at least 
some 𝛼 ∈ [0, 1]. I find that this must hold at 𝛼 = 0. This suggests 
that adding the first asymptomatic carrier is associated to the highest 
marginal damage, as when all infections are symptomatic it is eas-
ier to generate another unhealthy individual. This analysis leads to 
condition (12).

To interpret condition (12), suppose infections were only symp-
tomatic. When (𝛽𝛾)∕𝜌 is high, an epidemic generates a large prevalence 
of unhealthy agents and induces healthy individuals to lower their 
activity level substantially, due to the high environment risk. In this 
case, replacing a symptomatic agent with an asymptomatic carrier does 
not boost transmission that much, since the difference in activity level 
between the two types of infectious agents is relatively small. The 
opposite holds, instead, when (𝛽𝛾)∕𝜌 is small.
6 
This non-monotonicity result is analogous the main result in Ace-
moglu et al. (2023), which shows that increased testing capacity can 
initially be successful at reducing infections, but may later increase 
them, as a result of inducing riskier behavior in susceptible individuals. 
My result, on the other hand, pertains to the fraction of new infections 
that are asymptomatic.

4. Mass testing and isolation policies

As seen in the previous section, the presence of asymptomatic 
infections during an epidemic can be detrimental to public health. 
Asymptomatic carriers can boost disease transmission and raise the 
overall incidence of infections that are instead symptomatic, and hence 
the number of people who are eventually unhealthy. This type of 
infections amplify the spread of an infectious disease in my model 
mostly because asymptomatic carriers cannot be identified and isolated.

In this section, I consider mass testing and isolation policies: in every 
period, I assume that health authorities test every healthy agent, to 
isolate those resulting positive.
Testing. A test is an experiment 𝜎 ∶ {𝐴,𝑆} → 𝛥({𝑝, 𝑛}), which maps 
the status of each healthy agent into a probability distribution over 
a positive (𝑝) and negative (𝑛) result. I assume tests are informative: 
asymptomatic agents are more likely to test positive than susceptible 
individuals, which requires the rate of true positives to be higher than 
that of false positives (𝜎𝑝|𝐴 > 𝜎𝑝|𝑆 ).3 Notice, however, that this does 
not imply any clear restriction on the rate of false positives and false 
negatives, but testing can be arbitrarily accurate.4

Covid-19 diagnostic tests are usually described in terms of their
sensitivity and specificity parameters, which are the probabilities of a 
correct outcome. Although several tests are used in practice at the same 
time, I assume that every healthy agent is diagnosed using the same 
test.

Model. At the start of each period 𝑡 ≥ 1, I let health authorities test 
every healthy individual and force positive ones into quarantine, which 
restricts their contact rate to 𝛾 ∈ (0, 1). Negative agents do instead 
choose their level of social activity.

Before choosing a level of social activity, I let negative agents incor-
porate their negative test result into their assessment of the likelihood 
of being asymptomatic, and hence not at risk of infection for that given 
period. Given their negative test result, I assume that negative agents 
apply Bayes’ rule and update their belief 𝜇𝑒

𝑡  to 

𝜇𝑛
𝑡 =

𝜇𝑒
𝑡 𝜎𝑛|𝐴

𝜇𝑒
𝑡 𝜎𝑛|𝐴 + (1 − 𝜇𝑒

𝑡 ) 𝜎𝑛|𝑆
. (13)

Since testing is informative, we have that 𝜇𝑛
𝑡 < 𝜇𝑒

𝑡 . That is, testing 
negative can only decrease the assessment of the likelihood of being 
asymptomatic. When tests produce no false negative, we have that 
𝜇𝑛
𝑡 = 0, and an agent testing negative is certain of being susceptible.5

3  This implies that susceptible individuals are more likely to test negative 
than asymptomatic ones, since 𝜎𝑛|𝐴 = 1 − 𝜎𝑝|𝐴 and 𝜎𝑛|𝑆 = 1 − 𝜎𝑝|𝑆 .

4  To see this, consider two tests: one assigning a positive result to all 
asymptomatic agents, but also to 9 out of 10 susceptible ones, and one 
assigning a positive result to 1 out of 10 asymptomatic agents, but never to 
susceptible ones. Both tests are informative, but the former produces many 
false negatives and no false positives, and the latter is the opposite.

5  Belief updating plays a limited role in my model and is not a primary 
driver of the results. Positive agents are placed into quarantine and the way in 
which they update their beliefs is thus inconsequential. Belief updating matters 
only for negative agents and I introduce it in my model with testing primarily 
to be rigorous and ensure consistency with the model without testing. There, 
agents assess their likelihood of being asymptomatic, before choosing their 
level of social activity. Upon receiving a negative result, agents must revise 
this belief somehow. While agents have adaptive expectations and are myopic, 
I assume they process their test results rationally, through Bayes’ theorem. 
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Given their updated belief, negative agents choose the level of social 
activity given by 

𝑞𝑡 = argmax
𝑞

−
(1 − 𝑞)2

2
− 𝑞 (1 − 𝜇𝑛

𝑡 ) 𝜆
𝑒
𝑡 (1 − 𝛼) 𝑐. (14)

By the assumption of a continuum of agents, 𝐴𝑡 𝜎𝑠|𝐴 is the share 
of asymptomatic carriers with test result 𝑠 ∈ {𝑝, 𝑛}, and similarly for 
susceptible individuals. Whether contagious or not, any healthy agent 
testing positive is placed into quarantine and thus assigned activity 
level 𝛾. Any healthy agent testing negative engages in some level of 
social activity 𝑞𝑡. Hence, the risk in the environment is now given by 

𝜆𝑡 =
𝛾 𝐼𝑡 + 𝐴𝑡 (𝛾 𝜎𝑝|𝐴 + 𝑞𝑡 𝜎𝑛|𝐴)

𝛾 (𝐼𝑡 + 𝑆𝑡 𝜎𝑝|𝑆 + 𝐴𝑡 𝜎𝑝|𝐴) + 𝑞𝑡 (𝑆𝑡 𝜎𝑛|𝑆 + 𝐴𝑡 𝜎𝑛|𝐴)
, (15)

and negative agents’ estimate therefore is 𝜆𝑒𝑡 = 𝜆𝑡−1, due to adaptive 
expectations.

4.1. Dynamic system with testing

The model reduces to an updated dynamical system. As initial 
conditions, I set 𝑞0 = 1 and 𝐼0 ≈ 0. These determine 𝐴0, 𝑆0 and 𝜆0
as in the dynamical model in Section 2.3. In period 𝑡 = 0, no testing 
occurs, to reflect lack of awareness about asymptomatic infections. 
Hence, we have 𝐼𝑡+1, 𝐴𝑡+1, 𝑆𝑡+1 and 𝜇𝑒

𝑡+1 as in Eqs. (4) to (7). At the 
start of each period 𝑡 ≥ 1, health authorities test every healthy agent to 
detect asymptomatic carriers. Test results are revealed and those testing 
positive are isolated alongside symptomatic individuals. Those testing 
negative update their belief over the likelihood of being asymptomatic 
and choose an activity level for that period. Finally, new infections are 
generated and a fraction of infected individuals recovers.

Accordingly, in every period 𝑡 ≥ 0, we have 

𝜇𝑛
𝑡+1 =

𝜇𝑒
𝑡+1 𝜎𝑛|𝐴

𝜇𝑒
𝑡+1 𝜎𝑛|𝐴 + (1 − 𝜇𝑒

𝑡+1) 𝜎𝑛|𝑆
(16)

𝑞𝑡+1 = max{0, 1 − (1 − 𝜇𝑛
𝑡+1) 𝜆𝑡 𝛽 (1 − 𝛼) 𝑐}, (17)

𝜆𝑡+1 =
( 𝛾 𝐼𝑡+1 + 𝐴𝑡+1 (𝛾 𝜎𝑝|𝐴 + 𝑞𝑡+1 𝜎𝑛|𝐴)
𝛾 (𝐼𝑡+1 + 𝑆𝑡+1𝜎𝑝|𝑆 + 𝐴𝑡+1 𝜎𝑝|𝐴) + 𝑞𝑡+1 (𝑆𝑡+1 𝜎𝑛|𝑆 + 𝐴𝑡+1 𝜎𝑛|𝐴)

)

.

(18)

Furthermore, in every period 𝑡 ≥ 1, we have 
𝐼𝑡+1 = (1 − 𝜌)𝐼𝑡 + (1 − 𝛼)𝑆𝑡(𝜎𝑝|𝑆 𝛾 + 𝜎𝑛|𝑆 𝑞𝑡) 𝜆𝑡 𝛽, (19)

𝐴𝑡+1 = (1 − 𝜌)𝐴𝑡 + 𝛼 𝑆𝑡 (𝜎𝑝|𝑆 𝛾 + 𝜎𝑛|𝑆 𝑞𝑡) 𝜆𝑡 𝛽, (20)

and 𝑆𝑡+1 and 𝜇𝑒
𝑡+1 as in expression (6) and (7), respectively. Note that 

the model reduces to that in Chen et al. (2011) when there are no 
asymptomatic carriers (𝛼 = 0) and testing produces no false positives 
(𝜎𝑝|𝑆 = 0).

5. Analysis of the model with mass testing and isolation policies

Through mass testing, health authorities aim to screen asymp-
tomatic carriers and isolate them. Still, tests might not be perfectly 
accurate, but produce false negative and false positive results.

First, I determine that mass testing and isolation policies generically 
improve public health, as they always lead to a reduction in the SS 
prevalence of unhealthy agents, given the restrictions discussed in 
Section 3.2. Then, I consider the implications of false negative and false 
positive results: some asymptomatic carrier may be left exposed to the 

Allowing for simpler heuristics (e.g., fully trusting the test result) would not 
significantly alter the results. A potentially interesting extension would be 
to incorporate belief updating biases, such as base-rate neglect (Tversky and 
Kahneman, 1974), which is particularly relevant in medical testing.
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population while some susceptible agent may be mistakenly isolated. 
I find that false negatives are detrimental as they always raise the 
SS prevalence of unhealthy agents. False positives, instead, can lower 
disease prevalence and even improve welfare in the population.
Endemic SS. Given some arbitrary test 𝜎, an Endemic SS exists if and 
only if 

𝑅0 =
𝛼𝛽(𝜎𝑛|𝐴 + 𝜎𝑝|𝐴 𝛾) + (1 − 𝛼)𝛽 𝛾

𝜌
> 1. (21)

In this case, there exists an Endemic SS where the prevalence of 
unhealthy agents (𝐼∗𝜎 ) and the activity level of negative individuals (𝑞∗𝜎 )
solve the following system 
⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝐼 =
(1 − 𝛼)

[

𝛽(𝛾 + 𝛼𝜎𝑛|𝐴 (𝑞 − 𝛾)) − 𝜌
]

(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))

𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
) (

𝛾 + 𝛼𝜎𝑛|𝐴 (𝑞 − 𝛾)
)

− 𝜌 (𝑞 − 𝛾)
(

𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴
) ;

𝐼 =
(1 − 𝛼) (1 − 𝑞)

[

𝜎𝑛|𝑆 (𝜎𝑛|𝑆 𝑞 + 𝜎𝑝|𝑆 𝛾)
]

(1 − 𝑞)
[

(𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴)(𝑞 𝜎𝑛|𝑆 + 𝛾 𝜎𝑝|𝑆 )
]

+ (1 − 𝛼)𝜎𝑛|𝑆 𝑐 𝜌
.

(22)

The LHS of condition (21) is lower than the LHS of condition (10), 
since 𝜎𝑛|𝐴 + 𝜎𝑝|𝐴 𝛾 < 1. Thus, mass testing and isolation policies 
reduce the basic reproduction number of a disease, the more so the 
more accurate are tests at screening asymptomatic carriers. When tests 
produce no false negatives (i.e., when 𝜎𝑝|𝐴 = 1), we have that 𝑅0 =
(𝛽 𝛾)∕𝜌 and the presence of asymptomatic carriers does not prevent the 
early containment of an outbreak.

If 𝑅0 > 1, then there exists an Endemic SS. I apply the same 
restrictions as in the model without testing. Thus, I consider only sets 
of parameters such that, in the model without testing, an Endemic 
SS where 𝑞∗ ≥ max{𝛾, .5} exists. As previously observed, if such an 
Endemic SS exists, then it is unique, which allows to obtain sharper re-
sults. Proposition  3 summarizes the impact of mass testing and isolation 
policies.

Proposition 3.  Mass testing and isolation policies reduce the SS preva-
lence of unhealthy agents.

Define function 𝑓𝜎 (𝑞) and 𝑔𝜎 (𝑞) by the first and second lines of the 
RHS of Eq.  (22). For every 𝑞 > 𝛾, these curves lie below 𝑓 (𝑞) and 𝑔(𝑞), 
and therefore the new intersection point lies to the south of the old one, 
which implies a reduction in the prevalence of unhealthy agents.

Fig.  6 illustrates the results for partially informative tests with 𝜎𝑝|𝐴 =
.8 and 𝜎𝑝|𝑆 = .2. In any period, 80% of asymptomatic carriers and 
20% of susceptible agents are isolated. This reduces the risk in the 
environment and the spread of the disease (𝐴 to 𝐵). Still, lower risk in 
the environment induces negative agents to increase their activity level. 
Note that the system reaches point 𝐶, rather than 𝐶 ′. All else equal, 
testing decreases the level of social activity of those individuals who are 
not in isolation. Indeed, as already pointed out below Eq. (13), testing 
negative implies a higher chance of being susceptible than simply being 
healthy, and therefore an higher likelihood of being at risk of infection.
Testing and Increment in Infections. By curbing the spread of a 
disease, mass testing and isolation measures improve public health. 
Still, they may raise the risk in the environment. To see this, suppose 
that 𝜎𝑝|𝑆 > 0 and 𝛼 ≈ 0. Then, the numerator of expression (15) is 
the same as that of (3), but the denominator is much smaller. Since 
there are no asymptomatic carriers, testing results only in the isolation 
of some susceptible agents, which increases the probability of meeting 
one who is instead infected and therefore the risk in the environment.

However, as shown in Eq.  (19), the increment in infections is deter-
mined by the product of the environment risk and the average activity 
level of susceptible individuals. False positives decrease susceptible 
individuals’ average activity level to 𝜎𝑛|𝑆 𝑞𝑡 + 𝜎𝑝|𝑆 𝛾, and the overall 
effect on the increment in infections is negative. Without asymptomatic 
carriers, mass testing and isolation policies are in fact equivalent to a
lockdown, reducing infections not by restraining infected agents (who 
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Fig. 6. Impact of mass testing and isolation policies on endemic SS. For 
the same set of parameters of Fig.  4, and given partially informative tests 
with 𝜎𝑝|𝐴 = .8 and 𝜎𝑝|𝑆 = .2, this diagram compares the Endemic SS without 
and with mass testing and isolation policies. The latter is characterized by the 
intersection point between curve 𝑓𝜎 (𝑞) and 𝑔𝜎 (𝑞), as defined by the first and 
second lines of the RHS of (22). The two curves lies below 𝑓 (𝑞) and 𝑔(𝑞) for 
every 𝑞 > 𝛾 and so the Endemic SS with mass testing and isolation policies 
(point 𝐶) always features a lower prevalence of unhealthy agents than the 
Endemic SS without (point 𝐴).

are indeed already into quarantine), but by limiting the exposure of 
those who are instead at risk of infection.
False Negative and False Positive Results. The environment risk is 
always minimized with fully informative tests, which correctly diagnose 
the status of every healthy individual (i.e., tests with 𝜎𝑝|𝐴 = 𝜎𝑛|𝑆 = 1). 
These tests achieve perfect sorting : every infectious agent is placed into 
quarantine, whereas all susceptible individuals are free to choose their 
own activity level.

Tests producing less false negatives are more accurate at detecting 
asymptomatic carriers and isolating them. This decreases the risk in the 
environment and the increment in infections. Thus, lower rates of false 
negatives always reduce the prevalence of unhealthy agents.6

Proposition 4.  Lower rates of false negatives reduce the SS prevalence of 
unhealthy agents.

This is not necessarily true for tests producing less false positives. By 
inducing the isolation of a lower share of susceptible individuals, they 
increase their average activity level, which can lead to an higher incre-
ment in infections and to an increase in the prevalence of unhealthy 
agents.

Proposition 5.  Lower rates of false positives can increase the SS preva-
lence of unhealthy agents.

Fig.  7 shows how the intersection point in Fig.  6 moves north when 
tests do not produce any false positive, leading to a higher prevalence 
of unhealthy agents (𝐴 to 𝐵).7 The lockdown effect thus operates also 
in the presence of asymptomatic carriers. By mechanically restraining 
the activity level of those individuals at risk of infection, false positive 

6 Fig.  11 in Appendix  A shows that the intersection point in Fig.  6 moves 
to the south-east when tests do not generate any false negative.

7  Two competing effects imply that the activity level is almost unchanged, 
in this example. Lower risk in the environment induces negative agents to 
raise their activity level. However, lower rates of false positives increase the 
likelihood of being at risk of infection, conditional on a negative result, which 
has the opposite effect.
8 
Fig. 7. Impact of lower rate of false positives on endemic SS. The diagram 
shows that the Endemic SS that arises when testing does not produce any false 
positives (point 𝐵) is associated to a higher prevalence of unhealthy agents 
than the Endemic SS that arises when testing has a rate of false positives equal 
to 20%.

results reduce disease transmission and lead to a lower SS prevalence 
of unhealthy agents.

False Positives and Welfare. Designing tests that produce false pos-
itives can thus improve public health. Inducing the isolation of some 
susceptible agents reduces their risk of infection and can ultimately 
lower the prevalence of unhealthy agents. Yet, these individuals would 
prefer to engage in their optimal level of activity, rather than being put 
into quarantine. Hence, I ask whether this extreme measure to limit 
contagion can improve welfare. This might be the case if the benefits 
in terms of public health outweigh the costs imposed on false positive 
agents.

Consider some arbitrary test 𝜎. The population’s welfare in the 
Endemic SS is given by 

𝑊 ∗
𝜎 = −

[

𝐴∗
𝜎

(

𝜎𝑛|𝐴
(1 − 𝑞∗𝜎 )

2

2
+ 𝜎𝑝|𝐴

(1 − 𝛾)2

2

)

+

+𝑆∗
𝜎

(

𝜎𝑛|𝑆
(1 − 𝑞∗𝜎 )

2

2
+ 𝜎𝑝|𝑆

(1 − 𝛾)2

2

)

+ 𝑐 𝐼∗𝜎
]

.

(23)

Let testing be fully informative. Raising the rate of false positives 
induces the isolation of an ever larger share of susceptible agents, thus 
reducing the expected utility within this group. However, this policy 
can also lower disease prevalence, and hence increase the size of this 
compartment.

The transmission rate (𝛽) and severity (𝑐) of a disease are of par-
ticular importance for the result. The higher the former, the greater 
the impact on public health of isolating an additional susceptible 
individual. The higher the latter, the greater the impact on welfare. 
Fig.  12 in Appendix  A shows that welfare decreases monotonically as 
the rate of false positives increases when (𝛽, 𝑐) = (0.7, 2), while the 
opposite holds when (𝛽, 𝑐) = (0.8, 3). Fig.  8 suggests that there exist 
threshold values of (𝛽, 𝑐) beyond which the effect of false positives on 
welfare changes sign, shifting from strictly negative to strictly positive.

The threshold displayed in Fig.  8 is a curve. For (𝛽, 𝑐) = (0.805, 2)
and (0.746, 3), welfare decreases as the rate of false positives rises. Still, 
the opposite holds when (𝛽, 𝑐) = (0.7755, 2.5), which lies on the segment 
connecting these two points. Consequently, the region in the (𝛽 − 𝑐) 
space where higher false positive rates lead to decreased welfare is 
convex, which highlights the role of the interaction between (𝛽) and 
(𝑐) in shaping the observed outcomes.
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Fig. 8. Welfare effect of increasing the rate of false positives. For the same 
set of parameters of Fig.  4, and given 𝜎𝑝|𝐴 = 1, the diagram shows the effect 
of raising the rate of false positives on welfare, for every (𝛽, 𝑐) ∈ [.7, .8]× [2, 3]. 
The graph indicates the existence of threshold values for (𝛽, 𝑐) at which the 
monotonic relationship between the rate of false positives and welfare reverses 
direction.

It is well known that social distancing during an epidemic generates 
positive externalities. By reducing their level of social activity, indi-
viduals not only lower their own risk of infection but also reduce the 
likelihood of transmitting the disease to others. This externality implies 
that, in decentralized settings, there is typically underinvestment in 
social distancing relative to what a benevolent social planner would 
choose. This is a key reason why false positives can improve welfare: 
by mechanically reducing the activity level of susceptible individuals, 
false positive test results narrow the gap between the actual level of 
social distancing and the socially optimal one.

The strength of this positive externality, and so the potential welfare 
gains from false positive test results, plausibly increases with both the 
transmission rate and the severity of the disease. All else equal, the 
higher the former, the more an increase in social activity levels raises 
infection rates. The higher the latter, the more ‘‘costly’’ a symptomatic 
infection becomes. By lowering social activity in situations where the 
negative externality from interaction is greatest, false positive results 
contribute more substantially to mitigating the spread and impact of 
the disease.

6. Conclusion

In this paper, I built on the epidemic model in Chen et al. (2011) to 
study the role of asymptomatic carriers in infectious disease transmis-
sion. Then, I incorporated diagnostic testing into the model to evaluate 
the effectiveness of mass testing and isolation policies.

First, I considered the case in which health authorities lack testing 
to identify asymptomatic carriers, and can only rely on symptom-
based strategies to limit transmission. I showed how, in this case, 
asymptomatic carriers can be crucial for an epidemic to take root in 
the population and an infectious disease to become endemic. Then, I 
considered their impact on the long-run evolution of an epidemic. I 
characterized the Steady State of my model, which admits a simple 
graphical representation, and showed how a small fraction of asymp-
tomatic infections can significantly raise the long-run prevalence of 
unhealthy agents.

Given the shortcomings of symptom-based strategies in the presence 
of asymptomatic carriers, I introduced mass testing and isolation poli-
cies. I assumed health authorities test all healthy agents in every period, 
9 
Fig. 9. Convergence to disease-free SS. When 𝛼 = 0, we have 𝑅0 = .9. As 
shown in the above simulation, the system converges to the Disease-Free SS.

and isolate those that test positive. I let testing produce false negative 
and false positive results to check their implications.

First, I found that mass testing and isolation policies improve public 
health. Then, I considered the impact of false negative and false positive 
results. I showed that false negative results are always detrimental 
during an epidemic, as they raise the SS prevalence of unhealthy 
agents, but false positive results can actually improve public health. 
By forcing some susceptible agents to isolate, false positive results 
decrease the average activity level of those individuals who are at risk 
of infection, thus limiting transmission and the long-run prevalence of 
unhealthy agents. I illustrate how false positive results can improve the 
population’s welfare when the infectious disease has high severity and 
transmissibility.

A limitation of my results is that they hold for parameter values such 
that 𝑞∗ > max{𝛾, 5}. Thus, for epidemics such that healthy individuals’ 
SS level of social activity does not fall below 50% of normal levels, 
or below the activity level of symptomatic agents in quarantine if 
higher. As discussed in Section 3.2, this restriction is plausible and 
rarely violated in practice. Nevertheless, it limits the generality of my 
findings.
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Appendix A. Figures

The following graphs assume that (𝜌, 𝛽, 𝛾, 𝛼, 𝑐) = (.2, .7, .3, .6, 2) and 
𝐼0 = .01, unless specified otherwise.

Figs.  9 and 10 provide an example for . Suppose that 𝜌 = .25. If 
𝛼 = 0, then 𝑅0 = .84 and the system converges to the Disease-Free 
SS. This is shown in Fig.  9, where I let 𝐼0 = .1 to better illustrate the 
result. As the share of recovered individuals in each period exceeds 
that of new infections, the prevalence of infected agents 𝐼𝑡 decreases 
over time until it reaches zero. Healthy individuals’ activity levels 
𝑞𝑡 initially decrease slightly, to then converge and return to 𝑞 = 1. 
Symptoms-based detection and isolation strategies effectively contain 
the outbreak, preventing epidemic escalation and allowing individuals 
to resume full activity.

If 𝛼 = .6, then 𝑅0 ≈ 2 and the system converges to an Endemic-
SS (Fig.  10). When there are asymptomatic carriers, symptoms-based 
detection and isolation strategies are not effective at containing an 
outbreak. The disease becomes endemic and people engage in social 
distancing.
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Fig. 10. Convergence to endemic SS. When 𝛼 = .6, we have 𝑅0 = 2.16, 
instead. As shown in the above simulation, the system converges to an Endemic 
SS..

Fig. 11. Impact of lower rate of false negatives on endemic SS. The 
diagram shows that the Endemic SS to which the epidemic converges to 
when testing does not produce any false negatives (point B) is associated with 
a lower prevalence of unhealthy agents than the Endemic SS to which the 
epidemic converges when testing has a 20% rate of false negatives.

Fig.  11 show the effect on the Endemic SS of a reduction in the rate 
of false negatives, from 𝜎𝑝|𝐴 = .8 to 𝜎′𝑝|𝐴 = 1. By inducing the isolation 
of a larger share of asymptomatic carriers, less false negative results 
lower the environment risk and, in turn, the prevalence of unhealthy 
agents (B). However, individuals respond by raising their activity level, 
which dampens the effect.

Finally, given 𝜎𝑝|𝐴 = 1, Fig.  12 plots the SS prevalence of unhealthy 
agents and total welfare in the population for every 𝜎𝑝|𝑆 ∈ [0, 1). As 
shown in the left panel, increasing the rate of false positives reduces 
welfare when 𝛽 = .7. However, as the right panel shows, the opposite 
holds when 𝛽 = .8.

Appendix B. Proofs

Model without testing

Proposition 1. (i) Assume that an Endemic SS exists. Then, there exists 
a vector of values (𝐼, 𝐴, 𝑆, 𝜇, 𝑞, 𝜆) such that 𝐼 > 0 and (𝐼𝑡, 𝐴𝑡, 𝑆𝑡, 𝜇𝑡, 𝑞𝑡, 𝜆𝑡)
= (𝐼, 𝐴, 𝑆, 𝜇, 𝑞, 𝜆) in some period 𝑡 implies that (𝐼𝑠, 𝐴𝑠, 𝑆𝑠, 𝜇𝑠, 𝑞𝑠, 𝜆𝑠) =
(𝐼, 𝐴, 𝑆, 𝜇, 𝑞, 𝜆) in all periods 𝑠 > 𝑡. This must satisfy the following 
equations simultaneously 

𝜌𝐼 = (1 − 𝛼)𝑆 𝑞 𝜆 𝛽, (24)
10 
𝜌𝐴 = 𝛼 𝑆 𝑞 𝜆 𝛽, (25)

𝑆 = 1 − 𝐼 − 𝐴, (26)

1 − 𝜇 = 1 − 𝐴
1 − 𝐼

, (27)

𝑞 = 1 − 𝑐 (1 − 𝛼) (1 − 𝜇)𝜆 𝛽, (28)

𝜆 =
𝛾 𝐼 + 𝑞 𝐴

𝛾 𝐼 + 𝑞 (1 − 𝐼)
. (29)

First, notice that:
(a) If 𝛼 = 1, then 𝐼 = 0 and 𝑞 = 1, which follows directly from (24) 

and (28).
(b) We must have 𝐼 ≠ 1. Otherwise, 𝑆 = 0 and Eq.  (24) never holds.
(c) We must have 𝑞 ≠ 0. Otherwise, 𝐼 = 𝐴 = 0 by Eqs.  (24) and (25), 

which implies that 𝜆 = 0 and therefore, by Eq.  (28), that we must 
have 𝑞 = 1.

By point (a), I consider only 𝛼 ∈ [0, 1). Next, I derive expression 𝑔(𝑞)
and 𝑓 (𝑞) in system (11). To obtain the former, I apply the following 
steps: 

1 − 𝜇 = 1 − 𝐼 − 𝐴
1 − 𝐼

= 𝑆
1 − 𝐼

⟶ 𝑆 = (1 − 𝜇)(1 − 𝐼). (30)

Substituting in (24) and isolating (1 − 𝜇)𝜆𝛽 gives 

(1 − 𝜇)𝜆𝛽 =
𝜌𝐼

(1 − 𝛼)(1 − 𝐼)
1
𝑞
. (31)

Notice that the denominator on the RHS is never equal to zero, by 
points (a) to (c). Substituting in expression (28) yields 

𝑞 = 1 − 𝑐 (1 − 𝛼)
𝜌 𝐼

(1 − 𝛼)(1 − 𝐼)
1
𝑞
. (32)

Multiplying both sides by 𝑞 and rearranging terms, I can write 

𝑞(1 − 𝑞) =
𝑐 𝜌 𝐼
(1 − 𝐼)

. (33)

Finally, by inverting the previous equation, I obtain the expression 
for 𝑔 (𝑞).

Now, I derive 𝑓 (𝑞). Dividing Eq. (25) by (24), I can write 𝐴 =
𝛼

1 − 𝛼
𝐼 . Then, substituting in (29) gives 

𝜆 =
(1 − 𝛼) 𝐼 𝛾 + 𝛼 𝐼 𝑞

(1 − 𝛼) (𝛾 𝐼 + 𝑞 (1 − 𝐼))
(34)

and 𝑆 =
(1 − 𝛼) − 𝐼

1 − 𝛼
. Substituting these two expressions into (24) I can 

write 
(1 − 𝛼) (𝛾 𝐼 + 𝑞 (1 − 𝐼))𝜌𝐼 = ((1 − 𝛼) − 𝐼)𝑞𝛽 ((1 − 𝛼) 𝐼 𝛾 + 𝛼 𝐼 𝑞), (35)

which can be written as 
𝐼2

[

𝑞
(

𝛼𝛽𝑞 + (1 − 𝛼)𝛽𝛾 − (1 − 𝛼)𝜌
)

+ (1 − 𝛼)𝜌𝛾
]

=

𝐼
[

(1 − 𝛼)𝑞
(

𝛼𝛽𝑞 + (1 − 𝛼)𝛽𝛾 − 𝜌
)]

.

(36)

Dividing both sides by 𝐼 > 0 and rearranging terms yields the 
desired expression.

(ii) To see that condition (10) is necessary, substitute Eq. (35) into 
(24). Then, multiplying both sides by the denominator gives 
(𝐼𝛾 + (1 − 𝐼)𝑞) 𝜌𝐼 = 𝑆𝑞𝛽 ((1 − 𝛼)𝛾 + 𝛼𝑞) 𝐼 (37)

Subtracting 𝑆 𝑞𝜌𝐼 on both sides, I can write 
𝜌𝐼(𝐼𝛾 + (1 − 𝐼)𝑞 − 𝑆𝑞) = 𝑆𝑞(𝛽(1 − 𝛼)𝛾 + 𝛽𝛼𝑞 − 𝜌)𝐼. (38)

The LHS is always positive, since 1 − 𝐼 ≥ 𝑆. Hence, the RHS must 
also be positive, which implies condition (10). In this case, curve 𝑓 (𝑞)
is positive at 𝑞 = 1 and the two curves intersect at some 𝐼∗ > 0. □
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Fig. 12. Impact of higher rate of false positives on welfare. Given 𝜎𝑝|𝐴 = 1, the graphs plot the SS prevalence of unhealthy agents and total welfare in the 
population for every 𝜎𝑝|𝑆 ∈ [0, 1). As shown in the left panel, increasing the rate of false positives reduces welfare when 𝛽 = .7. However, as shown in the right 
panel, the opposite holds when 𝛽 = .8.
Corollary 1. This immediately follows, since 𝑅0 increases in parameter 
𝛼. □

Proposition 2. To prove the result I must show that, relative to the case 
in which 𝛼 = 0, there must exist some 𝛼 ∈ [0, 1] at which the prevalence 
is higher. Changing 𝛼 does not affect parabola 𝑔(𝑞), but moves curve 
𝑓 (𝑞). This must shift upwards at some 𝛼 ∈ [0, 1], which requires the 
numerator of its derivative to be positive. Thus, 

(

𝛽𝑞2 − 2𝛼𝛽𝑞2 − 2𝛽𝑞𝛾 + 2𝛼𝛽𝑞𝛾 + 𝑞𝜌
)

×

×
(

𝛼𝛽𝑞2 + 𝛽𝑞𝛾 − 𝛼𝛽𝑞𝛾 − 𝑞𝜌 + 𝛼𝑞𝜌 + 𝜌𝛾 − 𝛼𝜌𝛾
)

−
(

𝛽𝑞2 − 𝛽𝑞𝛾 + 𝑞𝜌 − 𝜌𝛾
)

×

×
(

𝛼𝛽𝑞2 − 𝛼2𝛽𝑞2 + 𝛽𝑞𝛾 − 2𝛼𝛽𝑞𝛾 + 𝛼2𝛽𝑞𝛾 − 𝑞𝜌 + 𝛼𝑞𝜌
)

> 0.

(39)

This can be simplified and written as 
(1 − 𝛼)𝛽𝑞𝜌𝛾 − 2𝛼(1 − 𝛼)𝛽𝑞𝜌𝛾 + (1 − 𝛼)𝛽𝑞𝜌𝛾 + 2𝛼(1 − 𝛼)𝛽𝑞2𝜌−

−2𝛼(1 − 𝛼)𝛽2𝑞2𝛾 − (1 − 𝛼)2𝛽2𝑞𝛾2 − (1 − 2𝛼)𝛽𝜌𝛾2 − 𝛼2𝛽2𝑞3 > 0.
(40)

I notice that the derivative with respect to 𝛼 of the LHS of this latter 
inequality is negative. Indeed, its numerator can be written as 

−2(𝑞 − 𝛾)
[

2 𝛼 𝛽 𝑞 𝜌 + 𝛽 𝜌 𝛾 + 𝛽 𝑞 (𝛽 𝛾 − 𝜌) + 𝛼 𝛽2 𝑞 (𝑞 − 𝛾)
]

< 0. (41)

Hence, if the inequality in (40) holds for some 𝛼 > 0, then it also 
holds at 𝛼 = 0. Therefore, it is necessary that (40) holds for 𝛼 = 0. 
Substituting, I obtain

𝛽𝑞∗0𝜌𝛾 + 𝛽𝑞∗0𝜌𝛾 − 𝛽2𝑞∗0𝛾
2 − 𝛽𝜌𝛾2 > 0

𝑞∗0𝜌 + 𝑞∗0𝜌 − 𝛽𝑞∗0𝛾 − 𝜌𝛾 > 0

𝜌(𝑞∗0 − 𝛾) − 𝑞∗0 (𝛽𝛾 − 𝜌) > 0

(42)

𝛽𝛾 − 𝜌 <
𝜌(𝑞∗0 − 𝛾)

𝑞∗0
→

𝛽𝛾
𝜌

< 1 +
𝑞∗0 − 𝛾
𝑞∗0

. (43)

If condition (43) holds, then 𝑓 (𝑞) shifts upward when 𝛼 increases 
from 𝛼 = 0 to some 𝛼 > 0. Thus, curve 𝐼∗𝛼  is non-monotonic in parameter 
𝛼. □

B.1. Model with testing

The derivation of system (22) and inequality (21), which describe 
the Endemic SS in the model with testing and the condition for its 
existence, is very similar to that for the model without testing. In an 
Endemic SS, it must be that 
𝜌𝐼 = (1 − 𝛼)𝑆(𝜎𝑝|𝑆 𝛾 + 𝜎𝑛|𝑆 𝑞) 𝜆 𝛽, (44)

𝜌𝐴 = 𝛼 𝑆 (𝜎 𝛾 + 𝜎 𝑞) 𝜆 𝛽, (45)
𝑝|𝑆 𝑛|𝑆

11 
𝑆 = 1 − 𝐼 − 𝐴, (46)

𝜇𝑒 =
𝐴

1 − 𝐼
, (47)

𝜇𝑛 =
𝜇𝑒 𝜎𝑛|𝐴

𝜇𝑒 𝜎𝑛|𝐴 + (1 − 𝜇𝑒) 𝜎𝑛|𝑆
(48)

𝑞 = 1 − 𝑐 (1 − 𝜇𝑛) (1 − 𝛼) 𝜆 𝛽, (49)

𝜆 =
( 𝛽(𝛾 𝐼 + 𝐴 (𝛾 𝜎𝑝|𝐴 + 𝑞 𝜎𝑛|𝐴))
𝛾 (𝐼 + 𝑆𝜎𝑝|𝑆 + 𝐴𝜎𝑝|𝐴) + 𝑞 (𝑆 𝜎𝑛|𝑆 + 𝐴𝜎𝑛|𝐴)

)

. (50)

We have

1 − 𝜇𝑒 =
1 − 𝐼 − 𝐴
1 − 𝐼

→ 1 − 𝜇𝑛 =

1 − 𝐼 − 𝐴
1 − 𝐼

𝜎𝑛|𝑆
1 − 𝐼 − 𝐴
1 − 𝐼

𝜎𝑛|𝑆 + 𝐴
1 − 𝐼

𝜎𝑛|𝐴
.

Since 𝐴 = 𝛼
1 − 𝛼

𝐼 , we have 1 − 𝐼 − 𝐴 =
(1 − 𝛼) − 𝐼

1 − 𝛼
. Substituting in 

(48) gives 

1 − 𝜇𝑛 =
((1 − 𝛼) − 𝐼)𝜎𝑛|𝑆

((1 − 𝛼) − 𝐼)𝜎𝑛|𝑆 + 𝛼𝜎𝑛|𝐴
. (51)

Since 𝑆 = 1− 𝐼 −𝐴 = ((1 − 𝛼) − 𝐼)∕(1 − 𝛼), substituting in expression 
(44) gives 

𝜌𝐼 = ((1 − 𝛼) − 𝐼)
[

𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞
]

𝜆 𝛽, (52)

by which 

𝜆 𝛽 =
𝜌𝐼

((1 − 𝛼) − 𝐼)(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)
. (53)

Substituting (51) and (53) into expression (49) yields 

𝑞 = 1 −
((1 − 𝛼) − 𝐼) 𝜎𝑛|𝑆 (1 − 𝛼) 𝑐 𝜌 𝐼

((1 − 𝛼) − 𝐼)(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)[((1 − 𝛼) − 𝐼)𝜎𝑛|𝑆 + 𝛼𝐼𝜎𝑛|𝐴]
. (54)

Isolating 𝐼 on the LHS and collecting terms gives the expression for 
𝑔𝜎 (𝑞).

Next, I show how to derive 𝑓𝜎 (𝑞). Substituting 𝑆 = ((1−𝛼)−𝐼)∕(1−𝛼)
and 𝐴 = (𝛼∕(1 − 𝛼))𝐼 , the risk in the environment 𝜆 can be written as

𝜆(𝐼) =
((1 − 𝛼)𝐼𝛾 + 𝛼𝐼(𝜎𝑝|𝐴𝛾 + 𝜎𝑛|𝐴𝑞))

𝛾((1 − 𝛼)𝐼 + 𝛼𝐼𝜎𝑝|𝐴 + ((1 − 𝛼) − 𝐼)𝜎𝑝|𝑆 ) + 𝑞(𝛼𝐼𝜎𝑛|𝐴 + ((1 − 𝛼) − 𝐼)𝜎𝑛|𝑆 )
.

Substituting 𝜆(𝐼) into expression (52), multiplying both sides by the 
denominator of the RHS and collecting 𝐼 on both sides gives 
𝐼2

[

𝛽(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))(𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾)) − 𝜌(𝑞 − 𝛾)(𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴)
]

=

= 𝐼
[

(1 − 𝛼)
[

𝛽(𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾)) − 𝜌
]

(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))
]

.
(55)
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Dividing both sides by 𝐼 > 0 and rearranging terms yields 𝑓𝜎 (𝑞).
To see that condition (21) is necessary for the Endemic SS to exist, 

substitute 𝜆(𝐼) into expression (44) and multiply both sides by the 
denominator of the RHS. Rearranging terms on the LHS, we can write 

𝜌𝐼
[

((1 − 𝛼) − 𝐼)(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞) + 𝛼𝐼(𝜎𝑝|𝐴𝛾 + 𝜎𝑛|𝐴𝑞) + (1 − 𝛼)𝐼𝛾
]

=

= (1 − 𝛼)𝑆(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)
[

(1 − 𝛼)𝛽𝛾 + 𝛼𝛽(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)
]

𝐼
(56)

Then, subtracting (1 − 𝛼)𝑆(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)𝐼𝜌 on both sides, we can 
write 
𝜌𝐼

[

((1 − 𝛼) − 𝐼)(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞) + 𝛼𝐼(𝜎𝑝|𝐴𝛾 + 𝜎𝑛|𝐴𝑞) + (1 − 𝛼)𝐼𝛾
]

−

−(1 − 𝛼)𝑆(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)𝐼𝜌 =

= (1 − 𝛼)𝑆(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)
[

(1 − 𝛼)𝛽𝛾 + 𝛼𝛽(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞) − 𝜌
]

𝐼

(57)

Substituting 𝑆 = ((1 − 𝛼) − 𝐼)∕(1 − 𝛼) on the LHS, the equality can 
be written as 

𝜌𝐼
[

𝛼𝐼(𝜎𝑝|𝐴𝛾 + 𝜎𝑛|𝐴𝑞) + (1 − 𝛼)𝐼𝛾
]

=

= (1 − 𝛼)𝑆(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞)
[

(1 − 𝛼)𝛽𝛾 + 𝛼𝛽(𝜎𝑝|𝑆𝛾 + 𝜎𝑛|𝑆𝑞) − 𝜌
]

𝐼.
(58)

The LHS is always positive. The RHS is positive if and only if the 
term inside the square brackets is positive for some 𝑞 ∈ [0, 1]. Since this 
increases in parameter 𝑞, we can let 𝑞 = 1 and we obtain the condition 
in (21). □

Proposition 3. If 𝑔𝜎 (𝑞) ≤ 𝑔(𝑞) and 𝑓𝜎 (𝑞) ≤ 𝑓 (𝑞) for every 𝑞 ≥ 𝛾 and 
the intersection point between 𝑓 (𝑞) and 𝑔(𝑞) lies weakly to the right of 
𝑞 = .5, then the intersection point between the two curves with testing 
and isolation policies always lies to the south of the intersection point 
between the two curves with no testing.

First, I show that: (i) if 𝑞 ≥ 𝛾, then we have 𝑔𝜎 (𝑞) ≤ 𝑔(𝑞). This holds 
iff 

(1 − 𝛼) (1 − 𝑞)
[

𝜎𝑛|𝑆 (𝑞 𝜎𝑛|𝑆 + 𝛾 𝜎𝑝|𝑆 )
]

(𝑞 (1 − 𝑞) + 𝑐 𝜌)

≤

𝑞 (1 − 𝑞)
[

(1 − 𝑞)
[

(𝜎𝑛|𝑆 − 𝛼 𝜎𝑛|𝐴)(𝑞 𝜎𝑛|𝑆 + 𝛾 𝜎𝑝|𝑆 )
]

+ (1 − 𝛼)𝜎𝑛|𝑆 𝑐 𝜌
]

.

(59)

where I multiplied both sides by the product of the denominators. 
Simplifying term (1 − 𝑞), taking everything to the RHS and collecting 
terms gives 
𝑞(1 − 𝑞) (𝑞 𝜎𝑛|𝑆 + 𝛾 𝜎𝑝|𝑆 )

[

𝜎𝑛|𝑆 − 𝛼 𝜎𝑛|𝐴 − (1 − 𝛼)𝜎𝑛|𝑆
]

+

+(1 − 𝛼) 𝜎𝑛|𝑆 𝜎𝑝|𝑆 (𝑞 − 𝛾) 𝑐 𝜌 ≥ 0.
(60)

The first line is always positive, since 𝜎𝑛|𝑆 > 𝜎𝑛|𝐴 by the assumption 
of informative tests. The second is non-negative whenever 𝑞 ≥ 𝛾, which 
proves the result.

Next, I show that (ii) 𝑓𝜎 (𝑞) ≤ 𝑓 (𝑞) for all 𝑞 ≥ 𝛾. Hence, that the 
following inequality always holds 

(1 − 𝛼) 𝑞 (𝛼 𝛽 𝑞 + (1 − 𝛼) 𝛽 𝛾 − 𝜌)
𝑞(𝛼 𝛽 𝑞 + (1 − 𝛼) 𝛽 𝛾) − (1 − 𝛼) 𝜌 (𝑞 − 𝛾)

−

(1 − 𝛼)
[

𝛽(𝛾 + 𝛼𝜎𝑛|𝐴 (𝑞 − 𝛾)) − 𝜌
]

(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))

𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
) (

𝛾 + 𝛼 𝜎𝑛|𝐴 (𝑞 − 𝛾)
)

− 𝜌 (𝑞 − 𝛾)
(

𝜎𝑛|𝑆 − 𝛼 𝜎𝑛|𝐴
) ≥ 0.

(61)

Bringing the two terms to a common denominator, the inequality 
can be expressed as 𝑁

𝐷
≥ 0, where the denominator 𝐷 is given by

𝐷 = 𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
) (

𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾)
)

[𝑞 (𝛼𝛽 𝑞 + (1 − 𝛼)𝛽 𝛾) − 𝜌(1 − 𝛼)(𝑞 − 𝛾)] −

−𝜌(𝑞 − 𝛾)(𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴) [𝑞 (𝛼𝛽 𝑞 + (1 − 𝛼)𝛽 𝛾) − 𝜌(1 − 𝛼)(𝑞 − 𝛾)] ;

and the numerator 𝑁 by
𝑁 = 𝑞 (𝛼𝛽𝑞 + (1 − 𝛼)𝛽𝛾 − 𝜌)

[

𝛽(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))(𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾))−

𝜌(𝑞 − 𝛾)(𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴)
]

−

−
[

𝛽
(

𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾)
)

− 𝜌
] (

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
)

[𝑞 (𝛼𝛽𝑞 + (1 − 𝛼)𝛽𝛾) −
(1 − 𝛼)𝜌(𝑞 − 𝛾)] .

12 
Next, I show that both 𝐷 and 𝑁 are always positive when 𝑞 > 𝛾
and 𝛽𝛾

𝜌
> 1, which implies that the inequality in (61) always holds. I 

start from the denominator 𝐷. Since 𝜎𝑛|𝑆 > 𝜎𝑛|𝐴 by the assumption of 
informative experiments, to show that this is positive, one must shows 
that the following two inequalities hold.

𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
) (

𝛾 + 𝛼𝜎𝑛|𝐴(𝑞 − 𝛾)
)

− 𝜌(𝑞 − 𝛾)(𝜎𝑛|𝑆 − 𝛼𝜎𝑛|𝐴) > 0

𝑞 (𝛼𝛽𝑞 + (1 − 𝛼)𝛽𝛾) − 𝜌(1 − 𝛼)(𝑞 − 𝛾) > 0.

The former inequality can be rewritten as

𝛽𝛾2 + 𝛼𝛽𝜎𝑛|𝑆𝜎𝑛|𝐴(𝑞 − 𝛾)2 + (𝛽𝛾 − 𝜌)𝜎𝑛|𝑆 (𝑞 − 𝛾) + 𝛼(𝛽𝛾 + 𝜌)𝜎𝑛|𝐴(𝑞 − 𝛾) > 0.

This shows that the former inequality always holds given the restric-
tions on the parameters, as 𝑞 ≥ 𝛾 and 𝛽𝛾 > 𝜌. The second inequality can 
be written as

𝑞 (𝛼𝛽𝑞 + (1 − 𝛼)(𝛽𝛾 − 𝜌)) + (1 − 𝛼)𝜌𝛾,

which shows that also the latter inequality always holds, since 𝛽𝛾 > 𝜌. 
Hence, we have 𝐷 > 0.

Next, I consider the numerator 𝑁 . After lengthy algebra, this can be 
rewritten as
𝑁 = (𝑞 − 𝛾) 𝜌[𝛼𝛽𝛾𝜎𝑛|𝐴(𝑞 − 𝛾)(1 − 𝜎𝑛|𝑆 ) + 𝛼𝑞(𝜎𝑛|𝑆 − 𝜎𝑛|𝐴)𝜌 + 𝛼2𝛽𝜎𝑛|𝐴(1 − 𝜎𝑛|𝑆 )(𝑞 − 𝛾)2+

+(1 − 𝛼)(1 − 𝜎𝑛|𝑆 )𝛾 (𝛽𝛾 − 𝜌) + 𝛼𝛽𝑞𝛾(1 − 𝜎𝑛|𝑆 )].

This demonstrates that also the numerator is always (weakly) pos-
itive under the restrictions on the parameters, since 𝑞 ≥ 𝛾, 𝛽𝛾 > 𝜌, 
𝜎𝑛|𝑆 ≤ 1 and 𝜎𝑛|𝑆 ≥ 𝜎𝑛|𝐴. Hence, since the denominator is always 
positive and the numerator always non-negative, we have 𝑁

𝐷
≥ 0, 

which implies that the inequality in (61) always hold and thus that 
statement (ii) is true. Together with statement (i), this proves the result 
in . □

Proposition 4. The lower the rate of false negatives, the lower the 
SS prevalence of unhealthy agents and the higher the level of public 
activity. Indeed, a decrease in the rate of false positives shifts 𝑓𝜎 (𝑞) and 
𝑔𝜎 (𝑞) downward, which implies that the new intersection point lies to 
the south-west of the old one.

The numerator of the derivative of 𝑔𝜎 (𝑞) with respect to 𝜎𝑝|𝐴 is 

−𝛼 (1 − 𝛼) (1 − 𝑞)2 𝜎𝑛|𝑆
(

𝜎𝑛|𝑆 𝑞 + 𝜎𝑝|𝑆 𝛾
)2

, (62)

which is always negative. The numerator of the derivative of 𝑓𝜎 (𝑞) with 
respect to 𝜎𝑝|𝐴 is given by 

(

𝛽(𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾))𝛼(𝑞 − 𝛾) − 𝛼𝜌(𝑞 − 𝛾)
)

×
(

(1 − 𝛼)
[

𝛽
(

𝛾 + 𝛼 𝜎𝑛|𝐴 (𝑞 − 𝛾)
)

− 𝜌
](

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
))

−

−𝛼(1 − 𝛼)𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
)

×
[

𝛽
(

𝛾 + 𝜎𝑛|𝑆 (𝑞 − 𝛾)
)(

𝛾 + 𝛼 𝜎𝑛|𝐴 (𝑞 − 𝛾)
)

− 𝜌 (𝑞 − 𝛾)(𝜎𝑛|𝑆 − 𝛼 𝜎𝑛|𝐴)
]

.

(63)

It turns out that most terms can be simplified and that we remain 
with −𝜌2 < 0. Hence, given two tests 𝜎 and 𝜎′ such that 𝜎𝑝|𝑆 = 𝜎′𝑝|𝑆 and 
𝜎𝑝|𝐴 > 𝜎′𝑝|𝐴, we must have that 𝐼∗𝜎 < 𝐼∗𝜎′  and 𝑞∗𝜎 > 𝑞∗𝜎′ . □

Proposition 5. The result follows from the case highlighted in Fig.  6, 
where the unhealthy prevalence increases following a reduction in the 
false positives rate.

Data availability

No data was used for the research described in the article.
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