A Novel Al Temporal-Spatial Analysis Approach
for GNSS Error Source Recognition

Kit-Lun Tong*, Yi Ren*, Xin Shif, Zhaohui Chen T, Xu Zhang*
*School of Computing Sciences, University of East Anglia, Norwich, United Kingdom
TCHC Tech Limited, Norwich, United Kingdom
*{k.tong, e.ren, x.zhang27} @uea.ac.uk, ‘L{xin_shi, zoe_chen } @chcnav.com

Abstract—Global navigation satellite systems (GNSS) error
source analysis is crucial for identifying factors that affect the
accuracy of positioning, navigation, and timing services (PNT).
Detecting and correcting these factors is essential for enhancing
overall service accuracy. Traditional methods primarily focus
on surface-level receiver output data, which may overlook
underlying factors. Additionally, analyzing daily generated data
is expensive and requires advanced proficiency. This research
uses a novel temporal-spatial analysis approach to analyze GNSS
error sources with artificial intelligence (AI) model support.
We develop a noise segments dataset categorized into six types,
with a particular focus on ionospheric disclosure, a deeper-level
receiver data calculating PNT result. By applying clustering
combined with a z-score normalization filter (ZFilter), we
identify highly consistent noise segments in daily data, which
aids in understanding potential causes. We then employ a multi-
model deep learning approach to classify the noise segments,
as opposed to relying on a single baseline model. Additionally,
we experiment with semi-supervised learning through pseudo-
labeling to improve classification performance. Our experiments
show that our classifier achieves approximately 84% accuracy
in identifying the noise segments.

Index Terms—GNSS error source, PNT, Clustering, Deep
learning

I. INTRODUCTION

Global navigation satellite systems (GNSS), including the
global positioning system (GPS), have been developed to offer
comprehensive positioning, navigation, and timing (PNT)
services with worldwide coverage. In these systems, L-band
radio-frequency signals are transmitted from satellites and
received by ground-based GNSS receivers. By processing
these signals, the receivers calculate their distances from the
observed satellites, enabling them to determine an accurate
PNT solution. Nevertheless, the accuracy of PNT solutions
heavily depends on the quality of the GNSS observable, which
is affected by various GNSS error sources [1]. These include
satellite clock and ephemeris errors, atmospheric delays, cycle
slips, interference and jamming, etc. All of these errors can
be expressed in units of distance, and must be detected and
corrected to improve accuracy [2].

Conventional error detection methods encounter several
limitations. Firstly, methods such as those described by [3]
[4] typically focus on analyzing common receiver output
parameters like elevation, observation data, signal-to-noise
ratio (S/N), and PNT results. However, these methods are
superficial compared to a more comprehensive analysis of the

parameters involved in calculating PNT [5]. Next, the PNT
system generates an enormous volume of data daily, making
it highly challenging to extract consistent error segments. It
is essential to identify these segments for diagnosing the root
causes of errors and enhancing the overall accuracy of the
PNT system [6] [7]. Lastly, when applying AI models for
noise classification tasks, traditional works such as [3] and
[8] primarily employ a single baseline model on mono-angle
instances, which may be limited in their ability to capture the
complexity of diverse noise types.

In this paper, we propose an artificial intelligence (Al)-
based temporal-spatial approach for the automatic recognition
of noise types in segments using a multi-model classification
strategy. However, training these models typically requires
manual labeling of noise data, which is both costly and
demands significant expertise. To address this, we perform
clustering to group highly similar noise segments, then apply
a z-score normalization filtering (ZFilter) strategy to select the
tightest cluster. This approach not only extracts segments with
high consistency but also assists in building a pseudo-labeled
dataset for model training.

We make the following contributions. First, rather than
analyzing surface-level receiver data, we focus on ionospheric
misclosure [9] [10], a deeper-level PNT parameter, to develop
new GNSS error detection methods. We categorize six types
of noise in our dataset, each representing different poten-
tial errors. Next, to analyze noise segments, we employ a
temporal-spatial analysis approach that considers both time
sequences and value distributions. Then, to identify consistent
error segments within large volumes of daily data, we apply
clustering, using the ZFilter strategy to pinpoint segments that
closely resemble our reference records. Meanwhile, instead
of relying on a single baseline model for automatic noise
classification, we use multiple models to extract deep features
and build a hybrid model for the classification task. Finally,
to reduce the need for manually labeled data, we experiment
with generating a pseudo-labeled dataset from the clustering
model, aiming to enhance classification performance through
semi-supervised learning.

The rest of this paper is organized as follows. Related
works are surveyed in Section II. Section III introduces the
noise types in our dataset and the Al temporal-spatial analysis
approach. Section IV presents our evaluation results, followed
by conclusions and future work in Section V.

0: Convergence 1: Disturbance 2: Divergence

0.0{——
0.0 =—— N .. Y
i 2 . ‘!' '1_
- / 1 l\- s -0.1 3
0.1 7 ._J .,M. .
/ A
© »f 0 LN W N
2-0.2 4 Lodyd | 02 W
2 -0. -1 PLAL | %
E & . k]
s 00 01 02 03 00 05 10 15 00 01 02 03
g 3: Outliers 4: Shimmering 5: Step
-§ 49, o ==t 0 -“yp_rzw)f{;-n-\ 0.0 { == =
o
-1 _
g 3 0.2
- A
2 2 9 -0.4
-3 -
1 W.‘\ o6 //a_
e | -4 ~
0.00 0.05 010 0.15 0 1 2 3 0.0 0.5 1.0

Hours

Fig. 1. The noise types in the GNSS error source dataset.
ITI. RELATED WORKS

Traditional research (e.g., [3], [4], [8], [11]) commonly
considers surface-level data output by the receiver. The au-
thors in [3] utilized elevation, S/N, and user speed as features
in their machine-learning models to characterize multipath
error distributions, [4] employed S/N for jamming detection,
[8] analyzed signal strength and pseudorange residue for
multipath detection, and [11] perform signal analysis for
radio frequency interference (RFI). However, the surface-level
data often provide an incomplete view compared to deeper-
level data like [12], which employs the cross ambiguity
function to detect GNSS spoofing. Here, we consider the
ionosphere misclosure, which is a deeper-level parameter used
to calculate the PNT result.

Previous studies (e.g., [3], [8], [11], [12]) primarily focus
on single baseline models for Al-based classification tasks
in GNSS error analysis. [3] employed a neural network to
classify multipath noise, while [8] utilized a support vector
machine. [11] classified RFI using a convolutional neural
network (CNN). Similarly, [12] used a CNN to identify
spoofing signals and a Gaussian mixture model to cluster and
summarize the number of signals. In this research, we employ
a multi-model classification approach to categorize noise
segments based on different potential causes. Additionally,
we experiment with clustering models using a ZFilter strategy
to identify highly consistent noise segments and generate a
pseudo-labeled dataset.

III. NOISE TYPE AND METHODOLOGY

In this research, we extract noise segments from the iono-
sphere misclosure, which refers to the discrepancies between
the estimations and observations of the regional ionosphere.
The noise segments are derived from data collected over four
days by 53 ground stations and approximately 90 satellite
units, including GPS, Galileo, and Beidou systems. We sum-
marize six types of noise that frequently occur, as illustrated
in Fig. 1. The scale and magnitude of the noise segments vary,
with each type caused by different physical factors. Below,
we present some potential examples:

o Convergence occurs as a result of model recalculation

when tracking is lost or when clock or ephemeris errors
are detected.

TABLE I
CLASS SIZES IN THE GNSS ERROR SOURCE DATASET

Labeled D Unlabeled DV Total
Type (Y) 0 1 2 3 4 5
Size 140 540 504 526 569 515 2114 4906

o Disturbance caused by interference from multiple sys-
tems or jamming by other equipment.

o Divergence arises from a mismatch between the error
model and the observation.

e Outliers may result from incorrect carrier-phase ambigu-
ity fixes.

o Shimmering can occur as a consequence of repeated
carrier-phase ambiguity fixes, especially in the presence
of atmospheric delays.

e Steps caused by cycle slips due to signal delays and
distortions from ionospheric irregularities.

Denote our dataset D = {D;} = {(X;,Y;)} and the index
set I = {il¢ € [0,|D|)}. The dataset D contains the noise
segments X = {X,;} and their corresponding labels ¥ =
{Y;}. Each segment is a sequence X; = (X;[j]|j € [0,]X;]))
consisting of ordered real-valued observations that may have
different lengths, with X;[j] € (—o0,400). We manually
label a subset of the segments by their indices I” C I to
create a labeled dataset D = {D;|i € I}, where the labels
Y; € [0,p) if i € IX, here p = 6 as shown in Fig. 1. The
remaining indices IV = I\I* form an unlabeled dataset
DY = {D;|i € IV}, with labels Y; = —1 if i € IV. Table 1
lists the sizes of each class.

Fig. 2 illustrates our approach, which comprises three key
components: a temporal pipeline for processing 1D sequential
data, a spatial pipeline for handling 2D binary images, and
a main pipeline that integrates both temporal and spatial
information. Each pipeline follows four processing stages:
Stage 1 (S1): preprocessing noise segments of varying sizes
to standardize them into uniform input dimensions for the
models; Stage 2 (S2): constructing a referral distance ma-
trix (RDM) to extract similarity features between segments;
Stage 3 (S3): clustering segments to identify consistent noise
patterns and generate a pseudo-dataset with minimal manual
labeling; Stage 4 (S4): training a classifier to identify different
noise types. In the following sections, we will detail each of
these stages.

A. Preprocessing (S1)

Since the range and length of each noise segment X; can
vary, it is necessary to normalize the range and standardize the
length of the segments to ensure uniform contribution from
each segment and maintain consistent characteristics across
them. Given a sequence s of any size and length, we apply
the min-max normalization to obtain s:

s 85— min(s) 0

maz(s) — min(s)

\ g S1 g S2

S3 1 S4

\Preprocessing; Referral Distance Matrix

Temporal : fiD Sequence |) -
Pipeline i[X7 i Convolution M
' X 2 ’

. Noise Clustering and Pseudo-labeling |

: : L

Main . Noise H" H s |

Pipeline [Segments];[Hlstogram H M H M
' ; :

Noise Classification

R

i A

A
) Pseudo o \ H I [
]}ZFlIter > Labeling)[D][Ext]')[DM H Cls]

H A 4 i
Spatial | 2D Image |:] -
Pipeline ;[XS] :[Sum Poolmg]-)[M]_

y, :

.

Fig. 2. Process pipeline of the temporal-spatial approach.

Furthermore, a uniform function U F’ is defined to standardize
it into a length I

EP(5,1),
LS(3,1),

if |s] < L.
otherwise.

UF(s,l) = { 2

When |s| is shorter than [, edge padding (£ P) will be applied
to extend the sequence. Otherwise, linear spacing (LS) will
be applied to down-sample the sequence. Next, we divide the
process into temporal, spatial, and main pipelines:

1) Temporal Pipeline: To standardize the noise segments
of varying sizes and values, we apply (2) to uniform X;
into sequential data X7 = UF'(X;,128). Therefore, X7 =
{X7[5]}11*® where X7 5llep0,128) € [0,1].

2) Spatial Pipeline: We further transform X into a 2D
space to generate a binary image X7 = {X[h,w]}!28%128
where with height and width indices h € [0,128),w €
[0,128). Each pixel value X;[h,w] € {0,1}, enabling the
extraction of distributional information.:

1, if h= | X7[w] x 127].

0, otherwise.

X;[h,w] = { 3)

3) Main Pipeline: By applying (1) to normalize each X
into X;, a normalized segment set X = {X;} is obtained.

After preprocessing is complete, the min-max normalized
segments X, the temporal segments X7, and the spatial
images X° are ready for the next stage.

B. Referral Distance Matrix (S2)

A global distance matrix compares the distances between
segment pairs as a similarity feature during feature extraction.
However, calculating all distances becomes inefficient when
the dataset is large. We randomly select a subset of segments
from labeled dataset as references D C DL. The RDM
M‘lDlxlDR‘ can then be computed:

M (X, Dist)[i,r] = Dist(X;, XF) 4)

where X is a reference segment, »r € [0,|D*|), and
Dist € {Eucl, DDTW} is the metric used to compare
distances. Depending on the pipelines, we apply either Eu-
clidean distance (Fucl) or derivative dynamic time warping
(DDTW) [13].

1) Temporal Pipeline: We use X7 as the input. We apply
convolution with a kernel ¥ = {1}|1x5 to smooth the
sequence X and further uniform it to)/(?T l1x32 by (2).
Therefore,)/(:T = UF((X] * v)|x7|,32). After that, we
compute the temporal RDM M™ = M ()/(\T ,DDTW) via (4),
using DDTW distance.

2) Spatial Pipeline: We use X° as the input. We apply
sum-pooling (SP) [14] with a kernel of 16 x 16 to illustrate
the distribution of the binary image X, then flatten into

X¢lixea, which X5 = antten<s’j;§f)

). After that, we

compute the spatial RDM M< = M ()/(\g , Eucl) via (4), using
Euclidean distance.

3) Main Pipeline: We directly extract a 10-bin histogram
from X and compute the difference in value distribution using
Euclidean distance.

Hist X;
MH:M({WE"'M},EW). (5)
| X
This is then concatenated with M7™ and M° to obtain the
hybrid RDM M® = [M* M< MT7).
The temporal RDM M7, the spatial M*°, the histogram

RDM M*H, and the hybrid RDM M® are used as inputs for
the remaining stage.

C. Noise Clustering and Pseudo-labeling (S3)

It is necessary to identify consistent noise to ensure ac-
curacy and precision in PNT. However, the daily generation
of large amounts of unlabeled data complicates the analysis
process. By giving a small set of manually labeled examples,
this data can be compared using the clustering approach to
identify similar noise patterns. Additionally, pseudo-labels
could be assigned to the unlabeled data, which would facilitate
further training through semi-supervised learning.

Clustering is performed to group similar segments into
clusters C' = {Cy|k € [0, |C|)} along with the corresponding
index set I}, C I. Here, D; € C, if a segment X; belongs to
the k-th cluster, which implies that ¢ € I}, as well. Note that
each segment belongs to only one cluster but some segments
may not fit into any cluster (i.e. k¥ < 0) and are excluded
from consideration. Moreover, the number of clusters |C|
should be sufficiently large to ensure that the segments within
each cluster are as similar as possible. M™, M*, and M @
are the inputs to the clustering algorithm, generating the

temporal cluster C7, spatial cluster C°, and hybrid cluster
C®, respectively.

To select the clusters with higher consistency segments, we
apply ZFilter to identify more confident clusters. Firstly, the
average intra-cluster distance dj is calculated to assess the
tightness within C}, using the corresponding RDM features

6k _ Zielk EUCZEJ\T[ZL M[Ik?]) (6)
k

where |Ij;| and M[I}] denote the size and centroid of Cj,
respectively. Following this, a z-normalized confidence score
Zy € [0,1] is computed based on ¢y for each Cj, along
with the overall mean p and standard deviation o. The score

Z, = CDF

distribution function. A smaller Zj, indicates that the segments
within the cluster C}, are more similar. Therefore, we can
define a threshold Z’ € [0, 1] to filter the clusters.

A pseudo-labeled dataset D c DY, can also be generated
from unlabeled dataset DY using the ZFilter strategy applied
to the labeled dataset D”, thereby increasing the sample
size during classification model training. For each cluster Cy,
we compute the label score LSk|1xs, which represents the
weightings for each noise type:

LS, = {Zie(lkﬁﬂ—) Y, ifZ, <27 -

[

. is normalized using the cumulative

{0}]1x6, otherwise.

where YZ is the one-hot encoded Y;. Finally, we construct the
pseudo-labeled dataset as 1) = Urepo,optDili € (Ie N Yy}
by ensuring that Z, < Z’ and Y LSj > 0.

Label smoothing will also be applied to adjust the weight-
ing of the pseudo-labels, helping to prevent the model from
becoming overly confident in the predictions:

Y; if i € IX
Vi={(l-a)x*+¢ ifDeDicl, (8)
{0}]1xs> otherwise.
where « is a hyperparameter that determines the amount of
smoothing.

Afterward, we can generate the temporal pseudo-labeled
dataset D7, the spatial pseudo-labeled dataset D5, and the
hybrid pseudo-labeled dataset D‘I’, using C”7, C°, and C?,
respectively.

D. Noise Classification (S4)

Traditionally, the baseline model outputs the classification
result based on individual instances. In a multi-model ap-
proach, the deep features learned by the baseline model are
extracted and concatenated to form a new instance, which is
then used to train a hybrid model.

To classify noise segments, we experimented with various
deep-learning models. Fig. 3 illustrates the architectures of
our baseline models, including the multilayer perceptron
(MLP) in Fig. 3a, long short-term memory (LSTM) Fig. 3b,

a. MLP b. LSTM ~.
Input Hidden Output / / Input Hidden Output
| axizs 1x64 1x6 U328 1xe4 16
ReLU ReLU Softmax tanh RelLU Softmax
Dense Dense Ext Dense Cls LSTM Dense Ext Dense Cls
D O O)
N
© 0O O O
00 O O o o
- - - N N
. : T) :
M O-O O] X; v
: . A\
oo ¢ O . 0
: : Q : :)
: | 8 8 W |
D ¢ __ B0 /
c.CNN
Input Hidden Output
1x64 1x6
RelU Softmax
32x32 16x16 fDense Ext Dense Cls
ReLU CNN ReLU CNN VN
L 4
S Y ()
Xi D D o [\f/]
) A
<Y O
22 2x2 PN -
Max Pooling Max Pooling_Flatten ! \)
X001 NIMENV 3 X11001])

Fig. 3. The baseline classification models.

and CNN in Fig. 3c, designed to process RDM, sequences,
and binary images, respectively. While each model received
different input types and had distinct hidden layer con-
figurations, they all shared a common output structure: a
rectified linear unit (ReLU) activated dense layer serving as a
feature extractor, outputting a list of deep features denoted
as Fuxt|ixeq, followed by a final softmax-activated dense
layer that produces the classification result with probabilities
denoted as Cls|;xg, for each instance input.

Each pipeline utilizes different baseline models. In the
temporal pipeline, we input M7 into the MLP or X7 into
the LSTM, the procedures are referred to as ‘TMLP’ or
‘TLSTM’, respectively. In the spatial pipeline, we input M*
into the MLP or X°¢ into the CNN, referred to as ‘SMLP’
or ‘SCNN’, respectively. In the main pipeline, we input M*
into the MLP, named ‘HMLP’.

To perform temporal-spatial classification with multi-
models, we use the deep features output from the baseline
models: Ezt” from HMLP, Ext™ from TMLP or TLSTM,
and Ext° from SMLP or SCNN. These features are combined
to generate a hybrid deep RDM, denoted as DM ‘I’|‘ D|x|DE|:

DM® = M(X®, Eucl), ©)
where X® = [Ext? | Ext™, Ext*]

Finally, we input DM ® into the MLP model to train a hybrid
classifier, denoted as Cls® as shown in Fig. 2. Combining
the models in Fig. 3, four Cls® are trained: “TMLP_SMLP’,
‘TLSTM_SMLP’, ‘TLSTM_SCNN’, and ‘TMLP_SCNN’.

IV. EVALUATION

The experiment runs on an Ubuntu 18.04 server with an
R9-5950x CPU, 32GB RAM, and RTX3090 GPU. It uses
Python 3.10 and Tensorflow 2.17. The RDM reference sizes
are set to 60. All models in Fig. 3 employ categorical focal
cross-entropy loss. The models are trained for 100 epochs
with restored best weights based on loss.

Baseline Models Hybrid Models

08 0.85
o—F R P a1
‘ é @ e ° .80 o - /’/r = b
' D 3
> - - x- 1 4
9 .- S Lk RN | S &
Co6l! . m™ v 0.75 »:,A ,
SR x> iy
S] L o TMLP Jo
< v TLSTM [0.70{ 4 ¥ +- TMLP_SMLP
05 v v SMLP / TLSTM_SMLP
v -4 SCNN v ~¥ TLSTM_SCNN
p
04l v -m Hmp [0-65 -A TMLP_SCNN
0.2 04 06 02 0.4 0.6
0.801 e = 1
7 ol el I I
07 R Gy v *
e . P
ok 075 A
©0.6 A Lt
A .
g | PSR Sr P ey § UL A
Eosl , m ™ v~ ia A
0. % L7 e TMLP | 65 4
= ¥ TLSTM b o TMLP_SMLP
0.4 g -v SMLP |ggol 4)7 TLSTM_SMLP
Yy -A SCNN y -¥ TLSTM_SCNN
v,
0317 -EHMLP g 55 -A TMLP_SCNN
02 04 06 02 0.4 0.6
Training Size

Fig. 4. The comparison of accuracy and Fl-macro score among baseline
and hybrid models using different training sizes.

In the following section, we first evaluate the noise classi-

fiers, then experiment with noise clustering, and finally test
the classifiers using the pseudo-labeled dataset.

A. Evaluation of Baseline and Hybrid Noise Classification

Fig. 4 presents the average results from 10 trials based
on classification accuracy and Fl-macro score using only
the labeled dataset. To evaluate the minimal manual labeling
condition, the training size ranges from 0.05 to 0.7 of the
labeled dataset, with the rest as the test set. In the baseline
models, TMLP outperforms the others when the training size
is below 0.3 for both metrics. The end-to-end methods, includ-
ing TLSTM and SCNN, demonstrate better performance when
the training size exceeds 0.5, with over 70% accuracy. Among
the hybrid models, the RDM-based model ‘TMLP_SMLP’
leads the others in both metrics, achieving approximately 84%
accuracy and 80% F1-macro score when the training size
increases to 0.7. Meanwhile, the differences of the models di-
minish as the training size increases. Compared to the baseline
models, hybrid models generally outperform by at least 5% in
both accuracy and Fl-macro, demonstrating that multi-model
approaches can enhance classification performance.

Fig. 5 shows the normalized confusion matrices comparing
the true labels with the predicted targets of the hybrid models
when the training size is 0.7. According to the results,
shimmering and step are generally easy for the models to
detect. On the other hand, the predictions for convergence
segments are less accurate due to dataset imbalance. Introduc-
ing data augmentation or Balanced Batch Sampling may help
address this issue. Overall, ‘TLSTM_SCNN’ demonstrates
more balanced predictions across the classes than the other
models.

B. Evaluation of Noise Clustering

Table II presents the results of the clustering experiments
by adjusting Z’. The training size is set to 0.2, and the
testing data is mixed with the unlabeled data to generate
the pseudo-labeling dataset. The evaluation focuses on two

TMLP_SMLP
SR 0.57 0.14 0.16 0.00 0.09

Eg 0.01 0.08 0.06 0.09
R 0.01 0.020.04 0.03

TLSTM_SMLP
0.51 0.13 0.07 0.02 0.13 0. 08

0.01 0.03 0.02 0.16 0.
0.6
0.00 0.090.03 0.04

R 0.00 0.03 0.02 fok:rd 0.02 0.00 0.10 0.02 feX:¥4 0.03 04
E& 0.00 0.07 0.02 0.01 fekei] 0.00 0.06 0.01 0.02 ekt O. 0.2
LR 0.01 0.01 0.01 0.05 0.03 0.01 0.01 0.00 0.01 0.09
. 0.0
0 1 2 3 4 5 0 1 2 3 4 5
<
El TMLP_SCNN TLSTM_SCNN
=
SE 0.36 0.09 0.27 0.00 0.18 0. SR 0.58 0.20 0.09 0.02 0.04 0. -0.8

- 0_020.03 0.01 0.13 0. Al 0.01 0.02 0.01 0.09 O.
06 -0.6
R 0. 0.05 0.04 0. R 0.00 0.05 0.02 0.04 0.

B .00 0.05 0.04 [0.04 0. (ZW 01 0.05 0.03 [(¥&] 0.02 04
02 0.02 0.04 0.01 [JPRR 0.00 0.05 0.01 0.03 [0. 02
P 0.01 0.01 0.02 0.03 0.02 P 0.01 0.00 0.04 0.04 0.05
o 1 2 3 4 5 00 o 1 2 3 4 5 00
Prediction

0: Convergence 1: Disturbance 2: Divergence 3: Outliers 4: Shimmering 5: Step

Fig. 5. Normalized confusion matrices of the hybrid models.

TABLE II
THE COMPARISON OF ACCURACY AND DATA INCREMENT OF CLUSTERING
MODELS.
i Accuracy i Increment
7' Model 3 HDBSCAN Hierarchical ~ KMeans 3 HDBSCAN Hierarchical =~ KMeans
CT 1 0958 0.974 1 L0378 0.526 0.172
01 C° 1 0.992 1 0498 0.535 0.401
cr o 1 0.979 10397 0.543 0.259
cT o 0967 0.95 0916 0523 0.926 0.535
03 C° 1 0973 0.95 0984 | 0689 1.055 0.695
c® or 0971 0.935 1 0512 0.965 0.584
T e Y Y R 088 0897 | 0664 1474 1229
05 C 1 0944 0.867 0.894 1 087 1.659 1.263
c® 10973 0915 0986 0645 1.523 0.896
T cm U eer 086 085 | 0833 2025 2105
07 Cs 1 0892 0.822 0851 1 1132 2.279 2.145
ct o 0942 0.858 0929 1 0815 2.462 1.792
I cT U 0889 079 0795 | 1084 2707 3.087
09 C° i 084 0.78 0765 1 1611 3.32 3.354
c® 0.903 0.828 0.855 1.184 3279 3.145

metrics: the accuracy of the labeled testing data and the
overall increase in the number of generated pseudo-labels.
We test three clustering models: HDBSCAN, hierarchical
clustering, and KMeans. Both hierarchical clustering and
KMeans are configured to cluster the segments into 1000
classes, which is close to the number of clusters generated
by HDBSCAN.

According to Table II, as Z’ increases, the overall number
of pseudo-labels increases, but accuracy decreases. Consid-
ering the clustering models, HDBSCAN is more accurate,
while hierarchical clustering generates more pseudo-labels.
From the perspective of the pipelines, C'® is relatively more
accurate, whereas C° generates more pseudo-labels. Overall,
the noise segments extracted using the clustering method
with ZFilter exhibit greater consistency than those obtained
through classification.

C. Noise Classification Experiment Using Pseudo-Labeling

Fig. 6 displays the experimental results on noise classi-
fication using hybrid models with pseudo-labeling datasets

0.850 a. TMLP_SMLP b. TLSTM_SMLP c. TLSTM_SCNN d. TMLP_SCNN
. - R | Y _IFJ—_;’,_,_‘_!'_T"A_---* "‘__L__”__i:;;.-:x e T -,:;
0.825 0.80 o 0.80 0.80 I Sl o
0.800 ! ~
0.751 0.75 I 0.75 ~=¥
0.775 = Without Pseudo-labeling {1 «- Without Pseudo-labeling /--r/ o Without Pseudo-labeling = Without Pseudo-labeling
0.750 Spatial @ 2'=0.5 0.701 ’g’ Spatial @ Z'=0.5 0707 X Spatial @ 2'=0.5 070 Spatial @ 2'=0.5
' i -V~ Temporal @ Z'=0.5 " -V~ Temporal @ Z'=0.5 7 -v- Temporal @ Z'=0.5 ’ / -v- Temporal @ Z'=0.5
0.7254 / -4 Hybrid @ 2'=0.5 0.65 1 g’ -4 Hybrid @ 2'=0.5 0.65 4 -4 Hybrid @ 2'=0.5 -4 Hybrid @ 2'=0.5
d T T T T T T 0.65 ‘
0.2 0.4 0.6 0.2 0.4 0.6
0.850 0.85 -
O S e — %
0.825 x- x= 0.801 Eae 0.80
% o
g>0.800 A 0754 ¥ 075 #%,
50.775 = Without Pseudo-labeling =« Without Pseudo-labeling X e Without Pseudo-labeling __.f“v,] e Without Pseudo-labeling
go 7501 17 Spatial @ Z'=0.7 0701 /& Spatial @ 2'=0.7 0.70 ;‘ Spatial @ 2'=0.7 0.701 ¢ /I‘ Spatial @ 2'=0.7
! __-" -v- Temporal @ Z'=0.7 §/ -v- Temporal @ Z'=0.7 Py -v- Temporal @ Z'=0.7 41 -v- Temporal @ Z'=0.7
07251 / -k Hybrid @ 2'=0.7 0.65] ¢ -k Hybrid @ 2'=0.7 0.65 7 - Hybrid @ 2'=0.7 0.65 I’ -k Hybrid @ 2'=0.7
. . .
0.2 0.4 0.6 0.2 0.4 0.6 0.2
0.850 E
_ e g
0.825 e 0.804 0.80
0.800 0.75 X o 0.75 v & o
0.775 e Without Pseudo-labeling x7. *- Without Pseudo-labeling x__’/‘. e Without Pseudo-labeling Without Pseudo-labeling
0.750 Spatial @ 2'=0.9 0.709 /7" Spatial @ 2'=0.9 0701 J Spatial @ 2'=0.9 0.70 Spatial @ 2'=0.9
’ i -V - Temporal @ Z'=0.9 X/ -V - Temporal @ Z'=0.9 ..:"4 -V - Temporal @ Z'=0.9 ! -V - Temporal @ Z'=0.9
0.7254 ¢ -& Hybrid @ '=0.9 0.651 -& Hybrid @ '=0.9 0.65 x” -& Hybrid @ 2'=0.9 0.65 ./ -& Hybrid @ 2'=0.9
‘ .
0.2 0.4 0.6 0.2 0.4 0.2 0.4 0.6 0.2 0.4 0.6

06 3
Training Size

Fig. 6. Experimental results on noise classification with pseudo-labeling.

based on HDBSCAN. The « in (8) is set to 0.2. We compare
Z" values of 0.5, 0.7, and 0.9. As shown in the results,
pseudo-labeling enhances the performance of TMLP_SMLP
and TLSTM_SMLP by approximately 3% when the training
size is low. Notably, when the training size is less than 0.2,
the accuracy of TMLP_SMLP increases from around 78% to
over 82% when Z’' = 0.5. Generally, the performance of DT
and D® outperforms DS, When comparing the case where
7' = 0.9 with the others, it generates more pseudo-labels,
but this results in reduced performance due to the inclusion
of more inaccurate data. The results indicate that ZFilter
effectively selects the most similar noise segments, enhancing
the model’s performance when the labeled dataset is small.
To further improve performance, incorporating additional
unlabeled data can help generate more pseudo-labels.

V. CONCLUSIONS

In conclusion, we developed an innovative Al approach
utilizing temporal-spatial features for GNSS error source
analysis. Our noise segments dataset is based on regional
ionospheric misclosure, which is derived from deep-level
receiver data rather than the traditional surface-level data. To
handle the large volume of daily data, we applied clustering
along with the ZFilter to extract consistent noise segments,
which also creates a pseudo-labeled dataset to improve per-
formance by around 3% in low-training-data scenarios. Our
hybrid classification model achieved an accuracy of 84% in
identifying noise types within segments, outperforming the
common baseline models by at least 5%.

There are several potential future research directions. More
deep-level parameters, such as orbit clock update residuals
and tropospheric misclosure, can be considered to achieve a
deeper characterization of error sources, including multipath
interference, tropospheric delays, and receiver clock errors.
Error forecasting can be performed by considering additional

factors like ionospheric activity and tropospheric conditions.
Consistent noise data can also be used to validate and enhance
existing GNSS error models.

REFERENCES

[11 A. Leick, L. Rapoport, and D. Tatarnikov, GPS satellite surveying,
4th ed. Wiley, 2015.

[2] P. Teunissen and O. Montenbruck, Springer Handbook of Global
Navigation Satellite Systems. Springer, 2017.

[3] H. No and C. Milner, “Machine learning based overbound modeling
of multipath error for safety critical urban environment,” in Proc. 34th.
ION GNSS+ 2021, 10 2021.

[4] S.Jada, M. Psiaki, S. Landerkin, S. Langel, A. Scholz, and M. Joerger,
“Evaluation of PNT situational awareness algorithms and methods,” in
Proc. 34th. ION GNSS+, 2021, pp. 816-833.

[5] W. Stock, R. T. Schwarz, C. A. Hofmann, and A. Knopp, “Survey on

opportunistic PNT with signals from LEO communication satellites,”

IEEE Commun. Surv. Tutor., pp. 1-1, 2024.

J. Zidan, O. Alluhaibi, E. I. Adegoke, E. Kampert, M. D. Higgins, and

C. R. Ford, “3D mapping methods and consistency checks to exclude

GNSS multipath/NLOS effects,” in Proc. UCET, 2020, pp. 1-4.

[71 R. Sun, L. Fu, Q. Cheng, K.-W. Chiang, and W. Chen, “Resilient
pseudorange error prediction and correction for GNSS positioning in
urban areas,” IEEE Internet Things J., vol. 10, pp. 9979-9988, 2023.

[8] L.-T. Hsu, “GNSS multipath detection using a machine learning ap-
proach,” in Proc. 20th ITSC, 2017, pp. 1-6.

[9] S. Schaer, G. Beutler, L. Mervart, M. Rothacher, and U. Wild, “Global
and regional ionosphere models using the GPS double difference phase
observable,” in Proc. IGS Workshop, 1995, pp. 77-92.

[10] Z. Nie, P. Zhou, F. Liu, Z. Wang, and Y. Gao, “Evaluation of orbit,
clock and ionospheric corrections from five currently available SBAS
L1 services: Methodology and analysis,” Remote Sens., vol. 11, no. 4,
2019.

[11] A. Elango, S. Ujan, and L. Ruotsalainen, “Disruptive GNSS signal
detection and classification at different power levels using advanced
deep-learning approach,” Proc. ICL-GNSS, pp. 1-7, 2022.

[12] P. Borhani-Darian, H. Li, P. Wu, and P. Closas, “Detecting GNSS
spoofing using deep learning,” EURASIP J. Adv. in Sig. Pr., vol. 2024,
no. 1, 1 2024.

[13] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in
Proc. SDM, 2001.

[14] N. Akhtar and U. Ragavendran, “Interpretation of intelligence in CNN-
pooling processes: a methodological survey,” Neural Comput. and
Appl., vol. 32, no. 3, pp. 879-898, 7 2019.

[6

=

