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Problem definition. This paper studies an on-demand service sharing problem, motivated by emerging
operating models in ride-sharing, food delivery and made-to-order manufacturing. Time-sensitive customers
arrive dynamically onto a platform with heterogenous willingness to pay and private information. The
platform can serve each customer individually or pool customers together, giving rise to interdependen-
cies between customers and over time. This goal is to optimize who to serve, when, and at what price.
Methodology /results. We formulate a dynamic allocation and pricing mechanism to maximize the plat-
form’s expected discounted profits, subject to incentive compatibility and individual rationality constraints.
We prove that the problem can be decomposed via dynamic programming, based on the novel notion of
collective virtual value defined as the marginal revenue that the platform can extract from all customers.
The optimal mechanism follows a simple, easily-implementable index rule: service is provided whenever the
collective virtual value exceeds a threshold that decreases with the number of available suppliers. Man-
agerial implications. Service sharing enables temporal discrimination: the platform provides immediate
or delayed services based on customers’ own willingness to pay but also on the time of their requests and
demand from other customers. In practice, on-demand service sharing can be managed via a dynamic menu
to offer differentiated service levels and prices, trading off cost-minimization, demand-supply management,
and discriminatory objectives. Our results show that even simple dynamic menus can outperform bench-

marks based on posted prices, and can lead to win-win outcomes for the platform and consumers.
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1. Introduction

The rise of digital platforms has led to new operating models based on on-demand service sharing
across service and manufacturing domains. Instead of serving each customer individually, some
platforms can provide shared services at no, or moderate, cost increases.

EXAMPLE 1 (ON-DEMAND URBAN MOBILITY). Ride-pooling operators offer shared trips to cus-
tomers traveling along similar routes. Similarly, food delivery companies can pool orders to min-
imize trips to the kitchens or the stores. Shared services create economies of scale by relying on
multi-customer routes, but may also increase wait times to enable customer pooling. This tension
has historically created difficulties for ride-pooling providers to offer attractive service offers.!

! see, e.g., https://www.theatlantic.com/technology /archive/2022/07 /uberx-share-carpooling-ride-app-cost /661483 /,
https://www.bloomberg.com/news/articles/2023-05-11/lyft-will-discontinue-pooled-rides-roll-out-new-features
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EXAMPLE 2 (MADE-TO-ORDER MANUFACTURING). In sectors such as automobile, fashion and
home design, made-to-order production allows customization while reducing inventories. These
operations need to determine when to process orders to balance short lead times via immediate
order processing, versus efficiency and sustainability gains obtained via batching orders.

These examples are all different: shared services may or may not be capacitated; sharing may or
may not create inconvenience for customers; shared services may or may not come at extra costs for
the platform; etc. Yet, all share two core features: customers request services dynamically, and the
operator can serve each customers individually or together. Thus, the platform needs to determine
who to serve, when and at what price. These decisions need to balance three objectives: (i) cost
minimization (sharing can create economies of scale), (ii) demand-supply management (sharing
can save capacity to serve future demand), and (iii) price discrimination (sharing adds a degree of
freedom to tailor service offers, wait times and prices across heterogeneous customers).

This paper proposes a dynamic allocation and pricing mechanism for on-demand service shar-
ing. Time-sensitive customers arrive stochastically with heterogeneous willingness to pay and pri-
vate information. The platform can provide individual or shared services. This creates a trade-off
between holding customers in queue to leverage future sharing opportunities versus providing
timely services upon customer arrivals—potentially at a higher price. We design the most general
direct mechanism in this environment: customers reveal their valuation upon arrival, and the plat-
form optimizes an allocation and payment rule subject to incentive compatibility and individual
rationality constraints. This can equivalently be interpreted as the platform offering a dynamic
menu of differentiated service offerings and prices, each option being tailored to an agent type

We first derive insights in a two-customer setting (Section 3). This model approximates instances
where a small pool of customers can share a service, such as ride-pooling and some last-mile delivery
operations. In Section 4, we discuss managerial insights and practical implications; we also study
extensions with supply-side restrictions, and with added cost to the platform and added disutility
to customers from shared services. We then generalize the problem with an unlimited number of
customers and suppliers (Section 5); to retain tractability in a stationary environment, we assume
that each service is uncapacitated. This model approximates instances where service can be shared
by a larger group of customers, such as some last-mile deliveries, and made-to-order manufacturing.

This environment features a mechanism design problem with perishable non-rival goods and cost
externalities. Perishability stems from the on-demand environment and customers’ time-sensitivity.
Non-rivalry stems from the sharing option: serving a customer does not preclude serving others.
Cost externalities reflect the economies of scale resulting from shared services. In this environment,
on-demand service sharing creates interdependencies across customers and over time, in that the

platform specifies a service offer to any customer contingent on future demand realizations—that is,
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on all possible request times and valuations of future customers. In turn, the platform’s subsequent
decisions need to comply with the level of service promised to earlier customers. To circumvent
this technical challenge, we identify structural features of the optimal allocation and pricing rule
to decompose the platform’s problem into a sequence of sub-problems via dynamic programming.

Our main technical result is that the platform’s service decisions are governed by the collective
virtual value, which we define as the surplus that the platform can extract from all customers
present at any time in an incentive-compatible manner. This notion generalizes that of virtual
value from Myerson (1981) with perishable non-rival goods. Our result uncovers that the collective
virtual value provides a sufficient statistic to capture the demand-side history of the system. In the
two-customer setting, we show it via an explicit case analysis; in the more stationary case, we prove
that the optimal mechanism can be decomposed via dynamic programming with a state space
comprising the collective virtual value and the number of suppliers. This decomposition reveals
that the optimal allocation rule follows a simple and easily-implementable index rule: the platform
serves all customers with a positive virtual value each time the collective virtual value exceeds a
threshold, which decreases with the number of available suppliers. The collective virtual value can
potentially be applied to other dynamic allocation environments where time-sensitive agents can
be served jointly, such as made-to-order manufacturing, cloud computing or inventory bundling.

Service sharing leads to two opposite effects: it can increase wait times, as the platform can
hold customers in queue to pool them with future customers; but it yields free-riding benefits,
as customers with moderate willingness to pay would not have been served by themselves but
can now receive a shared service. Still, sharing is not blindly leveraged, in that the platform may
strategically reject requests from customers with low willingness to pay to charge a higher price to
other customers. The optimal mechanism leverages service sharing for temporal discrimination by
providing immediate vs. delayed services based on customers’ willingness to pay and the system’s
history. As opposed to classical dynamic pricing in which customers can only be served immediately
(Stokey 1979), sharing enables the platform to strategically delay service to some customers until
they can be pooled with other customers or until more suppliers become available. In the extension
where sharing comes at an extra cost or a smaller utility (Section 4.3.2), the mechanism combines
discrimination in terms of service timing and service type (individual vs. shared service).

The inter-customer and inter-temporal dependencies underlying the optimal mechanism give rise
to a collective dynamic pricing structure. Specifically, the service received by any customer and
the corresponding payment do not merely depend on the customer’s own willingness to pay, but
also on the time of the request and demand from other customers. All else equal, a customer is
more likely to receive a service if their own willingness to pay is larger but also if other customers

have a higher willingness to pay; moreover, a customer is more likely to receive a service if other
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customers have been waiting for a shorter shorter amount of time. Notably, expected wait times
and payments depend on the state of the system, leading to non-monotonicities—a customer with
a higher valuation can wait longer and/or be charged a lower price than another one.

In practice, the mechanism can be implemented via a menu of service offers dynamically updated
when customers and suppliers arrive onto the platform. For instance, the menu could include an
immediate service at a high price and several sharing options corresponding to different wait times
and prices (e.g., high-priority, medium-priority and low-priority offers). We conduct a comprehen-
sive performance assessment showing that even a discrete approximation of the optimal menu can
result in significant profit upsides versus benchmark posted-price mechanisms; moreover, a welfare
analysis suggests that it can increase total surplus and even create win-win outcomes for the plat-
form and consumers. Ultimately, this paper suggests that on-demand platforms can leverage service
sharing strategically to provide differentiated service guarantees, wait times and prices—balancing

cost minimization, demand-supply management and discriminatory objectives.

2. Literature Review

On-demand platforms. An extensive literature studies on-demand platforms (Hu 2019). For
instance, Cachon et al. (2017) compared static and dynamic pricing. Taylor (2017) modeled a
strategic queuing setting where customers balance prices and wait times. Hu and Zhou (2022) and
Chen and Hu (2020) incorporated demand-supply matching into pricing and service. Other balanc-
ing mechanisms include spatial pricing (Bimpikis et al. 2019) and vehicle repositioning (Braverman
et al. 2019). On-demand operations have also been studied in assemble-to-order manufacturing,
albeit without customer incentives and differentiated offers (Xu and Li 2007, Yu et al. 2024).

Several studies have focused on on-demand service sharing in ride-pooling. One body of work
developed optimization algorithms to group riders together and assign them to drivers, trading off
service quality, in-vehicle detours, and passenger walking (Lobel and Martin 2024, Zhang et al.
2023, Martin et al. 2021). More closely related to our paper, Hu et al. (2020) showed that revenue-
maximizing platforms may induce fewer shared rides than welfare-maximizing outcomes. Yan et al.
(2020) studied a dynamic waiting mechanism that varies waiting and walking before dispatch. Ke
et al. (2020) optimized monopoly pricing for individual and pooling services to avoid the wild
good chase phenomenon. Jacob and Roet-Green (2021) designed a two-option menu with distinct
prices for individual rides and for delayed or shared rides in a queuing environment with strategic
suppliers. Wang and Zhang (2022) jointly optimized posted prices for individual and shared services
along with driver wages, based on their synergies. Taylor (2024) generalized that model with
network effects and a disutility for sharing and uncovered surprising interaction effects between

shared-ride efficiencies, customers’ time sensitivities, and labor costs.
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Recently, Karaenke et al. (2023) designed ex-post prices for individual and shared services, based
on the actual cost of the pools. Similarly, Yan et al. (2024) proposed adaptive prices that vary
depending on the ex-post efficiency of the match. As in our setting, Yan et al. (2024) consider
time-sensitive customers, heterogeneous willingness to pay, and private information. Our paper
characterizes the optimal dynamic mechanism in this environment, which would be implemented

via a dynamic menu of individual and shared service options rather than posted prices.

Mechanism design. Our paper relates to mechanism design with heterogeneous, time-sensitive
customers and private information. Several studies designed static mechanisms in queuing envi-
ronments with price- and time-sensitive customers. Afeche (2013) identified strategic delays to
prioritize impatient customers and delay patient customers for discriminatory purposes. Afeche and
Mendelson (2004) characterized revenue-maximizing and socially optimal mechanisms in a priority
auction under a generalized delay cost structure. Katta and Sethuraman (2005) and Afeche and
Pavlin (2016) optimized scheduling policies and menus of prices and lead times in a setting with
discrete customer types, heterogeneous valuations and heterogeneous delay costs. They found that
pooling multiple customer types into a single service class can be optimal to manage lead time
differentiation. Maglaras et al. (2017) extended strategic delays to multi-server queues.

Our paper also considers a revenue maximization setting with heterogeneous valuations, customer
choice, and service design. In our setting, the latter component involves optimizing the timing
of individual versus shared services, as opposed to queue priority classes. Moreover, we propose
a dynamic mechanism, which optimizes a probabilistic pricing and allocation rule based on the
state of the system. Dynamic mechanism design has been applied to capacity planning (Oh and
Ozer 2013), online advertising (Balseiro et al. 2021), corporate social responsibility (Wang et al.
2016), carpooling (Amin et al. 2023), etc. In traditional dynamic monopoly pricing, the optimal
price path remains constant over time (Stokey 1979). However, the firm can leverage service timing
as a discriminatory lever under varying demand (Board 2008), heterogeneous price-sensitive and
time-sensitive customers (Besbes and Lobel 2015), and differentiated time preferences (Golrezaei
et al. 2018). Dynamic menus of prices and lead-times have been proposed in queuing systems,
using an aggregate demand function (Celik and Maglaras 2008), a two-class model (Ata and Olsen
2013), and a welfare-maximization objective (Akan et al. 2012). Motivated by “wait and save”
offerings in ride-sharing, Abhishek et al. (2019) proposed a dynamic menu of prices and wait times
to manage demand-capacity imbalances and customer heterogeneity. Our paper identifies service
sharing as a new lever to induce temporal discrimination by serving some customers immediately

and individually but providing delayed, shared services to others.
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Non-rival goods. Service sharing creates a non-rival environment because consumption does
not preclude consumption by customers. The management of public goods involves non-rival goods
with non-excludability (see, e.g., Samuelson 1954, Bergstrom et al. 1986, Andreoni 1990). In our
setting, however, the platform can exclude some customers from the service. Dreze (1980) and
Moulin (1994) designed a mechanism to optimize the allocation and production of non-rival goods
subject to partial or full exclusion, such as membership clubs, software and cable TV. Maniquet and
Sprumont (2004, 2005) addressed issues of fairness in this context. Our problem involves allocating

perishable non-rival goods stemming from on-demand services and time-sensitive customers.

3. Model with Two Customers and Unrestricted Supply Capacity

We first study a model with two customers (agents) to isolate the trade-off between the cost-
minimization and discrimination. From the revelation principle, it is without loss of generality to
consider an incentive-compatible direct mechanism, in which each agent reports private information
and the platform designs service options for each one (Myerson 1981). This can be interpreted as

the platform offering a menu of options designed for each agent type. All proofs are in EC.1.

3.1. Model

Environment. We consider a continuous-time horizon with discount rate r > 0. Two agents
arrive dynamically onto a platform to request a service. Agent 1 arrives at time 0, and Agent 2
arrives at time 7 > 0 following an exponential distribution with rate A € ®,. We define the type
of each agent as their valuation for an immediate service. Both agents are risk neutral and time-
sensitive, with decay rate 6 > 0. Thus, if Agent ¢ = 1,2 arrives onto the platform at time 7; with
type 0; and is served at time t > 7;, they derive a discounted utility of e~?(*~7)0, at time ¢, or
e~ (rH)(E=7)0, at time 7,. Agent types realize from a common continuous distribution f(-) over [6, 6],
with cumulative distribution function F'(-). The distribution is publicly known, but each agent’s

type is private information. We assume that f(-) satisfies the monotone hazard rate condition.
ASSUMPTION 1. The hazard rate function, %, s non-decreasing in 0.

The platform can serve agents individually or together, at cost ¢ > 0. The cost-minimization
objective creates incentives to hold Agent 1 in queue to provide a shared service, whereas the
discriminatory objective creates incentives to provide differentiated services to charge higher prices
to high-valuation customers. This section relies on three assumptions: (i) two suppliers are available
on the platform at time 0; (ii) service sharing induces no disutility; and (iii) service sharing induces
no extra cost for the platform. We relax these assumptions in Section 4.3.

Definition 1 introduces the notion of wvirtual value, defined as the surplus that can be extracted
from an agent of type # in an incentive-compatible mechanism (Myerson 1981). This can also be

interpreted it as an agent-specific marginal revenue curve (Bulow and Roberts 1989).
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DEFINITION 1. The virtual value of an agent of type 6 is given by ¢(6) =60 — %9()9)

We denote 6y = inf {6 €[0,0] | () >0} and 0. = inf{6€[0,0] | p(d) >c}. For clarity, we
assume that 6, € (6,0) and 0, € (0,0), so ©(6,) =0 and ¢(6.) = c.
REMARK 1. In the absence of the sharing option, an agent of type 6 receives an immediate

service if 6 > 6, (at price 6.) and no service otherwise (Stokey 1979).

Decisions. The platform commits to a mechanism at time ¢t = 0, which specifies an allocation
and a payment rule to Agent 1 at t =0 and a subsequent allocation and pricing rule for Agent 2
at t =7 (Figure 1). Since agents are risk neutral, we define an expected payment at the time of
arrival—we provide later on an equivalent payment rule satisfying ex post individual rationality.

— Agent 1 reports their type #; at time ¢ = 0; the mechanism specifies an expected payment

p1(0;) and a time 7' (6;) when Agent 1 is served individually if Agent 2 has not arrived yet.

— Agent 2 reports their type 6 at time 7 > 0; the mechanism specifies an expected pay-

ment pj(01,02). If 7>T1(61) (i.e., Agent 1 has left), the mechanism specifies Ty (61, 62) such
that Agent 2 is served at time 7+ T35 (0, 6,). Otherwise, the mechanism specifies 77 (0;,6,),
T37(01,05), and T7,(6:,0,), such that both agents are served together at time 7+ T7,(01,02),
Agent 1 is served individually at time 7+ 77 (0y,0,), and Agent 2 is served individually at
time 7+ Ty (61,60-). For consistency, we impose that 77 (01,60,) = oo or T7,(0;,605) = oo, and

that Ty (601,6,) = 0o or T}, (0;,60;) = oo (i.e., each agent can be served at most once).

Agent 1 reports $
01 T1(61)
l 0 T

................................................................................................................................................................... > Agent 2 arrives at T
Platform decisions:

and reports 02

p1(01), T1(01) T <Ti(01) Ti(61) <7
Time 0 Agent 1 remains on the platform Agent 1 has already been served
! 1
Platform decisions: Platform decisions:
T7(61,02),T12(01,02), T3 (01,02),p2 (01,02) T3 (01,02),p3(61,62)

Figure 1 Sequence of events. Components specific to Agent 1 (resp. Agent 2, both) in blue (resp. red, purple).

The platform’s commitment creates inter-agent and inter-temporal dependencies, because the
allocation and pricing rule offered to Agent 1 needs to account for all possible realizations of
uncertainty (i.e., arrival time 7 and type 63). Vice versa, the allocation and pricing rule offered to

Agent 2 needs to be consistent with the promises made to Agent 1 at time ¢t =0.

Payoffs. We denote by U;(6;) the expected discounted payoff of Agent 1 at time ¢ =0, and by

B1(0;) the expected discount factor when Agent 1 receives a service. These are given by:

Ui(61) =0151(601) —p1(01), where: (1)
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T0(61) 7
51(01) :ef(r+6+)\)T1(91) +/ 1(01 A6)\7—/ (e_(7'+6)(T+T{2(91,92)) +6—(7»+6)(T+Tf(91,92))) f(92)d02d7_
0

9

The first term of 31(60;) captures the cases where Agent 1 is served at T;(6;) before Agent 2 arrives.
The second term captures instances where Agent 2 arrives before T} (6,); it accounts for whether
Agent 1 is served individually at 77 (61, 602) or together with Agent 2 at T7,(61,60,), while taking the
expectation over all possible arrival times 0 <7 <7Tj(6;) and over all possible types 6, of Agent 2.
Similarly, let Uj(0y,02) denote the expected discounted payoff of Agent 2 at time ¢t = 7, with
B3(01,05) tracking the expected discount factor at time T7,(6;,02) if Agent 2 receives a shared

service or at time Ty (0;,0,) if Agent 2 receives an individual service.
U3 (601,0) = 0533 (01, 02) — p3 (61, 62), where 5] (6;,0,) = e~ "TOTH2(0002) 4 o= (b0 T (0002 (9)

Profits. Let II7(0;) denote the platform’s expected discounted profit upon Agent 2’s arrival. It

is defined as the payment minus the discounted cost, taken in expectation over Agent 2’s type 6,:

9
7 (6,) = / [pg(gl, 6y) — ¢ (e—rsz(«%,f?z) e Tl (01.02) 4 e—rT{(91792)>} £(65)d0s. (3)
0

Let II be the platform’s expected discounted profit at time 0, comprising the revenue collected
from Agent 1, the cost of any service provided before 7, and the expected discounted profit at 7.

This expression is taken in expectation over Agent 1’s type #; at time 0.
9 00
= / [pl(al)—ce““)ﬂ(elhr / )\e(T“)TdTHT(Hl)} £(6:)do;. (4)
A 0
The platform maximizes its expected discounted profit, subject to incentive compatibility and
individual rationality constraints. The corresponding problem, referred to as (P), is given by:
max 11 s.t. (ICl), (ICQ), (IRl), (IRQ), (P)

P1,P3
Ty, T7 , T3, T1o

where:  (81(61)0; —p1(01) > B1(0,)60, — pi(0)), V6,,0, €10,0). (1¢y)
B3(01,02)02 — p3(01,02) > B3 (01,05)05 — p5(01,05),  V0:1,05,05€[0,0], Y7 >0. (IC,)
B1(01)6, —pi(01) >0, V6, €[0,0]. (IRy)
B3 (01,02)0: — p3(601,05) >0, V6,,05 € [0,0], V1 > 0. (IR,)

3.2. Optimal Solution
We obtain the monotonicity and envelope conditions analogous to that of Myerson (1981) to

eliminate payment terms and reformulate Problem (P), using the virtual value of Agent 1.
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LEMMA 1. Problem (P) is equivalent to:

~

0 0o
max 1= / <e(r+A)T1(91) (676T1(01)<p(91) _ C) _|_/ )\6<T+>\)THT(91)> f((91)d91 (5)
Ty 113 Ty 0 0

s.t. B1(61) is increasing in 6, € [0, 0] (6)
B5(01,05) is increasing in 05 € [0,0], V7 >0, V0, € [0, 0], (7)
0
where: 117 (6,) :/ e~ "Ti2(01.02) (6*5(T+Tf2(01702))80(91) + e70T12(01,02) (0, — c) £(65)db, (8)
0

7
+/ |:e—7'T1T(01,02) (6—5(T+T17(917‘92))g0(01) _ c) + e~ "T3 (01,02) (e—é(TzT(‘gl’%))gp(Qz) — c)] 1(62)dos.
)

Theorem 1 and Corollary 1 elicit the optimal allocation and payment rules. These results show
that service is only provided at time ¢ = 0 and/or ¢ = 7, so delaying service can only be beneficial to
create sharing opportunities. At time ¢t =0, Agent 1 gets served individually if and only if their type
exceeds a threshold ¢ > 6. At time ¢ = 7, the service and Agent 2’s payment depend on both agents’
types and the elapsed time 7. If §; > 6. and 7 is small enough (so that e=°"¢(6;) > ¢), Agent 1
is guaranteed to be served; this results in a shared service if 6, > 6y and an individual service
otherwise. If e797(6;) < ¢, both agents are served together if 6; > 6, and e=°"¢(0;) + ¢(62) > ¢;

Agent 2 gets served individually if 8, > 6, and 6, < 6; and no one is served otherwise.

THEOREM 1. There exists ¢ > 0. such that the optimal solution to Problem (P) satisfies:

1. If 0, > ¢, T1(01) =0. For each 7> 0, Ty (61,02) =0 if 02 > 0., and T (01,02) = oo otherwise.

2. If 0, < ¢, Ty(01) = o0. Let ¢™ =max {e™"p(601) + ¢(02) — c,e ™" p(01) — ¢, p(02) — ¢,0}. Then:
(i) T15(61,02) =0 if ¢7 = e*Tp(6h) + p(02) — ¢; (i3) TT (01,02) =0 if ¢ = e~ p(01) — ¢; (idi)
T5(601,02) =0 if ¢ = p(02) — ¢; and (iv) T7 (01,02) =Ty (01,02) =T7,(01,02) =00 if ¢ =0.

COROLLARY 1. The expected payment rule is obtained from the envelope conditions as follows:

01

pl(el) = ﬁ1(91)91 - ; 51(§1)d§17 Vo, € [Q7 ]
L )

P5(01,02) = B7(61,02)0, — | B7(6,62)dbs, V0,,0, € [0,0], V7 >0
0

In Appendix EC.1.3, we compute performance metrics under uniform f(-), which provide visibil-

ity into operations (probability of service), consumer surplus, producer surplus, and social welfare.

3.3. Illustration of the Optimal Mechanism, and Managerial Insights

Allocation rule. The optimal allocation rule is depicted in Figure 2 in a 6,-6, space. Figure 2a
shows a benchmark in the absence of sharing, in which each agent i gets served if ; > 0. (Remark 1).
Figure 2b considers simultaneous arrivals (A — 00). Figures 2c and 2d depict instances with small

and large values of 7. Let us describe the optimal allocation rule region by region depending on 6;:
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Region 1.

Region 2.

Region 3.

LY}

Type of Agent 2: 0,

o

o

| B e
B

60 0.
Type of Agent 1: 6 Type of Agent 1: 6

6o 6.

(a) No sharing option (b) Sharing, with A — oo

LY

=r
AL and A2 pooled at £ = 7

Type of Agent 2:
Type of Agent 2: 6,

IS

E e

b0 0, ¢ o 0. ¢
Type of Agent 1: 6; Type of Agent 1: 6;
(c) Sharing, with small 7 (d) Sharing, with large 7

Figure 2 Visualization of the optimal allocation rule.

When 6; < 6y, Agent 1 leaves because the platform cannot extract a positive payment. Similar
to the no-sharing scenario, Agent 2 gets served at time 7 if and only if 6y > 6. (at price 6,.).
When 6y <0, <60,., Agent 1 would not have been served individually but is now held in queue.
If 8, > 6., the platform would have served Agent 2 individually but can now serve both requests
together to increase revenue. When 6, < 6., the platform would have served neither agent but
can now provide a profitable shared service if e=°7p(60;) + ©(62) > c.

When 6, < 0; < (, Agent 1 would have been served by themselves but is again held in queue.
When 6, > 6., the platform can save cost via a shared service rather than two individual
services. When 6y < 6, < 0., the platform would have served Agent 1 only but can now serve
both requests together to increase revenue. In that region, sharing may induce wasteful waiting
when the platform fails to capitalize on the sharing opportunity upon Agent 2’s arrival. If
Agent 2 arrives shortly after Agent 1 (e=°"¢(6;) > ¢) with a low value (6, < 6,), Agent 1 will

still be served individually at time 7; this is referred to as wasteful waiting with recovery in
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Figure 2c. As 7 grows larger and if 6, is small (so that e °"¢(6;) + ¢(62) < ¢), no service is
provided at time 7; this is referred to as wasteful waiting without recovery in Figures 2c and 2d.
As we shall see in Section 5, the wasteful waiting without recovery outcome is specific to the
two-agent setting; otherwise, any agent with a non-negative virtual value will get served.
Region 4. When 60, > (, the discriminatory incentives outweigh the cost-minimization incentives. Agent

1 gets served individually at time 0, and Agent 2 gets served at time 7 if and only if 65 > 0.

Payment rule. Without sharing, the payment rule is a step function: 0 if the valuation is less
than 6., and 6. otherwise (Stokey 1979). The payment for Agent 2 at time 7 follows a similar
step-function structure, since the menu always consists of two options: immediate service (shared
or individual) or no service. In contrast, Agent 1’s payment at time 0 is not a step function of 6y, as
the menu includes infinitely many options. Figure 3 plots the payment rule for Agent 1 (Figure 3a)

and Agent 2 (Figure 3b) as functions of 6;.

0(‘,“ . — 9
- ! =
\;—; ! lj;l
.. ' S by
~ 1 () I =
5 : 5 —7=0
A~ ' & —Small 7
— ~
= o Large 7
Q 1 a';‘
2 — Optimal payment & : ; —T >

- - Benchmark payment - : —all 7
(] SCESEE SRR E i 0 : : L
fo 0. ¢ 0 fo 0. ¢ 0
Type of Agent 1: 6; Type of Agent 1: 6,
(a) Agent 1 (b) Agent 2 (of type )

Figure 3 Expected payment of Agent 1 at time { =0 and of Agent 2 at time ¢{ =7, as a function of 0.

As expected, the payment of Agent 1 is flat when 6; < 6y (because they do not get served) and
when 6; > ¢ (because they get served immediately). In-between, the expected payment increases
with 60; € [0y, (], because a higher valuation increases the likelihood that Agent 1 will receive
a delayed service. This increasing payment rule indicates that service sharing induces temporal
discrimination, by adjusting the service guarantee and the payment extracted from Agent 1.

In contrast, Agent 2’s payment is a step function, because they either get served immediately
or not at all (see Figure 2). Specifically, the price charged to Agent 2 is the lowest valuation that
justifies a service. When 6, < 0, and 6; > ¢, Agent 1 has left the platform (Regions 1 or 4) and
Agent 2 is thus charged a price of 6.. Otherwise, when sharing is possible, the price is lower than
0.. If e=°7p(6;,) > ¢, Agent 1 is guaranteed to be served, so Agent 2 will be charged a price of 6.
In-between, Agent 1’s discounted virtual value at time 7 is positive but below ¢, Agent 2 is served
if their valuation exceeds a threshold, equal to ¢ =!(c—e°"p(6;)); that threshold increases with 7

and decreases with 6;, and so does Agent 2’s payment.
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Managerial insights: collective dynamic pricing. We now use the structure of the allocation
and payment rules to derive insights on the management of on-demand shared services.

The platform leverages sharing in several ways. In Region 3, it can save costs by pooling both
agents together when both would have been served individually. It can also increase revenue without
providing more services, by serving both agents together when otherwise only Agent 1 (Region 3) or
Agent 2 (Region 2) would have been served. And it can provide more profitable services altogether
by serving both agents together when none would have been served by themselves (Region 2).

Sharing has two opposite effects on customers: wait times vs. service. A negative effect on wait
times arises at time 0 in Region 3, as Agent 1 would have been served immediately but is now
delayed. A positive effect on service arises when both agents are present at time 7, in which case
agents can receive a shared service when they would not have been served by themselves.

The sharing option is not blindly leveraged. The platform may elect to forego the sharing option.
For example, the platform only serves Agent 2 at time 7 if ; < 6y and 0y > 6., and it only serves
Agent 1 if €727 (0;) > c and 0, < . In these cases, the platform strategically rejects requests for
discriminatory purposes, to extract a higher payment from agents with a higher willingness to pay.

Service sharing induces temporal discrimination. In dynamic pricing with commitment, cus-
tomers are either served immediately or unserved, so time is not used for discrimination in the
absence of sharing (Remark 1). The sharing option creates an intermediate category for Agent 1:
customers who may receive a delayed service, depending on their valuation and on future demand—
with a payment rule increasing in Agent 1’s willingness to pay. Thus, service sharing provides an
additional discriminatory lever for the platform to differentiate service provision over time.

The mechanism features collective dynamic pricing. The allocation and payment rules exhibit
inter-agent and inter-temporal dependencies, giving rise to a collective dynamic pricing structure.
All else equal, an agent is more likely to receive a service if their own type is larger but also if
the other agent’s type is larger and if both agents arrive closer together. Moreover, the payment
of Agent 2 increases with their arrival time and decreases with Agent 1’s valuation.

In particular, the inter-agent and inter-temporal dependencies suggest that the optimal mech-
anism cannot be implemented by means of posted prices—fixed, take-it-or-leave-it prices set in
advance without personalization. In Section 4.1, we show that the collective dynamic pricing mech-

anism significantly improves the platform’s profit as compared to posted prices.
The allocation rule can be encapsulated with a sufficient statistic, called collective virtual value.
We define the collective virtual value ®(t) as the maximum surplus that the platform can extract

from all agents at time ¢ through an incentive compatible mechanism—extending the notion of
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virtual value from Myerson (1981). The collective virtual value decays between agent arrivals, but

jumps upward when Agent 2 arrives if their virtual value is positive. It is given by:

0 ift<r andt>T1(91),

(1) = max (e~%*p(6,),0) ift <7 and t<T(0,), ©)
max (e~*(="(6,),0) if t>7 and t>T;(6,),
(61)

max (e“”np(@l) +e " p(0y), et p(0y), e p(0y), 0) ift>7 and t <T,(6;).

Specifically, the collective virtual value is equal to the sum of the discounted virtual values of all
agents on the platform with non-negative individual virtual values. This expression captures the
inter-agent dependencies created by service sharing: the platform’s revenue opportunities depend
on the collective characteristics of the group. Still, the collective virtual value excludes agents with
negative individual virtual values, so that low-value agents do not undermine the revenue extracted
from higher-value agents. Finally, each agent’s contribution is discounted over time to account for
customers’ time-sensitivity. With the lens of Bulow and Roberts (1989), it can be viewed as the
aggregate discounted marginal revenue generated by the group of agents on the platform.

We can reinterpret the optimal mechanism as a time-dependent index rule: the platform provides
a service any time collective virtual value exceeds a threshold (equal to ¢(() for ¢t <7 and to ¢ for
t > 1), and includes the contributing agents. In case 1 of Theorem 1, the virtual value of Agent
1 exceeds the threshold and receives an individual service. In 2.(i), e=°"¢(6;) >0, ¢(6;) >0 and
&(T) > ¢, so agents receive a shared service. In 2.(ii), e 97 (0;) > ¢ but () < 0, so Agent 1 receives
an individual service. In 2.(iii), e %7p(6;) < ¢ but ¢(6;) >0, so Agent 2 receives an individual

service. In 2.(iv), @(7) < ¢ and no service is provided. Section 5 generalizes these findings.

4. Assessment, Implementation, and Extensions

We estimate the key performance metrics of the optimal mechanism numerically, using our theoret-
ical results from Section 3. Throughout the numerical analysis, we use a uniform type distribution
f(-) to mitigate discretization errors by leveraging intermediate closed-form expressions, and to
elicit posted-prices benchmarks in closed form. We use these results to perform a welfare assessment
against the posted-prices benchmarks in Section 4.1 and to evaluate the performance of a discrete
approximation of the optimal menu in Section 4.2. Finally, in Section 4.3, we extend our two-agent
model to derive theoretical results in the presence of stochastic supply and of differentiated agent

utilities and costs of service across the individual and shared service options.

4.1. Performance Assessment
We compare the collective dynamic pricing mechanism to three posted-prices benchmarks (we

formalize them and derive closed-form solutions in Section 1 of the online supplement):?

2 Available at https://mitsloan-php.s3.amazonaws.com/wp-faculty/sites/136,/2025/09/28220917 /supplement.pdf
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1. A uniform price for individual services only: the platform charges 6. to each agent.

2. A uniform price for shared services only: the platform charges a fixed price p to each agent.
A service is provided if and only if both agents are available and willing to pay p.

3. Differentiated prices for shared and individual services: the platform charges p; for individual
services and pg for shared services. The shared service is only available if both agents simulta-
neously opt for it. Unlike our mechanism, posted prices do not create inter-agent dependencies:

service is shared if both agents are independently willing to pay ps (Proposition 1).

PROPOSITION 1. There exist x(pr,ps) such that Agent 1 purchases an individual service at
t=0 if 0, > x(pr,ps). When 0, < x(p1,ps), (i) Agents 1 and 2 purchase a shared service at
time T if 0, > e’ pg and 0y > ps; (i) Agent 1 purchases an individual service if 0, > € p; and

0, < pg; and (iii) Agent 2 purchases an individual service if 01 < e’"pg and 0y > p;.

Table 1 shows that the shared-only mechanism performs poorly by requiring synergistic arrivals
(large 0, large 0, and small 7). When both ¢ and A are high, it can pool both customers, but
otherwise it induces high profit losses. It is therefore critical for the platform to retain the option to
offer individual services. Then, the hybrid posted-price mechanism improves upon the single-option
mechanism. The benefits can be significant, especially with a high cost (which amplifies the benefits
of sharing) and a high arrival rate (which amplifies the incidence of sharing). Most importantly,
the dynamic mechanism developed in this paper can provide profit improvements as compared to
posted prices—by up to 12%. The gains are stronger with a smaller arrival rate, which reinforces
the impact of tailoring service offers to customers based on their own type and the future events.

The welfare analysis provides additional insights. The optimal mechanism consistently outper-
forms the individual-only benchmark across all performance metrics, showing that service sharing
can generate win-win outcomes: higher profits for the platform and greater utility for customers.
Interestingly, the probability of service can be higher for Agent 1 in some instances (e.g., with a
small arrival rate and a small cost of service provision, which promote individual services for Agent
1); and it can also be higher for Agent 2 in some other cases (e.g., with a larger arrival rate and
a high cost of service provision, which promote shared services). However, the optimal mechanism
consistently leads to larger relative improvements in Agent 2’s utility than Agent 1’s, uncovering
free-riding benefits for Agent 2 due to the inter-agent dependencies exploited in our mechanism.

Finally, the optimal mechanism has a disparate impact on both agents as compared to the
hybrid mechanism. As noted above, the optimal mechanism can improve the platform’s profit by
up to 12%. It also uniformly improves Agent 1’s service probability and utility by tailoring services
to their valuation, resulting in a smaller incidence of wasteful waiting. At the same time, it can

deteriorate outcomes for Agent 2, especially with intermediate values of A and small values of
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Table 1  Welfare analysis and performance assessment.
A c Method Profit Prob. A1 Prob. A2 Utility A1 Utility A2 Surplus
Low Low Individual (base) 0.375 0.375 (base) (base) (base)
Shared -51.86% 0.297 0.297 -7.61%  +36.13% -29.07%
Hybrid +1.00% 0.379 0.386 +2.66% +7.47% +2.38%
Optimal +2.67% 0.405 0.389 +5.20% +8.70% +4.12%
Low Medium Individual (base) 0.300 0.300 (base) (base) (base)
Shared -46.65% 0.231 0.231 +2.79%  +51.81% -21.72%
Hybrid +4.19% 0.308 0.326 +9.10%  +23.70% +8.32%
Optimal +8.60% 0.340 0.333  +16.79% +27.34% +13.13%
Low High Individual (base) 0.200 0.200 (base) (base) (base)
Shared -28.26% 0.158 0.158 +38.33% +104.85% +5.50%
Hybrid +18.31% 0.208 0.249 +35.50% +87.36% +32.88%
Optimal +32.19% 0.246 0.264  +63.32%  +97.33%  +48.34%
High Low Individual (base) 0.375 0.375 (base) (base) (base)
Shared -37.08% 0.333 0.333  +17.78%  +43.71% -14.46%
Hybrid +3.88% 0.394 0.426  +11.90% +33.61% +10.03%
Optimal +6.59% 0.419 0.420 +13.22% +28.23%  +11.29%
High Medium Individual (base) 0.300 0.300 (base) (base) (base)
Shared -26.77% 0.273 0.273 +37.08% +69.19% -0.11%
Hybrid +15.49% 0.333 0.401  +34.54% +92.19% +31.42%
Optimal +19.89% 0.362 0.378  +39.72%  +67.24%  +31.06%
High High Individual (base) 0.200 0.200 (base) (base) (base)
Shared +5.70% 0.203 0.203  +97.89% +148.45%  +44.91%
Hybrid +49.70% 0.245 0.314  +92.09% +183.10% +78.97%
Optimal +59.21% 0.277 0.299 +118.03% +160.08% +85.81%
o0 Low Individual (base) 0.375 0.375 (base) (base) (base)
Shared -29.42% 0.341 0.341  +41.33%  +41.33% -5.84%
Hybrid +16.95% 0.430 0.430 +34.14% +34.15% +22.68%
Optimal +16.95% 0.430 0430 +34.14% +34.15% +22.68%
o0 Medium Individual (base) 0.300 0.300 (base) (base) (base)
Shared -15.72% 0.285 0.285 +68.75%  +68.75%  +12.44%
Ind. & Shared +34.96% 0.381 0.381 +70.13% +70.18%  +46.69%
Optimal +34.96% 0.381 0.381 +70.13%  +70.18%  +46.69%
o0 High Individual (base) 0.200 0.200 (base) (base) (base)
Shared +27.04% 0.218 0.218 +153.74% +153.74% +69.27%
Hybrid +86.46% 0.306 0.306 +173.48% +173.66% +115.50%
Optimal +86.46% 0.306 0.306 +173.48% +173.66% +115.50%

Parameter values: r =0.01; 6 =0.1; ¢ € {0.25,0.4,0.6}; X € {0.25,0.75, +00}; uniform type distribution.

d (which strengthen sharing under the posted-price benchmark). The resulting impact on social
welfare is generally positive; in some cases with an intermediate value of A and a small value of §,

the optimal mechanism can result in a slightly smaller surplus than hybrid posted prices (by less

than 1% in our experiments); still, it increases total surplus in most cases (by up to 10%).

4.2. Practical Implementation

The collective dynamic pricing mechanism can be implemented by means of a dynamic menu

specifying a set of service and payment options, depending on the state of the system at the time of

the agent’s arrival (for Agent 2) and contingent on the future dynamics of the system (for Agent 1).
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This dynamic menu departs from the no-sharing benchmark, which would merely rely on a posted
price .. Instead, the optimal mechanism relies on an uncountable number of service options for
Agent 1 specifying the service rule for each value of 7 and each value of 6,.

Ez post payment rules. Recall that model defined expected payments p;(6;) and p3(6;,602). The
mechanism ensures interim individual rationality at the time of reporting, but not ex post individual
rationality at the time of service for Agent 1. In practice, it would be undesirable to charge a high
price upfront but to then offer no service (if Agent 2’s valuation is too low) or a highly delayed
service (if Agent 2 arrives too late). Nevertheless, the platform can implement the optimal payment
rule without violating ex post individual rationality, for instance by charging a price % -p1(604)
to Agent 1 when receiving a service at time ¢. This payment rule does not alter the agent’s expected
utility and the platform’s expected profit; it also guarantees that Agent 1 only makes a payment
when served, and provides a discount as a function of the waiting time.

This payment rule is illustrated in Figure 4 along with service times. The figure indicates a price
p1(¢) and no delay when 6; > ¢, and a price of 0 and an infinite delay when 6; < 6,. In-between,
the price and delay of each service become stochastic. Stochastic domination patterns indicate that
agents with a higher willingness to pay are more likely to receive a faster service—and more likely
to receive a service altogether. Accordingly, the price paid increases with the agent’s willingness to
pay but decreases with service delay. In other words, the proposed menu tailors service offers and

prices to manage customer heterogeneity, while providing a discount based on service delay.

Sl
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o
0

Realized Service Time

Ny

p1(¢)

Price

(5~

Realized Service Time

3
Cumulative distribution functior

(a) Ex-post prices (b) Cumulative distribution of service time
Figure 4 Ex-post individually rational prices and distribution of service times, as a function of Agent 1's type.

A discretized menu. In practice, it can be challenging to offer a menu with an uncountable
number of options. Instead, the collective dynamic pricing mechanism could be approximated via
a limited menu. We propose a discretized menu with up to K + 2 service options for Agent 1: a
no-service option at a price of 0, for types 6; < 6p; an immediate service option at a price p;(¢),

if ( <1, for types 6; > (; and K shared-service options corresponding to stochastic options in the
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optimal menu for discretized types 0 = 6, + % -(min{¢,1} —6,) for k=1,---, K. Therefore, the
discretized mechanism is simply the submenu: {(81(6:),p1(61)): 6, € {0, 67, ---, 62, 6} }.

Agent 1 selects the option that maximizes their utility. Specifically, Agent 1 selects item k if and
only if 1(6)0r — p1(67) > Br(071)01 — p1(0i1) and Bu(677)01 — pu(67) = Bi(071)01 — pr(6i1)-
Thus, the set [0y, min{(, 1}] can be partitioned into sub-intervals such that Agent 1 chooses sharing
option k if and only if 0, € [tp_1,¢y), with Oy =1y <y < -+ < g1 < Px =min{(, 1} such that:

. 1(02%1) —pa (07
B0 )0 =1 OF) = 3,08, )= 0F,1). e i = BEE B,

By design, the options corresponding to a type 6 (i.e., the lowest-priority sharing option under

the optimal mechanism) and to a type min{¢, 1} (i.e., the highest-priority sharing option) are always
included in the discretized menu. This ensures that the overall partition remains intact between
agents selecting no service, shared services and immediate services. Between 6, and min{(, 1},
however, the discretized mechanism induces a coarser menu, as illustrated in Figure 5.

0o = 0P OIS LN 0P s 07 =¢

1 I Il Il J b |
1 I 1 1 1 T 1

- I
RS

No service Sharing 1 Sharing 2 Sharing 3 Sharing 4 Immediate

Figure 5  Description of the discretized mechanism (¢ <1, K =4).

Note that the discretized menu provides a feasible mechanism with up to K + 2 service options
for Agent 1 that ensures individual rationality (i.e., each agent derives a non-negative utility) and
incentive compatibility (i.e., each agent selects the service option that maximizes their own utility).
This menu is not guaranteed to be the optimal such mechanism with up to K + 2 service options,
so the results below can be seen as a conservative characterization of a discretized mechanism.

Figure 6 compares the profits of the optimal mechanism, the discretized menu, and the three
benchmarks (Section 4.1). The figure underscores that the discretized menus provide strong approx-
imations of the optimal menu. In most instances, even the sparsest menu with 2 sharing options
yields profit improvements as compared to the hybrid posted-price mechanism. Then, menus with 3
or 4 sharing options result in close-to-optimal outcomes across a wide range of instances (different
arrival rates, costs of service, and willingness to wait). In fact, the impact of additional sharing
options is concave, indicating non-increasing returns as the menu becomes increasingly granular.
These observations suggest that the benefits of the optimal mechanism do not merely stem from
the continuous menu of options based on all future contingencies at the time of each agent’s arrival,

rather, most of these gains can be captured via a simple menu featuring a few sharing options.
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Figure 6 Profit comparison. All numbers are relative to the individual-only mechanism. Parameter values:

r=0.01; § € {0.1,0.2}; ¢€{0.25,0.4,0.6}; A € {0.1,0.25,0.5,0.75, +00}; uniform type distribution.

For instance, with K = 3, the platform could display a menu upon a customer’s request with: (i)
an immediate service for $20; (ii) a high-priority shared service with an expected wait time of 5
minutes for $15; (iii) a medium-priority shared service with an expected wait time of 10 minutes for
$12; and (iv) a low-priority shared service with an expected wait time of 15 minutes for $10. Such
service differentiation is consistent with some menus available in ride-sharing for example (e.g.,
priority pickup, wait and save) and could be easily be integrated into common user interfaces. As

our results show, even a small menu could lead to significant performance improvements.
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4.3. Robustness and extensions

4.3.1. Stochastic supply One supplier is present at time ¢ =0 but a second one arrives
at time w > 0, following a Poisson process with rate u € R,. This setting adds demand-supply
management objectives to cost-minimization and discrimination. Serving Agent 1 at time 0 creates
opportunity costs by creating a potential supply shortage when Agent 2 arrives. This leads to
stricter allocation rule at time ¢ = 0: Agent 1 is served if 6; exceeds a threshold ¢ > ¢. When
(<6 < é , the platform would have served Agent 1 with sufficient capacity but now delays service
to prevent supply shortages, which we refer to as precautionary waiting. If the second supplier
arrives before Agent 2 (i.e., w < 7), the platform may “update” its decision by serving Agent 1 as
long as e%“p(6;) > ¢(¢), reflecting the valuation decay by time w. The mechanism is formalized

in EC.2.1, and the optimal allocation rule is characterized in Theorem EC.1 and Figure 7.

Type of Agent 2: 6,

) 0. ¢ ¢ 0 ) 0. ¢ & ¢ 0

Type of Agent 1: 6 Type of Agent 1: 6
(a) T<w (b) 7>w

Figure 7 Optimal allocation rule with stochastic supply.

This result strengthens our insights regarding the two opposite effects of sharing and the collective
dynamic pricing structure. On the one hand, supply restrictions can increase waiting for Agent 1
(if (<0, < é ) and for Agent 2 (in case of a supply shortage). But they may also strengthen sharing
opportunities if { <6; < f and 6y < 6, < 0.. Similarly, supply-side restrictions enhance the effects
of temporal discrimination, since the platform can differentiate service levels more granularly as a
function of Agent 1’s type. The mechanism can still be implemented via a time-dependent index
rule: service is provided if and only if the collective virtual value (Equation (9)) exceeds a threshold.
However, the threshold now decreases from o(C) to ¢(C,) if w < 7, meaning that the platform can
implement the mechanism by updating the collective virtual value based on customer demand (to
reflect increases and decreases in the marginal revenue) and the service threshold based on supplier

availability (to reflect different opportunity costs). We generalize these findings in Section 5.
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4.3.2. Disutility from sharing and higher costs for shared services. Service sharing
decreases each agent’s valuation by a factor v € (0,1) and increases the platform’s cost by a factor
a €[0,1). In ride-pooling, v and « reflect the longer routes required to serve two customers, and
«a < 1 captures economies of scale. This setting increases the costs of sharing—either the direct cost

to the platform, or the indirect cost from the discriminatory objectives due to higher disutilities. In

14+«

5=, sharing is never a viable option, and the outcome reduces to the benchmark case

fact, when v <
with only individual services. The mechanism is formalized in EC.2.2, and the optimal allocation
rule is characterized in Theorem EC.2 and Figure 8. At time 0, the threshold for Agent 1 to be
served increases as service sharing becomes more attractive (higher v or lower ). As compared
to the baseline setting, service at time 7 can feature two individual services, and can exclude
Agent 1 even if their discounted virtual value is positive. Specifically: (i) if e=°"¢(6;) > ¢, the
platform either serves Agent 1 individually, both agents together, or both agents separately; (ii) if
e %Tp(6,) € [L:_'Zc, c), the platform either serves Agent 2 individually, both agents together, or

no one; and (iii) if e 727 (0;) < HQT_WC, the platform either serves Agent 2 individually or no one.

Type of Agent 2: o(fh)
Type of Agent 2:

‘ ‘
0 Loy, ¢ @lGra) $() 0 e e #6a)
Discounted Virtual Value of Agent 1: e=97(f)) Discounted Virtual Value of Agent 1: ¢=97(0;)

(a) Baseline setting: v =1, a =0. (b) Sharing less attractive: y <1 and a > 0.
Figure 8  Optimal service decisions at time 7 when agent 1 is still on the platform.

This policy shows that the incidence of sharing is not monotonic in Agent 1’s discounted virtual

1+a—vy
5

value—that is, with their wait time 7 or valuation 6. If e 797 p(6,) € [ c, C), a higher discounted
virtual value leads to more sharing for the platform to extract more revenue. If e=%7p(6,) > c,
however, the platform extracts a higher payment from an individual service to Agent 1 as their
discounted virtual value increases, leading to a lower incidence of sharing (due to the possibility
of serving both agents separately). Similarly, the level of service for Agent 2 is not monotonic in
Agent 1’s discounted virtual value. When 60, < 6., a higher discounted virtual value from Agent 1

first induces a shared service rather than no service at all, but then leads the platform to forego

Agent 2’s request and serve Agent 1 individually. When 65 > 6., a higher discounted virtual value
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from Agent 1 first induces the platform to provide a shared service, with a negative effect on Agent
2’s level of service, but then leads the platform to switch to two individual services.

These results reinforce the inter-agent and inter-temporal dependencies and the effect of temporal
discrimination, as well as uncover more complex non-monotonic interactions. In particular, agents
feature both complementarity and substitutability, in that service sharing can bring economies of
scale to the platform but can also bring lower profits. These interactions enable the platform to
design a more complex mechanism that implements both temporal discrimination across agents—
by providing timely vs. delayed services—and service type differentiation—by providing individual
vs. shared services. In practice, this could therefore lead to a menu that would differentiate between,
for instance, an offer with an expected wait time of 5 minutes and a high probability of sharing for

$15, vs. an offer with an expected wait time of 5 minutes and a low probability of sharing for $18.

5. Generalized Mechanism with Unlimited Numbers of Agents

We generalize collective dynamic pricing to a stationary setting with an unlimited number of agents
and suppliers. For tractability, we assume that service sharing induces no disutility and no extra
cost; thus, the problem relies on the exact same dynamics as in the two-agent case with customer
and supplier arrivals (Sections 3 and 4.3.1). To retain tractability and stationarity, we assume that

each service is uncapacitated. Our main result is proved in Appendix A; others are proved in EC.3.

5.1. Mechanism Description

Environment. An unrestricted number of agents (indexed by ¢ € N) and suppliers (indexed
by j € N) arrive onto the platform at rates A € R, and p € R, respectively. The platform can
serve any number of agents at once, at cost c. For each Agent ¢, we denote their arrival time by
7; and their valuation by 6;. All valuations are independently drawn from distribution f(-). For
each supplier j, we denote by w,; their arrival time. Without loss of generality, we assume that
71 <7 <.+ and w; <wy < ---. We consider a discount rate » > 0 and a valuation decay rate § > 0.

Let S, denote the state of the system at time ¢, in a state space S. We denote by m(S;) (resp.,
n(S;)) the number of suppliers (resp., agents) in state S; € S. Each state S, = (Q, X, ;) stores:

(i) the arrival times of the suppliers €, = {wy, - - wWin(s,)} when m(S;) >1 (€2, =0 otherwise);
(ii) the arrival times of the agents ¥, = {71, T(s,)} when n(S;) >1 (X; =0 otherwise); and
(iii) the types of the agents ©, = {61, ,60,s,)} when n(S;) >1 (6, =0 otherwise);

When no agent is present, the arrival times of the suppliers are irrelevant, so we simply denote
by Sp(m) the state with m € N suppliers but no agent. Lemma 2 shows that an agent is either
included in the earliest service following their arrival or not at all. Indeed, this does not alter their
incentives and does not decrease the platform’s expected discounted profit (if anything, it may
reduce the cost of service provision). We can therefore assume that, whenever a service is provided,

all unserved agents leave the platform and the state transitions from S; to Sy(m(S;) —1).
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LEMMA 2. If a service is provided at time t, it is without loss of generality to assume that the

state transitions from Sy to Sp(m(S;) —1).

As in the two-agent setting, services can only be provided when an agent or a supplier arrives.
For small dt >0, we denote t~ =t —dt and t* =t + dt. For t' > t, we denote by o} ,(S;) =
(2,3, U{t'},0,U{6}) and 0;/(S;) = (U {t'},%;,0,) the state at time ¢’ following the arrival of
an agent of type 6 and the arrival of a supplier. Per Lemma 2, state transitions are given by:

(1) When an agent of type 6§ arrives at time ¢, the state transitions from S;- to Sy = 07 4(S,-).
(2) When a supplier arrives at time ¢, the state transitions from S,- to S; =0/ (S,-).
(3) When a service is provided at time ¢, the state transitions from S; to Sy(m(S;) —1).

We denote by Sy the subset of the state space S when no agent is present on the platform; by

S; the subset of S at times when an agent arrives onto the platform; and by S; the subset of the

state space S when a supplier arrives and at least one agent is present on the platform:

Sp={So(m), meN},
Sr= {St €S |39, €8,30€[0,0), such that S, :01{)9(5}7)},
S;={S,€8 | 35,- €5\ Sy, such that S, =0/ (5;-)}.

The mechanism determines an allocation and pricing rule to each agent at the time of arrival,
based on the system’s history and future evolution. The mechanism needs to incorporate all possible
future service decisions, based on the stochastic arrivals of agents and suppliers. Vice versa, the
platform’s future decisions need to be consistent with the service guaranteed to Agent 7. To capture
these interdependencies across agents and over time, our proofs rely on mappings that relate any

state S; to all previous states in the history and to all possible future states (Appendix A).

Decisions. Lemma 3 shows that the platform can guarantee a probability of service to each
agent based on their type 6; and on the state of the system at time 7; (although the time of service

depends on the subsequent arrivals of agents and suppliers).

LeMMA 3. Without loss of generality, an agent of type 0 arriving onto the platform at time T is

specified a constant probability q (S,) of being included in the earliest service after time T.

Thus, the platform faces an optimal stopping problem. At each time ¢t = 7; or ¢t = w;, the platform
decides whether or not to provide a service, based on the state S; € St US;. Once a service
is provided, each Agent ¢ present on the platform will be served with probability d(S;,), the
system transitions to state Sy (m(S;) — 1) and the subsequent problem faced by the platform is
then equivalent to the original one. As a result, time can be “reset” any time a service is provided
and “re-started” when the first subsequent agent arrives. We then index time by 0 whenever the
first agent arrives onto the platform following a service provision (that is, 73 =0).

Therefore, the allocation and pricing rule can be characterized by three mappings:



Dogan and Jacquillat: On-demand Service Sharing via Collective Dynamic Pricing

23

p(S¢) € R, expected payment when an agent with type 6 arrives in state S, = o/ 4(S;-) € S;
q(S;) € R4: probability that an agent arriving in state S, = Uf)e(Sr) € Sy will be served
d(S;) € R,: probability that the platform provides a service at time ¢ in state S, € S;US;

Payoffs. For an incoming agent at time ¢, we denote by S(S;) the expected discount factor at

the time of service, and by U(S;) = 5(5;)0 — p(S;) the expected discounted payoff (EC.3.3).

Profit. Let II(.S;) denote the platform’s expected discounted future profit in state S;. By def-
inition, this expression captures the payment from the incoming agent, if any, the cost of service
provision, if any, and the future expected discounted profits. However, it does not include the
payments from earlier agents. It is given as follows for S; € SUS;US;.

— When S; = Sy(m) € Sy, recall that we “re-start” time with the arrival of the first agent. The

system transitions to a state of the form of o(S;) at rate A, and to Sy(m+ 1) at rate p, so:

T1(Sp(m)) = /o et /o 1 (02 o(Sa(m))) £(8)dBdr + /o " e ST (S (m £ 1)) doo.

— When S, € §;, the expected discounted profit consists of: (i) the expected payment received
from the incoming agent, (ii) cost ¢, if service is provided, and (iii) future profits. If a service
is provided, the system transitions to Sy(m(S;) —1). Otherwise, it transitions to a state of the

form o! 4(S;) at rate A, and to a state of the form ¢(S;) at rate p. Hence:

I(S:) = p(Se) +d(Sy) [=e+ I (So(m(S:) —1))]

oS 6 oS
+(1—d(S,)) / e~ (rHAFm(r=t) /9 I (o} 4(S)) f(0)dodT + / ,ue(T+’\+“)(“t)ﬂ(ao{(5t))dw].
t 0 t

— When S; € S;, the profit function is similar but no payment is received. We have:
II(S;) = d(S:) [=c+ T (Sp(m(S:) — 1))]

oo g oo
+(1—d(Sy)) / Ne (rrATm(r=t) / IT (o1 4(St)) f(0)dOdr —|—/ pe THATIECIT (67 (S,)) dw} .
t 0 t

At time 0, the platform determines which agents to serve and when, for every possible sequence
of arrivals of agents and suppliers and for any number of suppliers m € N. Specifically, the platform
maximizes its expected discounted profit in state Sy(m) € Sy, subject to incentive compatibility

and individual rationality constraints in any subsequent state S; € S;.

max II(Sy(m)) subject to (ICq), (IR¢g), where:

P,q,d

B (O-i,&(ST—)) 0 —-p (07{,6(57—)) Z /B (07{,6’(57—)) ¢ -p (O-i,&’(ST—)) 5V079, € [QaQLVT Z O,VST_ € 87 (ICG)
B(0L4(S.))0—p(al,(S._)) >0, VOe[8,6],¥r>0,YS, €S. (IRg)
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5.2. Problem Decomposition based on the Collective Virtual Value

The main complexity is that the platform’s service decision does not only impact the system’s future
evolution, but also the allocation and pricing rule applied to prior agents. Back to our two-agent
example, the service options presented to Agent 1 are contingent on the arrival time and the type
of Agent 2; thus, once Agent 2 arrives at time 7, the platform must honor the commitments made
to Agent 1 back at time 0. The same dynamics hold in the generalized mechanism: the platform
cannot simply optimize II(S;) in a forward-looking manner but also needs to respect the commit-
ments embedded in the service options offered to earlier agents. The inter-agent and inter-temporal
dependencies raise technical challenges because they are not amenable to a direct decomposition;
yet, Theorem 2 proves that the problem can be decomposed into a dynamic program.

Lemma 4 in Appendix A shows that agents receive a service with probability 1 or 0, depending
on whether their individual virtual value is positive or negative. In other words, an agent is served
(at the time of the earliest service provision following their arrival, per Lemma 2) if and only if
they contribute to the collective virtual value. Unlike in Section 3, the optimal policy no longer
feature wasteful waiting because the platform will always be able to capitalize on future sharing
opportunities after any agent’s arrival. This difference in outcomes arises from the stationary
dynamics in the generalized model versus the stochastic termination in the two-agent model.

We now turn to our main result, showing that the platform’s stopping decision is entirely gov-
erned by: (i) the number of available suppliers, and (ii) the agents’ collective virtual value—still
defined as the surplus that the platform can extract from all agents in an incentive compatible man-
ner. These variables are sufficient statistics that capture the entire system history—i.e., suppliers’

arrivals, agents’ arrival times and valuations, and previous level-of-service guarantees.

THEOREM 2. For each state S; € S, let ®(S;) denote the collective virtual value, defined as:

n(St)
D(S) = Z e =Tt (9,),  where o (0) = max{p(6),0}.
i=1

The problem can be cast as a dynamic program with a state variable comprising the number of

suppliers and the collective virtual value. The value function satisfies, for each m >1,® >0:

oo 6 oo
V(0,®)= / Ae—(”w”/ V(0,7 @+ 7 () f(e)dedt+/ pe” AN (16701 D) dt.
0 [ 0
V(m,®) = max d[®—c+V(m—1,0)]
o0 g o0
+(1—-4d) l/ )\e*(H‘H‘“)t/ V (m,e %@+ o™ (0)) f(6)dOdt +/ pe” AT (m 41,670t ®) dt | .
0 [ 0

The optimal policy captures the platform’s optimal stopping decision, and is denoted by d*(m,®).
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Specifically, Theorem 2 decomposes the problem into a sequence of sub-problems solved at times
of customer and supplier arrivals, while maintaining consistency with level-of-service guarantees
over time. Stated differently, Theorem 2 elicits the value function V' that the platform maximizes
at any time (which differs from II(S;) due to inter-agent and inter-temporal dependencies). In the
Bellman equation, the first term accrues @ — ¢ any time a service is provided and encodes the
subsequent transition to Sg(m — 1); the second term computes the expected value function given
the system transitions and the decay in collective virtual value when a service is not provided.

This reformulation shows that the optimal policy function satisfies d*(m,®) € {0,1}, that is,
the platform either provides a service with probability 1 or probability 0. We further express the

pricing rule that comes from the allocation policy in Appendix A.

5.3. Characterization of the Optimal Mechanism
Using the technical results above, Theorem 3 shows that the platform provides a service (to all
agents with a non-negative virtual value, per Lemma 4) if and only if the collective virtual value

exceeds a cutoff ®,,. Moreover, the cutoff ®,, is non-increasing in the number of suppliers m.
THEOREM 3. Form €N, there exists ®,, such that ®,, > ®,,,1, and: d*(m,®) =1 < &> ,,.

Figure 9 illustrates these dynamics over four sequences, starting with one supplier and zero agent.
In Sequence 1, Agents 1, 3 and 6 are served when Agent 6 arrives. Sequence 2 starts with a supply
shortage; the platform then waits until three suppliers and seven agents arrive to serve five agents
together. Then, the platform serves Agent 2 in Sequence 3 and three agents in Sequence 4. For
each sequence, the figure reports the collective virtual value &(t) and the cutoff ®,, (Figure 9a),
the valuation of the agents (Figure 9b) and their expected payments (Figure 9c).

Theorem 3 and Figure 9 extend our insights from the two-agent setting. First, the allocation
rule exhibits a simple and easily-implementable structure, which provides a service as soon as
the collective virtual value exceeds the cutoff. The collective virtual value decays at rate §, and
exhibits discontinuous jumps when an agent arrives with a type higher than 6,. Moreover, the
cutoff decreases any time a supplier arrives, reflecting the smaller opportunity cost of providing
a service (with an infinite number of suppliers, the cutoffs in red would remain constant). Thus,
service occurs either when an agent (Sequences 1, 3 and 4) or a supplier (Sequence 2) arrives. The
optimal allocation rule exhibits a double monotonic structure: all else equal, the platform is more
likely to provide services with more suppliers and with a higher collective virtual value.

Furthermore, the sharing option still has a negative impact on wait times but a positive impact
on service. In Sequence 1, Agent 1 would have received an immediate service in the absence of
a sharing option (because #; > 6.); however, their valuation remains lower than the cutoff with a

single supplier so the platform holds them in queue to pool them with future customers. In contrast,
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Figure 9 Dynamics of service sharing, starting with one supplier and no agent on the platform at time 0.

Agent 3 would not have been served on their own (because 03 < 6..) but is now included in a shared
service because they contribute to the collective virtual value (65 > ;). Still, the sharing option is
not blindly leveraged as the platform foregoes requests from other agents with a negative virtual
value (e.g., Agents 2, 4 and 5 in Sequence 1) to extract a higher overall revenue.

These dynamics also underscore the collective dynamic pricing structure of the mechanism.
Recall that whether or not Agent i receives a service depends only on their own type 6;. However,

the wait time and expected payment do not only depend on the agent’s own valuation, but also on
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the state of the system at the time of arrival. All else equal, the higher the collective virtual value
and/or the more suppliers are present on the platform, the lower the expected wait time and the
larger the expected payment. These dynamics give rise to three additional observations:

— Wait times are not monotonic with agent valuations. In Sequence 2, Agent 5 has a lower
valuation upon arrival than Agent 2 but receives a service faster, because the collective virtual
value has increased and two suppliers have arrived between 7, and 75.

— The optimal mechanism features allocative inefficiencies: the agents that are served may not
be the ones with the highest willingness to pay. In Sequence 1, Agent 3 receives a service
because 65 > 03 but Agent 5 does not because 05 < 6. But since Agent 3 arrives earlier than
Agent 5, their valuation has decayed by a larger amount when service is provided (at time 75),
so that e 9(76=78)0; < ¢=9(76=75)f, . As a result, service is provided at time 75 to Agent 3 but
not to Agent 5 although Agent 3’s willingness to pay is lower than Agent 5’s at that instant.

— Expected payments are not monotonic with agent valuations. In Sequence 2, Agent 7 has a
lower valuation than Agent 2 but their expected payment is higher, because the collective

virtual value has increased and two suppliers have arrived between 7, and 7.

Implementation. Asin Section 3, collective dynamic pricing can be implemented via a dynamic
menu updated based on the number of available suppliers and the collective virtual value. The menu
specifies a set of service and payment options to each incoming customer contingent on all future
sequences. As earlier, it can rely on a payment rule that satisfies ex post individual rationality;

an agent arriving onto the platform at time ¢ in state S; with a type 6 > 8y will be guaranteed to

e 0

receive a service and will be charged M%S -p(S;) upon getting served at time 7 > t. Moreover, the
menu can be approximated with a discretized set of options that can ben easily integrated into
user interfaces as opposed relying on uncountably many options. Per our results in Section 4.2, this

discretized menu can yield close-to-optimal benefits, outperforming posted-prices benchmarks.

6. Conclusion
This paper proposes an allocation and pricing mechanism for on-demand service sharing with het-
erogeneous, time-sensitive customers and private information. This environment trades off holding
customers to provide a shared service versus serving customers immediately at a higher price. These
decisions need to balance cost minimization, demand-supply management, and price discrimination
objectives. The mechanism determines who to serve, when and at what price. More broadly, this
problem can be cast as a mechanism to allocate perishable non-rival goods with cost externalities.
Service sharing creates inter-agent and inter-temporal dependencies: at any point, the platform
specifies a service guarantee that is contingent on the future dynamics of the system, while com-

plying with the service guarantees offered to earlier customers. Despite these interdependencies, we
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proved that the platform’s problem can be decomposed into a dynamic program, using the novel
notion of collective virtual value—defined as the revenue that the platform can extract from all
customers given incentive compatibility. The optimal mechanism follows an easily-implementable
index rule: the platform provides a service each time the collective virtual value exceeds a thresh-
old, which decreases with the number of available suppliers. This result yields several managerial
insights. In particular, the platform can leverage service sharing to induce temporal discrimination
across heterogeneous customers, by creating service offers with differentiated prices and differen-
tiated wait times. In turn, the service received by any customer depends on their own willingness
to pay, but also on their time of arrival and other customers’ valuations. We refer to the resulting
mechanism as collective dynamic pricing. Numerical results showed that this mechanism can pro-
vide significant gains for the platform and even increase consumer surplus; moreover, most of these
benefits can be captured from discretized menus that can be easily implemented in user interfaces.

This paper opens research avenues on perishable non-rival goods. One question lies in char-
acterizing the optimal mechanism in the stationary environment with infinitely many customers
and suppliers (Section 5) where shared services comes with higher costs or lower utilities (as in
Section 4.3.2) and with capacity constraints. Another question lies in theoretically analyzing the
performance of discretized mechanisms. Still, this paper uncovers opportunities to manage on-

demand service sharing via a dynamic menu with differentiated services, wait times and prices.
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Appendix A: Details on the generalized mechanism, and proof of Theorem 2

Preliminaries. In state S, € S; US; at time ¢, we denote by H,(S;) C S; US; the set of prior states
visited between time 0 and time ¢, and by H;(S;) the set of future states that can be visited after time ¢.
Recall that the main difficulty in the generalized mechanism lies in ensuring consistency between the service
offer provided at any time and the service promises made on to other agents. Thus, the mappings define
any service offer in S; € §; contingent on all future states in H;(S;), while complying with service-level
guarantees made in previous states in H,(S;). There is a unique sequence of events leading to S;, so H,(S;)

is finite, whereas the set H;(.S;) is uncountable. By definition, H,(S;) N H;(S;) = {S:}. They are given by:

H,(S;)={5" €S US, | It €Q, UL, such that " =¢&,(S;)},
H;(S)={5"€SUS; |5 =(,2,0) such that t e Q' UX" and S; =&(5")}.

where &, (S;) denotes the projection of state S, at time ¢’ <t:
& (S) =(Q,n[0,¢],2,N[0,¢],{0, €0, | 7, <t'}), forall S,=(92,,%,,0,) €S.

For t <t and S;, Sy € §; US,, we denote the probability density of reaching state S, € H;(S;) from
state S; by h(S;, Sy ). Unlike H,(S;) and H;(S;), the mapping h defines a conditional density function that
depends on the platform’s optimal stopping decision d. We define the mapping h recursively:

h(Se,0L4(S)) = (1—d(S,))Ae” P £(g), V7 >t,Y0€16,0],
h(S:,02(S:)) = (1 —d(S,))pe” X Fme=t), Yw > t.

w

We can re-write the profit function in each state S, € S; US; as a function of the mapping h and of the
platform’s stopping decision d. Lemma 4 (proved in EC.3.4) expresses II(.S;) by means of virtual value of
the incoming agent and future agents, thus eliminating the pricing terms. This lemma also captures the
interdependencies between the decisions at different times, by expressing II(S;) in terms of II(Sy)’s for

Sy € Hy(S;)—which shows the effect of d(Sy) on II(S,).

LEMMA 4. For every 7 >0 and S,- €S8, (0{70(5,.7 )) =114fp(0) >0, and 0 otherwise. Moreover, defining
o1 (0) = max{p(0),0}, we can rewrite I1(S;) for each S, € S;US; as follows:

II(S,) = d(S,) [1(S, € S1)T (Bn(sy)) +T(So(m(S,) — 1)) — ] (10)

+ / e TIOR8y, Su) | TSk ) + d(Sw) > e (Guisy) | dSe

Hy(Se)\{St} S1€(Hy(S)NHp(S, - )NS;)
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Proof of Theorem 2. To see the cumulative effects of all stopping decisions {d(S,), S; € S;US;}, we

re-write its objective function as follows, for any given m € N:

1Sy 0m) = [ 10 (So(m))70)5
For S, € §;US;, let 61(S;) be the type of theiﬁrst agent included in S, i.e., the first element in ©,, and
the unique element in [6, 0] such that 8.0, (s0)(Sa(m)) € H,(Sy). Denoting So =0y 5. s,,(Sa(m)), we have:
I1(So) = d(So) [¢*(8) — c+T1(Sp(m(So) — 1))] (11)
+ / e h(So,Sy) | I(Sy) +d(Sy) > et (G,05) | | dSe.
Hy(So)\{So} Sie(Hy (50)nH,(S,-)NS;)

The stopping decision d(S;) maximizes the following quantity, denoted by V' (.S;):

V(S,) =TI(S,) +d(S,) > e Dot (05,

Si€(Hy(So)NHp(S,—)NSy)
Note that the collective virtual value of the agents present in the platform in state S; is given by:
o(S5;) = Z e Dot (Osy))-
Sy€(Hy (So)NHp(S1)NSr)

We can re-write: V(S;) = max  dX0p(S:) + (1 — d) Xeon: (S:), where

del0,1]
Xstop(st) - (I)(St) - C+ H(S(D(m(st) - 1))7
Xcont(st) = / 67T(t,7t)h(5t+ ) St’) [H(St/) + d(St')(I)(St’_ )] dSt"
Hy(Se)\{Se}

First, note that V(S,) is achieved when d € {0,1}, so the following holds for each S, € S;US;:

d(S ) _ 1 lf Xstop(St) Z XCOnt(St),
t 0 if Xaop(St) < Xeont (St).

Moreover, X, ,.:(S;) can also be written recursively as follows by leveraging the definition of h:
oo 0
Xopne(S1) = / / A= =501 (5,))B(S,) 411 (o ,(S)))] f(6)dbdr
t 2

+/ Me—(r+>\+u)(w—t) [e“s(“—t)b(ai(St))CI)(St)—I—H(Ui(St))]dw.
t

This expression yields a maximization problem that governs the platform’s decision at time ¢ in
state S;. This shows that m(S;) and ®(S;) are sufficient statistics governing the platform’s deci-
sion. Moreover, this expression provides a dynamic programming decomposition of the platform’s
problem, which captures the system’s history and its future dynamics. We denote by V (m, ®) the
value function, so V (m(S,), ®(S,)) = V(S,) for each S, € S;US;. The Bellman equation is:

oo 5 oo
V(07<I>):/ Ae—“ﬂﬂ)t/ V(0,e7"®+ " (0)) f(o)dedt+/ pe” AN (1,670 D) dt.
0 0 0
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V(m7¢)—max{¢—c+v(m_lvo)?
oo § =
/ )\ef(T+A+u)t/ V(m,e*‘”<1>+<p+(9))f(e)dedﬂ'/
0 0

0

Iue*(r-ﬁ-)\-i-u)tv (m+ 1’ eftit@) dt}

This completes the proof of Theorem 2. [
Payment rule. The optimal policy characterizes the optimal stopping decision d(S;) =

d*(m(Sy), ®(S;)) for all S; € S;US;. Similarly, b(S;) is equal to b(S;) = b*(m(S,), ®(S;)), where:
if d*(m,®)=1: b*(m,®)=1

oo 0
if d*(m, ®) = 0 b*(m, ®) = / Ae(rHAtuto)t / b* (m, e~ + ot (0)) f(6)dodt
0

+/ Me—(r+>\+,u+5)tb* (m + 17 e—ét@)
0
Last, the allocation rule and discount factor yield the payment rule using the envelope condition.

COROLLARY 2. The payment of a 0-type agent arriving at time t in state Sy,— satisfies:

1 i 0< 6,
Plove(5i-)) = {b* (m(5,-), @(5,-) +9(0)) 0 = f; b (m(S,-), B(S,-) + 0" (B)) ddif 0> 0.



