
A High-Level Data Decentralized Processing

Platform for AIoT Applications

Kit-Lun Tong

Registration Number: 100328717

SUPERVISED BY

Primary: Edwin Ren

Secondary: Hane Aung

Department of Computing Sciences

University of East Anglia

July/2025

This dissertation is submitted for the degree of

Doctor of Philosophy

© This copy of the thesis has been supplied on condition that anyone who consults

it is understood to recognize that its copyright rests with the author and that use

of any information derived therefrom must be under current UK Copyright Law.

In addition, any quotation or extract must include full attribution.

Declaration

I certify that the work contained in the thesis submitted by me for the degree of

PhD is my original work except where due reference is made to other authors,

and has not been previously submitted by me for a degree at this or any other

university.

The following research papers, related to this work, were developed as part of the

following projects:

Royal Society International Exchanges 2021 – An Intelligent Data Processing

Platform for Smart Manufacturing – An AIoT Platform (2022-2024):

• Y.-C. Liang, K.-R. Wu, K.-L. Tong, Y. Ren, and Y.-C. Tseng (2023) “An

Exchange-based AIoT Platform for Fast AI Application Development,”

Q2SWinet ’23.

• (Chapter 3) K.-L. Tong, H.-C. Lin, K.-R. Wu, Y. Ren, G. Parr ,and Y.-C.

Tseng (2025) "DAIoTtalk: A Data-Decentralized Pub-Sub AIoT Platform",

VTC2025-Spring.

Jack Industrial Sewing Machine Company - Smart Sewing Machine Manufacturing

Development (2022-2024):

• (Chapter 4) K. L. Tong, and Y. Ren (2024) "A Product Completion

Estimation System with Unsupervised Learning for Smart Sewing

Machines," internal paper for Jack Industrial Sewing Machine Company.

CHC Tech Limited Norwich - GNSS Error Source Recognition (2024-2025):

• (Chapter 5) K.-L. Tong, Y. Ren, X. Shi, Z. Chen, and X. Zhang (2025)

"A Novel AI Temporal-Spatial Analysis Approach for GNSS Localization

Propagation Error Source Recognition", accepted by VTC2025-Fall.

Moreover, the following research papers were also published during the PhD

period (2021-2025):

• K.-L. Tong, K.-R. Wu, and Y.-C. Tseng (2021) "The Device–Object

Pairing Problem: Matching IoT Devices with Video Objects in a

Multi-Camera Environment," Sensors ’21.

• R. Xiong, K. L. Tong, Y. Ren, W. Ren, and G. Parr (2023) "From 5G to

6G: It is time to sniff the communications between a base station and core

networks," ACM MobiCom ’23.

In accordance with the University’s Generative AI Policy for Research and

Innovation, this work’s content is refined and proofread by artificial intelligence

(AI) technologies, including ChatGPT 3.5 and Grammarly, piratically in

synonyms query, grammar correction, and sentence reconstruction. No content

generated from AI technologies without a reliable reference has been presented

in the work.

Acknowledgements

I express my gratitude to the University of East Anglia for providing the

studentship that supported my PhD journey.

I sincerely thank Dr. Edwin Ren, my primary supervisor, for the invaluable advice

and mentorship he has provided me during my research.

I acknowledge Dr. Hane Aung, my secondary supervisor, for his insights and

supervision during my PhD.

I am grateful to Prof. Yu-Chee Tseng at National Yang Ming Chiao Tung

University for serving as a reference during my PhD application and for his

unwavering support during my research.

I extend my appreciation to Prof. Hung-Lin Fu at National Yang Ming Chiao

Tung University, who not only provided a reference for my PhD application but

also be my first archery coach.

I also thank Prof. Lan-Da Van at National Yang Ming Chiao Tung University for

supporting me as a reference during my PhD application process.

Finally, I deeply appreciate my family’s financial support, which covered my living

expenses and enabled me to focus on my research during this period.

Abstract

Artificial Intelligence of Things (AIoT), the fusion of Internet of Things (IoT)

and Artificial Intelligence (AI), is changing manufacturing and navigation

alongside many other industries. However, complexities in device scaling, data

management, and lack of skilled personnel hinder the wide adoption of AIoT. A

high-level IoT platform integrates communication protocols, databases, and

application program interfaces (APIs). These centralize the management of an

IoT solution to make it simpler to develop and deploy applications while also

addressing device communication, data processing, and security factors.

On the other hand, traditional IoT platforms are often cloud-based or

data-centralized, suffering inefficiencies in routing and process scaling

limitations. To address these problems, we aim to develop DAIoTtalk, an AIoT

platform with a data-decentralized architecture that builds upon IoTtalk.

Additionally, DAIoTtalk supports flexible networking and low-code

configuration by enabling gRPC-based Pub-Sub communications.

To showcase its applicability, we created case studies defined by different

industries: SewingTalk and GNSS-EStalk. SewingTalk improves the

productivity of textile manufacturing by analyzing logs of smart sewing

machines using unsupervised learning to estimate daily completion. Meanwhile,

GNSS-EStalk identifies sources of GNSS errors using an AI-driven

temporal-spatial approach.

5

Through a series of experiments and case studies, we demonstrate the

effectiveness of DAIoTtalk across multiple domains, addressing challenges

related to communication efficiency, deployment versatility, and resource

scalability.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

Contents

Dedications 1

Acknowledgements 3

Abstract 4

List of Figures 10

List of Tables 12

1 Introduction 16

1.1 The Evolution of Smart Technologies: From Smart Planet to AIoT 16

1.2 Challenges in AIoT: Scaling Devices and Accessibility 17

1.3 High-level AIoT Platform . 18

1.4 Benefits of an AIoT platform . 19

1.5 Aim and Objectives of the Research 20

1.5.1 Aim . 23

1.5.2 Objective . 23

1.5.3 Research Question . 24

1.5.4 Novelty . 24

1.6 Chapter Description . 25

2 Background and Survey 27

2.1 Survey on IoT Communication Protocol 27

2.1.1 REST/HTTP (HTTP/1.x) 28

2.1.2 MQTT . 28

2.1.3 CoAP . 29

Contents 7

2.1.4 AMQP . 29

2.1.5 ZeroMQ . 29

2.1.6 gRPC (HTTP/2) . 30

2.2 Analysis of Existing High-level IoT Platforms 30

2.2.1 Management . 32

2.2.2 Development . 33

2.2.3 Low-Code Configuration . 33

2.2.4 Communication . 34

2.2.5 Data processing . 35

2.2.6 Security . 36

2.3 IoTtalk Application . 36

2.3.1 Development Testbed with IoTtalk 37

2.3.2 Smart City Application with IoTtalk 38

2.3.3 Agriculture Application with IoTtalk 38

2.3.4 AI Application with IoTtalk 39

2.4 Critical Analysis of Related Work 40

2.4.1 Data-cloud-based . 40

2.4.2 Data-centralized . 41

2.4.3 Data-decentralized . 41

2.4.4 Summary of Research Gap 41

3 DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 44

3.1 Chapter Introduction . 44

3.2 gRPC Pub-Sub Framework . 44

3.3 The Proposed DAIoTtalk . 48

3.3.1 Integration of DAIoTtalk 48

3.3.2 Join Function . 50

3.3.3 Connectivity Configuration 51

3.3.4 Agent Database . 55

3.3.5 Case Study: Deployment of AI Device-Object Pairing . . . 62

Contents 8

4 SewingTalk - A Product Completion Estimation System with

Unsupervised Learning for Smart Sewing Machines 64

5 GNSS-EStalk - A Novel AI Temporal-Spatial Analysis

Approach for GNSS Error Source Recognition 65

5.1 Chapter Introduction . 65

5.2 Related Works . 67

5.3 Methodology . 68

5.3.1 Noise Segmentation . 70

5.3.2 Noise Types and Dataset 74

5.3.3 Preprocessing (S1) . 75

5.3.4 Referral Distance Matrix (S2) 77

5.3.5 Noise Clustering and Pseudo-labeling (S3) 80

5.3.6 Noise Classification (S4) . 82

5.4 Deployment of GNSS-EStalk . 84

5.4.1 Project A: Deployment of noise segmentation algorithm . . 86

5.4.2 Project B: Deployment of noise classification models 88

5.5 Evaluation . 91

5.5.1 Evaluation of Model Performance by Epoch 92

5.5.2 Evaluation of Baseline and Hybrid Noise Classification . . . 95

5.5.3 Evaluation of Noise Clustering 97

5.5.4 Noise Classification Experiment Using Pseudo-Labeling . . 100

5.6 Chapter Conclusions . 100

6 Evaluation and Discussion 102

6.1 Experiment Setup . 102

6.2 Impact of Packet Size . 102

6.3 Data-Centralized vs. Data-Decentralized Approaches 106

6.4 Simulation of Offloading with the Join Function 107

6.5 Case Study Experiment . 108

6.6 Evaluation on SewingTalk . 110

6.7 Evaluation on GNSS-EStalk . 112

Contents 9

6.8 Chapter Conclusion . 114

7 Conclusions 115

7.1 Conclusions . 115

7.2 Furture Works . 116

List of Figures

1.2.1 Number of devices connections in 2025 (from [9]) 17

1.5.1 Categorization of IoT platforms based on data flows. 21

3.2.1 The gRPC Pub-Sub framework. 45

3.3.1 A DAIoTtalk device-object pairing project reference from [61]. . 47

3.3.2 Extension of IDF and ODF in DAIoTtalk. 49

3.3.3 The GUI for configuring JFs in IoTtalk. 50

3.3.4 The data flow for delivering JFs to nodes in DAIoTtalk. 51

3.3.5 The procedure for configuring connectivity in DAIoTtalk. 52

3.3.6 An example of Pub or Sub topic name. 53

3.3.7 The architecture of the Agent database. 55

3.3.8 The architecture of the node tables in the Agent database. . . . 56

3.3.9 The architecture of the topic views in the Agent database. . . . 57

3.3.10 The architecture of the DFO views in the Agent database. . . . 59

3.3.11 The architecture of the connection views in the Agent database. 59

3.3.12 The architecture of the join function in the Agent database. . . 61

5.3.1 Overview of GNSS error source analyzing. 68

5.3.2 Process pipeline of the temporal-spatial approach. 70

5.3.3 Noise Segmentation on ionosphere misclosure. 71

5.3.4 The noise types in the GNSS error source dataset. 74

5.3.5 Example of a unified function to standardize a normalized

sequence to a length of 128. 76

5.3.6 Example of transformation of a noise segment. 78

5.3.7 The baseline classification models. 82

5.4.1 Deployment of GNSSEStalk on 2 DAIoTtalk project. 85

List of Figures 11

5.4.2 Deployment of noise segmentation algorithm on GNSS-EStalk. . 86

5.4.3 Data flow from a ground station to the remote analysis server

in GNSS-EStalk. 87

5.4.4 Deployment of noise feature extraction and model configuration

on GNSS-EStalk. 88

5.4.5 Deployment of error target profile on GNSS-EStalk. 90

5.4.6 Data flow from the remote analysis server to the classification

node in GNSS-EStalk. 91

5.5.1 Baseline model performance in 100-Epoch. 93

5.5.2 Hybrid model performance in 100-Epoch. 94

5.5.3 The comparison of accuracy and F1-macro score among baseline

and hybrid models using different training sizes. 96

5.5.4 Normalized confusion matrices of the hybrid models. 97

5.5.5 Experimental results on noise classification with pseudo-labeling. 99

6.2.1 Comparison of latency when transmitting packets of different

sizes at 1 Hz. 103

6.2.2 Comparison of FPS when flushing a buffer of different numbers

of packets of various packet sizes. 104

6.3.1 Comparison of latency between data-centralized and

data-decentralized design. 106

6.4.1 Simulation results on parallel processing with JF. 108

6.5.1 Network Deployment for Case Study. 109

6.6.1 Comparison of latency within two standard deviations across

different packet sizes in SewingTalk. 110

6.6.2 Evaluation of offloading of tokenization on sewing machine logs

using JF. 111

6.7.1 Comparison of latency within two standard deviations across

different packet sizes in GNSS-EStalk. 112

6.7.2 Evaluation of offloading of segmentation on GNSS error data

using JF. 113

List of Tables

2.1 Common IoT application layer protocol 27

2.2 Comparison of IoT Platforms 31

2.3 Summary of Comparison Between This Work and Existing IoT

Platforms . 42

3.1 The four types of DFO are used to control the broadcasting of

topics. 53

5.1 Class Sizes in the GNSS Error Source Dataset 75

5.2 Summary of accuracy and F1-macro scores across 10 trials for

baseline and hybrid models using a 70% training size. 96

5.3 The comparison of accuracy and data increment of clustering

models. 98

6.1 Experiment Platform . 103

6.2 Improvement of latency when transmitting packets of different

sizes at 1 Hz . 103

6.3 Improvement of FPS when flushing a buffer of different numbers

of packets of various packet sizes. 105

6.4 Improvement of latency between data-centralized and data-

decentralized design. 106

6.5 Data Flow Measurement in the Case Study Deployment 109

6.6 Comparison of latency over 100 packets sent from the sewing

machine in SewingTalk. 110

6.7 Comparison of latency over 100 packets sent from the ground

station in GNSS-EStalk. 112

Acronyms

ACK Acknowledgment

AI Artificial Intelligence

AIoT Artificial Intelligence of Things

AMQP Advanced Message Queuing Protocol

API Application Programming Interface

CB-IoT Cloud-Based Internet of Things

CFEC Categorical Focal Cross-Entropy

CNN Convolutional Neural Network

CoAP Constrained Application Protocol

DF Device Features

DFO Device Feature Object

DM Device Model

FPS Frames per Second

GNSS Global Navigation Satellite System

GPS Global Positioning System

GUI Graphical User Interface

List of Tables 14

HTTP Hypertext Transfer Protocol

IDF Input Device Feature

IDL Interface Definition Language

IMU Inertial Measurement Unit

IoT Internet of Things

IPC Inter-Process Communication

JF Join Function

JSON JavaScript Object Notation

KLD Kullback–Leibler Divergence

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MITM Man-in-the-Middle

MLP Multi-Layer Perceptron

MQTT Message Queuing Telemetry Transport

MS-IoT Microservice Internet of Things

MSE Mean Squared Error

NB-IoT Narrowband Internet of Things

ODF Output device Feature

P2P Peer-to-Peer

PNT Positioning, Navigation, and Timing

Protobuf Protocol Buffers

Pub-Sub Publish-Subscribe

List of Tables 15

QoS Quality of Service

RDM Referral Distance Matrix

ReLU Rectified Linear Unit

Req-Resp Request-Response

RFI Radio Frequency Interference

RNN Recurrent Neural Network

RPC Remote Procedure Call

S/N Signal-to-Noise Ratio

SIP Session Initiation Protocol

SMEs Small and Medium-Sized Enterprises

TCP Transmission Control Protocol

TLS Transport Layer Security

VPN Virtual Private Network

WSNs Wireless Sensor Networks

ZFilter Z-Score Normalization Filtering

1

Introduction

1.1 The Evolution of Smart Technologies: From Smart

Planet to AIoT

In 2008, the CEO of IBM, Sam Palmisano, proposed the Smart Planet idea [1]

with three main aspects: Instrumented, Interconnected, and Intelligent.

Instrumentation involves gathering real-time information from various sources

operating differently, including sensors, personal devices, and appliances.

Interconnected is the use of digital networking platforms like the Internet of

Things (IoT) for seamless data exchange from service nodes worldwide.

Intelligence involves the use of advanced technologies, including algorithms,

modeling, cloud computing, data visualization, and artificial intelligence (AI), to

improve decision-making, optimize services, etc.

Three years later, the German government introduced Industry 4.0 [2]. This

revolution, ushered in by cyber-physical systems, allowed manufacturers to run

“smart” factories by embedding advanced technologies within their equipment,

creating further automationwhile providing more flexibility to respond to market

needs.

Meanwhile, AI has advanced significantly over the past decade, enabling a wide

range of highly efficient automated tasks and services. For example, the MNIST

database [3], which serves as a benchmark dataset for handwritten digit

Chapter 1: Introduction 17

recognition, has been resolved to a level of accuracy that is astonishing for AI

models, with test error rates less than 0.18%, compared to the 0.2% human

error rate [4][5]. Likewise, the large-scale image classification ImageNet database

[6] experienced an increase in accuracy from 50% in 2011 to more than 90% over

a decade [7]. In this decade, artificial general intelligence (AGI) powered by

generative AI is reshaping the landscape across various domains, including

education, manufacturing, finance, social systems, healthcare, and service

industries [8].

Today, the integration of AI and IoT, known as Artificial Intelligence of Things

(AIoT), has become an essential part of modern life. AIoT applications are

found in a wide variety of sectors, including smart factories, precision

agriculture, intelligent buildings, and smart healthcare, helping to change

industries and create innovation in ways we never thought possible.

1.2 Challenges in AIoT: Scaling Devices and

Accessibility

Figure 1.2.1: Number of devices connections in 2025 (from [9])

Despite its rapid advancements, AIoT development faces significant challenges.

Fig. 1.2.1 illustrates the exponential growth of global device connections, as

Chapter 1: Introduction 18

reported by [9]. The number of IoT devices is projected to nearly triple,

reaching 30.9 billion between 2020 and 2025. Simultaneously, [10] predicts that

data generated by IoT devices will surge from 18.3 ZB in 2019 to 73.1 ZB by

2025. This explosive growth presents critical challenges in managing vast device

networks, as well as transmitting, storing, securing, and processing massive data

volumes efficiently.

Furthermore, the widespread adoption of AIoT applications is hindered by the

specialized expertise required in both AI and IoT. Small and medium-sized

enterprises (SMEs) and individual users often lack the necessary technical

knowledge, making AIoT system development and deployment costly and

resource-intensive. Additionally, many existing AIoT solutions are highly

encapsulated, restricting user flexibility. As a result, modifying and redeploying

these systems in new environments remains challenging, further limiting their

accessibility and scalability.

1.3 High-level AIoT Platform

A high-level AIoT platform offers an integrated environment that supports

scalable devices and cyber applications, simplifying the development and

deployment of AIoT solutions. Key aspects include management, development,

deployment, communication, data processing, and security.

• Management refers to seamless onboarding, monitoring, and control of

AIoT nodes and requires frictionless registration and integration onto the

platform. It allows for swift device provisioning, real-time visibility, and

remote administration, streamlining the process for users to monitor node

performance and status, at scale, with minimaleffort.

• Development enables the generation of cloud, edge and hybrid applications

to be easily integrated and developed toward flexible, scalable and efficient

Chapter 1: Introduction 19

AIoT solutions in the platform. Its support for a wide range of use cases

enables developers to deliver their goals,bringing an efficient performance.

• Deployment facilitates fast and straightforward reconfiguration and

customizing to specific application needs. This platform enables users,

regardless of their experience level, to rapidly adapt AIoT nodes to a wide

array of application scenarios and deploy in different environments.

• Communication maintains a scalable interconnectivity with AIoT nodes

which efficiently manages throughput and the number of connections. It is

designed to handle large amounts of data traffic with low latency and reliable

connections across devices and heterogeneous networks by implementing

advanced communication methods.

• Data Processing allows predictive analytics, anomaly detection, and

intelligent optimizations, specific to use cases. It processes data in real

time to deliver relevant insights, enhancing decision-making and

operational efficiency according to the specific requirements of a given

application.

• Security ensures any access for nodes and users is managed,

authenticated, and authorized, protecting the system’s integrity and

confidentiality. It implements strict measuresto manage access control,

identity authentication, and secure interactions across the AIoT spectrum,

protecting sensitive information and services from unauthorized users and

potential attacks.

1.4 Benefits of an AIoT platform

In the UK, nearly 60% of manufacturing companies are SMEs. AIoT technology

offers multiple benefits, including automated operations, increased productivity,

cost reduction, and enhanced competitiveness.

Chapter 1: Introduction 20

First, an AIoT system gathers data from various heterogeneous sources, analyzes

information according to AI models, offers insights from the results, and makes

automated decisions. This allows for more efficient production processes since it

is possible to monitor and control machines from centralized and remote places

through high-end devices, such as computers and smartphones. AI models can

also be used to continuously test quality on manufacturing lines.

By leveraging AI-driven insights, SMEs can optimize resource allocation, time

management, and labor distribution, resulting in significant cost savings.

Enhanced product quality and reduced manufacturing cycles enable SMEs to

make their products more competitively priced. In addition to this, if they

leverage these AI-powered big data models, they can adjust based on customer

interactions, making their product better suited to the market.

Conversely, a sustainable ecosystem can be developed for the platform to foster

collaboration and innovation. By enabling users to share their creations, the

ecosystem simplifies and accelerates AIoT application development. A

comparable model can be seen in platforms like Unreal Engine [11] and Unity

[12], which provide digital game development tools and assets. Similarly, IFTTT

[13] exemplifies an IoT ecosystem where users can create automation workflows

using an "IF This Then That" logic. These ecosystems empower both

professional developers and independent creators, offering opportunities for

freelancing and entrepreneurial ventures.

1.5 Aim and Objectives of the Research

With the advancement of IoT applications, utilizing an IoT platform to

facilitate data exchange and application deployment is essential. In general, the

primary data flows in AIoT platforms fall into three categories as illustrated in

Fig. 1.5.1: data-cloud-based, data-centralized, and data-decentralized. In a

data-cloud-based platform, most of the resources and services are hosted and

Chapter 1: Introduction 21

managed by a cloud service provider. Data is uploaded and processed within the

cloud, providing access to users/devices via its cloud interfaces. A

data-centralized platform, on the other hand, can support a microservice-IoT

(MS-IoT)[14] by functioning as a server broker, facilitating the collection,

management, and redistribution of data to resources or services located in

multiple discrete servers or end devices through a publish-subscribe (Pub-Sub)

architecture. An entity can publish a piece of data to the broker, and multiple

entities can subscribe to the data broadcast from the broker, thus enabling more

complicated multicasting scenarios among multiple entities, enabling the

adaptability of building more sophisticated AIoT solutions. Nevertheless, most

of the implementations of these two categories mainly rely on common IoT

communication protocols like HTTP/REST, MQTT, or CoAP, which are

designed for massive connectivity to enable transmitting small data volumes.

However, in many AI application scenarios that require multimedia streaming,

high-bandwidth, multi-hop, and continuous data flows, there are deficiencies in

such designs [15][16].

data flow control flow

Agent

Publisher Subscriber

c. Data-Decentralizedb. Data-Centralizeda. Data-Cloud-Based

Cloud

User/
Device

Broker

Publisher Subscriber

Figure 1.5.1: Categorization of IoT platforms based on data flows.

These challenges can be significantly mitigated through data-decentralized direct

sender-to-receiver exchanges facilitated by a remote "Agent" used solely to

establish connectivity. This work presents a prototype data-decentralized AIoT

platform featuring peer-to-peer (P2P) communications powered by customized

gRPC remote procedure calls based on the publish-subscribe (Pub-Sub)

paradigm. The proposed framework enhances communication efficiency. As an

Chapter 1: Introduction 22

extension of IoTtalk [17], a high-level IoT platform that ensures device

management with more adaptable node networking and provides a testbed for

low-code development, thereby fulfilling deployment versatility. Moreover, this

work introduces enhancements to improve resource scalability. Specifically, the

Join Function (JF), originally responsible for handling pre-processing and

post-processing during data transmission among nodes in the IoTtalk server, is

redesigned to allocate customized functions directly to edge nodes. This

offloading strategy enhances scalability by distributing computational tasks

closer to the data sources. We refer to this version with data-decentralized

communications as DAIoTtalk.

To demonstrate DAIoTtalk’s AIoT capabilities, we have partnered with

manufacturing collaborators and showcased two case studies: Sewingtalk and

GNSS-EStalk.

SewingTalk is a system developed to estimate product completion on textile

production lines by analyzing smart sewing machine log data. In many

textile-exporting countries, the sewing manufacturing industry remains

predominantly traditional, with manual planning and production management

being the norm. To address this, we collaborated with one of the world’s largest

sewing machine manufacturers to conduct experiments using their latest smart

sewing machines. These machines capture worker inputs and transmit operation

logs to the cloud. By analyzing these logs using unsupervised learning

techniques, we aim to identify patterns in production processes and estimate the

number of finished products, leading to more accurate evaluations of individual

worker performance and overall pipeline utilization.

GNSS-EStalk is a system that supports global navigation satellite system (GNSS)

error source analysis using an AI-driven temporal-spatial approach. GNSS error

source analysis is essential for identifying factors that impact the accuracy of

positioning, navigation, and timing (PNT) services. Detecting and correcting

these factors is crucial for improving overall service accuracy. Traditional methods

Chapter 1: Introduction 23

mainly focus on surface-level receiver output data, which may overlook deeper,

underlying factors. Moreover, analyzing daily data can be costly and requires

advanced expertise. GNSS-EStalk addresses these challenges by identifying highly

consistent noise segments in daily data, which helps uncover potential causes. It

also utilizes a multi-model deep learning approach to classify these noise segments

and determine the sources of errors.

In summary, this research has the following aim, objective, research question, and

novelty:

1.5.1 Aim

This work aims to develop DAIoTtalk, a data-decentralized AIoT platform based

on IoTtalk. It enhances communication efficiency, deployment versatility, and

resource scalability. These overcome the limitations of existing centralized IoT

architectures in AIoT applications.

1.5.2 Objective

• To design and implement a novel data-decentralized pub-sub communication

framework based on the gRPC protocol.

• To extend the existing IoTtalk platform to support P2P communication

through the proposed gRPC pub-sub framework.

• To evaluate the communication efficiency and resource scalability of the

proposed framework.

• To demonstrate the capability of the platform to support customized AI-

driven analytics and classification.

• To validate the deployment versatility of the proposed DAIoTtalk through

real-world case studies in sewing manufacturing by SewingTalk and GNSS

error source analysis by GNSS-EStalk.

Chapter 1: Introduction 24

1.5.3 Research Question

• How can a gRPC-based publish-subscribe architecture be designed to

support efficient and scalable data-decentralized communication in AIoT

systems?

• What are the performance benefits of using a gRPC-based

data-decentralized pub-sub framework over traditional centralized

communication models in AIoT platforms?

• What architectural modifications are required to integrate a gRPC-based

pub-sub framework into IoTtalk to support peer-to-peer communication?

• How does the proposed framework compare to traditional centralized

architectures in terms of communication efficiency and resource

scalability?

• To what extent can the platform enable domain-specific AI-driven analytics

and classification in real-world AIoT use cases?

• How adaptable is the platform in supporting various AI models and

classification tasks tailored to different AIoT scenarios?

• How versatile is the proposed DAIoTtalk platform in supporting diverse

real-world AIoT applications, such as sewing manufacturing and GNSS error

source analysis?

• Can DAIoTtalk effectively support deployment across heterogeneous AIoT

domains with distinct data, communication, and processing requirements?

1.5.4 Novelty

• Supports direct P2P communication between nodes, eliminating reliance

on traditional centralized brokers or cloud-based infrastructure for data

routing.

Chapter 1: Introduction 25

• Develops a topic-based gRPC publish-subscribe framework, which is

uncommon in P2P AIoT communication architectures.

• Extends the IoTtalk platform by integrating a gRPC-based

publish-subscribe framework, providing a more scalable and efficient

communication model tailored for modern AI-driven applications.

• Redesigns the JF to remotely allocate customized functions directly to edge

nodes, enabling distributed processing at the network edge. This capability

is rarely found in existing IoT platforms.

• Develops the SewingTalks, a system developed to estimate product

completion on textile production lines by analyzing smart sewing machine

log data.

• Develops the GNSS-EStalk, a system that supports GNSS error source

analysis using a novel AI-driven temporal-spatial approach.

1.6 Chapter Description

We begin by presenting the background of this work in Chapter 2, which

includes a survey of common IoT protocols, an overview of existing high-level

IoT platforms, the applications of IoTtalk, and a critical analysis comparing

these with the DAIoTtalk platform.

Next, we introduce DAIoTtalk in Chapter 3, detailing the gRPC

data-decentralized framework and the implementation of DAIoTtalk.

Then, we present SewingTalk in Chapter 4, the first case study, to showcase the

deployment versatility of DAIoTtalk in sewing industry. This chapter discusses

related works, model developments, how the models are deployed on DAIoTtalk

to support customization, and model evaluations.

Following that, we introduce GNSS-EStalk in Chapter 5, the second case study, to

Chapter 1: Introduction 26

showcase the deployment versatility of DAIoTtalk in PNT service. This chapter

discusses related work, model developments, how the components are deployed in

different DAIoTtalk projects for different purposes, and model evaluations.

After that, we provide an evaluation of the DAIoTtalk platform in Chapter 6,

discussing how it enhances communication efficiency, deployment versatility, and

resource scalability.

Finally, we provide conclusions in Chapter 7 to summarize this work, and suggest

some future works.

2

Background and Survey

2.1 Survey on IoT Communication Protocol

Application layer communication protocols manage communication among IoT

devices, enabling developers to control data flows and build IoT applications more

efficiently. Table 2.1 lists common IoT application protocols, based on aspects

from [21] and [18].

The Transport column indicates support for the Transmission Control Protocol

(TCP), where the receiver sends an acknowledgment (ACK) upon receiving a

packet, and the User Datagram Protocol (UDP), where the sender does not

verify packet receipt. Quality of Service (QoS) refers to traffic control

mechanisms that ensure the delivery of messages. Request-Response (Req-Resp)

is a communication method where a device sends a request and waits for a reply

to complete the data exchange. Publish-Subscribe (Pub-Sub) involves a data

publisher sending a message to a topic, while data subscribers receive the

Protocol Transport QoS req-resp pub-sub broker Binary encoding Ref.

REST/HTTP1.x TCP - ✓ - - - [18], [19], [20]

MQTT TCP 3 levels - ✓ ✓ ✓ [18], [21], [22]

CoAP UDP 2 levels ✓ ✓ - ✓ [18], [23]

AMQP TCP/UDP 3 levels ✓ ✓ ✓ ✓ [18], [21], [24]

ZeroMQ TCP/UDP - - ✓ - ✓ [21].[25]

gRPC TCP - ✓ - - ✓ [26]

Table 2.1: Common IoT application layer protocol

Chapter 2: Background and Survey 28

message by subscribing to that topic. A broker facilitates message broadcasting

to other devices upon receiving a message. Protocols that do not require a

broker can perform Peep-to-Peep (P2P) communication. Binary encoding

reduces the size of the data compared to string encoding when transmitting

binary data, such as images or files, but also reduces the readability of the

payload for humans.

2.1.1 REST/HTTP (HTTP/1.x)

Hypertext Transfer Protocol (HTTP)/1.x [20] is the most widely used client-

server protocol for web applications. It operates over TCP to ensure reliable data

delivery and follows a request-response communication model between the client

and server. REST/HTTP is associated with REST [19], a messaging architecture

that defines interaction methods such as POST and GET. Messages are typically

encoded in UTF-8 plain text and structured using JavaScript Object Notation

(JSON) [27], enhancing human readability during application development.

2.1.2 MQTT

Message Queuing Telemetry Transport (MQTT) [22] is a TCP-based messaging

protocol. It is designed for large-scale IoT deployments, particularly for

resource-constrained sensor nodes operating with low bandwidth, unstable

networks, and limited power. MQTT follows a broker-client architecture within

a Pub-Sub model. Although it is TCP-based, message loss can still occur due to

factors such as wireless interference or sudden disconnections. To optimize

transmission reliability and device efficiency, MQTT defines three QoS levels: 0

(no guarantee), 1 (at least once), and 2 (exactly once), with higher QoS levels

requiring additional broker resources.

Chapter 2: Background and Survey 29

2.1.3 CoAP

The Constrained Application Protocol (CoAP) [23] is a UDP-based messaging

protocol designed for devices with limited processing power and complex network

conditions. Like REST/HTTP, it supports RESTful request-response interactions

but uses a binary-encoded header, making it more lightweight than the string-

encoded REST/HTTP header. CoAP matches requests and responses over UDP

using a token value in the header. Additionally, Its observe function enhances

GET interactions by enabling the server to push updates to clients, similar to

a publish-subscribe model. CoAP defines two QoS levels: Non-Confirmable and

Confirmable.

2.1.4 AMQP

The Advanced Message Queuing Protocol (AMQP) [24] is a messaging protocol

that supports both reliable asynchronous and synchronous communication. It is

designed to enable inter-process communication while efficiently handling high

message volumes. AMQP facilitates a publish-subscribe architecture with two

types of brokers: the Exchange and the Queue. The Exchange receives messages

from publishers and routes them to one or more subscriber Queues, where

messages remain until they are consumed. Starting from AMQP 1.0, the

protocol also supports direct P2P communication without a broker. Its QoS

mechanism is similar to MQTT, offering three levels of message delivery

assurance.

2.1.5 ZeroMQ

ZeroMQ [25] is a high-level asynchronous messaging library that integrates

multiple communication protocols, designed for distributed and concurrent

system communication. Unlike AMQP, it provides message queuing

functionality without requiring a broker. ZeroMQ natively supports both

Chapter 2: Background and Survey 30

Pub-Sub and Req-Resp communication models across various transports,

including TCP and UDP for network communication, as well as in-process and

inter-process communication for system-level messaging. An evaluation by [21]

found that ZeroMQ maintains stable performance across different data volumes,

particularly achieving high throughput with lower latency compared to MQTT

and AMQP.

2.1.6 gRPC (HTTP/2)

gRPC [26] is an HTTP/2-based Remote Procedure Call (RPC) framework.

Compared to HTTP/1.x, HTTP/2 utilizes a binary framing layer to encode

messages in binary format, making it significantly more efficient than the plain

text format of HTTP/1.x. gRPC performs request-response interactions by

serializing messages with Protocol Buffers (Protobuf) [28], an Interface

Definition Language (IDL) that enables cross-platform serialization and

deserialization while being more efficient than JSON for data transmission [29].

In addition to the request-response model, HTTP/2 supports bidirectional

streaming, making gRPC particularly effective for transmitting large volumes of

data, such as camera frames for AI applications.

2.2 Analysis of Existing High-level IoT Platforms

The IoT platform enables remote management of large-scale IoT devices.

Table 2.2 compare the platforms under study, summarizing key aspects of a

high-level platform, identified in [36], [37], and [38]. The first column of each

table lists these aspects, including Management, Development, Low-Code

Configuration, Communication, Data Processing, and Security.

Notable IoT platforms include ThingsBoard [30], SensorCloud [32], and

OpenRemote [34], which provide multi-application solutions. Temboo [31]

specializes in environmental surveillance, while Fiware [33] serves as both an IoT

Chapter 2: Background and Survey 31

T
ab

le
2.

2:
C

om
pa

ri
so

n
of

Io
T

P
la

tf
or

m
s

P
la

tf
or

m
T

hi
ng

sb
oa

rd
[3

0]
T
em

b
oo

[3
1]

Se
ns

or
C

lo
ud

[3
2]

F
iw

ar
e[

33
]

O
p
en

R
em

ot
e[

34
]

Io
T

ta
lk

[1
7]

St
at

us
✓

✓
✓

✓
✓

✓

G
ro

up
✓

-
-

✓
✓

-
M

an
ag

em
en

t
A

pp
lic

at
io

n
✓

Lo
ca

tio
n

O
nl

y
-

✓
-

✓

E
co

sy
st

em
-

-
-

✓
-

-

A
P

I
D

at
a

ex
ch

an
ge

D
at

a
ex

ch
an

ge
D

at
a

ex
ch

an
ge

D
at

a
ex

ch
an

ge
,

G
at

ew
ay

,
ad

d-
on

s
D

at
a

ex
ch

an
ge

D
at

a
ex

ch
an

ge

D
ev

el
op

m
en

t
C

us
to

m
iz

at
io

n
no

de
s

lim
ite

d
no

de
s

no
de

s
no

de
s,

ad
d-

on
s,

Io
T

A
ge

nt
s

no
de

s,
pr

ot
oc

ol
,

U
I,

ap
ps

no
de

s

Fl
ow

G
ra

ph
Fo

r
R

ul
e

-
-

Fo
r

da
ta

flo
w

Fo
r

R
ul

e
Se

pa
ra

te
d

pa
ir

Fo
r

da
ta

flo
w

Lo
w

-C
od

e
C

on
fig

ur
at

io
n

C
on

so
le

✓
✓

✓
✓

✓
✓

P
ro

to
co

l
In

te
gr

at
ed

H
T

T
P

1.
1,

M
Q

T
T

,
C

oA
P

H
T

T
P

1.
1

H
T

T
P

1.
1

M
Q

T
T

,
H

T
T

P,
w

eb
so

ck
et

,e
tc

H
T

T
P

1.
1,

M
Q

T
T

H
T

T
P

1.
1,

M
Q

T
T

G
at

ew
ay

M
Q

T
T

,
C

oA
P,

Lo
R

aW
A

N
,e

tc

M
Q

T
T

,
C

oA
P,

et
c

H
T

T
P

Lo
R

aW
A

N
,

se
lf-

de
fin

e
-

N
B

-I
oT

,
se

lf-
de

fin
e

C
om

m
un

ic
at

io
n

H
ig

h
T

hr
ou

gh
ou

t
-

-
-

B
y

ad
d-

on
s

-
-

Fi
lte

r
✓

✓
✓

✓
✓

✓

M
at

hs
✓

-
✓

✓
✓

✓
D

at
a

P
ro

ce
ss

in
g

A
I

Li
ne

ar
P

re
di

ct
io

n
-

-
B

ig
D

at
a

an
al

ys
is

-
[3

5]
A

cc
es

sin
g

✓
-

✓
✓

-
-

A
ut

he
nt

ic
at

io
n

✓
✓

✓
✓

✓
✓

Se
cu

rit
y

A
ut

ho
riz

at
io

n
✓

✓
✓

✓
✓

✓

Chapter 2: Background and Survey 32

platform and a customizable framework for user-specific needs. IoTtalk [17]

stands out as a simple, low-cost platform with strong integration capabilities,

which we are evolving into an AIoT platform. The following sections will

examine each platform in detail.

2.2.1 Management

For management, we focus on how to remotely oversee large-scale IoT nodes

through an interface. Key aspects include status management, group

management, and application management.

Status management enables users to track node status such as connectivity,

battery level, and operational state remotely. Since this is one of the basic

functionalities of the IoT management platform, it was found that all studied

platforms offer this functionality.

Group management is necessary for efficiently operating large-scale IoT

deployments. It enables users to categorize nodes based on their function,

allowing a single configuration to be applied across multiple devices.

ThingsBoard, Fiware, and OpenRemote natively support this feature, making it

easier to manage homogeneous sensor nodes. In contrast, Temboo, SensorCloud,

and IoTtalk require an additional gateway to group sensors, which is not a

built-in feature and makes large-scale management more cumbersome.

Application management enables users to organize their devices into separate

projects to support multiple applications. This is provided by ThingsBoard,

Fiware, and IoTtalk. Temboo organizes all devices according to where they are

located, and this is not particularly flexible. SensorCloud and OpenRemote do

not natively support the concept of multi-projects. Users of those platforms

have to create multiple accounts to cover different use cases.

Chapter 2: Background and Survey 33

2.2.2 Development

For Development, we evaluate the support provided by each platform for

creating IoT applications. Key aspects include Ecosystem, Application

Programming Interface (API), and Customization.

Ecosystem refers to the availability of templates or add-ons shared by developers

or third parties, making application development more accessible. Among the

studied platforms, only Fiware offers this feature, allowing users to enhance their

platform with shared add-ons to tailor their IoT solutions to specific needs.

API is a toolkit for developers to create standard nodes. Most platform

facilitates data exchange between devices and the cloud or other nodes by API.

Additionally, Fiware also offers APIs that enable gateway and add-on

development, strengthening its ecosystem.

Customization defines the level of adaptability a platform offers. Most platforms

allow users to customize end nodes to send and receive specific data. However,

Temboo is limited to predefined node types based on its specifications. Fiware

extends customization capabilities through add-ons and IoT Agents, enabling the

transmission of heterogeneous data. OpenRemote allows UI modifications for

improved user experience and provides templates for mobile app development.

2.2.3 Low-Code Configuration

Low-Code Configuration provides a user-friendly graphical interface to create IoT

applications. The low-code interface allows even users with minimal background

knowledge to configure, adjust, and deploy nodes with little effort. There are 2

common types of low-code interfaces: Flow Graph and Console.

Flow Graph is a logic-based UI that connects components visually. It not only

configures data flow but also enables users to structure their AI applications,

which is clearer than explaining using text alone. ThingsBoard employs a flow-

Chapter 2: Background and Survey 34

based architecture to define data rules, such as calculations and if-else filters.

Fiware uses a flow graph to configure communication between node parameters.

IoTtalk, on the other hand, relies on a separate IDF/ODF pair design to represent

data flow, which can be confusing for users.

Console typically consists of checkboxes, dropdown lists, and short text fields

for variable preset configuration. As shown in Table 2.2, this is a fundamental

low-code GUI component, and all the studied platforms provide this feature.

2.2.4 Communication

Communication support plays a crucial role in handling node volume and

heterogeneous data transmission. Key factors include protocol integration,

gateway support, and high-throughput capabilities for large-scale data

processing.

Protocol Integration determines platform compatibility. All studied platforms

support REST HTTP, the most common web protocol, but it is inefficient for

handling massive or large-volume data due to UTF-8 encoding overhead.

Additionally, REST HTTP requires an extra implementation to support a

Pub-Sub architecture. ThingsBoard, Fiware, and OpenRemote natively support

MQTT, a lightweight protocol designed for managing large-scale IoT

deployments. Fiware also supports WebSocket and other protocols for

high-volume data streaming.

Gateway support is essential for integrating non-native protocols and enabling

communication between heterogeneous networks, such as Wireless Sensor

Networks (WSNs). Platforms like ThingsBoard, Temboo, and Fiware support

multiple IoT protocols, including CoAP and LoRaWAN. Additionally, Fiware

allows users to customize gateways for specific needs. SensorCloud leverages

HTTP gateways to aggregate data from multiple nodes, addressing scalability

challenges. IoTtalk enables flexible connectivity for cyber-IoT devices, allowing

Chapter 2: Background and Survey 35

them to function as adaptive network gateways. [39] showcases an example

using Narrowband Internet of Things (NB-IoT).

High Throughput is a key distinction between traditional IoT platforms and AIoT

platforms. AI models require the transmission of large datasets, such as model

weights, camera frames, and 3D point clouds. Most existing platforms do not

support high-throughput communication, as it significantly increases maintenance

costs in cloud-based or centralized systems. Fiware offers add-ons for streaming

large data, such as video.

2.2.5 Data processing

When data is sent to the platform, it needs to be processed to extract insights

that can be analyzed for decision-making. There are three main approaches to

data processing: Filtering, Mathematical Operations, and AI Processing.

Filtering is a fundamental function for separating data, typically implemented

using if-else logic. All the studied platforms support this feature.

Mathematical operations are used to apply a formula that transforms raw sensor

data into numerical features. This is a common feature of centralized or

cloud-based platforms, as applying functions to process data on a single server is

easier. All platforms support this except Temboo, which is designed for ambient

monitoring (temperature and humidity) and does not require a complex

calculation.

Interestingly, different platforms implement filtering and mathematical

operations in different ways. ThingsBoard and OpenRemote offer a flow-based

GUI to create filtering and calculation rules, making it more user-friendly.

Meanwhile, ThingsBoard, SensorCloud, Fiware, and IoTtalk integrate these

operations with programming using IPython [40], providing greater flexibility for

developers.

Chapter 2: Background and Survey 36

AI Processing is becoming essential in IoT, making it a key component of an AIoT

platform. ThingsBoard supports basic AI functionality, such as linear prediction

for forecasting input trends. Fiware offers add-ons for big data analysis. IoTtalk

does not natively support AI processing, but there is work [35] to implement AI

models in cyber-IoT devices.

2.2.6 Security

Cybersecurity is a major concern, especially for AIoT applications that rely on

the Internet for data exchange. For keeping data and applications safe, security

is a critical aspect of AIoT platform. Key aspects include access control,

authentication, and authorization.

Access Control manages node and data permissions across users and projects

because a single node may be involved in multiple projects. ThingsBoard,

SensorCloud, and Fiware implement this by allowing users and nodes to be

grouped within projects, simplifying access management.

Authentication indicates whether a user or node is authorized to access the system.

The studied platforms commonly use username-password authentication or token-

based authentication to validate access.

Authorization protects transmission from man-in-the-middle (MITM) attacks,

where an unauthorized entity intercepts, accesses, or modifies data. Encryption

and certification protocols, such as Transport Layer Security (TLS) [41] and

OAuth2 [42], are widely adopted by the studied platforms to mitigate these

risks.

2.3 IoTtalk Application

IoTtalk [17] is a key milestone in our AIoT platform. It is an IoT management

platform with a low-cost, reconfigurable architecture designed to develop

Chapter 2: Background and Survey 37

interactive science experiments and provide IoT solutions for small- to

medium-sized manufacturers. It has been widely adopted across various

applications, including development testbed, smart city, agriculture, and AI.

Here, we present some examples.

2.3.1 Development Testbed with IoTtalk

The low-cost and reconfigurable architecture enables IoTtalk to be used as a

development testbed like ArduTalk [43], SimTalk [44], and NB-IoTtalk [39].

ArduTalk is a graphical programming environment for IoT development with

Arduino. It provides a user-friendly interface for managing multiple Arduino

boards connected to the cloud. Beginners can easily link and re-link connections

between sensors and actuators in a low-code environment, enabling the rapid

creation of various IoT projects.

SimTalk provides a simulation mechanism for ensuring the correct

implementation and behavior analysis of IoT applications. It features animated

simulations for both input (sensor) and output (actuator) IoT devices. To

showcase the verification of IoT application configurations through simulations,

it demonstrates examples such as a smart farm application, interactive art, and

a pendulum physics experiment.

NB-IoTtalk proposes a service platform for rapidly developing NB-IoT

applications. It employs a tag mechanism to offer an intuitive GUI for managing

a large number of NB-IoT devices. To showcase large-scale IoT application

deployment, a smart parking lot application with event-triggered reporting in

NB-IoT is developed.

Chapter 2: Background and Survey 38

2.3.2 Smart City Application with IoTtalk

Smart city application is a typical IoT topic that brings convenience to daily

lives. Many studies use IoTtalk to implement Smart City projects, including

CampusTalk [45], HouseTalk [46], and FusionTalk [47].

CampusTalk introduces a collection of IoT applications deployed across a school

campus, showcasing cyber-physical interactions. Examples include using

smartphones as musical glow sticks for large campus concerts, virtual sports

teaching and analysis of table tennis for physics lectures, and a cyber-physical

artwork controlled via remote devices in the applied art institute.

HouseTalk presents a smart house based on the passive building design concept. It

incorporates a ‘green core’, a plant wall integrated with IoT devices, to effectively

reduce the house’s energy consumption. Non-thermodynamic cycle systems, such

as mechanical ventilation and evaporative cooling, purify the air and cool the space

without relying on active Heating, Ventilation, and Air Conditioning systems.

FusionTalk introduces an object identification system for video surveillance,

combining object recognition in camera frames with Bluetooth low-energy

beacons. This integration enables precise localization, identification, and

tracking of target objects within the monitored area. Administrators benefit

from a GUI that not only enhances the visualization of object movement and

behaviour, but also offers reconfigurable controls for managing cameras, IoT

devices, and network applications.

2.3.3 Agriculture Application with IoTtalk

IoTtalk has been applied to the agriculture industry for crop and livestock

management with sensors and actuators with network applications.

AgriTalk[48], FishTalk[49], and PigTalk[50] are the example.

AgriTalk is designed for low-cost precision farming, which focuses on soil

Chapter 2: Background and Survey 39

cultivation. In precision farming, using sensors enables monitoring of data such

as soil quality, weather conditions, and crop growth. Meanwhile, this data helps

control actuators with precision, including spraying, drip irrigation, and

repellent lights. With the IoTtalk platform, farmers can remotely and

automatically manage crops or operate devices semi-automatically. A use case

demonstrates curcumin farming in mountainous regions over long distances

(more than 30 km), achieving a five times increase in production.

FishTalk introduces a novel fish-care system that utilizes aquarium sensors to

control actuators in real time. The sensors measure key parameters such as

temperature, pH, and water levels. The parameters regulate actuators like food

dispensers, pumps, and ambient lighting. An intelligent feeding mechanism

prevents overfeeding, while an integrated camera enables remote monitoring.

The system also has the potential for large-scale aquaculture applications.

PigTalk leverages AIoT solutions to detect and mitigate piglet crushing in

farrowing houses. The system monitors vocalizations, using machine learning to

detect piglet distress calls. In emergencies, it automatically activates sow-alert

actuators to prevent crushing. Integrated cameras enable real-time monitoring.

Validated in a commercial farrowing house, the system saved piglets within 0.05

seconds with a 99.93% success rate.

2.3.4 AI Application with IoTtalk

There are other applications with AI models deployed on IoTtalk. [51], TrafficTalk

[52] and MusicTalk [53] are the typical example.

[51] implements AI models as cyber devices for house valuation applications. It

provides a non-physical IoT example of AItalk [35], a platform integrating AI

and big data with IoT using IoTtalk, to estimate house values with models like

Decision Tree, K-nearest neighbors, and Support Vector machine. Real datasets

with factors like location, house ages, and parking space are experimented with

Chapter 2: Background and Survey 40

the system.

TrafficTalk estimates traffic queue dissipation using deep learning models. When

a video clip of mixed traffic flow is captured, it is processed by a cyber IoT device

equipped with image recognition models to identify vehicle types in the frames.

The system then converts the video into vehicle density maps, which are analyzed

by a convolutional neural network (CNN) to predict dissipation time.

MusicTalk utilizes IoTtalk to identify and classify musical instruments from

audio recordings. It processes audio clips through a microservices node to

extract features and predict instrument types by ensembling Vision Transformer

and CNN models. The system also supports training and integrating new

instrument models, expanding its detection capabilities.

2.4 Critical Analysis of Related Work

In general, IoT platforms can be categorized into three types: cloud-based,

centralized, and decentralized. In this section, we provide an overview of each

category, followed by a critical analysis of this work and the others.

2.4.1 Data-cloud-based

The data-cloud-based platform joins data into a cloud server operated by a service

provider. [30], [34], and [32] are typical cloud-based IoT (CB-IoT) [54], providing

service for data management and device monitoring. They often offer limited

customization and control for testing and deploying AI models. [55] and [56] offer

service-oriented IoT (SOA-IoT)[57] features. They treat IoT devices, sensors,

and actuators as services that can be accessed or controlled through an interface.

Nonetheless, they are typically designed for static or semi-static environments,

which may not sufficiently satisfy the dynamic nature of AIoT development.

Chapter 2: Background and Survey 41

2.4.2 Data-centralized

The data-centralized platform establishes a broker or server for data gathering

and redistribution, enabling flexible data coordination. [17] and [33] are the

microservices-IoT (MS-IoT) [14] platforms that break down the IoT system into

small, independently operating services with distinct functionalities, featuring

flexibility for application development. However, they rely on common IoT

application protocols like HTTP/REST, MQTT, or CoAP, which enable the

connection of a massive device with small data volumes but are not well-suited

for multimedia streaming. [58] and [59] utilize session initiation protocol (SIP)

and advanced message queuing protocol (AMQP) broker respectively to

overcome the limitation. Nevertheless, a single point of overload or failure is a

potential concern for this approach, particularly considering that AIoT solutions

often involve substantial data flow requirements.

2.4.3 Data-decentralized

The data-centralized platform allows devices to engage in P2P communication

with each other, mitigating the risk of single-point failure and enhancing flexibility

and resilience in device connectivity, which are crucial for AIoT applications. [60]

is an MS-IoT platform designed to ensure data privacy and security through P2P

connections among nodes. However, it primarily focuses on device management

and data storage rather than comprehensive AIoT development. Our approach is

data-decentralized with MS-IoT design but leans more towards AIoT than [60].

In our framework, we allow the deployment of AI models or algorithms as service

nodes, enabling high-throughput streaming empowered by gRPC.

2.4.4 Summary of Research Gap

Table 2.3 summarizes the differences between this Work and existing IoT

Platforms in terms of communication efficiency, deployment versatility, and

Chapter 2: Background and Survey 42

Table 2.3: Summary of Comparison Between This Work and Existing IoT
Platforms

Data-cloud-based Data-centralized Data-decentralized

Platforms [30], [34], [32], [55], [56] [17], [33], [58], [59] [60] This Work

Communication

Efficiency
Limited Medium High High

Deployment

Versatility
Low Medium Low High

Resource

Scalability
Medium Limited High High

resource scalability.

For communication efficiency, a platform is expected to provide low-latency,

high-throughput, and protocol-efficient communication. The data-cloud-based

approach offers limited support in this regard, as it typically relies on SOA-IoT

interfaces that are not optimized for dynamic or multimedia data. The

data-centralized approach performs moderately, using traditional protocols (e.g.,

HTTP/REST, MQTT, CoAP) that are inefficient for high-throughput or

multimedia scenarios. Although alternatives such as SIP and AMQP offer

improvements, they still introduce risks of single-point failure or overload, which

undermines scalability in AIoT deployments. In contrast, the data-decentralized

approach excels in communication efficiency, as P2P communication reduces

latency and enables direct device interaction. Our proposed gRPC-based

pub-sub framework further enhances this by supporting efficient, real-time data

streaming.

For deployment versatility, a platform should offer flexible support for various

IoT nodes, AI models, network topologies, and deployment environments. The

data-cloud-based approach provides limited versatility, as it typically restricts

customization and relies on fixed service models, making it more suitable for static

or semi-static environments. The data-centralized approach performs moderately.

It features a modular design that allows flexible node deployment, but dynamic AI

model integration remains limited. In the data-decentralized approach, [60] offers

Chapter 2: Background and Survey 43

low support in this area, focusing primarily on device connectivity while lacking AI

model deployment capabilities. In contrast, this work provides high deployment

versatility by supporting modular service nodes that can dynamically deploy both

IoT nodes and AI models. This enables customized, adaptive deployments across

diverse scenarios, from edge to cloud, tailored to specific application needs.

For resource scalability, a platform should be capable of handling increasing

numbers of devices, larger data volumes, and heavier computational loads

without performance bottlenecks. The data-cloud-based approach offers

moderate scalability, as it generally scales well in the cloud but has limited

adaptability at the edge. The data-centralized approach scores low in this

regard, as it is prone to bottlenecks and single-point overload at the central

server or broker, particularly under AI-intensive workloads. In contrast, the

data-decentralized approach offers high scalability due to its distributed

architecture, which enhances resilience and fault tolerance. This work adopts a

data-decentralized, MS-IoT based design that distributes computation and data

flow across nodes, potentially supporting horizontal scaling, load balancing, and

efficient resource utilization across edge, fog, and cloud layers.

All in all, this work addresses the research gap by integrating a

microservices-based IoT (MS-IoT) design with a data-decentralized architecture.

It employs gRPC for efficient, high-throughput communication and enables IoT

devices, AI models, and algorithms to be deployed as modular service nodes,

supporting full-stack AIoT development. As a result, the proposed framework

offers significant advantages in communication efficiency, deployment versatility,

and resource scalability compared to existing approaches.

3

DAIoTtalk - A Data-Decentralized

Pub-Sub AIoT Platform

3.1 Chapter Introduction

To address the flexibility and scalability requirements of AIoT communications,

we develop a gRPC-based publish-subscribe framework in Section 3.2. This

framework is then integrated into IoTtalk to form DAIoTtalk, as described in

Section 3.3. A case study is also presented in this chapter to demonstrate the

DAIoTtalk platform in practice.

3.2 gRPC Pub-Sub Framework

Fig. 3.2.1 shows the proposed Pub-Sub architecture using gRPC. In general, each

publisher-subscriber pair should consist of a gRPC server and a gRPC client. The

Agent is to resolve a client connection to a server according to the user-defined

rules. The transmission mode can be either push or pull, indicating whether the

client is a publisher or a subscriber respectively.

There are 4 ‘Re’ steps in the frameworks, which are Register (ReG), Resolve

(ReS), Request (ReQ), and Response (ReP). First, the node registers itself with

the Agent. Next, the Agent resolves the connection between nodes based on the

configuration. Then, the publisher requests data from the subscriber. Finally, the

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 45

Agent

Pull:

Push:

11

1 1
2

2

Publisher
(client)

Subscriber
(server)

3

Publisher
(server)

Subscriber
(client)

3

4

4

ReGcl

ReGse ReGcl

ReGse

ReS

ReS

ReQpull
RePpull

ReQpush
RePpush

connection
rules

Figure 3.2.1: The gRPC Pub-Sub framework.

subscriber responds with the requested data. We detail them as follows.

Step 1 (ReG): Every node should send a register message to the Agent defined as

follows:
ReGmode =(Node, Pub, Sub, IP), where

mode ∈ {se = 0, cl = 1}
(3.2.1)

Here, mode is a flag representing the node’s operational mode, where cl and se

respectively denote client and server modes. Node contains a unique

identification. Pub and Sub represent the sets of publishment and subscription

topics required by the node, respectively. IP is the address of the server and it

will be null if the node is a client.

Step 2 (ReS): When the Agent receives a ReG packet, information will be

registered to a database. The Agent will try to link the subscribers to the

publishers according to the user-defined connection rules, which will be

described in Section 3.3.1. The Agent will periodically update the gRPC client

with a resolving packet with a set of topic connection pairs denoted as follows:

ReS ={(nodepub, nodesub, topicpub, topicsub, IP)c} (3.2.2)

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 46

where nodepub ∈ Node and nodesub ∈ Node represent a publishment node and a

subscription node, respectively, while topicpub ∈ Pub and topicsub ∈ Sub

represent a publishment topic and a subscription topic, respectively. IP is the

address connected to the gRPC server. c ∈ [0, |ReS|) represents the index of

each connection pair.

Step 3 (ReQ): When a gRPC client receives a ReS defined above, it will

establish a bi-directional stream with the corresponding gRPC server using the

request/response pattern, employing either the push or pull method based on its

characteristics. By specifying method ∈ {push, pull}, the request message is

defined as follows:

ReQmethod = (node, topic, payload) (3.2.3)

If the gRPC client is a subscriber, it will employ the pull method by fetching

data from the gRPC server (publisher). The client will initiate a ReQpull to the

server using the received ReS, where ReQpull[node] and ReQpull[topic] will

respectively contain the client node information nodesub and the server

publishment topicpub. ReQpull[payload] will be reserved. If the gRPC client

serves as a publisher, a push method will be employed and the gRPC server will

serve as a subscriber, where data is sent directly by the client in a request

ReQpush according to the ReS. ReQpush[node] represents the client node

information nodepub, while ReQpush[topic] denotes the subscription topic

topicsub provided by the server. Data will be attached in ReQpush[payload].

Step 4 (ReP): The server will reply to a response message according the method

defined as follows:

RePmethod = (node, topic, payload, code). (3.2.4)

When method = pull, the server will verify the ReQpull[topic] in its Pub and

check if there is unsent data in the corresponding buffer. It will then create a

RePpull packet with a success status code in RePpull[code]. RePpull[node] will be

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 47

Figure 3.3.1: A DAIoTtalk device-object pairing project reference from [61].

the server node information and RePpull[topic] = ReQpull[topic]. The requested

data will be attached to RePpull[payload]. Since the connection is established in a

bidirectional stream, the server will persistently send the RePpull messages until

there is no new data, but the client will periodically send the ReQpull message to

maintain the connection.

On the other hand, if method = push when receiving the ReQpush, the server will

respond with a RePpush message. It will verify if the ReQpush[topic] belongs to

it and indicate the success code in ReQpush[code]. Additionally, it will include its

node information in RePpush[node] and set RePpush[topic] = ReQpush[topic]. The

RePpush[payload] will be reserved at this time. In the push method, the client

will keep pushing ReQpush and the server will keep providing feedback RePpush,

forming a bidirectional stream.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 48

3.3 The Proposed DAIoTtalk

DAIoTtalk is evolved from IoTtalk [17]. IoTtalk is a platform that facilitates

low-code deployment through a user-friendly graphical user interface (GUI). It

provides efficient project management capabilities accessible to users of varying

technical backgrounds. We integrate the gRPC Pub-Sub framework into IoTtalk,

resulting in the creation of DAIoTtalk. Fig. 3.3.1 shows a DAIoTtalk device-

object pairing project derived based on the IoTtalk framework. The application

is detailed on [61], chaining multiple AI models with video streaming. Details will

be described in Section 3.3.5.

In IoTtalk, data is classified into two categories: input device feature (IDF) as

illustrated in Fig. 3.3.1a and output device feature (ODF) as in Fig. 3.3.1b. Each

IoT node is constructed as a device model (DM) like Fig. 3.3.1c, comprising

various device features (DF), whereDF ∈ {IDF,ODF} as depicted in Fig. 3.3.1d.

A DF serving as a data source is categorized as an IDF. Conversely, a DF that

receives data is classified as an ODF. A user can easily build a connection rule

for Eq. (3.2.2) between an IDF and an ODF by drawing a ‘Join’ line as shown in

Fig. 3.3.1e in the GUI.

3.3.1 Integration of DAIoTtalk

To integrate the gRPC Pub-Sub frameworks into the IoTtalk system, we allocate

the IDF as the publisher and the ODF as the subscriber. Fig. 3.3.2 depicts how

we extend IDF and ODF by incorporating gRPC using the example in Fig. 3.3.1.

This architecture consists of two domains: node domain and network domain.

• The node domain contains all device and service nodes under the DAIoTtalk.

For each node, we implement an application programming interface (API)

called ‘AGAPI’ as shown in Fig. 3.3.2a. The API integrates the IoTtalk

DA, which is responsible for registration with the IoTtalk server, and the

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 49

CameraIoTtalk Registration

YoloV8

Agent EC

DB GUI

IoTtalk Server

Network Domain

b

Node Domain

c

DeepSORT

Fusion

Pairing

AGAPI

Publisher Subscrber

gRPC Pub-Sub
Framework

DA

Smart Badges

a multiple nodes

P2P Connection

Figure 3.3.2: Extension of IDF and ODF in DAIoTtalk.

Pub-Sub framework outlined in Section 3.2 for communication among other

nodes.

• The network domain addresses the remote service for managing the AIoT

solution. Fig. 3.3.2b is the IoTtalk server with the Agent component of the

pub-sub framework. It is deployed in the network domain. The execution

and communication (EC) system receives messages from the DA and

collaborates with the GUI, as well as a database (DB) that stores the

configuration data. The Agent components receive registrations from

gRPC clients and gRPC server nodes using the ReG. It then scrapes the

relevant configuration from DB to construct the ReS and sends it to the

corresponding nodes.

Upon receiving the connection rules from the Agent, the nodes in the node domain

establish P2P communication, as illustrated in Fig. 3.3.2c, following the stepsReQ

and ReP .

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 50

a.

b. c.

d.

e.
Figure 3.3.3: The GUI for configuring JFs in IoTtalk.

3.3.2 Join Function

When a join connection is established in IoTtalk, as shown in Fig. 3.3.1e, the

user can define a Join Function (JF), which is a script that processes data

before transmission or reception. Fig. 3.3.3 illustrates the GUI for configuring

this function. The function can be set up for both the IDF and ODF, as shown

in Fig. 3.3.3a and Fig. 3.3.3b, respectively. The user can access the function

management interface by selecting the option shown in Fig. 3.3.3c. In this

interface, the user can define function arguments and write the Python

script[62], as depicted in Fig. 3.3.3d and Fig. 3.3.3e, respectively.

Since Python is a cross-platform interpreted language [63] that does not require

compilation, this design allows for flexible configuration and supports high-level

deployment.

The Join Function (JF) is executed on the centralized server in IoTtalk, whereas

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 51

Publisher Subscriber

DAIoTtalk

Agent

Node A Node B

main main

AGAPIAGAPI

Function
Manager

Function
Manager

Figure 3.3.4: The data flow for delivering JFs to nodes in DAIoTtalk.

in DAIoTtalk, the scripts must be delivered to decentralized nodes. Fig. 3.3.4

illustrates the delivery process. The Agent distributes the scripts to the

corresponding nodes based on the specified configurations. In each node, the

function manager in AGAPI receives and manages the scripts. To verify

whether the script version matches the one already received, an MD5 hash is

generated and compared using the message-digest algorithm [64]. If the MD5

hashes are matched, the script is considered identical, and the latecomer is

rejected. Otherwise, the script is imported into the Publisher for data processing

before transmission or into the Subscriber before the main thread receives it.

With the data-decentralized design, a more complex JF can be executed to

enhance flexibility.

3.3.3 Connectivity Configuration

Fig. 3.3.5 illustrates the detailed procedure of the configuration cycle in

DAIoTtalk, which consists of three phases: setup, connection configuration, and

function configuration. This cycle is repeated periodically. Each phase is

described in detail below.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 52

ReGmode

AGAPI Agent EC DB GUI

ReGIoTtalk

NID

Join

Join

ReS

Setup:

Connection
Configuration:

FN

FNFunction
Configuration:

RePFN

ReQFN

Figure 3.3.5: The procedure for configuring connectivity in DAIoTtalk.

Setup Phase

A node needs to register with the EC through the AGAPI. The API will transmit

a message containing the DM along with lists of IDF and ODF defined as follows:

ReGIoT talk = (DDM, {IDFi≥0}, {ODFo≥0}),where

DDM = Domain+DM

(3.3.1)

In IoTtalk, a single DM created in the GUI can only be assigned to one device.

To address this limitation, we introduce the DDM , which combines the DM with

an optional field Domain, allowing a group of nodes to share the same connection

rules within DAIoTtalk. The EC will store the ReGIoT talk into DB and return a

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 53

Figure 3.3.6: An example of Pub or Sub topic name.

Table 3.1: The four types of DFO are used to control the broadcasting of topics.

Priority DFO Type DFO Format

0 Native DFO {Node } : {Domain } : {DM } : {DF }
1 DDM DFO % : {Domain } : {DM } : {DF }
2 Domain DFO % : {DM } : {DF }
3 DM DFO {DM } : {DF }

unique identification denoted as NID. Next, the AGAPI will initialize a ReGmode

message described in Eq. (3.2.1) for the Pub-Sub Agent. We express the Node,

Pub, and Sub field in ReGmodeas follow:

Node = (NID,DDM) (3.3.2)

Pub = {Pubi } = {(NID +DDM + IDFi)i} (3.3.3)

Sub = {Subo } = {(NID +DDM +ODFo)o} (3.3.4)

Fig. 3.3.6 shows the topic content for the the example in Fig. 3.3.1. Through this

expression, the Agent can flexibly manage nodes and their associated topics.

Connection Configuration Phase

A Join is created to connect an IDF and an ODF in the IoTtalk GUI. A set of

Join messages for the connection is sent to EC and then stored into the DB. These

messages carry information as follows:

Join = {(naIDn≥0, DFOd≥0)}, (3.3.5)

where naIDn is an identification for each Join.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 54

DFOd is the Device Feature Object (DFO), representing a format of topics used

to control broadcasting. Table 3.1 lists the four types of DFO: Native DFO, DDM

DFO, Domain DFO, and DM DFO:

• Native DFO unicasts only to the exactly matched topic.

• DDM DFO broadcasts to topics matching the DDM.

• Domain DFO broadcasts to topics matching the Domain.

• DM DFO broadcasts to topics matching the DM.

Additionally, a lower-priority DFO cannot overwrite the settings of a higher-

priority DFO.

When a set of DFOd shares the same naIDn, it means that they are connected

in the same Join. The Agent will periodically retrieve the Join information from

the DB and classify whether a DFOd is an IDF or an ODF by matching them

with the registered Pub and Sub. If a pair of topicpub and topicsub is matched,

the Agent will update a row of ReS described in Eq. (3.2.2) for the corresponding

gRPC client-side node.

Function Configuration Phase

When a JF has been configured in the IoTtalk GUI, the configuration will be

stored in the DB by the EC. We denote the configuration set as FN

FN = {FNf } = {(DFOd, fnIDf , Pyf , Argsf)f |f ≥ 0}, (3.3.6)

Here, each configuration FNf contains the script ID fnIDf , the Python script

Pyf , and the arguments Argsf , which are associated with the DFOd. The Agent

will immediately extract the FN from the DB.

For each node, AGAPI will periodically send a set of requests

ReQFN = {ReQFNtopic } to Agent to request updated JFs for every

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 55

Node Tables

Topic Views

DFO Views

Join Function

Connection
View

Connection
Rule

Figure 3.3.7: The architecture of the Agent database.

topic ∈ (Pub ∪ Sub) that it publishes or subscribes to:

ReQFNtopic = (Node, topic) (3.3.7)

The Agent then sends the responses RepFN = {RepFNtopic } to AGAPI for each

requested topic along with the corresponding Pyf and Argsf :

RepFNtopic = (topic, Pyf , Argsf) (3.3.8)

3.3.4 Agent Database

The connectivity of DAIoTtalk is primarily managed by the Agent database, as

illustrated in Fig. 3.3.7.

When a ReGmode package in Eq. (3.2.1) is received, the Agent stores its

information in the node tables, which then generate the corresponding topic and

DFO views.

Upon receiving a Join package in Eq. (3.3.5), the Agent updates the connection

rule table, linking topic and DFO views to generate the connection view. This

enables the Agent to extract the necessary information to construct the ReS

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 56

NodeConnection

PK,FK NodeID

Mode

UpdateTime

IP

Port

Node

PK NodeID

NodeDM

NodeDomain

Topic

PK TopicName

FK NodeID

IsPub

Connection
Status

Publish/
Subscribe

Node Tables
trigger

Figure 3.3.8: The architecture of the node tables in the Agent database.

package in Eq. (3.2.2).

Conversely, when an FN package in Eq. (3.3.5) is received, the Agent processes

it through the JF module and constructs the RePFN package in Eq. (3.3.8).

In the following, we detail each component of the Agent database in Fig. 3.3.7.

Node Tables

Fig. 3.3.8 illustrates the tables that store the registration ReGmode in Eq. (3.2.1),

including the Node table, Topic table, and NodeConnection table.

The Node table records the node information from ReGmode, as specified in

Eq. (3.3.2). It includes the NodeID (NID), NodeDM (DM), and NodeDomain

(Domain). The NodeID is the primary key and prevents inserting a duplicate

NodeID.

The NodeConnection table stores connection information from ReGmode

specified in Eq. (3.2.1). The columns include the connection mode (mode) and

the address (IP), which consists of an IP and port. The UpdateTime field

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 57

SubscribeTopic
SubTopicName

NodeID

NodeDomain

UpdateTime

Mode

SubscriberIP

SubscriberPort

PublishTopic
PubTopicName

NodeID

NodeDomain

UpdateTime

Mode

PublisherIP

PublisherPort

NodeConnection

Node

Topic

⋈

IsPub=1

IsPub=0

Topic Views

Figure 3.3.9: The architecture of the topic views in the Agent database.

records the timestamp when a ReGmode is received. The NodeID serves as both

the primary key and a foreign key referencing the NodeID in the Node table. A

trigger is created to initialize the NodeConnection table when a new node is

inserted into the Node table. Since the Node table and NodeConnection table

have a one-to-one relationship, the trigger executes only once per row in the

Node table.

The Topic table stores topic information from ReGmode. TopicName is the

primary key and corresponds to either a publishment (Pubi) from Eq. (3.3.3) or

a subscription (Subo) from Eq. (3.3.4). The IsPub flag indicates whether the

TopicName represents a Pubi (IsPub = 1) or a Subo (IsPub = 0). NodeID is

the foreign key that links each record to the corresponding NodeID in the Node

table. The relationship between the Node table and the Topic table is

one-to-many, meaning a node can publish or subscribe to multiple topics.

In addition, the foreign key deletion constraints for the NodeConnection and

Topic tables are set to cascade. When a row in the Node table is removed, the

corresponding records in the NodeConnection and Topic tables are automatically

deleted.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 58

Topic Views

Fig. 3.3.9 illustrates two views that summarize the topic status recorded in the

Node, NodeConnection, and Topic tables. These views, SubscribeTopic and

PublishTopic, represent subscription and publishment information, respectively.

The SubscribeTopic view, denoted as V ST , joins information from the Node,

NodeConnection, and Topic tables by their NodeID fields, represented as

TBN ,TBNC and TBT , respectively:

V ST = TBN ▷◁ TBNC ▷◁ TBT , ON

TBN .NodeID = TBNC .NodeID,

TBN .NodeID = TBT .NodeID,

TBT .IsPub = 0

(3.3.9)

Similarly, the PublishTopic view, denoted as V PT , joins the three tables when

IsPub = 1 in Topic table:

V PT = TBN ▷◁ TBNC ▷◁ TBT , ON

TBN .NodeID = TBNC .NodeID,

TBN .NodeID = TBT .NodeID,

TBT .IsPub = 1

(3.3.10)

DFO Views

Fig. 3.3.10 illustrates the process of translating topics into DFOs in the

database, as described in Table 3.1. Each type of DFO is recorded in its

corresponding view along with the original topic name and the IsPub flag. The

views include NativeDFO (denoted as V NaDFO), DDMDFO (denoted as

V DDMDFO), DomainDFO (denoted as V DomDFO), and DMDFO (denoted as

V DMDFO). These views are grouped by the DFO and TopicName fields.

Additionally, the DFOTranslation view, denoted as V DFO, provides a summarized

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 59

Topic

NativeDFO
DFO

TopicName

IsPub

DMDFO
DFO

TopicName

IsPub

DDMDFO
DFO

TopicName

IsPub

DomainDFO
DFO

TopicName

IsPub

DFOTranslation
DFO

TopicName

IsPub
⋈

DFO Views

Figure 3.3.10: The architecture of the DFO views in the Agent database.

ConnectionRule

PK1 PubDFO

PK2 SubDFO

PubConnection
PubTopicName

NodeID

UpdateTime

Mode

PublisherIP

PublisherPort

PubDFO

SubDFO

SubConnection
SubTopicName

NodeID

UpdateTime

Mode

SubscriberIP

SubscriberPort

PubDFO

SubDFO

DFOTranslation

PublishTopic

SubscribeTopic ⋈

⋈
PubSubConnection
PubTopicName

SubTopicName

Mode

PublisherIP

PublisherPort

SubscriberIP

SubscriberPort

IsOnline

⋈

Connection View

Figure 3.3.11: The architecture of the connection views in the Agent database.

representation by aggregating data from the four individual DFO views.

V DFO = V NaDFO ▷◁ V DDMDFO ▷◁ V DomDFO ▷◁ V DMDFO (3.3.11)

Connection Views

Fig. 3.3.11 illustrates the process of establishing a connection between

publishment and subscription in the database. When a Join request defined in

Eq. (3.3.5) is received, the Agent matches topics that share the same naIDn and

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 60

the corresponding DFOd in the DFOTranslation table to determine whether

they are registered as publishments or subscriptions. The matched pairs are

then used to construct the ConnectionRule table, denoted as TBJ , with both

the publishment (PubDFO) and subscription (SubDFO) serving as composite

keys. This ensures that each pair is inserted only once.

Next, the PubConnection and SubConnection views are generated to summarize

the topic information and the paired DFO. The PubConnection view, denoted as

V PC , is constructed for publishment by joining the PublishTopic view V PT from

Eq. (3.3.10) and the DFOTranslation view V DFO from Eq. (3.3.11), along with

TBJ :
V PC = V PT ▷◁ V DFO ▷◁ TBJ , ON

TBJ .PubDMF = V DFO.DMF,

V DFO.T opicName = V PT .PubTopicName,

V DFO.isPub = 1

(3.3.12)

Similarly, the SubConnection view, denoted as V SC , is constructed for

subscription by joining the SubscribeTopic view V ST from Eq. (3.3.9) and the

V DFO, along with TBJ :

V SC = V ST ▷◁ V DFO ▷◁ TBJ , ON

TBJ .SubDMF = V DFO.DMF,

V DFO.T opicName = V ST .SubTopicName,

V DFO.isPub = 0

(3.3.13)

Finally, a PubSubConnection view, denoted as V Conn, is constructed to combine

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 61

Function

PK fnID

py

args

DFOFunction

PK DFO

FK fnID

DFOTranslation

TopicFunction
TopicName

DFO

fnID

py

args

⋈Assigned

Join Function

Figure 3.3.12: The architecture of the join function in the Agent database.

V PC , and V SC :

V Conn = V PC ▷◁ V SC , ON

V PC .PubDMF = V SC .PubDMF,

V PC .SubDMF = V SC .SubDMF, where

V Conn.Mode = (V PC .Mode− V SC .Mode),

V Conn.IsOnline = min(V PC .UpdateT ime, V SC .UpdateT ime)

> (now − δtimeout)

(3.3.14)

Here, if V Conn.Mode ≤ 0, the Pull method in Fig. 3.2 will be applied; otherwise,

the Push method will be used. The IsOnline field is a flag to filter out nodes

that have been disconnected for longer than the threshold δtimeout. The Agent

constructs ReS in Eq. (3.2.2) based on the rows in the PubSubConnection view.

Notably, if both the publishment address (PublisherIP and PublisherPort) and

the subscription address (SubscriberIP and SubscriberPort) are empty, the Agent

will discard the row, as this indicates that both the publisher and subscriber are

operating in client mode (i.e., mode = cl in Eq. (3.2.1))

Join Function

Fig. 3.3.12 illustrates the pairing between topics and JFs in the database. When

an FN from Eq. (3.3.6) is received by the Agent, the JF information is stored in

two tables: the Function table and the DFOFunction table.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 62

The Function table manages script information, including the script ID ‘fnID’

(fnIDf), the Python script ‘py’ (Pyf), and the arguments ‘args’ (Argsf). The

fnIDf is the primary key for queries.

The DFOFunction table stores the relationship between a DFO (DFOd) and

the script’s fnID. The DFO is the primary key, while the fnID is a foreign key

referencing the Function table. The relationship between the Function table and

the DFOFunction table is one-to-many, meaning multiple DFOs can share a single

script.

To summarize the relationship between a topic and a script, a TopicFunction

view, denoted as V TF , is generated by joining the Function table (TBFN), the

DFOFunction table (TBDFOFN), and the DFOTranslation view (V DFO) from

Eq. (3.3.11):

V TF = TBFN ▷◁ TBDFOFN ▷◁ V DFO, ON

TBDFOFN .DFO = V DFO.DFO

TBFN .fnID = TBDFOFN .fnID

(3.3.15)

When a ReQFN topic from Eq. (3.3.7) is received, the Agent uses the topic to query

V TF and constructs RepFN topic from Eq. (3.3.8) to distribute the JF script to

the corresponding nodes.

3.3.5 Case Study: Deployment of AI Device-Object Pairing

We developed an AI device-object pairing project as a demonstration for our

DAIoTtalk, as illustrated in Fig. 3.3.1. The project and data are modified from

the author’s previous work [61], which pairs several smart badges with the

people detected by a camera. The project involves 5 DMs which are Camera,

SmartBadges, UEA : Y OLOV 8, NY CU : DeepSORT , and FusionPairing,

with corresponding DFs.

Chapter 3: DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform 63

• The Camera publishes original (1280x720 pixel) and resized (640x360 pixel)

camera frames, encoded in JPG format, on camera_i and lres_camera_i,

respectively. It also publishes the camera_sensor_i with the orientation

of the camera.

• The SmartBadges represents the devices placed on the body. The built-in

inertial measurement unit (IMU) data will be published by imui.

• The UEA : Y OLOV 8 is a service utilizing the YoloV8 [65] object detection

model. The model subscribes to the input image from imageo to detect

objects within it. The detection results are then published through the

detection_i interface.

• The NY CU : DeepSORT is a service utilizing the DeepSort [66] tracking

model. The model subscribes detection results from bounding_box_o and

assigns tracking ID to each object within it. The tracking results are then

published through the bounding_box_i interface.

• The FusionParing involve the device-object pairing model from [61]. The

node takes camera frames and the orientation from canmera_o and

camera_sensor_o respectively. The model receives the IMU data from

imu_o. The tracking result will be received by bounding_box_o. The

node lastly outputs the labeled frame.

In short, The Camera is responsible for sending low-resolution camera frames to

UEA : Y OLOV 8 and transmitting the original frames and camera orientation

to FusionPairing. The SmartBadges send IMU data related to a person to

FusionPairing. The UEA : Y OLOV 8 processes the camera frames using the

YOLO [65] object detection model, then sends the detection results to

NY CU : DeepSORT . The NY CU : DeepSORT assigns a tracking ID to each

detected object using the DeepSORT model [66] and forwards this information

to FusionPairing. Finally, FusionPairing fuses all the collected data and

generates a device-object pairing result.

4

SewingTalk - A Product Completion

Estimation System with Unsupervised

Learning for Smart Sewing Machines

[This section is redacted due to Intellectual Property access restrictions.]

5

GNSS-EStalk - A Novel AI

Temporal-Spatial Analysis Approach

for GNSS Error Source Recognition

5.1 Chapter Introduction

Global navigation satellite systems (GNSS), including the global positioning

system (GPS), have been developed to offer comprehensive positioning,

navigation, and timing (PNT) services with worldwide coverage. In these

systems, L-band radio-frequency signals are transmitted from satellites and

received by ground-based GNSS receivers. By processing these signals, the

receivers calculate their distances from the observed satellites, enabling them to

determine an accurate PNT solution. Nevertheless, the accuracy of PNT

solutions heavily depends on the quality of the GNSS observable, which is

affected by various GNSS error sources [67]. These include satellite clock and

ephemeris errors, atmospheric delays, cycle slips, interference and jamming, etc.

All of these errors can be expressed in units of distance, and must be detected

and corrected to improve accuracy [68].

Conventional error detection methods encounter several limitations. Firstly,

methods such as those described by [69][70] typically focus on analyzing

common receiver output parameters like elevation, observation data,

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 66

signal-to-noise ratio (S/N), and PNT results. However, these methods lack the

depth compared to a more comprehensive analysis of the parameters involved in

calculating PNT [71]. Besides, the PNT system generates an enormous volume

of data daily, making it highly challenging to extract consistent error segments.

Detecting these segments becomes a fundamental step in diagnosing the root

cause of errors and improving the accuracy of the overall PNT system [72][73].

In this chapter, we propose an artificial intelligence (AI)-based temporal-spatial

approach for the automatic recognition of noise types in segments using

classification models. However, training these models typically requires manual

labeling of noise data, which is both costly and demands significant expertise.

To address this, we perform clustering to group highly similar noise segments,

then apply a z-score normalization filtering (ZFilter) strategy to select the

tightest cluster. This approach not only extracts segments with high consistency

but also assists in building a pseudo-labeled dataset for model training.

We make the following contributions. First, rather than analyzing surface-level

receiver data, we focus on the ionosphere misclosure [74][75], a deeper-level PNT

parameter, to develop new GNSS error detection methods. We categorize six

types of noise from our dataset, each representing different potential errors.

Next, we employ a temporal-spatial analysis approach that considers both time

sequences and value distributions to analyze the noise segments. Then, to

identify consistent error segments from large volumes of daily data, we apply

clustering, using the ZFilter strategy to pinpoint segments that closely resemble

our reference records. Meanwhile, we use deep learning models to extract and

categorize features to automatically classify the noise types from this data.

Lastly, we experiment with pseudo-labeled dataset generation from the

clustering model to minimize the need for manually labeled data and improve

the classification model with semi-supervised learning.

To demonstrate the deployment versatility of the DAIoTtalk platform, we

simulate the GNSS error source deployment by creating a testbed within

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 67

DAIoTtalk. This showcases the testing and adjustment of the functions and

models. The resulting system is named GNSS-EStalk.

The rest of this chapter is organized as follows. Related works are reviewed

in Section 5.2. Section 5.3 describes the detection of noise in our dataset and

introduces the AI-driven temporal-spatial analysis approach. The deployment

of GNSS-EStalk is detailed in Section 5.4. Section 5.5 presents our evaluation

results. The chapter concludes with discussions on future work in Section 5.6.

5.2 Related Works

Previous research (e.g.,[69], [70], [76], [77]) commonly considers surface-level

data output by the receiver. The authors in [69] utilized elevation, S/N, and

user speed as features in their machine-learning models to characterize

multipath error distributions, [70] employed S/N for jamming detection, [76]

analyzed signal strength and pseudorange residue for multipath detection, and

[77] perform signal analysis for radio frequency interference (RFI). However, the

surface-level data often provide an incomplete view compared to deeper-level

data like [78], which employs the cross ambiguity function to detect GNSS

spoofing. Here, we consider the ionosphere misclosure, which is a deeper-level

parameter used to calculate the PNT result.

AI-based models (e.g., [69], [76], [77], [78]) are widely used in GNSS error analysis.

[69] employed a neural network to classify multipath noise, while [76] utilized a

support vector machine. [77] classified RFI using a convolutional neural network

(CNN). Similarly, [78] used a CNN to identify spoofing signals and a Gaussian

mixture model to cluster and summarize the number of signals. In this research,

we experiment with clustering models using a ZFilter strategy to identify highly

consistent noise segments and generate a pseudo-labeled dataset, and classification

models to categorize the noise segments by different potential causes.

Temporal and spatial features are typically extracted in AI-based analysis. [79]

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 68

proposed a spatio-temporal attention network for video action recognition,

incorporating pixel-related spatial attention and frame-related temporal

attention. [80] introduced a revisiting spatio-temporal similarity model for

traffic prediction, capturing traffic flow and volume as spatial dependencies and

daily and weekly patterns as temporal dependencies. In the context of GNSS,

[81] presented a spatial-temporal technique using an antenna array for GNSS

anti-spoofing, featuring spatial channel separation and temporal

cross-correlation peak monitoring. In our AI models, we consider both temporal

sequences and spatial value distribution information.

5.3 Methodology

Manual Labeling

Satellite

Delay

Ionosphere

Noise
Segmentation

b. Dataset Creation

S1. Preprocessing
S2. Referral Distance Matrix
S3. Noise Clustering and
 Pseudo-labeling
S4. Noise Classification

Ground
Station

Remote Server

a. Data collection c. Temporal-Spatial
Analysis

Noise Types and
Dataset

d. GNSS EStalk

Ground Stations
Remote
Server

DAIoTtalkDeploy

Figure 5.3.1: Overview of GNSS error source analyzing.

In this research, we extract noise segments from the ionosphere misclosure, which

refers to the discrepancies between the estimations and observations of the regional

ionosphere. Fig. 5.3.1 provides an overview of the process, encompassing data

collection, dataset creation, and temporal-spatial analysis, and the GNSS-EStalk

system.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 69

In Fig. 5.3.1a, we collected data over four days from 53 ground stations and

approximately 90 satellite units across the GPS, Galileo, and Beidou systems. As

a satellite transmits GNSS signals to a ground station, the signals pass through

the atmosphere, including the ionosphere, introducing various delays. The ground

station predicts ionospheric conditions by considering factors such as weather and

the signal path to mitigate these delays. Multiple factors, though, can affect these

estimations and diverge from observed values that take longer to generate. Most

discrepancies are due to white noise, while some are dismissed as errors in the

modeling process. This work also includes the application of noise segmentation

to identify and extract these errors.

In Fig. 5.3.1b, a dataset is created for analysis and validation. After noise

segmentation, manual labeling is performed based on the error model. This

research focuses on six types of errors potentially caused by factors such as

multipath effects, jamming, and ionospheric irregularities. However, labeling

these data is costly and requires domain expertise in GNSS error sources.

Additionally, datasets may need to be tailored to specific regions due to

variations in local ionospheric conditions, geographic features, and signal

environments. Therefore, we expect the reduction of labeling costs through

automation techniques by grouping highly consistent noise segments.

In Fig. 5.3.1c, a temporal-spatial analysis is performed on the remote server after

noise segmentation and dataset creation. Fig. 5.3.2 illustrates the approach, which

comprises three key components: a temporal pipeline for processing 1D sequential

data, a spatial pipeline for handling 2D binary images, and a main pipeline that

integrates both temporal and spatial information. Each pipeline follows four

processing stages: Stage 1 (S1): preprocessing noise segments of varying sizes to

standardize them into uniform input dimensions for the models; Stage 2 (S2):

constructing a Referral Distance Matrix (RDM) to extract similarity features

between segments; Stage 3 (S3): clustering segments to identify consistent noise

patterns and generate a pseudo-dataset with minimal manual labeling; Stage 4

(S4): training a classifier to identify different noise types.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 70

Referral Distance MatrixPreprocessing

Temporal
Pipeline

Spatial
Pipeline

Main
Pipeline

Convolution

Histogram

Sum Pooling

1D Sequence

2D Image

Noise
Segments

S1 S2

RDM

Noise Clustering and Pseudo-labeling Noise Classification

Pseudo
LabelingZFilter

S3 S4

Cluster
Pseudo-
labeled
Dataset

Extractor Classifier

cont.

cont.

Figure 5.3.2: Process pipeline of the temporal-spatial approach.

In Fig. 5.3.1d, we deploy the analysis model on the DAIoTtalk platform. The

platform establishes P2P connections between multiple ground stations and the

remote analysis server. Each ground station transmits ionospheric misclosure data

to the remote server for noise recognition. We name this system ‘GNSS-EStalk’

and will be described in Section 5.4.

In the following sections, we will detail each of these processes.

5.3.1 Noise Segmentation

Fig. 5.3.3 illustrates the noise segmentation process applied to the data. This

process includes normalization, threshold selection, noise value masking, masking

of noise windows, and merging noise windows and filtering. Let Λ = {Λli} =

{(δli, θli)} represent an ionosphere misclosure with a sequence of values calculated

from one GPS unit by a ground station for a single day, as shown in Fig. 5.3.3a,

where δ = (δli|δli ∈ (−∞,+∞)) denotes the misclosure values and θ = (θli|θli ∈

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 71

0 1 2 3 4 5 6
0.2

0.0

a. Ionosphere misclosure

0 1 2 3 4 5 6
0.0

0.5

1.0

′

b. Normalization

0.0 0.2 0.4 0.6 0.8 1.0
hi/h

0

2000

co
un

t

th

c. Histogram of ′ for threshold selection

0 1 2 3 4 5 6
0.2

0.0

d. Noise value masking

0 1 2 3 4 5 6
0.2

0.0

e. Noise windows masking

0 1 2 3 4 5 6
0.2

0.0

f. Merge noise windows and filter segments

Figure 5.3.3: Noise Segmentation on ionosphere misclosure.

[0, 24)) represents the corresponding relative hourly timestamps. The set IΛ =

{li|li ∈ [0, |Λ|)} is the index set associated with Λ. Our first task is to identify

the noise values within δ and to segment these values accordingly into distinct

segments.

Normalization is necessary due to the varying range of δ. 2 types of

normalization we have applied, which are z-normalization and min-max

normalization. Given a list of data s = (si|i ∈ [0, |s|)) with varying range,

z-normalization with the cumulative distribution function (CDF,Φ) used to

standardize s into normal distribution space:

Z(s) = Φ

(
si − µs
σs

)
, (5.3.1)

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 72

where µs and σs is the mean and standard deviation of s. On the other hand, the

min-max normalization can transform s to a rescaled sequence s̃q with a range of

[0, 1]:

s̃ =
s−min(s)

max(s)−min(s) (5.3.2)

Assuming the estimation and observation are ideally close, we expect the

misclosure to approach zero as the one in Fig. 5.3.3a. Therefore, we set µs = 0

and calculate σs in Eq. (5.3.1) for noise detection. By combining Eq. (5.3.1) and

Eq. (5.3.2), we normalize the absolute value of δ as δ′ in Fig. 5.3.3b:

δ′ = ˜Z(abs(δ)) (5.3.3)

Next, we construct an h-bin histogram H |δ| = {H |δ|
hi |hi ∈ [0, h)} to observe the

distribution of δ′, where each H |δ|
hi ∈ [0, 1]. Here, we choose h = 10:

H |δ| = Histogram(δ′, h) (5.3.4)

In the ideal case, the highest peak himax = argmax(H |δ|) will be near zero as in

Fig. 5.3.3c. We apply valley detection on the histogram to determine the local

noise filtering threshold thδ ∈ [0, 1]:

thδ =
himin

h
,where

himin = argmin({H |δ|
hi |hi ∈ [himax, h)})

(5.3.5)

As the example in Fig. 5.3.3c, the blue line represents thδ, with values on the right

side indicating noise. Using thδ, we initialize an mask array ψδ = (ψδli|ψδli ∈ {0, 1})

to indicate whether each Λli is classified as noise.

ψδli =


1, if abs(δli) > THδ, δ′li > thδ.

0, otherwise.
(5.3.6)

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 73

The result, shown in Fig. 5.3.3d, is obtained after applying ψδ, with red dots

representing the noise values.

To segment noise from Λ, we first preform chronological splits to divide Λ into

multiple subsets λmi ⊂ Λ, each with a corresponding index set Iλmi ⊂ IΛ and

covering a fixed m-hour window, where mi ∈ [0, |Λ|). Here, we set m = 0.1 hours

(10 minutes). A λmi is classified as a noise subset if any Λli ∈ λmi is determined to

be noise by Eq. (5.3.6). We then create a window mask ψλ = (ψλmi|ψλmi ∈ {0, 1}):

ψλmi =


1, if ∨ ψδ

li∈Iλmi
= 1

0, otherwise.
(5.3.7)

Fig. 5.3.3e shows the split windows with the applied masking in green.

Algorithm 1 Noise segmentation using ψλ

1: procedure WindowsMerging(ψλ, Xδ)
2: st← None ▷ Start index of the segment
3: for i← 0 to |ψλ| do ▷ Iterate through ψλ

4: if ψλi = 1 and (i = 0 or ψλi−1 = 0) then
5: st← i ▷ Start index of the segment
6: else if ψλi = 0 and ψλi−1 = 1 then
7: x← ∪mi∈[st,i)λmi[δ] ▷ Extract the segment
8: if max(abs(x)) > THδ then ▷ Filter by global threshold
9: Xδ ← Xδ ∪ x ▷ Add the segment to dataset

10: end if
11: end if
12: end for
13: if ψλ|ψλ|−1

= 1 then ▷ Handle the last segment if it ends with 1
14: i← |ψλ| − 1
15: x← ∪mi∈[st,i)λmi[δ]
16: if abs(x) > THδ then
17: Xδ ← Xδ ∪ x
18: end if
19: end if
20: return Xδ ▷ Return the set of segments
21: end procedure

Finally, we concatenate the nearby noisy λmi to create noise segments with their

disclosure δ, denoted as λmi[δ] ⊂ δ, using Algorithm 1. In Algorithm 1, we take

ψλ as input and detect consecutive instances where ψλi = 1, indicating noisy

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 74

values, to merge them into cohesive noise segments. The segments from each

satellite and station are then accumulated to form the noise segment set

Xδ = {Xδ
di|di ∈ [0, |Xδ|)}, where each segment is a sequence defined as

Xδ
di = (Xδ

di[dj]|dj ∈ [0, |Xδ
di|)), with each element Xδ

di[dj] ∈ (−∞,+∞). Xδ = {}

during initialization. Notice that a preset global threshold THδ is set to filter

the segment if the noise value does not exceed. In this research, we set

THδ = 0.2 based on recommendations from the data provider. The final

segmentation result is shown in Fig. 5.3.3f, with some of the noise segments

filtered by THδ.

5.3.2 Noise Types and Dataset

wd

0.0 0.2

−0.075

−0.050

−0.025

0.000
0: Convergence

0 1

−0.05

0.00

0.05

0.10
1: Disturbance

0.0 0.2
−0.100

−0.075

−0.050

−0.025

0.000
2: Divergence

0.0 0.1
0.0

0.1

0.2

3: Outliers

0 2

−0.03

−0.02

−0.01

0.00
4: Shimmering

0.0 0.5 1.0

−0.04

−0.02

0.00
5: Step

Hours

Io
no

sp
he

re
 M

isc
lo

su
re

Figure 5.3.4: The noise types in the GNSS error source dataset.

We manually identify six types of noise, as illustrated in Fig. 5.3.4, after the

extraction of Xδ. The scale and magnitude of the noise segments vary, with

each type caused by different physical factors. Below, we present some potential

examples:

• Convergence occurs as a result of model recalculation when tracking is lost

or when clock or ephemeris errors are detected.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 75

• Disturbance caused by interference from multiple systems or jamming by

other equipment.

• Divergence arises from a mismatch between the error model and the

observation.

• Outliers may result from incorrect carrier-phase ambiguity fixes.

• Shimmering can occur as a consequence of repeated carrier-phase ambiguity

fixes, especially in the presence of atmospheric delays.

• Steps caused by cycle slips due to signal delays and distortions from

ionospheric irregularities.

Table 5.1: Class Sizes in the GNSS Error Source Dataset

Labeled Lδ Unlabeled U δ Total

Type (Y δ) 0 1 2 3 4 5

Size 140 540 504 526 569 515 2114 4906

Denote our dataset Dδ = {Dδ
di} = {(Xδ

di, Y
δ
di)} and the index set Iδ = {di|di ∈

[0, |D|}. The dataset Dδ contains the noise segments Xδ = {Xδ
di} and their

corresponding labels Y δ = {Y δ
di}. Each segment Xδ

di consists of ordered real-

valued observations that may have different lengths. We manually label a subset

of the segments by their indices ILδ ⊂ I to create a labeled dataset Lδ = {Dδ
di|di ∈

ILδ}, where the labels Y δ
di ∈ [0, p) if di ∈ ILδ, here p = 6 as shown in Fig. 5.3.4.

The remaining indices IUδ = I\ILδ form an unlabeled dataset U δ = {Dδ
di|di ∈

IUδ}, with labels Y δ
di = −1 if di ∈ IUδ. Table 5.1 lists the sizes of each class.

5.3.3 Preprocessing (S1)

Since the range and length of each noise segment Xδ
di can vary, it is necessary to

normalize the range and standardize the length of the segments to ensure uniform

contribution from each segment and maintain consistent characteristics across

them. Fig. 5.3.5 is the example to resize a sequence sq into a uniform length sl.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 76

0 20 40 60
0.00

0.25

0.50

0.75

1.00
|sq| = 70

0 50 100
0.00

0.25

0.50

0.75

1.00
Edge Padding

0 100 200
0.00

0.25

0.50

0.75

1.00
|sq| = 240

0 50 100
0.00

0.25

0.50

0.75

1.00
Linear Spacing

(a)

(b)

 Length

̃
sq

̃
sq

Figure 5.3.5: Example of a unified function to standardize a normalized sequence
to a length of 128.

In Fig. 5.3.5a, if its size |sq| is shorter then sl, we apply the edge-padding process:

EP (sq, sl) = (sq[0])|1×lp ∪ sq ∪ (sq[|sq| − 1])|1×rp

where lp = ⌊sl − |sq|
2

⌋ and rp = ⌈sl − |sq|
2

⌉
(5.3.8)

Otherwise, as shown in Fig. 5.3.5b, we use the linear spacing process to down-

sample sq by taking the averages of the corresponding subset:

LS(sq, sl)[LSa] = sq[mask],where 0 ≤ LSa < sl,

and mask = (⌊{[0, |sq|)}
|sq|

∗ sl⌋ == LSa)
(5.3.9)

By combining Eq. (5.3.2),Eq. (5.3.8), and Eq. (5.3.9), we define the following

unified function UF for a sq:

UF (sq, sl) =


EP (s̃q, sl), if |sq| < sl.

LS(s̃q, sl), otherwise.
(5.3.10)

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 77

Next, we divide the process into temporal, spatial pipelines, and main pipelines:

Temporal Pipeline

To standardize the noise segments of varying sizes and values, we apply

Eq. (5.3.10) to uniform Xδ
di into sequential data τ δdi = {τ δdi[dj]}1×128 where

τ δdi[dj]|dj∈[0,128) ∈ [0, 1]:

τ δdi = UF (Xδ
di, 128) (5.3.11)

Spatial Pipeline

We further transform τ δdi into a 2D space to generate a binary image

ςδdi = {ςδdi[h,w]}128×128 where ςδdi[h,w]|h∈[0,128),w∈[0,128) ∈ {0, 1}, enabling the

extraction of distributional information:

ςδdi[h,w] =


1, if h = ⌊τ δdi[w]× 127⌋.

0, otherwise.
(5.3.12)

Main Pipeline

By applying Eq. (5.3.2) to normalize each Xδ
i into X̃δ

i, a normalized segment set

X̃δ = {X̃δ
i} is obtained.

After preprocessing is completed, the min-max normalized segments X̃δ, the

temporal segments τ δ, and the spatial images ςδ are ready for the next stage.

5.3.4 Referral Distance Matrix (S2)

A global distance matrix is generated to compare all the distances of the segment

pairs as a similarity feature during feature extraction. However, calculating all

distances becomes inefficient when the dataset is large. We randomly select a

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 78

0 100 200
0.0

0.2

0.4

0.6

0.8

1.0
a. ̃Xδ

di

0 10 20 30
0.0

0.2

0.4

0.6

0.8

1.0
b. ̂τδdi

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

c. SP(ςδdi)
128

0.0
-0.

1
0.1

-0.
2

0.2
-0.

3
0.3

-0.
4

0.4
-0.

5
0.5

-0.
6

0.6
-0.

7
0.7

-0.
8

0.8
-0.

9
0.9

-1.
0

0.0

0.1

0.2

0.3

0.4

0.5

d. Histogram(̃Xδ
di, 10)

| ̃Xδ
di|

0.00

0.02

0.04

0.06

0.08

0.10

0.12

0.14

Figure 5.3.6: Example of transformation of a noise segment.

subset of segments from the labeled dataset as references Rδ ⊆ Lδ. The RDM

M ||D|×|Rδ| can then be computed:

M(Xδ, Dist)[di, r] = Dist(Xδ
di, R

δ
r) (5.3.13)

where Rδr is a reference segment, r ∈ [0, |Rδ|), and Dist ∈ {Eucl,DDTW} is the

metric used to compare distances. Depending on the pipelines, we apply either

Euclidean distance (Eucl) or derivative dynamic time warping (DDTW)[82].

When computing the distance matrix, each pipeline transforms the segments to

reduce the vector dimensions. Fig. 5.3.6 illustrates an example of this

transformation applied to the sequence shown in Fig. 5.3.6a, with the detailed

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 79

process outlined below.

Temporal Pipeline

We use τ δ as the input. We apply convolution with a kernel ν = {1}|1×5 to smooth

the sequence τ δdi and further uniform it to τ̂ δdi|1×32 by Eq. (5.3.10) as shown in

Fig. 5.3.6b:

τ̂ δdi = UF ((τ δdi ∗ ν)|τδdi|, 32).
(5.3.14)

After that, we compute the temporal RDM M τ = M(τ̂ δ, DDTW) via

Eq. (5.3.13), using DDTW distance.

Spatial Pipeline

We use ςδ as the input. We apply sum-pooling (SP) with a kernel of 16× 16 to

generate a heat map of the binary image ςδdi as shown in Fig. 5.3.6c, then flatten

into ς̂δdi|1×64:

ς̂δdi = Flatten

(
SP (ςδdi)

128

)
. (5.3.15)

After that, we compute the spatial RDM M ς = M(ς̂δ, Eucl) via Eq. (5.3.13),

using Euclidean distance.

Main Pipeline

We directly extract the h-bin histogram feature from X̃δ as shown in Fig. 5.3.6d

and compute the difference in value distribution using Eucl. Again, we set h = 10.

MH =M

({
Histogram(X̃δ

di, h)

|X̃δ
di|

}
, Eucl

)
. (5.3.16)

This is then concatenated with M τ and M ς to obtain the hybrid RDM:

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 80

MΦ = [MH ,M ς ,M τ] (5.3.17)

The temporal RDMM τ , the spatial M ς , the histogram RDMMH , and the hybrid

RDM MΦ are used as inputs for the remaining stage.

5.3.5 Noise Clustering and Pseudo-labeling (S3)

It is necessary to identify consistent noise to ensure accuracy and precision in

PNT. However, the daily generation of large amounts of unlabeled data

complicates the analysis process. By giving a small set of manually labeled

examples, this data can be compared using the clustering approach to identify

similar noise patterns. Additionally, pseudo-labels could be assigned to the

unlabeled data, which would facilitate further training through semi-supervised

learning.

Clustering is performed to group similar segments into clusters Cδ = {Cδdk|dk ∈

[0, |Cδ|)} along with the corresponding index set Iδdk ⊂ Iδ. Here, Dδ
di ∈ Cδdk if

a segment Xδ
di belongs to the dk-th cluster, which implies that di ∈ Iδdk as well.

Note that each segment belongs to only one cluster but some segments may not fit

into any cluster (i.e. dk < 0) and are excluded from consideration. Moreover, the

number of clusters |Cδ| should be sufficiently large to ensure that the segments

within each cluster are as similar as possible. M τ , M ς , and MΦ are the inputs to

the clustering algorithm, generating the temporal cluster Cτ , spatial cluster Cς ,

and hybrid cluster CΦ, respectively.

To select the clusters with higher consistency segments, we apply ZFilter to

identify more confident clusters. Firstly, the average intra-cluster distance

AICDdk is calculated to assess the tightness within Cδdk using the corresponding

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 81

RDM features M [di]:

AICDdk =

∑
di∈Iδdk

Eucl(M [di],M [Iδdk])

|Iδdk|
(5.3.18)

where |Iδdk| and M [Iδdk] denote the size and centroid of Cδdk, respectively. Following

this, a z-normalized confidence score ZδCdk ∈ [0, 1] is computed based on AICDdk

for each Ck, along with the overall mean µ and standard deviation σ. The score

is normalized using the cumulative distribution function:

ZδCdk = Φ

(
AICDdk − µ

σ

)
(5.3.19)

A smaller ZδCdk indicates that the segments within the cluster Ck are more similar.

Therefore, we can define a threshold thδC ∈ [0, 1] to filter the clusters.

A pseudo-labeled dataset D́δ ⊂ U δ, can also be generated from unlabeled dataset

U δ using the ZFilter strategy applied to the labeled dataset Lδ, thereby increasing

the sample size during classification model training. For each cluster Cδdk, we

compute the label score LSdk|1×6, which represents the weightings for each noise

type:

LSdk =


∑

di∈(Iδdk∩ILδ) Ÿ
δ
di, if ZδCdk ≤ thδC

{0}|1×6, otherwise.
(5.3.20)

where Ÿ δ
di is the one-hot encoded Y δ

di. Next, we can create the D́δ:

D́δ =
⋃

dk∈[0,|Cδ|)

{Dδ
di|di ∈ (Iδdk ∩ IUδ)},

if ZδCdk ≤ thδC and
∑

LSdk > 0

(5.3.21)

Label smoothing will also be applied to adjust the weighting of the pseudo-labels,

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 82

helping to prevent the model from becoming overly confident in the predictions:

Ÿ δ
di =


Ÿ δ
di, if di ∈ ILδ

(1− α) ∗ LSdk∑
LSdk

+ α
6 if Dδ

di ∈ D́δ, di ∈ Iδdk

{0}|1×6, otherwise.

(5.3.22)

where α is a hyperparameter that determines the amount of smoothing.

Afterward, we can generate the temporal pseudo-labeled dataset D́δτ , the spatial

pseudo-labeled dataset D́δς , and the hybrid pseudo-labeled dataset D́δΦ, using

Cτ , Cς , and CΦ, respectively.

5.3.6 Noise Classification (S4)

c. CNN
OutputHiddenInput

2x2
Max Pooling Flatten

2x2
Max Pooling

32x32
ReLU CNN

16x16
ReLU CNN

1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

a. MLP
Input

4x128
ReLU
Dense

Hidden Output
1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

b. LSTM

3x128
tanh

LSTM

Input OutputHidden
1x64
ReLU

Dense Ext

1x6
Softmax

Dense Cls

Figure 5.3.7: The baseline classification models.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 83

To classify noise segments, we experimented with various deep-learning models.

Fig. 5.3.7 illustrates the architectures of our baseline models, including the

multilayer perceptron (MLP) in Fig. 5.3.7a, long short-term memory (LSTM) in

Fig. 5.3.7b, and CNN in Fig. 5.3.7c. They are designed to process RDM,

sequences, and binary images, respectively. While each model received different

input types and had distinct hidden layer configurations, they all shared a

common output structure. The detailed design of each model is outlined below:

MLP: The MLP is a basic type of neural network typically designed to take tabular

data as input. In Fig. 5.3.7a, aM τ [di] is taken as input and processed through four

dense hidden layers, each containing 128 neurons. We use the rectified linear unit

(ReLU) activation function for all hidden layers. The output consists of a shared

structure represented as a list of deep features Ext|1×64 with ReLU activation,

followed by a final dense layer with softmax activation to generate classification

probabilities, denoted as Cls|1×6.

LSTM: The LSTM is a type of recurrent neural network (RNN) designed to handle

sequential data and time-dependent patterns. In Fig. 5.3.7b, a τ δdi is taken as input

and processed through 3 LSTM hidden layers, each containing 128 neurons. We

use the tanh activation function for all hidden layers. Again, The output consists

of Ext and the Cls.

CNN: The CNN is primarily used for data that has a grid-like structure. In

Fig. 5.3.7c, a ςδdi is taken as input. The hidden layers first process it by a 32× 32

ReLU CNN layer. Next, the data is resized using a 2x2 max pooling layer and

then processed by a 16 × 16 ReLU CNN layer. Finally, it is resized again by a

2x2 max pooling layer and flattened. Similarly, the output consists of the Ext

and the Cls.

Each pipeline utilizes different baseline models. In the temporal pipeline, we input

M τ into the MLP or τ δ into the LSTM, the procedures are referred to as ‘TMLP’

or ‘TLSTM’, respectively. In the spatial pipeline, we input M ς into the MLP

or ςδ into the CNN, referred to as ‘SMLP’ or ‘SCNN’, respectively. In the main

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 84

pipeline, we input MH into the MLP, named ‘HMLP’.

To perform temporal-spatial classification, we use the deep features output from

the baseline models: ExtH from HMLP, Extτ from TMLP or TLSTM, and Extς

from SMLP or SCNN. These features are combined to generate a hybrid deep

RDM, denoted as DMΦ||D|×|Rδ|:

DMΦ =M(XΦ, Eucl),

where XΦ = [ExtH , Extτ , Extς]

(5.3.23)

Finally, we inputDMΦ into the MLP model to train a hybrid classifier, denoted as

ClsΦ as shown in Fig. 5.3.2. The hybrid classifier leverages latent representations

from baseline models across different domains to enhance prediction performance.

Combining the models in Fig. 5.3.7, four ClsΦ are trained: ‘TMLP_SMLP’,

‘TLSTM_SMLP’, ‘TLSTM_SCNN’, and ‘TMLP_SCNN’.

5.4 Deployment of GNSS-EStalk

After developing the temporal-spatial analysis approach, we deploy the models

onto the DAIoTtalk platform, as illustrated in Fig. 5.4.1. Fig. 5.4.1a depicts the

data flow between each component. When multiple ground stations generate

regional ionospheric misclosure data, noise segments are extracted and then

collected by the remote server node, named ‘CHC Error Model’. The remote

server converts the segments into features and then passes the data to the

classification model node, referred to as ‘GNSS Error Classification,’ for error

recognition. Once the process is complete, the error results are returned to the

remote server node and subsequently sent back to the corresponding ground

station.

The communication is divided into two projects: Project A, named ‘GNSS Error

Source’, as shown in Fig. 5.4.1b, and Project B, named ‘GNSS Error

Recognition’, as shown Fig. 5.4.1c. Project A manages communication between

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 85

b. Project A

c. Project B

a. Data flow in GNSS EStalk

Project B

GNSS Error
Classification

CHC Error
Model

Project A

Ground
Station

segments features

errorserrors

Figure 5.4.1: Deployment of GNSSEStalk on 2 DAIoTtalk project.

multiple ground station nodes and the remote server node, embedding the noise

segmentation algorithm. Meanwhile, Project B facilitates communication

between the remote server node and the classification node, utilizing the noise

feature extraction algorithm and selection of models. Detailed descriptions of

the deployments and configurations for the two projects are provided in the

following sections.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 86

a.

b.

c.
d.

select

configure

Figure 5.4.2: Deployment of noise segmentation algorithm on GNSS-EStalk.

5.4.1 Project A: Deployment of noise segmentation algorithm

Fig. 5.4.2 illustrates the deployment of the noise segmentation algorithm. This

project involves two device models: GroundStation for multi-domain ground

station nodes and CHCErrorModel for one remote server node. The

GroundStation publishes a broadcast IDF, regiono_mis_i, which outputs

regional ionospheric misclosure data, and subscribes to an ODF, error_o, which

receives recognized errors in the data. The CHCErrorModel publishes a

unicast IDF, error_i, representing the recognized errors, and subscribes to an

ODF, segment_o, which receives the noise segments. There are two join

connections: one links regiono_mis_i of GroundStation with segment_o of

CHCErrorModel to transfer the data to be processed, and the other links

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 87

errori of CHCErrorModel with error_o of GroundStation to transfer the

processed results.

In Fig. 5.4.2a, regiono_mis_i publishes the misclosure data, while segmento

subscribes to the noise segments. The segmentation function is deployed to

extract noise segments from the misclosure data. By selecting this join

connection, a configuration UI, as shown in Fig. 5.4.2b, is opened. Here, the

function gnssnoisesegmentation is implemented, allowing the adjustment of the

argument TH_GLOBAL, as shown in Fig. 5.4.2c. This argument represents

the global threshold THδ in Algorithm 1. Finally, the Python implementation of

the noise segmentation algorithm is placed in Fig. 5.4.2d. The algorithm is

subsequently saved into the DAIoTtalk Agent’s database.

Ground Station

Noise
Segmentation

DAIoTtalk

Ionosphere
Misclosure

Publisher Subscriber

main

Noise
Segments

Remote Server

Subscriber mainPublisher
Recognized

Errors

Project B

Figure 5.4.3: Data flow from a ground station to the remote analysis server in
GNSS-EStalk.

Fig. 5.4.3 details the data flow of the deployment. The noise segmentation function

stored in the DAIoTtalk database is sent to the ground station node, where it is

saved as a Python module and imported by the Publisher of AGAPI. When the

main thread publishes the ionospheric misclosure data, the Publisher processes

the data using the module to extract the noise segments. These segments are then

received by the remote server node Subscriber handler of AGAPI and routed back

to the main thread for further processing in Project B. Once the remote server

receives the recognized errors, it returns them to the corresponding ground station.

Note that if no noise is detected during publication, the message will be dropped

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 88

by the Publisher at the ground station.

5.4.2 Project B: Deployment of noise classification models

a.

select

b.

c.

d.

e.

Figure 5.4.4: Deployment of noise feature extraction and model configuration on
GNSS-EStalk.

Fig. 5.4.4 and Fig. 5.4.5 illustrate the deployment setup in Project B. Two

device models are involved: CHCErrorModel and

GNSSErrorClassification. The CHCErrorModel utilizes the same remote

server nodes as in Project A, but with different IDF and ODF topics. The IDF,

segment_i, bridges the error segments received from Project A, while the ODF,

error_o, forwards the recognized errors back to Project A. The

GNSSErrorClassification is a classification node with the IDF feature_o

and a unicast ODF target_i. There are two join connections: one links

segment_i of CHCErrorModel with feature_o of

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 89

GNSSErrorClassification to transfer the segment to be processed, and the

other links target_i of GNSSErrorClassification with error_o of

CHCErrorModel to transfer the processed results.

In Fig. 5.4.4a, the segment_i sends segments, while the featureo receives

feature instances. To extract features from segments, we deploy the function

gnssfeatureextraction on the IDF side, as shown in Fig. 5.4.4b. Given that

ďi ∈ [0,∞] represents the unique segment ID, the Python module

gnssfeatureextraction in Fig. 5.4.4c generates feature instances along with the

RDM MΦ derived from the segments, as introduced in Section 5.3.3 and

Eq. (5.3.17), respectively. These are denoted as X̌δ
ďi

:

X̌δ
ďi
= (X̃δ

ďi
, τ δ
ďi
, ςδ
ďi
,MΦ

ďi
) (5.4.1)

Meanwhile, we deploy the tsmodelconfiguration on the ODF side, as shown

in Fig. 5.4.4d, enabling the selection of a pre-trained model. There are four

adjustable arguments, as shown in Fig. 5.4.4e: TEM , SPA, PSEU_MO, and

PSEU_TH. The

TEM ∈ {TMLP, TLSTM } , and (5.4.2)

SPA ∈ {SMLP, SCNN } (5.4.3)

parameters allow the temporal and spatial model selection, respectively, as

described in Section 5.3.6. The

PSEU_MO ∈ {None, Temporal, Spatial,Hybrid } , and (5.4.4)

PSEU_TH ∈ { 0.1, 0.3, 0.5, 0.7, 0.9 } (5.4.5)

parameters determine the pseudo-labelling method and the threshold thδC , as

described in Section 5.3.5. These arguments can be easily modified through the

UI shown in Fig. 5.4.4e.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 90

a.

select

b.

c.

Figure 5.4.5: Deployment of error target profile on GNSS-EStalk.

In Fig. 5.4.5a, the target_i outputs the predicted target probabilities Clsďi for

segments X̌δ
ďi

, as introduced in Fig. 5.3.7, while error_o receives the recognized

errors. We deploy the chc6targetprofile function, as shown in Fig. 5.4.5b. This

function outputs the target class Y̌ δ
ďi

for each X̌δ
ďi

:

Y̌ δ
ďi
= argmax(Clsďi) (5.4.6)

Additionally, the function can also return error information, as shown in

Fig. 5.4.5c, including the details described in Section 5.3.2. The design allows

for the modification of the profile depending on the application.

Fig. 5.4.6 depicts the data flow for the classification process under

GNSS-EStalk. The feature extraction function, which includes preprocessing

and RDM generation, is described in Section 5.3.3 and Section 5.3.4,

respectively. The DAIoTtalk delivers the function to the remote server as a

Python module, enabling its Publisher to import the module and convert each

noise segment received from Project A into features X̌δ
ďi

before publishing them

to the classification node.

On the other hand, The model configuration for the classifier, stored in the

DAIoTtalk, is received by the Subscriber handler of the classification node. It is

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 91

Preprocessing

Publisher

Classification

Referal
Distance MatrixDAIoTtalk

Feature Extraction

Subscribermain

Class
Profile

Noise
Segments

Project A

Remote Server

mainPublisher

Subscriber

Model
Configuration

Figure 5.4.6: Data flow from the remote analysis server to the classification node
in GNSS-EStalk.

queued alongside the X̌δ
ďi

inputs before being accessed by the main thread,

allowing the main thread to reload the model configuration before processing the

next instance.

Once the main thread of the classification node generates the target results Clsďi,

the AGAPI publishes them, and the Subscriber of the remote server receives them.

The handler imports the class profile provided by the DAIoTtalk to convert the

target results into class labels Y̌ δ
ďi

using Eq. (5.4.6), along with the corresponding

error profile. The error results are then relayed to Project A for transmission back

to the corresponding ground station.

5.5 Evaluation

The experiment runs on an Ubuntu 18.04 server with an R9-5950x CPU, 32GB

RAM, and RTX3090 GPU. It uses Python 3.10 and Tensorflow 2.17. The RDM

reference sizes are set to 60. All models in Fig. 5.3.7 employ categorical focal

cross-entropy loss. The models are trained for 100 epochs with restored best

weights based on loss. Each model is trained with 10 trials, and the average

result is presented.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 92

In the following section, we first evaluate the noise classifiers through an epoch-loss

comparison. Next, we assess the classifiers using test data. Then, we experiment

with noise clustering models. Finally, we test the classifiers on a pseudo-labeled

dataset.

5.5.1 Evaluation of Model Performance by Epoch

We first perform an epoch-loss comparison of the models shown in Fig. 5.5.1 and

Fig. 5.5.2. The comparison involves four types of loss functions for references:

categorical focal cross-entropy (CFEC), Kullback–Leibler divergence (KLD),

mean absolute error (MAE), and mean squared error (MSE). The experiments

are conducted using four different training sizes: 10%, 30%, 50%, and 70%.

Fig. 5.5.1 presents the epoch-loss comparison across the five baseline models. In

general, a 10% training size exhibits the slowest convergence, with all the losses

decreasing gradually and models often failing to reach optimal values. As the

training size increases to 30% or more, a notable improvement in convergence

speed is observed. Furthermore, Larger training sets (above 70%) also show faster

convergence and improved loss stability, indicating better model generalization.

When compared with the other models, SCNN demonstrates the fastest

convergence, achieving optimal performance across all loss functions within 20

epochs for all training scales. Furthermore, it has the lowest final loss value,

indicating that SCNN is more efficient at extracting information from the

sequence-generated heat map. On the other hand, TLSTM exhibits the most

unstable convergence speed and loss landscape. With a 10% training size,

TLSTM shows the highest final loss value, but its performance improves

significantly as the training size increases. This suggests that LSTM models

require more data to capture sequence patterns effectively.

Fig. 5.5.2 presents the epoch-loss comparison of the four hybrid models. In

general, convergence speed improves significantly when the training size

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 93

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

0.
3

CFCE

10
%

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

0.
3

30
%

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

0.
3

50
%

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

70
%

0
20

40
60

80
10

0
0.

0

0.
5

1.
0

1.
5

KLD

0
20

40
60

80
10

0
0.

0

0.
5

1.
0

1.
5

0
20

40
60

80
10

0
0.

0

0.
5

1.
0

1.
5

0
20

40
60

80
10

0
0.

0

0.
5

1.
0

1.
5

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

MAE

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0.
20

0.
25

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0.
20

0.
25

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0.
20

0.
25

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

MSE

0
20

40
60

80
10

0
0.

00
0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0
20

40
60

80
10

0
0.

00
0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

0
20

40
60

80
10

0
0.

00
0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

Ep
oc

h-
wi

se
 C

om
pa

ris
on

 o
f L

os
s F

un
ct

io
ns

 o
n

Ba
se

lin
e

M
od

el
 P

er
fo

rm
an

ce
 w

ith
 V

ar
yi

ng
 Tr

ai
ni

ng
 S

ize
s

Ep
oc

h
HM

LP
SC

NN
SM

LP
TL

ST
M

TM
LP

F
ig

ur
e

5.
5.

1:
B

as
el

in
e

m
od

el
pe

rf
or

m
an

ce
in

10
0-

E
po

ch
.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 94

0
20

40
60

80
10

0
0.

0

0.
1

0.
2

CFCE

10
%

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

30
%

0
20

40
60

80
10

0
0.

00

0.
02

0.
04

0.
06

0.
08

0.
10

50
%

0
20

40
60

80
10

0
0.

00

0.
02

0.
04

0.
06

0.
08

0.
10

70
%

0
20

40
60

80
10

0
0.

0

0.
5

1.
0

1.
5

KLD

0
20

40
60

80
10

0
0.

00

0.
25

0.
50

0.
75

1.
00

0
20

40
60

80
10

0
0.

0

0.
2

0.
4

0.
6

0.
8

0
20

40
60

80
10

0
0.

0

0.
2

0.
4

0.
6

0.
8

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0.
20

0.
25

MAE

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0.
20

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0
20

40
60

80
10

0
0.

00

0.
05

0.
10

0.
15

0
20

40
60

80
10

0
0.

00
0

0.
02

5

0.
05

0

0.
07

5

0.
10

0

0.
12

5

MSE

0
20

40
60

80
10

0
0.

00

0.
02

0.
04

0.
06

0.
08

0
20

40
60

80
10

0
0.

00

0.
02

0.
04

0.
06

0
20

40
60

80
10

0
0.

00

0.
02

0.
04

0.
06

Ep
oc

h-
wi

se
 C

om
pa

ris
on

 o
f L

os
s F

un
ct

io
ns

 o
n

Hy
br

id
 M

od
el

 P
er

fo
rm

an
ce

 w
ith

 V
ar

yi
ng

 Tr
ai

ni
ng

 S
ize

s

Ep
oc

h
TM

LP
_S

M
LP

TL
ST

M
_S

CN
N

TM
LP

_S
CN

N
TL

ST
M

_S
M

LP

F
ig

ur
e

5.
5.

2:
H

yb
ri

d
m

od
el

pe
rf

or
m

an
ce

in
10

0-
E

po
ch

.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 95

increases from 10% to 30% or higher. All models reach optimal values within 20

epochs for all loss functions. Stability also shows slight improvement when the

training size reaches 70%.

When comparing the models, SCNN-based models (TLSTM_SCNN,

TMLP_SCNN) generally demonstrate faster convergence, reaching near-optimal

loss values within 20 epochs for most of the training sizes and loss functions.

TLSTM_SCNN requires more epochs to stabilize when the training size is less

than 30%, but there is a significant improvement when the training size

increases to 50%. On the other hand, TMLP_SMLP has slower convergence

than the other models when the training size exceeds 50%, with the difference

being huge for loss functions such as KLD, MAE, and MSE.

Considering Fig. 5.5.1 and Fig. 5.5.2, the loss values of the baseline models

decrease more consistently over epochs for smaller datasets (10%, 30%) than for

larger datasets (50%, 70%). Across all configurations, Baseline models are more

turbulent across configurations in the initial epochs. In contrast, hybrid models,

which combine sequence and spatial components, achieve a more rapid loss

reduction in the initial epochs. Furthermore, the variance in loss across epochs

is less pronounced in hybrid models, indicating smoother convergence. As a

result, hybrid models generally outperform baseline models by demonstrating

faster convergence and achieving lower final loss values.

5.5.2 Evaluation of Baseline and Hybrid Noise Classification

Fig. 5.5.3 presents the average results from 10 trials based on classification

accuracy and F1-macro score using only the labeled dataset. The training size

varies from 0.05 to 0.7. In the baseline models, TMLP outperforms the others

when the training size is below 0.3 for both metrics. The end-to-end methods,

including TLSTM and SCNN, demonstrate better performance when the

training size exceeds 0.5, with over 70% accuracy. Table 5.2 presents the

summary of 10 trials using a 70% training size. As shown in the table, the

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 96

0.2 0.4 0.6
0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

Baseline Models

TMLP
TLSTM
SMLP
SCNN
HMLP

0.2 0.4 0.6

0.65

0.70

0.75

0.80

0.85
Hybrid Models

TMLP_SMLP
TLSTM_SMLP
TLSTM_SCNN
TMLP_SCNN

0.2 0.4 0.6
0.3

0.4

0.5

0.6

0.7

F1
_m

ac
ro

TMLP
TLSTM
SMLP
SCNN
HMLP

0.2 0.4 0.6
0.55

0.60

0.65

0.70

0.75

0.80

TMLP_SMLP
TLSTM_SMLP
TLSTM_SCNN
TMLP_SCNN

Training Size

Figure 5.5.3: The comparison of accuracy and F1-macro score among baseline
and hybrid models using different training sizes.

Table 5.2: Summary of accuracy and F1-macro scores across 10 trials for baseline
and hybrid models using a 70% training size.

Model
Accuracy F1-Marco

Mean SD Q1 Q2 Q3 Mean SD Q1 Q2 Q3

HMLP 0.633 0.012 0.626 0.634 0.641 0.553 0.016 0.543 0.549 0.562

TMLP 0.757 0.022 0.752 0.764 0.769 0.725 0.024 0.721 0.727 0.741

SMLP 0.634 0.022 0.626 0.632 0.652 0.543 0.022 0.532 0.545 0.559

TLSTM 0.789 0.077 0.797 0.808 0.814 0.759 0.077 0.764 0.779 0.788

SCNN 0.779 0.009 0.772 0.778 0.784 0.727 0.011 0.719 0.727 0.732

TMLP_SMLP 0.841 0.010 0.836 0.837 0.845 0.810 0.013 0.804 0.809 0.817

TLSTM_SMLP 0.830 0.008 0.826 0.828 0.831 0.803 0.010 0.798 0.801 0.804

TLSTM_SCNN 0.839 0.010 0.835 0.841 0.844 0.806 0.015 0.804 0.807 0.815

TMLP_SCNN 0.830 0.009 0.824 0.832 0.836 0.794 0.014 0.786 0.793 0.803

RDM-based model ‘TMLP_SMLP’ outperforms the others in both metrics,

achieving approximately 84% accuracy and an 80% F1-macro score.

Additionally, the differences of the hybrid models diminish as the training size

increases. Compared to the baseline models, all hybrid models generally perform

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 97

better.

0 1 2 3 4 5

0
1

2
3

4
5

0.57 0.14 0.16 0.00 0.09 0.05

0.01 0.76 0.08 0.06 0.09 0.01

0.01 0.02 0.86 0.04 0.03 0.04

0.00 0.03 0.02 0.87 0.02 0.06

0.00 0.07 0.02 0.01 0.85 0.04

0.01 0.01 0.01 0.05 0.03 0.88

TMLP_SMLP

0 1 2 3 4 5

0
1

2
3

4
5

0.51 0.13 0.07 0.02 0.13 0.13

0.01 0.77 0.03 0.02 0.16 0.01

0.00 0.09 0.80 0.03 0.04 0.05

0.00 0.10 0.02 0.82 0.03 0.03

0.00 0.06 0.01 0.02 0.88 0.03

0.01 0.01 0.00 0.01 0.09 0.88

TLSTM_SMLP

0 1 2 3 4 5

0
1

2
3

4
5

0.36 0.09 0.27 0.00 0.18 0.11

0.02 0.79 0.03 0.01 0.13 0.03

0.02 0.04 0.84 0.05 0.04 0.02

0.00 0.05 0.04 0.85 0.04 0.02

0.02 0.02 0.04 0.01 0.88 0.03

0.01 0.01 0.02 0.03 0.02 0.91

TMLP_SCNN

0 1 2 3 4 5

0
1

2
3

4
5

0.53 0.20 0.09 0.02 0.04 0.11

0.01 0.86 0.02 0.01 0.09 0.01

0.00 0.05 0.86 0.02 0.04 0.03

0.01 0.05 0.03 0.83 0.02 0.06

0.00 0.05 0.01 0.03 0.86 0.04

0.01 0.00 0.04 0.04 0.05 0.87

TLSTM_SCNN

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0.0

0.2

0.4

0.6

0.8

0: Convergence 1: Disturbance 2: Divergence 3: Outliers 4: Shimmering 5: Step
Prediction

Tr
ut

h

Figure 5.5.4: Normalized confusion matrices of the hybrid models.

Fig. 5.5.4 shows the normalized confusion matrices comparing the true labels with

the predicted targets of the hybrid models when the training size is 0.7. According

to the results, shimmering and Step are generally easy for the models to detect.

On the other hand, the predictions for convergence segments are less accurate

due to dataset imbalance. Introducing data augmentation or Balanced Batch

Sampling may help address this issue. Overall, ‘TLSTM_SCNN’ demonstrates

more balanced predictions across the classes than the other models.

5.5.3 Evaluation of Noise Clustering

Table 5.3 presents the results of the clustering experiments by adjusting thδC .

The training size is set to 0.2, and the testing data is mixed with the unlabeled

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 98

Table 5.3: The comparison of accuracy and data increment of clustering models.

Accuracy Increment

thδC Model HDBSCAN Hierarchical KMeans HDBSCAN Hierarchical KMeans

0.1

Cτ 0.958 0.974 1 0.378 0.526 0.172

Cς 1 0.992 1 0.498 0.535 0.401

CΦ 1 0.979 1 0.397 0.543 0.259

0.3

Cτ 0.967 0.95 0.916 0.523 0.926 0.535

Cς 0.973 0.95 0.984 0.689 1.055 0.695

CΦ 0.971 0.935 1 0.512 0.965 0.584

0.5

Cτ 0.943 0.88 0.897 0.664 1.474 1.229

Cς 0.944 0.867 0.894 0.87 1.659 1.263

CΦ 0.973 0.915 0.986 0.645 1.523 0.896

0.7

Cτ 0.917 0.86 0.856 0.833 2.025 2.105

Cς 0.892 0.822 0.851 1.132 2.279 2.145

CΦ 0.942 0.858 0.929 0.815 2.462 1.792

0.9

Cτ 0.889 0.799 0.795 1.084 2.707 3.087

Cς 0.84 0.78 0.765 1.611 3.32 3.354

CΦ 0.903 0.828 0.855 1.184 3.279 3.145

data to generate the pseudo-labeling dataset. The evaluation focuses on two

metrics: the accuracy of the testing data and the overall increase in the number

of generated pseudo-labels. We test three clustering models: HDBSCAN,

hierarchical clustering, and KMeans. Both hierarchical clustering and KMeans

are configured to cluster the segments into 1000 classes, which is close to the

number of clusters generated by HDBSCAN.

According to Table 5.3, as thδC increases, the overall number of pseudo-labels

increases, but accuracy decreases. Considering the clustering models,

HDBSCAN is more accurate, while hierarchical clustering generates more

pseudo-labels. From the perspective of the pipelines, CΦ is relatively more

accurate, whereas Cς generates more pseudo-labels. Overall, the noise segments

extracted using the clustering method with ZFilter exhibit greater consistency

than those obtained through classification.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 99

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
72

5
0.

75
0

0.
77

5
0.

80
0

0.
82

5
0.

85
0

a.
 T

M
LP

_S
M

LP W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.1
Te

m
po

ra
l @

 th
δC

=0
.1

Hy
br

id
 @

 th
δC

=0
.1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

b.
 T

LS
TM

_S
M

LP W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.1
Te

m
po

ra
l @

 th
δC

=0
.1

Hy
br

id
 @

 th
δC

=0
.1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

0.
85

c.
 T

LS
TM

_S
CN

N W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.1
Te

m
po

ra
l @

 th
δC

=0
.1

Hy
br

id
 @

 th
δC

=0
.1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
70

0.
75

0.
80

d.
 T

M
LP

_S
CN

N W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.1
Te

m
po

ra
l @

 th
δC

=0
.1

Hy
br

id
 @

 th
δC

=0
.1

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
72

5

0.
75

0

0.
77

5

0.
80

0

0.
82

5

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.3
Te

m
po

ra
l @

 th
δC

=0
.3

Hy
br

id
 @

 th
δC

=0
.3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.3
Te

m
po

ra
l @

 th
δC

=0
.3

Hy
br

id
 @

 th
δC

=0
.3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.3
Te

m
po

ra
l @

 th
δC

=0
.3

Hy
br

id
 @

 th
δC

=0
.3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.3
Te

m
po

ra
l @

 th
δC

=0
.3

Hy
br

id
 @

 th
δC

=0
.3

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
72

5

0.
75

0

0.
77

5

0.
80

0

0.
82

5

0.
85

0

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.5
Te

m
po

ra
l @

 th
δC

=0
.5

Hy
br

id
 @

 th
δC

=0
.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.5
Te

m
po

ra
l @

 th
δC

=0
.5

Hy
br

id
 @

 th
δC

=0
.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.5
Te

m
po

ra
l @

 th
δC

=0
.5

Hy
br

id
 @

 th
δC

=0
.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.5
Te

m
po

ra
l @

 th
δC

=0
.5

Hy
br

id
 @

 th
δC

=0
.5

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
72

5

0.
75

0

0.
77

5

0.
80

0

0.
82

5

0.
85

0

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.7
Te

m
po

ra
l @

 th
δC

=0
.7

Hy
br

id
 @

 th
δC

=0
.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

0.
85

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.7
Te

m
po

ra
l @

 th
δC

=0
.7

Hy
br

id
 @

 th
δC

=0
.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

0.
85

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.7
Te

m
po

ra
l @

 th
δC

=0
.7

Hy
br

id
 @

 th
δC

=0
.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.7
Te

m
po

ra
l @

 th
δC

=0
.7

Hy
br

id
 @

 th
δC

=0
.7

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
72

5

0.
75

0

0.
77

5

0.
80

0

0.
82

5

0.
85

0

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.9
Te

m
po

ra
l @

 th
δC

=0
.9

Hy
br

id
 @

 th
δC

=0
.9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.9
Te

m
po

ra
l @

 th
δC

=0
.9

Hy
br

id
 @

 th
δC

=0
.9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.9
Te

m
po

ra
l @

 th
δC

=0
.9

Hy
br

id
 @

 th
δC

=0
.9

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
65

0.
70

0.
75

0.
80

W
ith

ou
t P

se
ud

o-
la

be
lin

g
Sp

at
ia

l @
 th

δC
=0

.9
Te

m
po

ra
l @

 th
δC

=0
.9

Hy
br

id
 @

 th
δC

=0
.9

Tr
ai

ni
ng

 S
ize

Accuracy

Tr
ai

ni
ng

 S
ize

Accuracy

Tr
ai

ni
ng

 S
ize

Accuracy

Tr
ai

ni
ng

 S
ize

Accuracy

F
ig

ur
e

5.
5.

5:
E

xp
er

im
en

ta
lr

es
ul

ts
on

no
is

e
cl

as
si

fic
at

io
n

w
it

h
ps

eu
do

-la
be

lin
g.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 100

5.5.4 Noise Classification Experiment Using Pseudo-Labeling

Fig. 5.5.5 displays the experimental results on noise classification using hybrid

models with pseudo-labeling datasets based on HDBSCAN. The α in

Eq. (5.3.22) is set to 0.2. We compare thδC values of 0.1, 0.3, 0.5, 0.7, and 0.9.

As shown in the results, pseudo-labeling enhances the performance of

TMLP_SMLP and TLSTM_SMLP by approximately 3% when the training

size is low. Notably, when the training size is less than 0.2, the accuracy of

TMLP_SMLP increases from around 78% to over 82% when thδC = 0.5.

However, TMLP_SCNN and TLSTM_SCNN perform worse with

pseudo-labeled datasets, possibly due to the CNN model’s increased sensitivity

to false-positive data. Generally, the performance of D́δτ and D́δΦ outperforms

D́δς . When comparing the case where thδC = 0.9 with the others, it generates

more pseudo-labels, but this results in reduced performance due to the inclusion

of more inaccurate data. The results indicate that ZFilter effectively selects the

most similar noise segments, enhancing the model’s performance when the

labeled dataset is small. To further improve performance, incorporating

additional unlabeled data can help generate more pseudo-labels.

5.6 Chapter Conclusions

In conclusion, we constructed a framework for GNSS error source analysis named

GNSS-EStalk. Based on the regional ionospheric misclosure from the deeper-level

receiver data, we derived a dataset of GNSS noise segments. An innovative AI

temporal-spatial analysis approach was applied to handle the large volumes of

daily data. We apply clustering along with the ZFilter strategy to extract highly

consistent noise segments and generate a pseudo-labeled dataset. We achieved

an accuracy of 84% recognizing the noise types in the segments with the hybrid

classification model.

There are several potential future research directions. More deeper-level

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 101

parameters, such as orbit clock update residuals and tropospheric misclosure,

can be considered to further characterize error sources like multipath

interference, tropospheric delays, and receiver clock errors. Error forecasting can

be performed by considering additional factors like ionospheric activity and

tropospheric conditions. Consistent noise data can also be used to validate and

enhance existing GNSS error models.

6

Evaluation and Discussion

6.1 Experiment Setup

We have implemented DAIoTtalk on a cluster of servers. Table 6.1 lists the

machines used in our experiments. We deploy DAIoTtalk on VM1, publisher on

PC1, and subscriber on PC2. To simulate actual deployment conditions, each

node, including the DAIoTtalk in the virtual machine, is connected to a remote

WireGuard [83] virtual private network (VPN) with a bandwidth of 67 Mbps.

The timestamp is offset using a local NTP server. In the following experiments,

we evaluate our platform against other baseline methods. These include

asynchronous HTTP/1 with binary payload (AIOHTTP-BIN) and REST

payload (AIOHTTP-REST), as well as MQTT with binary payload. Both the

HTTP server and MQTT broker are deployed on the publisher machine. They

operate within the domain of P2P communication, where data is sourced from

the server machine. MQTT quality of service (QoS) is set to 0.

6.2 Impact of Packet Size

To evaluate communication efficiency, we first compared the latency when

transmitting packets of different sizes in Fig. 6.2.1. Table 6.2 lists the

improvement with the following metric:

Chapter 6: Evaluation and Discussion 103

Table 6.1: Experiment Platform

Machine CPU GPU OS RAM

PC1
AMD R9-5950x RTX4090

Windows 10 128 GB
(VM 32 GB)VM1 WSL Ubuntu 18.04

PC2 Intel I9-13900h RTX4060m Windows 11 16 GB

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

La
te

nc
y

(S
ec

on
d)

a. 1000 bytes

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

0.0150

0.0175

0.0200

La
te

nc
y

(S
ec

on
d)

b. 10000 bytes

0.00

0.02

0.04

0.06

0.08

0.10

La
te

nc
y

(S
ec

on
d)

c. 100000 bytes

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

La
te

nc
y

(S
ec

on
d)

d. 1000000 bytes

AIOHTTP-BIN AIOHTTP-REST DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

Figure 6.2.1: Comparison of latency when transmitting packets of different sizes
at 1 Hz.

Improvementlatency =
latency − latencymax

latencymax
∗ 100% (6.2.1)

Lower latency indicates higher communication efficiency. We tested four packet

sizes: 1,000 bytes, 10,000 bytes, 100,000 bytes, and 1,000,000 bytes. The first

Table 6.2: Improvement of latency when transmitting packets of different sizes at
1 Hz

Packet Size AIOHTTP-BIN AIOHTTP-REST DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

1000 -42% -20% -14% -24% 0%

10000 -28% -35% 0% -13% 0%

100000 -24% 0% -25% -26% -25%

1000000 -32% 0% -31% -31% -31%

Chapter 6: Evaluation and Discussion 104

two were to simulate common IoT data such as instructions and sensor readings.

The other two were to simulate common AI-related applications with regular

images and high-resolution images. Packets were sent with a one-second interval

(i.e., 1 Hz). The results were based on the average of 10 packets. In the cases of

Fig. 6.2.1a and Fig. 6.2.1b, AIOHTTP showed a slight advantage over both

DAIoTtalk-PULL and DAIoTtalk when dealing with small packets. This could

be attributed to the overhead incurred when the publisher sends a packet with

buffering, whereas the HTTP server simply generates a packet and responds

immediately. As the packet size increased, as in the cases of Fig. 6.2.1c and

Fig. 6.2.1d, the advantage of binary encoding-based schemes became obvious

compared to the string-encoded REST method; the improvement was around

25% to 35% according to Table 6.2 when packet size larger than 100000 bytes.

In this case, AIOHTTP and our DAIoTtalk performed similarly.

0

200

400

600

800

1000

1200

1400

Fr
am

e
pe

r S
ec

on
d

a. 1000 bytes x 1000

0

25

50

75

100

125

150

175

Fr
am

e
pe

r S
ec

on
d

b. 10000 bytes x 1000

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

Fr
am

e
pe

r S
ec

on
d

c. 100000 bytes x 100

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Fr
am

e
pe

r S
ec

on
d

d. 1000000 bytes x 100

AIOHTTP-BIN AIOHTTP-REST DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

Figure 6.2.2: Comparison of FPS when flushing a buffer of different numbers of
packets of various packet sizes.

In the next experiment, we simulated a more stressful scenario. We inserted a

large amount of data in a buffer and tried to flush the data in the buffer. We

Chapter 6: Evaluation and Discussion 105

Table 6.3: Improvement of FPS when flushing a buffer of different numbers of
packets of various packet sizes.

Bytes ×# AIOHTTP-BIN AIOHTTP-REST DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

1000×1000 957% 910% 1989% 1596% 0%

10000×1000 160% 86% 173% 158% 0%

100000×100 42% 0% 47% 33% 25%

1000000×100 45% 0% 46% 36% 32%

then observed the frames per second (FPS) of different protocols. A higher FPS

indicates higher communication efficiency. The results are shown in Fig. 6.2.2.

Table 6.3 lists the improvement with the following metric:

ImprovementFPS =
FPS − FPSmin

FPSmin
∗ 100% (6.2.2)

We tested with 1,000 packets of sizes 1,000 and 10,000 bytes each, plus 100

packets of sizes 100,000 and 1,000,000 bytes apiece. In Fig. 6.2.2a, both

DAIoTtalk-PULL and DAIoTtalk-PUSH outperformed the singleplexing MQTT

and the multiplexing AIOHTTP by at least 1596% and 65% respectively,

according to Table 6.3. They took advantage of HTTP/2 with its native

multiplexing support, allowing multiple requests and responses over a single

TCP connection. While AIOHTTP-BIN also utilized multiplexing via

asynchronous optimization, it slightly lagged DAIoTtalk-PULL in Fig. 6.2.2b

and Fig. 6.2.2c. As the frame size increased to 1,000,000 bytes, the gap

narrowed in Fig. 6.2.2d since the TCP connection was quite full and

multiplexing had no advantage. However, the binary encoded approaches still

lead the string encoded AIOHTTP-REST by at least 32% according to

Table 6.3. In conclusion, DAIoTtalk achieves at least a 33% improvement over

the traditional protocol in this experiment.

Chapter 6: Evaluation and Discussion 106

0.00

0.01

0.02

0.03

0.04

0.05

0.06

La
te

nc
y

(S
ec

on
d)

a. 1000 bytes

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

La
te

nc
y

(S
ec

on
d)

b. 10000 bytes

0.00

0.05

0.10

0.15

0.20

0.25

La
te

nc
y

(S
ec

on
d)

c. 100000 bytes

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(S
ec

on
d)

d. 1000000 bytes

DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

Figure 6.3.1: Comparison of latency between data-centralized and data-
decentralized design.

Table 6.4: Improvement of latency between data-centralized and data-
decentralized design.

DAIoTtalk-PULL DAIoTtalk-PUSH MQTT

1000 -74% -77% 0%

10000 -70% -74% 0%

100000 -70% -70% 0%

1000000 -80% -80% 0%

6.3 Data-Centralized vs. Data-Decentralized

Approaches

To compare the gap in communication efficiency between a data-centralized and

a data-decentralized design, we relocated the MQTT broker along with the

DAIoTtalk server to simulate a data-centralized approach. Here, we again

compare the latency for different packet sizes. Fig. 6.3.1 shows the results after

Chapter 6: Evaluation and Discussion 107

the adjustment and Table 6.4 lists the improvement using Eq. (6.2.1). According

to Fig. 6.3.1, DAIoTtalk-PULL and DAIoTtalk-PUSH outperformed the MQTT

method with a remote broker by a significant margin, achieving at least 3 times

lower latency in transmitting small packets (Fig. 6.3.1a and Fig. 6.3.1b) and

nearly 5 times lower latency in transmitting large packets (Fig. 6.3.1c and

Fig. 6.3.1d) under common bandwidth conditions. According to Table 6.4, P2P

communication offers at least a 70% reduction in latency compared to the

server/broker approach. Comparing the differences between Fig. 6.2.1 and

Fig. 6.3.1, it is evident that P2P communication significantly reduces traffic

overhead on the broker with MQTT, from over 2.5s reduced to under 0.6s.

6.4 Simulation of Offloading with the Join Function

To evaluate the resource scalability with the JF, we follow [84] to implement a

script for clustering the Iris dataset using K-Means. In the simulation, multiple

publisher nodes on PC1 publish the Iris dataset, which is received by a single

subscriber on PC2. The script is deployed on the publisher side, where the dataset

is clustered before being sent. Given N publishers, each sending a packet 10 times

at 1 FPS, a total of N × 10 JF execution loops will be performed.

Since the transmission is asynchronous, we measure only the ideal case using

processing time to calculate the speed-up rate Roffload:

Roffload =
tSeq

max(tJF)
(6.4.1)

where tSeq represents the processing time for the sequential execution of N × 10

loops on PC1, and tJF = { tJFn∈[0,N) } is the set of parallel processing times for

each node, with each node executing 10 loops. A higher Roffload indicates better

resource scalability.

Fig. 6.4.1 presents the simulation results. In Fig. 6.4.1a, we compare the linear

sequential processing time with the maximum, median, and minimum parallel

Chapter 6: Evaluation and Discussion 108

25 50 75 100 125 150 175
Loops (# of Nodes * 10)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

Pr
oc

es
sin

g
Ti

m
es

 (S
ec

on
d)

a. Comparison of Processing Time
t JF

tSeq

1 3 5 7 9 11 13 15 17 19
of Nodes

2

4

6

8

10

R
of

flo
ad

b. Speed Up and CPU Utilization
Roffload

CPU Utilization

20

40

60

80

100

CP
U

Ut
iliz

at
io

n
(%

)

Figure 6.4.1: Simulation results on parallel processing with JF.

processing times. When the loop size is below 150 (with 15 nodes), tJF remains

around 0.2 seconds. However, as the loop size exceeds 170, tJF increases

significantly. In the worst case, with 19 nodes running, it takes nearly 3 seconds

to complete 10 loops—longer than tSeq for 190 loops.

Fig. 6.4.1b illustrates the speed-up rate alongside CPU utilization on PC1. When

nodes are fewer than 15, CPU usage remains under 20%, and parallel processing

with JF operates efficiently, ideally achieving a speed-up of over 10 times compared

to the sequential process. However, once hardware limits are reached, performance

drops significantly and may even be inefficient. In real-world deployment, an

optimal configuration needs to consider factors such as node distribution across

devices and the complexity of each JF.

6.5 Case Study Experiment

Fig. 6.5.1 illustrates the simulation deployment setup for the case study with

multiple communication types to showcase the deployment versatility of

DAIoTtalk. The deployment considers conditions of LAN communication within

the local site, WAN communication between the local site and a remote service

server via a VPN tunnel, and inter-process communication (IPC) within the

remote server. The test data includes approximately 1 minute of sensor and

camera data, published through 3 SmartBadges nodes and 1 Camera node.

Chapter 6: Evaluation and Discussion 109

FusionPairing

PC2

Camera UEA:YOLOV8

NYCU:DeepSORT

SmartBadgesSmartBadgesSmartBadges

VM1PC1

Local Site Remote Server

VPN
67 Mbps

IPCLAN
2.5 Gbps

E D

A

B

C

Figure 6.5.1: Network Deployment for Case Study.

Table 6.5: Data Flow Measurement in the Case Study Deployment

Data
Flow

of
Frames

Average
Size (bytes)

Transmission Latency (s) Process
Latency (s)

Accumulated
Latency (s)Mean Q1 Q3

A 516 161005 0.097 0.0602 0.132 0.061 0.158

B 407 160892 0.049 0.0227 0.0684 0.192 0.353

C 349 455 0.088 0.0626 0.136

0.45 0.543D 495 466875 0.1 0.0626 0.136

E 1483 1555 0.15 0.0814 0.215

Only the updated data will be transmitted upon receiving a request. The

SmartBadges nodes operate using the DAIoTtalk-PUSH mode, while the

others will use the DAIoTtalk-PULL mode. We monitor each communication’s

data flow (A-E), and the results are presented in Table 6.5.

As shown in Table 6.5, data flows A and D are respectively sending

low-resolution pictures via VPN and high-resolution pictures via LAN with

similar latency. This shows that our design balances network traffic by adjusting

multimedia data according to application requirements; Data flow B

demonstrates the potential use of IPC. The accumulated latency can be

maintained at around 0.5 ms, enabling real-time AI surveillance applications.

This also shows the deployment versatility of the platform.

On the other hand, DAIoTtalk-PUSH is less stable than DAIoTtalk-PULL, as

indicated by data flow E. Further optimization in AGAPI could enhance its

performance. Besides, the data flow chaining from A to C shows that some

Chapter 6: Evaluation and Discussion 110

Table 6.6: Comparison of latency over 100 packets sent from the sewing machine
in SewingTalk.

Platform Average Size
(Bytes)

Latency (s) Average
ImprovementMean SD Q1 Q2 Q3

DAIoTtalk 803261.4158 0.635916 0.904305 0.182388 0.34377 0.544737 -43.03%

MQTT 858882.3861 1.116269 1.058549 0.344866 0.590394 1.738467 0

0 1000000 2000000 3000000 4000000
Packet Size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

La
te

nc
y

(s
)

DAIoTtalk
MQTT

Figure 6.6.1: Comparison of latency within two standard deviations across
different packet sizes in SewingTalk.

frames may be dropped due to connection issues or process latency. This issue

could be mitigated by introducing QoS control.

6.6 Evaluation on SewingTalk

To demonstrate the connection efficiency of DAIoTtalk in the smart sewing

industry, we reproduce the experiments in Section 6.3 and compare the

transmission latency of machine logs sent from a sewing machine using both

DAIoTtalk and MQTT. A total of 100 machine logs are randomly selected from

the dataset and transmitted. Due to the large data size, the transmission rate is

reduced to 0.2Hz (one packet every 5 seconds) to ensure sufficient session time

for completing the transmission. Table 6.6 summarizes the improvement,

Chapter 6: Evaluation and Discussion 111

0 50 100 150 200 250 300 350
Loops (# of Nodes * 10)

0

5

10

15

20

25

30

35

Pr
oc

es
sin

g
Ti

m
es

 (S
ec

on
d)

a. Comparison of Processing Time
t JF

tSeq

1 5 10 15 20 25 30 35
of Nodes

0

20

40

60

80

100

120

R
of

flo
ad

b. Speed Up and CPU Utilization
Roffload

CPU Utilization

10

20

30

40

50

CP
U

Ut
iliz

at
io

n
(%

)

Figure 6.6.2: Evaluation of offloading of tokenization on sewing machine logs using
JF.

calculated using Eq. (6.2.1). On average, latency is improved by 43% when

using DAIoTtalk instead of MQTT. Fig. 6.6.1 illustrates how latency varies with

different packet sizes. The two-standard-deviation empirical rule is applied to

filter out sudden network delays. As shown, the latency gap between DAIoTtalk

and MQTT increases with packet size, indicating that the data-decentralized

design of DAIoTtalk effectively reduces network traffic turbulence by avoiding

triangle routing.

In the deployment of SewingTalk, the tokenization function is implemented

using JF to offload processing to the sewing machine. To assess the resource

scalability provided by DAIoTtalk’s JF in the smart sewing industry, we

reproduce the simulation described in Section 6.4 using real machine log data.

The results are presented in Fig. 6.6.2. In Fig. 6.6.2a, the offloaded processing

time (tJF) remains under one second as the task is parallelized across up to 35

nodes, whereas the sequential processing time (tSeq) increases linearly.

Fig. 6.6.2b shows the speed-up rate, calculated using Eq. (6.4.1), indicating that

the offloading approach achieves up to a 120× speed-up compared to sequential

processing when utilizing 35 nodes. These results showcase that JF enables

effective horizontal scalability with sewing machines.

Chapter 6: Evaluation and Discussion 112

Table 6.7: Comparison of latency over 100 packets sent from the ground station
in GNSS-EStalk.

Platform
Average Size (Bytes) Latency (s) Average

ImprovementData Packet Mean SD Q1 Q2 Q3

DAIoTtalk 1907525.99 1954703 1.045778 0.145055 0.889009 1.096319 1.163973 51.026%

DAIoTtalk_JF 1926303 48013.26 0.014572 0.011273 0.005598 0.012621 0.020497 99.138%

MQTT 1968470.98 2015895 2.18699 0.256347 2.097883 2.246862 2.376696 0

1400000 1600000 1800000 2000000 2200000
Data Size (Bytes)

0.0

0.5

1.0

1.5

2.0

2.5

La
te

nc
y

(s
)

DAIoTtalk
DAIoTtalk_JF
MQTT

Figure 6.7.1: Comparison of latency within two standard deviations across
different packet sizes in GNSS-EStalk.

6.7 Evaluation on GNSS-EStalk

To demonstrate the connection efficiency and deployment versatility of

GNSS-EStalk in GNSS error source service, we reproduce the experiments in

Section 6.3 at 0.2Hz and compare the transmission latency of ground station

correction data sent from a ground station using both DAIoTtalk and MQTT. A

total of 100 correction data points are randomly selected from the dataset and

transmitted. Table 6.7 summarizes the improvement, calculated using

Eq. (6.2.1). The DAIoTtalk_JF configuration transmits only the noise segments

preprocessed by JF, reducing the packet size from nearly 2MB to under 0.5MB.

On average, latency is improved by 51% using DAIoTtalk and by up to 99%

when combined with JF preprocessing, compared to MQTT. Fig. 6.7.1

illustrates how latency varies with different data sizes. The

Chapter 6: Evaluation and Discussion 113

0 50 100 150 200 250 300 350
Loops (# of Nodes * 10)

0

20

40

60

80

100

120

140

Pr
oc

es
sin

g
Ti

m
es

 (S
ec

on
d)

a. Comparison of Processing Time
t JF

tSeq

1 5 10 15 20 25 30 35
of Nodes

2

4

6

8

10

12

14

R
of

flo
ad

b. Speed Up and CPU Utilization
Roffload

CPU Utilization

15

20

25

30

35

40

CP
U

Ut
iliz

at
io

n
(%

)

Figure 6.7.2: Evaluation of offloading of segmentation on GNSS error data using
JF.

two-standard-deviation empirical rule is applied to filter out sudden network

delays. As shown, DAIoTtalk already outperforms MQTT, while

DAIoTtalk_JF further enhances efficiency by transmitting only the necessary

segmented data. These results demonstrate that communication efficiency can

be improved not only through P2P communication, which avoids triangular

routing, but also by selectively transmitting essential data segments,

highlighting the deployment versatility enabled by JF preprocessing.

To evaluate the resource scalability of GNSS-EStalk for noise segmentation

tasks, we reproduce the simulation described in Section 6.4 using real ground

station data. The results are presented in Fig. 6.7.2. In Fig. 6.7.2a, the offloaded

processing time (tJF) remains below 10 seconds as the task is parallelized across

up to 35 nodes, while the sequential processing time (tSeq) increases linearly.

Fig. 6.7.2b illustrates the speed-up rate computed using Eq. (6.4.1), showing

that the offloading approach achieves up to a 14× speed-up over sequential

processing when leveraging 35 nodes. These results demonstrate that JF enables

efficient horizontal scalability by remotely deploying JF processing to ground

station nodes.

Chapter 6: Evaluation and Discussion 114

6.8 Chapter Conclusion

This chapter evaluated a novel data-decentralized pub-sub communication

framework based on the gRPC protocol. The framework is integrated into

IoTtalk, forming AIoTtalk, to support P2P communication and enhance

communication efficiency compared with traditional methods. Experimental

results demonstrate that the platform satisfies the resource scalability and

flexibility requirements of AI applications. Furthermore, real-world case studies

validate the deployment versatility of the platform, which also further improves

application efficiency. Overall, the results confirm that the proposed platform

effectively overcomes the limitations of existing centralized IoT architectures in

AIoT applications.

7

Conclusions

7.1 Conclusions

The growing demand for Internet of Things (IoT) applications, especially within

Artificial Intelligence of Things (AIoT), requires suitable platforms that can

enable efficient data exchange as well as allow scalable deployment of

applications. Traditional IoT platforms, whether data-cloud-based or

data-centralized, commonly rely on server-mediated architectures. The

architecture introduces challenges such as triangle routing, network bottlenecks,

and limited scalability. The challenges are especially pronounced in AIoT

scenarios requiring high-volume, low-latency data streams. To address these

limitations, this work introduced DAIoTtalk, a data-decentralized AIoT

platform built as an extension of IoTtalk. Leveraging peer-to-peer (P2P)

communications powered by customized gRPC within a publish-subscribe

(Pub-Sub) framework, DAIoTtalk facilitates direct sender-to-receiver data

exchanges via a remote "Agent" dedicated to connectivity establishment. Two

case studies, SewingTalk and GNSS-EStalk, are implemented to showcase

showcase its potential to transform industries and services.

Through experiments and case studies, we have validated that our platform

enhances communication efficiency, resource scalability, and deployment

versatility. For communication efficiency, the gRPC pub-sub framework benefits

from binary encoding and HTTP/2 multiplexing, which demonstrates at least

Chapter 7: Conclusions 116

25% improvement in latency and 33% improvement in FPS compared to the

traditional method, respectively. The data-decentralized approach also improves

70% latency over the data-centralized approach. For resource scalability, the JF

can dynamically and remotely offload processing tasks to edge nodes, enabling

parallel handling of larger data volumes and heavier computational loads as

more edge nodes are added. For deployment versatility, case studies such as

SewingTalk and GNSS-EStalk demonstrate the flexible modularization of AIoT

components and dynamic network allocation in different environments. These

results indicate that DAIoTtalk is well-suited for modern AIoT applications.

7.2 Furture Works

Several research directions emerge for future exploration. For the DAIoTtalk

platform, current implementations focus on node deployment using WireGuard,

with potential extensions into dynamic DNS (DDNS) and port forwarding for

more flexible connectivity. Support for communication protocols other than gRPC

can be enabled through additional APIs. To enhance security, a new form of topic-

level encryption using ciphers or tokens can be introduced. Additionally, a novel

IP resolving mechanism can be implemented on the Agent to support dynamic

service scaling more effectively.

Further research is also planned for SewingTalk and GNSS-EStalk. For

SewingTalk, we are looking for self-supervised learning to fusion product designs

and procedure diagrams into the model for transfer learning. The system can

then be extended for worker performance assessment and production line

optimization. For GNSS-EStalk, deeper-level parameters, such as orbit clock

residuals and tropospheric disclosure, could refine error characterization, while

forecasting models incorporating ionospheric and tropospheric conditions may

enhance PNT performance. Across the DAIoTtalk platform, modularization of

AI models and algorithms remains a priority to improve adaptability and

scalability.

Bibliography

[1] S. J. Palmisano. “A smarter planet: The next leadership agenda,” Accessed:

Jul. 21, 2025. [Online]. Available: https://www.youtube.com/watch?v=i_

j4-Fm_Svs.

[2] H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry

4.0,” Business and Inf. Systems Eng., vol. 6, no. 4, pp. 239–242, Aug. 2014,

issn: 1867-0202. doi: 10.1007/s12599-014-0334-4.

[3] C. J. B. Yann LeCun Corinna Cortes. “The MNIST database of

handwritten digits,” Accessed: Jul. 21, 2025. [Online]. Available:

https://scikit-learn.org/stable/auto_examples/classification/

plot_digits_classification.html.

[4] K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E. Barnes,

“RMDl: Random multimodel deep learning for classification,” in Proc. of the

2nd Int. Conf. on Inf. System and Data Mining, ser. ICISDM ’18, Lakeland,

FL, USA: Association for Comput. Machinery, 2018, pp. 19–28. doi: 10.

1145/3206098.3206111.

[5] J. Schmidhuber, “Multi-column deep neural networks for image

classification,” in Proc. of the 2012 IEEE Conf. on Comput. Vis. and

Pattern Recognit. (CVPR), ser. CVPR ’12, USA: IEEE Comput. Society,

2012, pp. 3642–3649.

[6] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A

Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

https://www.youtube.com/watch?v=i_j4-Fm_Svs
https://www.youtube.com/watch?v=i_j4-Fm_Svs
https://doi.org/10.1007/s12599-014-0334-4
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://doi.org/10.1145/3206098.3206111
https://doi.org/10.1145/3206098.3206111

Bibliography 118

[7] Papers With Code. “Image classification on ImageNet,” Accessed: Jul. 21,

2025. [Online]. Available: https://paperswithcode.com/sota/image-

classification-on-imagenet.

[8] C. Gordon. “How general AI will eventually reshape everything,” Accessed:

Jul. 21, 2025. [Online]. Available:

https : / / www . forbes . com / sites / cindygordon / 2023 / 09 / 30 / how -

general-ai-will-eventually-reshape-everything/.

[9] K. L. Lueth. “State of the IoT 2020: 12 billion IoT connections, surpassing

non-IoT for the first time,” Accessed: Jul. 21, 2025. [Online]. Available:

https://iot-analytics.com/state-of-the-iot-2020-12-billion-

iot-connections-surpassing-non-iot-for-the-first-time/.

[10] IDC. “IoT growth demands rethink of long-term storage strategies, says

IDC,” Accessed: Jul. 21, 2025. [Online]. Available:

https : / / iotbusinessnews . com / 2020 / 07 / 29 / 20898 - iot - growth -

demands-rethink-of-long-term-storage-strategies-says-idc/.

[11] Epic Games. “Unreal engine | the most powerful real-time 3d creation tool,”

Accessed: Jul. 21, 2025. [Online]. Available: https://www.unrealengine.

com/en-US.

[12] Unity Technologies. “Unity,” Accessed: Jul. 21, 2025. [Online]. Available:

https://unity.com/.

[13] IFTTT. “IFTTT,” Accessed: Jul. 21, 2025. [Online]. Available: https://

ifttt.com/.

[14] D. NamIoT and M. sneps-sneppe, “On micro-services architecture,” Int. J.

Open Inf. Technol., vol. 2, pp. 24–27, Sep. 2014.

[15] J. Wytrębowicz, K. Cabaj, and J. Krawiec, “Messaging protocols for IoT

systems — a pragmatic comparison,” Sensors, vol. 21, no. 20, 2021. doi:

10.3390/s21206904.

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://www.forbes.com/sites/cindygordon/2023/09/30/how-general-ai-will-eventually-reshape-everything/
https://www.forbes.com/sites/cindygordon/2023/09/30/how-general-ai-will-eventually-reshape-everything/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iotbusinessnews.com/2020/07/29/20898-iot-growth-demands-rethink-of-long-term-storage-strategies-says-idc/
https://iotbusinessnews.com/2020/07/29/20898-iot-growth-demands-rethink-of-long-term-storage-strategies-says-idc/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://unity.com/
https://ifttt.com/
https://ifttt.com/
https://doi.org/10.3390/s21206904

Bibliography 119

[16] C. Gündoğan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and

M. Wählisch, “NDN, CoAP, and MQTT: a comparative measurement study

in the IoT,” in Proc. 5th ACM ICN ’18, Boston, Massachusetts, pp. 159–171,

isbn: 9781450359597. doi: 10.1145/3267955.3267967.

[17] Y.-B. Lin, Y.-W. Lin, C.-M. Huang, C.-Y. Chih, and P. Lin, “IoTtalk: A

management platform for reconfigurable sensor devices,” IEEE Internet of

Things J., vol. 4, no. 5, pp. 1552–1562, 2017. doi: 10.1109/JIOT.2017.

2682100.

[18] J. Dizdarević, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of

communication protocols for Internet of Things and related challenges of

fog and cloud computing integration,” ACM Comput. Surv., vol. 51, no. 6,

Jan. 2019, issn: 0360-0300. doi: 10.1145/3292674.

[19] C. Severance, “Roy T. fielding: Understanding the REST style,” Comput.,

vol. 48, no. 6, pp. 7–9, 2015. doi: 10.1109/MC.2015.170.

[20] E. R. Fielding and E. J. Reschke. “Hypertext transfer protocol (HTTP/1.1):

Message syntax and routing,” Accessed: Jul. 21, 2025. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7230.

[21] D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting

IoT platform requirements with open pub/sub solutions,” Ann. of

Telecommunications, vol. 72, no. 1-2, pp. 41–52, 2016. doi:

10.1007/s12243-016-0537-4.

[22] OASIS Message Queuing Telemetry Transport (MQTT) TC. “MQTT

version 5.0,” Accessed: Jul. 21, 2025. [Online]. Available:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

[23] Z. Shelby, K. Hartke, and C. Bormann. “The constrained application

protocol (CoAP),” Accessed: Jul. 21, 2025. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7252.

[24] OASIS Advanced Message Queuing Protocol (AMQP) TC. “OASIS

Advanced Message Queuing Protocol (AMQP) version 1.0,” Accessed:

https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1109/JIOT.2017.2682100
https://doi.org/10.1109/JIOT.2017.2682100
https://doi.org/10.1145/3292674
https://doi.org/10.1109/MC.2015.170
https://datatracker.ietf.org/doc/html/rfc7230
https://doi.org/10.1007/s12243-016-0537-4
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://datatracker.ietf.org/doc/html/rfc7252

Bibliography 120

Jul. 21, 2025. [Online]. Available: http : / / docs . oasis -

open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html.

[25] P. Hintjens. “ZeroMQ - the guide,” Accessed: Jul. 21, 2025. [Online].

Available: https://zguide.zeromq.org/.

[26] gRPC Authors. “Introduction to gRPC,” Accessed: Jul. 21, 2025. [Online].

Available: https://grpc.io/docs/what-is-grpc/introduction/.

[27] TC39. “ECMA-404 the JSON data interchange syntax,” Accessed: Jul. 21,

2025. [Online]. Available: https://www.ecma-Int..org/publications-

and-standards/standards/ecma-404/.

[28] G. Developers. “Protocol buffers,” Accessed: Jul. 21, 2025. [Online].

Available: https://developers.google.com/protocol-buffers.

[29] B. Krebs. “Beating JSON performance with Protobuf,” Accessed: Jul. 21,

2025. [Online]. Available:

https://auth0.com/blog/beating-json-performance-with-protobuf/.

[30] Thingsboard. “Thingsboard cloud documentation,” Accessed: Jul. 21, 2025.

[Online]. Available: https://thingsboard.io/docs/paas/.

[31] Temboo. “Temboo docs and guides,” Accessed: Jul. 21, 2025. [Online].

Available: https://temboo.com/docs.

[32] SensorCloud. “Sensorcloud getting started,” Accessed: Jul. 21, 2025.

[Online]. Available: https://sensorcloud.com/welcome.

[33] Fiware. “Ngsi-v2 step-by-step,” Accessed: Jul. 21, 2025. [Online]. Available:

https://fiware-tutorials.readthedocs.io/en/latest/.

[34] OpenRemote. “Openremote: Get started with the free IoT platform,”

Accessed: Jul. 21, 2025. [Online]. Available:

https://openremote.io/get-started-iot-platform/.

[35] Y.-W. Lin, Y.-B. Lin, and C.-Y. Liu, “AItalk: A tutorial to implement ai

as IoT devices,” IET Networks, vol. 8, no. 3, pp. 195–202, 2019. doi: 10.

1049/iet-net.2018.5182. [Online]. Available: https://ietresearch.

onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://zguide.zeromq.org/
https://grpc.io/docs/what-is-grpc/introduction/
https://www.ecma-Int..org/publications-and-standards/standards/ecma-404/
https://www.ecma-Int..org/publications-and-standards/standards/ecma-404/
https://developers.google.com/protocol-buffers
https://auth0.com/blog/beating-json-performance-with-protobuf/
https://thingsboard.io/docs/paas/
https://temboo.com/docs
https://sensorcloud.com/welcome
https://fiware-tutorials.readthedocs.io/en/latest/
https://openremote.io/get-started-iot-platform/
https://doi.org/10.1049/iet-net.2018.5182
https://doi.org/10.1049/iet-net.2018.5182
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182

Bibliography 121

[36] P. P. Ray, “A survey of IoT cloud platforms,” Future Comput. and

Informatics J., vol. 1, no. 1, pp. 35–46, 2016, issn: 2314-7288. doi:

10.1016/j.fcij.2017.02.001.

[37] J. Mineraud, O. Mazhelis, X. Su, and S. Tarkoma, “A gap analysis of

Internet-of-Things platforms,” Comput. Communications, vol. 89-90,

pp. 5–16, 2016, Internet of Things Research challenges and Solutions,

issn: 0140-3664. doi: 10.1016/j.comcom.2016.03.015.

[38] H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for

massive IoT,” in 2018 IEEE Int. Conf. on Future IoT Technologies (Future

IoT), 2018, pp. 1–8. doi: 10.1109/FIOT.2018.8325598.

[39] Y.-B. Lin, H.-C. Tseng, Y.-W. Lin, and L.-J. Chen, “NB-IoTtalk: A service

platform for fast development of NB-IoT applications,” IEEE Internet of

Things J., vol. 6, no. 1, pp. 928–939, 2019. doi: 10.1109/JIOT.2018.

2865583.

[40] F. Pérez and B. E. Granger, “IPython: A system for interactive scientific

computing,” Computing in Science Engineering, vol. 9, no. 3, pp. 21–29,

May 2007, issn: 1521-9615. doi: 10.1109/MCSE.2007.53.

[41] E. Rescorla. “Rfc8446: The transport layer security (TLS) protocol version

1.3,” Accessed: Jul. 21, 2025. [Online]. Available: https://datatracker.

ietf.org/doc/html/rfc8446.

[42] H. Ed. “Rfc6749: The OAuth 2.0 authorization framework,” Accessed:

Jul. 21, 2025. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6749.

[43] Y.-W. Lin, Y.-B. Lin, M.-T. Yang, and J.-H. Lin, “ArduTalk: An arduino

network application development platform based on IoTtalk,” IEEE Systems

J., vol. 13, no. 1, pp. 468–476, 2019. doi: 10.1109/JSYST.2017.2773077.

[44] Y.-W. Lin, Y.-B. Lin, and T.-H. Yen, “SimTalk: Simulation of IoT

applications,” Sensors, vol. 20, no. 9, 2020, issn: 1424-8220. doi:

https://doi.org/10.1016/j.fcij.2017.02.001
https://doi.org/10.1016/j.comcom.2016.03.015
https://doi.org/10.1109/FIOT.2018.8325598
https://doi.org/10.1109/JIOT.2018.2865583
https://doi.org/10.1109/JIOT.2018.2865583
https://doi.org/10.1109/MCSE.2007.53
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6749
https://doi.org/10.1109/JSYST.2017.2773077

Bibliography 122

10 . 3390 / s20092563. [Online]. Available:

https://www.mdpi.com/1424-8220/20/9/2563.

[45] Y.-B. Lin, L.-K. Chen, M.-Z. Shieh, Y.-W. Lin, and T.-H. Yen,

“CampusTalk: IoT devices and their interesting features on campus

applications,” IEEE Access, vol. 6, pp. 26 036–26 046, 2018. doi:

10.1109/ACCESS.2018.2832222.

[46] Y.-B. Lin, S.-K. Tseng, T.-H. Hsu, and C. D. Tseng, “HouseTalk: A house

that comforts you,” IEEE Access, vol. 9, pp. 27 790–27 801, 2021. doi: 10.

1109/ACCESS.2021.3058364.

[47] L.-Y. Zhang, H.-C. Lin, K.-R. Wu, Y.-B. Lin, and Y.-C. Tseng, “FusionTalk:

An IoT-based reconfigurable object identification system,” IEEE Internet

Things J., vol. 8, no. 9, pp. 7333–7345, 2021. doi: 10.1109/JIOT.2020.

3039518.

[48] W.-L. Chen et al., “AgriTalk: IoT for precision soil farming of turmeric

cultivation,” IEEE Internet Things J., vol. 6, no. 3, pp. 5209–5223, 2019.

doi: 10.1109/JIOT.2019.2899128.

[49] Y.-B. Lin and H.-C. Tseng, “FishTalk: An IoT-based mini aquarium

system,” IEEE Access, vol. 7, pp. 35 457–35 469, 2019. doi:

10.1109/ACCESS.2019.2905017.

[50] W.-E. Chen, Y.-B. Lin, and L.-X. Chen, “PigTalk: An AI-based IoT

platform for piglet crushing mitigation,” IEEE Trans. on Industrial

Informatics, vol. 17, no. 6, pp. 4345–4355, 2021. doi:

10.1109/TII.2020.3012496.

[51] Y.-W. Lin, Y.-B. Lin, C.-Y. Liu, J.-Y. Lin, and Y.-L. Shih, “Implementing

AI as cyber IoT devices: The house valuation example,” IEEE Trans. Ind.

Inform., vol. 16, no. 4, pp. 2612–2620, 2020. doi: 10.1109/TII.2019.

2951847.

[52] H.-H. Chen, Y.-B. Lin, I.-H. Yeh, H.-J. Cho, and Y.-J. Wu, “Prediction of

queue dissipation time for mixed traffic flows with deep learning,” IEEE

https://doi.org/10.3390/s20092563
https://www.mdpi.com/1424-8220/20/9/2563
https://doi.org/10.1109/ACCESS.2018.2832222
https://doi.org/10.1109/ACCESS.2021.3058364
https://doi.org/10.1109/ACCESS.2021.3058364
https://doi.org/10.1109/JIOT.2020.3039518
https://doi.org/10.1109/JIOT.2020.3039518
https://doi.org/10.1109/JIOT.2019.2899128
https://doi.org/10.1109/ACCESS.2019.2905017
https://doi.org/10.1109/TII.2020.3012496
https://doi.org/10.1109/TII.2019.2951847
https://doi.org/10.1109/TII.2019.2951847

Bibliography 123

Open J. of Intelligent Transportation Systems, vol. 3, pp. 267–277, 2022.

doi: 10.1109/OJITS.2022.3162526.

[53] Y.-B. Lin, C.-C. Cheng, and S.-C. Chiu, “Musictalk: A microservice

approach for musical instrument recognition,” IEEE Open J. of the

Comput. Society, vol. 5, pp. 612–623, 2024. doi:

10.1109/OJCS.2024.3476416.

[54] T. Alam, “Cloud-based IoT applications and their roles in smart cities,”

Smart Cities, vol. 4, no. 3, pp. 1196–1219, 2021, issn: 2624-6511. doi: 10.

3390/smartcities4030064.

[55] A. W. Services. “AWS IoT,” Accessed: Jul. 21, 2025. [Online]. Available:

https://aws.amazon.com/IoT/.

[56] Microsoft. “Microsoft Azure IoT,” Accessed: Jul. 21, 2025. [Online].

Available: https://azure.microsoft.com/en-us/solutions/IoT.

[57] S. Li, L. Xu, and S. Zhao, “The Internet of Things: A survey,” Inf. Syst.

Front., vol. 17, Apr. 2014. doi: 10.1007/s10796-014-9492-7.

[58] S.-R. Yang, Y.-C. Lin, P. Lin, and Y. Fang, “AIoTtalk: A SIP-based

service platform for heterogeneous artificial intelligence of things

applications,” IEEE Internet Things J., vol. 10, no. 16, pp. 14 167–14 181,

2023. doi: 10.1109/JIOT.2023.3265674.

[59] Y.-C. Liang, K.-R. Wu, K.-L. Tong, Y. Ren, and Y.-C. Tseng, “An

exchange-based AIoT platform for fast AI application development,” in

Proc. 19th ACM Q2SWinet ’23, , Montreal, Quebec, Canada, pp. 105–114,

isbn: 9798400703683. doi: 10.1145/3616391.3622770.

[60] Nabto. “Nabto Edge Documentation,” Accessed: Jul. 21, 2025. [Online].

Available: https://docs.nabto.com/developer/guides.html.

[61] K. L. Tong, K.-R. Wu, and Y.-C. Tseng, “The Device–Object pairing

problem: Matching IoT devices with video objects in a multi-camera

environment,” Sensors, vol. 21, p. 5518, Aug. 2021. doi:

10.3390/s21165518.

https://doi.org/10.1109/OJITS.2022.3162526
https://doi.org/10.1109/OJCS.2024.3476416
https://doi.org/10.3390/smartcities4030064
https://doi.org/10.3390/smartcities4030064
https://aws.amazon.com/IoT/
https://azure.microsoft.com/en-us/solutions/IoT
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1109/JIOT.2023.3265674
https://doi.org/10.1145/3616391.3622770
https://docs.nabto.com/developer/guides.html
https://doi.org/10.3390/s21165518

Bibliography 124

[62] PYTHON. “Python,” Accessed: Jul. 21, 2025. [Online]. Available: https:

//www.python.org/.

[63] Free Code Camp. “Interpreted vs compiled programming languages: What’s

the difference?” Accessed: Jul. 21, 2025. [Online]. Available: https://www.

freecodecamp.org/news/compiled-versus-interpreted-languages/.

[64] R. Rivest. “The MD5 message-digest algorithm,” Accessed: Jul. 21, 2025.

[Online]. Available: https://www.ietf.org/rfc/rfc1321.txt.

[65] G. Jocher, A. Chaurasia, and J. Qiu. “Ultralytics YOLO.” version 8.0.0,

Accessed: Jul. 21, 2025. [Online]. Available:

https://github.com/ultralytics/ultralytics.

[66] N. Wojke and A. Bewley, “Deep cosine metric learning for person

re-identification,” in 2018 IEEE Winter Conf. on Applications of Comput.

Vis. (WACV), IEEE, 2018, pp. 748–756. doi: 10.1109/WACV.2018.00087.

[67] A. Leick, L. Rapoport, and D. Tatarnikov, GPS satellite surveying, 4th ed.

Wiley, 2015, p. 257.

[68] P. Teunissen and O. Montenbruck, Springer Handbook of Global Navigation

Satellite Systems, en. Springer, May 23, 2017, isbn: 9783319429267.

[69] H. No and C. Milner, “Machine learning based overbound modeling of

multipath error for safety critical urban environment,” in Proc. 34th. ION

GNSS+ 2021, Oct. 13, 2021.

[70] S. Jada, M. Psiaki, S. Landerkin, S. Langel, A. Scholz, and M. Joerger,

“Evaluation of PNT situational awareness algorithms and methods,” in

Proc. 34th. ION GNSS+, Oct. 13, 2021, pp. 816–833. doi:

10.33012/2021.17935.

[71] W. Stock, R. T. Schwarz, C. A. Hofmann, and A. Knopp, “Survey on

opportunistic PNT with signals from LEO communication satellites,”

IEEE Commun. Surv. & Tutor., pp. 1–1, 2024. doi:

10.1109/COMST.2024.3406990.

https://www.python.org/
https://www.python.org/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.ietf.org/rfc/rfc1321.txt
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.33012/2021.17935
https://doi.org/10.1109/COMST.2024.3406990

Bibliography 125

[72] J. Zidan, O. Alluhaibi, E. I. Adegoke, E. Kampert, M. D. Higgins, and

C. R. Ford, “3D mapping methods and consistency checks to exclude GNSS

multipath/NLOS effects,” in Proc. UCET, 2020, pp. 1–4. doi: 10.1109/

UCET51115.2020.9205423.

[73] R. Sun, L. Fu, Q. Cheng, K.-W. Chiang, and W. Chen, “Resilient

pseudorange error prediction and correction for GNSS positioning in urban

areas,” IEEE Internet Things J., vol. 10, pp. 9979–9988, 2023.

[74] S. Schaer, G. Beutler, L. Mervart, M. Rothacher, and U. Wild, “Global

and regional ionosphere models using the GPS double difference phase

observable,” in Proc. IGS Workshop, 1995, pp. 77–92.

[75] Z. Nie, P. Zhou, F. Liu, Z. Wang, and Y. Gao, “Evaluation of orbit, clock

and ionospheric corrections from five currently available SBAS L1 services:

Methodology and analysis,” Remote Sens., vol. 11, no. 4, 2019, issn: 2072-

4292. doi: 10.3390/rs11040411.

[76] L.-T. Hsu, “GNSS multipath detection using a machine learning approach,”

in Proc. 20th ITSC, 2017, pp. 1–6. doi: 10.1109/ITSC.2017.8317700.

[77] A. Elango, S. Ujan, and L. Ruotsalainen, “Disruptive GNSS signal

detection and classification at different power levels using advanced

deep-learning approach,” Proc. ICL-GNSS, pp. 1–7, 2022.

[78] P. Borhani-Darian, H. Li, P. Wu, and P. Closas, “Detecting GNSS spoofing

using deep learning,” en, EURASIP J. Adv. in Sig. Pr., vol. 2024, no. 1,

Jan. 18, 2024, issn: 1687-6180. doi: 10.1186/s13634-023-01103-1.

[79] J. Li, X. Liu, W. Zhang, M. Zhang, J. Song, and N. Sebe, “Spatio-temporal

attention networks for action recognition and detection,” IEEE Trans. on

Multimedia, vol. 22, no. 11, pp. 2990–3001, 2020. doi: 10.1109/TMM.2020.

2965434.

[80] H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction,” Proc. of the

https://doi.org/10.1109/UCET51115.2020.9205423
https://doi.org/10.1109/UCET51115.2020.9205423
https://doi.org/10.3390/rs11040411
https://doi.org/10.1109/ITSC.2017.8317700
https://doi.org/10.1186/s13634-023-01103-1
https://doi.org/10.1109/TMM.2020.2965434
https://doi.org/10.1109/TMM.2020.2965434

Bibliography 126

AAAI Conf. on Artificial Intelligence, vol. 33, no. 01, pp. 5668–5675, Jul.

2019. doi: 10.1609/aaai.v33i01.33015668.

[81] Y. Zhao, F. Shen, G. Xu, and G. Wang, “A spatial-temporal approach based

on antenna array for GNSS anti-spoofing,” Sensors, vol. 21, no. 3, 2021, issn:

1424-8220. doi: 10.3390/s21030929.

[82] E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proc.

SDM, 2001.

[83] J. A. Donenfeld. “Wireguard: Fast, modern, secure VPN tunnel,”

www.wireguard.com, Accessed: Mar. 30, 2024. [Online]. Available:

https://www.wireguard.com/#about-the-project.

[84] S. Khotijah. “K-means clustering of iris dataset,” Accessed: Jul. 21, 2025.

[Online]. Available: https : / / www . kaggle . com / code / khotijahs1 / k -

means-clustering-of-iris-dataset.

https://doi.org/10.1609/aaai.v33i01.33015668
https://doi.org/10.3390/s21030929
https://www.wireguard.com/#about-the-project
https://www.kaggle.com/code/khotijahs1/k-means-clustering-of-iris-dataset
https://www.kaggle.com/code/khotijahs1/k-means-clustering-of-iris-dataset

	Dedications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	The Evolution of Smart Technologies: From Smart Planet to AIoT
	Challenges in AIoT: Scaling Devices and Accessibility
	High-level AIoT Platform
	Benefits of an AIoT platform
	Aim and Objectives of the Research
	Aim
	Objective
	Research Question
	Novelty

	Chapter Description

	Background and Survey
	Survey on IoT Communication Protocol
	REST/HTTP (HTTP/1.x)
	MQTT
	CoAP
	AMQP
	ZeroMQ
	gRPC (HTTP/2)

	Analysis of Existing High-level IoT Platforms
	Management
	Development
	Low-Code Configuration
	Communication
	Data processing
	Security

	IoTtalk Application
	Development Testbed with IoTtalk
	Smart City Application with IoTtalk
	Agriculture Application with IoTtalk
	AI Application with IoTtalk

	Critical Analysis of Related Work
	Data-cloud-based
	Data-centralized
	Data-decentralized
	Summary of Research Gap

	DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform
	Chapter Introduction
	gRPC Pub-Sub Framework
	The Proposed DAIoTtalk
	Integration of DAIoTtalk
	Join Function
	Connectivity Configuration
	Agent Database
	Case Study: Deployment of AI Device-Object Pairing

	SewingTalk - A Product Completion Estimation System with Unsupervised Learning for Smart Sewing Machines
	GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for GNSS Error Source Recognition
	Chapter Introduction
	Related Works
	Methodology
	Noise Segmentation
	Noise Types and Dataset
	Preprocessing (S1)
	Referral Distance Matrix (S2)
	Noise Clustering and Pseudo-labeling (S3)
	Noise Classification (S4)

	Deployment of GNSS-EStalk
	Project A: Deployment of noise segmentation algorithm
	Project B: Deployment of noise classification models

	Evaluation
	Evaluation of Model Performance by Epoch
	Evaluation of Baseline and Hybrid Noise Classification
	Evaluation of Noise Clustering
	Noise Classification Experiment Using Pseudo-Labeling

	Chapter Conclusions

	Evaluation and Discussion
	Experiment Setup
	Impact of Packet Size
	Data-Centralized vs. Data-Decentralized Approaches
	Simulation of Offloading with the Join Function
	Case Study Experiment
	Evaluation on SewingTalk
	Evaluation on GNSS-EStalk
	Chapter Conclusion

	Conclusions
	Conclusions
	Furture Works

