A High-Level Data Decentralized Processing

Platform for AloT Applications

Kit-Lun Tong

Registration Number: 100328717

SUPERVISED BY

Primary: Edwin Ren

Secondary: Hane Aung

Department of Computing Sciences

University of East Anglia
July /2025
This dissertation is submitted for the degree of

Doctor of Philosophy

(©) This copy of the thesis has been supplied on condition that anyone who consults
it is understood to recognize that its copyright rests with the author and that use
of any information derived therefrom must be under current UK Copyright Law.

In addition, any quotation or extract must include full attribution.

Declaration

I certify that the work contained in the thesis submitted by me for the degree of
PhD is my original work except where due reference is made to other authors,
and has not been previously submitted by me for a degree at this or any other

university.

The following research papers, related to this work, were developed as part of the

following projects:

Royal Society International Exchanges 2021 — An Intelligent Data Processing
Platform for Smart Manufacturing — An AloT Platform (2022-2024):

e Y.-C. Liang, K.-R. Wu, K.-L. Tong, Y. Ren, and Y.-C. Tseng (2023) “An
Exchange-based AloT Platform for Fast AI Application Development,”
Q2SWinet ’23.

e (Chapter 3) K.-L. Tong, H.-C. Lin, K.-R. Wu, Y. Ren, G. Parr ,and Y.-C.
Tseng (2025) "DAIoTtalk: A Data-Decentralized Pub-Sub AloT Platform",

VTC2025-Spring.

Jack Industrial Sewing Machine Company - Smart Sewing Machine Manufacturing

Development (2022-2024):

e (Chapter 4) K. L. Tong, and Y. Ren (2024) "A Product Completion

Estimation System with Unsupervised Learning for Smart Sewing

!

Machines," internal paper for Jack Industrial Sewing Machine Company.

CHC Tech Limited Norwich - GNSS Error Source Recognition (2024-2025):

e (Chapter 5) K.-L. Tong, Y. Ren, X. Shi, Z. Chen, and X. Zhang (2025)
"A Novel Al Temporal-Spatial Analysis Approach for GNSS Localization

Propagation Error Source Recognition", accepted by VTC2025-Fall.

Moreover, the following research papers were also published during the PhD

period (2021-2025):

e K.-L. Tong, K-R. Wu, and Y.-C. Tseng (2021) "The Device-Object
Pairing Problem: Matching IoT Devices with Video Objects in a

Multi-Camera Environment," Sensors ’21.

e R. Xiong, K. L. Tong, Y. Ren, W. Ren, and G. Parr (2023) "From 5G to
6G: It is time to sniff the communications between a base station and core

networks," ACM MobiCom ’23.

In accordance with the University’s Generative Al Policy for Research and
Innovation, this work’s content is refined and proofread by artificial intelligence
(AI) technologies, including ChatGPT 3.5 and Grammarly, piratically in
synonyms query, grammar correction, and sentence reconstruction. No content
generated from Al technologies without a reliable reference has been presented

in the work.

Acknowledgements

I express my gratitude to the University of East Anglia for providing the

studentship that supported my PhD journey.

I'sincerely thank Dr. Edwin Ren, my primary supervisor, for the invaluable advice

and mentorship he has provided me during my research.

I acknowledge Dr. Hane Aung, my secondary supervisor, for his insights and

supervision during my PhD.

I am grateful to Prof. Yu-Chee Tseng at National Yang Ming Chiao Tung
University for serving as a reference during my PhD application and for his

unwavering support during my research.

I extend my appreciation to Prof. Hung-Lin Fu at National Yang Ming Chiao
Tung University, who not only provided a reference for my PhD application but

also be my first archery coach.

I also thank Prof. Lan-Da Van at National Yang Ming Chiao Tung University for

supporting me as a reference during my PhD application process.

Finally, I deeply appreciate my family’s financial support, which covered my living

expenses and enabled me to focus on my research during this period.

Abstract

Artificial Intelligence of Things (AloT), the fusion of Internet of Things (IoT)
and Artificial Intelligence (AI), is changing manufacturing and navigation
alongside many other industries. However, complexities in device scaling, data
management, and lack of skilled personnel hinder the wide adoption of AloT. A
high-level IoT platform integrates communication protocols, databases, and
application program interfaces (APIs). These centralize the management of an
IoT solution to make it simpler to develop and deploy applications while also

addressing device communication, data processing, and security factors.

On the other hand, traditional IoT platforms are often cloud-based or
data-centralized, suffering inefficiencies in routing and process scaling
limitations. To address these problems, we aim to develop DAloTtalk, an AloT
platform with a data-decentralized architecture that builds upon IoTtalk.
Additionally, =~ DAIoTtalk supports flexible networking and low-code

configuration by enabling gRPC-based Pub-Sub communications.

To showcase its applicability, we created case studies defined by different
industries: SewingTalk and GNSS-EStalk. SewingTalk improves the
productivity of textile manufacturing by analyzing logs of smart sewing
machines using unsupervised learning to estimate daily completion. Meanwhile,
GNSS-EStalk identifies sources of GNSS errors using an Al-driven

temporal-spatial approach.

Through a series of experiments and case studies, we demonstrate the
effectiveness of DAloTtalk across multiple domains, addressing challenges
related to communication efficiency, deployment versatility, and resource

scalability.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

Contents

Dedications 1
Acknowledgements 3
Abstract 4
List of Figures 10
List of Tables 12
1 Introduction 16

2

1.1 The Evolution of Smart Technologies: From Smart Planet to AloT 16

1.2 Challenges in AloT: Scaling Devices and Accessibility 17
1.3 High-level AloT Platform 18
1.4 Benefits of an AloT platform 19
1.5 Aim and Objectives of the Research 20
151 Aim ... 23
1.5.2 Objective 23
1.5.3 Research Question 24
1.5.4 Novelty 24
1.6 Chapter Description 25
Background and Survey 27
2.1 Survey on IoT Communication Protocol 27
2.1.1 REST/HTTP (HTTP/1.x) 28
2.1.2 MQTT. . .. 28

Contents 7
2.1.4 AMQP 29
2.1.5 ZeroMQ 29
2.1.6 gRPC (HTTP/2) 30

2.2 Analysis of Existing High-level loT Platforms 30
2.2.1 Management oo 32

2.2.2 Development oo 33
2.2.3 Low-Code Configuration 33
2.2.4 Communication Lo 34
2.2.5 Dataprocessing Lo o 35
2.2.6 Security 36

2.3 ToTtalk Application 36
2.3.1 Development Testbed with loTtalk 37
2.3.2 Smart City Application with loTtalk 38
2.3.3 Agriculture Application with IoTtalk 38
2.3.4 Al Application with IoTtalk 39

2.4 Critical Analysis of Related Work 40
2.4.1 Data-cloud-based 40

2.4.2 Data-centralized 00, 41
2.4.3 Data-decentralized 41
2.4.4 Summary of Research Gap. 41

3 DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 44
3.1 Chapter Introduction oo 44
3.2 gRPC Pub-Sub Framework 44
3.3 The Proposed DAIoTtalk 48
3.3.1 Integration of DAIoTtalk 48
3.3.2 Join Functiono o oo 50
3.3.3 Connectivity Configuration 51
3.3.4 Agent Database L. 55
3.3.5 Case Study: Deployment of Al Device-Object Pairing 62

Contents 8

4 SewingTalk - A Product Completion Estimation System with

Unsupervised Learning for Smart Sewing Machines 64

5 GNSS-EStalk - A Novel AI Temporal-Spatial Analysis

Approach for GNSS Error Source Recognition 65
5.1 Chapter Introduction o 0L 65
5.2 Related Works 67
5.3 Methodology 68
5.3.1 Noise Segmentation, 70
5.3.2 Noise Types and Dataset 74
5.3.3 Preprocessing (S1) o oo o L. 75
5.3.4 Referral Distance Matrix (S2) 7
5.3.5 Noise Clustering and Pseudo-labeling (S3) 80
5.3.6 Noise Classification (S4) 82
5.4 Deployment of GNSS-EStalk 84
5.4.1 Project A: Deployment of noise segmentation algorithm . . 86
5.4.2 Project B: Deployment of noise classification models 88
5.5 Evaluation L 91
5.5.1 Evaluation of Model Performance by Epoch 92
5.5.2 Evaluation of Baseline and Hybrid Noise Classification . . . 95
5.5.3 Evaluation of Noise Clustering 97

5.5.4 Noise Classification Experiment Using Pseudo-Labeling . . 100

5.6 Chapter Conclusions 100
6 Evaluation and Discussion 102
6.1 Experiment Setup e 102
6.2 Impact of Packet Size 102
6.3 Data-Centralized vs. Data-Decentralized Approaches 106
6.4 Simulation of Offloading with the Join Function 107
6.5 Case Study Experiment 108
6.6 Evaluation on SewingTalk 110

6.7 Evaluation on GNSS-EStalk 112

Contents

6.8 Chapter Conclusion

7 Conclusions
7.1 Conclusions

7.2 Furture Works . .

List of Figures

1.2.1
1.5.1

3.2.1
3.3.1
3.3.2
3.3.3
3.3.4
3.3.5
3.3.6
3.3.7
3.3.8
3.3.9
3.3.10
3.3.11
3.3.12

5.3.1
5.3.2
5.3.3
5.3.4
5.3.5

5.3.6
5.3.7
5.4.1

Number of devices connections in 2025 (from [9]) 17
Categorization of [oT platforms based on data flows. 21
The gRPC Pub-Sub framework. 45

A DAIoTtalk device-object pairing project reference from [61]. . 47

Extension of IDF and ODF in DAloTtalk. 49
The GUI for configuring JFs in IoTtalk. 50
The data flow for delivering JFs to nodes in DAIoTtalk. 51
The procedure for configuring connectivity in DAIoTtalk. 52
An example of Pub or Sub topic name. 53
The architecture of the Agent database. 55
The architecture of the node tables in the Agent database. . . . 56
The architecture of the topic views in the Agent database. . . . 57
The architecture of the DFO views in the Agent database. . . . 59

The architecture of the connection views in the Agent database. 59

The architecture of the join function in the Agent database. . . 61
Overview of GNSS error source analyzing. 68
Process pipeline of the temporal-spatial approach. 70
Noise Segmentation on ionosphere misclosure. 71
The noise types in the GNSS error source dataset. 74

Example of a unified function to standardize a normalized

sequence to a length of 128. 76
Example of transformation of a noise segment. 78
The baseline classification models. 82

Deployment of GNSSEStalk on 2 DAlIoTtalk project. 85

List of Figures 11

5.4.2
5.4.3

0.4.4

5.4.5
5.4.6

5.5.1

5.5.2

5.5.3

5.5.4
59.5.5

6.2.1

6.2.2

6.3.1

6.4.1

6.5.1

6.6.1

6.6.2

6.7.1

6.7.2

Deployment of noise segmentation algorithm on GNSS-EStalk. . 86
Data flow from a ground station to the remote analysis server
in GNSS-EStalk. 87
Deployment of noise feature extraction and model configuration
on GNSS-EStalk. 88
Deployment of error target profile on GNSS-EStalk. 90

Data flow from the remote analysis server to the classification

node in GNSS-EStalk. 0oL 91
Baseline model performance in 100-Epoch. 93
Hybrid model performance in 100-Epoch. 94

The comparison of accuracy and F1l-macro score among baseline
and hybrid models using different training sizes. 96
Normalized confusion matrices of the hybrid models. 97

Experimental results on noise classification with pseudo-labeling. 99

Comparison of latency when transmitting packets of different
sizesat 1 Hz.. 103
Comparison of FPS when flushing a buffer of different numbers
of packets of various packet sizes. 104

Comparison of latency between data-centralized and

data-decentralized design. oL 106
Simulation results on parallel processing with JF. 108
Network Deployment for Case Study. 109

Comparison of latency within two standard deviations across
different packet sizes in SewingTalk. 110

Evaluation of offloading of tokenization on sewing machine logs

Comparison of latency within two standard deviations across
different packet sizes in GNSS-EStalk. 112
Evaluation of offloading of segmentation on GNSS error data

using JE. ..o oo 113

List of Tables

2.1
2.2
2.3

3.1

5.1
5.2

5.3

6.1
6.2

6.3

6.4

6.5
6.6

6.7

Common IoT application layer protocol
Comparison of IoT Platforms
Summary of Comparison Between This Work and Existing loT

Platforms

The four types of DFO are used to control the broadcasting of

Class Sizes in the GNSS Error Source Dataset
Summary of accuracy and Fl-macro scores across 10 trials for
baseline and hybrid models using a 70% training size.
The comparison of accuracy and data increment of clustering

models.

Experiment Platform
Improvement of latency when transmitting packets of different
sizesat 1 Hz o 0o
Improvement of FPS when flushing a buffer of different numbers
of packets of various packet sizes.
Improvement of latency between data-centralized and data-
decentralized design.
Data Flow Measurement in the Case Study Deployment
Comparison of latency over 100 packets sent from the sewing
machine in SewingTalk. 0000
Comparison of latency over 100 packets sent from the ground

station in GNSS-EStalk.

Acronyms

ACK Acknowledgment

AT Artificial Intelligence

AlIoT Artificial Intelligence of Things
AMQP Advanced Message Queuing Protocol
API Application Programming Interface
CB-IoT Cloud-Based Internet of Things
CFEC Categorical Focal Cross-Entropy
CNN Convolutional Neural Network
CoAP Constrained Application Protocol
DF Device Features

DFO Device Feature Object

DM Device Model

FPS Frames per Second

GNSS Global Navigation Satellite System
GPS Global Positioning System

GUI Graphical User Interface

List of Tables

HTTP Hypertext Transfer Protocol

IDF Input Device Feature

IDL Interface Definition Language

IMU Inertial Measurement Unit

IoT Internet of Things

IPC Inter-Process Communication

JF Join Function

JSON JavaScript Object Notation

KLD Kullback—Leibler Divergence

LSTM Long Short-Term Memory

MAE Mean Absolute Error

MITM Man-in-the-Middle

MLP Multi-Layer Perceptron

MQTT Message Queuing Telemetry Transport

MS-IoT Microservice Internet of Things

MSE Mean Squared Error

NB-IoT Narrowband Internet of Things

ODF Output device Feature

P2P Peer-to-Peer

PNT Positioning, Navigation, and Timing

Protobuf Protocol Buffers

Pub-Sub Publish-Subscribe

List of Tables

15

QoS Quality of Service

RDM Referral Distance Matrix
ReLU Rectified Linear Unit
Reqg-Resp Request-Response

RFI Radio Frequency Interference
RINN Recurrent Neural Network
RPC Remote Procedure Call

S/N Signal-to-Noise Ratio

SIP Session Initiation Protocol
SMEs Small and Medium-Sized Enterprises
TCP Transmission Control Protocol
TLS Transport Layer Security
VPN Virtual Private Network
WSNs Wireless Sensor Networks

ZFilter Z-Score Normalization Filtering

Introduction

1.1 The Evolution of Smart Technologies: From Smart
Planet to AloT

In 2008, the CEO of IBM, Sam Palmisano, proposed the Smart Planet idea [I]
with three main aspects: Instrumented, Interconnected, and Intelligent.
Instrumentation involves gathering real-time information from various sources
operating differently, including sensors, personal devices, and appliances.
Interconnected is the use of digital networking platforms like the Internet of
Things (IoT) for seamless data exchange from service nodes worldwide.
Intelligence involves the use of advanced technologies, including algorithms,
modeling, cloud computing, data visualization, and artificial intelligence (AI), to

improve decision-making, optimize services, etc.

Three years later, the German government introduced Industry 4.0 [2]. This
revolution, ushered in by cyber-physical systems, allowed manufacturers to run
“smart” factories by embedding advanced technologies within their equipment,
creating further automationwhile providing more flexibility to respond to market

needs.

Meanwhile, Al has advanced significantly over the past decade, enabling a wide
range of highly efficient automated tasks and services. For example, the MNIST

database [3], which serves as a benchmark dataset for handwritten digit

Chapter 1: Introduction 17

recognition, has been resolved to a level of accuracy that is astonishing for Al
models, with test error rates less than 0.18%, compared to the 0.2% human
error rate [1]|5]. Likewise, the large-scale image classification ImageNet database
[6] experienced an increase in accuracy from 50% in 2011 to more than 90% over
a decade [7]. In this decade, artificial general intelligence (AGI) powered by
generative Al is reshaping the landscape across various domains, including
education, manufacturing, finance, social systems, healthcare, and service

industries [3].

Today, the integration of Al and IoT, known as Artificial Intelligence of Things
(AIoT), has become an essential part of modern life. AloT applications are
found in a wide variety of sectors, including smart factories, precision
agriculture, intelligent buildings, and smart healthcare, helping to change

industries and create innovation in ways we never thought possible.

1.2 Challenges in AloT: Scaling Devices and

Accessibility

o . Insights that empower you to understand loT markets
0/020 10T ANALYTICS

Total number of device connections (incl. Non-loT)
20.0Bn in 2019- expected to grow 13% to 41.2Bn in 2025

Number of global active Connections (installed base) in Bn
45-

i_ Non-loT

M o7

oL X 3
2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020E 2021E 2022E 2023E 2024E 2025E

= Compound Annual Growth Rate (CAGR)

Note: Non-loT includes all mobile phones, tablets, PCs, laptops, and fixed line phones. loT includes all consumer and B2B devices connected - see loT break-down
for further details

Source(s): 10T Analytics - Cellular 10T & LPWA Connectivity Market Tracker 2010-25

Figure 1.2.1: Number of devices connections in 2025 (from [9])

Despite its rapid advancements, AloT development faces significant challenges.

Fig. 1.2.1 illustrates the exponential growth of global device connections, as

Chapter 1: Introduction 18

reported by [9]. The number of IoT devices is projected to nearly triple,
reaching 30.9 billion between 2020 and 2025. Simultaneously, [10] predicts that
data generated by IoT devices will surge from 18.3 ZB in 2019 to 73.1 ZB by
2025. This explosive growth presents critical challenges in managing vast device
networks, as well as transmitting, storing, securing, and processing massive data

volumes efficiently.

Furthermore, the widespread adoption of AloT applications is hindered by the
specialized expertise required in both Al and IoT. Small and medium-sized
enterprises (SMEs) and individual users often lack the necessary technical
knowledge, making AloT system development and deployment costly and
resource-intensive. Additionally, many existing AloT solutions are highly
encapsulated, restricting user flexibility. As a result, modifying and redeploying
these systems in new environments remains challenging, further limiting their

accessibility and scalability.

1.3 High-level AIoT Platform

A high-level AloT platform offers an integrated environment that supports
scalable devices and cyber applications, simplifying the development and
deployment of AloT solutions. Key aspects include management, development,

deployment, communication, data processing, and security.

e Management refers to seamless onboarding, monitoring, and control of
AloT nodes and requires frictionless registration and integration onto the
platform. It allows for swift device provisioning, real-time visibility, and
remote administration, streamlining the process for users to monitor node

performance and status, at scale, with minimaleffort.

¢ Development enables the generation of cloud, edge and hybrid applications

to be easily integrated and developed toward flexible, scalable and efficient

Chapter 1: Introduction 19

AloT solutions in the platform. Its support for a wide range of use cases

enables developers to deliver their goals,bringing an efficient performance.

e Deployment facilitates fast and straightforward reconfiguration and
customizing to specific application needs. This platform enables users,
regardless of their experience level, to rapidly adapt AloT nodes to a wide

array of application scenarios and deploy in different environments.

¢ Communication maintains a scalable interconnectivity with AloT nodes
which efficiently manages throughput and the number of connections. It is
designed to handle large amounts of data traffic with low latency and reliable
connections across devices and heterogeneous networks by implementing

advanced communication methods.

e Data Processing allows predictive analytics, anomaly detection, and
intelligent optimizations, specific to use cases. It processes data in real
time to deliver relevant insights, enhancing decision-making and
operational efficiency according to the specific requirements of a given

application.

e Security ensures any access for nodes and wusers is managed,
authenticated, and authorized, protecting the system’s integrity and
confidentiality. It implements strict measuresto manage access control,
identity authentication, and secure interactions across the AloT spectrum,
protecting sensitive information and services from unauthorized users and

potential attacks.

1.4 Benefits of an AloT platform

In the UK, nearly 60% of manufacturing companies are SMEs. AloT technology
offers multiple benefits, including automated operations, increased productivity,

cost reduction, and enhanced competitiveness.

Chapter 1: Introduction 20

First, an AloT system gathers data from various heterogeneous sources, analyzes
information according to Al models, offers insights from the results, and makes
automated decisions. This allows for more efficient production processes since it
is possible to monitor and control machines from centralized and remote places
through high-end devices, such as computers and smartphones. Al models can

also be used to continuously test quality on manufacturing lines.

By leveraging Al-driven insights, SMEs can optimize resource allocation, time
management, and labor distribution, resulting in significant cost savings.
Enhanced product quality and reduced manufacturing cycles enable SMEs to
make their products more competitively priced. In addition to this, if they
leverage these Al-powered big data models, they can adjust based on customer

interactions, making their product better suited to the market.

Conversely, a sustainable ecosystem can be developed for the platform to foster
collaboration and innovation. By enabling users to share their creations, the
ecosystem simplifies and accelerates AloT application development. A
comparable model can be seen in platforms like Unreal Engine [I11] and Unity
[12], which provide digital game development tools and assets. Similarly, IFTTT
[13] exemplifies an IoT ecosystem where users can create automation workflows
using an "IF This Then That" logic. = These ecosystems empower both
professional developers and independent creators, offering opportunities for

freelancing and entrepreneurial ventures.

1.5 Aim and Objectives of the Research

With the advancement of IoT applications, utilizing an I[oT platform to
facilitate data exchange and application deployment is essential. In general, the
primary data flows in AloT platforms fall into three categories as illustrated in
Fig. 1.5.1: data-cloud-based, data-centralized, and data-decentralized. In a

data-cloud-based platform, most of the resources and services are hosted and

Chapter 1: Introduction 21

managed by a cloud service provider. Data is uploaded and processed within the
cloud, providing access to wusers/devices via its cloud interfaces. A
data-centralized platform, on the other hand, can support a microservice-IoT
(MS-IoT)[14] by functioning as a server broker, facilitating the collection,
management, and redistribution of data to resources or services located in
multiple discrete servers or end devices through a publish-subscribe (Pub-Sub)
architecture. An entity can publish a piece of data to the broker, and multiple
entities can subscribe to the data broadcast from the broker, thus enabling more
complicated multicasting scenarios among multiple entities, enabling the
adaptability of building more sophisticated AloT solutions. Nevertheless, most
of the implementations of these two categories mainly rely on common IoT
communication protocols like HTTP/REST, MQTT, or CoAP, which are
designed for massive connectivity to enable transmitting small data volumes.
However, in many Al application scenarios that require multimedia streaming,
high-bandwidth, multi-hop, and continuous data flows, there are deficiencies in

such designs [15][106].

a. Data-Cloud-Based b. Data-Centralized c. Data-Decentralized

)
CIOUd I--I
1
1

1
1
| Y
() ")
Us?rl [Publisher] [Subscriber] [Publisher M
{ Device)

data flow control flow

— ---->

Figure 1.5.1: Categorization of IoT platforms based on data flows.

These challenges can be significantly mitigated through data-decentralized direct
sender-to-receiver exchanges facilitated by a remote "Agent" used solely to
establish connectivity. This work presents a prototype data-decentralized AloT
platform featuring peer-to-peer (P2P) communications powered by customized
gRPC remote procedure calls based on the publish-subscribe (Pub-Sub)

paradigm. The proposed framework enhances communication efficiency. As an

Chapter 1: Introduction 22

extension of IoTtalk [17], a high-level IoT platform that ensures device
management with more adaptable node networking and provides a testbed for
low-code development, thereby fulfilling deployment versatility. Moreover, this
work introduces enhancements to improve resource scalability. Specifically, the
Join Function (JF), originally responsible for handling pre-processing and
post-processing during data transmission among nodes in the IoTtalk server, is
redesigned to allocate customized functions directly to edge nodes. This
offloading strategy enhances scalability by distributing computational tasks
closer to the data sources. We refer to this version with data-decentralized

communications as DAIoTtalk.

To demonstrate DAIoTtalk’s AloT capabilities, we have partnered with
manufacturing collaborators and showcased two case studies: Sewingtalk and

GNSS-EStalk.

SewingTalk is a system developed to estimate product completion on textile
production lines by analyzing smart sewing machine log data. In many
textile-exporting countries, the sewing manufacturing industry remains
predominantly traditional, with manual planning and production management
being the norm. To address this, we collaborated with one of the world’s largest
sewing machine manufacturers to conduct experiments using their latest smart
sewing machines. These machines capture worker inputs and transmit operation
logs to the cloud. By analyzing these logs using unsupervised learning
techniques, we aim to identify patterns in production processes and estimate the
number of finished products, leading to more accurate evaluations of individual

worker performance and overall pipeline utilization.

GNSS-EStalk is a system that supports global navigation satellite system (GNSS)
error source analysis using an Al-driven temporal-spatial approach. GNSS error
source analysis is essential for identifying factors that impact the accuracy of
positioning, navigation, and timing (PNT) services. Detecting and correcting

these factors is crucial for improving overall service accuracy. Traditional methods

Chapter 1: Introduction 23

mainly focus on surface-level receiver output data, which may overlook deeper,
underlying factors. Moreover, analyzing daily data can be costly and requires
advanced expertise. GNSS-EStalk addresses these challenges by identifying highly
consistent noise segments in daily data, which helps uncover potential causes. It
also utilizes a multi-model deep learning approach to classify these noise segments

and determine the sources of errors.

In summary, this research has the following aim, objective, research question, and

novelty:

1.5.1 Aim

This work aims to develop DAIoTtalk, a data-decentralized AloT platform based
on IoTtalk. It enhances communication efficiency, deployment versatility, and
resource scalability. These overcome the limitations of existing centralized IoT

architectures in AloT applications.

1.5.2 Objective

To design and implement a novel data-decentralized pub-sub communication

framework based on the gRPC protocol.

e To extend the existing IoTtalk platform to support P2P communication

through the proposed gRPC pub-sub framework.

e To evaluate the communication efficiency and resource scalability of the

proposed framework.

e To demonstrate the capability of the platform to support customized Al-

driven analytics and classification.

e To validate the deployment versatility of the proposed DAIoTtalk through
real-world case studies in sewing manufacturing by SewingTalk and GNSS

error source analysis by GNSS-EStalk.

Chapter 1: Introduction 24

1.5.3 Research Question

e How can a gRPC-based publish-subscribe architecture be designed to
support efficient and scalable data-decentralized communication in AloT

systems?

e What are the performance benefits of wusing a gRPC-based
data-decentralized pub-sub framework over traditional centralized

communication models in AloT platforms?

e What architectural modifications are required to integrate a gRPC-based

pub-sub framework into IoTtalk to support peer-to-peer communication?

e How does the proposed framework compare to traditional centralized
architectures in terms of communication efficiency and resource

scalability?

e To what extent can the platform enable domain-specific Al-driven analytics

and classification in real-world AloT use cases?

e How adaptable is the platform in supporting various Al models and

classification tasks tailored to different AIoT scenarios?

e How versatile is the proposed DAloTtalk platform in supporting diverse
real-world AloT applications, such as sewing manufacturing and GNSS error

source analysis?

e Can DAloTtalk effectively support deployment across heterogeneous AloT

domains with distinct data, communication, and processing requirements?

1.5.4 Novelty

e Supports direct P2P communication between nodes, eliminating reliance
on traditional centralized brokers or cloud-based infrastructure for data

routing.

Chapter 1: Introduction 25

e Develops a topic-based gRPC publish-subscribe framework, which is

uncommon in P2P AloT communication architectures.

e Extends the IoTtalk platform by integrating a gRPC-based
publish-subscribe framework, providing a more scalable and efficient

communication model tailored for modern Al-driven applications.

e Redesigns the JF to remotely allocate customized functions directly to edge
nodes, enabling distributed processing at the network edge. This capability

is rarely found in existing IoT platforms.

e Develops the SewingTalks, a system developed to estimate product
completion on textile production lines by analyzing smart sewing machine

log data.

e Develops the GNSS-EStalk, a system that supports GNSS error source

analysis using a novel Al-driven temporal-spatial approach.

1.6 Chapter Description

We begin by presenting the background of this work in Chapter 2, which
includes a survey of common IoT protocols, an overview of existing high-level
IoT platforms, the applications of IoTtalk, and a critical analysis comparing

these with the DAIoTtalk platform.

Next, we introduce DAIoTtalk in Chapter 3, detailing the gRPC

data-decentralized framework and the implementation of DAlIoTtalk.

Then, we present SewingTalk in Chapter 4, the first case study, to showcase the
deployment versatility of DAIoTtalk in sewing industry. This chapter discusses
related works, model developments, how the models are deployed on DAIoTtalk

to support customization, and model evaluations.

Following that, we introduce GNSS-EStalk in Chapter 5, the second case study, to

Chapter 1: Introduction 26

showcase the deployment versatility of DAloTtalk in PNT service. This chapter
discusses related work, model developments, how the components are deployed in

different DAIoTtalk projects for different purposes, and model evaluations.

After that, we provide an evaluation of the DAloTtalk platform in Chapter 6,
discussing how it enhances communication efficiency, deployment versatility, and

resource scalability.

Finally, we provide conclusions in Chapter 7 to summarize this work, and suggest

some future works.

Background and Survey

2.1 Survey on IoT Communication Protocol

Application layer communication protocols manage communication among IoT
devices, enabling developers to control data flows and build IoT applications more
efficiently. Table 2.1 lists common IoT application protocols, based on aspects

from [21] and [185].

The Transport column indicates support for the Transmission Control Protocol
(TCP), where the receiver sends an acknowledgment (ACK) upon receiving a
packet, and the User Datagram Protocol (UDP), where the sender does not
verify packet receipt. Quality of Service (QoS) refers to traffic control
mechanisms that ensure the delivery of messages. Request-Response (Req-Resp)
is a communication method where a device sends a request and waits for a reply
to complete the data exchange. Publish-Subscribe (Pub-Sub) involves a data

publisher sending a message to a topic, while data subscribers receive the

Protocol Transport | QoS req-resp | pub-sub | broker Binary encoding | Ref.
REST/HTTP1.x | TCP - v - - - [18], [19], [20]
MQTT TCP 3 levels v v v [18], [21], [22]
CoAP UDP 2 levels | v v - v [18], [23]
AMQP TCP/UDP | 3 levels | v v v v [18], [21], [24]
ZeroMQ TCP/UDP | - v - v [21].125]
gRPC TCP - v - - v [26]

Table 2.1: Common IoT application layer protocol

Chapter 2: Background and Survey 28

message by subscribing to that topic. A broker facilitates message broadcasting
to other devices upon receiving a message. Protocols that do not require a
broker can perform Peep-to-Peep (P2P) communication. Binary encoding
reduces the size of the data compared to string encoding when transmitting
binary data, such as images or files, but also reduces the readability of the

payload for humans.

2.1.1 REST/HTTP (HTTP/1.x)

Hypertext Transfer Protocol (HTTP)/1.x [20] is the most widely used client-
server protocol for web applications. It operates over TCP to ensure reliable data
delivery and follows a request-response communication model between the client
and server. REST/HTTP is associated with REST [19], a messaging architecture
that defines interaction methods such as POST and GET. Messages are typically
encoded in UTF-8 plain text and structured using JavaScript Object Notation

(JSON) [27], enhancing human readability during application development.

2.1.2 MQTT

Message Queuing Telemetry Transport (MQTT) [22] is a TCP-based messaging
protocol. It is designed for large-scale [oT deployments, particularly for
resource-constrained sensor nodes operating with low bandwidth, unstable
networks, and limited power. MQTT follows a broker-client architecture within
a Pub-Sub model. Although it is TCP-based, message loss can still occur due to
factors such as wireless interference or sudden disconnections. To optimize
transmission reliability and device efficiency, MQTT defines three QoS levels: 0
(no guarantee), 1 (at least once), and 2 (exactly once), with higher QoS levels

requiring additional broker resources.

Chapter 2: Background and Survey 29

2.1.3 CoAP

The Constrained Application Protocol (CoAP) [23] is a UDP-based messaging
protocol designed for devices with limited processing power and complex network
conditions. Like REST /HTTP, it supports RESTful request-response interactions
but uses a binary-encoded header, making it more lightweight than the string-
encoded REST/HTTP header. CoAP matches requests and responses over UDP
using a token value in the header. Additionally, Its observe function enhances
GET interactions by enabling the server to push updates to clients, similar to
a publish-subscribe model. CoAP defines two QoS levels: Non-Confirmable and

Confirmable.

2.1.4 AMQP

The Advanced Message Queuing Protocol (AMQP) [24] is a messaging protocol
that supports both reliable asynchronous and synchronous communication. It is
designed to enable inter-process communication while efficiently handling high
message volumes. AMQP facilitates a publish-subscribe architecture with two
types of brokers: the Exchange and the Queue. The Exchange receives messages
from publishers and routes them to one or more subscriber Queues, where
messages remain until they are consumed. Starting from AMQP 1.0, the
protocol also supports direct P2P communication without a broker. Its QoS
mechanism is similar to MQTT, offering three levels of message delivery

assurance.

2.1.5 ZeroMQ

ZeroM(@Q [25] is a high-level asynchronous messaging library that integrates
multiple communication protocols, designed for distributed and concurrent
system communication. Unlike AMQP, it provides message queuing

functionality without requiring a broker. ZeroMQ natively supports both

Chapter 2: Background and Survey 30

Pub-Sub and Reg-Resp communication models across various transports,
including TCP and UDP for network communication, as well as in-process and
inter-process communication for system-level messaging. An evaluation by [21]
found that ZeroM(Q maintains stable performance across different data volumes,
particularly achieving high throughput with lower latency compared to MQTT
and AMQP.

2.1.6 gRPC (HTTP/2)

gRPC [206] is an HTTP/2-based Remote Procedure Call (RPC) framework.
Compared to HTTP/1.x, HTTP/2 utilizes a binary framing layer to encode
messages in binary format, making it significantly more efficient than the plain
text format of HTTP/1.x. gRPC performs request-response interactions by
serializing messages with Protocol Buffers (Protobuf) [28], an Interface
Definition Language (IDL) that enables cross-platform serialization and
deserialization while being more efficient than JSON for data transmission [29].
In addition to the request-response model, HTTP/2 supports bidirectional
streaming, making gRPC particularly effective for transmitting large volumes of

data, such as camera frames for Al applications.

2.2 Analysis of Existing High-level IoT Platforms

The IoT platform enables remote management of large-scale IoT devices.
Table 2.2 compare the platforms under study, summarizing key aspects of a
high-level platform, identified in [36], [37], and [38]. The first column of each
table lists these aspects, including Management, Development, Low-Code

Configuration, Communication, Data Processing, and Security.

Notable IoT platforms include ThingsBoard [30], SensorCloud [32], and
OpenRemote [34], which provide multi-application solutions. Temboo [31]

specializes in environmental surveillance, while Fiware [33] serves as both an IoT

31

Chapter 2: Background and Survey

/ / / / / / LORRZECHIT
/ / / / / / UOLYEOULSIN Y
- - 1 Y. - 1 BUISSa00Y
[eg] - sisAreue eye(] Sig - - UOIOIPaI] Iedul] IV
/ / / / - / SUIRIN
/ / / / / / T[T
- - suo-ppe Agq - - - JnoysnoayJ, YSIg
pIE) 299 ‘NVMBYHOT
QuUYDP-J[os ouyop-J[os
“ - ﬁ dLLH dvod dvoD MELLEEE)
LOT-IN NVM®UOT ‘LLON ‘LLON
019 ‘193D0SqM dVoD
0 %MWWH\M I WHBHWM ‘dLIH I'TdLLH T'TdLLH ‘LILOIN wwwmwwﬁm
"LLOI TTdLLH
/ / / / / / RICSED0)
Mop Tp Tod o[y 104 MOJJ ®JRD 104 - - o[y 104 ydeir) mofq
1red pojeredog
sdde
. SISy .01
sopou ;ooBoww nmﬁwo-v@m SOpOU SOPOU PAYIWI] sopou UOTYRZITIO)STL)
. sopou
sopou
suo-ppe
a3ueIXe BIR(] 93uRIXa BIR(] ‘Kemoyer) 93uRYDX BIR(] ASURIDXS BIR(] aguryDxXe BIR(] 1dVv
‘a8ueroxe eje(]
- - 1 - - - Wo)SAS00H]
V. - Y - A[uQ uoryesor 2 uorjeorddy
- Vs Y - - 2 dnoix)
/ / / / / / Snyels
[L1Piresrer [refejowoyquedg [ccferemtgy [cefpnojpiosudg [i¢Jooquioy, [o¢|preoqsSuryy,

sutiojyed .01 jo uostredwo)) :g'g 9[qe],

Chapter 2: Background and Survey 32

platform and a customizable framework for user-specific needs. IoTtalk [17]
stands out as a simple, low-cost platform with strong integration capabilities,
which we are evolving into an AloT platform. The following sections will

examine each platform in detail.

2.2.1 Management

For management, we focus on how to remotely oversee large-scale IoT nodes
through an interface. Key aspects include status management, group

management, and application management.

Status management enables users to track node status such as connectivity,
battery level, and operational state remotely. Since this is one of the basic
functionalities of the IoT management platform, it was found that all studied

platforms offer this functionality.

Group management is necessary for efficiently operating large-scale IoT
deployments. It enables users to categorize nodes based on their function,
allowing a single configuration to be applied across multiple devices.
ThingsBoard, Fiware, and OpenRemote natively support this feature, making it
easier to manage homogeneous sensor nodes. In contrast, Temboo, SensorCloud,
and IoTtalk require an additional gateway to group sensors, which is not a

built-in feature and makes large-scale management more cumbersome.

Application management enables users to organize their devices into separate
projects to support multiple applications. This is provided by ThingsBoard,
Fiware, and IoTtalk. Temboo organizes all devices according to where they are
located, and this is not particularly flexible. SensorCloud and OpenRemote do
not natively support the concept of multi-projects. Users of those platforms

have to create multiple accounts to cover different use cases.

Chapter 2: Background and Survey 33

2.2.2 Development

For Development, we evaluate the support provided by each platform for
creating IoT applications. Key aspects include Ecosystem, Application

Programming Interface (API), and Customization.

Ecosystem refers to the availability of templates or add-ons shared by developers
or third parties, making application development more accessible. Among the
studied platforms, only Fiware offers this feature, allowing users to enhance their

platform with shared add-ons to tailor their IoT solutions to specific needs.

API is a toolkit for developers to create standard nodes. Most platform
facilitates data exchange between devices and the cloud or other nodes by API.
Additionally, Fiware also offers APIs that enable gateway and add-on

development, strengthening its ecosystem.

Customization defines the level of adaptability a platform offers. Most platforms
allow users to customize end nodes to send and receive specific data. However,
Temboo is limited to predefined node types based on its specifications. Fiware
extends customization capabilities through add-ons and IoT Agents, enabling the
transmission of heterogeneous data. OpenRemote allows Ul modifications for

improved user experience and provides templates for mobile app development.

2.2.3 Low-Code Configuration

Low-Code Configuration provides a user-friendly graphical interface to create IoT
applications. The low-code interface allows even users with minimal background
knowledge to configure, adjust, and deploy nodes with little effort. There are 2

common types of low-code interfaces: Flow Graph and Console.

Flow Graph is a logic-based UI that connects components visually. It not only
configures data flow but also enables users to structure their Al applications,

which is clearer than explaining using text alone. ThingsBoard employs a flow-

Chapter 2: Background and Survey 34

based architecture to define data rules, such as calculations and if-else filters.
Fiware uses a flow graph to configure communication between node parameters.
IoTtalk, on the other hand, relies on a separate IDF /ODF pair design to represent

data flow, which can be confusing for users.

Console typically consists of checkboxes, dropdown lists, and short text fields
for variable preset configuration. As shown in Table 2.2, this is a fundamental

low-code GUI component, and all the studied platforms provide this feature.

2.2.4 Communication

Communication support plays a crucial role in handling node volume and
heterogeneous data transmission. Key factors include protocol integration,
gateway support, and high-throughput capabilities for large-scale data

processing.

Protocol Integration determines platform compatibility. All studied platforms
support REST HTTP, the most common web protocol, but it is inefficient for
handling massive or large-volume data due to UTF-8 encoding overhead.
Additionally, REST HTTP requires an extra implementation to support a
Pub-Sub architecture. ThingsBoard, Fiware, and OpenRemote natively support
MQTT, a lightweight protocol designed for managing large-scale IoT
deployments. Fiware also supports WebSocket and other protocols for

high-volume data streaming.

Gateway support is essential for integrating non-native protocols and enabling
communication between heterogeneous networks, such as Wireless Sensor
Networks (WSNs). Platforms like ThingsBoard, Temboo, and Fiware support
multiple IoT protocols, including CoAP and LoRaWAN. Additionally, Fiware
allows users to customize gateways for specific needs. SensorCloud leverages
HTTP gateways to aggregate data from multiple nodes, addressing scalability

challenges. IoTtalk enables flexible connectivity for cyber-IoT devices, allowing

Chapter 2: Background and Survey 35

them to function as adaptive network gateways. [39] showcases an example

using Narrowband Internet of Things (NB-IoT).

High Throughput is a key distinction between traditional IoT platforms and AloT
platforms. AI models require the transmission of large datasets, such as model
weights, camera frames, and 3D point clouds. Most existing platforms do not
support high-throughput communication, as it significantly increases maintenance
costs in cloud-based or centralized systems. Fiware offers add-ons for streaming

large data, such as video.

2.2.5 Data processing

When data is sent to the platform, it needs to be processed to extract insights
that can be analyzed for decision-making. There are three main approaches to

data processing: Filtering, Mathematical Operations, and Al Processing.

Filtering is a fundamental function for separating data, typically implemented

using if-else logic. All the studied platforms support this feature.

Mathematical operations are used to apply a formula that transforms raw sensor
data into numerical features. This is a common feature of centralized or
cloud-based platforms, as applying functions to process data on a single server is
easier. All platforms support this except Temboo, which is designed for ambient
monitoring (temperature and humidity) and does not require a complex

calculation.

Interestingly, different platforms implement filtering and mathematical
operations in different ways. ThingsBoard and OpenRemote offer a flow-based
GUI to create filtering and calculation rules, making it more user-friendly.
Meanwhile, ThingsBoard, SensorCloud, Fiware, and IoTtalk integrate these
operations with programming using IPython [10], providing greater flexibility for

developers.

Chapter 2: Background and Survey 36

Al Processing is becoming essential in IoT, making it a key component of an AloT
platform. ThingsBoard supports basic Al functionality, such as linear prediction
for forecasting input trends. Fiware offers add-ons for big data analysis. IoTtalk
does not natively support Al processing, but there is work [35] to implement Al

models in cyber-IoT devices.

2.2.6 Security

Cybersecurity is a major concern, especially for AloT applications that rely on
the Internet for data exchange. For keeping data and applications safe, security
is a critical aspect of AloT platform. Key aspects include access control,

authentication, and authorization.

Access Control manages node and data permissions across users and projects
because a single node may be involved in multiple projects. ThingsBoard,
SensorCloud, and Fiware implement this by allowing users and nodes to be

grouped within projects, simplifying access management.

Authentication indicates whether a user or node is authorized to access the system.
The studied platforms commonly use username-password authentication or token-

based authentication to validate access.

Authorization protects transmission from man-in-the-middle (MITM) attacks,

where an unauthorized entity intercepts, accesses, or modifies data. Encryption

and certification protocols, such as Transport Layer Security (TLS) [11] and
OAuth2 [12], are widely adopted by the studied platforms to mitigate these
risks.

2.3 loTtalk Application

IoTtalk [17] is a key milestone in our AloT platform. It is an IoT management

platform with a low-cost, reconfigurable architecture designed to develop

Chapter 2: Background and Survey 37

interactive science experiments and provide IoT solutions for small- to
medium-sized manufacturers. It has been widely adopted across various
applications, including development testbed, smart city, agriculture, and Al

Here, we present some examples.

2.3.1 Development Testbed with IoTtalk

The low-cost and reconfigurable architecture enables IoTtalk to be used as a

development testbed like ArduTalk [13]|, SimTalk [11], and NB-IoTtalk |39].

ArduTalk is a graphical programming environment for IoT development with
Arduino. It provides a user-friendly interface for managing multiple Arduino
boards connected to the cloud. Beginners can easily link and re-link connections
between sensors and actuators in a low-code environment, enabling the rapid

creation of various IoT projects.

SimTalk provides a simulation mechanism for ensuring the correct
implementation and behavior analysis of IoT applications. It features animated
simulations for both input (sensor) and output (actuator) IoT devices. To
showcase the verification of IoT application configurations through simulations,
it demonstrates examples such as a smart farm application, interactive art, and

a pendulum physics experiment.

NB-IoTtalk proposes a service platform for rapidly developing NB-IoT
applications. It employs a tag mechanism to offer an intuitive GUI for managing
a large number of NB-IoT devices. To showcase large-scale IoT application
deployment, a smart parking lot application with event-triggered reporting in

NB-IoT is developed.

Chapter 2: Background and Survey 38

2.3.2 Smart City Application with IoTtalk

Smart city application is a typical IoT topic that brings convenience to daily
lives. Many studies use IoTtalk to implement Smart City projects, including

CampusTalk [15], HouseTalk [16], and FusionTalk [17].

CampusTalk introduces a collection of IoT applications deployed across a school
campus, showcasing cyber-physical interactions. Examples include using
smartphones as musical glow sticks for large campus concerts, virtual sports
teaching and analysis of table tennis for physics lectures, and a cyber-physical

artwork controlled via remote devices in the applied art institute.

HouseTalk presents a smart house based on the passive building design concept. It
incorporates a ‘green core’, a plant wall integrated with IoT devices, to effectively
reduce the house’s energy consumption. Non-thermodynamic cycle systems, such
as mechanical ventilation and evaporative cooling, purify the air and cool the space

without relying on active Heating, Ventilation, and Air Conditioning systems.

FusionTalk introduces an object identification system for video surveillance,
combining object recognition in camera frames with Bluetooth low-energy
beacons. This integration enables precise localization, identification, and
tracking of target objects within the monitored area. Administrators benefit
from a GUI that not only enhances the visualization of object movement and
behaviour, but also offers reconfigurable controls for managing cameras, IoT

devices, and network applications.

2.3.3 Agriculture Application with IoTtalk

IoTtalk has been applied to the agriculture industry for crop and livestock
management with sensors and actuators with network applications.

AgriTalk[18], FishTalk[19], and PigTalk[50] are the example.

AgriTalk is designed for low-cost precision farming, which focuses on soil

Chapter 2: Background and Survey 39

cultivation. In precision farming, using sensors enables monitoring of data such
as soil quality, weather conditions, and crop growth. Meanwhile, this data helps
control actuators with precision, including spraying, drip irrigation, and
repellent lights. With the loTtalk platform, farmers can remotely and
automatically manage crops or operate devices semi-automatically. A use case
demonstrates curcumin farming in mountainous regions over long distances

(more than 30 km), achieving a five times increase in production.

FishTalk introduces a novel fish-care system that utilizes aquarium sensors to
control actuators in real time. The sensors measure key parameters such as
temperature, pH, and water levels. The parameters regulate actuators like food
dispensers, pumps, and ambient lighting. An intelligent feeding mechanism
prevents overfeeding, while an integrated camera enables remote monitoring.

The system also has the potential for large-scale aquaculture applications.

PigTalk leverages AloT solutions to detect and mitigate piglet crushing in
farrowing houses. The system monitors vocalizations, using machine learning to
detect piglet distress calls. In emergencies, it automatically activates sow-alert
actuators to prevent crushing. Integrated cameras enable real-time monitoring.
Validated in a commercial farrowing house, the system saved piglets within 0.05

seconds with a 99.93% success rate.

2.3.4 Al Application with IoTtalk

There are other applications with AT models deployed on IoTtalk. [51], TrafficTalk

[52] and MusicTalk [53] are the typical example.

[51] implements AI models as cyber devices for house valuation applications. It
provides a non-physical IoT example of Altalk [35], a platform integrating Al
and big data with IoT using IoTtalk, to estimate house values with models like
Decision Tree, K-nearest neighbors, and Support Vector machine. Real datasets

with factors like location, house ages, and parking space are experimented with

Chapter 2: Background and Survey 40

the system.

TrafficTalk estimates traffic queue dissipation using deep learning models. When
a video clip of mixed traffic flow is captured, it is processed by a cyber IoT device
equipped with image recognition models to identify vehicle types in the frames.
The system then converts the video into vehicle density maps, which are analyzed

by a convolutional neural network (CNN) to predict dissipation time.

MusicTalk utilizes IoTtalk to identify and classify musical instruments from
audio recordings. It processes audio clips through a microservices node to
extract features and predict instrument types by ensembling Vision Transformer
and CNN models. The system also supports training and integrating new

instrument models, expanding its detection capabilities.

2.4 Critical Analysis of Related Work

In general, IoT platforms can be categorized into three types: cloud-based,
centralized, and decentralized. In this section, we provide an overview of each

category, followed by a critical analysis of this work and the others.

2.4.1 Data-cloud-based

The data-cloud-based platform joins data into a cloud server operated by a service
provider. [30], [34], and [32] are typical cloud-based IoT (CB-IoT) [54], providing
service for data management and device monitoring. They often offer limited
customization and control for testing and deploying AI models. [55] and [56] offer
service-oriented IoT (SOA-IoT)[57] features. They treat IoT devices, sensors,
and actuators as services that can be accessed or controlled through an interface.
Nonetheless, they are typically designed for static or semi-static environments,

which may not sufficiently satisfy the dynamic nature of AloT development.

Chapter 2: Background and Survey 41

2.4.2 Data-centralized

The data-centralized platform establishes a broker or server for data gathering
and redistribution, enabling flexible data coordination. [17] and [33] are the
microservices-IoT (MS-IoT) [14] platforms that break down the IoT system into
small, independently operating services with distinct functionalities, featuring
flexibility for application development. However, they rely on common IoT
application protocols like HTTP/REST, MQTT, or CoAP, which enable the
connection of a massive device with small data volumes but are not well-suited
for multimedia streaming. [58] and [59] utilize session initiation protocol (SIP)
and advanced message queuing protocol (AMQP) broker respectively to
overcome the limitation. Nevertheless, a single point of overload or failure is a
potential concern for this approach, particularly considering that AloT solutions

often involve substantial data flow requirements.

2.4.3 Data-decentralized

The data-centralized platform allows devices to engage in P2P communication
with each other, mitigating the risk of single-point failure and enhancing flexibility
and resilience in device connectivity, which are crucial for AloT applications. [60]
is an MS-IoT platform designed to ensure data privacy and security through P2P
connections among nodes. However, it primarily focuses on device management
and data storage rather than comprehensive AloT development. Our approach is
data-decentralized with MS-IoT design but leans more towards AloT than [60].
In our framework, we allow the deployment of Al models or algorithms as service

nodes, enabling high-throughput streaming empowered by gRPC.

2.4.4 Summary of Research Gap

Table 2.3 summarizes the differences between this Work and existing IoT

Platforms in terms of communication efficiency, deployment versatility, and

Chapter 2: Background and Survey 42

Table 2.3: Summary of Comparison Between This Work and Existing IoT
Platforms

Data-cloud-based Data-centralized | Data-decentralized
Platforms | [30], [31], [32], [53), [56] | [17], [33], [55], [59] | [60] ~ This Work
Communication
Limited Medium High High
Efficiency
Deployment
Low Medium Low High
Versatility
Resource
Medium Limited High High
Scalability

resource scalability.

For communication efficiency, a platform is expected to provide low-latency,
high-throughput, and protocol-efficient communication. The data-cloud-based
approach offers limited support in this regard, as it typically relies on SOA-IoT
interfaces that are not optimized for dynamic or multimedia data. The
data-centralized approach performs moderately, using traditional protocols (e.g.,
HTTP/REST, MQTT, CoAP) that are inefficient for high-throughput or
multimedia scenarios. Although alternatives such as SIP and AMQP offer
improvements, they still introduce risks of single-point failure or overload, which
undermines scalability in AIoT deployments. In contrast, the data-decentralized
approach excels in communication efficiency, as P2P communication reduces
latency and enables direct device interaction. Our proposed gRPC-based
pub-sub framework further enhances this by supporting efficient, real-time data

streaming.

For deployment versatility, a platform should offer flexible support for various
IoT nodes, AI models, network topologies, and deployment environments. The
data-cloud-based approach provides limited versatility, as it typically restricts
customization and relies on fixed service models, making it more suitable for static
or semi-static environments. The data-centralized approach performs moderately.
It features a modular design that allows flexible node deployment, but dynamic Al

model integration remains limited. In the data-decentralized approach, [60] offers

Chapter 2: Background and Survey 43

low support in this area, focusing primarily on device connectivity while lacking Al
model deployment capabilities. In contrast, this work provides high deployment
versatility by supporting modular service nodes that can dynamically deploy both
IoT nodes and Al models. This enables customized, adaptive deployments across

diverse scenarios, from edge to cloud, tailored to specific application needs.

For resource scalability, a platform should be capable of handling increasing
numbers of devices, larger data volumes, and heavier computational loads
without performance bottlenecks. The data-cloud-based approach offers
moderate scalability, as it generally scales well in the cloud but has limited
adaptability at the edge. The data-centralized approach scores low in this
regard, as it is prone to bottlenecks and single-point overload at the central
server or broker, particularly under Al-intensive workloads. In contrast, the
data-decentralized approach offers high scalability due to its distributed
architecture, which enhances resilience and fault tolerance. This work adopts a
data-decentralized, MS-IoT based design that distributes computation and data
flow across nodes, potentially supporting horizontal scaling, load balancing, and

efficient resource utilization across edge, fog, and cloud layers.

All in all, this work addresses the research gap by integrating a
microservices-based IoT (MS-IoT) design with a data-decentralized architecture.
It employs gRPC for efficient, high-throughput communication and enables IoT
devices, Al models, and algorithms to be deployed as modular service nodes,
supporting full-stack AloT development. As a result, the proposed framework
offers significant advantages in communication efficiency, deployment versatility,

and resource scalability compared to existing approaches.

DAIoTtalk - A Data-Decentralized
Pub-Sub AloT Platform

3.1 Chapter Introduction

To address the flexibility and scalability requirements of AloT communications,
we develop a gRPC-based publish-subscribe framework in Section 3.2. This
framework is then integrated into IoTtalk to form DAloTtalk, as described in
Section 3.3. A case study is also presented in this chapter to demonstrate the

DAlIoTtalk platform in practice.

3.2 gRPC Pub-Sub Framework

Fig. 3.2.1 shows the proposed Pub-Sub architecture using gRPC. In general, each
publisher-subscriber pair should consist of a gRPC server and a gRPC client. The
Agent is to resolve a client connection to a server according to the user-defined
rules. The transmission mode can be either push or pull, indicating whether the

client is a publisher or a subscriber respectively.

There are 4 ‘Re’ steps in the frameworks, which are Register (ReG), Resolve
(ReS), Request (ReQ), and Response (ReP). First, the node registers itself with
the Agent. Next, the Agent resolves the connection between nodes based on the

configuration. Then, the publisher requests data from the subscriber. Finally, the

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 45

ReQpyir
Pull: Publisher op 3] Subscriber
- (server) 4 S pull (client)
@ ReS @
ReGse @ T RchI
connection
rules T TTTTTTTC Agent
RchI J ReGse

Publisher 3 Subscriber
n R Q
Push: (client) B °push (a 1 (server)

RePpush

Figure 3.2.1: The gRPC Pub-Sub framework.

subscriber responds with the requested data. We detail them as follows.

Step 1 (ReG): Every node should send a register message to the Agent defined as

follows:

ReGode =(Node, Pub, Sub, I P), where
(3.2.1)

mode € {se =0,cl =1}

Here, mode is a flag representing the node’s operational mode, where ¢l and se
respectively denote client and server modes. Node contains a unique
identification. Pub and Sub represent the sets of publishment and subscription
topics required by the node, respectively. IP is the address of the server and it

will be null if the node is a client.

Step 2 (ReS): When the Agent receives a ReG packet, information will be
registered to a database. The Agent will try to link the subscribers to the
publishers according to the wuser-defined connection rules, which will be
described in Section 3.3.1. The Agent will periodically update the gRPC client

with a resolving packet with a set of topic connection pairs denoted as follows:

ReS ={(nodepyup, nodesyp, topicpup, topiceuy, I P).} (3.2.2)

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 46

where node,,, € Node and nodeg,, € Node represent a publishment node and a
subscription node, respectively, while topic,,, € Pub and topice, € Sub
represent a publishment topic and a subscription topic, respectively. IP is the
address connected to the gRPC server. ¢ € [0,|ReS|) represents the index of

each connection pair.

Step 3 (Re@®): When a gRPC client receives a ReS defined above, it will
establish a bi-directional stream with the corresponding gRPC server using the
request /response pattern, employing either the push or pull method based on its
characteristics. By specifying method € {push,pull}, the request message is
defined as follows:

ReQmethod = (node, topic, payload) (3.2.3)

If the gRPC client is a subscriber, it will employ the pull method by fetching
data from the gRPC server (publisher). The client will initiate a ReQpyy to the
server using the received ReS, where ReQpuu[node] and ReQpuultopic] will
respectively contain the client node information nodes,, and the server
publishment topicpup. ReQpuu[payload] will be reserved. If the gRPC client
serves as a publisher, a push method will be employed and the gRPC server will
serve as a subscriber, where data is sent directly by the client in a request
ReQpusn according to the ReS. ReQpysn[node] represents the client node
information nodeyyy, while ReQpush[topic] denotes the subscription topic

topicsy, provided by the server. Data will be attached in ReQpysh[payload.

Step 4 (ReP): The server will reply to a response message according the method

defined as follows:

RePyethod = (node, topic, payload, code). (3.2.4)

When method = pull, the server will verify the ReQpy(topic] in its Pub and
check if there is unsent data in the corresponding buffer. It will then create a

ReP,,; packet with a success status code in RePyy[code]. RePy,[node] will be

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 47

F—-—-—— 1
| camera_sensor_i |
= ===== J
r \
Ires_camera_i |
)

I Q UEA:YOLOV8
I detection_i D

Join 2

—————— input device re === ==
@ | S| :- @feature (IDF) £x | veavorows
|

image_o

NYCU:DeepSORT

bounding_box_o

FusionPairing

bounding_box_o

/

camera_o

Q NYCU:DeepSORT

N

[bounding_box_i 8
o SmartBadges

camera_sensor_o

imu_o

S . I
output device

J) @feature (ODF) »:

Figure 3.3.1: A DAlIoTtalk device-object pairing project reference from [61].

the server node information and ReP,[topic] = ReQpuu[topic]. The requested
data will be attached to ReP,,;[payload]. Since the connection is established in a
bidirectional stream, the server will persistently send the ReP,,; messages until
there is no new data, but the client will periodically send the ReQ,,; message to

maintain the connection.

On the other hand, if method = push when receiving the ReQpysn, the server will
respond with a ReP,,s, message. It will verify if the ReQpysn[topic] belongs to
it and indicate the success code in ReQpysp|code]. Additionally, it will include its
node information in ReP,,s,[node] and set Re Py, p[topic] = ReQpysh[topic]. The
RePy,sp[payload] will be reserved at this time. In the push method, the client
will keep pushing Re@pyusn and the server will keep providing feedback RePp,sp,

forming a bidirectional stream.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 48

3.3 The Proposed DAIoTtalk

DAloTtalk is evolved from IoTtalk [17]. IoTtalk is a platform that facilitates
low-code deployment through a user-friendly graphical user interface (GUI). It
provides efficient project management capabilities accessible to users of varying
technical backgrounds. We integrate the gRPC Pub-Sub framework into IoTtalk,
resulting in the creation of DAloTtalk. Fig. 3.3.1 shows a DAIoTtalk device-
object pairing project derived based on the IoTtalk framework. The application
is detailed on [61], chaining multiple AT models with video streaming. Details will

be described in Section 3.3.5.

In JToTtalk, data is classified into two categories: input device feature (IDF) as
illustrated in Fig. 3.3.1a and output device feature (ODF) as in Fig. 3.3.1b. Each
IoT node is constructed as a device model (DM) like Fig. 3.3.1c, comprising
various device features (DF), where DF' € {IDF,ODF'} as depicted in Fig. 3.3.1d.
A DF serving as a data source is categorized as an IDF. Conversely, a DF that
receives data is classified as an ODF. A user can easily build a connection rule
for Eq. (3.2.2) between an IDF and an ODF by drawing a ‘Join’ line as shown in
Fig. 3.3.1e in the GUL

3.3.1 Integration of DAIoTtalk

To integrate the gRPC Pub-Sub frameworks into the loTtalk system, we allocate
the IDF as the publisher and the ODF as the subscriber. Fig. 3.3.2 depicts how
we extend IDF and ODF by incorporating gRPC using the example in Fig. 3.3.1.

This architecture consists of two domains: node domain and network domain.

e The node domain contains all device and service nodes under the DAIoTtalk.
For each node, we implement an application programming interface (API)
called ‘AGAPI’ as shown in Fig. 3.3.2a. The API integrates the IoTtalk

DA, which is responsible for registration with the IoTtalk server, and the

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 49

Network Domain Node Domain
@ multiple nodes
@ loTtalk Server Smart Badges
Agent EC }(171 -ﬁ DA][Publisher][Subscrber
A
R 1 I S [oRPCPubSu
Framework -
A o
P2P Connection@
<€-------> v
<IoTtaIk Reglstratlon) (_|_> Camera
ReG/ReS Fusion ¢
< ReQ/ReP ” -
Pairing |€—>|DeepSORT [€—>{ YoloVs

Figure 3.3.2: Extension of IDF and ODF in DAloTtalk.

Pub-Sub framework outlined in Section 3.2 for communication among other

nodes.

e The network domain addresses the remote service for managing the AloT
solution. Fig. 3.3.2b is the IoTtalk server with the Agent component of the
pub-sub framework. It is deployed in the network domain. The execution
and communication (EC) system receives messages from the DA and
collaborates with the GUI, as well as a database (DB) that stores the
configuration data. The Agent components receive registrations from
gRPC clients and gRPC server nodes using the ReG. It then scrapes the
relevant configuration from DB to construct the ReS and sends it to the

corresponding nodes.

Upon receiving the connection rules from the Agent, the nodes in the node domain
establish P2P communication, as illustrated in Fig. 3.3.2¢c, following the steps Re@
and ReP.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 50

Connection Name:
a . SmartBadges (IDF)

imu_i Type Function
%1 sample ~ | disabled -
disabled
b _FusionPairing (ODF)
imu_o Function
y1 x1 v
Function Management Close
Global Function List: imu_i Function List:
average - -
cbl]
chcBtargetprofile
dbl S -

Selected Function: | |

Version: Delete | | Save

def run(*args):

return

Figure 3.3.3: The GUI for configuring JFs in IoTtalk.

3.3.2 Join Function

When a join connection is established in IoTtalk, as shown in Fig. 3.3.1e, the
user can define a Join Function (JF), which is a script that processes data
before transmission or reception. Fig. 3.3.3 illustrates the GUI for configuring
this function. The function can be set up for both the IDF and ODF, as shown
in Fig. 3.3.3a and Fig. 3.3.3b, respectively. The user can access the function
management interface by selecting the option shown in Fig. 3.3.3c. In this
interface, the user can define function arguments and write the Python

script[62], as depicted in Fig. 3.3.3d and Fig. 3.3.3e, respectively.

Since Python is a cross-platform interpreted language [63] that does not require
compilation, this design allows for flexible configuration and supports high-level

deployment.

The Join Function (JF) is executed on the centralized server in IoTtalk, whereas

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 51

i

DAloTtalk

Function Node B\
Manager

[main]—)[Publisher])[Subscriber]—)[main]
_ AGAPI . _ AGAPI)

Figure 3.3.4: The data flow for delivering JFs to nodes in DAIoTtalk.

in DAIoTtalk, the scripts must be delivered to decentralized nodes. Fig. 3.3.4
illustrates the delivery process. The Agent distributes the scripts to the
corresponding nodes based on the specified configurations. In each node, the
function manager in AGAPI receives and manages the scripts. To verify
whether the script version matches the one already received, an MDJ5 hash is
generated and compared using the message-digest algorithm [64]. If the MD5
hashes are matched, the script is considered identical, and the latecomer is
rejected. Otherwise, the script is imported into the Publisher for data processing
before transmission or into the Subscriber before the main thread receives it.
With the data-decentralized design, a more complex JF can be executed to

enhance flexibility.

3.3.3 Connectivity Configuration

Fig. 3.3.5 illustrates the detailed procedure of the configuration cycle in
DAlIoTtalk, which consists of three phases: setup, connection configuration, and
function configuration. This cycle is repeated periodically. Each phase is

described in detail below.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 52

AGAPI Agent EC DB GUI
loTtalk
ReG
> >
Setup: <€ NID
ReGmode

| || | | | |] | | J-' | 1
oin
.(
Connection >
Configuration: Join

Function <€ FN
Configuration: 1 reqfN

ERePFN

Figure 3.3.5: The procedure for configuring connectivity in DAIoTtalk.

Setup Phase

A node needs to register with the EC through the AGAPI. The API will transmit

a message containing the DM along with lists of IDF and ODF defined as follows:

ReGIoTtk — (DDM, {IDF;>0}, {ODF,>0}), where ()
3.3.1

DDM = Domain + DM

In IoTtalk, a single DM created in the GUI can only be assigned to one device.
To address this limitation, we introduce the D DM, which combines the DM with
an optional field Domain, allowing a group of nodes to share the same connection

rules within DAIoTtalk. The EC will store the ReG!°Tt% into DB and return a

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 53

Domain DM
—
02.YOLOMO:UEA:YOLOVS8:image_o,
Y T T

NID DDM DF

Figure 3.3.6: An example of Pub or Sub topic name.

Table 3.1: The four types of DFO are used to control the broadcasting of topics.

Priority DFO Type DFO Format

0 Native DFO { Node} : { Domain} : { DM } : { DF'}
1 DDM DFO % :{Domain}:{DM}:{DF}
2 Domain DFO %:{DM}:{DF}
3 DM DFO {DM}:{DF}

unique identification denoted as NI1D. Next, the AGAPI will initialize a ReGpode
message described in Eq. (3.2.1) for the Pub-Sub Agent. We express the Node,

Pub, and Sub field in ReGG,,pqcas follow:

Node = (NID,DDM) (3.3.2)
Pub = { Pub; } = {(NID + DDM + IDF});} (3.3.3)
Sub = { Sub, } = {(NID + DDM + ODF,),} (3.3.4)

Fig. 3.3.6 shows the topic content for the the example in Fig. 3.3.1. Through this

expression, the Agent can flexibly manage nodes and their associated topics.

Connection Configuration Phase

A Join is created to connect an IDF and an ODF in the IoTtalk GUI. A set of
Join messages for the connection is sent to EC and then stored into the DB. These

messages carry information as follows:

Join = {(nalDy>o, DFOg>0)}, (3.3.5)

where nalD,, is an identification for each Join.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 54

DFOy is the Device Feature Object (DFO), representing a format of topics used
to control broadcasting. Table 3.1 lists the four types of DFO: Native DFO, DDM
DFO, Domain DFO, and DM DFO:

Native DFO unicasts only to the exactly matched topic.

DDM DFO broadcasts to topics matching the DDM.

Domain DFO broadcasts to topics matching the Domain.

DM DFO broadcasts to topics matching the DM.

Additionally, a lower-priority DFO cannot overwrite the settings of a higher-

priority DFO.

When a set of DF Oy shares the same nal D,,, it means that they are connected
in the same Join. The Agent will periodically retrieve the Join information from
the DB and classify whether a DF Oy is an IDF or an ODF by matching them
with the registered Pub and Sub. If a pair of topic,,, and topicg,, is matched,
the Agent will update a row of ResS described in Eq. (3.2.2) for the corresponding
gRPC client-side node.

Function Configuration Phase

When a JF has been configured in the loTtalk GUI, the configuration will be

stored in the DB by the EC. We denote the configuration set as F'IN

FN ={FN;}={(DFOy, fnIDy, Pys, Argss)s|f > 0}, (3.3.6)

Here, each configuration F'Ny contains the script ID fnlDy, the Python script
Py;, and the arguments Argsy, which are associated with the DF'O,4. The Agent

will immediately extract the FN from the DB.

For each node, AGAPI will periodically send a set of requests

Re@QfN = {ReQﬁ)gic} to Agent to request updated JFs for every

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 55
Join
4
Connection
Rule
ReGmode)
Topic Views
-~)
View
»| DFO Views D
- FN
> Join Function > RePN
—
Figure 3.3.7: The architecture of the Agent database.
topic € (PubU Sub) that it publishes or subscribes to:
Rle;%c = (Node, topic) (3.3.7)

The Agent then sends the responses Rep!™ = { Rep!N '} to AGAPI for each

topic

requested topic along with the corresponding Py, and Args;:

Repfyn. = (topic, Pyy, Argsy) (3.3.8)

3.3.4 Agent Database

The connectivity of DAlIoTtalk is primarily managed by the Agent database, as
illustrated in Fig. 3.3.7.

When a ReGpo4e package in Eq. (3.2.1) is received, the Agent stores its
information in the node tables, which then generate the corresponding topic and

DFO views.

Upon receiving a Join package in Eq. (3.3.5), the Agent updates the connection
rule table, linking topic and DFO views to generate the connection view. This

enables the Agent to extract the necessary information to construct the ReS

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform

56

Node Tables NodeConnection
. .=t PK FK | NodelD
.rigger Connection
Status Mode
UpdateTime
Node P
PK | NodelD Port
NodeDM
NodeDomain
Topic
Publish/ .
Subscribe PK | TopicName
FK NodelD
IsPub

Figure 3.3.8: The architecture of the node tables in the Agent database.

package in Eq. (3.2.2).

Conversely, when an F'N package in Eq. (3.3.5) is received, the Agent processes

it through the JF module and constructs the ReP™ package in Eq. (3.3.8).

In the following, we detail each component of the Agent database in Fig. 3.3.7.

Node Tables

Fig. 3.3.8 illustrates the tables that store the registration ReG,o4e in Eq. (3.2.1),

including the Node table, Topic table, and NodeConnection table.

The Node table records the node information from ReG,,o4e, as specified in

Eq. (3.3.2). It includes the NodeID (NID), NodeDM (DM), and NodeDomain

(Domain). The NodelD is the primary key and prevents inserting a duplicate

NodelD.

The NodeConnection table stores connection information from ReG.pode

specified in Eq. (3.2.1). The columns include the connection mode (mode) and

the address (IP), which consists of an IP and port.

The UpdateTime field

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 57

Topic Views

SubscribeTopic
IsPub=0 .
—» SubTopicName
NodeConnection — NodelD PublishTopic
NodeDomain PubTopicName
| Node }—(DQ} UpdateTime NodelD
Mode NodeDomain
| Topic | SubscriberlP UpdateTime
SubscriberPort Mode
PublisherlP
IsPub=1
s > PublisherPort

Figure 3.3.9: The architecture of the topic views in the Agent database.

records the timestamp when a ReG,p,0qe is received. The NodelD serves as both
the primary key and a foreign key referencing the NodelD in the Node table. A
trigger is created to initialize the NodeConnection table when a new node is
inserted into the Node table. Since the Node table and NodeConnection table
have a one-to-one relationship, the trigger executes only once per row in the

Node table.

The Topic table stores topic information from ReGjo4e. TopicName is the
primary key and corresponds to either a publishment (Pub;) from Eq. (3.3.3) or
a subscription (Sub,) from Eq. (3.3.4). The IsPub flag indicates whether the
TopicName represents a Pub; (IsPub = 1) or a Sub, (IsPub = 0). NodelD is
the foreign key that links each record to the corresponding NodelD in the Node
table. The relationship between the Node table and the Topic table is

one-to-many, meaning a node can publish or subscribe to multiple topics.

In addition, the foreign key deletion constraints for the NodeConnection and
Topic tables are set to cascade. When a row in the Node table is removed, the
corresponding records in the NodeConnection and Topic tables are automatically

deleted.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 58

Topic Views

Fig. 3.3.9 illustrates two views that summarize the topic status recorded in the
Node, NodeConnection, and Topic tables. These views, SubscribeTopic and
PublishTopic, represent subscription and publishment information, respectively.
The SubscribeTopic view, denoted as V5T, joins information from the Node,
NodeConnection, and Topic tables by their NodelD fields, represented as

TBN TBNC and TBT, respectively:

VT = BN s TBVY i TBT, ON

TBN NodeID = TBN® .NodelD,
(3.3.9)

TBY NodeID = TBY NodelD,

TBT IsPub =0

VPT

Similarly, the PublishTopic view, denoted as , joins the three tables when

IsPub =1 in Topic table:

VvPT = BN s TBNC s TBT, ON

TBN NodeID = TBN® .NodelD,
(3.3.10)

TBN .NodeID = TB” .NodelD,

TBY IsPub=1

DFO Views

Fig. 3.3.10 illustrates the process of translating topics into DFOs in the
database, as described in Table 3.1. Each type of DFO is recorded in its
corresponding view along with the original topic name and the IsPub flag. The
views include NativeDFO (denoted as VNePFO) DDMDFO (denoted as
VPPMDEOY " DomainDFO (denoted as VPomPFO) - and DMDFO (denoted as

VPMDEO) These views are grouped by the DFO and TopicName fields.

Additionally, the DFOTranslation view, denoted as VPF9 | provides a summarized

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform

99

DFO Views NativeDFO
DFO
| TopicName DDMDFO
IsPub DFO
» TopicName
——
DomainDFO
»| DFO
DMDFO TopicName
—» DFO IsPub
TopicName
IsPub

DFOTranslation
DFO

TopicName
IsPub

Figure 3.3.10: The architecture of the DFO views in the Agent database.

Connection View

PublishTopic

ConnectionRule

PK1| PubDFO

PK2| SubDFQO

D4

DFOTranslation

SubscribeTopic —@

PubConnection

PubTopicName
NodelD
UpdateTime
Mode
PublisherlP
PublisherPort
PubDFO
SubDFO

PubSubConnection

SubConnection

Y

SubTopicName
NodelD
UpdateTime
Mode
SubscriberlP
SubscriberPort
PubDFO
SubDFO

PubTopicName
SubTopicName
Y Mode
QDQ} PublisherlP
PublisherPort
SubscriberlP
SubscriberPort

IsOnline

Figure 3.3.11: The architecture of the connection views in the Agent database.

representation by aggregating data from the four individual DFO views.

VDFO — VNaDFO] VDDMDFO] VDomDFO] VDMDFO

Connection Views

Fig. 3.3.11

(3.3.11)

illustrates the process of establishing a connection between

publishment and subscription in the database. When a Join request defined in

Eq. (3.3.5) is received, the Agent matches topics that share the same nalD,, and

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 60

the corresponding DF Oy in the DFOTranslation table to determine whether
they are registered as publishments or subscriptions. The matched pairs are
then used to construct the ConnectionRule table, denoted as T'B”, with both
the publishment (PubDFO) and subscription (SubDFO) serving as composite

keys. This ensures that each pair is inserted only once.

Next, the PubConnection and SubConnection views are generated to summarize
the topic information and the paired DFO. The PubConnection view, denoted as
VPC s constructed for publishment by joining the PublishTopic view V7 from
Eq. (3.3.10) and the DFOTranslation view VPFO from Eq. (3.3.11), along with
TB’:

VPO = yPT pq yPFO B’ ON

TB? . PubDMF = VPFO DMF,
(3.3.12)

VDFO.Topz'cName = VIT PubTopicName,
VPFO jsPub =1

VSC

Similarly, the SubConnection view, denoted as , 18 constructed for

subscription by joining the SubscribeTopic view V57 from Eq. (3.3.9) and the

VPFO “along with TBY:

V€ = VT sqvPFO 7B’ ON
TB’ SubDMF = VPFO DMF,
(3.3.13)
VDFO.TopicName = VST.SubTopicName,

VDPFO isPub =0

Finally, a PubSubConnection view, denoted as V" is constructed to combine

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 61

Join Function DFOTranslation

TopicFunction

DFOFunction TopicName

Assigned [pi| pFo @ DFO
Function _/—o<FK fnID fnID
PK| fnlD

py
py args
args

Figure 3.3.12: The architecture of the join function in the Agent database.
VFPC and V5¢.

VConn — VPC' 1 VSC, ON
VPC PubDMF = V3¢ PubDMF,

VPC SubDMF = V3¢ SubDMF, where
(3.3.14)

veort Mode = (VEC Mode — V¢ . Mode),
veenrn 1sOnline = min(VPC UpdateTime, VC UpdateTime)

> (now - 5timeout)

Here, if VCo" Mode < 0, the Pull method in Fig. 3.2 will be applied; otherwise,
the Push method will be used. The IsOnline field is a flag to filter out nodes
that have been disconnected for longer than the threshold d¢jmeout. The Agent
constructs ReS in Eq. (3.2.2) based on the rows in the PubSubConnection view.
Notably, if both the publishment address (PublisherIP and PublisherPort) and
the subscription address (SubscriberIP and SubscriberPort) are empty, the Agent
will discard the row, as this indicates that both the publisher and subscriber are

operating in client mode (i.e., mode = ¢l in Eq. (3.2.1))

Join Function

Fig. 3.3.12 illustrates the pairing between topics and JFs in the database. When
an F'N from Eq. (3.3.6) is received by the Agent, the JF information is stored in

two tables: the Function table and the DFOFunction table.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 62

The Function table manages script information, including the script ID ‘fnlD’
(fnIDy), the Python script ‘py’ (Pyy), and the arguments ‘args’ (Argsy). The

fnlIDy is the primary key for queries.

The DFOFunction table stores the relationship between a DFO (DFO,) and
the script’s fnID. The DFO is the primary key, while the fnlD is a foreign key
referencing the Function table. The relationship between the Function table and
the DFOFunction table is one-to-many, meaning multiple DFOs can share a single

script.

To summarize the relationship between a topic and a script, a TopicFunction
view, denoted as VT is generated by joining the Function table (TBY), the
DFOFunction table (TBPFOFN) and the DFOTranslation view (VPFO) from

Eq. (3.3.11):

VTF — TBFN B TBDFOFN] VDFO7 ON
TBPFOFN ppo = vPFO DFoO (3.3.15)

TBYN fnID = TBPFOFN rnID

When a ReQ*Ntopic from Eq. (3.3.7) is received, the Agent uses the topic to query
VTE and constructs Rep®Ntopic from Eq. (3.3.8) to distribute the JF script to

the corresponding nodes.

3.3.5 Case Study: Deployment of AI Device-Object Pairing

We developed an Al device-object pairing project as a demonstration for our
DAIoTtalk, as illustrated in Fig. 3.3.1. The project and data are modified from
the author’s previous work [01], which pairs several smart badges with the
people detected by a camera. The project involves 5 DMs which are Camera,
SmartBadges, UEA : YOLOVS8, NYCU : DeepSORT, and FusionPairing,

with corresponding DFs.

Chapter 8: DAIoTtalk - A Data-Decentralized Pub-Sub AloT Platform 63

e The Camera publishes original (1280x720 pixel) and resized (640x360 pixel)
camera frames, encoded in JPG format, on camera_i and lres _camera_1,
respectively. It also publishes the camera sensor i with the orientation

of the camera.

o The SmartBadges represents the devices placed on the body. The built-in

inertial measurement unit (IMU) data will be published by imu;.

e The UEA : YOLOVS is a service utilizing the YoloV8 [65] object detection
model. The model subscribes to the input image from image, to detect
objects within it. The detection results are then published through the

detection i interface.

e The NYCU : DeepSORT is a service utilizing the DeepSort [66] tracking
model. The model subscribes detection results from bounding box o and
assigns tracking ID to each object within it. The tracking results are then

published through the bounding box + interface.

e The FusionParing involve the device-object pairing model from [61]. The
node takes camera frames and the orientation from canmera o and
camera__sensor o respectively. The model receives the IMU data from
tmu_o. The tracking result will be received by bounding box o. The

node lastly outputs the labeled frame.

In short, The Camera is responsible for sending low-resolution camera frames to
UFA : YOLOVS and transmitting the original frames and camera orientation
to FusionPairing. The SmartBadges send IMU data related to a person to
FusionPairing. The UEA : YOLOVS8 processes the camera frames using the
YOLO [65] object detection model, then sends the detection results to
NYCU : DeepSORT. The NYCU : DeepSORT assigns a tracking ID to each
detected object using the DeepSORT model [66] and forwards this information
to FustonPairing. Finally, FusionPairing fuses all the collected data and

generates a device-object pairing result.

SewingTalk - A Product Completion
Estimation System with Unsupervised

Learning for Smart Sewing Machines

[This section is redacted due to Intellectual Property access restrictions. |

GNSS-EStalk - A Novel Al
Temporal-Spatial Analysis Approach

for GNSS Error Source Recognition

5.1 Chapter Introduction

Global navigation satellite systems (GNSS), including the global positioning
system (GPS), have been developed to offer comprehensive positioning,
navigation, and timing (PNT) services with worldwide coverage. In these
systems, L-band radio-frequency signals are transmitted from satellites and
received by ground-based GNSS receivers. By processing these signals, the
receivers calculate their distances from the observed satellites, enabling them to
determine an accurate PNT solution. Nevertheless, the accuracy of PNT
solutions heavily depends on the quality of the GNSS observable, which is
affected by various GNSS error sources [(67]. These include satellite clock and
ephemeris errors, atmospheric delays, cycle slips, interference and jamming, etc.
All of these errors can be expressed in units of distance, and must be detected

and corrected to improve accuracy [68].

Conventional error detection methods encounter several limitations. Firstly,
methods such as those described by [69][70] typically focus on analyzing

common receiver output parameters like elevation, observation data,

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 66

signal-to-noise ratio (S/N), and PNT results. However, these methods lack the
depth compared to a more comprehensive analysis of the parameters involved in
calculating PNT [71]. Besides, the PNT system generates an enormous volume
of data daily, making it highly challenging to extract consistent error segments.
Detecting these segments becomes a fundamental step in diagnosing the root

cause of errors and improving the accuracy of the overall PNT system [72][73].

In this chapter, we propose an artificial intelligence (AI)-based temporal-spatial
approach for the automatic recognition of noise types in segments using
classification models. However, training these models typically requires manual
labeling of noise data, which is both costly and demands significant expertise.
To address this, we perform clustering to group highly similar noise segments,
then apply a z-score normalization filtering (ZFilter) strategy to select the
tightest cluster. This approach not only extracts segments with high consistency

but also assists in building a pseudo-labeled dataset for model training.

We make the following contributions. First, rather than analyzing surface-level
receiver data, we focus on the ionosphere misclosure [71][75], a deeper-level PNT
parameter, to develop new GNSS error detection methods. We categorize six
types of noise from our dataset, each representing different potential errors.
Next, we employ a temporal-spatial analysis approach that considers both time
sequences and value distributions to analyze the noise segments. Then, to
identify consistent error segments from large volumes of daily data, we apply
clustering, using the ZFilter strategy to pinpoint segments that closely resemble
our reference records. Meanwhile, we use deep learning models to extract and
categorize features to automatically classify the noise types from this data.
Lastly, we experiment with pseudo-labeled dataset generation from the
clustering model to minimize the need for manually labeled data and improve

the classification model with semi-supervised learning.

To demonstrate the deployment versatility of the DAloTtalk platform, we

simulate the GNSS error source deployment by creating a testbed within

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 67

DAlIoTtalk. This showcases the testing and adjustment of the functions and

models. The resulting system is named GNSS-EStalk.

The rest of this chapter is organized as follows. Related works are reviewed
in Section 5.2. Section 5.3 describes the detection of noise in our dataset and
introduces the Al-driven temporal-spatial analysis approach. The deployment
of GNSS-EStalk is detailed in Section 5.4. Section 5.5 presents our evaluation

results. The chapter concludes with discussions on future work in Section 5.6.

5.2 Related Works

Previous research (e.g.,[69], [70], [76], [77]) commonly considers surface-level
data output by the receiver. The authors in [69] utilized elevation, S/N, and
user speed as features in their machine-learning models to characterize
multipath error distributions, [70] employed S/N for jamming detection, [70]
analyzed signal strength and pseudorange residue for multipath detection, and
[77] perform signal analysis for radio frequency interference (RFI). However, the
surface-level data often provide an incomplete view compared to deeper-level
data like [78], which employs the cross ambiguity function to detect GNSS
spoofing. Here, we consider the ionosphere misclosure, which is a deeper-level

parameter used to calculate the PNT result.

Al-based models (e.g., [69], [70], [77], [78]) are widely used in GNSS error analysis.
[69] employed a neural network to classify multipath noise, while [70] utilized a
support vector machine. [77] classified RFI using a convolutional neural network

(CNN). Similarly, [78] used a CNN to identify spoofing signals and a Gaussian
mixture model to cluster and summarize the number of signals. In this research,
we experiment with clustering models using a ZFilter strategy to identify highly
consistent noise segments and generate a pseudo-labeled dataset, and classification

models to categorize the noise segments by different potential causes.

Temporal and spatial features are typically extracted in Al-based analysis. [79]

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 68

proposed a spatio-temporal attention network for video action recognition,
incorporating pixel-related spatial attention and frame-related temporal
attention. [30] introduced a revisiting spatio-temporal similarity model for
traffic prediction, capturing traffic flow and volume as spatial dependencies and
daily and weekly patterns as temporal dependencies. In the context of GNSS,
[21] presented a spatial-temporal technique using an antenna array for GNSS
anti-spoofing, featuring spatial channel separation and temporal
cross-correlation peak monitoring. In our Al models, we consider both temporal

sequences and spatial value distribution information.

5.3 Methodology

- e e e e]
"\ Satellite , a. Data °°"e°t'°": c. Temporal-Spatial -
u lonosphere 1 Analysis
. ! .
. . :
ul : Remote Server .
ul !) .
. : ! S1. Preprocessing .
o ez 1 S2. Referral Distance Matrix .
N B -) S3. Noise Clustering and .
ul Segmentation |1 ! .
. Ground 1 Pseudo-labeling .
" Station : S4. Noise Classification .

b. Dataset Creation {ﬁ}/ {.:D\}
Q%}

DAloTtalk

Noise Types and
Dataset

Deploy

Manual Labeling

f
[
n
n
n
n
[l
[
n
n
n
n

Figure 5.3.1: Overview of GNSS error source analyzing.

In this research, we extract noise segments from the ionosphere misclosure, which
refers to the discrepancies between the estimations and observations of the regional
ionosphere. Fig. 5.3.1 provides an overview of the process, encompassing data
collection, dataset creation, and temporal-spatial analysis, and the GNSS-EStalk

system.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 69

In Fig. 5.3.1a, we collected data over four days from 53 ground stations and
approximately 90 satellite units across the GPS, Galileo, and Beidou systems. As
a satellite transmits GNSS signals to a ground station, the signals pass through
the atmosphere, including the ionosphere, introducing various delays. The ground
station predicts ionospheric conditions by considering factors such as weather and
the signal path to mitigate these delays. Multiple factors, though, can affect these
estimations and diverge from observed values that take longer to generate. Most
discrepancies are due to white noise, while some are dismissed as errors in the
modeling process. This work also includes the application of noise segmentation

to identify and extract these errors.

In Fig. 5.3.1b, a dataset is created for analysis and validation. After noise
segmentation, manual labeling is performed based on the error model. This
research focuses on six types of errors potentially caused by factors such as
multipath effects, jamming, and ionospheric irregularities. However, labeling
these data is costly and requires domain expertise in GNSS error sources.
Additionally, datasets may need to be tailored to specific regions due to
variations in local ionospheric conditions, geographic features, and signal
environments. Therefore, we expect the reduction of labeling costs through

automation techniques by grouping highly consistent noise segments.

In Fig. 5.3.1c, a temporal-spatial analysis is performed on the remote server after
noise segmentation and dataset creation. Fig. 5.3.2 illustrates the approach, which
comprises three key components: a temporal pipeline for processing 1D sequential
data, a spatial pipeline for handling 2D binary images, and a main pipeline that
integrates both temporal and spatial information. Each pipeline follows four
processing stages: Stage 1 (S1): preprocessing noise segments of varying sizes to
standardize them into uniform input dimensions for the models; Stage 2 (S2):
constructing a Referral Distance Matrix (RDM) to extract similarity features
between segments; Stage 3 (S3): clustering segments to identify consistent noise
patterns and generate a pseudo-dataset with minimal manual labeling; Stage 4

(S4): training a classifier to identify different noise types.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 70
[: St] S2]
\Preprocessing; Referral Distance Matrix
Te.mpc_iral : D Seqyence :|Convolution M™
Pipeline : T)L
. N A 1 A 4 cont.
Main | oise 0w " 3
Pipeline . Segments) . L Histogram H M H M J
—_—
Spatial :| 2DImage |: . c
Pipeline i)) :?um Pooling M
RDM
[S3 0 S4
Noise Clustering and Pseudo-labeling | Noise Classification

Y

W W [—

3
cont. beoud : A 4
LN seudo Ao | H 3 |; ®
C ZF'"er')LabeIing-) D : Ext HDM HCls]

e i—» > > D& [Bzt]‘ \

5 \ J > [
Pseudo-

Cluster labeled :Extractor Classifier:
Dataset

Figure 5.3.2: Process pipeline of the temporal-spatial approach.

In Fig. 5.3.1d, we deploy the analysis model on the DAloTtalk platform. The
platform establishes P2P connections between multiple ground stations and the
remote analysis server. Each ground station transmits ionospheric misclosure data
to the remote server for noise recognition. We name this system ‘GNSS-EStalk’

and will be described in Section 5.4.

In the following sections, we will detail each of these processes.

5.3.1 Noise Segmentation

Fig. 5.3.3 illustrates the noise segmentation process applied to the data. This
process includes normalization, threshold selection, noise value masking, masking
of noise windows, and merging noise windows and filtering. Let A = {A;} =
{(d1:, 6;)} represent an ionosphere misclosure with a sequence of values calculated
from one GPS unit by a ground station for a single day, as shown in Fig. 5.3.3a,

where § = (8|01 € (—00,400)) denotes the misclosure values and 6 = (0;;|0); €

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 71
a. lonosphere misclosure
Al ahs §
0.0 - v S i
Le]
_02 4
0 1 2 3 4 5 6
6
b. Normalization
1.01 ,’- i) $
© 0.5 : i E mdg :E.-‘
¢ i 2 2
0.0 = ; ; 7 . . r
0 1 2 3 4 5 6
6
c. Histogram of &' for threshold selection
o
< 2000 tho
o
o
0- r T T -
0.0 0.2 0.4 0.6 0.8 1.0
hilh
d. Noise value masking
ey ‘
0.0 - v s LA
w
-0.21
0 1 2 3 4 5 6
6
e. Noise windows masking
0.01 v
< 1 /
-0.21 N\ Y,
0 1 2 3 4 5 6
6
f. Merge noise windows and filter segments
o [
0.01 g B o
w
-0.21
0 1 2 3 4 5 6

Figure 5.3.3: Noise Segmentation on ionosphere misclosure.

[0,24)) represents the corresponding relative hourly timestamps. The set [A —

{li|lli € [0,|A|)} is the index set associated with A. Our first task is to identify

the noise values within § and to segment these values accordingly into distinct

segments.

Normalization is necessary due to the varying range of 9.

2 types of

normalization we have applied, which are z-normalization and min-max

normalization.

Given a list of data s = (s;]i € [0,[s])) with varying range,

z-normalization with the cumulative distribution function (CDF,®) used to

standardize s into normal distribution space:

(5.3.1)

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 72

where ps and o is the mean and standard deviation of s. On the other hand, the
min-max normalization can transform s to a rescaled sequence sq with a range of

[0, 1]:
-~ s—min(s)
o= max(s) — min(s) (5:32)

Assuming the estimation and observation are ideally close, we expect the
misclosure to approach zero as the one in Fig. 5.3.3a. Therefore, we set pus = 0
and calculate o, in Eq. (5.3.1) for noise detection. By combining Eq. (5.3.1) and

Eq. (5.3.2), we normalize the absolute value of § as ¢’ in Fig. 5.3.3b:

P

§' = Z(abs(9)) (5.3.3)

Next, we construct an h-bin histogram H%l = {H}fi‘]hi €[0,h)} to observe the

distribution of ¢, where each H,'il € [0,1]. Here, we choose h = 10:

HY = Histogram(é', h) (5.3.4)

In the ideal case, the highest peak hi™% = argmaz(H"!) will be near zero as in
Fig. 5.3.3c. We apply valley detection on the histogram to determine the local

noise filtering threshold th® € [0, 1]:

h SMan
th? = 27, where
h (5.3.5)

As the example in Fig. 5.3.3c, the blue line represents th?, with values on the right
side indicating noise. Using th?, we initialize an mask array % = (¥2 4% € {0,1})

to indicate whether each Ay; is classified as noise.

1, if abs(dy;) > TH®, 6], > th.
vy = (5.3.6)

0, otherwise.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 73

The result, shown in Fig. 5.3.3d, is obtained after applying 1°, with red dots

representing the noise values.

To segment noise from A, we first preform chronological splits to divide A into
multiple subsets A,;,,; C A, each with a corresponding index set Iﬁ‘w. c IM and
covering a fixed m-hour window, where mi € [0, |A|). Here, we set m = 0.1 hours
(10 minutes). A \,; is classified as a noise subset if any A;; € \,; is determined to

be noise by Eq. (5.3.6). We then create a window mask ¢* = (¢)).|[v). € {0,1}):

1, if vl =1
Ui = €l (5.3.7)

0, otherwise.

Fig. 5.3.3e shows the split windows with the applied masking in green.

Algorithm 1 Noise segmentation using)*

1: procedure WINDOWSMERGING (¢/*, X9)

2 st <— None > Start index of the segment
3 for i < 0 to |[¢| do > Iterate through ¥
4 if 2 =1 and (i = 0 or ¥} | = 0) then

5: st 1 > Start index of the segment
6 else if 1/)iA =0 and 1/}1-’_1 =1 then

7 T = Upicst,i) Ami 0] > Extract the segment
8 if max(abs(z)) > TH® then > Filter by global threshold
9: X' XUz > Add the segment to dataset
10: end if

11: end if

12: end for

13: if wl)l\/ﬂl—l =1 then > Handle the last segment if it ends with 1
14: i [Pt =1

15: T Umie[st,i)Ami [5]

16: if abs(z) > TH® then

17: X0 XUz

18: end if

19: end if
20: return X° > Return the set of segments

21: end procedure

Finally, we concatenate the nearby noisy A,,; to create noise segments with their
disclosure 9, denoted as A\,;[6] C J, using Algorithm 1. In Algorithm 1, we take

Y as input and detect consecutive instances where %)‘ = 1, indicating noisy

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 74

values, to merge them into cohesive noise segments. The segments from each
satellite and station are then accumulated to form the noise segment set
X% = {X3|di € [0,|X°|)}, where each segment is a sequence defined as
X3, = (X5[dj]|dj € [0,]X5;])), with each element X3,[dj] € (—o0, +00). X° = {}
during initialization. Notice that a preset global threshold TH? is set to filter
the segment if the noise value does not exceed. In this research, we set
TH? = 0.2 based on recommendations from the data provider. The final
segmentation result is shown in Fig. 5.3.3f, with some of the noise segments

filtered by TH®.

5.3.2 Noise Types and Dataset

0: Convergence 1: Disturbance 2: Divergence
0.000 {—— —
0.000 { = g 0104 W :
. . l'] »
—0.0251 J oos] L %] —0.025 LY
/ "J "ﬂ 0.050 :
8—0.050~ y 0.00 { AorweiSams ¢ | \v |
2 -0.0751 4 ‘.’:,‘.: -0.0751 Y
o —0.05 1 A !
2 , , , — ¢ | -o0.1004, v
S 0.0 0.2 0 1 0.0 0.2
S 3: Outliers 4: Shimmering 5: Step
s e 0.00 {~atype popt goames, | 0.001= -
o
S 021
—0.011
2 N ~0.02 1
0.11 —0.02{ *
A 0,04/ e,
—0.031 .
0.0 - , , , , -
0.0 0.1 0 2 0.0 0.5 1.0
wd Hours

Figure 5.3.4: The noise types in the GNSS error source dataset.

We manually identify six types of noise, as illustrated in Fig. 5.3.4, after the
extraction of X% The scale and magnitude of the noise segments vary, with
each type caused by different physical factors. Below, we present some potential

examples:

e Convergence occurs as a result of model recalculation when tracking is lost

or when clock or ephemeris errors are detected.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 75

e Disturbance caused by interference from multiple systems or jamming by

other equipment.

e Divergence arises from a mismatch between the error model and the

observation.

e Qutliers may result from incorrect carrier-phase ambiguity fixes.

e Shimmering can occur as a consequence of repeated carrier-phase ambiguity

fixes, especially in the presence of atmospheric delays.

e Steps caused by cycle slips due to signal delays and distortions from

ionospheric irregularities.

Table 5.1: Class Sizes in the GNSS Error Source Dataset

Labeled L9 Unlabeled U° Total
Type (Y 0 1 2 3 4 5
Size 140 540 504 526 569 515 2114 4906

Denote our dataset D? = {D9.} = {(X3,,Y.2)} and the index set I° = {di|di €
[0,|D[}. The dataset D° contains the noise segments X° = {X9} and their
corresponding labels Y° = {Yd‘si}. Each segment Xgi consists of ordered real-
valued observations that may have different lengths. We manually label a subset
of the segments by their indices I™° C T to create a labeled dataset L? = {D?,|di €
I9} where the labels Y}, € [0,p) if di € I°, here p = 6 as shown in Fig. 5.3.4.
The remaining indices 1Y% = I\I® form an unlabeled dataset U® = {D,|di €

IU%) with labels Yd‘i- — —1if di € IV%. Table 5.1 lists the sizes of each class.

5.3.3 Preprocessing (S1)

Since the range and length of each noise segment X 32. can vary, it is necessary to
normalize the range and standardize the length of the segments to ensure uniform
contribution from each segment and maintain consistent characteristics across

them. Fig. 5.3.5 is the example to resize a sequence sq into a uniform length sl.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 76
|sq| =70 Edge Padding
1.00{ . . .- = - 1.00 BAPYEE
0.75 1 0.751
(@) 3 o.501 0.501
0.251 0.251
0.00 { = e s+ e e ¢ o e | 0,00 s : :
0 20 40 60 0 50 100
|sq| = 240 Linear Spacing
1.00 /"”m 1.00 s
0.751 : 0.751 .
/ g
0.50 1 0.501 . ¢
(b) I3 / /
& s
0.25- /"}' 0.251 /,"
0.001_ , , 0.001 s , ,
0 100 200 0 50 100
Length

Figure 5.3.5: Example of a unified function to standardize a normalized sequence
to a length of 128.

In Fig. 5.3.5a, if its size |sq| is shorter then s, we apply the edge-padding process:

EP(sq,sl) = (5q[0])|1x1p U sqU (sq[|sq| — 1])|1xrp

(5.3.8)
s
5 and rp = |

where Ip =

Otherwise, as shown in Fig. 5.3.5b, we use the linear spacing process to down-

sample sq by taking the averages of the corresponding subset:

LS(sq,sl)[LSa] = sqlmask], where 0 < LSa < s,

Oulsal} | g1 __ g0 (5.3.9)
|sq|

and mask = (|

By combining Eq. (5.3.2),Eq. (5.3.8), and Eq. (5.3.9), we define the following

unified function UF for a sq:

EP(sq,sl), if |sq| < sl.
UF(sq,sl) = (5.3.10)

LS(sq,sl), otherwise.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 7

Next, we divide the process into temporal, spatial pipelines, and main pipelines:

Temporal Pipeline

To standardize the noise segments of varying sizes and values, we apply

}1><128 where

Eq. (5.3.10) to uniform X9 into sequential data 79, = {73 [d]
79 (dj]l ajefo,128) € [0, 1]:

78 = UF(X(;,128) (5.3.11)

Spatial Pipeline

We further transform ng» into a 2D space to generate a binary image

}128>< 128

<o = {sqlh, w] where ¢;[h, w]|neo,128) weo,128) € {0,1}, enabling the

extraction of distributional information:

1, if h= |79 w] x 127].
Sgilh,w] = ‘ (5.3.12)

0, otherwise.

Main Pipeline

By applying Eq. (5.3.2) to normalize each X? into)}/‘;i, a normalized segment set

X0 = {)?2} is obtained.

After preprocessing is completed, the min-max normalized segments X?¢, the

temporal segments 7°, and the spatial images ¢° are ready for the next stage.

5.3.4 Referral Distance Matrix (S2)

A global distance matrix is generated to compare all the distances of the segment
pairs as a similarity feature during feature extraction. However, calculating all

distances becomes inefficient when the dataset is large. We randomly select a

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 78
YO 5
a. Xg; b. T
1'0- .mv 10' A A
i N
0.8 1 . 0.8 1
0.6 ,1‘ 0.6 .
.‘} .
0.41 # 0.41 N
>3 .
0.21 /" 0.2 1 A
0.0+ ¥ 0.0 - .
0 100 200 0 10 20 30
Histo ram()a 10)
c SPed) d. =%
' | Xgil
~ -0.14 0.5+
© 0.12
L0
Te) 0.4'
0.10
<
0.0 0-37
m
0.06 (2
(gl
0.04
— 0.1
0.02
o
01234567 0%
Q Q' Q" Q"Q Q7" Q" QO O QO

Figure 5.3.6: Example of transformation of a noise segment.

subset of segments from the labeled dataset as references R C L. The RDM

M| p|x|rs| can then be computed:

M(X®, Dist)|di,r] = Dist(X5;, R’) (5.3.13)

where R? is a reference segment, r € [0, |R?|), and Dist € { Eucl, DDTW} is the
metric used to compare distances. Depending on the pipelines, we apply either

Euclidean distance (Eucl) or derivative dynamic time warping (DDTW)[32].

When computing the distance matrix, each pipeline transforms the segments to
reduce the vector dimensions. Fig. 5.3.6 illustrates an example of this

transformation applied to the sequence shown in Fig. 5.3.6a, with the detailed

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 79

process outlined below.

Temporal Pipeline

We use 79 as the input. We apply convolution with a kernel v = {1}|x5 to smooth

the sequence 79, and further uniform it to 79]1x32 by Eq. (5.3.10) as shown in

Fig. 5.3.6b:
7 = UF((7 % 1) 0.1, 32). (5.3.14)
After that, we compute the temporal RDM MT™ = M(;E,DDTW) via

Eq. (5.3.13), using DDTW distance.

Spatial Pipeline

We use ¢ as the input. We apply sum-pooling (SP) with a kernel of 16 x 16 to
generate a heat map of the binary image ggi as shown in Fig. 5.3.6¢, then flatten
into Cgihxﬁz;i

— SP g
. = Flatten(léggdl)) (5.3.15)

After that, we compute the spatial RDM M° = M(gA‘S,Eucl) via Eq. (5.3.13),

using Fuclidean distance.

Main Pipeline

We directly extract the h-bin histogram feature from X0 as shown in Fig. 5.3.6d

and compute the difference in value distribution using Fucl. Again, we set h = 10.

Hist X% h
MH:M<{ ' Ogrim;(di’)},Eucl). (5.3.16)
| X5

This is then concatenated with M7 and M* to obtain the hybrid RDM:

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 80

M® = M M, M7 (5.3.17)

The temporal RDM M7, the spatial M¢, the histogram RDM M and the hybrid

RDM M® are used as inputs for the remaining stage.

5.3.5 Noise Clustering and Pseudo-labeling (S3)

It is necessary to identify consistent noise to ensure accuracy and precision in
PNT. However, the daily generation of large amounts of unlabeled data
complicates the analysis process. By giving a small set of manually labeled
examples, this data can be compared using the clustering approach to identify
similar noise patterns. Additionally, pseudo-labels could be assigned to the
unlabeled data, which would facilitate further training through semi-supervised

learning.

Clustering is performed to group similar segments into clusters C% = {C’gk]dk €
0,|C°|)} along with the corresponding index set I3, C I°. Here, D), € C9, if
a segment Xgi belongs to the dk-th cluster, which implies that di € I gk as well.
Note that each segment belongs to only one cluster but some segments may not fit
into any cluster (i.e. dk < 0) and are excluded from consideration. Moreover, the
number of clusters]C‘S| should be sufficiently large to ensure that the segments
within each cluster are as similar as possible. M7, M¢, and M® are the inputs to
the clustering algorithm, generating the temporal cluster C7, spatial cluster C°,

and hybrid cluster C®, respectively.

To select the clusters with higher consistency segments, we apply ZFilter to
identify more confident clusters. Firstly, the average intra-cluster distance

AIC Dy is calculated to assess the tightness within Cgk using the corresponding

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 81

RDM features M|di]:

Zdz’elgk Bucl(M[di], M[ng])

i (5.3.18)
|23

AICDy, =

where |19, | and M[I9,] denote the size and centroid of CJ; , respectively. Following
this, a z-normalized confidence score Zgg € [0, 1] is computed based on AIC Dy,
for each Cy, along with the overall mean p and standard deviation o. The score
is normalized using the cumulative distribution function:

AICDg; —
780 = q><0d’““> (5.3.19)

g

A smaller Zflkc indicates that the segments within the cluster C}, are more similar.

Therefore, we can define a threshold th%¢ € [0, 1] to filter the clusters.

A pseudo-labeled dataset DicuU 9 can also be generated from unlabeled dataset
U? using the ZFilter strategy applied to the labeled dataset L?, thereby increasing
the sample size during classification model training. For each cluster C’gk, we

compute the label score LSg|1x6, which represents the weightings for each noise

type:
> e(15 LS };5., if Z79C < thoC
LSy — die(18,n1%) Y ai dk (5.3.20)
{0}1x6, otherwise.
where Yd‘sz is the one-hot encoded Yd‘si. Next, we can create the D?:
D= |J (Dyldie (13 N1")},
dhe.1C7D (5.3.21)

if Z3 < th®” and > LSz >0

Label smoothing will also be applied to adjust the weighting of the pseudo-labels,

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 82

helping to prevent the model from becoming overly confident in the predictions:

Y?, if di € T
Yi=49(—a)+ ¥ e if DY € DO, di € I, (5.3.22)
{0}|1x6, otherwise.

where « is a hyperparameter that determines the amount of smoothing.

Afterward, we can generate the temporal pseudo-labeled dataset DO the spatial
pseudo-labeled dataset Z/)‘SC, and the hybrid pseudo-labeled dataset D‘H’, using

C™, C, and C®, respectively.

5.3.6 Noise Classification (S4)

a. MLP b. LSTM
Input Hidden Output Input Hidden Output

4x128 | 1x64 1x6 i 3x128 i 1x64 1x6
ReLU i ReLU Softmax i tanh ! RelLU Softmax

Dense iDense Ext Dense Cls LSTM i Dense Ext Dense Cls

-00000,,,
O~ 00000

©-000
OO

juEE

© 000
@0

. T I I
M{[i] X
c. CNN
Input Hidden Output
1x64 1x6

USRI 2= X ¥ Softmax

: 32x32 16x16 :Dense Ext Dense Cls
i ReLUCNN ReLU CNN T Q

: 2x2 2x2 L
i MaxPooling Max Pooling Flatten Q

Figure 5.3.7: The baseline classification models.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 83

To classify noise segments, we experimented with various deep-learning models.
Fig. 5.3.7 illustrates the architectures of our baseline models, including the
multilayer perceptron (MLP) in Fig. 5.3.7a, long short-term memory (LSTM) in
Fig. 5.3.7b, and CNN in Fig. 5.3.7c. They are designed to process RDM,
sequences, and binary images, respectively. While each model received different
input types and had distinct hidden layer configurations, they all shared a

common output structure. The detailed design of each model is outlined below:

MLP: The MLP is a basic type of neural network typically designed to take tabular
data as input. In Fig. 5.3.7a, a M7 [di] is taken as input and processed through four
dense hidden layers, each containing 128 neurons. We use the rectified linear unit
(ReLU) activation function for all hidden layers. The output consists of a shared
structure represented as a list of deep features Ext|ixss with ReLU activation,
followed by a final dense layer with softmax activation to generate classification

probabilities, denoted as Cls|ixg.

LSTM: The LSTM is a type of recurrent neural network (RNN) designed to handle
sequential data and time-dependent patterns. In Fig. 5.3.7b, a Tgi is taken as input
and processed through 3 LSTM hidden layers, each containing 128 neurons. We

use the tanh activation function for all hidden layers. Again, The output consists

of Ext and the Cls.

CNN: The CNN is primarily used for data that has a grid-like structure. In
Fig. 5.3.7¢c, a ggi is taken as input. The hidden layers first process it by a 32 x 32
ReLLU CNN layer. Next, the data is resized using a 2x2 max pooling layer and
then processed by a 16 x 16 ReLU CNN layer. Finally, it is resized again by a
222 max pooling layer and flattened. Similarly, the output consists of the Euxt

and the Cls.

Each pipeline utilizes different baseline models. In the temporal pipeline, we input
MT into the MLP or 7° into the LSTM, the procedures are referred to as ‘“TMLP’
or ‘TLSTM’, respectively. In the spatial pipeline, we input M* into the MLP

or ¢ into the CNN, referred to as ‘SMLP’ or ‘SCNN’, respectively. In the main

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 84

pipeline, we input M* into the MLP, named ‘HMLP’.

To perform temporal-spatial classification, we use the deep features output from
the baseline models: Fxtf from HMLP, Ext™ from TMLP or TLSTM, and Ext
from SMLP or SCNN. These features are combined to generate a hybrid deep
RDM, denoted as DM@‘\DMRN:

DM® = M(X®, Eucl),
(5.3.23)
where X® = [Ext?, Ext™, Ext®)

Finally, we input DM® into the MLP model to train a hybrid classifier, denoted as
Cls® as shown in Fig. 5.3.2. The hybrid classifier leverages latent representations
from baseline models across different domains to enhance prediction performance.
Combining the models in Fig. 5.3.7, four Cls® are trained: ‘TMLP SMLP’,
‘TLSTM _SMLP’, ‘TLSTM SCNN’, and ‘TMLP SCNN’.

5.4 Deployment of GNSS-EStalk

After developing the temporal-spatial analysis approach, we deploy the models
onto the DAIoTtalk platform, as illustrated in Fig. 5.4.1. Fig. 5.4.1a depicts the
data flow between each component. When multiple ground stations generate
regional ionospheric misclosure data, noise segments are extracted and then
collected by the remote server node, named ‘CHC Error Model’. The remote
server converts the segments into features and then passes the data to the
classification model node, referred to as ‘GNSS Error Classification,” for error
recognition. Once the process is complete, the error results are returned to the
remote server node and subsequently sent back to the corresponding ground

station.

The communication is divided into two projects: Project A, named ‘GNSS Error
Source’, as shown in Fig. 5.4.1b, and Project B, named ‘GNSS Error

Recognition’, as shown Fig. 5.4.1c. Project A manages communication between

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition

85

a. Data flow in GNSS EStalk

ﬁ ﬁ segments 3

7 a Project A
‘ { errors
Ground

Station

%:GroundStation

O

D)

CHC Error
Model

GNSS Error Source Model

Join2

regiono_mis_i

0

CHCErrorModel

Serror_i

GNSS Error Recognition

CHCErrorModel

egment_i

GNSSErrorClassifi

[Starget_i

Figure 5.4.1:

Join3

Flush ~

Model

features

Pro;ect B

erro rs

GNSS Error

Classification

Delete

%:GroundStation

error_o

CHCErrorModel

Flush ~

segment_o

Delete

i

CHCErrorModel

error_o

i

o

GNSSErrorClassifi

feature_o

i

Deployment of GNSSEStalk on 2 DAIoTtalk project.

multiple ground station nodes and the remote server node, embedding the noise

segmentation algorithm.

Meanwhile,

Project B facilitates communication

between the remote server node and the classification node, utilizing the noise

feature extraction algorithm and selection of models.

Detailed descriptions of

the deployments and configurations for the two projects are provided in the

following sections.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 86

%: GroundStation

o %:GroundStation a
A

é error_o l
I

CHCErroriodel

o

regione_mis_i

o CHCEmorModel

| Serror_i O_’g

e

i

SEleCt segment_o :

Connection Name: | Join 2 Delete | | Save
9%:GroundStation (IDF) Delela:|
regiono_mis_i Type Function
x1 sample v | gnssnoisesegmentation v
— . 1
CHCErrorModel (ODF) configure Delete
Function Management | Close ‘
Global Function List: regiono_mis_i Function List:
average 2
fit |

add new function -
gnssnoisesegmentation

ﬂip <<<

flip_light = -

Selected Function: |gnssnolsesegmentalinn ‘

Version: l Delete ‘ Save

Include non-DF arguments
TH_GLOBAL=02 (3. |

import numpy as np
import scipy
import pickle
import zlib

Figure 5.4.2: Deployment of noise segmentation algorithm on GNSS-EStalk.

5.4.1 Project A: Deployment of noise segmentation algorithm

Fig. 5.4.2 illustrates the deployment of the noise segmentation algorithm. This
project involves two device models: GroundStation for multi-domain ground
station nodes and CHCErrorModel for one remote server node. The
GroundStation publishes a broadcast IDF, regiono mis i, which outputs
regional ionospheric misclosure data, and subscribes to an ODF, error o, which
receives recognized errors in the data. The CHCErrorModel publishes a
unicast IDF, error ¢, representing the recognized errors, and subscribes to an
ODF, segment o, which receives the noise segments. There are two join
connections: one links regiono_mis i of GroundStation with segment o of

CHCErrorModel to transfer the data to be processed, and the other links

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 87

error; of CHCErrorModel with error o of GroundStation to transfer the

processed results.

In Fig. 5.4.2a, regiono_mis_ 1 publishes the misclosure data, while segment,
subscribes to the noise segments. The segmentation function is deployed to
extract noise segments from the misclosure data. By selecting this join
connection, a configuration Ul, as shown in Fig. 5.4.2b, is opened. Here, the
function gnssnoisesegmentation is implemented, allowing the adjustment of the
argument TH GLOBAL, as shown in Fig. 5.4.2c. This argument represents
the global threshold TH? in Algorithm 1. Finally, the Python implementation of
the noise segmentation algorithm is placed in Fig. 5.4.2d. The algorithm is

subsequently saved into the DAIoTtalk Agent’s database.

-
{%}J\ Noise
{:lf,l} Segmentation

DAloTtalk
PY |

/ lonosphere N \ Noise / \
Misclosure Segments
r —— > Publisher »Subscriber
Q Project B
<— Subscriber € : Publisher ===
main Recognized
_ Ground Station J Errors K Remote Server /

Figure 5.4.3: Data flow from a ground station to the remote analysis server in
GNSS-EStalk.

Fig. 5.4.3 details the data flow of the deployment. The noise segmentation function
stored in the DAloTtalk database is sent to the ground station node, where it is
saved as a Python module and imported by the Publisher of AGAPI. When the
main thread publishes the ionospheric misclosure data, the Publisher processes
the data using the module to extract the noise segments. These segments are then
received by the remote server node Subscriber handler of AGAPI and routed back
to the main thread for further processing in Project B. Once the remote server
receives the recognized errors, it returns them to the corresponding ground station.

Note that if no noise is detected during publication, the message will be dropped

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 88

by the Publisher at the ground station.

5.4.2 Project B: Deployment of noise classification models

e
Q CHCErroridodel c CHCErrorModel L
I
I
A) b
segment_i g () error_o I
b
I
Q GNSSErmorClassification c GNSSErorClassification ||
I
-
rr \\ 3
$rargeti f t igl g\ feature_o "
3
o EEEEN EEEEEN 3
—

Connection Name: | Join 3

CHCErrorModel (IDF) | Deletf |

segment_i b Type Function
x1 sample ~ | gnssfeatureextraction v
GNSSErrorClassification (ODF) 1 Delet
feature 0 == == = = = == =t Function d
]
yi tsmodelconfiguation v
Function Management ¢

Global Function List: segment_i Function List:

average N add new function a| %
fit] gnssfeatureextraction

fip TEM="TMLP", . =
flip_light ~ < SPA="SMLP"

PSEU_MO=None,
PSEU_TH=0.5,

Selected Function: |gnssfeatureextraction
Version: (20241219 v

Include non-DF arguments [

import pickle &
import z1lib '
import numpy as np

from noiseFeature import *

Save Cancel

from metrics import *
from sklearn.metrics.pairwise import pairwise_distances

Figure 5.4.4: Deployment of noise feature extraction and model configuration on
GNSS-EStalk.

Fig. 5.4.4 and Fig. 5.4.5 illustrate the deployment setup in Project B. Two
device models are involved: CHCErrorModel and
GNSSErrorClassification. The CHCFErrorModel utilizes the same remote
server nodes as in Project A, but with different IDF and ODF topics. The IDF,
segment i, bridges the error segments received from Project A, while the ODF,
error_o, forwards the recognized errors back to Project A. The
GNSSErrorClassification is a classification node with the IDF feature o
and a unicast ODF target ¢. There are two join connections: one links

segment i of CHCErrorModel with feature o of

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 89

GNSSErrorClassification to transfer the segment to be processed, and the
other links target ¢ of GNSSErrorClassification with error_o of

CHCErrorModel to transfer the processed results.

In Fig. 5.4.4a, the segment i sends segments, while the feature, receives
feature instances. To extract features from segments, we deploy the function
gnssfeatureextraction on the IDF side, as shown in Fig. 5.4.4b. Given that
di € [0,00] represents the unique segment ID, the Python module
gnss featureextraction in Fig. 5.4.4c generates feature instances along with the
RDM M?® derived from the segments, as introduced in Section 5.3.3 and
Eq. (5.3.17), respectively. These are denoted as Xgi:

o5 (o 0 & ar®
X = (X T S M) (5.4.1)

Meanwhile, we deploy the tsmodelconfiguration on the ODF side, as shown
in Fig. 5.4.4d, enabling the selection of a pre-trained model. There are four
adjustable arguments, as shown in Fig. 5.4.4e: TEM, SPA, PSEU MO, and
PSEU TH. The

TEM € {TMLP, TLSTM },and (5.4.2)

SPA e {SMLP,SCNN } (5.4.3)

parameters allow the temporal and spatial model selection, respectively, as

described in Section 5.3.6. The
PSEU MO € { None, Temporal, Spatial, Hybrid } ,and (5.4.4)

PSEU_TH €{0.1,0.3,0.5,0.7,0.9} (5.4.5)

parameters determine the pseudo-labelling method and the threshold th%¢, as
described in Section 5.3.5. These arguments can be easily modified through the

UI shown in Fig. 5.4.4e.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition

90

CHCErrorModel

segment_i

GNSSErrorClassification

=

Starget.i

|

select
~oefete |

CHGErrorMode!

) &

error_o

./
Ta R TR NETT

GNSSEmorClassification b
8

| &

feature_o

Connection Name: |Join 4
GNSSErrorClassification Selected Function:
(IDF) Versinn:
$target i Type Function
Include non-DF arguments [
x1 sample ~ | disabled M) class_labels={} -
1 class_labels[@]="Convergence”
class_labels[1]="Disturbance” C.
HCErrorModel (ODF) Delete | ! class_labels[2]-"Divergence”
1 class_labels[3]="Outliers”
I error_o b Function - class_labels[4]="Shimmering”
z class_labels[5]="Step"
y1 chettargetprofile v

Figure 5.4.5: Deployment of error target profile on GNSS-EStalk.

In Fig. 5.4.5a, the target_i outputs the predicted target probabilities Cls; for
segments X ‘ii, as introduced in Fig. 5.3.7, while error o receives the recognized
errors. We deploy the chcbtargetprofile function, as shown in Fig. 5.4.5b. This

function outputs the target class Yd‘i for each XSZ

y?d

= (5.4.6)

argmax(Cls ;)

Additionally, the function can also return error information, as shown in
Fig. 5.4.5¢, including the details described in Section 5.3.2. The design allows

for the modification of the profile depending on the application.

Fig. 5.4.6 depicts the data flow for the classification process under
GNSS-EStalk. The feature extraction function, which includes preprocessing
and RDM generation, is described in Section 5.3.3 and Section 5.3.4,
respectively. The DAloTtalk delivers the function to the remote server as a
Python module, enabling its Publisher to import the module and convert each
noise segment received from Project A into features Xgi before publishing them

to the classification node.

On the other hand, The model configuration for the classifier, stored in the

DAIoTtalk, is received by the Subscriber handler of the classification node. It is

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 91

Feature Extraction

/ﬁ} Preprocessing
{:E%z)\ Class Model

Profile Referal Configuration

DAloTtalk Distance Matrix
a ‘| a a ‘|
PY PY PY
Noise v \ =5 / y
Segments . X di .
» Publisher » Subscriber—»
Project A y
main (TSUbSCFiber{ Publisher (CT main
Remote Server / \ Classification

Figure 5.4.6: Data flow from the remote analysis server to the classification node

in GNSS-EStalk.

queued alongside the Xgi inputs before being accessed by the main thread,
allowing the main thread to reload the model configuration before processing the

next instance.

Once the main thread of the classification node generates the target results Cls j;,
the AGAPI publishes them, and the Subscriber of the remote server receives them.
The handler imports the class profile provided by the DAloTtalk to convert the
target results into class labels Y;i using Eq. (5.4.6), along with the corresponding
error profile. The error results are then relayed to Project A for transmission back

to the corresponding ground station.

5.5 Evaluation

The experiment runs on an Ubuntu 18.04 server with an R9-5950x CPU, 32GB
RAM, and RTX3090 GPU. It uses Python 3.10 and Tensorflow 2.17. The RDM
reference sizes are set to 60. All models in Fig. 5.3.7 employ categorical focal
cross-entropy loss. The models are trained for 100 epochs with restored best
weights based on loss. Each model is trained with 10 trials, and the average

result is presented.

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 92

In the following section, we first evaluate the noise classifiers through an epoch-loss
comparison. Next, we assess the classifiers using test data. Then, we experiment
with noise clustering models. Finally, we test the classifiers on a pseudo-labeled

dataset.

5.5.1 Evaluation of Model Performance by Epoch

We first perform an epoch-loss comparison of the models shown in Fig. 5.5.1 and
Fig. 5.5.2. The comparison involves four types of loss functions for references:
categorical focal cross-entropy (CFEC), Kullback-Leibler divergence (KLD),
mean absolute error (MAE), and mean squared error (MSE). The experiments

are conducted using four different training sizes: 10%, 30%, 50%, and 70%.

Fig. 5.5.1 presents the epoch-loss comparison across the five baseline models. In
general, a 10% training size exhibits the slowest convergence, with all the losses
decreasing gradually and models often failing to reach optimal values. As the
training size increases to 30% or more, a notable improvement in convergence
speed is observed. Furthermore, Larger training sets (above 70%) also show faster

convergence and improved loss stability, indicating better model generalization.

When compared with the other models, SCNN demonstrates the fastest
convergence, achieving optimal performance across all loss functions within 20
epochs for all training scales. Furthermore, it has the lowest final loss value,
indicating that SCNN is more efficient at extracting information from the
sequence-generated heat map. On the other hand, TLSTM exhibits the most
unstable convergence speed and loss landscape. With a 10% training size,
TLSTM shows the highest final loss value, but its performance improves
significantly as the training size increases. This suggests that LSTM models

require more data to capture sequence patterns effectively.

Fig. 5.5.2 presents the epoch-loss comparison of the four hybrid models. In

general, convergence speed improves significantly when the training size

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

o
o ‘odi-00T ul eourwLIo}Iod [opPOW SUIPse :1°G'G 9INSI
dINL — WISTL — dIWS —— NNOS —— dIWH —
yosodg
00T 08 09 ot (4 0 00T 08 09 ov 0¢ 00T 08 09 oy (04 00T 08 09 o (14
F 0000 F 0000 F 0000 F 000
F G200 FS200 F 200
F 0500 r0s0°0 F0S0°0 FS0°0
FSL00 FSL00 FGLO0
F00T0 F00T'0 F00T'0 FoT'0
Feero FSZT'0 FSZT'0 —~
00T 08 09 ot (4 0 00T 08 09 ot 0¢ 00T 08 09 oy (04 00T 08 09 o (014
: . : : : “Fooo [: : - - oo [- - : * oo [. : : :)
LS00 LS00 LS00
rotT'o U roTo FrTo
LST0 FST'0 FST0
F0zo rozo F0Z0 Frzo
L sz0 F S0 F S0
00T 08 09 oy 0cC 0 00T 08 09 (4 0cC 00T 08 09 oy 0cC 00T 08 09 oy 0cC
roo Foo F0o 00
£ Fso rso Fso rso
2
-~
S J Lot Lot Lot Lot
j=
w Lot FS'T FS'T Fs'tT
N3] —V
R oﬁ.:” o.w o.o o.¢ o.N ﬁ.u o....: o.m o.o o.w o.N oﬁ.: o.w o.o o.w o.N oﬁ.: o.w o.m o.w o.N
S L o0 L o0 L oo L oo
~
S
QOU FTo FrTo FTo rTo
S
g L 2 Fzo Fzo rco
UM 0
wn Feo FEo 4 €0
%8 %0L %08 %0€ %0T
nNu s9zIS bululel) Bulkiep ylim aduewWIOSd [9POIA dUlj9Seg UO SuoI3dund Sso Jo uosuedwo) asim-ysod3

IS

aVIN

am

3040

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

94

‘oody-00T ut eourwIojIod [ppowl PLIAH :g'G G 9IN3Iq

GNSS Error Source Recognition

s9zIS bululel) Bulkiep yiim adUrWIOUSd |9POIN PHYAH UO SUOI3dUN4 SSOT JO uosuedwo) asim-ydod3g

dINS WISTL —— NNDS dTWL —— NNDS WISTL —— dTWS dTNL ——
yood3g
00T 08 09 or 0z 0 00T 08 09 or 0z
000 000 < F 000 F 0000
. 200 F G200
L zo'0 r 200
F0S0°0
L v0°0 =
. N
L v0°0 L 00 LS20'0 m
900 00T°0
90" F90°0 L 80"
900 80°0 FGZ1'0
00T 08 09 o 0z 0 00T 08 09 014 0z 0 00T 08 09 or 0z
000 o A : ! ! 0o A A ! ! L o ! A ! ! 000
500 =00
FS00 FS00 FoT0
. =
. oo Lsto =
Loto FoT0 m
FST'0 Y
leto LsT0 Lozo Lszo
00T 08 09 ov 0z 0 00T 08 09 [0)4 0z 0 00T 08 09 o 0z
o0 oo 000 00
Lzo Lzo FSz'0 leo
. . L og" ~
F°0 F°0 0s'0 ~
) tot O
90 F9°0 rSLo
L g0 L g0 F00'T FS'T
00T 08 09 oy 0z 0 00T 08 09 oy 0z
000 000 000 7 00
L zoo F 200
- v0°0 k00 00 Lo A
Q
L 900 L 900 . Q
| 800 . roT'0 L z0
80°0
[oro oo Lsto
%0L %08 %0€ %0T

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 95

increases from 10% to 30% or higher. All models reach optimal values within 20
epochs for all loss functions. Stability also shows slight improvement when the

training size reaches 70%.

When comparing the models, SCNN-based models (TLSTM SCNN,
TMLP_SCNN) generally demonstrate faster convergence, reaching near-optimal
loss values within 20 epochs for most of the training sizes and loss functions.
TLSTM SCNN requires more epochs to stabilize when the training size is less
than 30%, but there is a significant improvement when the training size
increases to 50%. On the other hand, TMLP SMLP has slower convergence
than the other models when the training size exceeds 50%, with the difference

being huge for loss functions such as KLD, MAE, and MSE.

Considering Fig. 5.5.1 and Fig. 5.5.2, the loss values of the baseline models
decrease more consistently over epochs for smaller datasets (10%, 30%) than for
larger datasets (50%, 70%). Across all configurations, Baseline models are more
turbulent across configurations in the initial epochs. In contrast, hybrid models,
which combine sequence and spatial components, achieve a more rapid loss
reduction in the initial epochs. Furthermore, the variance in loss across epochs
is less pronounced in hybrid models, indicating smoother convergence. As a
result, hybrid models generally outperform baseline models by demonstrating

faster convergence and achieving lower final loss values.

5.5.2 Evaluation of Baseline and Hybrid Noise Classification

Fig. 5.5.3 presents the average results from 10 trials based on classification
accuracy and Fl-macro score using only the labeled dataset. The training size
varies from 0.05 to 0.7. In the baseline models, TMLP outperforms the others
when the training size is below 0.3 for both metrics. The end-to-end methods,
including TLSTM and SCNN, demonstrate better performance when the
training size exceeds 0.5, with over 70% accuracy. Table 5.2 presents the

summary of 10 trials using a 70% training size. As shown in the table, the

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 96
Baseline Models Hybrid Models
0.8 0.85 ’X
Ao —E S P g
RN S e TEE
........ s
0.71 s 0801 | o +
{‘."A . &
9 o - % B -F--n v
' w/ -H T - | A K ¥
Co6l . m™"® v 0751 A%
o "N N L ¢
bt B , o TMLP ': ,
< v TLST™ |0.70{ & e TMLP_SMLP
0.51 , vy -¥ SMLP / TLSTM_SMLP
h -A SCNN v -¥ TLSTM_SCNN
04l v -m HMLp [0-657 - A TMLP_SCNN
0.2 0.4 0.6 0.2 0.4 0.6
0.801 e S |
oy SR A e 7
074 . x_x- e P— v\l y
.; - 0.751 . “““ ‘ B /‘ ye
© 0.6 ;A o 7
B " 7/
R R i e e d i B\
| o v-- ‘A
I_{|0.5 ‘, L 0 TMLP 065] /. /y
w ¥ TLSTM N e TMLP_SMLP
0.41 XY ~¥ SMLP |g g0 iy TLSTM_SMLP
)4 -A SCNN y -¥ TLSTM_SCNN
v
03] v/ -® HMLP |55 - A TMLP_SCNN
0.2 0.4 0.6 0.2 0.4 0.6

Training Size

Figure 5.5.3: The comparison of accuracy and Fl-macro score among baseline

and hybrid models using different training sizes.

Table 5.2: Summary of accuracy and F1l-macro scores across 10 trials for baseline
and hybrid models using a 70% training size.

Model Accuracy F1-Marco
: Mean SD Q1 Q2 Q3 | Mean SD Q1 Q2 Q3
HMLP 0.633 0.012 0.626 0.634 0.641 0.553 0.016 0.543 0.549 0.562
TMLP 0.757 0.022 0.752 0.764 0.769§ 0.725 0.024 0.721 0.727 0.741
SMLP 0.634 0.022 0.626 0.632 0.652 0.543 0.022 0.532 0.545 0.559
TLSTM 0.789 0.077 0.797 0.808 0.814§ 0.759 0.077 0.764 0.779 0.788
SCNN 0.779 0.009 0.772 0.778 0.784§ 0.727 0.011 0.719 0.727 0.732
TMLP_SMLP 0.841 0.010 0.836 0.837 0.845 0.810 0.013 0.804 0.809 0.817
TLSTM _SMLP 3 0.830 0.008 0.826 0.828 0.831 3 0.803 0.010 0.798 0.801 0.804
TLSTM_ SCNN 0.839 0.010 0.835 0.841 0.844 0.806 0.015 0.804 0.807 0.815
1 0.830 0.009 0.824 0.832 0.836§ 0.794 0.014 0.786 0.793 0.803

TMLP_SCNN

RDM-based model ‘TMLP_ SMLP’ outperforms the others in both metrics,

achieving approximately 84%

accuracy and an 80%

Fl-macro

score.

Additionally, the differences of the hybrid models diminish as the training size

increases. Compared to the baseline models, all hybrid models generally perform

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

GNSS Error Source Recognition 97
better.
TMLP_SMLP TLSTM_SMLP
0:57 0.14 0.16 0.00 0.09 0.05 o¥:X=g 0.51 0.13 0.07 0.02 0.13 0.13 -0.8
0.01 0.08 0.06 0.09 0.01 s 0.01 0.03 0.02 0.16 0.01
-0.6 -0.6
0.01 0.02 fex:len 0.04 0.03 0.04 NE 0.00 0.09 joR:leR 0.03 0.04 0.05
0.00 0.03 0.02 gex:¥@ 0.02 0.06 04 o 0.00 0.10 0.02 gex:yA 0.03 0.03 0.4
0.00 0.07 0.02 0.01 0.04 S 0.00 0.06 0.01 0.020.03 02
0.01 0.01 0.01 0.05 0.03 jeRsii LE 0.01 0.01 0.00 0.01 0.09 goR:ls
w 0.0 0.0
0 1 2 3 4 5 0 1 2 3 4 5
<
E TMLP_SCNN TLSTM_SCNN
'_
0.36 0.09 0.27 0.00 0.18 0.1 08 ° 0.53 0.20 0.09 0.02 0.04 0.1 -0.8
0.020.03 0.01 0.13 0.03 ks 0.01 0.02 0.01 0.09 0.01
0.6 -0.6
0.02 0.04 fex:Z3 0.05 0.04 0.02 SE 0.00 0.05 joR:leq 0.02 0.04 0.03
0.00 0.05 0.04 gek:t@ 0.04 0.02 USRS 0.01 0.05 0.03] 0.02 0.06 04

0.00 0.05 0.01 0.03 (% 0.04 [l WY

0.02 0.02 0.04 0.01 0.03 02 ¥

0.01

0.01 0.02 0.03 0.02 KekeX LR 0.01 0.00 0.04 0.04 0.05 feks¥4

w 0.0 ,
0 1 2 3 4 5 L 0 1 2 3 4 5
Prediction

0: Convergence 1: Disturbance 2: Divergence 3: Outliers 4: Shimmering 5: Step

0.0

Figure 5.5.4: Normalized confusion matrices of the hybrid models.

Fig. 5.5.4 shows the normalized confusion matrices comparing the true labels with
the predicted targets of the hybrid models when the training size is 0.7. According
to the results, shimmering and Step are generally easy for the models to detect.
On the other hand, the predictions for convergence segments are less accurate
due to dataset imbalance. Introducing data augmentation or Balanced Batch

Sampling may help address this issue. Overall, “TLSTM SCNN’ demonstrates

more balanced predictions across the classes than the other models.

5.5.3 Evaluation of Noise Clustering

Table 5.3 presents the results of the clustering experiments by adjusting thoC.

The training size is set to 0.2, and the testing data is mixed with the unlabeled

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 98

Table 5.3: The comparison of accuracy and data increment of clustering models.

: Accuracy Increment
th%C¢ Model HDBSCAN Hierarchical KMeans HDBSCAN Hierarchical KMeans
cT 0958 0.974 1 0378 0.526 0.172
0.1 C° | 1 0.992 1 0498 0.535 0.401
c® 1 0.979 1 0397 0.543 0.259
o 0.967 095 0916 | 0523 0.926 0.535
0.3 C 0.973 0.95 0.984 0.689 1.055 0.695
c® 0.971 0.935 1 0.512 0.965 0.584
o 0.943 088 0.897 | 0.664 1.474 1229
05 C¢ 0.944 0.867 0.894 0.87 1.659 1.263
c?® 0.973 0.915 0.986 0.645 1.523 0.896
o 0917 086 0.856 | 0833 2025 2.105
0.7 C¢ 0.892 0.822 0.851 1.132 2.279 2.145
c® 0.942 0.858 0.929 0.815 2.462 1.792
o 0.889 | 0799 0.795 | 1084 2707 3.087
09 C 0.84 0.78 0.765 1.611 3.32 3.354
c?® 0.903 0.828 0.855 1.184 3.279 3.145

data to generate the pseudo-labeling dataset. The evaluation focuses on two
metrics: the accuracy of the testing data and the overall increase in the number
of generated pseudo-labels. We test three clustering models: HDBSCAN,
hierarchical clustering, and KMeans. Both hierarchical clustering and KMeans
are configured to cluster the segments into 1000 classes, which is close to the

number of clusters generated by HDBSCAN.

According to Table 5.3, as th°C increases, the overall number of pseudo-labels
increases, but accuracy decreases. Considering the clustering models,
HDBSCAN is more accurate, while hierarchical clustering generates more
pseudo-labels. From the perspective of the pipelines, C?® is relatively more
accurate, whereas C* generates more pseudo-labels. Overall, the noise segments
extracted using the clustering method with ZFilter exhibit greater consistency

than those obtained through classification.

GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for

Chapter 5
GNSS Error Source Recognition

99

L0 90 S0 0 €0

‘Bureqer-opnasd)M UOTYEITJISSR[D 9SIOU UO SHMNSAI [RJUdWIIOdX :¢'¢ G 2131]

L0 90 S0 14 €0

9z buluie

L0 90 S0 0 €0 zo

L0 9'0 S0 0 €0 0 To

6'0=503 ® PUAAH ¥- 6'0=5041 ® PUGAH ¥~ 590 6'0=5043 ® PUGAH ¥~ S9°0 6'0=5043 ® PUGAH ¥-
6'0=5o43 ® |esodwa] - A- o010 6'0=5043 ® |eJodwid] - A- 6'0=03 ® |eiodWd] -A- . 6'0=5943 ® [eodwa] - A-
6'0=0o2 ® |e1edS 8- 6'0=5o2 ® eneds o oLo 6'0=5041 ® |eneds —e- 0L0 6'0=5043 ® eneds —e-—
BUIISG|-0pNISd INOYIM - 1o BUIISGe|-0pNSSd INOYIM <10 6Ul|SGe|-0pNasd INOYIM e <10 6UI|SGeI-0pNISd INOYIM e
-~ —— *-—— O ————o———o——0—
I L gt =Y
e s
L0 90 S0 0 €0 [y L0 90 S0 0 €0 zo To S0 0 €0 L0 9'0 S0 0 €0 0
£0=5043 ® PUGAH ¥~ s9°0 £/0=5041 ® PUGAH ¥~ \m 00 1/0=5041 ® PUGAH ¥~ 590 1/0=5041 ® PUGAH 7~
L'0=5oYy? ® |eJodwa] - A- oro L'0=5o4y3 ® |eJodwa] - A- \\\. L'0=5o43 ® |eJodwa] -A- . L'0=5oYy? ® |eJodwd] - A-
L'0=5041 ® |eneds —o- L'0=5043 ® |eneds —e- .W 0L0 L£0=5041 ® |eneds —e- Lo £/0=5041 ® |enjeds —o-
Bul|age|-opnasd INOYIM - - \hW\\\N 510 buijage|-opnasd INOYIM e \\mww\ <0 Bul|aqe|-opnasd INOYIA --e- <10 Bul|age|-opnasd INOYIM -
R 08'0 080 080
<S80 <S80
0 L0 90 S0 0 €0 L0 90 S0 0
$9°0
§'0=0042 ® PUAAH ¥~ S'0=0041 ® PUAAH ¥~ 590 S'0=5U? ® PUAAH ¥ - 590 §'0=504? ® pUAkH ¥~
G'0=0l? ® |esodwa] - A- 0.0 G'0=0943 ® |esodwd] - A- G'0=05o43 ® |elodwd] -A- S'0=0ol? @ |esodwa] - A-
S'0=5041 ® |eneds —e- S0=541 ® |eneds —e- 0o §'0=004} ® eneds —e- Lo S'0=05041 ® eneds —e-
BUIISG|-0pNISd INOYUM - a0 BUIISGe|-0pNSSd INOYIM o <o 6U1[SGe|-0pNIsd INOYIM e <o 6UI|SGEI-0pNISd INOYIM -
080 080 080 -
L0 L0 90 S0 0
x
£0=5043 ® PUAAH ¥~ /9 €0=50l1 ® PUAAH ¥~ 590 €0=501 ® PuakH ¥~ §9°0 €0=241 ® PUGAH ¥~
€'0=09l3 ® |eiodwa] - A- iniu%\\.,. 0L0 £'0=5041 ® |eJodwd] - A- €'0=543 ® |esodwd] -A-) €'0=0ol3 @ |esodwa] - A-
€0=5043 ® |eneds o v €0=503 ® |enneds o 0L0 €0=053 ® |enneds e oo £'0=5043 ® eneds —e-—
Buljage|-opnasd INOYUM e P “l\\h% SL'0 Buijaqe|-opnasd INOYIM e <o Buljagel-opnasd INOYIM e Sr0 Buijage|-opnasd INOYIM -
08’0 _ 080 080
” == I Hin\ﬂ\,n,w!.u.ﬁ
To L0 90 S0 70 €0 o L0 90 S0 0 €0
A N
T0=503 ® PUAAH -¥- 0.0 T'0=05043 ® PUAAH -¥- S9°0 T'0=50t ® PUAAH ¥~ S9°0 T'0=5¢3 ® PUGAH -¥-
T'0=50U3 ® |esodwad] - A- T'0=5043 ® |esodwd] -A- 3 T'0=5¢43 ® |eiodwd] -A- T'0=5043 ® |eiodwd] - A~
. E 0L0 . 0.0 .
T'0=541 ® |eneds —o- . 0=l ® |eneds —o- T'0=5} ® [eneds —e- T'0=504 ® |eneds —e-
BUIISGEI-0pNISd INOYUM - sLo BUIISQe|-0pNSSd INOYIM o S0 6Ul|SGe|-0pNasd INOYIM e <10 6UI|SGRI-0pNISd INOYIM -
080 080 . g
E— R, £ 08°0 e wr
& S8'0

NNOS dTWL P

NNOS W1S1L >

dTNS W1S1L®

o

dTNS dTWL e

S2L0
0SL°0
SLL'O
0080
§28'0
0S80

S2L0
0SL°0
SLLO
0080
§28'0
0S80

szL0
0SL°0
SLL'O
0080
§28°0
0880

szLo0
0SL°0
SLLO
0080
§28'0

szL0
0SL°0
SLLO
0080
§Z8°0
0880

Koeunooy

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 100

5.5.4 Noise Classification Experiment Using Pseudo-Labeling

Fig. 5.5.5 displays the experimental results on noise classification using hybrid
models with pseudo-labeling datasets based on HDBSCAN. The « in
Eq. (5.3.22) is set to 0.2. We compare th?® values of 0.1, 0.3, 0.5, 0.7, and 0.9.
As shown in the results, pseudo-labeling enhances the performance of
TMLP_SMLP and TLSTM SMLP by approximately 3% when the training
size is low. Notably, when the training size is less than 0.2, the accuracy of
TMLP_SMLP increases from around 78% to over 82% when th°C = 0.5.
However, TMLP SCNN and TLSTM SCNN perform worse with
pseudo-labeled datasets, possibly due to the CNN model’s increased sensitivity
to false-positive data. Generally, the performance of DO and D% outperforms
D% . When comparing the case where th’¢ = 0.9 with the others, it generates
more pseudo-labels, but this results in reduced performance due to the inclusion
of more inaccurate data. The results indicate that ZFilter effectively selects the
most similar noise segments, enhancing the model’s performance when the
labeled dataset is small. To further improve performance, incorporating

additional unlabeled data can help generate more pseudo-labels.

5.6 Chapter Conclusions

In conclusion, we constructed a framework for GNSS error source analysis named
GNSS-EStalk. Based on the regional ionospheric misclosure from the deeper-level
receiver data, we derived a dataset of GNSS noise segments. An innovative Al
temporal-spatial analysis approach was applied to handle the large volumes of
daily data. We apply clustering along with the ZFilter strategy to extract highly
consistent noise segments and generate a pseudo-labeled dataset. We achieved
an accuracy of 84% recognizing the noise types in the segments with the hybrid

classification model.

There are several potential future research directions. More deeper-level

Chapter 5: GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for
GNSS Error Source Recognition 101

parameters, such as orbit clock update residuals and tropospheric misclosure,
can be considered to further characterize error sources like multipath
interference, tropospheric delays, and receiver clock errors. Error forecasting can
be performed by considering additional factors like ionospheric activity and
tropospheric conditions. Consistent noise data can also be used to validate and

enhance existing GNSS error models.

Evaluation and Discussion

6.1 Experiment Setup

We have implemented DAloTtalk on a cluster of servers. Table 6.1 lists the
machines used in our experiments. We deploy DAlIoTtalk on VM1, publisher on
PC1, and subscriber on PC2. To simulate actual deployment conditions, each
node, including the DAIoTtalk in the virtual machine, is connected to a remote
WireGuard [83] virtual private network (VPN) with a bandwidth of 67 Mbps.
The timestamp is offset using a local NTP server. In the following experiments,
we evaluate our platform against other baseline methods. These include
asynchronous HTTP/1 with binary payload (AIOHTTP-BIN) and REST
payload (AIOHTTP-REST), as well as MQTT with binary payload. Both the
HTTP server and MQTT broker are deployed on the publisher machine. They
operate within the domain of P2P communication, where data is sourced from

the server machine. MQTT quality of service (QoS) is set to 0.

6.2 Impact of Packet Size

To evaluate communication efficiency, we first compared the latency when
transmitting packets of different sizes in Fig. 6.2.1. Table 6.2 lists the

improvement with the following metric:

Chapter 6: Evaluation and Discussion 103

Table 6.1: Experiment Platform

Machine CPU GPU (O~} RAM
PC1 Windows 10 128 GB
AMD R9-5950x RTX4090
VM1 WSL Ubuntu 18.04 (VM 32 GB)
PC2 Intel 19-13900h RTX4060m Windows 11 16 GB
a. 1000 bytes b. 10000 bytes

0.0200 A

0.0200 A
0.0175 A
= 5 001754
& 0.0150 c
S S 0.0150 A
0.0125 A
] @ 0.0125 -
n n 3 \\
~ 0.0100 { -
> > 0.0100 - \
C 0.0075 c .
8 8 0.0075 \
S 0.0050 © i
« @ 0.0050
0.0025 A 0.0025 A \
0.0000 - : 0.0000 - N
c. 100000 bytes
:'é 0.7 1
O 0.6 1
]
& 0.5 1
> 0.4 1
g
$ 031
©
© 0.2+
0.11
0.0-

[AoHTTPBIN ([N AIOHTTP-REST | | DAloTtalk-PULL AN DAloTtalk-PUSH QR MQTT

S

o
=
o
o
o
o
o
o
o
<
-
1]
(%]

0.104
0.8

o
o
@©

o
=3
=

o
o
]

8

WLt

o
o
IS)

Figure 6.2.1: Comparison of latency when transmitting packets of different sizes
at 1 Hz.

latency — latencymaz

Improvementigtency = * 100% (6.2.1)

latencymaz

Lower latency indicates higher communication efficiency. We tested four packet

sizes: 1,000 bytes, 10,000 bytes, 100,000 bytes, and 1,000,000 bytes. The first

Table 6.2: Improvement of latency when transmitting packets of different sizes at
1 Hz

Packet Size AIOHTTP-BIN AIOHTTP-REST DAloTtalk-PULL DAIoTtalk-PUSH MQTT

1000 -42% -20% -14% -24% 0%
10000 -28% -35% 0% -13% 0%
100000 -24% 0% -25% -26% -25%

1000000 -32% 0% -31% -31% -31%

Chapter 6: Evaluation and Discussion 104

two were to simulate common IoT data such as instructions and sensor readings.
The other two were to simulate common Al-related applications with regular
images and high-resolution images. Packets were sent with a one-second interval
(i.e., 1 Hz). The results were based on the average of 10 packets. In the cases of
Fig. 6.2.1a and Fig. 6.2.1b, AIOHTTP showed a slight advantage over both
DAIoTtalk-PULL and DAIoTtalk when dealing with small packets. This could
be attributed to the overhead incurred when the publisher sends a packet with
buffering, whereas the HT'TP server simply generates a packet and responds
immediately. As the packet size increased, as in the cases of Fig. 6.2.1¢c and
Fig. 6.2.1d, the advantage of binary encoding-based schemes became obvious
compared to the string-encoded REST method; the improvement was around
25% to 35% according to Table 6.2 when packet size larger than 100000 bytes.
In this case, AIOHTTP and our DAloTtalk performed similarly.

a. 1000 bytes x 1000 b. 10000 bytes x 1000
1400
175 A
_g 1200 _g 150
o]]
8 1000 8 125
800 b 100 \
g g
o %07 \ o 751 \
g 400 A \\ % 50 4 \
= 200 \ b \
b 251
0l \ XXX 0l &
c. 100000 bytes x 100 d. 1000000 bytes x 100
17.5 1.75 4
'8 el
S 1507 S 150
D 125] 1.25 4
n \ n \
@ 1004 5 1.00-
o o
o 751 \ @ 0.75 A \
£ \ £ \
@© 5.0 © 0.50 |
£ \ £ \
2.51 0.25 A \
0.0 \\\ 0.00 - N

Wl AoHTTPBIN - | AIOHTTP-REST | | DaloTtalk-PULL S DAloTtalk-PUSH B mQTT

Figure 6.2.2: Comparison of FPS when flushing a buffer of different numbers of
packets of various packet sizes.

In the next experiment, we simulated a more stressful scenario. We inserted a

large amount of data in a buffer and tried to flush the data in the buffer. We

Chapter 6: Evaluation and Discussion 105

Table 6.3: Improvement of FPS when flushing a buffer of different numbers of
packets of various packet sizes.

Bytes x# AIOHTTP-BIN AIOHTTP-REST DAloTtalk-PULL DAIoTtalk-PUSH MQTT

1000x1000 957% 910% 1989% 1596% 0%
10000x1000 160% 86% 173% 158% 0%
100000 %100 42% 0% 47% 33% 25%
1000000 %100 45% 0% 46% 36% 32%

then observed the frames per second (FPS) of different protocols. A higher FPS
indicates higher communication efficiency. The results are shown in Fig. 6.2.2.

Table 6.3 lists the improvement with the following metric:

FPS — FPSpin

PP 100% (6.2.2)

Improvementppg =

We tested with 1,000 packets of sizes 1,000 and 10,000 bytes each, plus 100
packets of sizes 100,000 and 1,000,000 bytes apiece. In Fig. 6.2.2a, both
DAIoTtalk-PULL and DAIoTtalk-PUSH outperformed the singleplexing MQTT
and the multiplexing AIOHTTP by at least 1596% and 65% respectively,
according to Table 6.3. They took advantage of HTTP/2 with its native
multiplexing support, allowing multiple requests and responses over a single
TCP connection. While AIOHTTP-BIN also utilized multiplexing via
asynchronous optimization, it slightly lagged DAIoTtalk-PULL in Fig. 6.2.2b
and Fig. 6.2.2c. As the frame size increased to 1,000,000 bytes, the gap
narrowed in Fig. 6.2.2d since the TCP connection was quite full and
multiplexing had no advantage. However, the binary encoded approaches still
lead the string encoded AIOHTTP-REST by at least 32% according to
Table 6.3. In conclusion, DAIoTtalk achieves at least a 33% improvement over

the traditional protocol in this experiment.

Chapter 6: Evaluation and Discussion 106

a. 1000 bytes b. 10000 bytes
0.07 4
0.06 -
- _0.06
© 0.05 4 °
c C]
8 8 0.05
0.04 4
& & 0.041
> 0.03 A >
o 3 0.031
c C
3 0.024 2 0.024
M© [0}
- |
0.00 - 0.00 -
c. 100000 bytes d. 1000000 bytes
0.25 4
—_ —_ 25 1
o) 0.20 4 o)
C [
o O 2.01
9] (9]
@ 0.151 ()
) n
2 Vs
T o0 9
c c
[} o 1.0
+— +
S 0.05 4 3
| N | | | I | | -
0.00 - 0.0-

| | paoTtakpuLL A DAloTtalk-PUSH B¥ MQTT

Figure 6.3.1: Comparison of latency between data-centralized and data-
decentralized design.

Table 6.4: Improvement of latency between data-centralized and data-
decentralized design.

DAlJoTtalk-PULL DAloTtalk-PUSH MQTT

1000 -74% =77% 0%
10000 -70% -74% 0%
100000 -70% -70% 0%
1000000 -80% -80% 0%
6.3 Data-Centralized vs. Data-Decentralized
Approaches

To compare the gap in communication efficiency between a data-centralized and
a data-decentralized design, we relocated the MQTT broker along with the
DAIoTtalk server to simulate a data-centralized approach. Here, we again

compare the latency for different packet sizes. Fig. 6.3.1 shows the results after

Chapter 6: Evaluation and Discussion 107

the adjustment and Table 6.4 lists the improvement using Eq. (6.2.1). According
to Fig. 6.3.1, DAIoTtalk-PULL and DAloTtalk-PUSH outperformed the MQTT
method with a remote broker by a significant margin, achieving at least 3 times
lower latency in transmitting small packets (Fig. 6.3.1a and Fig. 6.3.1b) and
nearly 5 times lower latency in transmitting large packets (Fig. 6.3.1c and
Fig. 6.3.1d) under common bandwidth conditions. According to Table 6.4, P2P
communication offers at least a 70% reduction in latency compared to the
server/broker approach. Comparing the differences between Fig. 6.2.1 and
Fig. 6.3.1, it is evident that P2P communication significantly reduces traffic

overhead on the broker with MQTT, from over 2.5s reduced to under 0.6s.

6.4 Simulation of Offloading with the Join Function

To evaluate the resource scalability with the JF, we follow [21| to implement a
script for clustering the Iris dataset using K-Means. In the simulation, multiple
publisher nodes on PC1 publish the Iris dataset, which is received by a single
subscriber on PC2. The script is deployed on the publisher side, where the dataset
is clustered before being sent. Given N publishers, each sending a packet 10 times

at 1 FPS, a total of N x 10 JF execution loops will be performed.

Since the transmission is asynchronous, we measure only the ideal case using

processing time to calculate the speed-up rate Roffload.

tS’eq

Roffload —
max(t/F)

(6.4.1)
where t%¢7 represents the processing time for the sequential execution of N x 10
loops on PC1, and t/f = {tig[o N)} is the set of parallel processing times for

each node, with each node executing 10 loops. A higher R°f/2¢ indicates better

resource scalability.

Fig. 6.4.1 presents the simulation results. In Fig. 6.4.1a, we compare the linear

sequential processing time with the maximum, median, and minimum parallel

Chapter 6: Evaluation and Discussion 108

a. Comparison of Processing Time b. Speed Up and CPU Utilization
3.0 P H— Roffload + 100
- toed 104 --+- CPU Utilization /

525
e 80
32.0 8 E\E
4] H 60 %
Eis g 6 8
2 * 5
% 4 02
gh o
<
o

0.5 > 20

0.0

25 50 75 100 125 150 175 1 3 5 7 9 11 13 15 17 19
Loops (# of Nodes * 10) # of Nodes

Figure 6.4.1: Simulation results on parallel processing with JF.

processing times. When the loop size is below 150 (with 15 nodes), ¢/ remains
around 0.2 seconds. However, as the loop size exceeds 170, t/F increases
significantly. In the worst case, with 19 nodes running, it takes nearly 3 seconds

to complete 10 loops—longer than ¢4 for 190 loops.

Fig. 6.4.1b illustrates the speed-up rate alongside CPU utilization on PC1. When
nodes are fewer than 15, CPU usage remains under 20%, and parallel processing
with JF operates efficiently, ideally achieving a speed-up of over 10 times compared
to the sequential process. However, once hardware limits are reached, performance
drops significantly and may even be inefficient. In real-world deployment, an
optimal configuration needs to consider factors such as node distribution across

devices and the complexity of each JF.

6.5 Case Study Experiment

Fig. 6.5.1 illustrates the simulation deployment setup for the case study with
multiple communication types to showcase the deployment versatility of
DAIoTtalk. The deployment considers conditions of LAN communication within
the local site, WAN communication between the local site and a remote service
server via a VPN tunnel, and inter-process communication (IPC) within the
remote server. The test data includes approximately 1 minute of sensor and

camera data, published through 3 SmartBadges nodes and 1 Camera node.

Chapter 6: Evaluation and Discussion 109

Local Site | Remote Server
PC1 | Svmr
|| SmartBadges @ > UEA:YOLOVS|
I :
®. 10) :
il | il | ®
PC2 \ 4 V
NYCU:DeepSORT
LAN VPN
»,5 Gbps —> Mbps » IPC

Figure 6.5.1: Network Deployment for Case Study.

Table 6.5: Data Flow Measurement in the Case Study Deployment

Data # of Average Transmission Latency (s) Process Accumulated
Flow Frames Size (bytes) Mean Q1 Q3 Latency (s) Latency (s)
A 516 161005 0.097 0.0602 0.132 0.061 0.158

B 407 160892 0.049 0.0227 0.0684 0.192 0.353

C 349 455 0.088 0.0626 0.136

D 495 466875 0.1 0.0626 0.136 0.45 0.543

E 1483 1555 0.15 0.0814 0.215

Only the updated data will be transmitted upon receiving a request. The
SmartBadges nodes operate using the DAloTtalk-PUSH mode, while the
others will use the DAIoTtalk-PULL mode. We monitor each communication’s

data flow (A-E), and the results are presented in Table 6.5.

As shown in Table 6.5, data flows A and D are respectively sending
low-resolution pictures via VPN and high-resolution pictures via LAN with
similar latency. This shows that our design balances network traffic by adjusting
multimedia data according to application requirements; Data flow B
demonstrates the potential use of IPC. The accumulated latency can be
maintained at around 0.5 ms, enabling real-time Al surveillance applications.

This also shows the deployment versatility of the platform.

On the other hand, DAIoTtalk-PUSH is less stable than DAloTtalk-PULL, as
indicated by data flow E. Further optimization in AGAPI could enhance its

performance. Besides, the data flow chaining from A to C shows that some

Chapter 6: Evaluation and Discussion 110

Table 6.6: Comparison of latency over 100 packets sent from the sewing machine
in SewingTalk.

Platform Average Size Latency (s) Average
’ (Bytes) Mean SD Q1 Q2 Q3 Improvement
DAIoTtalk 803261.4158 0.635916 0.904305 0.182388 0.34377 0.544737 -43.03%
MQTT 85H8882.3861 1.116269 1.058549 0.344866 0.590394 1.738467 0
3.0 —*— DAloTtalk
MQTT
2.5
@2.0‘
>
g
< 1.5
har}
©
=
1.0
0.5
0.01
0 1000000 2000000 3000000 4000000

Packet Size (Bytes)

Figure 6.6.1: Comparison of latency within two standard deviations across
different packet sizes in SewingTalk.

frames may be dropped due to connection issues or process latency. This issue

could be mitigated by introducing QoS control.

6.6 Evaluation on SewingTalk

To demonstrate the connection efficiency of DAIoTtalk in the smart sewing
industry, we reproduce the experiments in Section 6.3 and compare the
transmission latency of machine logs sent from a sewing machine using both
DAIoTtalk and MQTT. A total of 100 machine logs are randomly selected from
the dataset and transmitted. Due to the large data size, the transmission rate is
reduced to 0.2Hz (one packet every 5 seconds) to ensure sufficient session time

for completing the transmission. Table 6.6 summarizes the improvement,

Chapter 6: Evaluation and Discussion

111

Processing Times (Second)
= (ot N N w w
v o wv o w o w

o

a. Comparison of Processing Time

b. Speed Up and CPU Utilization

o tf
> t5eq

Roffload

-
N
o

=
o
o

®
o

o
o

N
o

N
o

o

»- Rufiload
-+-- CPU Utilization

0 50 100 150 200 250

Loops (# of Nodes * 10)

300 350

1 5 10 15 20

of Nodes

25 30

35

50

IS
o

w
o

CPU Utilization (%)

N
o

10

Figure 6.6.2: Evaluation of offloading of tokenization on sewing machine logs using
JF.

calculated using Eq. (6.2.1). On average, latency is improved by 43% when
using DAJoTtalk instead of MQTT. Fig. 6.6.1 illustrates how latency varies with
different packet sizes. The two-standard-deviation empirical rule is applied to
filter out sudden network delays. As shown, the latency gap between DAIoTtalk
and MQTT increases with packet size, indicating that the data-decentralized
design of DAIoTtalk effectively reduces network traffic turbulence by avoiding

triangle routing.

In the deployment of SewingTalk, the tokenization function is implemented
using JF to offload processing to the sewing machine. To assess the resource
scalability provided by DAIoTtalk’s JF in the smart sewing industry, we
reproduce the simulation described in Section 6.4 using real machine log data.
The results are presented in Fig. 6.6.2. In Fig. 6.6.2a, the offloaded processing
time (¢/F) remains under one second as the task is parallelized across up to 35
nodes, whereas the sequential processing time (tseq) increases linearly.
Fig. 6.6.2b shows the speed-up rate, calculated using Eq. (6.4.1), indicating that
the offloading approach achieves up to a 120x speed-up compared to sequential
processing when utilizing 35 nodes. These results showcase that JF enables

effective horizontal scalability with sewing machines.

Chapter 6: Evaluation and Discussion 112

Table 6.7: Comparison of latency over 100 packets sent from the ground station
in GNSS-EStalk.

Average Size (Bytes) Latency (s) Average
Data Packet Mean SD Q1 Q2 Q3 Improvement
DAIoTtalk 1907525.99 1954703 | 1.045778 0.145055 0.889009 1.096319 1.163973 51.026%

DAlIoTtalk JF 1926303 48013.26 | 0.014572 0.011273 0.005598 0.012621 0.020497 99.138%

Platform

MQTT 1968470.98 2015895 | 2.18699 0.256347 2.097883 2.246862 2.376696 0
—e— DAloTtalk
2.5 DAloTtalk_JF
—— MQTT
2.0
0
~1.51
O
[
(0]
-+t
S1.04
0.51
0.0

1400000 1600000 1800000 2000000 2200000
Data Size (Bytes)

Figure 6.7.1: Comparison of latency within two standard deviations across
different packet sizes in GNSS-EStalk.

6.7 Evaluation on GNSS-EStalk

To demonstrate the connection efficiency and deployment versatility of
GNSS-EStalk in GNSS error source service, we reproduce the experiments in
Section 6.3 at 0.2Hz and compare the transmission latency of ground station
correction data sent from a ground station using both DAIoTtalk and MQTT. A
total of 100 correction data points are randomly selected from the dataset and
transmitted. Table 6.7 summarizes the improvement, calculated using
Eq. (6.2.1). The DAIoTtalk JF configuration transmits only the noise segments
preprocessed by JF, reducing the packet size from nearly 2MB to under 0.5MB.
On average, latency is improved by 51% using DAIoTtalk and by up to 99%
when combined with JF preprocessing, compared to MQTT. Fig. 6.7.1

illustrates how latency varies with different data sizes. The

Chapter 6: Evaluation and Discussion

113

a. Comparison of Processing Time

b. Speed Up and CPU Utilization

P X 14 4 Roffload /’5
140 Se L7 RO
- o8 - -+-- CPU Utilization/
> X 12 40
E 120
] > 10 353
& 100 s
e s
© o
_E 80 X g 8 30
2 60 X “ 6 E
5 255
g 40 /,>(4
& 20
20 X 2
0 o 15
0 50 100 150 200 250 300 350 1 5 10 15 20 25 30 35
Loops (# of Nodes * 10) # of Nodes

Figure 6.7.2: Evaluation of offloading of segmentation on GNSS error data using
JF.

two-standard-deviation empirical rule is applied to filter out sudden network

delays. As shown, DAIoTtalk already outperforms MQTT, while
DAIoTtalk JF further enhances efficiency by transmitting only the necessary
segmented data. These results demonstrate that communication efficiency can
be improved not only through P2P communication, which avoids triangular
routing, but also by data

selectively transmitting essential segments,

highlighting the deployment versatility enabled by JF preprocessing.

To evaluate the resource scalability of GNSS-EStalk for noise segmentation
tasks, we reproduce the simulation described in Section 6.4 using real ground
station data. The results are presented in Fig. 6.7.2. In Fig. 6.7.2a, the offloaded
processing time (#/f") remains below 10 seconds as the task is parallelized across
up to 35 nodes, while the sequential processing time (#°¢9) increases linearly.
Fig. 6.7.2b illustrates the speed-up rate computed using Eq. (6.4.1), showing
that the offloading approach achieves up to a 14x speed-up over sequential
processing when leveraging 35 nodes. These results demonstrate that JF enables

efficient horizontal scalability by remotely deploying JF processing to ground

station nodes.

Chapter 6: Evaluation and Discussion 114

6.8 Chapter Conclusion

This chapter evaluated a novel data-decentralized pub-sub communication
framework based on the gRPC protocol. The framework is integrated into
IoTtalk, forming AloTtalk, to support P2P communication and enhance
communication efficiency compared with traditional methods. Experimental
results demonstrate that the platform satisfies the resource scalability and
flexibility requirements of Al applications. Furthermore, real-world case studies
validate the deployment versatility of the platform, which also further improves
application efficiency. Overall, the results confirm that the proposed platform
effectively overcomes the limitations of existing centralized IoT architectures in

AloT applications.

Conclusions

7.1 Conclusions

The growing demand for Internet of Things (IoT) applications, especially within
Artificial Intelligence of Things (AloT), requires suitable platforms that can
enable efficient data exchange as well as allow scalable deployment of
applications. Traditional IoT platforms, whether data-cloud-based or
data-centralized, commonly rely on server-mediated architectures. The
architecture introduces challenges such as triangle routing, network bottlenecks,
and limited scalability. The challenges are especially pronounced in AloT
scenarios requiring high-volume, low-latency data streams. To address these
limitations, this work introduced DAIoTtalk, a data-decentralized AloT
platform built as an extension of IoTtalk. Leveraging peer-to-peer (P2P)
communications powered by customized gRPC within a publish-subscribe
(Pub-Sub) framework, DAIoTtalk facilitates direct sender-to-receiver data
exchanges via a remote "Agent" dedicated to connectivity establishment. Two
case studies, SewingTalk and GNSS-EStalk, are implemented to showcase

showcase its potential to transform industries and services.

Through experiments and case studies, we have validated that our platform
enhances communication efficiency, resource scalability, and deployment
versatility. For communication efficiency, the gRPC pub-sub framework benefits

from binary encoding and HTTP/2 multiplexing, which demonstrates at least

Chapter 7: Conclusions 116

25% improvement in latency and 33% improvement in FPS compared to the
traditional method, respectively. The data-decentralized approach also improves
70% latency over the data-centralized approach. For resource scalability, the JF
can dynamically and remotely offload processing tasks to edge nodes, enabling
parallel handling of larger data volumes and heavier computational loads as
more edge nodes are added. For deployment versatility, case studies such as
SewingTalk and GNSS-EStalk demonstrate the flexible modularization of AloT
components and dynamic network allocation in different environments. These

results indicate that DAIoTtalk is well-suited for modern AloT applications.

7.2 Furture Works

Several research directions emerge for future exploration. For the DAloTtalk
platform, current implementations focus on node deployment using WireGuard,
with potential extensions into dynamic DNS (DDNS) and port forwarding for
more flexible connectivity. Support for communication protocols other than gRPC
can be enabled through additional APIs. To enhance security, a new form of topic-
level encryption using ciphers or tokens can be introduced. Additionally, a novel
IP resolving mechanism can be implemented on the Agent to support dynamic

service scaling more effectively.

Further research is also planned for SewingTalk and GNSS-EStalk. For
SewingTalk, we are looking for self-supervised learning to fusion product designs
and procedure diagrams into the model for transfer learning. The system can
then be extended for worker performance assessment and production line
optimization. For GNSS-EStalk, deeper-level parameters, such as orbit clock
residuals and tropospheric disclosure, could refine error characterization, while
forecasting models incorporating ionospheric and tropospheric conditions may
enhance PNT performance. Across the DAIoTtalk platform, modularization of
Al models and algorithms remains a priority to improve adaptability and

scalability.

Bibliography

1]

2]

3]

4]

[5]

(6]

S. J. Palmisano. “A smarter planet: The next leadership agenda,” Accessed:
Jul. 21, 2025. [Online]. Available: https://www.youtube.com/watch?v=1i_

j4-Fm_Svs.

H. Lasi, P. Fettke, H.-G. Kemper, T. Feld, and M. Hoffmann, “Industry
4.0,” Business and Inf. Systems Eng., vol. 6, no. 4, pp. 239-242, Aug. 2014,

ISSN: 1867-0202. DOI: 10.1007/s12599-014-0334-4.

C. J. B. Yann LeCun Corinna Cortes. “The MNIST database of
handwritten digits,” Accessed: Jul. 21, 2025. |[Online|. Available:
https://scikit-learn.org/stable/auto_examples/classification/

plot_digits_classification.html.

K. Kowsari, M. Heidarysafa, D. E. Brown, K. J. Meimandi, and L. E. Barnes,
“RMDI: Random multimodel deep learning for classification,” in Proc. of the
2nd Int. Conf. on Inf. System and Data Mining, ser. ICISDM ’18, Lakeland,
FL, USA: Association for Comput. Machinery, 2018, pp. 19-28. poI: 10.

1145/3206098.3206111.

J. Schmidhuber, “Multi-column deep neural networks for image
classification,” in Proc. of the 2012 IEEE Conf. on Comput. Vis. and
Pattern Recognit. (CVPR), ser. CVPR 12, USA: IEEE Comput. Society,
2012, pp. 3642-3649.

J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “ImageNet: A
Large-Scale Hierarchical Image Database,” in CVPR09, 2009.

https://www.youtube.com/watch?v=i_j4-Fm_Svs
https://www.youtube.com/watch?v=i_j4-Fm_Svs
https://doi.org/10.1007/s12599-014-0334-4
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://scikit-learn.org/stable/auto_examples/classification/plot_digits_classification.html
https://doi.org/10.1145/3206098.3206111
https://doi.org/10.1145/3206098.3206111

Bibliography 118

7]

8]

19]

[10]

[11]

[12]

[13]

[14]

[15]

Papers With Code. “Image classification on ImageNet,” Accessed: Jul. 21,
2025. [Online|. Available: https://paperswithcode . com/sota/image -

classification-on-imagenet.

C. Gordon. “How general Al will eventually reshape everything,” Accessed:
Jul. 21, 2025. [Online]. Available:
https : //www . forbes . com/ sites / cindygordon /2023 /09 /30 /how -

general-ai-will-eventually-reshape-everything/.

K. L. Lueth. “State of the IoT 2020: 12 billion IoT connections, surpassing
non-IoT for the first time,” Accessed: Jul. 21, 2025. [Online|. Available:
https://iot-analytics.com/state-of -the-iot-2020-12-billion-
iot-connections-surpassing-non-iot-for-the-first-time/.

IDC. “IoT growth demands rethink of long-term storage strategies, says
IDC,” Accessed: Jul. 21, 2025. [Online]. Available:
https : //iotbusinessnews . com /2020 /07 /29 /20898 - iot - growth -

demands-rethink-of-long-term-storage-strategies-says-idc/.

Epic Games. “Unreal engine | the most powerful real-time 3d creation tool,”
Accessed: Jul. 21, 2025. [Online|. Available: https://www.unrealengine.

com/en-US.

Unity Technologies. “Unity,” Accessed: Jul. 21, 2025. |Online|. Available:

https://unity.com/.

IFTTT. “IFTTT,” Accessed: Jul. 21, 2025. [Online|. Available: https://

ifttt.com/.

D. NamloT and M. sneps-sneppe, “On micro-services architecture,” Int. J.

Open Inf. Technol., vol. 2, pp. 24-27, Sep. 2014.

J. Wytrebowicz, K. Cabaj, and J. Krawiec, “Messaging protocols for IoT
systems — a pragmatic comparison,” Sensors, vol. 21, no. 20, 2021. DOI:

10.3390/s21206904.

https://paperswithcode.com/sota/image-classification-on-imagenet
https://paperswithcode.com/sota/image-classification-on-imagenet
https://www.forbes.com/sites/cindygordon/2023/09/30/how-general-ai-will-eventually-reshape-everything/
https://www.forbes.com/sites/cindygordon/2023/09/30/how-general-ai-will-eventually-reshape-everything/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iot-analytics.com/state-of-the-iot-2020-12-billion-iot-connections-surpassing-non-iot-for-the-first-time/
https://iotbusinessnews.com/2020/07/29/20898-iot-growth-demands-rethink-of-long-term-storage-strategies-says-idc/
https://iotbusinessnews.com/2020/07/29/20898-iot-growth-demands-rethink-of-long-term-storage-strategies-says-idc/
https://www.unrealengine.com/en-US
https://www.unrealengine.com/en-US
https://unity.com/
https://ifttt.com/
https://ifttt.com/
https://doi.org/10.3390/s21206904

Bibliography 119

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

C. Giindogan, P. Kietzmann, M. Lenders, H. Petersen, T. C. Schmidt, and
M. Wihlisch, “NDN, CoAP, and MQTT: a comparative measurement study
in the IoT,” in Proc. 5th ACM ICN ’18, Boston, Massachusetts, pp. 159-171,

ISBN: 9781450359597. DOI: 10.1145/3267955.3267967.

Y.-B. Lin, Y.-W. Lin, C.-M. Huang, C.-Y. Chih, and P. Lin, “loTtalk: A
management platform for reconfigurable sensor devices,” IFEE Internet of
Things J., vol. 4, no. 5, pp. 1552-1562, 2017. por: 10.1109/JI0T.2017.

2682100.

J. Dizdarevié, F. Carpio, A. Jukan, and X. Masip-Bruin, “A survey of
communication protocols for Internet of Things and related challenges of
fog and cloud computing integration,” ACM Comput. Surv., vol. 51, no. 6,

Jan. 2019, 18SN: 0360-0300. DOI: 10.1145/3292674.

C. Severance, “Roy T. fielding: Understanding the REST style,” Comput.,

vol. 48, no. 6, pp. 7-9, 2015. por: 10.1109/MC.2015.170.

E. R. Fielding and E. J. Reschke. “Hypertext transfer protocol (HTTP/1.1):

Message syntax and routing,” Accessed: Jul. 21, 2025. [Online|. Available:

https://datatracker.ietf.org/doc/html/rfc7230.

D. Happ, N. Karowski, T. Menzel, V. Handziski, and A. Wolisz, “Meeting
IoT platform requirements with open pub/sub solutions,” Ann. of
Telecommunications, vol. 72, mno. 1-2, pp. 41-52, 2016. DO

10.1007/s12243-016-0537-4.

OASIS Message Queuing Telemetry Transport (MQTT) TC. “MQTT
version 5.0, Accessed: Jul. 21, 2025. [Online]. Available:

https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html.

Z. Shelby, K. Hartke, and C. Bormann. “The constrained application
protocol (CoAP),” Accessed: Jul. 21, 2025. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc7252.

OASIS Advanced Message Queuing Protocol (AMQP) TC. “OASIS
Advanced Message Queuing Protocol (AMQP) version 1.0,” Accessed:

https://doi.org/10.1145/3267955.3267967
https://doi.org/10.1109/JIOT.2017.2682100
https://doi.org/10.1109/JIOT.2017.2682100
https://doi.org/10.1145/3292674
https://doi.org/10.1109/MC.2015.170
https://datatracker.ietf.org/doc/html/rfc7230
https://doi.org/10.1007/s12243-016-0537-4
https://docs.oasis-open.org/mqtt/mqtt/v5.0/mqtt-v5.0.html
https://datatracker.ietf.org/doc/html/rfc7252

Bibliography 120

[25]

[26]

[27]

28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

Jul. 21, 2025. [Online|. Available: http : / / docs . oasis -

open.org/amqp/core/vl.0/os/amgp-core-overview-vl.0-os.html.

P. Hintjens. “ZeroMQ - the guide,” Accessed: Jul. 21, 2025. [Online].

Available: https://zguide.zeromq.org/.

gRPC Authors. “Introduction to gRPC,” Accessed: Jul. 21, 2025. [Online].

Available: https://grpc.io/docs/what-is-grpc/introduction/.

TC39. “ECMA-404 the JSON data interchange syntax,” Accessed: Jul. 21,

2025. [Online|. Available: https://www.ecma-Int. .org/publications-

and-standards/standards/ecma-404/.

G. Developers. “Protocol buffers,” Accessed: Jul. 21, 2025. [Ounline|.

Available: https://developers.google.com/protocol-buffers.

B. Krebs. “Beating JSON performance with Protobuf,” Accessed: Jul. 21,
2025. [Online]. Available:
https://auth0.com/blog/beating- json-performance-with-protobuf/.

Thingsboard. “Thingsboard cloud documentation,” Accessed: Jul. 21, 2025.

[Online]. Available: https://thingsboard.io/docs/paas/.

Temboo. “Temboo docs and guides,” Accessed: Jul. 21, 2025. [Online].

Available: https://temboo.com/docs.

SensorCloud. “Sensorcloud getting started,” Accessed: Jul. 21, 2025.

[Online]. Available: https://sensorcloud.com/welcome.

Fiware. “Ngsi-v2 step-by-step,” Accessed: Jul. 21, 2025. [Online|. Available:

https://fiware-tutorials.readthedocs.io/en/latest/.

OpenRemote. “Openremote: Get started with the free IoT platform,”
Accessed: Jul. 21, 2025. [Online]. Available:

https://openremote.io/get-started-iot-platform/.

Y.-W. Lin, Y.-B. Lin, and C.-Y. Liu, “Altalk: A tutorial to implement ai
as loT devices,” IET Networks, vol. 8, no. 3, pp. 195-202, 2019. pDOI: 10.
1049/iet-net .2018.5182. [Online|. Available: https://ietresearch.

onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182.

http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
http://docs.oasis-open.org/amqp/core/v1.0/os/amqp-core-overview-v1.0-os.html
https://zguide.zeromq.org/
https://grpc.io/docs/what-is-grpc/introduction/
https://www.ecma-Int..org/publications-and-standards/standards/ecma-404/
https://www.ecma-Int..org/publications-and-standards/standards/ecma-404/
https://developers.google.com/protocol-buffers
https://auth0.com/blog/beating-json-performance-with-protobuf/
https://thingsboard.io/docs/paas/
https://temboo.com/docs
https://sensorcloud.com/welcome
https://fiware-tutorials.readthedocs.io/en/latest/
https://openremote.io/get-started-iot-platform/
https://doi.org/10.1049/iet-net.2018.5182
https://doi.org/10.1049/iet-net.2018.5182
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-net.2018.5182

Bibliography 121

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

7

P. P. Ray, “A survey of IoT cloud platforms,” Future Comput. and
Informatics J., vol. 1, no. 1, pp. 35-46, 2016, I1SSN: 2314-7288. DOI:

10.1016/j.fcij.2017.02.001.

J. Mineraud, O. Magzhelis, X. Su, and S. Tarkoma, “A gap analysis of
Internet-of-Things platforms,” Comput. Communications, vol. 89-90,
pp. 5-16, 2016, Internet of Things Research challenges and Solutions,

1SSN: 0140-3664. DO1: 10.1016/j.comcom.2016.03.015.

H. Hejazi, H. Rajab, T. Cinkler, and L. Lengyel, “Survey of platforms for
massive [oT,” in 2018 IEEFE Int. Conf. on Future IoT Technologies (Future

IoT), 2018, pp. 1-8. DOI: 10.1109/FI0T.2018.8325598.

Y .-B. Lin, H.-C. Tseng, Y.-W. Lin, and L.-J. Chen, “NB-IoTtalk: A service
platform for fast development of NB-IoT applications,” IEEE Internet of
Things J., vol. 6, no. 1, pp. 928-939, 2019. po1: 10.1109/JI0T.2018.

2865583.

F. Pérez and B. E. Granger, “IPython: A system for interactive scientific
computing,” Computing in Science FEngineering, vol. 9, no. 3, pp. 21-29,

May 2007, 1SSN: 1521-9615. DOI: 10.1109/MCSE. 2007 .53.

E. Rescorla. “Rfc8446: The transport layer security (TLS) protocol version
1.3, Accessed: Jul. 21, 2025. |Online|. Available: https://datatracker.

ietf.org/doc/html/rfc8446.

H. Ed. “Rfc6749: The OAuth 2.0 authorization framework,” Accessed:
Jul. 21, 2025. [Online]. Available:

https://datatracker.ietf.org/doc/html/rfc6749.

Y.-W. Lin, Y.-B. Lin, M.-T. Yang, and J.-H. Lin, “ArduTalk: An arduino
network application development platform based on loTtalk,” IEEE Systems

J., vol. 13, no. 1, pp. 468-476, 2019. DOI: 10.1109/JSYST.2017.2773077.

Y.-W. Lin, Y.-B. Lin, and T.-H. Yen, “SimTalk: Simulation of IoT

applications,” Sensors, vol. 20, no. 9, 2020, 1SSN: 1424-8220. DOI:

https://doi.org/10.1016/j.fcij.2017.02.001
https://doi.org/10.1016/j.comcom.2016.03.015
https://doi.org/10.1109/FIOT.2018.8325598
https://doi.org/10.1109/JIOT.2018.2865583
https://doi.org/10.1109/JIOT.2018.2865583
https://doi.org/10.1109/MCSE.2007.53
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc8446
https://datatracker.ietf.org/doc/html/rfc6749
https://doi.org/10.1109/JSYST.2017.2773077

Bibliography 122

[45]

|46]

[47]

48]

[49]

[50]

[51]

[52]

10 . 3390 / 520092563. [Online]. Available:

https://www.mdpi.com/1424-8220/20/9/2563.

Y.-B. Lin, L.-K. Chen, M.-Z. Shieh, Y.-W. Lin, and T.-H. Yen,
“CampusTalk: ToT devices and their interesting features on campus
applications,” IEEE Access, vol. 6, pp. 26036-26046, 2018. DOI:

10.1109/ACCESS.2018.2832222.

Y .-B. Lin, S.-K. Tseng, T.-H. Hsu, and C. D. Tseng, “HouseTalk: A house
that comforts you,” IEEE Access, vol. 9, pp. 27 790-27 801, 2021. DOI: 10.

1109/ACCESS.2021.3058364.

L.-Y. Zhang, H.-C. Lin, K.-R. Wu, Y .-B. Lin, and Y .-C. Tseng, “FusionTalk:
An IoT-based reconfigurable object identification system,” IEEE Internet
Things J., vol. 8, no. 9, pp. 7333-7345, 2021. pOI: 10.1109/JI0T.2020.

3039518.

W.-L. Chen et al., “AgriTalk: IoT for precision soil farming of turmeric
cultivation,” IEFE Internet Things J., vol. 6, no. 3, pp. 5209-5223, 2019.

DOI: 10.1109/JI0T.2019.2899128.

Y.-B. Lin and H.-C. Tseng, “FishTalk: An IoT-based mini aquarium
system,” [EEE Access, vol. 7, pp. 35457-35469, 2019. DO

10.1109/ACCESS.2019.2905017.

W.-E. Chen, Y.-B. Lin, and L.-X. Chen, “PigTalk: An Al-based IoT
platform for piglet crushing mitigation,” IEEE Trans. on Industrial
Informatics, vol. 17, mno. 6, pp. 43454355, 2021. DOL

10.1109/TI1.2020.3012496.
Y.-W. Lin, Y.-B. Lin, C.-Y. Liu, J.-Y. Lin, and Y.-L. Shih, “Implementing
AT as cyber 10T devices: The house valuation example,” IEEE Trans. Ind.

Inform., vol. 16, no. 4, pp. 2612-2620, 2020. po1: 10.1109/TII.2019.

2951847.

H.-H. Chen, Y.-B. Lin, I.-H. Yeh, H.-J. Cho, and Y.-J. Wu, “Prediction of

queue dissipation time for mixed traffic flows with deep learning,” IEEE

https://doi.org/10.3390/s20092563
https://www.mdpi.com/1424-8220/20/9/2563
https://doi.org/10.1109/ACCESS.2018.2832222
https://doi.org/10.1109/ACCESS.2021.3058364
https://doi.org/10.1109/ACCESS.2021.3058364
https://doi.org/10.1109/JIOT.2020.3039518
https://doi.org/10.1109/JIOT.2020.3039518
https://doi.org/10.1109/JIOT.2019.2899128
https://doi.org/10.1109/ACCESS.2019.2905017
https://doi.org/10.1109/TII.2020.3012496
https://doi.org/10.1109/TII.2019.2951847
https://doi.org/10.1109/TII.2019.2951847

Bibliography 123

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

Open J. of Intelligent Transportation Systems, vol. 3, pp. 267-277, 2022.

DOI: 10.1109/0JITS.2022.3162526.

Y.-B. Lin, C.-C. Cheng, and S.-C. Chiu, “Musictalk: A microservice
approach for musical instrument recognition,” IEEFE Open J. of the
Comput. Society, vol. 5, pPp- 612623, 2024. DOLI:

10.1109/0JCS.2024.3476416.

T. Alam, “Cloud-based IoT applications and their roles in smart cities,”
Smart Cities, vol. 4, no. 3, pp. 1196-1219, 2021, 1SSN: 2624-6511. DOI: 10.

3390/smartcities4030064.

A. W. Services. “AWS IoT,” Accessed: Jul. 21, 2025. [Online|. Available:

https://aws.amazon.com/IoT/.

Microsoft. “Microsoft Azure IoT,” Accessed: Jul. 21, 2025. [Online|.

Available: https://azure.microsoft.com/en-us/solutions/IoT.

S. Li, L. Xu, and S. Zhao, “The Internet of Things: A survey,” Inf. Syst.

Front., vol. 17, Apr. 2014. DOI: 10.1007/s10796-014-9492-7.

S-R. Yang, Y.-C. Lin, P. Lin, and Y. Fang, “AloTtalk: A SIP-based
service platform for heterogeneous artificial intelligence of things
applications,” IEEFE Internet Things J., vol. 10, no. 16, pp. 14167-14 181,

2023. por: 10.1109/JI0T.2023.3265674.

Y.-C. Liang, K.-R. Wu, K.-L. Tong, Y. Ren, and Y.-C. Tseng, “An
exchange-based AloT platform for fast Al application development,” in
Proc. 19th ACM Q25Winet ’23, , Montreal, Quebec, Canada, pp. 105-114,

ISBN: 9798400703683. DOI: 10.1145/3616391.3622770.

Nabto. “Nabto Edge Documentation,” Accessed: Jul. 21, 2025. [Online].

Available: https://docs.nabto.com/developer/guides.html.

K. L. Tong, K.-R. Wu, and Y.-C. Tseng, “The Device-Object pairing
problem: Matching IoT devices with video objects in a multi-camera
environment,” Sensors, vol. 21, p. 5518, Aug. 2021. DOL

10.3390/s21165518.

https://doi.org/10.1109/OJITS.2022.3162526
https://doi.org/10.1109/OJCS.2024.3476416
https://doi.org/10.3390/smartcities4030064
https://doi.org/10.3390/smartcities4030064
https://aws.amazon.com/IoT/
https://azure.microsoft.com/en-us/solutions/IoT
https://doi.org/10.1007/s10796-014-9492-7
https://doi.org/10.1109/JIOT.2023.3265674
https://doi.org/10.1145/3616391.3622770
https://docs.nabto.com/developer/guides.html
https://doi.org/10.3390/s21165518

Bibliography 124

[62]

[63]

[64]

|65]

[66]

[67]

[68]

[69]

[70]

[71]

PYTHON. “Python,” Accessed: Jul. 21, 2025. [Online|. Available: https :

//www.python.org/.

Free Code Camp. “Interpreted vs compiled programming languages: What’s
the difference?” Accessed: Jul. 21, 2025. |Online|. Available: https://www.

freecodecamp.org/news/compiled-versus-interpreted-languages/.

R. Rivest. “The MDb5 message-digest algorithm,” Accessed: Jul. 21, 2025.

[Online|. Available: https://wuw.ietf.org/rfc/rfc1321.txt.

G. Jocher, A. Chaurasia, and J. Qiu. “Ultralytics YOLO.” version 8.0.0,
Accessed: Jul. 21, 2025. [Online|. Available:

https://github.com/ultralytics/ultralytics.

N. Wojke and A. Bewley, “Deep cosine metric learning for person
re-identification,” in 2018 IEEE Winter Conf. on Applications of Comput.

Vis. (WACV), IEEE, 2018, pp. 748-756. DOI: 10.1109/WACV.2018.00087.

A. Leick, L. Rapoport, and D. Tatarnikov, GPS satellite surveying, 4th ed.
Wiley, 2015, p. 257.

P. Teunissen and O. Montenbruck, Springer Handbook of Global Navigation
Satellite Systems, en. Springer, May 23, 2017, 1SBN: 9783319429267.

H. No and C. Milner, “Machine learning based overbound modeling of
multipath error for safety critical urban environment,” in Proc. 34th. ION

GNSS+ 2021, Oct. 13, 2021.

S. Jada, M. Psiaki, S. Landerkin, S. Langel, A. Scholz, and M. Joerger,
“Evaluation of PNT situational awareness algorithms and methods,” in
Proc. 84th. ION GNSS+, Oct. 13, 2021, pp. 816-833. DO

10.33012/2021.17935.

W. Stock, R. T. Schwarz, C. A. Hofmann, and A. Knopp, “Survey on
opportunistic PNT with signals from LEO communication satellites,”
IEEE Commun. Surv. & Tutor., pp. 1-1, 2024. DOL

10.1109/COMST. 2024 .3406990.

https://www.python.org/
https://www.python.org/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.freecodecamp.org/news/compiled-versus-interpreted-languages/
https://www.ietf.org/rfc/rfc1321.txt
https://github.com/ultralytics/ultralytics
https://doi.org/10.1109/WACV.2018.00087
https://doi.org/10.33012/2021.17935
https://doi.org/10.1109/COMST.2024.3406990

Bibliography 125

[72]

73]

[74]

[75]

[76]

[77]

78]

[79]

[30]

J. Zidan, O. Alluhaibi, E. I. Adegoke, E. Kampert, M. D. Higgins, and
C. R. Ford, “3D mapping methods and consistency checks to exclude GNSS
multipath/NLOS effects,” in Proc. UCET, 2020, pp. 1-4. DOI: 10.1109/

UCET51115.2020.9205423.

R. Sun, L. Fu, Q. Cheng, K.-W. Chiang, and W. Chen, “Resilient
pseudorange error prediction and correction for GNSS positioning in urban

areas,” IEEE Internet Things J., vol. 10, pp. 9979-9988, 2023.

S. Schaer, G. Beutler, L. Mervart, M. Rothacher, and U. Wild, “Global
and regional ionosphere models using the GPS double difference phase

observable,” in Proc. IGS Workshop, 1995, pp. 77-92.

Z. Nie, P. Zhou, F. Liu, Z. Wang, and Y. Gao, “Evaluation of orbit, clock
and ionospheric corrections from five currently available SBAS L1 services:
Methodology and analysis,” Remote Sens., vol. 11, no. 4, 2019, 1SSN: 2072-

4292. DOT: 10.3390/rs11040411.

L.-T. Hsu, “GNSS multipath detection using a machine learning approach,”

in Proc. 20th ITSC, 2017, pp. 1-6. DoI: 10.1109/ITSC.2017.8317700.

A. Elango, S. Ujan, and L. Ruotsalainen, “Disruptive GNSS signal
detection and classification at different power levels using advanced

deep-learning approach,” Proc. ICL-GNSS, pp. 1-7, 2022.

P. Borhani-Darian, H. Li, P. Wu, and P. Closas, “Detecting GNSS spoofing
using deep learning,” en, FURASIP J. Adv. in Sig. Pr., vol. 2024, no. 1,

Jan. 18, 2024, 1ssN: 1687-6180. DOI: 10.1186/s13634-023-01103-1.

J. Li, X. Liu, W. Zhang, M. Zhang, J. Song, and N. Sebe, “Spatio-temporal
attention networks for action recognition and detection,” IEEE Trans. on
Multimedia, vol. 22, no. 11, pp. 2990-3001, 2020. por: 10.1109/TMM. 2020.

2965434.

H. Yao, X. Tang, H. Wei, G. Zheng, and Z. Li, “Revisiting spatial-temporal

similarity: A deep learning framework for traffic prediction,” Proc. of the

https://doi.org/10.1109/UCET51115.2020.9205423
https://doi.org/10.1109/UCET51115.2020.9205423
https://doi.org/10.3390/rs11040411
https://doi.org/10.1109/ITSC.2017.8317700
https://doi.org/10.1186/s13634-023-01103-1
https://doi.org/10.1109/TMM.2020.2965434
https://doi.org/10.1109/TMM.2020.2965434

Bibliography 126

[81]

[82]

[33]

[84]

AAAI Conf. on Artificial Intelligence, vol. 33, no. 01, pp. 5668-5675, Jul.

2019. por: 10.1609/aaai.v33101.33015668.

Y. Zhao, F. Shen, G. Xu, and G. Wang, “A spatial-temporal approach based
on antenna array for GNSS anti-spoofing,” Sensors, vol. 21, no. 3, 2021, 1SSN:

1424-8220. por: 10.3390/521030929.

E. J. Keogh and M. J. Pazzani, “Derivative dynamic time warping,” in Proc.

SDM, 2001.

J. A. Donenfeld. “Wireguard: Fast, modern, secure VPN tunnel,”
www.wireguard.com, Accessed: Mar. 30, 2024. [Online|. Available:

https://www.wireguard.com/#about-the-project.

S. Khotijah. “K-means clustering of iris dataset,” Accessed: Jul. 21, 2025.
[Online|. Available: https://www . kaggle . com/ code /khotijahsl/k -

means-clustering-of-iris-dataset.

https://doi.org/10.1609/aaai.v33i01.33015668
https://doi.org/10.3390/s21030929
https://www.wireguard.com/#about-the-project
https://www.kaggle.com/code/khotijahs1/k-means-clustering-of-iris-dataset
https://www.kaggle.com/code/khotijahs1/k-means-clustering-of-iris-dataset

	Dedications
	Acknowledgements
	Abstract
	List of Figures
	List of Tables
	Introduction
	The Evolution of Smart Technologies: From Smart Planet to AIoT
	Challenges in AIoT: Scaling Devices and Accessibility
	High-level AIoT Platform
	Benefits of an AIoT platform
	Aim and Objectives of the Research
	Aim
	Objective
	Research Question
	Novelty

	Chapter Description

	Background and Survey
	Survey on IoT Communication Protocol
	REST/HTTP (HTTP/1.x)
	MQTT
	CoAP
	AMQP
	ZeroMQ
	gRPC (HTTP/2)

	Analysis of Existing High-level IoT Platforms
	Management
	Development
	Low-Code Configuration
	Communication
	Data processing
	Security

	IoTtalk Application
	Development Testbed with IoTtalk
	Smart City Application with IoTtalk
	Agriculture Application with IoTtalk
	AI Application with IoTtalk

	Critical Analysis of Related Work
	Data-cloud-based
	Data-centralized
	Data-decentralized
	Summary of Research Gap

	DAIoTtalk - A Data-Decentralized Pub-Sub AIoT Platform
	Chapter Introduction
	gRPC Pub-Sub Framework
	The Proposed DAIoTtalk
	Integration of DAIoTtalk
	Join Function
	Connectivity Configuration
	Agent Database
	Case Study: Deployment of AI Device-Object Pairing

	SewingTalk - A Product Completion Estimation System with Unsupervised Learning for Smart Sewing Machines
	GNSS-EStalk - A Novel AI Temporal-Spatial Analysis Approach for GNSS Error Source Recognition
	Chapter Introduction
	Related Works
	Methodology
	Noise Segmentation
	Noise Types and Dataset
	Preprocessing (S1)
	Referral Distance Matrix (S2)
	Noise Clustering and Pseudo-labeling (S3)
	Noise Classification (S4)

	Deployment of GNSS-EStalk
	Project A: Deployment of noise segmentation algorithm
	Project B: Deployment of noise classification models

	Evaluation
	Evaluation of Model Performance by Epoch
	Evaluation of Baseline and Hybrid Noise Classification
	Evaluation of Noise Clustering
	Noise Classification Experiment Using Pseudo-Labeling

	Chapter Conclusions

	Evaluation and Discussion
	Experiment Setup
	Impact of Packet Size
	Data-Centralized vs. Data-Decentralized Approaches
	Simulation of Offloading with the Join Function
	Case Study Experiment
	Evaluation on SewingTalk
	Evaluation on GNSS-EStalk
	Chapter Conclusion

	Conclusions
	Conclusions
	Furture Works

