Abstract

Background: Approximately 24% of stroke survivors develop Post-Stroke Depression (PSD), which is associated with poor psychological recovery, identity disruption, and reduced self-esteem. Psychological interventions often fail to address these broader challenges. The Wisdom Enhancement Timeline technique, which facilitates autobiographical reflection, has shown promise for depression in older adults. It has not yet been studied in a post-stroke population.

Aims: This study evaluated the effectiveness of the Wisdom Enhancement Timeline technique in stroke. It was hypothesised that wisdom would improve first, followed by identity/self-esteem and mood.

Method: A multiple-baseline single-case experimental design (SCED) was used across three stroke survivors. Daily Visual Analogue Scale (VAS) ratings measured mood, identity, self-esteem, and wisdom during the trial. The Patient Health Questionnaire-9 (PHQ-9) measured depressive symptoms at pre- and post-intervention. Visual analysis, Tau-U, Generalised Least Squares regression (adjusting for autocorrelation), and Piecewise regression evaluated intervention effects.

Results: Improvements were observed across all participants and outcomes. Tau-U analysis indicated small-to-large effect sizes across outcomes (effect size range: 0.30–0.92). Breakpoints confirmed wisdom improved first, followed by identity/self-esteem and mood last. Regression confirmed significant level shifts across all outcomes. All participants showed clinically meaningful reductions in PHQ-9 scores, operationalised as a shift from pre-intervention scores above 10 to post-intervention scores below 10.

Conclusions: Wisdom-based interventions could be beneficial in a stroke population, promoting improvements in mood, identity coherence, self-esteem and wisdom. The Wisdom Enhancement Timeline technique shows promise for PSD treatment, though further research is needed to validate these effects.

Introduction

Stroke survivors face cognitive, physical, and emotional challenges (Lincoln et al., 2013), with approximately 24% developing Post-Stroke Depression (PSD; Liu et al., 2023). It is associated with diminished quality of life and poorer recovery (Kim et al., 2018). Psychosocial factors, such as disrupted identity and low self-esteem, play a critical role in PSD (Chung et al., 2016; Lapadatu & Morris, 2019).

Cognitive Behavioural Therapy (CBT) is commonly recommended for treating PSD because of its focus on identifying and modifying unhelpful patterns of thinking and behaviour. While CBT has a robust evidence base in non-stroke populations, empirical evidence for its effectiveness in PSD remains mixed. A meta-analysis by Ahrens et al. (2022) found that CBT can significantly reduce depressive and anxiety symptoms in stroke survivors. However, the overall quality of included studies was low, with concerns about small sample sizes, methodological heterogeneity, and limited long-term follow-up. Similarly, the Cochrane review by Allida et al. (2020) concluded that psychological therapies, like CBT, may offer modest benefits, but the certainty of evidence was low, and effect sizes were smaller than those observed in non-stroke populations. Stroke-related challenges such as altered self-concept, memory and language impairments, and reduced motivation are known to disrupt the core processes required for CBT to be effective and may partially explain the smaller effect sizes observed in stroke (Broomfield et al., 2011; Chung et al., 2016; Lapadatu & Morris, 2019). Collectively, this evidence suggests that although CBT may benefit some individuals, standard psychological interventions may not fully address the unique cognitive, emotional, and identity-related challenges faced by stroke survivors, highlighting the need for more tailored, adaptive approaches.

Biases in autobiographical memory retrieval may contribute to both the high prevalence of depression and its resistance to treatment after stroke. The CaR-FA-X model (Williams, 2006) explains why depressed individuals struggle with autobiographical memory retrieval, often recalling overgeneralised memories due to three interacting mechanisms: capture and rumination (CaR), where repetitive negative thinking impedes recall; functional avoidance (FA), where emotionally intense memories are subconsciously avoided; and executive control deficits (X), which limit cognitive resources needed for specificity. In PSD, such deficits and biases in retrieval may be exacerbated by cognitive impairments, such as memory difficulties or executive dysfunction. These deficits could

inhibit reflective processes and access to personal wisdom while reinforcing avoidance tendencies and social withdrawal (Broomfield et al., 2011; Laidlaw, 2010, 2021; Laidlaw & Kishita, 2015).

Given these challenges, interventions that specifically enhance reflective processes and support adaptive autobiographical memory, such as wisdom-based approaches, may be particularly beneficial in PSD. Wisdom is commonly defined as a multidimensional construct encompassing cognitive flexibility, emotional regulation, self-reflection, and meaning-making, all of which support resilience and identity coherence (Ardelt, 2003; Jeste & Lee, 2019; Glück & Weststrate, 2022). Contemporary models such as the MORE model (Glück & Bluck, 2013) and the Integrative Model of Wise Behaviour (Glück & Weststrate, 2022) highlight self-reflection and flexible perspective-taking as central features of wisdom. These qualities have been empirically linked to greater psychological well-being, post-traumatic growth, and reduced depression, especially in populations facing significant adversity (Etezadi & Pushkar, 2013; Kadri et al., 2022; Lee et al., 2019; Webster et al., 2014).

Notably, evidence suggests that mood regulation tends to follow, rather than precede, successful meaning-making and self-affirmation in post-stroke adjustment (Beaumont, 2009).

Stroke survivors, who often experience profound disruptions in their self and meaning, may particularly benefit from interventions that cultivate these wisdom-related capacities. The Y model of identity change after acquired brain injury (Gracey et al., 2009) conceptualises post-stroke recovery as a process of re-evaluating, integrating, and reconstructing identity in the face of loss and change. Interventions that foster self-reflection, flexible thinking, and meaning-making, core aspects of wisdom, may therefore support adaptation, resilience, and identity reconstruction in this population (Gracey et al., 2009; Ownsworth, 2014). Although wisdom often emerges from significant life experiences (Bluck & Glück, 2004; Glück et al., 2005; Webster, 2007), it also requires structured reflective practices to foster adaptation (Weststrate & Glück, 2017). While wisdom has traditionally been considered a relatively stable trait, growing evidence suggests that it can also be experienced as a state, fluctuating within individuals depending on the situation and over time (Grossmann, 2017). Recognising wisdom as a malleable state opens the possibility that interventions like psychotherapy could help cultivate it. Supporting this, a randomised controlled trial (RCT) showed that therapy increased wisdom in older adults, with effects lasting at follow-up (Chow & Fung, 2021).

Laidlaw (2021) developed a wisdom enhancement model within CBT, using the Wisdom Enhancement Timeline to harness the benefits of wisdom. This technique helps individuals construct a timeline of life events, identify resilience, accept uncertainties, and develop a sense of agency. By systematically reflecting, clients cultivate a wise perspective, reframing challenges as opportunities for growth, mitigating overgeneralised thinking, and enhancing psychological well-being and coping.

The Wisdom Enhancement Timeline is included in UK clinical guidelines for CBT interventions for older adults (British Association for Behavioural and Cognitive Psychotherapies [BABCP], 2024), indicating potential applicability within NHS settings (Kadri et al., 2022). Preliminary evidence supports its effectiveness in treating depression in older adults (Kadri et al., 2022), yet it remains unevaluated in PSD. Given PSD's prevalence and the absence of specific psychotherapy guidelines, investigating wisdom-based interventions like the timeline technique could offer valuable treatment options.

This study seeks to answer the question: Does enhancing wisdom through the timeline technique improve mood in post-stroke depressed individuals? Additionally, does enhancing wisdom restore identity continuity and improve self-esteem? It is hypothesised that wisdom will improve first, followed by gains in identity clarity or self-esteem, as structured self-reflection fosters agency and self-worth. Finally, mood regulation is expected to improve last, aligning with findings that emotional stabilisation follows meaning-making and self-affirmation rather than co-occurring (Beaumont, 2009).

Methods

Design

A single-case experimental Multiple Baseline Design (MBD) was adopted. RCTs are often unfeasible in post-stroke depression research due to heterogeneous presentations, low participant numbers, and the need for tailored interventions (Broomfield et al., 2011; Kootker et al., 2012; Wang et al., 2018). In contrast, SCEDs offer a flexible and pragmatic alternative, allowing interventions to be adapted to the individual while providing rigorous within-person controls. MBDs, a robust form of SCED, further strengthen internal validity by staggering intervention onset across individuals, enabling the identification of causal effects and examination of lag effects across different psychological traits or outcomes (Kratochwill et al., 2010).

In keeping with Christ's (2007) recommendations, participants were randomly assigned, using Random.org, to pre-determined baseline durations (14, 21, or 28 days), with a non-concurrent intervention introduced to enhance flexibility. The intervention was the independent variable, while the dependent variables were mood, wisdom, identity, and self-esteem, measured repeatedly. Blinding was not implemented due to feasibility constraints.

Although stability is generally recommended before intervention, Krasny-Pacini and Evans (2018) suggest that five baseline data points are sufficient to distinguish natural fluctuations from intervention effects. Replication was built into the multiple-baseline design, with each participant serving as an independent test of the intervention's effects.

Procedure

Recruitment involved NHS clinical teams identifying potentially eligible individuals and seeking their permission to be contacted by the researcher. The first author conducted eligibility assessments and subsequently delivered the intervention. Sessions were delivered either in person at a local hospital or remotely via secure video conferencing, depending on participant preference and accessibility needs. Initially, a one-month follow-up review was planned. However, due to insufficient time, this was omitted.

Patient and Public Involvement (PPI)

Four individuals with lived experience of stroke were involved as Patient and Public Involvement (PPI) contributors in the development of this study. Each had previously experienced a stroke and provided independent feedback on all study materials, including the intervention workbook, outcome measures, participant information sheet, and consent forms.

PPI members reviewed all materials, including workbooks, participant information sheets, consent forms and measures for accessibility, clarity, and relevance, with particular attention to the wording, layout, and cognitive demands of the content to ensure suitability for a stroke-affected population. Their input informed adaptations to language, formatting, and overall presentation to enhance comprehension and inclusivity.

Intervention

Laidlaw's (2021) Wisdom Enhancement Timeline was delivered in six structured, manualised sessions (Table 1), guiding participants through autobiographical reflection using a visual timeline of meaningful life events.

[Insert Table 1 here]

Fidelity

Fidelity was monitored through recorded sessions and assessed using the Revised Cognitive Therapy Scale (CTS-R; James et al., 2001), which evaluates therapeutic quality and adherence to the CBT framework. Ratings were conducted by the third author, a Clinical Psychologist supervising the first author, to ensure competence and consistency in intervention delivery.

Participants

This study aimed to recruit at least three participants, consistent with established methodological standards for SCEDs, which recommend a minimum of three cases to enable replication and strengthen internal and external validity (Epstein et al., 2021; Kratochwill et al., 2013). Recruitment was conducted through local NHS stroke services. Inclusion criteria specified adults experiencing PSD who could provide informed consent and participate in psychological therapy. Exclusion criteria included severe cognitive impairment, acute psychiatric risk, medical instability, substance dependence, concurrent psychological therapy, participation in other clinical trials, or recent changes in psychotropic medication that had not yet stabilised.

Measures

Participants received a measure pack containing all measures, along with questions on medication use and adverse events.

Idiographic Visual Analogue Scale

The primary outcome was assessed using a Visual Analogue Scale (VAS), a widely used measure for tracking subjective experiences in clinical research (McCormack et al., 1988).

Participants rated their agreement with four daily statements on a vertically presented 10 cm scale, with higher scores indicating stronger agreement. VAS items were aligned with the research questions.

The four VAS items were as follows:

- 1. Today, my mood is good (VAS_mood)
- Today, I feel able to accept the person I am/Today, I feel like I am adapting to life after my stroke (identity; VAS_ID)
- 3. Today, I feel good about myself (self-esteem; VAS_SE)
- 4. Today, I feel that I can use the wisdom of my life to help me deal with my current problems (VAS_wisdom)

Standardised Measure

The Patient Health Questionnaire (PHQ-9; Kroenke et al., 2001) assessed pre-post clinical mood changes. This nine-item tool (scoring 0–27) reliably detects clinically significant depression and is validated for PSD screening across diverse demographic groups with minimal somatic symptom confounding (Blake et al., 2025; Katzan et al., 2021).

Ethical Statement

The study adhered to the Ethical Principles of Psychologists and Code of Conduct set by the BABCP and BPS. Ethical approval was granted by the South Yorkshire Research Ethics Committee (24/YH/0055) and the UK Health Research Authority. The study was registered on ClinicalTrials.gov (NCT06451965).

Analysis

Both single-case visual and statistical techniques were used following best practices (Harrington & Velicer, 2015; Manolov & Moeyaert, 2017). Visual analysis assessed phase variability using a ±25% stability envelope (Lane & Gast, 2014). Higher percentages indicate greater stability, and lower percentages reflect greater variability.

To assess whether VAS ratings during the intervention phase were higher than baseline, Tau-U (Parker et al., 2011) was implemented. It accounted for baseline trends, effect sizes, and phase non-overlap. Resistant to autocorrelation, Tau-U provides strong statistical power in small datasets (Parker et al., 2014). Interpretations followed Vannest and Ninci's (2015) guidelines, with baseline corrections applied as needed to prevent inflated effect sizes.

Piecewise regression (Center et al., 1985) complemented Tau-U findings by quantifying change over time within each phase. Level and slope changes were examined, estimating the breakpoint for outcome improvements. This approach modelled level shifts and gradual trends while considering data variability and abrupt changes (Tate & Perdices, 2018). To address autocorrelation, lag-1 autocorrelation was assessed, and if detected, Generalised Least Squares (GLS) regression with an AR(1) structure was applied (Somer et al., 2022).

Reliable change in PHQ-9 was measured via the Reliable Change Index (RCI; Jacobson & Truax, 1991), with Cronbach's α = 0.79 (De Man-Van Ginkel et al., 2012) and a stroke sample SD of 5.1 (Strong et al., 2021). Clinically Significant Change (CSC) could not be determined due to limited non-clinical-normative data for stroke populations. Given concerns about the comparability of PHQ-9 scores between stroke and non-stroke populations (Blake et al., 2025), data from other populations were not considered. Instead, a cut-off of 10 was applied to approximate clinically meaningful change based on validated studies (De Man-Van Ginkel et al., 2012; Negeri et al., 2021; Williams et al., 2005).

Results

Participant Flow

Three participants meeting the inclusion criteria consented to take part, all of whom completed the study. Each participant completed a baseline phase followed by six weekly sessions of the Wisdom Enhancement Timeline intervention.

All participants remained eligible throughout the study, including one who initiated psychotropic medication during the intervention phase.

Figure 1 shows the flow of participants enrolled in the study. Table 2 provides a summary of each participant.

[Insert Figure 1 here]

[Insert Table 2 here]

Analysis of Depression and Daily VAS Scores

Participants' data are presented in Figure 2. All participants completed the six intervention sessions with no dropouts or deviations. No adverse events were reported. Individual participant analyses are summarised in Table 3.

Participant 1

Baseline Tau-U trend analyses indicated no significant changes across identity (Tau = -0.0330, p = .8695, 90% CI [-0.363, 0.297]), self-esteem (Tau = 0.0110, p = .9563, 90% CI [-0.319, 0.341]), or wisdom (Tau = 0.0110, p = .9563, 90% CI [-0.319, 0.341]), while mood showed a small, non-significant upward trend (Tau = 0.1868, p = .3520, 90% CI [-0.143, 0.517]). These results suggest a stable baseline, supporting the internal validity of the intervention effects.

Baseline regression analyses further confirmed this pattern. Significant intercepts (β_0 , p < .05) were recorded across all outcomes, while slopes were non-significant: wisdom (β_1 = 0.002, p = .961), self-esteem (β_1 = 0.002, p = .907), identity (β_1 = 0.002, p = .961), and mood (β_1 = 0.037, p = .197).

Tau-U analyses of the intervention revealed statistically significant improvements across all outcome measures. Moderate-to-large effects were observed for wisdom (Tau = 0.69, p = .0001, 90% CI [0.395, 0.986]) and self-esteem (Tau = 0.69, p = .0001, 90% CI [0.395, 0.986]), while identity (Tau = 0.84, p < .001, 90% CI [0.546, 1.000]) and mood (Tau = 0.86, p < .001, 90% CI [0.568, 1.000]) produced large effects.

Treatment-phase regression analyses showed significant intercept shifts across all outcomes. Wisdom and self-esteem improved sharply (β_0 = 1.79, p < .001 for both), with non-significant slope changes (wisdom: β_1 = 0.149, p = .073; self-esteem: β_1 = 0.149, p = .097). Identity and mood demonstrated both significant level shifts and progressive increases (identity: β_1 = 0.173, p < .001; mood: β_1 = 0.082, p < .001).

Significant autocorrelation (Pearson's r > 0.90) was addressed using GLS models with an AR(1) correction. Breakpoint analysis indicated sequential change: wisdom on day 36, self-esteem on day 37, identity on day 38, and mood on day 40. 61 The participant's PHQ-9 score decreased from 11 (moderate depression) to 6 postintervention, suggesting a clinically meaningful but not statistically reliable change (RCI = -1.47).

Baseline Tau-U trend analyses revealed a significant increasing trend for self-esteem (Tau = 0.40, p = .0103, 90% CI [0.145, 0.664]), indicating the need for baseline correction. Wisdom (Tau = 0.09, p = .5459), identity (Tau = 0.038, p = .8091), and mood (Tau = -0.13, p = .3978) trends remained stable. These results suggest a stable baseline, supporting the internal validity of the intervention effects.

Baseline regression analyses supported these findings: identity showed a small but significant upward trend (β_1 = 0.092, p = .004), while slopes for wisdom (β_1 = 0.012, p = .555), self-esteem (β_1 = 0.009, p = .759), and mood (β_1 = -0.021, p = .392) were non-significant. All outcomes demonstrated significant intercepts (β_0 , p < .05).

Tau-U analyses of the intervention revealed statistically significant improvements across all outcome measures. Large intervention effects were observed for wisdom (Tau = 0.99, p < .001, 90% CI [0.736, 1.000]) and identity (Tau = 0.92, p < .001, 90% CI [0.674, 1.000]). Mood demonstrated a moderate effect (Tau = 0.56, p = .0003, 90% CI [0.305, 0.817]. Following baseline correction, self-esteem also showed a large intervention effect (Tau = 0.73, p < .001, 90% CI [0.568, 1.000]).

Treatment-phase regression analyses revealed significant intercept shifts across all outcomes: wisdom (β_0 = 5.03, p < .001), identity (β_0 = 2.65, p < .001), self-esteem (β_0 = 3.79, p < .001), and mood (β_0 = 2.33, p < .001). Slope changes were non-significant for wisdom (β_1 = 0.0739, p = .073) and self-esteem (β_1 = 0.1248, p = .097), while identity (β_1 = 0.0907, p < .001) and mood (β_1 = 0.0911, p < .001) showed significant progressive improvements.

Significant autocorrelation (Pearson's r > 0.90) was addressed using GLS models with an AR(1) correction. Breakpoint analysis revealed sequential change: wisdom (day 37), self-esteem (day 46), identity (day 49), and mood (day 51). The participant's PHQ-9 score reduced from 19 (moderately severe depression) to eight post-intervention.

Baseline Tau-U trend analyses identified a small, significant downward trend for wisdom (Tau = -0.2407, p = .0722, 90% CI [-0.461, -0.020]), indicating the need for baseline correction. Self-esteem (Tau = -0.1931, p = .1492, 90% CI [-0.413, 0.027]), identity (Tau = 0.0608, p = .6495, 90% CI [-0.159, 0.281]), mood (Tau = -0.02, p = .8900, 90% CI [-0.239, 0.202]), trends were non-significant. These results suggest a stable baseline, supporting the internal validity of the intervention effects.

Baseline regression analyses further supported these findings. Identity (β_1 = 0.007, p = .603), self-esteem (β_1 = -0.031, p = .093), and mood (β_1 = -0.004, p = .812) showed no significant slopes. Wisdom showed a slight but significant downward trend (β_1 = -0.057, p = .017). All outcomes showed significant intercepts (β_0 , p < .05), indicating consistent measurement levels during baseline.

Tau-U analyses of the intervention revealed statistically significant improvements across all outcome measures. Moderate intervention effects were observed for self-esteem (Tau = 0.4209, p = .003, 95% CI [0.188, 0.654]), identity (Tau = 0.3206, p = .024, 95% CI [0.087, 0.554]), and mood (Tau = 0.3027, p = .033, 95% CI [0.069, 0.536]). Following baseline correction, wisdom also showed a moderate intervention effect (Tau = 0.3886, p = .0062, 95% CI [0.155, 0.622]).

Treatment-phase regression analyses showed significant immediate level shifts for all outcomes: wisdom (β_0 = 1.97, p < .001), identity (β_0 = 1.93, p < .001), self-esteem (β_0 = 1.68, p < .001), and mood (β_0 = 2.59, p < .001). These were accompanied by progressive improvements across all outcomes: wisdom (β_1 = 0.144, p < .001), identity (β_1 = 0.163, p < .001), self-esteem (β_1 = 0.168, p < .001), and mood (β_1 = 0.112, p < .001).

Significant autocorrelation (Pearson's r > 0.90) was addressed with GLS models using AR(1) correction. Breakpoint analysis indicated changes beginning with wisdom (day 46), followed by identity and self-esteem (day 48), and mood (day 49). Importantly, the participant began antidepressant medication on day 38, which may have contributed to improvements in the latter part of the intervention. Their PHQ-9 score dropped from 19 to 8 (RCI = -3.33), indicating a reliable and clinically meaningful reduction.

Insert Figure 2 here]

[Insert Table 3 here]

Intervention Fidelity

The supervisor CTS-R ratings indicated consistent delivery of the intervention within the competent range, with total scores of 44.5/72 and 53/72, respectively. These scores suggest moderate to high adherence and competence in the delivery of CBT adapted for wisdom enhancement.

Discussion

This study evaluated the effectiveness of the wisdom enhancement timeline technique in addressing PSD using a single-case experimental design. Findings showed significant improvement in the primary outcome measures (VASs) for all participants with small-to-large effect sizes, and Reliable Change on the secondary outcome measure (PHQ-9) in two (P2 and P3). These results suggest that wisdom-based interventions offer a novel approach to PSD, particularly in addressing identity and self-esteem.

As hypothesised, gains in wisdom emerged after the timeline intervention (session 3), suggesting that structured autobiographical reflection played a key role in initiating change. A consistent pattern of improvement followed, with increases in wisdom preceding gains in self-esteem or identity, and subsequent improvement in mood. This sequence aligns with theoretical models that position wisdom as a driver of psychological adaptation (Ardelt, 2003; Jeste & Lee, 2019) and supports the adaptive trajectory proposed in the Y-shaped model of rehabilitation (Gracey et al., 2009). These findings highlight the potential of reflective, narrative-based techniques to facilitate emotional regulation and promote identity continuity.

Despite consistent trends, response trajectories varied. While Participants 1 and 2 showed early improvements followed by a plateau, Participant 3 exhibited gradual, sustained change across all outcomes. This variability may reflect individual differences in response style or external factors such as medication effects, social context, or readiness to engage with reflective processes. Notably, Participant 3 initiated antidepressant treatment during the intervention. While this complicates

interpretation, the latency of pharmacological effects suggests that the intervention likely contributed to early improvements, with medication potentially reinforcing gains in later sessions.

Several limitations should be acknowledged. The small sample size, although consistent with SCED standards, limits generalisability. Only one participant was assigned per baseline length, and the absence of follow-up data precludes conclusions about the persistence of change. The study relied on self-report measures, which may be influenced by mood-congruent recall or response bias, and did not include performance-based assessments of wisdom. Fidelity to the intervention was assessed by the supervisor, which may introduce bias due to their involvement in supporting the study. Additionally, no a priori criteria for clinical response were established, limiting the interpretability of individual outcomes.

Nevertheless, the study design offers several strengths. The multiple-baseline SCED approach enabled the detection of individual change processes while accounting for variability in stroke recovery. The use of Tau-U and piecewise regression provided robust analytical tools to quantify change and identify temporal patterns in outcome trajectories.

These findings have promising implications for PSD treatment. Wisdom-based interventions such as the Wisdom Enhancement Therapy offer a novel, structured approach that may complement existing psychological therapies by fostering self-reflection, meaning-making, and emotional resilience. Unlike traditional CBT, which primarily targets symptom reduction, wisdom-based techniques emphasise narrative coherence and identity reconstruction, which may be particularly relevant for stroke survivors.

Future research should evaluate the long-term efficacy of Wisdom Enhancement Therapy, its adaptability across age groups, and its integration within stroke rehabilitation pathways. Larger trials with standardised measures, follow-up assessments, and delivery by non-specialist staff could inform scalable implementation. Adapting intervention length based on individual needs, shorter formats for rapid responders, and extended support for others may optimise outcomes in routine care.

Figure Captions

Figure 1. Participant Flowchart – Flow diagram illustrating the recruitment, screening, and participation process for the study.

Figure 2. Visual Analogue Scale (VAS) Outcomes for Participants – Line graphs depicting changes in mood, identity, self-esteem, and wisdom over the intervention period for all three participants. Stability envelopes, regression lines, and breakpoints are marked to indicate changes.

Data Availability Statement

The data that support the findings of this study	are available from the	corresponding author	r, EH, upon
reasonable request.			

References

- Ahrens, J., Shao, R., Blackport, D., Macaluso, S., Viana, R., Teasell, R., & Mehta, S. (2023). Cognitive-behavioural therapy for managing depressive and anxiety symptoms after stroke: a systematic review and meta-analysis. *Topics in stroke rehabilitation*, *30*(4), 368–383. https://doi.org/10.10er80/10749357.2022.2049505
- Allida, S., Cox, K. L., Hsieh, C. F., Lang, H., House, A., & Hackett, M. L. (2020). Pharmacological, psychological, and non-invasive brain stimulation interventions for treating depression after stroke. *The Cochrane database of systematic reviews*, *1*(1). https://doi.org/10.1002/14651858.CD003437.pub4
- Ardelt, M. (2003). Empirical assessment of a three-dimensional wisdom scale. *Research on Ageing, 25*(3), 275–324. https://doi.org/10.1177/0164027503025003004
- Beaumont, S. L. (2009). Identity Processing and Personal Wisdom: An Information-Oriented Identity Style

 Predicts Self-Actualisation and Self-Transcendence. Identity: An International Journal of Theory and

 Research, 9(2), 95–115. https://doi.org/10.1080/15283480802669101
- Blake, J. J., Munyombwe, T., Fischer, F., Quinn, T. J., Van der Feltz-Cornelis, C. M., De Man-van Ginkel, J. M., Santos, I. S., Jeon, H. J., Köhler, S., Schram, M. T., Wang, J. L., Levin-Aspenson, H. F., Whooley, M. A., Hobfoll, S. E., Patten, S. B., Simning, A., Gracey, F., & Broomfield, N. M. (2025). The factor structure of the Patient Health Questionnaire-9 in stroke: A comparison with a non-stroke population. Journal of Psychosomatic Research, 188, 111983.
 https://doi.org/10.1016/J.JPSYCHORES.2024.111983
- Bluck, S., & Glück, J. (2004). Making things better and learning a lesson: Experiencing wisdom across the lifespan. Journal of Personality, 72(3), 543–572. https://doi.org/10.1111/J.0022-3506.2004.00272.X
- British Association for Behavioural and Cognitive Psychotherapies (BABCP). (2024). *NHS talking therapies:*Older people positive practice guide.
- Broomfield, N. M., Laidlaw, K., Hickabottom, E., Murray, M. F., Pendrey, R., Whittick, J. E., & Gillespie, D. C. (2011). Post-stroke depression: the case for augmented, individually tailored cognitive behavioural therapy. Clinical Psychology & Psychotherapy, 18(3), 202–217. https://doi.org/10.1002/CPP.711

- Center, B. A., Skiba, R. J., & Casey, A. (1985). A methodology for the quantitative synthesis of intra-subject design research. Journal of Special Education, 19(4), 387–400.

 https://doi.org/10.1177/002246698501900404
- Chow, E. O. W., & Fung, S. F. (2021). Narrative Group Intervention to Rediscover Life Wisdom Among Hong Kong Chinese Older Adults: A Single-Blind Randomised Waitlist-Controlled Trial. *Innovation in ageing*, *5*(3), igab027. https://doi.org/10.1093/geroni/igab027
- Christ, T. J. (2007). Experimental control and threats to internal validity of concurrent and nonconcurrent multiple baseline designs. Psychology in the Schools, 44(5), 451–459.

 https://doi.org/10.1002/PITS.20237
- Chun, H. Y. Y., Ford, A., Kutlubaev, M. A., Almeida, O. P., & Mead, G. E. (2022). Depression, Anxiety, and Suicide After Stroke: A Narrative Review of the Best Available Evidence. Stroke, 53(4), 1402–1410. https://doi.org/10.1161/STROKEAHA.121.035499
- De Man-Van Ginkel, J. M., Gooskens, F., Schepers, V. P. M., Schuurmans, M. J., Lindeman, E., & Hafsteinsdóttir, T. B. (2012). Screening for Post-Stroke Depression using the Patient Health

 Questionnaire. Nursing Research, 61(5), 333–341. https://doi.org/10.1097/NNR.0B013E31825D9E9E
- Epstein, L. H., Bickel, W. K., Czajkowski, S. M., Paluch, R. A., Moeyaert, M., & Davidson, K. W. (2021). Single
 Case Designs for Early Phase Behavioural Translational Research in Health Psychology. Health
 Psychology: Official Journal of the Division of Health Psychology, American Psychological
 Association, 40(12), 858. https://doi.org/10.1037/HEA0001055
- Etezadi, S., & Pushkar, D. (2013). Why are wise people happier? An explanatory model of wisdom and emotional well-being in older adults. Journal of Happiness Studies: An Interdisciplinary Forum on Subjective Well-Being, 14, 929–950. https://doi.org/10.1007/s10902-012-9362-2
- Glück, J., & Bluck, S. (2013). The MORE life experience model: A theory of the development of personal wisdom. In M. Ferrari & N. M. Weststrate (Eds.), *The scientific study of personal wisdom* (pp. 75–97). Springer. https://doi.org/10.1007/978-94-007-7987-7 4
- Glück, J., Bluck, S., Baron, J., & McAdams, D. P. (2005). The wisdom of experience: Autobiographical narratives across adulthood. International Journal of Behavioural Development, 29(3), 197–208. https://doi.org/10.1080/01650250444000504

- Glück, J., & Weststrate, N. M. (2022). The Wisdom Researchers and the Elephant: An Integrative Model of Wise Behaviour. Personality and Social Psychology Review, 26(4), 342–374. https://doi.org/10.1177/10888683221094650
- Gracey, F., Evans, J. J., & Malley, D. (2009). Capturing process and outcome in complex rehabilitation interventions: A "Y-shaped" model. *Neuropsychological rehabilitation*, *19*(6), 867–890. https://doi.org/10.1080/09602010903027763
- Grossmann, I. (2017). Wisdom in context. *Perspectives on Psychological Science*, *12*(2), 233–257. https://doi.org/10.1177/1745691616672066
- Harrington, M., & Velicer, W. F. (2015). Comparing Visual and Statistical Analysis in Single-Case Studies

 Using Published Studies. Multivariate Behavioural Research, 50(2), 162.

 https://doi.org/10.1080/00273171.2014.973989
- Jacobson, N. S., & Truax, P. (1991). Clinical Significance: A Statistical Approach to Defining Meaningful
 Change in Psychotherapy Research. Journal of Consulting and Clinical Psychology, 59(1), 12–19.

 https://doi.org/10.1037/0022-006X.59.1.12
- James, I. A., Blackburn, I.-M., Reichelt, F. K., Garland, A., & Armstrong, P. (2001). Manual of the Revised Cognitive Therapy Scale (CTS-R).
- Jeste, D. V., & Lee, E. E. (2019). The Emerging Empirical Science of Wisdom: Definition, Measurement, Neurobiology, Longevity, and Interventions. Harvard Review of Psychiatry, 27(3), 127–140. https://doi.org/10.1097/HRP.00000000000000000
- Kadri, A., Leddy, A., Gracey, F., & Laidlaw, K. (2022). Wisdom enhancement and life skills to augment CBT outcomes for depression in later life: a series of N-of-1 trials. Behavioural and Cognitive Psychotherapy, 50(5), 508–527. https://doi.org/10.1017/S1352465822000224
- Katzan, I. L., Thompson, N., Schuster, A., Wisco, D., & Lapin, B. (2021). Patient-Reported Outcomes Predict Future Emergency Department Visits and Hospital Admissions in Patients With Stroke. Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease, 10(6), e018794. https://doi.org/10.1161/JAHA.120.018794

- Kim, J. Y., Kang, K., Kang, J., Koo, J., Kim, D. H., Kim, B. J., Kim, W. J., Kim, E. G., Kim, J. G., Kim, J. M.,
 Kim, J. T., Kim, C., Nah, H. W., Park, K. Y., Park, M. S., Park, J. M., Park, J. H., Park, T. H., Park, H.
 K., ... Bae, H. J. (2018). Executive Summary of Stroke Statistics in Korea 2018: A Report from the
 Epidemiology Research Council of the Korean Stroke Society. Journal of Stroke, 21(1), 42.
 https://doi.org/10.5853/JOS.2018.03125
- Kootker, J.A., Fasotti, L., Rasquin, S.M. *et al.* The effectiveness of an augmented cognitive behavioural intervention for post-stroke depression with or without anxiety (PSDA): the Restore4Stroke-PSDA trial. *BMC Neurol* 12, 51 (2012). https://doi.org/10.1186/1471-2377-12-51
- Krasny-Pacini, A., & Evans, J. (2018). Single-case experimental designs to assess intervention effectiveness in rehabilitation: A practical guide. Annals of Physical and Rehabilitation Medicine, 61(3), 164–179. https://doi.org/10.1016/J.REHAB.2017.12.002
- Kratochwill, T. R., Hitchcock, J. H., Horner, R. H., Levin, J. R., Odom, S. L., Rindskopf, D. M., & Shadish, W. R. (2013). Single-case intervention research design standards. *Remedial and Special Education*, 34(1), 26–38. https://doi.org/10.1177/0741932512452794
- Kroenke, K., Spitzer, R. L., & Williams, J. B. W. (2001). The PHQ-9: validity of a brief depression severity measure. Journal of General Internal Medicine, 16(9), 606–613. https://doi.org/10.1046/J.1525-1497.2001.016009606.X
- Laidlaw, K. (2010). Are attitudes to ageing and wisdom enhancement legitimate targets for CBT for late-life depression and anxiety? Nordic Psychology, 62(2), 27–42. https://doi.org/10.1027/1901-2276/A000009
- Laidlaw, K. (2021). Cognitive behavioural therapy with older people. In A. Wenzel (Ed.), *Handbook of cognitive behavioural therapy: Applications* (pp. 751–771). American Psychological Association. https://doi.org/10.1037/0000219-024
- Laidlaw, K., & Kishita, N. (2015). Age-appropriate augmented cognitive behaviour therapy to enhance treatment outcomes for late-life depression and anxiety disorders. GeroPsych: The Journal of Gerontopsychology and Geriatric Psychiatry, 28(2), 57–66. https://doi.org/10.1024/1662-9647/A000128

- Lane, J. D., & Gast, D. L. (2014). Visual analysis in single case experimental design studies: Brief review and guidelines. Neuropsychological Rehabilitation, 24, 445–463. https://doi.org/10.1080/09602011.2013.815636
- Lapadatu, I., & Morris, R. (2019). The relationship between stroke survivors perceived identity and mood, self-esteem and quality of life. Neuropsychological Rehabilitation, 29(2), 199–213. https://doi.org/10.1080/09602011.2016.1272468
- Lincoln, N. B., Brinkmann, N., Cunningham, S., Dejaeger, E., De Weerdt, W., Jenni, W., Mahdzir, A., Putman, K., Schupp, W., Schuback, B., & De Wit, L. (2013). Anxiety and depression after stroke: a 5-year follow-up. Disability and Rehabilitation, 35(2), 140–145.

 https://doi.org/10.3109/09638288.2012.691939
- Liu, L., Xu, M., Marshall, I. J., Wolfe, C. D., Wang, Y., & O'Connell, M. D. (2023). Prevalence and natural history of depression after stroke: A systematic review and meta-analysis of observational studies. *PLoS medicine*, *20*(3), e1004200. https://doi.org/10.1371/journal.pmed.1004200
- Manolov, R., & Moeyaert, M. (2017). Recommendations for Choosing Single-Case Data Analytical Techniques. Behaviour Therapy, 48(1), 97–114. https://doi.org/10.1016/J.BETH.2016.04.008
- McCormack, H. M., Horne, D. J. de L., & Sheather, S. (1988). Clinical applications of visual analogue scales: a critical review. Psychological Medicine, 18(4), 1007–1019. https://doi.org/10.1017/S0033291700009934
- Negeri, Z. F., Levis, B., Sun, Y., He, C., Krishnan, A., Wu, Y., Bhandari, P. M., Neupane, D., Brehaut, E., Benedetti, A., & Thombs, B. D. (2021). Accuracy of the Patient Health Questionnaire-9 for screening to detect major depression: updated systematic review and individual participant data meta-analysis.
 BMJ, 375, 2183. https://doi.org/10.1136/BMJ.N2183
- Ownsworth, T. (2014). Self-identity after brain injury. Psychology Press.
- Parker, R. I., & Vannest, K. J. (Eds.). (2014). Non-overlap analysis for single-case research. In T. R. Kratochwill & J. R. Levin (Eds.), *Single-case intervention research: Methodological and statistical advances* (pp. 127–151). American Psychological Association. https://doi.org/10.1037/14376-005

- Parker, R. I., Vannest, K. J., Davis, J. L., & Sauber, S. B. (2011). Combining nonoverlap and trend for single-case research: Tau-U. Behaviour Therapy, 42(2), 284–299.

 https://doi.org/10.1016/J.BETH.2010.08.006
- Somer, E., Gische, C., & Miočević, M. (2022). Methods for Modelling Autocorrelation and Handling Missing

 Data in Mediation Analysis in Single-Case Experimental Designs (SCEDs). Evaluation and the Health

 Professions, 45(1), 36–53.

 https://doi.org/10.1177/01632787211071136/ASSET/IMAGES/LARGE/10.1177_01632787211071136

 -FIG2.JPEG
- Strong, B., Fritz, M. C., Dong, L., Lisabeth, L. D., & Reeves, M. J. (2021). Changes in PHQ-9 depression scores in acute stroke patients shortly after returning home. PLoS ONE, 16(11), e0259806. https://doi.org/10.1371/JOURNAL.PONE.0259806
- Tate, R. L., & Perdices, M. (2018). Single-case experimental designs for clinical research and neurorehabilitation settings: Planning, Conduct, Analysis and Reporting. Single-Case Experimental Designs for Clinical Research and Neurorehabilitation Settings: Planning, Conduct, Analysis and Reporting, 1–270. https://doi.org/10.4324/9780429488184
- Vannest, K. J., & Ninci, J. (2015). Evaluating intervention effects in single-case research designs. Journal of Counselling and Development, 93(4), 403–411. https://doi.org/10.1002/JCAD.12038
- Wang, S. Bin, Wang, Y. Y., Zhang, Q. E., Wu, S. L., Ng, C. H., Ungvari, G. S., Chen, L., Wang, C. X., Jia, F. J., & Xiang, Y. T. (2018). Cognitive behavioural therapy for post-stroke depression: A meta-analysis. Journal of Affective Disorders, 235, 589–596. https://doi.org/10.1016/J.JAD.2018.04.011
- Webster J. D. (2007). Measuring the character strength of wisdom. *International journal of aging & human development*, *65*(2), 163–183. https://doi.org/10.2190/AG.65.2.d
- Webster, J. D., Westerhof, G. J., & Bohlmeijer, E. T. (2014). Wisdom and mental health across the lifespan. *The Journal of Gerontology. Series B, Psychological sciences and social sciences*, 69(2), 209–218. https://doi.org/10.1093/geronb/gbs121
- Weststrate, N. M., & Glück, J. (2017). Hard-earned wisdom: Exploratory processing of difficult life experiences is positively associated with wisdom. *Developmental Psychology*, *53*(4), 800–814. https://doi.org/10.1037/dev0000286

- Williams, J. M. G. (2006). Capture and rumination, functional avoidance, and executive control (CaRFAX): Three processes that underlie over-general memory. *Cognition & Emotion*, 20(3–4), 548–568. https://doi.org/10.1080/02699930500450465
- Williams, L. S., Brizendine, E. J., Plue, L., Bakas, T., Tu, W., Hendrie, H., & Kroenke, K. (2005).

 Performance of the PHQ-9 as a screening tool for depression after stroke. *Stroke*, *36*(3), 635–638. https://doi.org/10.1161/01.STR.0000155688.18207.33