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Abstract

This thesis has a single goal, namely the establishment of a form of Frobenius reciprocity for finitary
birepresentations of multifiat 2-categories.

Multifiat 2-categories are the 2-categorical analogues of finite dimensional associative algebras with
involution. Our first novel result is an explicit form of correspondence between birepresentations,
morphisms of birepresentations and modifications on the one hand, and coalgebras, bicomodules and
morphisms of bicomodules on the other hand. In the latter context, there is a natural definition of
induction of birepresentations along a pseudofunctor, while in the former, there is a natural notion of
restriction, completely analogous to other representation theories. We use our correspondence to
define both in the same setting, that of coalgebras and bicomodules.

We show that restriction and induction are adjoint as pseudofunctors, given some technical

assumptions.
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Introduction

In this thesis, we recover a form of Frobenius reciprocity for finitary birepresentations of multifiat 2-
categories; that is, given a pseudofunctor .# between multifiat 2-categories, we find an biadjunction,
in the bicategorical sense, between the induction and restriction pseudofunctors along %, under some

technical conditions on .%.

Representation theory, the study of how algebraic objects act on other - usually geometric - objects,
has been a staple of abstract algebra since at least 1896, with the work of Ferdinand Frobenius in
[ ]. Within a decade of Frobenius' paper, acclaimed results such as Schur's lemma ([ ]) and
Burnside's theorem ([ ]) appeared, placing representation theory in a position of central importance
in the study of finite groups. Later, representation theory was the major tool of the so-called Enormous
Theorem, also known as the classification of finite simple groups ([ ])- The tools of representation
theory have been used in most fields of algebra including, for example, Lie groups and algebras (| D,

associative algebras (| ]), and p-adic groups (| D).

Categorification - the process of replacing sets with categories, functions with functors and so forth,
and studying the new richer structure obtained - has become an essential tool in the study of algebras,
used from as early as 2008 to understand properties of symmetric groups; see, for example, [ ]
2-representations, first defined in [ |, serve the role of representations from the classical setting
and are equally ubiquitous in understanding the rich structure of categorified algebras. Naturally, one
might expect fundamental representation-theoretic results to have analogies in the 2-categorical setting,
and already several have been recovered: in [ |, the authors find a 2-analogue of Schur's Lemma
for a nice class of simple transitive 2-representations, which are the analogue of simple representations;
in [ |, the authors find a Jordan-Holder theory for finitary 2-categories, the analogue of finite-
dimensional algebras. Frobenius reciprocity is another fundamental result that naturally suggests a

2-analogue, but the particulars are somewhat subtle. For finite groups, Frobenius reciprocity is the
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result that restriction and induction are adjoint on both sides (often confusingly called biadjoint), while
for modules over associative algebras induction is only left adjoint to restriction: this latter, weaker
result is what we recover for multifiat 2-categories.

To find such a result, we need a number of ingredients. Firstly, a pair of pseudofunctors R and
P called induction and restriction, constructed in Chapters 3 and 4 respectively. Secondly, a pair
of 2-natural transformations 7 : l1zgicome — RP and € : PR — lggicom,,, called the unit and
counit, constructed in Chapters 5 and 6 respectively. Finally, a pair of modifications 7 and o called the
triangulators, satisfying the swallowtail diagrams, which are covered in Chapter 7. For full details of the
construction, see Definition 1.1.6.

In Chapter 1, we cover the basic ideas used throughout the thesis. Bicategories and their associated
notions are presented with some fundamental results, though some familiarity with their properties is
assumed. (Multi)fiat 2-categories, originally introduced in | |, are described here, being the natural
2-analogue of cellular algebras (alternatively, of finite dimensional associative algebras with involution).
These are the 2-categories for which we recover Frobenius reciprocity. We define injective abelianisations
following the approach of | |, a construction which lets us locally move between structure-rich
abelian categories and their well-behaved injective objects, even when our original 2-category is far
from locally abelian. We define coalgebra 1-morphisms and internal cohoms, originally introduced in
[ | and used as the basis for our definition of induction. We also lay the foundation for the
main result of Chapter 2.

In Chapter 2, we re-examine Theorem 4.26 from | ], where % is the projective abelianisation

as defined (in dual form) in Proposition 1.2.11:

Theorem 0.0.1 (Biequivalence between cyclic birepresentations and algebra 1-morphisms). Given a
(multi)fiat 2-category %, there is a biequivalence between the bicategory of biprojective bimodule 1-

morphisms over €, and the bicategory of cyclic representations of €.
This theorem has an obvious dual, which is the version more useful to us:

Theorem 0.0.2 (Biequivalence between cyclic birepresentations and coalgebra 1-morphisms). Given
a (multi)fiat 2-category €, there is a biequivalence between the bicategory of biinjective bicomodule

1-morphisms over %, and the bicategory of cyclic representations of %.

Moreover, as a novel result, we construct an explicit form for this equivalence, which allows us to

smoothly move between these settings.
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Chapter 3 defines induction along a pseudofunctor .%, and shows that induction is itself
pseudofunctorial. Induction was first considered in [ ] Lemma 3.11, though not by that name.

Induction and restriction are most naturally constructed in different settings. Induction has no
direct definition for representations; indeed, without the equivalence between cyclic representations and
representations over a coalgebra 1-morphism, it is unclear how one could define it. However, it can
be straightforwardly defined for coalgebra and bicomodule 1-morphisms. Meanwhile, restriction has
a simple presentation in the context of birepresentations but a more opaque definition for coalgebra
1-morphisms. We choose to work in the bicomodule setting, which requires us to use Theorem 0.0.2 to
move between settings.

Chapter 4 defines restriction along .# and shows that it is also a pseudofunctor. When working
in the bicomodule setting, some subtle technical conditions arise. In particular, we move from ¥ to a
construction called €®, defined in Proposition 4.1.3, and take care to show this does not reduce the
generality of our result. We also introduce the simplifying assumption of essential 1-surjectivity for %
to prove a technical lemma. This assumption makes the constructions of Chapter 5 more tractable.

Chapters 5-7 are concerned with constructing the adjunction between restriction and induction. The
bulk of these chapters are centred on the many coherence requirements for a 2-adjunction.

Together, these prove our main result:

Theorem 0.0.3 (Frobenius reciprocity for fiat 2-categories). If % : € — 2 is an essentially 1-surjective
k-linear pseudofunctor of (multi)fiat 2-categories, then induction and restriction along .# are biadjoint

as pseudofunctors.
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Preliminaries

In this section, we discuss the fundamentals used through the rest of the thesis, and fix some of
our notation. We start with a rundown of bicategories, following [ |, and provide a proof for a
common folk theorem. We next look at (multi)fiat categories, first introduced in | ]. Then we
discuss coalgebra and (bi)comodule 1-morphisms, which were first used to study birepresentations in
[ |; we loosely follow the expositional structure of | , Section 3]. After this, we discuss
birepresentations, followed by the internal cohom construction, which was first introduced in | |
as a dual to a construction from | J; in | ], this construction was called the internal
hom, but we follow the convention of later papers in calling it the internal cohom.

Throughout, we let k be a field.

1.1 Basic Bicategories

Definition 1.1.1 (Bicategory). A bicategory & consists of the following data:
e A collection of objects 0b(%’), written i, j, k, ...;

e For each pair of objects i, j, a category € (i, ), whose objects are I-morphisms F,G, H, .. and

morphisms are 2-morphisms «, 3,7, ...;

e Functors
cijr € (J k) x € (i,j) — €(is k)
(G,F)—~ GoF =GF
(o, ) — axf
and

Ii:1—%(i,0),



14 Chapter 1: Preliminaries

where 1 is here the one-object, one-morphism category;

e Natural isomorphisms

lxcijk

C(k,m)x €(j4,k) x €(i,7)

@ijhkm
Cikm Xl‘/ %7 lcmm

€ (5,m) x € (i,])

@ (k,m) x €i, k)

€ (i,m)

Cijm

C(i,7) x1

€(i,5) x €(i,1) Ciij € (i,7)

(5,3) x €0, 7) ciij %(i,5)

and thus 2-morphisms

AQHGF (HG)F—)H(GF)
T’FZFOIZ‘—>F

lp:IljoF = F.

These are such that the following diagrams commute:

(KH)G)F as1 (K(HG))F
a / \ a
/ \
(KH)(GF) K((HG)F)
\ /
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r*l 1%l
> K

GF
We say that % is a 2-category if the associators a and unitors [, are identities.
In every example we look at, the associator a is trivial, so the pentagram diagram automatically
commutes. In a 2-category, both diagrams automatically commute.
Any bicategory satisfies the interchange law: (Fy x Fy) o (G1 * G2) = (Fy 0 G1) * (Fy 0 Ga).

<

We work with 2-categories ¢, & etc. unless otherwise specified; it is possible that results still hold
for the bicategory case, if appropriate associators and unitors are added in, but we do not check this.
On the other hand, we work with colax functors (at least initially). We give the definition below (in

the case where associators are trivial) for reference:

Definition 1.1.2 (Colax functor). Given bicategories ¢ and &, a colax functor from € to & consists

of the following data:
e A map F : 0b(%) — ob(2)
e Functors F : € (i,j5) — 2(F (i), F(j))
o Natural transforms
Cijk

€5, k) x € (i,])

FxF 4/]; F

ijk

% (i, k)

P(F(4), F (k) x D(F (i), F(j)) P(F (i), F(k))

—
CF(&)F () F (k)

1 €(i,9)

I;

FO
Zﬂ Fiyi

& D(F (i), F(i)

(and hence 2-morphisms ]:%,F : F(GoF) — F(G) o F(F) and F? : F(1;) = 1£4;)

such that the following commute:
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F? 1% F2

! l

F(HG)F(F) — 21— F(H)F(G)F(F)

F(Fol) —2 F(F)F(I) 22% F(F)Ixg

l
l l
F(F) F(F)

We call the first of these three diagrams the coassociativity diagram, and the last two the counitality
diagrams. Together, we call these the higher coherences for colax 2-functors.

If the ]-"Z-ij and F? are natural isomorphisms, then we say F is a pseudofunctor; if they are identity
natural transformations, we say JF is a strict 2-functor, or just a 2-functor. We write .7:1;,3 for (]_-22]1{:)—1
and F; 0 for (F?)~L.

<

Definition 1.1.3 (Colax 2-natural transform). A colax 2-natural transform
r-¥>-6Gg:¢—9,

where F,G are colax functors, consists of the following data:
e For each object i € €, a 1-morphism I'; € Z(F(i),G(i));
e For each pair of objects 4, j € €, a natural transform

Cli,j) ——L—— D(F(i), F(j))

Ql I:% l(rg)*

2(G(),60)) — 5 2(F(D).9()
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and therefore 2-cells I'p : T'j o F(F') — G(F') o T;.

These are such that the following diagrams commute:

Iy 0 F(GF) — G(GF)oT;
1xF2 G2x1
T 0 F(G) o F(F) —"— G(G) oT; 0 F(F) —*— G(G) o G(F)oT;
I'; 0 F(1y) Iy, G(1;) oI
1% F0 GOx1
! !
Fi o) 1]:(1) 19(2) o Pz
\ ) \ / l /
I

We call these the higher coherences for colax 2-natural transforms
If the I';; are natural isomorphisms, then this is a strong 2-natural transform; when they are identities
it is a strict 2-natural transform.

<

Definition 1.1.4 (Adjoint equivalence in a bicategory). Given objects i, j of a bicategory &, we say
¢ and j are equivalent if there are 1-morphisms F' : i — j and G : j — ¢ such that GF = 1; and
FG =1;. We call F' an equivalence (in €), and similarly for G. In particular, we say small categories
C and D are equivalent if they are equivalent as objects in the bicategory of small categories.

We say i and j are adjoint equivalent if there are 2-morphisms v : 1; — GF and ¢ : FG — 1; such
that ((x1p)o(lpxv): F — FGF — F and (1g*{) o (y*1lg) : G — GFG — G are the identities

on F' and G respectively. <

Definition 1.1.5 (Modification). A modification

vy I'=2ANF->G:¢€—9

between colax 2-natural transforms I', A consists of 2-morphisms ~; : I'; — A; such that, for any

1-morphism F': i — j, the following diagram commutes:
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I'joF(F) —v*l— Ajo F(F)

FF AF
| |
G(F) oy — 1vi—> G(F) o A;

Finally, we define the central object of the paper:

Definition 1.1.6 (Biadjunction). Given 2-categories ¢ and &, F : € — & is said to be left biadjoint
to G : 2 — € (G right biadjoint to F; F and G biadjoint), written F = G, if there are strong 2-
natural transforms 1 : 14 — GF and € : G — 14, respectively called the unit and counit, along with

modifications

F —F(n)— FGF g —nmw— GFG
2| 7

z €r = G(e)

| l

F g

called triangulators, satisfying the swallowtail diagrams, given below:

1y n—— GF
I /WW/Q'JIW) 1y
GF — nor —s GFGF €9 - \n
Zf G(ex) GF

and



1.1 Basic Bicategories 19

FG

I
m

g = FGFG — 7o — FG

AN

/7
FG €E—— 1@

Note that, since n; : i — GF (i) is a 1-morphism for an object i, 1, : GF(1;) 0 ni — NgF ;) © N is a
2-morphism, and similarly for e.,. So these diagrams make sense.

<
We record the following useful propositions:

Proposition 1.1.7. Suppose ' : F — G : ¥ — Z is a strong 2-natural transform of pseudofunctors, and
suppose further that for each 7 an object of €, I'; is an equivalence in . Then I' is an adjoint equivalence
of functors, i.e. an adjoint equivalence in the 2-category [¢, 2] (pseudofunctors .% : ¢ — 9, strong

transforms and modifications).

Proof : Since each T'; is an equivalence, recall that equivalent 1-categories are adjoint equivalent.
So WLOG, there is a 1-cell I‘;l in 9, along with a pair of invertible 2-cells v; : 1z — I‘;lFi and

G FZ-FZ._I — 1g(;) satisfying

F(i) —Ti— G(i) F(7)
7 AN
r;! b = r;
(s AN
F(i) —1i— G(4) G(7)
and
G(i) —rit— F(i) G(i)
4@/’ ‘ \ )
I - Ny
ya
G(i) — 17t — F(i) F(4)

Moreover, since we have 2-cells I'r : T'j o F(F) — G(F) oI'; for each F' : i — j, we can define

(T HE: 171 0o G(F) — F(F)oT;! as the following composition:
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/(;Fl i
J/ AL

We need to show that the T';! together with the (I'"!)r form a 2-natural transform T': G — F;

and that there are invertible modifications v : 17 — I'"!I"and ¢ : TT~! — 15 such that

-1 = r

| < \
F—T1r—¢G g

agd—rflﬂ}" g
e \

r ) = -1

L, AN
G—r'— F F

We start with the first claim.
To show that I'"! is a 2-natural transformation, we first show that (I'"!)x is natural in F. But
(Tr)~!is natural in F since I'r is, and neither (;)~! nor (v;)~! depend on F. So this is immediate.

Next, we show that the following diagrams commute:

-1

F(GF)oT;!

1%G2 F2x1

s 0G(G) o G(F) —=— F(G)oT; 0 G(F) ——— F(G)o F(F)oT;
(T~ Y=l J (e
F;l 0G(l;)) ———— @), ——— F(Ly) ol“;1

1xG0 FOx1

J J

Ffl o 19’(1) 1.7:(2) ol

7
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To see that | 1 | commutes, consider the following diagram:

(T YHer

I oG(GF) F(GF)oT;t
/I@LZ @ \amuix
I o G(GF) o Ty o Tt ST T} 0Ty 0 F(GF) 0T}
1%G2%1 @ 14 F2%1
1 ! —1 Ll el 1 1 140G 1 - !
i ) i . o'y o o o
®) ' 0G(G)ogG(F)ol;ol; I 0oG(G)oTjo F(F)oT; Iy 0Tk o F(G) o F(F)oI(9)
Tt ® gt ® e
G2 . 140 1 M 105 el N
g I 6 G(G) 0T, 0T 0 G(F)oTioT 1 5 Tl 0 G(G)oT; 0T 0T 0 F(F)oT T 0Ty 0 F(G) o Tl 0T 0 F(F) o T 7o
k A i k i°ty J i k j J i
\ /Z,m{ — @ \z‘m_ix /
1+¢7t ® LGt H,»\,Hoﬂ»o.ﬁﬁﬂvoﬂwﬂomﬁﬂvoﬂgoﬁi Fle ® Fele
\ @ ¢! — T @ /
_— i Tk —_—
I;'og(G)oT; ol o G(F) — Il o0 F(G) oI 0 G(F) (13 F(@)oT; o G(F)oTol;! - F(G)oTj ol o F(F) ol
rﬁli\4 S :@v /e,Li ZL\« @w%w #1 ~
— ! — T T
Il o G(G) o G(F) ~ F(G) ol o G(F) ~ F(G)o F(F)ol;!
(T Hg*1 J 1+(0 1) p

@-@ commute by definition of (I'™!)y;
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@@ commute by the interchange law;

and commutes by coherence for I'.

Therefore the outer rectangle commutes, that is, commutes.

To see that | 2| commutes, consider the following diagram:

It og(1y) : F(1;)oT; !
~ A
1x¢H 1y
G < @ P
I loG(l;) o0l ! y Dol oly 0 F(1;) o5
1550 ®s ° 9l vf PHioh 1¥I 41 i 00 .72 o @@ FOx1
1xG%%1 1xF0%1
o LG F -1 @ -1 % 177wl S
H,S. 0 HQQV — HJS. 0 HQQV 0 H;s 0 HJ@ H,@ ) H,s ) H.\WQV o) HJ@. — H.\WQV ) H,s
~ -
1xlx1=rxl Txrx1=1x%l
~ '
@ ﬁ.L ol’;o H«.L @

r !
e N
1! @ 7
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@ commutes by definition of (I'"1)y;

@-@ commute by the interchange law;

@ commutes by higher coherence for I';

@ commutes by our choice of v and (.

Therefore, the outer diagram commutes, that is, | 2| commutes. So I'"! is a 2-natural transform,

and is clearly strong by construction of (I'"1)p.

Next, we show that the ~; and (; assemble to modifications 7 : 1 — I'"'T"and ¢ : TT~! — 1g,

that is, that the following diagrams commute:

Ly o F(F) 75%1 (T7'T)j 0 F(F)

T 'Dg

|

F(F)olry Ly F(F)o (1),

(IT~1); 0 G(F) ¢*1 lg() © G(F)

(rr—YHe

|

G(F)o (TT71); L G(F) o 1g()

To see that commutes, consider the following diagram:
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17y 0 F(F) 7+l 2 (I7'D); 0 F(F)

5 IoG(F)oly

\@ :@Yi

:ﬂyﬂﬂ oG(F)oT;ol; ol  (6)@ ')

Aty (1) LT s
/' v
It oTjoF(F) Ly, » T oTjo F(F)oT; ol
- / —
Nﬁ. 11 @ V; H*H/\r 1
» F(F)o (I7T);
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@-@ commute trivially;

@—@ commute by the interchange law;

and (6) commutes by definition of (I ') .

So the outer diagram commutes, that is, commutes. So v is a modification. A similar proof
shows that commutes, so  is a modification. The remaining properties of v and ( - that they
are invertible and satisfy the unit-counit diagrams for an adjoint equivalence - are immediate from our

choice of v; and (.
So (T, 1,7, () are the data of an adjoint equivalence in [¢, Z].

O

The 1-categorical analogue of this result is the classical result that, if a natural transformation is

locally an isomorphism, then it is a natural isomorphism.

The second of our propositions is a technical lemma used only once in this thesis, to show that
restriction - as we define it - is a pseudofunctor. Morally, it says that something " 2-naturally isomorphic”

to a pseudofunctor is also a pseudofunctor.

Proposition 1.1.8. Let .F : ¥ — Z be a pseudofunctor. Suppose we have some data ¢4 with ¢(1)
an object of & for each object i of €, Y(F : i — j) = Y(F) : 9(i) — ¥4(j) a 1l-morphism of &
for each 1-morphism F of €, 9(a: F — G) = Y () : 9(F) — 9(G) a 2-morphism of & for each
2-morphism « of €, %%G Y9 (GF) = 9(G)¥9(F) a 2-morphism in & for each composable pair F', G
of 1-morphisms in €, and 4° : 4(1;) — lg(;) @ 2-morphism in & for each object i of ¢". Suppose
further that for each object i of &, there is an epimorphism I'; : .% (i) — ¥(i) of Z; that for each
1-morphism F of €, there is an epimorphism I'p : I';.% (F') — ¢ (F)T';; and that the following diagrams

all commute forany F, F':i—j,G:j—k,a:F— F'in%:

T'r

G (F)T;

1.7 () ()

G(F'\D;
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.7 (GF) 4 (GF)T;

Far

1%72 G2x1

Then ¢ is a pseudofunctor, and I" is a 2-natural transformation of functors.

Proof :

We need to show three things: that ¢ is locally functorial, that 42 is natural in ' and G, and that

4% 49 are coherent.

To show that ¢ is locally functorial, we need to show that 4 (8a) = ¥(8)¥(«) for any compatible
2-morphisms «, 3 in ¢, and that ¥ (1) = 14(p) for any 1-morphism F'in €.

First, consider the following diagram:

I, %(F) —Tr— 9(F)
\ |
*F (a 9 (a)x1
l |
1xF( @Fjﬁ 7F(;*>g @604
\ |
17 (B (B)=*1
l |
I(H) —Tug— Y(H)L;

@ commutes because F is locally functorial;

and @ @ and the outer diagram commute by our assumption on I

So we find that ((¢9(8)¥(«)) * 1r,)T'r = (49 (Ba) * 1p,)T'p. Since T'; and I'p are epimorphisms, we
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get that 9(8)9 () = 9 (Ba), as we wanted.

Next, consider the following diagram:

e RN
lpjg(p) @:ﬂ(lp) @ %(1p)>® lgFr,

@ commutes because .# is locally functorial,
@ commutes by our assumption on I}
and the outer diagram commutes trivially.

So (9(1p)*1r,)T'r = (1g@)*1r;)I'F. Since I'r and T'; are epimorphisms, we get that ¢ (1r) = 1y (;),

as we wanted.
So ¢ is locally functorial.

To see that 92 is natural in F, G, let « : F — F' and 3 : G — G’ be 2-morphisms in ¢, and

consider the following diagram:

I'v.7 (GF) et Y (GF)T;
\1>i<£Z Bra 9 (B*a *1/
(Bre)_ 3) B
Fkﬁ(G/F,) FG’F’ g(G/F/)FZ
172 © 1»172 ® %Tl G241
I'.7(G)F(F') —Taxl— (G, F(F) — Ty — 9(G)Y(F)T;
1 A~ Y~
147 (8)x7 (@) (® G(B)x1xF (a) () F(B)pd(@)r1

@ commutes because %2 is a natural transformation;

@ and the outer diagram commute by our assumption on I';

@—@ commute by our assumption on I

and I'gp is an epimorphism.
So @ commutes. But since I'; is an epimorphism, this tells us that that 42 is natural in F and G.

To see that ¥ satisfies the coassociativity diagram, consider the following diagram:
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I\ (H)7 (G)F (F) Pyl G(H)T.7(G)F(F) 1401 4 (H)%(G)T;7(F)
HH*%& @ HH*%& @
.7 (H)Z(GF) Tp*l Y (H)T',.Z(GF) jRer Y(H)Y(GF)T; 15T
— ~ T ~
172 - @ \Qwi 1542 %1 - %
0.7 (H)F (G).F (F) @ [, 7 (HGF) Tuar Y(HGF)T; (10) G(H)9(G)9(F)T;
— 1%.72x1 1x.F2 - @ —~ 2 @2 —
*F2x — — * % *HJ \L *1
Ty*l H,T“.AWNQV"“AWV Tyaxl QAvaHM%:AMuV I«I'p QAvaQAN«JvH«
% ©) Qmi\ ©® @f@ Q)
GH) L F(G)F(F) 1T g*l Y(H)Y(G);7(F) 14T Y (H)Y(G)¥Y(F)T;
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@ commutes because .# satisfies the coassociativity diagram;

@—@ commute by our assumption on T}
@-@ and the outer diagram commute trivially;

and —@ commute by our assumption on .

So commutes when I' g is precomposed. But I'ggr and I'; are epimorphisms. So ¢ satisfies
the coassociativity diagram.

Finally, we check that ¢ satisfies the counitality diagrams. We check only one, the other being
completely analogous.

To see that it does, consider the following diagram:

;.7 (F1;) 157 (1) L7 (F)

1%.F2 @ ‘ '

1*F1i
| ©
1%40%1
1%.Z0 @ l — rxl —
(6) G(F)lgpli (@) Gy
1%.%0 % \
g(F)Filg(i) Ler I'r
—
ij(F)lgr(l) Ter ij<F)

@ commutes by our assumption on T}

@ commutes by our assumption on I’

@ commutes trivially;

@ commutes because left and right unitors commute;
@ commutes by our assumption on I}

@ commutes by the interchange law;

@ commutes by naturality of the unitors;

and the outer diagram commutes because .% satisfies the counitality diagrams.



30 Chapter 1: Preliminaries

So commutes when I'ryq; is precomposed. But I'py, and I'; are epimorphisms. So ¥ satisfies
the counitality diagrams, as required.

So ¢ is a psuedofunctor, and I is immediately a 2-natural transformation. [

1.2 (Muilti)fiat 2-categories and injective abelianisations

The particular categories we often work with are called (multi)fiat 2-categories. To explain what this

means, we need some set-up.

Definition 1.2.1 (Split idempotent). We say a morphism e in a category C is an idempotent if coe = e.
We say an idempotent e : ¢ — i is split if there are morphisms s : i — j and t : j — 4 such that
tos=-eand sot=1;.

We say a C has split idempotents if every idempotent is split. <

Definition 1.2.2 (Additive category). We call a category preadditive if it is enriched over the category
of abelian groups.
We call a category additive if it is preadditive and has all finite products (in particular, including the

empty product). <

The following proposition can be found in a standard text on abelian categories, for example as

Theorem 2.35 in | ]

Proposition 1.2.3. In a preadditive category, every product of objects is also a biproduct on the same

objects. The empty product, where it exists, is a zero object.

Definition 1.2.4 (k-linear category). We say a category is k-linear if it is enriched over the category of
k-vector spaces (so in particular, it is preadditive). We say a functor (or natural transform) is k-linear

if it is an enriched functor (respectively, natural transform) over the category of k-vector spaces. <

Definition 1.2.5 (Indecomposable objects). We say an object X in a category C is indecomposable if
it cannot be expressed as a non-trivial coproduct, that is, whenever X = [, X;, there is a unique

1 <i<nsuchthat X; = X, and X; =20 for j #i. <

Definition 1.2.6 (Finitary category). We say an additive k-linear category is finitary if it has split
idempotents, finitely many isomorphism classes of indecomposable objects, and the morphism sets are

finite dimensional as k-vector spaces. <
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Definition 1.2.7 (2-Category of finitary categories). We denote by Q[ﬂ{ the 2-category of finitary

categories, additive k-linear functors and natural transformations. <
Definition 1.2.8 ((Multi)finitary 2-category). We call a 2-category € multifinitary if:
e % has finitely many objects;
e each hom-category % (i, 7) is a finitary category;
e and composition is additive and k-linear in each argument.
If, moreover, all identity 1-morphisms are indecomposable, then we say % is finitary. <

Definition 1.2.9 (Fiat 2-category). We say a 2-category % is (multi)fiat if it is a (multi)finitary 2-
category with a weak involutive anti-equivalence * (reversing both 1- and 2-morphisms) such that, for

every 1-morphism F, the pair (F, F'*) is an adjoint pair of 1-morphisms. <

We make a short note on the injective abelianisation of a (multi)finitary 2-category. For full details,
one can look at e.g. | ] Section 3. In particular, the two given propositions are immediate

from Section 3.1.

Definition 1.2.10 (Injective objects). An object @ in a category C is called injective if, for every
morphism f : X — (@, and every monomorphism g : X — Y, there’'s an h : Y — ) making the

following diagram commute:

g

fl
xh
Q

In an abelian category, this is equivalent to the hom-functor Hom¢(—, Q) being exact. <

Proposition 1.2.11. Given a finitary category C, there is an abelian category C for which C embeds into
the injective objects of C, and is equivalent via this embedding to the subcategory of injective objects in
C. Moreover, this construction is natural in C, and in particular we can define F : C — Dfor F : C — D
a k-linear functor.

We call this an injective abelianisation of C.

Moreover, given a (multi)finitary 2-category %, we can define the injective abelianisation € of ¢,
which has the same objects as ¢, and for which € (i, j) = €'(i,j). This construction is also natural in

C.
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There are actually several such constructions natural in 4’; we present the diagrammatic injective

abelianisation below, but note that essentially any injective abelianisation would work.

Proposition 1.2.12. Let C be a finitary category. Define the diagrammatic injective abelianisation C

as follows:
e Objects of C are morphisms F': i — j in C,

e Morphisms in C are equivalence classes of solid commutative diagrams (that is, without Q)

modulo the ideal generated by diagrams with a 'homotopy’, that is, a ) as above for which

G =QF.

e Identity morphisms are given by diagrams in which G and H are both identities, and composition

is given by vertical composition of diagrams.

Then the diagrammatic injective abelianisation is indeed an abelianisation, as characterised in the
previous proposition.

In particular, a functor F : C — D extends to a functor F : C — D in the obvious way. [J

Henceforth, injective abelianisation will refer to diagrammatic injective abelianisation.

1.3 Coalgebra 1-morphisms

Of central importance is the notion of a coalgebra 1-morphism and related concepts. Throughout this

section, let € be a finitary 2-category.

Definition 1.3.1 (Coalgebra 1-morphism). A coalgebra 1-morphism (at an object i of ¥) consists of

the following data:
e A 1-morphism C':i —1iin %,
e A 2-morphism A : C — CC in €,

e A 2-morphisme:C — 1; in €,
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which satisfy the coalgebra axioms:

C — ccC c ——— CC
A Axl A exl

<

Definition 1.3.2 (Coalgebra homomorphism). A homomorphism of coalgebra 1-morphisms in €, 0 :

(C,A,e) = (D, A}¢"), is a 2-morphism 6 : C' — D in ¢ making the following diagrams commute:

C 6—— D C 60— D
| | AN /
A A € e/

l l N/

cc 0x0 — DD 1

<

Definition 1.3.3 (Comodule 1-morphism). A (right) comodule 1-morphism (at j) for a coalgebra 1-
morphism C' = (C, A, ¢) (at i) is a pair of a 1-morphism M : i — j, the comodule, and a 2-morphism

Om,c : M — MC, the coaction, in €, such that the following diagrams commute:

M s— MC M—2 s MC
(‘5 1*‘A 1xe
! !

MC — 541 — MCC M

Similarly, we can define a left C-comodule 1-morphism (M, dc ar), and then a C-D-bicomodule

1-morphism is a left C-comodule and a right D-comodule, such that the following diagram commutes:

M —écy— CM

oM, D 10,

i !
MD —écuxl— CMD

<

Definition 1.3.4 (Biinjective bicomodule 1-morphism). A bicomodule 1-morphism ¢ Mp is biinjective

if it's injective as both a left C- and right D-comodule 1-morphism.
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<

Definition 1.3.5 (Bicomodule homomorphism). A homomorphism of C-D-bicomodule 1-morphisms in
€, ¢:(N,dcn,On.D) = (M,5cm,0nm,p), is @ 2-morphism ¢ : M — N in € such that the following

diagrams commute:

N —¢— M N —o¢— M
| | | |
dc,N dc,Mm ON,D oM, D
! ! ! !
CN Ix¢p —» CM ND ¢x1l — MD

If ¢ satisfies the left diagram, we say it is a left C-comodule homomorphism; if it satisfies the right
diagram, we say it is a right D-comodule homomorphism.

We define comody (C'); to be the category whose objects are right C-comodule 1-morphisms at j,
and whose morphisms are right C-comodule homomorphisms. Similarly, jcomody(C) is the category

of left C-comodule 1-morphisms at j, and left C'-comodule homomorphisms. <
The left- and right-injective comodule 1-morphisms have a nice characterisation in fiat 2-categories:

Lemma 1.3.6. If ¢ is a fiat 2-category, C' € %(i,1) a coalgebra 1-morphism, then C'is biinjective as

a C-C-bicomodule 1-morphism in &.

Proof : As a corollary of Example 1.5.2, we will show that there is an adjunction
Homomodo, (—, C) = Homg(—,1;). Since 1; is injective in € by construction, the right functor is
exact, so the left functor is exact, so C is injective as a right comodule 1-morphism. Similarly, C is

injective as a left comodule 1-morphism, so a biinjective bicomodule 1-morphism. [

Lemma 1.3.7. If € is a fiat 2-category, C' € €(i,7) a coalgebra 1-morphism, then the right-injective C-
comodule 1-morphisms at j of € are precisely the additive closure of { FC|F' € € (i,j)}. Similarly, the

left-injective C-comodule 1-morphisms at j of € are precisely the additive closure of {CF|F € €(j,1)}.

Proof : Because ¢ is fiat, every F' € € (i,7) has adjoints, so the mapping of 1-morphisms M
FM is exact. So since C' is an injective right C-comodule 1-morphism, F'C' is an injective right C-
comodule 1-morphism. Summands of injective objects are injective, so every object in the additive

closure of {FC|F € €(i,7)} is injective.
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Now, if X is a right-injective comodule 1-morphism in comody(C);, we note that dxc : X —
XC is a monic comodule homomorphism (by counitality), and that X has an injective presentation
Xo — Xj for X; 1-morphisms in @; so X — XC < XyC is an embedding of X into an object in
{FC|F € €(i,i)}, from which the first claim follows.

The characterisation of the left-injective comodule 1-morphisms is similar. [J

The following definition can be found in Section 0 of | |

Definition 1.3.8 (Cotensor product). The cotensor product of a C-D-bicomodule 1-morphism M and
a D-E-bicomodule 1-morphism over D in €, where it exists, is the equalizer (M = N, t]\% ~) of the pair
D ;

of morphisms

5A{,D*1
—
M®@N s MN MDN
_
D tuN 140D N

The cotensor product of a pair of bicomodule homomorphisms ¢y : M — M', ¢ : N — N', is

the unique map ¢,s E ¢ making the following diagram commute:
D

M®EN — MN
D FYRN

oM BON OM*PN
D

|

N ———— M'N'
t]\/I’,N’

M/

OE -

M ® N becomes an C-E-bicomodule 1-morphism with the maps
D

dommN = 0c,m B 1N, dymn,E = 1y B oN,E;
D D D D

tﬁ’N is then a bicomodule homomorphism.

When ¥ is abelian, for instance if we work in the injective abelianisation &, the cotensor product

always exists.

<

Lemma 1.3.9. The following diagram commutes:
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tRrEN,L
MENW®L — M®ENL
C D

t& t&
M,N®L M,NL

1 1

MN®WL —thn,—> MNL
Proof : First, by inspection of the following diagram, it’s immediate that t(]\JLN x1 = t]CVYLNL.

Gy went
M®NL ———— MNL MCNL

1*50)]\][1:1*50’]\/*1

Next, by inspection of the following diagram, it's clear that t]\CLN 1= tJ\CLNL:

t5r, N EL Onr,c%1
) %
MENWHL — MN®L MCN =® L
—_—
1%6c, NmL=1*6c, NB1

Finally, our result follows from the definition of tf/[N 10

Proposition 1.3.10. If we define, for coalgebra 1-morphisms C and D, Zicomy(C, D) to be the
category whose objects are C-D-bicomodule 1-morphisms, and whose morphisms are bicomodule
homomorphisms, then for coalgebra 1-morphisms C, D and F,

— ® — : Bicomy (D, E) x Bicomy(C, D) — Bicomy (C, E)
D

(N,M)—~ M®N

(V,¢) = B
is a functor when it exists.

Proof : First, we note that it is clear that for coalgebra 1-morphisms C' and D, Bicomy(C, D) is
indeed a category.

We assume that — @ — exists, that is, that all relevant cotensor products exist. For — @ — to
be a functor, it must respect composition of bicomodule homomorphisms, and identity bicomodule

homomorphisms. To see that it respects composition, let ¢ : M — M’ and ¢/ : M’ — M" be C-D-

bicomodule homomorphisms, 1) : N — N’ and ¢/ : N’ — N” be D-E-bicomodule homomorphisms.
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We need
PomY = (¢ BY)o(pmep).
D D D

Consider the following diagram:

MmN thN MN

M'®m N’ D e M'N’
D
3 @

M" N tf{//’N// — M"N"
D

Here, @ and @ commute by definition of ¢ B v and ¢’ ® v’ respectively, so the outer diagram
D D
commutes. But the outer diagram is

M®@EN — 5 y—> MN
D

|
(¢'8Y)o($@) ¢ $xyp
D D

I |

M" N// *tﬁ// NI T M"N"
D ;

and by definition, the unique map which can be on the left-hand side when this diagram commutes
is ¢'¢ B '1h. So we must have ¢'¢ B ') = (¢/ ®MY') o (¢ B 1), as required.
D D D D
To see that — B — respects identity bicomodule homomorphisms, we must have that
D

1y @ 1y = 1ymn. Consider the following diagram:
D

MmN t— MN
| |
ISYETY Ip*xIn=1pynN
1
M®E N t—— MN

It's clear that this commutes. But by construction 1p; & 1y is the unique map making this diagram
D
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commute, so we must have that 1 @ 1y = 1y/gn as required.
D

So — ® — is a functor. (I
D

Proposition 1.3.11. We can define natural isomorphisms 5lc,D : OB — = lgicomy(o,p) and €6 p -

— B D = 1gicome (c,p) at the C-D-bicomodule 1-morphism M by
D

(ebop)m =l o= (e 1) oty : CM—> M,

(ec.p)m = ey = (1*5)ot]\D/[7D:MD—>M.

Proof : Fix C and D, and write ¢! := €L, ,, and similarly €". Showing that ¢! and &” are natural
isomorphisms is the same thing as showing that they are pointwise invertible and the following diagrams

commute for all C-D-bicomodule 1-morphisms M, M’ and bicomodule homomorphisms ¢ : M — M’:

CEM ey, — M M®D ey — M
C D

| | | |

1@¢ ® SE1 ®

! | l |

CMliélM/H M’ M'® D ey — M’
D

We first consider the left of these two diagrams (noting that the right diagram can be shown to

commute in essentially the same way). Look at the following diagram:

CHEM t8M CM exl M
C

124 @ 1x¢ @ ¢
| ® ]

!/

CwM tg,M/ cM exl
C

@ commutes by definition of 1 & ¢, and @ commutes by the interchange law. Therefore the outer
diagram commutes, which is precisely our left-hand diagram above.
We show that ¢ is invertible as follows (noting that £” is similar). First, consider the following

diagram:
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— Acx1l —
M — e — CM o CCM
— %0, —>

By the axioms of a left C-comodule 1-morphism, both possible compositions must be equal, that
is, 0c,m equalises the two right-hand maps. By the universal property of C'® M as an equaliser, there
C

must therefore be a unique map 55\4 : M — C'® M such that thoéfw = dc,m- We can then compute
C b

ehyodhy = (ec* 1) Otg,M o 8y
= (EC * 1) o 5C,M

using the definitions of slM and 6§w, and the axioms for a left C-comodule 1-morphism. So slM is

split epic. Next, we consider the following diagram:

44*[30*1‘4%
® —t§
CEM —iGy— CM _ 05 7 cCM

exl exlxl

| |

M —décm— CM

With respect to the lower of the two top right morphisms, the square commutes by the interchange
law. The composition of the upper of these two morphisms with the right-hand vertical morphism is
the identity, by counitality. But then th equalises the top two morphisms by definition. So any path
through this diagram from C'® M to the bottom right C'M is equal, and equal to tg’M, which is monic.

C

In particular, 55\4 is a right factor of a monomorphism, and thus monic.
Therefore, 55\/[ is split epic and monic, and thus an isomorphism (with inverse 55\/[) So 5l07D is a

) ) . C.
natural isomorphism, and similarly so is €C.D- O

As an immediate corollary of this result, we get the following nice property of the cotensor product:

Corollary 1.3.12. Suppose ¥ is a fiat 2-category. If C, D, E are coalgebra 1-morphisms in €, ¢ Np
and p Mg are right injective bicomodule 1-morphisms, then N & M is right injective. Similarly, if M
and NV are left injective, then N B M is left injective.

If M and N are biinjective, then N & M is biinjective.
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Proof : Since the cotensor is additive, we need only check this for N = F D, M = GFE for some F' €
€(i,j), G € €(j,k), by Lemma 1.3.7. But by the previous proposition, N® M = FD®GE = FGE,
D D
which is in {HE|H € €(i,k)}, and thus injective as a right E-comodule 1-morphism, as required.

The left-injective case is similar, and the biinjective case follows from these. [

These results let us build a pair of nice bicategories:

Definition 1.3.13 (Bicategory of (right injective, biinjective) bicomodule 1-morphisms). For any
category € for which all relevant cotensor products exist, the bicategory of (right injective, biinjective)
bicomodule 1-morphisms of €, written Zicomy (ZPBicomy, BAicomy), consists of the following

data:
e Objects are coalgebra 1-morphisms in %;
e 1-morphisms from C to D are (right injective, biinjective) C-D-bicomodule 1-morphisms in €’;
e 2-morphisms are bicomodule homomorphisms in %;
e Horizontal composition is given by the cotensor product;
e Vertical composition is given by vertical composition in €
e The identity 1-morphism on an object C is given by C' viewed as a C-C-bicomodule 1-morphism;

e The identity 2-morphism on a 1-morphism M is 1,7, the identity 2-morphism of M as a 1-

morphism in %,
e The associator is induced by the identity, and is omitted;
e The left and right unitors are € and " respectively, cf. Proposition 1.3.11.
<

Proposition 1.3.14. When % has all relevant cotensor products, Aicomy is a bicategory. When ¥ is

a fiat 2-category, Z%icomy and B Aicomy are bicategories.

Proof : By Proposition 1.3.10, we know that horizontal composition is functorial for Zicom.
To see that this functor restricts to the ZZ%icomy, BABicomy setting when ¢ is a fiat 2-category,

we need only show that pairs of (right injective, biinjective) bicomodule 1-morphisms get sent to a
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(right injective, biinjective) bicomodule 1-morphism, since BZ%icomy (M, N) is a full subcategory of
HBicomg (M, N). But this is precisely Corollary 1.3.12.

By Lemma 1.3.6, C' is a biinjective C-C' bicomodule 1-morphism when ¥ is fiat, so the identity
1-morphisms are well-defined for Z%icomy, % Xicomy.

Finally, since the left and right unitors are natural isomorphisms by Proposition 1.3.11 (and noting
that the restriction of a natural isomorphism to a full subcategory is again a natural isomorphism), we
need only check that they commute. To see this is true, let M be a C-D-bicomodule 1-morphism, N

be a D-E-bicomodule 1-morphism, and consider the following diagram:

MD®AN t MDN @ 1®epx1

ST @)

1*6D1

By Lemma 1.3.9, @ commutes.

@ and @ commute by definition of 1 ® ep and ep [ 1 respectively.

Therefore, the top and bottom arrows, when post-composed with ¢, are equal. But ¢ is monic. So in
fact, the top and bottom arrows are equal. But this is precisely the statement that the unitors commute.

Therefore, both statements of the proposition are proved.

O

We also have some simple results about coalgebra homomorphisms, which we record here:

Lemma 1.3.15. Let C, C’, D, D' be coalgebra 1-morphisms in a 2-category €. Let (N, dc n,dn,p) be
a C-D-bicomodule 1-morphism, 8¢ : C — C’ and 0p : D — D’ be coalgebra homomorphisms. Define
6C’,N = (00*1]\7)05071\[ and 5N,D’ = (1N*0D)05N,D- Then (N, 5C’,N75N,D’) is a C’-D’-bicomodule

1-morphism, which we write as % N> Moreover, if pc : C' — C" and pp : D' — D" are coalgebra
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homomorphisms, then #¢ (%c N9p)rp = pcodo Npoobp,

Proof : We first show that (IV,d¢r n) is a left C’-comodule 1-morphism. Consider the following

diagram:

N Sc,N CN Oc*1 C'N

do,N @ 1xdc N @ 1xdc, N

CN Acxl CCN O *1x1 C'CN

Oo*1 @ Ocx0c*1 @ 1x0c*1

C'N Acrxl C'C'N C'C'N
@ commutes since (N, ¢ n) is a left C-comodule 1-morphism;
@ and @ commute by the interchange law;
@ commutes since f¢ is a coalgebra homomorphism.

Therefore, the outer square commutes, that is, the left C’ action on N commutes with the

comultiplication on C’.

Next, consider the following diagram:

N Sc,N CN Oc*1 C'N
® @ /
eox*l ecr*l
N

@ commutes since (N, dc,n) is a left C-comodule 1-morphism;

@ commutes since f¢ is a coalgebra homomorphism.

Therefore, the outer triangle commutes, that is, IV satisfies the second axiom for being a left
C’-comodule 1-morphism, hence N is a left C’-comodule 1-morphism.

Similarly, N is a right D’-comodule 1-morphism.

Finally, consider the following diagram:
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dc,N

CN

ON,D

1*0[)

ND'

60}]\]*1

®

5C,N*l

1x6N.D

CND

1x1%x0p

CND'

fcox1 C'N

@ 10N D

0cx1x1 —— C'ND

@ 1x1x0p

Oc*1x1l —> C'ND'

@ commutes since (N, dc,n,0n,p) is a C-D-bicomodule 1-morphism;

@, @ and @ commute by the interchange law.

Therefore, the outer square commutes, that is, the left C’ and right D’ action commute.

So N is an C’-D’-bicomodule 1-morphism, as required.

The final claim of the lemma is immediate from construction.

O

Remark. The lemma discusses "twisting” both actions of a bicomodule 1-morphism by coalgebra

homomorphisms simultaneously, but by taking one or other to be the identity, we can "twist” on one

side only. This is regularly done, and where it is, we omit writing the "twist” by the identity, that is,

we write 10 N0 = N9p and 9o N1 = 9c N |t is straightforward that (?0 N)?p = 6c(NOp) = fc NOp,

Lemma 1.3.16. Let C, C’, D, D', 6 and Op be as above. Let N, M be C-D-bicomodule 1-morphisms,

¢ : N — M a C-D-bicomodule homomorphism. Then ¢ is also a C’-D’-bicomodule homomorphism.

Proof : Consider the following diagram:
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oo, N @ dc,Mm

Ocx1 @ Ocx1

C'N 1x¢ C'M

@ commutes since ¢ is a left C'-comodule homomorphism;

@ commutes by the interchange law.

Therefore the outer diagram commutes, that is, ¢ is a left C’'-comodule homomorphism. Similarly,
¢ is a right D’-comodule homomorphism, so a C’-D’-bicomodule homomorphism.

O

Lemma 1.3.17. Suppose we have an C-D-bicomodule 1-morphism N, and a D-E-bicomodule 1-
morphism M. Suppose further that we have a coalgebra homomorphism 6 : D — D’. Then there is a
bicomodule homomorphism 6 [(V:M): N @& l M — N®OM. For p: D' — D", p |MN) o [(MN)—

D

[(N:M) is an isomorphism.

(po @) [MN)  Moreover, when 6 is monic, 6

Proof : Consider the following diagram:

N@EM — 8, —s NM %27 npag

D — 1x0p,m —>
|
. M)
v
NV BOM 3, NM TN T NDM — 1egm— ND'M

The top line is the equalizer diagram for N ® M, the bottom line is the equalizer diagram for
D

N? @ M. It is obvious that tﬁM equalizes 6y pr * 1 and 1 * dpr a7, so we obtain a morphism
g [(N.M), N-M—>N9 oM with 2,
D’

To see that 0 [(M:N) is a bicomodule homomorphism, consider the following diagram:

N,M)_ 4D :
NO.ops © 6 |( )= ty o @s required.



1.3 Coalgebra 1-morphisms 45

MN
/ t / dc,m*1
M®N MON CMN
D t/ A
‘ 5C7]\/[9*1
QT(A{’N) 6CJWI -
l ~ /
My & gN CM®N CMPN
D' D
A /
5C,M‘9 /1 1*9r(1\4,N) 1xt
CM?m N
D/

The top and bottom faces commute by definition of the cotensor;
the back left and front right faces commute by definition of § [(M:N).
the back right face commutes trivially;

1% ¢ is monic.

By a diagram chase, we see that
(1xt)o(1x0 [MNYo (S m1) = (1xt)o (5c B 1) o [AN),
so that since 1 x ¢ is monic,
(156 1Mo (5o @ 1) = (o B 1) 0 [MN)]

that is, the front left face commutes, so 8 [(M:N) s a left C-comodule homomorphism. Similarly it is a
right F-comodule homomorphism, so a C-E-bicomodule homomorphism as required.

Given p: D' — D", one can see that by construction, p [M:N) of [(MN)= (p o) [(MN),

When 6 is monic, we can apply the first part of our argument in reverse to find an inverse for
9 1(V-M) proving the final claim.

O

Lemma 1.3.18. 0 (VM) s natural in N and M, that is, the following diagram is a natural
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transformation of functors:
77

Picomy (D, E) x Bicomy (C, D) SN PBicomy (C, E)

(“p(-)e fc(-)"p) opl(=7) bc(-)’e

PBicomy (D', E') x Bicomy(C', D") Picomy (C', E")
D/

Proof : Suppose ¢ : N — N’ and ¢ : M — M’ are bicomodule homomorphisms. Consider the

following diagram:

NM
/ t /¢N *pp
N/M/
oN I¢M \\¢N*¢]\[
o1 (Ns M) t
l N/Ml

g’ M) ¢NI¢M
N \L /

N/9 9M
D/

. 7

Then the top and bottom faces commute by definition of  [(—7);

the back left and front right faces commute by definition of ¢x B ¢ar;
the back right face commutes trivially;

and t: N m M’ — N'M' is monic.

Dl
Therefore, by a previous argument, the front left face commutes, i.e. 6 [(N:M) is natural in N and

Lemma 1.3.19. Let M be a right C-comodule 1-morphism, N be a C-D bicomodule 1-morphism, L

be a left D-comodule 1-morphism. Let 6 : C — C’ and 0p : D — D’ be coalgebra homomorphisms.

(M®N,L) (M,N®L)

Then 1y ®6p [N-D=0p | and 6 [MN) @1, =60 |

Proof : Consider the following diagram:
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0 F(M,NL)

L s MlewlcNmL
c’ D

N

=
QmE
SIEs

t t

l l

bc g o
—_—
MENL N g F(MN)% g NL

This commutes by naturality of 8¢ [(—7). But by definition, 8¢ [MN) @1 is the unique arrow

making this square commute. [J

Corollary 1.3.20. With M, N, L, 8¢, 6p as above, the following square commutes:
M@BN®BL — g, MENL — MINGD m oL
C D

DI
QCT(IVI,NL) ecr(I\/IA,NL) O
‘L op F(JVIIN L) ‘L
Mo & "CNI L 22— Mo mlcND mipf
(o4 (i D’

Proof : Immediate from naturality of ¢ (7). O

1.4 Categories of representations

Throughout this section, let % be a finitary 2-category.

We can now define some particular bicategories we work with. First, what do we mean by a

birepresentation?

Definition 1.4.1 (2-Category of finitary birepresentations). The 2-category of finitary birepresentations
of €, written € — afmod, is the 2-category [¥, %[ﬂ{] of pseudofunctors from % to %[u{. Explicitly, it

consists of the following data:

e Objects are k-linear pseudofunctors M : ¢ — Q[]f: (called a finitary birepresentation of €);

e 1-morphisms are k-linear strong 2-natural transforms of pseudofunctors (called a morphism of

birepresentations, and written ® : Ml — M’);
e 2-morphisms are modifications, written o : ® — W : M — M’.

If a finitary birepresentation is a strict 2-functor, we say it is a 2-representation. If a morphism of

birepresentations is a strict 2-natural transform, we say it is a strict morphism.
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Given a finitary birepresentation M, we can define M by letting M(i) = M(i), the injective

abelianisation of the category M(i), and inheriting the action of & .
We say a morphism of birepresentations ® : M — M is an exact morphism of representations if the

component functors ®; : M(i) — M'(7) extend to exact functors ®; : M(i) — M/(¢).

If M is a finitary birepresentation of %, i an object of 4, we write the objects of M(7) as X, Y/,
Z,...; and the morphisms of M(7) as f, g, h, ...

<

Example 1.4.2. If i is an object in ¥, then IP’?/ = % (i,—) defines a strict 2-representation, sometimes

written P;, explicitly given by

Pi(5) = €, 7)
Py(F:j—k)=Fo—:Pj) — Py(k)

which we call the it principal 2-representation of .
Similarly, if ' : i — j is a 1-morphism in %, then Pp = % (F,—) defines a strict morphism of
2-representations Pp : P; — IP;.

If «: F — G is a 2-morphism in &, then P, = € (o, —) : Pp — Pg is a modification. <«
We're particularly interested in those finitary birepresentations that have generators:

Definition 1.4.3 (Representation generated by an object). Let M be a finitary birepresentation of &,

and let X € M(i) be an object. Define M - X as follows:

o (M- X)(j) =add{M(F)X|F € €(i,j)} that is, the additive subcategory of M(j) generated by
the objects M(F)X;

e M- X actson (M - X)(5) as M.
This gives a new finitary birepresentation, the birepresentation generated by X, which has an obvious
embedding M - X — M.

We say X is a generator for M if this embedding is an equivalence of birepresentations.

If M has a generator, we say that it is a cyclic birepresentation.

<
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The following equivalent characterisation is immediate from Proposition 1.1.7.

Proposition 1.4.4. Let M be a finitary birepresentation of . Then for X an object in M(i), X is a

generator for M if and only if the embedding

add{M(F)X|F € €(i,5)} = M(j)

is an equivalence for every j an object of % .

Definition 1.4.5 (Categories of cyclic birepresentations). We denote the full subcategory of € —afmod
consisting of cyclic birepresentations by 4 — cfmod.

Similarly, denote by ¥ — cfmod* the category of birepresentations with generator, that is, pairs
(M, X'), where X is a generator for M.

1-morphisms in this category are morphisms of the underlying birepresentations.

2-morphisms are modifications.

Write ¢ — cfmod}, for the sub-2-category of ¢ — cfmod* with only exact morphisms of

birepresentations. <
Of particular interest are those finitary birepresentations associated to coalgebra 1-morphisms.

Definition 1.4.6 (Internal birepresentations). Let C' : i — i be a coalgebra 1-morphism in €. The

internal birepresentation of C' in % is the finitary birepresentation M given as follows:

e For j an object in ¢, M¢(j) = inji(C); is the category of injective right C-comodule 1-morphisms

M :i— jin %, along with right C-comodule homomorphisms;

e For F': j — k a 1-morphism in €, the functor Mc(F) = F' o — : inju(C); — injg(C)y is left

composition with F’;

e For o: F' — G a 2-morphism in %, the natural transformation M¢ (o) = a * 1.

Moreover, if N is a right injective C-D-bicomodule 1-morphism in &, then the internal morphism
associated with N is —® N : Mo — Mp, and if ¢ : N — L is a bicomodule homomorphism, then the
internal modification associated to ¢ is —®H¢p: —EHN — — & L.

<

Example 1.4.7. By Lemma 1.3.7, C' generates M.
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Proposition 1.4.8. Let € be a fiat 2-category. Given C, D, N, L, ¢ as above, Mo is a 2-representation;
— ® N : Mg — Mp is a morphism of birepresentations and is exact when N is biinjective; — E ¢ is a

modification. C' is a generator for M.

Proof : It's immediate that the data of Mg are well-defined. Moreover,
Mc(GF) = Me(G)M¢(F), and Mg(1) = 1, so M is a 2-representation. (— & N);, viewed as a
functor, is well-defined on objects by Propositions 1.3.10 and 1.3.12, and clearly well-defined on
morphisms. Since (XM)® N = X(M ® N), and these isomorphisms are trivially natural in X,
— @ N is a strong morphism of birepresentations. By Corollary 1.3.12, when N is biinjective
cotensoring with N is (isomorphic to) a summand of the regular action of F' for some F' € €, which is
exact, so — E N is exact.

Finally, we show that — B ¢ is a modification.

First, to see that (— @ ¢); : (—® N); — (— ® L), is a natural transformation of functors, we note
that if £ : M — M’ is a morphism of right C-comodule 1-morphisms, the following square commutes

by the interchange law:

1=¢
MBAN — M®EL

@l €@l

M’NM’L

Next, it's clear that the following diagram commutes:
(XM)m® N ———— X(M®N)

(1=1)E¢ Lx(1E¢)

(XMYmL ———— X(M®L)

That is, the following diagram commutes:
(-8B N)joMc(X) ——— Mc(X)o (-8 N);

(—B¢);*1 L(—E9¢)i

(—®L)joMc(X) ——— Mc(X)o (-8 L)
So — @ ¢ is a modification.

That C generates M is Lemma 1.3.7. [J
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This defines an "inclusion” of Z%icomy into ¢ — cfmod},. We want to show that this "inclusion”
is an equivalence of bicategories.

We spell this out in three propositions below:

Proposition 1.4.9. Suppose M is a cyclic birepresentation of a fiat 2-category 4. Then for some

coalgebra 1-morphism C of &, there is an adjoint equivalence between Ml and M.
We defer the proof of this proposition for now; it is proved as Proposition 2.1.1.

Proposition 1.4.10. Suppose @ : Ml — M is a morphism of birepresentations of some fiat 2-category
%, where C, D are coalgebra 1-morphisms in €. Then ®;(C) € Mp(i) has the structure of a right-
injective C-D-bicomodule 1-morphism. There is an invertible modification o : ® — — @ ®;(C). When

® is exact, ®;(C) is biinjective.

Proof : First, note that when viewed as a 1-morphism in €, Mc(C) = Mp(C) = C o —. Write
®(C) = ®;(C). By definition, ®(C) is an injective right D-comodule 1-morphism. The following
composition of maps gives a left coaction, which we write d¢ (c):

o(C) TN o(CC) o Co(0)

To see that this makes ®(C') a left C-comodule 1-morphism, we need the following diagrams to

commute:

dc,ac) —— CP(C)

dc,a(0) Acxl

|

Co(C) Lxdc,a(c) —» CCP(C)
o(C) dc,ac) —— CP(C)
|
ec*1
2(C)

We first examine . Consider the following diagram:
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oC) — B, scc) — 2 ca(0)
|
B(A) @ ®(Ax1)
! ©,
O(CC) —o(1x0)— ®(CCC Axl

|
el @
!

Co(CC)

)
\CD
@ CC\

CCP(C)

C(I)(C) 1x®(A) 1x®o

Here, @ commutes by coassociativity for C;
@ and @ commute by naturality of ®;

and @ commutes by higher coherence for ®. Therefore the outer diagram commutes, that is,

commutes. Next, consider the following diagram:

B(A) e

®

o(C) B(CC)

CB(C)

@

P(exl)

|

B(C)

@ commutes by counitality for C;

and @ commutes by naturality of ®.

Therefore, the outer diagram commutes, that is, commutes. So ®(C) is a left C-comodule
1-morphism.

For ®(C) to be a bicomodule 1-morphism, we want the left C- and right D-coactions to commute.
Rephrasing, we want the left C-coaction to be a right D-comodule homomorphism. But ®(A) is the
image of a right C-comodule homomorphism, so by definition is a right D-comodule homomorphism; and
®, as a morphism in Mp (i), is by definition a right D-comodule homomorphism. So the composition,
dc.a(c), is a right D-comodule homomorphism. So ®(C) is a C-D-bicomodule.

Next, we want to construct o. First, we construct the morphisms o : ®(M) = ®;(M) —
M ® ®(C) for a given right C-comodule 1-morphism M; then show that these assemble to a natural
transformation of functors ®; — (— @ ®(C));; then that these natural transformations assemble to a

modification; and then, at last, that when ® is a strong morphism of birepresentations, this modification
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is invertible.
To construct the morphism ®(M) := &;(M) — M @ ®(C), consider the following map, which we

suggestively denote 7 s = 7

(I)(M) — ®(0m,c) > q)(MC) —dy —> MCI)(C)

By similar reasoning as before, this is a morphism of right C'-comodule 1-morphisms. We want it to

equalize the following maps, thereby inducing a map to the tensor product:

— dpm.oxl
o Ma(C) T Mos(C)

O(M)
- ce0) »

We expand this to the following diagram:

O(M) —26meo)— P(MC)

|
(6ar,0) ©) P(1+A¢) ©) 1+®(Ac)

l l l
(

O(MC) -20mcx)y D(MCC) — @y — MP

| S~ ®

|
D @ Do 1P

| ~ !
M‘I’(C) ———dum,c*l MCCI)(C)

@ commutes because M is a comodule 1-morphism;

@ and @ commute by naturality of ®;

and @ commutes by higher coherence for ®.

Therefore the outer diagram commutes, that is, & equalises the C-coactions of M and ®(C), so
induces a map o : ®(M) — M & ®(C) such that too = 7.

Next, we want to show that these assemble to a natural transformation of functors o; : ®; —
(— ® ®(C));, that is, that the following diagram commutes for any morphism of right C-comodule

1-morphisms £ : M — M’

O(M) —ooim— M®EPC)

2(§) ¢ml

| |

S(M') — o5 — M' @ (C)
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Expanding this, consider the following diagram:

‘ID(MC)
@(dn,0) D(&x1) @
- ! ™~
O(M) @(M/C) Mo(C)
\ A ~ \
D(¢) Q(p7 o) D &x1
P e
™ e
@(M/) M®®(C) M'@(C)

e | -
\ £m1 /t

M’ l<I>(C)
The top and bottom faces commute by definition of o;
the front right face commutes by definition of £ & 1;
the back left face commutes because £ is a comodule homomorphism;
the back right face commutes by naturality of ®;
and t : M' ® ®(C) — M'®(C) is monic;
so by a previous argument, the front left face commutes, which is what we wanted.
Next, we show that these natural transformations assemble to a modification, that is, that the

following diagram commutes for any X € €(j, k):

®p 0o Mc(X) —owst— (= 8 ®(C))x 0o Mc(X)

dx

l

MD(X) 9] (I’j

Lxoj — Mp(X) o (— ® P(C))g

Fixing a right C-comodule 1-morphism M € €(i,j), consider the following diagram:
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O(XMC)
P
®(1%dnr,c) ox Dx
— | ™~
(X M) Xo(MC) (XM)®(C)
‘ 1*‘1)(51\/1,;) \l*<1>M
X Ok, x M*1 t
! TN —
XM (XM)® ®(C) X(Mo(C))

)
1*0’j71\4

~ 1

X(M & 3(C))

1t

The top and bottom faces commute by definition of o;
the back left face commutes by naturality of @;

the back right face commutes by higher coherence for ®;
the front right face commutes trivially;

and 1 % ¢ is monic.

Therefore, by a previous argument, the front left face commutes, that is, o is a modification.

Now, to show that o is an invertible modification, it is sufficient to show that it is pointwise invertible,

that is, the o; are all natural isomorphisms; so it is sufficient to show that the o s are invertible.

Consider the following composition, which we suggestively call ajfjb =0 1

M@ ®(C)

We want to show that this is, indeed, an inverse for o.

Consider the following diagram:

t—— MP(C) — oy} — P(MC) — 2(1xe) — O(M)
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O (M) o M= ®(C)

|
. l

Sy —— M(I)(C)

@ commutes by definition of o;
@ commutes by the counitality axiom for M;

@ commutes trivially.

—1is a left inverse for o.

Therefore the outer diagram commutes, that is, o

Next, consider the following diagram:

M@ ®(0)

@ commutes trivially;
@ commutes by counitality for M;
@ commutes by definition of o.

Therefore t o0 o0~ ! =t as maps M @ ®(C') — M®(C). Since t is monic, 0! is a right inverse
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for o, so o is invertible. So we are done.
When @ is exact, it sends injective objects to injective objects, so ®(C) is biinjective.

O

Proposition 1.4.11. Let N, L be right-injective C-D-bicomodules 1-morphisms in &, and suppose

o:(—®N)— (—®L) is a modification. Define ¢, as the following composition:

NTCNTJCLﬁL
N l’ €L

Then ¢, is a bicomodule homomorphism, and 0 = — ® ¢,. Moreover, this correspondence between

modifications and bicomodule homomorphisms is a bijection.

Proof : First, we show that ¢, is a bicomodule homomorphism. Since 55\, and EZL are bicomodule
homomorphisms, and o; ¢ by definition is a right comodule homomorphism, it's sufficient to show that

0;,c is a left comodule homomorphism, that is, that the following diagram commutes:

CEN

AmEl AmEl

¢ ’

CCHEN oicc— CCHEL

gic— C®WL

But this is immediate from the fact that o; is a natural transformation. So ¢, is a bicomodule
homomorphism.

Next, we need to show that 0 = — ® ¢,, that is, that for each j € € and each M € M¢(y),
ojmMm: MBN - M®ELand1&#H ¢, : MBEN — M @ L are equal. This is precisely the statement

that the following diagram commutes:

M®EN T5,M M®L
1m6l, 1mel,

! |

MBECEHN —18ic 5 MECHEL

To see that it does, we first consider the following diagram:
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_ 10'1',0 N
MmECHN

— 05,MEC —

M=®RCHL

| |
l — 1xo; 0 —> l
MCHNggwjggﬁMCmL

We note that travelling along the top horizontal morphisms, the square commutes by definition of
1 ® o;,c; along the bottom horizontal morphisms, this square commutes by naturality of o;; and the
bottom morphisms are equal because ¢ is a modification. So the top morphisms, post-composed with

t, are equal. But ¢ is monic, so 1y ® 0;c = 0 MmC-

Now, consider the following diagram:

M®EN 0j,M M®L
AN AN
1@mely T T 1@l

E?Ml 5341 ‘

— OjMEC

M(C‘N) M‘(CL)

J— 1\&0'7;70 —

The bottom horizontal arrows are equal by the above argument. The left vertical arrows are equal
since the left and right unitors commute, and similarly the right vertical arrows are equal. The inner
square commutes because o is a natural transformation. Therefore the outer square commutes, which

(noting that 1 ® 04 = (1 ® k) ~1) is precisely what we wanted. So o = — & ¢,

To see that this correspondence between modifications and bicomodule homomorphisms is moreover

bijective, we consider o = — ® ¢, and compute ¢,.

Consider the following diagram:

¢

N L

l l
oN €L

CEN — C®H®L
o, c=1H¢

This diagram commutes by naturality of e!. But the top edge is ¢, and the composition of the other

edges is ¢5. So ¢_gy = ¢, and thus our correspondence is bijective.

O
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1.5 Internal cohom construction

To prove Proposition 1.4.9, we need a natural way to move from a generator of a finitary birepresentation

to a coalgebra 1-morphism in &. This is given by the internal cohom construction.

Definition 1.5.1 (Internal cohom). Let M be a finitary birepresentation of ¢, X € M(j),Y € M(7).

The functor

ﬁ(l,j) — 7/6075]1(, F— HOII]M(]')(X, M(F)Y)

is representable, see e.g. | | Section 4.3 for details, so there is an object

called the internal cohom of X and Y with respect to M, and a bijection (natural in F) V)N{/HY :
Homi(ivj)(M [Y, X], F) = HOIIlM(j) (X, M(F)Y)
We can define

coevy y =Wy (L yx)) : X = M(u[Y, X])Y,

and

ey = (7% x) M) s w[X, X] — 1
Then the bijection is given explicitly as follows:

Homi(i’j)(M Y, X], F) = Homyy ) (X, M(F)Y)
fy;l\f{y ca—M(a)o coevly(ﬂ,y

(1r xey) omlY, fl f - (7}“?,y)*1

Example 1.5.2. If M is a right C-comodule 1-morphism, then there is a bijection

Homi(m-)(M, F) = Hom%(j)(M, FC)
fy%% ca—(axl)odyc

(Lp*ec) o BB+ (Yare) ™"
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so we can take . [C, —] = 1eomod(%) coev%‘fc =0m,c, €c = €c. K

Lemma 1.5.3. Suppose G : j — k is a 1-morphism in €. Then y[Y,M(G)X] = G o m[Y, X], and
coevﬁ(a)xy =M20 (1% coev¥7y). Similarly, if G : i — k, then y[M(G)Y, X] = m[Y, X] o G*.

Proof : Consider the following sequence of bijections

Homf(i7k) m[Y,M(G)X], F) = HomM(k) (M(G)X,M(F)Y)
= Homyy ;) (X, M(G")M(F)Y)
= Homy(;)(X, M(G*F)Y)
= Homy(; j)(m[Y; X], G F)

= Homﬁ(m)(G © M[Y7 X]7 F)

where the first and fourth bijections are the cohom adjunction given above, and the second and fifth
use the fact that (G, G*) is an adjoint pair. Since each of these bijections is natural in F', by uniqueness
of the internal cohom, we have y[Y,M(G)X] = G oY, X], coevM(G)Xy =M=20 (1% coevl}ﬂy).

The other part is similar. [J

Using the idea of an internal cohom, we can define a nice class of coalgebra 1-morphisms and

bicomodule 1-morphisms in €.
Lemma 1.5.4. Consider the following composition of maps, which we denote 7:

X

coevlyg’y
M(m[Y, X])Y
l*coeVN}A,{Z

M([Y, XM (e [2, Y])Z

M72

M(ulY, Xlu[2,Y])Z

Then we can define dx v,z := v 1(7) : m[Z, X] = m[Y, X]m[Z, Y]. We have the following:

o (m[X,X],0x x,x,€x) is a coalgebra 1-morphism;
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o (m[Y,X],0x x,v,0x,y,y) is an pm[X, X]-m[Y, Y]-bicomodule 1-morphism.

Proof : See Proposition 4.9 in | . O

This inspires a notational shorthand:

Notation 1.5.5. Let X € M(7).

We write Cfvi := m[X, X] as coalgebra 1-morphisms. We write the comultiplication and counit maps

for Cﬁfﬂ as AIE/(H and e¥ respectively, and define COGVIXHX = coevly(ﬂ’X X — M(CX)X. We suppress M

when it is clear from context, that is, we write CX, Ay, and so on.

Lemma 1.5.6. Suppose f : X — Y is a morphism in M(j), Z € M(i). Then y[Z, f] : m[Z, X] —
M|[Z,Y] is a right CZ-comodule homomorphism.
Proof : We want to show that the following diagram commutes:
[Z.f]
ulZ, X] — ulZ,Y]
| |
5M[Z,X],CZ 5M[Z,Y],CZ
i i
M[ZvX]CZ — M[Z,Y]CZ
m[Z,f]x1
To see that it does, consider the following diagram:
e M<M[z X1z St ) M(u[Z,Y])Z
f COeVYZ /
COEVD)VEYZ
@ M(um[Z,f]) Lxcoev iz
M(M[ZaX])Z // M(ém[z,y],cz)
\1*coevcz @ @
~
Mbyzxc?) @ M(ulZ XIM(CF)Z —— MulzM) — M(u[Z, Y)M(C?)Z
— ~
M—2 M—2
z p z
M (u[Z, X]C%)Z T M([Z, Y]C?)Z

@ and @ commute by definition of [Z, f];

@ commutes by the interchange law;

@ precomposed with coevly(ﬂ’z, and @ precomposed with coevllv,%z, commute by definition of

0,12,x],c# and 0,17 y|,c# respectively;

and @ commutes by naturality of M 2.
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Therefore the outer diagram commutes. Passing via vx,z, this is precisely what we wanted. [
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Internalising birepresentations

Following from the work of Section 1.4, we know that essentially all data about (cyclic) birepresentations
can be expressed by discussing internal coalgebra and biinjective bicomodule 1-morphisms in €’; see
Propositions 1.4.8 to 1.4.11. We make this precise in two parts: first showing that B Z%icomy and
€ — cfmod}, (defined in Definitions 1.3.13 and 1.4.5 respectively) are biequivalent as bicategories, and

then constructing an explicit form for this equivalence.

2.1 A biequivalence between ZZ%icomy and ¢ — cfmod;,

This subsection follows the structure of | |, whose Theorem 4.28 is the same claim as our
Theorem 2.1.2.

First, we prove Proposition 1.4.9.

Proposition 2.1.1 (Restatement of Proposition 1.4.9). Suppose M is a cyclic birepresentation of a fiat

2-category € with generator Z € M((7). Then there is an adjoint equivalence between M and Mz.

Proof : By Proposition 1.1.7, it's sufficient to show that there's a strong morphism of
birepresentations ® : M — Mz that at each object ¢ € 4 is an equivalence in %[]f:, that is, an
equivalence of categories.

Define ®; : M((j) — Mcz(j) to be m[Z, —].

We first show that this is well-defined, that is, for each X € M(j), m[Z, X] is an injective right
C?-comodule 1-morphism, and for each f : X — Y in M(j), m[Z, f] is a homomorphism of right
CZ-comodule 1-morphisms.

By Lemma 1.5.3, if X = M(F)Z for some F € €(i,7), then y[Z, X] = FCZ. Since the internal
cohom is additive, we know that if X is isomorphic to a summand of M(F')Z for some F' € € (i, j), then

m[Z, X] is isomorphic to a summand of FC?, so by Lemma 1.3.7 is injective as a right C#-comodule
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1-morphism. But by definition, since Z generates M, every X € M(j) is of such a form. So for each
X € M(j), m[Z, X] is an injective right C#-comodule 1-morphism.

That [Z, f] is a homomorphism of right C#-comodule 1-morphisms is precisely Lemma 1.5.6.

Moreover, y[Z, —] is clearly functorial.

Next, we show that this functor is an equivalence of categories, by showing it is essentially surjective
and fully faithful.

To see it is essentially surjective, note that it sends a generator of M to a generator of Mz.

To see it is fully faithful, we note that it is clearly faithful, and since by definition hom sets in M(j)
and Mcz(j) are finite-dimensional vector spaces, it's sufficient to show that dimy Homyy(;)(X,Y) =
dimy HomMcz(j)(M[Z, X],m[Z,Y]) for any X, Y € M(j). But we can compute, for X = M(F)Z,
Y =M(G)Z, F,G € €(i,7), that

Homu_, () ([Z, X],m[Z, Y]) = Homy_, (j (FC?, GC?)
o Homi(i’j)(Fczv G)
= Homf(m)(cz, F*G)
= Homyy ;4 (Z, M(F*G)Z)

= Homyy(; jy(M(F)Z,M(G)Z)

i)
where isomorphisms are isomorphisms of k-vector spaces.

The first isomorphism follows from Lemma 1.5.6. The second is the isomorphism given by

HomMCz(j)(FCZ’ GC7) = Homf(z‘,j)(FCZ, G)
[ (1 * Ez) of

(gx1)o(1xAcz) g

The third and fifth are the isomorphisms given by the adjunction F' - F*, and the fourth is the
adjunction that defines CZ.

So these hom sets are isomorphic as vector spaces. Since every object is a summand of some
M(F)Z, and both the internal cohom and hom sets are additive, the generalisation to arbitrary objects

X and Y follows, and in particular dimy Homyg ;) (X,Y) = dimyg Homy_, ;) (m[Z, X],m[Z,Y]). So
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M[Z, =] : M(j) = Mcz(j) is fully faithful and essentially surjective, so an equivalence of categories.
Finally, we show that these functors assemble to a morphism of birepresentations.

We can compute

M[Z, —] o M(F) = m[Z,M(F) — ]
= FM[Z, —]

= Mz (F) o (2, ]

from which our claim immediately follows. [J

Theorem 2.1.2. Let € be a fiat 2-category. Consider the assignment of data ¢ : Z%Bicomy —

€ — cfmod* given as follows:

o C'— (Mg, C), for C a coalgebra 1-morphism;

Nw— —®@N : (Mc,C) — (Mp, D), for N a right injective C-D-bicomodule 1-morphism;

(0: N> N)—(—®m¢:—@®EN — —@EN'), for ¢ a bicomodule homomorphism;

This is a pseudofunctor, and in fact a biequivalence.  This restricts to a biequivalence

L: BABicomy — € — cfmody,

Proof :

By Proposition 1.4.8, these data are well-defined.

It is immediate that — @ (NBM)(L) =L@ (NEM)= (LEN)®BEM =(—®EM)o(—®N)(L),
so this assignment respects composition of 1-morphisms.

By Proposition 1.3.10, (— &) o(—E¢) = —HE ¢, so this assignment strictly respects composition
of 2-morphisms.

It is straightforward to see that this assignment strictly respects identity 2-morphisms, and that
e’ 1 1(cCc) = —® C — 1y, is an invertible modification of morphisms of representations that will

satisfy the higher coherence diagrams for a pseudofunctor.
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By Proposition 1.4.9, ¢ is essentially surjective on objects, that is, any object in € — cfmod* is
adjoint equivalent to some ¢+(C) for a coalgebra 1-morphism C'. By Proposition 1.4.10 it is essentially
full on 1-morphisms. By Proposition 1.4.11, it is fully faithful on 2-morphisms. Therefore by Theorem
74.1 in | |, it is an equivalence. By Proposition 1.4.10, biinjective bicomodule 1-morphisms

correspond to exact morphisms of representations. [

2.2 An explicit form of the biequivalence

The previous theorem provided us with one half of the biequivalence, but we used a non-constructive
result to assert the existence of a weak inverse. This subsection is dedicated to constructing such a weak
inverse explicitly. We note that, in showing our constructed pseudofunctor is indeed a weak inverse for

t, we use Theorem 2.1.2, so this proof-by-parts is not superfluous.

For a morphism of (pointed) birepresentations ® : (M, X) — (M/,Y), that is, a morphism of
birepresentations ® : M — M’ which have specified generators X € M(j), ¥ € M/(i), we want
to see w/[Y, ®;(X)] as a C*-C¥-bicomodule 1-morphism. We construct a coalgebra homomorphism
C®(X) — X, and then apply Lemma 1.3.15. Through this subsection, we fix the notation of ®, M,

M X and Y

Lemma 2.2.1. Let ¢ be a finitary 2-category. Overloading notation, write ® for ®;. Consider the

composition of maps

D(coevex)

B(X) BM(CY)X) &5 M/(CX)B(X)

Since this defines a map ®(X) — M/(CX)®(X), we can pass to a map fg : C%(X) — X,

This map is a coalgebra homomorphism.

Proof : Let 0 = 0.

First, to see that 6 respects comultiplication, consider the following diagram:
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D(X) — coeveorx) — M (C*)p(X) M’ (6) M'(CH)®(X)
®(coevex) - @ oo /@*
O ea0) B(M(CX)X) “am(ax) » B(M(CXCY)X)
M’(C‘P(X))@(X) () P cx ox) M'(Ax)
1*coech>(x>
/ \’l ’ * ’
Mideo) & ey c@0)a (X W (cOmr () (x)
M/—2 @ M2
+—
M/ (C®X )P (X) M’ (6x6) M (CXCX)D(X)

@ commutes by naturality of ®;

@ commutes by definition of 6;

@, precomposed with coevca(x), commutes by definition of Ag(x);

@ commutes by naturality of M/~?;

@ can be seen to commute by consideration of the following diagram:
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B(X) < M (CP))p(X) 1rcoev o x) s M/(C2ONM(CN)B(X)
@?Omfmk ) @ ZH\_AS /H*@Aoom/\nkv @ H*ngmv
v e H*@ v
dM(CK)X) —®cx » z:nxv (X) (» M(C*H))PM(CY)X) <, Z\Amﬁﬁvz\ﬂxv (X)

/H*Av coev, x) M’ _% *1 M’ (0)*1
/ Q ( x) © (9) C

®(1xcoev x ) Z\AONV@Q/\:AGNVNV — Lx®cx - Z\AQNVZ\AQNVGANV

T
Avﬁvm *1
_—

M/ —2
\

dM(Ax

@
®
E
R
s
E
()
Z
=
®

d(M(CXCX)X) ®(cxcx) > M/(CXCX)P(X)
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@ and commute by definition of 6;

@ and @ commute by the interchange law;

and @ commute by naturality of ®;

@ commutes by definition of Ax;

Therefore the outer diagram commutes, that is, @ commutes, so the outer square of the first
diagram commutes. But this says, passing via 7p(x),a(x), that the following diagram commutes, that

is, 0 respects comultiplication, as required:

C<I>(X) 0 CX

Ag(x) Ax

| l

C2X)Ce(X) 9x0 —s CXCX

Next, we want to see that 6 respects the counit. Consider the following diagram:

d(X) — coev a(x) M (C®(X)) (X))
\ ®(coevx) @ M/‘(Q)
B(M—0) (@\ PM(CH)X) ——— M/(CK)P(X)

— (DCX
\ (‘D(ka))
M) SM(1)X) ®

M (ex)

P4

J

M/(1)®(X)

@ and @ commute by naturality of ®;

@ commutes by definition of ex;

@ commutes by definition of 6.

Therefore, the outer triangle commutes. Passing via v(x),a(x). this says that the following diagram

commutes, that is, 8 respects the counit:

Cc®X) §g— CX
N /
€p(X) €x
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So 0 is a coalgebra homomorphism. [J

Definition 2.2.2 (Bicomodule 1-morphism generated by ®). Define N® = %@ (3 [V, ®(X)]). This is a

CX-CY -bicomodule 1-morphism. <

Lemma 2.2.3. N? is injective as a right comodule 1-morphism.

Proof : Since Y generates M/, ®(X) is isomorphic to a summand of M'(F)Y for some F in %.
But then p[Y,®(X)] is isomorphic to a summand of [Y,M/(F)Y] = Fyl[Y,Y] = FCY. So

m[Y, ®(X)] is injective as a right comodule 1-morphism, so N® is. [

U

Notation 2.2.4. Write coevye = coevgﬂ( : ®(X) — M/(N?)Y, where here N? is treated as an

X),Y
unadorned 1-morphism of €. We note that, as a morphism of pointed birepresentations, ® inherently
carries the data of X and Y, but without pointedness, the notation coevye is ambiguous. If in any

instances we work without pointedness, we will note this and disambiguate.

Lemma 2.25. If 0 : & — ¥ : (M, X) — (M,Y) is a modification of morphisms of pointed
birepresentations of a finitary 2-category %, then ¢° := w[Y,0x] : N® — NY is a bicomodule

homomorphism.

Proof : We need to show that ¢ is compatible with the left CX- and right C¥-coactions. That it

is compatible with the right CY -coaction follows immediately from Lemma 1.5.6.

To see that it is compatible with the left CX-coaction, consider the following diagram:
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B(X) —— oevye s M/(NP)Y M’ (¢%) M/(NY)Y
— - ®) o
M/(N®)Y  coovea() U(X)
\ coevéq,(x) o M (Sew(x) yw)
M/ Gax) ya) (1) M/ (C®C)) B (X) M/(CYX) ¥ (X)
Licoev o @ Licoev y

v

1—2
M/(C*XIN®)Y & M (CP M (V)Y

v

1—2
M/(CYCOM/(NY)Y 25 M/(CYONT)Y

W) O M/ (C)M/(N?)Y ——— M/(CY)M'(NV)Y M (B *1)
1M’ (¢7)
M/ —2 — @ T M/ —2
— Bt
M/(CXN®)Y M’ (1¢7) M'(CXNY)Y
@ commutes by definition of dcax) ye;
@, @ and @ commute by naturality of M/'~?;
@ commutes by definition of ¢7;
@ commutes by definition of dcu(x) yu.
To see that @ commutes, consider the following diagram:
®(X) 5 v(X)
| (coevex) Bcoevex)  coev,
COeV g (X) P(coev,x coev . x Coev g (X)
3 . e 3
M/(C*ND(X) ®  dM(CN)X) —Z» oM(CX)X)  (13) M/(CY))u(X)
‘ . ‘ ‘ - ‘
1*coeVNq> M/(€q>) q)CX @ \IICX M/(Q\p) l*CoeVN\p
~ ~ ~ ~ L v
M/ (C*C)M/(N®)Y M/ (C)P(X) -2 M/(CX)W(X) M/ (CYNIM/(NY)Y

—
1*Coequ,

M’(Gq))*ll .

@

~ !
1xcoev yw M’ (O )*1
-

~

M/ (CX)M/ (N®)Y

1M/ (¢7)

M/ (CX)M/(NY)Y

commutes since o; is a natural transform;

@ and @ commute by definition of 8¢ and 6y respectively;

and commute by the interchange law;

@ commutes by definition of ¢7;

and @ commutes since o is a modification.
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Therefore, the outer diagram commutes. So @ commutes. So the previous diagram commutes.
But, passing via vg(x),y, this says that the following diagram commutes, that is, that ¢“ respects the
left CX-action:

N¢L>N‘If

5cX NP 5CX NT

Therefore, ¢7 is a bicomodule homomorphism.

O

Lemma 2.2.6. Suppose ¢ : (M, X) — (M, Y), ¥ : (M|Y) — (M",Z) are morphisms of pointed

birepresentations of a finitary 2-category %. Consider the following composition:

(®(X))

U (coev o)
T(M'(N®)(Y))
Ve
M"(N®)¥(Y)
l*coequ,
M”(Nq))M”(N\P)Z
M//72

M"(N®NY)Z

Passing via vy¢(x),z, define the map &1)7\1, :NY® 5 NONY,
Then this map induces a bicomodule homomorphism
pow: N'® - N* m NY

CY

Proof : First, we show that 54,7\1, is a bicomodule homomorphism, that is, that the following

diagrams commute:
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64),\1/ N.:I)N\Ij N\I,(I) 5@,\11 Nq)N\I/

v 2 Sne N 2 OcXx nU® OcX NPT

| | | |

N‘P‘I’cZ N<I>N‘lch CXN\I/<I> CXN(I)N\II

P 0¥l 1x¢g g

We start with . Consider the diagram overleaf:
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» M"(N®NY)Z
T

CO€V I P M M
UP(X) — 5 M'(NY®)Z Ga.0)
/@?OQ\ZQV @ M/ —2
g H*oom<26 -
coeVN TR U(M'(N®)Y) — ¥yo — M"(N®)U(Y) ——— M"(N®)M"(NY)Z
@ \ M/ —2 \\
M (NY®)Z E\ M"(N*NY)Z ® Lxcoev, .z LM (Syw cz)
H*oom/\mN M2
Lxcoev,z :AZGVZ\RZGVZ\RONVM - Z\\AZGVZ:AZGONVN

M"(0ywe cz) @ /

Z:\M -

~ \\

/TS: w

ZH\\ 260 ZH\\AAHNvN ; Z\\AZGZG Z\\AanN

M (Gg )1

®

/

@ ZH\\A

H*%ZG,GNV

Z:AZ@@ONVN

M (¢g 1)
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@ and @ commute by definition of &P,\P;

@ commutes by the interchange law;

@ and @ commute by naturality of M"?;

@ and @ precomposed with 1% coev e and coevywas respectively, commute by definition of the
right coactions;

commutes by higher coherence for M2

Therefore the outer diagram commutes. But passing via 7\5(;()(),2' this says precisely that %,w is
a right C#-comodule homomorphism.

Next, we examine . Consider the following two diagrams:
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TP(X)

coev ywa M (¢g )

> M"(NY®)Z

™~

» M"(N®*NY)Z

7

Gmoom,\m@@mvv

!

UM (C*) (X))

U (1xcoev o)

U (coev y )

/ 620 1xcoev o

U(M/(N®)Y) — 5 M"(N®)T(Y) ——— M"(N®)M"(NY)Z

® | | |

Z\\\m

\

(12

M (6o (x) yao*1)

UM Gea(x) ya)) 6
1 1

M" (8. (x) N® )

Z:Qmﬁkﬂzﬁv )x1

@

Ez\ﬁﬁxvvz\ge?ﬁl %Az\ﬂegze? — MY(CP*EIN)U(Y)) — M"(C*EINT)M"(N
N

@Aoom<nﬁxvv

UP(X)

OO@<2€0

Z:Q/NGAVVN

@

M"(ca(x) yue)

Z:Im
—

ZH:AGAVANJZ:AZG@VN

M'—2 c@(X) N®

U (1xcoev o)

— S Y(M(C*ENP (X)) — T(M/(CPN)M(N®)Y)

Yy (2 T\necc
1xW(coev o)
MY(CPO) (X)) — 5 M (CPEN) (M (N®)Y)
H*nom/\Zm@ @

\

Q)

/T*oomf/\e
Z:Aﬁ@@mv vz\\ﬂzevz\&zev

H*ZH,:Iw

v

1M ($g,4) —— M (CPENM"(N®NY)Z

—

®

"—2

—

©®

ZH:IM

T

1 ]
NZ — M'(CPHINCNY)Z
coev Z:Iw
1—2 v
O, G (M (CREONTYY) N g (R0 NP (V)
T
@ Z:\m
H*EZQ —
Z:AﬁemkvvztAZGvea\v coev v

*z\\AOGANVZGVZ:AZGVN

Z:AGBAXVZGQVN

M (1x¢g )

Z\\AQBAXVZBZGVN

@ commutes by definition of dca(x) yva;
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@ and commute by naturality of U;

@ commutes by higher coherence of ¥,

@ and commute by definition of 5@,\1/?

@ and @ commute by the interchange law;

@ commutes by higher coherence for M"?;

@ and @ commute by naturality of M"?;

and @ commutes by definition of dcax) ye.

Therefore, the bottom edge of the first diagram is equal to the top edge of the first diagram, which
is equal to the bottom edge of the second, which is equal to the top edge of the second. Passing
via fy\;(})(X) 4 this is precisely the statement that $¢’\I, is a left C®(X)_comodule homomorphism, and

therefore by Lemma 1.3.16, a left CX-comodule homomorphism, as required.

Next, we show that ¢ equalises the C¥-coaction maps, and thus induces a map to the cotensor

product.

Consider the following diagram:
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M"(N*NY)Z
o

M (1%0cy pw)

GAVAVQ coevywe ZH:AZGGVN M ($g,5)
/@?om<20v @ \ M2
~
T (M (N®)Y) Ty M"(N®)¥(Y) - 1xcoevye » M/(N®)M"(NY)Z
// W (1xcoevey ) — @ H*A\Ano,ma\mu\v
coevyre @ UM Gy cv)) @ EAZRZGVZHROM\VM\V -Yye ZH:AZGVGAZHROMJM\V
Ve @ / U(M/~2) -
P
U(M/(N®CY)Y) 6 Yy ©) LM Gy yw)  (B)
= U ydcy /ﬁ
Z:QZe.mvxv e M2
M/(N¥®)Z M/ (N®)U(Y) MY(N2CY)U(Y) 2 MY(N®)M(CY)B(Y)
:oom,<26 @ H*nom,<26 6 TnOm/\Zé
v M (6 )x1 v =t M 7n—2
M (o.) ZQAZGVZ:AZGVN N®.cY ZQAZGOM\VZ:AZQV A’*g:AZGVZ\\AOM\VZ:AZGVM*F z:xzﬂvvz\\ﬁﬁvxzevN
% M2 - @  3:\N @ /ZH:\N
s Jf
Z\RZGZGVN ZH:QZ@VQ\*C Z:AZQGM\ZGVN
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@ and @ commute by definition of ¢;
@ and @ commute by naturality of W,

@ precomposed with ¥(coevcs ) commutes by definition of the right coaction on N?;
@ commutes by higher coherence of ¥,

@ commutes by definition of the left coaction on NVY.

and @ commute by naturality of M"~2;
@ and @ commute by the interchange law;
@ commutes by higher coherence for M"—2.

So the outer diagram commutes. But passing via Yya(x),z, this says the following commutes:

NeNY
B > 6N‘1>,CY*1
P w

N\I/<I> N'i’ CYN\I/

g@,\ll /
3 l*(sCY,N‘I’

NeNY

That is, $q>7\1/ equalises the CY-coaction maps. So it induces a bicomodule homomorphism Oo,w :
NY® 5 N®® NY such that to bow = 5(1,’\1,, as required.

O

Theorem 2.2.7. For any fiat 2-category ¢, there is a colax functor 7 : € — cfmod* — ZPBicomg,

defined as follows:

e A representation with generator (M, X) is sent to the coalgebra 1-morphism C¥;

A morphism of birepresentations ® : (M, X) — (M/,Y) is sent to the CX-C¥-bicomodule 1-

morphism N?;
e A modification o : & — W is sent to the bicomodule homomorphism ¢7;

79 is the identity natural transform;

e 77 is given component-wise by I% = Qow-

Proof :
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We've shown that Z is well-defined on objects, 1-morphisms (by Lemma 2.2.3) and 2-morphisms

(by Lemma 2.2.5).

Next, we consider Z'. It is immediate that, when ® is the identity natural transform, fg is the
identity on CX (since the image under the cohom adjunction is just coevcx), and thus I(1m,x)) =

CX = 170m,x)- So Z° is well-defined.
72 is well-defined by Lemma 2.2.6. We need to show that this assembles to a natural transformation,

so suppose 0 : ® —» U : (M, X) - M,Y), o' :® -V : (M,Y)— (M’ Z) are modifications. We

want to show that the following diagram commutes:

I(9'®)

72— I(P) m Z(P’)

I(o'*0) I(0)®I(co")

| |

(VW) — 12— T(V) B I(V)

Consider the diagram below:

Z(P)Z(P)
o —
P,/ _—
Z(P'P) 72— I(P) ® Z(P')
|
(o' %0) Z(o)®WZ(c") Z(o)*Z(c")
| |
(V') 72— Z(V) ® Z(V')
by w \\t\)
Z(V)Z(¥)

The top and bottom triangles commute by definition of Z?; the right trapezoid commutes by
definition of Z(o) ® Z(o’); and t is monic. So to show that Z? is natural, it is sufficient to show the

outer square commutes. To see that it does, consider the following diagram:
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PPO(X) ————— o — 5 M'(N??)7Z M (6, 0/) » M'(N2N?)Z
T e\?om,\zhvv M2 -
e\ @ ?89\20\ \\
@ QAZ\AZGVM\V Z\\AZev \Q\v . Z:Azevz\\AZG VN
| ~ .y
COeV \ 4/q @/ " AZ\@JV @ Z:,m\ %) 1xo o @ » H*Z:@q )
coev LXCOEV g/ , \
o © v ey s o MY(NY)@(Y) (D) M (N)T(Y) — N 2o W)
| NY . |
® / 7 6 :q\/\, M (¢%) @ z\égi
8m< v I ETO v
M"(N¥'®)Z ) — SZ\EGE Uy M (N (Y) — MY(NY)M(NY)Z
Z:@q\é; oom<2€e @ ™~ M2 -
K
Z:AZG\GVN Zz@eqe\v N Z:AZGZG\VN
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@ and @ commute by definition of ¢g g/ and ¢y y;

@, @ and commute by definition of ¢7, ¢° and ¢ *7 respectively;
@ commutes by naturality of ¢’;

@ and @ commute by the interchange law;

@ commutes by naturality of M"~2;

@ commutes by definition of ¢/ * o;

@ commutes by naturality of ¢’;

and commutes because ¢’ is a modification.

Therefore the outer diagram commutes. Passing via 73/¢(x),7, this says that the following diagram

commutes:

N®® 3,4 — NON?

’

(z)a *O d)a*d)U/
u

NYY 5y 4 — NYNY

which is what we wanted. So Z2 is a natural transformation.

Finally, we need to show that 7Y, 72 are coherent, that is, that the following diagrams commute:

I(EUd)

(V) ® Z(E)

2,00

I%\I/,(I) Iﬁ,@l

2
18Iz y

() mI(EP) I(®)®WI(V)®I(Z)

Z(®1m)

I(lM) I(q)) I(lM/(I))

I(®) B I(1yy)

/

(@) I(a)

72 72

Z(®) Z(®)

To see that the commutes, consider the diagram below:
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N=VP %,zw N® @ N=Y
\\ Bo.zu //
bua s T N®NEY / 18y,=
N7 s v
pvoz (2)  NYPN= —54 41— N®NYN= —t— N®*mNYN= ORREITE
/ | AN
t ® N®NY @ N= \@ ¢
Y 5 — O\

NY® g NE o, wE1

@—@ commute by the definition of Z?;
@ commutes by Lemma 1.3.9;

@ and @ commute by definition of 1 &I,E and $<I>7\I; 1 respectively;

N®m NY @ NE

and t ot is monic. So to show that the outer diagram commutes, it is sufficient to show that

commutes. To see that it does, consider the diagram overleaf:
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coev NET D

EUP(X) ———— M"(N='")W

Z:Ame,mev ZHEAZAVZM,H\VS\

T~

m@?cm<26 )

® EM(NT)Z)

ZHEAZAHGVMANV

.
Lkcoev =

Z:\Azméﬁvv% Z\\\AN/\%AJZ\\\AZMVS\
_ —
Z\:A«\vee,mv M2
v —

®

S (B, 4)) ——— Z(

®

Z:Amﬁev Z:RZ@ZEVMANV

®

Z\:@e.evi

@

®

mfﬁﬁz\ﬁzevﬂv SRS Z\\\Q/N&vmem%v
/mnezi/» @ \mzﬁv\ @ /?mn
E(coev ) mﬁz\gzgvﬁéﬁ — mmz\gzevz\gzevmv
= *OO®<N<A\

%NAZ\TJ

M'(N*NY)Z)
_ i Z:\
ENENT

.
Lxcoev =

z:RZ@ZGVZEAvaS\

Z\:\N

ZHE@%%*C

- z\\\AZQVMAz\\AZQVNV

ZSAZ%VZSAZNGVS\

?on/\Zme
coev ya)
>

=N

-2

H*mz,v% @ _*ZHE@FNV @
Z\\\AZOVZ:AZ@VNANV
%H*ncﬁ‘?m

@ %\\AZGVZSAZGVZHSQ/NMVS\ 1M =2 Z:AZGVZEAZGZNVS\

@

M (1x6y =)

M =241

ZEAZ@@ZMVS\

J ZSAZeZeZmVS\
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@, @ @ and commute by definition of ¢;

@ commutes by definition of ZV¥ ys;

@ and @ commute by naturality of Z;

@ and @ commute by the interchange law;
commutes by higher coherence for =;

@ and @ commute by naturality of M"/~2;
and @ commutes by higher coherence of M"'~2,

So the outer square commutes. But passing via Yzya(x),w this is exactly what we wanted. So the

first coherence diagram commutes.

Next, we examine . We expand it to the following diagram:

@ commutes by definition of 72
@ commutes by definition of €ZI(¢);

So to see that the outer diagram commutes, it's sufficient to show that @ commutes. To see that

it does, consider the following diagram:
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coev o

AHVAN‘V AZH\ANAQHZVVJM\ Z\AMHZTAVV >
/@Aoom,\nxv / @ \z\lw
H*oom/\
(M) (2) Qﬁs ey M/(CX)B(X) —s" M (CX)M/(Z(®))Y

/ ﬁz@&v
@

v~ (6) GAZZ M (e x )1

Z m
/ D@0 3 ()M (Z(@))Y
@ o \ ~
\Zﬁ x1 Q

coev o

®

lew

M (e x*1)
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@ commutes by definition of ¢;

@ commutes by definition of ex;

@ commutes by naturality of ®;

@ and @ commute by the interchange law;
@ commutes by naturality of M/~2;

@ commutes by higher coherence for ®;

and commutes by higher coherence for M.

So the outer diagram commutes. But passing via 7g(x),y, this says precisely that our coherence

diagram commutes.

Similarly, one can show that commutes precisely if

1y ® -
N™W™ —de1,, — NeCY

lxey
N<I>
commutes.
To see that it does, consider the following diagram:
coev \ o 1.® _
(X)) — M(N Y)Y ————— Mbs,,,) — M/(N®CV)Y
\ \l*coevcy @ M2 —
1+M~0 e -
coev e @ ~ M,(Nq))M/(CY)Y
® ‘
\ 1M’ (ey)
~
M/ (N ®)y 15M~0 M/ (N®)M(1)Y M (1xey)
\M/—2
M'(N®1)Y

@ commutes trivially;

@ precomposed with coevye commutes by definition of ¢;
@ commutes by definition of ey;

@ commutes by naturality of M'?;

and @ commutes by higher coherence for M.
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So the outer diagram commutes. Passing via 7g(x),y, this says precisely that our coherence diagram

above commutes.
So Z2 and ZY are coherent. So T is a colax functor.

O

Now, we want to show that Z is the other half of the equivalence ¢ : Z%icomy — € — cfmod},.

Theorem 2.2.8. The pair (¢,Z) form a biequivalence of bicategories between ZHicomy and ¢ —

cfmody,.

Proof : Since ¢ is a biequivalence of bicategories Z%icomy — ¢ — cfmod* which restricts to

a biequivalence Z%icomy — € — cfmod}, by Theorem 2.1.2, it is sufficient to show that Z o =
1%ﬂicomﬁ-
One can compute that, for a coalgebra 1-morphism C, Z o «(C') = Z(M¢, C) = m.[C,C] = C.

For a C-D-bicomodule 1-morphism M, write ®); = —® M. Then Zo (M) = Z(®y;) = N®¥ =
9“’MMD [D,C ® M]. We claim that, as bicomodule 1-morphisms, this is isomorphic to C' & M. We note

the following facts:

e vi,[D,CEM] = C®M as right comodule 1-morphisms, with the left coaction (SCCM’MD (D.CaM]

mapping m[D,C & M| — CCMMD [D,C & M];

e coevee = Ag, so Dpr(coevee) = Ac B M = dc.cmm;

M .
° CoeVCM,D = 5CM,Dv

e yeam,caM(0o,,) = (Par)c o Par(coevee) = 10 dccmm = dc,cmm by construction.

So consider the following diagram:
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CwmM

D

M
OO®<QH§,U

M (44[D,C @ M])D

dcmM,D

N

A

dcmM,D

™~

Mp
OO®<QH M,D

 @5§@

coev o) @ dc,cmm

/

@

©

> ZUAQ

\

® M)D

CEM
CHEMD @ C CwM % CCmM dc,cmm*l 0 Mp(m[D,dc,cmml)
unQHtiEEM T&Qﬁ?hm @ H/*%QE?N,U
. Qm v @ CaM < N v
D mQﬂin_b,Qmi_ C C®mMD 0o, *1 > CCHwEMD
ot + \ Mp (0, *1) / NE
Mp(C™ " y[D,C @ M])D » Mip(Cu[D, C'&@ M])D




90 Chapter 2: Internalising birepresentations

@ and @ commute by definition of coevNC/YﬂM’D;
@ commutes because C' ® M is a bicomodule 1-morphism, so the coactions commute;
@ commutes by definition of 0g,,;

@ commutes by definition of (5CC]VI,CM;

@ commute by definition of Mp;

and @ commutes by the interchange law.

So the outer diagram commutes. But passing via ycma,p, this says that N®¥ and C'® M have
the same left coaction. So they are isomorphic as bicomodule 1-morphisms.

SoZou(M)=C®M, and for a bicomodule homomorphism ¢ : M — M’', Zow(¢) =Z(— ®E ¢) =
MplD, 1 E ¢ =1E ¢.

Given a coalgebra 1-morphism C, we can compute (Z o 1)2 = (Z° o Z(:°))(C) = Z(e")(C) =

Mc [C, 52‘] =éec
Finally, given a C-D-bicomodule 1-morphism M and a D-E-bicomodule 1-morphism N, we can

compute

(Zo L)?VLN =T7%01(*) =T1%
But note the following:
e coevya,, = dcmm,D, SO Pn(coevye,, ) = dcmm,p E 1y;
® coevyay = OpDEN,E-

So Yommen,E(t8mar ey © Larn) = Spmare © (bcmm,p B 1y). So

tCan.pmn © Loy = (Lxep) o (1% 6pgar,e) © (Scmm,p B 1y)
= dcmm,p B 1N
= (t([J)M,D 0 0¢gmm) B 1N
= (th,D 1n) o (bcmm B 1N)

_ D .
= tCmM,DwN © (OCmm B 1N)

So since ¢ is monic, we must have IJQ\/[,N = 56M 1w, that'is, (Z o L)2 = (%M 1n.
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So define I' : Zot — 15%icom., as follows: for a coalgebra 1-morphism C, I'c = C' as a bicomodule
1-morphism; for a C-D-bicomodule 1-morphism M, I'nyy = epgy : CEBM ® D — C®E M. By
Proposition 1.3.11, the I'j; assemble to a natural transformation for each C' and D.

Now, we want the following diagrams to commute:

ISV

(Zo)(MEN)®ETE Ic® (MBN)

(ZTou)2m1

l EINN Iyl
ZouM)BZo(N)®mTg Zo(M)WTpE N —— T'c® (M &®N)

e}

Zou(C)mle F'emC
(Zor)'m1
CmIlc I'e®C
k A
I'c
We first examine , which we expand into the following diagram:
CEMENBHE ——— coaman=lecamBey CmM#EN
(‘%MlN)lE:‘%le(D CEMEN®HRE
2 ~
l ETC‘IMIJ\’E @ 101\46?\]
— ~
CEMBEBDENHE CMDN4>C’MN
lecgmBEepgn=lcmmmD ey cemm BN

@ commutes because 67z, = (Efgar)

@ commutes trivially;
and @ commutes by the interchange law.

So the outer diagram commutes, that is, commutes.
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Next, we consider , which we expand into the following diagram:

‘s J— ‘.
ceme=1Bey

CEeCmC CwC

er.m1 1®el,

©) \C
\@i/

@ and @ commute because slc =e€c;

@ commutes because the left and right unitors commute in a bicategory.

cCwEC

@mC

Therefore the outer diagram commutes, that is, commutes. So I'' is a 2-natural transformation.
Now, since each I'c and each I'j; is invertible, I" defines an isomorphism Z o ¢ = 1% %icom.. -
So the pair (¢,Z) is a biequivalence of bicategories.

0

As a small corollary of this result, we get an upgrade to Theorem 2.2.7: T is, in fact, a pseudofunctor,

and in particular Z?2 is invertible.
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Induction

Let .7 : € — 2 be a locally k-linear pseudofunctor between finitary 2-categories.
The goal of this section is to define the induction functor Py : BZXicomy — BAicomy. To this

end, we begin with a series of lemmas, following the structure of | ] Lemma 3.11:

3.1 Local functoriality of induction

Lemma 3.1.1. The image of a coalgebra 1-morphism under .# is a coalgebra 1-morphism.

Proof : To be specific, we send the triple (C, A, €) to (F(C), A’ := F20.F(A),e := F0.F(e)).
We need to check that the latter satisfies the coalgebra axioms. First, coassociativity. Consider the

following diagram:

F(A) @ F(1xA) @ F)xF(A)

Z(CC) ey F(CCC) 7 F(C)Z(CC)

72 (3) 72 (4) 1472

F(C)F(C) F A F(CC)7(C) o F(C)7(C)F(C)

@ is the image of the coassociativity diagram for C, and so commutes;
@ and @ commute by naturality of .%2;
@ commutes by the coassociativity condition for .7.

Therefore the outer square commutes, which is precisely the coassociativity diagram for .% (C').
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Next, counitality. Again, consider the following diagram:

Z(C) e F(CO) 72 F(C)F(C)
®
F(A) ﬁ(fe) @ 1+7(€)
F(CC) Fex) —— F(C) F(C1) —— F(C)F(1)
F? @ F(10) 1+.70
F(C)F(C) —— 71— F(1).F(C) F(C)

FOx1

@ is the image of the counitality diagram for C, and so commutes;
@ and @ commute by naturality of .%?;
@ commutes by counitality for 7.

Therefore the outer square (with the diagonal equality) commutes, which is precisely the counitality

diagram for .7 (C).
So .#(C) is indeed a coalgebra 1-morphism.

O

Compare this lemma also with | | Proposition 5.5.

Lemma 3.1.2. The image of a bicomodule 1-morphism under .% is a bicomodule 1-morphism.

Moreover, when & and 2 are fiat, .# sends (left-, right- and) biinjective bicomodule 1-morphisms

to (left-, right- and) biinjective bicomodule 1-morphisms.

Proof : Again, to be specific, we send the triple (M, dc ar,0n,p) to the triple (ﬁ(M),(S’QM =
F?o F(bcm), Oy p = F?20 Z(5mp)). We need to check that this is indeed an .Z(C)-Z(D)-

bicomodule 1-morphism. Consider the following diagram:
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F(6enn) — F(CM) 72 F(C).F (M)

F(CM) —— F(1xdcn) — F(CCM) P F(CO)F (M)

F? @ F? @ F2x1

F(C).F(CM)

17 (6c,m) 1%72

@ is the image of the C-coaction condition for M, and so commutes;

@ and @ commute by naturality of .%?2;

@ is the coassociativity diagram for .%.

Therefore the outer square commutes, which is precisely the .% (C')-coaction diagram for .% (M).

Next, we consider the following diagram:

F(6c,m)

F (M) F(CM) 7= F(C)F (M)

@ is the image of the C-counit condition for M, and so commutes;

@ commutes by naturality of .#?;

@ is the counitality diagram for .%.

Therefore the outer triangle commutes, which is precisely the .% (C')-counit diagram for .7 (M).
So in fact .# (M) is a left .#(C)-comodule 1-morphism.

Similarly, .# (M) is a right .# (D)-comodule 1-morphism.
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To see that .# (M) is an .7 (C)-.%# (D)-bicomodule 1-morphism, consider the following diagram:

F (M) FSon) — F(CM) 72 Z(C)F (M)
,g((SM’D) @ ,@(1*61\41)) @ 1*32:(51M,D)
F(MD) F(6e,mx1) —— F(CMD) 72 Z(C).Z(MD)

72 (3) 72 (4) 152

F(M)F (D) — # 6o — F(CM)F (D) 72 F(0).F(M)Z (D)

@ is the image of the bicomodule diagram for M, and so commutes;

@ and @ commute by naturality of .%?;

@ is the coassociativity diagram for .%.

Therefore the outer square commutes, which is precisely the bicomodule diagram for % (M). So
F (M) is an F(C)-.Z (D)-bicomodule 1-morphism.

Finally, we need to show that left-, right- and biinjectivity are preserved when % and 2 are fiat. By
Lemma 1.3.7, when M is injective as a left C'-comodule 1-morphism, it is isomorphic to a summand of
CF, for some 1-morphism F': j — i. So since .# is additive, .% (M) is isomorphic to a summand of
F(CF) = Z(C)F(F). So Z(M) is injective as a left .#(C)-comodule 1-morphism. Similarly, when
M is right-injective, .# (M) is injective as a right .7 (D)-comodule 1-morphism. So if M is biinjective,
so is .#(M). So we are done.

O

Lemma 3.1.3. The image of a bicomodule homomorphism under .% is a bicomodule homomorphism

Proof : We send the bicomodule homomorphism ® : cMp — ¢Np to F#(®) : z)F (M) z(p) —
77 (N)z(p). We need to check that this is indeed a bicomodule homomorphism. Consider the

following diagram:
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F (M) (@) F(N)
/(5C,A{) @ f(éc N)
F(CM) F(1x0) — F(CN)

F(C)F (M)

17 (@) — F(C)F(N)

@ is the image of the left C'-comodule homomorphism condition, and so commutes;

@ commutes by naturality of .#2.

Therefore, the outer square commutes. But this is the left .#(C)-comodule homomorphism
condition for .#(®). The right .%(D)-comodule homomorphism condition is similar, and thus % (®) is
a bicomodule homomorphism.

O

Putting all of this information together, we obtain the following result:

Proposition 3.1.4. When %, & are fiat, there is an assignment of data (not necessarily defining a

pseudofunctor) P := Pz : BAicomy — HBABicomg as follows:

e For a coalgebra 1-morphism (C, A ¢) in €,

as defined in Lemma 3.1.1;

e For a pair of coalgebra 1-morphisms C, D, a functor
Pcp : BAicomy (C, D) — BRBicomgy(F (C), F(D))

with the following data:

— For an C-D-bicomodule 1-morphism (M, dc,ar,6nm,0), Pep(M) = (F (M), 0¢ 263 p),
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as defined in Lemma 3.1.2;

— For a homomorphism of C-D-bicomodule 1-morphisms ® : M — N, Pop(®) = .7 (D).

Proof : By Lemmas 3.1.1, 3.1.2 and 3.1.3, we know that this assignment is well-defined, sending
objects to objects, 1-morphisms to 1-morphisms, and 2-morphisms to 2-morphisms with appropriate
source and target. That Pcp are functors is immediate from the fact that .# preserves vertical

composition and identity for 2-morphisms. [J

This gets us most of the way to defining a pseudofunctor Z%icomy — FBABicomy.

3.2 Pseudofunctoriality of induction
Next, we define P% and P2.

Lemma 3.2.1. The following diagram commutes:

1 Io —— BABicomy (C, C)

—9—

1 — Ipc) — BABicomy(P(C),P(C))

Proof : We know that 1¢ = ¢Cc. So P(lc) = #)Z (C)#cc) = lpc)- O

So we can define P° to be the identity.

A version of the following lemma appears as Lemma 3.9 in | ]

Lemma 3.2.2. For bicomodule 1-morphisms M = ¢Mp and N = pNg, there is a bicomodule

homomorphism P%, \ : ZF(MBN) — F (M) Z(N). This collection of morphisms form a natural
’ D Z(D)

F(—). Moreover, when .# preserves equalizers of

ESRSYY

transformation P? : #(— @ —) — Z(-)
F

—

D)
1-morphisms, P? is a natural isomorphism.

Proof : (M ® N,t := t]\%N) is such that, by definition, the following is an equaliser diagram:
D ;

MEN —i— MN — [°P¥ 7 ADN
D — oM, D*¥1 —
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Similarly, (.Z (M) E;?D) F(N),t' = tf;f'%]\’i[))j(m) is such that the following is an equaliser diagram:
, L0z (D), 7 ()

F(M) F(N) —L—— F(M).Z(N) F(M)F(D)Z(N) (3.2.1)
?(D) 59(A{),9(D)*1

We claim that the map #2 0.7 (t) : F(M ® N) — .7 (M).Z(N) equalises 6 7(nr),7(p) * 1 and
D

1% 07 (p),#(n)- To prove this, we consider the following pair of diagrams:

FM®EN) — 71t — F(MN)

F(1x6p n) — F(MDN)
D

72

I

F(M)F(N) — 1:56px)— F(M)F(DN) — 1252 — F(M)F(D).F(N)
y(MN) — F () —> f(MN) ——— F(0m,p*l) ——> j(MDN)
D
3,72 gQ

%]
F(M)F(N) — Z6u.p)xl — F(MD)F(N) — 72— F(M)F(D).F(N)

(1) and (2) commute by naturality of 2.
The bottom edges of both diagrams are, respectively, (185 (py #(n))0-F 20.Z (t) and (8.7 (ar), 7 (D) *

1) 0 %20 .Z(t). On the other hand, we can compute

(1% F2) o F o F(1xdpn)oF(t)= (1% F*)oF o F((1xdpn)ot)
= (92*1)09\209((1*5&]\/)0@
= (F2x1)0F%0 F((Smup*1)ot)

= (F2x1)0F%0 F(0up*1)oF(t)

where the first and last equalities hold by functoriality of .7, the second holds by coassociativity of

#, and the third holds because ¢ equalises 1 * dp x and 67, p * 1.
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So the top edges of our two diagrams are equal; so since @ and @ commute, the bottom edges

are equal. So .72 0 .7 (t) equalises Sz(my,7(p) * 1 and 1% dz(p) 7 (), as required.

But then, since (3.2.1) is an equaliser, we must have a map

Pyn:FMEN)— . F(M) @ F(N)
’ D F(D)

such that t' o P}, v = 72 0 F (1),

To see that this collection of morphisms does, indeed, form a natural transformation, let &3, : M —

M' and &5 : N — N’ be bicomodule homomorphisms. We need the following diagram to commute:

FMBN) —Pin— F(M) Z(N)
D Z(D)
| |
3”\(@]\/[@1\]) y(@]u) 9\(@]\])
D Z(D)
l l
FMBN) —Plw— F(M) 8 FN)
F(D)

To see that it does commute, we let ¢ and ¢’ be as above, # and ¢’ be the analogous maps for M’

and N’, and consider the following cube:

/ \

/ 92(75) j(@]y[*q)N \
Z(M&N) FOrN). <?MﬁW)
D
(I)]\I.(DN \\ F(Pur) *9 (®n)
Piin . .
ﬂMﬁM) FO) @ 7 F(M)F(N)
\ F( ‘1>M

1VI’ N’

\&)

7‘1’1\1
/
)ﬂwq

/

:/
= %/SH—

7

Q‘;)
=)

(

Now, the front right face commutes by definition of .% (® ) F(Pn).
Z(D)

The back left face is the image of the following diagram:
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M®BEN t—— MN
D
|

P HEPN [VELSN
D
{

M'=®m N’ i— M'N’
D

which, by definition of ®; ® ® 5, commutes.

The top and bottom faces both commute by definition of P2.

The back right face commutes by naturality of .72

t'is an equalizer, so monic, so by a previous argument, the front left face commutes.
But this is exactly what we wanted to begin with, so P2 is a natural transformation.

To see that 73]2\/“\, is a bicomodule homomorphism, we want the following diagrams to commute,

where we suppress the subscripts in PJZ\/[N:

F(M®@N) P F(M) @ F(N)
D Z(D)
| |
dz (), 7 (MEN) Sz (c), 7 (M) F(N)
D F
l 1
F(C)F(MBN) ——— F(C)F (M) F(N)
D 1xP2 Z (D)
F(M®@N) L F(M) @ F(N)
D 7 (D)
| |
SFMaN),Z(E) o7 (a1 F(N),F(B)
D Z(D)
l 1
F(M® N)Z(F) F (M) F(N)Z(E)
D P2x1 Z(D)

We only consider the first diagram, as the proof that the second commutes is similar.

Consider the following diagram:
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F(MN)
ﬁf(t)/; © >\/2
: F(C),F(MN a
F(M = F(C)F(MN) F(M)F(N)
D T ~__ ‘
| 17 () 172
5?(0),9(1»11\7) dz (), 7 (m)*1
ﬁ(C)ﬁ(MN) F (M) ﬂ(N) F(C)F(M)ZF(N)
F
\ /
\ 15P2 59(0),9(1»1)y 1 1xt!

Now, the top and bottom faces commute by definition of P?;

the front right, back left and back right faces all commute by the definitions of the respective

coactions;
and 1 *¢ is monic.

Therefore, by a previous proof, the front left face commutes, that is, P2 is a left F (C')-comodule
homomorphism. Similarly, it is a right .% (E)-comodule homomorphism, so an .% (C)-% (E)-bicomodule

homomorphism.

In the case that .# preserves equalizers of 1-morphisms, the following is an equalizer diagram:

fé\(l*(SD’N)
g T a —_— g
J’(MN) F(t)y— F(MN) —— F(MDN)

By exactly the same process as we used to obtain P?, we get a map .% (M) F(N) — F(M®EN),
7 (D) D
which we will suggestively call 77]\_421\,, satisfying % (t) o 77]\_42]\[ =.Z"20t'. We can compute:
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. . /- . 2 -2 o . . -2 2 .
from which we deduce that, since ¢’ is monic, we have PM,NOPM,N = 1. Similarly, pM,NOPM,N =1,
so these maps are indeed inverses. So P? is a natural isomorphism.

]

Given all this data, we can define the following:

Theorem 3.2.3. Suppose €, Z are fiat, and .% preserves equalizers of 1-morphisms. Let
P :=Pg : BBicomy — BAicomgy

be defined by the following data:
e On objects, 1-morphisms and 2-morphisms, P is defined as in Proposition 3.1.4
e Define the natural transformation P° as in Lemma 3.2.1
e Define the natural transformation 2 as in Lemma 3.2.2.
Then P is a pseudofunctor.

Proof : By Proposition 3.1.4, along with Lemmas 3.2.1 and 3.2.2, our data are well-defined.
Again by Proposition 3.1.4, we have everything except the coassociativity and counitality diagrams.

To show counitality, we consider the following diagrams:

FCaM) —2 5 7)) m FM) ZL () ® F(M)
c F(C) F(C)
| |
F(€hy) efg(M)
! 1
F (M) F (M)

FMED) —2 s (M) m F(D) 2 #(M) m F(D)
D F(D) 7 (D)
| |
y(fw) € (M)
F (M) F (M)

We consider only the first diagram, as the proof the second commutes is completely analogous.
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Z(C)

Writing ¢ := tﬂ:(g),ﬂ(M)' by definition,

F(C @ M) P F(C) ®m F(M)

F(CM) e F(C)F (M)
F (ec*1) @ F(ec)*1
F(M) . F(1)Z (M)

@ commutes by definition of P?;

@ commutes by naturality of .%2;

@ commutes by counitality for .%.

Moreover, the outer edge is exactly the counitality diagram for P.

Finally, to show coassociativity, we need the following diagram to commute:

FMENEL) ———— F(MBN)8 (L)

P2 P2@l

F(M)® F(NE L) F(M)® F(N) & F(L)

To see that it does, we first consider the following diagram:
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F(MNL)
Z() — pe T~ e
F(M @ NL) FONF(NL) F(MN)Z(L)
o

In this diagram, we see that the top face commutes by naturality of .72
The bottom face commutes by definition of 1 @ .%?2;

The back left face commutes by definition of P2

The back right face commutes by coherence of .#2

The front right face commutes by definition of P?;

And t % 1 is monic.

Therefore, the front left face commutes by a previous argument.

Next, consider the following diagram:

F(M@ENL)
B
F(1m@t) Pz 72
_— 4 \
F(M®EN®RL) F(M)® F(NL) (M®N)Z(L)

- P2

F
(75)/7 \\‘\\ t/ ‘
P2 - T e P2x1
l ) /1‘/ .\\) l

L

F(M)® Z(N)& F(L)

Here, we see that the front left face commutes by definition of the cotensor P2 @ 1;
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The back right face commutes by the argument for the previous diagram;

The back left face commutes by naturality of P?;

The top and bottom faces commute by definition of P?;

and 1 ® ¢ is monic.

Therefore, by the same argument as before, the front left face must commute, that is, the diagram
we want commutes.

Hence, we've shown that P is a colax functor.

It is immediate from Lemma 3.2.2 that when % preserves equalizers of 1-morphisms, P is a
pseudofunctor.

O



4

Restriction

Let # : ¥ — 2 be a k-linear pseudofunctor of fiat 2-categories. In the setting of birepresentations of
2, defining restriction along .% is simple. We start in this context.

However, for the purposes of constructing an adjunction, we need P and R to pass between the
same 2-categories. For this reason, we use Theorem 2.1.2 alongside some technical considerations to

obtain a pseudofunctor in the correct setting.

4.1 Restriction of birepresentations

Definition 4.1.1 (Restriction). We define restriction along .% as the strict 2-functor
R=Rz:%2—afmod— € — afmod

given by pre-composition by .%, that is, by the following data:

e For M a birepresentation of &, define R(M) = M o .%;
e For @ : M — M’ a morphism of birepresentations of 2, define R(®) = ¢ 4;

eForo:® — ¥ : M — M a modification of morphisms of birepresentations of 2, define
R(o) =o07;
<

Theorem 4.1.2. R is, indeed, a strict 2-functor. When .% is a strict 2-functor, R sends

2-representations to 2-representations.

Proof : First, we show that R is well-defined.
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Since the composition of pseudofunctors is a pseudofunctor, it is immediate that R is well-defined
on objects. The claim that for .# a strict 2-functor, R sends 2-representations to 2-representations, is

similarly immediate.

Now, suppose ® : Ml — M’ is a strong transform. ® z(;) clearly gives a morphism M (j) — M'(j),
and similarly @ zp) : ® z(;) o M(F (F)) — M/(F(F')) 0 @ 5(;), which is natural in F' as ® is. For 5

to be a 2-natural transform, we need the following diagram to commute:

P
&, o M(.F (GF)) 7 M (Z(GF)) o ®;
1x(R(M))? R(M/)2x1

®; o M(F(G))M(F (F)) g—, MI(F(G)) 0 &1 o M(F(F)) 5— M'(F(G))M'(F (F)) 0 @;

To see that it does, we consider the expanded diagram below:
®
®; 0 M(F(GF)) — M(F(GF)) o ®;
1M (#2) @ M (F2)+1
®; 0 M(F(G).Z (F)) ()7 (F) M/(F(G)F (F)) o ®;

1xM2 @ M'2%1

B; 0 M(F(G))M(F (F)) —— M'(F(G)) 0 By o M(F(F)) —— M/(F(G))M'(F(F)) o ¥,

Now, @ commutes by naturality of ®;
@ commutes by the higher naturality condition for ®.

Therefore, the outer square commutes as required.

Moreover, we need the following diagram to commute:

Pz

@5 o M(F(1;)) MI(F(15)) © .7

1xR(M)° R(M)0%1
27 (j)

To see that it does, consider the following diagram:
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<Df}(l )
D7 (j o M(F(15)) : M'(Z (1)) 0 @2 ()
14M(F0) € MY (F0)x1
®7(j) o M(17(;) 50 ML) 0 27(j)

1O @ M/0x1

7))

@ commutes by naturality of ®;

@ commutes by the naturality condition for ®.

Therefore, the outer diagram commutes as required.

® 2 is locally invertible since ® is, so ® 4 is indeed a strong transform.

That R sends strict transformations to strict transformations, and modifications to modifications is
immediate.

Finally, we can see that R(V®) = (VP)z = V2P = R(V)R(P), and R(1m) = (1m) 2 = 1Moz,
so that R is indeed a strict 2-functor.

O

fR:2—afmod — € — afmod restricted to a functor ¥ — cfmod}, — € — cfmod},, we could
use Theorem 2.1.2 to obtain a functor ZHXicomy — HBHAicomy, as required, but unfortunately this
is not necessarily the case: the restriction of a cyclic birepresentation isn't necessarily cyclic, and even

when this is the case, there is not always an obvious choice of generator for R(M).

We solve this problem in two steps.

Proposition 4.1.3. Given a finitary 2-category ¢, there is a multifinitary 2-category 6% with the

following properties:
e ¢ — afmod is biequivalent to €% — afmod;
e Every birepresentation of ¢’® is cyclic;

e When € is a fiat 2-category, ¢V is multifiat.
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e This construction is natural in €.

Proof : The construction of €% is given in full in [ , Section 2.4].

In that paper, Lemma 2.25 states that ¢’ is multifinitary when % is finitary.

Proposition 2.27 states that 6 — afmod is biequivalent to €% — afmod.

Remark 4.11 notes that every birepresentation of € is cyclic.

Lemma 2.26 states that ¥’ is multifiab when % is fiab. These are weakenings of multifiat and fiat
respectively, and this result clearly restricts to the strict case (that is, %9 is multifiat when % is fiat).

Naturality in € is immediate from the construction, although this claim isn't made in [ ]

This construction is called the additive closure of %, and in a particular sense, is the bicategory
obtained by taking the the sum of all objects in %.
As a consequence, we can assume without loss of generality that we work in a 2-category where all

birepresentations are cyclic, solving our first issue.

Remark. €% has only one object. This is not a peculiarity of the construction: in fact, any 2-category
with only cyclic representations will necessarily be biequivalent to a bicategory with one object. We

assume, going forward, that our 2-category % has one object, which we denote .

Finding a canonical generator for RM is slightly subtle. First, note that in this new context, RPZ

is cyclic, and so must have a generator.

Lemma 4.1.4. Let €, & be one-object finitary 2-categories for which every representation is cyclic.
Let M be a birepresentation of 2 with generator X € M), and pick a generator G € RIPZ(x) for

RPY7. Then M(G)X € RM(x) is a generator for RM.

Proof :

Suppose Y € RM(x). Since X generates M, Y is isomorphic to a summand of M(F)X for some
F € 9(x,.F(%)). Since G generates RPZ = 9 (x,.7(—)), there is some H € € (*, ) such that F is
isomorphic to a summand of RP,(H)G = #(H)G. Then M(F)X is isomorphic to a summand of
M(Z#(H)G)X = RM(H)(M(G)X), so Y is isomorphic to a summand of RM(H)(M(G)X) for
some H € € (x,*). So the inclusion (RM - M(G)X)(x) < RM(x) is essentially surjective (and by

definition fully faithful), so an equivalence of categories. By Proposition 1.4.4, M(G)X € RM(x)
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generates RM, as required. [J

This lets us define R : ¥ — cfmod}, — ¢ — cfmod},.

Proposition 4.1.5. Let ¥, 2 be one-object multifiat 2-categories whose birepresentations are all cyclic.

Pick a generator G € RPZ(x). Define R : 2 — cfmod:, — € — cfmod?, as follows:
o For (M, X) € Z — cfmod},, define R(M, X) = (M o.# ,M(G)X);
o For ®: (M, X) — (M'|Y), define R(®) = @ 5;
o Foro:® — U, define R(0) = 05.
Then this is a strict 2-functor. [

Note that this definition is independent of our choice of the G (up to natural isomorphism of

2-functors), since if X, Y generate M, then 1y : (M, X) — (M, Y) is an isomorphism.

4.2 Restriction of coalgebra and bicomodule 1-morphisms
This finally gives us all the tools we need to define R : Z%icomy — B HBicomy.

Theorem 4.2.1. Let ¥, & be one-object multifiat categories for which every birepresentation is cyclic.
Let .7 : € — 2 be a pseudofunctor. Pick a generator G € RPZ ().

Overloading notation, RS =R : BABicomy — BAicomy is given by the following data:

For a coalgebra 1-morphism C of 2, R(C) = m0.z[GC, GCY;

For a C-D-bicomodule 1-morphism N of Z, R(N) = w02 [GD, GN], viewed as a R(C)-R(D)-

bicomodule 1-morphism;

For a bicomodule homomorphism ¢, R(¢) = M0z [GD, 1 * ¢];
e R? is defined in the lemma below;

o RV = Ilr(c)-
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Then this is a pseudofunctor, and the following diagram commutes up to natural isomorphism:

P — cfmod;, — R— € — cfmod},

12
12

PBABicomy

R—— BPBicomy

O
This theorem requires the following lemma:

Lemma 4.2.2. Note that the following composition of maps defines a map

G(M @ N) — RMg(R(M)R(N))GE:

G(M®N)

RMp
lcoevGM,GD E2)8

RMD(’RMD [GD, GM])GD N

FR(M)GD ® N
ll*le
FR(M)GN
ll*coevgﬁiﬁng
FR(M)RMEg(rmyz|GE,GN])GE

FR(M)FR(N)GE

L?‘"Z*l

F(R(MYR(N))GE

RMg(R(M)R(N))GE

and thus induces a map R(M ® N) — R(M)R(N). This map is a homomorphism of bicomodule
1-morphisms. Moreover, this map equalises the R(D) coactions, so induces a map R? : R(M ® N) —

R(M) @ R(N).

Proof : Identical to the proof of Lemma 2.2.6. [

With this, we can show that R is a pseudofunctor.
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Proof : (of Theorem 4.2.1)

First, we can compute the composition R' =Z o R o :

e For a coalgebra 1-morphism C of 2, R'(C) = R(C).
e For a C-D-comodule 1-morphism N of 2, R'(N) = y,0r[GD,G(C ® N)]

e For a bicomodule homomorphism ¢ of Z, R'(¢) = mpor[GD,1 ® ¢].

In particular, since R'(N) = R(N) for any biinjective bicomodule 1-morphism N, we know that
R(N) is a biinjective bicomodule 1-morphism, so the data of R is well-defined.

We want to use Proposition 1.1.8. To this end, we define I' : R’ — R as follows:

e At a coalgebra 1-morphism C of 2, T¢c =1: R/(C) — R(C);

e For a C-D-bicomodule 1-morphism M of 2, Ty = mpor[GD, 1%L ] : R/ (M) — R(M)

Since €L is a natural isomorphism by Proposition 1.3.11, we know that I satisfies the epimorphism
and conditions of Proposition 1.1.8.
We want to show that I' satisfies the | 2 | conditions of the proposition. To see that it does, consider

the following diagram:
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—? RMp(rue, [GD.GC g M) RME (R [GE
i

[GE,GN))GE — 52— F(ru,

N ——— RMp(rar, [GD, GM])RMi(
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@ commutes by definition of zn, [GD, &,];

@ and @ commute by the interchange law;

(3) commutes by definition of =y, [GE, el ];

@ and @ commute trivially;

@ commutes by definition of R'?;

@ commutes by definition of R?;

commutes by naturality of .#?;

@ commutes by definition of ;

commutes by definition of the cotensor product;

and RMg(t) = 1 is monic.

So the outer diagram commutes. Passing via wggﬂMNvGE, this says precisely that of the
proposition commutes in this case.

of the proposition commutes trivially.

So we immediately get that R is a pseudofunctor, and I' : R’ — R is a 2-natural isomorphism. [

We prove one final lemma:

Lemma 4.2.3. Suppose .7 is essentially 1-surjective. Then 1z; generates R]P’g«(i) whenever R]P’g-()

i
is cyclic.

Proof : Notice first that 1z € RIP’?Z(Z.)(Z'). Now, R]P’Z«(i) must have a generator, say
G; € RIP’%(Z.) (7). Soif F e RP?;(Z-)(]C), then there is some H € €(j, k) such that F' is isomorphic to a
summand of RP;(H)G; = #(H)G;. Since .Z is essentially 1-surjective, .%#(H)G, is isomorphic to
F(H') for some H' : i — k. But then F is isomorphic to a summand of

F(H") gz = RP;(H')1z3). So 17(;) generates RPZ@ as required. [J

It may be possible to work without this lemma, but certain constructions rapidly become very
unwieldy.

Since we made a choice of G in defining R, we note that this actually defines a collection of
pseudofunctors, one for each possible choice. By a previous remark, these are all naturally isomorphic,
so the choice is unimportant. Going forward, we fix G, and use the pseudofunctor R := Rg We often

assume, in order to use the above lemma, that .% is essentially 1-surjective and G = 1.
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Unit of the adjunction

Throughout this chapter, we assume % : ¥ — & is an essentially 1l-surjective locally k-linear
pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

In this section, we must construct a 2-natural transform 7 : 1o gicome — RP, the unit for our
adjunction.

First, we explicitly compute the form of RP : Z%icomy — B Hicomy.

Proposition 5.0.1. e For a coalgebra 1-morphism C of €, RP(C) = Ci&g(c);

e for a C-D-bicomodule 1-morphism M of €, RP(M) = g, [Z (D), F (M)];
e for a bicomodule 1-morphism ¢ : M — M’ of €, RP(¢) = rm ([ (D), Z(¢)]-

Proof : First, recall that by definition, RP(C) = R(F(C)) = Moz [G-F(C),GF(C)]. But
since .7 is essentially 1-surjective, by Lemma 4.2.3 we can assume, without loss of generality, that GG is
F(C

1,50 RP(C) = 1 007 [ Z(C), F(C)] = cm(ﬂ;(c)_

The other two parts can be computed similarly. [J

So what do we need for the 2-natural transform 7 : lggicome — RP?

First, for each object of ZB%icomy (that is, for each coalgebra 1-morphism C' of &), we need a
1-morphism nc : C' — RP(C) in BABicomy (that is, a biinjective C-RP(C')-bicomodule 1-morphism
in ©).

Second, for each 1-morphism in ZBAicomy(C, D) (that is, each biinjective C-D-bicomodule 1-
morphism of %), we need a 2-morphism (that is, bicomodule homomorphism) ny; : M ®np —
nc B RP(M).

These must be natural in M and satisfy the two coherence diagrams.

We use our explicit form of RP to construct this data.
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5.1 Unit at coalgebra 1-morphisms

Proposition 5.1.1. Let C' be a coalgebra 1-morphism in €, and Y be an object of RM z)(j) for

some j. RM [V, Z (C)] is a C-CY -bicomodule 1-morphism.

Proof : Writet M = gy, [Y,Z(C), dcm = rMz[Y:Azc)] (noting that
RM@(C)[Ky(C)y(C)] = RML@(C)[Y,RMy(C)(C)ﬂ(C)] = CRMLQ(C)[K?(C)] as 1—morphisms),

RM . . : o
and CoevM:coevg,;(gf(S). Clearly, M is a right C¥-comodule 1-morphism. To see that it is a left

C-comodule 1-morphism, we need the following diagrams to commute:

)
M —CM oM

eoxl

CM

dc,Mm 6o, M

CM Aol CcCM

To see that commutes, consider the following diagram:
RMg (¢ (6c,m)

F(C) — s RM g (o) (M)Y RM.z(cy(CM)Y

Agc) - @ /

F(ec)*1
[reem o
1).7(C) Fleoyl ®
coev ﬂi‘)/*l \1*Coev1\4\ l F(ecx*1) 7?,ng(0>(60*1)
® F(0) @ F)F(M)Y
COGVMJ/ ?0*1/ &
— Q
F(M)Y F(M)Y
RMz(c)(M)Y RMz(c)(M)Y

@ commutes by definition of d¢c s;
@ commutes because .7 (C') is a coalgebra 1-morphism;

@ and @ commute by the interchange law;

@ and commute trivially;
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@ commutes by naturality of .#?;
and @ commutes by higher coherence for % .

: : . RM :
So the outer diagram commutes. Passing via fyj(cf(;), this says that commutes.

To see that commutes, consider the following diagram:
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Z(C)

coev s

RM.z(c)(M)Y

RM.z (cy(6c,nm)

coev s
Az o)

I

Agc)

/ @

/

RM.z ¢y (dc,ar)

1xcoev s

F(O)F(C)

H*D%AQV

®

LoV, 2 (0)F (M)Y

1xF (6, )

b-<

7(0) 2% 7 (0)7(C)#(C) @
H*oo,m,\ M @ H*no,m< M
%AQY\Q,\.DMw %AQV%AQY%QEVM\:ﬁwﬁAQvﬂwﬁng
@J, Twlf ®) /
F2 F(CC)F (MY
v
®\> *1)
F(CM)Y -
\ @

NQAH*&QL g

RM.z (0 (CM)Y

\NNZ.Q.AQV AH*%QLEV

i
<

Mg ) (CCM)Y
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@ commutes as .# (C) is coassociative;

@, @ and @ commute by definition of ¢ s;

@ commutes by the interchange law;

@ and @ commute by naturality of .Z ~2;

commutes by higher coherence for .%;

@ commutes by definition of A z(¢y;

and and @ commute by definition of RM z .

. . . . RM .
So the outer diagram commutes, which, passing via 7,32(0?(19)' says that commutes. So M is a

left C-comodule 1-morphism.

Finally, we need to show that the coactions commute, that is, that the following diagram commutes:

Sy rP(C)

MRP(C)

dc,m do,m*l

CM CMRP(C)

10 rP(0)

To see that it does, consider the following diagram:
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Z(C)

coev s

RM.z(c)(M)Y

RMg () (6c,m)

RM.z (¢ (CM)Y

coev s

N

Az o)

N\

®

RMgz(c) () cv)

RM.z(c)(MCY)Y
/ @
/ 70, n<v \
F(M)Y n F(MCY)Y
~ T
@ NQA%,QLEV H*noa<o< @ P 72
F(C)F(C) F(CM)Y @ %QS )y
Tﬂno,ofs F-2 — @ H%ooo<n< F QQ M )*1
v ngoﬁx e v @

%AQV%,Q&K\lWMAQV F(M)Z(CY)Y P F(CM).F(CY)Y

A@ ©

F(M

\

/T*mww\w

n\w (C)F(MCY)Y

® O\,

O

®

Q.Iw

%G&a,oi//

RM g (c)(0c,m*1)

%A%Q,iig

F(CMCY)Y

T~

RM g () (CMCY)Y

\\NZH.%«.AQVAT:M&,OM\V
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@ and @ commute by definition of d¢ ar;
@ and @ commute by the interchange law;

@ and @ commute by definition of )/ cv;
@— commute by definition of RM #¢y;
@ and @ commute by naturality of .7 ?;

@ commutes by higher coherence for .%.

. : . RM .
So the outer diagram commutes. But, passing via yy(éfg), this says that commutes. So the

left and right coactions of M commute, so M is a bicomodule 1-morphism.

O

Now, setting Y = .7(C), this tells us that g, [F(C), #(C)] can be viewed as a C-Cc7 ().
bicomodule 1-morphism. But C7(¢) = RM 5oy [ (C), F(C)] = RP(C). So we can make the following

definition:

Definition 5.1.2 (Unit at coalgebra 1-morphisms). nc = RP(C) = rmz o [ (C), F(C)], viewed as
a C-RP(C)-bicomodule 1-morphism. <

5.2 Unit at bicomodule 1-morphisms

Next, we construct a map ny : M ®np — e RP(M).
D RP(C)

Lemma 5.2.1. Suppose M is an injective right C-comodule 1-morphism in &, N is a
F(C)-Z(D)-bicomodule 1-morphism in &, L is a right .%#(D)-comodule 1-morphism in Z. Then

M ERrM g () [Ly N1 = M () [Ls F (M) N]. Moreover, this isomorphism is natural in M.
C F(C)

Proof : Since ¥ is fiat, by Lemma 1.3.7 (and since the cotensor and internal cohom are additive),

we can assume, without loss of generality, that M = F'C for some F € €(i,j). So
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MRM?(D) [L,N] = FCRM9<D> [L, N]

= FRM?(D)[Lv N]
= Rz () [Ls RMLz(p) (F)N]

= RMLQ(D) [L7 <gf(F‘)‘QN(Cf) 90) N]

= oLy F (M) B N
RM?(D)[ ( )J%“(C) ]

Each of these isomorphisms is natural in F', so altogether this is natural in M, as required. [

Lemma 5.2.2. Let M be a biinjective C-D-bicomodule 1-morphism. There is an invertible bicomodule

homomorphism 1y : M ®Enp — nc RP(M), natural in M.
D RP(C)

Proof : First, note that
e B RPM)=RP(C) 8 Rty F(D). D] = rur [ F(D), F (M)
RP(C) RP(C)
Moreover, note that M @ np = M E rumz,, [F (D), F(D)]. Then by Lemma 5.2.1,
D D
M B np = ruig ) [F (D), F(M) B F(D)] = gz, [F (D), #(M)]. Moreover, both of these are
natural in M. So we have an isomorphism nys : M ®np — nc RP(M) natural in M, as

RP(C)
required. [J

5.3 2-naturality

Finally, we put this data together to obtain the following result:
Proposition 5.3.1. The 1, ny assemble to a 2-natural transformation.

Proof : By Lemma 5.1.1, for a coalgebra 1-morphism C' of €, the bicomodule 1-morphism n¢ is
indeed a 1-morphism n¢ : C' — RP(C), as needed.
By Lemma 5.2.2, for a biinjective C-D-bicomodule 1-morphism M of %, the bicomodule
isomorphisms 7y : M ®np — ne RP(M) are natural in M.
D RP(C)

For n to be a 2-natural transformation, we further need the following diagrams to commute for any

biinjective C-D-bicomodule 1-morphism M and D-E-bicomodule 1-morphism N:
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RP(M®EN
D E NM®EN e R;(C) ( ; )

1B(RP)?
1EnN Ny E1
MBEN®n)g —— M®np RP(N) —— nc RP(M) RP(N)
D E D RP(D) RP(C) RP(D)
C®nc nc ne RP(C)
c RP(C)

nc

To see that commutes, consider the following diagrams:
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nc B RP(M®&N) RP(C) m RPM®@EN) - » RP(M ® N)
RP(C) D RP(C) D D
WHSEM @ ?NEM
RP(C) ® RP(M) ® RP(N) = RP(M) ® RP(N)
RP(C) RP(D) RP(D)

= Rt o [F (D), FON] 8 RP(N)

1@B(RP)?

H
IR

F(D)] ® RP(N)

Rt o[ F (D). F(M) B FD)] B

F

c

H
1%

M= Z(D), Z(D RP(N
® R ) [F (D), F ( v_@m@ (N)

nc B RPM) ® RP(N)

— » MEnp ® RP(N)
RP(C) RP(D) Mar BL D

RP(D)
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-1
TMEN

e B RP(M®@N)
RP(C) D

B RP(MEN)
RP(C) D

|

RP(M W N)

ﬁgr@Aanb\)A.@vv%Agmzv”_ =

/TNQUNV @

RP(C)

Rt | (B), F(MBN) B F(E)

ﬁ%&mc

azﬁm;%Amy%Aivﬁmu F(N)] —— Rty |F(E), F(M) B F(N) B F(E)]

)

©®

o

'('l) < IR—-

(E), Z(N)]

M w RMz (E)

m RP(N)

M ®mRP(D)
RP(D)

]

Z(D) F(E)

BO s

§WEZ%EL%A@Y%NAZV EHS%;AMV_

1R

M &N 8 Rz |7 (E), 7 (E)] ®

Mmnp ® RP(N)
D RP(D)

MHSA\H
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@ and @ commute trivially;

@, @ and @ commute by naturality of the unitors;

and @ @ and @ commute by definition of 7.

to see that commutes, consider the following cube:

KMRMgz(D)[LyN]

/t/ ‘ \%
KMRMg(D)[LgN] KRML@(D)[L,,?(M) N] RMQ<D)[L,y(KM) N]
B C Z(C) Z(
t/ T~o \
= [L,7(H)EN] el

o~ 4

\ B \L

K &8 RM 5 ) [L, F (M) 3?0) N] RM gy |1 F (K 8 M) yc) N] RM () [L> F (K)F (M) 90) N]

\ - [L7p‘21] [L,tEN]
\ j,

RM.z () [L, #(K) EB) F (M) 90) N]
The back left face commutes by definition of the cotensor product;
the back right face commutes by Lemma 1.5.3;
the top and bottom faces commute by naturality of the isomorphism;
the front right face commutes by definition of P?;
and [L,t ® N] is monic.

So by a previous argument, the front left face commutes, that is, commutes.

So we can reduce to the commutativity of the following diagram:
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RP(M & N) Rt 1|7 (E). F (M 8 N)]
l(m?)2
RP(M) RD) RP(N) @ R(P?)
RM () [F (D), F(M)] o RP(N) ¢——5— R [F (E), F (M) s F(N)]
R | F (D), F(M) 8 F(D) B RP(N) -
M8 riy |7 (D), F (D] 8 RP(N) M 8 Rty [ (E), F(N)]

M ®mnp RP(N)

D ' RP(D)
M ®RP(D) RP(N)
D RP(D)

@ commutes by definition of (RP)?;

and commutes by definition of R2.
So commutes.

That commutes is trivial.

O

R
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6

Counit of the adjunction

Throughout this chapter, we assume % : ¥ — & is an essentially 1l-surjective locally k-linear
pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

In this section, we must construct a 2-natural transform € : PR — 1zicom,. the counit for our
adjunction.

What do we need for the 2-natural transform € : PR — 1g5icom,,?

First, for each object of Z%icomgy (that is, for each coalgebra 1-morphism C of &), we need a
1-morphism ec : PR(C) — C in BABicomy (that is, a biinjective PR(C)-C-bicomodule 1-morphism
in 2).

Second, for each 1-morphism in #%Aicomy(C, D) (that is, each biinjective C-D-bicomodule 1-
morphism of 2), we need a 2-morphism (that is, bicomodule homomorphism) €y, : PR(M) ®np —
nc & M.

These must be natural in M and satisfy the two coherence diagrams.

6.1 Counit at coalgebra 1-morphisms
We start by constructing ec.

Proposition 6.1.1. Let C be a coalgebra 1-morphism in Z. Then (C, dpr(c),c = coevE%C,Ac) is a

PR(C)-C-bicomodule 1-morphism.

Proof : Note first that PR(C)C = Z (rm[C, C])C = RMc(rm[C,C])C as objects in some

¢ is a morphism in RM¢ (%) so a 2-morphism in Z. Now,

RM (), so as objects in Z, and that coevg}%
C'is clearly a right C-comodule 1-morphism. To see that it is a left PR(C')-comodule 1-morphism, we

need the following diagram to commute:
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IpR(C),C

c PR(C)C

dpr(C),C Apgoy*l

l l

PR(C)C —— PR(C)PR(C)C

Idpr(c),C
We first consider the following diagram:
C coev sy RMe(R(C))C

l*coevgl\gc - ‘

— '

RM¢(R(C))RM¢(R(C))C (1) RMc(Agr()
rice T
coevy o T
RMc(R(C)R(C))C
© |
RM”
1
RMc(R(C))C e RM(R(C))RMc(R(C))C
*coevcyc

C

@ commutes trivially, and @ precomposed with coevgmg commutes by definition of Az ). So

the outer diagram commutes. Next, consider the following diagram:
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6.1 Counit at coalgebra 1-morphisms

C

SpR(C)

ﬁﬁA

H*oom/\Q c

@

\

e \\
RMo(R(C))C F(Brons!
coev s ¢ az&wﬁ@v © \
/ RMc(R(C)R(C))C —— P(R(C)R(C)C (7 dpricyl
ESL
RM¢ —RMc(R ﬁZQGﬁ /
\

//

IxdpRr(c),G;C

C)YPR(C)C
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@ commutes by the argument above;

@@ commute by definition of RM;

and @ commutes by definition of Ap(p).

So the outer diagram commutes, which is what we wanted.

Next, we need C to be counital for the left coaction, that is, for the following diagram to commute:
7772(0) c

\R(C)*l

We first consider the followmg diagram:

coevCC E— RMC

672(0))
RMC
’RMO

@ commutes by definition of ex(c);
@ commutes trivially.
So the outer diagram commutes.

Next, we consider the following diagram:

Spr(C),C
C - -~ PR(C)C
S teNoNe el @ //
™~
RMc(R(C))C Z(er(c))

RMC(‘GR(C)) @ /

RMc(1)C

epr(C)*l

@ commutes by the argument above;



6.2 Counit at bicomodule 1-morphisms 135

@—@ commute by definition of RM;

and @ commutes by definition of Ap(p).

So the outer diagram commutes, which is what we wanted.
So C'is a left PR(C) comodule 1-morphism.

O

So we can define:

Definition 6.1.2 (Counit at coalgebra 1-morphisms). ec := C, viewed as a PR(C)-C-bicomodule

1-morphism. <

6.2 Counit at bicomodule 1-morphisms

Next, we want to construct €y : ec @ M — PR(M) €D.
C PR(D)

To begin with, we state the following definition:

Definition 6.2.1 (Adjoint of maps from internal cohoms). Let C' be a coalgebra 1-morphism in Z, F' a
1-morphism in €', M € RM¢(j). Consider the following sequence of maps, where the horizontal maps

are the respective cohom adjunctions:

Homﬁ(RMc [07 M]7 F)

1%

Hompy. (j) (M, RMc (F)C)
[
Homg (v, [C, M], Z(F)) = Homy(z() (M, F(F)C)

This gives us a bijection between maps f : rm[C, M] — F in €, and maps fyc : M — F(F)

in 4. Explicitly, we can compute
RM
fue = (F(f) xec) o coevy &

In particular, we have a 2-morphism ¢ := (1g())c,c = (1 xec) 0 coevg}gc : C — PR(C) for
each coalgebra 1-morphism C of &, and a 2-morphism ¥,; := (1R(M))M,D = (lxep)o coevz\?’%’ :
M — PR(M) for each C-D-bicomodule 1-morphism M.

<
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Lemma 6.2.2. Let C' be a coalgebra 1-morphism in &Z. Then

zpc :C — 'P'R(C)

is a monic coalgebra homomorphism.

Proof : Write ¢ := 1. We need to show that the following diagrams commute:

C v PR(C) c— Y PR
Ac Apr(c) \ \/R(C)
Py

cc —2Y , PR(C)PR(C)

We consider the left diagram first. Expanding definitions, we get the following diagram:

COeVRMC
C oc PR(C)C [rec PR(C)
1*coev§%cg @ DA’PR(C)*l
©) PR(CYPR(C)
Ac T \ @ Apr(c)
Ixec*1 1x1l*xec
Mg

RM¢ R
COch c * COch le)

cC 2 ——SPR(C)CPR(C)C

1xeox1xeo

PR(CYPR(C)

@ commutes because PR(C) is a coalgebra 1-morphism;

@, precomposed with coevg}\gc, commutes by definition of Apr(c);

@ commutes by the interchange law;

and @ commutes trivially.

Therefore the outer diagram commutes, that is, 1 respects comultiplication.

Next, we consider the counit diagram. Consider the following expanded version:
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COGVRMC
c—%° L pR(C)C i PR(C)
\(9\ @ ER(C\) 67772(0)*1
C 913y C

@ @
\ / epr(c)

@ commutes by definition of ex(c);

@ commutes by definition of epr(c);

@ commutes trivially;

@ commutes by the interchange law.

Therefore the outer diagram commutes, that is, ¥ respects the counit.
So 1 is a coalgebra homomorphism, as required.

It is monic since (1 * ¢¢) and coevg}gc are.

O

One can see immediately that ec = ¥©C, and we use these definitions interchangeably

Lemma 6.2.3. Let M be a C-D-bicomodule 1-morphism. When viewed as a morphism W, : YO M —

PR(M), Wy is a left comodule homomorphism natural in M.

Proof : Write U := W,;. We need U to respect the left PR(C)- and right PR(D)-coactions. We

first examine the left coaction. We want the following diagram to commute:

Uy

M PR(M)
dpR(C), M SpR(C),PR(M)
PR(C)M — 22 PR(C)PR(M)

Consider the expanded diagram:
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do,m

RMp
coevyr p *1

dpr(c),M

I

PR(C)

@

:oomf&b *1

\

F(Or(c),R(M))*1

M —— PR(C)YPR(M)D APR(0),PR(M)*1
T2 © ;«

PR(O)R

®

M)D —ZZs PR(C)PR(M)D

H*mU

s PR(M)D — 2 PR(M)

@ IPR(C), PR(M)

1x1lxep

H*‘H\:

~

PR(C)PR(M)
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@ commutes by definition of oy r(Mm);
@ commutes by definition of dpr )M

@ commutes by definition of dpr (o) Pr(M):
@ commutes by the interchange law;

@ commutes by definition of ¥;

and @ commutes by definition of 1.

Therefore the outer diagram commutes, that is, W is a left PR(C')-comodule homomorphism. Since

coevﬁﬁ/g’ is natural in M, this is in fact a natural transformation of bicomodule 1-morphisms.
O
Note that e¢ = ¥c(C. Note also that since ¢p is monic, by Lemma 1.3.17,

YoM @ D = %o MYp YD . So we can use these data to construct e, as follows:
D PR(D)

Definition 6.2.4 (Counit at comodule 1-morphisms). €,/ is the following composition:
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6.3 2-naturality

Finally, we put this data together to obtain the following result:
Proposition 6.3.1. ¢¢, €)s assemble to a 2-natural transform. € : PR — 1g%icomg

Proof :

By Lemma 6.2.2, the bicomodule 1-morphism ¥¢C is indeed a 1-morphism ¢c : PR(C) — C, as

needed.

We recall that (¢op) [MP) is a bicomodule homomorphism natural in M

(¥p) [(M:D): YoM m D — Yo YD YD D
D PR(D)

by Lemma 1.3.18; elM and €', are bicomodule isomorphisms natural in M by Lemma 1.3.11; and ® is
a bicomodule homomorphism natural in M by Lemma 6.2.3. So €); is a bicomodule homomorphism

natural in M, as required.

We further need the following diagrams to commute:
EM@EN

PR(M ® N) €E & ecc®MBEN
D PR(E) c D

PR? ®m 1

PR(E)
PR(M) PR(N) eg —— PR(M) ep N ecEMEBEN
PR(D) PR(E) Lo N PR(D) D emEl D
(D)
PR(C) ec ec ec@C
PR(C) C
o cec

€C

To see that commutes, consider the following diagrams:
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Vygn@EL /
Ye M g N (Eran) T —— YoM i N @ E VoMENY? ®m YPF ———— L PR(MEN) ® Y¢°FE
D PR(E) D " PR(E)
()" t@L / /
@Q\: SE-Z Ve MEN®E
b 1@ely 1E(eh) D E Q e
@ @ PR?m@1
YeM¥D m YPD® N YepM¥D m YPN — s ¥cop¥p m YON®E YepM¥p m YDNYE m VEER
PR(D) D 1@ely PR(D) 1@(eh) ! PR(D) E PR(D) PR(E)
PR(M) ® YPDE = N—— PR(M) B YPN oo PR(M) & Yo N ® E PR(M) ®m YPN¥*" ®m VYPE ———» PR(M) ® PR(N) ® Y¢E
PR(D) 1@ely PR(D) 18(ey) PR(D) PR(D) PR(E) 1BYyEl PR(D) PR(E)
—1
CMBN
eccEBMEN ﬁEEIZV H ep
C D PR(E)
® \
) ) VrpNEL
YeMBN®BE veM@mNYE @ YEE PR(M@N) @ YEE
D E D PR(E) D PR(E)
milz
SQ-E-2|?£:-2 ®
® ﬁ:La@ PR2@1 ® PR2@1
veM@DEN PR(M) ® YPN ————— PR(M) YoN®E
D D PR(D) 1@(eh) " PR(D) E
> | Tt |
YeM¥r @ YPDEN ;s PR(M) ® YPDEN PR(M) ® YpPNYE @ YEE —— PR(M) ® PR(N) ®@ VEE
ENEGV w V@ (8) EME w ( vvhbu PR(E) 1@ ywl ( vvaxtuv ) ?ﬂmv
ec B MEN - PR(M) ® epBN -~ PR(M) ® PR(N) B eg
¢ D ey Bl PR(D) D 1&ey PR(D) PR(E)

@ and @ commute trivially;
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and @ @ and @ commute by definition of €.
@ is the outer edge of the right-hand diagram;

@ commutes since left and right unitors commute;

@, @ @ and @ commute trivially;
and @ commute by the interchange law;
so it suffices to consider .

YymN

Yo M m NYE PR(M @ N)
D D
\\ coevﬁrfi,_E lxep
i\ e @ PROM@N)E
Ye \f¥p Yo NYE — Yo NI NVE PR(M)D NVE
PR(D) ) ~ b
D —
et —
PR(M)DNYVE 2
PR?x1 2
@, © "
\\ Lxepxl /
W @1 l )
PR(M)NVE T PR(M)PR(N)E
Lxcoev y
e o
. PR(M) PR(N)E
‘ PR(D)
/ 13 coc‘?PﬁE — lxep
PR(M) YD N¥E PR(M) PR(N)
PR(D)

PR(D) 1@y

@ commutes trivially;

, and @ commute by definition of the cotensor product;

, and @ commute by definition of Wy,

@ commutes by definition of eﬂ\,;
@ commutes by definition of R?;

commutes by the interchange law;

and t is monic.

Note that here, unlike previous diagrams, we are considering equality of 2-morphisms in &, but since

being equal as 2-morphisms implies being equal as bicomodule homomorphisms, this causes no issues.

So commutes, so @ commutes, so commutes.

That commutes is trivial.
So € is a 2-natural transform.

O
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Triangulators and the swallowtail diagrams

Throughout this chapter, we assume .% : ¥ — 2 is an essentially 1-surjective locally k-linear
pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

We next need a pair of modifications, called triangulators, as in the following diagrams:

P — P — PRP R — 1= — RPR
7| 7

2 p 2 2
! !
P R

7.1 Construction of o

We start with the left diagram. Fix a coalgebra 1-morphism C' in &, and note that

(ep o P(m)(C) =P(nc) €p(C)-
PRP(C)

Recalling that np = *RP(D) (with the * highlighting the special left coaction), and ep = YD, we

find that this composite takes the form

*PRP(C) VvP@P(0).
PRP(C)

l

epcy tO 8O from this object to P(C). This is coherent as a 2-morphism of

Now, we'd like to use &
1-morphisms, and respects the right coactions. We need to understand how it interacts with the left

coactions. This leads us to the following lemma:

Lemma 7.1.1. Let D be a coalgebra 1-morphism in a finitary 2-category 4. Suppose that D has
another left coaction dpr p, so can be viewed as a D’-D-bicomodule 1-morphism *D. Moreover, let M

be a left D-comodule 1-morphism, with coaction ép as.
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Then there's a left D’-comodule 1-morphism T, with underlying 1-morphism M and left coaction

given by the composite

5D’,D*

1
————~ D'DM

dp, M 1xepx1

M DM D'M

)

and ElM :*D @ M — "M is an isomorphism of left comodule 1-morphisms.
D

Proof : By Proposition 1.3.11, it's sufficient to check that EZM is a homomorphism of left comodule

1-morphisms. But this is immediate from the following diagram:

CmM —t oM —<t ity

R dc,
*CM

Sor.cBl @ Ser ol
Cc*CM

%
C*CBM — = C"CM — ——— C''M

@ commutes by definition of ¢/ ¢ # 1;

@ and @ commute trivially.
l

So the outer diagram commutes, that is, €, is a homomorphism of left comodule 1-morphisms. [J

So with the correct left coactions, we have an isomorphism

Eepiey P PRP(C) PO P(C) — TP(0).
PRP(C)

We compute the left coaction needed for P(C') in the following lemma:

Lemma 7.1.2. The composition
1 ) %1 1xe %1
p(C) ZEEPE prp(cyp(C) BELTEED po)yPRP(C)YP(C) — 22 p(e)P(0O)

is equal to Ap(c).

Proof :

Consider the following diagram:
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7.1 Construction of o

dprP(C),P(C)

P(C) ZE2APC prp

\H/

P(rM 5 ) [F (O),

*ep(c)y*l
@ G @ RMp ()
COV 0y P ()
Ap(c) PRP(CYP(C)P(C) P(C)
\ HX
Ep(C)*
8m<§<§uav *1 @
P(C),P(C)
\\ OOmA\QNZT\UAQV \
P(CYP(C),P(C)

PC)P(C) ——

dp(c),PrRP(C)*L

(C)P(C)

PR g (o [ 7 (C). Az () D)*1 =

lxeprp(c)y*l

P(CYPRP(C)P(C)

Z(O))P(C)

>

S
-

T
@ P(lxerp(c))*l

—

P(Cruz o [7(C), Z(C)N)P(C)

H*‘NU quﬁAQV

\@

\NuAQV\NUCNZHﬁQV _”n\

«/
1 \\NZHﬁAQv
*COCV 5 oy B (C)

PC)P(C)
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@ commutes by definition of dprp(c) p(0);

@ commutes by definition of ¥p(c);

@ commutes by the interchange law;

@ commutes by definition of zni [#(C), Az, noting that (ep x 1) o Ap =1,
@ commutes by definition of dp(c) PrP(C);

@ commutes by Lemma 1.5.3;

@ commutes by naturality of .#2 and definition of EPRP(C):

commutes by naturality of .%2;

and @ commutes by definition of exp(c.

Therefore the outer diagram commutes, which is precisely what we wanted. [J

So we have a bicomodule isomorphism

; (2l -1
So we define o¢ := (567,(0)) .

7.2 Construction of 7

Next, we look at the second triangulator diagram:
R —nm— RPR
7 |
R(e)

|
R

Fixing a coalgebra 1-morphism C of &, we know that

K

(R(€) 2 nR)(C) = "R 3 (0 [F (R(C)), F (R(C))] R R(¥CC),
PR(C)

and note that as a right comodule 1-morphism, rui; ), [# (R(C)), # (R(C))] = RPR(C). We
want to again invoke Lemma 7.1.1, which will give us an isomorphism between this cotensor product

and R(C). So we compute the left coaction of TR(¥¢C).
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Lemma 7.2.1. The composition

IRPR(C),R(C) dr(C),RPR(C)*] lxeppr(c)*1
— — —

R(C) RPR(C)R(C) R(CYRPR(C)R(C) R(CYR(C)

is equal to Ag .

Proof : We do this in two parts. First, consider the following diagram:
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F(Or(c). rRPR(C)*1)*]

F(Irerprcyr)¥l

ﬁﬁmﬁﬁ YR(C))C Z(R(C)RPR(C)R(C))C Z(R(C)R(C))C
: A/\WLL/ ® F(xerpr(c))*l
-
® ﬁﬁgagsﬁc_ﬁa ), PR(ONR(C ® Z(R(C)RPR(C))PR(C)C
w A/,xywni : — F241
— — ©
ﬂmﬁﬂﬁ@v )PR(C P(Ritpr (e [PR(C), PR(C)R(C)C ____ F(Ritipr (e [PR(C), ﬁ ONR(C)C ® F(R(C)RMpr e [PR(C), PR(C))PR(C)C PR(C)Z(RPR(C))PR(C)C
/ F(Ritpr ) PRIO): bwﬂs_éi \ Q
F 2l @ F ?;, = % F 21
Lecoovgy (& / % F2a1
F (RMpr (e [PR(C), PR(C))PR(C)C ) Z (Rpr e [PR(C), PR(C)PR( Qévﬁavﬁ
F (Ritp oy [PRIC) Apr(c)])*1 ® 7 17 (erpr(c))*1
© v ® ®
F(RPR(C))C ooV pn i) ) priey *1 PR(C)F (RMipr e, [PR(C), PR(C))PR(C)C
Ripr (o) ® Ripr () \«
VDR (C) PR(C) * 150V () k() *
J—
vpr(c)*1 PR(C)PR(C)C PR(C)PR(C)C
Apr(cy*l @ — 5
E *—/
PR(C)C P(Ar(0))*L F(R(C)R(C))C
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@ commutes by definition of ¥prcy;

@, @ @ @ and @ commute by naturality of # =2,

@ commutes by definition of 0z (o) rPR(C);

@ commutes by definition of rui,, o, [PR(C), Apr(c)l;

@, and @ commute trivially;

commutes by Lemma 1.5.3;

and @ commutes by definition of expr(c).-

So the outer diagram commutes. Call this outer diagram .

Now, consider the following diagram:
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coeviMo F (6 B R(C))* F(br(c 1)k Ke 1)
o 2, gR)C CGrrr@r©)" —= FRPR(CYR(C)E ORIV L o (YRPR(C)R(C)E “EPRO N e R (CYR(C))C
F (Do)l ® Eﬁc@,:t ﬁﬁ:%r::\ %
/ \ — 724
F(R(C)R(C))C e F(R(PR(C)C)R(C))C
H F(R(coev 10 )Ty H ®
con e e L ® A F(RPR(C))PR(C)C
® o 7 7 FRUse L
/@ / m«\;ﬂﬁ?oﬁw.«%ﬁ:i - c) %’ H
ZRC)PREC)C F(R(PR(C)C))PR(C)C -
oo 2
F(R(coevg, )+t "M \
\ Lxcoev, & @
F(RPR(C)C))C ST F(RPR(C))C
@ Gﬂxﬁs*ér
PR(C)C PR(C)C PlarE»—— . FR(C)R(C))C
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@, precomposed with coev?%c, commutes by definition of R(coevg%c);

@ and commute by the interchange law;

@ commutes by definition of A c);

@ commutes by definition of drpr () r(C):

@ commutes by definition of ¢¢;

@ and @ commute by naturality of .% ~2;

@ commutes by definition of Ypr(c);

and we have already established that commutes.

So the outer diagram commutes. But passing via 77031\64}0, this says precisely that the composition

SRPR(C),R(C) dr(C),RPR(C)*L lxeppr(c)*1
— —

R(C) RPR(C)R(C) R(CYRPR(C)R(C) R(CYR(C)

is equal to Ag(cy, which is what we wanted.

O

So we have a bicomodule isomorphism

5l72(ec) () B R(ec) — R(C)

. _ Al
and thus define 7o = ER(ec)

7.3 Swallowtail diagrams

Finally, for all this data to assemble to a 2-natural transformation, we need the swallowtail diagrams to

commute. We recall the swallowtail diagrams from Definition 1.1.6, as they appear in our context:

155’,%7‘ic0mz 777?,73
n /7171 RPJW) 1%’[’3icomz
RP e — RPRP - \ ' \

RP

and
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€ LL’Z%icomQ

J

¢ — lazgicomy,

PR

It suffices to show that these equalities hold for each coalgebra 1-morphism C' of € (respectively,

). Recall that composition of 1-morphisms in bicomodule categories is given by the cotensor product;
that the identity 1-morphism at a coalgebra 1-morphism C'is the C-C-bicomodule 1-morphism C'; and
that, since n¢ (respectively, €¢) is a bicomodule 1-morphism for any suitable coalgebra 1-morphism C,
e (respectively, e, ) is a bicomodule homomorphism as defined in Lemma 5.2.2 (respectively, Lemma
6.2.4).

We now recall specific definitions.

Lemma 7.3.1. In the first swallowtail diagram, for C' a coalgebra 1-morphism in %

® 17y is the bicomodule homomorphism R((erp(nc))_1> ° E%P("C);

* R(oc) =R(etpe) )i

€P(0)
® Tp(C) = Gl .
(©) Riep(c))

So recalling that left and right unitors commute, we immediately see that the first swallowtail
diagram identity holds.

In the second swallowtail diagram, for C' a coalgebra 1-morphism in Z:

l

o 660 = (EZC)_l 06770

o 0R(0) = (Epriey)
o P(1)= 77(632(60)).

So similarly the second swallowtail diagram identity holds.
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7.4 Conclusion

Finally, we can put everything together to obtain the central result of our paper:

Theorem 7.4.1 (Frobenius reciprocity for fiat 2-representations). Let 4, & be multifiat 2-categories
for which every birepresentation is cyclic. Let % : € — & be a locally k-linear essentially 1-surjective

pseudofunctor. Then induction along .% is left biadjoint to restriction along %

Proof : Recall the definition of a biadjunction from Definition 1.1.6.

By Theorem 3.2.3, P : B%Bicomy — HBABicomgy is a pseudofunctor. By Theorem 4.2.1, R :
PBAicomgy — BHAicomy is a pseudofunctor.

By Proposition 5.3.1, n : 1%}%)icomz — RP is a 2-natural transform. By Proposition 6.3.1, € :

PR — 1z%icom,, is a 2-natural transform.

By Section 7.1, ¢ in the following diagram is a modification:
P —Pm— PRP
-

I

P
By Section 7.2, 7 in the following diagram is a modification:

R —nm— RPR

\R(e)
\ l
R

And by Lemma 7.3.1, the swallowtail diagram identities hold.

o
<

0
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8

Final remarks

Some natural questions and conjectures arise from this thesis.

First, and most straightforward:
Conjecture 8.0.1. Theorem 7.4.1 still holds for ¢, 2 (quasi) multifiab bicategories.

where the definition of multifiab bicategories can be found in Definition 2.5 of | ].

In theory, the result for multifiab bicategories might be considered a corollary of Theorem 7.4.1.
By [ |, any bicategory is biequivalent to a strict 2-category, and by | | this 'strictification’
respects 2-adjunctions. The strictification of a multifiab bicategory is a multifiat 2-category, so the
result follows. However, strictification loses important information about a bicategory, and the form of
the adjunction may not translate straightforwardly. For quasi multifiab bicategories, the strict equivalent
are weak multifiat 2-categories, and many of results we have used are still known to hold (courtesy of

[ D

Of more importance is the following conjecture:
Conjecture 8.0.2. The assumption of essential 1-surjectivity in Theorem 7.4.1 is unnecessary.

The main roadblock to this conjecture is in constructing the unit. Our choice of bicomodule 1-
morphism 7¢ relies on essential 1-surjectivity unavoidably: the left C-coaction defined in Proposition
5.1.1 would otherwise be blocked by the appearance of some 1-morphism G. By contrast, the counit
construction requires only slight modifications. By parallel with the representation theory of algebras,
there is seemingly no a priori reason for the assumption of essential 1-surjectivity to be necessary.

The next conjecture arises from a detail in section 1.3. We can observe that %icomy naturally has
additional structure: that of the coalgebra homomorphisms. This additional structure turns % %icom¢
into a (pseudo) double category, %%‘icom% (see [ | for the basics of double categories). We might

then reasonably speculate:
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Conjecture 8.0.3. Restriction and induction can be extended to pseudo-double functors between

,%,%’icom%r and ,%’,%’icom}. These pseudo-double functors are double adjoint.

Extending induction is straightforward: the image of a coalgebra homomorphism under a
pseudofunctor is a coalgebra homomorphism, so there’s little to check. If we pick a suitably rich class
of vertical 1-morphisms when turning the 2-category ¥ — afmod into a double category, then the
inclusion ¢ : BAicomy — ¢ — afmod is also straightforward to extend: a coalgebra homomorphism
¢ : C — D naturally gives a morphism of representations Mo — Mp. While ¢ is still essentially
O-surjective, vertically and horizontally 1-surjective, and fully faithful on 2-morphisms, it's not
immediately clear if the internal cohom construction can be used to complete the construction of a
pseudo double inverse of ¢, and attempting to define the restriction of a coalgebra homomorphism
directly is similarly not straightforward.

Finally, while this thesis focused on a single pseudofunctor .% : ¥ — %, we can ask how this

adjunction interacts with the 3-category of fiat 2-categories. We make a series of bold conjectures.

Conjecture 8.04. If ¥ : € — 2,9 : 2 — & are (locally k-linear, essentially 1-surjective)

pseudofunctors between multifiat 2-categories, then

[ ]
P
A
)

12
b
9
X
8

GT @ Z.

o n”” ~R(np)on”;

o V7 ~ 7 o P(e%);
and these congruences are coherent.

The first two of the above claims are relatively straightforward to check. The latter require more

thought.

Conjecture 8.0.5. If T' : .7 — & : € — 2 is a strong transform of (locally k-linear, essentially

1-surjective) pseudofunctors between multifiat 2-categories, then there exists:

e a 2-natural transform Pr : Py — Pz

e a 2-natural transform Rr : Ry — R z;
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These are such that the following diagrams commute, up to suitable modification:

%
1 Rr*Pr

R Py

RzPz
Py Ry
6(5
’Pr‘ *RF 1

For a coalgebra 1-morphism C' : i — i of €, we note that I';.%(C) is a 4(C)-F (C)-bicomodule

1-morphism in a straightforward way, which motivated this last conjecture.
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