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Abstract

This thesis has a single goal, namely the establishment of a form of Frobenius reciprocity for finitary

birepresentations of multifiat 2-categories.

Multifiat 2-categories are the 2-categorical analogues of finite dimensional associative algebras with

involution. Our first novel result is an explicit form of correspondence between birepresentations,

morphisms of birepresentations and modifications on the one hand, and coalgebras, bicomodules and

morphisms of bicomodules on the other hand. In the latter context, there is a natural definition of

induction of birepresentations along a pseudofunctor, while in the former, there is a natural notion of

restriction, completely analogous to other representation theories. We use our correspondence to

define both in the same setting, that of coalgebras and bicomodules.

We show that restriction and induction are adjoint as pseudofunctors, given some technical

assumptions.
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Introduction

In this thesis, we recover a form of Frobenius reciprocity for finitary birepresentations of multifiat 2-

categories; that is, given a pseudofunctor F between multifiat 2-categories, we find an biadjunction,

in the bicategorical sense, between the induction and restriction pseudofunctors along F , under some

technical conditions on F .

Representation theory, the study of how algebraic objects act on other - usually geometric - objects,

has been a staple of abstract algebra since at least 1896, with the work of Ferdinand Frobenius in

[Fro96]. Within a decade of Frobenius’ paper, acclaimed results such as Schur’s lemma ([Sch05]) and

Burnside’s theorem ([Bur04]) appeared, placing representation theory in a position of central importance

in the study of finite groups. Later, representation theory was the major tool of the so-called Enormous

Theorem, also known as the classification of finite simple groups ([Gor79]). The tools of representation

theory have been used in most fields of algebra including, for example, Lie groups and algebras ([FH91]),

associative algebras ([AF92]), and p-adic groups ([Fin22]).

Categorification - the process of replacing sets with categories, functions with functors and so forth,

and studying the new richer structure obtained - has become an essential tool in the study of algebras,

used from as early as 2008 to understand properties of symmetric groups; see, for example, [CR04].

2-representations, first defined in [Rou08], serve the role of representations from the classical setting

and are equally ubiquitous in understanding the rich structure of categorified algebras. Naturally, one

might expect fundamental representation-theoretic results to have analogies in the 2-categorical setting,

and already several have been recovered: in [MM16a], the authors find a 2-analogue of Schur’s Lemma

for a nice class of simple transitive 2-representations, which are the analogue of simple representations;

in [MM16b], the authors find a Jordan-Hölder theory for finitary 2-categories, the analogue of finite-

dimensional algebras. Frobenius reciprocity is another fundamental result that naturally suggests a

2-analogue, but the particulars are somewhat subtle. For finite groups, Frobenius reciprocity is the
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result that restriction and induction are adjoint on both sides (often confusingly called biadjoint), while

for modules over associative algebras induction is only left adjoint to restriction: this latter, weaker

result is what we recover for multifiat 2-categories.

To find such a result, we need a number of ingredients. Firstly, a pair of pseudofunctors R and

P called induction and restriction, constructed in Chapters 3 and 4 respectively. Secondly, a pair

of 2-natural transformations η : 1BBicomC
→ RP and ϵ : PR → 1BBicomD

, called the unit and

counit, constructed in Chapters 5 and 6 respectively. Finally, a pair of modifications τ and σ called the

triangulators, satisfying the swallowtail diagrams, which are covered in Chapter 7. For full details of the

construction, see Definition 1.1.6.

In Chapter 1, we cover the basic ideas used throughout the thesis. Bicategories and their associated

notions are presented with some fundamental results, though some familiarity with their properties is

assumed. (Multi)fiat 2-categories, originally introduced in [MM11], are described here, being the natural

2-analogue of cellular algebras (alternatively, of finite dimensional associative algebras with involution).

These are the 2-categories for which we recover Frobenius reciprocity. We define injective abelianisations

following the approach of [MMM+21], a construction which lets us locally move between structure-rich

abelian categories and their well-behaved injective objects, even when our original 2-category is far

from locally abelian. We define coalgebra 1-morphisms and internal cohoms, originally introduced in

[MMMT19] and used as the basis for our definition of induction. We also lay the foundation for the

main result of Chapter 2.

In Chapter 2, we re-examine Theorem 4.26 from [MMM+21], where C is the projective abelianisation

as defined (in dual form) in Proposition 1.2.11:

Theorem 0.0.1 (Biequivalence between cyclic birepresentations and algebra 1-morphisms). Given a

(multi)fiat 2-category C , there is a biequivalence between the bicategory of biprojective bimodule 1-

morphisms over C , and the bicategory of cyclic representations of C .

This theorem has an obvious dual, which is the version more useful to us:

Theorem 0.0.2 (Biequivalence between cyclic birepresentations and coalgebra 1-morphisms). Given

a (multi)fiat 2-category C , there is a biequivalence between the bicategory of biinjective bicomodule

1-morphisms over C , and the bicategory of cyclic representations of C .

Moreover, as a novel result, we construct an explicit form for this equivalence, which allows us to

smoothly move between these settings.
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Chapter 3 defines induction along a pseudofunctor F , and shows that induction is itself

pseudofunctorial. Induction was first considered in [MMM+21] Lemma 3.11, though not by that name.

Induction and restriction are most naturally constructed in different settings. Induction has no

direct definition for representations; indeed, without the equivalence between cyclic representations and

representations over a coalgebra 1-morphism, it is unclear how one could define it. However, it can

be straightforwardly defined for coalgebra and bicomodule 1-morphisms. Meanwhile, restriction has

a simple presentation in the context of birepresentations but a more opaque definition for coalgebra

1-morphisms. We choose to work in the bicomodule setting, which requires us to use Theorem 0.0.2 to

move between settings.

Chapter 4 defines restriction along F and shows that it is also a pseudofunctor. When working

in the bicomodule setting, some subtle technical conditions arise. In particular, we move from C to a

construction called C⊕, defined in Proposition 4.1.3, and take care to show this does not reduce the

generality of our result. We also introduce the simplifying assumption of essential 1-surjectivity for F

to prove a technical lemma. This assumption makes the constructions of Chapter 5 more tractable.

Chapters 5-7 are concerned with constructing the adjunction between restriction and induction. The

bulk of these chapters are centred on the many coherence requirements for a 2-adjunction.

Together, these prove our main result:

Theorem 0.0.3 (Frobenius reciprocity for fiat 2-categories). If F : C → D is an essentially 1-surjective

k-linear pseudofunctor of (multi)fiat 2-categories, then induction and restriction along F are biadjoint

as pseudofunctors.
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1

Preliminaries

In this section, we discuss the fundamentals used through the rest of the thesis, and fix some of

our notation. We start with a rundown of bicategories, following [Lei98], and provide a proof for a

common folk theorem. We next look at (multi)fiat categories, first introduced in [MM11]. Then we

discuss coalgebra and (bi)comodule 1-morphisms, which were first used to study birepresentations in

[MMMT19]; we loosely follow the expositional structure of [MMM+21, Section 3]. After this, we discuss

birepresentations, followed by the internal cohom construction, which was first introduced in [MMMT19]

as a dual to a construction from [EGNO15]; in [MMMT19], this construction was called the internal

hom, but we follow the convention of later papers in calling it the internal cohom.

Throughout, we let k be a field.

1.1 Basic Bicategories

Definition 1.1.1 (Bicategory). A bicategory C consists of the following data:

• A collection of objects ob(C ), written i, j, k, ...;

• For each pair of objects i, j, a category C (i, j), whose objects are 1-morphisms F,G,H, .. and

morphisms are 2-morphisms α, β, γ, ...;

• Functors

cijk : C (j, k)× C (i, j)→ C (i, k)

(G,F ) 7→ G ◦ F = GF

(α, β) 7→ α ∗ β

and

Ii : 1→ C (i, i),
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where 1 is here the one-object, one-morphism category;

• Natural isomorphisms

C (k,m)× C (j, k)× C (i, j) C (k,m)× C (i, k)

C (j,m)× C (i, j) C (i,m)

C (i, j)× 1

C (i, j)× C (i, i) C (i, j)

1× C (i, j)

C (j, j)× C (i, j) C (i, j)

1×cijk

cjkm×1 cikm
aijkm

cijm

1×Ii

ciij

Ii×1

cijj

rij

lij

and thus 2-morphisms

aHGF : (HG)F → H(GF )

rF : F ◦ Ii → F

lF : Ij ◦ F → F.

These are such that the following diagrams commute:

((KH)G)F (K(HG))F

(KH)(GF ) K((HG)F )

K(H(GF ))

a∗1

a a

a 1∗a
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(GI)F G(IF )

GF

a

r∗1 1∗l

We say that C is a 2-category if the associators a and unitors l, r are identities.

In every example we look at, the associator a is trivial, so the pentagram diagram automatically

commutes. In a 2-category, both diagrams automatically commute.

Any bicategory satisfies the interchange law : (F1 ∗ F2) ◦ (G1 ∗G2) = (F1 ◦G1) ∗ (F2 ◦G2).

◁

We work with 2-categories C ,D etc. unless otherwise specified; it is possible that results still hold

for the bicategory case, if appropriate associators and unitors are added in, but we do not check this.

On the other hand, we work with colax functors (at least initially). We give the definition below (in

the case where associators are trivial) for reference:

Definition 1.1.2 (Colax functor). Given bicategories C and D , a colax functor from C to D consists

of the following data:

• A map F : ob(C )→ ob(D)

• Functors F : C (i, j)→ D(F(i),F(j))

• Natural transforms

C (j, k)× C (i, j) C (i, k)

D(F(j),F(k))×D(F(i),F(j)) D(F(i),F(k))

1 C (i, i)

1 D(F(i),F(i))

cijk

F×F
F2

ijk

F

cF(i)F(j)F(k)

Ii

Fi,i

IF(i)

F0
i

(and hence 2-morphisms F2
G,F : F(G ◦ F )→ F(G) ◦ F(F ) and F0

i : F(1i)→ 1F(i))

such that the following commute:
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F(HGF ) F(H)F(GF )

F(HG)F(F ) F(H)F(G)F(F )

F2

F2 1∗F2

F2∗1

F(F ◦ Ii) F(F )F(Ii) F(F )IF(i)

F(F ) F(F )

F(Ij ◦ F ) F(Ij)F(F ) IF(j)F(F )

F(F ) F(F )

F2

F(r)

1∗F0

r

F2

F(l)

F0∗1

l

We call the first of these three diagrams the coassociativity diagram, and the last two the counitality

diagrams. Together, we call these the higher coherences for colax 2-functors.

If the F2
ijk and F0

i are natural isomorphisms, then we say F is a pseudofunctor ; if they are identity

natural transformations, we say F is a strict 2-functor, or just a 2-functor . We write F−2
ijk for (F2

ijk)
−1,

and F−0
i for (F0

i )
−1.

◁

Definition 1.1.3 (Colax 2-natural transform). A colax 2-natural transform

Γ : F → G : C → D ,

where F ,G are colax functors, consists of the following data:

• For each object i ∈ C , a 1-morphism Γi ∈ D(F(i),G(i));

• For each pair of objects i, j ∈ C , a natural transform

C (i, j) D(F(i),F(j))

D(G(i),G(j)) D(F(i),G(j))

F

G

(Γi)
∗

(Γj)∗
Γij
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and therefore 2-cells ΓF : Γj ◦ F(F )→ G(F ) ◦ Γi.

These are such that the following diagrams commute:

Γk ◦ F(GF ) G(GF ) ◦ Γi

Γk ◦ F(G) ◦ F(F ) G(G) ◦ Γj ◦ F(F ) G(G) ◦ G(F ) ◦ Γi

1∗F2

ΓGF

G2∗1

ΓG∗1 1∗ΓF

Γi ◦ F(1i) G(1i) ◦ Γi

Γi ◦ 1F(i) 1G(i) ◦ Γi

Γi

Γ1i

1∗F0 G0∗1

r l

We call these the higher coherences for colax 2-natural transforms

If the Γij are natural isomorphisms, then this is a strong 2-natural transform; when they are identities

it is a strict 2-natural transform.

◁

Definition 1.1.4 (Adjoint equivalence in a bicategory). Given objects i, j of a bicategory C , we say

i and j are equivalent if there are 1-morphisms F : i → j and G : j → i such that GF ∼= 1i and

FG ∼= 1j . We call F an equivalence (in C ), and similarly for G. In particular, we say small categories

C and D are equivalent if they are equivalent as objects in the bicategory of small categories.

We say i and j are adjoint equivalent if there are 2-morphisms γ : 1i → GF and ζ : FG→ 1j such

that (ζ ∗ 1F ) ◦ (1F ∗ γ) : F → FGF → F and (1G ∗ ζ) ◦ (γ ∗ 1G) : G→ GFG→ G are the identities

on F and G respectively. ◁

Definition 1.1.5 (Modification). A modification

γ : Γ→ Λ : F → G : C → D

between colax 2-natural transforms Γ,Λ consists of 2-morphisms γi : Γi → Λi such that, for any

1-morphism F : i→ j, the following diagram commutes:
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Γj ◦ F(F ) Λj ◦ F(F )

G(F ) ◦ Γi G(F ) ◦ Λi

γj∗1

ΓF ΛF

1∗γi

◁

Finally, we define the central object of the paper:

Definition 1.1.6 (Biadjunction). Given 2-categories C and D , F : C → D is said to be left biadjoint

to G : D → C (G right biadjoint to F ; F and G biadjoint), written F ⊣ G, if there are strong 2-

natural transforms η : 1C → GF and ϵ : FG → 1D , respectively called the unit and counit, along with

modifications

F FGF G GFG

F G

F(η)

ϵF

ηG

G(ϵ)
σ τ

called triangulators, satisfying the swallowtail diagrams, given below:

1C GF

1C

GF GFGF =

GF

GF

η

η

ηGF

GF(η)

G(ϵF )

ηη

η
G(σ)

τF

and
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FG

FG

FGFG FG =

1D

FG 1Dϵ

ϵϵFG

FG(ϵ)

F(ηG)

ϵϵ

ϵ

F(τ)

σG

Note that, since ηi : i→ GF(i) is a 1-morphism for an object i, ηηi : GF(ηi) ◦ ηi → ηGF(i) ◦ ηi is a

2-morphism, and similarly for εεi . So these diagrams make sense.

◁

We record the following useful propositions:

Proposition 1.1.7. Suppose Γ : F → G : C → D is a strong 2-natural transform of pseudofunctors, and

suppose further that for each i an object of C , Γi is an equivalence in D . Then Γ is an adjoint equivalence

of functors, i.e. an adjoint equivalence in the 2-category [C ,D ] (pseudofunctors F : C → D , strong

transforms and modifications).

Proof : Since each Γi is an equivalence, recall that equivalent 1-categories are adjoint equivalent.

So WLOG, there is a 1-cell Γ−1
i in D , along with a pair of invertible 2-cells γi : 1F(i) → Γ−1

i Γi and

ζi : ΓiΓ
−1
i → 1G(i) satisfying

F(i) G(i) F(i)

=

F(i) G(i) G(i)

Γi

Γ−1
i

Γi

Γi

ζi

γi

and
G(i) F(i) G(i)

=

G(i) F(i) F(i)

Γ−1
i

Γi

Γ−1
i

Γ−1
i

γi

ζi

Moreover, since we have 2-cells ΓF : Γj ◦ F(F ) → G(F ) ◦ Γi for each F : i → j, we can define

(Γ−1)F : Γ−1
j ◦ G(F )→ F(F ) ◦ Γ

−1
i as the following composition:
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G(i) G(i) G(j)

F(i) F(j) F(j)

G(F )

ΓjΓ−1
i Γi

F(F )

Γ−1
j

(ζi)
−1

(γi)
−1

(ΓF )−1

We need to show that the Γ−1
i together with the (Γ−1)F form a 2-natural transform Γ : G → F ;

and that there are invertible modifications γ : 1F → Γ−1Γ and ζ : ΓΓ−1 → 1G such that

F G F

=

F G G

Γ

Γ−1

Γ

Γ

ζ

γ

and
G F G

=

G F F

Γ−1

Γ

Γ−1

Γ−1

γ

ζ

We start with the first claim.

To show that Γ−1 is a 2-natural transformation, we first show that (Γ−1)F is natural in F . But

(ΓF )
−1 is natural in F since ΓF is, and neither (ζi)

−1 nor (γi)
−1 depend on F . So this is immediate.

Next, we show that the following diagrams commute:

Γ−1
k ◦ G(GF ) F(GF ) ◦ Γ−1

i

1

Γ−1
k ◦ G(G) ◦ G(F ) F(G) ◦ Γ−1

j ◦ G(F ) F(G) ◦ F(F ) ◦ Γ−1
i

1∗G2

(Γ−1)GF

F2∗1

(Γ−1)G∗1 1∗(Γ−1)F

Γ−1
i ◦ G(1i) F(1i) ◦ Γ−1

i

2

Γ−1
i ◦ 1G(i) 1F(i) ◦ Γ−1

i

Γ−1
i

(Γ−1)1i

1∗G0 F0∗1

r l
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To see that 1 commutes, consider the following diagram:

Γ
−
1

k
◦
G
(G
F
)

F
(G
F
)◦

Γ
−
1

i

Γ
−
1

k
◦
G
(G
F
)◦

Γ
i ◦

Γ
−
1

i
Γ
−
1

k
◦
Γ
k
◦
F
(G
F
)◦

Γ
−
1

i

Γ
−
1

k
◦
G
(G

)◦
G
(F

)◦
Γ
i ◦

Γ
−
1

i
Γ
−
1

k
◦
G
(G

)◦
Γ
j ◦
F
(F

)◦
Γ
−
1

i
Γ
−
1

k
◦
Γ
k
◦
F
(G

)◦
F
(F

)◦
Γ
−
1

i

Γ
−
1

k
◦
G
(G

)◦
Γ
j ◦

Γ
−
1

j
◦
G
(F

)◦
Γ
i ◦

Γ
−
1

i
Γ
−
1

k
◦
G
(G

)◦
Γ
j ◦

Γ
−
1

j
◦
Γ
j ◦
F
(F

)◦
Γ
−
1

i
Γ
−
1

k
◦
Γ
k
◦
F
(G

)◦
Γ
−
1

j
◦
Γ
j ◦
F
(F

)◦
Γ
−
1

i

Γ
−
1

k
◦
Γ
k
◦
F
(G

)◦
Γ
−
1

j
◦
G
(F

)◦
Γ
i ◦

Γ
−
1

i

Γ
−
1

k
◦
G
(G

)◦
Γ
j ◦

Γ
−
1

j
◦
G
(F

)
Γ
−
1

k
◦
Γ
k
◦
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j
◦
G
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)
F
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)◦
Γ
−
1

j
◦
G
(F

)◦
Γ
i ◦

Γ
−
1

i
F
(G

)◦
Γ
−
1

j
◦
Γ
j ◦
F
(F

)◦
Γ
−
1

i

Γ
−
1

k
◦
G
(G

)◦
G
(F

)
F
(G

)◦
Γ
−
1

j
◦
G
(F

)
F
(G

)◦
F
(F

)◦
Γ
−
1

i

1∗G
2

(Γ
−
1
)
G
F

F
2∗

1

(Γ
−
1
)
G
∗
1

1∗
(Γ

−
1
)
F

1∗
ζ
−
1

i

1∗
Γ
−
1

G
F
∗
1

γ
−
1

k
∗
1

1∗G
2∗

1

1∗
ζ
−
1

i

1∗
Γ
−
1

F
∗
1

1∗
Γ
−
1

G
∗
1

γ
−
1

k
∗
1

1∗F
2∗

1

1∗
ζ
−
1

j
∗
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1∗
Γ
−
1

G
∗
1

γ
−
1

k
∗
1

1∗
ζ
−
1

i

1∗
Γ
−
1

F
∗
1

1∗
γ
−
1

j
∗
1

1∗
ζ
−
1

j
∗
1

1∗
ζ
−
1

i

1∗
Γ
−
1

F
∗
1

1∗
ζ
−
1

j
∗
1

1∗
Γ
−
1

G
∗
1

1∗
γ
−
1

j
∗
1

γ
−
1

k
∗
1

1∗
Γ
−
1

G
∗
1

1∗
Γ
−
1

F
∗
1

1∗
ζ
−
1

i
γ
−
1

k
∗
1

1
0

1
3

8
9

4
5

6
7

2
3

1
1

1
2

1

1
4

1 - 3 commute by definition of (Γ−1)H ;
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4 - 13 commute by the interchange law;

and 14 commutes by coherence for Γ.

Therefore the outer rectangle commutes, that is, 1 commutes.

To see that 2 commutes, consider the following diagram:

Γ
−
1

i
◦G

(1
i )

F
(1
i )◦

Γ
−
1

i

Γ
−
1

i
◦G

(1
i )◦

Γ
i ◦

Γ
−
1

i
Γ
−
1

i
◦
Γ
i ◦F

(1
i )◦

Γ
−
1

i

Γ
−
1

i
◦
1G

(i)
Γ
−
1

i
◦
1G

(i) ◦
Γ
i ◦

Γ
−
1

i
Γ
−
1

i
◦
Γ
i ◦

1F
(i) ◦

Γ
−
1

i
1F

(i) ◦
Γ
−
1

i

Γ
−
1

i
◦
Γ
i ◦

Γ
−
1

i

Γ
−
1

i
Γ
−
1

i

(Γ
−
1)1

i

1∗ζ −
1

i

1∗G
0

F
0∗1

1∗Γ
−
1

1
i ∗1

1∗G
0∗1

γ
−
1

i
∗1

1∗F
0∗1

1∗ζ −
1

i

r

1∗l∗1=
r∗1

γ
−
1

i
∗1

1∗r∗1=
1∗l

l

γ
−
1

i
∗1

1∗ζ −
1

i

1

2
3

6

4
5

7
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1 commutes by definition of (Γ−1)H ;

2 - 5 commute by the interchange law;

6 commutes by higher coherence for Γ;

7 commutes by our choice of γ and ζ.

Therefore, the outer diagram commutes, that is, 2 commutes. So Γ−1 is a 2-natural transform,

and is clearly strong by construction of (Γ−1)F .

Next, we show that the γi and ζi assemble to modifications γ : 1F → Γ−1Γ and ζ : ΓΓ−1 → 1G ,

that is, that the following diagrams commute:

1F(j) ◦ F(F ) (Γ−1Γ)j ◦ F(F )

3

F(F ) ◦ 1F(i) F(F ) ◦ (Γ−1Γ)i

γj∗1

(Γ−1Γ)F

1∗γi

(ΓΓ−1)j ◦ G(F ) 1G(j) ◦ G(F )

4

G(F ) ◦ (ΓΓ−1)i G(F ) ◦ 1G(i)

ζj∗1

(ΓΓ−1)F

1∗ζi

To see that 3 commutes, consider the following diagram:
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1
F
(j) ◦
F
(F

)
(Γ

−
1Γ

)
j ◦
F
(F

)

Γ
−
1

j
◦
G
(F

)◦
Γ
i

Γ
−
1

j
◦
G
(F

)◦
Γ
i

Γ
−
1

j
◦
G
(F

)◦
Γ
i ◦

Γ
−
1

i
◦
Γ
i

Γ
−
1

j
◦
Γ
j ◦
F
(F

)
Γ
−
1

j
◦
Γ
j ◦
F
(F

)◦
Γ
−
1

i
◦
Γ
i

F
(F

)◦
1
F
(i)

F
(F

)◦
(Γ

−
1Γ

)
i

γ
j ∗

1

1∗
Γ
F

(Γ
−
1
Γ
)
F

1∗
ζ
−
1

i
∗
1

1∗
γ
i

1∗
Γ
−
1

F
1∗

Γ
−
1

F
∗
1

1∗
γ
i

γ
−
1

j
∗
1

γ
−
1

j
∗
1

1∗
γ
i

1

2

3

4

6

5
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1 - 3 commute trivially;

4 - 5 commute by the interchange law;

and 6 commutes by definition of (Γ−1Γ)F .

So the outer diagram commutes, that is, 3 commutes. So γ is a modification. A similar proof

shows that 4 commutes, so ζ is a modification. The remaining properties of γ and ζ - that they

are invertible and satisfy the unit-counit diagrams for an adjoint equivalence - are immediate from our

choice of γi and ζi.

So (Γ,Γ−1, γ, ζ) are the data of an adjoint equivalence in [C ,D ].

□

The 1-categorical analogue of this result is the classical result that, if a natural transformation is

locally an isomorphism, then it is a natural isomorphism.

The second of our propositions is a technical lemma used only once in this thesis, to show that

restriction - as we define it - is a pseudofunctor. Morally, it says that something ”2-naturally isomorphic”

to a pseudofunctor is also a pseudofunctor.

Proposition 1.1.8. Let F : C → D be a pseudofunctor. Suppose we have some data G with G (i)

an object of D for each object i of C , G (F : i → j) = G (F ) : G (i) → G (j) a 1-morphism of D

for each 1-morphism F of C , G (α : F → G) = G (α) : G (F ) → G (G) a 2-morphism of D for each

2-morphism α of C , G 2
F,G : G (GF ) → G (G)G (F ) a 2-morphism in D for each composable pair F , G

of 1-morphisms in C , and G 0
i : G (1i) → 1G (i) a 2-morphism in D for each object i of C . Suppose

further that for each object i of C , there is an epimorphism Γi : F (i) ↠ G (i) of D ; that for each

1-morphism F of C , there is an epimorphism ΓF : ΓjF (F ) ↠ G (F )Γi; and that the following diagrams

all commute for any F, F ′ : i→ j, G : j → k, α : F → F ′ in C :

ΓjF (F ) G (F )Γi

1

ΓjF (F ′) G (F ′)Γi

ΓF

1∗F (α) G (α)

ΓF ′
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ΓkF (GF ) G (GF )Γi

2

ΓkF (G)F (F ) G (G)ΓjF (F ) G (G)G (F )Γi

ΓGF

1∗F2 G 2∗1

ΓG∗1 1∗ΓF

ΓiF (1i) G (1i)Γi

3

Γi1F (i) 1G (i)Γi

Γi

Γ1i

1∗F0 G 0∗1

r l

Then G is a pseudofunctor, and Γ is a 2-natural transformation of functors.

Proof :

We need to show three things: that G is locally functorial, that G 2 is natural in F and G, and that

G 2,G 0 are coherent.

To show that G is locally functorial, we need to show that G (βα) = G (β)G (α) for any compatible

2-morphisms α, β in C , and that G (1F ) = 1G (F ) for any 1-morphism F in C .

First, consider the following diagram:

ΓjF (F ) G (F )Γi

ΓjF (G) G (G)Γi

ΓjF (H) G (H)Γi

ΓF

1∗F (α)

1∗F (βα)

G (α)∗1

G (βα)∗1ΓG

1∗F (β) G (β)∗1

ΓH

1

2

3

4

1 commutes because F is locally functorial;

and 2 , 3 and the outer diagram commute by our assumption 1 on Γ.

So we find that ((G (β)G (α)) ∗ 1Γi)ΓF = (G (βα) ∗ 1Γi)ΓF . Since Γi and ΓF are epimorphisms, we
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get that G (β)G (α) = G (βα), as we wanted.

Next, consider the following diagram:

ΓjF (F ) G (F )Γi

ΓjF (F ) G (F )Γi

ΓF

1∗F (1F )1ΓjF(F ) G (1F )∗1 1G (F )Γi

ΓF

1 2 3

1 commutes because F is locally functorial;

2 commutes by our assumption 1 on Γ;

and the outer diagram commutes trivially.

So (G (1F )∗1Γi)ΓF = (1G (i)∗1Γi)ΓF . Since ΓF and Γi are epimorphisms, we get that G (1F ) = 1G (i),

as we wanted.

So G is locally functorial.

To see that G 2 is natural in F , G, let α : F → F ′ and β : G → G′ be 2-morphisms in C , and

consider the following diagram:

ΓkF (GF ) G (GF )Γi

ΓkF (G′F ′) G (G′F ′)Γi

ΓkF (G′)F (F ′) G (G′)ΓjF (F ′) G (G′)G (F ′)Γi

ΓkF (G)F (F ) G (G)ΓjF (F ) G (G)G (F )Γi

ΓGF

1∗F (β∗α)

1∗F2

G (β∗α)∗1

G 2∗1

ΓG′F ′

1∗F2 G 2∗1

ΓG′∗1 1∗ΓF ′

1∗F (β)∗F (α)

ΓG∗1

G (β)∗1∗F (α)

1∗ΓF

G (β)∗G (α)∗1

3

1
2

6

4 5

1 commutes because F 2 is a natural transformation;

2 and the outer diagram commute by our assumption 2 on Γ;

3 - 5 commute by our assumption 1 on Γ;

and ΓGF is an epimorphism.

So 6 commutes. But since Γi is an epimorphism, this tells us that that G 2 is natural in F and G.

To see that G satisfies the coassociativity diagram, consider the following diagram:
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Γ
l F

(H
)F

(G
)F

(F
)

G
(H

)Γ
k F

(G
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(F
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G
(H
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)Γ
j F

(F
)

Γ
l F

(H
)F

(G
F
)

G
(H

)Γ
k F

(G
F
)

G
(H

)G
(G
F
)Γ
i

Γ
l F

(H
)F

(G
)F

(F
)

Γ
l F

(H
G
F
)

G
(H
G
F
)Γ
i

G
(H

)G
(G

)G
(F

)Γ
i

Γ
l F

(H
G
)F

(F
)

G
(H
G
)Γ
j F

(F
)

G
(H
G
)G

(F
)Γ
i

G
(H

)Γ
k F

(G
)F

(F
)

G
(H

)G
(G

)Γ
j F

(F
)

G
(H

)G
(G

)G
(F

)Γ
i

Γ
H
∗
1

1∗
Γ
G
∗
1

1∗
Γ
F

1∗
F

2

Γ
H
∗
1

1∗
F

2

1∗
F

2

1∗
Γ
G
F

1∗
G

2∗
1

Γ
H
∗
1

1∗
F

2

Γ
H

G
F

1∗
F

2

G
2∗

1

G
2∗

1
1∗

F
2∗

1

Γ
H
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∗
1

1∗
Γ
F

G
2∗

1

G
2∗

1

G
2∗

1

1∗
Γ
G
∗
1

1∗
Γ
F
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5

6
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1

3

1
0

7
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1 commutes because F satisfies the coassociativity diagram;

2 - 5 commute by our assumption 2 on Γ;

6 - 7 and the outer diagram commute trivially;

and 8 - 9 commute by our assumption 1 on Γ.

So 10 commutes when ΓHGF is precomposed. But ΓHGF and Γi are epimorphisms. So G satisfies

the coassociativity diagram.

Finally, we check that G satisfies the counitality diagrams. We check only one, the other being

completely analogous.

To see that it does, consider the following diagram:

ΓjF (F1i) ΓjF (F )

G (F1i)Γi G (F )Γi

ΓjF (F )F (1i) G (F )ΓiF (1i) G (F )G (1i)Γi

G (F )1G (i)Γi G (F )Γi

G (F )Γi1F (i)

ΓjF (F )1F (i) ΓjF (F )

1∗F (r)

ΓF1i

1∗F2

ΓF

G (r)∗1

G 2∗1

ΓF ∗1

1∗F0

1∗Γ1i

1∗F0

1∗G 0∗1

r∗1

1∗l

1∗r

ΓF ∗1

1∗r

ΓF

1

2

3

6

5

8

4

7

1 commutes by our assumption 2 on Γ;

2 commutes by our assumption 1 on Γ;

3 commutes trivially;

4 commutes because left and right unitors commute;

5 commutes by our assumption 3 on Γ;

6 commutes by the interchange law;

7 commutes by naturality of the unitors;

and the outer diagram commutes because F satisfies the counitality diagrams.



30 Chapter 1: Preliminaries

So 8 commutes when ΓF1i is precomposed. But ΓF1i and Γi are epimorphisms. So G satisfies

the counitality diagrams, as required.

So G is a psuedofunctor, and Γ is immediately a 2-natural transformation. □

1.2 (Multi)fiat 2-categories and injective abelianisations

The particular categories we often work with are called (multi)fiat 2-categories. To explain what this

means, we need some set-up.

Definition 1.2.1 (Split idempotent). We say a morphism e in a category C is an idempotent if e◦e = e.

We say an idempotent e : i → i is split if there are morphisms s : i → j and t : j → i such that

t ◦ s = e and s ◦ t = 1j .

We say a C has split idempotents if every idempotent is split. ◁

Definition 1.2.2 (Additive category). We call a category preadditive if it is enriched over the category

of abelian groups.

We call a category additive if it is preadditive and has all finite products (in particular, including the

empty product). ◁

The following proposition can be found in a standard text on abelian categories, for example as

Theorem 2.35 in [Fre64]

Proposition 1.2.3. In a preadditive category, every product of objects is also a biproduct on the same

objects. The empty product, where it exists, is a zero object.

Definition 1.2.4 (k-linear category). We say a category is k-linear if it is enriched over the category of

k-vector spaces (so in particular, it is preadditive). We say a functor (or natural transform) is k-linear

if it is an enriched functor (respectively, natural transform) over the category of k-vector spaces. ◁

Definition 1.2.5 (Indecomposable objects). We say an object X in a category C is indecomposable if

it cannot be expressed as a non-trivial coproduct, that is, whenever X ∼=
∐n
i=1Xi, there is a unique

1 ≤ i ≤ n such that Xi
∼= X, and Xj

∼= 0 for j ̸= i. ◁

Definition 1.2.6 (Finitary category). We say an additive k-linear category is finitary if it has split

idempotents, finitely many isomorphism classes of indecomposable objects, and the morphism sets are

finite dimensional as k-vector spaces. ◁
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Definition 1.2.7 (2-Category of finitary categories). We denote by Afk the 2-category of finitary

categories, additive k-linear functors and natural transformations. ◁

Definition 1.2.8 ((Multi)finitary 2-category). We call a 2-category C multifinitary if:

• C has finitely many objects;

• each hom-category C (i, j) is a finitary category;

• and composition is additive and k-linear in each argument.

If, moreover, all identity 1-morphisms are indecomposable, then we say C is finitary. ◁

Definition 1.2.9 (Fiat 2-category). We say a 2-category C is (multi)fiat if it is a (multi)finitary 2-

category with a weak involutive anti-equivalence ∗ (reversing both 1- and 2-morphisms) such that, for

every 1-morphism F , the pair (F, F ∗) is an adjoint pair of 1-morphisms. ◁

We make a short note on the injective abelianisation of a (multi)finitary 2-category. For full details,

one can look at e.g. [MMMT19] Section 3. In particular, the two given propositions are immediate

from Section 3.1.

Definition 1.2.10 (Injective objects). An object Q in a category C is called injective if, for every

morphism f : X → Q, and every monomorphism g : X → Y , there’s an h : Y → Q making the

following diagram commute:

X Y

Q

g

f
h

In an abelian category, this is equivalent to the hom-functor HomC(−, Q) being exact. ◁

Proposition 1.2.11. Given a finitary category C, there is an abelian category C for which C embeds into

the injective objects of C, and is equivalent via this embedding to the subcategory of injective objects in

C. Moreover, this construction is natural in C, and in particular we can define F : C → D for F : C → D

a k-linear functor.

We call this an injective abelianisation of C.

Moreover, given a (multi)finitary 2-category C , we can define the injective abelianisation C of C ,

which has the same objects as C , and for which C (i, j) = C (i, j). This construction is also natural in

C .
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There are actually several such constructions natural in C ; we present the diagrammatic injective

abelianisation below, but note that essentially any injective abelianisation would work.

Proposition 1.2.12. Let C be a finitary category. Define the diagrammatic injective abelianisation C

as follows:

• Objects of C are morphisms F : i→ j in C;

• Morphisms in C are equivalence classes of solid commutative diagrams (that is, without Q)

i j

i′ j′

F

F ′

G HQ

modulo the ideal generated by diagrams with a ’homotopy’, that is, a Q as above for which

G = QF .

• Identity morphisms are given by diagrams in which G and H are both identities, and composition

is given by vertical composition of diagrams.

Then the diagrammatic injective abelianisation is indeed an abelianisation, as characterised in the

previous proposition.

In particular, a functor F : C → D extends to a functor F : C → D in the obvious way. □

Henceforth, injective abelianisation will refer to diagrammatic injective abelianisation.

1.3 Coalgebra 1-morphisms

Of central importance is the notion of a coalgebra 1-morphism and related concepts. Throughout this

section, let C be a finitary 2-category.

Definition 1.3.1 (Coalgebra 1-morphism). A coalgebra 1-morphism (at an object i of C ) consists of

the following data:

• A 1-morphism C : i→ i in C ;

• A 2-morphism ∆ : C → CC in C ;

• A 2-morphism ε : C → 1i in C ;
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which satisfy the coalgebra axioms:

C CC C CC

CC CCC CC C

∆

∆

1∗∆

∆∗1 ∆

∆

1∗ε

ε∗1

◁

Definition 1.3.2 (Coalgebra homomorphism). A homomorphism of coalgebra 1-morphisms in C , θ :

(C,∆, ε)→ (D,∆′, ε′), is a 2-morphism θ : C → D in C making the following diagrams commute:

C D C D

CC DD 1

θ

∆ ∆′

θ∗θ

θ

ε ε′

◁

Definition 1.3.3 (Comodule 1-morphism). A (right) comodule 1-morphism (at j) for a coalgebra 1-

morphism C = (C,∆, ε) (at i) is a pair of a 1-morphism M : i→ j, the comodule, and a 2-morphism

δM,C :M →MC, the coaction, in C , such that the following diagrams commute:

M MC M MC

MC MCC M

δ

δ

δ∗1

1∗∆

δ

1∗ε

Similarly, we can define a left C-comodule 1-morphism (M, δC,M ), and then a C-D-bicomodule

1-morphism is a left C-comodule and a right D-comodule, such that the following diagram commutes:

M CM

MD CMD

δC,M

δM,D

δC,M∗1

1∗δM,D

◁

Definition 1.3.4 (Biinjective bicomodule 1-morphism). A bicomodule 1-morphism CMD is biinjective

if it’s injective as both a left C- and right D-comodule 1-morphism.
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◁

Definition 1.3.5 (Bicomodule homomorphism). A homomorphism of C-D-bicomodule 1-morphisms in

C , ϕ : (N, δC,N , δN,D)→ (M, δC,M , δM,D), is a 2-morphism ϕ : M → N in C such that the following

diagrams commute:

N M N M

CN CM ND MD

δN,D

ϕ

δM,D

ϕ∗1

δC,N

1∗ϕ

ϕ

δC,M

If ϕ satisfies the left diagram, we say it is a left C-comodule homomorphism; if it satisfies the right

diagram, we say it is a right D-comodule homomorphism.

We define comodC (C)j to be the category whose objects are right C-comodule 1-morphisms at j,

and whose morphisms are right C-comodule homomorphisms. Similarly, jcomodC (C) is the category

of left C-comodule 1-morphisms at j, and left C-comodule homomorphisms. ◁

The left- and right-injective comodule 1-morphisms have a nice characterisation in fiat 2-categories:

Lemma 1.3.6. If C is a fiat 2-category, C ∈ C (i, i) a coalgebra 1-morphism, then C is biinjective as

a C-C-bicomodule 1-morphism in C .

Proof : As a corollary of Example 1.5.2, we will show that there is an adjunction

HomcomodC
(−, C) ∼= HomC (−, 1i). Since 1i is injective in C by construction, the right functor is

exact, so the left functor is exact, so C is injective as a right comodule 1-morphism. Similarly, C is

injective as a left comodule 1-morphism, so a biinjective bicomodule 1-morphism. □

Lemma 1.3.7. If C is a fiat 2-category, C ∈ C (i, i) a coalgebra 1-morphism, then the right-injective C-

comodule 1-morphisms at j of C are precisely the additive closure of {FC|F ∈ C (i, j)}. Similarly, the

left-injective C-comodule 1-morphisms at j of C are precisely the additive closure of {CF |F ∈ C (j, i)}.

Proof : Because C is fiat, every F ∈ C (i, j) has adjoints, so the mapping of 1-morphisms M 7→

FM is exact. So since C is an injective right C-comodule 1-morphism, FC is an injective right C-

comodule 1-morphism. Summands of injective objects are injective, so every object in the additive

closure of {FC|F ∈ C (i, j)} is injective.
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Now, if X is a right-injective comodule 1-morphism in comodC (C)j , we note that δX,C : X →

XC is a monic comodule homomorphism (by counitality), and that X has an injective presentation

X0 → X1 for Xi 1-morphisms in C ; so X ↪→ XC ↪→ X0C is an embedding of X into an object in

{FC|F ∈ C (i, i)}, from which the first claim follows.

The characterisation of the left-injective comodule 1-morphisms is similar. □

The following definition can be found in Section 0 of [Tak77]

Definition 1.3.8 (Cotensor product). The cotensor product of a C-D-bicomodule 1-morphism M and

a D-E-bicomodule 1-morphism over D in C , where it exists, is the equalizer (M �
D
N, tDM,N ) of the pair

of morphisms

M �
D
N MN MDN

δM,D∗1

1∗δD,N
tDM,N

The cotensor product of a pair of bicomodule homomorphisms ϕM : M → M ′, ϕN : N → N ′, is

the unique map ϕM �
D
ϕN making the following diagram commute:

M �
D
N MN

M ′ �
D
N ′ M ′N ′

tDM,N

tD
M′,N′

ϕM∗ϕNϕM �
D
ϕN

M �
D
N becomes an C-E-bicomodule 1-morphism with the maps

δC,M�
D
N := δC,M �

D
1N , δM�

D
N,E := 1M �

D
δN,E ;

tDM,N is then a bicomodule homomorphism.

When C is abelian, for instance if we work in the injective abelianisation C , the cotensor product

always exists.

◁

Lemma 1.3.9. The following diagram commutes:
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M �
C
N �

D
L M �NL

MN � L MNL

tCM,N�L

tDM�N,L

tCM,NL

tDMN,L

Proof : First, by inspection of the following diagram, it’s immediate that tCM,N ∗ 1 = tCM,NL.

M �NL MNL MCNL
tCM,N∗1 δM,C∗1

1∗δC,NL=1∗δC,N∗1

Next, by inspection of the following diagram, it’s clear that tCM,N � 1 = tCM,N�L:

M �N � L MN � L MCN � L
tCM,N�1

1∗δC,N�L=1∗δC,N�1

δM,C∗1

Finally, our result follows from the definition of tCM,N � 1 □

Proposition 1.3.10. If we define, for coalgebra 1-morphisms C and D, BicomC (C,D) to be the

category whose objects are C-D-bicomodule 1-morphisms, and whose morphisms are bicomodule

homomorphisms, then for coalgebra 1-morphisms C, D and E,

−�
D
− : BicomC (D,E)×BicomC (C,D)→ BicomC (C,E)

(N,M) 7→M �N

(ψ, ϕ) 7→ ϕ�
D
ψ

is a functor when it exists.

Proof : First, we note that it is clear that for coalgebra 1-morphisms C and D, BicomC (C,D) is

indeed a category.

We assume that − �
D
− exists, that is, that all relevant cotensor products exist. For − �

D
− to

be a functor, it must respect composition of bicomodule homomorphisms, and identity bicomodule

homomorphisms. To see that it respects composition, let ϕ : M → M ′ and ϕ′ : M ′ → M ′′ be C-D-

bicomodule homomorphisms, ψ : N → N ′ and ψ′ : N ′ → N ′′ be D-E-bicomodule homomorphisms.
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We need

ϕ′ϕ�
D
ψ′ψ = (ϕ′ �

D
ψ′) ◦ (ϕ�

D
ψ).

Consider the following diagram:

M �
D
N MN

1

M ′ �
D
N ′ M ′N ′

2

M ′′ �
D
N ′′ M ′′N ′′tD

M′′,N′′

tDM,N

ϕ∗ψ

ϕ′∗ψ′

ϕ�
D
ψ

ϕ′�
D
ψ′

tD
M′,N′

Here, 1 and 2 commute by definition of ϕ �
D
ψ and ϕ′ �

D
ψ′ respectively, so the outer diagram

commutes. But the outer diagram is

M �
D
N MN

M ′′ �
D
N ′′ M ′′N ′′

tDM,N

tD
M′′,N′′

(ϕ′�
D
ψ′)◦(ϕ�

D
ψ) ϕ′ϕ∗ψ′ψ

and by definition, the unique map which can be on the left-hand side when this diagram commutes

is ϕ′ϕ�
D
ψ′ψ. So we must have ϕ′ϕ�

D
ψ′ψ = (ϕ′ �

D
ψ′) ◦ (ϕ�

D
ψ), as required.

To see that −�
D
− respects identity bicomodule homomorphisms, we must have that

1M �
D
1N = 1M�N . Consider the following diagram:

M �N MN

M �N MN

t

1M∗1N=1MN1M�N

t

It’s clear that this commutes. But by construction 1M �
D
1N is the unique map making this diagram



38 Chapter 1: Preliminaries

commute, so we must have that 1M �
D
1N = 1M�N as required.

So −�
D
− is a functor. □

Proposition 1.3.11. We can define natural isomorphisms εlC,D : C �
C
− → 1BicomC (C,D) and εrC,D :

−�
D
D → 1BicomC (C,D) at the C-D-bicomodule 1-morphism M by

(εlC,D)M = εlM := (ε ∗ 1) ◦ tCC,M : C �
C
M →M,

(εrC,D)M = εrM := (1 ∗ ε) ◦ tDM,D :M �
D
D →M.

Proof : Fix C and D, and write εl := εlC,D, and similarly εr. Showing that εl and εr are natural

isomorphisms is the same thing as showing that they are pointwise invertible and the following diagrams

commute for all C-D-bicomodule 1-morphisms M , M ′ and bicomodule homomorphisms ϕ :M →M ′:

C �
C
M M M �

D
D M

C �
C
M ′ M ′ M ′ �

D
D M ′

1�ϕ ϕ

εlM

εl
M′

ϕ�1

εrM

εr
M′

ϕ

We first consider the left of these two diagrams (noting that the right diagram can be shown to

commute in essentially the same way). Look at the following diagram:

C �
C
M CM M

1 2

C �
C
M ′ CM ′ M ′

1�ϕ ϕ

tC
C,M′

tCC,M

1∗ϕ

ε∗1

ε∗1

1 commutes by definition of 1�ϕ, and 2 commutes by the interchange law. Therefore the outer

diagram commutes, which is precisely our left-hand diagram above.

We show that εl is invertible as follows (noting that εr is similar). First, consider the following

diagram:
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M CM CCMδC,M
1∗δC,M

∆C∗1

By the axioms of a left C-comodule 1-morphism, both possible compositions must be equal, that

is, δC,M equalises the two right-hand maps. By the universal property of C �
C
M as an equaliser, there

must therefore be a unique map δlM :M → C�
C
M such that tCC,M ◦δlM = δC,M . We can then compute

εlM ◦ δlM = (εC ∗ 1) ◦ tCC,M ◦ δlM

= (εC ∗ 1) ◦ δC,M

= 1M

using the definitions of εlM and δlM , and the axioms for a left C-comodule 1-morphism. So εlM is

split epic. Next, we consider the following diagram:

C �
C
M CM CCM

M CM

ε∗1

1∗δC,M

∆C∗1
tCC,M

δC,M

ε∗1∗1

With respect to the lower of the two top right morphisms, the square commutes by the interchange

law. The composition of the upper of these two morphisms with the right-hand vertical morphism is

the identity, by counitality. But then tCC,M equalises the top two morphisms by definition. So any path

through this diagram from C�
C
M to the bottom right CM is equal, and equal to tCC,M , which is monic.

In particular, εlM is a right factor of a monomorphism, and thus monic.

Therefore, εlM is split epic and monic, and thus an isomorphism (with inverse δlM ). So εlC,D is a

natural isomorphism, and similarly so is εrC,D. □

As an immediate corollary of this result, we get the following nice property of the cotensor product:

Corollary 1.3.12. Suppose C is a fiat 2-category. If C,D,E are coalgebra 1-morphisms in C , CND

and DME are right injective bicomodule 1-morphisms, then N � M is right injective. Similarly, if M

and N are left injective, then N �M is left injective.

If M and N are biinjective, then N �M is biinjective.
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Proof : Since the cotensor is additive, we need only check this forN = FD,M = GE for some F ∈

C (i, j), G ∈ C (j, k), by Lemma 1.3.7. But by the previous proposition, N �
D
M = FD�

D
GE ∼= FGE,

which is in {HE|H ∈ C (i, k)}, and thus injective as a right E-comodule 1-morphism, as required.

The left-injective case is similar, and the biinjective case follows from these. □

These results let us build a pair of nice bicategories:

Definition 1.3.13 (Bicategory of (right injective, biinjective) bicomodule 1-morphisms). For any

category C for which all relevant cotensor products exist, the bicategory of (right injective, biinjective)

bicomodule 1-morphisms of C , written BicomC (RBicomC , BBicomC ), consists of the following

data:

• Objects are coalgebra 1-morphisms in C ;

• 1-morphisms from C to D are (right injective, biinjective) C-D-bicomodule 1-morphisms in C ;

• 2-morphisms are bicomodule homomorphisms in C ;

• Horizontal composition is given by the cotensor product;

• Vertical composition is given by vertical composition in C ;

• The identity 1-morphism on an object C is given by C viewed as a C-C-bicomodule 1-morphism;

• The identity 2-morphism on a 1-morphism M is 1M , the identity 2-morphism of M as a 1-

morphism in C ;

• The associator is induced by the identity, and is omitted;

• The left and right unitors are εl and εr respectively, cf. Proposition 1.3.11.

◁

Proposition 1.3.14. When C has all relevant cotensor products, BicomC is a bicategory. When C is

a fiat 2-category, RBicomC and BBicomC are bicategories.

Proof : By Proposition 1.3.10, we know that horizontal composition is functorial for BicomC .

To see that this functor restricts to the RBicomC , BBicomC setting when C is a fiat 2-category,

we need only show that pairs of (right injective, biinjective) bicomodule 1-morphisms get sent to a
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(right injective, biinjective) bicomodule 1-morphism, since BBicomC (M,N) is a full subcategory of

BicomC (M,N). But this is precisely Corollary 1.3.12.

By Lemma 1.3.6, C is a biinjective C-C bicomodule 1-morphism when C is fiat, so the identity

1-morphisms are well-defined for RBicomC , BBicomC .

Finally, since the left and right unitors are natural isomorphisms by Proposition 1.3.11 (and noting

that the restriction of a natural isomorphism to a full subcategory is again a natural isomorphism), we

need only check that they commute. To see this is true, let M be a C-D-bicomodule 1-morphism, N

be a D-E-bicomodule 1-morphism, and consider the following diagram:

M �
D
D �

D
N M �

D
DN

1

MD �
D
N MDN

MN

M �
D
N

t�1

1�t

1�ϵD∗1

1∗ϵD�1

t

t

1∗ϵ∗1

t 2

3

By Lemma 1.3.9, 1 commutes.

2 and 3 commute by definition of 1 � ϵD and ϵD � 1 respectively.

Therefore, the top and bottom arrows, when post-composed with t, are equal. But t is monic. So in

fact, the top and bottom arrows are equal. But this is precisely the statement that the unitors commute.

Therefore, both statements of the proposition are proved.

□

We also have some simple results about coalgebra homomorphisms, which we record here:

Lemma 1.3.15. Let C, C ′, D, D′ be coalgebra 1-morphisms in a 2-category C . Let (N, δC,N , δN,D) be

a C-D-bicomodule 1-morphism, θC : C → C ′ and θD : D → D′ be coalgebra homomorphisms. Define

δC′,N := (θC ∗1N )◦δC,N and δN,D′ := (1N ∗θD)◦δN,D. Then (N, δC′,N , δN,D′) is a C ′-D′-bicomodule

1-morphism, which we write as θCN θD . Moreover, if ρC : C ′ → C ′′ and ρD : D′ → D′′ are coalgebra
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homomorphisms, then ρC (θCN θD)ρD = ρC◦θCNρD◦θD .

Proof : We first show that (N, δC′,N ) is a left C ′-comodule 1-morphism. Consider the following

diagram:

N CN C ′N

1 2

CN CCN C ′CN

3 4

C ′N C ′C ′N C ′C ′N

δC,N

δC,N

θC∗1

θC∗1

1∗δC,N

∆C∗1

1∗δC,N

∆C′∗1

1∗θC∗1θC∗θC∗1

θC∗1∗1

1 commutes since (N, δC,N ) is a left C-comodule 1-morphism;

2 and 4 commute by the interchange law;

3 commutes since θC is a coalgebra homomorphism.

Therefore, the outer square commutes, that is, the left C ′ action on N commutes with the

comultiplication on C ′.

Next, consider the following diagram:

N CN C ′N

1 2

N

εC′∗1

δC,N

εC∗1

θC∗1

1 commutes since (N, δC,N ) is a left C-comodule 1-morphism;

2 commutes since θC is a coalgebra homomorphism.

Therefore, the outer triangle commutes, that is, N satisfies the second axiom for being a left

C ′-comodule 1-morphism, hence N is a left C ′-comodule 1-morphism.

Similarly, N is a right D′-comodule 1-morphism.

Finally, consider the following diagram:
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N CN C ′N

1 2

ND CND C ′ND

3 4

ND′ CND′ C ′ND′

δN,D

δC,N θC∗1

1∗δN,D

1∗1∗θD

δC,N∗1

1∗1∗θD

θC∗1∗1

1∗δN,D

θC∗1∗1

1∗θD

δC,N∗1

1 commutes since (N, δC,N , δN,D) is a C-D-bicomodule 1-morphism;

2 , 3 and 4 commute by the interchange law.

Therefore, the outer square commutes, that is, the left C ′ and right D′ action commute.

So N is an C ′-D′-bicomodule 1-morphism, as required.

The final claim of the lemma is immediate from construction.

□

Remark. The lemma discusses ”twisting” both actions of a bicomodule 1-morphism by coalgebra

homomorphisms simultaneously, but by taking one or other to be the identity, we can ”twist” on one

side only. This is regularly done, and where it is, we omit writing the ”twist” by the identity, that is,

we write 1CN θD = N θD and θCN1D = θCN . It is straightforward that (θCN)θD = θC (N θD) = θCN θD .

Lemma 1.3.16. Let C, C ′, D, D′, θC and θD be as above. LetN ,M be C-D-bicomodule 1-morphisms,

ϕ : N →M a C-D-bicomodule homomorphism. Then ϕ is also a C ′-D′-bicomodule homomorphism.

Proof : Consider the following diagram:
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N M

1

CN CM

2

C ′N C ′M

δC,N

θC∗1

δC,M

θC∗1

1∗ϕ

1∗ϕ

ϕ

1 commutes since ϕ is a left C-comodule homomorphism;

2 commutes by the interchange law.

Therefore the outer diagram commutes, that is, ϕ is a left C ′-comodule homomorphism. Similarly,

ϕ is a right D′-comodule homomorphism, so a C ′-D′-bicomodule homomorphism.

□

Lemma 1.3.17. Suppose we have an C-D-bicomodule 1-morphism N , and a D-E-bicomodule 1-

morphism M . Suppose further that we have a coalgebra homomorphism θ : D → D′. Then there is a

bicomodule homomorphism θ ↾(N,M): N �
D
M → N θ �

D′
θM . For ρ : D′ → D′′, ρ ↾(M,N) ◦θ ↾(M,N)=

(ρ ◦ θ) ↾(M,N). Moreover, when θ is monic, θ ↾(N,M) is an isomorphism.

Proof : Consider the following diagram:

N �
D
M NM NDM

N θ �
D′

θM NM NDM ND′M

tDN,M

tD
′

Nθ,θM

1∗δD,M

1∗δD,M

δN,D∗1

δN,D∗1
1∗θ∗1

θ↾(N,M)

The top line is the equalizer diagram for N �
D
M ; the bottom line is the equalizer diagram for

N θ �
D′

θM . It is obvious that tDN,M equalizes δN,D′ ∗ 1 and 1 ∗ δD′,M , so we obtain a morphism

θ ↾(N,M): N �
D
M → N θ �

D′
θM with tD

′

Nθ,θM
◦ θ ↾(N,M)= tDN,M , as required.

To see that θ ↾(M,N) is a bicomodule homomorphism, consider the following diagram:
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MN

M �
D
N M θθN CMN

Mθ �
D′

θN CM �
D
N CMθθN

CMθ �
D′

θN

δC,M �
D
1

1∗θ↾(M,N)

θ↾(M,N)

δ
C,Mθ �

D′
1

t

t δC,M∗1

δ
C,Mθ∗1

1∗t

1∗t

The top and bottom faces commute by definition of the cotensor;

the back left and front right faces commute by definition of θ ↾(M,N);

the back right face commutes trivially;

1 ∗ t is monic.

By a diagram chase, we see that

(1 ∗ t) ◦ (1 ∗ θ ↾(M,N)) ◦ (δC,M �
D
1) = (1 ∗ t) ◦ (δC,M �

D′
1) ◦ θ ↾(M,N),

so that since 1 ∗ t is monic,

(1 ∗ θ ↾(M,N)) ◦ (δC,M �
D
1) = (δC,M �

D′
1) ◦ θ ↾(M,N),

that is, the front left face commutes, so θ ↾(M,N) is a left C-comodule homomorphism. Similarly it is a

right E-comodule homomorphism, so a C-E-bicomodule homomorphism as required.

Given ρ : D′ → D′′, one can see that by construction, ρ ↾(M,N) ◦θ ↾(M,N)= (ρ ◦ θ) ↾(M,N).

When θ is monic, we can apply the first part of our argument in reverse to find an inverse for

θ ↾(N,M), proving the final claim.

□

Lemma 1.3.18. θ ↾(N,M) is natural in N and M , that is, the following diagram is a natural
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transformation of functors:

BicomC (D,E)×BicomC (C,D) BicomC (C,E)

BicomC (D
′, E′)×BicomC (C

′, D′) BicomC (C
′, E′)

−�
D
−

(θD (−)θE ,θC (−)θD ) θC (−)θE

−�
D′

−

θD↾(−,−)

Proof : Suppose ϕN : N → N ′ and ϕM :M →M ′ are bicomodule homomorphisms. Consider the

following diagram:

NM

N �
D
M N ′M ′ NM

N ′ �
D
M ′ N θ �

D′
θM N ′M ′

N ′θ �
D′

θM ′

ϕN �
D
ϕM

ϕN �
D′
ϕM

θ↾(N,M)

θ↾(N
′,M′)

t

t

t

t

ϕN∗ϕM

ϕN∗ϕM

Then the top and bottom faces commute by definition of θ ↾(−,−);

the back left and front right faces commute by definition of ϕN � ϕM ;

the back right face commutes trivially;

and t : N ′θ �
D′

θM ′ → N ′M ′ is monic.

Therefore, by a previous argument, the front left face commutes, i.e. θ ↾(N,M) is natural in N and

M .

□

Lemma 1.3.19. Let M be a right C-comodule 1-morphism, N be a C-D bicomodule 1-morphism, L

be a left D-comodule 1-morphism. Let θC : C → C ′ and θD : D → D′ be coalgebra homomorphisms.

Then 1M � θD ↾(N,L)= θD ↾
(M�N,L)

and θC ↾(M,N) �1L = θC ↾
(M,N�L)

Proof : Consider the following diagram:
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M �
C
N �

D
L M θC �

C′
θCN �

D
L

M �
C
NL M θC �

C′
θCNL

θC↾
(M,N�L)

tt

θC↾(M,NL)=θC↾(M,N)∗1

This commutes by naturality of θC ↾(−,−). But by definition, θC ↾(M,N) �1 is the unique arrow

making this square commute. □

Corollary 1.3.20. With M , N , L, θC , θD as above, the following square commutes:

M �
C
N �

D
L M �

C
N θD �

D′
θDL

M θC �
C′

θCN �
D
L M θC �

C′
θCN θD �

D′
θDL

θC↾
(M,N�L)

θD↾
(M�N,L)

θC↾
(M,N�L)

θD↾
(M�N,L)

□

Proof : Immediate from naturality of θC ↾(−,−). □

1.4 Categories of representations

Throughout this section, let C be a finitary 2-category.

We can now define some particular bicategories we work with. First, what do we mean by a

birepresentation?

Definition 1.4.1 (2-Category of finitary birepresentations). The 2-category of finitary birepresentations

of C , written C − afmod, is the 2-category [C ,Afk ] of pseudofunctors from C to Afk . Explicitly, it

consists of the following data:

• Objects are k-linear pseudofunctors M : C → Afk (called a finitary birepresentation of C );

• 1-morphisms are k-linear strong 2-natural transforms of pseudofunctors (called a morphism of

birepresentations, and written Φ : M →M′);

• 2-morphisms are modifications, written σ : Φ→ Ψ : M →M′.

If a finitary birepresentation is a strict 2-functor, we say it is a 2-representation. If a morphism of

birepresentations is a strict 2-natural transform, we say it is a strict morphism.
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Given a finitary birepresentation M, we can define M by letting M(i) = M(i), the injective

abelianisation of the category M(i), and inheriting the action of C .

We say a morphism of birepresentations Φ : M →M′ is an exact morphism of representations if the

component functors Φi : M(i)→M′(i) extend to exact functors Φi : M(i)→M′(i).

If M is a finitary birepresentation of C , i an object of C , we write the objects of M(i) as X, Y ,

Z,...; and the morphisms of M(i) as f, g, h, ....

◁

Example 1.4.2. If i is an object in C , then PC
i = C (i,−) defines a strict 2-representation, sometimes

written Pi, explicitly given by

Pi : C → Afk

Pi(j) = C (i, j)

Pi(F : j → k) = F ◦ − : Pi(j)→ Pi(k)

Pi(α : F → G) = α ∗ 1 : Pi(F )→ Pi(G)

which we call the ith principal 2-representation of C .

Similarly, if F : i → j is a 1-morphism in C , then PF = C (F,−) defines a strict morphism of

2-representations PF : Pj → Pi.

If α : F → G is a 2-morphism in C , then Pα = C (α,−) : PF → PG is a modification. ≪

We’re particularly interested in those finitary birepresentations that have generators:

Definition 1.4.3 (Representation generated by an object). Let M be a finitary birepresentation of C ,

and let X ∈M(i) be an object. Define M ·X as follows:

• (M ·X)(j) = add{M(F )X|F ∈ C (i, j)}, that is, the additive subcategory of M(j) generated by

the objects M(F )X;

• M ·X acts on (M ·X)(j) as M.

This gives a new finitary birepresentation, the birepresentation generated by X, which has an obvious

embedding M ·X ↪→M.

We say X is a generator for M if this embedding is an equivalence of birepresentations.

If M has a generator, we say that it is a cyclic birepresentation.

◁
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The following equivalent characterisation is immediate from Proposition 1.1.7.

Proposition 1.4.4. Let M be a finitary birepresentation of C . Then for X an object in M(i), X is a

generator for M if and only if the embedding

add{M(F )X|F ∈ C (i, j)} ↪→M(j)

is an equivalence for every j an object of C .

Definition 1.4.5 (Categories of cyclic birepresentations). We denote the full subcategory of C −afmod

consisting of cyclic birepresentations by C − cfmod.

Similarly, denote by C − cfmod∗ the category of birepresentations with generator , that is, pairs

(M, X), where X is a generator for M.

1-morphisms in this category are morphisms of the underlying birepresentations.

2-morphisms are modifications.

Write C − cfmod∗ex for the sub-2-category of C − cfmod∗ with only exact morphisms of

birepresentations. ◁

Of particular interest are those finitary birepresentations associated to coalgebra 1-morphisms.

Definition 1.4.6 (Internal birepresentations). Let C : i → i be a coalgebra 1-morphism in C . The

internal birepresentation of C in C is the finitary birepresentation MC given as follows:

• For j an object in C , MC(j) = injC (C)j is the category of injective right C-comodule 1-morphisms

M : i→ j in C , along with right C-comodule homomorphisms;

• For F : j → k a 1-morphism in C , the functor MC(F ) = F ◦ − : injC (C)j → injC (C)k is left

composition with F ;

• For α : F → G a 2-morphism in C , the natural transformation MC(α) = α ∗ 1.

Moreover, if N is a right injective C-D-bicomodule 1-morphism in C , then the internal morphism

associated with N is −�N : MC →MD, and if ϕ : N → L is a bicomodule homomorphism, then the

internal modification associated to ϕ is −� ϕ : −�N → −� L.

◁

Example 1.4.7. By Lemma 1.3.7, C generates MC .



50 Chapter 1: Preliminaries

Proposition 1.4.8. Let C be a fiat 2-category. Given C,D,N,L, ϕ as above, MC is a 2-representation;

−�N : MC → MD is a morphism of birepresentations and is exact when N is biinjective; −� ϕ is a

modification. C is a generator for MC .

Proof : It’s immediate that the data of MC are well-defined. Moreover,

MC(GF ) = MC(G)MC(F ), and MC(1) = 1, so MC is a 2-representation. (− � N)i, viewed as a

functor, is well-defined on objects by Propositions 1.3.10 and 1.3.12, and clearly well-defined on

morphisms. Since (XM) � N ∼= X(M � N), and these isomorphisms are trivially natural in X,

− � N is a strong morphism of birepresentations. By Corollary 1.3.12, when N is biinjective

cotensoring with N is (isomorphic to) a summand of the regular action of F for some F ∈ C , which is

exact, so −�N is exact.

Finally, we show that −� ϕ is a modification.

First, to see that (−� ϕ)i : (−�N)i → (−� L)i is a natural transformation of functors, we note

that if ξ : M → M ′ is a morphism of right C-comodule 1-morphisms, the following square commutes

by the interchange law:

M �N M � L

M ′ �N M ′ � L

ξ�1

1�ϕ

ξ�1

1�ϕ

Next, it’s clear that the following diagram commutes:

(XM) �N X(M �N)

(XM) � L X(M � L)

(1∗1)�ϕ

∼

1∗(1�ϕ)

∼

That is, the following diagram commutes:

(−�N)j ◦MC(X) MC(X) ◦ (−�N)i

(−� L)j ◦MC(X) MC(X) ◦ (−� L)i

(−�ϕ)j∗1

∼

1∗(−�ϕ)i

∼

So −� ϕ is a modification.

That C generates MC is Lemma 1.3.7. □
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This defines an ”inclusion” of BBicomC into C −cfmod∗ex. We want to show that this ”inclusion”

is an equivalence of bicategories.

We spell this out in three propositions below:

Proposition 1.4.9. Suppose M is a cyclic birepresentation of a fiat 2-category C . Then for some

coalgebra 1-morphism C of C , there is an adjoint equivalence between M and MC .

We defer the proof of this proposition for now; it is proved as Proposition 2.1.1.

Proposition 1.4.10. Suppose Φ : MC →MD is a morphism of birepresentations of some fiat 2-category

C , where C, D are coalgebra 1-morphisms in C . Then Φi(C) ∈ MD(i) has the structure of a right-

injective C-D-bicomodule 1-morphism. There is an invertible modification σ : Φ→ −� Φi(C). When

Φ is exact, Φi(C) is biinjective.

Proof : First, note that when viewed as a 1-morphism in C , MC(C) = MD(C) = C ◦ −. Write

Φ(C) = Φi(C). By definition, Φ(C) is an injective right D-comodule 1-morphism. The following

composition of maps gives a left coaction, which we write δC,Φ(C):

Φ(C) Φ(CC) CΦ(C)
Φ(∆) ΦC

To see that this makes Φ(C) a left C-comodule 1-morphism, we need the following diagrams to

commute:

Φ(C) CΦ(C)

1

CΦ(C) CCΦ(C)

Φ(C) CΦ(C)

Φ(C)

δC,Φ(C)

δC,Φ(C)

1∗δC,Φ(C)

∆C∗1

δC,Φ(C)

εC∗1
2

We first examine 1 . Consider the following diagram:
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Φ(C) Φ(CC) CΦ(C)

Φ(CC) Φ(CCC)

CΦ(C) CΦ(CC) CCΦ(C)

Φ(∆) ΦC

Φ(∆)

ΦC

1∗Φ(∆) 1∗ΦC

∆∗1Φ(1∗∆)

ΦC

Φ(∆∗1)

ΦCC

1

3
4

2

Here, 1 commutes by coassociativity for C;

2 and 3 commute by naturality of Φ;

and 4 commutes by higher coherence for Φ. Therefore the outer diagram commutes, that is, 1

commutes. Next, consider the following diagram:

Φ(C) Φ(CC) CΦ(C)

Φ(C)

Φ(∆) ΦC

ε∗1
Φ(ε∗1)

1 2

1 commutes by counitality for C;

and 2 commutes by naturality of Φ.

Therefore, the outer diagram commutes, that is, 2 commutes. So Φ(C) is a left C-comodule

1-morphism.

For Φ(C) to be a bicomodule 1-morphism, we want the left C- and right D-coactions to commute.

Rephrasing, we want the left C-coaction to be a right D-comodule homomorphism. But Φ(∆) is the

image of a right C-comodule homomorphism, so by definition is a rightD-comodule homomorphism; and

ΦC , as a morphism in MD(i), is by definition a right D-comodule homomorphism. So the composition,

δC,Φ(C), is a right D-comodule homomorphism. So Φ(C) is a C-D-bicomodule.

Next, we want to construct σ. First, we construct the morphisms σj,M : Φ(M) = Φj(M) →

M � Φ(C) for a given right C-comodule 1-morphism M ; then show that these assemble to a natural

transformation of functors Φj → (− � Φ(C))j ; then that these natural transformations assemble to a

modification; and then, at last, that when Φ is a strong morphism of birepresentations, this modification
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is invertible.

To construct the morphism Φ(M) := Φj(M)→M � Φ(C), consider the following map, which we

suggestively denote σj,M = σ:

Φ(M) Φ(MC) MΦ(C)Φ(δM,C) ΦM

By similar reasoning as before, this is a morphism of right C-comodule 1-morphisms. We want it to

equalize the following maps, thereby inducing a map to the tensor product:

Φ(M) MΦ(C) MCΦ(C)
δM,C∗1

σ
1∗δC,Φ(C)

We expand this to the following diagram:

Φ(M) Φ(MC) MΦ(C)

Φ(MC) Φ(MCC) MΦ(CC)

MΦ(C) MCΦ(C)

Φ(δM,C) ΦM

1∗Φ(∆C)

1∗ΦC

Φ(δM,C)

ΦM

δM,C∗1

Φ(δM,C∗1)

ΦMC

ΦM

Φ(1∗∆C)1 2

4
3

1 commutes because M is a comodule 1-morphism;

2 and 3 commute by naturality of Φ;

and 4 commutes by higher coherence for Φ.

Therefore the outer diagram commutes, that is, σ equalises the C-coactions of M and Φ(C), so

induces a map σ : Φ(M)→M � Φ(C) such that t ◦ σ = σ.

Next, we want to show that these assemble to a natural transformation of functors σj : Φj →

(− � Φ(C))j , that is, that the following diagram commutes for any morphism of right C-comodule

1-morphisms ξ :M →M ′:

Φ(M) M � Φ(C)

Φ(M ′) M ′ � Φ(C)

Φ(ξ)

σj,M′

σj,M

ξ�1
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Expanding this, consider the following diagram:

Φ(MC)

Φ(M) Φ(M ′C) MΦ(C)

Φ(M ′) M � Φ(C) M ′Φ(C)

M ′ � Φ(C)

Φ(ξ)

ξ�1

Φ(δM,C)

t

Φ(δM′,C)

t

ΦM

ξ∗1

Φ(ξ∗1)

ΦM′

σj,M

σj,M′

The top and bottom faces commute by definition of σj ;

the front right face commutes by definition of ξ � 1;

the back left face commutes because ξ is a comodule homomorphism;

the back right face commutes by naturality of Φ;

and t :M ′ � Φ(C)→M ′Φ(C) is monic;

so by a previous argument, the front left face commutes, which is what we wanted.

Next, we show that these natural transformations assemble to a modification, that is, that the

following diagram commutes for any X ∈ C (j, k):

Φk ◦MC(X) (−� Φ(C))k ◦MC(X)

MD(X) ◦ Φj MD(X) ◦ (−� Φ(C))k

ΦX

σk∗1

1∗σj

Fixing a right C-comodule 1-morphism M ∈ C (i, j), consider the following diagram:



1.4 Categories of representations 55

Φ(XMC)

Φ(XM) XΦ(MC) (XM)Φ(C)

XΦ(M) (XM) � Φ(C) X(MΦ(C))

X(M � Φ(C))

ΦX
σk,XM∗1

1∗σj,M

Φ(1∗δM,C) ΦX ΦXM

1∗t

t

1∗Φ(δM,C)
1∗ΦM

The top and bottom faces commute by definition of σ;

the back left face commutes by naturality of Φ;

the back right face commutes by higher coherence for Φ;

the front right face commutes trivially;

and 1 ∗ t is monic.

Therefore, by a previous argument, the front left face commutes, that is, σ is a modification.

Now, to show that σ is an invertible modification, it is sufficient to show that it is pointwise invertible,

that is, the σj are all natural isomorphisms; so it is sufficient to show that the σj,M are invertible.

Consider the following composition, which we suggestively call σ−1
j,M = σ−1:

M � Φ(C) MΦ(C) Φ(MC) Φ(M)t Φ−1
M

Φ(1∗ε)

We want to show that this is, indeed, an inverse for σ.

Consider the following diagram:
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Φ(M) M � Φ(C)

Φ(MC) MΦ(C)

Φ(MC)

Φ(M)

σ

t

Φ−1
M

Φ(1∗ε)

Φ(δM,C)

ΦM

1

3

2

1 commutes by definition of σ;

2 commutes by the counitality axiom for M ;

3 commutes trivially.

Therefore the outer diagram commutes, that is, σ−1 is a left inverse for σ.

Next, consider the following diagram:

M � Φ(C)

MΦ(C)

Φ(MC)

Φ(MC)

Φ(M) M � Φ(C) MΦ(C)

Φ−1
M

Φ(1∗ε)

t

σ t

Φ(δM,C) ΦM3

2

1

1 commutes trivially;

2 commutes by counitality for M ;

3 commutes by definition of σ.

Therefore t ◦ σ ◦ σ−1 = t as maps M � Φ(C) → MΦ(C). Since t is monic, σ−1 is a right inverse
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for σ, so σ is invertible. So we are done.

When Φ is exact, it sends injective objects to injective objects, so Φ(C) is biinjective.

□

Proposition 1.4.11. Let N,L be right-injective C-D-bicomodules 1-morphisms in C , and suppose

σ : (−�N)→ (−� L) is a modification. Define ϕσ as the following composition:

N C �N C � L L
δlN

σi,C εlL

Then ϕσ is a bicomodule homomorphism, and σ = −�ϕσ. Moreover, this correspondence between

modifications and bicomodule homomorphisms is a bijection.

Proof : First, we show that ϕσ is a bicomodule homomorphism. Since δlN and εlL are bicomodule

homomorphisms, and σi,C by definition is a right comodule homomorphism, it’s sufficient to show that

σi,C is a left comodule homomorphism, that is, that the following diagram commutes:

C �N C � L

CC �N CC � L

σi,C

∆�1 ∆�1

σi,CC

But this is immediate from the fact that σi is a natural transformation. So ϕσ is a bicomodule

homomorphism.

Next, we need to show that σ = − � ϕσ, that is, that for each j ∈ C and each M ∈ MC(j),

σj,M : M � N → M � L and 1 � ϕσ : M � N → M � L are equal. This is precisely the statement

that the following diagram commutes:

M �N M � L

M � C �N M � C � L

σj,M

1�δlN 1�εlL

1�σi,C

To see that it does, we first consider the following diagram:
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M � C �N M � C � L

MC �N MC � L

1�σi,C
σj,M�C

t t

1∗σi,C
σj,MC

We note that travelling along the top horizontal morphisms, the square commutes by definition of

1 � σi,C ; along the bottom horizontal morphisms, this square commutes by naturality of σj ; and the

bottom morphisms are equal because σ is a modification. So the top morphisms, post-composed with

t, are equal. But t is monic, so 1M � σi,C = σj,M�C .

Now, consider the following diagram:

M �N M � L

M � (C �N) M � (C � L)

σj,M

1�εlN

1�σi,C

1�εlL

σj,M�C

εrM�1εrM�1

The bottom horizontal arrows are equal by the above argument. The left vertical arrows are equal

since the left and right unitors commute, and similarly the right vertical arrows are equal. The inner

square commutes because σj is a natural transformation. Therefore the outer square commutes, which

(noting that 1 � δlN = (1 � εlN )
−1) is precisely what we wanted. So σ = −� ϕσ.

To see that this correspondence between modifications and bicomodule homomorphisms is moreover

bijective, we consider σ = −� ϕ, and compute ϕσ.

Consider the following diagram:

N L

C �N C � L

ϕ

δlN

σi,C=1�ϕ

εlL

This diagram commutes by naturality of εl. But the top edge is ϕ, and the composition of the other

edges is ϕσ. So ϕ−�ϕ = ϕ, and thus our correspondence is bijective.

□
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1.5 Internal cohom construction

To prove Proposition 1.4.9, we need a natural way to move from a generator of a finitary birepresentation

to a coalgebra 1-morphism in C . This is given by the internal cohom construction.

Definition 1.5.1 (Internal cohom). Let M be a finitary birepresentation of C , X ∈M(j), Y ∈M(i).

The functor

C (i, j)→ V ectk, F 7→ HomM(j)(X,M(F )Y )

is representable, see e.g. [MMM+21] Section 4.3 for details, so there is an object

M [Y,X] ∈ C (i, j),

called the internal cohom of X and Y with respect to M, and a bijection (natural in F ) γMX,Y :

HomC (i,j)(M [Y,X], F ) ∼= HomM(j)(X,M(F )Y ).

We can define

coevMX,Y := γMX,Y (1M [Y,X]) : X →M(M [Y,X])Y,

and

ϵMX := (γMX,X)
−1(M−0) : M [X,X]→ 1i.

Then the bijection is given explicitly as follows:

HomC (i,j)(M [Y,X], F ) ∼=HomM(j)(X,M(F )Y )

γMX,Y : α 7→M(α) ◦ coevMX,Y

(1F ∗ ϵY ) ◦ M [Y, f ]←[f : (γMX,Y )
−1

◁

Example 1.5.2. If M is a right C-comodule 1-morphism, then there is a bijection

HomC (i,j)(M,F ) ∼=HomMC(j)(M,FC)

γMC
M,C : α 7→(α ∗ 1) ◦ δM,C

(1F ∗ ϵC) ◦ β ←[β : (γMC
M,C)

−1
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so we can take MC
[C,−] ∼= 1comod(C ) , coev

MC
M,C = δM,C , ϵC = ϵC . ≪

Lemma 1.5.3. Suppose G : j → k is a 1-morphism in C . Then M [Y,M(G)X] ∼= G ◦ M [Y,X], and

coevMM(G)X,Y = M−2 ◦ (1 ∗ coevMX,Y ). Similarly, if G : i→ k, then M [M(G)Y,X] ∼= M [Y,X] ◦G∗.

Proof : Consider the following sequence of bijections

HomC (i,k)(M [Y,M(G)X], F ) ∼= HomM(k)(M(G)X,M(F )Y )

∼= HomM(j)(X,M(G∗)M(F )Y )

∼= HomM(j)(X,M(G∗F )Y )

∼= HomC (i,j)(M [Y,X], G∗F )

∼= HomC (i,j)(G ◦ M [Y,X], F )

where the first and fourth bijections are the cohom adjunction given above, and the second and fifth

use the fact that (G,G∗) is an adjoint pair. Since each of these bijections is natural in F , by uniqueness

of the internal cohom, we have M [Y,M(G)X] ∼= G ◦ M [Y,X], coevMM(G)X,Y = M−2 ◦ (1 ∗ coevMX,Y ).

The other part is similar. □

Using the idea of an internal cohom, we can define a nice class of coalgebra 1-morphisms and

bicomodule 1-morphisms in C .

Lemma 1.5.4. Consider the following composition of maps, which we denote τ :

X

M(M [Y,X])Y

M(M [Y,X])M(M [Z, Y ])Z

M(M [Y,X]M [Z, Y ])Z

coevMX,Y

1∗coevMY,Z

M−2

Then we can define δX,Y,Z := γ−1(τ) : M [Z,X]→ M [Y,X]M [Z, Y ]. We have the following:

• (M [X,X], δX,X,X , ϵX) is a coalgebra 1-morphism;
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• (M [Y,X], δX,X,Y , δX,Y,Y ) is an M [X,X]-M [Y, Y ]-bicomodule 1-morphism.

Proof : See Proposition 4.9 in [MMM+21]. □

This inspires a notational shorthand:

Notation 1.5.5. Let X ∈M(i).

We write CXM := M [X,X] as coalgebra 1-morphisms. We write the comultiplication and counit maps

for CXM as ∆M
X and ϵMX respectively, and define coevM

CX = coevMX,X : X → M(CX)X. We suppress M

when it is clear from context, that is, we write CX , ∆X , and so on.

Lemma 1.5.6. Suppose f : X → Y is a morphism in M(j), Z ∈ M(i). Then M [Z, f ] : M [Z,X] →

M [Z, Y ] is a right CZ-comodule homomorphism.

Proof : We want to show that the following diagram commutes:

M [Z,X] M [Z, Y ]

M [Z,X]CZ M [Z, Y ]CZ

M [Z,f ]

δ
M [Z,X],CZ

δ
M [Z,Y ],CZ

M [Z,f ]∗1

To see that it does, consider the following diagram:

X M(M [Z,X])Z M(M [Z, Y ])Z

Y

M(M [Z,X])Z

M(M [Z,X])M(CZ)Z M(M [Z, Y ])M(CZ)Z

M(M [Z,X]CZ)Z M(M [Z, Y ]CZ)Z

coevMX,Z

f

coevMX,Z

M(M [Z,f ])

1

1∗coev
CZ

M(δ
M [Z,Y ],CZ

)

coevMY,Z

M(M [Z,f ])

1∗coev
CZ

M(δ
M [Z,X],CZ

) M(M [Z,f ])∗1

M−2 M−2

M(M [Z,f ]∗1)

2

4

3

6

5

1 and 2 commute by definition of M [Z, f ];

3 commutes by the interchange law;

4 precomposed with coevMX,Z , and 5 precomposed with coevMY,Z , commute by definition of

δM [Z,X],CZ and δM [Z,Y ],CZ respectively;

and 6 commutes by naturality of M−2.
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Therefore the outer diagram commutes. Passing via γX,Z , this is precisely what we wanted. □



2

Internalising birepresentations

Following from the work of Section 1.4, we know that essentially all data about (cyclic) birepresentations

can be expressed by discussing internal coalgebra and biinjective bicomodule 1-morphisms in C ; see

Propositions 1.4.8 to 1.4.11. We make this precise in two parts: first showing that BBicomC and

C − cfmod∗ex (defined in Definitions 1.3.13 and 1.4.5 respectively) are biequivalent as bicategories, and

then constructing an explicit form for this equivalence.

2.1 A biequivalence between BBicomC and C − cfmod∗ex

This subsection follows the structure of [MMM+21], whose Theorem 4.28 is the same claim as our

Theorem 2.1.2.

First, we prove Proposition 1.4.9.

Proposition 2.1.1 (Restatement of Proposition 1.4.9). Suppose M is a cyclic birepresentation of a fiat

2-category C with generator Z ∈M(i). Then there is an adjoint equivalence between M and MCZ .

Proof : By Proposition 1.1.7, it’s sufficient to show that there’s a strong morphism of

birepresentations Φ : M → MCZ that at each object i ∈ C is an equivalence in Afk , that is, an

equivalence of categories.

Define Φj : M(j)→MCZ (j) to be M [Z,−].

We first show that this is well-defined, that is, for each X ∈ M(j), M [Z,X] is an injective right

CZ-comodule 1-morphism, and for each f : X → Y in M(j), M [Z, f ] is a homomorphism of right

CZ-comodule 1-morphisms.

By Lemma 1.5.3, if X = M(F )Z for some F ∈ C (i, j), then M [Z,X] ∼= FCZ . Since the internal

cohom is additive, we know that if X is isomorphic to a summand of M(F )Z for some F ∈ C (i, j), then

M [Z,X] is isomorphic to a summand of FCZ , so by Lemma 1.3.7 is injective as a right CZ-comodule
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1-morphism. But by definition, since Z generates M, every X ∈ M(j) is of such a form. So for each

X ∈M(j), M [Z,X] is an injective right CZ-comodule 1-morphism.

That M [Z, f ] is a homomorphism of right CZ-comodule 1-morphisms is precisely Lemma 1.5.6.

Moreover, M [Z,−] is clearly functorial.

Next, we show that this functor is an equivalence of categories, by showing it is essentially surjective

and fully faithful.

To see it is essentially surjective, note that it sends a generator of M to a generator of MCZ .

To see it is fully faithful, we note that it is clearly faithful, and since by definition hom sets in M(j)

and MCZ (j) are finite-dimensional vector spaces, it’s sufficient to show that dimkHomM(j)(X,Y ) =

dimkHomM
CZ

(j)(M [Z,X],M [Z, Y ]) for any X,Y ∈ M(j). But we can compute, for X = M(F )Z,

Y = M(G)Z, F,G ∈ C (i, j), that

HomM
CZ

(j)(M [Z,X],M [Z, Y ]) ∼= HomM
CZ

(j)(FC
Z , GCZ)

∼= HomC (i,j)(FC
Z , G)

∼= HomC (i,i)(C
Z , F ∗G)

∼= HomM(i,i)(Z,M(F ∗G)Z)

∼= HomM(i,j)(M(F )Z,M(G)Z)

where isomorphisms are isomorphisms of k-vector spaces.

The first isomorphism follows from Lemma 1.5.6. The second is the isomorphism given by

HomM
CZ

(j)(FC
Z , GCZ) ∼= HomC (i,j)(FC

Z , G)

f 7→ (1 ∗ ϵZ) ◦ f

(g ∗ 1) ◦ (1 ∗∆CZ )←[ g

The third and fifth are the isomorphisms given by the adjunction F ⊢ F ∗, and the fourth is the

adjunction that defines CZ .

So these hom sets are isomorphic as vector spaces. Since every object is a summand of some

M(F )Z, and both the internal cohom and hom sets are additive, the generalisation to arbitrary objects

X and Y follows, and in particular dimkHomM(j)(X,Y ) = dimkHomM
CZ

(j)(M [Z,X],M [Z, Y ]). So
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M [Z,−] : M(j)→MCZ (j) is fully faithful and essentially surjective, so an equivalence of categories.

Finally, we show that these functors assemble to a morphism of birepresentations.

We can compute

M [Z,−] ◦M(F ) = M [Z,M(F )− ]

∼= FM [Z,−]

= MCZ (F ) ◦ M [Z,−]

from which our claim immediately follows. □

Theorem 2.1.2. Let C be a fiat 2-category. Consider the assignment of data ι : RBicomC →

C − cfmod∗ given as follows:

• C 7→ (MC , C), for C a coalgebra 1-morphism;

• N 7→ −�N : (MC , C)→ (MD, D), for N a right injective C-D-bicomodule 1-morphism;

• (ϕ : N → N ′) 7→ (−� ϕ : −�N → −�N ′), for ϕ a bicomodule homomorphism;

• ι2 = id;

• ι0 = εr−.

This is a pseudofunctor, and in fact a biequivalence. This restricts to a biequivalence

ι : BBicomC → C − cfmod∗ex

Proof :

By Proposition 1.4.8, these data are well-defined.

It is immediate that −� (N �M)(L) = L� (N �M) ∼= (L�N)�M = (−�M) ◦ (−�N)(L),

so this assignment respects composition of 1-morphisms.

By Proposition 1.3.10, (−�ψ)◦ (−�ϕ) = −�ψϕ, so this assignment strictly respects composition

of 2-morphisms.

It is straightforward to see that this assignment strictly respects identity 2-morphisms, and that

εr− : ι(CCC) = − � C → 1MC
is an invertible modification of morphisms of representations that will

satisfy the higher coherence diagrams for a pseudofunctor.
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By Proposition 1.4.9, ι is essentially surjective on objects, that is, any object in C − cfmod∗ is

adjoint equivalent to some ι(C) for a coalgebra 1-morphism C. By Proposition 1.4.10 it is essentially

full on 1-morphisms. By Proposition 1.4.11, it is fully faithful on 2-morphisms. Therefore by Theorem

7.4.1 in [JY20], it is an equivalence. By Proposition 1.4.10, biinjective bicomodule 1-morphisms

correspond to exact morphisms of representations. □

2.2 An explicit form of the biequivalence

The previous theorem provided us with one half of the biequivalence, but we used a non-constructive

result to assert the existence of a weak inverse. This subsection is dedicated to constructing such a weak

inverse explicitly. We note that, in showing our constructed pseudofunctor is indeed a weak inverse for

ι, we use Theorem 2.1.2, so this proof-by-parts is not superfluous.

For a morphism of (pointed) birepresentations Φ : (M, X) → (M′, Y ), that is, a morphism of

birepresentations Φ : M → M′ which have specified generators X ∈ M(j), Y ∈ M′(i), we want

to see M′ [Y,Φj(X)] as a CX -CY -bicomodule 1-morphism. We construct a coalgebra homomorphism

CΦj(X) → CX , and then apply Lemma 1.3.15. Through this subsection, we fix the notation of Φ, M,

M′, X and Y

Lemma 2.2.1. Let C be a finitary 2-category. Overloading notation, write Φ for Φj . Consider the

composition of maps

Φ(X) Φ(M(CX)X) M′(CX)Φ(X)
Φ(coev

CX
) Φ

CX

Since this defines a map Φ(X)→M′(CX)Φ(X), we can pass to a map θΦ : CΦj(X) → CX .

This map is a coalgebra homomorphism.

Proof : Let θ = θΦ.

First, to see that θ respects comultiplication, consider the following diagram:
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Φ(X) M′(CΦ(X))Φ(X) M′(CX)Φ(X)

Φ(M(CX)X) Φ(M(CXCX)X)

M′(CΦ(X))Φ(X)

M′(CΦ(X))M′(CΦ(X))Φ(X) M′(CX)M′(CX)Φ(X)

M′(CΦ(X)CΦ(X))Φ(X) M′(CXCX)Φ(X)

coev
CΦ(X)

coev
CΦ(X)

M′(θ)

M′(∆X)

M′(∆Φ(X))

M′(θ∗θ)

Φ(coev
CX

) Φ
CX

Φ(M(∆X))

Φ
(CXCX )

1∗coev
CΦ(X)

M′−2

2

M′−2

M′(θ)∗M′(θ)

1

3

4

5

1 commutes by naturality of Φ;

2 commutes by definition of θ;

3 , precomposed with coevCΦ(X) , commutes by definition of ∆Φ(X);

4 commutes by naturality of M′−2;

5 can be seen to commute by consideration of the following diagram:
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Φ
(X

)
M

′(C
Φ
(X

))Φ
(X

)
M

′(C
Φ
(X

))M
′(C

Φ
(X

))Φ
(X

)

Φ
(M

(C
X
)X

)
M

′(C
X
)Φ

(X
)

M
′(C

Φ
(X

))Φ
(M

(C
X
)X

)
M

′(C
Φ
(X

))M
′(C

X
)Φ

(X
)

M
′(C

X
)Φ

(M
(C

X
)X

)
M

′(C
X
)M

′(C
X
)Φ

(X
)

Φ
(M

(C
X
)M

(C
X
)X

)

Φ
(M

(C
X
C
X
)X

)
M

′(C
X
C
X
)Φ

(X
)

co
ev

C
Φ
(X

)

Φ
(co

ev
C
X
)

1∗
co

ev
C
Φ
(X

)

M
′(θ

)
1∗

Φ
(co

ev
C
X
)

1∗M
′(θ

)

Φ
C
X

Φ
(1∗

co
ev

C
X
)

Φ
(M

(∆
X
))

7

1∗
Φ
(co

ev
C
X
)

1∗
Φ

C
X

M
′(θ

)∗
1

M
′(θ

)∗
1

1∗
Φ

C
X

M
′−

2

Φ
C
X
∗
1

Φ
(M

−
2
)

Φ
(C

X
C
X

)

6

1
0

1
1

8

9

1
2
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6 and 8 commute by definition of θ;

7 and 9 commute by the interchange law;

10 and 12 commute by naturality of Φ;

11 commutes by definition of ∆X ;

Therefore the outer diagram commutes, that is, 5 commutes, so the outer square of the first

diagram commutes. But this says, passing via γΦ(X),Φ(X), that the following diagram commutes, that

is, θ respects comultiplication, as required:

CΦ(X) CX

CΦ(X)CΦ(X) CXCX

∆Φ(X)

θ

∆X

θ∗θ

Next, we want to see that θ respects the counit. Consider the following diagram:

Φ(X) M′(CΦ(X))Φ(X)

Φ(M(CX)X) M′(CX)Φ(X)

Φ(M(1)X)

M′(1)Φ(X)

M′−0

coev
CΦ(X)

M′(θ)

M′(ϵX)

Φ(coev
CX

)

Φ
CX

Φ(M(ϵX))

Φ1

Φ(M−0)

4

2

1

3

1 and 4 commute by naturality of Φ;

2 commutes by definition of ϵX ;

3 commutes by definition of θ.

Therefore, the outer triangle commutes. Passing via γΦ(X),Φ(X), this says that the following diagram

commutes, that is, θ respects the counit:

CΦ(X) CX

1

θ

ϵΦ(X) ϵX
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So θ is a coalgebra homomorphism. □

Definition 2.2.2 (Bicomodule 1-morphism generated by Φ). Define NΦ = θΦ(M′ [Y,Φ(X)]). This is a

CX -CY -bicomodule 1-morphism. ◁

Lemma 2.2.3. NΦ is injective as a right comodule 1-morphism.

Proof : Since Y generates M′, Φ(X) is isomorphic to a summand of M′(F )Y for some F in C .

But then M [Y,Φ(X)] is isomorphic to a summand of M [Y,M′(F )Y ] ∼= FM [Y, Y ] = FCY . So

M [Y,Φ(X)] is injective as a right comodule 1-morphism, so NΦ is. □

Notation 2.2.4. Write coevNΦ = coev
M′

Φ(X),Y : Φ(X) → M′(NΦ)Y , where here NΦ is treated as an

unadorned 1-morphism of C . We note that, as a morphism of pointed birepresentations, Φ inherently

carries the data of X and Y , but without pointedness, the notation coevNΦ is ambiguous. If in any

instances we work without pointedness, we will note this and disambiguate.

Lemma 2.2.5. If σ : Φ → Ψ : (M, X) → (M′, Y ) is a modification of morphisms of pointed

birepresentations of a finitary 2-category C , then ϕσ := M′ [Y, σX ] : NΦ → NΨ is a bicomodule

homomorphism.

Proof : We need to show that ϕσ is compatible with the left CX - and right CY -coactions. That it

is compatible with the right CY -coaction follows immediately from Lemma 1.5.6.

To see that it is compatible with the left CX -coaction, consider the following diagram:
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Φ(X) M′(NΦ)Y M′(NΨ)Y

M′(NΦ)Y Ψ(X)

M′(CΦ(X))Φ(X) M′(CΨ(X))Ψ(X)

M′(CΦ(X)NΦ)Y M′(CΦ(X))M′(NΦ)Y M′(CΨ(X))M′(NΨ)Y M′(CΨ(X)NΨ)Y

M′(CX)M′(NΦ)Y M′(CX)M′(NΨ)Y

M′(CXNΦ)Y M′(CXNΨ)Y

coev
NΦ M′(ϕσ)

coev
NΦ

M′(δ
CΦ(X),NΦ )

M′(1∗ϕσ)

M′(θΦ∗1)

M′(δ
CΨ(X),NΨ )

M′(θΨ∗1)

coev
CΦ(X)

1∗coev
NΦ

M′−2

M′(θΦ)∗1

M′−2

1∗M′(ϕσ)

M′−2

σX
coev

NΨ

coev
CΨ(X)

1∗coev
NΨ

M′(θΨ)∗1

M′−2

7

1

2

5

3

4

6

1 commutes by definition of δCΦ(X),NΦ ;

2 , 5 and 6 commute by naturality of M′−2;

3 commutes by definition of ϕσ;

4 commutes by definition of δCΨ(X),NΨ .

To see that 7 commutes, consider the following diagram:

Φ(X) Ψ(X)

M′(CΦ(X))Φ(X) Φ(M(CX)X) Ψ(M(CX)X) M′(CΨ(X))Ψ(X)

M′(CΦ(X))M′(NΦ)Y M′(CX)Φ(X) M′(CX)Ψ(X) M′(CΨ(X))M′(NΨ)Y

M′(CX)M′(NΦ)Y M′(CX)M′(NΨ)Y

coev
CΦ(X)

1∗coev
NΦ

M′(θΦ)∗1

1∗M′(ϕσ)

σ

coev
CΨ(X)

1∗coev
NΨ

M′(θΨ)∗1

M′(θΦ)

Φ(coev
CX

)

Φ
CX

1∗coev
NΦ

σ

Ψ(coev
CX

)

M′(θΨ)Ψ
CX

1∗σ

1∗coev
NΨ

10 14

8

9

11

13

12

8 commutes since σi is a natural transform;

9 and 13 commute by definition of θΦ and θΨ respectively;

10 and 14 commute by the interchange law;

11 commutes by definition of ϕσ;

and 12 commutes since σ is a modification.
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Therefore, the outer diagram commutes. So 7 commutes. So the previous diagram commutes.

But, passing via γΦ(X),Y , this says that the following diagram commutes, that is, that ϕσ respects the

left CX -action:

NΦ NΨ

CXNΦ CXNΨ

ϕσ

1∗ϕσ

δ
CX,NΨδ

CX,NΦ

Therefore, ϕσ is a bicomodule homomorphism.

□

Lemma 2.2.6. Suppose Φ : (M, X) → (M′, Y ), Ψ : (M′, Y ) → (M′′, Z) are morphisms of pointed

birepresentations of a finitary 2-category C . Consider the following composition:

Ψ(Φ(X))

Ψ(M′(NΦ)(Y ))

M′′(NΦ)Ψ(Y )

M′′(NΦ)M′′(NΨ)Z

M′′(NΦNΨ)Z

Ψ(coev
NΦ )

Ψ
NΦ

1∗coev
NΨ

M′′−2

Passing via γΨΦ(X),Z , define the map ϕΦ,Ψ : NΨΦ → NΦNΨ.

Then this map induces a bicomodule homomorphism

ϕΦ,Ψ : NΨΦ → NΦ �
CY

NΨ

.

Proof : First, we show that ϕΦ,Ψ is a bicomodule homomorphism, that is, that the following

diagrams commute:
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NΨΦ NΦNΨ NΨΦ NΦNΨ

1 2

NΨΦCZ NΦNΨCZ CXNΨΦ CXNΦNΨ

ϕΦ,Ψ

δ
NΨΦ,CZ

δ
NΦNΨ,CZ

ϕΦ,Ψ∗1

ϕΦ,Ψ

1∗ϕΦ,Ψ

δ
CX,NΨΦ δ

CX,NΦNΨ

We start with 1 . Consider the diagram overleaf:
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Ψ
Φ
(X

)
M

′′(N
Ψ
Φ
)Z

M
′′(N

Φ
N

Ψ
)Z

Ψ
(M

′(N
Φ
)Y

)
M

′′(N
Φ
)Ψ

(Y
)

M
′′(N

Φ
)M

′′(N
Ψ
)Z

M
′′(N

Ψ
Φ
)Z

M
′′(N

Φ
N

Ψ
)Z

M
′′(N

Φ
)M

′′(N
Ψ
)M

′′(C
Z
)Z

M
′′(N

Φ
)M

′′(N
Ψ
C
Z
)Z

M
′′(N

Ψ
Φ
)M

′′(C
Z
)Z

M
′′(N

Φ
N

Ψ
)M

′′(C
Z
)Z

M
′′(N

Ψ
Φ
C
Z
)Z

M
′′(N

Φ
N

Ψ
C
Z
)Z

co
ev

N
Ψ
Φ

Ψ
(co

ev
N

Φ
)

co
ev

N
Ψ
Φ

M
′′(ϕ

Φ
,Ψ

)

M
′′(1∗

δ
N

Ψ
,C

Z
)

Ψ
N

Φ

1∗
co

ev
N

Ψ

M
′′−

2

M
′′−

2

1∗
co

ev
C
Z

1∗M
′′(δ

N
Ψ

,C
Z
)

M
′′(ϕ

Φ
,Ψ

)

1∗
co

ev
C
Z

M
′′(δ

N
Ψ
Φ
,C

Z
)

1∗
co

ev
C
Z

1∗M
′′−

2

M
′′−

2∗
1

M
′′−

2

M
′′(ϕ

Φ
,Ψ

)∗
1

M
′′−

2
M

′′−
2

M
′′(ϕ

Φ
,Ψ

∗
1
)

1

2

3
5

4

7

6

8

9



2.2 An explicit form of the biequivalence 75

1 and 2 commute by definition of ϕΦ,Ψ;

3 commutes by the interchange law;

4 and 9 commute by naturality of M′′2;

5 and 7 , precomposed with 1 ∗ coevNΨ and coevNΨΦ respectively, commute by definition of the

right coactions;

8 commutes by higher coherence for M′′2.

Therefore the outer diagram commutes. But passing via γ−1
ΨΦ(X),Z , this says precisely that ϕΦ,Ψ is

a right CZ-comodule homomorphism.

Next, we examine 2 . Consider the following two diagrams:
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Ψ
Φ
(X

)
Ψ
(M

′(C
Φ
(X

))Φ
(X

))
Ψ
(M

′(C
Φ
(X

))M
′(N

Φ
)Y

)
Ψ
(M

′(C
Φ
(X

)N
Φ
)Y

)
M

′′(C
Φ
(X

)N
Φ
)Ψ

(Y
)

M
′′(N

Ψ
Φ
)Z

M
′′(C

Φ
(X

))Ψ
Φ
(X

)
M

′′(C
Φ
(X

))Ψ
(M

′(N
Φ
)Y

)
M

′′(C
Φ
(X

))M
′′(N

Φ
)Ψ

(Y
)

M
′′(C

Φ
(X

))M
′′(N

Φ
)M

′′(N
Ψ
)Z

M
′′(C

Φ
(X

)N
Φ
)M

′′(N
Ψ
)Z

M
′′(C

Φ
(X

))M
′′(N

Ψ
Φ
)Z

M
′′(C

Φ
(X

))M
′′(N

Φ
N

Ψ
)Z

M
′′(C

Φ
(X

)N
Ψ
Φ
)Z

M
′′(C

Φ
(X

)N
Φ
N

Ψ
)Z

Ψ
(co

ev
C
Φ
(X

) )

co
ev

N
Ψ
Φ

Ψ
(1∗

co
ev

N
Φ
)

Ψ
C
Φ
(X

)

Ψ
(M

′−
2
)

Ψ
C
Φ
(X

)

Ψ
C
Φ
(X

)
N

Φ

co
ev

N
Ψ

M
′′(δ

C
Φ
(X

)
,N

Ψ
Φ
)

1∗
Ψ
(co

ev
N

Φ
)

1∗
co

ev
N

Ψ
Φ

1∗
Ψ

N
Φ

M
′′−

2

1∗
co

ev
N

Ψ

M
′′−

2∗
1

1∗M
′′−

2

M
′′−

2
1∗M

′′(ϕ
Φ
,Ψ

)

M
′′−

2
M

′′−
2

M
′′(1∗

ϕ
Φ
,Ψ

)

2
3

1
4

56

7

Ψ
Φ
(X

)
M

′′(N
Ψ
Φ
)Z

M
′′(N

Φ
N

Ψ
)Z

Ψ
(M

′(C
Φ
(X

))Φ
(X

))
Ψ
(M

′(N
Φ
)Y

)
M

′′(N
Φ
)Ψ

(Y
)

M
′′(N

Φ
)M

′′(N
Ψ
)Z

Ψ
(M

′(C
Φ
(X

))M
′(N

Φ
)Y

)
Ψ
(M

′(C
Φ
(X

)N
Φ
)Y

)
M

′′(C
Φ
(X

)N
Φ
)Ψ

(Y
)

M
′′(C

Φ
(X

)N
Φ
)M

′′(N
Ψ
)Z

M
′′(C

Φ
(X

)N
Φ
N

Ψ
)Z

co
ev

N
Ψ
Φ

Ψ
(co

ev
C
Φ
(X

) )
Ψ
(co

ev
N

Φ
)

M
′′(ϕ

Φ
,Ψ

)

8

M
′′(δ

C
Φ
(X

)
,N

Φ
∗
1
)

Ψ
(1∗

co
ev

N
Φ
)

Ψ
N

Φ

Ψ
(M

′(δ
C
Φ
(X

)
,N

Φ
))

1∗
co

ev
N

Ψ

M
′′(δ

C
Φ
(X

)
,N

Φ
)

M
′′−

2

M
′′(δ

C
Φ
(X

)
,N

Φ
)∗
1

Ψ
(M

′−
2
)

Ψ
C
Φ
(X

)
N

Φ
1∗

co
ev

N
Ψ

M
′′−

2

9

1
0

1
1

1
2

1 commutes by definition of δCΦ(X),NΨΦ ;
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2 and 10 commute by naturality of Ψ;

3 commutes by higher coherence of Ψ;

4 and 8 commute by definition of ϕΦ,Ψ;

5 and 11 commute by the interchange law;

6 commutes by higher coherence for M′′2;

7 and 12 commute by naturality of M′′2;

and 9 commutes by definition of δCΦ(X),NΦ .

Therefore, the bottom edge of the first diagram is equal to the top edge of the first diagram, which

is equal to the bottom edge of the second, which is equal to the top edge of the second. Passing

via γ−1
ΨΦ(X),Z , this is precisely the statement that ϕΦ,Ψ is a left CΦ(X)-comodule homomorphism, and

therefore by Lemma 1.3.16, a left CX -comodule homomorphism, as required.

Next, we show that ϕ equalises the CY -coaction maps, and thus induces a map to the cotensor

product.

Consider the following diagram:
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Ψ
Φ
(X

)
M

′′(N
Ψ
Φ
)Z

M
′′(N

Φ
N

Ψ
)Z

Ψ
(M

′(N
Φ
)Y

)
M

′′(N
Φ
)Ψ
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)

M
′′(N

Φ
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Y
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′′(N
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)

Ψ
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′(N
Φ
C
Y
)Y

)

M
′′(N

Ψ
Φ
)Z

M
′′(N

Φ
)Ψ

(Y
)

M
′′(N

Φ
C
Y
)Ψ

(Y
)

M
′′(N

Φ
)M

′′(C
Y
)Ψ
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)

M
′′(N

Φ
)M

′′(N
Ψ
)Z

M
′′(N

Φ
C
Y
)M

′′(N
Ψ
)Z

M
′′(N

Φ
)M

′′(C
Y
)M

′′(N
Ψ
)Z

M
′′(N

Φ
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′′(C
Y
N

Ψ
)Z

M
′′(N

Φ
N

Ψ
)Z

M
′′(N

Φ
C
Y
N

Ψ
)Z

co
ev

N
Ψ
Φ

Ψ
(co

ev
N

Φ
)

co
ev

N
Ψ
Φ

M
′′(ϕ

Φ
,Ψ

)

M
′′(1∗

δ
C
Y

,N
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1 and 2 commute by definition of ϕ;

3 and 5 commute by naturality of Ψ;

4 precomposed with Ψ(coevCΦ) commutes by definition of the right coaction on NΦ;

6 commutes by higher coherence of Ψ;

7 commutes by definition of the left coaction on NΨ;

8 and 12 commute by naturality of M′′−2;

9 and 10 commute by the interchange law;

11 commutes by higher coherence for M′′−2.

So the outer diagram commutes. But passing via γΨΦ(X),Z , this says the following commutes:

NΦNΨ

NΨΦ NΦCYNΨ

NΦNΨ

ϕΦ,Ψ

δ
NΦ,CY

∗1

1∗δ
CY ,NΨ

ϕΦ,Ψ

That is, ϕΦ,Ψ equalises the CY -coaction maps. So it induces a bicomodule homomorphism ϕΦ,Ψ :

NΨΦ → NΦ �NΨ such that t ◦ ϕΦ,Ψ = ϕΦ,Ψ, as required.

□

Theorem 2.2.7. For any fiat 2-category C , there is a colax functor I : C − cfmod∗ → RBicomC ,

defined as follows:

• A representation with generator (M, X) is sent to the coalgebra 1-morphism CX ;

• A morphism of birepresentations Φ : (M, X) → (M′, Y ) is sent to the CX -CY -bicomodule 1-

morphism NΦ;

• A modification σ : Φ→ Ψ is sent to the bicomodule homomorphism ϕσ;

• I0 is the identity natural transform;

• I2 is given component-wise by I2Φ,Ψ := ϕΦ,Ψ.

Proof :
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We’ve shown that I is well-defined on objects, 1-morphisms (by Lemma 2.2.3) and 2-morphisms

(by Lemma 2.2.5).

Next, we consider I0. It is immediate that, when Φ is the identity natural transform, θΦ is the

identity on CX (since the image under the cohom adjunction is just coevCX ), and thus I(1(M,X)) =

CX = 1I(M,X). So I0 is well-defined.

I2 is well-defined by Lemma 2.2.6. We need to show that this assembles to a natural transformation,

so suppose σ : Φ→ Ψ : (M, X)→ (M′, Y ), σ′ : Φ′ → Ψ′ : (M′, Y )→ (M′′, Z) are modifications. We

want to show that the following diagram commutes:

I(Φ′Φ) I(Φ) � I(Φ′)

I(Ψ′Ψ) I(Ψ) � I(Ψ′)

I(σ′∗σ)

I2

I(σ)�I(σ′)

I2

Consider the diagram below:

I(Φ)I(Φ′)

I(Φ′Φ) I(Φ) � I(Φ′)

I(Ψ′Ψ) I(Ψ) � I(Ψ′)

I(Ψ)I(Ψ′)

I(σ′∗σ)

I2

I(σ)�I(σ′)

I2

t

t

I(σ)∗I(σ′)

ϕΦ,Φ′

ϕΨ,Ψ′

The top and bottom triangles commute by definition of I2; the right trapezoid commutes by

definition of I(σ) � I(σ′); and t is monic. So to show that I2 is natural, it is sufficient to show the

outer square commutes. To see that it does, consider the following diagram:
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Φ
′Φ
(X

)
M

′′(N
Φ

′Φ)Z
M

′′(N
ΦN

Φ
′)Z

Φ
′(M

′(N
Φ)Y

)
M

′′(N
Φ)Φ

′(Y
)

M
′′(N

Φ)M
′′(N

Φ
′)Z

Φ
′Ψ

(X
)

Φ
′(M

′(N
Ψ
)Y

)
M

′′(N
Ψ
)Φ

′(Y
)
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′′(N

Φ)Ψ
′(Y

)
M
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Φ)M

′′(N
Ψ

′)Z

M
′′(N

Φ
′Φ)Z

Ψ
′Ψ

(X
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Ψ
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Ψ
)Ψ
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Ψ
)M
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Ψ

′)Z
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Ψ
′Ψ
)Z

M
′′(N

Ψ
N

Ψ
′)Z

coev
N

Φ
′Φ

Φ
′(coev

N
Φ
)

Φ
′(σ

)

coev
N

Φ
′Φ

σ
′∗σ

M
′′(ϕ

Φ
,Φ

′ )

M
′′(ϕ

σ∗ϕ
σ ′)

Φ
′N

Φ

Φ
′(M

′(ϕ
σ
))

1∗coev
N

Φ
′

M
′′(ϕ

σ
)

1∗σ
′

M
′′−

2

1∗M
′′(ϕ

σ ′)

Φ
′(coev

N
Ψ
)

σ
′

Φ
′N

Ψ

σ
′

1∗σ
′

1∗coev
N

Ψ
′

M
′′(ϕ

σ
)

M
′′(ϕ

σ
)∗1

M
′′(ϕ

σ ′∗
σ
)

Ψ
′(coev

N
Ψ
)

coev
N

Ψ
′Ψ
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′N

Ψ

1∗coev
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Ψ
′
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′′−

2
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′′(ϕ

Ψ
,Ψ

′ )
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3
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10
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6

12
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1 and 12 commute by definition of ϕΦ,Φ′ and ϕΨ,Ψ′ ;

2 , 5 and 8 commute by definition of ϕσ, ϕσ
′
and ϕσ

′∗σ respectively;

3 commutes by naturality of Φ′;

4 and 11 commute by the interchange law;

6 commutes by naturality of M′′−2;

7 commutes by definition of σ′ ∗ σ;

9 commutes by naturality of σ′;

and 10 commutes because σ′ is a modification.

Therefore the outer diagram commutes. Passing via γΦ′Φ(X),Z , this says that the following diagram

commutes:

NΦ′Φ NΦNΦ′

NΨ′Ψ NΨNΨ′

ϕσ∗ϕσ′

ϕΦ,Φ′

ϕΨ,Ψ′

ϕσ
′∗σ

which is what we wanted. So I2 is a natural transformation.

Finally, we need to show that I0, I2 are coherent, that is, that the following diagrams commute:

I(ΞΨΦ) I(ΨΦ) � I(Ξ)

1

I(Φ) � I(ΞΨ) I(Φ) � I(Ψ) � I(Ξ)

I2
ΞΨ,Φ

I2
Ξ,ΨΦ

I2
Ψ,Φ�1

1�I2
Ξ,Ψ

I(Φ1M) I(1M) � I(Φ) I(1M′Φ) I(Φ) � I(1M′)

2 3

I(Φ) I(Φ)

I2

ϵlI(Φ)

I2

ϵrI(Φ)

To see that the 1 commutes, consider the diagram below:
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NΞΨΦ NΦ �NΞΨ

NΦNΞΨ

NΨΦNΞ NΦNΨNΞ NΦ �NΨNΞ

NΦNΨ �NΞ

NΨΦ �NΞ NΦ �NΨ �NΞ

ϕΦ,ΞΨ

1∗ϕΨ,Ξ

ϕΨΦ,Ξ

ϕΦ,Ψ∗1ϕΨΦ,Ξ

ϕΦ,Ψ�1

ϕΦ,ΞΨ

1�ϕΨ,Ξ

t

t

t

ϕΦ,Ψ�1 t

1�ϕΨ,Ξ

t

t

1

2

3

4

6

57

8

1 - 4 commute by the definition of I2;

5 commutes by Lemma 1.3.9;

6 and 7 commute by definition of 1 � ϕΨ,Ξ and ϕΦ,Ψ � 1 respectively;

and t ◦ t is monic. So to show that the outer diagram commutes, it is sufficient to show that 8

commutes. To see that it does, consider the diagram overleaf:
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1 , 4 , 5 and 10 commute by definition of ϕ;

2 commutes by definition of ΞΨNΦ ;

3 and 6 commute by naturality of Ξ;

7 and 9 commute by the interchange law;

8 commutes by higher coherence for Ξ;

11 and 13 commute by naturality of M′′′−2;

and 12 commutes by higher coherence of M′′′−2.

So the outer square commutes. But passing via γΞΨΦ(X),W , this is exactly what we wanted. So the

first coherence diagram commutes.

Next, we examine 2 . We expand it to the following diagram:

I(Φ1M) I(1M) � I(Φ)

CXI(Φ)

I(Φ)

I2

εlI(Φ)

tϕ1M ,Φ

εX∗1

2

1

3

1 commutes by definition of I2;

2 commutes by definition of εlI(Φ);

So to see that the outer diagram commutes, it’s sufficient to show that 3 commutes. To see that

it does, consider the following diagram:
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1 commutes by definition of ϕ;

2 commutes by definition of εX ;

3 commutes by naturality of Φ;

4 and 7 commute by the interchange law;

5 commutes by naturality of M′−2;

6 commutes by higher coherence for Φ;

and 8 commutes by higher coherence for M′.

So the outer diagram commutes. But passing via γΦ(X),Y , this says precisely that our coherence

diagram commutes.

Similarly, one can show that 3 commutes precisely if

N
1M′Φ NΦCY

NΦ

ϕΦ,1M′

1∗εY

commutes.

To see that it does, consider the following diagram:

Φ(X) M′(N
1M′Φ)Y M′(NΦCY )Y

M′(NΦ)M′(CY )Y

M′(N
1M′Φ)Y M′(NΦ)M′(1)Y

M′(NΦ1)Y

M′(1∗εY )

M′(ϕΦ,1M′ )
coev

NΦ

coev
NΦ

1∗coev
CY M′−2

M′−2

1∗M′(εY )

1∗M−0

1∗M−0

1
3

2

4

5

1 commutes trivially;

2 precomposed with coevNΦ commutes by definition of ϕ;

3 commutes by definition of εY ;

4 commutes by naturality of M′2;

and 5 commutes by higher coherence for M′.
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So the outer diagram commutes. Passing via γΦ(X),Y , this says precisely that our coherence diagram

above commutes.

So I2 and I0 are coherent. So I is a colax functor.

□

Now, we want to show that I is the other half of the equivalence ι : BBicomC → C − cfmod∗ex.

Theorem 2.2.8. The pair (ι, I) form a biequivalence of bicategories between BBicomC and C −

cfmod∗ex.

Proof : Since ι is a biequivalence of bicategories RBicomC → C − cfmod∗ which restricts to

a biequivalence BBicomC → C − cfmod∗ex by Theorem 2.1.2, it is sufficient to show that I ◦ ι ∼=

1RBicomC
.

One can compute that, for a coalgebra 1-morphism C, I ◦ ι(C) = I(MC , C) = MC
[C,C] ∼= C.

For a C-D-bicomodule 1-morphism M , write ΦM = −�M . Then I ◦ ι(M) = I(ΦM ) = NΦM =

θΦM MD
[D,C�M ]. We claim that, as bicomodule 1-morphisms, this is isomorphic to C�M . We note

the following facts:

• MD
[D,C�M ] ∼= C�M as right comodule 1-morphisms, with the left coaction δ

C
C�M

,MD
[D,C�M ]

mapping M [D,C �M ]→ C
C�M

MD
[D,C �M ];

• coevCC = ∆C , so ΦM (coevCC ) = ∆C �M = δC,C�M ;

• coevMD
C�M,D = δC�M,D;

• γC�M,C�M (θΦM
) = (ΦM )C ◦ ΦM (coevCC ) = 1 ◦ δC,C�M = δC,C�M by construction.

So consider the following diagram:
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1 and 5 commute by definition of coevMD
C�M,D;

2 commutes because C �M is a bicomodule 1-morphism, so the coactions commute;

3 commutes by definition of θΦM
;

4 commutes by definition of δ
C
C�M

,C�M
;

6 - 8 commute by definition of MD;

and 9 commutes by the interchange law.

So the outer diagram commutes. But passing via γC�M,D, this says that NΦM and C � M have

the same left coaction. So they are isomorphic as bicomodule 1-morphisms.

So I ◦ ι(M) ∼= C �M , and for a bicomodule homomorphism ϕ :M →M ′, I ◦ ι(ϕ) = I(−� ϕ) =

MD
[D, 1 � ϕ] = 1 � ϕ.

Given a coalgebra 1-morphism C, we can compute (I ◦ ι)0C = (I0 ◦ I(ι0))(C) = I(εr−)(C) =

MC
[C, εrC ] = εrC

Finally, given a C-D-bicomodule 1-morphism M and a D-E-bicomodule 1-morphism N , we can

compute

(I ◦ ι)2M,N = I2 ◦ I(ι2) = I2.

But note the following:

• coevNΦM = δC�M,D, so ΦN (coevNΦM ) = δC�M,D � 1N ;

• coevNΦN = δD�N,E .

So γC�M�N,E(t
D
C�M,D�N ◦ I2M,N ) = δD�M,E ◦ (δC�M,D � 1N ). So

tDC�M,D�N ◦ I2M,N = (1 ∗ εE) ◦ (1 ∗ δD�M,E) ◦ (δC�M,D � 1N )

= δC�M,D � 1N

= (tDC�M,D ◦ δrC�M ) � 1N

= (tDC�M,D � 1N ) ◦ (δrC�M � 1N )

= tDC�M,D�N ◦ (δrC�M � 1N )

So since t is monic, we must have I2M,N = δrC�M � 1N , that is, (I ◦ ι)2 = δrC�M � 1N .
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So define Γ : I ◦ ι→ 1BBicomC
as follows: for a coalgebra 1-morphism C, ΓC = C as a bicomodule

1-morphism; for a C-D-bicomodule 1-morphism M , ΓM = εrC�M : C � M � D → C � M . By

Proposition 1.3.11, the ΓM assemble to a natural transformation for each C and D.

Now, we want the following diagrams to commute:

(I ◦ ι)(M �N) � ΓE ΓC � (M �N)

1

I ◦ ι(M) � I ◦ ι(N) � ΓE I ◦ ι(M) � ΓD �N ΓC � (M �N)

I ◦ ι(C) � ΓC ΓC � C

2

C � ΓC ΓC � C

ΓC

ΓM�N

(I◦ι)2�1

1�ΓN ΓM�1

ΓC

(I◦ι)0�1

εlΓC
εrΓC

We first examine 1 , which we expand into the following diagram:

C �M �N � E C �M �N

C �M �N � E

C �M �D �N � E C �M �D �N C �M �N

εrC�M�N=1C�M�εrN

(δrC�M�1N )�1E=δrC�M�1N�E

1C�M�εrD�N=1C�M�D�εrN εrC�M�1N

εrC�M�1N�E 1C�M�εrN3

2

1

1 commutes because δrC�M = (εrC�M )−1;

2 commutes trivially;

and 3 commutes by the interchange law.

So the outer diagram commutes, that is, 1 commutes.
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Next, we consider 2 , which we expand into the following diagram:

C � C � C C � C

C � C C � C

C

εrC�C=1�εrC

εrC�1

εlC
εrC

1�εlC

3

2

1

1 and 3 commute because εlC = εrC ;

2 commutes because the left and right unitors commute in a bicategory.

Therefore the outer diagram commutes, that is, 2 commutes. So Γ is a 2-natural transformation.

Now, since each ΓC and each ΓM is invertible, Γ defines an isomorphism I ◦ ι ∼= 1RBicomC
.

So the pair (ι, I) is a biequivalence of bicategories.

□

As a small corollary of this result, we get an upgrade to Theorem 2.2.7: I is, in fact, a pseudofunctor,

and in particular I2 is invertible.



3

Induction

Let F : C → D be a locally k-linear pseudofunctor between finitary 2-categories.

The goal of this section is to define the induction functor PF : BBicomC → BBicomD . To this

end, we begin with a series of lemmas, following the structure of [MMM+21] Lemma 3.11:

3.1 Local functoriality of induction

Lemma 3.1.1. The image of a coalgebra 1-morphism under F is a coalgebra 1-morphism.

Proof : To be specific, we send the triple (C,∆, ϵ) to (F (C),∆′ := F 2 ◦F (∆), ϵ′ := F 0 ◦F (ϵ)).

We need to check that the latter satisfies the coalgebra axioms. First, coassociativity. Consider the

following diagram:

F (C) F (CC) F (C)F (C)

1 2

F (CC) F (CCC) F (C)F (CC)

3 4

F (C)F (C) F (CC)F (C) F (C)F (C)F (C)

F (∆)

F2

F (∆)∗F (1) F2∗1

F (∆∗1)

F2 1∗F2

F2

F (1)∗F (∆)

F2

F (1∗∆)

F (∆)

1 is the image of the coassociativity diagram for C, and so commutes;

2 and 3 commute by naturality of F 2;

4 commutes by the coassociativity condition for F .

Therefore the outer square commutes, which is precisely the coassociativity diagram for F (C).
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Next, counitality. Again, consider the following diagram:

F (C) F (CC) F (C)F (C)

2

F (CC) F (C) F (C1) F (C)F (1)

3 F (1C)

F (C)F (C) F (1)F (C) F (C)

F2

F2

F0∗1

1∗F0

1∗F (ϵ)F (∆)

F (∆)
F2

F (1∗ϵ)

F (ϵ∗1)

F2

F (ϵ)∗1

1

4

1 is the image of the counitality diagram for C, and so commutes;

2 and 3 commute by naturality of F 2;

4 commutes by counitality for F .

Therefore the outer square (with the diagonal equality) commutes, which is precisely the counitality

diagram for F (C).

So F (C) is indeed a coalgebra 1-morphism.

□

Compare this lemma also with [JS93] Proposition 5.5.

Lemma 3.1.2. The image of a bicomodule 1-morphism under F is a bicomodule 1-morphism.

Moreover, when C and D are fiat, F sends (left-, right- and) biinjective bicomodule 1-morphisms

to (left-, right- and) biinjective bicomodule 1-morphisms.

Proof : Again, to be specific, we send the triple (M, δC,M , δM,D) to the triple (F (M), δ′C,M :=

F 2 ◦ F (δC,M ), δ′M,D := F 2 ◦ F (δM,D)). We need to check that this is indeed an F (C)-F (D)-

bicomodule 1-morphism. Consider the following diagram:
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F (M) F (CM) F (C)F (M)

1 2

F (CM) F (CCM) F (CC)F (M)

3 4

F (C)F (M) F (C)F (CM) F (C)F (C)F (M)

F2

F (δC,M )

F (1∗δC,M )

F (δC,M )

F (∆∗1)

1∗F (δC,M )

F2

F2

F2

F (∆)∗1

1∗F2

F2∗1

1 is the image of the C-coaction condition for M , and so commutes;

2 and 3 commute by naturality of F 2;

4 is the coassociativity diagram for F .

Therefore the outer square commutes, which is precisely the F (C)-coaction diagram for F (M).

Next, we consider the following diagram:

F (M) F (CM) F (C)F (M)

2

F (M) F (1)F (M)

F (M)

F (δC,M )

F (ϵ∗1)

F2

F2

F (ϵ)∗1

F0∗1

1

3

1 is the image of the C-counit condition for M , and so commutes;

2 commutes by naturality of F 2;

3 is the counitality diagram for F .

Therefore the outer triangle commutes, which is precisely the F (C)-counit diagram for F (M).

So in fact F (M) is a left F (C)-comodule 1-morphism.

Similarly, F (M) is a right F (D)-comodule 1-morphism.
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To see that F (M) is an F (C)-F (D)-bicomodule 1-morphism, consider the following diagram:

F (M) F (CM) F (C)F (M)

1 2

F (MD) F (CMD) F (C)F (MD)

3 4

F (M)F (D) F (CM)F (D) F (C)F (M)F (D)

F (δC,M )

F (1∗δM,D)F (δM,D)

F (δC,M∗1)

F2

F (δC,M )∗1

F2

F2

1∗F (δM,D)

F2

1∗F2

F2∗1

1 is the image of the bicomodule diagram for M , and so commutes;

2 and 3 commute by naturality of F 2;

4 is the coassociativity diagram for F .

Therefore the outer square commutes, which is precisely the bicomodule diagram for F (M). So

F (M) is an F (C)-F (D)-bicomodule 1-morphism.

Finally, we need to show that left-, right- and biinjectivity are preserved when C and D are fiat. By

Lemma 1.3.7, when M is injective as a left C-comodule 1-morphism, it is isomorphic to a summand of

CF , for some 1-morphism F : j → i. So since F is additive, F (M) is isomorphic to a summand of

F (CF ) ∼= F (C)F (F ). So F (M) is injective as a left F (C)-comodule 1-morphism. Similarly, when

M is right-injective, F (M) is injective as a right F (D)-comodule 1-morphism. So if M is biinjective,

so is F (M). So we are done.

□

Lemma 3.1.3. The image of a bicomodule homomorphism under F is a bicomodule homomorphism

Proof : We send the bicomodule homomorphism Φ : CMD → CND to F (Φ) : F (C)F (M)F (D) →

F (C)F (N)F (D). We need to check that this is indeed a bicomodule homomorphism. Consider the

following diagram:
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F (M) F (N)

1

F (CM) F (CN)

2

F (C)F (M) F (C)F (N)

F (Φ)

F (δC,N )

F (1∗Φ)

F2 F2

1∗F (Φ)

F (δC,M )

1 is the image of the left C-comodule homomorphism condition, and so commutes;

2 commutes by naturality of F 2.

Therefore, the outer square commutes. But this is the left F (C)-comodule homomorphism

condition for F (Φ). The right F (D)-comodule homomorphism condition is similar, and thus F (Φ) is

a bicomodule homomorphism.

□

Putting all of this information together, we obtain the following result:

Proposition 3.1.4. When C , D are fiat, there is an assignment of data (not necessarily defining a

pseudofunctor) P := PF : BBicomC → BBicomD as follows:

• For a coalgebra 1-morphism (C,∆, ϵ) in C ,

P(C) = (F (C),∆′, ϵ′),

as defined in Lemma 3.1.1;

• For a pair of coalgebra 1-morphisms C, D, a functor

PCD : BBicomC (C,D)→ BBicomD(F (C),F (D))

with the following data:

– For an C-D-bicomodule 1-morphism (M, δC,M , δM,D), PCD(M) = (F (M), δ′C,M , δ
′
M,D),
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as defined in Lemma 3.1.2;

– For a homomorphism of C-D-bicomodule 1-morphisms Φ :M → N , PCD(Φ) = F (Φ).

Proof : By Lemmas 3.1.1, 3.1.2 and 3.1.3, we know that this assignment is well-defined, sending

objects to objects, 1-morphisms to 1-morphisms, and 2-morphisms to 2-morphisms with appropriate

source and target. That PCD are functors is immediate from the fact that F preserves vertical

composition and identity for 2-morphisms. □

This gets us most of the way to defining a pseudofunctor BBicomC → BBicomD .

3.2 Pseudofunctoriality of induction

Next, we define P0 and P2.

Lemma 3.2.1. The following diagram commutes:

1 BBicomC (C,C)

1 BBicomD(P(C),P(C))

IC

P

IP(C)

Proof : We know that 1C = CCC . So P(1C) = F (C)F (C)F (C) = 1P(C). □

So we can define P0 to be the identity.

A version of the following lemma appears as Lemma 3.9 in [MMM+23].

Lemma 3.2.2. For bicomodule 1-morphisms M = CMD and N = DNE , there is a bicomodule

homomorphism P2
M,N : F (M�

D
N)→ F (M) �

F (D)
F (N). This collection of morphisms form a natural

transformation P2 : F (− �
D
−) → F (−) �

F (D)
F (−). Moreover, when F preserves equalizers of

1-morphisms, P2 is a natural isomorphism.

Proof : (M �
D
N, t := tDM,N ) is such that, by definition, the following is an equaliser diagram:

M �
D
N MN MDNt

1∗δD,N

δM,D∗1
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Similarly, (F (M) �
F (D)

F (N), t′ := t
F (D)
F (M),F (N)) is such that the following is an equaliser diagram:

F (M) �
F (D)

F (N) F (M)F (N) F (M)F (D)F (N)t′
1∗δF(D),F(N)

δF(M),F(D)∗1
(3.2.1)

We claim that the map F 2 ◦F (t) : F (M �
D
N) → F (M)F (N) equalises δF (M),F (D) ∗ 1 and

1 ∗ δF (D),F (N). To prove this, we consider the following pair of diagrams:

F (M �
D
N) F (MN) F (MDN)

1

F (M)F (N) F (M)F (DN) F (M)F (D)F (N)

F (t)

F2

1∗F (δD,N ) 1∗F2

F (1∗δD,N )

F2

F (M �
D
N) F (MN) F (MDN)

2

F (M)F (N) F (MD)F (N) F (M)F (D)F (N)

F (t)

F2

F (δM,D)∗1 F2∗1

F (δM,D∗1)

F2

1 and 2 commute by naturality of F 2.

The bottom edges of both diagrams are, respectively, (1∗δF (D),F (N))◦F 2◦F (t) and (δF (M),F (D)∗

1) ◦F 2 ◦F (t). On the other hand, we can compute

(1 ∗F 2) ◦F 2 ◦F (1 ∗ δD,N ) ◦F (t) = (1 ∗F 2) ◦F 2 ◦F ((1 ∗ δD,N ) ◦ t)

= (F 2 ∗ 1) ◦F 2 ◦F ((1 ∗ δD,N ) ◦ t)

= (F 2 ∗ 1) ◦F 2 ◦F ((δM,D ∗ 1) ◦ t)

= (F 2 ∗ 1) ◦F 2 ◦F (δM,D ∗ 1) ◦F (t)

where the first and last equalities hold by functoriality of F , the second holds by coassociativity of

F , and the third holds because t equalises 1 ∗ δD,N and δM,D ∗ 1.
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So the top edges of our two diagrams are equal; so since 1 and 2 commute, the bottom edges

are equal. So F 2 ◦F (t) equalises δF (M),F (D) ∗ 1 and 1 ∗ δF (D),F (N), as required.

But then, since (3.2.1) is an equaliser, we must have a map

P2
M,N : F (M �

D
N)→ F (M) �

F (D)
F (N)

such that t′ ◦ P2
M,N = F 2 ◦F (t).

To see that this collection of morphisms does, indeed, form a natural transformation, let ΦM :M →

M ′ and ΦN : N → N ′ be bicomodule homomorphisms. We need the following diagram to commute:

F (M �
D
N) F (M) �

F (D)
F (N)

F (M ′ �
D
N ′) F (M ′) �

F (D)
F (N ′)

F (ΦM �
D
ΦN )

P2
M′,N′

F (ΦM ) �
F (D)

F (ΦN )

P2
M,N

To see that it does commute, we let t and t′ be as above, t and t′ be the analogous maps for M ′

and N ′, and consider the following cube:

F (MN)

F (M �
D
N) F (M ′N ′) F (M)F (N)

F (M ′ �
D
N ′) F (M) �

F (D)
F (N) F (M ′)F (N ′)

F (M ′) �
F (D)

F (N ′)

F (ΦM �
D
ΦN )

P2
M′,N′

F (ΦM ) �
F (D)

F (ΦN )

P2
M,N

t′

t′

F (ΦM )∗F (ΦN )

F (t) F2

F (t)
F2

F (ΦM∗ΦN )

Now, the front right face commutes by definition of F (ΦM ) �
F (D)

F (ΦN ).

The back left face is the image of the following diagram:
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M �
D
N MN

M ′ �
D
N ′ M ′N ′

ΦM �
D
ΦN

t

t

ΦM∗ΦN

which, by definition of ΦM �
D
ΦN , commutes.

The top and bottom faces both commute by definition of P2.

The back right face commutes by naturality of F 2.

t′ is an equalizer, so monic, so by a previous argument, the front left face commutes.

But this is exactly what we wanted to begin with, so P2 is a natural transformation.

To see that P2
M,N is a bicomodule homomorphism, we want the following diagrams to commute,

where we suppress the subscripts in P2
M,N :

F (M �
D
N) F (M) �

F (D)
F (N)

F (C)F (M �
D
N) F (C)F (M) �

F (D)
F (N)

F (M �
D
N) F (M) �

F (D)
F (N)

F (M �
D
N)F (E) F (M) �

F (D)
F (N)F (E)

δF(C),F(M �
D

N)

P2

1∗P2

δF(C),F(M) �
F (D)

F(N)

P2

P2∗1

δF(M �
D

N),F(E) δF(M) �
F (D)

F(N),F(E)

We only consider the first diagram, as the proof that the second commutes is similar.

Consider the following diagram:
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F (MN)

F (M �
D
N) F (C)F (MN) F (M)F (N)

F (C)F (M �
D
N) F (M) �

F (D)
F (N) F (C)F (M)F (N)

F (C)F (M) �
F (D)

F (N)

δF(C),F(M �
D

N)

P2

1∗P2 δF(C),F(M) �
F (D)

1

F (t)

1∗F (t)

F2

1∗F2

δF(C),F(M)∗1

δF(C),F(MN)

t′

1∗t′

Now, the top and bottom faces commute by definition of P2;

the front right, back left and back right faces all commute by the definitions of the respective

coactions;

and 1 ∗ t′ is monic.

Therefore, by a previous proof, the front left face commutes, that is, P2 is a left F (C)-comodule

homomorphism. Similarly, it is a right F (E)-comodule homomorphism, so an F (C)-F (E)-bicomodule

homomorphism.

In the case that F preserves equalizers of 1-morphisms, the following is an equalizer diagram:

F (M �
D
N) F (MN) F (MDN)F (t)

F (1∗δD,N )

F (δM,D∗1)

By exactly the same process as we used to obtain P2, we get a map F (M) �
F (D)

F (N)→ F (M�
D
N),

which we will suggestively call P−2
M,N , satisfying F (t) ◦ P−2

M,N = F−2 ◦ t′. We can compute:

t′ ◦ P2
M,N ◦ P−2

M,N = F 2 ◦F (t) ◦ P−2
M,N

= F 2 ◦F−2 ◦ t′

= t′
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from which we deduce that, since t′ is monic, we have P2
M,N◦P

−2
M,N = 1. Similarly, P−2

M,N◦P2
M,N = 1,

so these maps are indeed inverses. So P2 is a natural isomorphism.

□

Given all this data, we can define the following:

Theorem 3.2.3. Suppose C , D are fiat, and F preserves equalizers of 1-morphisms. Let

P := PF : BBicomC → BBicomD

be defined by the following data:

• On objects, 1-morphisms and 2-morphisms, P is defined as in Proposition 3.1.4

• Define the natural transformation P0 as in Lemma 3.2.1

• Define the natural transformation P2 as in Lemma 3.2.2.

Then P is a pseudofunctor.

Proof : By Proposition 3.1.4, along with Lemmas 3.2.1 and 3.2.2, our data are well-defined.

Again by Proposition 3.1.4, we have everything except the coassociativity and counitality diagrams.

To show counitality, we consider the following diagrams:

F (C �
C
M) F (C) �

F (C)
F (M) F (C) �

F (C)
F (M)

F (M) F (M)

F (M �
D
D) F (M) �

F (D)
F (D) F (M) �

F (D)
F (D)

F (M) F (M)

F (ϵrM ) ϵr
F(M)

F (ϵlM ) ϵl
F(M)

P2 P0∗1

P2 1∗P0

We consider only the first diagram, as the proof the second commutes is completely analogous.
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Writing t := t
F (C)
F (C),F (M), by definition,

ϵlF (M) = (ϵF (C) ∗ 1) ◦ t = ((F 0 ◦F (ϵC)) ∗ 1) ◦ t.

So expanding our previous diagram, we have

F (C �
C
M) F (C) �

F (C)
F (M)

1

F (CM) F (C)F (M)

2

F (M) F (1)F (M)

3

F (M)

t

P2

F (ϵC)∗1

F0∗1

F (tCC,M )

F (ϵC∗1)

F2

F2

1 commutes by definition of P2;

2 commutes by naturality of F 2;

3 commutes by counitality for F .

Moreover, the outer edge is exactly the counitality diagram for P.

Finally, to show coassociativity, we need the following diagram to commute:

F (M �N � L) F (M �N) � F (L)

F (M) � F (N � L) F (M) � F (N) � F (L)

P2

P2

1�P2

P2�1

To see that it does, we first consider the following diagram:
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F (MNL)

F (M �NL) F (M)F (NL) F (MN)F (L)

F (M) � F (NL) F (M �N)F (L) F (M)F (N)F (L)

F (M) � F (N)F (L)

P2

1�F2

t

1∗F2

t∗1

F (t)

F2

F2

F (t)∗1
F2∗1

P2∗1

F2

In this diagram, we see that the top face commutes by naturality of F 2;

The bottom face commutes by definition of 1 � F 2;

The back left face commutes by definition of P2;

The back right face commutes by coherence of F 2;

The front right face commutes by definition of P2;

And t ∗ 1 is monic.

Therefore, the front left face commutes by a previous argument.

Next, consider the following diagram:

F (M �NL)

F (M �N � L) F (M) � F (NL) F (M �N)F (L)

F (M) � F (N � L) F (M �N) � F (L) F (M) � F (N)F (L)

F (M) � F (N) � F (L)

P2

1�P2

1�F (t)

1�F2

1�t

F (1�t)

P2

P2 F2

t
P2∗1

P2�1

Here, we see that the front left face commutes by definition of the cotensor P2 � 1;
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The back right face commutes by the argument for the previous diagram;

The back left face commutes by naturality of P2;

The top and bottom faces commute by definition of P2;

and 1 � t is monic.

Therefore, by the same argument as before, the front left face must commute, that is, the diagram

we want commutes.

Hence, we’ve shown that P is a colax functor.

It is immediate from Lemma 3.2.2 that when F preserves equalizers of 1-morphisms, P is a

pseudofunctor.

□



4

Restriction

Let F : C → D be a k-linear pseudofunctor of fiat 2-categories. In the setting of birepresentations of

D , defining restriction along F is simple. We start in this context.

However, for the purposes of constructing an adjunction, we need P and R to pass between the

same 2-categories. For this reason, we use Theorem 2.1.2 alongside some technical considerations to

obtain a pseudofunctor in the correct setting.

4.1 Restriction of birepresentations

Definition 4.1.1 (Restriction). We define restriction along F as the strict 2-functor

R = RF : D − afmod→ C − afmod

given by pre-composition by F , that is, by the following data:

• For M a birepresentation of D , define R(M) = M ◦F ;

• For Φ : M →M′ a morphism of birepresentations of D , define R(Φ) = ΦF ;

• For σ : Φ → Ψ : M → M′ a modification of morphisms of birepresentations of D , define

R(σ) = σF ;

◁

Theorem 4.1.2. R is, indeed, a strict 2-functor. When F is a strict 2-functor, R sends

2-representations to 2-representations.

Proof : First, we show that R is well-defined.
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Since the composition of pseudofunctors is a pseudofunctor, it is immediate that R is well-defined

on objects. The claim that for F a strict 2-functor, R sends 2-representations to 2-representations, is

similarly immediate.

Now, suppose Φ : M → M′ is a strong transform. ΦF (j) clearly gives a morphism M(j)→ M′(j),

and similarly ΦF (F ) : ΦF (k) ◦M(F (F ))→M′(F (F )) ◦ΦF (j), which is natural in F as Φ is. For ΦF

to be a 2-natural transform, we need the following diagram to commute:

Φl ◦M(F (GF )) M′(F (GF )) ◦ Φj

Φl ◦M(F (G))M(F (F )) M′(F (G)) ◦ Φk ◦M(F (F )) M′(F (G))M′(F (F )) ◦ Φj

ΦF(GF )

ΦF(G)∗1 ΦF(F )

1∗(R(M))2 R(M′)2∗1

To see that it does, we consider the expanded diagram below:

Φl ◦M(F (GF )) M′(F (GF )) ◦ Φj

1

Φl ◦M(F (G)F (F )) M′(F (G)F (F )) ◦ Φj

2

Φl ◦M(F (G))M(F (F )) M′(F (G)) ◦ Φk ◦M(F (F )) M′(F (G))M′(F (F )) ◦ Φj

ΦF(GF )

1∗M(F2) M′(F2)∗1

1∗M2

ΦF(G)∗1 1∗ΦF(F )

M′2∗1

ΦF(G)F(F )

Now, 1 commutes by naturality of Φ;

2 commutes by the higher naturality condition for Φ.

Therefore, the outer square commutes as required.

Moreover, we need the following diagram to commute:

ΦF (j) ◦M(F (1j)) M′(F (1j)) ◦ ΦF (j)

ΦF (j)

ΦF(1j)

1∗R(M)0 R(M′)0∗1

To see that it does, consider the following diagram:
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ΦF (j) ◦M(F (1j)) M′(F (1j)) ◦ ΦF (j)

1

ΦF (j) ◦M(1F (j)) M′(1F (j)) ◦ ΦF (j)

2

ΦF (j)

Φ1F(j)

1∗M0 M′0∗1

ΦF(1j)

1∗M(F0) M′(F0)∗1

1 commutes by naturality of Φ;

2 commutes by the naturality condition for Φ.

Therefore, the outer diagram commutes as required.

ΦF is locally invertible since Φ is, so ΦF is indeed a strong transform.

That R sends strict transformations to strict transformations, and modifications to modifications is

immediate.

Finally, we can see that R(ΨΦ) = (ΨΦ)F = ΨFΦF = R(Ψ)R(Φ), and R(1M) = (1M)F = 1M◦F ,

so that R is indeed a strict 2-functor.

□

If R : D − afmod→ C − afmod restricted to a functor D − cfmod∗ex → C − cfmod∗ex, we could

use Theorem 2.1.2 to obtain a functor BBicomD → BBicomC , as required, but unfortunately this

is not necessarily the case: the restriction of a cyclic birepresentation isn’t necessarily cyclic, and even

when this is the case, there is not always an obvious choice of generator for R(M).

We solve this problem in two steps.

Proposition 4.1.3. Given a finitary 2-category C , there is a multifinitary 2-category C⊕ with the

following properties:

• C − afmod is biequivalent to C⊕ − afmod;

• Every birepresentation of C⊕ is cyclic;

• When C is a fiat 2-category, C⊕ is multifiat.
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• This construction is natural in C .

Proof : The construction of C⊕ is given in full in [MMM+21, Section 2.4].

In that paper, Lemma 2.25 states that C⊕ is multifinitary when C is finitary.

Proposition 2.27 states that C − afmod is biequivalent to C⊕ − afmod.

Remark 4.11 notes that every birepresentation of C⊕ is cyclic.

Lemma 2.26 states that C⊕ is multifiab when C is fiab. These are weakenings of multifiat and fiat

respectively, and this result clearly restricts to the strict case (that is, C⊕ is multifiat when C is fiat).

Naturality in C is immediate from the construction, although this claim isn’t made in [MMM+21].

□

This construction is called the additive closure of C , and in a particular sense, is the bicategory

obtained by taking the the sum of all objects in C .

As a consequence, we can assume without loss of generality that we work in a 2-category where all

birepresentations are cyclic, solving our first issue.

Remark. C⊕ has only one object. This is not a peculiarity of the construction: in fact, any 2-category

with only cyclic representations will necessarily be biequivalent to a bicategory with one object. We

assume, going forward, that our 2-category C has one object, which we denote ∗.

Finding a canonical generator for RM is slightly subtle. First, note that in this new context, RPD
∗

is cyclic, and so must have a generator.

Lemma 4.1.4. Let C , D be one-object finitary 2-categories for which every representation is cyclic.

Let M be a birepresentation of D with generator X ∈ M(∗), and pick a generator G ∈ RPD
∗ (∗) for

RPD
i . Then M(G)X ∈ RM(∗) is a generator for RM.

Proof :

Suppose Y ∈ RM(∗). Since X generates M, Y is isomorphic to a summand of M(F )X for some

F ∈ D(∗,F (∗)). Since G generates RPD
∗ = D(∗,F (−)), there is some H ∈ C (∗, ∗) such that F is

isomorphic to a summand of RP∗(H)G = F (H)G. Then M(F )X is isomorphic to a summand of

M(F (H)G)X ∼= RM(H)(M(G)X), so Y is isomorphic to a summand of RM(H)(M(G)X) for

some H ∈ C (∗, ∗). So the inclusion (RM ·M(G)X)(∗) ↪→ RM(∗) is essentially surjective (and by

definition fully faithful), so an equivalence of categories. By Proposition 1.4.4, M(G)X ∈ RM(∗)
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generates RM, as required. □

This lets us define R : D − cfmod∗ex → C − cfmod∗ex.

Proposition 4.1.5. Let C , D be one-object multifiat 2-categories whose birepresentations are all cyclic.

Pick a generator G ∈ RPD
∗ (∗). Define R : D − cfmod∗ex → C − cfmod∗ex as follows:

• For (M, X) ∈ D − cfmod∗ex, define R(M, X) = (M ◦F ,M(G)X);

• For Φ : (M, X)→ (M′, Y ), define R(Φ) = ΦF ;

• For σ : Φ→ Ψ, define R(σ) = σF .

Then this is a strict 2-functor. □

Note that this definition is independent of our choice of the G (up to natural isomorphism of

2-functors), since if X,Y generate M, then 1M : (M, X)→ (M, Y ) is an isomorphism.

4.2 Restriction of coalgebra and bicomodule 1-morphisms

This finally gives us all the tools we need to define R : BBicomD → BBicomC .

Theorem 4.2.1. Let C , D be one-object multifiat categories for which every birepresentation is cyclic.

Let F : C → D be a pseudofunctor. Pick a generator G ∈ RPD
∗ (∗).

Overloading notation, RGF = R : BBicomD → BBicomC is given by the following data:

• For a coalgebra 1-morphism C of D , R(C) = MC◦F [GC,GC];

• For a C-D-bicomodule 1-morphism N of D , R(N) = MD◦F [GD,GN ], viewed as a R(C)-R(D)-

bicomodule 1-morphism;

• For a bicomodule homomorphism ϕ, R(ϕ) = MD◦F [GD, 1 ∗ ϕ];

• R2 is defined in the lemma below;

• R0 = 1R(C).
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Then this is a pseudofunctor, and the following diagram commutes up to natural isomorphism:

D − cfmod∗ex C − cfmod∗ex

BBicomD BBicomC

R

≃ ≃

R

□

This theorem requires the following lemma:

Lemma 4.2.2. Note that the following composition of maps defines a map

G(M �N)→ RME(R(M)R(N))GE:

G(M �N)

RMD(RMD
[GD,GM ])GD �N

FR(M)GD �N

FR(M)GN

FR(M)RME(RME
[GE,GN ])GE

FR(M)FR(N)GE

F (R(M)R(N))GE

RME(R(M)R(N))GE

coev
RMD
GM,GD �1

1∗εlN

1∗coevRME
GN,GE

F−2∗1

and thus induces a map R(M �N)→ R(M)R(N). This map is a homomorphism of bicomodule

1-morphisms. Moreover, this map equalises the R(D) coactions, so induces a map R2 : R(M �N)→

R(M) �R(N).

Proof : Identical to the proof of Lemma 2.2.6. □

With this, we can show that R is a pseudofunctor.
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Proof : (of Theorem 4.2.1)

First, we can compute the composition R′ = I ◦ R ◦ ι:

• For a coalgebra 1-morphism C of D , R′(C) = R(C).

• For a C-D-comodule 1-morphism N of D , R′(N) = MD◦F [GD,G(C �N)]

• For a bicomodule homomorphism ϕ of D , R′(ϕ) = MD◦F [GD, 1 � ϕ].

In particular, since R′(N) ∼= R(N) for any biinjective bicomodule 1-morphism N , we know that

R(N) is a biinjective bicomodule 1-morphism, so the data of R is well-defined.

We want to use Proposition 1.1.8. To this end, we define Γ : R′ → R as follows:

• At a coalgebra 1-morphism C of D , ΓC = 1 : R′(C)→ R(C);

• For a C-D-bicomodule 1-morphism M of D , ΓM = MD◦F [GD, 1 ∗ εl−] : R′(M)→ R(M)

Since εl− is a natural isomorphism by Proposition 1.3.11, we know that Γ satisfies the epimorphism

and 1 conditions of Proposition 1.1.8.

We want to show that Γ satisfies the 2 conditions of the proposition. To see that it does, consider

the following diagram:



114 Chapter 4: Restriction

G
C

�C
M

�D
N

R
M
E
(R

M
E
[G
E
,G
C

�C
M

�D
N
])G

E
R
M
E
(R

M
D
[G
D
,G
C

�C
M

]
�R
(D

)
R
M

E
[G
E
,G
D

�D
N
])G

E

R
M
D
(R

M
D
[G
D
,G
C

�C
M

])G
D

�D
N

R
M
D
(R

M
D
[G
D
,G
C

�C
M

])R
M
E
(R

M
E
[G
E
,G
D

�D
N
])G

E
F

(R
M

D
[G
D
,G
C

�C
M

])F
(R

M
E
[G
E
,G
D

�D
N
])G

E
F

(R
M

D
[G
D
,G
C

�C
M

]R
M

E
[G
E
,G
D

�D
N
])G

E
R
M
E
(R

M
D
[G
D
,G
C

�C
M

]R
M

E
[G
E
,G
D

�D
N
])G

E

R
M
D
(R

M
D
[G
D
,G
C

�C
M

])G
N

R
M
D
(R

M
D
[G
D
,G
C

�C
M

])R
M
E
(R

M
E
[G
E
,G
N
])G

E

R
M
D
(R

M
D
[G
D
,G
M

])G
D

�D
N

R
M
D
(R

M
D
[G
D
,G
M

])G
N

R
M
D
(R

M
D
[G
D
,G
M

])R
M
E
(R

M
E
[G
E
,G
N
])G

E
F

(R
M

D
[G
D
,G
M

])F
(R

M
E
[G
E
,G
N
])G

E
F

(R
M

D
[G
D
,G
M

]R
M

E
[G
E
,G
N
])G

E
R
M
E
(R

M
D
[G
D
,G
M

]R
M

E
[G
E
,G
N
])G

E

G
M

�D
N

R
M
E
(R

M
E
[G
E
,G
C

�C
M

�D
N
])G

E
R
M
E
(R

M
D
[G
D
,G
M

]
�R
(D

)
R
M

E
[G
E
,G
N
])G

E

co
ev

R
M
E

G
C

�C
M

�D
N

,G
E

co
ev

R
M
D

G
C

�
M

,G
D

�
1

ε
lM

�
1

R
M

E
(R

′2
)∗
1

6
R
M

E
(t)∗

1

R
M

E
(R

M
D
[G
D
,ε

lM
]�

R
M
E
[G
E
,ε

lN
])∗

1

1∗
co

ev
R

M
E

G
D

�
N

,G
E

1∗
ε
lN

R
M

D
(R

M
D
[G
D
,ε

lM
])∗

1

1∗R
M

E
(R

M
E
[G
E
,ε

lN
])∗

1

F
2∗

1

F
(R

M
D
[G
D
,ε

lM
])∗

F
(R

M
E
[G
E
,ε

lN
])∗

1
F

(R
M
D
[G
D
,ε

lM
]∗

R
M
E
[G
E
,ε

lN
])∗

1
R
M

E
(R

M
D
[G
D
,ε

lM
]∗

R
M
E
[G
E
,ε

lN
])∗

1
1∗

co
ev

R
M
E

G
N

,G
E

R
M

D
(R

M
D
[G
D
,ε

lM
])∗

1
R
M

D
(R

M
D
[G
D
,ε

lM
])∗

1

1∗
ε
lN

1∗
co

ev
R

M
E

G
N

,G
E

F
2∗

1

7
co

ev
R

M
D

G
M

,G
D

�
1

co
ev

R
M
E

G
M

�D
N

,G
E

R
M

E
(R

2
)∗
1

R
M

E
(t)∗

1

1

3

2

5
8

9
1
0

4



4.2 Restriction of coalgebra and bicomodule 1-morphisms 115

1 commutes by definition of RMD
[GD, εlM ];

2 and 4 commute by the interchange law;

3 commutes by definition of RME
[GE, εlN ];

5 and 9 commute trivially;

6 commutes by definition of R′2;

7 commutes by definition of R2;

8 commutes by naturality of F 2;

9 commutes by definition of ;

10 commutes by definition of the cotensor product;

and RME(t) ∗ 1 is monic.

So the outer diagram commutes. Passing via γRME
GC�M�N,GE , this says precisely that 2 of the

proposition commutes in this case.

3 of the proposition commutes trivially.

So we immediately get that R is a pseudofunctor, and Γ : R′ → R is a 2-natural isomorphism. □

We prove one final lemma:

Lemma 4.2.3. Suppose F is essentially 1-surjective. Then 1F (i) generates RPD
F (i) whenever RP

D
F (i)

is cyclic.

Proof : Notice first that 1F (i) ∈ RPD
F (i)(i). Now, RPD

F (i) must have a generator, say

Gi ∈ RPD
F (i)(j). So if F ∈ RPD

F (i)(k), then there is some H ∈ C (j, k) such that F is isomorphic to a

summand of RPi(H)Gi = F (H)Gi. Since F is essentially 1-surjective, F (H)Gi is isomorphic to

F (H ′) for some H ′ : i → k. But then F is isomorphic to a summand of

F (H ′)1F (i) = RPi(H ′)1F (i). So 1F (i) generates RPD
F (i) as required. □

It may be possible to work without this lemma, but certain constructions rapidly become very

unwieldy.

Since we made a choice of G in defining R, we note that this actually defines a collection of

pseudofunctors, one for each possible choice. By a previous remark, these are all naturally isomorphic,

so the choice is unimportant. Going forward, we fix G, and use the pseudofunctor R := RGF . We often

assume, in order to use the above lemma, that F is essentially 1-surjective and G = 1.
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5

Unit of the adjunction

Throughout this chapter, we assume F : C → D is an essentially 1-surjective locally k-linear

pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

In this section, we must construct a 2-natural transform η : 1BBicomC
→ RP, the unit for our

adjunction.

First, we explicitly compute the form of RP : BBicomC → BBicomC .

Proposition 5.0.1. • For a coalgebra 1-morphism C of C , RP(C) = C
F (C)
RMF(C)

;

• for a C-D-bicomodule 1-morphism M of C , RP(M) = RMF(D)
[F (D),F (M)];

• for a bicomodule 1-morphism ϕ :M →M ′ of C , RP(ϕ) = RMF(D)
[F (D),F (ϕ)].

Proof : First, recall that by definition, RP(C) = R(F (C)) = MF(C)◦F [GF (C), GF (C)]. But

since F is essentially 1-surjective, by Lemma 4.2.3 we can assume, without loss of generality, that G is

1, so RP(C) = MF(C)◦F [F (C),F (C)] = C
F (C)
RMF(C)

.

The other two parts can be computed similarly. □

So what do we need for the 2-natural transform η : 1BBicomC
→ RP?

First, for each object of BBicomC (that is, for each coalgebra 1-morphism C of C ), we need a

1-morphism ηC : C → RP(C) in BBicomC (that is, a biinjective C-RP(C)-bicomodule 1-morphism

in C ).

Second, for each 1-morphism in BBicomC (C,D) (that is, each biinjective C-D-bicomodule 1-

morphism of C ), we need a 2-morphism (that is, bicomodule homomorphism) ηM : M � ηD →

ηC �RP(M).

These must be natural in M and satisfy the two coherence diagrams.

We use our explicit form of RP to construct this data.
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5.1 Unit at coalgebra 1-morphisms

Proposition 5.1.1. Let C be a coalgebra 1-morphism in C , and Y be an object of RMF (C)(j) for

some j. RMF(C)
[Y,F (C)] is a C-CY -bicomodule 1-morphism.

Proof : Write M = RMF(C)
[Y,F (C)], δC,M = RMF(C)

[Y,∆F (C)] (noting that

RMF(C)
[Y,F (C)F (C)] = RMF(C)

[Y,RMF (C)(C)F (C)] ∼= CRMF(C)
[Y,F (C)] as 1-morphisms),

and coevM=coev
RMF(C)

F (C),Y . Clearly, M is a right CY -comodule 1-morphism. To see that it is a left

C-comodule 1-morphism, we need the following diagrams to commute:

M CM

M

δC,M

εC∗1
1

M CM

2

CM CCM

δC,M

1∗δC,MδC,M

∆C∗1

To see that 1 commutes, consider the following diagram:

F (C) RMF (C)(M)Y RMF (C)(CM)Y

F (C)F (C) F (C)F (M)Y F (CM)Y

F (1)F (C)

F (C) F (1)F (M)Y

F (M)Y F (M)Y

RMF (C)(M)Y RMF (C)(M)Y

RMF(C)(εC∗1)

RMF(C)(δC,M )coevM

coevM

∆F(C)

1∗coevM F−2

F (εC∗1)

F−2

F (εC)∗1

F (εC)∗1

1∗coevMF0∗1

coevM F0∗1

1

2

5

3

4

6
8

7

1 commutes by definition of δC,M ;

2 commutes because F (C) is a coalgebra 1-morphism;

3 and 4 commute by the interchange law;

5 and 8 commute trivially;
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6 commutes by naturality of F 2;

and 7 commutes by higher coherence for F .

So the outer diagram commutes. Passing via γ
RMF(C)

F (C),Y , this says that 1 commutes.

To see that 2 commutes, consider the following diagram:
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1 commutes as F (C) is coassociative;

2 , 3 and 4 commute by definition of δC,M ;

5 commutes by the interchange law;

6 and 7 commute by naturality of F−2;

8 commutes by higher coherence for F ;

9 commutes by definition of ∆F (C);

and 10 and 11 commute by definition of RMF (C).

So the outer diagram commutes, which, passing via γ
RMF(C)

F (C),Y , says that 2 commutes. So M is a

left C-comodule 1-morphism.

Finally, we need to show that the coactions commute, that is, that the following diagram commutes:

M MRP(C)

3

CM CMRP(C)

δM,RP(C)

δC,M δC,M∗1

1∗δM,RP(C)

To see that it does, consider the following diagram:
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1 and 2 commute by definition of δC,M ;

3 and 4 commute by the interchange law;

5 and 6 commute by definition of δM,CY ;

7 - 10 commute by definition of RMF (C);

11 and 12 commute by naturality of F 2;

13 commutes by higher coherence for F .

So the outer diagram commutes. But, passing via γ
RMF(C)

F (C),Y , this says that 3 commutes. So the

left and right coactions of M commute, so M is a bicomodule 1-morphism.

□

Now, setting Y = F (C), this tells us that RMF(C)
[F (C),F (C)] can be viewed as a C-CF (C)-

bicomodule 1-morphism. But CF (C) = RMF(C)
[F (C),F (C)] = RP(C). So we can make the following

definition:

Definition 5.1.2 (Unit at coalgebra 1-morphisms). ηC = RP(C) = RMF(C)
[F (C),F (C)], viewed as

a C-RP(C)-bicomodule 1-morphism. ◁

5.2 Unit at bicomodule 1-morphisms

Next, we construct a map ηM :M �
D
ηD → ηC �

RP(C)
RP(M).

Lemma 5.2.1. Suppose M is an injective right C-comodule 1-morphism in C , N is a

F (C)-F (D)-bicomodule 1-morphism in D , L is a right F (D)-comodule 1-morphism in D . Then

M �
C

RMF(D)
[L,N ] ∼= RMF(D)

[L,F (M) �
F (C)

N ]. Moreover, this isomorphism is natural in M .

Proof : Since C is fiat, by Lemma 1.3.7 (and since the cotensor and internal cohom are additive),

we can assume, without loss of generality, that M = FC for some F ∈ C (i, j). So
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M �
C

RMF(D)
[L,N ] = FC �

C
RMF(D)

[L,N ]

∼= FRMF(D)
[L,N ]

∼= RMF(D)
[L,RMF (D)(F )N ]

∼= RMF(D)
[L,F (F )F (C) �

F (C)
N ]

∼= RMF(D)
[L,F (M) �

F (C)
N ]

Each of these isomorphisms is natural in F , so altogether this is natural in M , as required. □

Lemma 5.2.2. Let M be a biinjective C-D-bicomodule 1-morphism. There is an invertible bicomodule

homomorphism ηM :M �
D
ηD → ηC �

RP(C)
RP(M), natural in M .

Proof : First, note that

ηC �
RP(C)

RP(M) = RP(C) �
RP(C)

RMF(D)
[F (D),F (M)] ∼= RMF(D)

[F (D),F (M)].

Moreover, note that M �
D
ηD = M �

D
RMF(D)

[F (D),F (D)]. Then by Lemma 5.2.1,

M �
D
ηD ∼= RMF(D)

[F (D),F (M) � F (D)] ∼= RMF(D)
[F (D),F (M)]. Moreover, both of these are

natural in M . So we have an isomorphism ηM : M �
D
ηD → ηC �

RP(C)
RP(M) natural in M , as

required. □

5.3 2-naturality

Finally, we put this data together to obtain the following result:

Proposition 5.3.1. The ηC , ηM assemble to a 2-natural transformation.

Proof : By Lemma 5.1.1, for a coalgebra 1-morphism C of C , the bicomodule 1-morphism ηC is

indeed a 1-morphism ηC : C → RP(C), as needed.

By Lemma 5.2.2, for a biinjective C-D-bicomodule 1-morphism M of C , the bicomodule

isomorphisms ηM :M �
D
ηD → ηC �

RP(C)
RP(M) are natural in M .

For η to be a 2-natural transformation, we further need the following diagrams to commute for any

biinjective C-D-bicomodule 1-morphism M and D-E-bicomodule 1-morphism N :
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(M �
D
N) �

E
ηE ηC �

RP(C)
RP(M �

D
N)

1

M �
D
N �

E
ηE M �

D
ηD �

RP(D)
RP(N) ηC �

RP(C)
RP(M) �

RP(D)
RP(N)

ηM�N

1�(RP)2

1�ηN ηM�1

C �
C
ηC ηC �

RP(C)
RP(C)

2

ηC

ηC

εrηC εlηC

To see that 1 commutes, consider the following diagrams:
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�
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1�
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)
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1�
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2
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η
−
1

M
�
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1
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1 and 9 commute trivially;

2 , 5 and 6 commute by naturality of the unitors;

and 3 , 4 and 7 commute by definition of ηM .

to see that 8 commutes, consider the following cube:

KM �
C

RMF(D)
[L,N ]

K �
B
M �

C
RMF(D)

[L,N ] KRMF(D)
[L,F (M) �

F (C)
N ] RMF(D)

[L,F (KM) �
F (C)

N ]

K �
B

RMF(D)
[L,F (M) �

F (C)
N ] RMF(D)

[L,F (K �
B
M) �

F (C)
N ] RMF(D)

[L,F (K)F (M) �
F (C)

N ]

RMF(D)
[L,F (K) �

F (B)
F (M) �

F (C)
N ]

∼=

∼=t

∼=
∼=

∼=
[L,F2�1]

t

∼=

[L,F (t)�N ]

[L,P2�1] [L,t�N ]

The back left face commutes by definition of the cotensor product;

the back right face commutes by Lemma 1.5.3;

the top and bottom faces commute by naturality of the isomorphism;

the front right face commutes by definition of P2;

and [L, t�N ] is monic.

So by a previous argument, the front left face commutes, that is, 8 commutes.

So we can reduce 1 to the commutativity of the following diagram:
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RP(M �
D
N) RMF(E)

[F (E),F (M �
D
N)]

RP(M) �
RP(D)

RP(N)

RMF(D)
[F (D),F (M)] �

RP(D)
RP(N) RMF(E)

[F (E),F (M) �
F (D)

F (N)]

RMF(D)
[F (D),F (M) �

F (D)
F (D)] �

RP(D)
RP(N)

M �
D

RMF(D)
[F (D),F (D)] �

RP(D)
RP(N) M �

D
RMF(E)

[F (E),F (N)]

M �
D
ηD �

RP(D)
RP(N)

M �
D
RP(D) �

RP(D)
RP(N) M �

D
RP(N)

(RP)2

R(P2)

∼=

R2

∼=

∼=

∼=

9

10

9 commutes by definition of (RP)2;

and 10 commutes by definition of R2.

So 1 commutes.

That 2 commutes is trivial.

□
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6

Counit of the adjunction

Throughout this chapter, we assume F : C → D is an essentially 1-surjective locally k-linear

pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

In this section, we must construct a 2-natural transform ϵ : PR → 1BBicomD
, the counit for our

adjunction.

What do we need for the 2-natural transform ϵ : PR → 1BBicomD
?

First, for each object of BBicomD (that is, for each coalgebra 1-morphism C of D), we need a

1-morphism ϵC : PR(C) → C in BBicomD (that is, a biinjective PR(C)-C-bicomodule 1-morphism

in D).

Second, for each 1-morphism in BBicomD(C,D) (that is, each biinjective C-D-bicomodule 1-

morphism of D), we need a 2-morphism (that is, bicomodule homomorphism) ϵM : PR(M) � ηD →

ηC �M .

These must be natural in M and satisfy the two coherence diagrams.

6.1 Counit at coalgebra 1-morphisms

We start by constructing ϵC .

Proposition 6.1.1. Let C be a coalgebra 1-morphism in D . Then (C, δPR(C),C := coevRMC
C,C ,∆C) is a

PR(C)-C-bicomodule 1-morphism.

Proof : Note first that PR(C)C = F (RMC
[C,C])C = RMC(RMC

[C,C])C as objects in some

RMC(∗), so as objects in D , and that coevRMC
C,C is a morphism in RMC(∗) so a 2-morphism in D . Now,

C is clearly a right C-comodule 1-morphism. To see that it is a left PR(C)-comodule 1-morphism, we

need the following diagram to commute:
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C PR(C)C

PR(C)C PR(C)PR(C)C

δPR(C),C

δPR(C),C

∆PR(C)∗1

1∗δPR(C),C

We first consider the following diagram:

C RMC(R(C))C

RMC(R(C))RMC(R(C))C

RMC(R(C)R(C))C

RMC(R(C))C RMC(R(C))RMC(R(C))C

RMC(∆R(C))

coev
RMC
C,C

coev
RMC
C,C

1∗coevRMC
C,C

RM−2
C

1∗coevRMC
C,C

RM2
C

1

2

1 commutes trivially, and 2 precomposed with coevRMC
C,C commutes by definition of ∆R(C). So

the outer diagram commutes. Next, consider the following diagram:
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1 commutes by the argument above;

2 - 6 commute by definition of RMC ;

and 7 commutes by definition of ∆P(D).

So the outer diagram commutes, which is what we wanted.

Next, we need C to be counital for the left coaction, that is, for the following diagram to commute:

C PR(C)C

C

δPR(C),C

ϵPR(C)∗1

We first consider the following diagram:

C RMC(R(C))C

RMC(1)C

C

coev
RMC
C,C

RMC(ϵR(C))

RM0
C

RM−0
C

1

2

1 commutes by definition of ϵR(C);

2 commutes trivially.

So the outer diagram commutes.

Next, we consider the following diagram:

C PR(C)C

RMC(R(C))C

RMC(1)C F (1)C

C

δPR(C),C

ϵPR(C)∗1

F (ϵR(C))

F0

coev
RMC
GiC,GiC

RMC(ϵR(C))

RM0
C

5

4

2

3

1

1 commutes by the argument above;
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2 - 4 commute by definition of RMC ;

and 5 commutes by definition of ∆P(D).

So the outer diagram commutes, which is what we wanted.

So C is a left PR(C) comodule 1-morphism.

□

So we can define:

Definition 6.1.2 (Counit at coalgebra 1-morphisms). ϵC := C, viewed as a PR(C)-C-bicomodule

1-morphism. ◁

6.2 Counit at bicomodule 1-morphisms

Next, we want to construct ϵM : ϵC �
C
M → PR(M) �

PR(D)
ϵD.

To begin with, we state the following definition:

Definition 6.2.1 (Adjoint of maps from internal cohoms). Let C be a coalgebra 1-morphism in D , F a

1-morphism in C , M ∈ RMC(j). Consider the following sequence of maps, where the horizontal maps

are the respective cohom adjunctions:

HomC (RMC
[C,M ], F ) HomRMC(j)(M,RMC(F )C)

HomD(MC
[C,M ],F (F )) HomMC(F (j))(M,F (F )C)

∼=

=

∼=

This gives us a bijection between maps f : RMC
[C,M ] → F in C , and maps fM,C : M → F (F )

in D . Explicitly, we can compute

fM,C = (F (f) ∗ ϵC) ◦ coevRMC
M,C .

In particular, we have a 2-morphism ψC := (1R(C))C,C = (1 ∗ ϵC) ◦ coevRMC
C,C : C → PR(C) for

each coalgebra 1-morphism C of D , and a 2-morphism ΨM := (1R(M))M,D = (1 ∗ ϵD) ◦ coevRMD
M,D :

M → PR(M) for each C-D-bicomodule 1-morphism M .

◁
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Lemma 6.2.2. Let C be a coalgebra 1-morphism in D . Then

ψC : C → PR(C)

is a monic coalgebra homomorphism.

Proof : Write ψ := ψC . We need to show that the following diagrams commute:

C PR(C) C PR(C)

CC PR(C)PR(C) 1

∆C

ψ

∆PR(C)

ψ∗ψ

ψ

ϵC ϵPR(C)

We consider the left diagram first. Expanding definitions, we get the following diagram:

C PR(C)C PR(C)

PR(C)PR(C)C

CC PR(C)CPR(C)C PR(C)PR(C)

∆C ∆PR(C)

coev
RMC
C,C ∗ coevRMC

C,C 1∗ϵC∗1∗ϵC

coev
RMC
C,C 1∗ϵC

∆PR(C)∗1

1∗1∗ϵC1∗ϵC∗1

1∗coevRMC
C,C 2

4

3
1

1 commutes because PR(C) is a coalgebra 1-morphism;

2 , precomposed with coevRMC
C,C , commutes by definition of ∆PR(C);

3 commutes by the interchange law;

and 4 commutes trivially.

Therefore the outer diagram commutes, that is, ψ respects comultiplication.

Next, we consider the counit diagram. Consider the following expanded version:
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C PR(C)C PR(C)

F (1)C C

1

coev
RMC
C,C

F−0∗1

ϵC

1∗ϵC

P(ϵR(C))
ϵPR(C)∗1

ϵPR(C)

F0∗1

ϵC

1

3

2

4

1 commutes by definition of ϵR(C);

2 commutes by definition of ϵPR(C);

3 commutes trivially;

4 commutes by the interchange law.

Therefore the outer diagram commutes, that is, ψ respects the counit.

So ψ is a coalgebra homomorphism, as required.

It is monic since (1 ∗ ϵC) and coevRMC
C,C are.

□

One can see immediately that ϵC = ψCC, and we use these definitions interchangeably

Lemma 6.2.3. Let M be a C-D-bicomodule 1-morphism. When viewed as a morphism ΨM : ψCM →

PR(M), ΨM is a left comodule homomorphism natural in M .

Proof : Write Ψ := ΨM . We need Ψ to respect the left PR(C)- and right PR(D)-coactions. We

first examine the left coaction. We want the following diagram to commute:

M PR(M)

PR(C)M PR(C)PR(M)

δPR(C),M δPR(C),PR(M)

1∗ΨM

ΨM

Consider the expanded diagram:
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1 commutes by definition of δR(C),R(M);

2 commutes by definition of δPR(C),M ;

3 commutes by definition of δPR(C),PR(M);

4 commutes by the interchange law;

5 commutes by definition of Ψ;

and 6 commutes by definition of ψ.

Therefore the outer diagram commutes, that is, Ψ is a left PR(C)-comodule homomorphism. Since

coevRMD
M,D is natural in M , this is in fact a natural transformation of bicomodule 1-morphisms.

□

Note that ϵC = ψCC. Note also that since ψD is monic, by Lemma 1.3.17,

ψCM �
D
D = ψCMψD �

PR(D)

ψDD. So we can use these data to construct ϵM as follows:

Definition 6.2.4 (Counit at comodule 1-morphisms). ϵM is the following composition:

PR(M) �
PR(D)

ϵD

PR(M) �
PR(D)

ϕDD

ψCMψD �
PR(D)

ψDD

ψCM �
D
D

ψCM

ψCC �
C
M

ϵC �
C
M

Ψ−1
M �

PR(D)
1

εrM

(εlM )−1

◁
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6.3 2-naturality

Finally, we put this data together to obtain the following result:

Proposition 6.3.1. ϵC , ϵM assemble to a 2-natural transform. ϵ : PR → 1BBicomD

Proof :

By Lemma 6.2.2, the bicomodule 1-morphism ψCC is indeed a 1-morphism ϵC : PR(C) → C, as

needed.

We recall that (ψD) ↾(M,D) is a bicomodule homomorphism natural in M

(ψD) ↾
(M,D): ψCM �

D
D → ψCMψD �

PR(D)

ψDD

by Lemma 1.3.18; ϵlM and ϵrM are bicomodule isomorphisms natural in M by Lemma 1.3.11; and Φ is

a bicomodule homomorphism natural in M by Lemma 6.2.3. So ϵM is a bicomodule homomorphism

natural in M , as required.

We further need the following diagrams to commute:

PR(M �
D
N) �

PR(E)
ϵE ϵC �

C
M �

D
N

1

PR(M) �
PR(D)

PR(N) �
PR(E)

ϵE PR(M) �
PR(D)

ϵD �
D
N ϵC �

C
M �

D
N

ϵM �
D

N

PR2 �
PR(E)

1

1 �
PR(D)

ϵN ϵM �
D
1

PR(C) �
PR(C)

ϵC ϵC �
C
C

2

ϵC

ϵC

εrϵC
εlϵC

To see that 1 commutes, consider the following diagrams:
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�
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�
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1�
Ψ

N
�
1

7

1
1

1
6

9
1
2

1
4

1
0

1
3

1
5

1 and 6 commute trivially;
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and 2 , 3 and 5 commute by definition of ϵM .

4 is the outer edge of the right-hand diagram;

7 commutes since left and right unitors commute;

9 , 11 , 12 , 14 and 15 commute trivially;

10 and 13 commute by the interchange law;

so it suffices to consider 16 .

ψCM �
D
NψE PR(M �

D
N)

PR(M �
D
N)E

ψCMψD �
PR(D)

ψDNψE ψCMNψE PR(M)D �
D
NψE

PR(M)DNψE

PR(M)NψE PR(M)PR(N)E

PR(M) �
PR(D)

PR(N)E

PR(M) �
PR(D)

ψDNψE PR(M) �
PR(D)

PR(N)

ΨM�N

coev
RME
M�N,E

t
coev

RMD
M,D �1

PR2

1∗ϵE

PR2∗1

t

ΨM�1

coev
RMD
M,D ∗1

ΨM∗1

t

1∗ϵlN
1∗ϵD∗1

1∗coevRME
N,E

t∗1

1∗ϵE

t

1� coev
RME
N,E

1�ΨN

24

17
20

26

18

19
2321

22

25

17 commutes trivially;

18 , 20 and 22 commute by definition of the cotensor product;

19 , 24 and 25 commute by definition of ΨM ;

21 commutes by definition of ϵlN ;

23 commutes by definition of R2;

26 commutes by the interchange law;

and t is monic.

Note that here, unlike previous diagrams, we are considering equality of 2-morphisms in D , but since

being equal as 2-morphisms implies being equal as bicomodule homomorphisms, this causes no issues.

So 16 commutes, so 4 commutes, so 1 commutes.

That 2 commutes is trivial.

So ϵ is a 2-natural transform.

□



7

Triangulators and the swallowtail diagrams

Throughout this chapter, we assume F : C → D is an essentially 1-surjective locally k-linear

pseudofunctor between one-object multifiat 2-categories whose birepresentations are all cyclic.

We next need a pair of modifications, called triangulators, as in the following diagrams:

P PRP R RPR

P R

P(η)

ϵP

ηR

R(ϵ)
τσ

7.1 Construction of σ

We start with the left diagram. Fix a coalgebra 1-morphism C in C , and note that

(ϵP ◦ P(η))(C) = P(ηC) �
PRP(C)

ϵP(C).

Recalling that ηD = ∗RP(D) (with the ∗ highlighting the special left coaction), and ϵD = ψDD, we

find that this composite takes the form

∗PRP(C) �
PRP(C)

ψP(C)P(C).

Now, we’d like to use εlϵP(C)
to go from this object to P(C). This is coherent as a 2-morphism of

1-morphisms, and respects the right coactions. We need to understand how it interacts with the left

coactions. This leads us to the following lemma:

Lemma 7.1.1. Let D be a coalgebra 1-morphism in a finitary 2-category C . Suppose that D has

another left coaction δD′,D, so can be viewed as a D′-D-bicomodule 1-morphism ∗D. Moreover, let M

be a left D-comodule 1-morphism, with coaction δD,M .
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Then there’s a left D′-comodule 1-morphism †M , with underlying 1-morphism M and left coaction

given by the composite

M DM D′DM D′M
δD,M δD′,D∗1 1∗ϵD∗1

,

and εlM : ∗D �
D
M → †M is an isomorphism of left comodule 1-morphisms.

Proof : By Proposition 1.3.11, it’s sufficient to check that εlM is a homomorphism of left comodule

1-morphisms. But this is immediate from the following diagram:
∗C �M ∗CM †M

∗CM

C ′∗CM

C ′∗C �M C ′∗CM C ′†M

t

δC′,C�1

ϵC∗1

δC,M

δC′,C∗1

1∗ϵC∗1

1∗t 1∗ϵC∗1

1

2

3

1 commutes by definition of δC′,C � 1;

2 and 3 commute trivially.

So the outer diagram commutes, that is, εlM is a homomorphism of left comodule 1-morphisms. □

So with the correct left coactions, we have an isomorphism

εlϵP(C)
: ∗PRP(C) �

PRP(C)

ψP(C)P(C)→ †P(C).

We compute the left coaction needed for P(C) in the following lemma:

Lemma 7.1.2. The composition

P(C) PRP(C)P(C) P(C)PRP(C)P(C) P(C)P(C)
δPRP(C),P(C) δP(C),PRP(C)∗1 1∗ϵPRP(C)∗1

,

is equal to ∆P(C).

Proof :

Consider the following diagram:
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P
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P
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P
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)P
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)P
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)

P
(R
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F
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) [F
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),F
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)])P
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) [F
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),F
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)])P
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R
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P
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)

P
(R
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F

(C
) [F
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),F
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)])P
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P
(C
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) [F
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),F
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)])P

(C
)

P
(C
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(C
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P
(C

)P
(C

)

δP
R

P
(C

),P
(C

)

∆
P
(C

)

δP
(C

),P
R

P
(C

) ∗
1

1∗
ϵP

R
P
(C

) ∗
1

P
(R

M
F

(C
) [F

(C
),∆

F
(C

) ])∗
1

F
2∗

1
P
(1∗

ϵR
P
(C

) )∗
1

1∗
ϵP

(C
) ∗
1

co
ev

R
M
P
(C

)
P
(C

),P
(C

)

∼=

1∗P
(ϵR

P
(C

) )∗
1

F
−
2∗

1

ψ
P
(C

) ∗
1

co
ev

R
M
P
(C

)
P
(C

),P
(C

) ∗
1

ϵP
(C

) ∗
1

co
ev

R
M
P
(C

)
P
(C

)P
(C

),P
(C

)
1∗

co
ev

R
M
P
(C

)
P
(C

),P
(C

)

1

7

5
3

4

8

9

6

2
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1 commutes by definition of δPRP(C),P(C);

2 commutes by definition of ψP(C);

3 commutes by the interchange law;

4 commutes by definition of RMF(C)
[F (C),∆F (C)], noting that (ϵD ∗ 1) ◦∆D = 1;

5 commutes by definition of δP(C),PRP(C);

6 commutes by Lemma 1.5.3;

7 commutes by naturality of F 2 and definition of ϵPRP(C);

8 commutes by naturality of F 2;

and 9 commutes by definition of ϵRP(C).

Therefore the outer diagram commutes, which is precisely what we wanted. □

So we have a bicomodule isomorphism

εlϵP(C)
: P(ηC) �

PRP(C)
ϵP(C) → P(C).

So we define σC := (εlϵP(C)
)−1.

7.2 Construction of τ

Next, we look at the second triangulator diagram:

R RPR

R

ηR

R(ϵ)
τ

Fixing a coalgebra 1-morphism C of C , we know that

(R(ϵ) ◦ ηR)(C) = ∗
RMF(R(C))

[F (R(C)),F (R(C))] �
RPR(C)

R(ψCC),

and note that as a right comodule 1-morphism, RMF(R(C))
[F (R(C)),F (R(C))] = RPR(C). We

want to again invoke Lemma 7.1.1, which will give us an isomorphism between this cotensor product

and R(C). So we compute the left coaction of †R(ψCC).
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Lemma 7.2.1. The composition

R(C) RPR(C)R(C) R(C)RPR(C)R(C) R(C)R(C)
δRPR(C),R(C) δR(C),RPR(C)∗1 1∗εRPR(C)∗1

is equal to ∆R(C).

Proof : We do this in two parts. First, consider the following diagram:
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F
(R
P
R
(C

)R
(C

))C
F

(R
(C

)R
P
R
(C

)R
(C

))C
F

(R
(C

)R
(C

))C

F
(R

(C
)R

M
P
R
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) [P
R
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),P
R
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F
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R
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R
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R
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R
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R
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∆
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0
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8

1
2

1
3

1

5
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1 commutes by definition of ψPR(C);

2 , 4 , 7 , 9 and 12 commute by naturality of F−2;

3 commutes by definition of δR(C),RPR(C);

5 commutes by definition of RMPR(C)
[PR(C),∆PR(C)];

6 , 10 and 13 commute trivially;

8 commutes by Lemma 1.5.3;

and 11 commutes by definition of εRPR(C).

So the outer diagram commutes. Call this outer diagram 1 .

Now, consider the following diagram:
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1 , precomposed with coevRMC
C,C , commutes by definition of R(coevRMC

C,C );

2 and 8 commute by the interchange law;

3 commutes by definition of ∆R(C);

4 commutes by definition of δRPR(C),R(C);

5 commutes by definition of ψC ;

6 and 7 commute by naturality of F−2;

9 commutes by definition of ψPR(C);

and we have already established that 1 commutes.

So the outer diagram commutes. But passing via γRMC
C,C , this says precisely that the composition

R(C) RPR(C)R(C) R(C)RPR(C)R(C) R(C)R(C)
δRPR(C),R(C) δR(C),RPR(C)∗1 1∗εRPR(C)∗1

is equal to ∆R(C), which is what we wanted.

□

So we have a bicomodule isomorphism

εlR(ϵC) : ηR(C) �R(ϵC)→ R(C)

and thus define τC = εlR(ϵC)

7.3 Swallowtail diagrams

Finally, for all this data to assemble to a 2-natural transformation, we need the swallowtail diagrams to

commute. We recall the swallowtail diagrams from Definition 1.1.6, as they appear in our context:

1BBicomC
RP

1BBicomC

RP RPRP =

RP

RP

η

η ηη RP(η)

ηηRP

R(ϵP )

R(σ)

τP

and
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PR

PR

PRPR PR =

1BBicomD

PR 1BBicomD

P(ηR)

ϵPR(ϵ)

ϵPR ϵϵϵ

ϵ

P(τ)

σR

It suffices to show that these equalities hold for each coalgebra 1-morphism C of C (respectively,

D). Recall that composition of 1-morphisms in bicomodule categories is given by the cotensor product;

that the identity 1-morphism at a coalgebra 1-morphism C is the C-C-bicomodule 1-morphism C; and

that, since ηC (respectively, ϵC) is a bicomodule 1-morphism for any suitable coalgebra 1-morphism C,

ηηC (respectively, ϵϵC ) is a bicomodule homomorphism as defined in Lemma 5.2.2 (respectively, Lemma

6.2.4).

We now recall specific definitions.

Lemma 7.3.1. In the first swallowtail diagram, for C a coalgebra 1-morphism in C :

• ηηC is the bicomodule homomorphism R((ϵrP(ηC))
−1) ◦ ϵlRP(ηC);

• R(σC) = R((εlϵP(C)
)−1);

• τP(C) = ϵlR(ϵP(C))
.

So recalling that left and right unitors commute, we immediately see that the first swallowtail

diagram identity holds.

In the second swallowtail diagram, for C a coalgebra 1-morphism in D :

• ϵϵC = (εrϵC )
−1 ◦ εlηC

• σR(C) = (εlϵPR(C)
)−1

• P(τ) = P(ϵlR(ϵC)).

So similarly the second swallowtail diagram identity holds.
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7.4 Conclusion

Finally, we can put everything together to obtain the central result of our paper:

Theorem 7.4.1 (Frobenius reciprocity for fiat 2-representations). Let C , D be multifiat 2-categories

for which every birepresentation is cyclic. Let F : C → D be a locally k-linear essentially 1-surjective

pseudofunctor. Then induction along F is left biadjoint to restriction along F .

Proof : Recall the definition of a biadjunction from Definition 1.1.6.

By Theorem 3.2.3, P : BBicomC → BBicomD is a pseudofunctor. By Theorem 4.2.1, R :

BBicomD → BBicomC is a pseudofunctor.

By Proposition 5.3.1, η : 1BBicomC
→ RP is a 2-natural transform. By Proposition 6.3.1, ϵ :

PR → 1BBicomD
is a 2-natural transform.

By Section 7.1, σ in the following diagram is a modification:

P PRP

P

P(η)

ϵP
σ

By Section 7.2, τ in the following diagram is a modification:

R RPR

R

ηR

R(ϵ)
τ

And by Lemma 7.3.1, the swallowtail diagram identities hold.

□
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8

Final remarks

Some natural questions and conjectures arise from this thesis.

First, and most straightforward:

Conjecture 8.0.1. Theorem 7.4.1 still holds for C , D (quasi) multifiab bicategories.

where the definition of multifiab bicategories can be found in Definition 2.5 of [MMM+21].

In theory, the result for multifiab bicategories might be considered a corollary of Theorem 7.4.1.

By [MP85], any bicategory is biequivalent to a strict 2-category, and by [Cam19] this ’strictification’

respects 2-adjunctions. The strictification of a multifiab bicategory is a multifiat 2-category, so the

result follows. However, strictification loses important information about a bicategory, and the form of

the adjunction may not translate straightforwardly. For quasi multifiab bicategories, the strict equivalent

are weak multifiat 2-categories, and many of results we have used are still known to hold (courtesy of

[MMM+21]).

Of more importance is the following conjecture:

Conjecture 8.0.2. The assumption of essential 1-surjectivity in Theorem 7.4.1 is unnecessary.

The main roadblock to this conjecture is in constructing the unit. Our choice of bicomodule 1-

morphism ηC relies on essential 1-surjectivity unavoidably: the left C-coaction defined in Proposition

5.1.1 would otherwise be blocked by the appearance of some 1-morphism G. By contrast, the counit

construction requires only slight modifications. By parallel with the representation theory of algebras,

there is seemingly no a priori reason for the assumption of essential 1-surjectivity to be necessary.

The next conjecture arises from a detail in section 1.3. We can observe that BBicomC naturally has

additional structure: that of the coalgebra homomorphisms. This additional structure turns BBicomC

into a (pseudo) double category, BBicom+
C (see [GP99] for the basics of double categories). We might

then reasonably speculate:
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Conjecture 8.0.3. Restriction and induction can be extended to pseudo-double functors between

BBicom+
C and BBicom+

D . These pseudo-double functors are double adjoint.

Extending induction is straightforward: the image of a coalgebra homomorphism under a

pseudofunctor is a coalgebra homomorphism, so there’s little to check. If we pick a suitably rich class

of vertical 1-morphisms when turning the 2-category C − afmod into a double category, then the

inclusion ι : BBicomC → C − afmod is also straightforward to extend: a coalgebra homomorphism

ϕ : C → D naturally gives a morphism of representations MC → MD. While ι is still essentially

0-surjective, vertically and horizontally 1-surjective, and fully faithful on 2-morphisms, it’s not

immediately clear if the internal cohom construction can be used to complete the construction of a

pseudo double inverse of ι, and attempting to define the restriction of a coalgebra homomorphism

directly is similarly not straightforward.

Finally, while this thesis focused on a single pseudofunctor F : C → D , we can ask how this

adjunction interacts with the 3-category of fiat 2-categories. We make a series of bold conjectures.

Conjecture 8.0.4. If F : C → D , G : D → E are (locally k-linear, essentially 1-surjective)

pseudofunctors between multifiat 2-categories, then

• PG F ≃ PG ◦ PF ;

• RG F ≃ RF ◦ RG ;

• ηG F ≃ R(ηG
P) ◦ ηF ;

• ϵG F ≃ ϵF ◦ P(ϵGR);

and these congruences are coherent.

The first two of the above claims are relatively straightforward to check. The latter require more

thought.

Conjecture 8.0.5. If Γ : F → G : C → D is a strong transform of (locally k-linear, essentially

1-surjective) pseudofunctors between multifiat 2-categories, then there exists:

• a 2-natural transform PΓ : PG → PF ;

• a 2-natural transform RΓ : RG → RF ;
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These are such that the following diagrams commute, up to suitable modification:

RGPG

1

RFPF

PGRG

1

PFRF

RΓ∗PΓ

ηG

ηF

ϵG

PΓ∗RΓ

ϵF

For a coalgebra 1-morphism C : i → i of C , we note that ΓiF (C) is a G (C)-F (C)-bicomodule

1-morphism in a straightforward way, which motivated this last conjecture.
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