Time series clustering using elastic

distances

EA

Christopher Lawrence Holder

School of Computing Sciences

University of East Anglia

This thesis is submitted for the degree of

Doctor of Philosophy

June 2025

© This copy of the thesis has been supplied on condition that anyone who consults it is understood
to recognise that its copyright rests with the author and that use of any information derived
there-from must be in accordance with current UK Copyright Law. In addition, any quotation or

extract must include full attribution. attribution.

Abstract

In recent years, time series data has become increasingly ubiquitous, emerging
across numerous domains such as astronomy, biology, engineering, finance, manu-
facturing, medicine, meteorology, and more. A time series is an ordered sequence
of real valued observations. The most common form of ordering is in the time
domain. Although the concept of a time series is not limited to time-based or-
dering, the fact that human experience is inherently bound to the passage of time
makes time-domain data particularly prevalent. As a result, nearly any recorded
phenomenon can be represented as a time series.

The widespread generation of time series data, coupled with the desire to analyse
and derive insights from it, has sparked significant interest in time series machine
learning tasks. Among these, time series clustering (TSCL) has emerged as one
of the most prominent fields. TSCL aims to group time series into clusters where
the series within a cluster exhibit homogeneity, while those outside the cluster
are heterogeneous. As an unsupervised task, TSCL requires no manual labelling,
making it versatile and applicable to a wide range of time series datasets. It is often
employed as a key tool for exploratory data analysis.

One of the most common approaches to clustering time series data is to adapt
traditional clustering algorithms (e.g., k-means, k-medoids, DBSCAN, agglom-
erative clustering) by replacing conventional distance measures with elastic ones.
Elastic distances account for misalignment between time series during distance

computation—when similar events occur but are recorded at different time intervals

iii

in each series. By accounting for misalignment, elastic distances significantly
improve the quality of the similarity measure between time series.

Dynamic Time Warping (DTW) has become the most widely used elastic
distance in TSCL literature. However, other elastic distances have demonstrated
superior performance in related fields, such as time series classification. Despite
this, the TSCL community has been slow to adopt these alternatives. This thesis
addresses this gap by conducting the most comprehensive review of elastic distances
for TSCL. We evaluate 12 different elastic distances, nine of which had not been
previously applied to TSCL. Our empirical analysis reveal that many of these
unconsidered elastic distances significantly outperform DTW for TSCL tasks.

Building on these findings, we propose novel elastic distance-based algorithms,
including the Elastic Barycentre Average, the Elastic Unsupervised Proportional
Weighting (EUPW) ensemble scheme, the Elastic Clustering Ensemble (ECE),
and the k-means end-to-end Elastic Stochastic subgradient Barycentre Average
(KESBA) clusterer.

This thesis demonstrates the benefits of incorporating previously unexplored
elastic distances into established TSCL algorithms, introduces new elastic-based
averaging techniques, and presents the development of state-of-the-art elastic-based
partition and ensemble clustering methods. Together, these contributions advance

TSCL performance and lay the foundation for future innovations in the field.

Access Condition and Agreement

Each deposit in UEA Digital Repository is protected by copyright and other intellectual property rights,
and duplication or sale of all or part of any of the Data Collections is not permitted, except that material
may be duplicated by you for your research use or for educational purposes in electronic or print form.
You must obtain permission from the copyright holder, usually the author, for any other use. Exceptions
only apply where a deposit may be explicitly provided under a stated licence, such as a Creative
Commons licence or Open Government licence.

Electronic or print copies may not be offered, whether for sale or otherwise to anyone, unless explicitly
stated under a Creative Commons or Open Government license. Unauthorised reproduction, editing or
reformatting for resale purposes is explicitly prohibited (except where approved by the copyright holder
themselves) and UEA reserves the right to take immediate ‘take down’ action on behalf of the copyright
and/or rights holder if this Access condition of the UEA Digital Repository is breached. Any material in
this database has been supplied on the understanding that it is copyright material and that no quotation
from the material may be published without proper acknowledgement.

Acknowledgements

First and foremost, I would like to express my deepest gratitude to my supervisor,
Prof. Anthony Bagnall. His constant guidance, unwavering support, and patience
throughout this PhD have been invaluable. This thesis would not have been possible
without it. I am especially grateful for his continued support even after his move
to a new university. I would also like to extend my sincere thanks to Dr. Jason
Lines, for his continuous support throughout my time at UEA and for stepping up
to become my primary supervisor in my final year after Tony’s departure. Thank
you both.

I am also grateful to everyone in the time series machine learning group at UEA.
In particular, I want to thank Dr. Matthew Middlehurst for his tremendous help
during my PhD journey, offering guidance and developing invaluable open-source
tools such as tsml-eval, which played a significant role in my work.

To my friends and family, thank you for your unwavering love and support. This
PhD would not have been possible without you. To my Dad, you are my greatest
role model, and who I strive to be. To my Mum, your love and encouragement
have been my constant foundation. To my siblings, Imogen, Alexander, and Kieran,
you continually inspire me to grow; your talent, drive, and determination push
me to become better. Finally to Larissa, your endless patience, understanding,
encouragement and support have been my anchor. Without each of you, I would

not be the person I am today. Thank you.

Declaration

I hereby declare that except where specific reference is made to the work of others,
the contents of this dissertation are original and have not been submitted in whole
or in part for consideration for any other degree or qualification in this, or any other
university. This dissertation is my own work and contains nothing which is the
outcome of work done in collaboration with others, except as specified in the text

and Acknowledgements.

Christopher Lawrence Holder

June 2025

Publications

As First Author

* Holder, C., Middlehurst, M. & Bagnall, A. A review and evaluation of elastic
distance functions for time series clustering. Knowl Inf Syst 66, 765-809

(2024). https://doi.org/10.1007/s10115-023-01952-0

* Holder, C., Guijo-Rubio, D., Bagnall, A. (2023). Clustering Time Series
with k-Medoids Based Algorithms. In: Ifrim, G., et al. Advanced Analytics
and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer
Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-
49896-1_4

* Holder, C., Bagnall, A., Lines, J. (2024). On time series clustering with

k-means. In: under review at Advances in Data Analysis and Classification

* Holder, C.; Guijo-Rubio, D. and Bagnall, A. (2023). Barycentre Averaging
for the Move-Split-Merge Time Series Distance Measure. In Proceedings of
the 15th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - KDIR; ISBN 978-989-758-671-2;
ISSN 2184-3228, SciTePress, pages 51-62. DOI: 10.5220/0012164900003598

Table of contents

List of figures xiv
List of tables XXXix
List of algorithms lvii
1 Introduction 1
1.1 Thesis Contributions 4

1.2 ThesisOutline 7

2 Background and Related Work 10
2.1 Timeseriesdatamining 10
2.1.1 Time series unique characteristics 11

2.1.2 Time series machine learning 13

22 Clustering o v vt e e 15
2.2.1 Hierarchical-based 16

2.2.2 Partition-based Lo 17

2.3 Time series clustering (TSCL) 21

24 Elasticdistances 24
24.1 Dynamic time warping (DTW) 25

2.4.2 Derivative dynamic time warping (DDTW) 30

24.3 Weighted dynamic time warping (WDTW) 33

Table of contents

viii

2.5

2.4.4 Weighted derivative dynamic time warping (WDDTW) . .
24.5 Amercing dynamic time warping (ADTW)
2.4.6 Shape dynamic time warping (shapeDTW)
2.4.7 Soft dynamic time warping (soft-DTW)
2.4.8 Longest common subsequence (LCSS)
2.4.9 Edit Distance on Real Sequences (EDR)
2.4.10 Edit Distance with Real Penalty (ERP)
2.4.11 Move-splitmerge MSM)
24.12 Time WarpEdit (TWE)
TSCL Algorithms

2.5.1 Partition-based TSCL

3 Experimental Methodology

3.1
3.2

33
3.4
3.5

The challenge of cluster evaluation
TSCL Experimental Methodology
3.2.1 Statistics for Evaluating Performance
3.2.2 Comparison of Clustering Algorithms
3.2.3 Tuning of Parameters
Datasets
Normalisation L
Software and Research Reproducibility

3.5.1 Time Series Clustering in Python: aeon

4 Lloyd’s-based TSCL

4.1
4.2
4.3

Introduction Lo
Lloyd’s algorithmin TSCL
A TSCL configuration for Lloyd’s-based algorithms
4.3.1 Initialisation Strategy

4.3.2 Early Stopping Conditions

36
37
39
42
46
50
53
55
59
61
62

84
84
87
87
97

107

108

110

111

111

Table of contents ix
4.3.3 Early Stopping Conditions: Maximum iterations 126

4.3.4 Early Stopping Conditions: Inertia Change 130

435 EmptyClusters 133

4.3.6 Distance Measure and Averaging Technique 135

44 Lloyd’sBaseline 137

4.5 ExperimentSetupo 137
4.6 Configuration 138
47 Result 142
4.7.1 Combined test-train splitresults 142

472 Test-trainsplitresults 149

4.8 Conclusion 152

5 k-means clustering using elastic distances 154
5.1 ExperimentSetup 155
5.2 Configuration 155

53 Results. 157
5.3.1 Combined test-train splitresults 158

5.3.2 Test-trainsplitresults 168

54 Tuning e 171

5.5 Conclusion 177

6 k-medoids clustering using elastic distances 179
6.1 Introduction 180
6.2 TSCL k-medoids 181
6.2.1 Alternate k-medoids 181

622 PAM 184

6.23 CLARA 186

6.24 CLARANS 188

6.3 Experimentsetup 192

Table of contents X

6.4 Alternate k-medoidso 193
6.4.1 Alternate k-medoids Combined test-train split 193

6.4.2 Alternate k-medoids Test-train split 197

6.4.3 Comparison to k-means 200

6.4.4 Alternate k-medoids conclusion 205

6.5 PAM 206
6.5.1 PAM Combined test-trainsplit 207

6.5.2 PAM Test-trainsplit 213

6.53 PAMconclusion 217

6.6 CLARA 218
6.6.1 CLARA Combined test-train split 218

6.6.2 CLARA Test-trainsplit. 223

6.6.3 CLARAConclusion 227

6.7 CLARANS 228
6.7.1 CLARANS Combined test-train split 228

6.7.2 CLARANS Test-trainsplit 234

6.7.3 CLARANSconclusion 235

6.8 Analysis 237
6.8.1 k-medoids with elastic distances 237

6.8.2 k-medoids clustering performance 239

6.9 Conclusion 244
7 Elastic Barycentre Averaging 246
7.1 Introduction L L 247
7.2 Elastic Barycentre Averaging 248
7.3 Elastic Barycentre analysis 252
7.4 Experimentsetupo e 254
7.5 Elastic Barycentre clustererresults 257

Table of contents xi

7.5.1 Combined test-trainsplit 257
7.5.2 Test-trainsplit 267
7.5.3 Elastic Barycentre clusterer conclusion 271
7.6 Elastic Barycentre evaluation 272
777 Conclusion e 275

8 KESBA: A Fast and Scalable End-to-End Elastic Distance Clustering

Algorithm 278
8.1 Introduction 279
8.2 Stochastic Subgradient Elastic Barycentre Average 281
8.3 Elastic SSG Barycentre analysis 285
8.4 The KESBA clustering algorithm 288
8.4.1 Random Subset Elastic SSG Barycentre Average 290
8.4.2 Elastic k-means++ initialisation 293
8.4.3 Lloyd’s-stopping condition 296
8.4.4 Increasediterations 297
8.4.5 Sakoe-Chiba bounding window 298
8.5 KESBA cluster configuration 298
8.6 KESBAexperiment 300
8.6.1 Combined Test-Train Split 300
8.6.2 Test-trainsplit 306
8.6.3 Conclusion: KESBA 309
8.7 KESBA Runtime Versatility 310
8.7.1 Elastick-means++, 310
8.7.2 Random Subset Elastic SSG Barycentre Subset Size . . . 313
8.7.3 BoundingWindow 316
8.7.4 Bounding Window and Barycentre Subset Size 318

8.8 Conclusion 321

Table of contents xii

9 The Elastic Clustering Ensemble (ECE) algorithm 322
9.1 Introduction 323
9.2 Clustering Ensemble Schemes 324

9.2.1 Simple Vote (SV) oL 325
9.2.2 Iterative Voting IVC) 325

9.3
94

9.5

9.6

9.7

9.8

9.2.3 Cluster-based Similarity Partitioning Algorithm (CSPA) . 326

9.2.4 Meta-CLustering Algorithm (MCLA) 327
9.2.5 Hybrid Bipartite Graph Formulation (HBGF) 328
9.2.6 Nonnegative Matrix Factorisation (NMF) 329
Elastic Unsupervised Proportional Weighting (EUPW) 330
Elastic Clustering Ensemble Experiment 332
94.1 BasePAMClusterers 332
EUPW intial experiments 333
9.5.1 Combined Test-Train Split 334
9.5.2 Test-trainsplit, 337
9.5.3 Conclusion: EUPW initial experiments 338
EUPW Compared to Other Ensemble Schemes 339
9.6.1 Combined Test-Train Split 339
9.6.2 Test-TrainSplit 343

9.6.3 Conclusion: EUPW Compared to Other Ensemble Schemes 345

EUPW with Other Unsupervised Evaluation Metrics 346
9.7.1 Combined Test-Train Split 346
972 Test-Train Split 349

9.7.3 Conclusion: EUPW with Other Unsupervised Evaluation

Metrics e 350
The Elastic Clustering Ensemble (ECE) 350
9.8.1 Combined Test-Train Split 351

9.8.2 Test-TrainSplit 356

Table of contents xiii

9.9 Conclusion e 357
10 Conclusion 358
10.1 Discussion of Contributions 358
10.2 Future Work and Extensions 361
References 363

Appendix A Excluded Datasets for Models 374

List of figures

1.1

2.1
22
2.3
24

2.5
2.6

2.7

Number of time series-related published papers over time. The data
was obtained from the Web Of Science, filtering papers that start

with “Time Series” followed by a field of interest.

Hierarchical clustering dendrogram.
Partition-based clustering example.
Density clustering example. L.
An example of a single-layered neural network clusterer. A time
series T = {t1,17, ...t} of length m is mapped to m input neurons
(one for each time point). Each input neuron is connected to the
output neurons with weights denoted by w;,1, where n is the input
neuron number and the second value represents the corresponding
output neuron. The output neuron layer represents the clusters. In
this example there are two clusters (C; and Cp).
TSCL taxonomy. i i
Example of alignment between two time series when using a L),
distance. The dashed grey lines represents which points in the red
time series are compared to in the blue time series.
Optimal DTW warping path through CM_;,, and a visualisation of

DTW alignment between the two time series.

List of figures

XV

2.8

29

2.10

2.11

2.12

2.13

2.14

2.15

2.16

2.17

Visualisation of two CM bounding algorithms. Green squares rep-
resents within bounds and white squares represent out of bounds. .
Optimal DTW warping path through CM,;,, using a Sakoe-Chiba
bounding window and a visualisation of DTW alignment between
the two time series using a Sakoe-Chiba bounding window.
Optimal DDTW warping path through CM_;;,, and a visualisation
of DDTW alignment between the two time series.
Optimal WDTW warping path through CM;;,, and a visualisation
of WDTW alignment between the two time series where g = 0.3. .
Optimal WDDTW warping path through CM,,;4:,, and a visuali-
sation of WDDTW alignment between the two time series where
g=03. . e
Optimal ADTW warping path through CM,;,,, and a visualisation
of ADTW alignment between the two time series where @ = 1. . .
Optimal shapeDTW warping path through CM;,,p.prw and a vi-
sualisation of shapeDTW alignment between the two time series
wherereach=2. 0oL,
Flow diagram to show how to compute a gradient matrix (£) from
a cost matrix. For the gradient matrix a heatmap is also used where
purple is low values to yellow and green value which represent high
values.
Example of string matching using LCSS. The left image shows a
direct pairwise match (i.e. similar to using euclidean distance). The
right image shows gaps being allowed, denoted by ““-” to find the

longest common subsequence between the two words. This allows

Optimal LCSS warping path through CM,, and a visualisation of

LCSS alignment between the two time series where € = 1.

29

35

37

39

50

List of figures

xvi

2.18

2.19

2.20

221

2.22

2.23

2.24
2.25

Optimal EDR warping path through CM,;, and a visualisation of
EDR alignment between the two time series.
Optimal ERP warping path through CM,,, and a visualisation of
ERP alignment between the two time series.
Example of different MSM edit operations. The top left box shows
the merge operation, the top right box shows the split operation and
the bottom box shows the move operation. The original sequence
refers to the series before MSM has applied a operation. The result

sequence refers to the series after the MSM operation has been

Optimal MSM warping path through CM,,,,,, and a visualisation of
MSM alignment between the two time series.
Optimal TWE warping path through CM;,,, and a visualisation of

TWE alignment between the two time series where v = 0.001 and

Example of partition-based clustering using k-means on the Gun-
point time series dataset. k-means employs the Euclidean distance
and arithmetic mean to form clusters. The black time series rep-
resent individual series assigned to Clusters 1, 2, and 3, while the
colored lines indicate the centroids of each cluster.
Flow diagram of k-means algorithm
Example of k-SC clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clus-
ters 1, 2 and 3). The colored lines through each cluster represent

the centroid foreach cluster.

List of figures

xvii

2.26

2.27
2.28

2.29

2.30

2.31

2.32

Example of k-shape clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given clus-
ter (Clusters 1, 2 and 3). The colored lines through each cluster
represent the centroid for each cluster.
Flow diagram of the DBA algorithm
Example of k-means-DBA clustering for time series Gunpoint
dataset. The black time series are time series that belong to a
given cluster (Clusters 1, 2 and 3). The colored lines through each
cluster represent the centroid for each cluster.
Example of k-soft-DBA clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given clus-
ter (Clusters 1, 2 and 3). The colored lines through each cluster
represent the centroid for each cluster.
Example of alternate k-medoids clustering for time series Gunpoint
dataset. The black time series are time series that belong to a given
cluster (Clusters 1, 2 and 3). The colored lines through each cluster
represent the centroid for each cluster.
Example of PAM clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clus-
ters 1, 2 and 3). The colored lines through each cluster represent
the centroid foreach cluster.
Example of CLARA clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given clus-
ter (Clusters 1, 2 and 3). The colored lines through each cluster

represent the centroid for eachcluster.

70

77

79

81

List of figures

xviii

2.33 Example of CLARANS clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given clus-
ter (Clusters 1, 2 and 3). The colored lines through each cluster

represent the centroid for each cluster.

3.1 Examples of different interpretations of the GunPoint dataset. Each
subfigure represents a distinct clustering criterion: (a) action type
(Gun vs. Point), (b) actor’s age (Young vs. Old), and (c) actor’s
gender (Male vs. Female).

3.2 An example critical difference diagram using dummy clusterers
over some metric, over some amount of datasets.

3.3 Violin plot for CLACC of dummy clusterers over multiple datasets

3.4 Example scatter plot between clusterer 1 and clusterer 2 for ARI

over 107 datasets

41 AMI . . .o
42 ARID
43 NMI
44 CLACC e

4.5 CD diagram of different initialisation strategies for k-means over
112 datasets from the UCR archive using the combined test-train
split. “random” refers to random initialisation, “random-restarts”
refers to random initialisation with 10 restarts, where the restart
with the lowest inertia is selected. “forgy” denotes Forgy ini-
tialisation, “forgy-restarts” represents Forgy initialisation with 10
restarts, where the restart with the lowest inertia is selected, and
“g-kmeans++" denotes greedy k-means++. L. L.

4.6 CLACC violin plot for different initialisation strategies over the

112 of the UCR archive using the combined test-train split.

82

86

101
103

104

123
123
123
123

123

124

List of figures Xix

4.7

4.8
4.9
4.10
4.11

4.12

4.13

4.14
4.15
4.16
4.17
4.18

4.19

4.20

4.21
4.22

Relative FitTime violin plot for different initialisation strategies

over the 112 of the UCR archive using the combined test-train split. 125

AMI . .o 143
ARL . ..o 143
NMI . .. 143
CLACC e 143

CD diagrams of Lloyd’s-based algorithm over 75 datasets from
the UCR archive using the combined test-train split. The excluded
datasets are detailed in Appendix A, Table A.2. The reason for the
exclusion is due to k-means-soft-DBA being unable to finish within
our seven day runtime limit. 143
Relative FitTime violin plot of baseline Lloyd’s clusterers over 75

datasets from the UCR archive using the combined test-train split. 144

AMI . . .o 145
ARIL . . o 145
NMI . ..o 145
CLACC e 145

CD diagrams of Lloyd’s-based algorithm over 106 datasets from
the UCR archive using the combined test-train split. The excluded
datasets are detailed in Appendix A, Table A.4. The reason for the
exclusion is due to k-means-ba-DTW being unable to finish within
our seven day runtime limit. 145
Relative FitTime violin plot of baseline Lloyd’s clusterers over 106
datasets from the UCR archive using the combined test-train split. 146

ARI of baseline Lloyd’s clusterers over 106 datasets from the UCR

archive using the combined test-train split. 147
AMI . .o 150
ARL . . . 150

List of figures XX
423 NMI . . . oo e 150
424 CLACC e 150
4.25 CD diagrams of Lloyd’s-based algorithm over 104 datasets from

the UCR archive using the test-train split. The excluded datasets

are detailed in Appendix A, Table A.3. The reason for the exclusion

is due to k-means-ba-DTW being unable to finish within our seven

day runtime limit.o Lo 150
426 AMI 151
427 ARL . . .o 151
428 NMI o e 151
429 CLACC e 151
4.30 CD diagrams of Lloyd’s-based algorithm over 112 datasets from

the UCR archive using the combined test-train split. 151
5.1 AMI . . L 159
52 ARI . . . 159
53 CLACC e 159
54 NMI . ..o 159
5.5 CD diagrams for k-means with 13 distances over 78 datasets from

the UCR archive using the combined test-train split. 159
5.6 ARI of k-means with 13 distances over 80 datasets from the UCR

archive using the combined test-train split. 162
5.7 Relative FitTime violin plot of k-means with 13 distances over 80

datasets from the UCR archive using the combined test-train split. 162
5.8 AMI . . . o 163
59 ARI . . . 163
5.10 CLACC e 163
ST NMI ..o 163

List of figures xxi

5.12

5.13
5.14
5.15
5.16
5.17

5.18
5.19
5.20
5.21
5.22

5.23
5.24
5.25
5.26
5.27

5.28
5.29
5.30
5.31
5.32

CD diagrams for k-means with 10 distances over 103 datasets from

the UCR archive using the combined test-train split. 163
AMI . . oo 167
ARL . ..o 167
CLACC . . . e 167
NMI . . 167

CD diagrams for k-means using 10 distances with the baseline

Lloyd’s models over 98 datasets from the UCR archive using the

combine test trainsplit. L L. 167
AMI . . o 168
ARL . . o 168
CLACC . . . 168
NMI . . 168

from the UCR archive using the test-train split. 168
AMI . . oo 170
ARL . .o 170
CLACC . . . e 170
NMI . . 170

CD diagrams for k-means using 13 distances with the baseline

Lloyd’s models over 103 datasets from the UCR archive using the

testtrainsplit 170
AMI . . 172
ARL . . o 172
CLACC . . . 172
NMI . . e 172

CD diagrams for our tuned DTW k-means clusterers over 101

datasets from the UCR archive using the combine test train split. . 172

List of figures xxii

5.33
5.34
5.35
5.36
5.37

5.38
5.39

5.40

6.1
6.2
6.3
6.4
6.5

6.6
6.7
6.8
6.9
6.10

AMI . . .o 173
ARIL . . o 173
CLACC e 173
NMI . .. e 173

CD diagrams for our tuned DTW k-means clusterers over 108
datasets from the UCR archive using the test train split. 173
Scatter plot comparison of k-means-DTW-20-window 173
Scatter plot comparison of k-means-ba-DTW-20-window compared
to k-means-ba-DTW over the combined test-train split and the test-
trainsplit. 174
Comparison of DTW and MSM warping paths for two time series

in the Fish UCR dataset. The warping path is the white line on top

of a heat map representation of each distance’s cost matrix. 176
AMI . . 194
ARL . . 194
CLACC 194
NMI . . 194

CD diagrams of alternate k-medoids over 76 datasets from the UCR

archive using the combined test-train split. Missing datasets are

outlined in Table A.12., 194
AMI . . 196
ARL . . 196
CLACC . . . 196
NMI . . . e 196

CD diagrams of alternate k-medoids over 106 datasets from the
UCR archive using the combined test-train split. Missing datasets

are outline in Table A.13. 196

List of figures xxiii

6.11
6.12
6.13
6.14
6.15

6.16
6.17
6.18
6.19
6.20

6.21
6.22
6.23
6.24
6.25

6.26
6.27
6.28
6.29
6.30

AMI . . .o 198
ARIL . . o 198
CLACC e 198
NMI . .. e 198

CD diagrams of alternate k-medoids with baseline clusterers over

104 datasets from the UCR archive using the combined test-train

split. Missing datasets are outlined in Table A.14 198
AMI . .o 199
ARL . . oo 199
CLACC e 199
NMI . . 199

CD diagrams of alternate k-medoids over 102 datasets from the

UCR archive using the test-train split. Missing datasets are outlined

inTable A.15.o 199
AMI . . . 200
ARL . . o 200
CLACC . . . e 200
NMI . . e 200

CD diagrams of alternate k-medoids over 102 datasets from the

UCR archive using the test-train split. Missing datasets are outlined

inTable A.16 200
AMI . . oL 202
ARIL . . 202
CLACC e 202
NMI . .. 202

CD diagrams of alternate k-medoids and k-means over 105 datasets
from the UCR archive using the combined test-train split. Missing

datasets are outlined in Table A.17 202

List of figures XXiv

6.31 Average rank improvement for each elastic distance when using
alternate k-medoids over k-means over 105 datasets from the UCR
archive combined test-train split. 202

6.32 Comparison of the performance of alternate k-medoids and k-means
using various elastic distances across 105 datasets from the UCR
archive, evaluated on the combined test-train split. The blue bars
represent the scores for alternate k-medoids, while the red bars
indicate the scores for k-means. The dashed blue and red lines

denote the average scores for alternate k-medoids and k-means,

respectively.o 203
6.33 AMI 204
6.34 ARL 204
6.35 CLACC e 204
636 NMI 204

6.37 CD diagrams of alternate k-medoids and k-means over 106 datasets
from the UCR archive using the test-train split. Missing datasets
are outlined in Table A.18. 204
6.38 Comparison of the performance of alternate k-medoids and k-means
using various elastic distances across 106 datasets from the UCR
archive, evaluated on the test-train split. The blue bars represent
the scores for alternate k-medoids, while the red bars indicate the
scores for k-means. The dashed blue and red lines denote the

average scores for alternate k-medoids and k-means, respectively. . 205

6.39 AMI 207
6.40 ARI 207
6.41 CLACC e 207

642 NMI 207

List of figures XXV

6.43

6.44
6.45
6.46
6.47
6.48

6.49
6.50
6.51
6.52
6.53

6.54

6.55

6.56
6.57
6.58
6.59

CD diagrams of PAM over 101 datasets from the UCR archive

using the combine test train split. Missing datasets are outlined in

Table A.19. 207
AMI . . oL 210
ARI . . o 210
CLACC e 210
NMI . .. 210

CD diagrams of PAM with baseline clusterers over 99 datasets from

the UCR archive using the combine test train split. Missing datasets

are outlined in Table A.20. 210
AMI . . o 211
ARL . . . o 211
CLACC e 211
NMI . .. 211

CD diagrams of PAM with 10 elastic distances, exclude PAM-soft-
DTW and PAM-shape-DTW with the baseline clusterers over 105
datasets from the UCR archive using the combine test-train split.
Missing datasets are outlined in Table A.21. 211
PAM-MSM and PAM-TWE results compared directly to k-means-
ba-DTW over 105 datasets from the UCR archive using the combine
test-train split. L. 212
Relative FitTime violin plot for PAM with 13 distances and the base-

line clusterers over 99 UCR archive datasets using the combined

test-train split. 213
AMI . . 214
ARL . . o 214
CLACC . . . e 214
NMI . . e 214

List of figures xxvi

6.60

6.61
6.62
6.63
6.64
6.65

6.66

6.67
6.68
6.69
6.70
6.71

6.72
6.73
6.74
6.75
6.76

6.77

CD diagrams of PAM over 111 datasets from the UCR archive

using the test-train split. Missing datasets are outlined in Table A.22.214

AMI . .o 216
ARL . ..o 216
CLACC e 216
NMI . ..o 216

CD diagrams of PAM with baseline clusterers over 111 datasets
from the UCR archive using the test train split split. Missing
datasets are outlined in Table A.22. 216
PAM-MSM and PAM-TWE results compared directly to k-means-

ba-DTW over 111 datasets from the UCR archive using the test-

trainsplit. 217
AMI . .o 219
ARL . .o 219
CLACC e 219
NMI . . 219

CD diagrams of CLARA over 112 datasets from the UCR archive

using the combined test-train split. 219
AMI . oo 222
ARL . o 222
CLACC e 222
NMI . . 222

CD diagrams of CLARA with baseline clusterers over 106 datasets
from the UCR archive using the combined test-train split. Missing
datasets are outlined in Table A.24. 222
CD diagram for FitTime of CLARA with 12 elastic distance and
the baseline clusterers over 106 UCR archive datasets using the

combined test-train split. 223

List of figures xxvii

6.78
6.79
6.80
6.81
6.82

6.83
6.84
6.85
6.86
6.87

6.88
6.89
6.90
6.91
6.92

6.93
6.94
6.95
6.96
6.97

AMI . oo 224
ARL . .o 224
CLACC e 224
NMI . . 224
CD diagrams of CLARA over 112 datasets from the UCR archive

using the test train split., 224
AMI . .o 227
ARL . .o 227
CLACC e 227
NMI . . 227
CD diagrams of CLARA with baseline clusterers over 112 datasets

from the UCR archive using the test train split. 227
AMI . . oo 229
ARL . .o 229
CLACC . . . 229
NMI . . 229
CD diagrams of CLARANS over 106 datasets from the UCR

archive using the combined test-train split. Missing datasets are

outlinedin Table A.23. 229
AMI . .o 232
ARL . . o 232
CLACC e 232
NMI . . 232
CD diagrams of CLARANS with baseline clusterers over 104

datasets from the UCR archive using the combine test train split.

Missing datasets are outlined in Table A.25. 232

List of figures xxviii

6.98 Relative FitTime violin plot for CLARANS with 13 distances and

the baseline clusterer over 104 UCR archive datasets using the

combined test-train split. 233
6.99 AMI 234
6.100ARI 234
6.10ICLACC 234
6.102NMI e 234

6.103CD diagrams of CLARANS over 112 datasets from the UCR

archive using the test-train split. 234
6.104AMI 237
6.105ARIL 237
6.106CLACC 237
6.107TNMI 237

6.108CD diagrams of CLARANS with baseline clusterers over 112
datasets from the UCR archive using the test-train split. 237
6.109Comparison of the performance of four k-medoids algorithms
across 11 elastic distances using 90 datasets from the UCR archive,
evaluated on the combined test-train split. The blue bars repre-
sent the scores for alternate k-medoids, green for CLARA, red for
CLARANS, and purple for PAM. The dashed lines indicate the
average scores for each clustering algorithm, with colours matching
the corresponding bars. LCSS was excluded due to its failure to
complete a significant number of datasets. The missing datasets are

listed in Table A.26. 238

List of figures XXix

6.110Comparison of the performance of four k-medoids algorithms
across 11 elastic distances using 105 datasets from the UCR archive,
evaluated on the test-train split. The blue bars represent the scores
for alternate k-medoids, green for CLARA, red for CLARANS, and
purple for PAM. The dashed lines indicate the average scores for
each clustering algorithm, with colours matching the corresponding

bars. LCSS was excluded due to failing to complete a large number

of datasets. Missing datasets are outlined in Table A.27. 239
6.11TAMI o 240
6.112ARI e 240
6.113CLACC e 240
6.1T4NMI e 240

6.115CD diagrams of 4 k-medoids clusterers with their top 5 distances
with baseline clusterers over 92 datasets from the UCR archive
using the combine test train split. Missing datasets are outlined in
Table A28 L 240
6.116Relative FitTime violin plot for 4 k-medoids clusterers with their

top 5 distances and the baseline clusterers over 92 UCR archive

datasets using the combined test-train split. 243
6.117TAMI e 244
6.118ARIL 244
6.119CLACC e 244
6.120NMI 244

6.121CD diagrams of 4 k-medoids clusterers with their top 5 distances
with baseline clusterers over 102 datasets from the UCR archive

using the test-train split. Missing datasets are outlined in Table A.29.244

7.1 Different Elastic Barycentre Averages for Gunpoint class 1. 253

List of figures XXX
72 AMI ..o 258
7.3 ARID . . . e 258
74 CLACC e 258
75 NMI ..o 258
7.6 CD diagrams of Elastic Barycentre k-means over 83 datasets from

the UCR archive using the combine test train split. Missing datasets

are outlinedin Table A.30. 258
7.7 Relative FitTime violin plot for each Elastic Barycentre clusterer

over 83 of the UCR archive using the combined test-train split. . . 259
7.8 AMI . . . o 260
79 ARID . . . 260
7.10 CLACC e 260
701 NMI ..o 260
7.12 CD diagrams of Elastic Barycentre k-means over 106 datasets from

the UCR archive using the combine test train split. Missing datasets

areoutlinedin Table A31 260
7.13 k-means-ba-MSM and k-means-ba-TWE results compared directly

to PAM-MSM and PAM-TWE respectively over 105 datasets from

the UCR archive using the combined test-train split. 262
714 AMI . . .o 263
705 ARIL . . . o 263
7.16 CLACC e 263
707 NMI ..o 263
7.18 CD diagrams of Elastic Barycentre k-means with the baseline clus-

terers over 105 datasets from the UCR archive using the combined

test-train split. Missing datasets are outlined in Table A.32. 263
709 AMI . .o 264
720 ARL e 264

List of figures xxxi

7.21
7.22
7.23

7.24

7.25
7.26
7.27
7.28
7.29

7.30
7.31
7.32
7.33
7.34

CD diagrams of Elastic Barycentre k-means with the baseline clus-
terers and soft-DBA over 79 datasets from the UCR archive using
the combine test train split. Missing datasets are outlined in Ta-
ble A33.. 264
Relative FitTime violin plot for Elastic Barycentre clusterers, PAM

and the baseline clusterers over 105 datasets from the UCR archive

using the combined test-train split. 265
AMI . 267
ARL . 267
CLACC 267
NMI . . 267

CD diagrams of Elastic Barycentre k-means over 98 datasets from

the UCR archive using the test-train split. Missing datasets are

outlined in Table A.34. 267
AMI . . 269
ARL . . 269
CLACC . . . e 269
NMI . . . e 269

CD diagrams of Elastic Barycentre k-means with the baseline clus-
terers and soft-DBA over 98 datasets from the UCR archive using

the test train split. Missing datasets are outlined in Table A.35. . . 269

List of figures XxXxii

7.35

7.36

8.1

8.2
8.3
8.4
8.5

Comparison of the performance of k-means-ba, k-means, and alter-
nate k-medoids across six elastic distances using 103 datasets from
the UCR archive, evaluated on the combined test-train split. The
blue bars represent the scores for alternate k-medoids, the red bars
correspond to k-means using the arithmetic mean, and the green
bars represent k-means-ba using the Elastic Barycentre Average.
The values above each set of bars indicate the difference in scores
between k-means-ba and the second best method. The dashed
lines denote the average scores for each clustering algorithm, with
colours matching the corresponding bars. 273
Comparison of the performance of k-means-ba, k-means, and alter-
nate k-medoids across six elastic distances using 107 datasets from
the UCR archive, evaluated on the test-train split. The blue bars rep-
resent the scores for alternate k-medoids, the red bars correspond
to k-means using the arithmetic mean, and the green bars repre-
sent k-means-ba using the Elastic Barycentre Average. The values
above each set of bars indicate the difference in scores between k-
means-ba and the second best method. The dashed lines denote the
average scores for each clustering algorithm, with colours matching

the corresponding bars. Lo 275

CD diagram for the FitTime of Lloyd’s-based clusterers with differ-
ent centroid computation algorithms over the UCR archive using
the test-train split. Missing datasets are outlined in Table A.36. . . 281

Different Elastic SSG Barycentre Averages for GunPoint class 1. . 287

AMI . .o 301
ARL . .o 301
CLACC e 301

List of figures xxxiii

8.6
8.7

8.8

8.9

8.10

8.11
8.12
8.13
8.14
8.15

8.16
8.17
8.18
8.19
8.20

8.21

8.22

CD diagrams of KESBA experiment over 105 datasets from the
UCR archive using the combined test-train split. Missing datasets
are outlinedin Table A.37. 301
KESBA-TWE and KESBA-MSM results compared directly to k-
means-ba-TWE and k-means-ba-MSM, respectively, for ARI over
105 datasets from the UCR archive using the combined test-train split.302
Relative FitTime violin plot comparison for KESBA, PAM and
Elastic Barycentre Average clusterers over 105 datasets from the
UCR archive using the combined test-train split. 303

CD diagram for KESBA FitTime compared to other clusterers for

105 UCR archive datasets using the combined test-train split. . . . 305
AMI . . oo 306
ARL . .o 306
CLACC e 306
NMI . . 306

CD diagrams of KESBA experiment with soft-DBA over 84 datasets

from the UCR archive using the combined test-train split. Missing

datasets are outlined in Table A.38. 306
AMI . . oL 307
ARL . . o 307
CLACC . . . e 307
NMI . .. 307

CD diagrams of KESBA experiment over 112 datasets from the
UCR archive using the test-train split. 307
CD diagram for KESBA FitTime compared to other clusterers for
112 UCR archive datasets using the test-train split. 307

AMI . . .o 309

List of figures XXXiv

8.23
8.24
8.25
8.26

8.27
8.28
8.29
8.30
8.31

8.32
8.33
8.34
8.35
8.36

8.37

8.38

8.39

ARL . ..o 309
CLACC e 309
NMI . .. 309

datasets from the UCR archive using the test-train split. 309
AMI . o 312
ARIL . . o 312
CLACC e 312
NMI . . 312

CD diagrams of KESBA with different initialisation strategies over

88 datasets from the UCR archive using the combined test-train

split. Missing datasets are outlined in Table A.40 312
AMI . 314
ARIL . . 314
CLACC . . . 314
NMI . . 314

CD diagrams of KESBA with different ba_subset_size over 107
datasets from the UCR archive using the combine test train split.
Missing datasets outlined in Table A.41. 314
KESBA runtime (red line) compared to average ARI score (green
line) for different ba_subset_sizes over 106 datasets from the UCR
combined test-train split. Missing datasets are outlined in Table A.42.315
KESBA runtime (red line) compared to average ARI score (green
line) for different window sizes over 106 datasets from the UCR
combined test-train split. Missing datasets are outlined in Table A.42.317
KESBA runtime (red line) compared to average ARI score (green
line) for different window sizes over 106 datasets from the UCR

combined test-train split. Missing datasets are outlined in Table A.42.319

List of figures XXXV

840 AMI 320
841 ARI 320
842 CLACC e 320
843 NMI 320

8.44 CD diagrams of KESBA with equal window and ba subset size over

109 datasets from the UCR archive using the combined test-train

split. Missing datasets are outlined in Table A43. 320
9.1 AMI 335
9.2 ARI 335
9.3 CLACC e e 335
94 NMI e 335

9.5 CD diagrams of EUPW experiment using the baseline clusterers

and the two best performing PAM variants over 90 datasets from

the UCR archive using the combine test train split. Missing datasets

are outlined in Table A.44. 335
9.6 EUPW-TWE results compared directly to PAM-MSM and PAM-

TWE, respectively, over 90 datasets from the UCR archive using

the combined test-train split. 336
9.7 AMI e 338
9.8 ARI 338
9.9 CLACC 338
9.10 NMI 338

9.11 CD diagrams of EUPW experiment using the baseline clusterers
and the two best performing PAM variants over 78 datasets from
the UCR archive using the test-train split. Missing datasets are
outlinedin Table A45. 338
9.12 AMI e 340

List of figures XXXVi

9.13
9.14
9.15
9.16

9.17

9.18
9.19
9.20
9.21
9.22

9.23
9.24
9.25
9.26
9.27

9.28

9.29

9.31

ARL . ..o 340
CLACC e 340
NMI . .. 340

CD diagrams of EUPW compared to other ensemble schemes over
91 datasets from the UCR archive using the combine test-train split.
Missing datasets are outlined in Table A46 340
EUPW-TWE results compared directly to CSPA and Simple-Voting,

respectively, over 91 datasets from the UCR archive using the

combined test-train split. 341
AMI . . o 344
ARL . . o 344
CLACC . . . 344
NMI . . 344

CD diagrams of EUPW compared to other ensemble schemes over

75 datasets from the UCR archive using the test-train split. Missing

datasets are outlined in Table A.47 344
AMI . . 347
ARL . . . 347
CLACC . . . e 347
NMI . . . e 347

CD diagrams of EUPW using ECHI and EDBI compared over 92
datasets from the UCR archive using the combine test-train split.
Missing datasets are outlined in Table A.48. 347
Comparison of EUPW-ECHI and EUPW-EDBI over 92 datasets

from the UCR archive using the combined test-train split. 348
AMI . . oo 349
ARIL . . 349
CLACC . . . 349

List of figures XXXvii
932 NMI 349
9.33 CD diagrams of EUPW-EDBI compared to other ensemble schemes

over 105 datasets from the UCR archive using the combine test

train split. Missing datasets are outlined in Table A.50. 349
934 AMI 350
9.35 ARI 350
90.36 CLACC e 350
937 NMI e 350
9.38 CD diagrams of EUPW using ECHi and EDBI compared over 78

datasets from the UCR archive using the test train split. Missing

datasets are outlined in Table A.49. 350
930 AMI e 352
940 ARI e 352
941 CLACC e 352
942 NMI 352
9.43 CD diagrams of ECE compared to the state-of-the-art clusterers

and the baseline clusterers over 90 datasets from the UCR archive

using the combined test-train split. Missing datasets are outlined in

Table Ad4. o 352
944 AMI e 354
945 ARI 354
9.46 CLACC e 354
947 NMI 354
9.48 CD diagrams of ECE compared to the baseline clusterers, state-

of-the-art and soft-DBA over 74 datasets from the UCR archive

using the combine test train split. Missing datasets are outlined in

Table AST. o 354
949 AMI 355

List of figures XXXViii

9.50
9.51
9.52
9.53

9.54
9.55
9.56
9.57
9.58

ARIL . . 355
CLACC . . . e 355
NMI . . 355
CD diagrams of ECE compared to each PAM clusterer over 92

datasets from the UCR archive using the combined test-train split.

Missing datasets are outlined in Table A48. 355
AMI . .o 356
ARL . 356
CLACC 356
NMI . . 356

CD diagrams of ECE compared to the state-of-the-art clusterers
and the baseline clusterers over 78 datasets from the UCR archive

using the test-train split. Missing datasets are outlined in Table A.45.356

List of tables

3.1

3.2

33

34

3.5

4.1

Summary of average performance of dummy clusterers across mul-
tiple evaluation metricso
Average AMI score of dummy clusterers on problems split by
problemdomaino
Summary of number of training and test instances per dataset dis-
tribution for 112 of the univariate UCR archive.
Summary of number of combined test and train instances and
number of unique class labels per dataset distribution for 112 of the
univariate UCR archive. 0L,
Summary of number of time series lengths and dataset domain per

dataset distribution e

A sample of TSCL literature using Lloyd-based methods. The
Reference column lists relevant papers, with Num. Cites showing
citation counts (as of August 2024). Init indicates the initialisation
strategy, Distance specifies the distance measure, and Averaging
lists the corresponding averaging methods. Max Iters defines the
iteration limit, while Early Stopping outlines convergence criteria.

A “—7 denotes unspecified or missing values.

List of tables

x1

4.2

4.3

4.4

4.5
4.6
4.7

4.8

4.9

4.10

Summary of initialisation strategies’ average scores across multiple
evaluation metrics over 112 datasets from the UCR archive using
the combined test-train split.
Number of iterations required for the squared Euclidean distance
clustering algorithm to converge without an early stopping condi-
tion on 112 datasets from the UCR archive using the combined
test-train split. The column labelled “Average Iterations” indicates
the average number of iterations across 10 restarts. The “Best It-
eration” column represents the number of iterations taken by the
restart that achieved the lowest inertia.
The 9 datasets that averaged over 40 iterations in their “Best Itera-
tions” for the squared Euclidean k-means, out of 112 datasets from
the UCR archive using the combined test-train split.
Baseline Lloyd’s-based models parameters
Baseline Lloyd’s-based models distance parameters.
Lloyd’s baseline experiment with k-means-soft-DBA average scores
across multiple evaluation metrics over 75 datasets from the UCR
archive using the combined test-train split.
Average ARI score on problems split by problem domain over 75
datasets from the UCR archive using the combined test-train split.
Lloyd’s baseline experiment average scores across multiple eval-
uation metrics over 106 datasets from the UCR archive using the
combined test-train split.o
Lloyd’s baseline experiment average ARI score on problems split
by problem domain over 106 datasets from the UCR archive using

the combined test-train split.

145

List of tables

xli

4.11

4.12

4.13

4.14

4.15

4.16

5.1
5.2
5.3

54

Lloyd’s baseline experiment average AMI score on problems split
by problem domain over 106 datasets from the UCR archive using
the combined test-train split.
Difference in performance between each clusterer and k-means-
Euclidean across multiple evaluation metrics over 106 datasets
from the UCR archive using the combined test-train split.
Average ARI score on problems split by problem domain over 104
datasets from the UCR archive using the test-train split.
Lloyd’s baseline experiment average ARI score on problems split
by problem domain over 112 datasets from the UCR archive using
the test-train split.
Performance difference against k-means-euclidean across multiple
evaluation metrics over 112 datasets from the UCR archive using
the test-train split. The raw value increase (or decrease) is presented
ineachecell.
Lloyd’s baseline experiment average ARI score on problems split
by problem domain over 112 datasets from the UCR archive using

the test-train split.o

Elastic distance k-means model parameters
Summary of elastic distance functions, and our initial parameters .
Summary of average score across multiple evaluation metrics for
k-means with 13 distances over 78 datasets from the UCR archive
using the combine test-train splitsplit.
Average ARI score on problems split by problem domain for k-
means with 13 distances over 78 datasets from the UCR archive

using the combine test-train splitsplit.

160

161

List of tables xlii

5.5

5.6

5.7

5.8

59

6.1

6.2
6.3

6.4

6.5

6.6

6.7

Summary of average score across multiple evaluation metrics for
k-means with 10 distances over 103 datasets from the UCR archive
using the combine test-train splitsplit. 165
Average AMI score on problems split by problem domain for k-
means with 10 distances over 103 datasets from the UCR archive
using the combine test-train splitsplit. 166
Average ARI score on problems split by problem domain for k-
means with 10 distances over 103 datasets from the UCR archive
using the combine test-train splitsplit. 167
Summary of average score across multiple evaluation metrics over
103 datasets from the UCR archive using the test-train split. 170
Average length of the optimal warping path for each time series
in the test split assigned to its closest centroid. The UCR 112

univariate archive has an average time series length of 551. 175

Baseline k-medoids models parameters. A “-” means the parameter
doesnotapply tothemodel. 192
Alternate k-medoids model parameters 193
Summary of average score across multiple evaluation metrics over
106 datasets from the UCR archive using the combined test-train split. 196
Average ARI score on problems split by problem domain over 106
datasets from the UCR archive using the combined test-train split. 197
Summary of average score across multiple evaluation metrics over
102 datasets from the UCR archive using the test-train split. 198
Average ARI score on problems split by problem domain. 102
datasets from the UCR archive using the test-train split. 199

PAM model parameters 206

List of tables xliii

6.8

6.9

6.10

6.11

6.12

6.13

6.14

6.15

6.16

6.17

6.18

6.19

6.20

6.21

Summary of average score across multiple evaluation metrics over
101 datasets from the UCR archive using the combined test-train split.208
Average ARI score on problems split by problem domain over 101
datasets from the UCR archive using the combined test-train split. 208
Summary of average score across multiple evaluation metrics over
111 datasets from the UCR archive using the test-train split. 215
Average ARI score on problems split by problem domain over 111
datasets from the UCR archive using the test-train split. 215
CLARA model parameters. k is the number of clusters for a given
datasets. 218
Summary of average score across multiple evaluation metrics over
112 datasets from the UCR archive using the combined test-train split.220
Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the combined test-train split. 221
Summary of average score across multiple evaluation metrics over
112 datasets from the UCR archive using the test-train split 225
Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the test-train split. 226
CLARANS model parameters. k is the number of clusters for a
given datasets and » is the number of instances for a given dataset. 228
Summary of average score across multiple evaluation metrics over
106 datasets from the UCR archive using the combined test-train split.230
Average ARI score on problems split by problem domain over 106
datasets from the UCR archive using the test-train split. 230
Summary of average score across multiple evaluation metrics over
112 datasets from the UCR archive using the test-train split. 235
Average ARI score on problems split by problem domain over 112

datasets from the UCR archive using the test-train split. 236

List of tables xliv

6.22

6.23

7.1

7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Summary of average score across multiple evaluation metrics over
92 datasets from the UCR archive using the combined test-train split.241

Average ARI score on problems split by problem domain over 92

datasets from the UCR archive using the test-train split. 242
Elastic Barycentre model parameters 255
Elastic Barycentre averaging parameters 256

Summary of average score across multiple evaluation metrics over
106 datasets from the UCR archive using the combined test-train split.260
Average ARI score on problems split by problem domain over 106
datasets from the UCR archive using the combined test-train split. 261
Summary of average score across multiple evaluation metrics over
79 datasets from the UCR archive using the combined test-train split.265
Average ARI score on problems split by problem domain over 79
datasets from the UCR archive using the combined test-train split. 266
Summary of average score across multiple evaluation metrics over
98 datasets from the UCR archive using the test-train split. 268
Average ARI score on problems split by problem domain over 98
datasets from the UCR archive using the test-train split. 268
Summary of average score across multiple evaluation metrics over
98 datasets from the UCR archive using the test-train split. 270
Average ARI score on problems split by problem domain over 98
datasets from the UCR archive using the test-train split. 271
Percentage increase of ARI and AMI for k-means-ba over alternate
k-medoids over datasets from the UCR archive: 103 combined

test-train splits and 107 test-train splits. 274

List of tables xlv

8.1

8.2
8.3
8.4

8.5

8.6

8.7

Number of Iterations for SSG-BA and BA to produce the barycen-
tres in Figure 8.2 and 7.1 respectively. The maximum number of
iterations was setto 500. oL 286
Default parameters for KESBA. 299
KESBA Random Subset Elastic SSG Barycentre Average parameters 300
Summary of average score across multiple evaluation metrics over
105 datasets from the UCR archive using the combined test-train split.301
Four FitTime statistics for completing clustering on 105 datasets
from the UCR archive using the combined test-train split. “To-
tal” refers to the cumulative hours required to process all datasets,
“Mean” represents the average time taken per dataset, “Median” is
the midpoint time to complete a dataset, and “Max” is the longest
time taken to complete any single dataset. 304
Four FitTime statistics for completing clustering on 112 datasets
from the UCR archive using the test-train split. “Total” refers
to the cumulative hours required to process all datasets, “Mean”
represents the average time taken per dataset, “Median” is the
midpoint time to complete a dataset, and “Max” is the longest time
taken to complete any single dataset. 308
Total time each clusterer took to complete Crop dataset in hours for
the test-train split. We note that our PAM clusterers were able to

exceed our normal seven-day runtime limit as they were run before

our HPC introduced a runtime limit. 308
8.8 KESBA initialisation experiment parameters. 311
8.9 FitTime statistics for clustering 88 datasets from the UCR archive

using the combined test-train split. 312
8.10 KESBA subset size experiment parameters. 314

8.11 KESBA window size experiment parameters. 316

List of tables xlvi

8.12

9.1

9.2

9.3

9.4

9.5

9.6

9.7

9.8

9.9

9.10

KESBA window size and barycentre average subset size experiment

parameters. e 318

[lustrative cluster ensemble problem with » = 3 and k = 3: Original
label vectors (left) and equivalent hypergraph representation with 9
hyperedges (right), where r is the number of base clusterers and k is
the number of clusters. Each cluster is transformed into a hyperedge.327
Summary of average score across multiple evaluation metrics over
90 datasets from the UCR archive using the combined test-train split.335
Average ARI score on problems split by problem domain over 90
datasets from the UCR archive using the combined test-train split. 337
Average ARI rank performance on problems split by problem do-
main over 90 datasets from the UCR archive using the combined
test-train split L 337
Summary of average score across multiple evaluation metrics over
91 datasets from the UCR archive using the combine test-train split. 341
Average ARI score on problems split by problem domain over 91
datasets from the UCR archive using the combine test-train split. . 342
Average ARI rank performance on problems split by problem do-
main over 91 datasets from the UCR archive using the combine
test-train split. 343
Average ARI rank performance on problems split by problem do-

main over 75 datasets from the UCR archive using the test-train

Summary of average score across multiple evaluation metrics over
92 datasets from the UCR archive using the combined test-train split.348
Summary of average score across multiple evaluation metrics over

90 datasets from the UCR archive using the combined test-train split.353

List of tables

xlvii

9.11 Average ARI rank performance on problems split by problem do-

Al

A2

A3

A4

A5

A6

main over 90 datasets from the UCR archive using the cobined

test-train split.

Example of Missing Datasets for Clusterers. Datasets are missing
due to computational runtime exceeding seven days.
Baseline Lloyd’s with k-means-soft-DBA using the combined test-
train split experiment missing datasets. A total of 27 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays.o
Baseline Lloyd’s with k-means-soft-DBA using the test-train split
experiment missing datasets. A total of 8 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

Baseline Lloyd’s using the combined test-train split experiment
missing datasets. A total of 6 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

k-means-elastic-distances-initial-experiments combined test-train
split experiment missing datasets. A total of 32 datasets are ex-
cluded. Datasets are missing due to the repeated creation of empty
cluster meaning results could not be obtained. Models that obtained
results for all datasets are excluded to conserve space.
k-means-elastic-distances-initial-experiments test-train split experi-
ment missing datasets. A total of 24 datasets are excluded. Datasets
are missing due to the repeated creation of empty cluster meaning
results could not be obtained. Models that obtained results for all

datasets are excluded to conserve space.

376

List of tables

xlviii

A.7 k-means-elastic-distances-initial-experiments-no-lcss-soft-shape com-

A8

A9

bined test-train split experiment excluding methods with no missing
datasets. A total of 9 datasets are excluded. Datasets are missing
due to the repeated creation of empty cluster meaning results could
not be obtained. Models that obtained results for all datasets are
excluded to conserve space.
k-means-elastic-distances-initial-experiments-with-baseline com-
bined test-train split experiment excluding methods with no missing
datasets. A total of 14 datasets are excluded. Datasets are missing
due to the repeated creation of empty cluster meaning results could
not be obtained. Specifically for k-means-ba-dtw and k-sc datasets

are excluded due to runtime exceeding our seven day limit. Models

that obtained results for all datasets are excluded to conserve space. 380

k-means-elastic-distances-initial-experiments-with-baseline test-
train split experiment excluding methods with no missing datasets.
A total of 7 datasets are excluded. Datasets are missing due to the
repeated creation of empty cluster meaning results could not be
obtained. Models that obtained results for all datasets are excluded

toconserve space.o el e e e e

A.10 k-means-elastic-distances-window-tuning combined test-train split

experiment missing datasets. A total of 11 datasets are excluded
.Datasets are missing due to the repeated creation of empty cluster

meaning results could not be obtained.

A.11 k-means-elastic-distances-window-tuning test-train split experi-

ment missing datasets. A total of 4 datasets are excluded. Datasets
are missing due to the repeated creation of empty cluster meaning

results could not be obtained.

List of tables xlix

A.12 Alternate k-medoids all distances combined test-train split experi-
ment missing datasets. A total of 36 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days. . 382
A.13 Alternate k-medoids without LCSS, EDR and soft-DTW combined
test-train split experiment missing datasets. A total of 6 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays. 383
A.14 Alternate k-medoids without LCSS, EDR and soft-DTW with base-
line clusterers combined test-train split experiment missing datasets.
A total of 8 datasets are excluded. Datasets are missing due to com-
putational runtime exceeding seven days. 383
A.15 Alternate k-medoids with all 12 elastic distances test-train split
experiment missing datasets. A total of 10 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.16 Alternate k-medoids with all 12 elastic distance and the baseline
clusterers test-train split experiment missing datasets. A total of 10
datasets are excluded. Datasets are missing due to computational
runtime exceeding sevendays., 384

A.17 Alternate k-medoids compared to k-means over the combined test-
train split across experiment missing datasets. A total of 7 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays.o 385

A.18 Alternate k-medoids compared to k-means across test-train split
experiment missing datasets. A total of 6 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

List of tables

A.19 PAM with all distances combined test-train split experiment missing
datasets. A total of 11 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days.

A.20 PAM with 12 elastic distances with baseline clusterers on the com-
bined test-train split experiment missing datasets. A total of 13
datasets are excluded. Datasets are missing due to computational
runtime exceeding sevendays.

A.21 PAM with 10 elastic distances exclude PAM-soft-DTW and PAM-
shape-DTW with baseline clusterers on the combined test-train split
experiment missing datasets. A total of 7 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.22 PAM with 12 elastic distances with baseline clusterers on the test-
train split experiment missing datasets. A total of 1 datasets are
excluded. Datasets are missing due to computational runtime ex-
ceeding sevendays.

A.23 CLARANS with 12 elastic distances on the combined test-train
split experiment missing datasets. A total of 6 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.24 CLARA with 12 elastic distances with baseline clusterers on the
test-train split experiment missing datasets. A total of 6 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays.

A.25 CLARANS with 12 elastic distances with baseline clusterers on the
combined test-train split experiment missing datasets. A total of 8
datasets are excluded. Datasets are missing due to computational

runtime exceeding sevendays.

List of tables

li

A.26 Different k-medoids clusterers comparison over the combined test-
train split experiment missing datasets. A total of 22 datasets
are excluded. Datasets are missing due to computational runtime
exceeding seven days. To conserve space we exclude PAM from
this table and refer to Table A.19 for PAMs missing datasets.

A.27 Different k-medoids clusterers comparison over the test-train split
experiment missing datasets. A total of 10 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.28 Best k-medoids clusterers comparison over combined test-train split
experiment missing datasets. A total of 20 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven
days. To conserve space we exclude PAM from this table and refer
to Table A.19 for PAMs missing datasets.

A.29 Best k-medoids clusterers comparison over test-train split experi-
ment missing datasets. A total of 10 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

A.30 Elastic Barycentre k-means using 8 different elastic distances over
the combined test-train split experiment missing datasets. A total of
29 datasets are excluded. Datasets are missing due to computational
runtime exceeding sevendays.

A.31 Elastic Barycentre k-means using 6 different elastic distances over
the combined test-train split experiment missing datasets. A total of
5 datasets are excluded. Datasets are missing due to computational

runtime exceeding sevendays.

391

394

List of tables

lii

A.32 Barycentre averaging using 6 different elastic distances with the
baseline clusterers over the combined test-train split experiment
missing datasets. A total of 7 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

A.33 Elastic Barycentre k-means using 6 different elastic distances with
the baseline clusterers and soft-DBA over the combined test-train
split experiment missing datasets. A total of 33 datasets are ex-
cluded. Datasets are missing due to computational runtime exceed-
ing seven days. To conserve space we exclude PAM from this table
and refer to Table A.19 for PAMs missing datasets.

A.34 Elastic Barycentre k-means using 8 different elastic distances over
the test-train split experiment missing datasets. A total of 14
datasets are excluded. Datasets are missing due to computational
runtime exceeding sevendays. L.

A.35 Elastic Barycentre k-means using 8 different elastic distances with
the baseline clusterers and soft-DBA over the test-train split experi-
ment missing datasets. A total of 14 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

A.36 Lloyd’s-based clusterers comparison with Elastic Barycentre Aver-
age test-train split experiment missing datasets. A total of 5 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays.

A.37 KESBA baseline experiment using the combined test-train split
experiment missing datasets. A total of 7 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

396

398

List of tables liii

A.38 KESBA baseline with soft-DBA experiment using the combined
test-train split experiment missing datasets. A total of 28 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays. 400
A.39 KESBA baseline experiment using the test-train split experiment
missing datasets. A total of 8 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days. . . . 401
A.40 KESBA with different initlisation strategies over the combined
test-train split experiment missing datasets. A total of 24 datasets
are excluded. Datasets are missing due to computational runtime
exceeding sevendays. L. 402
A.41 KESBA with different ba subset sizes over the combined test-train
split experiment missing datasets. A total of 5 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.42 KESBA runtime comparison experiment combined test-train split
experiment missing datasets. A total of 6 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven

A.43 KESBA both experiment combined test-train split experiment miss-
ing datasets. A total of 3 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days. 403
A.44 Baseline EUPW experiment combined test-train split experiment
missing datasets. A total of 22 datasets are excluded. Datasets are
missing due to empty clusters forming. 404
A.45 Baseline EUPW experiment test-train split experiment missing
datasets. A total of 34 datasets are excluded. Datasets are missing

due to empty clusters forming. 405

List of tables liv

A.46 EUPW compared to other ensembles schemes experiment over the
combined test-train split experiment missing datasets. A total of 21
datasets are excluded. Datasets are missing due to empty clusters
forming. To conserve space we exclude PAM from this table and
refer to Table A.19 for PAMs missing datasets. 406

A.47 EUPW compared to other ensembles schemes experiment over the
test-train split experiment missing datasets. A total of 37 datasets
are excluded. Datasets are missing due to empty clusters forming. 407

A.48 EUPW-ECHI compared to EUPW-EDBI over the combined test-
train split experiment missing datasets. A total of 20 datasets are
excluded. Datasets are missing due to empty clusters forming. . . 408

A.49 EUPW-ECHI compared to EUPW-EBI over the test-train split
experiment missing datasets. A total of 34 datasets are excluded.
Datasets are missing due to empty clusters forming. 409

A.50 EUPW using EDBI compared to other ensemble schemes over the
combined test-train split experiment missing datasets. A total of 7
datasets are excluded. Datasets are missing due to empty clusters
forming. To conserve space we exclude PAM from this table and
refer to Table A.19 for PAMs missing datasets. 410

A.51 ECE compared with the baseline clusterers and the state-of-the-art
and soft-DBA over the combined test-train split experiment missing
datasets. A total of 38 datasets are excluded. Datasets are missing

due to computational runtime exceeding seven days. 411

List of Algorithms

10
11
12
13
14
15
16
17
18
19
20

DTW (a,b,w) 26
optimal_warping_ path(CM) 28
average_of slope(a) 32
DDTW (a,b,w) 32
WDTW (a,b,w,g) 34
WDDTW (a,b,w,g) 36
ADTW (a,b,w,) 38
extract_sliding_window (a,reach) 40
shapeDTW_from_cm (a, b,reach, CM) 41
shapeDTW (a,b, w,reach) 41
soft_min (X, ¥,Z, Y) . -« v v v o e e e 43
soft DTW (a,b,w,y) 44
Soft DTW_Gradient (D,CM,y) 45
LCSS(a,b,w,€) 48
optimal_lcss_warping_path (a,b,w,e,CM) 49
EDR (a,b,w) 52
ERP(a,b,w,g). 54
COS_MSM(X, ¥, Z, €) + o v v v v e e e e e e e e e e 57
MSM (a,b,w,¢) 58

TWE@, b, W, A, V) 60

List of Algorithms Ivi

21 Jacobian_Transform (a,bE) 76

22 Lloyd’s Algorithm for k-means (X, k) 118
23 Lloyd’s Algorithm with restart initialisation strategy (X, k, n_init) . 122
24 Lloyd’s Algorithm with a maximum number of iterations (X, K,
n_init, max_iters) 129
25 Lloyd’s Algorithm with an inertia tolerance threshold (X, k, n_init,
max_iters, tol) 132

26 Lloyd’s Algorithm with all of our configurations (X, k, max_iters, tol)141

27 Alternate_k-medoids(X, k, n_init, max_iters, tol, n_init)) 183
28 PAMX,k,max_iters), 184
29 BUILDX,K) o o 185
30 SWAPX, k, max_iters, medoids) 186
31 PAM_without_BUILD(X, Kk, n_init, max_iters) 187
32 CLARA(X, k, n_samples, n_sampling_iters, max_iters) 188
33 CLARANS_SWAP(X, k, max_neighbours, medoids) 190
34 CLARANS(X, k, n_init, max_iters) 191
35 elastic_barycentre(X, max_iters,tol) 249
36 elastic_barycentre_update(barycentre, X) 250

37 elastic_ssg_barycentre(X, max_iters, tol, initial_step_size, end_step_size)284

38 elastic_ssg_barycentre_update(barycentre, X, current_step_size,
step_size_reduction), 285

39 KESBA (X, k, max_iters, ba_subset_size, window, initial_step_size,
end_step_size) 289

40 random_subset_elastic_ssg_barycentre(X, max_iters, tol, initial_step_size,

end_step_size, ba_subset_size) 292

List of Algorithms Ivii

41 random_subset_elastic_ssg_barycentre_update(barycentre, random_subset_X,
current_step_size, step_size_reduction) 293

42 elastic_kmeans_plus_plus(X, n_clusters) 295

Chapter 1

Introduction

In recent years, time series data has become increasingly ubiquitous, emerging
across numerous domains such as astronomy, biology, engineering, finance, manu-
facturing, medicine, meteorology, and more [98, 80, 127, 109, 33, 67, 42]. A time
series is an ordered sequence of real valued observations [84]. The most common
form of ordering is in the time domain. Although the concept of a time series is not
limited to time-based ordering, the fact that human experience is inherently bound
to the passage of time makes time-domain data particularly prevalent. As a result,
nearly any recorded phenomenon can be represented as a time series.

The widespread generation of time series data, coupled with the desire to analyse
and derive insights from it, has driven substantial interest in time series data mining
tasks such as anomaly detection, classification, clustering, forecasting, querying,
regression, and segmentation [105, 84, 47, 109, 27, 122]. Interest in these tasks
continues to grow. Figure 1.1 illustrates the increasing number of published papers
across various time series data mining fields. The graph was generated using data
from the Web of Science !, querying the number of papers with titles containing

the phrase “Time Series” followed by a specific field such as “Clustering”.

Thttps://clarivate.com/

3000

2000

1500

1000

500

0

2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022

= Clustering —— Classification = Anomaly Detection
Segmentation = Query Deep learning

Fig. 1.1 Number of time series-related published papers over time. The data was
obtained from the Web Of Science, filtering papers that start with “Time Series”
followed by a field of interest.

One of the most popular fields is time series clustering (TSCL) [89]. The objec-
tive of TSCL is to group time series into clusters where the series within a cluster
exhibit homogeneity, while those outside the cluster display heterogeneity [14]. As
an unsupervised learning task, TSCL does not require human supervision or labour-
intensive data annotation, making it highly versatile and applicable to almost any
time series dataset without prerequisites. This flexibility makes TSCL a common
starting point for exploratory data analysis [133].

However, a key challenge in clustering is defining what constitutes a “good”
cluster. There is no universally accepted definition of a good cluster [50]. For
instance, homogeneity could be defined as time series generated by a common
underlying process or based on shared hidden variables [47]. Consider clustering
patients using medical data: one approach might group patients by gender, while
another might cluster by age. There are countless ways to group patients, each valid
depending on the chosen criteria for similarity.

A central concept in clustering is “similarity”. What makes one time series

more similar to another? These are critical questions in TSCL. In traditional

clustering (i.e., clustering static, non-sequential tabular data), one of the most
common methods to measure similarity is through a distance measure.

A distance measure is a mathematical function that quantifies the similarity
or dissimilarity between data points. It assigns a numeric value representing how
close or far apart two points are in a feature space. Hundreds, if not thousands,
of clustering algorithms have been proposed [31], many of which use distance
functions to define similarity.

Measuring the distance between time series is significantly more complex
than for tabular data. While a time series can be represented in feature space,
this approach disregards the temporal ordering inherent in the data. Extensive
research has evaluated various distance measures for time series, and numerous
studies [74, 47, 111, 99, 76] have empirically shown that distance measures that
ignore temporal ordering (e.g., Euclidean distance) yield significantly less accurate
similarity measures between time series.

The most widely used distance measure to improve time series comparison is
Dynamic Time Warping (DTW) [10], the first in a family of algorithms known as
elastic distances. Elastic distances account for misalignment between time series
during distance computation. Misalignment occurs when the same or similar events
happen but are recorded at different time intervals in each series.

For example, consider recording the weather over two days: on the first day,
it only rains in the morning, while on the second day, it only rains in the after-
noon. Though both days experienced rain, the time (or temporal ordering) of this
event differs. A traditional distance measure that does not account for alignment
would fail to detect this similarity, as it does not account for the misalignment of
temporal events. However, an elastic distance would recognise this misalignment,
determining that rain occurred on both days and thus identifying the two time series

as similar.

1.1 Thesis Contributions 4

Consequently, the most common approach to clustering time series data is
to use traditional clustering algorithms (e.g., k-means [75], k-medoids [69], DB-
SCAN [29], Agglomerative [55]) but replace the Euclidean or other traditional
distance measures with an elastic distance. Numerous traditional clustering al-
gorithms have been adapted to work specifically with DTW. Examples include
k-means [94, 21, 47, 93], k-medoids [46, 47, 91], Agglomerative [2, 63, 51], Den-
sity Peaks [9, 51], and DBSCAN [51].

In recent years, many new elastic distances have been proposed, showing su-
perior performance to DTW in supervised tasks such as time series classification
(TSC) [74, 111, 76]. Despite this, the TSCL community has been slow to adopt
these new elastic distances, potentially missing opportunities to improve clustering
performance. Prior to this thesis, we identified only three instances in the TSCL
literature where alternative elastic distances to DTW were used: soft-DTW [21],
the Edit Distance on Real sequences (EDR) [85], and the Longest Common Subse-
quence LCSS [118].

This thesis seeks to address this gap in the research. Our objective is to conduct
the most extensive review of elastic distances for TSCL to date. We will review and
implement 12 different elastic distances, nine of which have not been considered for
TSCL before. These distances will be benchmarked using existing TSCL algorithms
previously tested only with DTW. Moreover, based on our findings, we will develop
new and novel TSCL algorithms that significantly advance the state-of-the-art in

TSCL while also being considerably faster in terms of runtime.

1.1 Thesis Contributions

1. Chapter 4 presents a robust Lloyd’s-based clustering algorithm for
TSCL. Many popular TSCL algorithms adapt k-means (Lloyd’s algorithm)

with time series distance functions to account for temporal dependencies.

1.1 Thesis Contributions 5

However, our survey of the TSCL literature reveals that nearly every Lloyd’s-
based algorithm is configured differently, making meaningful comparisons
difficult due to the algorithm’s sensitivity to configuration. To address this,
we propose a standardised Lloyd’s-based model for TSCL, consistently apply-
ing a specialised distance function across the initialisation, assignment, and
stopping condition. This unified approach allows us to attribute performance
differences to the distance function itself, rather than to varying configura-
tions. Using this model, we benchmark five of the most commonly used
Lloyd’s-based TSCL algorithms, which serve as our point of comparison

throughout the thesis.

2. Chapter 5 presents a comprehensive review of 12 different elastic dis-
tances using the k-means clustering algorithm. Building on our standard-
ised Lloyd’s configuration from Chapter 4, we conduct an extensive review
of 12 different elastic distances with the k-means algorithm. Our findings
challenge several common misconceptions within the TSCL community and
identify multiple new distances capable of achieving state-of-the-art perfor-
mance, which had been previously overlooked. Additionally, we analyse the
shared characteristics of the top-performing elastic distances and conduct a

detailed investigation into the unexpectedly poor performance of DTW.

3. Chapter 6 presents a detailed evaluation of 12 elastic distances across four
k-medoids clustering algorithms. In Chapter 5, we address a key limitation
of k-means when using elastic distances: centroid computation. Since most
elastic distances lack a specialised averaging technique (except for DTW),
k-means relies on the arithmetic mean, leading to suboptimal minimisation
of the objective function and resulting in unexpected clusterings. In contrast,
k-medoids can fully leverage elastic distances in both the assignment and

centroid computation stages without requiring any modifications. We evaluate

1.1 Thesis Contributions 6

four k-medoids variants, including two never before benchmarked with elastic
distances, and show that using elastic distances in centroid computation
significantly improves clustering performance. Additionally, our experiments
reveal that PAM with newly introduced elastic distances surpasses the current

state-of-the-art, establishing a new best-in-class TSCL approach.

4. Chapter 7 proposes a new Elastic Barycentre Averaging technique tai-
lored for TSCL. In Chapter 6, we demonstrate that k-medoids, which utilises
elastic distances for centroid computation, significantly outperforms methods
that rely on the arithmetic mean. However, when comparing PAM-DTW
(medoids) to k-means-ba-DTW (which uses a DTW-specific averaging tech-
nique), we observed that k-means-ba-DTW achieved superior clustering
performance. This led us to hypothesise that developing an averaging tech-
nique for the best-performing elastic distances could further enhance state-of-
the-art clustering. To this end, we propose the Elastic Barycentre Average,
a generalised version of the Dynamic Time Warping Barycentre Average
(DBA), applicable to any elastic distance that computes a full alignment path
through a cost matrix. Our empirical analysis show that using the Elastic
Barycentre Average for all elastic distances significantly improves clustering
performance compared to both the arithmetic mean and medoids. Moreover,
the best-performing elastic distances with this technique surpass the current

state-of-the-art.

5. Chapter 8 proposes the k-means end-to-end Elastic Stochastic subgradi-
ent Barycentre Average (KESBA) clusterer: a state-of-the-art, versatile,
and highly scalable clustering algorithm for real-world TSCL applica-
tions. In Chapter 7, we introduced a new elastic averaging technique that
achieved state-of-the-art TSCL performance. Additionally, in Chapter 6, we

found that PAM with certain elastic distances also exceeded the state-of-the-

1.2 Thesis Outline 7

art. However, both PAM and the Elastic Barycentre Average were shown
to have prohibitively high computational costs, rendering them impractical
for large-scale TSCL applications. To address this, we develop KESBA,
designed specifically for large-scale TSCL. KESBA incorporates a novel ex-
tension of the Elastic Barycentre Average, called the Random Subset Elastic
Stochastic Subgradient Barycentre Average, along with several optimisations
to the baseline Lloyd’s algorithm outlined in Chapter 4. These improvements
enable KESBA to achieve state-of-the-art clustering performance while being

significantly faster than other high-performing algorithms.

6. Chapter 9 proposes the Elastic Clustering Ensemble (ECE): a state-of-
the-art elastic PAM ensemble created using a novel Elastic Unsupervised
Proportional Weighting (EUPW) ensemble scheme. Building on the best-
performing PAM clusterers identified in Chapter 6, we introduce a new
EUPW ensemble scheme to create the Elastic Clustering Ensemble (ECE).
Our empirical evaluation demonstrates that the ECE clusterer, leveraging the
EUPW ensemble scheme, achieves state-of-the-art clustering performance,
surpassing six other commonly recognised ensemble schemes from the litera-

ture.

1.2 Thesis Outline

This thesis is organised into ten chapters. In the following, we outline the contents
of the remaining chapters.

Chapter 2 offers a detailed background on TSCL. It begins by outlining the foun-
dational concepts of time series data mining, including key background information
and notation, and situates TSCL within this context. We then present a general

overview of TSCL, defining our specific research focus within the field. Following

1.2 Thesis Outline 8

this, we provide an in-depth description of 12 elastic distance measures, complete
with formal notation and pseudocode for each. Finally, we review TSCL models
that incorporate specialised time series distance measures to enhance clustering
performance.

Chapter 3 outlines the experimental methodology used throughout this thesis.
We address the complexities involved in evaluating clustering performance and
propose a robust methodology to overcome these challenges. The chapter includes
details on statistical methods and comparison techniques, as well as an overview
of the open-source software packages utilised and contributed to, ensuring the
reproducibility of our research and results.

Chapter 4 surveys Lloyd’s-based TSCL algorithms and identifies significant
variation in configuration across different studies. Since Lloyd’s algorithm is highly
sensitive to its configuration, comparing results from different papers is challenging.
To address this, we propose a standardised Lloyd’s-based model for TSCL and
conduct benchmark experiments to establish a baseline for comparison, which is
used throughout this thesis.

Chapters 5 and 6 present an extensive review of k-means and k-medoids clus-
tering using 12 different elastic distances. We identify superior elastic distances
that had not previously been considered for TSCL and highlight specific models
that outperform the current state-of-the-art clustering algorithms. Additionally, we
analyse the attributes of the best-performing elastic distances to uncover common
traits that explain their superior performance.

Chapter 7 introduces a new averaging technique called the Elastic Barycentre
Average, a generalised version of the DBA algorithm that can be applied to any
elastic distance with a complete alignment path. We demonstrate that using the
Elastic Barycentre Average with k-means as the centroid computation algorithm

exceeds the current state-of-the-art performance.

1.2 Thesis Outline 9

Chapter 8 presents a new clustering model called KESBA. To create KESBA,
we develop the Random Subset Elastic Stochastic Subgradient Barycentre Average,
an extension of the Elastic Barycentre Average, incorporating optimisations from
the Stochastic Subgradient Dynamic Barycentre Average and random subsampling
inspired by CLARA. Further enhancements to the standard Lloyd’s baseline clus-
terer enable KESBA to achieve state-of-the-art performance while significantly
reducing computational runtime compared to similar high-performing algorithms.

Chapter 9 introduces a new elastic PAM ensemble, the Elastic Clustering Ensem-
ble (ECE), developed using a novel Elastic Unsupervised Proportional Weighting
(EUPW) ensemble scheme. Our empirical analysis demonstrates that the ECE
clusterer, leveraging the EUPW scheme, outperforms six widely used ensemble
schemes from the literature, all using the same PAM models. Additionally, we show
that ECE surpasses the performance of each individual PAM model that comprises
it, further highlighting its effectiveness.

Chapter 10 concludes this thesis by summarising the key contributions and

discussing potential future directions for elastic distance TSCL research.

Chapter 2

Background and Related Work

This chapter introduces the relevant background material for this thesis. We begin
by outlining the foundational concepts of time series data mining, including key
background information and notation, and position TSCL within this context. Next,
we present a general overview of traditional clustering methods and explain how
TSCL builds upon these approaches. Following this, we provide an in-depth de-
scription of 12 elastic distance measures, including formal notation and pseudocode
for each. Finally, we review specific TSCL models relevant to this thesis that
incorporate specialised time series distance measures and averaging techniques to

enhance clustering performance.

2.1 Time series data mining

A time series is any data that has discriminatory features dependent on its order-
ing [8]. The most common form of ordering is in the time domain. Although the
concept of a time series is not limited to time-based ordering, the fact that human
experience is inherently bound to the passage of time makes time-domain data

particularly prevalent.

2.1 Time series data mining 11

Formally, we define a time series as:

T =(t1,..-,titm) 2.1

where t; € R¢H is the observed value at the i-th time point, CH are the number of
channels for a time point, and m as the number of time points. When CH = 1, we
consider the time series to be univariate as each time point represent one value.
When CH > 1, we consider the time series to be multivariate as each time point
represents more than one value.

Time series can also be regularly or irregularly sampled. We consider a time
series to be irregularly sampled when the interval between observations are not
consistent. For example assume we have a time series T = (f,1,,13,14), which has
four observations representing a temperature reading at a given time. 7 would be
considered regularly sampled if each reading was taken at the same time apart, say
exactly one hour. However, we would consider 7 to be irregularly sampled if the
first (¢1) and second (#7) time point were recorded two hours apart but the third (#3)
and fourth (#4) observation were recorded thirty minutes apart. The interval they
were recorded at is not consistent therefore it is irregularly sampled.

Time series data exhibits unique characteristics not found in other data. Time
series machine learning techniques attempt to exploit these unique characteristics
and by doing so can achieve better results than traditional approaches. These unique

characteristics will now be outlined.

2.1.1 Time series unique characteristics
Temporal dependency

Time series data exhibits dependencies on its ordering. In other words, a given

time point may correlate to previous time points. In the context of time series

2.1 Time series data mining 12

machine learning, given an input time point #; a model may predict y;. However, if
the same value is observed at a later time point, say #;;, where n is some number of
observations in the future, the value of y;,, may be different to y;. This is due to
the model having observed more values since the last prediction and therefore, the

prediction changes due to the temporal dependency.

High dimensionality

In real world scenarios it is very common to encounter multivariate time series
where there could be tens if not hundreds of additional channels to consider. High di-
mensionality poses numerous problems when considering algorithmic and computa-
tional complexity, but also presents a complex data mining challenges. Multivariate
data mining techniques must consider the inter-relationship between observations
across channels. The discovery, and understanding of inter-relationship between

channels is critical to multivariate time series data mining.

Noise

Noise in time series is very common and can arise in many ways such as mea-
surement error with faulty sensors, rounding errors in the collection of the data or
other errors introduced by human error. An important challenge for data mining

techniques to overcome is determining what data is relevant and what is noise.

Missing values

Time series, especially in the real world scenarios, can have values missing. We
consider a time series to contain missing values if there is no reading for a given
time point where it is expected to have one for. The reason a time series may have
missing values could be due to faulty sensors, human error or data being unavailable

for collection at certain time points.

2.1 Time series data mining 13

Diverse semantics

In other data mining fields such as image or text data; patterns and trends learned in
one dataset to some extent can be transferred over to other datasets (namely word
or image embeddings). However, time series datasets are generally unique and
observations learned for one dataset will not be applicable to any other due to its

highly diverse and unique semantics.

2.1.2 Time series machine learning

The goal of a time series machine learning model is to leverage the unique character-
istics of time series data to generate a desired output. This output varies depending
on the specific discipline within time series machine learning. Some of the main

disciplines include:

Time series clustering (TSCL)

The objective of time series clustering (TSCL), is to group time series into clusters
where the series within each cluster exhibit homogeneity, while those outside the
cluster display heterogeneity [14]. As an unsupervised learning task, TSCL does
not require human supervision or labour-intensive data annotation, making it highly
versatile and applicable to almost any time series dataset without prerequisites. This

flexibility makes TSCL a popular starting point for exploratory data analysis [133].

Time series classification (TSC)

The objective of time series classification (TSC) is to assign predefined class labels
to a set of time series. TSC trains a classifier on a dataset by learning temporal
patterns and features that distinguish different classes. As a supervised learning
task, TSC requires the training data to be annotated with class labels that define the

observations. Once a classifier has been trained, new, unseen, and unlabelled time

2.1 Time series data mining 14

series data can be inputted into the model, which will predict class labels for the

unseen data.

Time series forecasting (TSF)

Time series forecasting (TSF) aims to predict the future values of a time series
by explicitly modelling the dynamics and dependencies among historical observa-

tions [121].

Time series extrinsic regression (TSER)

Time series extrinsic regression (TSER) is similar to TSC but instead of predicting
a discrete class labels, TSER predicts a continuous target variable. For instance,
TSC might classify an ECG signal as arrhythmia or normal, while TSER could be
used to predict a quantitative value such as the heart rate or respiratory rate of a

patient based on patterns in the ECG signal [117].

Time Series Segmentation (TSS)

Time series segmentation (TSS) aims to divide a time series into multiple subse-
quences and assign labels to each subsequence. This segmentation is useful for

identifying regime changes, anomaly detection, and trend analysis.

Time Series Anomaly Detection (TSAD)

Time series anomaly detection (TSAD) focuses on identifying unusual or abnormal
patterns in time series data. Anomalies can indicate significant temporal events.
TSAD methods typically aim to detect points, segments, or trends that deviate

significantly from the expected behavior of a time series [13].

2.2 Clustering 15

The above list is not intended to be an exhaustive list of all time series machine
learning disciplines but is instead meant to highlight the diverse time series machine
learning field and its huge range of real world applications.

The rest of the literature review will set out the specific literature that is the
focus of this thesis, namely TSCL and elastic distances. For simplicity, all examples
and pseudocode will assume the time series used are univariate of equal length m.

Additionally all arrays will be assumed to be indexed from 0.

2.2 Clustering

Before delving into specific TSCL approaches, we first outline traditional clustering
techniques to demonstrate how they have been adapted for TSCL. Over the years,
hundreds of clustering algorithms have been proposed [31] to solve various cluster-
ing problems. Broadly, these techniques can be divided into two main categories:
hierarchical-based and partition-based [32].

In this thesis, we focus primarily on partition-based clustering, as it is the
most commonly used and widely implemented approach in the TSCL literature.
Specifically, our research centres on crisp, squared error clustering [32], a method
that forms partitions by optimising a criterion function—typically minimising the
sum of squared distances within clusters. We focus on this type of clustering
because it is the most prevalent form of partition-based clustering in both the
traditional [32] and TSCL literature. While other partition-based methods, such as
density-based or model-based clustering, could be considered, these approaches
often pursue different clustering objectives, making direct comparisons and result

evaluations particularly challenging.

2.2 Clustering 16

2.2.1 Hierarchical-based

Hierarchical clustering refers to a family of algorithms that build nested clusters
by successively merging or splitting them [92]. Clusters are formed iteratively in
either a top-down or bottom-up manner, resulting in a dendrogram that depicts the
hierarchical structure of the clusters [104]. Agglomerative clustering, a bottom-up
approach, starts with individual objects and successively merges them to form
larger clusters. Conversely, divisive clustering, a top-down approach, begins with
all objects in a single cluster, which is then split into smaller clusters until each
object is isolated. A visualisation of hierarchical clustering is shown in Figure 2.1.
Popular examples of hierarchical clustering algorithms include Agglomera-
tive [55], Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) [131],
Clustering Using Representatives (CURE) [41], and CHAMELEON [56]. Many of
these algorithms have been adapted for TSCL by incorporating time series distance

measures [63, 2, 51] and time series-specific averaging techniques [66].

Agglomerative
Divisive

ull

Fig. 2.1 Hierarchical clustering dendrogram.

D E F G H |

2.2 Clustering 17

2.2.2 Partition-based

Partition-based clustering is the opposite to hierarchical clustering [104]. Its pri-
mary goal is to generate clusters that capture the natural groupings inherent in a
dataset [32]. While partition-based clustering can be divided into several subcat-
egories, we will outline those most relevant to the TSCL literature. For a more
comprehensive overview of every partition-based subcategory, we refer interested
readers to [32]. In this thesis, we define three key subcategories of partition-based
clustering extensively used in TSCL: Squared Error, Density-based, and Model-

based clustering.

Squared error partition clustering

Squared error clustering is the most widely used form of partition-based cluster-
ing [32]. It divides a dataset into k clusters without any hierarchical structure
by optimising a criterion function, typically the squared error of a distance mea-
sure [65]. The main objective is to define k centroids (also called exemplars or
cluster centres) that represent each cluster. Instances are assigned to clusters based
on their similarity to the centroids. A visual example of squared error clustering is
shown in Figure 2.2. Figure 2.2 depicts three distinct clusters, each with a centroid
that minimises a given error function. All other instances are assigned to one of the
three clusters based on their proximity to the three centroids.

Examples of squared error clustering in the traditional clustering literature
include k-means [75] and k-medoids algorithms, such as Partition Around Medoids
(PAM) [69]. Notably, k-means is one of the most well-known and widely used
clustering algorithms in the traditional literature.

Owing to its popularity in traditional clustering literature and its straightforward
adaptability to time series-specific distance functions (by replacing the traditional

distance function with a time series-specific one), squared error clustering algo-

2.2 Clustering 18

rithms like k-means have become the most widely used clustering approaches in the
TSCL literature. Numerous TSCL algorithms have adapted traditional square error
partition clustering algorithms by incorporating time series-specific distance and av-
eraging techniques to enhance clustering performance [89, 94, 113, 128, 21, 46, 47].
Later in this chapter we will provide a detailed outline of each of the referenced

algorithms.

A\ 4

Fig. 2.2 Partition-based clustering example.

Density-based

Density-based clustering identifies clusters by locating regions in the data where the
density of points is higher than in other areas. Clusters are defined as dense areas
separated by regions of lower density, and points outside of these dense regions are
often considered noise [29]. The definition of a “dense” region depends on how
neighborhoods of data points are established. Typically, a distance measure is used

to assess the similarity between time series in a dataset. A common approach is

2.2 Clustering 19

to define neighborhoods based on a distance threshold, where two instances are
considered to be in the same neighborhood if their distance is within this threshold.

A distinctive feature of some density-based methods, such as Density-Based
Spatial Clustering of Applications with Noise (DBSCAN) [29], is that instances not
located near dense regions are not assigned to any cluster and are instead labelled
as noise. Figure 2.3 illustrates an example of density-based clustering.

Although Figure 2.3 resembles the squared error clustering example in Fig-
ure 2.2, it differs in that some instances are marked as noise (depicted in black).
Additionally, each cluster is represented by a ellipse that defines dense regions in
the data, forming the clusters. Overall, the figure highlights the differing objectives
between density-based and squared error clustering algorithms when attempting to
partition the data into clusters.

Examples of popular density-based clustering algorithms include DBSCAN [29],
Density Peaks (DP) [100], Hierarchical DBSCAN (HDBSCAN) [16], Ordering
Points to Identify the Clustering Structure (OPTICS) [5], and Mean-Shift [20]. In
the context of TSCL, various density-based models have been adapted for TSCL

using time series specific distance measures [9, 51].

2.2 Clustering 20

Fig. 2.3 Density clustering example.

Model-based

Model-based clustering assumes that the data is generated from an underlying prob-
abilistic model, where each cluster corresponds to a component of the model. The
most common approach is to represent the data as a mixture of distributions, with
each distribution representing a cluster [36]. The goal of model-based clustering is
to find the parameters of these distributions that best fit the data. Once the model is
established, data points are assigned to clusters based on the likelihood that they
were generated by each distribution.

Figure 2.4 illustrates the model-based clustering algorithm Self-Organising
Maps (SOM), where the neural network learns the distribution of input data by
mapping input neurons to output neurons (clusters). The weights between these
neurons are iteratively updated during training, allowing SOM to adapt to the data
by learning topological relationships. SOM organises data points into clusters based
on their likelihood of belonging to the same underlying distribution.

Examples of popular model-based partition clustering algorithms in the tradi-

tional literature include Expectation-Maximisation (EM) [81] and SOM [124], both

2.3 Time series clustering (TSCL) 21

of which have been applied in TSCL. Several SOM models have been proposed that
incorporate time series-specific distance measures [113, 52]. Additionally, EM has
been employed to estimate parameters for mixture models, improving clustering

performance [123].

Fig. 2.4 An example of a single-layered neural network clusterer. A time series
T ={t1,t,...t,,} of length m is mapped to m input neurons (one for each time
point). Each input neuron is connected to the output neurons with weights denoted
by w1, where n is the input neuron number and the second value represents the
corresponding output neuron. The output neuron layer represents the clusters. In
this example there are two clusters (C; and ().

2.3 Time series clustering (TSCL)

TSCL shares the same objective as traditional clustering: to divide data into clusters
where instances within the same cluster are homogeneous, and those outside are het-
erogeneous. The key distinction lies in the type of data being clustered—time series
data. As previously established, time series data has unique temporal characteristics
that must be exploited to produce “good” clusterings.

Figure 2.5 provides a high-level overview of various clusterers proposed for

TSCL. The clusterers highlighted in blue represent traditional clustering models

2.3 Time series clustering (TSCL) 22

that have been adapted for TSCL, typically through the incorporation of time series-
specific distance measures and/or averaging technique. We have only included
models that literature specifically for TSCL has been published for.

Time series clustering

|

r 1 1
Hierarchical Partition Deep learning Feature Ensemble
BIRCH DTC I~ R-clustering RandomNet
Squared Error Density Model based
Agglomerative DEC P~ USSL SPF
k-means Density peaks Gaussian Mixture Model
IDEC = NDFS
k-SC TADPole EM
DTCR P~ UDFS
k-shapes OPTICS SoM
STCN I~ RUFS
k-means-DBA DBSCAN SOM-VAE
I~ RSFS
k-means-soft-DBA HDBSCAN SOM-DTW
= Catch22-k-means
k-medoids SOMTimeS

[— FeatTs

Alternate
P~ TTC

PAM
M~ USLM

CLARA
= SPIRAL

CLARANS
= U-shapelets

t— PCA-k-means

‘= UMAP-k-means

Fig. 2.5 TSCL taxonomy.

In Figure 2.5, alongside the previously defined Hierarchical and Partition-based
categories of clustering, we have included three additional categories: “Deep
Learning,” “Feature-based,” and “Ensemble”. We separate Deep Learning because
it encompasses a wide range of clustering models that could potentially fit into
multiple other categories. For simplicity, we place them in their own category.

Feature-based time series machine is another popular time series analysis field.
In traditional clustering, input vectors are often considered “features”, which means
feature-based methods could theoretically be classified as traditional methods.
However, a key aspect of feature-based TSCL is the selection and generation of
unsupervised features, typically paired with a specific clustering model. Given the
extensive literature on unsupervised feature generation and selection, we assign it

its own category.

2.3 Time series clustering (TSCL) 23

Lastly, Ensemble TSCL models are placed in a separate category because
ensembles can be composed of models from various other categories. To simplify,
we treat them as distinct. While Figure 2.5 provides an overview of existing feature-
based and deep learning TSCL approaches, we will not explore them further in this
thesis, as they are not the focus of our research.

In Figure 2.5, nearly all the models listed under Hierarchical and Partition-based
clustering are traditional models that have been adapted with specialised time series
optimisations. Of the 20 clusterers highlighted in blue (meaning they are traditional
clusterers with time series specific optimisations), 17 have been adapted through
the use of a time series-specific distance measure and/or averaging technique. This
highlights that adapting traditional models with a distance and averaging method is
the primary approach for developing TSCL algorithms.

One of the most commonly used distance measures is Dynamic Time Warping
(DTW) [10], which belongs to a family of algorithms called elastic distances.
Among the 20 clusterers highlighted in blue, 13 (k-means-DBA, k-means-soft-
DBA, alternate, PAM, CLARA, CLARANS, Density Peaks, TADPole, OPTICS,
DBSCAN, HDBSCAN, SOM-DTW, SOMTimeS) have been adapted specifically
using an elastic distance. Of those, 12 specifically utilise DTW (k-means-soft-DBA
uses soft-DTW). This demonstrates that the most common—and as will be shown,
one of the most successful—ways of adapting traditional clustering algorithms is
through the use of elastic distances.

Since DTW’s introduction to time series data mining in 1994 [12], numerous
new elastic distances have been proposed [111]. Many of these newer distances have
been shown to significantly outperform DTW in supervised time series machine
learning tasks, such as TSC [74, 111]. However, none of these “better” elastic
distances for TSC have been explored in the context of TSCL. Therefore, the
primary question this thesis seeks to answer is: how do these other elastic distances

perform in TSCL?

2.4 Elastic distances 24

We will now outline the 12 different elastic distances that will be explored
throughout this thesis to test this hypothesis. Following this, we will provide detailed
reviews of 10 of the most commonly used TSCL approaches that incorporate a time
series-specific distance measure. These will serve as the core clusterers for our

analysis and development of new elastic distance TSCL models.

2.4 Elastic distances

Measuring the distance between time series is a primitive operation that can be used
for a range of tasks such as classification, clustering, extrinsic regression, anomaly
detection and retrieval. The simplest way to calculate the distance between two

time series is to use the L, distance also known as the Minkowski distance [111].

m P
Ly(a,b) = Z a; — b;|? (2.2)
i

where p is the order of the norm, a and b are time series, m is the length of the time
series and i is the current index in the time series that are being considered.

Equation 2.2 shows the L, distance which takes a parameter p. The L; (p = 1)
distance is known as the Manhattan distance and the L, (p = 2) distance is known
as the Euclidean distance. The L, distance is of limited application for time series
machine learning since it does not perform any alignment between two given time
series. This forces distance calculations to only consider point-to-point comparisons
between two series and does not allow for any misalignment between series in the x
axis, as shown in an example in Figure 2.6.

Distances that account for the misalignment between two time series during
the distance computation, can be considered as elastic distances. While there have
been numerous elastic distances proposed since their first conception, this thesis

will only consider a subset which are the most popular in recent literature.

2.4 Elastic distances 25

6.5 4

6.0 1

5.5 1

5.0 1

4.5

4.0 1

3.5 4

3.0 4

T T T T T
o 2 4 6 8

Fig. 2.6 Example of alignment between two time series when using a L), distance.
The dashed grey lines represents which points in the red time series are compared
to in the blue time series.

2.4.1 Dynamic time warping (DTW)

Dynamic time warping (DTW) [10] was first proposed for time series machine
learning by [12]. DTW works by allowing one-to-many alignments (“warping’)
of points between two time series [111]. For disciplines such as TSC the one
nearest neighbor (1-NN) classifier using a tuned version of DTW was considered
state-of-the-art for many years and is still used as a baseline comparison for TSC
benchmarks [84].

DTW uses dynamic programming to find the optimal path through a cost
matrix (CM) that minimises the cumulative distance between two time series. It
achieves this by constructing a pairwise matrix where each index computes the
cost of aligning a point from the first time series with a point from the second time
series. Formally, the cost matrix for DTW is denoted as CMy;,,. Let CM;,, be an

(my+ 1) x (mp + 1) cost matrix with indices starting from i = 1 and j = 1, where m;

2.4 Elastic distances 26

is the number of time points in first time series and m, is the number of time points
in the second time series. The matrix CMy,,, is initialised with CM;,,(1,1) = 0 and
+oo for all other indexes.

Once the CMy;,, has been initialised, for i from 1 to m; and j from 1 to my, the

values are incrementally updated such that:

(

CMdtW(iu .])

CMp(i+1,j+1) = (a; = bj)> +min{ cpgy, (i + 1,) (2.3)

\CMdtW(i7j+ 1)

where a is a time series of length m, and b is a time series of length m;.
Once all values in CM,;,, have been computed the DTW distance between time

series a and b is given in Equation 2.4.
darw(a,b) = CMgy,,(m1 + 1,my + 1) (2.4)

Algorithm 1 shows the algorithmic implementation of DTW outlined in Equa-

tions 2.3 and 2.4.

Algorithm 1: DTW (a,b, w)
1 Input: a (time series of length my),b (time series of length m;), w
(window proportion, default value w <— 1)
Output: DTW distance between a and b
Let CM be a (m; + 1) by (my + 1) matrix initialised with all values co.
CM]J 0.
for i < 1 tom; do
for j < 1 tomy do
L if i — j| < w-max(m;,m;) then

QU A W R

L CMi1,j11 < (a; —bj)2 —I—min(CMivj,CMH_LJ',CMi,j—Q—l)

8 return CM,;, 1 m,+1

2.4 Elastic distances 27

In addition to a distance being extracted from the CM, a “warping path” can
also be extracted. A warping path is defined as P =< (e, f1), (€2, f2), ..., (es, fs) >
where each value in P is a pair of indices that define a traversal of matrix CM. A
valid warping path must start at location (1, 1), end at point (m;,m;) and should
not backtrack.

The optimal warping path through a CM is Px which is defined by creating a
path that minimises the cumulative distance through a CM. Algorithm 2 shows the
process to extract Px from a CM. Figure 2.7 (a) shows the optimal path through
the CMy;,, extracted using Algorithm 2 between the red and the blue time series.
Figure 2.7 (b) uses dashed grey lines show which time points in the red time series

are aligned to which time points in the blue time series.

06 585 623 623 656 863 894 903 906 933

078 179 213 359 398 1094 9.04 977 1096 953

217 09 269 597 548 1547 1097 118 1436 116

22 276 099 186 198 757 77 811 935 952

25 314 149 275 241 958 814 876 1038 10.0

295 321 218 359 316 1071 892 948 1143 10.86

61 301 593 871 7.04 19.05 12.87 14.02 1697 15.0

61 518 306 374 38 889 896 924 1026 1036

618 674 324 416 395 995 913 953 1076 10.54

879 6.19 639 897 723 1859 1246 13.53 16.17 14.05

o 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the DTW align-
through CM,;,,, between the red and blue time ment between the red and blue time
series. series.

Fig. 2.7 Optimal DTW warping path through CM;,, and a visualisation of DTW
alignment between the two time series.

DTW is susceptible to pathological warping where one time point in the first
time series is mapped to a large number of time points in the second time series [24].
This can be observed in Figure 2.7 (b) where the eighth time point in the red time

series maps to seven time points in the blue time series. Visually we can inspect

2.4 Elastic distances 28

Algorithm 2: optimal_warping_path (CM)
Input: CM (cost matrix of shape m; x my)
Output: List of indices that make up the optimal warping path through CM
1 Let (x_size,y_size) be the dimensions of CM
2 14— Xx_size
3 j 4 y_size
4 P_star < ||
5 whilei > 1o0r j > 1do

6 P_star.append((i, j))

7 if i == 1 then

8 | i1

9 else

10 if j == 1 then

11 ‘ i+—i—1

12 else

13 min_index < argmin([CM;_1 j—1,CM;_ j,CM; j_1])
14 if min_index == 0 then

15 | ji—1,j—1

16 else

17 if min_index == 1 then
18 ‘ i+—i—1

19 else

20 L j—j—1

21 P_star.append((1,1))
22 reversed_P_star = P_star.reverse()
23 return reversed_P_star

this alignment and see this is not a sensible realignment. To combat pathological
warping and improve DTWs time complexity which is O(m?), bounding windows
which constrain the optimal warping path have been proposed. A bounding window
limits how many time points can be mapped to a single time point in the other time
series.

In the literature the two most common bounding windows are the Sakoe-Chiba
bounding window [103] and Itakura Parallelogram bounding window [49]. Fig-
ure 2.8 gives a visual representation of the area in which each bounding technique
allows DTW to consider an optimal warping path through. Any points in the CM

highlighted in green can be aligned to however, any in white cannot be aligned to.

2.4 Elastic distances 29

(a) Visualisation of Sakoe-chiba bound- (b) Visualisation of Itakura Parallelogram
ing bounding where w = 0.2. bounding where max_w = 0.2.

Fig. 2.8 Visualisation of two CM bounding algorithms. Green squares represents
within bounds and white squares represent out of bounds.

The Sakoe-Chiba bounding window applies a bounding window of constant
width. This width 1s determined by the parameter w where 0 < w < 1. w represents
the percentage of the time series of length m the bounding matrix should allow
warping through.

The Itakura Parallelogram bounding window changes the amount of warping
allowed based on the location within the CM. At the start and end of the window
very little warping is allowed. In the middle of the window a large amount of
warping is allowed. When visualised this bounding window forms a parallelogram
shape over the CM (Figure 2.8 (b)). The maximum width for Itakura Parallelogram
is determined by the parameter max_w where 0 < max_w < 1. max_w represents
the percentage of the time series of length m the parallelogram will allow warping
through at its max width.

Figure 2.9 shows the use of a Sakoe-Chiba bounding window of w = 0.2 on the
CMy;,, between the red and the blue time series. Figure 2.9 (b) shows that when

a bounding window is applied there is less pathological warping. Specifically the

2.4 Elastic distances 30

seventh time point in the red time series in Figure 2.9 only warps to 4 other time

points in blue.

06 58 623 inf inf f

9 inf inf

548 inf

276 099 186 198 757 i

inf 149 275 241 958 814 inf inf

TR 2 =T = 2 2

704 19.05 12.87 14.02 1697 inf

inf 1214 1221 12.49 1351 136

inf inf 1237 12.78 14.01 13.79

F
f
inf.
f
f

3 3 3 =3 =

inf inf inf 1678 19.42 17.3 30

0 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the DTW alignment
through CMy,,, between the red and blue between the red and blue time series with
time with a Sakoe-Chiba bounding win- a Sakoe-Chiba bounding window of w =
dow of w=0.2. 0.2.

Fig. 2.9 Optimal DTW warping path through CM;,, using a Sakoe-Chiba bounding
window and a visualisation of DTW alignment between the two time series using a
Sakoe-Chiba bounding window.

The Sakoe-Chiba bounding window will be assumed as the default window for
elastic distances (if a bounding window is specified). Consequently, any pseudocode
provided for our elastic distances will include an additional parameter, w, which
controls the Sakoe-Chiba bounding window. The default value of w is set to 1,
indicating that no bounding window is applied. The Sakoe-Chiba bounding window
is enforced by the condition if(]i — j| < w-max(mj,mj3)) in the pseudocode (or a
similar line depending on how the CM is initialised). For example, in the DTW

algorithm presented in Algorithm 1, the bounding window is applied on line 6.

2.4.2 Derivative dynamic time warping (DDTW)

Derivative DTW (DDTW) [60] proposes a modification to DTW that first transforms

the input time series into a their first-order derivative form. The motivation for

2.4 Elastic distances 31

taking the derivative is DTW only considers alignment in the time axis (i.e. x
axis). This means that when two time series differ in alignment in y axis (known
as “shape””) DTW cannot find these difference. By taking the first derivative of the
time series this extracts the shapes of the time series allowing DTW to consider the
alignment in both the x and the y axis. For example if we had two time points q;
and b; which have identical values, but a; is part of a rising trend and b; is part of
a falling trend. DTW would consider a mapping between these two points ideal,
although intuitively we would prefer not to map a rising trend to a falling trend [60].
If we were to use DDTW instead these two points would not be mapped together as

the trend (or shape) is considered.

/

The differential series of ais a’ = (a},d},...,d,

) where a! defines the average

of the slopes between a;_1, a;, a; and a; 1. Formally this is defined in Equation 2.5.

(ait1—ai_1)
a1+
a; _ (az a; l) : 2 (25)

where a is a time series and 1 <i <m.
Using the derived series from Equation 2.5 the DDTW distance can be defined
in Equation 2.6.

dyarw(a,b) = dgp,,(d'\b). (2.6)

Algorithm 3 and 4 show the pseudocode for DDTW described in Equations 2.5
and 2.6. In Algorithm 3, line 2, the loop starts from index 2 and ends at m — 2.
The reason for this is there is no time point before index 1 and no time points after
index m — 2. Due to this the first and last values are removed hence the final array
a’ being of size m — 2.

Figure 2.10 visualises the alignment path between the red and the blue time

series. When compared to the warping path in Figure 2.7, the warping path in

2.4 Elastic distances 32

Algorithm 3: average_of_slope (a)

Input: a (time series of length m)

Output: time series of length (m —2)
1 let @’ be an array of size (m — 2) initialised to zero
2 fori<2tom—2do

(ai11—ai—1))
/ (gi—ai—1)+ 5
3 t a; 1)

4 return d’

Algorithm 4: DDTW (a,b, w)
Input: a (time series of length my), b (time series of length m), w (window
proportion, default value w <— 1)
Output: DDTW distance between a and b
1 d' < average_of_slope(a)
2 b’ « average_of_slope(b)
3 return DTW(d', b/, w)

Figure 2.10 is much more constrained as a result of accounting for the alignment in

the y axis as well as in the x axis.

2.4 Elastic distances 33

N

4 64 838 971 1413 1424 1624 17.86

24 388 127 113 292 269 311 337

4 381 317 341

262 58 226 154 331 411 369 35

(a) Optimal warping path (white squares) (b) A visualisation of the DDTW align-
through CM_4,, between the red and blue ment between the red and blue time se-
time series. ries.

Fig. 2.10 Optimal DDTW warping path through CM;,4;,, and a visualisation of
DDTW alignment between the two time series.

2.4.3 Weighted dynamic time warping (WDTW)

Weighted DTW (WDTW) [53] adds a multiplicative penalty to DTW for warping off
the diagonal. As observed in Figure 2.7 DTW is susceptible to pathological warping.
While a bounding window like the Sakoe-Chiba bounding window offers some
remedy to this problem, bounding windows act as hard cut offs to stop warping. To
find an appropriate window size for a given problem and additionally for this size
to be appropriate throughout the entire bounding window is very challenging. As
such WDTW proposes an alternative control for warping by adding a multiplicative
weighted penalty which acts as a “soft warping window”.

WDTWs takes a parameter g which controls the level of penalisation that occurs

for warping. Formally, Equation 2.7 defines the WDTW penalty.

2.7

weight|;_ ;| =

N[
—

1+e 8! =

2.4 Elastic distances 34

where weight);_j is the multiplicative weight value for position |i — j| indexes
off the diagonal warping, g is the parameter that controls the penalty level and m is
the length of the time series.

To incorporate this weight penalty into DTW, it is multiplied with the Squared
Euclidean distance. This is shown in Equations 2.8 and 2.9. The CM should be

initialised with CM,,4y,,(1,1) = 0 and +eo for all other entries.

(

Cdetw(i_ l,j— 1)

CMyan (i, j) = weight_j - (ai—b;)> +min $ CM, (i — 1, /) (2.8)

Cdetw(i7j_ l)
dyarw(a,b) = CM,yqp,,(my +1,my + 1) (2.9)

Algorithm 5 shows the algorithmic implementation of WDTW outlined in

Equations 2.7, 2.8 and 2.9.

Algorithm 5: WDTW (a,b, w, g)

1 Input: a (time series of length my),b (time series of length m;), w
(window proportion, default value w <— 1), g (float that controls the
penalty level, default value g < 0.05)

Output: WDTW distance between a and b

Let CM be a (m; + 1) by (my + 1) matrix initialised with all values co.

CM]J 0.

for i< 1tom; do

for j < 1 tomy do

if i — j| < w-max(m;,m;) then

: 1
L weight < ([mmax(my my)

Q. & n A W oW

I4+e 8 2)
CMH—Lj-H < weight- (ai - bj)2 + min(CMl-J, CMi-H,ja CM,'J.H)

return CM,;;, 1 m,+1

o

2.4 Elastic distances 35

011 133 143 143 158 261 279 284 287 307

015 033 041 083 096 393 281 327 409 32 55 /
ot L i
| e ! !
'
H i

055 018 051 129 137 504 364 419 59 454

056 072 02 036 039 20 205 222 284 294

069 09 034 061 046 215 217 242 319 317 as

273 095 218 29 176 431 269 333 471 483

273 219 097 126 128 275 271 275 298 301

278 32 108 152 135 346 278 284 302 305

(a) Optimal warping path (white squares) (b) A visualisation of the WDTW align-
through CM,, 4, between the red and blue ment between the red and blue time series
time series where g = 0.3. where g = 0.3.

Fig. 2.11 Optimal WDTW warping path through CM4,, and a visualisation of
WDTW alignment between the two time series where g = 0.3.

Figure 2.11 shows a WDTW warping path between the red and blue time series.
When compared to the warping path in Figure 2.7 the warping path it is much more

constrained. This is the result of the multiplicative penalty.

2.4 Elastic distances 36

2.4.4 Weighted derivative dynamic time warping (WDDTW)

Weighted derivative DTW (WDDTW) [53] is an extension to WDTW that takes the
derivative of the input time series before WDTW is performed. WDDTW attempts
to combines the benefits of DDTW and WDTW. This means WDDTW applies a
multiplicative warping penalty while taking advantage of shape information gained
by taking the derivative of the time series.

WDDTW will first take the derivative of each series shown in Equation 2.5

which will then be passed to Equation 2.9. This process is defined in Equation 2.10.

dwddtw(avb) - dwdtw(a/7b/) (210)

The pseudocode for WDDTW is defined in Algorithm 6.

Algorithm 6: WDDTW (a,b, w, g)

1 Input: a (time series of length my),b (time series of length m»), w
(window proportion, default value w <— 1), g (float that controls the
penalty level, default value g <— 0.05)
Output: WDDTW distance between a and b
2 d’ + average_of_slope(a)
3 b average_of_slope(b)
4 return WDTW(d', b', w, g)

Figure 2.12 illustrates the WDDTW alignment between the red and blue time
series. While it forms the same alignment as DDTW, as shown in Figure 2.10, the
parameter g controls the level of constraint on the warping path. Increasing the
value of g results in a more constrained warping path, while a lower value makes it

less constrained.

2.4 Elastic distances 37

3 184 254 311 532 538 667 782

083 131 036 03 08 08 103 116

095 253 075 043 093 099 114 114

347 334 136 118 143 076 096 107

(a) Optimal warping path (white squares) (b) A visualisation of the WDDTW align-
through CM,,44,,, between the red and ment between the red and blue time series
blue time series where g = 0.3. where g = 0.3.

Fig. 2.12 Optimal WDDTW warping path through CM,,44,, and a visualisation of
WDDTW alignment between the two time series where g = 0.3.

2.4.5 Amercing dynamic time warping (ADTW)

Amercing DTW (ADTW) [44] is a recently proposed variant of DTW which
penalises warping with a fixed additive cost (@). The motivation for ADTW is to
address weaknesses of multiplicative penalties (e.g. WDTW, WDDTW) in that a
multiplicative weight is relative to the distances between aligned points along a
warping path, rather than being a direct function of the amount of warping [44].
Furthermore, ADTW addresses the limitation of using a bounding window to
constrain warping which only looks at potential alignment within a specific bound
and ignores anything outside of it.

ADTW takes a parameter @ which is a constant that is an additive penalty for
warping off the diagonal. Assuming a CM initialised with CM4,,(1,1) = 0 and
+oo for all other entries, Equation 2.11 shows how to construct the CM 4, and

Equation 2.12 shows how to extract a distance from the CM 4.

2.4 Elastic distances 38

.

CMadtW(i_ 17]_ 1)

CMaan i j) = (@i = bj)* +min ¢ CMgpn (i — 1, /) + @ (2.11)

\CMadtw(iaj_ 1) +o

daarw(a,b) = CMugp,(mi +1,my + 1) (2.12)

The pseudocode for ADTW is given in Algorithm 7.

Algorithm 7: ADTW (a,b, w, ®)

1 Input: a (time series of length my),b (time series of length my), w
(window proportion, default value w < 1) , @ (additive cost of
warping, default ® < 1)

Output: ADTW distance between a and b

Let CM be a (m; + 1) by (my + 1) matrix initialised with all values eo.

CM1’1 0.

fori< 1tom; do

for j < 1 tom; do
if i — j| < w-max(m;,m;) then
CMiy1 j+1 <
(Cli — bj)z + min(CMiJ,CMiHJ + OJ,CMI'7]'+1 + CO)

BN - N S

=]

return CM,;;, 1 m,+1

Figure 2.13 shows the ADTW warping path between the red and blue time
series. The warping path produced is very similar to DTW using a bounding matrix
in Figure 2.9. This shows the effectiveness of the constant to constrain pathological

warping.

2.4 Elastic distances 39

N

06 685 823 923 10.56 13.63 14.94 16.03 17.06 18.33

178 179 313 559 698 14.94 14.04 1577 17.96 17.53

417 19 358 697 748 1847 1687 168 20.36 2003

52 476 199 386 498 1157 127 1411 1635 1752

65 614 349 375 441 1258 1214 1376 1638 17.0 as

795 721 518 559 45 1271 1336 1348 1643 17.25

121 801 993 1171 9.38 2039 16.66 18.46 2097 20.56

131 1118 806 974 1044 14.48 1555 16.83 18.85 19.94

1418 13.74 924 916 995 1659 1471 1611 1835 19.13

17.79 1419 1339 14.97 12.43 2459 19.05 19.11 22.76 21.86 30

o 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the ADTW align-
through CM,4,,, between the red and blue ment between the red and blue time series
time series where @ = 1. where ® = 1.

Fig. 2.13 Optimal ADTW warping path through CM,4,, and a visualisation of
ADTW alignment between the two time series where ® = 1.

2.4.6 Shape dynamic time warping (shapeDTW)

Shape DTW (shapeDTW) [132] transforms input time series to extract local struc-
tures (shapes) before applying DTW. ShapeDTW consists of two main steps. First,
each time point is transformed into a shape descriptor that encodes structural
information from its temporal neighborhood. Second, DTW is used on the two
transformed sequences of shape descriptors to extract an alignment path. Finally,
using the computed alignment path, the distance between the two time series is
calculated.

While multiple shape descriptors are described in [132], many require prior
knowledge of the data characteristics. Since unsupervised learning tasks, such as
TSCL, assume no prior knowledge of data characteristics, a shape descriptor named
“identity” is used. The identity shape descriptor utilises the raw subsequences as the
descriptor and as such assumes no prior knowledge of the data.

shapeDTW takes a parameter called reach which is the length of the subse-

quence to consider. The subsequences are extracted using a sliding window. The

2.4 Elastic distances 40

size of each window is given in Equation 2.13.

windows_size = 2 X reach+ 1 (2.13)

As a consequence of using a sliding window approach, the input time series must
be padded on both ends to ensure subsequences are well-defined.

To pad the time series a = (ay, .. .,a;,ay) of length m, the start of the time series
is padded with the value a;, reach times, and the end of the time series is padded
with the value a,,, reach times. The resulting padded time series (padded_a) will

be of length padded_m given in Equation 2.14.

padded_m = m+2 X reach (2.14)

Algorithm 8 defines the process described above to pre-process a given time

series to be used in shapeDTW.

Algorithm 8: extract_sliding_window (a, reach)

1 Input: a (time series of length m), reach (length of a subsequence)
Output: Matrix of subsequences

2 padded_a < pad_edges(a) Il pad_edges assumes process described
above

padded_m <— m—+ 2 X reach

window_size < 2 X reach + 1

Let subsequences be a matrix of shape window_size by m matrix initialised
with values 0.

for i< 1tomdo

L subsequences(:’l—) = A(j:i+-window_size)

8 return subsequences

[I N

N

Once the subsequences have been extracted using Algorithm 8, the subse-
quences are passed to the DTW CM function given in Equation 2.3 and Algorithm 1

(assuming the whole CM is returned rather than just the last element of CM). Using

2.4 Elastic distances 41

the CMy;,,, an optimal warping path can be extracted, and the distance can be

computed using Algorithm 9.

Algorithm 9: shapeDTW_from_cm (a, b, reach, CM)

1 Input: a (time series of length m{),b (time series of length my), reach
(length of a subsequence), CM (CM of shape m X m;)
Output: shapeDTW distance
2 [my
3] — my
4 distance <— 0
s whilei > 1and j > 1do
6
7
8
9

distance < distance + (Qyeqchti—1 — breach+j—l)2 min_a < CM;_1 j—1
min_b + CMiyjfl

min_c <— CM;_ j

if min_a < min_b and min_a < min_c then

10 i=i—1;

1 Jj=Jj—1;

12 else

13 if min_b < min_c then
14 ‘ j=j—1;

15 else

16 L i=i—1;

17 return distance ;

Algorithm 10 demonstrates the full algorithm to compute shapeDTW.

Algorithm 10: shapeDTW (a, b, w, reach)

1 Input: a (time series of length my),b (time series of length my), w
(window proportion, default value w <— 1) , reach (length of a
subsequence)
Output: shapeDTW distance between a and b
2 window_a < extract_sliding_window(a, reach)
3 window_b < extract_sliding_window(b,reach) CM «+
DTW_CM (window_a,window_b,w) // Algorithm I but returns the entire CM
return shapeDTW _from_cm(a,b,reach,CM)

Figure 2.14 shows the shapeDTW path between the red and blue time series. In
Figure 2.14 the first three time points in the blue time series are warped to the first
four time points in the red time series. When we visually inspect this alignment in

Figure 2.14 (b) it shows the first four time points in the red and blue time series are

2.4 Elastic distances 42

of very similar shape but are offset by one time point. shapeDTW identifies this

offset and realigns the two considering their shape.

N

478 1541 24.98 4249 52.09 57.67 658 72.26 7523 78.16

637 982 19.98 34.54 46.93 56.56 63.38 71.34 75.91 78.06

109 912 1411 3127 4115 5422 66.13 7051 77.05 80.81

1414 1516 12.02 24.72 374 48.23 6397 7641 76.43 8353

20.32 2372 2176 30.62 40.18 54.83 65.11 83.46 86.02 86.08

212 2578 300 352 49.18 54.13 6875 80.19 88.28 93.79

2745 2316 28.82 4319 47.01 66.04 68.73 835 89.97 96.51

35.77 34.84 28.09 48.09 59.95 6273 86.65 86.28 94.19 102.68

4216 48.44 42.61 47.21 69.83 80.42 82.99 109.67 99.05 107.61

480 5113 56.33 68.6 69.61 92.88 101.02 102.88 11335 111.38 30

0 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the shapeDTW
through CMj,peprw between the red and alignment between the red and blue time
blue time series where reach = 2. series where reach = 2.

Fig. 2.14 Optimal shapeDTW warping path through CMjy,,,.prw and a visualisation
of shapeDTW alignment between the two time series where reach = 2.

2.4.7 Soft dynamic time warping (soft-DTW)

Soft Dynamic Time Warping (soft-DTW) [21] is an adaptation of DTW that uses
a soft minimisation function in place of the discrete minimisation function. The
soft minimisation function computes a smooth approximation of the minimum
by considering a soft-minimum over all possible alignment paths between two
time series. As a result, the output of soft-DTW changes smoothly as the input
changes, ensuring that the gradient exists and is continuous. This means soft-DTW
is differentiable everywhere in the cost matrix.

The soft-minimum function is defined in Equation 2.15:

soft_ min(X) = —vlog Z o7 (2.15)

xieX

2.4 Elastic distances 43

where X is a set of values over which the minimum is computed, y > 0 controls the
smoothness of the approximation, and x; represents each individual value in X.
This soft-minimum function is incorporated into the DTW cost matrix function.

This is shown in Equation 2.16. The cost matrix is initialised similarly to DTW.

CMsoft_dtw(i_ 1aj_ 1)7

CMsoft_dtw(ivj) = (ai - bj)z + soft_min CMsoft_dtw(i - 1,j), (2-16)

CMsoft_dtw(i7j - 1)

dsoft_dtw<a7 b) - CMsoft_dtw (I’I’l] 5 m2) (2- 17)

Algorithm 11 illustrates the implementation of the soft-minimum function for
three variables x, y, and z, as described in Equation 2.15. Algorithm 12 then shows
how this soft_min_three function is integrated into the computation of the soft-DTW

distance between two time series a and b.

Algorithm 11: soft_min (x, y, z, 7)

1 Imput: x, y, z (Input floating-point values), y (smoothing parameter)
Output: Soft-minimum of three input floats with respect to y
if Yy =0 then

| return min(x,y,z)

w N

£

x Y z
max_val < max <_y, s —y)

=~ —max_val X max_val
summed_exp <— e<*” -) +e(*y -)

return —y - (log(summed_exp) + max_val)

= —max_val)

+e(4

A W

To compute a single optimal alignment path through the soft-DTW cost matrix,
Algorithm 2 can be applied similarly to DTW. However, unlike DTW, the soft-DTW
cost matrix is differentiable everywhere, enabling the computation of a gradient with
respect to the soft-DTW cost matrix. This gradient matrix can then be interpreted

as the expected alignment path under a Gibbs distribution [21]. In other words, the

2.4 Elastic distances 44

Algorithm 12: soft_ DTW (a,b, w, 7)

1 Input: a (time series of length my),b (time series of length m;), w
(window proportion, default value w <— 1) , y (smoothing
parameter)

Output: soft-DTW distance between a and b

Let CM be a (m; 4 1) by (my + 1) matrix initialised with all values co.

CM171 0.

for i < 2 tom; do

for j < 2 to m;p do
if |i — j| < w-max(m;,m;) then
L CM,'.J' — (a,-_l —bj_1)2 +
soft_min_three(CM,-,l,j, CMiijfl , CM,‘J,I, '}/)

Q. U A W N

8 return CM,;,;, 1 m,+1

gradient matrix represents the contribution of each possible alignment to the final
distance.

The soft-DTW gradient matrix can be utilised in various downstream time series
tasks. In particular, this thesis focuses on its application to time series averaging.
We will outline how a gradient matrix can be used to compute the Soft Dynamic
Barycentre Average (soft-DBA) in Section 2.5.1.

To compute the gradient through the soft-DTW cost matrix efficiently, [21]
proposed a quadratic runtime algorithm based on backpropagation. The key insight
is that the final soft-DTW value (CM,,, ,»,) depends on all previous computations
in the matrix through the recursive soft-min operations. Therefore, using the chain
rule, we can compute the gradient with respect to every value in the cost matrix by

recursively propagating derivatives backwards. This backward recursion computes

aCMs‘uft_dtw (I’I’l]))
aCMsoft?dtW(iJ)

be computed using Algorithm 13.

for all cells (i, j). Programmatically the gradient matrix (E) can

Figure 2.15 visualises this process. The figure illustrates: (i) the initial cost
matrix computed using soft-DTW and (ii) the gradient matrix (E), obtained by

applying the chain rule to the cost matrix with respect to the distance matrix.

2.4 Elastic distances 45

Algorithm 13: Soft DTW_Gradient (D, CM,)
Input: D (pairwise squared Euclidean distance matrix of shape m; X my),
CM (accumulated soft-DTW cost matrix of shape m| X my),
Y (smoothing parameter)
Output: Gradient matrix
1 Let E be an m;| X my matrix initialised with zeros
2 Eyym, < 1.0
3 fori<—my—1to1step —1do

4 for j < my—1to 1step —1 do
5 if i+1 < m; then
CMjy 1 j—CM; j=Dj1 j
6 wy e v
7 7Ei7j%Ei,j+Ei+17j~Wh
8 if j+ 1 < my then
CM; j+1—CM; j—Dj jy1
9 wy e 7
10 B E,'J(-E,"j-i-Ei’ijl-Wv
11 if (i+1<m)and (j+1 < m;) then
CMiy 1 j41-CM; j=Dit j+1
12 Wy e v
13 | Eij < Eij+Eit1j+1-Wa
14 return £

Previously, when using Algorithm 2 with DTW, a single optimal alignment path
was obtained, as shown in Figure 2.7(a).

In contrast, the gradient matrix shown in Figure 2.15 provides a more nuanced
representation of alignment probabilities, capturing the contribution of every pos-
sible alignment. This comparison highlights the advantage of deriving a gradient
matrix rather than a single alignment path.

Additionally, in Figure 2.15 (ii), the matrix is presented with a heatmap overlay,
where colours closer to purple indicate a lower likelihood of belonging to the
optimal alignment path, while indexes with more yellow and green hues are more
likely to be in the optimal alignment path. For example, in Figure 2.15 (i1), index
(1,1) and index (5,5) are marked in yellow with a value of 1.0, indicating a 100%

probability of being part of the alignment path.

2.4 Elastic distances 46

Soft DTW cost matrix Gradient matrix through
between two time series cost matrix

/

0.01 3.25 5.50 5.54 5.79

170 8.81 3.24 4.05 4.20

179 5.05 4.77 273 2.42 %

179 3.97 595 | 266 186 | Compute alignment
gradient matrix

3.48 10.53 3.93 3.39 184
(i) (i)

Fig. 2.15 Flow diagram to show how to compute a gradient matrix (£) from a cost
matrix. For the gradient matrix a heatmap is also used where purple is low values
to yellow and green value which represent high values.

2.4.8 Longest common subsequence (LCSS)

Longest Common Subsequence (LCSS) [126] is based on the edit distance algorithm
which is used for string matching [45]. Figure 2.16 shows an example of LCSS
used on a string matching problem. The figure demonstrates the process of adding

gaps (denoted by “-”) to each series to enable the LCSS “BAAB” to be extracted.

ABAACB -BAA-B

] 1 JTV\]

BCACAB B-A-AB

Fig. 2.16 Example of string matching using LCSS. The left image shows a direct
pairwise match (i.e. similar to using euclidean distance). The right image shows
gaps being allowed, denoted by “-” to find the longest common subsequence
between the two words. This allows matching with elasticity similar to DTW.

LCSS, is considered an edit distance. Edit distances evaluate the similarity

between two time series by counting the number of operations required to make

2.4 Elastic distances 47

them identical. Each operation has an associated cost, and the total cost represents
the distance between the two time series.

For example consider Figure 2.16. To make the two identical it would take
4 operations (removals) to make the two series identical. Therefore the distance
between the two time series could be considered 4.

LCSS builds on this concept of edit distances and specifically [126] adapts the
original algorithm to allow it to match real-valued data. This is done by adding a
floating point threshold € where if the difference between two values is less than
€, then they are considered a match. This allows the LCSS algorithm described
in [126] to be used for time series data.

In addition as LCSS allows “gaps” if there is no logical match between the
series making it less sensitive to noise. However, the quality of result is highly
sensitive to the parameterised value €.

To extract the LCSS distance between two time series, LCSS generates a CM.
To begin the CM is initialised as a matrix of zeros. The CM is then generated using

Equation 2.18.

/

1+CMlcss(i_1aj_1> if(’al'_bj‘gs)

CMlcss(hj) = CMlcss(i_ 1’]) (2.18)
max otherwise

CMlcss(iv .] —1)

where CM, 1s the LCSS CM initialised, i is a integer where 0 <i <m, jis a
integer where 0 < j < m, € is the matching threshold and a and b are time series of

length m.

2.4 Elastic distances 48

Once all values in CM;.; have been computed the LCSS distance between time

series a and b can be extracted using Equation 2.19.

CMjcss(my +1,my + 1)
min(ml,mz)

dlcss(“vb) =1- (219)

In Equation 2.19 the CM value is subtracted from 1 because, in traditional LCSS,
a perfect match between two time series yields a value of 1, while two infinitely
dissimilar series yield a value of 0. To ensure consistency with other distance
measures in this thesis, where higher values indicate greater dissimilarity, the LCSS
value is adjusted accordingly.

Algorithm 14 shows the pseudocode for Equations 2.18 and 2.19

Algorithm 14: LCSS (a,b, w, €)

1 Input: a (time series of length my),b (time series of length m;), w
(window proportion, default value w < 1), € (matching threshold to
determine if two subsequences are considered matching, default
value € + 1.))

Output: LCSS distance between a and b

2 Let CM be a (m; + 1) by (my + 1) matrix initialised with all values 0.
3 fori<2tom;+1do

4 for j < 2tomy+1do

5 if i — j| < w-max(m;,m;) then

6 if ||a; — ;|| < € then

7 L CMi,j%1+CMi—l,j—l

8 else

9 L CM;1,j11 <—max(CMl~7j_1,CM,~_1’j)

10 return 1 — (CMp, 41 my+1/ min(my,my))

As an optimal LCSS warping path can have gaps this means the algorithm to ex-
tract the optimal warping path for DTW and similar elastic distances (Algorithm 2)
will not work for LCSS. As such LCSS has its own bespoke algorithm to extract

the optimal LCSS warping path. This is given in Algorithm 15.

2.4 Elastic distances

49

Algorithm 15: optimal_lcss_warping_path (a, b, w, €, CM)

5

N-IEN- NN BN

10
11

12
13

Input: a (time series of length my),b (time series of length m>), w

(window proportion, default value w < 1), € (matching threshold to
determine if two subsequences are considered matching, default
value € < 1.)), CM (CM for LCSS, of shape (m; + 1,mp+ 1))

Output: List of indices that make up the optimal warping path through CM
1 i+ m+ 1

2] —my+ 1

3 Ptar < |]

4 whilei > 1and j > 1do

if|i—1)—(j—1)| <w-max(m,m;) then

if |a,-_1 —bj_1| < ¢ then
Pitar.append((i—1,j—1))
i+—i—1
Je—Jj—1
elseif CM[i—1,j] > CM[i, j — 1] then
| i1
else
ARV

14 reversed_P_star = P_star.reverse()
15 return reversed_P_star

Figure 2.17 shows the LCSS alignment path between the red and blue time

series. When compared to other warping paths (such as Figures 2.7, 2.10, 2.13 etc.)

the most obvious difference is the LCSS optimal warping path has gaps. Figure 2.17

(b) shows it may be logical to have gaps in our alignment paths. For example the

fifth index in the blue time series isn’t aligned to any index in the red time series.

This would seem ideal as there is no similar time points in the red time series

therefore it shouldn’t be aligned.

2.4 Elastic distances 50

(a) Optimal warping path (white squares) (b) A visualisation of the LCSS align-
through CM, ., between the red and blue ment between the red and blue time se-
time series where € = 1. ries where € = 1.

Fig. 2.17 Optimal LCSS warping path through CM,, and a visualisation of LCSS
alignment between the two time series where € = 1.

2.4.9 Edit Distance on Real Sequences (EDR)

Edit Distance on Real Sequences (EDR) [19] builds on LCSS whereby it uses a
distance threshold € to determine if two time points are considered a match, but in
addition it applies a constant penalty for non-matching time point occurs. This is

described in Equations 2.20, 2.21 and 2.22.

0 if(la—bjl <e)
edr_cost(a;,bj) = (2.20)

1 otherwise

(

CMeqr(i—1,j—1)+edr_cost(a;, b))

CMeqr (i, j) =min ¢ CM,4.(i — 1,) + 1 (2.21)

CMedr(i7j_ 1) +1
\

CMedr(ml +1,my+ 1)

degr(a,b) = max (mp,n;)

(2.22)

2.4 Elastic distances 51

where CM,4, is the EDR CM initialised to zeros, i is a integer where 0 <i <m, j is
a integer where 0 < j < m, € is the matching threshold and a and b are time series
of length m.

By applying a constant penalty to gaps it makes the distance more accurate than
LCSS [19] and more robust to noise than DTW as it quantises the distance (values
increments of 0 or 1).

Finally EDR prescribes a more robust way to select the value of € by using a
quarter of the maximum standard deviation of the input time series. This is given in

Equation 2.24.

olc)=,|—— Z(ci —7)? (2.23)

€= (2.24)

where a and b are time series of length m.

Algorithm 16 outlines EDR.

Figure 2.18 shows the EDR alignment path between the red and blue time series.
The EDR warping path is much more constrained than the DTW path (Figure 2.7).
Specifically the fifth index in the blue time series, which could be considered noise,
doesn’t throw off the EDR alignment as is does in the DTW CM. This highlights
EDRs ability to deal with noise by quantising the distance rather than using the
Squared Euclidean distance. This quantisation can be clearly seen in Figure 2.18

(a) with the CM values.

2.4 Elastic distances 52

Algorithm 16: EDR (a, b, w)

1 Input: a (time series of length my),b (time series of length m»), w
(window proportion, default value w < 1)
Output: EDR distance between a and b
2 € < max(o(a),o(b))/4
3 Let CM be a (m; + 1) by (my + 1) matrix initialised with all values oo.
4 CM17; +—0
5 CM;J +~0
6 fori<2tom;+1do

7 for j < 2tomy+1do

8 if [(i—1)—(j—1)] <w-max(mj,m) then

9 if||ai_1—bj_1|| < ¢ then

10 L cost <0

11 else

12 L cost +— 1

13 B CM,'J‘ — min(CMi_Lj_l —|—C0Sl‘,CMl'_17j + 1,CM,'7]'_1 + 1)

14 return CM,, 1 41

AN

00 10 10 10 00 10 10 00 10 00
00 00 10 10 10 20 20 20 30 20

00 10 00 10 10 20 20 30 40 40

0 2 4 6 8

(a) Optimal warping path (white squares)
through CM,;, between the red and blue (b) A visualisation of the EDR alignment
time series. between the red and blue time series.

Fig. 2.18 Optimal EDR warping path through CM,;, and a visualisation of EDR
alignment between the two time series.

2.4 Elastic distances 53

2.4.10 Edit Distance with Real Penalty (ERP)

Edit Distance with Real Penalty (ERP) [18] is an edit distance that attempts to
align time series by considering how indexes are carried forward through the CM.
Usually in CM ;,,, if an alignment cannot be found, the previous value is carried
forward. ERP allows gaps or sequences of points that have no matches (similar
to LCSS). However, instead of using a threshold, like EDR or LCSS to determine
matches, ERP uses the Squared Euclidean distance between elements to measure
a match. Additionally the Squared Euclidean distance is used to apply a penalty
to warping which changes based on the time point in question. As ERP doesn’t
use a threshold for a match but instead uses the Squared Euclidean distance, this
means that it satisfies triangle inequality which can yield advantages in tasks such
as indexing and TSCL.

The penalty of warping (g) is set to a constant floating point which is the
standard deviation o (Equation 2.23) of the training data.

Equations 2.25 and 2.26 define how the CM,,, is generated and how a distance

extracted from it.

(

CMerp<i_ 1,j_ 1)+(ai_bj)2

CMerp(iaj) = min CMerp(i - 1,j> + (a,- —g>2 (225)

\CMerp<iaj_ 1) + (bj _g)Z

dorp(a,b) = CMeyp(my +1,my+1) (2.26)

where CM,,, is the ERP CM initialised to zeros, i is a integer where 0 <i <m, j is
a integer where 0 < j < m, g is the penalty for moving off the diagonal and a and b
are time series of length m.

Algorithm 17 defines the implementation of ERP.

2.4 Elastic distances 54

Algorithm 17: ERP (a,b, w, g)

1 Input: a (time series of length my),b (time series of length m;), w
(window proportion, default value w < 1), g (penalty for warping
off the diagonal)

Output: ERP distance between a and b

2 Let CM be a (m; + 1) by (my + 1) matrix initialised with all values oo.
3 CM171 +~0

4 fori<2tom;+1do

for j < 2tomy+1do

if|(i—1)—(j—1)| <w-max(m;,m;) then
match < CMi—Lj—l + ||ai_1 - l’)j_1||
insert <— CM;_1 j+ (ai—1 — 8)
delete + CM,'J,l + (bj,1 —g)

10 CM; j < min(match,insert,delete)

N-JE-CREN

1 return CM,, 1 my+1

Figure 2.19 shows the ERP warping path between the red and the blue time

series. The warping path is constrained due to the penalty applied for warping off

the diagonal.

2.4 Elastic distances 55

N~ “

077 631 1017 1341 17.23 19.04 22.85 26.38 29.44 332

522 186 572 896 1278 14.59 184 21.93 24.99 28.75

1042 556 32 644 1027 12.07 1588 19.41 2247 26.23 55

1459 973 587 414 679 86 124 1594 190 2276

1915 1429 1043 72 488 668 936 12.89 1595 19.71

2384 1898 1512 1189 806 776 7.57 10.51 13.56 16.87

29.64 241 2092 17.68 13.86 12.05 974 982 12.88 15.6

337 2816 2431 2174 17.92 1611 1231 10.27 1084 13.19 40

37.99 3245 2859 2535 2221 204 1659 13.06 1151 11.36

4362 38.09 3423 3099 27.16 26.03 22.23 18.69 15.64 13.38

o 2 4 6 8

(a) Optimal warping path (white squares)
through CM,,, between the red and blue (b) A visualisation of the ERP alignment
time series. between the red and blue time series.

Fig. 2.19 Optimal ERP warping path through CM,,, and a visualisation of ERP
alignment between the two time series.

2.4.11 Move-split-merge (MSM)

2

Move-split-merge (MSM) [114] is an edit distance that assigns different “costs
depending on the type of edit and its location within CM,,s,,. This differs from
similar edit distances such as ERP that for any given insertion or deletion operation
assigns a cost that is the absolute magnitude of the value that was inserted or
deleted [114].

For example when using ERP the cost to insert a 1 between 1s would yield a
cost of 1. However, the cost to insert a 10 between two 10s would yield a cost of
10. This means for the same edit operation, using ERP, the cost is dependent on
the value itself. MSM instead recognises these two edit operations are the same by
considering the CM neighborhood, and therefore the cost should be constant.

MSM computes the distance between two time series based on the number and
type of edit operations required to transform one series to the other [111]. MSM
has three types of edits: move, split and merge. A move operation substitutes one

value into another value, a split operation inserts a copy of the value immediately

2.4 Elastic distances 56

after itself and a merge operation removes a value if it is directly followed by an
identical value. Additionally MSM applies a cost (penalty) for warping off the
diagonal (merge and split) set by the parameter c. Figure 2.20 visually demonstrates

each operation.

SR OIID @/@ seauence = (52 (®)(1)

merge

split

cequence = (DD M2 | sequence = B ®® 1)

admes = (B) CT) D ®®
move

cequence = (B (DM (®)

Fig. 2.20 Example of different MSM edit operations. The top left box shows the
merge operation, the top right box shows the split operation and the bottom box
shows the move operation. The original sequence refers to the series before MSM
has applied a operation. The result sequence refers to the series after the MSM
operation has been applied.

MSM satisfies triangle inequality and is formally defined in Equations 2.27,

2.28 and 2.29
¢ if (ai-1 < a; < bj)
¢ if (ai-1 > a;i > b))
msm_cost(aj,a;—1,bj,c) =
)]ai —daj—1 ’
¢+ min otherwise
|a;i —bj|
2.27)

(

CMnsm (i, j) = min CMysm (i — 1, j) +msm_cost(a;,a;—1,bj,c) (2.28)

CMgm (i, j — 1) +msm_cost(bj,a;,bi_1,c)
\

2.4 Elastic distances 57

dmsm(aab) = CMmsm(mlam2) (2.29)

where CM,;;5,, 1s the MSM CM initialised to zeros, i is a integer where 0 < i <m, j
is a integer where 0 < j < m, c is the cost for moving off the diagonal and a and b
are time series of length m.

MSM has a more sophisticated cost function (Equation 2.27) than other elastic
distances such as EDR (Equation 2.20). A move edit does not use the cost function
and is the absolute difference between the values. A split edit does use the cost
function: msm_cost(a;,a;—1,b;,c). A split operation considers if the value being
inserted, b, is between two values a; and a; 1. If true, the cost is constant c.
However, if false, the cost ¢ is added to the minimum deviation from the further
point a; and the previous point b; or a;—;. A merge edit also uses the MSM
cost function: msm_cost(bj,a;,bi—1,c). The merge edit is similar to the split
edit however, it computes the cost on the second series (b). By using this more
sophisticated cost function, MSM can compute a more context aware warping path
while satisfying triangle inequality.

Algorithms 18 and 19 define MSMs implementation.

Algorithm 18: cost_msm(x, y, z, ¢)
Input: x (first time point), y (second time point), z (third time point), ¢ cost
of warping off the diagonal
Output: Cost value
1 if (y<x<z)or(y>x2>z) then
2 | returnc

3 return ¢+ min(|x —y|,|x —z|)

Figure 2.21 shows the MSM warping path between the red and blue time series.
Figure 2.21 has a very constrained warping path compared to DTWs warping path
in Figure 2.7. The MSM warping path is more constrained due to its sophisticated

cost function penalising pathological warping.

2.4 Elastic distances 58

Algorithm 19: MSM (a,b, w, ¢)

1 Input: a (time series of length my),b (time series of length my), w
(window proportion, default value w < 1), ¢ (cost of warping off
the diagonal)

Output: MSM distance between a and b

2 Let CM be an m; X m» matrix initialised to oo.

3 CM171 < |a1 —b1|

4 for i< 2 tom; do

s | if|(i—1)—0] <w-max(m,m;) then
split < CM;_1 1 + cost_msm(a;,a;—1,by,c)

L CM; 1 < split

6
7
for j < 2 tom; do

9 if |0—(j—1)| < w-max(m;,m;) then

10 merge <— CM j_1 +cost_msm(bj,b;_1,ay,c)
11 CM, j < merge

12 for i < 2 to m; do
13 for j < 2 tom; do

[>]

14 if|(i—1)—(j—1)| <w-max(m;,m;) then

15 move < CM;_1 j_1 + |a; — b}

16 split < CM;_y j+ cost_msm(a;,a;—1,bj,c)
17 merge <— CM; j_1 + cost_msm(bj,a;,b;_,c)
18 CM; j < min(move, split,merge)

19 return CMy,, 1,

Ne

077 329 429 53 688 931 1088 11.88 13.06 14.58

22 186 345 507 592 894 994 1121 1269 13.69 55

395 254 32 482 582 884 984 1111 1259 1359

495 457 285 414 514 815 915 1042 119 129

635 557 425 418 488 789 8.89 1016 1164 12.64

747 657 537 53 504 776 876 1003 1151 1251

958 773 748 741 715 903 974 1102 125 135

1058 102 793 83 7.65 941 929 1027 1175 1275

118 112 916 898 877 1013 989 1004 1151 12.28

1414 1189 115 1133 1079 12.48 11.96 11.99 12.62 13.38 30

o 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the MSM align-
through CM,,,,,, between the red and blue ment between the red and blue time se-
time series where ¢ = 1. ries where ¢ = 1.

Fig. 2.21 Optimal MSM warping path through CM,,,,,, and a visualisation of MSM
alignment between the two time series.

2.4 Elastic distances 59

2.4.12 Time Warp Edit (TWE)

Time Warp Edit (TWE) [79] is another edit distance adapted to the time series
domain. TWE combines an L, distance technique with an edit based algorithm
that allows warping while remaining a metric (satisfies triangle inequality). The
objective of TWE is to remove time points from either time series a or b until they
are equal. To do so TWE defines three edit operations: match, delete,, deletey.

Furthermore, TWE introduces the concept of “stiffness”. Stiffness (v) is a mul-
tiplicative penalty that is applied to all three edit operations. Stiffness controls the
elasticity of the algorithm (how much it can warp). When the value of v =0 TWE
becomes more stiff like an L, distance. When the value of v = cc TWE becomes
less stiff and more elastic like DTW. In addition TWE has another parameter, A,
which is a constant penalty for warping off the diagonal (applied to delete, and
deletey). By having two parameters to control many aspects of how a warping path
is generated, TWE can be one of the most versatile elastic distances.

Equations 2.30 and 2.31 formally define TWE.

/

CMipe(i—1,j— 1)+ (a; —b;)* + (ai-1 —bj—1)> +2-Vv

CMtwe(iaj) = min CMtwe(i— 1,j)—|— (a,-—a,-,l)2+v+7t

CMye(i,j— 1)+ (bj—bj_1)* +V+24
\
(2.30)

dpywe(a,b) = CMyye(my +1,my + 1) (2.31)

where CM,,,, is the TWE CM initialised with CM;,.(1,1) = 0 and +eo for all
other entries, i is a integer where 0 < i < m, j is a integer where 0 < j <m, Vv is
the stiffness determining elasticity, A is the constant penalty for warping off the

diagonal and a and b are time series of length m.

2.4 Elastic distances 60

Equation 2.30 shows that the “match” condition: CMye(i —1,j— 1)+ (a; —
b;)?+ (ai—1 —b;_1)*>+2-v is more sophisticated than other edit distances. Specifi-
cally the current and previous time point values are considered (a; —b;)* + (a;—1 —
b j,l)2 to give greater context to the match allowing smoother alignments to be
generated while being less sensitive to noise.

Algorithm 20 defines TWE from Equations 2.30 and 2.31.

Algorithm 20: TWE(a, b, w, 1, v)

Input: a (time series of length my),b (time series of length my), w
(window proportion, default value w < 1) A (cost of warping off
the diagonal, default value A < 1.0) Vv (stiffness of warping, default
value v < 0.001)

Output: TWE distance between a and b

1 Let CM be a m; by my matrix initialised with all values co.

2 CM1’1 +~0

3 for i< 2tom; do

4 for j < 2 tom; do

5 if [(i—1)—(j—1)| <w-max (m;,my) then

6 match = CM;_1 ;1 + ||ai —bj|| +||lai—1 —bj1|| + Vv x (|i—
JI+1E-1D)—=0G-1)

7 delete = CM;_1 j+ ||a;i —ai—1|| +V+ 4

8 insert = CM; j_1+||bj —bj_1||+V+A

9 CM; j = min(match, insert,delete)

10 return CM,,, 1,

Figure 2.22 shows the TWE warping path between the red and blue time series.
The warping path allows some warping while remaining somewhat constrained.
Figure 2.22 warps more than other edit distances (Figures 2.18, 2.19 and 2.21).
This is because the stiffness parameter is set very low: v = 0.001. To make the path
more constrained we could increase the value of v or increase the penalty A = 1.

TWE:s additional parameters makes it very versatile.

2.5 TSCL Algorithms 61

N

077 329 597 759 918 1219 1519 1647 17.95 19.65

298 264 532 694 823 1124 1424 1552 17.0 187

473 374 507 669 827 1129 1429 1556 17.04 1875

676 577 44 602 7.6 1062 13.62 14.89 1637 18.08

815 717 579 604 7.62 10.64 13.64 1491 1639 181 as

927 829 692 716 823 1125 1425 1552 170 187

1138 1021 902 927 1034 13.09 16.08 17.36 18.84 20.54

1411 12.94 1069 1179 12.07 14.57 1733 186 2008 21.79

1533 1417 1191 11.95 13.09 148 1731 1835 19.83 21.53

17.68 1572 1426 143 14.82 17.15 1911 199 2138 22.93 30

o 2 4 6 8

(a) Optimal warping path (white squares) (b) A visualisation of the TWE align-
through CM;,,. between the red and blue ment between the red and blue time series
time series where v = 0.001 and A = 1. where v =0.001 and A = 1.

Fig. 2.22 Optimal TWE warping path through CM;,,. and a visualisation of TWE
alignment between the two time series where v =0.001 and A = 1.

2.5 TSCL Algorithms

Thus far, we have defined time series data mining, positioned the TSCL discipline
within it, and provided a high-level overview of traditional clustering methods.
We have also highlighted how many TSCL approaches adapt these traditional
algorithms by incorporating time series-specific distance measures and/or averaging
techniques. Additionally, we have outlined 12 elastic distances for potential use
with these traditional clustering algorithms.

To benchmark our proposed elastic distance TSCL algorithms, we must first
establish a point of comparison by reviewing the existing TSCL approaches. There-
fore, we outline 10 of the most popular and widely cited partition-based TSCL
algorithms. By evaluating and implementing these algorithms, we can better situate
our new methods within the current literature and state-of-the-art.

As previously mentioned, we do not consider deep learning-based or feature-
based TSCL algorithms, as they do not adapt traditional clustering methods using

distance and/or averaging techniques. For readers interested in these areas, there are

2.5 TSCL Algorithms 62

several comprehensive reviews on deep learning-based TSCL [3, 64], as well as an
extensive body of literature on unsupervised feature selection and generation [130,
54,110, 102, 129, 73, 95].

Furthermore, many existing TSCL approaches follow a similar methodology to
what we plan to implement: adapting traditional clustering algorithms with time
series-specific distances and/or averaging techniques. By reviewing how this has
been done in previous research, we can refine the design and implementation of our
proposed clustering algorithms.

We will begin this section by clearly defining the objectives of partition-based
TSCL algorithms, using visualisations for clarity. Following this, we will outline 10
TSCL algorithms, offering detailed descriptions, formal notation, and pseudocode

for each.

2.5.1 Partition-based TSCL

As previously outlined, the primary objective of partition-based clustering is to
define k centroids (or exemplars or cluster centres) that represent each cluster. A
new time series is assigned to a cluster based on its similarity to these centroids.

In traditional clustering, the concept of a centroid, with multiple points assigned
to it, can easily be visualised, as shown in Figure 2.2. However, this concept
is less intuitive for TSCL. Therefore, we begin by visually demonstrating how
partition-based TSCL algorithms partition a dataset of time series.

Figure 2.23 presents a visualisation of partition-based clustering for time se-
ries data. Clusters of similar time series are formed (Cluster 1, 2, and 3), and a
centroid—represented by the coloured time series—is derived from the clustered
data.

Numerous partition-based models have been proposed for TSCL. However, at

their core, partition-based TSCL models aims to answer solve two problems:

2.5 TSCL Algorithms 63

Cluster 1 Cluster 2 Cluster 3

1 o 1 o
j/ \ \
0 [04
-1) = =

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.23 Example of partition-based clustering using k-means on the Gunpoint
time series dataset. k-means employs the Euclidean distance and arithmetic mean to
form clusters. The black time series represent individual series assigned to Clusters
1, 2, and 3, while the colored lines indicate the centroids of each cluster.

1. How do you measure the similarity between two time series?
2. How do you form a centroid from a cluster of time series?

With these objectives in mind, specific partition-based TSCL approaches will

now be outlined.

k-means

k-means [78] describes an objective function that aims to minimise the sum-of-
squared errors (Equation 2.32). The most common algorithm to optimise this
objective function is Lloyd’s algorithm [75]. k-means, using Lloyd’s algorithm, is
one of the most well-known and popular partition-based TSCL algorithm.

Given a dataset of time series D = {T},T,...,T,} of length n, the goal of
k-means is to form k clusters such that the sum-of-squared errors (also known
as inertia) is minimised. Formally, the k-means objective function is defined in

Equation 2.32.

k nj .
SSE=Y Y |ITV —cil? (2.32)
i=1j=1

2.5 TSCL Algorithms 64

where k is the number of clusters, n; is the number of time series assigned to

cluster i, Tj(l) is the jth time series assigned to ith cluster, ¢; is the ith centroid, and

HTj(l) —¢;||? is a distance measure between Tj(l) and c;.

Lloyds k-means

Lloyd’s [75] solution to the k-means problem is one of the most famous and popular
clustering algorithms [32]. All of the k-means variants outlined in this thesis use a
form of Lloyd’s algorithm. As such, “k-means” and “Lloyd’s algorithm” will be
referred to interchangeably.

To begin the Lloyd’s algorithm randomly selects k time series from dataset D to

act as initial centroids. These initial centroids are defined in Equation 2.33

C=A{c1,c2,...,c} (2.33)

where C is an array of centroids, c; is the centroid for ith cluster, and k is the number
of clusters.

Once the initial centroids are defined, the k-means iterative optimisation begins.
First, each time series is assigned to its closest cluster using a distance measure.

This is known as the “assignment stage” and is formally defined in Equation 2.34.

k n;
arnginZ Y T —cill? (2.34)
i=1 j=1

where S is the set of cluster assignments, k is the number of clusters, n; is the
number of time series assigned to cluster i, 7} is the jth time series in the dataset
D, ¢; is the ith centroid in the set of centroids C, and ||} — ¢;||? is the squared
Euclidean distance between 7 and c;.

Once each time series has been assigned to its closest centroid, the centroids are
updated by computing the arithmetic mean of each cluster. The arithmetic mean of

cluster 7 is formally defined in Equation 2.35.

2.5 TSCL Algorithms 65

13
Hi= e X 7" (2.35)
=1

where ; is the arithmetic mean of the ith cluster, n; is the number of time series
assigned to cluster i, and Tj(i) is the jth time series assigned to the ith cluster.

Once the arithmetic mean of each cluster is computed, the centroid of each
cluster is updated to its respective u;. This process is referred to as the “update” or
“centroid computation” stage. The completion of this step marks the end of a single
iteration of k-means.

The k-means algorithm continues iterating until the assignment of each time
series to its closest centroid does not change between iterations, thus the centroid

computed does not change between iterations.

. Start . End

Compute TS Group TS based Compute mean
Randomly select N .
- distance to on minimum of each group to
k centroids) . .
centroids distance be new centroids

Centroids same
as last iteration?

Fig. 2.24 Flow diagram of k-means algorithm

Figure 2.24 shows a flow diagram of the described k-means algorithm.

The above describes the simplest implementation of k-means. However, there
are many open issues and challenges with k-means.

Initialisation problem: - The initialisation problem in k-means is twofold:
defining the correct value of k, and defining the position of initial centroids [48].
Defining the correct value of k is an on going research question but techniques
such as the Elbow method, Silhouette coefficient [58], Canopy algorithm [30]
and the Gap statistic algorithm [119] have been proposed to find a appropriate

value of k. Selecting the position of the initial centroids is also an on going

2.5 TSCL Algorithms 66

research question, however, several techniques have been proposed in the literature,
including random selection, furthest point heuristic, sorting heuristic, density-
based, projection-base and splitting techniques. The most comprehensive review of
initialisation techniques was done by [17] on 32 real and 12,228 synthetic datasets.
Their results do not clearly point out a single technique that would be consistently
better than others. As such for both TSCL and traditional clustering there is no
clear state-of-the-art approach for initialisation problem [37].

Distance measure: - The k-means convergence condition, sum-of-squared errors
(Equation 2.32), uses the Squared Euclidean distance. Due to the time series unique
characteristics, such as their temporal alignment, the Squared Euclidean distance has
been shown to perform poorly when measuring similarity between time series [74].
As such in the context of TSCL it is desirable to use a different similarity measure.
Finding a strategy to integrate other distance measures into k-means while still
conforming to its convergence criteria is challenging. In the context of TSCL
algorithms such as DBA [94] (see Section 2.5.1) have been proposed to allow DTW
(see Section 2.4.1) to be used with k-means.

Sensitivity to outliers: - A dataset with many outliers produces unstable clusters
with several k-means clustering algorithms runs [48]. This is due to outliers in-
creasing the sum-of-squared errors within clusters, thus affecting the final accuracy
of the clustering results [112]. This problem becomes even more pronounced in
TSCL because generally outliers exist within the individual time series as subseqe-
unces. Detection of these outliers is thus very challenging and an on going point of

research.

2.5 TSCL Algorithms 67

k-Spectral Centroid (k-SC)

k-Spectral Centroid (k-SC) [128] is a TSCL specific algorithm that adapts k-means
to use a novel distance and averaging measure that is scale and shift invariant.

Formally the £-SC distance measure is defined in Equation 2.36 and 2.37.

2(a7b(q)>2
a (2.36)
La(b(g)b(g))?
) Ly(a, ab
d(a,b) = min La(a abg) (2.37)

ag Ly(a,a)

where b, s the result of shifting time series b by g time points, L distance is
given in Equation 2.2, and a and b are time series of length m.

k-SC aims to minimise the sum-of-squared errors (Equation 2.32). However,
instead of using the Euclidean distance like k-means, k-SC minimises over the
dl (a,b) distance. Therefore, it would be inappropriate to perform the same average
as k-means [128] (Equation 2.35). Instead k-SC uses an averaging technique that
integrates the dl (a,b) distance shift operation to compute a more accurate centroid.

The centroid computation in k-SC involves using the d(a,b) distance to find
the optimal shift g; that minimises the distance between each time series T; € C;
and the current centroid c¢;. Using these optimal shifts, a covariance matrix M is
constructed. Eigen decomposition of M is then performed to find the principal
component. The eigenvector corresponding to the smallest eigenvalue of M is used

as the new centroid. Formally, this process is defined in Equations 2.38 and 2.39:

;T
M = Z(“T|> (2.38)

T,€C;

c"Mc

e (2.39)

¢ =arg mm

2.5 TSCL Algorithms 68

where M is the covariance matrix for the time series in cluster C;, C; is the ith cluster,
T; is a time series in cluster C;, I is the identity matrix, c is a candidate centroid
time series, and ¢ is the transpose of the time series c.

k-SC follows the same algorithm as k-means shown in Figure 2.23 but uses the
d(a,b) distance and the centroid computed under d(a,b) described above. Through
this process k-SC clusters time series based on their shape, even in the presence of
scaling and shifting variations.

Figure 2.25 presents the k-SC centroids generated for the Gunpoint dataset. In
contrast to the k-means centroids depicted in Figure 2.23, the k-SC centroids are
noticeably different. One reason for this is that, to facilitate visual inspection and
interpretation, the cluster centres have been scaled up. This scaling adjustment
does not alter the inherent structure of the centroids but amplifies their magnitude,
making key features such as peaks more distinguishable. For example, Cluster 3
may not visually appear to be a very good “average” of the time series in the cluster
in terms of scale. However, this issue is due to the visual scaling, as internally the
scale is inconsequential. The scale invariance means cluster assignments that may

be influenced solely by scale in k-means do not occur in k-SC.

Cluster 1 Cluster 2 Cluster 3

_a —
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.25 Example of k-SC clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.

2.5 TSCL Algorithms 69

k-shape

k-shape [89] is a TSCL specific algorithm that adapts k-means by using a novel
distance and averaging method that is both scale and shift invariant. Specifically,
k-shape develops a shape-based distance measure (SBD) that utilises the cross-
correlation of two time series.

Cross-correlation distances work by sliding time series b over time series a
and computing their inner product for each shift s of a. All possible shifts s are
considered within the range s € [—m,m|, where m is the length of both time series

a and b. This is achieved using Equation 2.40 and 2.41.

Z?;]kal+k by k>0
Ri(a,b) = (2.40)

R_k(b,a) k<0

CCy(a,b) = Ry_m(a,b) (2.41)

where w € {1,2,...,2m— 1} and a and b are time series of length m.

Equation 2.41 produces an array of length 2m — 1. The optimal shift can then
be found by identifying the position w at which CC,,(a,b) is maximised. Based
on this value of w, the optimal shift of a with respect to b is given as a(y), where
s =w —m [89]. If the two series are perfectly aligned, then w = m.

To make the cross-correlation distance invariant to scale, [89] proposes the use
of a coefficient normalisation strategy integrated into the distance measure. The
resulting distance measure is called the Shape-Based Distance (SBD). The SBD is

formally described in Equation 2.42.

1 — max CCy(a,b)
SBD(a,b) = 1~ ma (\/Ro(a’a)‘Ro(M)) (2.42)

2.5 TSCL Algorithms 70

where CC),(a,b) represents the cross-correlation between a and b at lag w shown
in Equation 2.41, Ry(a,a) and Ry(b, D) are the auto correlations of a and b at lag 0
shown in Equation 2.40 and a and b are time series of length m.

k-shape doesn’t use the Euclidean distance to compute assignments therefore
it is inappropriate to use the arithmetic mean for centroid computation. As such
a centroid computation algorithm called shape extraction is proposed. The shape
extraction algorithm minimises the sum of squared distances over SBD(a, D).

The shape extraction algorithm aligns each time series T; € C; to the centroid c;
using SBD. Once each alignment has been obtained, a new centroid can be obtained
by using the maximisation of Rayleigh Quotient [40]. This process extracts the
most representative shape from the underlying data [89]. Additionally the centroid
produced is scale and shift invariant.

k-shape follows the same algorithm as k-means shown in Figure 2.23 but uses
the SBD distance and the shape extraction algorithm to compute new centroids.
This process clusters time series based on their shape, even in the presence of
scaling and shifting variations.

Figure 2.26 present the k-shape centroids generated for the Gunpoint dataset.

Cluster 1 Cluster 2 Cluster 3

\ ' \ M 16 7
a . L o

_a —
0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.26 Example of k-shape clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.

2.5 TSCL Algorithms 71

k-means-DBA

k-means-DBA [94] is a TSCL-specific algorithm that employs an averaging method
known as DTW barycentre averaging (DBA) [94] to compute centroids, and the
DTW distance to assign time series to clusters. Since the primary contribution of
k-means-DBA is its use of DBA as an averaging technique, we now detail how this
average is computed.

A barycentre refers to the central sequence that minimises the sum of squared
distances between itself and a set of sequences [94]. The most straightforward
method for computing this minimum is the arithmetic mean, which identifies the
time series that minimises the sum of squared Euclidean distances to all time series
in a given collection. The arithmetic mean was previously defined in Equation 2.35.

However, like the Euclidean distance, the arithmetic mean does not attempt
to realign time series before computing an average. Consequently, efforts have
been made to integrate the optimal DTW alignment path into the averaging process.
Specifically, the averaging computation is formulated as an optimisation problem

to minimise the DTW Fréchet function [38]. Formally, this is expressed as:

F():= Z DTW (z,x,)? (2.43)
i=1

where F is the Fréchet function, z is the time series that minimises it, » is the
number of time series in the collection X = (x1,x7,...,%,), and DTW is the DTW
distance.

However, a polynomial-time algorithm for globally minimising the non-differentiable,
non-convex Fréchet function remains unknown [108]. In essence, this means that
while an exact average can be computed, the runtime of such algorithms is infea-
sible for most real-world applications. Therefore, instead of computing the exact

minimum of the DTW Fréchet function, approximations are typically employed.

2.5 TSCL Algorithms 72

One such approximation, and the most widely used, is DBA [94]. DBA begins
with an initial prototype—typically the arithmetic mean of the time series collec-
tion—and follows an iterative approach. In each iteration, every series is aligned
with the current prototype, and the values mapped to each position are collected.
The arithmetic mean is then applied to these collected values while preserving the
alignments.

Integrating the DTW distance and DBA averaging technique into k-means
results in the k-means-DBA clusterer. Figure 2.24 illustrates the traditional k-means
algorithm. To adapt the flow diagram for k-means-DBA, the distance measure is set
to DTW, and the centroid calculation is replaced with DBA.

Formally, for a given cluster C;, the DBA centroid is computed as follows:
Initially, the arithmetic mean is calculated over time series T; € C; to produce an
initial centroid c;. This centroid is iteratively refined by computing the DTW optimal
alignment path for each time series 7; € C; to c; (see Algorithm 2). After computing
the optimal alignment path for each 7; € C;, each point is summed according to its
optimal alignment. The current iterations centroid c; is then obtained by dividing
each time point in the new summed time series by the number of times it was
aligned (effectively taking the arithmetic mean of the aligned time series). The
newly generated centroid c;- is then used in the next iteration to be further refined.
The centroid will continue to be refined either for a specified number of iterations
max_iters or until the sum of squared DTW distance to centroid c;- does not change
between iterations.

An overview of the iterative DBA algorithm is shown in Figure 2.27.

Figure 2.28 presents the k-means-DBA centroids generated for the Gunpoint
dataset. The centroids produced, when compared to other k-means based centroids
(Figure 2.23, Figure 2.25 and Figure 2.26) are noticeably different. Particularly

looking at the peaks of each centroid, these are not present in other cluster centres.

2.5 TSCL Algorithms 73

Compute the optimal ¢’ = candidate_c
r— DTW alignment path
between Tiand ¢’ prev_cost = cost
TN g J \)

i Start ‘

Add each time point in Ti
to the candidate_c
according to its optimal
alignment path

cost equal
prev_cost?

Compute initial centroid —
(c’) using the arithmetic i=o
mean

Divide each time point in Compute sum of squared
candidate_c by the DTW distance to
number of times the time
over time series

point was aligned to candidate_c as cost

i < number
of time
series

Fig. 2.27 Flow diagram of the DBA algorithm

Additionally the centroids seems to have many more local shapes instead of being

smooth.
Cluster 1 Cluster 2 Cluster 3
4) 4
3 3 3
2 2 24

-2 -2
-3 -3 -3
” - -4

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.28 Example of k-means-DBA clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given cluster (Clusters 1, 2 and
3). The colored lines through each cluster represent the centroid for each cluster.

One of the main drawbacks of using DBA is its computational complexity of
O(I-N - m?) where I is the fixed number of iterations, N is the number of time
series to average over, and m is the length of the time series. To address this issue,
research has focused on improving the computational efficiency of DBA.

[22] proposes a divide-and-conquer strategy with an additional early aban-
donment condition for DBA, which yields similar performance. Other extensions

include implementing a subgradient descent approach to DBA, which finds better

2.5 TSCL Algorithms 74

solutions in shorter time [108]. While, in principle, these approaches can replace
DBA in k-means-DBA, as Chapter 8 discusses, this is a non-trivial task. Further

details of these algorithms will be explored in Chapter 8.

k-soft-DBA

k-soft-DBA [21] is a TSCL-specific algorithm that utilises an averaging method
known as soft-DTW barycentre averaging (soft-DBA) alongside the soft-DTW
distance measure. Its key contribution lies in the application of soft-DBA in the
averaging stage of Lloyd’s algorithm. We now detail the computation of soft-DBA.

Similar to other averaging methods discussed previously, the objective of soft-
DBA is to minimise the Fréchet function presented in Equation 2.43, but with re-
spect to the soft-DTW distance. Although its goal is analogous to that of previously
outlined averaging methods, the approach employed by soft-DBA is fundamen-
tally different. While the previously described methods are heuristics that rely
on subgradient optimisation (which we define and explore further in Section 8.2),
the differentiability of soft-DTW allows for the computation of exact gradients,
enabling the application of gradient descent optimisation techniques.

To understand this process, we first examine how a gradient matrix computed
between two time series (defined in Section 2.4.7) can be used to help compute
a new time series. Once this foundation is established, we explore how gradient
descent algorithms can approximate a minimum of the Fréchet function more
effectively than previously outlined methods.

Consider a gradient matrix £ computed between two time series using Algo-
rithm 13. This gradient matrix effectively captures information about how well
these time series align under all possible warping paths, weighted by their probabil-
ities. However, there is a crucial distinction: the gradient matrix E indicates how

changes in pairwise distances between points would affect the soft-DTW distance,

2.5 TSCL Algorithms 75

but it does not directly specify how to modify the time series points to achieve these
changes. This is because E represents the derivative of the soft-DTW cost matrix
with respect to the distance matrix (i.e., squared Euclidean distances), rather than
with respect to the actual time series coordinates.

To address this, [21] employs a Jacobian transformation that maps the gradient
matrix of partial derivatives to a matrix of the same shape as the original input time
series. This transformation provides specific directions and magnitudes for updating
each point in the first time series to make it more similar to the second. When
working with a collection of time series X, we extend this concept by computing
the Jacobian transformation between the current average and each time series in the
collection. By summing these transformations at corresponding indices, we obtain
a single matrix that represents the aggregate update directions and magnitudes for
each point in the average time series. This combined matrix effectively synthesises
information from all time series in the collection, indicating how to adjust each
point in the current average to better represent the entire set.

Formally, the Jacobian transformation is derived by applying the chain rule, as
shown in Equation 2.44. This transformation maps the gradient matrix £, computed
using Algorithm 13, into updates for each point in the time series. Algorithm 21

provides the formal implementation of this transformation.

dsoft DTW(a,b) f dsoft DTW JdA; ;
8a,~ N aAw‘ 8a,~

=1

. (2.44)
=) Eij-2(ai—b))
j=1
where A is a pairwise squared Euclidean distance matrix.
However, directly applying these aggregated updates would be problematic,
as different time series often suggest competing movements for the same points.
For instance, one time series might suggest moving a point upward, while another

suggests moving it downward. Simply summing and applying these contradictory

2.5 TSCL Algorithms 76

Algorithm 21: Jacobian_Transform (a, b, E)
Input: a (time series of length my), b (time series of length m;),
E (gradient matrix of shape my x my)
Output: Jacobian product matrix of shape m
1 Let product be a vector of length m initialised with zeros
2 for i<« 1tom do
3 L for j < 1tomy do

s | | product; + product; +E; j-2(a; — b;)

5 return product

suggestions could lead to suboptimal results or oscillatory behaviour. This is where
another advantage of soft-DTW comes into play: because it is differentiable, we
can apply a gradient descent algorithm.

Specifically, [21] proposes using the L-BFGS-B gradient descent optimisation
algorithm. While a full exposition of L-BFGS-B is beyond the scope of this thesis,
its core mechanism can be summarised as follows: the algorithm begins with an
initial average time series and computes the Jacobian transformation matrix across
the entire dataset. Using this information, it determines the optimal step sizes and
directions that minimise the overall soft-DTW distance between the average and all
time series simultaneously. This process iteratively refines the average time series,
with each iteration using the previously updated series as its new starting point.
The algorithm continues until convergence is reached, typically when the change in
the total soft-DTW distance between consecutive iterations falls below a specified
tolerance value. At this point, the algorithm returns the final averaged time series.

Integrating the soft-DTW and soft-DBA averaging techniques into k-means
results in the k-soft-DBA clusterer. Figure 2.24 illustrates the traditional k-means
algorithm. In adapting the flow diagram for k-soft-DBA, the distance measure is
set to soft-DTW, and the centroid calculation is replaced with soft-DBA.

Figure 2.29 presents the k-soft-DBA centroids generated for the Gunpoint

dataset. When compared to the DBA centroids in Figure 2.29, the centroids in

2.5 TSCL Algorithms 77

Figure 2.29 are noticeably smoother. This is because the smoothing parameter y
was set to 1. This means that the gradient is smoothed significantly compared to

DTW (which has a y value of 0).

Cluster 1 Cluster 2 Cluster 3

§) \ 14 / A\
0 J 0 \ 04 /
-1) -1 . =y -

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.29 Example of k-soft-DBA clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.

k-medoids

k-medoids is an optimisation problem that, like k-means, aims to divide a dataset
into k clusters. However, instead of using an average as a centroid, k-medoids uses a
value within the dataset to serve as a centroid (a medoid). This approach minimises
the sum of dissimilarities of each time series Tj(i) € C;, making it particularly
effective in scenarios involving noise or outliers.

Specifically, k-medoids aims to minimise the objective function total deviation

(TD). Formally, this is defined in Equation 2.45.

k ni .
TD=Y Y |IT" —mi (2.45)
i=1j=1

where k is the number of clusters, n; is the number of time series assigned
to cluster C;, Tj(l) is the jth time series assigned to cluster C;, m; is the medoids

(centroid) of cluster C;, and ||Tj(l) —m;|| is a distance measure between Tj(l) and m;.

2.5 TSCL Algorithms 78

If we use the squared Euclidean distance as the distance function in Equa-
tion 2.45 (i.e. || Tj(i) —m|| = Lz(Tj(i),mi)z), we almost obtain the k-means objective
function, the sum-of-squared errors (Equation 2.32). The difference is that k-means
is free to choose any ¢; € R whereas k-medoids must choose m; € C; [106].

To solve the above k-medoids problem, numerous k-medoids algorithms have
been proposed. The next four clusterers discussed will be algorithms that find a

local minimum for the k-medoids problem.

Alternate k-medoids

Alternate k-medoids attempts to solve the k-medoids optimisation problem by
employing Lloyd’s [75] algorithm. Traditionally Lloyd’s algorithm specifies a mean
average of each cluster should be extracted to be centroids. However, alternate
k-medoids extracts a medoids of each cluster instead. Formally the medoids of

cluster C; is defined in Equation 2.46.

mi=argmin Y |10 —1"| (2.46)
Tj(l>€Ci T}(i)EC,‘

where C; is the ith cluster, Tj(i) i1s a candidate medoids from cluster C;, Tl(i)
is a time series from cluster C; to compute the distance between it and Tj(i), and
||Tj(i) — Tl(i) || is a distance measure between Tj(i) and Tl(i).

Figure 2.24 shows a flow diagram for the k-means algorithm. Alternate k-
medoids follows the same flow diagram but, instead of computing the mean of each
cluster, the medoid of each cluster is computed using Equation 2.46.

One of the main advantages of alternate k-medoids (and other k-medoids vari-
ants) over similar partition-base TSCL approaches is time series specific distance

measures can be used in both the assignment step (Equation 2.45) and centroid

computation step (Equation 2.46) with no additional logic needed to be added.

2.5 TSCL Algorithms 79

Figure 2.30 presents the alternate k-medoids centroids generated for the Gun-
point dataset. The centroids produced are time series within the given cluster

(medoids).

Cluster 1 Cluster 2 Cluster 3

N

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

! | | |
IS w ~ - o = N w IS
| | |
IS w ~ - o = ~ w s
IS w ~N - o = N w IS
=
~

Fig. 2.30 Example of alternate k-medoids clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given cluster (Clusters 1, 2 and
3). The colored lines through each cluster represent the centroid for each cluster.

Partition Around Medoids (PAM)

Partition Around Medoids (PAM) [69] is another k-medoids clusterer. In traditional
clustering, PAM is considered better than alternate k-medoids [120] and is nor-
mally the assumed implementation of k-medoids. PAM consists of two algorithms,
BUILD to choose initial centroids and SWAP to further improve the clustering
towards, a local optimum.

The BUILD algorithm selects k initial centroids to cluster. To begin, BUILD,
chooses the time series with the smallest distance to all other time series to be
the first medoids. Then it selects the time series that reduces TD by the most
to be the next medoids. This process repeats until & initial centroids have been
selected. For reasons outlined in Chapters 4 and 6, this thesis will mostly ignore the
BUILD initialisation component of PAM and instead will use a random initialisation
strategy.

The second algorithm PAM uses is the SWAP algorithm. The SWAP algorithm

refines the initial centroids selected by considering all possible changes to the set of

2.5 TSCL Algorithms 80

k medoids. This means every non-medoids will be swapped for a medoids to see if
a given swap reduces 7'D [106] (Equation 2.45). This is a greedy steepest-descent
method, and the process repeats until no further improvements are found.

As discussed, PAM has been empirically shown to produce better results than
other popular k-medoids clustering algorithms [120]. However, this comes at the
cost of computational complexity. Specially PAM requires a pairwise distance
matrix between every value in the dataset. This has a computational cost of O(n?).
Additionally, when considered in the context of TSCL, many time series distance
measures have high computational complexity. For example the most popular time
series distance measure, DTW, has computational complexity of O(m?). As a result
this high computational complexity means PAM is not always feesible.

Figure 2.31 presents the PAM centroids generated for the Gunpoint dataset. The
centroids produces are also time series within each cluster (medoids). The clusters
produced are very similar to that of alternate k-medoids (Figure 2.30) which is
unsurprising as both algorithms attempt to minimise the same objective function

given in Equation 2.45.

Cluster 1 Cluster 2 Cluster 3

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

! | | |
IS w N - o = ~ w IS
| | |
IS w ~ - o = ~ w IS
IS w N - o - ~ w IS
=
~

Fig. 2.31 Example of PAM clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.

PAM has been extensively used in TSCL. Particularly, before the advent
of k-means-DBA (Section 2.5.1), PAM was the preferred TSCL approach with

DTW [94]. The reason for this is PAM can make better use of time series specific

2.5 TSCL Algorithms 81

distance measure than similar algorithms such as k-means. DTW was used as the

distance measure of choice with PAM [43].

Clustering LARge Applications (CLARA)

Clustering LARge Applications [68] is an extension of PAM which aims to improve
the computational complexity of PAM.

CLARA repeatedly applies PAM on a random subset of cases from the dataset.
The recommended number of samples to use for each run is s = 40 + 2k. Once a
random subset of samples has been taken, PAM is performed on this subset and
medoids are obtained. After, the remaining cases (not in the subset) are assigned to
one of the produced medoids. The 7D (Equation 2.45) is then computed for these
medoids (considering all the data). This process repeats for multiple iterations and
the iteration that has the lowest 7'D is returned. Due to this optimisation the time
complexity of CLARA is reduced to O(k> +).

Figure 2.32 presents the CLARA centroids generated for the Gunpoint dataset.
The centroids produced, and as a result the time series assignments, are different
from other k-medoids algorithms (Figures 2.31 and 2.30). These medoids are not

as high quality but, they were obtained much faster.

Cluster 1 Cluster 2 Cluster 3

! | | |

IS w ~ - o = ~ w IS
| | |

IS w ~ - o = ~ w IS
| | |

IS w ~N - o = N w IS

0 25 50 75 100 125 150 0 25 50 75 100 125 150 0 25 50 75 100 125 150

Fig. 2.32 Example of CLARA clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.

2.5 TSCL Algorithms 82

For TSCL, CLARA has been used as a faster alternative to PAM. One example
of CLARA being used in TSCL is for clustering energy consumption time series
data using various distance measures [101]. It was selected because the large

amount of energy data produced making PAM unviable.

CLARA based on raNdomised Search (CLARANS)

CLARA based on raNdomised Search (CLARANS) [86] is another extension of
PAM which aims to improve the computational complexity of PAM.

Specifically CLARANS updates the SWAP algorithm of PAM to use a greedy
optimisation approach. This is done by randomly swapping a non-medoids for
a randomly selected medoids. If the swap reduces TD (Equation 2.45) then the
swap is performed straight away. If it does not reduce 7'D a counter of attempts
is incremented. If attempts reaches a certain number, defined by a parameter
max_neighbors, then the search terminates and the current medoids are returned.
Additionally this process is repeated with different initial centroids n_init times.
This random selection gives CLARANS an advantage when handling large datasets
by avoiding local minima.

Figure 2.33 presents the CLARANS centroids generated for the Gunpoint

dataset.

Cluster 1 Cluster 2 Cluster 3

L

-4 -4 -4
0 25 50 75 100 125 150 0 25 50 75 100 125 150 [25 50 75 100 125 150

| |
~ - o - ~ w IS
| |
o - o - ~ w IS
| |
~ - o - ~ w IS

w
|

w

w

Fig. 2.33 Example of CLARANS clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.

2.5 TSCL Algorithms 83

In the context of TSCL CLARANS has been suggested for use theoretically

however, it is yet to be formally researched specifically for time series data.

Chapter 3

Experimental Methodology

This chapter outlines the experimental methodology employed throughout this
thesis. Evaluating clusterings is inherently challenging, as “clusters are, in large
part, in the eye of the beholder” [31]. This subjectivity means there is no single
“correct” way to cluster a dataset, making the evaluation of clustering methods
particularly complex.

To address these challenges, this chapter will outline a robust experimental
methodology for evaluating clusterings. We will describe how we will perform
our experimental evaluation, identify key challenges within clustering evaluation,
and describe mitigation strategies to allow us to draw meaningful conclusions.
Additionally, we will include the software tools used for our evaluation and provide

details on how to reproduce our results.

3.1 The challenge of cluster evaluation

Cluster evaluation is inherently subjective. Different observers may have varying
opinions on what constitutes a “good” cluster, influenced by their domain knowl-

edge, experience, and the specific context of the data. This subjectivity can lead to

3.1 The challenge of cluster evaluation 85

multiple valid clusterings of the same dataset, each emphasising different aspects
of the data.

To illustrate this point, consider the GunPoint time series dataset from the UCR
archive (the UCR archive will be outlined in Section 3.3). The GunPoint dataset
was originally created to capture the motion of actors performing two distinct
actions: pointing a gun or pointing with their fingers. This dataset was generated
by recording two actors (one male and one female) executing these actions over a
five-second period, resulting in a sequence of 150 frames per action. The x-axis
coordinate of the hand’s centroid was extracted from each frame to form the time
series data.

In its original form, the dataset was labeled with two class labels: “gun” and
“point,” reflecting the actor’s action. In a TSC task, the objective is to separate the
time series into these two categories. However, in the context of clustering, where
the labels are unknown, this dataset can be interpreted in multiple valid ways.

Figure 3.1 illustrates three different interpretations of the GunPoint dataset.
Figure 3.1a shows the intended configuration, where the time series are separated
based on whether a gun is pointed or a finger is pointed. Figure 3.1b presents an
interpretation where the data is clustered by the actor’s age, resulting in “Young”
and “Old” categories. Finally, Figure 3.1c illustrates an interpretation where the
clusters are based on the actor’s sex, classifying them as either male or female.

All three interpretations of the GunPoint dataset shown in Figure 3.1 represent
valid and interesting cluster configurations. This raises an important question: If
our expectation in an experiment is for the clustering algorithm to produce clusters
that align with the class labels (e.g., “gun” and “point”), but the algorithm instead
separates the data into a different configuration (e.g., “male” and “female”), does
this mean the clustering algorithm is incorrect?

This is one example of the complexity of cluster evaluation. To address this

issue and other challenges, we will now present our TSCL methodology.

3.1 The challenge of cluster evaluation 86

Label: Gun Label: Point

(a) Interpretation of the GunPoint dataset based on the action performed. The left plot
represents the “Gun” action (red time series), while the right plot represents the ‘“Point”
action (blue time series).

Label: Young bs Label: Old

(b) Interpretation of the GunPoint dataset based on the actor’s age. The left plot represents
actions performed by the younger actor (red time series), and the right plot represents
actions performed by the older actor (blue time series).

Label: Female Label: Male
20

(c) Interpretation of the GunPoint dataset based on the actor’s gender. The left plot shows
actions performed by the female actor (red time series), while the right plot shows actions
performed by the male actor (blue time series).

Fig. 3.1 Examples of different interpretations of the GunPoint dataset. Each sub-
figure represents a distinct clustering criterion: (a) action type (Gun vs. Point), (b)
actor’s age (Young vs. Old), and (c) actor’s gender (Male vs. Female).

3.2 TSCL Experimental Methodology 87

3.2 TSCL Experimental Methodology

The goal of our TSCL methodology is to evaluate TSCL algorithms across a range
of time series problems, utilising various types of clustering algorithms and different
statistical evaluation metrics. We aim for our methodology to provide insights into
which algorithms and approaches may be most effective for specific clustering
tasks, offering guidance to those seeking to cluster their time series data.

We will now discuss the various components of our methodology. Each compo-
nent has a distinct function individually, but when combined, the aim is to reduce
subjectivity of cluster evaluation and provide meaningful insights into the clustering

performance of various models.

3.2.1 Statistics for Evaluating Performance

As outlined in Section 3.1, determining what constitutes a “good” cluster is chal-
lenging. However, numerous statistical evaluation techniques have been proposed to
help identify various qualities in clusters. Since no single technique can definitively
define “good” and “bad” clustering, this thesis employs a range of measurements
designed to highlight different aspects of cluster quality.

During TSCL evaluation, a dataset is defined as D = {(T1,y1), (T2,¥2), .-, (Tn,yn) },
comprising n cases, where T}, is a time series T, = {t1,12, ..., 1y} of length m, with
t,, representing the mth time point in 7, and y, is a class label drawn from a set of
[possible class labels, y € {1,2,...,1}.

To clarify, while class labels (y) are present during evaluation, during training
and prediction, a clusterer does not have access to any class labels. From the
perspective of a clusterer, a dataset is represented as D = {1, T»,..., T, }.

The objective of a clustering model is to assign each time series in dataset D to
a cluster. The number of clusters does not necessarily correspond to the number of

unique class labels. The number of clusters is defined by the value k. Additionally,

3.2 TSCL Experimental Methodology 88

for some clusterers, k is not always predefined, and not every time series must be
placed into a cluster (e.g., excluding instances deemed as noise).

The output of a clustering model for a single time series is a probability distri-
bution over k clusters, p = {p(Cy), p(C2),...,p(Cy)}, where Cy, is a cluster label
between 1 and k. If a time series is considered “noise,” it will not have an assign-
ment. Using these probabilities, the predicted cluster is the cluster assignment with
the highest probability.

Y =uarg .maxkﬁ(i) (3.1

i=1
If a time series is not assigned to any cluster (i.e. considered noise), then a
cluster assignment of —1 is given to denote that the value is not assigned to any
cluster. Additionally, if a clustering model is unable to output a probability estimate
for each cluster, the predicted cluster’s probability is set to 1, and all other clusters’
probabilities are set to 0.

The various cluster evaluation techniques used will now be outline.

Mutual Information (MI)

Mutual Information (MI) is a function that measures the agreement between two
sets of labels, disregarding permutations. This means that the specific numeric
values assigned to labels or clusters are not important; only the correspondence
or matching between them is considered. In the context of cluster evaluation,
MI quantifies the agreement between the ground truth label y; and the predicted
cluster assignment y;. Formally, MI for a set of cluster predictions is defined in

Equation 3.2.

MI(Y,Y)=Y Y P(y,9)log (%) (3.2)

YeY jey (y P()A’)

3.2 TSCL Experimental Methodology 89

where Y is the vector of ground truth labels for the instances in D, ¥ is the
vector of predicted cluster labels for the same instances in D, y € Y represents a
specific ground truth label, § € ¥ represents a specific predicted cluster label, P(y,)
is the joint probability distribution of y and ¥, P(y) is the marginal probability of y,
and P(¥) is the marginal probability of J.

The joint probability distribution P(y,) is the probability that an instance has
both the ground truth label y and the predicted cluster label y. It is computed
from the co-occurrences of labels in the dataset (i.e., how many instances with the
same ground truth label appear in the same cluster). This makes MI permutation
invariant.

The marginal probabilities P(y) and P(§) represent the probability of an instance
having the ground truth label y or the predicted cluster label y, respectively.

While Mutual Information (MI) is a valuable measure for assessing the agree-
ment between clustering results and ground truth labels, it has certain limitations
that make it less effective in some scenarios. MI is not inherently normalised, mean-
ing its values can vary significantly depending on the size of the dataset and the
number of clusters, which can make it difficult to compare results across different
clustering experiments. Additionally, MI does not account for the agreement that
could occur by chance, particularly when the number of clusters is large.

As such, for cluster evaluations across multiple datasets and varying numbers of
clusters, MI is not a suitable evaluation metric. Therefore, this thesis will not use the
regular form of MI. Instead, two variants — Adjusted Mutual Information (AMI)
and Normalised Mutual Information (NMI), will be used. As will be outlined, these

two variants compensate for MI’s weaknesses.

3.2 TSCL Experimental Methodology 90

Normalised Mutual Information (NMI)

MI can produce misleading interpretations when used to compare clusterers with
different numbers of clusters or across different datasets. To address this, a nor-
malised version of MI — Normalised Mutual Information (NMI) — was proposed
to scale the value of MI between 0 and 1. An NMI value of 0 indicates no mutual
information between the ground truth and cluster labels, while an NMI value of 1
indicates perfect mutual information between them. Formally, NMI is defined in

Equation 3.3.

MI(Y,Y)

NI = Ty 1 ()

(3.3)

where D, MI(Y, Y) is the Mutual Information as defined in Equation 3.2, and
H(Y) and H(Y) are the entropies of the ground truth labels and predicted labels,

respectively, as defined in Equation 3.4.

H(X)=—) P(x)logP(x) (3.4)

xeX

where H (X) represents the entropy of a set of labels X, and P(x) is the marginal
probability of label x in the set X.

By dividing by the mean of the clustering entropies, NMI ensures that its values
are independent of the absolute number of clusters or labels, regardless of the
dataset size. This provides a more standardised way to compare clustering results
across a range of datasets and numbers of clusters.

In its normalised form, Mutual Information offers valuable insight for comparing
a variety of clustering models across a wide range of datasets. NMI quantifies
how much information is shared between the ground truth labels and the clustering

labels. Additionally, it considers the purity of the clusters (i.e., the proportion of

3.2 TSCL Experimental Methodology 91

instances with the same ground truth labels within the same cluster), providing

insights beyond what simple accuracy measures can offer.

Adjusted Mutual Information (AMI)

Adjusted Mutual Information (AMI) [125] is another extension of MI that accounts
for the possibility that clustering agreement could occur purely by chance. MI
scores tend to be higher as the number of clusters increases because there are
more opportunities for random alignments between the ground truth labels and
the predicted cluster labels to occur. In the context of MI, even if a cluster is
meaningless and formed by random chance, a higher score may be returned if some
level of agreement exists. AMI attempts to correct for this by adjusting the MI
score to reflect only the agreements that do not occur by chance.
Formally, AMI is defined in Equation 3.5.
MI(Y,Y)—E[MI(Y,Y)

-]
AMI(Y)Y) = maX(H(Y)>H<?)) —E[MI(Y,?)]

(3.5

where E[MI(Y,Y)] is the expected Mutual Information under a random model, and
H(Y) and H(Y) are the entropies of the ground truth labels and predicted labels,
respectively, as defined in Equation 3.4.

The Expected Mutual Information (EMI) is computed by finding the average MI
that would be expected if cluster assignments were made randomly. By subtracting
this value from the computed MI, the impact of random chance is greatly reduced.
Additionally, as shown in Equation 3.5, the normalisation of MI occurs similarly
to what is proposed in NMI (Equation 3.3), allowing the metric to be used across
datasets and models.

AMI offers similar benefits to NMI while also correcting for random chance,
making it potentially more accurate in some scenarios. However, this thesis will

evaluate over both NMI and AMI, even though the measurements are similar. The

3.2 TSCL Experimental Methodology 92

primary reason is NMI is one of the most popular measures in the literature. This
ensures that results can be more easily compared to work not directly considered in
this thesis. The second reason NMI is used alongside AMI is that by comparing the
difference between them, provides some insight into the impact of random chance

on specific models.

Rand Index (RI)

The Rand Index [97] is one of the most popular clustering evaluation metrics. It
measures the similarity between the ground truth labels and the predicted labels
by considering all pairs of samples and counting how many pairs are assigned to
the same or different clusters in both the ground truth and the predicted labels. The
RI score is from O to 1. Where 0 means there is no agreement between the ground
truth and cluster predictions and 1 indicates there is perfect agreement between the

ground truth and cluster predictions. Formally, this is defined in Equation 3.6.

N TP(Y,Y)+TN(Y,Y) 3.6)
Y,V '

R) = by Py s TN T + FP(;’ ?)+FN(Y,?)
where TP(Y,Y) is the number of pairs of points that are in the same cluster in both
Y and Y, TN(Y,Y) is the number of pairs of points that are in different clusters in
both ¥ and Y, FP(Y,Y) is the number of pairs of points that are in the same cluster
in ¥ but in different clusters in ¥, and FN(Y,Y) is the number of pairs of points
that are in different clusters in ¥ but in the same cluster in ¥ .cluster in Y.

One of the main drawbacks of the RI is that scores are typically closer to 1,
even for random clustering, due to the inherent agreement between most element
pairs. This occurs because the majority of element pairs are often assigned to
different clusters in both the predicted and ground truth clusterings, resulting in a
high proportion of agreeing pairs. As a result, the RI can yield high scores even

when the clustering does not accurately reflect the true structure of the data.

3.2 TSCL Experimental Methodology 93

However, the RI will be used in this thesis due to its widespread usage in the

literature and its ease of interpretation, being such a simple measure.

Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) is an extension of RI that accounts for the chance
that clustering agreement could occur purely by chance. Formally ARI is defined

in Equation 3.7.

ARI(Y.Y) =

RI(Y,¥) —E[RI(Y,T)] (3.7)
{ .

1—E[RI(Y,Y)
where RI(Y,Y) is the Rand Index between Y and ¥, and E[RI(Y,Y)] is the Expected
Rand Index under a random labeling model.

The Expected Rand Index (ERI) is computed by finding the average Rand
Index that would be expected if cluster assignments were made randomly. By
subtracting this value from the computed Rand Index, the impact of random chance
is significantly reduced.

Additionally, by accounting for the random chance of cluster assignments, the
ARI score is significantly deflated compared to the RI. The ARI score ranges
between —1 and 1. A score of —1 indicates perfect disagreement, meaning the
ground truth labels and predicted labels are exact opposites. A score of 0 indicates
that the clustering similarity is no better than random assignment. A score of 1
indicates perfect agreement, where the ground truth labels and predicted labels are
identical.

ARI scores tend to be closer to 0, making it easier to distinguish the performance
of different models across multiple datasets, and allowing for more meaningful
comparisons. Therefore, ARI provides valuable and unique insights into cluster

quality, making it an essential tool for overall cluster evaluation in this thesis.

3.2 TSCL Experimental Methodology 94

Clustering Accuracy (CL-ACC)

Clustering Accuracy (CL-ACC) is a supervised evaluation metric that measures the
proportion of correctly predicted instances relative to the total number of instances.
To determine whether a cluster prediction is considered “correct”, each cluster is
assigned to a corresponding class label. The assignment is done by selecting the
permutation of cluster and class label assignments Sy that maximises accuracy.

Determining the optimal assignment of class labels that maximises accuracy is
computationally expensive. To address this, combinatorial optimisation techniques,
the Hungarian algorithm [62] is employed. This approach involves constructing
a contingency matrix of cluster assignments and class labels, which is then trans-
formed into a cost matrix. The Hungarian algorithm is used to find the optimal
assignment, and the accuracy is subsequently calculated by comparing the predicted
cluster labels with the optimally assigned ground truth labels.

Formally, CL-ACC is defined in Equation 3.8:

A

1 DL yi=s()

CL-Acc(y, §) = max o Y l l (3.8)
e f

< = 0, otherwise

where Sy, is the set of all possible permutations of cluster assignments, |y| is the
number of ground truth labels, and s(¥;) represents the predicted cluster label for
instance i after applying the permutation s.

CL-ACC provides an interesting interpretation of cluster performance that is
different from other metrics considered in this thesis. While the primary objective
of clustering is not classification, CL-ACC assumes that the ground truth labels

represent one “correct” cluster configuration.

3.2 TSCL Experimental Methodology 95

Davies-Bouldin Index (DBI)

The Davies-Bouldin Index (DBI) [25] is an unsupervised measures that evaluates the
average similarity ratio of each cluster with its most similar cluster. An unsupervised
measure is one that does not require ground truth labels to produce a score.

DBI evaluates both intra-cluster relationships (similarity among values within
the same cluster) and inter-cluster relationships (similarity between different clus-
ters). A DBI value closer to 0 indicates better clustering performance, where
0 signifies that the clusters are both compact (intra-cluster similarity) and well-
separated (inter-cluster dissimilarity). The formal definition of DBI is provided in

Equation 3.9.

1 k (Si—I-Sj)
DBI(y) = — max | ——=—=< (39)
) k,; i# \L2(Ci,C))

where s; is the average distance between each data point in cluster i and the
average time series of cluster C;, s; is the average distance between each data
point in cluster j and the average time series of cluster C;, C; is the mean average
of cluster i (C;), C; is the mean average of cluster j (C;), and Ly(C;,C)) is the
Euclidean distance between the centroids C; and C;.

DBI is an interesting measure to consider, as it is unsupervised. However, as
this thesis will show, a limiting factor in using DBI (and similar unsupervised
metrics) for TSCL evaluation lies in the distance and averaging computations. This
thesis will demonstrate that elastic distances outperform traditional ones, such as
the squared Euclidean distance, for clustering tasks. Moreover, integrating elastic
distances into the averaging computations produces significantly better averages
for time series data. Therefore, in the context of TSCL, DBI provides limited
insight unless paired with an elastic distance. An elastic version of DBI has yet to

be formally defined in the literature. In Chapter 9, we will introduce this elastic

3.2 TSCL Experimental Methodology 96

DBI and demonstrate that, when both an elastic distance and an elastic averaging

technique are used, DBI’s utility for TSCL is significantly enhanced.

Calinski-Harabasz Index (CHI)

The Calinski-Harabasz Index (CHI) [15], also known as the Variance Ratio Crite-
rion [92], is an unsupervised metric that evaluates clustering by comparing between-
cluster dispersion with within-cluster dispersion.

The between-cluster dispersion is quantified by the Between-Cluster Sum of
Squares (BCSS), defined in Equation 3.10.

BCSS =Y niLy(C;,C)? (3.10)

k
i=1

where 7; is the number of points in cluster C;, and C is the overall centroid of
the dataset.

The within-cluster dispersion is measured by the Within-Cluster Sum of Squares

(WCSS), shown in Equation 3.11.

k
wess=Y Y Ly(x,G)? (3.11)

i=1xeC;
where x is a point in the i-th cluster.
The CHI is then computed as the ratio of the between-cluster dispersion (BCSS)
to the within-cluster dispersion (WCSS), normalised by their degrees of freedom.

Formally, the CHI is expressed as:

BCSS/(k—1)

CHl = ————~
WCSS/(n—k)

(3.12)

where k is the number of clusters, and # is the total number of data points.
A higher CHI indicates better-defined clusters, as it reflects greater between-

cluster separation relative to within-cluster cohesion. Like DBI, CHI offers a

3.2 TSCL Experimental Methodology 97

distinct perspective on clustering quality. However, it also relies on the squared
Euclidean distance, which, as we will show, is ineffective for TSCL. Additionally,
the calculation of cluster centroids (C;) and the overall dataset centroid (C) uses
the arithmetic mean, which we demonstrate does not perform well for time series
clustering tasks. As a result, in its original form, CHI provides limited insight into
time series clustering. In Chapter 9, we propose an elastic variant of CHI, which
we show offers a more accurate evaluation of time series clusterings compared to

the traditional CHI.

FitTime

An important consideration when evaluating clustering performance is the computa-
tion time required to train the model. FitTime refers to the duration taken to fit the
model to the training data and generate initial predictions. Although FitTime is not
the primary metric for assessing clustering performance, it plays a crucial role in
practical applications. In real-world scenarios, where computational resources and
time are often limited, a model’s efficiency can be a very important consideration.
Therefore, FitTime is a valuable metric to consider when making recommendations

for the deployment of clustering algorithms in practical settings.

3.2.2 Comparison of Clustering Algorithms

The next component of our methodology is to define how we will use these eval-
uation measures to compare clustering algorithms. The comparison of clustering
algorithms is a key aspect of our methodology. To conduct these comparisons
effectively, several factors are taken into account. This section will detail how
different variables are considered within out methodology to compare different

clustering algorithms.

3.2 TSCL Experimental Methodology 98

Over a Single Dataset

To begin, we will outline the simplest comparison variable: comparing multiple
models over a single dataset. A dataset, is assumed to have ground truth labels
present. These ground truth labels will not be used at any point during a model’s
training or prediction stage but will be used during evaluation. While this type
of evaluation wouldn’t be possible in real-world clustering (due to the lack of
labels), for an experimental methodology, supervised evaluation metrics offer the
best insight into quantifying “good” clustering. The following statistics will be
extracted from a model’s clustering: AMI, ARI, CLACC, NMI, RI, and FitTime.
We do not use any unsupervised metrics as we believe they do not provide good
insights into time series clusterings for reasons previously outlined. The reason
we choose to use multiple statistics is that each gives unique insight into specific
aspects of clustering quality.

Assuming each statistic has been extracted from the results of multiple TSCL
models, each model can be compared to another model for a specific statistic.
Models that perform better in each statistic can then be identified. Conclusions as

to why one model performs better, in the context of the dataset, can then be drawn.

Over Multiple Datasets

Evaluating a model’s performance over a single dataset only allows conclusions to
be drawn about the model’s performance for that specific dataset. However, this
thesis aims to draw more general conclusions about which TSCL models generally
perform best over a large range of different datasets. This will provide better
insight into which TSCL models would likely perform best for new time series data
not yet considered. To achieve this, we consider each models performance over

112 datasets (outlined in Section 3.3) so that broader conclusions can be drawn.

3.2 TSCL Experimental Methodology 99

However, evaluating so many different and diverse datasets presents significant
challenges for evaluation.

The first consideration is how each statistic is impacted by differences in size,
semantics, and the number of clusters a dataset possesses. Some clustering evalua-
tion metrics can be inflated for datasets with a large number of instances or clusters.
This is because having more clusters or more data increases the likelihood that
cluster “correctness” occurs purely by chance.

For example, in the case of MI, the probability of alignment between ground
truth and predicted labels increases with the number of clusters. Similarly, for the
RI evaluation measure, as the amount of data or the number of clusters increases,
so does the random chance of having agreeing or disagreeing pairs. In the UCR
dataset collection (outlined in Section 3.3), there are datasets with significantly
different numbers of class labels (clusters), such as the “ShapeAll” dataset with
60 unique class labels compared to “GunPoint,” which has only 2 unique class
labels. Furthermore, datasets like “ElectricDevices” have 16,637 unique time series
instances, compared to “BeetleFly,” which only has 40 unique time series instances.
A summary of various differences in the datasets we consider can be found in
Tables 3.3, 3.4 and 3.5.

Due to the diverse range of semantics, lengths and number of clusters we will
be considering, when drawing conclusions about model performance, specific
emphasis is placed on the AMI and ARI evaluation metrics. This is because they
are adjusted for random chance. The other cluster quality metrics (RI, NMI, and
CLACC), while still considered due to their popularity, will have less impact on
the general conclusions drawn in this thesis. Once statistics for each model, for
each dataset, have been obtained, the results will be presented and analysed in four
different ways.

The first, and most common way this thesis will analyse results, is by using

an adapted version of critical difference diagrams [26]. Specifically, we compare

3.2 TSCL Experimental Methodology 100

clusterers using a pairwise Wilcoxon signed-rank test and form cliques using the
Holm correction rather than the post-hoc Nemenyi test for each metric. This change
follows the work of [39] and [11]. While originally intended for classification
models, we believe critical difference diagrams offer similar insights for clustering
models.

An example of a critical difference diagram is shown in Figure 3.2. Figure 3.2
shows five dummy clusterers compared over some evaluation metric across a
number of datasets. The number line at the top shows the potential average rank of
a clusterer. In Figure 3.2, since there are five clusterers being compared, a clusterer
could have a rank between 1 and 5. A rank of 1 means the clusterer outperforms
all other considered clusterers on every dataset. A rank of 5 means the clusterer
performs worse than all other clusterers on every dataset. Therefore, a lower rank
indicates better performance in relation to the evaluation metric. Clusterers intersect
the average rank number line at the point where their average rank is positioned.
Each clusterer’s average rank is labelled on their line next to their name. Clusterers
are displayed in descending rank order.

In Figure 3.2, clusterer 2 performs best for the given evaluation metric over
some number of datasets with an average rank of 2.3243. This means over each
dataset for a given evaluation metric clusterer 1 was on average ranked 2.5586.
Clusterer 4 performs the worst, with an average rank of 3.6261.

In Figure 3.2, some clusterers’ lines are joined by thick black lines, indicating
that they belong to the same clique, meaning they are not significantly different
from each other (as described previously). Cliques are important for evaluation. For
example, clusterer 1 is in the same clique as clusterer 2, which means that although
clusterer 2 has a higher average rank, clusterers 1 and 2 are not statistically different.
Additionally, clusterer 4 and clusterer 5 form another clique at the lower rankings,
indicating that they, too, are not statistically different. Clusterer 3, however, is not

part of any clique, which signifies that it is statistically different from all other

3.2 TSCL Experimental Methodology 101

5 4 3 2 1

| !] !] !] ! |
clusterer 4 —3:5261 23243 c|ysterer 2
clusterer 5 —3:4429 23386 c|ysterer 1
3.0430 cluysterer 3

Fig. 3.2 An example critical difference diagram using dummy clusterers over some
metric, over some amount of datasets.

clusterers. When interpreting this diagram, we would conclude that clusterers 1 and
2 are the best-performing clusterers, followed by clusterer 3, with clusterers 4 and
5 performing statistically the worst.

While critical difference diagrams are useful, they can be deceptive when used
in isolation. This is because they do not display the magnitude of the differences,
and the linear nature of clique finding can mask relationships between results [84].
For example, small differences in single cases across thousands of results can lead to
a higher rank despite the difference being minimal. This is a particularly important
consideration for this thesis due to the high number of datasets we evaluate and
the types of clusterers we consider. Additionally, this issue is likely to occur when
comparing similar clusterers or the same clusterer with different parameters, which
is central to this thesis.

As such, the second evaluation tool this thesis will use is tables showing aver-
aged results for each chosen metric. An example of one of these tables it shown
in Figure 3.1 and 3.2. Figure 3.1 shows the average scores across all datasets.
Figure 3.2 shows the average rank by domain. The domains are a subset of the 112
which will be defined in Section 3.3. While in isolation, tables such as 3.1 can be
misleading, when combined with our other techniques, they provide useful insights

into clustering performance.

3.2 TSCL Experimental Methodology 102

ARI | AMI | CLAcc | NMI | RI

clusterer 1 | 0.204 | 0.257 | 0.543 0.281 | 0.682
clusterer 2 | 0.183 | 0.234 | 0.529 | 0.260 | 0.676
clusterer 3 | 0.169 | 0.207 | 0.511 0.234 | 0.658
clusterer 4 | 0.165 | 0.223 | 0.513 0.248 | 0.656
clusterer 5 | 0.159 | 0.212 | 0.507 | 0.236 | 0.632

Table 3.1 Summary of average performance of dummy clusterers across multiple
evaluation metrics

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
clusterer 1 | 0.341 | 0.158 0.227 | 0.358 0.085 | 0.207 | 0.376
clusterer 2 | 0.306 | 0.156 0.207 | 0.308 0.081 | 0.194 | 0.348
clusterer 3 | 0.269 | 0.132 0.205 | 0.253 0.142 | 0.106 | 0.352
clusterer 4 | 0.273 | 0.162 0.214 | 0.353 0.076 | 0.167 | 0.311
clusterer 5 | 0.273 | 0.156 0.242 | 0.236 0.071 | 0.120 | 0.298

Table 3.2 Average AMI score of dummy clusterers on problems split by problem
domain

In addition to tables and critical difference diagrams, we can use two additional
evaluation strategies to further explore the results: violin plots and clusterer scatter
diagrams.

A violin plot is similar to a box plot but provides additional information by
showing the distribution and probability density of the data. Figure 3.3 shows an
example of a violin plot. In Figure 3.3, the x-axis represents the different clusterers,
and the y-axis shows the CLACC scores. The plot’s vertical range indicates the
minimum and maximum scores, while the shape and width of the violin at different
y-values reveal where the data points are concentrated. Wider sections of the plot
indicate a higher density of scores, meaning more data points fall within that range.
Additionally, within each violin, there is a box plot that shows the interquartile
range (the line inside each violin) and the median score (the gap in the line inside
each violin). By assessing violin plots, we can better understand the distribution of

a clusterer’s performance.

3.2 TSCL Experimental Methodology 103

0.70]
[|
i |
0.65 ‘H‘ |]
H
I I
A | [
i A
0.60 “ “ A | H
: A (] | A
0.55 o ‘ \
y \ A y/ ‘ \ B y \
= / \
0504 < ¢ D () < ‘ > ()
- - :) 8 ‘ y AV 4
N N/ N 7 |)
\ | A N /
0.45 ‘ ‘ \ [‘\ ,“ I
I ‘ \ 1l
|| |
0.40 ‘\‘ “ I [v
‘ v \J \
0.35 1 H \‘ ‘\‘
| |
0.30 4 \
|
(Q’(\, @/(q/ (Q’()) (Q}b(@}6
xZ xZ xZ xZ xZ
N N N N N

& & & &

Fig. 3.3 Violin plot for CLACC of dummy clusterers over multiple datasets

Additionally, for statistics such as FitTime, when using a Violin plot we apply
a relative scaling to address the considerable variability in execution times across
datasets. The relative FitTime is calculated by dividing each original value by the
sum of that value and the dataset’s median (i.e., mﬁ%)' This transformation
scales all values into a range between 0 and 1, with lower values signifying faster
performance relative to the median. Such scaling facilitates more meaningful
comparisons, especially when execution times of some models differ by orders of
magnitude.

The final analysis tool used in this thesis is a scatter diagram that compares the
distribution of results between two clusterers. Figure 3.4 shows an example scatter
plot comparing clusterer 1 and clusterer 2. The x-axis represents the metric score
for one clusterer, while the y-axis represents the metric score for the other. Each
point on the plot corresponds to the best result for a specific dataset. The colour of
the point indicates which clusterer achieved the higher score for that dataset: green

if the clusterer on the y-axis performed better, blue if the clusterer on the x-axis

performed better, and orange if both clusterers achieved the same score.

3.2 TSCL Experimental Methodology 104

The gray diagonal line down the center of the plot represents the threshold
where both clusterers perform equally. The further a point is from this line, the
greater the difference in performance between the two clusterers for a given dataset.
The keys display the specific numbers of wins, ties, and losses for each clusterer.

Finally, the dashed lines represent the median scores of each clusterer.

clusterer 1 wins here °
[64W, 5T, 38L]
[]
0.8
(]
[)
[)
0.6 °
TS
23 o
o
— N .0./
=
o° o Yo o
IR = °
+ © 0.4 4 °
38° . .
S E . e o)/
= A /
° .:’.,3
L]) °
024 e ° 0/ ’:. °
° hd
F-®————9-—0
[] 0.0. leo
..,. 1
o0 ol :
0‘.%';& i clusterer 2 wins here
e
0071 & '® [38W, 5T, 64L]
/
@ 1
0.0 0.2 0.4 0.6 0.8

clusterer 2 ARI
(mean: 01835) |*Dashed lines represent the median

Wilcoxon test for equality of medians, p-value=0.002
Paired t-test for equality of means, p-value=0.001

Fig. 3.4 Example scatter plot between clusterer 1 and clusterer 2 for ARI over 107
datasets

Overall, using these four evaluation techniques, multiple clusterers will be
evaluated over multiple datasets of different sizes, number of clusters, semantics

and domains.

Over Combined Test-Train Data Split

In supervised machine learning fields, such as TSC, datasets are typically divided
into a training split and a test split. The training split is used to “train” the model,

while the test split (which remains unseen by the model during training) is used to

3.2 TSCL Experimental Methodology 105

evaluate the model’s performance. This approach helps prevent overfitting, where
the model memorises label assignments rather than learning the underlying patterns.
Additionally, evaluating on unseen data provides valuable insight into the model’s
ability to generalise from the data.

However, in unsupervised tasks such as TSCL, labels do not exist. This means
that overfitting is not a concern, and any patterns or structures learned by the model
must come from the model’s inherent understanding of the data itself, rather than
from predefined labels [51]. Consequently, a common approach in clustering is to
provide the model with all available data during training, since a separate prediction
step is not required. Additionally some TSCL models only work with the combined
test-train split and do not work with the test-train split [130, 2, 63].

Therefore, to evaluate clusterers for general clustering tasks, this thesis will
conduct evaluations over the combined test-train split. This means that models will
be trained on all available data which means they will be trained on the same data

they are predicting over.

Over Test-Train Data Split

Evaluating over the combined test-train split is the most common approach for
assessing clusterers. However, some TSCL clusterers feature distinct “fit” and
“predict” stages, allowing new time series to be added to existing clusters without
the need to recompute the entire model [89, 21, 94, 64, 128]. Models with this
capability (such as k-means) are particularly useful in scenarios where clustering
is a step in a larger pipeline. Examples include pipelines that require real-time
processing, such as streaming data, real-time anomaly detection, and other dynamic
applications [48].

Furthermore, evaluating models on unseen data provides a good indication of

how well models can extrapolate meaningful general patterns from the data. A

3.2 TSCL Experimental Methodology 106

model that performs well on unseen data has likely learned more general qualities
about the data, potentially making its clusterings more valuable.

Therefore, in addition to evaluating over the combined test-train split, this thesis
will also consider using the default UCR test-train split to identify models that

generate more generalised clusterings.

Over a Set Number of Clusters

One of the key parameters for all clustering models is the number of clusters. Some
clustering algorithms determine this parameter automatically, while others require
it to be set manually. Finding the optimal number of clusters for a dataset, given a
specific model, is a challenging task. For example, the performance of the k-means
algorithm on any given dataset is undeniably dependent on the number of clusters
specified [48]. Consequently, entire research fields have emerged dedicated to
identifying the optimal number of clusters for a given model.

The objectives of this thesis, however, do not focus on determining the optimal
number of clusters. Instead, we adopt a methodology commonly used in similar
literature [89, 91, 64, 46, 47]. Specifically, the number of clusters is set equal to
the number of unique class labels in the dataset. While this may not represent the
optimal number of clusters for a given model, one reasonable assumption is that a
“correct” clustering configuration could mirror the clustering of the ground truth
labels. Thus, it is expected, at least to some extent, that instances sharing the same
ground truth labels would exhibit some common, distinguishable characteristics.
Therefore, while the goal of clustering is not to perfectly replicate the predefined
groupings of ground truth labels, the ability to identify and organise data around
these distinguishable characteristics demonstrates desirable clustering qualities.

In addition, setting the same number of clusters for each dataset facilitates

more straightforward comparisons between different models. This is particularly

3.2 TSCL Experimental Methodology 107

important because some evaluation metrics are sensitive to the number of clusters
chosen (as discussed in Section 3.2.1). By standardising the number of clusters
across models, we introduce an additional control variable, which helps to isolate
the effects of other factors that this thesis is concerned with.

Consequently, our methodology involves setting the number of clusters for
models that require this parameter to the number of unique ground truth labels
in the dataset. This approach allows for a consistent comparison of clusterers
across multiple datasets, ensuring that differences in performance are more likely

attributable to the models themselves rather than variations in cluster quantity.

Over the Same Model Type

When evaluating clustering models of the same type (e.g., density-based, partition-
based, hierarchical-based), the models generally aim to achieve similar objectives,
making their clustering results directly comparable. Therefore, our methodology
will organise comparisons by focusing on performance within each defined type of
clustering model. Our experimentation will focus on partition-based clustering as

this will allow us to best compare different models.

3.2.3 Tuning of Parameters

In supervised learning tasks, a common practice in model evaluation is to tune
the model to maximise its performance based on a specific supervised metric like
classification accuracy. However, in TSCL, where labels are absent, this approach
is not applicable.

An alternative method for tuning clustering models is to use an unsupervised
metric, such as CHI or DBI. However, both of these metrics typically rely on the
Euclidean distance. As we will demonstrate in Chapter 9, using unsupervised

metrics with the Euclidean distance and arithmetic mean is not suitable for tuning

3.3 Datasets 108

TSCL models. Theoretically (and as we explore in Chapter 9), substituting the
Euclidean distance and arithmetic mean with a time series-specific distance measure
and averaging technique could improve the effectiveness of unsupervised metrics.
However, there have been no empirical studies in the literature that specify how, or
which, time series distances should be used. This leaves many unknowns regarding
the impact that adapted time series-based unsupervised metrics may have on results.

Given the uncertainties surrounding unsupervised tuning in the context of TSCL,
we will not adopt this approach. Instead, we will focus on providing generally
accepted “good” default parameter values sourced from the literature. If a distance
or clusterer significantly under performs relative to our expectations, we may update
these values. In such cases, we will conduct limited tuning using supervised metrics
to improve the results, though this process will not be exhaustive. Additionally, any
tuning will be applied across all datasets rather than on a per-dataset basis, with the
goal of identifying generally effective parameter values, rather than maximising

clustering performance for specific datasets.

3.3 Datasets

We conduct our experiments using the time series data from the University of
California, Riverside (UCR) archive [23]. Our focus is on univariate time series,
and for all experiments, we utilise 112 of the 128 datasets available in the UCR
archive. We exclude datasets that contain series of unequal length or missing values.

The univariate UCR archive is a highly diverse collection, enabling us to perform
experiments across a wide range of distinct time series. Tables 3.3, 3.4 and 3.5
provides summary distribution information about the 112 of the UCR univariate
datasets we consider.

A key aspect of our evaluation methodology is the significant variation in

dataset sizes, both in terms of the test-train split and the combined test-train split

3.3 Datasets 109

dataset size. This variation allows us to explore how different clustering algorithms
perform with varying amounts of data and across time series of different lengths.
The use of the test-train split specifically demonstrates how the models generalise
to unseen data, while the combined test-train split dataset size reflects performance
in traditional clustering scenarios.

Moreover, the wide range of unique class labels provides insights into how
clustering algorithms perform with different numbers of clusters, as the unique
labels will determine the number of clusters used in our experiments. Finally, the
diverse time series domains in the UCR archive offer valuable insights into how
models perform across different domains, revealing their strengths and weaknesses

1n various contexts.

Number of training instances Number of test instances
1-100 41 (36.61%) 1-100 18 (16.07%)
101-250 20 (17.86%) 101-250 27 (24.11%)
251-500 29 (25.89%) 251-500 26 (23.21%)
501-1000 15 (13.39%) 501-1000 13 (11.61%)
1001-2000 3 (2.68%) 1001-2000 10 (8.93%)
2001-5000 2 (1.79%) 2001-5000 14 (12.50%)
5001+ 2 (1.79%) 5001+ 4 (2.68%)
Minimum 16 Minimum 20
Maximum 8926 Maximum 16800

Table 3.3 Summary of number of training and test instances per dataset distribution
for 112 of the univariate UCR archive.

3.4 Normalisation 110

Combined test-train split instances Number of unique class labels
1-200 22 (19.64%) 1-2 40 (35.71%)
201-500 23 (20.54%) 3-8 50 (44.64%)
501-1000 31 (27.68%) 9-20 11 (9.82%)
1001-2000 10 (8.93%) 21-30 2 (1.79%)
2001-5000 22 (19.64%) 31-40 2 (1.79%)
5001-10000 2 (1.79%) 41-50 3 (2.68%)
10001+ 2 (1.79%) S1+ 4 (3.57%)
Minimum 40 Minimum 2

Maximum 24000 Maximum 60

Table 3.4 Summary of number of combined test and train instances and number of
unique class labels per dataset distribution for 112 of the univariate UCR archive.

Time series length Dataset domain
1-200 40 (35.71%) Device 9
201-500 31 (27.68%) ECG 6

501-1000 20 (17.86%) Image 32
1001-2000 19 (16.96%) Motion 17

2001+ 2 (1.79%) Sensor 28
Minimum 15 Simulated 8
Maximum 3000 Spectro 12

Table 3.5 Summary of number of time series lengths and dataset domain per dataset
distribution

3.4 Normalisation

One of the key decisions we made was to apply z-normalisation to all our data.
While we acknowledge that some argue “any improvement resulting from pre-
processing (normalisation) should not be attributed to the clustering method it-
self” [51], others contend that “in order to make meaningful comparisons between
two time series, both must be normalised” [96].

Therefore, the decision to normalise or not remains an ongoing research ques-
tion. Ideally, with unlimited time and computational resources, we would run both

normalised and un-normalised experiments to compare the results. However, given

3.5 Software and Research Reproducibility 111

the extensiveness of our experimentation, this is not feasible, and we are forced
to make a choice. Following the recommendation of [59] and [96] we choose to

normalise our data.

3.5 Software and Research Reproducibility

One of the priorities of this thesis is to open source all code and results to make
them available and reproducible by other researchers. During the course of this
research, it became evident that one of the most glaring differences between the
fields of TSCL and TSC is the availability of code for models and the consistency
of results across datasets and methodologies.

We implemented all of our models and evaluation code in Python !. To ensure
reproducibility, we open sourced all of our clusterers in the aeon > open source
repository [82]. We also open sourced all of our evaluation code in the tsml-eval
open source project. Within the aeon toolkit, we also use the tslearn open source
repository [118] and the scikit-learn > open source repository [92].

All of our experiments were run on a single thread of an Ice Lake Intel Xeon Plat-
inum 8358 2.6GHz processor on the University of East Anglia’s high-performance

computer (HPC) cluster with a 7 day computational runtime limit.

3.5.1 Time Series Clustering in Python: aeon

aeon is an open-source toolkit for time series machine learning. It is compatible
with scikit-learn and provides access to the latest algorithms for time series machine
learning, in addition to a range of classical techniques for tasks such as forecasting,

clustering, and classification [82].

Thttps://www.python.org/
Zhttps://github.com/aeon-toolkit/aecon
3https://github.com/time-series-machine-learning/tsml-eval
“https://github.com/tslearn-team/tslearn
Shttps://github.com/scikit-learn/scikit-learn

https://www.python.org/
https://github.com/aeon-toolkit/aeon
https://github.com/time-series-machine-learning/tsml-eval
https://github.com/tslearn-team/tslearn
https://github.com/scikit-learn/scikit-learn

1

3.5 Software and Research Reproducibility 112

Processing time series data in aeon can be approached in multiple ways. An
example of loading and clustering data using aeon is provided below. In the
example, we create a time series dataset X_train consisting of six time series
instances, each with 3 time points. aeon also offers utilities to load all UCR
datasets referenced throughout this thesis. These datasets can be downloaded at
timeseriesclassification.com. The example below was generated using version

0.11.0 of the aeon toolkit.

import numpy as np

> from aeon.clustering import TimeSeriesKMeans

|

6

8

9

10

X_train = np.array([[1, 2, 3], [4, 5, 61, [7, 8, 91, [13, 14,
151, [16, 17, 18], [19, 20, 211]1)

combined_X = np.concatenate([X_train, X_test])

clst = TimeSeriesKMeans(n_clusters=3, distance="dtw",

random_state=0)

labels = clst.fit_predict(combined_X)

https://timeseriesclassification.com/dataset.php

Chapter 4

Lloyd’s-based TSCL

Contributing Publications

* Holder, C., Bagnall, A., Lines, J. (2024). On time series clustering with
k-means. arXiv preprint arXiv:2410.14269. Available at: https://arxiv.org/
abs/2410.14269.

Before exploring TSCL with elastic distances, we first establish a baseline
to compare our results against. The most common way to cluster time series
is to use k-means combined with a time series-specific distance and averaging
technique [89, 46, 47, 128, 21, 94] .One of the most common implementations of
k-means is using Lloyd’s algorithm. However, since Lloyd’s original proposal [75],
numerous modifications have been introduced. In traditional clustering, many of
these modifications are considered essential for achieving meaningful results and
as such the “baseline” k-means is assumed to adopt many of these strategies [92].

However, in TSCL there does not seem to be a well defined version of Lloyd’s
algorithm that is consistently adopted. As will be shown, some researchers incorpo-
rate specific modifications suggested in traditional clustering literature, while others
use the unmodified, original Lloyd’s algorithm. Furthermore, we observe instances
where different configurations of Lloyd’s-based algorithms are used within the same

paper. We argue that meaningful comparisons between Lloyd’s-based algorithms

https://arxiv.org/abs/2410.14269
https://arxiv.org/abs/2410.14269

4.1 Introduction 114

cannot be performed if the Lloyd’s-based algorithms are poorly configured, lack
essential modifications, or are configured inconsistently.

We dedicate an entire chapter to this topic because Lloyd’s-based algorithms
and their comparison are a central focus of this thesis. Much of our contribution
lies in the evaluation and comparison of various Lloyd’s-based algorithms using
different elastic distances and averaging techniques. Additionally, we aim to address
a gap in the research by providing a well-defined configuration for Lloyd’s-based
algorithms, which is currently lacking in the literature.

Therefore, in this chapter, we aim to establish a robust baseline for Lloyd’s
algorithm in the context of TSCL. We begin by reviewing the existing literature
and model configurations to highlight the inconsistencies in prior work. Next, we
propose a modified version of Lloyd’s algorithm, clearly explaining our design
choices and providing pseudocode for clarity. After defining our version of Lloyd’s
algorithm, we detail our experimental setup and recommend default parameters for
Lloyd’s algorithms. Our goal is to keep as many variables constant across different
Lloyd’s variants, adjusting only the specific parameters of each variant to isolate
their impact on results.

Finally, with a consistent Lloyd’s-based configuration and well-defined default
parameters, we perform a baseline experiment of the existing TSCL literature
using our Lloyd’s algorithm and experimental methodology. While our results are
generally consistent with the existing TSCL literature, we uncover some notable
findings that we believe are only revealed due to our robust configuration and

experimental approach.

4.1 Introduction

k-means is one of the simplest and most well-researched approaches for TSCL. Sev-

eral TSCL-specific variants of k-means have been proposed, such as k-shapes [89],

4.1 Introduction 115

k-SC [128], and k-DBA [94]. All of these algorithms use Lloyd’s algorithm [75]
(outlined in Figure 2.24) but modify either the distance measure used and/or the
averaging method employed.

In traditional clustering, k-means has an extensive body of literature dedicated
to improving every aspect of the algorithm, including initialisation of centroids,
selecting the optimal number of clusters, early convergence criteria, maximum
number of iterations, distance measures, and averaging methods, among others.
The list of improvements to the base k-means is so extensive that entire papers
are dedicated to reviewing the literature and summarising recent research on k-
means [48].

However, within the context of TSCL, there does not appear to be an agreed-
upon “default” version of Lloyd’s algorithm. Some research employs an unmodified
version of Lloyd’s algorithm [89], while other studies incorporate select optimi-
sations [46, 47]. Consequently, when comparing Lloyd’s-based algorithms, it is
often unclear whether the observed differences in results stem from the proposed
modifications or from variations in the configurations of Lloyd’s algorithm.

To address this issue, we will first identify the various versions of Lloyd’s algo-
rithm employed in the TSCL literature. Through this review, we will demonstrate
that there is a lack of consistency in the configuration of Lloyd’s algorithm, making
it difficult to compare results across different studies. This inconsistency suggests
that previous claims regarding the success of certain models may be influenced
more by the specific configuration of Lloyd’s algorithm rather than the inherent
effectiveness of the proposed methods.

Following this, we will explicitly define our configuration of Lloyd’s algorithm,
providing justification for each configuration choice. Subsequently, we will run each
of the aforementioned Lloyd’s-based algorithms using our defined configuration,
applying our methodology to reassess previous work. These results will serve as a

baseline for our subsequent experiments.

4.2 Lloyd’s algorithm in TSCL 116

4.2 Lloyd’s algorithm in TSCL

Lloyd’s-based methods have been the most popular approach for TSCL. Numerous
papers have proposed variants of Lloyd’s algorithm. Additionally, many of these
Lloyd’s-based methods, such as k-shapes, k-DBA, and k-SC, have been considered
by many as baselines for comparison. Table 4.1 provides an overview of some of
the literature that employs Lloyd’s algorithm-based techniques. The table highlights
a diverse range of TSCL literature, from general reviews of TSCL, such as [51],
to the proposal of new models that are compared against Lloyd’s techniques, such
as [89], and real-world use cases that utilise Lloyd’s methods, such as [93].

Table 4.1 also highlights the specific configuration decisions made for each
Lloyd’s technique. Upon reviewing Table 4.1, a keen observer may notice that no
two experiments use the same configuration. We conducted an extensive search
and found it is very rare to find two papers with the same Lloyds configurations.
We believe a significant factor contributing to this is the frequent reference to a
“default” or “traditional” version of k-means (Lloyd’s algorithm), without any clear
authority defining this “default” version.

As we are unable to find a clear definition of a “default” variant of Lloyd’s
algorithm for TSCL, we take it upon ourselves to first define an explicit “default”
implementation of Lloyd’s algorithm to be used consistently across all our experi-
ments. By doing so, we will eliminate differences in the performance of our Lloyd’s
algorithm due to varying configurations. To achieve this, we will go through each
stage of Lloyd’s algorithm and clearly define our choices for different optimisations.
We will then perform basic experiments with k-means to provide further validation
for our choices. Our goal is not to create the most well-optimised version of Lloyd’s
algorithm, but rather to create a version that assumes the average case for most use

cases and will allow meaningful experimentation to be performed using the models.

4.2 Lloyd’s algorithm in TSCL 117
Reference | Num. Init Distance Averaging Max iters | Early stop-
Cites ping
[64] 50 k-means++ | Euclidean, SBD, | Mean, Shape ex- | 200 Inertia
DTW traction, DBA change
[89] 504 Random Euclidean, SBD, | Mean, Shape | 100 Membership
DTW, KSC dist extraction, DBA, doesn’t
KSC average change
between
iterations
[94] 1248 Forgy DTW DBA 10 -
[51] 148 Forgy DTW, Euclidean, | DBA, Mean, | 15 Stops if
SBD Shape extraction number
of clusters
reduces
[61] 2 Forgy DTW, Euclidean, | DBA, Mean, soft- | - -
soft-DTW DBA
[130] 95 - Euclidean, SBD, | Mean, Shape | - -
DTW, KSC dist extraction, DBA,
KSC average
[93] 271 - DTW, Euclidean | DBA, Mean - -
[90] 144 Random Euclidean, SBD, | Mean, Shape | 100 Membership
DTW, KSC dist extraction, DBA, doesn’t
KSC average change
between
iterations
[77] 213 Random Euclidean, SBD, | Mean, Shape | - -
with 5 | DTW, KSC dist extraction, DBA,
restarts KSC average
[3] 50 Forgy Euclidean, SBD, | Mean, Shape | - -
DTW, KSC dist extraction, DBA,
KSC average
[88] 263 Random Euclidean, DTW | Mean - Membership
doesn’t
change
between
iterations
[91] 1 Random Euclidean, SBD, | Mean, Shape | 300 Membership
DTW, KSC dist extraction, DBA, doesn’t
KSC average change
between
iterations

Table 4.1 A sample of TSCL literature using Lloyd-based methods. The Reference
column lists relevant papers, with Num. Cites showing citation counts (as of August
2024). Init indicates the initialisation strategy, Distance specifies the distance
measure, and Averaging lists the corresponding averaging methods. Max Iters
defines the iteration limit, while Early Stopping outlines convergence criteria. A

(13

—" denotes unspecified or missing values.

4.3 A TSCL configuration for Lloyd’s-based algorithms 118

4.3 A TSCL configuration for Lloyd’s-based algo-
rithms

We will now outline our baseline configuration for Lloyd’s algorithm in the context
of TSCL. Our configuration choices are motivated by traditional clustering literature,
as many of these decisions are data-independent. However, to validate these
hypotheses for time series data, we also conduct basic experiments to demonstrate
that our reasoning holds true for TSCL.

The most basic version of Lloyd’s algorithm is outlined as a flow diagram in
Figure 2.24. In addition Algorithm 22 shows the most basic implementation of

Lloyd’s algorithms.

Algorithm 22: Lloyd’s Algorithm for k-means (X, k)

Input: X (Dataset of time series of length n), K (Number of clusters)
Output: Assignment of each time series to a cluster

1 Let centres be an array of k randomly chosen time series from dataset X
2 Let assignments be an empty array of length n

3 repeat

4 for each time series x; in X do

5 Compute the distance between x; and each of the k centres

6 L Assign x; to the nearest centre

7 for each centre cj in centres do

8 L Update c; to be the mean of all time series assigned to it

9 until assignments does not change between iterations;
10 return assignments

In Algorithm 22 line 1 uses a random initialisation strategy to define initial
centroids. Lines 3 and 9 outline the stopping condition: continue until assignments
don’t change between iterations. Lines 4 to 6 show the assignment phase of Lloyd’s
algorithm. Lines 7 to 8 demonstrate the centroid update stage. Finally, line 10

shows the returning of the assignments for each time series in X.

4.3 A TSCL configuration for Lloyd’s-based algorithms 119

4.3.1 Initialisation Strategy

The first explicit definition we will provide is the choice of cluster initialisation.
Aside from selecting an appropriate number of clusters, the initialisation strategy
is one of the most critical decisions in Lloyd’s algorithm. However, there is
no universally “best” solution to the initialisation problem, and it remains an
active area of research [48]. In traditional clustering, default approaches are often
recommended for initialisation, but these have not been commonly adopted in
TSCL.

Numerous initialisation strategies have been proposed. The most comprehensive
review of these strategies was conducted by [17], who compared eight of the most
commonly used methods. In Table 4.1, three different initialisation strategies are

outlined: Forgy, Random and k-means++.

Forgy [35] initialisation chooses k random time series from the dataset to be

the initial centroids.

* k-means++ [6] initialisation starts by choosing the first centroid randomly.
Each subsequent centroid is then chosen based on a probability proportional
to the squared Euclidean distance from the nearest existing centroid. This

strategy ensures that centroids are spread out more evenly.

* Random initialisation selects k initial centroids by randomly assigning each
value in the dataset to a cluster. Once all values have been assigned, the
average of each cluster is computed, and these averages are used as the initial

centroids.

* Greedy k-means++ [6] is a variant of k-means++ that, instead of using a
probabilistic selection process for each new centroid, deterministically finds

the time series in the dataset that maximises the minimum distance from the

4.3 A TSCL configuration for Lloyd’s-based algorithms 120

already chosen centroids. This ensures that the centroids are as spread out as

possible from the initial selection.

While [17] did not provide a definitive answer to the best initialisation strategy,
some general conclusions were drawn. First, initialisation strategies such as Forgy
and random initialisation should be avoided due to their unreliability. Instead, [17]
recommended approaches such as greedy k-means++. Others have found similar
results, such as [1], who found that randomly generated centroids, without consid-
ering the position of such centroids in the datasets, lead to unexpected convergence.
Overall, randomly selected centroids cause the clustering operation to get stuck in a
low local minimum [37].

Greedy k-means++ traditionally employs a distance measure, typically the
squared Euclidean distance, to compute similarity. However, as many others [74,
111], and this thesis, have found, the Euclidean distance is not a suitable measure for
assessing time series similarity. Thus, while it is desirable to use greedy k-means++
due to its success in traditional clustering, it is unknown whether it will have the
same positive impact for TSCL (due to the use of the Euclidean distance). While
the logical step would be to change the distance measure k-means++ uses to match
that of Lloyd’s algorithm in use (e.g., use DTW), this may adversely impact some
distances more than others, thus making the overall impact difficult to measure.
Therefore, before k-means++ can be recommended, this gap in the research needs
to be addressed. We seek to investigate this problem in Chapter 8.

As there are many unknown variables when using k-means++ for TSCL, we
will not be using it for our experimentation. Additionally, we will not use single run
traditional methods such as Forgy and random initialisation, as random initialisation
strategies have been shown to lead to unexpected clustering convergence (local
minima). However, one proposed method to escape local minima is to rerun Lloyd’s

algorithm with r different starting centroids. Specifically, one can perform Forgy or

4.3 A TSCL configuration for Lloyd’s-based algorithms 121

random initialisation to initialise k-means r times and then select the final clustering
with the minimum SSE (Equation 2.32) [116]. The main problem with this method
is that it does not guarantee obtaining the optimal solution unless r is very large (thus
increasing the time complexity) [116]. Therefore, this approach is likely unviable
in real-world TSCL use cases, but it is useful for experimental methodologies (until
other initialisation strategies are understood for TSCL), as each experiment has r
opportunities to form optimal clusterings.

Therefore, we will adopt an initialisation strategy using Forgy initialisation and
perform 10 restarts, selecting the restart that yields the smallest SSE for the clus-
tering configuration. We chose the value of 10 as it is the default recommendation
by [92] when using a random initialisation strategy. For larger datasets, this value
may be insufficient, so we have implemented additional strategies to reduce the
likelihood of converging to local optima, including contingencies for empty cluster
formation, which will be discussed further below. We chose Forgy over random
initialisation because random initialisation involves an averaging stage. As has
been observed by others, and in this thesis, the traditional arithmetic mean is not
suitable for averaging time series. Therefore, we will adopt the simplest approach
with the fewest potential variables in the context of TSCL: Forgy initialisation with
10 restarts.

Algorithm 23 demonstrates the process of enhancing Lloyd’s algorithm with
restarts. Specifically, Algorithm 23 introduces a new parameter called n_init. For
our experimentation, we set n_init to 10 to perform 10 restarts with different
initial centroids. To keep track of the best clustering, lines 1 to 3 introduce three
variables to track the best solution found. The variable best_inertia is initialised
to infinity and will store the inertia of the best restart. Line 4 begins the loop that
performs n_init runs of Lloyd’s algorithm with different initial centroids. After
the standard Lloyd’s algorithm completes on line 13, line 14 calculates the inertia

(curr_inertia) for the current iteration, and line 15 compares this value to the

4.3 A TSCL configuration for Lloyd’s-based algorithms 122

previous best_inertia. If the curr_inertia is less than best_inertia, the variables
tracking the best run are updated accordingly. Finally, after all restarts have been

executed, the best clustering is returned on line 19.

Algorithm 23: Lloyd’s Algorithm with restart initialisation strategy (X, K,

n_init)
Input: X (Dataset of time series of length n), K (Number of clusters),

n_init (Number of restarts with different initial centroids)

Output: Assignment of each time series to a cluster

1 best_inertia <— o

2 Let best_assignments be an empty array of length n

3 Let best_centres be an empty array of length n

4 fori <1 ton_init do

5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 repeat
8 for each time series x; in X do
9 Compute the distance between x; and each of the k centres
10 L Assign x; to the nearest centre
1 for each centre c; in centres do
12 L Update c; to be the mean of all time series assigned to it
13 until assignments does not change between iterations,
14 Let curr_inertia be the SSE of the current clustering
15 if curr_inertia < best_inertia then
16 best_inertia < curr_inertia
17 best_assignments <— assignments
18 best_centres <— centres

19 return best_assignments

To demonstrate our hypothesis that Forgy initialisation with 10 restarts across
the UCR dataset is a sensible baseline, we conducted a series of simple experiments
using the traditional k-means algorithm with different initialisation techniques.

The CD diagrams in Figure 4.5 show that for k-means, all the initialisation
strategies fall into the same clique and therefore are not critically different. Table 4.2
presents the specific average scores across the UCR archive. While the values in
Table 4.2 appear fairly similar across all metrics, assessing the variation highlights

the rationale behind our choice.

random
g-kmeans++

random
g-kmeans++

4.3 A TSCL configuration for Lloyd’s-based algorithms 123
5 4 3 2 1 5 4 3 2 1
[B M B [U N R
3.2946 2.8571 random-restarts random 3.2098 2.8750
3.0089 2.9062 fOrgy-restartS g-kmeans++ 3.0357 2.9152
2.9330 forgy 2.9643
Fig. 4.1 AMI Fig. 4.2 ARI
5 4 3 2 1 5 4 3 2 1
[I N R [B M R
3.2768 28393 random-restarts random —3:1964 2.8259
3.0536 28888 forqy restarts g-kmeans++ 30491 2.9196
2.9420 forgy 3.0089
Fig. 4.3 NMI Fig. 4.4 CLACC

Fig. 4.5 CD diagram of different initialisation strategies for k-means over 112
datasets from the UCR archive using the combined test-train split. “random” refers
to random initialisation, “random-restarts” refers to random initialisation with 10
restarts, where the restart with the lowest inertia is selected. “forgy” denotes Forgy
initialisation, “forgy-restarts” represents Forgy initialisation with 10 restarts, where
the restart with the lowest inertia is selected, and “g-kmeans++" denotes greedy
k-means++.

Figure 4.6 shows a violin plot of the different initialisation strategies across the
UCR archive for CLACC. In Figure 4.6, Forgy, random, and greedy k-means++
display large variability in their performance, as demonstrated by the distribution
of their plots. However, Forgy with 10 restarts and random with 10 restarts produce
significantly more consistent results with very little variability across the UCR
archive. This is the type of performance we seek for our experimental methodology.

To clarify, based on Figure 4.6, Table 4.2, and Figure 4.5, it is clear that we
could choose either random or Forgy initialisation with 10 restarts. However, as
stated, we elect to use Forgy as it is the simplest option and introduces the fewest
variables that could impact our results.

One of the disadvantages of using an initialisation with restarts is the greatly

increased computational time required to run the model. In our case, by using 10

random-restarts

forgy-restarts

forgy-restarts
random-restarts
forgy

4.3 A TSCL configuration for Lloyd’s-based algorithms 124

ARI | AMI | CLACC | NMI | RI

random-restarts | 0.209 | 0.258 | 0.525 0.283 | 0.700
forgy-restarts 0.208 | 0.257 | 0.526 0.283 | 0.699
random 0.201 | 0.251 | 0.518 0.276 | 0.697
forgy 0.203 | 0.255 | 0.521 0.281 | 0.696
g-k-means++ 0.203 | 0.250 | 0.518 0.276 | 0.693

Table 4.2 Summary of initialisation strategies’ average scores across multiple
evaluation metrics over 112 datasets from the UCR archive using the combined
test-train split.

] \
0.45 H

0.40

0.35

Ko@* & << & &

Fig. 4.6 CLACC violin plot for different initialisation strategies over the 112 of the
UCR archive using the combined test-train split.

restarts, we increase our run time by 10 times. This is illustrated in Figure 4.7,
where the distribution of run times for initialisation techniques that use restarts is

significantly higher than for those that only run once.

4.3.2 Early Stopping Conditions

Lloyd’s algorithm, in its original form, is proven to always converge in a finite
number of iterations [75]. While this convergence may not necessarily lead to the
global optimum, it will always converge to some local optimum. Lloyd’s algorithm
considers convergence to be achieved when the SSE does not change between

iterations. When the SSE remains the same across iterations, it indicates that the

4.3 A TSCL configuration for Lloyd’s-based algorithms 125

1.0
/' N | I @
u |
y s I
0.8 [| ’ M
|
] | | H
0.6 } | Y
A (
< | - ‘ T b
N/ ‘ p N N
0.4+ N/ I \ \1““/ 1
\/ \] I
| w | (|
| | | Il
I
\l
0.2 | \
\ ’ | |
|
0.0 . ! .
N & x & &
K°® (1@6 (\'7)(Qb" 9@{“
& & @ &
N & &
& S S

Fig. 4.7 Relative FitTime violin plot for different initialisation strategies over the
112 of the UCR archive using the combined test-train split.

cluster assignments and, consequently, the centroids do not change, signifying that
the algorithm has converged. This is the default stopping condition for Lloyd’s
algorithm.

However, in addition to this stoppage condition, numerous early stopping condi-
tions have been proposed for Lloyd’s algorithm. The purpose of these early stopping
conditions is to terminate the algorithm before full convergence is reached, thereby
saving computation time. Early stopping is often utilised because Lloyd’s algorithm
exhibits diminishing returns with each iteration. Theoretically, as Lloyd’s algorithm
progresses towards convergence, the number of changes to cluster assignments
should decrease with each iteration. This suggests that while a substantial number
of changes might occur in the initial iterations, these changes should significantly
diminish as the algorithm continues.

As a result, Lloyd’s algorithm may reach a point where it updates very little
between iterations, yet it takes a considerable amount of time to reach a final
converged solution. This final solution might not be significantly better than the

one obtained if the algorithm were terminated early. Therefore, early stopping

4.3 A TSCL configuration for Lloyd’s-based algorithms 126

conditions aim to strike a balance between obtaining good, near-converged results

while terminating at an appropriate time to save computational resources.

4.3.3 Early Stopping Conditions: Maximum iterations

The first early stopping condition commonly used is setting a maximum number of
iterations before the algorithm must terminate. This stopping condition acts as a
safety net to prevent the algorithm from running for an infeasibly long time.

The maximum number of iterations is set by a parameter called max_iters,
which represents the maximum number of iterations before the algorithm is ter-
minated. max_iters should be set so that, in most cases, the maximum number of
iterations is never reached. However, in the rare case that this condition is met, the
maximum number of iterations should be sufficiently high to ensure that cluster
assignments do not change significantly between iterations.

The value for the maximum number of iterations is difficult to estimate because
the number of iterations Lloyd’s algorithm may take to converge depends on several
factors: the number of clusters, the size of the dataset, and the initial centres selected.
Additionally, some algorithms in the context of TSCL require more iterations than
traditional Lloyd’s due to the use of approximation strategies. For example, the
k-means-DBA averaging stage employs DBA, which is an approximation of the
average under DTW. The use of approximations can result in slower convergence.

With these factors considered, we aim to set our maximum iterations as high as
possible while being conscious of our computational resources. Table 4.3 shows
the average, minimum, and maximum iterations for computing squared Euclidean
k-means over 112 datasets from the UCR archive using the combined test-train
split. On average, a dataset in the UCR archive will converge in under 20 iterations.

However, there are 9 datasets that take, on average, more than 40 iterations in their

4.3 A TSCL configuration for Lloyd’s-based algorithms 127

“best iteration” to converge. These datasets are shown in Table 4.4. Of the 9 datasets,

only 2 exceed 50 iterations on an average iteration.

Average Iterations | Best Iteration
Mean 17.42 18.44
Min 3.80 3.00
Max 74.90 140.00

Table 4.3 Number of iterations required for the squared Euclidean distance clus-
tering algorithm to converge without an early stopping condition on 112 datasets
from the UCR archive using the combined test-train split. The column labelled
“Average Iterations” indicates the average number of iterations across 10 restarts.
The “Best Iteration” column represents the number of iterations taken by the restart
that achieved the lowest inertia.

Dataset Best Iteration | Average Iterations
ElectricDevices 140 74.9
Crop 59 66.2
FaceAll 52 37.0
UWaveGestureLibrary All 51 26.6
UWaveGestureLibraryZ 51 46.0
FordA 47 48.0
SemgHandSubjectCh2 47 31.8
UWaveGestureLibraryY 46 43.3
FacesUCR 42 37.4

b

Table 4.4 The 9 datasets that averaged over 40 iterations in their “Best Iterations’
for the squared Euclidean k-means, out of 112 datasets from the UCR archive using
the combined test-train split.

With these baseline statistics on the number of iterations it takes for the squared
Euclidean distance to converge over the UCR archive, we elect to set our maximum
number of iterations to 50. While this number means that 5 datasets would not be
able to find their optimal convergence (as shown in Table 4.4), we are limited by
computational resources. If we had unlimited computational resources, we would
set the maximum number of iterations to 300 or more to ensure convergence in
every scenario. However, when considering the computational cost of experiments

with such high iterations, which run with 10 restarts, this value is not viable.

4.3 A TSCL configuration for Lloyd’s-based algorithms 128

Furthermore, for TSCL specifically, some of the variants of Lloyd’s algorithm
that this thesis will review use extremely computationally expensive distance and
averaging methods. For example, k-means-DBA uses the DTW distance for the
assignment stage, which is prohibitively computationally expensive. The averag-
ing technique used, DBA, also uses DTW, which further makes this algorithm
computationally impractical.

As such, while for some datasets optimal convergence will likely not be reached,
this is expected to impact the results of only 2 datasets (ElectricDevices and Crop)
on an average iteration. Additionally, as every variant of Lloyd’s algorithm is
constrained by the same maximum iteration parameter, they are all subject to the
same experimental conditions, which ensures that our experimental results will
remain valid.

Finally, a consideration is that in the context of the squared Euclidean k-means
clusterer, which uses the Forgy initialisation strategy, we would expect the number
of iterations taken to converge to be higher. As mentioned, the number of iterations
required to converge is directly linked to the quality of the initial centroids.

The second consideration as to why the squared Euclidean k-means clusterer
may have a higher number of iterations than expected is that the squared Euclidean
distance and the arithmetic mean are not ideal similarity or averaging techniques for
time series data. Therefore, theoretically, if we improve the distance and averaging
techniques for time series data, we would expect the algorithm to converge faster, as
more informed decisions are made by the model. This suggests that, as we explore
TSCL-specific variants of Lloyd’s algorithm, the number of iterations required
to converge should decrease, further reducing the likelihood that the maximum
iteration early stopping condition will be reached.

Algorithm 24 shows an updated version of Lloyd’s algorithm that incorporates a
maximum number of iterations. Specifically, Algorithm 24 introduces an additional

parameter called max_iters. This parameter defines the maximum number of

4.3 A TSCL configuration for Lloyd’s-based algorithms 129

iterations before the algorithm is forcibly terminated. Line 7 shows the loop from
1 to max_iters, which replaces the repeat-until loop in the previous version of
Lloyd’s algorithm. The original early stopping condition of Lloyd’s algorithm is
then moved to the end of the iteration on line 13. This condition checks whether
the assignments have changed between iterations, and if they have not, convergence

has been reached and the loop is therefore terminated.

Algorithm 24: Lloyd’s Algorithm with a maximum number of iterations
(X, k, n_init, max_iters)

Input: X (Dataset of time series of length n), kK (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination)

Output: Assignment of each time series to a cluster

1 best_inertia <— oo

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n

4 for i< 1 ton_init do

5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 for j < 1 to max_iters do
8 for each time series x; in X do
9 Compute the distance between x; and each of the k centres
10 L Assign x; to the nearest centre
11 for each centre c; in centres do
12 L Update c; to be the mean of all time series assigned to it
13 if assignments does not change between iterations then
14 L break
15 Let curr_inertia be the SSE of the current clustering
16 if curr_inertia < best_inertia then
17 best_inertia < curr_inertia
18 best_assignments <— assignments
19 best_centres <— centres

20 return best_assignments

4.3 A TSCL configuration for Lloyd’s-based algorithms 130

4.3.4 Early Stopping Conditions: Inertia Change

The second early stopping condition we adopt is measuring the inertia change (or
change in sum of squared distances) of assignments between iterations. Instead of
checking whether the exact assignment of time series change between iterations,
we measure the change in inertia between iterations. This functionally achieves
the same result as checking exact assignment changes, but allows practitioners
to set a parameterised threshold (z0l), enabling the detection of sufficient conver-
gence, so that small changes in assignments between iterations are still considered
convergence.

The computation of inertia is the sum of the squared distances of each time series
to its closest centroid (i.e., the distance to its cluster assignment). By measuring the
inertia between iterations, if cluster assignments do not change, the inertia change
between iterations will be 0. Assuming tol > 0, this means convergence will be
reached. This scenario is equivalent to the traditional Lloyd’s stopping condition of
assignments not changing between iterations.

By having a tolerance threshold, practitioners can control the definition of con-
vergence for the algorithm. Additionally, as outlined, Lloyd’s iterations exhibit
diminishing returns. This means that, as Lloyd’s algorithm moves toward con-
vergence, smaller and smaller changes to assignments will be made. Sometimes,
this also means Lloyd’s can get stuck in local optima, leading to minor fluctua-
tions in cluster assignments that yield very little improvement in overall cluster
performance. Under traditional Lloyd’s, the algorithm could remain stuck in a local
optima for a long time, until it eventually converges, which may yield minimal
improvements. By using inertia between iterations as the stopping criterion, these
slight fluctuations are detected, allowing the algorithm to converge without wasting

additional computational resources on small improvements.

4.3 A TSCL configuration for Lloyd’s-based algorithms 131

The value of fol is difficult to set, as it depends on what a practitioner may
want to define as convergence. However, for our experiments, while computational
runtime is a consideration, our focus is more on getting as close to “true” Lloyd’s
convergence as possible without wasting iterations on very minimal improvements.
As such, we set our value of 7ol to be 1 x 10°. We chose this value as it is the
default for the tslearn package. Additionally, we considered the scikit-learn
package, which uses a value of 1 x 10~ for rol. We opted for the smaller value
to be conservative, so that we do not change the convergence criteria of Lloyd’s
algorithm too much; rather, we aim to save computational resources where very
small fluctuations are occurring. This value of rol may not be optimal for reaping
the most runtime benefit; however, for the sake of our experimentation, we prefer a
conservative estimate to ensure consistent convergence.

Algorithm 25 shows the updated version of Lloyd’s algorithm to use an inertia
tolerance threshold. Specifically, Algorithm 25 introduces an additional parameter
tol, which is the inertia variation threshold. This means that if the inertia changes
by less than rol between iterations, the algorithm will converge. To track the
inertia change, line 7 defines a new variable prev_inertia, which tracks the previous
iteration’s inertia. Next, for each iteration, curr_inner_inertia is computed on line
14. This value is then compared to prev_inertia on line 15. If this difference is less
than the tolerance threshold, the algorithm converges. However, if it is greater than
the tolerance threshold, prev_inertia is set to the current iteration’s inertia, and the

refinement continues.

4.3 A TSCL configuration for Lloyd’s-based algorithms

132

Algorithm 25: Lloyd’s Algorithm with an inertia tolerance threshold (X,

k, n_init, max_iters, tol)

Input: X (Dataset of time series of length n), kK (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination), tol (Inertia variation threshold)

Output: Assignment of each time series to a cluster

1 best_inertia <— oo

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n

4 fori <1 ton_init do

5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 Let prev_inertia <— oo
8 for j < 1 to max_iters do
9 for each time series x; in X do
10 Compute the distance between x; and each of the k centres
11 L Assign x; to the nearest centre
12 for each centre c; in centres do
13 L Update c; to be the mean of all time series assigned to it
14 Let curr_inner_inertia be the SSE of the current clustering
15 if |curr_inner_inertia — prev_inertia| < tol then
16 L break
17 prev_inertia <— curr_inner_inertia
18 Let curr_inertia be the SSE of the current clustering
19 if curr_inertia < best_inertia then
20 best_inertia < curr_inertia
21 best_assignments <— assignments
22 best_centres <— centres

23 return best_assignments

4.3 A TSCL configuration for Lloyd’s-based algorithms 133

4.3.5 Empty Clusters

As outlined, the performance of Lloyd’s algorithm on any given dataset is unde-
niably dependent on the number of clusters specified [48]. Choosing the wrong
number of clusters can lead to strange convergence. Additionally, how clusters are
initialised is critically important as well. Setting an inappropriate number of clusters
or having poor initial centroids can result in empty clusters being formed. An empty
cluster is a cluster that has no values assigned to it, which is problematic because it
means this cluster is “stuck” and cannot be updated further. Fundamentally, this
results in one fewer cluster than specified being formed.

The traditional Lloyd’s algorithm does not provision for the formation of empty
clusters. Additionally, in many implementations, there is no detection of an instance
where an empty cluster is formed. In our initial implementation, we did not have any
explicit detection of empty cluster formation, and our only indication empty clusters
were being formed was due to errors being thrown when we tried to compute the
average of an empty assignment arrays.

On the one hand, if Lloyd’s algorithm forms an empty cluster, one could
consider this a form of early convergence. In [51], their k-means clusterer was set
up in this way. However, in our experiments, the formation of an empty cluster is
likely a weakness of our underlying model configuration rather than a reflection of
the model’s incapacity to properly cluster. Specifically, setting an arbitrary number
of clusters makes the possibility of empty clusters more likely.

Therefore, we looked for a potential solution in the TSCL literature. However,
we were unable to find any examples where the formation of empty clusters was
explicitly addressed for TSCL. The only acknowledgement of empty clusters form-
ing in TSCL that we could find was in [51]. [51] did not explicitly discuss empty
clusters in their paper, but in the source code provided, we found that they used the

formation of an empty cluster as a form of early stopping condition.

4.3 A TSCL configuration for Lloyd’s-based algorithms 134

While we could follow [51] and use the formation of an empty cluster as an
early stopping condition, we do not believe this is a good criterion to express
early convergence. As such, we look for a more robust solution in the traditional
clustering literature.

In traditional clustering, there is limited literature on defining protocols for
handling empty clusters. The general advice to practitioners to reduce the number
of clusters [92]. Due to the limitations described in this chapter and in Chapter 3,
we want to maintain a consistent number of clusters matching the number of ground
truth labels.

As such, we adopt a strategy where, when an empty cluster is formed, we choose
a time series from the dataset to become a new centroid. The choice of which time
series to select is an important consideration. There are two methods for selecting
this new centroid: randomly choosing a value from the dataset or choosing a value
that reduces inertia by the largest amount.

Randomly selecting a time series from the dataset to be a new centroid is a
simple solution but has certain implications. Firstly, the selected value could be
located in a similar position to the previous empty cluster, potentially leading to
another empty cluster forming shortly thereafter, necessitating yet another random
centroid selection. Secondly, at the point where the empty cluster forms, the
algorithm is likely already partially converged towards a local optimum. Selecting
a new random centroid could entirely change the optimum the algorithm was
converging towards. To some extent, this could be considered equivalent to a
complete restart of the algorithm with new initial centroids, leading to convergence
towards a different optimum. As such, random selection may unintentionally bias
clustering results. Therefore, we choose not to use this strategy.

Choosing a time series that reduces inertia by the largest amount as the new
centroid is generally a more effective strategy than random selection because it

directly targets the objective of the clustering algorithm. This strategy is the default

4.3 A TSCL configuration for Lloyd’s-based algorithms 135

solution that scikit-learn [92] employs to handle empty clusters in their k-means
implementation.

By selecting a time series that minimises inertia, the algorithm ensures that the
new centroid contributes to a more optimal clustering configuration. This approach
helps the algorithm maintain its progress toward convergence rather than potentially
disrupting it with a random selection that could lead to a less efficient clustering
outcome. Furthermore, it reduces the likelihood of forming another empty cluster,
as the selected time series is likely to be situated in a region of the dataset where its
inclusion will meaningfully improve cluster quality.

To identify the time series that would reduce the inertia by the largest amount,
the time series that is furthest from its assigned cluster centroid should be chosen.
This approach ensures that the new centroid is positioned in a way that maximally
improves the overall clustering by reducing the distance of an outlier data point,
thereby contributing the most to the reduction of inertia.

Algorithm 26 shows our final version of Lloyd’s algorithm, which can handle
empty clusters. Specifically, lines 12 to 19 outline how this is managed. The empty

cluster algorithm will continue to loop until there are no more empty clusters.

4.3.6 Distance Measure and Averaging Technique

The objective of k-means is to minimise the sum of squared errors (SSE) as given
in Equation 2.32. Lloyd’s algorithm achieves this by iteratively performing two key
steps: assignment and centroid computation. The assignment phase traditionally
employs the squared Euclidean distance, while the computation of centroids is
based on the arithmetic mean. The squared Euclidean distance and arithmetic
mean are fundamentally linked because the arithmetic mean minimises the sum of

squared Euclidean distances between a set of data points and their centroid.

4.3 A TSCL configuration for Lloyd’s-based algorithms 136

This implies that when considering a distance measure for the k-means algo-
rithm, the corresponding averaging technique must minimise the sum of squared
distances to ensure the methods validity. Although there are numerous distance
measures for time series data, only a limited number of time series averaging
techniques satisfy this criterion, which restricts their applicability within Lloyd’s
framework.

In the TSCL literature, five primary variants of Lloyd’s algorithm have been
defined, each specifying a distance measure and an associated averaging technique.
These have been outlined in Section 2.5.1 of our literature review, however, in

summary:

k-means [75] is the traditional k-means algorithm that uses the squared
Euclidean distance and the arithmetic mean, which minimises the sum of

squared Euclidean distances.

* k-means-DBA [94] is a variant of k-means that uses the DTW distance and

minimises over the DTW distance using DBA.

e k-SC [128] is another variant of k-means that utilises the k-SC distance (which
does not have a specific name) and an averaging technique that minimises

the k-SC distance.

* k-shape [89] is a variant that uses the SBD and employs a shape extraction

algorithm to derive an average that minimises SBD.

* k-means-soft-DBA [21] is a variant of k-means that use the soft-DTW distance

and minimises over the soft-DTW distance using soft-DBA.

4.4 Lloyd’s Baseline 137

4.4 Lloyd’s Baseline

Before we begin exploring elastic distances for TSCL, we must first define a
baseline for comparison. While similar baseline comparisons already exist in the
literature, none of these results have been generated following our extensive TSCL
methodology outlined in Chapter 3. Additionally, none of the existing results
configure their Lloyd’s-based models consistently (as shown in Table 4.1).
Therefore, we recreate this baseline under our methodology and model configu-
ration. We believe that our results isolate and showcase each model for its merits
rather than secondary factors, such as the influence of the initialisation strategy
or convergence criteria on the results. Under our methodology, we find that the
ability of some models have been overestimated and that the performance of models
considered state-of-the-art are not significantly better than traditional Euclidean

k-means.

4.5 Experiment Setup

As previously outlined, one of the primary goals of this thesis is to ensure clear and
reproducible experimentation for TSCL. To achieve this, we will begin by detailing
the methodology for our baseline experiments.

First, we will explicitly define the configuration of our Lloyd’s algorithm, pre-
sented in clear pseudocode that incorporates all the configuration options previously
discussed. Following this, we will establish a baseline using current models from
the literature. This will involve providing detailed, model-specific parameterisation,
along with justification for each choice. Once this baseline has been established,
we will proceed with our experiments involving k-means clustering using elastic

distances.

4.6 Configuration 138

4.6 Configuration

Algorithm 26 defines our Lloyd’s algorithm, which utilises Forgy initialisation with
restarts, a maximum iteration stopping condition, an inertia-based early convergence
criterion, and a mechanism for handling empty clusters.

Using our Lloyd’s configuration, we implemented five of the most commonly
used Lloyd’s-based algorithms in the literature: k-shapes, k-SC, k-means, k-means-
ba-DTW, and k-means-soft-DBA. Implementations for each of these models are
available in the aeon repository.

We refer to k-means-DBA as k-means-ba-DTW for clarity, as in Chapter 7, we
propose new barycentre averaging techniques under different distance measures.
The k-means-soft-DBA retains the DBA in its name because we do not experiment
further with this type of barycentre averaging, which uses a gradient descent method
with a differentiable distance measure.

Each model shares Lloyd’s-specific parameters. These parameters are detailed

in Table 4.5.
max_iters | tol n_init | init_algo | distance averaging
k-means-Euclidean | 50 1x107%] 10 Forgy Euclidean Arithmetic mean
k-shapes 50 1x107% | 10 Forgy SBD Shape extraction
k-means-ba-DTW | 50 1x107 | 10 Forgy DTW DBA
k-SC 50 1x107% | 10 Forgy k-SC distance | k-SC average
k-means-soft-DBA | 50 1x107% | 10 Forgy soft-DTW soft-DBA

Table 4.5 Baseline Lloyd’s-based models parameters

In Table 4.5, five of Lloyd’s-specific parameters are kept constant (control

variables). The justification for each parameter choice has been outlined previously
in this chapter. The independent variable for this baseline experiment is, therefore,

the distance and averaging technique used.

4.6 Configuration 139

In addition to Lloyd’s-specific parameters, some models require additional
parameters for their distance functions. These distance-specific parameters are
summarised in Table 4.6.

The k-SC distance measure includes a parameter, max_shi ft, which is an integer
ranging from 0 to m, where m is the length of the time series. This parameter
controls the shifts that k-SC can perform to find the best position to “align” two

time series. We set max_shift to m to allow k-SC to find the optimal alignment

across all possible shifts for each time series considered.

Acronym Metric | Parameters Default

SBD (Equation 2.42) No - -

k-SC distance (Equation 2.37) Yes max_shift € [0,...,m] | max_shift =m
DTW (Equation 2.4) No we[0,...,1] w=1.0
Euclidean distance (Equation 2.2) | Yes - -

soft-DTW (Equation 2.17) No Y€ [0,..., oo y=1.0

Table 4.6 Baseline Lloyd’s-based models distance parameters.

soft-DTW takes a parameter y which controls the smoothness of the gradient.
7 is challenging to set because small changes significantly impact results. [21] ex-
perimented with four values of y: {1.0,0.1,0.01,0.001}. They found that smaller
values of y often lead to barycentres getting stuck in bad local minima. However,
their results also demonstrated that for some datasets, better results could be ob-
tained with lower values of ¥ (i.e., 0.01 and 0.001). Ultimately, they concluded,
however, that in the average case, it was better to use a higher value of 1.0, as it
consistently converged to “reasonable” solutions. We, therefore, opt to use a value
of 1.0 to optimise for the average case.

DTW can use a window parameter w. For now, we set w = 1.0, meaning a full
window will be used. This is done because there has been no experimentation with

the window parameter in the context of TSCL.

4.6 Configuration 140

Finally, the defined averaging techniques can also take additional parameters.
For example, k-means-DBA uses DTW, which can be parameterised with a win-
dow. Similarly, k-SC averaging takes a max_shift parameter and k-means-soft-dba
averaging takes a y parameter. Throughout all of our experiments in this thesis,
unless explicitly stated otherwise, the same parameters specified for the distance

computation are also applied in the averaging computations.

4.6 Configuration 141

Algorithm 26: Lloyd’s Algorithm with all of our configurations (X, Kk,
max_iters, tol)

Input: X (Dataset of time series of length n), K (Number of clusters),
max_iters (Maximum number of iterations before forced
termination), tol (Inertia variation threshold)

Output: Assignment of each time series to a cluster

1 best_inertia <— o

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n

4 fori< 11 10do

5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 Let prev_inertia <— oo
8 for j < 1 to max_iters do
9 for each time series x; in X do
10 Compute the distance between x; and each of the k centres
11 Assign x; to the nearest centre
12 if any cluster has no assignments then
13 repeat
14 for each cluster c; in centres do
15 if cluster c; has no assignments then
16 Set best_candidate to the time series that reduces
inertia the most and is not currently a centroid
17 cj < best_candidate
18 Recompute cluster assignments
19 until every cluster has at least one assignment,
20 for each centre c; in centres do
21 L Update c; to be the mean of all time series assigned to it
22 Let curr_inner_inertia be the SSE of the current clustering
23 if |curr_inner_inertia — prev_inertia| < tol then
24 | break
25 prev_inertia <— curr_inner_inertia
26 Let curr_inertia be the SSE of the current clustering
27 if curr_inertia < best_inertia then
28 best_inertia < curr_inertia
29 best_assignments <— assignments
30 best_centres < centres

31 return best_assignments

4.7 Result 142

4.7 Result

With the configuration and model definitions for our baseline experiment now
established, we proceed with the experimentation and analysis of results. Results
have been divided into two categories: combined test-train split and test-train split.

Our results will now be presented.

4.7.1 Combined test-train split results

Figure 4.12 presents the critical difference diagrams for our baseline models across
four clustering metrics for the combined test-train split. We observe that k-means-
soft-DBA significantly outperforms all other baseline Lloyd’s clusterers across all
evaluation metrics. However, due to the extended runtime of k-means-soft-DBA,
we were only able to obtain results from 75 datasets, as the runtime for 27 datasets
exceeded our maximum seven-day limit for k-means-soft-DBA. For the datasets
that did complete, the FitTime comparison is shown in Figure 4.13. The figure
demonstrates that k-means-soft-DBA requires significantly more computational
time than the other clusterers.

Given the substantial number of missing results for k-means-soft-DBA, our anal-
ysis is constrained. As a result, we have decided to exclude k-means-soft-DBA from
the general Lloyd’s baseline analysis and only reintroduce it in the final analysis
to contextualise our findings. We will start by specifically analysing k-means-soft-
DBA across the 75 datasets for which results are available. Following this, we will
exclude k-means-soft-DBA from our baseline and evaluate the remaining models
across the entire UCR archive.

In Table 4.7, k-means-soft-DBA, on average, outperforms all other clusterers
across all metrics considered, and it does so by a significant margin. However, when
we divide the 75 datasets by problem domain, we find that, it is not the best clusterer

in every domain. Table 4.8 shows the ARI by problem domain. Interestingly, k-

k-means-euclidean
k-sc

k-means-euclidean
k-sc

3.5588
3.3353

2.1706

2.8353

3.1000

k-means-soft-dba
k-means-ba-dtw

4.7 Result 143

5 4 3 2 1 5 4 3 2 1
| 1 1 1 1 1 1 | | 1 1 1 1 1 1 1 |
3.5624 L 21824 1 _means-soft-dba k-means-euclidean —3:347L 2.2529
3.3000 28471 | means-ba-dtw k-sc _3:2529 2.8235

3.0882 k_shapes 3.1235

Fig. 4.8 AMI Fig. 4.9 ARI

5 4 3 2 1 5 4 3 2 1

3.7000
3.0706

k-means-euclidean
k-shapes

2.2294
2.9294

3.0706

k-shapes

Fig. 4.10 NMI Fig. 4.11 CLACC

Fig. 4.12 CD diagrams of Lloyd’s-based algorithm over 75 datasets from the UCR
archive using the combined test-train split. The excluded datasets are detailed in
Appendix A, Table A.2. The reason for the exclusion is due to k-means-soft-DBA
being unable to finish within our seven day runtime limit.

means-soft-DBA is the best in only four of the seven categories, notably struggling
with ECG and Spectro data.

While previous studies have observed that soft-DBA can outperform methods
such as k-shapes or k-means-ba-DTW, we have not found any extensive analysis
in the literature highlighting the significant disparity between k-means-soft-DBA
and other traditionally considered state-of-the-art approaches. Overall, we find that
although computationally expensive, k-means-soft-DBA is by far the most effective
TSCL approach over the combined test-train split using 75 datasets.

We now exclude k-means-soft-DBA from our baseline experiment to provide a
more accurate baseline representation across the UCR archive. Figure 4.18 presents
the critical difference diagrams for our Lloyd’s baseline experiment. We include
results from 106 of the 112 datasets. 5 datasets are excluded due to k-means-

ba-DTW’s computational complexity preventing it from completing within our

seven-day runtime limit (detailed in Table A.4). Figure 4.19 shows the significant

k-means-soft-dba
k-means-ba-dtw
k-shapes

k-means-soft-dba
k-means-ba-dtw
k-sc

4.7 Result

144

1.04

0.8

0.6

0.4

0.29

0.0

&
‘\’b

Fig. 4.13 Relative FitTime violin plot of baseline Lloyd’s clusterers over 75 datasets

from the UCR archive using the combined test-train split.

ARI | AMI | CLAcc | NMI | RI
k-means-ba-DTW | 0.265 | 0.310 | 0.593 0.323 | 0.698
k-means-euclidean | 0.204 | 0.251 | 0.538 0.265 | 0.675
k-means-soft-dba | 0.305 | 0.346 | 0.623 | 0.357 | 0.714
k-sc 0.217 | 0.252 | 0.557 | 0.266 | 0.638
k-shapes 0.239 | 0.292 | 0.575 0.304 | 0.688

Table 4.7 Lloyd’s baseline experiment with k-means-soft-DBA average scores
across multiple evaluation metrics over 75 datasets from the UCR archive using the
combined test-train split.

computational requirement of k-means-ba-DTW compared to our other baseline

models.

Therefore, while our baseline combined test-train split analysis is missing 5

datasets, the inclusion of 106 datasets is sufficient to draw meaningful conclusions.

Additionally, in our separate test-train split analysis, all 112 datasets are included,

which helps to address the gap in dataset coverage.

Across all the clustering evaluation metrics considered, k-means-ba-DTW out-

performs the other Lloyd’s-based clusterers, with the exception of AMI, where

4.7 Result 145
Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-DTW | 0.380 | 0.289 0.246 | 0.557 0.245 | 0.207 | 0.140
k-means-euclidean | 0.321 | 0.323 0.252 | 0.261 0.106 | 0.140 | 0.159
k-means-soft-dba | 0.419 | 0.311 0.327 | 0.524 0.292 | 0.212 | 0.181
k-sc 0.299 | 0.339 0.318 | 0.098 0.073 | 0.137 | 0.355
k-shapes 0.339 | 0.289 0.250 | 0.464 0.159 | 0.195 | 0.364

Table 4.8 Average ARI score on problems split by problem domain over 75 datasets

from the UCR archive using the combined test-train split.

k-means-euclidean —22338

2.1415

K-sc _2:5896

2.4151

Fig. 4.14 AMI

2.1321

k-means-euclidean —2834
k-sc _2:6085

2.4245

Fig. 4.16 NMI

k-means-ba-dtw

k-shapes

k-means-ba-dtw

k-shapes

k-means-euclidean

k-sc

k-means-euclidean

k-sc

2.8443

2.1226

2.5613

2.4717

Fig. 4.15 ARI

2.8821

2.2075

2.4623

2.4481

Fig. 4.17 CLACC

Fig. 4.18 CD diagrams of Lloyd’s-based algorithm over 106 datasets from the UCR
archive using the combined test-train split. The excluded datasets are detailed in
Appendix A, Table A.4. The reason for the exclusion is due to k-means-ba-DTW

being unable to finish within our seven day runtime limit.

k-shapes is not significantly different from k-means-ba-DTW (shown in Figure 4.18).

The specific average scores for each metric are provided in Table 4.9. While k-

means-ba-DTW is, on average, the best-performing clusterer in our baseline, an

examination of the results by problem domain for ARI and AMI reveals that k-sc

outperforms k-means-ba-DTW in three of the seven categories as shown in Ta-

bles 4.10 and 4.11. Specifically, k-sc significantly outperforms k-means-ba-DTW in

the ECG domain and surpasses all other clusterers in the Spectro domain. However,

k-means-ba-dtw
k-shapes

k-means-ba-dtw
k-shapes

4.7 Result 146

A
1.0 1 <
A N J“
|
A |
087 4 N “ “
) (“" \
l
0.6 N i
R y I
V
\
\ }“
0.4 / | \
| : |
|
0.2
A N
1)
0.0 T e e T
b&$ Q,’b(\ & Qef7
& & 5 &
N S P
& & Nt
& (\L;
< &
“' <

Fig. 4.19 Relative FitTime violin plot of baseline Lloyd’s clusterers over 106
datasets from the UCR archive using the combined test-train split.

k-sc’s overall average performance is diminished by its particularly poor results in

the Device domain, where it achieved only slightly better than random clustering.

ARI | AMI | CLAcc | NMI | RI

k-means-ba-DTW | 0.254 | 0.302 | 0.569 | 0.326 | 0.711
k-means-euclidean | 0.200 | 0.250 | 0.521 0.276 | 0.692
k-sc 0.213 | 0.257 | 0.538 | 0.278 | 0.654
k-shapes 0.230 | 0.289 | 0.552 | 0.311 | 0.702

Table 4.9 Lloyd’s baseline experiment average scores across multiple evaluation
metrics over 106 datasets from the UCR archive using the combined test-train split.

On average, k-shapes outperforms k-sc; however, it does not achieve the best
performance in any specific problem domain. Despite this, k-shapes performs
consistently across all problem domains, ranking second-best in six out of the
seven domains. This consistent performance is illustrated in Figure 4.20. While
k-shapes does not attain the highest ARI scores, it has the highest median score and

as result a much more consistent distribution than the other clusterers. Additionally,

4.7 Result 147

as shown in Figure 4.19, k-shapes is significantly faster in runtime than £-SC and

k-means-ba-dtw.

1.01 :“‘ “‘ ‘\"‘
I

0.6 1 y I
0.4

0.2 4

—0.2 4

S

& & N N

N & 5°
¢ <

5 £

& (\"

N g
¥ N
NG

Fig. 4.20 ARI of baseline Lloyd’s clusterers over 106 datasets from the UCR archive
using the combined test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-DTW | 0.307 | 0.209 0.195 | 0.586 0.173 | 0.164 | 0.246
k-means-euclidean | 0.250 | 0.219 0.191 | 0.306 0.052 | 0.104 | 0.274
k-sc 0.241 | 0.229 0.268 | 0.187 0.044 | 0.080 | 0.422
k-shapes 0.267 | 0.183 0.198 | 0.429 0.102 | 0.152 | 0.405

Table 4.10 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 106 datasets from the UCR archive using the combined
test-train split.

While our three TSCL-specific Lloyd’s algorithms outperform the traditional
k-means-Euclidean clusterer on average, the raw value improvements are relatively
small. Table 4.12 shows the average raw value difference between each baseline
clusterer and k-means-Euclidean. For ARI, k-means-ba-DTW is, on average, 5.4%
better, k-sc is 1.3% better, and k-shapes is 3% better than k-means-Euclidean.

Similar improvements are observed across the other considered metrics. Notably,

4.7 Result 148
Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-DTW | 0.384 | 0.238 0.221 | 0.606 0.193 | 0.220 | 0.337
k-means-euclidean | 0.327 | 0.263 0.221 | 0.344 0.076 | 0.153 | 0.348
k-sc 0.304 | 0.272 0.301 | 0.202 0.066 | 0.127 | 0.482
k-shapes 0.347 | 0.236 0.239 | 0.514 0.135 | 0.203 | 0.471

Table 4.11 Lloyd’s baseline experiment average AMI score on problems split by
problem domain over 106 datasets from the UCR archive using the combined
test-train split.

k-shapes performs 3.9% better for AMI and 3.5% better for NMI. The RI metric
shows significantly smaller improvements, which, as discussed in Section 3.2.1, is
due to RI not adequately accounting for random chance.

Overall, this baseline highlights the challenges of TSCL and helps set realistic
expectations. In contrast, the current state-of-the-art model in TSC, HIVE-COTE
2.0 [83], achieves an average accuracy of 89.14% [84] across 112 datasets from the
UCR archive, compared to the 1 NN-Euclidean baseline, which achieves 68.62%
accuracy [23]. This results in a classification accuracy difference of 20.52%. From
our baseline experiment, it is evident that TSCL has yet to achieve this level of
improvement over traditional approaches. Therefore, it is crucial to contextualise
TSCL results in comparison to related fields such as TSC.

Our combined test-train split will serve as our primary evaluation baseline;
however, we will also consider the test-train split. The baseline results for the

test-train split will be outlined next.

ARI | AMI | CLAcc | NMI | RI

k-means-ba-DTW | 0.054 | 0.052 | 0.048 | 0.050 | 0.019
k-sc 0.013 | 0.007 | 0.017 | 0.002 | -0.038
k-shapes 0.030 | 0.039 | 0.031 | 0.035 | 0.010

Table 4.12 Difference in performance between each clusterer and k-means-
Euclidean across multiple evaluation metrics over 106 datasets from the UCR
archive using the combined test-train split.

4.7 Result 149

4.7.2 Test-train split results

Similar to our combined test-train results, we will begin our evaluation by includ-
ing k-means-soft-DBA. Although more datasets completed within the seven-day
runtime limit, for consistency, we will also exclude k-means-soft-DBA from our
test-train baseline experiment after the initial evaluation, reintroducing it only for
contextualisation.

Figure 4.25 shows the critical difference diagrams for four clustering metrics
across 104 UCR datasets. As with the combined test-train split critical diagrams
in Figure 4.12, k-means-soft-DBA significantly outperforms the other clusterers.
However, similar to the combined test-train split results, we observe that while
k-means-soft-DBA outperforms each clusterer on average, it is not the best in every
domain. Table 4.13 shows the ARI performance by problem domain, where k-
means-soft-DBA performs best in four of the seven categories. k-means-soft-DBA
particularly struggle with the Spectro and ECG domain. In the Spectro domain
k-means-soft-DBA is outperformed by k-means-Euclidean and k-means-ba-DTW
on average for ARI. This was also the case in the combined test-train split further

highlighting a weakness in of k-means-soft-ba.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-DTW | 0.355 | 0.235 0.231 | 0.515 0.192 | 0.212 | 0.128
k-means-euclidean | 0.301 | 0.242 0.210 | 0.332 0.058 | 0.163 | 0.146
k-means-soft-dba | 0.400 | 0.227 0.232 | 0.561 0.232 | 0.238 | 0.162
k-sc 0.308 | 0.222 0.238 | 0.298 0.064 | 0.144 | 0.335
k-shapes 0.229 | 0.212 0.191 | 0.176 0.109 | 0.146 | 0.056

Table 4.13 Average ARI score on problems split by problem domain over 104
datasets from the UCR archive using the test-train split.

To maintain consistency with our combined test-train split evaluation, we now

exclude k-means-soft-DBA from our baseline analysis. Figure 4.30 presents the

critical difference diagrams for our baseline experiments across 112 UCR archive

k-shapes
k-means-euclidean

k-shapes
k-means-euclidean

4.7 Result 150

5 4 3 2 1 5 4 3 2
l 1 l 1 l 1 l 1 I l 1 l 1 1 l 1
3.4567 2.25% | _means-soft-dba k-shapes —36538 2.2548
3.4183 27981\ _means-ba-dtw k-means-euclidean —3:2348 2.8077
3.0673 k_sc 3.0288
Fig. 4.21 AMI Fig. 4.22 ARI
5 4 3 2 1 5 4 3 2
L 1 | | 1 | 1 | L 1 | 1 1 | 1
3.5192 22067 | means-soft-dba k-shapes —34327 2.2404
3.3365 28077 k.means-ba-dtw k-means-euclidean —3322L 2.9952
3.1298 k-SC 3.0096
Fig. 4.23 NMI Fig. 4.24 CLACC

Fig. 4.25 CD diagrams of Lloyd’s-based algorithm over 104 datasets from the UCR
archive using the test-train split. The excluded datasets are detailed in Appendix A,
Table A.3. The reason for the exclusion is due to k-means-ba-DTW being unable to
finish within our seven day runtime limit.

datasets using the test-train split. The figure shows that k-means-ba-DTW remains
the best-performing clusterer, though by a smaller margin. However, for CLACC,
k-means-ba-DTW is not significantly different from k-sc and k-means-euclidean.

Another notable observation from Figure 4.30 is that k-shapes performs particu-
larly poorly, with the worst average rank across all four clustering metrics. This is
surprising, as k-shapes performed well on average in the combined test-train split
experiments. This discrepancy potentially highlights a weakness of k-shapes: it
may struggle to learn robust general representations of the data, leading to poorer
performance on new, unseen data.

The clustering scores for each clusterer are presented in Table 4.16. Compared
to k-means-euclidean, the performance increase is lower than what was observed in
the combined test-train split. This is highlighted in Table 4.15. For the test-train
split, k-means-ba-DTW shows an average improvement of approximately 4% over

k-means-euclidean (excluding RI). The performance of k-sc remains consistent with

k-means-soft-dba
k-means-ba-dtw
k-sc

k-means-soft-dba
k-means-ba-dtw
k-sc

k-shapes
k-means-euclidean

k-shapes
k-means-euclidean

4.7 Result 151

4 3 2 1 4 3 1

| 1 1 | | 1 |

2.7411 2.2098 | _means-ba-dtw k-shapes —28920 2.2277

2.6696 2.3795 k_sc k_means_euclidean 2.5357 2.3438
Fig. 4.26 AMI Fig. 4.27 ARI

4 3 2 1 4 3 1

| 1 1 | | 1 |

2.7589 22009 L means-ba-dtw k-shapes —27143 2.3482

2.6027 2.4375 k-SC k-means-euclidean 2.5714 2.3661
Fig. 4.28 NMI Fig. 4.29 CLACC

Fig. 4.30 CD diagrams of Lloyd’s-based algorithm over 112 datasets from the UCR
archive using the combined test-train split.

ARI | AMI | CLAcc | NMI | RI

k-means-ba-DTW | 0.226 | 0.281 | 0.553 | 0.315 | 0.701
k-means-euclidean | 0.185 | 0.235 | 0.521 0.271 | 0.686
k-sc 0.194 | 0.244 | 0.534 | 0.277 | 0.672
k-shapes 0.121 | 0.191 | 0.485 | 0.223 | 0.608

Table 4.14 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 112 datasets from the UCR archive using the test-train split.

the results from the combined test-train split, while k-shapes, as noted, performs
significantly worse than in the combined test-train baseline experiment.

When assessing the results by problem domain, k-means-ba-DTW performs best
in the same four domains. Additionally, it ties with k-sc for the best performance
in the Sensor domain. Comparing k-means-ba-DTW’s values across domains
with those in Table 4.12, we find that for the Spectro, Sensor, Device, Motion,
and ECG domains, k-means-ba-DTW achieves similar ARI scores to those in the
combined test-train results. However, k-means-ba-DTW performs significantly
worse in the Simulated and Image domains. Notably, in the Simulated domain,

k-means-ba-DTW’s ARI is reduced by over 1%.

k-means-ba-dtw
k-sc

k-sc
k-means-ba-dtw

4.8 Conclusion 152

ARI AMI | CLAcc | NMI | RI
k-means-ba-DTW | 0.041 | 0.046 | 0.032 | 0.044 | 0.015
k-sc 0.009 | 0.009 | 0.013 | 0.006 |-0.014
k-shapes -0.064 | -0.044 | -0.036 | -0.048 | -0.078

Table 4.15 Performance difference against k-means-euclidean across multiple eval-
uation metrics over 112 datasets from the UCR archive using the test-train split.

The raw value increase (or decrease) is presented in each cell.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-DTW | 0.265 | 0.191 0.181 | 0.454 0.175 | 0.169 | 0.239
k-means-euclidean | 0.222 | 0.207 0.164 | 0.274 0.040 | 0.140 | 0.260
k-sc 0.227 | 0.185 0.181 | 0.250 0.046 | 0.138 | 0.404
k-shapes 0.134 | 0.167 0.122 | 0.104 0.073 | 0.093 | 0.125

Table 4.16 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 112 datasets from the UCR archive using the test-train split.

Overall, our results suggest that k-means-ba-DTW learns more robust and
meaningful representations of the data than the other baseline methods. In con-
trast, k-shapes struggles to obtain representations that generalise well to unseen
data. This is likely due to the use of cross-correlation, which can extract effective

representations for known data but does not translate well to new, unseen data.

4.8 Conclusion

We have now completed a baseline experiment across five Lloyd’s-based cluster-
ers commonly used in the TSCL literature. Our assessment has highlighted the
strengths and weaknesses of each clusterer, with a focus on their relative perfor-
mance improvements compared to k-means-euclidean. While our findings align
with existing literature, we believe our experiments provide new insights into these
clusterers and more accurately presented their relative performance.

Our findings show that k-means-soft-DBA significantly outperforms the other

baseline clusterers. Although it is known that k-means-soft-DBA can perform better

4.8 Conclusion 153

than many other clusterers, its superiority has not been thoroughly demonstrated
through a robust methodology that clearly establishes its significant advantage over
other TSCL approaches in both the combined test-train split and the test-train split.
However, this performance comes at the cost of computational time. Due to its
high computational demands, we were unable to complete a full benchmark using
k-means-soft-DBA, which led to its exclusion from our baseline experiments.
Excluding k-means-soft-DBA, we find that k-means-ba-DTW is the best-performing

clusterer, followed by k-shapes for the combined test-train split. However, for the
test-train split, while k-means-ba-DTW remains the top-performing baseline clus-
terer, k-shapes’ performance significantly degrades, suggesting that it struggles to
learn generalised representations of the data. Overall, our best baseline clusterer
shows an average improvement of around 5% over k-means-euclidean in the com-
bined test-train split, and an average improvement of around 4% in the test-train
split. With this baseline established using a robust methodology and a consistently
parameterised Lloyd’s algorithm, we will now begin exploring the use of elastic

distances for k-means.

Chapter 5

k-means clustering using elastic

distances

Contributing Publications

* Holder, C., Middlehurst, M. & Bagnall, A. A review and evaluation of elastic
distance functions for time series clustering. Knowl Inf Syst 66, 765-809

(2024). https://doi.org/10.1007/s10115-023-01952-0

A robust benchmark has been established which we can evaluate our results
against. We will now begin experimenting with elastic distances. Our first exper-
iment will consider the popular k-means clusterer. We will try k-means with 12
different elastic distances and compare the results to each other and our baseline
clusterers. We aim to keep our initial experiments as simple as possible only altering
the distance measurement in the assignment phase.

As such we have set broad expectations. Our hypothesis is that substituting
distance measures without altering the averaging methods will not yield better
results than the current state-of-the-art established in our baseline. However, we

expect many of the distances to outperform k-means-euclidean. We expect that

5.1 Experiment Setup 155

our results and the ordering of elastic distances to be similar to that of the 1-NN

classifier in TSC.

5.1 Experiment Setup

For our initial experimentation we will swap out the traditional Euclidean distance
for an elastic distance in the k-means clusterer. We acknowledge that considering
a distance measure in isolation as a parameter without regard for the averaging
technique means there is no guarantee of convergence under k-means, however,
we hypothesise that k-means will still converge sufficiently for many datasets. Ad-
ditionally, we expect our experiment to offer an initial overview of which elastic
distances perform best for TSCL. Furthermore, when we introduce a new elastic
averaging technique in Chapter 7 for use in k-means with elastic distances, compar-
ing the results to these initial experiments will showcase the improvements of our

new averaging technique.

5.2 Configuration

We conduct our experiment using the k-means clusterer, employing the same
Lloyd’s algorithm (Algorithm 26) as used in our baseline experiment. The distance
measure is our independent variable, while all other parameters remain constant.
Table 5.1 outlines the specific parameters used for each model.

Each elastic distance has its own set of parameters, which are detailed in Sec-
tion 2.4. Our goal is not to fine-tune these elastic distances to maximise performance
across the UCR archive. Instead, we aim to establish sensible default parameters
that serve as a starting point for practitioners to achieve effective clustering. Our

initial default parameters are outlined in Table 5.2.

5.2 Configuration

156

max_iters | tol n_init | init_algo | distance averaging
k-means-adtw 50 1x107%] 10 Forgy ADTW Arithmetic mean
k-means-ddtw 50 1x107% | 10 Forgy DDTW Arithmetic mean
k-means-dtw 50 1x107% | 10 Forgy DTW Arithmetic mean
k-means-edr 50 1x107% | 10 Forgy EDR Arithmetic mean
k-means-erp 50 1x107% | 10 Forgy ERP Arithmetic mean
k-means-lcss 50 1x107% | 10 Forgy LCSS Arithmetic mean
k-means-msm 50 1x107% | 10 Forgy MSM Arithmetic mean
k-means-twe 50 1x107% | 10 Forgy TWE Arithmetic mean
k-means-wddtw 50 1x107% | 10 Forgy WDDTW Arithmetic mean
k-means-wdtw 50 1x107% | 10 Forgy WDTW Arithmetic mean
k-means-shape-dtw | 50 1x107% | 10 Forgy shape-DTW | Arithmetic mean
k-means-soft-dtw 50 1x107% | 10 Forgy soft-DTW | Arithmetic mean

Table 5.1 Elastic distance k-means model parameters

These default parameters were selected based on recommendations from the
TSC literature [111, 76]. In the TSC literature, many elastic distance parameters
are suggested to be tuned on a per-dataset basis. For example, [111] recommends
selecting the default value for TWE’s v from an exponentially growing sequence,
{1072,5x107>,1074,5 x 1074,1073,5 x 1073,..., 1}, resulting in 100 possible
parameterisations for each dataset. However, in clustering tasks, evaluating 100
different parameterisations is impractical. As outlined in Chapter 3, tuning in
clustering is often infeasible for practitioners due to the lack of labels in real-world
scenarios. Therefore, for parameters that require tuning in the TSC literature, we
rely on the suggested single-value defaults provided in the original papers.

If the performance of a distance measure differs significantly from our expecta-
tions—based on its performance in the TSC literature—we may perform additional
tuning. This could either demonstrate that tuning does not significantly impact the
distance measure’s effectiveness in TSCL or prompt a reassessment of the initial

defaults.

5.3 Results 157
Acronym Metric | Parameters Default
ADTW (Equation 2.12) No | @€]0,..., oo 0=10
DTW (Equation 2.4) No |wel0,...,1] w=1.0
DDTW (Equation 2.6) No |we|o0,...,1] w=1.0
WDTW (Equation 2.9) No | ge€]0,...,00| g=0.05
WDDTW (Equation 2.10) | No | g€ 0,... o9 g=0.05
LCSS (Equation 2.19) No |e€€]0,...,0] e=1.0
ERP (Equation 2.26) Yes |g€]0,...,0], g=0(X)
EDR (Equation 2.22) No |e€]0,...,09) €= 10(X)
MSM (Equation 2.29) Yes | c€]0,...,) c=1
TWE (Equation 2.31) Yes | v,A€0,...,00] | v=0.001,1=1
shape-DTW No | reach €|0,...,o0| | reach =30
soft- DTW No | y€]0,...,0] y=1.0

Table 5.2 Summary of elastic distance functions, and our initial parameters

5.3 Results

Our analysis is divided into two sections: the combined test-train split results and
the test-train results. After analysing the combined test-train and the test-train splits
individually, we will investigate unexpected results in our experiments, ultimately
concluding with a summary of our findings.

As outlined previously, since we are not updating the averaging method to
minimise each distance, there is no guarantee of convergence. This has led to some
unexpected outcomes. Specifically, we observed that some clusterers are prone
to repeatedly forming empty clusters. Although we apply a mitigation strategy
(outlined in Section 4.6), we have set a limit on how many attempts can be made
to resolve them (to prevent infinite loops). If empty clusters persist, the algorithm
is terminated, and no results are returned for that set of initial centroids. If empty
clusters form across all ten reruns with different initial centroids, no results can be
obtained for that experiment, leading to missing results. Therefore, for our initial
k-means experiments we have a number of missing results. A full list of all the

missing results for each model is provided in Table A.S.

5.3 Results 158

Repeated empty cluster formation can also occur in traditional k-means using
Euclidean distance, but it is typically rare and often indicates an incorrect number
of clusters is set. We believe that, because our distance measures are not minimised
under the arithmetic mean and an arbitrary number of clusters is set, this issue
is exacerbated. This likely explains why distances that diverge the most from
Euclidean distance (e.g., LCSS and shape-DTW) exhibit more frequent occurrences
of empty cluster formation.

However, we believe enough datasets across all models completed to draw
meaningful conclusions from. We do find however, for the combined test-train split
some distances in particular failed on significantly more datasets than other. As
such we will begin by including these distances in the analysis but then exclude the
distances with a large number of missing datasets in our later analysis to draw more

meaningful conclusion for the clusterers that did obtain a full set of results.

5.3.1 Combined test-train split results

Figure 5.5 shows the critical difference diagrams for our k-means elastic distance ex-
periments for all of the distances considered. We observe that ADTW, shape-DTW,
MSM, soft-DTW, TWE, and WDTW consistently appear in the top clique across
all evaluation metrics. Conversely, DDTW, EDR, DTW, and LCSS consistently
fall into the bottom clique, and notably perform worse, on average, than Euclidean
distance.

In the critical difference diagrams in Figure 5.5, while ADTW consistently
achieves the top rank, MSM follows closely, ranking second in three out of the
four metrics. However, if we examine the raw metric values across the 78 datasets,
shape-DTW performs best in four of the five evaluation metrics, as shown in

Table 5.3.

k-means-ddtw
k-means-edr
k-means-dtw
k-means-Icss
k-means-wddtw
k-means-euclidean

k-means-ddtw
k-means-dtw
k-means-wddtw
k-means-edr
k-means-euclidean
k-means-erp

5.3 Results

159

13121110 9 8 7 6 5
llllllllll 1 1 ll

8.8500
8.3562

5.6750
5.9125

8.1062

6.0375

7.8313

6.1188

7.6562

6.1937

7.1062

6.3688

13121110 9 8 7 6 5
[I ' |

Fig. 5.1 AMI

4
'l

3
|

1

6.7875

=~
-~

8.6750

6.1125

8.2563

6.1562

7.6062

6.2562

7.4187

6.2937

7.1312

6.5563

6.9563

6.6312

Fig. 5.3 CLACC

6.9500

k-means-adtw
k-means-msm
k-means-shape-dtw
k-means-soft-dtw
k-means-twe
k-means-wdtw
k-means-erp

k-means-adtw
k-means-msm
k-means-twe
k-means-shape-dtw
k-means-soft-dtw
k-means-wdtw
k-means-Icss

k-means-ddtw
k-means-dtw
k-means-edr
k-means-Icss
k-means-wddtw
k-means-euclidean

k-means-ddtw
k-means-edr
k-means-dtw
k-means-Icss
k-means-wddtw
k-means-euclidean

131211 10 9 8 7 6 5
| I A ' T |

4 3 2 1
sl lalald

8.9563
8.3813

5.8875

5.6813

7.8250

5.9563

7.7375

6.2937

7.5188

6.4625

6.8562

6.7188

13121110 9 8 7 6 5
I I A I I P

Fig. 5.2 ARI

8.9688
8.1625

6.7250

8.0688

7.8562

7.7812

7.0813

Fig. 5.4 NMI

Fig. 5.5 CD diagrams for k-means with 13 distances over 78 datasets from the UCR
archive using the combined test-train split.

top rank across evaluation metrics, we can examine the results by problem domain.

To understand why shape-DTW achieves the highest average values but not the

Table 5.3 presents the average ARI value by problem domain for each clusterer. In

some domains, such as simulated and ECG, shape-DTW significantly outperforms

the other distances. For example, in the ECG domain, shape-DTW surpasses the

next best clusterer by 13.6% in terms of ARI. However, in other domains like

Devices, shape-DTW ranks among the lowest-performing clusterers.

Although we don’t directly use missing datasets as part of our measurable

analysis, it is notable that shape-DTW failed to produce results for 22 datasets due

to repeated empty cluster formation. This could indicate that shape-DTW struggles

with certain types of time series data, which may explain the significant variability

in the quality of its results.

k-means-adtw
k-means-msm
k-means-shape-dtw
k-means-twe
k-means-soft-dtw
k-means-wdtw
k-means-erp

L =299 Kk-means-adtw

k-means-shape-dtw
k-means-msm
k-means-soft-dtw
k-means-twe
k-means-wdtw

L °%% Kk-means-erp

5.3 Results 160

ARI | AMI | CLAcc | NMI | RI

k-means-adtw 0.194 | 0.232 | 0.556 | 0.239 | 0.656
k-means-ddtw 0.135 | 0.164 | 0.509 | 0.172 | 0.586
k-means-dtw 0.147 | 0.187 | 0.522 0.196 | 0.611
k-means-edr 0.133 | 0.160 | 0.519 0.170 | 0.616
k-means-erp 0.174 | 0.210 | 0.545 0.218 | 0.648
k-means-euclidean | 0.169 | 0.205 | 0.534 0.213 | 0.646
k-means-lcss 0.135 | 0.170 | 0.527 0.180 | 0.613
k-means-msm 0.188 | 0.228 | 0.558 0.236 | 0.651

k-means-shape-dtw | 0.204 | 0.243 | 0.563 0.251 | 0.650
k-means-soft-dtw 0.183 | 0.225 | 0.553 0.233 | 0.635

k-means-twe 0.184 | 0.220 | 0.555 0.228 | 0.646
k-means-wddtw 0.158 | 0.191 | 0.534 0.199 | 0.631
k-means-wdtw 0.177 | 0.215 | 0.553 0.223 | 0.649

Table 5.3 Summary of average score across multiple evaluation metrics for k-means
with 13 distances over 78 datasets from the UCR archive using the combine test-
train split split.

Soft-DTW consistently appears in the top performing clique for all evaluation
metrics and performs well across all problem domains. However, while it performs
better than other distances on average, it does not achieve the highest maximum
results or the lowest minimum results compared to other top distances like ADTW,
shape-DTW, MSM, and TWE. Figure 5.6 illustrates this, showing that soft-DTW’s
minimum result are higher than most other distances, but its maximum results
are lower than the other top performing distances. Overall, this demonstrates that
soft-DTW is one of the most consistent performers, and it tends to avoid the extreme
highs and lows.

LCSS was one of the worst-performing distances on average, consistently
outperformed by the Euclidean distance across all evaluation metrics. Its results are
generally only marginally better than random clustering. We observed that when
the distance between a centroid generated using the arithmetic mean and a time
series is measured using LCSS, a large number of values are considered gaps. We

suspect this could be a cause of poor performance.

5.3 Results 161

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-adtw 0.254 | 0.091 0.231 | 0.239 0.058 | 0.143 | 0.266
k-means-ddtw 0.148 | 0.128 0.224 | 0.108 0.046 | 0.044 | 0.212
k-means-dtw 0.163 | 0.065 0.207 | 0.260 0.027 | 0.095 | 0.142
k-means-edr 0.163 | 0.057 0.181 | 0.150 0.053 | 0.067 | 0.232
k-means-erp 0.217 | 0.067 0.224 | 0.216 0.079 | 0.119 | 0.184
k-means-euclidean | 0.208 | 0.094 0.214 | 0.221 0.052 | 0.125 | 0.174
k-means-Icss 0.104 | 0.081 0.188 | 0.188 0.062 | 0.123 | 0.214
k-means-msm 0.252 | 0.063 0.228 | 0.225 0.094 | 0.122 | 0.227
k-means-shape-dtw | 0.239 | 0.099 0.255 | 0.307 0.050 | 0.118 | 0.402
k-means-soft-dtw | 0.199 | 0.104 0.228 | 0.270 0.080 | 0.138 | 0.221
k-means-twe 0.214 | 0.071 0.261 | 0.236 0.079 | 0.107 | 0.220
k-means-wddtw 0.201 | 0.086 0.245 | 0.110 0.041 | 0.088 | 0.213
k-means-wdtw 0.195 | 0.070 0.238 | 0.275 0.064 | 0.139 | 0.139

Table 5.4 Average ARI score on problems split by problem domain for k-means with
13 distances over 78 datasets from the UCR archive using the combine test-train
split split.

Finally, before excluding shape-DTW, soft-DTW, and LCSS from the analysis
to include more datasets from the UCR archive, we evaluate the FitTime for each
distance. Figure 5.7 shows the FitTime for each clusterer. The most noticeable
observation is that k-means with shape-DTW and soft-DTW takes significantly

longer to run relative to the other distances.

5.3 Results 162

1.0 |
“
0.81 ‘

0.6 I\

/|
I
0.4 \
|

0.0 1 \/

—0.2 1
N
S . ® & & N R
2 S & o o & S P & & o O N
o & N X o S N g < 9 N &
& X i & & N P & X o & 5 &
i N < & & CAS & & < N & @e?’
¢ & NL &é’c ¥ NE & <& ¥ & ¥
¥ & ¥

Fig. 5.6 ARI of k-means with 13 distances over 80 datasets from the UCR archive
using the combined test-train split.

] <=

"

\
0.6 1
0.4) (
0.2
0.0 . ; . . ! !
S
S .« & & & & N S
o S % g g & g : ¢ & & & A
& N4 S ‘3 > & 5 ¢ R L 3 ¢
%3 2 & e & N i N Q) 2 2 & &
<€ P & & & &S & S < & & <&
¥ * ¥ &Q/’b ¥ ¥ Q,’OQ 6\6 ¥ \(_& A
A s{_é\ ¥

Fig. 5.7 Relative FitTime violin plot of k-means with 13 distances over 80 datasets
from the UCR archive using the combined test-train split.

5.3 Results 163

We now exclude shape-DTW, soft-DTW, and LCSS from our analysis to include
more datasets in the evaluation of the remaining distances. After excluding these
three models, all other models have complete results for 103 datasets. The missing
datasets are shown in Table A.7, and they are missing due to repeated empty cluster
formation across all initial Forgy centroids.

Figure 5.12 shows the critical difference diagram for 103 datasets across 10
different distances. ADTW, MSM, and TWE consistently appear in the top clique.
Additionally, for CLAcc, WDTW and ERP also appear in the top clique. DDTW,
DTW, and EDR are consistently in the bottom clique. For every evaluation metric,

DDTW, DTW, EDR, and WDTW perform worse than Euclidean distance.

10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
| I I | || | I I i | | I I T | | | I T |
k-means-ddtw —88301 44612 | means-adtw k-means-ddtw 88641 | L 4472 | means-adtw
k-means-edr 84369 45340 K_means-msm k-means-dtw —8:3728 46019 K_means-msm
k-means-dtw —&:3301 47573 k.means-twe k-means-edr —&:0874 48495 |.means-twe
k-means-wddtw —21373 49078 |_means-wdtw k-means-wddtw —27373 21117 | means-wdtw
k-means-euclidean —6%12 53835 k-means-erp k-means-euclidean —24363 527118 k-means-erp
Fig. 5.8 AMI Fig. 5.9 ARI
10 9 8 7 6 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
| I I | 1 | I I I I | | I I T | | I T |
k-means-dtw —8:3728 46748 | _means-adtw k-means-ddtw 88786 | L 44369 | means-adtw
k-means-ddtw —&3334 47188 | _means-msm k-means-edr —&:3204 46068 | _means-msm
k-means-edr —28153 48544 | _means-twe k-means-dtw —8:2718 47573 Kk-means-twe
k-means-wddtw —>7670 51602 1 _means-wdtw k-means-wddtw —2:8958 49612 1 means-wdtw
k-means-euclidean —2:268 33155 k-means-erp k-means-euclidean —23334 34078 Kk.means-erp
Fig. 5.10 CLACC Fig. 5.11 NMI

Fig. 5.12 CD diagrams for k-means with 10 distances over 103 datasets from the
UCR archive using the combined test-train split.

The distances that appear in the top clique share a common characteristic: they
all explicitly penalise warping off the diagonal with a constant value. ADTW

uses the constant @, TWE uses A, and MSM employs a constant cost c. While

5.3 Results 164

WDTW also applies a penalty, it is a “soft” penalty that increases gradually as more
warping occurs. As such it performs well over our evaluation metrics but is unable
to consistently perform as well as ADTW, MSM or TWE. Table 5.5 shows the
average score for each clusterer. MSM achieved the highest average score for four
evaluation metrics, joint best with ADTW for one, and ADTW was best for one
other.

As further evidence supporting our hypothesis, we examine the performance
difference between DTW and ADTW. ADTW is the same algorithm as DTW, but
with the addition of a constant penalty applied for moving off the diagonal. Despite
this relatively simple modification, ADTW ranks among our best-performing clus-
terers, while DTW is one of the worst. This stark contrast in performance highlights
the contribution of a explicit warping penalty.

Across different problem domains, for AMI, as shown in Table 5.6, MSM, TWE,
and ADTW are the top performers in five out of seven categories, with WDTW
leading in one category. For ARI, as shown in Table 5.7, MSM, TWE, and ADTW
dominate in four categories, while WDTW is best in two.

In the Image, Sensor, Simulated, and ECG domains, the average AMI and ARI
scores are significantly higher compared other domains. In the Device, Sensor, and
Motion domains, the average ARI and AMI scores are much lower. Notably, in
the Spectro domain, Euclidean distance achieves the highest average score for both
AMI and ARL

DTW, DDTW, and EDR consistently appear in the bottom clique and perform
worse than Euclidean distance. This is somewhat surprising, as we initially ex-
pected that DTW would perform well and at least better than k-means-euclidean.
Additionally, WDDTW also performs worse than Euclidean distance on average.

We hypothesise that the poor performance of these distances is due to their lack
of an explicit penalty for warping off the diagonal. DTW, DDTW, and EDR rely on

an implicit penalty, where warping further from the diagonal naturally increases the

5.3 Results 165

ARI | AMI | CLAcc | NMI | RI
k-means-adtw 0.224 | 0.269 | 0.552 0.278 | 0.684
k-means-ddtw 0.156 | 0.196 | 0.497 | 0.206 | 0.605
k-means-dtw 0.169 | 0.216 | 0.511 0.227 | 0.635
k-means-edr 0.161 | 0.190 | 0.508 0.202 | 0.641
k-means-erp 0.207 | 0.251 | 0.542 | 0.261 | 0.681
k-means-euclidean | 0.202 | 0.246 | 0.532 0.257 | 0.679
k-means-msm 0.224 | 0.270 | 0.556 0.280 | 0.683
k-means-twe 0.214 | 0.259 | 0.549 0.270 | 0.677
k-means-wddtw 0.189 | 0.229 | 0.526 | 0.240 | 0.658
k-means-wdtw 0.209 | 0.254 | 0.548 0.264 | 0.679

Table 5.5 Summary of average score across multiple evaluation metrics for k-means
with 10 distances over 103 datasets from the UCR archive using the combine test-
train split split.

overall distance, thereby leading to a higher cost. However, without control over the
degree of warping, this can result in pathological warping [24], which we suspect
occurred here. We will test this hypothesis in Section 5.4 by applying a bounding
window to DTW and DDTW, and analysing where and how much warping occurs.

Before exploring the test-train split results, we reintroduce our baseline Lloyd’s
clusterers to contextualise our findings. Figure 5.17 shows the critical difference
diagrams for our k-means experiment with elastic distances, alongside the baseline
Lloyd’s models.

The results are somewhat surprising. Despite the intentional simplification
of our experimentation, MSM, ADTW, and TWE consistently appear in the top
clique across all evaluation metrics, alongside k-means-ba-DTW and k-shapes.
Furthermore, for three of the evaluation metrics, MSM achieves a better average
rank than k-shapes, while ADTW outperforms k-shapes across all four metrics.
The performance gap between ADTW and k-means-ba-DTW is more pronounced,
which is expected since elastic distances are used in both the assignment and

centroid computation stages for k-means-ba-DTW.

5.3 Results 166

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-adtw 0.364 | 0.181 0.261 | 0.370 0.083 | 0.216 | 0.226
k-means-ddtw 0.266 | 0.165 0.233 | 0.229 0.077 | 0.091 | 0.156
k-means-dtw 0.284 | 0.135 0.227 | 0.390 0.061 | 0.147 | 0.128
k-means-edr 0.255 | 0.157 0.209 | 0.269 0.086 | 0.084 | 0.187
k-means-erp 0.329 | 0.167 0.263 | 0.341 0.107 | 0.194 | 0.168
k-means-euclidean | 0.322 | 0.187 0.254 | 0.344 0.076 | 0.199 | 0.159
k-means-msm 0.374 | 0.164 0.272 | 0.350 0.120 | 0.199 | 0.198
k-means-twe 0.339 | 0.179 0.283 | 0.371 0.108 | 0.171 | 0.194
k-means-wddtw 0.329 | 0.155 0.264 | 0.227 0.067 | 0.146 | 0.159
k-means-wdtw 0.325 | 0.157 0.268 | 0.393 0.085 | 0.211 | 0.137

Table 5.6 Average AMI score on problems split by problem domain for k-means
with 10 distances over 103 datasets from the UCR archive using the combine
test-train split split.

These findings highlight the significant potential of elastic distances. Even
without a fully developed model that integrates elastic distances into the centroid
computation, several of these distances already achieve state-of-the-art performance.
Observing the improvement from k-means-DTW to k-means-ba-DTW, we hypoth-
esise that developing bespoke averaging techniques for MSM, ADTW, and TWE
could lead to substantial advancements in clustering performance, as they start from

a higher baseline accuracy than DTW.

5.3 Results 167

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-adtw 0.294 | 0.142 0.234 | 0.328 0.058 | 0.160 | 0.266
k-means-ddtw 0.180 | 0.145 0.227 | 0.185 0.046 | 0.050 | 0.212
k-means-dtw 0.205 | 0.098 0.212 | 0.329 0.027 | 0.094 | 0.142
k-means-edr 0.212 | 0.109 0.188 | 0.243 0.053 | 0.062 | 0.232
k-means-erp 0.263 | 0.135 0.232 | 0.306 0.079 | 0.139 | 0.184
k-means-euclidean | 0.255 | 0.147 0.223 | 0.306 0.052 | 0.143 | 0.174
k-means-msm 0.300 | 0.135 0.233 | 0.315 0.094 | 0.149 | 0.227
k-means-twe 0.260 | 0.143 0.259 | 0.326 0.079 | 0.123 | 0.220
k-means-wddtw 0.263 | 0.123 0.247 | 0.178 0.041 | 0.087 | 0.213
k-means-wdtw 0.256 | 0.118 0.243 | 0.341 0.064 | 0.163 | 0.139

k-means-ddtw
k-means-dtw
k-means-edr
k-means-wddtw
k-means-euclidean
k-means-erp

k-means-dtw
k-means-ddtw
k-means-wddtw
k-means-euclidean
k-means-edr
k-means-erp

Table 5.7 Average ARI score on problems split by problem domain for k-means with
10 distances over 103 datasets from the UCR archive using the combine test-train

split split.

13121110 9 8 7 6 5
I I | |

8.8214

5.2551

8.3571

6.0408

8.2143

6.0459

7.6122

6.1888

7.5051

6.2908

7.0969

6.6020

Fig. 5.13 AMI

13 12 11 10 9 8 7
I I I |

6.9694

— o

8.5408

5.6531

8.5102

6.2602

7.5306

6.3163

7.5000

6.3214

7.4949

6.3469

7.1378

6.5255

6.8622

Fig. 5.15 CLACC

k-means-ba-dtw
k-means-msm
k-means-adtw
k-shapes
k-means-twe
k-means-wdtw
k-sc

k-means-ba-dtw
k-means-msm
k-means-adtw
k-shapes
k-means-twe
k-sc
k-means-wdtw

k-means-ddtw
k-means-dtw

131211 10 9 8 7 6
llllllll lll

1

8.9898
8.6122

5.3061
5.9592

k-means-edr

7.8316

6.0255

k-means-wddtw

7.6939

6.1020

7.2806

6.3878

k-means-euclidean
k-means-erp

7.0204

6.8827

k-means-ddtw
k-means-dtw

Fig. 5.14 ARI

13121110 9 8 7 6 5 4 3
I I I 'l |

L1l

1

6.9082

— o

8.8622
8.3214

5.1633
6.0204

k-means-edr

8.0816

6.1071

k-means-wddtw

7.6837

6.2092

k-means-euclidean

7.4337

6.3112

7.1224

6.6786

k-means-erp

Fig. 5.16 NMI

7.0051

Fig. 5.17 CD diagrams for k-means using 10 distances with the baseline Lloyd’s
models over 98 datasets from the UCR archive using the combine test train split.

k-means-ba-dtw
k-means-adtw
k-shapes
k-means-msm
k-means-twe
k-sc
k-means-wdtw

k-means-ba-dtw
k-means-adtw
k-means-msm
k-shapes
k-means-twe
k-means-wdtw
k-sc

k-means-ddtw
k-means-dtw
k-means-wddtw
k-means-Icss
k-means-edr
k-means-euclidean

k-means-dtw
k-means-ddtw
k-means-wddtw
k-means-edr
k-means-Icss
k-means-euclidean

5.3 Results 168

5.3.2 Test-train split results

We now consider the test-train split. Across all distances, 103 datasets were
successfully completed by all models. The datasets that were excluded were due to
repeated empty clusters forming for certain distances. A complete list of excluded
datasets is provided in Table A.7.

Figure 5.22 shows the critical difference diagram for the test-train split results,

revealing a similar ranking of distances as observed in the combined test-train split.

MSM, ADTW, soft-DTW, and TWE consistently appear in the top clique, while
shape-DTW and WDTW rank in the top clique for ARI but fall into the second-best

clique for other evaluation metrics. DDTW, DTW, WDDTW, LCSS, and EDR

consistently appear in the bottom clique and perform worse than k-means-euclidean.

131211 10 9 8 7
| I

11

8.2670

5.1932

8.2159

5.8466

7.8807

6.0170

7.7898

6.3693

7.6818

6.6705

7.2841

6.8523

Fig. 5.18 AMI

6.9318

k-means-msm
k-means-adtw
k-means-soft-dtw
k-means-twe
k-means-shape-dtw
k-means-wdtw
k-means-erp

k-means-dtw
k-means-ddtw
k-means-Icss
k-means-wddtw
k-means-edr
k-means-euclidean

13 12 11 10 9 8 7

5
|

1

4
|

1

3
|

1

2 1
1.1

6
| I P P | |

8.2386

1

5.2898

8.1648

5.8011

7.8693

6.1818

7.8295

6.2443

7.4375

6.6023

7.3466

6.9659

Fig. 5.19 ARI

7.0284

13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
Lalaslalaly | I I I T T | Lalaslalaly | I I T
8.2216 56705 | _means-msm k-means-ddtw 83977 5.2500
8.0909 61477 | means-adtw k-means-dtw 82557 5.7784
7.6534 6.2898 | _means-soft-dtw k-means-wddtw —7:9261 6.0909
7.4659 64432 | means-twe k-means-lcss 18977 6.2330
7.2898 6.7557 k'meanS'erp k'meanS'edr 7.5852 6.7614
7.2841 ZEZZ k-means-shape-dtw k-means-euclidean —-1761 z;:i
- k-means-wdtw :
Fig. 5.20 CLACC Fig. 5.21 NMI

Fig. 5.22 CD diagrams for k-means using 13 distances over 103 datasets from the
UCR archive using the test-train split.

MSM achieves the highest average score across all evaluation metrics, as shown

in Table 5.8. This contrasts with our findings from the combined test-train split,

k-means-msm
k-means-adtw
k-means-twe
k-means-soft-dtw
k-means-shape-dtw
k-means-wdtw
k-means-erp

k-means-msm
k-means-adtw
k-means-soft-dtw
k-means-twe
k-means-shape-dtw
k-means-wdtw
k-means-erp

5.3 Results 169

where shape-DTW had the highest average score across all metrics except RI. This
suggests that shape-DTW does not generalise as well to unseen data, indicating
it may struggle to learn robust representations. However, even in the combined
test-train split, MSM performed consistently well across all metrics.

To further contextualise our results we also include the baseline Lloyd’s models
in our results. Figure 5.27 shows the critical difference diagrams for all 12 elastic
distances with our baseline Lloyd’s models incorporated. Figure 5.27 shows that
MSM and ADTW are the two best performing distances notably outperform k-
means-ba-DTW on average. This suggests that the general representations learned
by MSM and ADTW using the arithmetic mean are better than those learned using
DBA. We hypothesise that this is likely not due to DBA producing poor averages,
but rather that the assignments determined by the DTW distance are poor and thus
the average produced in also poor. Similar to the combined test-train results, ADTW,
MSM, and TWE consistently appear in the top clique, along with k-means-ba-DTW.

Our findings are consistent with the combined test-train split and support our
hypothesis that distances which explicitly penalise warping perform well, while
those with implicit penalties perform poorly. While the general rank order of
the distances remains consistent, shape-DTW performs notably worse than in the
combined test-train split. Additionally, when contextualising our results with the
state-of-the-art methods, we found that ADTW and MSM surprisingly outperform

all other approaches.

k-means-dtw
k-means-ddtw
k-means-edr
k-means-wddtw
k-shapes
k-means-euclidean

k-means-dtw
k-means-ddtw
k-means-edr
k-means-wddtw
k-shapes
k-means-euclidean

5.3 Results

170

1312 1110 9 8 7 6 5
I I | |

8.3762

5.5619

8.2667

5.8476

7.7000

5.8810

7.6476

6.3381

7.5143

6.5000

7.3143

6.9905

13 12 11 10 9 8
I I |

Fig. 5.23 AMI

7 6 5 4
1yl

L1l

7.0619

-~

8.2333

5.8619

8.2000

6.0000

7.5095

6.3381

7.5000

6.4857

7.4238

6.5714

7.2333

6.8143

6.8286

k-means-msm
k-means-adtw
k-means-ba-dtw
k-means-twe
k-sc
k-means-wdtw
k-means-erp

k-means-msm
k-means-adtw
k-means-ba-dtw
k-sc
k-means-twe
k-means-wdtw
k-means-erp

Fig. 5.25 CLACC

k-means-ddtw
k-shapes
k-means-dtw
k-means-wddtw
k-means-euclidean
k-means-edr

k-means-dtw
k-means-ddtw
k-means-edr
k-means-wddtw
k-shapes
k-means-euclidean

13 12 11 10 9
| I I I P

8.2857

5.5571

8.1429

5.7714

8.1286

5.9667

7.7619

6.2905

7.3143

6.6476

7.2095

6.8095

13 12 11 10 9 8 7
I I

Fig. 5.24 ARI

4 3
1.1

1

1

7.1143

-~

8.4095

5.6000

8.4000

5.7952

7.7762

5.8000

7.7619

6.2143

7.4000

6.6667

7.2048

6.9667

Fig. 5.26 NMI

7.0048

Fig. 5.27 CD diagrams for k-means using 13 distances with the baseline Lloyd’s
models over 103 datasets from the UCR archive using the test train split

ARI | AMI | CLAcc | NMI | RI
k-means-adtw 0.178 | 0.221 | 0.547 0.236 | 0.650
k-means-ddtw 0.137 | 0.179 | 0.512 0.194 | 0.591
k-means-dtw 0.144 | 0.189 | 0.526 | 0.204 | 0.614
k-means-edr 0.146 | 0.175 | 0.520 | 0.191 | 0.628
k-means-erp 0.158 | 0.200 | 0.536 | 0.216 | 0.645
k-means-euclidean | 0.154 | 0.195 | 0.528 0.211 | 0.642
k-means-lcss 0.145 | 0.185 | 0.527 0.201 | 0.620
k-means-msm 0.188 | 0.232 | 0.555 | 0.247 | 0.653
k-means-shape-dtw | 0.169 | 0.213 | 0.543 | 0.227 | 0.639
k-means-soft-dtw 0.181 | 0.223 | 0.552 0.237 | 0.648
k-means-twe 0.176 | 0.215 | 0.549 | 0.230 | 0.646
k-means-wddtw 0.153 | 0.194 | 0.528 0.210 | 0.629
k-means-wdtw 0.158 | 0.208 | 0.537 0.223 | 0.644

Table 5.8 Summary of average score across multiple evaluation metrics over 103
datasets from the UCR archive using the test-train split.

k-means-msm
k-means-adtw
k-means-ba-dtw
k-means-twe
k-sc
k-means-wdtw
k-means-erp

k-means-msm
k-means-adtw
k-means-ba-dtw
k-means-twe
k-sc
k-means-wdtw
k-means-erp

5.4 Tuning 171

5.4 Tuning

Generally, most of the distances performed as expected, and the overall rank order
aligns with TSC results [111]. However, DTW was an exception, as it did not
perform as well as anticipated.

Throughout our experiments, we observed that DTW was one of the worst-
performing distances and was notably always worse than k-means-Euclidean for
both the combined test-train split and the test-train split. In the TSC literature, DTW
is traditionally used with a Sakoe-Chiba band set between 5% and 20% because
it is prone to pathological warping [24]. However, in our initial experiments, we
opted not to use a bounding window, instead keeping a full window. The reason for
this is that DTW is the only distance that has been extensively used in the TSCL
literature, and we have not found examples where a warping window was used.

We suspect that DTW’s poor performance is due to pathological warping. To
investigate this, we conducted a tuning experiment using a warping window for
DTW. Additionally, we examined DDTW, as it also uses DTW after applying the
first derivative. While we did not expect DDTW to be among the best-performing
distances, it may still suffer from pathological warping, warranting further investi-
gation.

To test this hypothesis, we reran k-means-DTW, k-means-DDTW, and k-means-
ba-DTW with a 20% bounding window for both the test-train split and the combined
test-train split. Similar to our previous experiments, due to empty clusters contin-
uing to form, we were unable to obtain a complete set of results. Therefore, the
combined test-train split evaluation is conducted over 101 datasets (missing datasets
are listed in Table A.10), and the test-train split evaluation is conducted over 108
datasets (missing datasets are listed in Table A.11).

The critical difference diagrams for the combined test-train split are shown in

Figure 5.32, and the critical difference diagram for the test-train split is shown in

k-means-ddtw
k-means-dtw

k-means-ddtw-20-window
k-means-dtw-20-window

k-means-ddtw
k-means-dtw

k-means-dtw-20-window
k-means-ddtw-20-window

5.4 Tuning 172

Figure 5.37. Clusterers labelled with “20-window” indicate that a 20% bounding

window was used in the computation.

| I SN

6.2426

3.6931

5.9307

3.9010

5.8812

4.2327

5.4604

4.3663

5.2921

Fig. 5.28 AMI

- w
-~
-

5.9752

<
)
&
| I N

3.9059

5.9406

4.2475

5.4851

4.4158

5.4505

4.4455

5.1337

Fig. 5.30 CLACC

k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-adtw
k-means-msm
k-means-euclidean

k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-msm
k-means-adtw
k-means-euclidean

k-means-ddtw
k-means-dtw
k-means-ddtw-20-window
k-means-dtw-20-window

k-means-ddtw
k-means-dtw
k-means-ddtw-20-window
k-means-dtw-20-window

6.2921
5.9901

3.6832
3.9208

5.7970

4.2772

5.5792

4.4059

—©

5.0545

6.2525
5.9554

3.6634
3.8416

5.8564

4.2277

5.5050

4.4356

5.2624

Fig. 5.31 NMI

k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-adtw
k-means-msm
k-means-euclidean

k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-adtw
k-means-msm
k-means-euclidean

Fig. 5.32 CD diagrams for our tuned DTW k-means clusterers over 101 datasets
from the UCR archive using the combine test train split.

In both the test-train split and the combined test-train split, applying a 20%
window improves the performance of DTW and DDTW, but not by a significant
margin. Despite this improvement, k-means-dtw-20-window still performs worse
than k-means-Euclidean. The scatter plots in Figure 5.38 provide more detailed
insight into this. For the ARI evaluation metric, even with a 20% window, DTW is
significantly outperformed by Euclidean distance, as highlighted by the difference
in medians shown in Figure 5.38a. When comparing full-window DTW to the
20% window DTW in Figure 5.38b, the 20% window does result in significantly
more wins for the ARI metric. However, the large number of ties suggests that the
warping window was ineffective for many datasets.

Similarly, for k-means-ba-DTW, there is no significant difference between k-
means-ba-DTW and k-means-ba-DTW-window-20. Figure 5.39 provides a direct

comparison of k-means-ba-DTW and k-means-ba-DTW-window-20 in terms of

k-means-dtw
k-means-ddtw
k-means-dtw-20-window
k-means-ddtw-20-window

k-means-ddtw
k-means-dtw
k-means-dtw-20-window
k-means-ddtw-20-window

5.4 Tuning

6.0509 40556 k.means-msm

5.8102 41019 _means-adtw

57176 41759 k.means-ba-dtw

5.4954 :‘Igzg k-means-ba-dtw-20-window

k-means-euclidean

Fig. 5.33 AMI

5.8472

41759 k-means-msm

5.8333

42315 k.means-adtw

5.6806

43750 k-means-ba-dtw

5.3657

4.5370

k-means-ba-dtw-20-window
k-means-euclidean

4.9537

Fig. 5.35 CLACC

k-means-ddtw —6:0138 4.0278
K-means-dtw 58843 41250
k-means-dtw-20-window —6528 4.3102
5.4491 4.4167

k-means-ddtw-20-window

5.1204

Fig. 5.34 ARI

k-means-dtw 111

4.0231

k-means-ddtw —>23%

4.0694

k-means-dtw-20-window —27%3

4.1343

k-means-ddtw-20-window —23787

4.3611

5.0741

Fig. 5.36 NMI

k-means-msm
k-means-adtw
k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-euclidean

k-means-adtw
k-means-msm
k-means-ba-dtw
k-means-ba-dtw-20-window
k-means-euclidean

Fig. 5.37 CD diagrams for our tuned DTW k-means clusterers over 108 datasets
from the UCR archive using the test train split.

k-means-euclidean wins here ©
[59W, 1T, 41L]

0.8

o
o
L

k-means-euclidean ARI
(mean: 0.1986)
°
S

k-means-dtw-20-window wins here
[41W, 1T, 59L]

0.4 0.6 0.8

k-means-dtw-20-window AR
(mean: 0.1877)

0.2

Wilcoxon test for equality of medians, p-value=0.030
Paired t-test for equality of means, p-value=0.134

(a) Scatter comparison of k-means-Euclidean and k-
means-DTW-20-window over 101 of the combined
test-train UCR archive.

k-means-dtw-20-window wins here
[45W, 33T, 23L]
0.8 /

4 . /
< L]
_(CE;,\ 0.6 3./

~ ¢
c
.EE /
So /
zc L4 e
B g 04 /!
o £ . o
cE
© ./.
qé ° o .
~

. k-means-dtw wins here
[23W, 33T, 45L]

0.4

k-means-dtw ARI

(mean: 0.1748)

0.6

0.8

*Dashed lines represent the median

Wilcoxon test for equality of medians, p—value:0.00lJ

Paired t-test for equality of means, p-value=0.011

(b) Scatter comparison of k-means-DTW and k-means-
DTW-20-window over 101 of the combined test-train

UCR archive.

Fig. 5.38 Scatter plot comparison of k-means-DTW-20-window

1.09

0.8

k-means-ba-dtw ARI
(mean: 0.2555)

0.24

0.0

(a) Scatter comparison of k-means-Euclidean and k-
means-DTW-20-window over 101 combined test-train

o
o
L

°
IS
L

5.4 Tuning 174

ARI over both the combined test-train and test-train splits. Overall, there are many
ties in results for both splits, suggesting that the performance is largely independent
of the warping window. However, in terms of absolute ranking k-means-ba-DTW

with no bounding does outperform k-means-ba-window-20.

1.0
k-means-ba-dtw wins here Vi k-means-ba-dtw wins here °
[44W, 23T, 34L] , [39W, 32T, 37L]
/]
0.8
.
¢ / . . /
d
o °
/ <gos ./
. o o E R e
TN
L] L] ./ g o /..
e = o«
/ . T 3 04 28
. Yy L4 Q 1S
. [E" . 3/
0o’ ° ~ e e
e ° e
oo o
. /./o‘ ° 0.2 ° /.:‘ °
_____ P B ittt
N .070? ‘ ° 3!
2 P |
o 1 . s
:2{ ° e > .o:
s ® | k-means-ba-dtw-20-window wins here % ! k-means-ba-dtw-20-window wins here
% e o 0.0 4 () 1
/.'. | [34W, 23T, 44L] . Vel ! [37W, 32T, 39L]
1 o 1
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8

k-means-ba-dtw-20-window AR k-means-ba-dtw-20-window AR
(mean: 0.2435) (mean: 0.2193)

Wilcoxon test for equality of medians, p-value=0.122 Wilcoxon test for equality of medians, p-value=0.148
Paired t-test for equality of means, p-value=0.073 Paired t-test for equality of means, p-value=0.034

UCR datasets. datasets.

Fig. 5.39 Scatter plot comparison of k-means-ba-DTW-20-window compared to
k-means-ba-DTW over the combined test-train split and the test-train split.

Overall, from our DTW tuning experiment, we found that while a bounding
window can improve the performance of DTW and DDTW, the improvements were
not significant. We initially expected a larger performance gain. To investigate
why the clustering results remained poor even with a 20% bounding window, we
conducted a further experiment to evaluate how and where different distances warp,
aiming to reveal the specific warping patterns that lead to better performance.

To perform this analysis, we took the final centroids produced by k-means-

DTW-20-window, k-means-DTW-5-window, k-means-TWE, and k-means-MSM

(b) Scatter comparison of k-means-ba-DTW and k-
means-DTW-20-window over 108 test-train UCR

5.4 Tuning 175

on the training split. We added a new clusterer, k-means-DTW-5-window, which
uses a 5% warping window with DTW to further investigate pathological warping.
For each clusterer, we then counted the number of diagonal, horizontal, and vertical
moves required in the warping path when assigning each test instance to its closest
centroid for each distance. This was done for all datasets in the UCR archive. The

number of horizontal moves is always equal to the number of vertical moves, as an

optimal warping path must end at (0,0). Our findings are presented in Table 5.9.

Distance Average Optimal | Average Number | Average Number | Ratio of Diag-

Path Length of Diagonal | of Horizon- | onal Moves to
Moves tal/Vertical Horizontal/Ver-
Moves tical Moves

DTW (20% window) | 863 230 633 2.75

DTW (5% window) | 690 326 363 1.11

MSM 576 499 77 0.15

TWE 591 484 107 0.22

Table 5.9 Average length of the optimal warping path for each time series in the
test split assigned to its closest centroid. The UCR 112 univariate archive has an
average time series length of 551.

In Table 5.9, we observe that for MSM, for every one diagonal move, there are
0.15 horizontal/vertical moves. Similarly, for TWE, for every one diagonal move
made, there are 0.22 horizontal/vertical moves. This indicates that the warping paths
for MSM and TWE are very constrained, generally consisting of long stretches of
diagonal moves with minimal horizontal or vertical adjustments. Consequently, the
total average warping path lengths for MSM and TWE are 576 and 591, respectively.

In contrast, even with a 20% or 5% warping window, DTW exhibits significantly
more horizontal and vertical movement compared to MSM and TWE. For every one
diagonal move, DTW with a 20% window makes 2.75 horizontal/vertical moves,
while DTW with a 5% window makes 1.11 such moves. This means that DTW with
a 5% warping window makes over seven times more horizontal/vertical moves than

MSM, and with a 20% window, DTW makes over 18 times more horizontal/vertical

5.4 Tuning 176

moves. Essentially, even when a bounding window is applied, DTW still pushes its
movements to the window’s limit, moving more horizontally and vertically than
diagonally. The average warping path length for DTW with a 20% window is 863,
and for DTW with a 5% window, it is 690. Both of these values are significantly
higher than the warping path lengths for MSM and TWE.

A visualisation of this difference in warping paths is shown in Figure 5.40, which
compares the warping paths of two time series from the Fish dataset using DTW and
MSM distances. The MSM warping path is much more constrained, beginning with
a slight deviation off the diagonal but maintaining a relatively constant trajectory
thereafter. In contrast, the DTW path fluctuates significantly, with more pronounced
vertical and horizontal movements compared to MSM. Overall, these additional
movements result in the DTW alignment path being significantly longer than that

of MSM.

(a) DTW warping path (b) MSM warping path

Fig. 5.40 Comparison of DTW and MSM warping paths for two time series in
the Fish UCR dataset. The warping path is the white line on top of a heat map
representation of each distance’s cost matrix.

5.5 Conclusion 177

Overall, our tuning results further support our hypothesis that using an explicit
penalty for warping off the diagonal, rather than relying on an implicit one, leads to
better TSCL results. Additionally, we found that applying a warping window does

not significantly improve the performance of DTW.

5.5 Conclusion

We have conducted an extensive review of the k-means clusterer using elastic
distances. We have found that distances such as MSM, TWE, and ADTW consis-
tently outperformed other elastic distances. Conversely, DTW, DDTW, EDR, and
WDDTW performed significantly worse, often being outperformed by k-means-
Euclidean. Our results suggest that for k-means clustering, distances that explicitly
penalise warping off the diagonal consistently deliver better results than those using
an implicit penalty.

To contextualise our findings, we included commonly used time series clusterers
from the literature, two of which are considered state-of-the-art. We found that
ADTW, MSM, and TWE were not significantly different from k-means-ba-DTW
and k-shapes across all evaluation metrics, though they did not outperform k-means-
ba-DTW in terms of absolute ranking on the combined test-train split.

We also extended our experimentation to the test-train split, where we observed
consistent results with the combined test-train split. However, for the test-train
split we observed that MSM and ADTW outperformed all considered clusterers
including the state-of-the-art baseline models.

In addition we performed an in-depth analysis to understand why DTW per-
formed poorly. Although we experimented with different window sizes for tuning
DTW, we found that this did not lead to significant improvements. Our analysis
revealed that the pathological warping in DTW, compared to more successful dis-

tances like TWE and MSM, is likely responsible for its subpar performance. These

5.5 Conclusion 178

findings further support our hypothesis that explicitly penalising warping off the
diagonal is a key factor in the success of clustering distances.

In conclusion, although our experiments were intentionally simplified, the
results exceeded our expectations and demonstrate the potential of elastic dis-
tances—particularly those with explicit warping penalties—for TSCL. By compar-
ing the performance difference between k-means-DTW with k-means-ba-DTW, we
hypothesise that leveraging better elastic distances in centroid computation could
lead to significantly improved clustering results. With this in mind, we will now
explore k-medoids clusterers, which can utilise elastic distances not only in the
assignment stage but also in centroid computation without requiring adjustments to

the baseline algorithm.

Chapter 6

k-medoids clustering using elastic

distances

Contributing Publications

* Holder, C., Guijo-Rubio, D., Bagnall, A. (2023). Clustering Time Series
with k-Medoids Based Algorithms. In: Ifrim, G., et al. Advanced Analytics
and Learning on Temporal Data. AALTD 2023. Lecture Notes in Computer
Science(), vol 14343. Springer, Cham. https://doi.org/10.1007/978-3-031-
49896-1_4

A limitation of the k-means elastic distance methods discussed in Chapter 5 lies in
the computation of centroids. By relying on the arithmetic mean, these methods
fail to account for the alignment of time series during centroid calculation, which
considerably hampers the performance of elastic distances in k-means clustering.
In contrast, k-medoids algorithms, although similar in structure to k-means, dif-
fer significantly in their approach to centroid computation. In k-medoids, centroids
(or medoids) are selected based on the distance that minimises the total deviation

(TD), thereby incorporating elastic distances into the centroid calculation. Given

6.1 Introduction 180

this advantage, we hypothesise that k-medoids-based algorithms will outperform

k-means-based methods when elastic distances are employed.

6.1 Introduction

Before the introduction of DBA in 2011 [94], PAM-DTW [69] (PAM using DTW)
was the preferred partition-based method for TSCL [88], primarily due to its ability
to incorporate elastic distances in both the assignment and centroid computation
stages, which resulted in improved clusterings.

However, with the advent of DBA [94], interest in k-medoids for TSCL declined.
This shift occurred because k-means-ba-DTW offered comparable performance
to PAM-DTW while being significantly less computationally expensive. Many k-
medoids algorithms, including PAM, require the computation of a pairwise distance
matrix, which often becomes impractical in real-world TSCL scenarios, reducing
the feasibility of these approaches.

In the TSCL literature, only two k-medoids methods have been explored: PAM
and alternate k-medoids. We outlined the difference between these models in Sec-
tion 2.5.1. Moreover, these two clusterers have only been studied using Euclidean
and DTW distances. Alternate k-medoids with DTW is very similar to k-means-
DTW, with the primary difference being that alternate k-medoids computes medoids
as cluster centres, whereas k-means-DTW uses the arithmetic mean. In the liter-
ature, it has been shown that alternate k-medoids-DTW significantly outperform
k-means-Euclidean [46]. However, as demonstrated in Chapter 5, k-means-DTW
performs significantly worse than k-means-Euclidean.

Given that the only difference between these two algorithms is the method
of centroid computation, we hypothesise that clusterers capable of incorporating
elastic distances into the centroid computation will demonstrate significantly better

performance. Additionally, we hypothesise that the performance improvement from

6.2 TSCL k-medoids 181

using medoids over the arithmetic mean will be similar for each distance. Therefore,
we expect MSM, TWE, and ADTW to be the top-performing k-medoids clusterers
as they were for the k-mean experiments.

To test these hypotheses, we begin by identifying four commonly used k-
medoids clusterers, two of which have never been applied to TSCL before using
elastic distances. We then proceed with experimentation for each model. Our
evaluation is divided into two sections. First, we will evaluate each k-medoids
clusterer in isolation, comparing elastic distances within the same model to identify
the best version of each. Baseline clusterers will also be included to provide context
for the results. Second, after evaluating each k-medoids model individually, we will
combine the results to assess how elastic distances impact each model, identify the
best-performing k-medoids-based clusterer, and comparing them to state-of-the-art

clusterers.

6.2 TSCL k-medoids

We identify and configure four different k-medoids clusterers for use with elastic
distances. Below, we outline each clusterer, provide pseudocode, and explain the

reasoning behind our configuration decisions.

6.2.1 Alternate k-medoids

Alternate k-medoids [75] follows Lloyd’s algorithm, but instead of computing the
arithmetic mean, it calculates the medoid of each cluster. Therefore, we adapt
our previously defined Lloyd’s algorithm (Algorithm 26) by updating the centroid
computation to use medoids. Additionally, for our experiments, we configure the
parameters for alternate k-medoids in the same way as we did for our k-means

elastic experiments, outlined in Table 5.1.

6.2 TSCL k-medoids 182

To adapt our Lloyd’s algorithm for the alternate k-medoids, we make two key
changes. First, we modify the objective function to minimise total dissimilarity
(TD) instead of inertia. This adjustment also necessitates updating the centroid
computation, where we now compute the medoid of each cluster instead of using
the arithmetic mean.

Second, we remove the process for handling empty clusters, as this issue does
not arise in k-medoids algorithms. In k-medoids, the medoid is always a data point
from the dataset, ensuring that at least one data point is assigned to each cluster.

Algorithm 27 presents the alternate k-medoids algorithm used in our experi-

ments.

6.2 TSCL k-medoids 183

Algorithm 27: Alternate_k-medoids(X, Kk, n_init, max_iters, tol,
n_init))

Input: X (Dataset of time series of length n), K (Number of clusters),

n_init (Number of restarts with different initial medoids),
max_iters (Maximum number of iterations before forced
termination), tol (TD variation threshold)

Output: Assignment of each time series to a cluster and corresponding

medoids

1 best TD + oo

2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k

4 for i< 1 ton_init do

5

e *® N &

11

12
13

14
15
16

17

18
19
20
21
22

Let medoids be an array of k randomly chosen time series from dataset
X
Let assignments be an empty array of length n
Let prev_TD < o
for j < 1 to max_iters do
for each time series x; in X do
Compute the distance between x; and each of the £k medoids
L Assign x; to the nearest centre

for each centre c; in medoids do
L Update c; to be the medoids of all time series assigned to it

Let curr_inner_T D be the of the current clustering
if |curr_inner_T D — prev_TD| < tol then
L break

B prev_TD < curr_inner_TD

Let curr_T D be the of the current clustering
if curr_TD < best_TD then
best_TD <+ curr_TD
best_assignments <— assignments
best_medoids < medoids

23 return best_assignments,best_medoids

6.2 TSCL k-medoids 184

6.2.2 PAM

PAM [69] is the most popular k-medoids algorithm [107]. PAM traditionally
consists of two steps: BUILD and SWAP. The BUILD step determines the initial
medoids, while the SWAP step refines the initial medoids to reach a local optimum.
These steps are detailed in Algorithm 29 and Algorithm 30, respectively, and the
complete PAM algorithm that combines them is shown in Algorithm 28.

The BUILD step is designed to select “good” initial medoids, and its effective-
ness largely depends on the quality of the distance measure used. In our initial
experiments, we chose to use a different initialisation strategy than BUILD. We
instead choose to use Forgy initialisation with 10 restarts. This approach allows us
to focus specifically on how elastic distances affect the SWAP step within PAM.
Additionally, by using the same initialisation method as our Lloyd’s-based algo-
rithms, we can make more accurate comparisons and better understand how elastic
distances influence the refinement and averaging process.

PAM shares many of the same configuration options as Lloyd’s. Specifically
it shares max_iters, n_init and init_algorithm. We set these values to matches our

Lloyd’s-based clusterers for consistency.

Algorithm 28: PAM(X, k, max_iters)

Input: X (Dataset of objects), k (Number of clusters), max_iters
(Maximum number of iterations for PAM SWAP), (TD variation
threshold)

Output: Final assignments of each object to a cluster and corresponding

medoids
1 initial_medoids < PAM_BUILD(X k)
2 assignements, medoids < PAM_SWAP (X k,max_iters, initial_medoids)
3 return assignments, medoids

6.2 TSCL k-medoids

185

Algorithm 29: BUILD(X, k)

Input: X (Dataset of objects), K (Number of clusters)
Output: Initial k medoids

1 TD < o, m; <+ null

2 for each object x. in X do

3 TDj +—0
4 for each object x, in X do
5 L TDj <+ TD;+d(xy,x.)

6 if TD; <TD then

TD « TD,
9 for each object x, in X do
10 if x, = m; then
11 | continue

2 dnearest(o) — d(mhxo)

13 fori<1tok—1do
14 best TD < =

15 best_x + null

16 for each object x. in X do

17 if x. in {my,...,m;} then

18 | continue

19 curr_TD <+ 0

20 for each object x, in X do

21 if x, in {my,...,m;} then

2 | continue

23 change_in_TD <« d(x,,x;) — dpearest(0)
24 if change_in_TD < O then

25 L curr_TD < curr_T D+ change_in_TD
26 if curr_TD < best_TD then

27 best TD < curr_TD

28 best_x < x,

29 TD < TD+best_ TD
30 | mip) 4 best_x

31 return {my,...,m;}

6.2 TSCL k-medoids 186

Algorithm 30: SWAP(X, k, max_iters, medoids)

Input: X (Dataset of of time series of length n), kK (Number of clusters),
max_iters (Maximum number of iterations), medoids (Initial
medoids to refine)

Output: Assignments of each time series to a cluster and corresponding

medoids
1 for each object x, in X do
| Compute nearest(0), dnearest(0), and dsecona (0)

[

3 for i < 1 to max_iters do

4 best TD + 0

5 best_m < null

6 best_x + null

7 for each medoid m; in medoids do

8 for each non-medoid x. in X do

9 curr_TD <+ 0

10 for each non-medoid x, in X do
11 L curr_TD < curr_TD+ A(x,,mj,x.)
12 if curr_TD < best_TD then

13 best TD <+ curr_TD

14 best_m < m;

15 best_x < x.

16 if best_TD > 0 then

17 L break

18 Swap roles of medoid best_m and non-medoid best_x
19 for each object x, in X do

20 | Update nearest(0), dnearest(0), and dsecona(0)

21 TD < TD++best TD

22 Let assignments be an array where each element x, in X is assigned to the
nearest medoid in {my,...,my;}
23 return assignments, medoids

6.2.3 CLARA

CLARA [68] repeatedly applies PAM to random subsets of the dataset. Using the
medoids produced for a subset, all values in the entire dataset are then assigned to
their nearest medoids, and the TD of the configuration is measured. This process is

repeated, and the iteration with the lowest TD is returned.

6.2 TSCL k-medoids 187

Algorithm 31: PAM_without_ BUILD(X, k, n_init, max_iters)
Input: X (Dataset of time series of length n), K (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced

termination)
Output: Assignment of each time series to a cluster and corresponding
medoids

1 best_TD < o

2 Let best_assignments be an empty array of length n

3 Let best_medoids be an empty array of length k

4 for i < 1 to n_init do

5 Let initial_medoids be an array of k randomly chosen time series from
dataset X

6 assignements <— PAM_SWAP (X, k,max_iters, initial_medoids)

7 Let curr_T D be the of the current clustering

8 if curr_TD < best_TD then

9 best_TD < curr_TD

10 best_assignments <— assignments

11 best_medoids < medoids

12 return assignments,medoids

To facilitate this process, CLARA uses two additional parameters: the number
of samples to use for each subset (n_samples) and the number of runs to perform
with different random samples (n_sampling_iters). We set n_samples to 40 +
2k for each dataset as it is recommended in the original paper [68]. Choosing
an appropriate value for n_sampling_iters is more challenging, as the optimal
value depends on factors such as the size of the dataset and the availability of
computational resources. For our experiments, we set this value to 10. While
this may be higher than necessary for many datasets, we opted for a value that is
applicable across all datasets in the UCR archive, thus choosing a higher value than
usual.

After a random subset of time series is selected, PAM is executed. Traditionally,
CLARA uses PAM with BUILD initialisation (Algorithm 28). However, in our

version of CLARA, we employ PAM with Forgy initialisation and 10 restarts

6.2 TSCL k-medoids

188

(Algorithm 31). The version of CLARA used in our experimentation is defined in

Algorithm 32.

Algorithm 32: CLARA(X, Kk, n_samples, n_sampling_iters,
max_iters)

Input: X (Dataset of time series of length n), K (Number of clusters),
n_samples (Number of samples in each subset), n_sampling_iters
(Number of sampling iterations), max_iters (Maximum number of
iterations before forced termination)

Output: Assignment of each time series to a cluster and corresponding

medoids

best TD + oo

Let best_assignments be an empty array of length n

Let best_medoids be an empty array of length k

for i < 1 to n_sampling_iters do

Let random_subset be an array of n_samples randomly chosen time

series from dataset X

subset_assignments, medoids < PAM (random_subset .k, max_iters

7 Let assignments be an array of integers where each element represents

the index of the medoid in medoids closest to the corresponding time

series in D.

8 Let curr_T D be the of the current clustering based on the assignments

in assignments.

9 if curr_TD < best_TD then

N oA W N -

=)}

10 best_TD < curr_TD
11 best_assignments <— assignments
12 best_medoids < medoids

13 return best_assignments,best_medoids

6.2.4 CLARANS

CLARANS [86] updates the PAM SWAP algorithm by randomly choosing a value

in the dataset to become a random medoid. If that swap reduces TD, then the swap

is performed immediately. If it doesn’t reduce TD, a counter is incremented to track

the number of failed swaps. If this counter exceeds the value of the max_neighbours

parameter, then the algorithm terminates and returns the medoids and assignments

for the configuration.

6.2 TSCL k-medoids 189

The CLARANS algorithm introduces a new parameter, max_neighbours, which
defines the maximum number of neighbouring solutions the algorithm will explore
for each set of medoids. A neighbouring solution is obtained by replacing one of
the medoids with a non-medoid and evaluating if this reduces the total cost. It
is recommended to set max_neighbours to 1.25% of the total number of possible
swaps for the dataset [86].

Additionally, CLARANS uses a parameter called num_local, which determines
the number of restarts the algorithm performs with different initial medoids, selected
using Forgy initialisation. In our previous experiments, we already employ this
strategy, though we refer to this parameter as n_init. For consistency across our
experiments, we will use the name n_init in our CLARANS implementation instead
of num_local.

Algorithm 33 outlines the CLARANS SWAP procedure, and Algorithm 34
presents the full CLARANS algorithm.

6.2 TSCL k-medoids

190

Algorithm 33: CLARANS_SWAP(X, k, max_neighbours, medoids)

o

wn A W N

10
11
12
13

14
15

16

Input: X (Dataset of of time series of length n), kK (Number of clusters),

max_neighbours (Maximum attempt to find a swap), medoids
(Initial medoids to refine)

Output: Assignments of each time series to a cluster and corresponding

medoids

Let assignments be the assignment of each value in X to its closest medoids
in medoids

Let TD be the TD of the assignments clustering

i< 0

while i < max_neighbours do

Let medoids_to_replace be a randomly selected medoids from
medoids
Let non_medoids_to_swap be a randomly selected non-medoids from
X
Let candidate_medoids be the medoids array where
medoids_to_replace is swapped non_medoids_to_swap
Let candidate_assignments be the assignment of each value in X to its
closest medoids in candidate_medoids
Let canidate_T D be the TD of the candidate_assignments clustering
if candidate_TD < T D then
TD < candidate_TD
assignments <— candidate_assignment
medoids < candidate_medoids

else
| i+

return assignments, medoids

6.2 TSCL k-medoids 191

Algorithm 34: CLARANS(X, k, n_init, max_iters)

Input: X (Dataset of time series of length n), K (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination)

Output: Assignment of each time series to a cluster and corresponding

medoids

1 best TD + oo
2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k
4 for i < 1 to n_init do
5 Let initial_medoids be an array of k randomly chosen time series from

dataset X
assignements < PAM_SWAP (X, k,max_iters, initial_medoids)
Let curr_T D be the of the current clustering
if curr_TD < best_TD then

best TD < curr_ TD

10 best_assignments <— assignments
11 best_medoids < medoids

e e 9 &

12 return assignments, medoids

6.3 Experiment setup 192

6.3 Experiment setup

To evaluate four different k-medoids algorithms across 12 elastic distances, we
divide our experiments and analysis into two sections. First, we evaluate each
k-medoids model in isolation, comparing each models performance to itself using
different elastic distances and incorporating baseline results. In this first section,
our goal is to identify the best-performing elastic distance for each model. Once
each model has been analysed individually, we will then compare the k-medoids
algorithms against one another, including the baseline clusterers, to determine the
best-performing k-medoids approach for TSCL.

Many of the k-medoids algorithms share common parameters. While the specific
configurations for each elastic distance model will be defined individually in their
respective sections, Table 6.1 provides a general overview of the configuration
used across all k-medoids models. Our goal is to maintain consistency in as many
parameters as possible, altering only the distance measure. This approach ensures
that we are evaluating the performance of the distance measures themselves, rather

than differences in model configuration.

max_iters | n_init | init_algo | additional
PAM 50 10 Forgy -
alternate k-medoids | 50 10 Forgy tol =1x107°
CLARA 50 10 Forgy n_samples = 40+ 2k
CLARANS 50 10 Forgy max_neighbours = 0.0125(k(n —k))

Table 6.1 Baseline k-medoids models parameters. A “-” means the parameter does

not apply to the model.

In addition to the model-specific parameters, the elastic distances require default

parameter values to be set. Table 5.2 outlines the parameters used for each elastic
distance, which are the same as those employed in Chapter 5. Based on our
experimentation in Chapter 5, these parameters serve as good default parameters as

the performance of each distance was aligned with our expectations.

6.4 Alternate k-medoids 193

6.4 Alternate k-medoids

For our experiment each alternate k-medoids model configuration is defined in

Table 6.2.

max_iters | tol n_init | init_algo | distance
alternate-adtw 50 1x107%] 10 Forgy ADTW
alternate-ddtw 50 1x107% | 10 Forgy DDTW
alternate-dtw 50 1x107% | 10 Forgy DTW
alternate-edr 50 1x107% | 10 Forgy EDR
alternate-erp 50 1x107% | 10 Forgy ERP
alternate-euclidean | 50 1x107% | 10 Forgy Euclidean
alternate-Icss 50 1x107% | 10 Forgy LCSS
alternate-msm 50 1x107% | 10 Forgy MSM
alternate-twe 50 1x107% | 10 Forgy TWE
alternate-wddtw 50 1x107% | 10 Forgy WDDTW
alternate-wdtw 50 1x107% | 10 Forgy WDTW
alternate-shape-dtw | 50 1x107% | 10 Forgy shape-DTW
alternate-soft-dtw 50 1x107% | 10 Forgy soft-DTW

Table 6.2 Alternate k-medoids model parameters

6.4.1 Alternate k-medoids Combined test-train split

Figure 6.5 presents the combined test-train split results for alternate k-medoids
with all elastic distances. However, 36 datasets are missing from this evaluation.
The primary reason for this is that certain distances did not complete within the
seven-day runtime limit. Specifically, LCSS did not finish for 30 datasets, EDR
for 9 datasets, and soft-DTW for 10 datasets. A comprehensive list of the missing
datasets is provided in Table A.12.

The number of missing datasets specifically for LCSS is surprisingly high. In
previous experiments, LCSS did not exhibit extended convergence times. This
discrepancy may suggest a potential issue within our code, although no such issue

was observed in the test-train split. Another possible explanation is that LCSS may

6.4 Alternate k-medoids 194
1312 1110 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1
I 1 I 1 I 1 I 1 I 1 I 1 1 I 1 I 1 I 1 I 1 I 1 I I 1 I 1 I 1 I 1 1 I 1 I 1 I 1 I 1 I 1 I 1 I
alternate-euclidean 2132 | 56382 glternate-soft-dtw alternate-euclidean 8260 | 37105 ajternate-msm
alternate-erp 26776 56579 alternate-twe alternate-erp 8603 | | 57368 jternate-adtw
alternate-lcss —2:6184 58750 zlternate-msm alternate-wddtw —22932 51500 alternate-twe
alternate-edr 23750 3.9013_ 3ternate-adtw alternate-ddtw —73392 58487 alternate-soft-dtw
alternate-dtw —:25% 67697 _ alternate-ddtw alternate-lcss —1:4342 62434 3lternate-shape-dtw
alternate-wdtw —2:0853 69276 glternate-shape-dtw alternate-wdtw —%:219 68026 gjternate-edr
L 7085 jlternate-wddtw 3% alternate-dtw
Fig. 6.1 AMI Fig. 6.2 ARI
1312 1110 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1
I 1 I 1 I 1 I 1 I 1 1 I 1 I 1 I 1 I 1 I I 1 I 1 I 1 I 1 I 1 I 1 1 I 1 I 1 I 1 I 1 I
alternate-euclidean 2221 | L 58224 gjternate-twe alternate-euclidean —21313 | 56316 jjternate-twe
alternate-erp —823% 38882 alternate-adtw alternate-erp —287° | L 56382 ajternate-soft-dtw
alternate-wddtw —2:2092 5.9803_ 5|ternate-msm alternate-lcss 72326 58553 alternate-adtw
alternate-ddtw —7:4913 5.9934_ 3lternate-soft-dtw alternate-edr —73%47 59382 alternate-msm
alternate-lcss 23289 65526 alternate-shape-dtw alternate-dtw —1:23% 6.8092_ 3lternate-ddtw
alternate-dtw —7:0066 6.6513_ glternate-edr alternate-wddtw —Z:164 6.9408 alternate-shape-dtw
L 692 jjternate-wdtw L 7ows alternate-wdtw

Fig. 6.3 CLACC Fig. 6.4 NMI

Fig. 6.5 CD diagrams of alternate k-medoids over 76 datasets from the UCR archive
using the combined test-train split. Missing datasets are outlined in Table A.12.

struggle to effectively form medoids, leading the algorithm to consistently reaching
the maximum number of iterations, thereby significantly increasing the runtime.

Due to the total of 36 missing datasets for the combined test-train split, it is
challenging to draw broad and meaningful conclusions. Therefore, we present the
initial results with all elastic distances but then choose to exclude LCSS, EDR and
soft-DTW due to multiple missing datasets. Therefore, we will briefly analyse these
three distances for the results that have finished and then exclude them from the
rest of the results.

Alternate-LLCSS always appears in the bottom clique. While it is always better
in terms of average rank than alternate-Euclidean it is not significantly better.
Alternate-EDR seems to have the most variable rankings. For AMI and NMI EDR
appears in the bottom clique. However, for CLACC it appears in the top clique and

appears in the second best clique for ARI. This discrepancy may suggest that while

6.4 Alternate k-medoids 195

there are many pairs of time series accurately assigned, the overall distribution of
the values maybe poor and there could be a lot of overlap between clusters.

Alternate-soft-DTW is one of the best performing elastic distances always
appear in the top clique. We will focus our evaluation of alternate-soft-DTW when
analysing the test-train split as it has completed many more datasets allowing more
meaningful analysis. However, for the limited number it has completed for the
combined test-train split it is one of the best performing distances.

We now exclude alternate-LCSS, alternate-EDR, and alternate-soft-DTW from
our analysis. Figure 6.10 presents the critical difference diagrams for nine different
elastic distances across 106 datasets. For all evaluation metrics, alternate-TWE
achieves the highest average rank, followed by alternate-MSM and alternate-ADTW.

In Figure 6.10, for every evaluation metric, all elastic distances outperform
alternate-Euclidean, except ERP for CLACC. TWE, MSM, ADTW, and shape-DTW
consistently feature in the top cliques, whereas Euclidean, ERP, DTW, WDTW,
and WDDTW are always in the bottom clique. Additionally, in a surprising result,
DDTW appears in the top clique for AMI and NMI, marking the first time in our
experiments that DDTW has been ranked so highly.

Table 6.3 provides the average scores for each model across all evaluation
metrics. In terms of average score, alternate-TWE is the best-performing model for
every metric. However, across different domains (Table 6.4), alternate-TWE ranks
highest in only two out of the seven domains. Alternate-ADTW, alternate-MSM,
alternate-shape-DTW, and alternate-WDTW each perform best in one or more
categories.

To contextualise the results, Figure 6.15 displays the critical difference diagrams
with the baseline clusterers included. k-means-ba-DTW is the best-performing
clusterer across all evaluation metrics. However, alternate-TWE, alternate-MSM,
alternate-ADTW, and alternate-shape-DTW consistently appear in the top clique

alongside it. Moreover, for every evaluation metric, alternate-MSM, alternate-TWE,

alternate-euclidean
alternate-erp
alternate-dtw
alternate-wdtw
alternate-wddtw

alternate-erp
alternate-euclidean
alternate-wddtw
alternate-ddtw
alternate-dtw

6.4 Alternate k-medoids

196

0 9 8 7 6 5 4 3 2 1

| I I | 1 I T

69953 | L 44906 Jlternate-twe

6.8019 4.7028 glternate-msm
5.5377 48538 alternate-adtw
5.4906 3.3066_ 3lternate-ddtw
5.4575 5:3632_ 3lternate-shape-dtw

Fig. 6.6 AMI

0 9 8
]

6.6792

alternate-twe

6.6415

alternate-msm
5.8255

alternate-adtw
5.6840

alternate-shape-dtw
alternate-wdtw

5.6179

Fig. 6.8 CLACC

alternate-euclidean
alternate-erp
alternate-wddtw
alternate-ddtw
alternate-wdtw

alternate-euclidean
alternate-erp
alternate-wddtw
alternate-dtw
alternate-wdtw

6.6509
6.6509
6.0849

4.4717

4.7594

4.5094

5.7972 5.0000

5.6557 5.4198

Fig. 6.7 ARI

0 9 8 7 6
]

6.9953
6.7736
5.5330

4.4623

4.8585

5.5283 5.3349

4.7075

5.4292 5.3774

Fig. 6.9 NMI

Fig. 6.10 CD diagrams of alternate k-medoids over 106 datasets from the UCR
archive using the combined test-train split. Missing datasets are outline in Ta-

ble A.13.
ARI | AMI | CLAcc | NMI | RI
alternate-adtw 0.248 | 0.302 | 0.559 | 0.327 | 0.715
alternate-ddtw 0.205 | 0.271 | 0.535 0.294 | 0.693
alternate-dtw 0.232 | 0.286 | 0.550 | 0.311 | 0.707
alternate-erp 0.181 | 0.235 | 0.508 | 0.262 | 0.685
alternate-euclidean | 0.185 | 0.236 | 0.509 0.263 | 0.694
alternate-msm 0.246 | 0.300 | 0.562 0.324 | 0.713
alternate-shape-dtw | 0.245 | 0.296 | 0.558 | 0.320 | 0.712
alternate-twe 0.253 | 0.306 | 0.565 0.330 | 0.716
alternate-wddtw 0.208 | 0.276 | 0.536 0.300 | 0.690
alternate-wdtw 0.231 | 0.287 | 0.550 | 0.313 | 0.705

Table 6.3 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

alternate-ADTW, and alternate-shape-DTW outperform k-shapes. Overall, while

no alternate k-medoids approach surpasses the current state-of-the-art, many of the

elastic distances are not significantly different from it.

alternate-twe
alternate-msm
alternate-adtw
alternate-shape-dtw
alternate-dtw

alternate-twe
alternate-msm
alternate-adtw
alternate-ddtw
alternate-shape-dtw

6.4 Alternate k-medoids 197
Image | Spectro | Sensor | Simulated | Device | Motion | ECG
alternate-adtw 0.290 | 0.232 0.218 | 0.468 0.118 | 0.166 | 0.324
alternate-ddtw 0.291 | 0.164 0.212 | 0.242 0.091 | 0.096 | 0.250
alternate-dtw 0.284 | 0.178 0.199 | 0.452 0.149 | 0.154 | 0.261
alternate-erp 0.232 | 0.153 0.176 | 0.255 0.088 | 0.098 | 0.268
alternate-euclidean | 0.243 | 0.197 0.178 | 0.251 0.045 | 0.099 | 0.260
alternate-msm 0.323 | 0.169 0.217 | 0.346 0.174 | 0.148 | 0.390
alternate-shape-dtw | 0.298 | 0.196 0.226 | 0.372 0.125 | 0.154 | 0.418
alternate-twe 0.321 | 0.173 0.228 | 0.440 0.188 | 0.146 | 0.325
alternate-wddtw 0.315 | 0.163 0.203 | 0.264 0.063 | 0.089 | 0.252
alternate-wdtw 0.294 | 0.180 0.196 | 0.487 0.076 | 0.157 | 0.267

Table 6.4 Average ARI score on problems split by problem domain over 106 datasets
from the UCR archive using the combined test-train split.

6.4.2 Alternate k-medoids Test-train split

Figure 6.20 presents the critical difference diagram for alternate k-medoids over 102
of the UCR test-train splits. The general ranking order remains consistent with the
combined test-train split results. Alternate-soft-DTW, alternate-ADTW, alternate-
TWE, alternate-MSM, and alternate-shape-DTW consistently appear in the top
clique across all evaluation metrics. In contrast, alternate-ERP, alternate-LCSS,
alternate-WDDTW, and alternate-Euclidean are consistently placed in the bottom
clique. However, on the test-train split, both alternate-ERP and alternate-LCSS
perform worse than alternate-Euclidean for every evaluation metric, which was not
the case in the combined test-train split, where alternate-ERP only performed worse
for one dataset.

Table 6.5 summarises the average performance of each clusterer across all
evaluation metrics. Alternate-soft-DTW is the best-performing clusterer overall,
excelling in three out of the seven domains. Alternate-MSM performs best in two
domains, alternate-ADTW in one, and alternate-DTW in one. Notably, this is the

first time alternate-DTW has been the top-performing distance for any domain.

6.4 Alternate k-medoids

198

1413121110 9 8 7 6 5 4 3 2 1 1413121110 9 8 7 6 5 4 3 2 1
Ladalslalyly | i I R Lodlalalaly 'l I P ' |
alternate-euclidean —2338 6.0288 | _means-ba-dtw alternate-euclidean —214% 59471 |_means-ba-dtw
alternate-erp 21346 61106 alternate-twe alternate-erp —2:28%¢ 61779 alternate-msm
k-means-euclidean 8788 64135 alternate-msm k-means-euclidean —&5122 6.2408_ glternate-twe
k-sc 1375 66923 alternate-adtw alternate-wddtw —8:4423 6.6442_ alternate-adtw
alternate-dtw —7:3481 1.2163_ 3lternate-shape-dtw alternate-ddtw —2:2760 68317 3lternate-shape-dtw
alternate-wddtw —Z:4760 12933 alternate-ddtw alternate-wdtw —1-76%4 1.2452_ | shapes
alternate-wdtw 4327 7.3894_ K_shapes k-sc 16875 7.3894_ alternate-dtw
Fig. 6.11 AMI Fig. 6.12 ARI

alternate-euclidean
alternate-erp
k-means-euclidean
alternate-wddtw
alternate-ddtw
alternate-dtw
alternate-wdtw

14 13 12 11 10 9 8
[P I T

9.1490

9.1298

8.6250

8.0625 6.5721

7.8606

7.7115

7.5962

k-means-ba-dtw
alternate-twe
alternate-msm
alternate-adtw
alternate-shape-dtw
k-sc

k-shapes

alternate-euclidean
alternate-erp
k-means-euclidean
k-sc

alternate-dtw
alternate-wddtw
k-shapes

1413121110 9 8
[P ' '

9.5385
9.0817

7
gl

8.7981

7.9663

7.5577

7.5240

7.4087

k-means-ba-dtw
alternate-twe
alternate-msm
alternate-adtw
alternate-shape-dtw
alternate-ddtw
alternate-wdtw

Fig. 6.13 CLACC Fig. 6.14 NMI

Fig. 6.15 CD diagrams of alternate k-medoids with baseline clusterers over 104
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.14

ARI | AMI | CLAcc | NMI | RI
alternate-adtw 0.223 | 0.279 | 0.564 0.312 | 0.701
alternate-ddtw 0.194 | 0.255 | 0.538 0.287 | 0.684
alternate-dtw 0.197 | 0.257 | 0.536 | 0.292 | 0.692
alternate-edr 0.194 | 0.242 | 0.533 0.275 | 0.688
alternate-erp 0.170 | 0.220 | 0.509 | 0.257 | 0.674
alternate-euclidean | 0.177 | 0.228 | 0.520 0.264 | 0.687
alternate-lcss 0.141 | 0.198 | 0.498 0.233 | 0.639
alternate-msm 0.214 | 0.270 | 0.545 0.303 | 0.697
alternate-shape-dtw | 0.227 | 0.277 | 0.561 | 0.311 | 0.702
alternate-soft-dtw 0.239 | 0.294 | 0.569 0.327 | 0.706
alternate-twe 0.213 | 0.268 | 0.548 0.301 | 0.697
alternate-wddtw 0.180 | 0.239 | 0.525 0.274 | 0.676
alternate-wdtw 0.194 | 0.254 | 0.533 0.289 | 0.689

Table 6.5 Summary of average score across multiple evaluation metrics over 102
datasets from the UCR archive using the test-train split.

6.4 Alternate k-medoids 199

1312 1110 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1
| I T T | | I T T Y | | I I I T A A I P ' T
alternate-erp —2:6¢7 5.3578_ alternate-soft-dtw alternate-erp —&31%7 5.5980_ alternate-soft-dtw
alternate-lcss 2349 36667 alternate-adtw alternate-lcss 23972 38235 alternate-adtw
alternate-euclidean —-%7%5 61765 jlternate-twe alternate-wddtw —Z:876 61373 3lternate-shape-dtw
alternate-edr —273% 63382 alternate-msm alternate-euclidean —867¢ 61471 alternate-msm
alternate-wddtw —Z:4167 64265 glternate-shape-dtw alternate-wdtw —-:2892 61471 3lternate-twe
alternate-wdtw —Z:1716 66912 glternate-ddtw alternate-edr —7:2843 6.8824_ alternate-ddtw
L 683 gternate-dtw L 7081 glternate-dtw
Fig. 6.16 AMI Fig. 6.17 ARI
1312 1110 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1
| I T T | | I | | T | | T |
alternate-erp —&:34% 55833 glternate-adtw alternate-erp 86373 | L 54314 gjternate-soft-dtw
alternate-lcss 21912 3.71304_ ajternate-soft-dtw alternate-lcss —23%% | L5825 gjternate-adtw
alternate-wddtw 2127 60735 glternate-shape-dtw alternate-euclidean —7:26%8 6.0788_ alternate-twe
alternate-euclidean —-7%1° 81471 glternate-twe alternate-edr —2720 63186 alternate-msm
alternate-wdtw —7:3382 64902 alternate-msm alternate-wddtw —Z:4510 64706 3lternate-shape-dtw
alternate-edr —1:2010 87157 glternate-ddtw alternate-wdtw —7:1212 6.7206_ 3lternate-ddtw
L 71520 Hternate-dtw L 68873 glternate-dtw
Fig. 6.18 CLACC Fig. 6.19 NMI

Fig. 6.20 CD diagrams of alternate k-medoids over 102 datasets from the UCR
archive using the test-train split. Missing datasets are outlined in Table A.15.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
alternate-adtw 0.280 | 0.154 0.169 | 0.335 0.146 | 0.213 | 0.315
alternate-ddtw 0.255 | 0.120 0.182 | 0.257 0.105 | 0.145 | 0.249
alternate-dtw 0.211 | 0.163 0.166 | 0.385 0.119 | 0.185 | 0.217
alternate-edr 0.255 | 0.123 0.182 | 0.311 0.121 | 0.121 0.211
alternate-erp 0.216 | 0.087 0.179 | 0.215 0.048 | 0.131 0.263
alternate-euclidean | 0.225 | 0.151 0.158 | 0.228 0.064 | 0.140 | 0.275
alternate-lcss 0.133 | 0.041 0.158 | 0.260 0.070 | 0.143 | 0.185
alternate-msm 0.273 | 0.152 0.178] 0.313 0.103 | 0.179 | 0.320
alternate-shape-dtw | 0.260 | 0.136 0.200 | 0.349 0.150 | 0.195 | 0.378
alternate-soft-dtw 0.283 | 0.156 0.189 | 0.468 0.172 | 0.206 | 0.273
alternate-twe 0.281 | 0.121 0.187 | 0.273 0.132 | 0.160 | 0.341
alternate-wddtw 0.272 | 0.131 0.172 | 0.212 0.054 | 0.086 | 0.249
alternate-wdtw 0.212 | 0.160 0.171 | 0.374 0.070 | 0.182 | 0.225

Table 6.6 Average ARI score on problems split by problem domain. 102 datasets
from the UCR archive using the test-train split.

Figure 6.25 presents the critical difference diagram for alternate k-medoids

with the baseline clusterers over the test-train split. Across all evaluation metrics,

alternate-erp
alternate-Icss
alternate-euclidean
k-shapes
k-means-euclidean
alternate-edr
alternate-wddtw
alternate-wdtw

alternate-erp
alternate-Icss
alternate-wddtw
k-shapes
alternate-euclidean
k-means-euclidean
alternate-wdtw
alternate-dtw

6.4 Alternate k-medoids 200

alternate-soft-DTW and alternate-ADTW emerge as the top two performing alter-
nate k-medoids clusterers, consistently outperforming k-means-ba-DTW. While k-
means-ba-DTW remains in the top clique for both ARI and CLACC, it is surpassed
on average by alternate-MSM, alternate-TWE, alternate-shape-DTW, alternate-soft-
DTW, and alternate-ADTW. Alternate-ERP and alternate-LLCSS, on the other hand,
are consistently in the bottom clique and are the only two elastic distances that

perform worse than k-means-Euclidean.

54321
RN Ladalslsl

1716151413121110 9 8 7
|

11.1373 6.8529

10.9265 7.2108

10.3775 7.7598

10.3088 7.8676

9.8382 8.0245

9.7745 8.2304

9.4167 8.5735

9.1716 8.7402

8.7892

Fig. 6.21 AMI

1716151413121110 9 8 7 6
Ll lalally]]

10.9510

10.4657

10.3578

10.1275

9.8824

9.5980

9.3676

9.2353

alternate-soft-dtw
alternate-adtw
k-means-ba-dtw
alternate-twe
alternate-msm
alternate-shape-dtw
alternate-ddtw
alternate-dtw

k-sc

alternate-adtw
alternate-soft-dtw
alternate-shape-dtw
alternate-twe
alternate-msm
k-means-ba-dtw
k-sc

alternate-ddtw
alternate-edr

k-shapes
alternate-erp
alternate-Icss
alternate-euclidean
alternate-wddtw
k-means-euclidean
alternate-wdtw
alternate-edr

alternate-erp
alternate-Icss
k-shapes
alternate-euclidean
k-means-euclidean
alternate-edr
alternate-wddtw
alternate-wdtw

1716151413121110 9
bl dalala]al,

11.0343

7.1422

10.8775

7.3235

10.7059

7.7500

10.1029

7.7647

9.9412

7.7941

9.7108

7.8431

9.2059

8.7892

9.1863

8.7990

Fig. 6.22 ARI

17161514131211109 8 7 6 5 4
IIIIIIIIIIIIIII IIIIIII

3
]

9.0294

21
|

11.0441
10.8333

6.9265
7.1029

10.6520

7.6863

10.3186

7.8676

9.8824

7.9510

9.7255

8.2598

9.4314

8.5539

9.1422

8.7549

8.8676

alternate-soft-dtw
alternate-adtw
alternate-msm
alternate-shape-dtw
alternate-twe
k-means-ba-dtw
alternate-ddtw

k-sc

alternate-dtw

alternate-soft-dtw
alternate-adtw
alternate-twe
k-means-ba-dtw
alternate-msm
alternate-shape-dtw
alternate-ddtw
alternate-dtw

k-sc

Fig. 6.23 CLACC Fig. 6.24 NMI

Fig. 6.25 CD diagrams of alternate k-medoids over 102 datasets from the UCR
archive using the test-train split. Missing datasets are outlined in Table A.16

6.4.3 Comparison to k-means

One of our hypothesis was that k-medoids algorithms would outperform k-means
across all elastic distances. Secondly, we proposed that using medoids as centroids

would result in similar performance improvements across all distances when com-

6.4 Alternate k-medoids 201

pared to k-means. We will now test these hypotheses by directly comparing the
results of k-means with those of alternate k-medoids.

Alternate k-medoids employs Lloyd’s algorithm, similar to k-means. As previ-
ously outlined, the key difference between alternate k-medoids and k-means lies
in how the centroids are computed. Alternate k-medoids uses medoids (which can
utilise elastic distances), while k-means relies on the arithmetic mean. Comparing
alternate k-medoids with k-means enables us to directly assess the impact of using
medoids as cluster centroids.

Figure 6.30 presents the critical difference diagram comparing the performance
of alternate k-medoids and k-means. In this comparison, all elastic distances
perform better with alternate k-medoids than with k-means. On average, we observe
a rank improvement of approximately 2.22 when using alternate k-medoids instead
of k-means with the same elastic distance. This is shown in Figure 6.31.

However, while alternate k-medoids with elastic distances outperform k-means
with the same distances, k-means-ADTW and k-means-MSM still appear in the
top clique for ARI, CLACC, and NMI. These two methods are only consistently
outperformed by alternate-TWE, alternate-MSM, and alternate-ADTW.

Figure 6.32 compares the difference in average score for each elastic distance
in terms of ARI and AMI. The numbers shown above each distances bars shows
the difference between scores of alternate k-medoids (blue) and k-means (red). For
both ARI and AMI, the average score improves for all distances except ERP and
Euclidean. On average alternate k-medoids improves the clusterers performance by
0.031 for ARI and 0.037 AML

Figure 6.32 shows that DDTW, DTW and EDR exhibit the most significant
improvements for both AMI and ARI. These distances have an implicit warping
penalty. In Chapter 5, we hypothesised that elastic distances with implicit warping
penalties are more susceptible to pathological warping, especially when compared

to an unaligned centroid. Based on Figure 6.32, we theorise that when the centroid

k-means-ddtw
k-means-dtw
alternate-euclidean
alternate-erp
k-means-wddtw
k-means-euclidean
k-means-erp
k-means-wdtw
alternate-ddtw

k-means-dtw
k-means-ddtw
alternate-euclidean
k-means-wddtw
alternate-erp
k-means-euclidean
alternate-ddtw
k-means-wdtw
k-means-erp

6.4 Alternate k-medoids 202

1817161514131211109 8 7 6 5 4 3 2 1 1817161514131211109 8 7 6 5 4 3 2 1

Lelalalalyl | Lolololollsl Ll ey innnnnnn

12.4905 L7371 jlternate-twe k-means-ddtw 123667 | —— 5L alternate-msm
11.0619 17285 3lternate-msm k-means-dtw 12100 | L 13%2_ alternate-twe
11.5667 19286 glternate-adtw alternate-euclidean 11938 1809 alternate-adtw
11.0000 8.2857 k.means-msm k-means-wddtw 108476 83476 k-means-adtw
10.9810 83429 glternate-wdtw alternate-erp 126714 84095 k-means-msm
104150 24222 k-means-adtw k-means-euclidean 122762 8443 alternate-dtw

: - alternate-dtw alternate-wddtw —287% 80995 alternate-wdtw
9.5190 87476 g|ternate-wddtw k-means-wdtw —2£000 2038 |-means-twe
9.0714 87667 k-means-twe alternate-ddtw —2:6¢7 23238 |-means-erp
Fig. 6.26 AMI Fig. 6.27 ARI

1817161514131211109 8 7 6 5 4 3 2 1 1817161514131211109 8 7 6 5 4 3 2 1

Ldalalalalalaly Lilalslalelslal Ldalalalsl | Lalalslalalsl
11.9143 - 15952 glternate-msm k-means-ddtw -12:6000 T L3%T_ alternate-twe
118524 16905 glternate-twe k-means-dtw 119143 L1333 alternate-msm
10.9286 1.8429_ alternate-adtw alternate-euclidean 113857 18429 alternate-adtw
107619 85143 alternate-wdtw k-means-wddtw 110714 32819 alternate-wdtw
10.7048 8.5524_ | means-adtw alternate-erp 108714 84238 |-means-adtw
10.0000 8.6286_ |_means-msm k-means-euclidean 123810 84285 k-means-msm
94905 90714 |ternate-dtw k-means-erp —28238 33393 _ alternate-dtw
9.4571 91619 | means-twe k-means-wdtw —2:6333 8709 alternate-wddtw
9.4571 93762 alternate-wddtw alternate-ddtw —8287 8.8333

Fig. 6.28 CLACC

k-means-twe

Fig. 6.29 NMI

Fig. 6.30 CD diagrams of alternate k-medoids and k-means over 105 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined

in Table A.17

2.5

2.0

1.5

1.0

Average rank change

0.5

0.0

ARI

AMI

CLACc NMI

RI

Fig. 6.31 Average rank improvement for each elastic distance when using alternate
k-medoids over k-means over 105 datasets from the UCR archive combined test-

train split.

ARI Score

6.4 Alternate k-medoids 203

is computed with alignment, less pathological warping occurs, leading to a general
improvement for all distances, but particularly for those with an implicit warping

penalty, such as DTW, DDTW and EDR.

0.031

= Alternate
- Kmeans

0301 0.032 0.044
0.025

0.044

0.026

AMI Score

(a) ARI (b) AMI

Fig. 6.32 Comparison of the performance of alternate k-medoids and k-means using
various elastic distances across 105 datasets from the UCR archive, evaluated on the
combined test-train split. The blue bars represent the scores for alternate k-medoids,
while the red bars indicate the scores for k-means. The dashed blue and red lines
denote the average scores for alternate k-medoids and k-means, respectively.

Figure 6.37 presents the comparison between alternate k-medoids and k-means
for the test-train split. In this comparison, we observe that alternate k-medoids
improves clustering performance for many elastic distances. However, the im-
provement is not as significant as in the combined test-train split comparison.
Additionally, for some evaluation metrics, alternate k-medoids performs worse than
k-means with the same elastic distance. For instance, Figure 6.37 shows that across
all four evaluation metrics, k-means-MSM consistently achieves a higher average
rank than alternate-MSM.

Figure 6.38 shows the ARI and AMI performance for each distance using
alternate k-medoids and k-means over the test-train split. On average, alternate
k-medoids improved the ARI performance by 0.007. For AMI, the improvement
was 0.012. This represents a notably smaller improvement than observed in the

combined test-train split.

m— Alternate
= Kmeans

alternate-erp
k-means-dtw
k-means-ddtw
alternate-euclidean
k-means-wddtw
k-means-euclidean
k-means-erp
alternate-wddtw
k-means-wdtw

k-means-ddtw
alternate-erp
k-means-dtw
alternate-wddtw
k-means-wddtw
alternate-euclidean
k-means-euclidean
alternate-wdtw
k-means-wdtw

6.4 Alternate k-medoids 204

1817161514131211109 8 7 6 5 4 3 2 1
Ll bl lall L L]

1817161514131211109 8 7 6 5 4 3 2 1
lllllllllllll 1 llllllllllllll

11.6651 7.6745 k_means_msm alternate'erp 11.3349 7.6368
11.4009 76792 glternate-adtw k-means-dtw -11:3255 7.6651
11.3491 8.0094 alternate'twe k‘meanS‘ddtW 11.3019 8.0047
10.9104 8.0330 | rneans-adtw k-means-wddtw -10:7406 8.1745
10.7123 85660 galternate-msm alternate-euclidean -1:6415 8.5236
10.0377 8.8538 | rooans-twe alternate-wddtw -10:1604 8.5849
96651 9.0142_ 3|ternate-ddtw k-means-euclidean 129236 9.1038
9.6038 92123 ternate-wdtw k-means-erp —%5182 9.3962
9.3821 92311 3lternate-dtw alternate-wdtw —2:4623 9.4009
Fig. 6.33 AMI Fig. 6.34 ARI
1817161514131211109 8 7 6 5 4 3 2 1 1817161514131211109 8 7 6 5 4 3 2 1
Lladalalalaladyl Lelalalalalsl Ll lalalalady]y Lo lalalsll
11.3255 7.5047 alterhate-adtw a|te|’nate-el’p 11.6604 7.5566
11.3019 7.89%2 | means-msm k-means-ddtw _11:5566 7.7453
11.2972 8.1321 k‘meanS'adtW k_means_dtw 11.5283 7.9481
10.5472 8.2028 alternate_twe k_means_wddtw 10.9245 8.0425
104575 8.6321 glternate-msm alternate-euclidean 227736 8.5755
10.4387 89104 | .means-twe k-means-euclidean 101038 8.7783
9.7453 9.1887 k_means_erp k'meanS'erp 9.6698 8.8396
3.4906 9.2028 gjternate-dtw alternate-wddtw —2:38%2 9.1085
9.4387 9.2877 a|ternate-ddtW k_means_wdtw 9.4481 9.1604
Fig. 6.35 CLACC Fig. 6.36 NMI

Fig. 6.37 CD diagrams of alternate k-medoids and k-means over 106 datasets
from the UCR archive using the test-train split. Missing datasets are outlined in
Table A.18.

Similar to the combined test-train split, alternate DTW, DDTW and EDR show
the greatest improvement compared to k-means. This further supports our theory
that distances with an implicit warping penalty depend more on an aligned centroid
for improved performance than those with an explicit penalty.

Additionally, Figure 6.38 shows that alternate-ERP performs worse than k-
means-ERP, consistent with the combined test-train split results. However, for
ARI, alternate-MSM perform worse than k-means-MSM. This was not observed in
the combined test-train split. Though the difference is only —0.010 for ARI and
—0.004 for AMLI, in the combined test-train split, alternate-MSM outperformed

k-means-MSM.

alternate-adtw
k-means-msm
k-means-adtw
alternate-twe
alternate-msm
k-means-twe
alternate-dtw
k-means-wdtw
alternate-ddtw

alternate-adtw
k-means-msm
alternate-twe
k-means-adtw
alternate-msm
k-means-twe
alternate-ddtw
alternate-dtw
alternate-wdtw

ARI Score

6.4 Alternate k-medoids 205

0.015

= Alternate
- Kmeans

0.015
-0.004

0.012

-0.010

AMI Score

(a) ARI (b) AMI

Fig. 6.38 Comparison of the performance of alternate k-medoids and k-means using
various elastic distances across 106 datasets from the UCR archive, evaluated on
the test-train split. The blue bars represent the scores for alternate k-medoids, while
the red bars indicate the scores for k-means. The dashed blue and red lines denote
the average scores for alternate k-medoids and k-means, respectively.

Overall, for both the combined test-train split and the test-train split, alternate
k-medoids improves clustering performance compared to k-means when using
the same elastic distance. This improvement is particularly evident for distances
that use an implicit warping penalty. However, the improvement observed in the
test-train split is significantly smaller, on average, than in the combined test-train
split. We hypothesise that this is due to the reduced amount of data available in the
test-train split, which lowers the likelihood of finding good medoids in the training
data. As a result, performance degrades, and the improvement is substantially

reduced.

6.4.4 Alternate k-medoids conclusion

Overall, for both the combined test-train split and the test-train split, we observe
that elastic distances enhance the performance of alternate k-medoids compared
to alternate-Euclidean. Additionally, in both splits, the best-performing alternate
models perform similarly to, and in some evaluation metrics, even better than the

current state-of-the-art approaches.

m— Alternate
= Kmeans

6.5 PAM 206

Furthermore, we directly compared alternate k-medoids with elastic distances to
k-means using the same elastic distances. In the combined test-train split, alternate k-
medoids improved clustering by an average of 0.027 ARI and 0.032 AMI compared
to k-means using the same distance. A similar trend was observed in the test-train
split, though to a lesser extent, where alternate k-medoids improved clustering by
an average of 0.0046 ARI and 0.0089 AMI compared to k-means.

At the beginning of this section, we also hypothesised that the performance
improvement compared to k-means using the same elastic distance would be con-
sistent across distances. However, this was not the case. Specifically, distances with
implicit warping penalties (e.g., DTW and DDTW) benefited significantly more
from using medoids than those with explicit warping penalties (e.g., MSM, TWE,

ADTW). This difference was particularly pronounced in the test-train split results.

6.5 PAM

For our experiments each PAM model configuration is defined in Table 6.2.

max_iters | n_init | init_algo | distance
PAM-adtw 50 10 Forgy ADTW
PAM-ddtw 50 10 Forgy DDTW
PAM-dtw 50 10 Forgy DTW
PAM-edr 50 10 Forgy EDR
PAM-erp 50 10 Forgy ERP
PAM-euclidean | 50 10 Forgy Euclidean
PAM-Icss 50 10 Forgy LCSS
PAM-msm 50 10 Forgy MSM
PAM-twe 50 10 Forgy TWE
PAM-wddtw 50 10 Forgy WDDTW
PAM-wdtw 50 10 Forgy WDTW
PAM-shape-dtw | 50 10 Forgy shape-DTW
PAM-soft-dtw 50 10 Forgy soft-DTW

Table 6.7 PAM model parameters

pam-euclidean
pam-Icss
pam-erp
pam-wddtw
pam-wdtw
pam-dtw

pam-euclidean
pam-erp
pam-Icss
pam-ddtw
pam-wdtw
pam-dtw

6.5 PAM 207

6.5.1 PAM Combined test-train split

Figure 6.43 shows the critical difference diagram for PAM with 12 different elastic
distances. In Figure 6.43, all elastic distances outperform PAM-Euclidean for all
evaluation metrics. In addition, across all evaluation metrics, PAM-TWE and PAM-
MSM consistently appear in the top clique. PAM-soft-DTW, PAM-ADTW, and
PAM-EDR are in the top clique for three out of the four evaluation metrics. While
all elastic distances perform better than PAM-Euclidean, PAM-LCSS and PAM-

ERP consistently appear in the bottom clique alongside PAM-Euclidean across all

9.2624

evaluation metrics.

13 12 11 10 9 8 7

5.6238

13121110 9 8 7 6 5
Lelaslsly | |

8.9010

5.7624

pam-soft-dtw pam-euclidean —=>——J 0

8.7228 5.6436 pam-twe pam-lcss 8.5347 5.7772
8.6535 5.7624 pam_msm pam_erp 8.3366 5.9505
7.1238 6.2970 pam-adtw pam-wddtw 7.5941 6.1485
6.9158 6.5891 pam—edr pam—ddtw 7.3218 6.2376
6.8663 6.6782 pam-shape-dtw pam-wdtw 7.1139 6.3465
6.8614 pam-ddtw 6.9752

Fig. 6.39 AMI Fig. 6.40 ARI
13 12 11 10 9 8 7 6 5 4 3 2 1 13 12 11 10 9 8 7 6 5 4 3 2 1
| I P T T | | P | | P T | I T T |
8.8515 5.7426 pam-soft-dtw pam-euclidean 9.2376 5.5446
8.5248 5.9208 pam—msm pam—lcss 8.6139 5.5990
8.1436 6.0099 pam-twe pam_erp 8.5594 5.7970
7.3465 6.0941 pam-adtw pam-ddtw 7.1238 6.3020
7.2970 6.1832 pam—edr pam—wddtw 7.1188 6.5594
7.2970 6.3663 pam-shape-dtw pam-dtw 6.9356 6.7723
7.2228 pam-wddtw 6.8366

Fig. 6.41 CLACC Fig. 6.42 NMI

Fig. 6.43 CD diagrams of PAM over 101 datasets from the UCR archive using the
combine test train split. Missing datasets are outlined in Table A.19.

Table 6.8 shows the average score for each evaluation metric. For all metrics,

PAM-TWE achieves the highest average score. However, when assessing perfor-

mance by domain (Table 6.9), PAM-TWE only performs best in the Device domain.

pam-twe
pam-msm
pam-soft-dtw
pam-edr
pam-shape-dtw
pam-adtw
pam-dtw

pam-soft-dtw
pam-twe
pam-msm
pam-adtw
pam-edr
pam-shape-dtw
pam-wdtw

6.5 PAM

208

Furthermore, no single distance consistently performs best over the the majority of

domains. PAM-ADTW performs best in two categories which is the most categories

one distance performs best in. This suggests that even though for all the distances

the same potential medoids are available, no distance chooses the same medoids.

ARI | AMI | CLAcc | NMI | RI
pam-adtw 0.244 | 0.293 | 0.562 | 0.317 | 0.705
pam-ddtw 0.206 | 0.264 | 0.541 | 0.284 | 0.681
pam-dtw 0.225 | 0.276 | 0.550 | 0.301 | 0.694
pam-edr 0.231 | 0.267 | 0.562 | 0.289 | 0.690
pam-erp 0.177 | 0.224 | 0.512 | 0.252 | 0.681
pam-euclidean | 0.177 | 0.222 | 0.507 | 0.250 | 0.684
pam-Icss 0.153 | 0.200 | 0.507 | 0.224 | 0.631
pam-msm 0.255 | 0.299 | 0.573 | 0.322 | 0.711
pam-shape-dtw | 0.243 | 0.290 | 0.564 | 0.314 | 0.703
pam-soft-dtw 0.251 | 0.300 | 0.571 | 0.324 | 0.703
pam-twe 0.262 | 0.304 | 0.579 | 0.328 | 0.714
pam-wddtw 0.203 | 0.258 | 0.541 | 0.283 | 0.680
pam-wdtw 0.222 | 0.273 | 0.549 | 0.299 | 0.692

Table 6.8 Summary of average score across multiple evaluation metrics over 101
datasets from the UCR archive using the combined test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
pam-adtw 0.312 | 0.232 0.229 | 0.368 0.106 | 0.171 | 0.291
pam-ddtw 0.326 | 0.170 0.230 | 0.170 0.084 | 0.083 | 0.162
pam-dtw 0.284 | 0.191 0.208 | 0.409 0.138 | 0.160 | 0.149
pam-edr 0.341 | 0.101 0.254 | 0.304 0.146 | 0.124 | 0.206
pam-erp 0.248 | 0.182 0.175 | 0.165 0.093 | 0.100 | 0.187
pam-euclidean | 0.247 | 0.217 0.180 | 0.155 0.064 | 0.099 | 0.152
pam-Icss 0.154 | 0.055 0.190 | 0.241 0.064 | 0.146 | 0.282
pam-msm 0.355 | 0.183 0.238 | 0.319 0.173 | 0.150 | 0.356
pam-shape-dtw | 0.307 | 0.209 0.234 | 0.344 0.123 | 0.159 | 0.397
pam-soft-dtw | 0.340 | 0.137 0.240 | 0.478 0.165 | 0.165 | 0.185
pam-twe 0.351 | 0.196 0.240 | 0.413 0.181 | 0.148 | 0.351
pam-wddtw 0.337 | 0.172 0.198 | 0.191 0.081 | 0.083 | 0.172
pam-wdtw 0.283 | 0.203 0.193 | 0.470 0.076 | 0.164 | 0.172

Table 6.9 Average ARI score on problems split by problem domain over 101 datasets
from the UCR archive using the combined test-train split.

6.5 PAM 209

To contextualise our PAM results, Figure 6.48 shows the critical difference
diagrams for PAM with 12 elastic distances compared to the baseline clusterers. In
Figure 6.48 PAM-MSM consistently outperforms k-means-ba-DTW in average rank
across all evaluation metrics, although the difference is not statistically significant
for any metric. For all evaluation metrics, PAM-MSM, PAM-soft-DTW, PAM-TWE,
k-means-ba-DTW, PAM-ADTW, PAM-EDR, and PAM-shape-DTW consistently
appear in the top clique. Interestingly, k-shapes, which for previous experiments
always appeared in the top clique for all evaluation metrics, only appears in the top
clique for CLACC and ARI.

Furthermore, in Figure 6.48, all clusterers outperform PAM-Euclidean. How-
ever, PAM-ERP is outperformed by k-means-Euclidean for CLACC, and PAM-
LCSS is outperformed by k-means-Euclidean for AMI, ARI, and NMI. PAM-
Euclidean, PAM-LCSS, k-means-Euclidean, and PAM-ERP consistently appear in
the bottom clique.

Another notable observation is that PAM-DTW performs significantly worse
than k-means-ba-DTW in three out of the four evaluation metrics, only appearing
in the same clique for ARI. This suggests that, across the UCR archive, averaging-
based centroid methods may outperform medoid-based centroid methods. We will
explore this hypothesis further later in the chapter.

Due to the 11 missing datasets in the initial comparison of PAM with all elastic
distances, we exclude models with more than 5 missing datasets to ensure that the
missing data does not significantly affect our findings. As a result, we exclude
PAM-soft-DTW and PAM-shape-DTW, which failed to produce results for 6 and
11 datasets, respectively, due to exceeding the seven-day runtime limit. Figure 6.53
presents the critical difference diagrams for PAM across 105 datasets. The rank
order of the distances remains consistent with previous results, even with the

additional datasets.

pam-euclidean
pam-Icss
k-means-euclidean
pam-erp

k-sc

pam-wddtw
pam-dtw

k-shapes

pam-euclidean
pam-erp
k-means-euclidean
pam-Icss
pam-ddtw
pam-dtw
pam-wddtw
pam-wdtw

11.7475
11.1515

11.0253

10.9242

11.3535

10.8737

10.8283

10.5000

17161514131211109 8 7 6 5 4 3 2 1 17161514131211109 8 7 6 5 4 3 2 1
Laladlalalsly]sl Lalaladlalaldyl Ledadelalyl Lol dalalalalslal
L 71515 pam-soft-dtw pam-euclidean 11:4192 1.3333
7.3485 pam_msm pam-|CSS 10.9697 7.4091
73385 pam-twe k-means-euclidean 17727 1.4343
7.4444 k_means_ba_dtw pa m_erp 10.5455 7.5808
9.6465 8.1162 pam_adtw pam—detW 9.8182 7.8586
9.0556 8.3889 pam_edr pam_ddtw 9.4596 8.0657
8.8434 8459 _ pam-shape-dtw Kosc _9:4343 8.1667
8.8384 8.7273 pam_ddtw pam-WdtW 9.0960 8.7020
8.7828 pam—WdtW 8.9343
Fig. 6.44 AMI Fig. 6.45 ARI
17161514131211109 8 7 6 5 4 3 2 1 17161514131211109 8 7 6 5 4 3 2 1
b la o ba b dg b dalydolalolalslyl A sl sl]
1.3788 ham-soft-dtw pam-euclidean 117222 1.0606
75808 ham-msm pam-Icss 10608 7.3283
75859 k.means-ba-dtw k-means-euclidean 122222 7.3485
7.7020 pam_twe pa m_erp 10.8232 7.4040
9.4444 7.8081 pam_adtw k-SC 9.7172 8.1414
9.3131 7.8990 pam_edr pam—detW 9.0606 8.3889
9.3030 8.2222 pam_shape_dtw pam-ddtW 9.0152 8.5505
9.2677 8.7525 k_shapes pam_dtw 8.9343 8.6919
9.1869 k_sc 8.8283

Fig. 6.46 CLACC

Fig. 6.47 NMI

Fig. 6.48 CD diagrams of PAM with baseline clusterers over 99 datasets from the
UCR archive using the combine test train split. Missing datasets are outlined in

Table A.20.

Figure 6.54 shows scatter plots comparing the results of PAM-MSM and PAM-

TWE directly against k-means-ba-DTW. Both PAM-MSM and PAM-TWE perform

similarly, winning a comparable number of datasets, and often performing well

on the same datasets. Additionally, for datasets where both methods excel, their

performance is nearly identical, suggesting that PAM-MSM and PAM-TWE likely

find many of the same medoids.

An interesting observation is that, compared to k-means-ba-DTW, both PAM-

MSM and PAM-TWE exhibit significantly better results for some datasets, but

significantly worse performance than k-means-ba-DTW for others. This reveals a

notable weakness of medoid-based clustering algorithms: for strong performance,

there must be a representative medoid in the dataset for each cluster. If such a

pam-msm
k-means-ba-dtw
pam-twe
pam-soft-dtw
pam-edr
pam-shape-dtw
pam-adtw
k-shapes
pam-dtw

pam-soft-dtw
pam-twe
k-means-ba-dtw
pam-msm
pam-adtw
pam-edr
pam-shape-dtw
pam-wdtw
k-shapes

6.5 PAM 211

151413121110 9 8 7 6 5 4 3 2 1 151413121110 9 8 7 6 5 4 3 2 1
Lodalalalalyly | I I | I I I I I I A T |
pam-euclidean 1209 62571 pnam-msm pam-euclidean —8%05 62381 Hham-msm
pam-lcss —%:8048 6428 nam twe pam-lcss —2:6238 63762 pnam-twe
pam-erp —%3857 65952 k_means-ba-dtw k-means-euclidean —2:3238 6.5762_ |_means-ba-dtw
k-means-euclidean —2:3120 70762 nam-adtw pam-erp —2:2333 7.0143 _ nam-edr
k-sc —8:3667 74714 nam-edr pam-wddtw —2:61%0 71381 ham-adtw
pam-wddtw —7:2762 15476 ham-ddtw k-sc _8:2476 16762 | shapes
k-shapes —7.7429 76810 o wdtw pam-ddtw 81857 78905 ham.dtw
77381 nam-dtw 1.9667 _ pam-wdtw
Fig. 6.49 AMI Fig. 6.50 ARI
151413121110 9 8 7 6 5 4 3 2 1 151413121110 9 8 7 6 5 4 3 2 1
| I I I P I I P I P T Ledalalelalyl Lolalalalsl
pam-euclidean —2847¢ 64905 pnam-msm pam-euclidean 122000 | L 63238 pam-msm
pam-erp —2:438L 65714 pHam-twe pam-lcss —%738L 6.4048 nham-twe
H 9.3429 6.8429 9.4952 6.5095
k-means-euclidean — - k-means-ba-dtw pam-erp — : k-means-ba-dtw
pam-lcss —2:2571 68476 nam-adtw k-means-euclidean —428 1.092_ pam-adtw
pam-dtw —8:1857 70000 ham edr K-gC _8:4095 74810 pam edr
pam-ddtw 8187 17857 k_shapes pam-wddtw 220 15952 nam-wdtw
pam-wddtw —81286 7.9667 | o pam-dtw 28333 171238 | shapes
81095 pam-wdtw L1714 pam-ddtw
Fig. 6.51 CLACC Fig. 6.52 NMI

Fig. 6.53 CD diagrams of PAM with 10 elastic distances, exclude PAM-soft-DTW
and PAM-shape-DTW with the baseline clusterers over 105 datasets from the
UCR archive using the combine test-train split. Missing datasets are outlined in
Table A.21.

medoid is absent, the clustering performance degrades significantly. This likely
explains the large performance variance when comparing these methods to k-means-
ba-DTW. For datasets with strong medoids, the PAM models excelled, but for those
without suitable medoids, their performance suffered.

We now consider the runtime complexity of PAM. PAM has a computational
complexity of O(knz). While it is an expensive algorithm to run, for TSCL specif-
ically, the most expensive component is the requirement of a pairwise distance
matrix. For example, if we were to compute a pairwise distance matrix for the
dataset X of size n using DTW, the computational complexity of DTW is O(m?),

where m is the length of both time series. This means to compute the DTW pairwise

pam-msm ARI
(mean: 0.2667)
L]
[]

6.5 PAM

212

1.0
pam-msm wins here >
[55W, 1T, 49L]
L]

0.8 o

o
o
.
.
.

o
IS
L]
L]
a
\
.
.
L]

k-means-ba-dtw wins here
[49W, 1T, 55L]

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

*Dashed lines represent the median

k—méans—ba-dtw ARI
(mean: 0.2547)

Wilcoxon test for equality of medians, p-value=0.319
Paired t-test for equality of means, p-value=0.230

(a) PAM-MSM compared to k-means-ba-DTW

pam-twe ARI
(mean: 0.2737)
L]

101 pam-twe wins here >
[53W, 2T, 50L]

0.8 P

o
o
L

L]
.

1)
=
o0
\.\
.

k-means-ba-dtw wins here
[50W, 2T, 53L]

T T T T T T
0.0 0.2 0.4 0.6 0.8 1.0

k-means-ba-dtw ARI
(mean: 0.2547)

Wilcoxon test for equality of medians, p-value=0.294
Paired t-test for equality of means, p-value=0.108

(b) PAM-TWE compared to k-means-ba-DTW

Fig. 6.54 PAM-MSM and PAM-TWE results compared directly to k-means-ba-
DTW over 105 datasets from the UCR archive using the combine test-train split.

distance matrix of X, it would have a computational complexity of O(n? x m?)
(assuming unique pairs).

We specifically observed this huge runtime complexity as all our PAM models
failed to complete within the seven day runtime limit for the Crop dataset. This
is not surprising, as Crop is one of the largest datasets, containing 24,000 unique
instances. Computing a pairwise distance matrix for the Crop dataset dataset would
require 288,000,000 unique distance computations. This highlights one of the key
drawbacks of PAM: calculating large pairwise distance matrices for many elastic
distances is infeasible.

Figure 6.55 shows the relative FitTime for each PAM model compared to the
baseline clusterers. All the considered PAM models exhibited significant runtimes.
However, many appear faster than the baseline models such as k-means-ba-DTW.
This is because in our experimental setup with 10 restarts using different Forgy
initialisations, PAM benefits from precomputing the distance matrix and reusing

it for all restarts. This means that whether we used 1 or 10 restarts, the runtime

6.5 PAM 213

would remain similar. In contrast, clusterers such as k-means-ba-DTW and &-SC
must compute the averages and distances in every iteration, as these values cannot
be precomputed. Therefore, under our methodology, PAM’s runtime might appear
more favourable than it actually is. In practice, if k-means-ba-DTW were run with a
single initialisation, it would be approximately ten times faster than what is shown

in Figure 6.55, whereas PAM’s runtime would remain largely unchanged.

1.2
I
S\ A |
L\ \ | A
o4/ \ | A A
[\ [() A\
\ \ &
\ A ‘)
\ | | “‘ “\‘
0.8 1 | \“ \\ “\ |
Wy | I W)\
1] | A W A\
I W ol | .
[I I ‘ I\ | \ (-
0.6 1 | “ i “‘\‘] I\ \ i
I AL\ 4 /I\ JI\ \ A\ y
B \H/ S ‘: A 4 \\ 4 \‘“\ \\‘/ N
\/ /
0.4 4 I | | I |) ¥ \ \/
| Wl I .
\ v A V| |
[| \ ‘\
02 - i |
I \ AR
u \ ‘}
/"\ | \
0.0 T ‘
o o % N @
S AN S S S S L TS S sES
AR R SO A I S P AP ¢ & & & &
& S NE & & & & N & P & Q' RN & &
& . N y N EXSIIRS & N
< & & & N <?
NE <& N Q
NE)

Fig. 6.55 Relative FitTime violin plot for PAM with 13 distances and the baseline
clusterers over 99 UCR archive datasets using the combined test-train split.

6.5.2 PAM Test-train split

We now examine PAM over the test-train split. Figure 6.60 shows the critical
difference diagrams for PAM using 12 elastic distances across 111 datasets from
the UCR archive. The rank order of each distance remains largely consistent with
the combined test-train split.

PAM-TWE and PAM-MSM consistently appear in the top clique similar to the
combined test-train split. However, in addition for the test-train split, PAM-soft-

DTW, PAM-ADTW, and PAM-shape-DTW are also in the top clique for every

pam-euclidean
pam-erp
pam-Icss
pam-wddtw
pam-dtw
pam-ddtw

pam-dtw
pam-wddtw
pam-erp
pam-euclidean
pam-Icss
pam-ddtw

6.5 PAM 214

evaluation metric. Furthermore, PAM-TWE achieves the highest average score
across all evaluation metrics, as shown in Table 6.10, which is consistent with the
combined test-train split.

PAM-Euclidean performs the worst by rank on AMI and NMI but outperforms
PAM-WDDTW and PAM-LCSS on ARI. For CLACC, PAM-Euclidean surpasses
PAM-DTW, PAM-WDDTW, and PAM-ERP. Notably, PAM-WDDTW, PAM-LCSS,

PAM-Euclidean, PAM-ERP, PAM-DDTW, and PAM-DTW consistently appear in

the bottom clique across all evaluation metrics.

13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
| P I O I I O T A T T | | P I O I P O P I T |
8.3423 54279 ham twe pam-wddtw —8:2658 5.2883
8.2523 55225 pam-soft-dtw pam-lcss 82568 5.4550
8.2027 57523 ham-msm pam-euclidean —&0541 5.7432
7.7613 58649 pam-adtw pam-erp 9955 5.8694
7.4324 66216 nam_shape-dtw pam-ddtw 8559 6.3468
7.3604 71261 ham_edr pam-dtw 27027 6.7838

73333 pam-wdtw 7.3829

Fig. 6.56 AMI Fig. 6.57 ARI

13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
| I I T | P | | I I T |, | T T |
8.2432 51847 ham twe pam-euclidean —83243 5.2523
8.1441 5.5946 pam-msm pam-lcss 8.1486 5.5360
7.9730 59099 ham.adtw pam-erp —8:0450 5.6351
7.9324 6.0045_ o soft-dtw pam-wddtw 7223 5.9009
7.7387 6.5631 pam-shape-dtw pam-ddtW 7.7027 6.6982
7.6982 67162 ham-edr pam-dtw —Z:5315 7.1081

12973 pam-wdtw 7.1937

Fig. 6.58 CLACC

Fig. 6.59 NMI

Fig. 6.60 CD diagrams of PAM over 111 datasets from the UCR archive using the
test-train split. Missing datasets are outlined in Table A.22.

Table 6.11 highlights the performance of each model across different domains.

A pattern similar to that in the combined test-train split is observed: no single

distance dominates multiple domains. Interestingly, although PAM-ADTW was the

pam-twe
pam-msm
pam-soft-dtw
pam-adtw
pam-shape-dtw
pam-edr
pam-wdtw

pam-twe
pam-soft-dtw
pam-msm
pam-adtw
pam-shape-dtw
pam-edr
pam-wdtw

6.5 PAM 215

top performer in two domains for the combined test-train split, for the test-train

split PAM-ADTW is not the best in any domain.

ARI | AMI | CLAcc | NMI | RI

pam-adtw 0.232 | 0.285 | 0.567 | 0.318 | 0.702
pam-ddtw 0.191 | 0.256 | 0.535 | 0.287 | 0.675
pam-dtw 0.209 | 0.268 | 0.541 | 0.303 | 0.692
pam-edr 0.216 | 0.262 | 0.553 | 0.294 | 0.693
pam-erp 0.185 | 0.238 | 0.523 | 0.275 | 0.687
pam-euclidean | 0.182 | 0.233 | 0.522 | 0.270 | 0.687
pam-Icss 0.154 | 0.210 | 0.507 | 0.244 | 0.637
pam-msm 0.240 | 0.294 | 0.569 | 0.327 | 0.707

pam-shape-dtw | 0.231 | 0.284 | 0.564 | 0.318 | 0.703
pam-soft-dtw 0.239 1 0.294 | 0.570 | 0.328 | 0.703

pam-twe 0.246 | 0.299 | 0.576 | 0.333 | 0.711
pam-wddtw 0.180 | 0.242 | 0.524 | 0.276 | 0.672
pam-wdtw 0.219 | 0.279 | 0.552 | 0.315 | 0.697

Table 6.10 Summary of average score across multiple evaluation metrics over 111
datasets from the UCR archive using the test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
pam-adtw 0.290 | 0.180 0.179 | 0.372 0.135 | 0.198 | 0.333
pam-ddtw 0.268 | 0.171 0.176 | 0.220 0.098 | 0.093 | 0.279
pam-dtw 0.250 | 0.167 0.164 | 0.417 0.138 | 0.175 | 0.215
pam-edr 0.299 | 0.093 0.202 | 0.311 0.151 | 0.137 | 0.291
pam-erp 0.227 | 0.186 0.180 | 0.244 0.067 | 0.122 | 0.269
pam-euclidean | 0.231 | 0.179 0.162 | 0.251 0.075 | 0.121 | 0.265
pam-Icss 0.168 | 0.043 0.162 | 0.284 0.087 | 0.158 | 0.181
pam-msm 0.317 | 0.186 0.194 | 0.318 0.164 | 0.175 | 0.360
pam-shape-dtw | 0.263 | 0.173 0.205 | 0.360 0.142 | 0.184 | 0.406
pam-soft-dtw | 0.298 | 0.127 0.189 | 0.462 0.166 | 0.198 | 0.324
pam-twe 0.314 | 0.187 0.203 | 0.364 0.187 | 0.174 | 0.358
pam-wddtw 0.277 | 0.165 0.149 | 0.236 0.064 | 0.079 | 0.233
pam-wdtw 0.257 | 0.211 0.178 | 0.442 0.102 | 0.180 | 0.218

Table 6.11 Average ARI score on problems split by problem domain over 111
datasets from the UCR archive using the test-train split.

To contextualise the test-train split results, we include the baseline clusterer in

Figure 6.65. The results of PAM with the baseline differ slightly from those for the

k-shapes
pam-euclidean
pam-erp
k-means-euclidean
pam-Icss
pam-wddtw
pam-dtw
pam-ddtw

k-shapes

pam-dtw
pam-wddtw
k-means-euclidean
pam-euclidean
pam-erp

pam-ddtw
pam-Icss

6.5 PAM

216

combined test-train split. PAM-TWE, PAM-MSM, PAM-soft-DTW, PAM-ADTW,

and PAM-shape-DTW consistently appear in the top clique. Notably, k-means-ba-

DTW does not rank in the top clique. The bottom clique remains the same as in the

combined test-train split, with the addition of k-shapes.

17161514131211109 8 7 6
NN IS P I I I P

54321
sl lelalal]

10.6982 6.7883

10.6216 6.9505

10.4369 7.0946

10.3243 7.3919

10.2793 8.2883

9.8423 8.4144

9.3288 8.9955

9.2523 9.1171

Fig. 6.61 AMI

1716151413121110 9 8 7 6
R |

54321
N

10.5450
10.4324

6.4279
6.9234

9.1757

10.3288 7.4595

10.0631 7.5495

9.9910 8.1937

9.9324 8.4820

9.7432 9.0090

9.7387 9.0135

Fig. 6.63 CLACC

9.1667

pam-twe
pam-soft-dtw
pam-msm
pam-adtw
pam-shape-dtw
k-means-ba-dtw
pam-edr

k-sc

pam-wdtw

pam-twe
pam-msm
pam-adtw
pam-soft-dtw
pam-shape-dtw
pam-edr
k-means-ba-dtw
k-sc

pam-wdtw

k-shapes
pam-wddtw
pam-Icss
pam-euclidean
k-means-euclidean
pam-erp
pam-ddtw
pam-dtw

k-shapes
pam-euclidean
k-means-euclidean
pam-Icss

pam-erp
pam-wddtw
pam-ddtw
pam-dtw

1716151413121110 9 8
lllllllllllll 1

11.3153
10.4820

6.5315
6.7613

10.2928 7.2523

10.2342 7.3243

10.0405 7.9595

10.0225 8.5000

9.8559 8.5450

9.6441 9.0991

9.1396

Fig. 6.62 ARI

17161514131211109 8 7 6 5 4 3 2 1
nnnnn | Lilalalals]

10.8559 6.5495

10.5721 6.9459

10.2342 6.9505

10.2207 7.4234

10.1396 8.3423

10.0676 8.4369

9.6757 8.9820

9.4459 8.9865

9.1712

Fig. 6.64 NMI

Fig. 6.65 CD diagrams of PAM with baseline clusterers over 111 datasets from
the UCR archive using the test train split split. Missing datasets are outlined in

Table A.22.

To investigate why k-means-ba-DTW did not appear in the top clique, Fig-

ure 6.66 presents a scatter diagram comparing PAM-MSM and PAM-TWE to

k-means-ba-DTW. For the combined test-train split, k-means-ba-DTW demon-

strated comparable performance to PAM-MSM and PAM-TWE. However, for

the test-train split, both PAM-MSM and PAM-TWE significantly outperformed

k-means-ba-DTW. This discrepancy may highlight a potential weakness of DBA,

suggesting that the averages it produces are not as effective on unseen data as

pam-twe
pam-msm
pam-soft-dtw
pam-adtw
pam-shape-dtw
k-means-ba-dtw
pam-edr

k-sc

pam-wdtw

pam-twe
pam-soft-dtw
pam-msm
pam-adtw
pam-shape-dtw
k-means-ba-dtw
pam-edr
pam-wdtw

k-sc

pam-msm ARI
(mean: 0.2401)

6.5 PAM 217

1.0 104 -
pam-msm wins here pam-twe wins here >
[68W, 3T, 40L] / [73W, 2T, 36L]
0.8 0.8
.
0.6 . 306 .
<<
o
20
=
0.4 % 3 0.4
Qg
0.2 1
k-means-ba-dtw wins here k-means-ba-dtw wins here
007, [40W, 3T, 68L] [36W, 2T, 73L]
0.0 02 0.4 06 08 10 0.0 02 0.4 06 08 10
k-means-ba-dtw ARI k-means-ba-dtw ARI
(mean: 0.2280) (mean: 0.2280)
{Wilcoxon test for equality of medians, p-value=0.013} {Wilcoxon test for equality of medians, p-value=0A004}
Paired t-test for equality of means, p-value=0.178 Paired t-test for equality of means, p-value=0.077
(a) PAM-MSM compared to k-means-ba-DTW (b) PAM-TWE compared to k-means-ba-DTW

Fig. 6.66 PAM-MSM and PAM-TWE results compared directly to k-means-ba-
DTW over 111 datasets from the UCR archive using the test-train split.

medoids are. Furthermore, similar to the combined test-train split, PAM-MSM and
PAM-TWE appear to perform well on the same datasets, obtaining similar scores
for them. This may again suggest that similar medoids are being selected for both

methods.

6.5.3 PAM conclusion

Overall, for both the combined test-train split and the test-train split, we observe
that elastic distances significantly enhance the performance of PAM compared to
PAM with the Euclidean distance. Additionally, for the combined test-train split, the
best-performing elastic distances with PAM are not significant difference from the
state-of-the-art k-means-ba-DTW algorithm. Furthermore, for the test-train split,
several elastic distances with PAM outperform the state-of-the-art by a significant

margin.

6.6 CLARA 218

The rank order of elastic distances remains consistent across both the combined
test-train and test-train splits. Specifically, MSM and TWE consistently emerge as
the best-performing elastic distances for PAM, followed closely by ADTW, shape-
DTW, and soft-DTW. This pattern in rank order is similar to what we observed with
k-means. This further evidences our hypothesis that elastic distances that explicitly

penalise warping off are better for TSCL.

6.6 CLARA

For our CLARA experiments, we use the configurations defined in Table 6.12.

max_iters | n_init | init_algo | distance n_samples
CLARA-adtw 50 10 Forgy ADTW 40 + 2k
CLARA-ddtw 50 10 Forgy DDTW 40 + 2k
CLARA-dtw 50 10 Forgy DTW 40+ 2k
CLARA-edr 50 10 Forgy EDR 40+ 2k
CLARA-erp 50 10 Forgy ERP 40+ 2k
CLARA-euclidean | 50 10 Forgy Euclidean 4042k
CLARA-Icss 50 10 Forgy LCSS 40 + 2k
CLARA-msm 50 10 Forgy MSM 40+ 2k
CLARA-twe 50 10 Forgy TWE 40+ 2k
CLARA-wddtw 50 10 Forgy WDDTW 40+ 2k
CLARA-wdtw 50 10 Forgy WDTW 40 + 2k
CLARA-shape-dtw | 50 10 Forgy shape-DTW | 4042k
CLARA-soft-dtw 50 10 Forgy soft-DTW 40+ 2k

Table 6.12 CLARA model parameters. k is the number of clusters for a given
datasets.

6.6.1 CLARA Combined test-train split

Figure 6.71 presents the critical difference diagrams for CLARA using 12 dif-
ferent elastic distances over 112 datasets. CLARA-soft-DTW, CLARA-MSM,
CLARA-TWE, CLARA-shape-DTW, and CLARA-ADTW consistently appear in

the top clique across all evaluation metrics. Additionally, although not significantly

clara-euclidean
clara-lcss
clara-erp
clara-wddtw
clara-ddtw
clara-edr

clara-euclidean
clara-erp
clara-lcss
clara-ddtw
clara-wddtw
clara-dtw

6.6 CLARA 219

different, CLARA-soft-DTW consistently ranks the highest. All elastic distances
outperform CLARA-Euclidean for all evaluation metrics. However, CLARA-ERP

and CLARA-LCSS consistently rank in the bottom clique alongside CLARA-

9.1116

Euclidean.

131211 10 9 8 7 6
| I S P |

8.6875

5.3661
6.1696

clara-soft-dtw

clara-euclidean

13121110 9 8 7 6 5
I I P | |

8.7411
8.2812

5.3839

6.0000

clara-msm clara-lcss
8.6696 6.3125 clara—twe Clara_erp 8.2768 6.0536
7.2188 6.3304 cIara-adtW cIara-detW 8.0045 6.0893
6.9866 63482 c|ara-shape-dtw clara-ddtw —L734 6.1875
6.7634 6.4464 |5ra-wdtw clara-wdtw —8:2018 6.6027
6.5893 cIara-dtW 6.7232

Fig. 6.67 AMI Fig. 6.68 ARI
13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
| I T ' I P T T N | | I I T | P T |
-87188 L 33839 clara-soft-dtw clara-euclidean —212% L5379
8.2545 5.8750 Clara_shape_dtw Clara-erp 8.6696 6.1339
8.1384 6.1027 Clara'msm C|ara-|CSS 8.5625 6.2500
7.7143 6.3482 C|ara-adtW C|ara-ddtW 7.1741 6.2946
7.4464 6.3571 CIara-tWe CIara-detW 7.0938 6.4196
6.9955 67188 C|ara-wdtw clara-edr —8:7589 6.4643

6.9464 Clara_edr 6.6786
Fig. 6.69 CLACC Fig. 6.70 NMI

Fig. 6.71 CD diagrams of CLARA over 112 datasets from the UCR archive using
the combined test-train split.

We anticipated the rankings to be similar to those of PAM, as CLARA uses

PAM internally. For the most part, the results are comparable, with soft-DTW,
MSM, TWE, and ADTW consistently appearing in the top 4-5 positions. However,
we observe that shape-DTW performs better with CLARA than with PAM in terms
of ranking, while EDR, which appeared in the top clique for PAM, does not for
CLARA. Additionally, WDTW performs significantly better with CLARA, ranking

in the top clique for AMI and NMI, compared to its performance with PAM. The

clara-soft-dtw
clara-msm
clara-twe
clara-shape-dtw
clara-adtw
clara-edr
clara-dtw

clara-soft-dtw
clara-msm
clara-adtw
clara-twe
clara-wdtw
clara-shape-dtw
clara-dtw

6.6 CLARA 220

lower-ranking distances follow a similar pattern, with ERP and LCSS consistently
found in the bottom clique alongside Euclidean, as with PAM.

Table 6.13 presents the average scores across 112 datasets for each distance and
evaluation metric. CLARA-soft-DTW achieves the highest average score across
four evaluation metrics and ties with CLARA-shape-DTW for the best average
score in ARI. However, the differences in raw average scores among CLARA-soft-
DTW, CLARA-shape-DTW, CLARA-MSM, CLARA-ADTW, and CLARA-TWE

are minimal.

ARI | AMI | CLAcc | NMI | RI

clara-adtw 0.201 | 0.259 | 0.529 | 0.282 | 0.687
clara-ddtw 0.164 | 0.232 | 0.507 | 0.254 | 0.653
clara-dtw 0.187 | 0.247 | 0.519 | 0.271 | 0.682
clara-edr 0.182 | 0.228 | 0.515 0.250 | 0.668
clara-erp 0.159 | 0.214 | 0.493 | 0.239 | 0.668
clara-euclidean | 0.161 | 0.211 | 0.490 0.237 | 0.672
clara-Icss 0.138 | 0.190 | 0.487 | 0.214 | 0.632
clara-msm 0.200 | 0.258 | 0.528 | 0.280 | 0.684

clara-shape-dtw | 0.214 | 0.265 | 0.542 | 0.287 | 0.690
clara-soft-dtw | 0.214 | 0.271 | 0.546 | 0.294 | 0.691

clara-twe 0.200 | 0.258 | 0.527 | 0.281 | 0.685
clara-wddtw 0.160 | 0.227 | 0.504 | 0.252 | 0.658
clara-wdtw 0.185 | 0.248 | 0.522 | 0.273 | 0.681

Table 6.13 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the combined test-train split.

Table 6.14 shows CLARA’s performance across different problem domains.
CLARA-soft-DTW performs best in three domains: Image, Simulated, and Device.
CLARA-shape-DTW also leads in three domains: Sensor, Motion, and ECG.
Finally, CLARA-DTW performs best in the Spectro domain, tied with CLARA-
ADTW.

In our PAM results, presented in Section 6.5, shape-DTW and soft-DTW were
the best performers in only one domain each. Specifically, PAM-shape-DTW

excelled in the ECG domain, and PAM-soft-DTW in the Simulated domain. With

6.6 CLARA 221

CLARA, both CLARA-soft-DTW and CLARA-shape-DTW remain top performers
in these domains while also excelling in two additional domains each.
PAM-ADTW was the top performer in the Spectro domain, and CLARA-ADTW
has maintained that position. However, CLARA-DTW surprisingly shares the same
average score in the Spectro domain as CLARA-ADTW. This is unexpected, as

ADTW has consistently outperformed DTW in all of our previous experiments,

including the PAM results.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
clara-adtw 0.226 | 0.220 0.189 | 0.353 0.095 | 0.135 | 0.231
clara-ddtw 0.218 | 0.164 0.166 | 0.208 0.046 | 0.096 | 0.171
clara-dtw 0.203 | 0.220 0.184 | 0.324 0.111 | 0.120 | 0.174
clara-edr 0.228 | 0.092 0.204 | 0.279 0.132 | 0.101 0.188
clara-erp 0.184 | 0.161 0.182 | 0.196 0.078 | 0.099 | 0.157
clara-euclidean | 0.184 | 0.207 0.171 | 0.192 0.031 | 0.097 0.230
clara-lcss 0.139 | 0.028 0.187 | 0.216 0.062 | 0.120 | 0.176
clara-msm 0.239 | 0.172 0.216 | 0.238 0.096 | 0.127 | 0.280
clara-shape-dtw | 0.206 | 0.186 0.227 | 0.322 0.116 | 0.173 | 0.367
clara-soft-dtw 0.242 | 0.155 0.220 | 0.395 0.137 | 0.137 | 0.243
clara-twe 0.222 | 0.190 0.218 | 0.295 0.117 | 0.117 | 0.248
clara-wddtw 0.217 | 0.159 0.178 | 0.180 0.044 | 0.073 | 0.166
clara-wdtw 0.198 | 0.182 0.195 | 0.353 0.056 | 0.134 | 0.200

Table 6.14 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the combined test-train split.

Figure 6.76 presents the critical difference diagram for CLARA with 12 elastic
distances, including the baseline clusterers. Across all evaluation metrics, k-means-
ba-DTW ranks the highest and consistently appears in the top clique alongside
k-shapes. However, for CLACC, CLARA-soft-DTW also appears in the top clique.
Beyond CLACC, no other CLARA models are present in a top clique.

Additionally, several CLARA models perform worse than k-means-Euclidean.
Specifically, CLARA-DDTW, CLARA-WDDTW, CLARA-ERP, and CLARA-
LCSS consistently rank below k-means-Euclidean for all evaluation metrics. Fur-

thermore, CLARA-LCSS and CLARA-ERP consistently appear in the bottom

clara-euclidean
clara-Icss
clara-erp
clara-wddtw
clara-ddtw
k-means-euclidean
clara-edr
clara-dtw

clara-euclidean
clara-erp
clara-Icss
clara-ddtw
clara-wddtw
clara-dtw
k-means-euclidean
clara-edr

6.6 CLARA

222

clique and, for NMI, ARI, and AMI, perform significantly worse than k-means-

Euclidean.

1716151413121110 9 8
Ll ba b ddal |

12.1651
11.6132

6.4292
7.1557

11.3962 7.5377

9.3726 8.2406

9.2028 8.4198

9.0142 8.4481

8.9764 8.5991

8.9764 8.6745

8.7783

Fig. 6.72 AMI

17161514131211109 8 7 6 5
| Il I I T 1oyl

4321
il

1l

11.5991
10.9953

6.6981
7.4481

10.9811 7.5000

10.0377 7.9340

9.7217 7.9858

9.3915 8.2170

9.2311 8.4670

9.1321 8.6274

9.0330

Fig. 6.74 CLACC

k-means-ba-dtw
k-shapes
clara-soft-dtw
k-sc

clara-msm
clara-twe
clara-shape-dtw
clara-adtw
clara-wdtw

k-means-ba-dtw
k-shapes
clara-soft-dtw
k-sc
clara-shape-dtw
clara-msm
clara-twe
clara-adtw
clara-wdtw

17161514131211109 8 7 6 5 4 3
|

Lolalalslsl | 1

slalaly

21
i |

clara-euclidean
clara-lcss

11.6368
11.1368
11.0660

5.8962
6.9104
7.7406

k-means-ba-dtw
k-shapes
clara-soft-dtw

clara-erp
clara-wddtw

10.5708

7.9481 | o

10.3066

8.3255

clara-ddtw

9.4009

clara-shape-dtw
8.4198

clara-wdtw

9.2311

clara-msm
8.4198

clara-dtw

8.9292

clara-twe
8.4764

clara-edr

clara-euclidean
clara-lcss

clara-erp
clara-ddtw
clara-wddtw
clara-dtw
clara-edr
k-means-euclidean

1716151413121110 9 8 7 6
Llalalsls] |

Fig. 6.73 ARI

5
1il | |

1l

4
|

clara-adtw

85849 |.means-euclidean

321
il

1l

12.1557
11.5377
11.3962

6.3726
7.1274
7.5519

k-means-ba-dtw
k-shapes
clara-soft-dtw

9.4387

8.2783 | o

9.2500

83821 c|ara-msm

9.0802

84387 clara-twe

8.9906

8.591 _ clara-adtw

8.9198

8.7028

Fig. 6.75 NMI

clara-shape-dtw

8.7783 clara-wdtw

Fig. 6.76 CD diagrams of CLARA with baseline clusterers over 106 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined

in Table A.24.

Figure 6.77 presents the FitTime critical difference diagram for CLARA, includ-

ing the baseline clusterers. Most CLARA models are faster than k-shapes, which

was previously the fastest state-of-the-art TSCL model. Notably, CLARA-MSM,

CLARA-TWE, and CLARA-ADTW, as shown in Figure 6.76, do not differ signif-

icantly from k-shapes in terms of clustering performance. However, Figure 6.77

shows that they are significantly faster. CLARA-soft-DTW is the best-performing

CLARA clusterer, but is considerably slower than k-shapes. Therefore, a potential

alternative to k-shapes, which offers similar performance but is faster, is CLARA

with MSM, TWE, or ADTW.

6.6 CLARA 223

17161514131211109 8 7 6 5 4 3 2 1

Ll bbb bbby b by ba e ba b ol
k-means-ba-dtw -1961p2 11830 clara-euclidean
k-sc -13:3660 26321 | _means-euclidean
clara-shape-dtw 12:6981] L 37453 clara-ddtw
clara-soft-dtw -12:3943] 40708 c|ara-dtw
k-shapes 122170 | 65236 clara-Icss
clara-twe 119717 | 1.0047 _ c|ara-wddtw
clara-adtw —27433 73019 clara-edr
clara-erp 28938 79198 clara-msm
8.0094 clara-wdtw

Fig. 6.77 CD diagram for FitTime of CLARA with 12 elastic distance and the
baseline clusterers over 106 UCR archive datasets using the combined test-train
split.

6.6.2 CLARA Test-train split

Figure 6.82 shows the critical difference diagrams for CLARA using the test-train
split across 12 elastic distances. The rank order is very similar to the combined test-
train split, where CLARA-soft-DTW, CLARA-MSM, CLARA-TWE, and CLARA-
ADTW consistently appear in the top clique. However, CLARA-shape-DTW does
not appear in the top clique for NMI, whereas it was included in the top clique for
all evaluation metrics in the combined test-train split. While all CLARA clusterers
outperform CLARA-Euclidean, CLARA-ERP and CLARA-LCSS continue to rank
in the bottom clique for every evaluation metric. Additionally, in the test-train split,
CLARA-DDTW and CLARA-WDDTW also consistently rank in the bottom clique
for every evaluation metric.

In Figure 6.82, we observe that, similar to the combined test-train split, CLARA-
soft-DTW is the best-performing clusterer. However, the gap in absolute average
rank is much smaller compared to the combined test-train split. In the combined
test-train split, CLARA-soft-DTW was on average 0.6662 ranks higher than the

next best CLARA clusterer for each evaluation metric (as shown in Figure 6.71). In

clara-euclidean
clara-erp
clara-lcss
clara-wddtw
clara-edr
clara-ddtw

clara-euclidean
clara-erp
clara-lcss
clara-ddtw
clara-wddtw
clara-edr

6.6 CLARA

224

contrast, for the test-train split, CLARA-soft-DTW is only 0.3186 ranks higher on

average than the second-best CLARA clusterer.

13 12 11 10 9 8 7

6 5 4 3 2 1 13 12 1110 9 8 7 6 5 4 3 2 1
| P I P | P I | | I P A P | | P I P |
9.1384 5.3795 Clara_soft_dtw Clara_erp 8.8973 5.4152
58036 | L 5789 clgra-msm clara-euclidean 87232 | L 58929
8.6920 6.1071 clara_adtw C|ara—|CSS 8.1607 6.0045
7.3214 6.2545 clara_twe clara_ddtw 7.8348 6.1473
7.1830 6.3571 CIara-WdtW Clara'detW 7.7679 6.2098
1.0759 63839 c|ara-shape-dtw clara-edr —&8705 6.5223

6.5446 Clara'dtW 6.5536

Fig. 6.78 AMI Fig. 6.79 ARI
13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
| I | P I O A T | | I O I N O O A P A |

85938 | L 3638 (|ara-soft-dtw clara-euclidean 8234 | L 54732

8.3259 5.8527 Clara_shape_dtw C|al’a-|CSS 8.6830 5.6652
7.9866 5.8839 Clara'msm Clara-erp 8.6295 6.1250
7.8170 6.0893 Clara'twe C|ara-ddtW 7.3750 6.1607
7.6786 6.1384 C|ara-adtW C|ara-detW 7.2277 6.4107
7.3929 6.7455 C|5ra-wdtw clara-edr 71875 6.5179
68571 Clara-dtw 6.5893

Fig. 6.80 CLACC Fig. 6.81 NMI

Fig. 6.82 CD diagrams of CLARA over 112 datasets from the UCR archive using

the test train split.

This reduction in CLARA-soft-DTW’s dominance for the test-train split is

further highlighted in Table 6.15, where it only achieves the highest average score
for CLACC. In the combined test-train split, CLARA-soft-DTW had the best
average score across all evaluation metrics. In the test-train split, CLARA-MSM
has the highest average scores for ARI, AMI, and NMI, and ties with CLARA-TWE
for the best score in RI.

Table 6.16 shows the best-performing CLARA clusterers by domain for the
test-train split. The same distances continue to excel in similar domains as in the
combined test-train split, with CLARA-soft-DTW still leading in the Simulated and

Device domains and CLARA-shape-DTW performing best in Motion and ECG.

clara-soft-dtw
clara-twe
clara-msm
clara-shape-dtw
clara-adtw
clara-wdtw
clara-dtw

clara-soft-dtw
clara-msm
clara-twe
clara-adtw
clara-wdtw
clara-shape-dtw
clara-dtw

6.6 CLARA 225

ARI | AMI | CLAcc | NMI | RI

clara-adtw 0.190 | 0.244 | 0.533 | 0.279 | 0.681
clara-ddtw 0.153 | 0.222 | 0.504 | 0.254 | 0.646
clara-dtw 0.181 | 0.240 | 0.523 | 0.275 | 0.678
clara-edr 0.182 | 0.227 | 0.520 | 0.260 | 0.670
clara-erp 0.153 | 0.205 | 0.497 | 0.243 | 0.664
clara-euclidean | 0.154 | 0.200 | 0.495 0.238 | 0.666
clara-Icss 0.125 | 0.176 | 0.484 | 0.210 | 0.623
clara-msm 0.203 | 0.259 | 0.539 0.293 | 0.685

clara-shape-dtw | 0.196 | 0.247 | 0.541 | 0.281 | 0.681
clara-soft-dtw 0.200 | 0.256 | 0.545 | 0.291 | 0.683

clara-twe 0.200 | 0.254 | 0.535 0.288 | 0.685
clara-wddtw 0.151 | 0.221 | 0.506 0.256 | 0.653
clara-wdtw 0.184 | 0.244 | 0.528 0.280 | 0.680

Table 6.15 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the test-train split

However, CLARA-MSM performs best in the Image domain, and CLARA-TWE
leads in the Sensor domain, both of which were close to being the best in the
combined test-train split. CLARA-WDTW emerges as the best performer in the
Spectro domain, whereas CLARA-DTW and CLARA-ADTW were the best in this
domain in the combined test-train split. CLARA-DTW remains the second-best
performer for Spectro.

An interesting observation from Tables 6.15 and 6.16 is that the average values
in the test-train split are not significantly lower than those in the combined test-train
split. For example, CLARA-soft-DTW achieved an average score of 0.546 in the
combined test-train split and 0.545 in the test-train split.

Furthermore, when comparing the average ARI for the Image, Spectro, and
Device domains between the combined test-train split and the test-train split, we
find that the test-train split yields a higher average ARI for these three domains.
For instance, in the Image domain, the best-performing CLARA clusterer achieved
an average ARI of 0.242 in the combined split, compared to 0.257 in the test-train

split.

6.6 CLARA 226

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
clara-adtw 0.221 | 0.186 0.170 | 0.310 0.096 | 0.144 | 0.231
clara-ddtw 0.187 | 0.165 0.156 | 0.182 0.062 | 0.108 | 0.167
clara-dtw 0.202 | 0.224 0.168 | 0.293 0.114 | 0.122 | 0.170
clara-edr 0.240 | 0.076 0.202 | 0.263 0.133 | 0.096 | 0.200
clara-erp 0.182 | 0.166 0.169 | 0.201 0.047 | 0.098 | 0.153
clara-euclidean | 0.184 | 0.190 | 0.152 | 0.207 0.018 | 0.096 | 0.225
clara-lcss 0.120 | 0.023 0.167 | 0.212 0.064 | 0.121 | 0.137
clara-msm 0.257 | 0.182 0.199 | 0.268 0.086 | 0.131 0.267
clara-shape-dtw | 0.211 | 0.170 | 0.182 | 0.298 0.102 | 0.168 | 0.324
clara-soft-dtw | 0.229 | 0.127 0.183 | 0.371 0.152 | 0.152 | 0.248
clara-twe 0.253 | 0.182 0.208 | 0.230 0.111 | 0.118 | 0.232
clara-wddtw 0.179 | 0.170 | 0.173 | 0.196 0.056 | 0.076 | 0.162
clara-wdtw 0.195 | 0.231 0.179 | 0.337 0.062 | 0.131 | 0.188

Table 6.16 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the test-train split.

For many other clusterers, this outcome would be unexpected. However, since
CLARA uses a randomly selected subset of data, these results may suggest that
the training split contains more “good” potential medoids than the test split. As a
result, when the test split is excluded from training, the likelihood of identifying
one of these better medoids increases compared to the combined test-train split.

Figure 6.87 presents the critical difference diagrams for CLARA using 12 elastic
distances, including the baseline clusterers. The ranking is very similar to that of the
combined test-train split, with the exception of k-shapes performing poorly on the
test-train split. We also observe that the performance gap between the best CLARA
clusterers and the state-of-the-art k-means-ba-DTW is very small. Additionally,
while only CLARA-soft-DTW appeared in the top clique for the combined test-train
split, Figure 6.87 shows that CLARA-MSM consistently appears in the top clique

for every evaluation metric.

clara-euclidean
clara-erp
clara-lcss
k-shapes
clara-wddtw
k-means-euclidean
clara-edr
clara-ddtw

1716151413121110 9 8 7 6
Llalaladaly |

6.6 CLARA

227

17161514131211109 8 7 6 5 4
NN P P S I I P T

1

3
|

21
M|

11.8170
11.3616

7.1429
7.2321

11.1518

7.5714

9.7143

8.1205

9.3884

8.2321

9.3795

8.2321

9.2902

8.2723

9.1518

8.3884

Fig. 6.83 AMI

8.5536

clara-euclidean

11.0536

1

k-means-ba-dtw
clara-soft-dtw
clara-msm
clara-adtw
clara-twe

k-sc

clara-wdtw
clara-shape-dtw
clara-dtw

k-means-ba-dtw

clara-erp 12871 15312 c|ara-soft-dtw

clara-lcss 13571 L7902 clara-msm
clara-ddtw -12:0982 1.8036_ (|ara-shape-dtw
clara-wddtw —2:224% 1919 .sc

clara-edr —2:3%2 80625 (|ara-twe

k-shapes —2:2804 8194 clara-adtw

clara-dtw 82777 2;3:2 clara-wdtw

Fig. 6.85 CLACC

k-means-euclidean

clara-erp
clara-euclidean
clara-lcss

k-shapes
clara-ddtw
clara-wddtw
k-means-euclidean
clara-edr

clara-euclidean
clara-lcss

clara-erp

k-shapes
clara-ddtw
clara-wddtw
clara-edr
k-means-euclidean

1716151413121110 9 8 7 6 5
llll

43
Ledadlalalalalyly 1l

21
|

11.4375
11.1830

7.1295
7.2321

10.5580

7.7634

10.2366

7.8170

10.1250

8.0714

10.0179

8.1071

9.0580

8.2411

8.9152

8.4955

Fig. 6.84 ARI

17161514131211109 8 7 6 5
|

4 3
Ldadlalalely]y sl sl

8.6116

21
|

11.5848
11.1607

7.1518
7.2812

11.1250

7.4420

9.8661

8.0312

9.5491

8.1741

9.3214

8.2991

9.2946

8.3214

9.2500

8.5670

Fig. 6.86 NMI

8.5804

Fig. 6.87 CD diagrams of CLARA with baseline clusterers over 112 datasets from

the UCR archive using the test train split.

6.6.3 CLARA Conclusion

Overall, CLARA exhibits a similar rank ordering of elastic distances to what

was observed in PAM and alternate k-medoids. For the combined test-train split,

CLARA-soft-DTW was the best-performing clusterer across all evaluation metrics

in terms of both average rank and absolute scores. In the test-train split, CLARA-

soft-DTW also had the highest average rank across all evaluation metric, but it was

consistently outperformed by CLARA-MSM in terms of average scores.

Most of the CLARA clusterers performed significantly worse than the current

state-of-the-art. While CLARA-soft-DTW was not consistently significantly dif-

ferent from k-shapes, it was much slower, greatly reducing its utility. Overall, our

CLARA experiments suggest that CLARA is not well-suited for TSCL, even with

k-means-ba-dtw
clara-soft-dtw
clara-twe
clara-msm

k-sc
clara-shape-dtw
clara-adtw
clara-wdtw
clara-dtw

k-means-ba-dtw
clara-soft-dtw
clara-msm
clara-twe
clara-adtw

k-sc

clara-wdtw
clara-shape-dtw
clara-dtw

6.7 CLARANS

228

elastic distances. However, the results do help further support our hypothesis on

which elastic distances perform best.

6.7 CLARANS

For each of our CLARANS experiments we use the model configurations defined

in Table 6.17.

max_iters | n_init | init_algo | distance max_neighbours
CLARANS-adtw 50 10 | Forgy | ADTW 0.0125(k(n —k))
CLARANS-ddtw 50 10 Forgy DDTW 0.0125(k(n—k))
CLARANS-dtw 50 10 Forgy DTW 0.0125(k(n—k))
CLARANS-edr 50 10 | Forgy |EDR 0.0125(k(n— k))
CLARANS-erp 50 10 Forgy ERP 0.0125(k(n—k))
CLARANS-euclidean | 50 10 Forgy Euclidean | 0.0125(k(n—k))
CLARANS-Icss 50 10 Forgy LCSS 0.0125(k(n—k))
CLARANS-msm 50 10 Forgy MSM 0.0125(k(n—k))
CLARANS-twe 50 10 | Forgy | TWE 0.0125(k(n— k))
CLARANS-wddtw | 50 10 | Forgy | WDDTW | 0.0125(k(n—k))
CLARANS-wdtw 50 10 | Forgy | WDTW 0.0125(k(n — k))
CLARANS-shape-dtw | 50 10 Forgy shape-DTW | 0.0125(k(n —k))
CLARANS-soft-dtw | 50 10 Forgy soft DTW | 0.0125(k(n —k))

Table 6.17 CLARANS model parameters. & is the number of clusters for a given
datasets and #n is the number of instances for a given dataset.

6.7.1 CLARANS Combined test-train split

Figure 6.92 presents the critical difference diagrams for CLARANS using 12

elastic distances over the combined test-train split. For every evaluation metric,

CLARANS-ADTW, CLARANS-soft-DTW, CLARANS-MSM, and CLARANS-

TWE consistently appear in the top clique, just as they did for PAM and CLARA.

Additionally, all CLARANS clusterers outperform CLARANS-Euclidean. How-

ever, similar to CLARA and PAM, CLARANS-LCSS and CLARANS-ERP consis-

tently rank in the bottom clique along with CLARANS-Euclidean.

clarans-euclidean
clarans-erp
clarans-Icss
clarans-edr
clarans-dtw
clarans-wddtw

clarans-euclidean
clarans-erp
clarans-lcss
clarans-wddtw
clarans-ddtw
clarans-edr

6.7 CLARANS

229

8.9198

-~

| I I

1+~

8.3632 5.9528

5.9434

8.1557

clarans-twe
clarans-msm

clarans-euclidean
clarans-Icss

13121110 9 8 7 6 5
| I I I il

13121110 9 8 7 6 5 4 3 2 1 13121110 9 8 7 6 5 4 3 2 1
| P I A T | 'l I I ' | | I I I T | 'l P I I |
o231 | L 37028 clarans-adtw clarans-euclidean 22726 L 57925
8.7217 5.8066_ (|arans-soft-dtw clarans-erp 84764 5.8062
8.6698 6.0000 Clarans_msm clarans_lcss 8.4057 5.9906
7.2689 6.2972 C|aranS-tW€ C|al’anS-detW 7.5283 6.1132
£.9009 64104 c|arans-shape-dtw clarans-ddtw —Z3774 6.5377
6.8160 6.5849 Clal’anS—WdtW clarans_edr 6.7783 6.5755

L 638% clarans-ddtw 66357
Fig. 6.88 AMI Fig. 6.89 ARI
13 12 11 10 9 8

4 3
1.1

-~
—

1l

9.1462
8.6462

5.8019

5.6132

6.0142

61415 c|arans-adtw clarans-erp 86413
7.4528 6.1981 Clarans_soft_dtw Clarans_edr 7.2406 6.2689
7.2783 64953 clarans-shape-dtw clarans-wddtw —8:2198 5.4340
5.7500 66651 clarans-wdtw clarans-dtw —£:2057 6.5519

Fig. 6.90 CLACC

6.6840

clarans-dtw

Fig. 6.91 NMI

6.8160

Fig. 6.92 CD diagrams of CLARANS over 106 datasets from the UCR archive
using the combined test-train split. Missing datasets are outlined in Table A.23.

Table 6.18 shows the average score for each evaluation metric for CLARANS.
CLARANS-ADTW is the best-performing clusterer in four out of five evaluation
metrics, while CLARANS-TWE performs best in one. This differs from what we
observed with PAM and CLARA, where TWE was the best-performing distance for
PAM, and soft-DTW led for CLARA across all metrics. However, the differences
between the top distances in CLARA and PAM were minimal. We observe the same
trend for CLARANS where CLARANS-ADTW, CLARANS-MSM, CLARANS-
TWE, and CLARANS-soft-DTW show only minimal differences in total average
scores.

Table 6.19 presents CLARANS’ performance across different domains. Similar
to PAM, no single distance dominates across a majority of domains. In fact, six
different distances are best across the seven domains, with only CLARANS-shape-

DTW achieving the highest average score in more than one domain. Additionally,

clarans-adtw
clarans-msm
clarans-twe
clarans-soft-dtw
clarans-shape-dtw
clarans-dtw
clarans-wdtw

clarans-adtw
clarans-soft-dtw
clarans-msm
clarans-twe
clarans-shape-dtw
clarans-wdtw
clarans-ddtw

6.7 CLARANS

230

like CLARA, DTW performs best in the Spectro domain. In the Simulated domain,

it is noteworthy how much better CLARANS-WDTW performs, with an ARI score

0.092 higher than the next best CLARANS clusterer.

ARI | AMI | CLAcc | NMI | RI
clarans-adtw 0.252 | 0.298 | 0.565 0.322 | 0.711
clarans-ddtw 0.207 | 0.268 | 0.538 0.288 | 0.686
clarans-dtw 0.231 | 0.275 | 0.557 0.300 | 0.700
clarans-edr 0.222 | 0.259 | 0.549 0.281 | 0.690
clarans-erp 0.178 | 0.224 | 0.512 | 0.251 | 0.681
clarans-euclidean | 0.175 | 0.220 | 0.507 0.247 | 0.684
clarans-Icss 0.151 | 0.201 | 0.505 0.225 | 0.639
clarans-msm 0.240 | 0.290 | 0.564 0.313 | 0.706
clarans-shape-dtw | 0.235 | 0.284 | 0.555 | 0.308 | 0.703
clarans-soft-dtw 0.239 | 0.291 | 0.562 0.315 | 0.699
clarans-twe 0.250 | 0.295 | 0.568 | 0.318 | 0.711
clarans-wddtw 0.204 | 0.258 | 0.535 0.282 | 0.685
clarans-wdtw 0.233 | 0.284 | 0.553 0.308 | 0.703

Table 6.18 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
clarans-adtw 0.330 | 0.188 0.218 | 0.436 0.143 | 0.173 | 0.281
clarans-ddtw 0.305 | 0.151 0.229 | 0.234 0.091 | 0.088 | 0.175
clarans-dtw 0.297 | 0.219 0.184 | 0.436 0.154 | 0.158 | 0.153
clarans-edr 0.325 | 0.078 0.212 | 0.347 0.165 | 0.121 | 0.222
clarans-erp 0.236 | 0.167 0.164 | 0.264 0.111 | 0.102 | 0.168
clarans-euclidean | 0.247 | 0.207 0.153 | 0.234 0.040 | 0.101 | 0.160
clarans-Icss 0.155 | 0.049 0.169 | 0.293 0.080 | 0.130 | 0.267
clarans-msm 0.325 | 0.170 0.216 | 0.368 0.167 | 0.144 | 0.270
clarans-shape-dtw | 0.305 | 0.191 0.203 | 0.358 0.134 | 0.142 | 0.416
clarans-soft-dtw | 0.333 | 0.134 0.195 | 0.436 0.189 | 0.156 | 0.200
clarans-twe 0.332 | 0.172 0.236 | 0.364 0.171 | 0.148 | 0.336
clarans-wddtw 0.316 | 0.167 0.203 | 0.248 0.081 | 0.079 | 0.176
clarans-wdtw 0.292 | 0.216 0.192 | 0.528 0.075 | 0.165 | 0.164

Table 6.19 Average ARI score on problems split by problem domain over 106
datasets from the UCR archive using the test-train split.

6.7 CLARANS 231

Figure 6.97 shows the critical difference diagrams for CLARANS alongside the
baseline clusterers. For AMI and NMI, CLARANS-ADTW outperforms the state-
of-the-art k-means-ba-DTW. However, for CLACC and ARI, k-means-ba-DTW
ranks higher. Still, CLARANS-ADTW, k-means-ba-DTW, CLARANS-MSM,
CLARANS-soft-DTW, and CLARANS-TWE consistently appear in the top clique.
Notably, CLARANS knocks k-shapes out of the top clique for AMI and NMI.
Furthermore, only two CLARANS estimators—CLARANS-ERP and CLARANS-
LCSS—perform worse than k-means-Euclidean.

Figure 6.98 presents the FitTime comparison for CLARANS and the base-
line clusterers. With the exception of shape-DTW and soft-DTW, CLARANS is
significantly faster than k-means-ba-DTW while achieving similar performance.
Additionally CLARANS on average is fastest than k-shapes, while consistently
offering better clustering performance. This suggests that CLARANS could be a

good choice when computational constraints prevent the use of k-means-ba-DTW.

clarans-euclidean
clarans-Icss
clarans-erp
k-means-euclidean
k-sc

clarans-edr
clarans-dtw
clarans-wddtw

clarans-euclidean
clarans-erp
clarans-Icss
k-means-euclidean
clarans-wddtw
clarans-ddtw

k-sc

clarans-edr

6.7 CLARANS

232

1716151413121110 9 8 7 6 5 4 3 2 1
Llalalalalalsl s La ol lsl
11.9087 7.3558
11.2308 7.3702
11.1971 7.4519
10.3413 7.7163
9.4519 8.1731
9.3269 8.2837
8.9327 8.3798
8.8798 8.4712
8.5288
Fig. 6.93 AMI

1716151413121110 9 8 7 6 5 4 3 2 1
| I P P |
11.4567 7.6346
10.7212 7.6827
10.5962 7.6827
10.3269 7.9087
9.6538 7.9471
9.3462 8.3990
9.0577 8.5673
8.6923 8.6442
8.6827

Fig. 6.95 CLACC

Fig. 6.97 CD diagrams
from the UCR archive
outlined in Table A.25.

clarans-adtw
k-means-ba-dtw
clarans-soft-dtw
clarans-msm
clarans-twe
clarans-shape-dtw
clarans-ddtw
k-shapes
clarans-wdtw

k-means-ba-dtw
clarans-msm
clarans-twe
clarans-soft-dtw
clarans-adtw
clarans-shape-dtw
k-shapes
clarans-wdtw
clarans-dtw

clarans-euclidean
clarans-Icss
clarans-erp
k-means-euclidean
clarans-wddtw
clarans-ddtw

k-sc

clarans-wdtw

clarans-euclidean
clarans-Icss
clarans-erp
k-means-euclidean
k-sc

clarans-edr
clarans-wddtw
clarans-dtw

17161514131211109 8 7 6 5 4 3 2 1
Loda ol b dylalyl Ialalalalsly]
11.4808 7.1683
10.9231 7.5433
10.8702 7.6154
10.1731 7.8365
9.7933 7.8510
9.4808 8.3750
9.4567 8.4663
8.7067 8.5865
8.6731
Fig. 6.94 ARI

17161514131211109 8 7 6 5 4 3 2 1
Llala o lalalsl Lo lalalala sl
11.8029 7.2644
11.2163 7.2837
11.1154 7.4471
10.2260 7.7500
9.5096 8.1635
93173 8.3317
8.9615 8.4712
8.9567 8.5048
8.6779

Fig. 6.96 NMI

of CLARANS with baseline clusterers over 104 datasets
using the combine test train split. Missing datasets are

k-means-ba-dtw
clarans-msm
clarans-adtw
clarans-soft-dtw
clarans-twe
k-shapes
clarans-shape-dtw
clarans-dtw
clarans-edr

clarans-adtw
k-means-ba-dtw
clarans-soft-dtw
clarans-msm
clarans-twe
clarans-shape-dtw
k-shapes
clarans-wdtw
clarans-ddtw

6.7 CLARANS 233

1.2

I ; J,\'} \ ‘/
0.8 1 \
A

0.6

R X,

0-21)\
[0

\
\‘\ AN\ \ |
[) Vi) “
0.0l — — L !
N Qo] 4 QL 9
s & s F L FE S S S s s s &S &
o kS s G G RS S N ' & s & ~ s & @
¢ & & & & & K £ & & g LS s
& £ F R L L F 4 O & &° ¥
& I & & & & & & <& &
B o R 9 NE: 2
& R &

Fig. 6.98 Relative FitTime violin plot for CLARANS with 13 distances and the
baseline clusterer over 104 UCR archive datasets using the combined test-train

split.

clarans-Icss
clarans-euclidean
clarans-erp
clarans-ddtw
clarans-wddtw
clarans-edr

clarans-euclidean
clarans-Icss
clarans-ddtw
clarans-erp
clarans-wddtw
clarans-dtw

13 12 11 10 9 8 7

6.7 CLARANS 234

6.7.2 CLARANS Test-train split

Figure 6.103 presents the critical difference diagrams for CLARANS using 12 dif-
ferent elastic distances over the test-train split. CLARANS-soft-DTW, CLARANS-
MSM, CLARANS-TWE, and CLARANS-ADTW consistently appear in the top
clique, similar to our previous findings. CLARANS-Euclidean, CLARANS-LCSS,
CLARANS-DDTW, CLARANS-WDDTW, and CLARANS-ERP consistently rank
in the bottom clique, with CLARANS-LCSS performing worse than CLARANS-
Euclidean for both AMI and NMI. The overall ranking aligns with our combined

test-train CLARANS results, as well as the PAM and CLARA results.

1 13121110 9 8 7 6 5 4 3 2 1
| a1,

6
| P I ' 'l

8.5268

| I ' 1 'l P I P

5.7857 8.4554

clarans-soft-dtw clarans-euclidean

8.4420

5.8125 8.1964 5.9196

clarans-msm clarans-Icss

8.0804

5.7455

5.8661 7.8884 5.9598

clarans-twe

7.5625

clarans-erp

6.2589

7.8705 6.1250

clarans-adtw clarans-ddtw

7.1205

6.7589 7.7232 6.4777

clarans-wddtw

7.0089

clarans-shape-dtw

13121110 9 8 7 6 5 4 3
lllllllllll l

6.8438 (c|arans-dtw clarans-dtw 7116 6.5759
L 69 Clarans-wdtw L 69464
Fig. 6.99 AMI Fig. 6.100 ARI

2 1 13121110 9 8 7 6 5 4 3
1.1 | I | 1 'l I

—

'l I I

1

8.3661

5.8571 8.5357

clarans-adtw clarans-Icss

8.1295

5.9509 8.3527 5.8705

clarans-twe clarans-euclidean

7.9420

5.8214

5.9866 8.0625 5.9688

clarans-msm

7.9107

clarans-erp

6.0848 7.8036 6.1429

clarans-soft-dtw clarans-ddtw

7.6786

6.4241 7.2009 6.7009

clarans-edr clarans-wddtw

7.1429

6.5134 6.9598 6.7679

clarans-edr

clarans-shape-dtw

7.0134

clarans-wdtw

Fig. 6.101 CLACC Fig. 6.102 NMI

Fig. 6.103 CD diagrams of CLARANS over 112 datasets from the UCR archive
using the test-train split.

Tables 6.20 and 6.21 show a similar trend, where CLARANS-MSM, CLARANS-
soft-DTW, CLARANS-TWE, and CLARANS-ADTW are the best-performing

6.8125

clarans-msm
clarans-soft-dtw
clarans-twe
clarans-adtw
clarans-shape-dtw
clarans-edr
clarans-wdtw

clarans-twe
clarans-msm
clarans-soft-dtw
clarans-adtw
clarans-shape-dtw
clarans-dtw
clarans-wdtw

6.7 CLARANS 235

clusterers. Interestingly, CLARANS-DTW performs best in the Simulated domain,

as shown in Table 6.21.

ARI | AMI | CLAcc | NMI | RI

clarans-adtw 0.219 | 0.275 | 0.561 0.310 | 0.699
clarans-ddtw 0.178 | 0.248 | 0.524 | 0.281 | 0.670
clarans-dtw 0.217 | 0.273 | 0.551 0.309 | 0.697
clarans-edr 0.206 | 0.255 | 0.550 | 0.287 | 0.689
clarans-erp 0.174 | 0.221 | 0.519 | 0.259 | 0.680
clarans-euclidean | 0.175 | 0.223 | 0.515 0.261 | 0.685
clarans-Icss 0.148 | 0.202 | 0.504 0.236 | 0.635
clarans-msm 0.232 | 0.284 | 0.562 0.318 | 0.705

clarans-shape-dtw | 0.217 | 0.271 | 0.554 | 0.305 | 0.697
clarans-soft-dtw 0.228 | 0.284 | 0.564 | 0.317 | 0.697

clarans-twe 0.229 | 0.286 | 0.560 | 0.320 | 0.704
clarans-wddtw 0.188 | 0.254 | 0.531 | 0.288 | 0.675
clarans-wdtw 0.210 | 0.267 | 0.546 | 0.303 | 0.696

Table 6.20 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the test-train split.

To contextualise our findings, Figure 6.108 shows the critical difference dia-
grams for CLARANS with 12 elastic distances and the baseline clusterers. CLARANS-
soft-DTW, CLARANS-TWE, CLARANS-MSM, and CLARANS-ADTW consis-
tently outperform k-means-ba-DTW. Notably, the CLARANS clusterers signifi-
cantly outperform k-means-ba-DTW in CLACC and ARI, pushing it out of the top
clique. Overall, CLARANS demonstrates significantly better performance over the
test-train split compared to the state-of-the-art, while remaining considerably less

computationally expensive.

6.7.3 CLARANS conclusion

Overall, CLARANS demonstrates strong clustering performance. The rank order
for both the combined and test-train splits is consistent with previous observations
for PAM, alternate k-medoids, and CLARA. Specifically, for the combined test-

train split, CLARANS-ADTW achieved the best average rank across all evaluation

6.7 CLARANS 236

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
clarans-adtw 0.263 | 0.219 0.169 | 0.330 0.149 | 0.177 0.288
clarans-ddtw 0.228 | 0.131 0.155 | 0.339 0.119 | 0.081 0.258
clarans-dtw 0.241 | 0.185 0.157 | 0.474 0.202 | 0.173 0.233
clarans-edr 0.271 | 0.100 0.201 | 0.271 0.127 | 0.141 0.296
clarans-erp 0.214 | 0.139 0.162 | 0.225 0.112 | 0.117 0.266
clarans-euclidean | 0.214 | 0.206 0.168 | 0.221 0.030 | 0.118 0.250
clarans-Icss 0.151 | 0.026 0.159 | 0.291 0.105 | 0.159 0.167
clarans-msm 0.289 | 0.195 0.206 | 0.284 0.167 | 0.168 0.320
clarans-shape-dtw | 0.241 | 0.213 0.173 | 0.334 0.154 | 0.168 0.380
clarans-soft-dtw 0.281 | 0.116 0.191 | 0.446 0.162 | 0.180 0.279
clarans-twe 0.288 | 0.137 0.212 | 0.331 0.202 | 0.157 0.281
clarans-wddtw 0.275 | 0.149 0.166 | 0.253 0.071 | 0.092 0.263
clarans-wdtw 0.267 | 0.169 0.160 | 0.408 0.084 | 0.189 0.201

Table 6.21 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the test-train split.

metrics and had the highest average score for all but one metric. Additionally,
for AMI and NMI, CLARANS-ADTW outperformed k-means-ba-DTW while
maintaining significantly lower computational time.

Similarly, in the test-train split, multiple CLARANS models showed strong
clustering performance. CLARANS-soft-DTW, CLARANS-MSM, CLARANS-
TWE, and CLARANS-ADTW delivered very similar results across all evaluation
metrics and all achieved the highest average rank for one evaluation metric. Further-
more, all four of these CLARANS clusterers consistently outperformed the current

state-of-the-art while remaining significantly less computationally expensive.

clarans-euclidean
clarans-Icss
k-shapes
clarans-erp
k-means-euclidean
clarans-ddtw
clarans-wddtw
k-sc

clarans-euclidean
k-shapes
clarans-Icss
clarans-ddtw
clarans-erp
clarans-wddtw
k-means-euclidean
clarans-dtw

6.8 Analysis

237

17161514131211109 8 7 6 5 4 3 2 1
I I I | Pl I '

10.9330 7.2143

10.8125 7.3616

10.6205 7.3795

10.3705 7.9018

9.9375 8.2500

9.5625 8.4955

9.0223 8.5982

8.9330 8.7277

Fig. 6.104 AMI

1716151413121110 9 8 7 6 5 4 3 2 1
| IS PN I I I I I I

1l

10.6652 7.5223

8.8795

10.4018 7.5491

10.2411 7.6339

10.0804 7.7098

10.0402 8.1161

9.7098 8.2366

9.7009 8.7277

9.0089 8.7545

Fig. 6.106 CLACC

8.9018

clarans-soft-dtw
clarans-twe
clarans-msm
clarans-adtw
k-means-ba-dtw
clarans-shape-dtw
clarans-dtw
clarans-wdtw
clarans-edr

clarans-twe
clarans-adtw
clarans-msm
clarans-soft-dtw
clarans-edr
clarans-shape-dtw
k-sc
k-means-ba-dtw
clarans-wdtw

k-shapes
clarans-euclidean
clarans-Icss
clarans-erp
clarans-ddtw
clarans-wddtw
k-means-euclidean
k-sc

k-shapes
clarans-Icss
clarans-euclidean
clarans-erp
k-means-euclidean
clarans-ddtw

k-sc
clarans-wddtw

11.2946 mE|

1716151413121110 9 8 7

Lo lalalalala]y

10.7589

7.2143

7.3795

10.3616

7.4732

10.0179

7.8705

9.9062

8.1741

9.7321

8.2679

9.6607

8.3036

8.9509

8.7098

Fig. 6.105 ARI

1716151413121110 9
llllllllllllll ll

8.9241

21
|

10.8438

7.2857

10.7991

7.4018

10.7634

7.4286

10.2723

7.7098

9.8884

8.2902

9.8125

8.3795

9.1741

8.4554

9.1562

8.5402

Fig. 6.107 NMI

8.7991

Fig. 6.108 CD diagrams of CLARANS with baseline clusterers over 112 datasets
from the UCR archive using the test-train split.

6.8 Analysis

We have now presented the results for each k-medoids approach with different

elastic distances, comparing them to their own results and to the baseline clusterers.

However, we have not yet compared each k-medoids approache against one another.

In this section, we will compare each k-medoids approach to each other to highlight

the strengths and weaknesses of each method and identify the best-performing

k-medoids approach.

6.8.1

k-medoids with elastic distances

We first examine the performance of each k-medoids model across different elastic

distances. Figure 6.109 presents a bar graph displaying the average ARI and

clarans-msm
clarans-soft-dtw
clarans-twe
clarans-adtw
clarans-shape-dtw
k-means-ba-dtw
clarans-edr
clarans-wdtw
clarans-dtw

clarans-twe
clarans-msm
clarans-soft-dtw
clarans-adtw
k-means-ba-dtw
clarans-shape-dtw
clarans-dtw
clarans-wdtw
clarans-edr

6.8 Analysis 238

AMI scores for each k-medoids clusterer with different distance measures over the
combined test-train split. Similarly, Figure 6.110 provides the same representation
for the test-train split.

From Figures 6.109 and 6.110, we observe that PAM generally achieves the
highest average scores in both the combined and test-train splits. CLARANS and
alternate exhibit very similar performance across all distances, ranking just below

PAM, while CLARA consistently performs the worst among the four models.

%,
2
%
,
o,
%,
4
[
4,
”o;)’
%,
£
%
,
%
o
4
%,
"o,

(a) ARI (b) AMI

Fig. 6.109 Comparison of the performance of four k-medoids algorithms across
11 elastic distances using 90 datasets from the UCR archive, evaluated on the
combined test-train split. The blue bars represent the scores for alternate k-medoids,
green for CLARA, red for CLARANS, and purple for PAM. The dashed lines
indicate the average scores for each clustering algorithm, with colours matching the
corresponding bars. LCSS was excluded due to its failure to complete a significant
number of datasets. The missing datasets are listed in Table A.26.

In both figures, TWE, soft-DTW, MSM, shape-DTW, and ADTW are con-
sistently the top-performing distances for every model. ERP, on the other hand,
is consistently the worst-performing distance (aside from LCSS, which had to
be excluded). Notably, for the combined test-train split, alternate k-medoids and
CLARANS perform very similarly across all distances. Additionally, for the test-
train split, CLARANS is the only model that occasionally outperforms PAM with

the same distance. For instance, CLARANS-DTW and CLARANS-WDDTW

6.8 Analysis 239

outperform PAM-DTW and PAM-WDDTW in ARI and AMI over the test-train

split.

aaaaa

010
& & & & & s s o« s s & & s & & & S s & <«
Q &« & & & &
& i & <& & = &
Distance Measure

sssssssssssssss

(a) ARI (b) AMI

Fig. 6.110 Comparison of the performance of four k-medoids algorithms across 11
elastic distances using 105 datasets from the UCR archive, evaluated on the test-train
split. The blue bars represent the scores for alternate k-medoids, green for CLARA,
red for CLARANS, and purple for PAM. The dashed lines indicate the average
scores for each clustering algorithm, with colours matching the corresponding bars.
LCSS was excluded due to failing to complete a large number of datasets. Missing
datasets are outlined in Table A.27.

Overall, both figures demonstrate the importance of choosing the right elastic
distance. Additionally, we have shown that, in general, each elastic distance affects
the models similarly, as no single combination of distance and model significantly

alters the rank order of the models.

6.8.2 k-medoids clustering performance

We now narrow the focus of our experiment to the top five distances for each
k-medoids model: ADTW, MSM, TWE, shape-DTW, and soft-DTW. We will
compare each model with these five elastic distances to find the best performing
k-medoids-based clusterer with elastic distances. Figure 6.115 shows the critical
difference diagrams for the four k-medoids clusterers, comparing their top five
elastic distances to each other and the baseline clusterers over the combined test-

train split.

1l
o

k-means-euclidean
clara-adtw
clara-msm
clara-shape-dtw
clara-twe

k-sc

clara-soft-dtw
alternate-shape-dtw
clarans-shape-dtw
clarans-twe
k-shapes
clarans-msm

k-means-euclidean
clara-msm
clara-adtw
clara-twe
clara-shape-dtw
k-sc

clara-soft-dtw
clarans-shape-dtw
k-shapes
alternate-shape-dtw
clarans-adtw
clarans-msm

6.8 Analysis

240

Figure 6.115 demonstrates that multiple k-medoids models outperform the

current state-of-the-art in terms of average rank, though the differences are not

statistically significant. PAM-soft-DTW is the best-performing clusterer across all

evaluation metrics, followed by PAM-TWE and PAM-MSM. Notably, alternate-soft-

DTW ranks in the top three for CLACC and NMI. Additionally, CLARANS-ADTW

appears in the top clique for AMI, ARI, and NMI, although it does not perform

as well for CLACC. Finally, the best-performing CLARA clusterer is CLARA-

soft-DTW, which consistently appears in the bottom clique, but its performance

across all evaluation metrics is not significantly different from k-shapes, which was

previously considered state-of-the-art.

22321201918171615141312111098 76 5432 1

[AAAAANAAN

16.0054

10.0543

14.9946

10.2772

14.8804

10.7826

14.7065

10.8424

14.4348

10.9239

13.9402

11.1957

13.3533

11.3315

12.9620

11.4076

12.7826

11.5380

12.7228

11.8859

12.5489

11.8913

12.4891

12.0489

Fig. 6.111 AMI

22321201918171615141312111098 76 54 32 1

[AAAAARNAANN

LLLLLLLLLI

15.9565

10.4022

14.7609

11.0652

147174

11.1087

14.1685

11.1413

13.9076

11.3043

13.4783

11.3478

13.0435

11.7283

12.8098

11.7989

12.6957

11.8587

12.3641

11.9293

12.2717

12.0054

12.0815

12.0543

Fig. 6.113 CLACC

pam-soft-dtw
pam-twe
alternate-soft-dtw
pam-msm
alternate-twe
k-means-ba-dtw
clarans-adtw
pam-adtw
alternate-msm
pam-shape-dtw
clarans-soft-dtw
alternate-adtw

pam-soft-dtw
pam-msm
alternate-soft-dtw
pam-twe
pam-adtw
k-means-ba-dtw
alternate-twe
pam-shape-dtw
alternate-adtw
alternate-msm
clarans-twe
clarans-soft-dtw

clara-msm
k-means-euclidean
clara-twe
clara-adtw
clara-shape-dtw
clara-soft-dtw

k-sc
clarans-shape-dtw
clarans-twe
k-shapes
clarans-soft-dtw
alternate-shape-dtw

k-means-euclidean
clara-adtw
clara-msm
clara-shape-dtw
clara-twe

k-sc

clara-soft-dtw
alternate-shape-dtw
clarans-shape-dtw
clarans-twe
k-shapes
clarans-msm

2422212019181 7161514131211109 8 76 54 3 2 1
LbLbbLibbLLl

15.7663

10.4022

15.6196

10.5380

15.1902

10.7228

14.8587

10.8152

14.6739

10.8424

14.1630

11.2120

13.7065

11.3370

12.7989

11.4076

12.4565

11.4185

12.4457

11.5707

12.4130

11.6793

12.1141

11.8478

Fig. 6.112 ARI

22321201918171615141312111098 76 5432 1

[AAAAANAAN

1

MAAARNANNA]

15.8967
15.0870

9.9348
10.2554

14.9837

10.6576

14.8587

10.9022

14.4728

10.9402

14.0489

11.1087

13.5000

11.1793

12.9239

11.3641

12.8859

11.5761

12.6304

11.8207

12.5598

11.9565

12.4891

11.9674

Fig. 6.114 NMI

Fig. 6.115 CD diagrams of 4 k-medoids clusterers with their top 5 distances with
baseline clusterers over 92 datasets from the UCR archive using the combine test
train split. Missing datasets are outlined in Table A.28

pam-soft-dtw
pam-twe
pam-msm
k-means-ba-dtw
alternate-soft-dtw
pam-adtw
pam-shape-dtw
alternate-twe
alternate-msm
alternate-adtw
clarans-adtw
clarans-msm

pam-soft-dtw
pam-twe
alternate-soft-dtw
alternate-twe
pam-msm
clarans-adtw
k-means-ba-dtw
pam-adtw
alternate-msm
clarans-soft-dtw
pam-shape-dtw
alternate-adtw

6.8 Analysis 241

Table 6.23 presents the average scores achieved by each clusterer across 92
datasets over the combined test-train split. PAM-soft-DTW and PAM-TWE achieve
the highest average scores across all datasets. However, Table 6.22 shows that,
by domain, PAM models are only the best performers in the Image and Spectro
domains. Interestingly, CLARANS-based models perform best in the Device and
ECG domains, while k-means-ba-DTW leads in the Simulated and Motion domains,

and k-SC remains the top performer for the Sensor domain.

ARI | AMI | CLAcc | NMI | RI

pam-adtw 0.233 | 0.277 | 0.570 | 0.300 | 0.695
pam-msm 0.241 | 0.279 | 0.578 | 0.301 | 0.698
pam-shape-dtw 0.232 | 0.273 | 0.570 | 0.296 | 0.693
pam-soft-dtw 0.242 | 0.286 | 0.578 | 0.310 | 0.694
pam-twe 0.250 | 0.285 | 0.585 | 0.308 | 0.702
alternate-adtw 0.228 | 0.272 | 0.565 0.296 | 0.695
alternate-msm 0.225 | 0.267 | 0.567 0.290 | 0.692

alternate-shape-dtw | 0.225 | 0.264 | 0.564 | 0.289 | 0.692
alternate-soft-dtw 0.236 | 0.283 | 0.573 0.307 | 0.693

alternate-twe 0.232 | 0.274 | 0.571 0.297 | 0.695
clara-adtw 0.177 | 0.224 | 0.530 0.248 | 0.667
clara-msm 0.175 | 0.220 | 0.530 | 0.243 | 0.663
clara-shape-dtw 0.192 | 0.233 | 0.545 | 0.257 | 0.672
clara-soft-dtw 0.196 | 0.242 | 0.552 | 0.266 | 0.674
clara-twe 0.178 | 0.222 | 0.532 | 0.247 | 0.666
clarans-adtw 0.238 | 0.277 | 0.573 0.301 | 0.698
clarans-msm 0.223 | 0.265 | 0.568 0.288 | 0.690

clarans-shape-dtw | 0.221 | 0.264 | 0.563 | 0.288 | 0.691
clarans-soft-dtw 0.223 | 0.271 | 0.569 0.295 | 0.687
clarans-twe 0.233 | 0.271 | 0.573 0.294 | 0.696
k-means-ba-dtw 0.232 | 0.273 | 0.570 | 0.297 | 0.694
k-means-euclidean | 0.169 | 0.210 | 0.513 0.237 | 0.672
k-sc 0.187 | 0.223 | 0.537 0.244 | 0.639
k-shapes 0.208 | 0.260 | 0.555 0.282 | 0.685

Table 6.22 Summary of average score across multiple evaluation metrics over 92
datasets from the UCR archive using the combined test-train split.

Figure 6.116 presents the FitTime for each clusterer. The most computationally

expensive model is PAM-shape-DTW, followed by alternate-MSM. However, all

6.8 Analysis

242

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
pam-adtw 0.298 | 0.165 0.236 | 0.368 0.109 | 0.157 | 0.291
pam-msm 0.342 | 0.100 0.245 | 0.319 0.167 | 0.136 | 0.356
pam-shape-dtw 0.290 | 0.136 0.240 | 0.344 0.127 | 0.147 | 0.397
pam-soft-dtw 0.311 | 0.110 0.247 | 0.478 0.176 | 0.152 | 0.185
pam-twe 0.338 | 0.116 0.247 |0.413 0.179 | 0.136 | 0.351
alternate-adtw 0.277 | 0.163 0.230 | 0.404 0.121 | 0.153 | 0.263
alternate-msm 0.310 | 0.117 0.225 | 0.281 0.166 | 0.134 | 0.342
alternate-shape-dtw | 0.283 | 0.134 0.240 | 0.309 0.117 | 0.140 | 0.390
alternate-soft-dtw | 0.311 | 0.125 0.225 | 0.447 0.193 | 0.150 | 0.170
alternate-twe 0.306 | 0.121 0.237 | 0.388 0.181 | 0.133 | 0.231
clara-adtw 0.218 | 0.146 0.191 | 0.291 0.099 | 0.100 | 0.161
clara-msm 0.236 | 0.090 0.221 | 0.170 0.090 | 0.092 | 0.240
clara-shape-dtw 0.190 | 0.106 0.237 | 0.255 0.124 | 0.150 | 0.339
clara-soft-dtw 0.230 | 0.131 0.231 | 0.323 0.142 | 0.106 | 0.172
clara-twe 0.225 | 0.112 0.222 | 0.236 0.114 | 0.082 | 0.187
clarans-adtw 0.314 | 0.137 0.236 | 0.380 0.140 | 0.164 | 0.281
clarans-msm 0.312 | 0.090 0.234 | 0.305 0.164 | 0.132 | 0.270
clarans-shape-dtw | 0.281 | 0.139 0.224 | 0.295 0.143 | 0.133 | 0.416
clarans-soft-dtw 0.291 | 0.108 0.215 | 0.387 0.199 | 0.144 | 0.200
clarans-twe 0.316 | 0.091 0.256 | 0.310 0.165 | 0.135 | 0.336
k-means-ba-dtw 0.283 | 0.141 0.210 | 0.536 0.173 | 0.164 | 0.137
k-means-euclidean | 0.217 | 0.147 0.199 | 0.221 0.039 | 0.104 | 0.174
k-sc 0.221 | 0.160 0.279 | 0.085 0.032 | 0.080 | 0.395
k-shapes 0.228 | 0.122 0.208 | 0.390 0.096 | 0.152 | 0.407

Table 6.23 Average ARI score on problems split by problem domain over 92 datasets

from the UCR archive using the test-train split.

PAM models, except PAM-shape-DTW, are faster than k-means-ba-DTW (although,

as discussed, our methodology favours models that allow for precomputation).

Notably, as shown in Figure 6.115, CLARANS-ADTW stands out as one of the

fastest algorithms, and as mentioned earlier, it ranks in the top clique for AMI, ARI,

and NMI, potentially providing a fast alternative with very good performance.

Finally, Figure 6.121 presents the critical difference diagram for 102 datasets,

comparing each k-medoids clusterer with the top five elastic distances, along with

the baseline clusterers. We observe similar rankings to the combined test-train split,

6.8 Analysis 243

1.21

Fig. 6.116 Relative FitTime violin plot for 4 k-medoids clusterers with their top
5 distances and the baseline clusterers over 92 UCR archive datasets using the
combined test-train split.

where PAM-TWE, PAM-soft-DTW, and PAM-MSM consistently rank among the
top four clusterers across all evaluation metrics.

However, for the test-train split, CLARANS-based clusterers perform signif-
icantly better and consistently rank higher than alternate k-medoids clusterers.
Additionally, more than half of the k-medoids approaches considered in the experi-
ment outperform the current state-of-the-art method, k-means-ba-DTW.

Overall, our experimental comparison demonstrates that k-medoids-based clus-
terers with elastic distances provide superior clustering performance for both the
combined test-train split and the test-train split. In particular, we identify PAM-
TWE, PAM-soft-DTW, and PAM-MSM as the new state-of-the-art clusterers for
both splits. Additionally, we highlight CLARANS-ADTW as a fast alternative that
consistently delivers strong performance, although it does not match the effective-

ness of the PAM clusterers.

k-means-euclidean
k-shapes
clara-shape-dtw
clara-adtw
clara-twe
clara-msm

k-sc
alternate-shape-dtw
clara-soft-dtw
alternate-msm
k-means-ba-dtw
clarans-shape-dtw

k-shapes
k-means-euclidean
clara-adtw
clara-shape-dtw
clara-twe
clara-msm
clara-soft-dtw

k-sc
alternate-msm
k-means-ba-dtw
alternate-shape-dtw
alternate-twe

6.9 Conclusion

244

22321201918171615141312111098 76 5432 1

(AAAAARANAI

AAAAAAAAN]

15.3627

9.9559

15.2549 10.2598
14.5637 10.4706
14.2353 10.4902
14.1029 11.0637
13.6520 11.3725
13.4461 11.4314
13.2843 11.5392
13.1422 11.8529
12.8284 11.9608
12.5490 12.2647
12.4853 12.4314

Fig. 6.117 AMI

22 21201918171615141312111098 76 543 2 1

(MAAAAANAR

|

MAAARARARN

15.1716 9.7353

14.9020 10.2010
14.4363 10.5588
14.1078 11.2255
13.7157 11.4069
13.4853 11.6373
13.4020 11.6569
13.2892 11.7108
13.0686 11.8137
12.9412 11.9657
12.7598 11.9706
12.4265 12.4118

Fig. 6.119 CLACC

pam-twe
pam-msm
pam-soft-dtw
pam-adtw
alternate-soft-dtw
clarans-soft-dtw
clarans-msm
clarans-twe
alternate-adtw
pam-shape-dtw
clarans-adtw
alternate-twe

pam-twe
pam-msm
pam-adtw
pam-soft-dtw
clarans-twe
clarans-adtw
clarans-soft-dtw
alternate-adtw
alternate-soft-dtw
pam-shape-dtw
clarans-msm
clarans-shape-dtw

k-shapes
k-means-euclidean
clara-adtw
clara-shape-dtw
clara-twe
clara-msm

k-sc

clara-soft-dtw
k-means-ba-dtw
alternate-shape-dtw
alternate-msm
clarans-shape-dtw

k-shapes
k-means-euclidean
clara-shape-dtw
clara-adtw
clara-twe
clara-msm

k-sc
alternate-shape-dtw
clara-soft-dtw
alternate-msm
k-means-ba-dtw
clarans-shape-dtw

22321201918171615141312111098 76 5432 1
|

LLLLLLLLL

16.2941

LLLLLLLLLI

10.2255

15.1078 10.2696
14.5147 10.5686
14.1373 11.0000
13.9167 11.3431
13.7696 11.3775
13.6520 11.3922
13.2892 11.4265
12.4118 11.8284
12.4118 12.0637
12.3578 12.1373
12.2745 12.2304

Fig. 6.118 ARI

2£2321201918171615141312111098 76 5432 1

LLLLLLLLLLLL

LLLLLLLLLI

15.7353

9.7010

15.3529 10.2500
14.8824 10.5882
14.2647 10.6814
14.0049 11.0294
13.6618 11.3922
13.5784 11.4069
13.2206 11.4510
13.2157 11.4608
12.7500 12.0931
12.6765 12.1569
12.2647 12.1814

Fig. 6.120 NMI

Fig. 6.121 CD diagrams of 4 k-medoids clusterers with their top 5 distances with
baseline clusterers over 102 datasets from the UCR archive using the test-train split.
Missing datasets are outlined in Table A.29.

6.9 Conclusion

In this chapter, we presented and evaluated results for four different k-medoids

models across 12 elastic distances. We found that TWE, MSM, ADTW, soft-DTW,

and shape-DTW consistently performed best across all k-medoids models. Con-

versely, ERP, LCSS, DDTW, and WDDTW were consistently the worst-performing

distances for each approach.

Our analysis showed that PAM is the best-performing k-medoids model for

TSCL, followed by CLARANS and alternate k-medoids, which jointly take second

place depending on the distance measure used. CLARA performed significantly

pam-msm
pam-twe
pam-adtw
pam-soft-dtw
alternate-soft-dtw
clarans-msm
clarans-twe
clarans-soft-dtw
pam-shape-dtw
alternate-adtw
clarans-adtw
alternate-twe

pam-twe
pam-msm
pam-soft-dtw
pam-adtw
alternate-soft-dtw
clarans-twe
clarans-soft-dtw
alternate-adtw
clarans-msm
clarans-adtw
alternate-twe
pam-shape-dtw

6.9 Conclusion 245

worse than the other k-medoids models. The overall best-performing models were
PAM-TWE, PAM-soft-DTW, and PAM-MSM for both the combined test-train split
and the test-train split.

Additionally, we demonstrated that using elastic distances for centroid compu-
tation is crucial for the success of any model. By comparing alternate k-medoids to
k-means using the same elastic distance and the arithmetic mean, we observed that
using medoids consistently improved performance for all distances. However, we
also found that when an average was computed with the alignment path of an elastic
distance (e.g., k-means-ba-DTW), the average version significantly outperformed
the medoids variant. This suggests that further improvements to the state-of-the-art
could be achieved by using an averaging technique with better elastic distances,
such as TWE, MSM, or ADTW.

Regarding our hypotheses, we first showed that incorporating elastic distances
into centroid computation greatly enhances clustering performance. We initially
hypothesised that the performance improvement would be similar across all dis-
tances, but we found this was not the case. Distances with an implicit warping
penalty benefited more from medoids than those with an explicit penalty, though
not to the extent of outperforming the explicit warping penalty distances. Finally,
we hypothesised that the best-performing distances from Chapter 5 would, when
paired with medoids, be the best performing distances for k-medoids. We confirmed
this, showing that PAM-ADTW, PAM-MSM, PAM-TWE, and PAM-soft-DTW all
surpassed the performance of the current state-of-the-art k-means-ba-DTW for both

the combined test-train split and the combined test-train split.

Chapter 7

Elastic Barycentre Averaging

Contributing Publications

* Holder, C.; Guijo-Rubio, D. and Bagnall, A. (2023). Barycentre Averaging
for the Move-Split-Merge Time Series Distance Measure. In Proceedings of
the 15th International Joint Conference on Knowledge Discovery, Knowledge
Engineering and Knowledge Management - KDIR; ISBN 978-989-758-671-2;
ISSN 2184-3228, SciTePress, pages 51-62. DOI: 10.5220/0012164900003598

k-means-ba-DTW is one of the best-performing clusterers we have considered. As
demonstrated in our experiments in Chapter 5 and Chapter 6, it consistently ranks
among the top TSCL approaches, significantly outperforming both k-means-DTW
and PAM-DTW. Our experiments suggest that this superior performance is due to
the use of the DBA algorithm for centroid computation; however, this algorithm is
currently limited to DTW only.

To address this limitation, we develop a new averaging technique, which is a
generalised form of the DBA algorithm that can be applied to any elastic distance
that computes a complete optimal alignment path. We call this averaging technique
the Elastic Barycentre Average. In this chapter we outline the Elastic Barycentre

Average algorithm, visually demonstrate how it differs from DBA, and conduct an

7.1 Introduction 247

empirical evaluation to showcase its superiority and ability to achieve state-of-the-

art clustering performance with various elastic distances.

7.1 Introduction

In Chapter 5, we observed that while some elastic distances significantly outper-
formed k-means-Euclidean, others performed notably worse. We hypothesised that
this discrepancy was due to pathological warping in distances that did not explicitly
penalise warping off the diagonal, a problem exacerbated when using an average
time series generated without considering alignment (i.e., the arithmetic mean).

The importance of incorporating alignment during centroid computation was
further highlighted in Section 5, where we directly compared k-means-DTW to k-
means-ba-DTW. We found that using an elastic distance in the centroid computation
dramatically improved clustering performance. Moreover, this observation was
consistent across all elastic distances when comparing alternate k-medoids to k-
means using the same elastic distances in Section 5.4.

However, despite the improvements seen with PAM, when PAM-DTW was com-
pared to k-means-ba-DTW in Section 6.5, we found k-means-ba-DTW significantly
outperformed PAM-DTW across all evaluation metrics. Moreover, k-means-ba-
DTW was one of the best-performing clusterers overall, even when compared to
PAM variants such as PAM-MSM and PAM-TWE. This led us to hypothesise that
an average representation, could be superior to a medoid-based representation for
TSCL. One possible reason for this is that medoid-based algorithms rely on the
existence of a “good” representative within the dataset for each cluster. If such
representatives do not exist, k-medoids’ performance can suffer significantly.

In this chapter, we aim to develop an elastic averaging technique that can be
applied to a variety of elastic distances, rather than just one (e.g. DBA). We hypoth-

esise that if we can create an averaging method tailored to each elastic distance, it

7.2 Elastic Barycentre Averaging 248

will significantly enhance the performance of those distances in k-means clustering,
compared to using the arithmetic mean and the medoids. Furthermore, we expect
that distances like MSM, TWE, and ADTW, which have already demonstrated
strong clustering performance, could outperform the current state-of-the-art when

used with this averaging technique.

7.2 Elastic Barycentre Averaging

Previously, we defined DBA and outlined how it minimises the DTW Fréchet
function in Section 2.5.1. However, to the best of our knowledge, the minimisation
of Fréchet functions for other elastic distances has not been explored in the literature.
To address this gap, we propose a generalisation of the DTW Fréchet function to
accommodate any elastic distance. Formally, we define this generalisation as

follows:

F() =1 Y dex) .1

where d represents an elastic distance.

We will now use this generalised formulation to adapt DBA to work with any
elastic distance that computes a complete optimal alignment path which we refer to
as the Elastic Barycentre Average. The Elastic Barycentre Average approximates
the minimum of Equation 7.1 by adapting DBA with other elastic distance alignment
path.

Formally, the Elastic Barycentre Average algorithm is presented in Algorithm 35.
The key modification to the original DBA algorithm is the substitution of the DTW
alignment path with that of another elastic distance, provided that it computes a

complete optimal warping path.

7.2 Elastic Barycentre Averaging 249

Algorithm 35: elastic_barycentre(X, max_iters, tol)

Input: X (Dataset of time series of length n. Each time series is of length
m), max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold)

Output: Elastic Barycentre Average of X for a given elastic distance

1 barycentre +— mean(X)

2 previous_dist <— oo

3 for i < 1 to max_iters do

4 barycentre < elastic_barycentre_update(barycentre,X)

5 curr_distance + 0

6 for each time series curr_ts in X do

7 curr_distance <

L curr_distance + elastic_distance(barycentre,curr_ts)

8 if |previous_dist — curr_distance| < tol then
9 | break
10 previous_dist < curr_distance

11 return barycentre

The elastic_barycentre algorithm, shown in Algorithm 35, computes the Elastic
Barycentre of the dataset X. The algorithm takes three parameters: first, the dataset
X, consisting of n time series, each of length m; second, max_iters, an integer that
defines the maximum number of update iterations before the algorithm terminates
and returns the barycentre; and finally, fo/, a threshold for early stopping, which
halts the algorithm if the total distance to the barycentre changes by less than rol
between consecutive iterations.

Algorithm 35 begins by calculating the mean time series of the dataset X (line
1). The mean average of a collection of time series is defined in Equation 2.35.
A variable is then initialised to track the total distance to the barycentre from the
previous iteration, starting at oo (line 2). The refinement loop follows, running for
up to max_iters iterations (line 3). During each iteration, the barycentre is updated
by calling the elastic_barycentre_update function (line 4). After the barycentre

is updated, the total distance between each time series and the new barycentre is

7.2 Elastic Barycentre Averaging 250

calculated (lines 6 and 7). The elastic_distance function can apply any elastic
distance that produces a complete optimal warping path.

A complete optimal warping path is one that forms a continuous path through
a cost matrix, starting at the index (m-1, m-1) and finishing at (0,0), assuming O
indexing. This means that distances like LCSS, which allow “gaps” in their optimal
warping path, cannot be used with the Elastic Barycentre Average.

Once the total distance to the new barycentre is obtained, the early stopping
condition is checked. If the difference between the previous total distance to the
previous barycentre and the current iterations total distance to the current barycentre
is less than fol, the loop terminates early (lines 8 and 9). Otherwise, the previous
distance is updated to the current iteration’s distance (line 10). Once all iterations
are completed (or the early stopping condition is met), the final refined barycentre

is returned (line 11).

Algorithm 36: elastic_barycentre_update(barycentre, X)
Input: barycentre (Current estimate of barycentre), X (Dataset of time
series of length n. Each time series is of length m)
Output: Updated Elastic Barycentre
1 Initialise num_alignments as an array of zeros of length m
2 Initialise sum_barycentre as a matrix of zeros of size m
3 for each time series curr_ts in X do
4 CM < elastic_distance_CM (barycentre,curr_ts)
5 alignment _path < optimal_warping_path(CM)
6
7
8

for each pair of indices (j,k) in alignment _alignment do
sum_barycentrelk| < sum_barycentre[k] + curr_ts|]]
num_alignments|k] <— num_alignments[k] + 1

new_barycentre <— summed_barycentre /num_alignments
10 return new_barycentre

o

The elastic_barycentre_update function, shown in Algorithm 36, performs a
single update of the current barycentre. It takes two parameters: barycentre, a time
series of length m representing the current barycentre to be refined, and X, a dataset

containing n time series, each of length m.

7.2 Elastic Barycentre Averaging 251

The function starts by initialising two arrays. The first, num_alignments, is an
array of length m that tracks how many times each index in the barycentre time series
is aligned to (line 1). This will later be used to divide the corresponding values in
sum_barycentre. The second array, sum_barycentre, also of length m, accumulates
the values that align to each specific index in the barycentre. For example, if time
series 7; of length 3 has an alignment path of (0,0),(0,1),(1,1),(2,2) with the
barycentre, sum_barycentre would be updated as follows: sum_barycentrey = T,
sum_barycentre; = Ty + T, and sum_barycentre; = T5.

This illustrates how the barycentre average differs from the arithmetic mean.
Specifically, sum_barycentre; is updated to Tp + 71 because the alignment path
maps the first index of the barycentre to two different values in 7.

With these initial variables, the update process begins by iterating through each
time series in X (line 3). First, an elastic distance cost matrix is computed (line 4).
The algorithms for obtaining the cost matrix for a given elastic distance are outlined
in Section 2.4, but instead of returning the final distance (which is the last value
in the cost matrix), the entire cost matrix is returned. From this cost matrix, the
optimal alignment path is extracted using the optimal_warping_path algorithm
(line 5). The optimal_warping_path algorithm is defined in Algorithm 2. Any
elastic distance that can compute its optimal warping path using Algorithm 2 may
be used in line 4 (i.e. not LCSS).

Next, using the extracted alignment path (a list of tuples mapping the optimal
alignment), each tuple is iterated over (line 6). In each tuple, j represents the index
of the current time point in the time series, which is aligned to the kth time point
(index) in the barycentre. Using this mapping, the value of sum_barycentre[k]| is in-
cremented by the value of curr_t[j] (line 7). To track how many times each point in
sum_barycentre[k] has been aligned, the corresponding value in num_alignments|[k]|

is incremented by 1.

7.3 Elastic Barycentre analysis 252

This process is repeated for every time series in the dataset X. Once all
time series have been processed, the new barycentre is calculated by dividing
sum_barycentre by num_alignments (line 9). This yields the new_barycentre,

which is then returned (line 10).

7.3 Elastic Barycentre analysis

Although the update to the original DBA algorithm is straightforward, we observe
significant variation in the averages produced for each distance measure. Figure 7.1
illustrates the Elastic Barycentre Averages for 10 different elastic distances over
class 1 of the GunPoint dataset. Additionally, the figure includes the arithmetic
mean (in red) for reference.

One of the most notable features of Figure 7.1 is the distinct variation in
the barycentres produced by each elastic distance. While we anticipated some
differences, the extent of the variation is greater than expected. Starting at the top
of Figure 7.1, the arithmetic mean, which does not account for alignment, appears
generally smooth, exhibiting a dome-like shape.

BA-DTW (DBA) forms a similar dome shape but with a lower peak and a
longer, sharper plateau. Additionally, there is a noticeable peak at the centre. BA-
DTW closely resembles BA-WDTW, although the peak in BA-WDTW occurs
later along the time axis. BA-ADTW, BA-MSM, BA-ERP, and BA-TWE show
a similar overall structure, characterised by a sharper incline to a peak followed
by a smooth descent. The primary differences among them lie in the finer local
variations. For instance, BA-TWE exhibits subtle fluctuations near the peak before
a smooth decline, whereas BA-MSM shows numerous local fluctuations as the
barycentre descends.

BA-shape-DTW stands out with a dome-like structure but features a depression

in the middle. BA-DDTW appears shifted along the time axis compared to the

7.3 Elastic Barycentre analysis

253

GunPoint dataset class 1

Mean Average

BA-DTW

120

&0 50

BA-ADTW

60 80

BA-WDTW

60 50

BA-DDTW

120

) 50

BA-WDDTW

15

10

05

00

10

£ 50

BA-Shape-DTW

60 80

BA-Soft-DTW

BA-ERP

120

BA-MSM

120

BA-TWE

Fig. 7.1 Different Elastic Barycentre Averages for Gunpoint class 1.

7.4 Experiment setup 254

other barycentres and has a more compressed overall shape. BA-soft-DTW shares
several characteristics with BA-MSM and BA-ADTW but exhibits more localised
fluctuations. Finally, BA-WDDTW shows a steep ascent and descent around the
dome, with significant localised fluctuations.

While visually inspecting each barycentre provides some insight, it does not
offer a quantitative evaluation of their quality. Therefore, we aim to design an
experiment to assess their effectiveness using the k-means clusterer. In the next

section, we outline our experimental approach to evaluate each Elastic Barycentre.

7.4 Experiment setup

We will now outline our experiments to evaluate the Elastic Barycentre Average.
Each Elastic Barycentre will be assessed using the k-means clusterer, where the
Elastic Barycentre technique serves as the centroid computation method, and the
same elastic distance is used in the assignment computation.

We will compare the results of each Elastic Barycentre clusterer to each other to
determine the best Elastic Barycentre averaging technique and assess whether the
rank order of each distance is consistent with our previous experiments. Addition-
ally, we will compare the results to the baseline clusterers and the best-performing
k-medoids techniques identified in Chapter 6 to contextualise results.

Next, we will conduct a more detailed analysis of each Elastic Barycentre
Average to evaluate how much the averaging technique contributes to the success of
each clusterer. This will involve comparing the Elastic Barycentre Average results
to those from Chapter 5 and Chapter 6. By comparing the Elastic Barycentre results
to other Lloyd’s-based algorithm using the same elastic distances but with different
centroid computation techniques (arithmetic mean and medoids), we can isolate the

specific impact each Elastic Barycentre has on the final clustering performance.

7.4 Experiment setup 255

Table 7.1 shows the configuration of each model used in our experiments. Four
elastic distances were excluded from the analysis. LCSS was omitted because it is
incompatible with the Elastic Barycentre Average, as it does not produce a complete
alignment path (i.e., it allows gaps). DDTW and WDDTW were excluded because
the resulting barycentre averages are two time points shorter than the input time
series, which introduces complexity when computing distances between time series
of different lengths in the k-means algorithm. Finally, EDR was excluded due to

computational resource limitations, which required us to narrow the scope of our

experiments.

max_iters | tol n_init | init_algo | distance averaging
k-means-ba-adtw 50 1x107%] 10 Forgy ADTW BA-ADTW
k-means-ba-dtw 50 1x107% | 10 Forgy DTW BA-DTW
k-means-ba-erp 50 1x107% | 10 Forgy ERP BA-ERP
k-means-ba-msm 50 1x107% | 10 Forgy MSM BA-MSM
k-means-ba-twe 50 1x107% | 10 Forgy TWE BA-TWE
k-means-ba-wdtw 50 1x107% | 10 Forgy WDTW BA-WDTW
k-means-ba-shape-dtw | 50 1x107% | 10 Forgy shape-DTW | BA-shape-DTW
k-means-ba-soft-dtw 50 1x107% | 10 Forgy soft- DTW | BA-soft-DTW

Table 7.1 Elastic Barycentre model parameters

The parameters set in Table 7.1 are the same as those used in our k-means
experiments in Chapter 5 and alternate k-medoids experiments in Chapter 6. The
only change made for our Elastic Barycentre averaging experiments is the averaging
technique which is specified in the “averaging” column.

We have adopted a unique naming convention for each barycentre averaging
technique, differing from the original Dynamic Time Warping Barycentre Average
(DBA). This is because multiple distances share the same first character, leading to
potential ambiguity in their names. Therefore, for clarity, our naming convention

(XA

starts with “BA” (Barycentre Average), followed by a and then the specific

distance used.

7.4 Experiment setup 256

For instance, the clusterer k-means-ba-DTW refers to the k-means algorithm that
uses the barycentre average (“ba”) with the DTW distance for both the assignment
stage and the barycentre averaging method. Similarly, when the barycentre average
is used with the TWE distance in k-means, the clusterer is called k-means-ba-TWE.

We also produce a new barycentre average for soft-DTW. As outlined in Sec-
tion 2.5.1, the soft-DBA averaging technique already exists. The key difference is
that soft-DBA exactly minimises the barycentre average function, while BA-soft-
DTW uses an estimate of the minimum. Although we do not expect BA-soft-DTW
to outperform soft-DBA, it serves as an interesting point of comparison to evaluate
the accuracy of the estimates it produces.

Each elastic distance used in both the assignment and averaging phases requires
specific parameters. We use the elastic distance parameters outlined in Table 5.2,
applying the same parameters for both the assignment and averaging stage. These
parameters are consistent with those used in all previous experiments, allowing for

direct comparison.

max_iters | tol init_barycentre | distance
BA-ADTW 50 1 x107° | Arithmetic mean | ADTW
BA-DTW 50 1 x 107 | Arithmetic mean | DTW
BA-ERP 50 1 x 1076 | Arithmetic mean | ERP
BA-MSM 50 1 x 10~° | Arithmetic mean | MSM
BA-TWE 50 1 x107® | Arithmetic mean | TWE
BA-WDTW 50 1 x 1076 | Arithmetic mean | WDTW
BA-shape-DTW | 50 1 x 107® | Arithmetic mean | shape-DTW
BA-soft-DTW 50 1 x 107° | Arithmetic mean | soft-DTW

Table 7.2 Elastic Barycentre averaging parameters

Finally, each barycentre averaging method has its own set of parameters. Ta-
ble 7.2 outlines the parameters used for each Elastic Barycentre Average. We
set max_iters to 50, as this value has been shown to ensure sufficient conver-

gence [108]. The tol parameter is set to a very small value, ensuring that early

7.5 Elastic Barycentre clusterer results 257

convergence occurs only if very minor changes are observed. We use the arith-
metic mean as the initial barycentre, following the recommendation in the original
paper [94]. Although we could use a medoid as the initial barycentre, doing so
would introduce significant computational overhead and could disproportionately
affect certain distances. Lastly, the “distance” column represents our independent
variable, which is changed for each Elastic Barycentre Average.

We now conduct our Elastic Barycentre Averaging experiments using the

methodology and parameters defined above.

7.5 Elastic Barycentre clusterer results

7.5.1 Combined test-train split

Figure 7.6 presents the critical difference diagram for eight different Elastic Barycen-
tre clusterers. Across all evaluation metrics, k-means-ba-TWE is the best-performing
clusterer and consistently ranks in the top clique. Joining k-means-ba-TWE in the
top clique are k-means-ba-MSM and k-means-ba-shape-DTW for all evaluation
metrics. Additionally, k-means-ba-soft-DTW is in the top clique for all evalua-
tion metrics except ARI. Notably, five Elastic Barycentre clusterers outperform
k-means-ba-DTW across all evaluation metrics.

However, Figure 7.6 only includes results from only 83 datasets. This is
because k-means-ba-shape-DTW and k-means-ba-soft-DTW failed to complete
over 17 datasets each within our seven-day runtime limit. This issue is highlighted
in Figure 7.7, which shows the FitTime of each model.

Due to the large number of missing datasets, we will exclude k-means-ba-shape-
DTW and k-means-ba-soft-DTW from further analysis to allow for evaluation over
a larger number of datasets. However, we will include them when comparing

results to k-means-soft-DBA, as it also has a similar number of missing datasets.

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw
k-means-ba-adtw

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw
k-means-ba-adtw

7.5 Elastic Barycentre clusterer results

258

3.9940

3.9096

4.1265

4.1867

4.0361

3.8735

4.1386

4.1747

Fig. 7.4 CLACC

k-means-ba-twe
k-means-ba-msm
k-means-ba-shape-dtw
k-means-ba-soft-dtw

k-means-ba-twe
k-means-ba-soft-dtw
k-means-ba-shape-dtw
k-means-ba-msm

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-adtw
k-means-ba-dtw

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw
k-means-ba-adtw

3.7470

4.1446

4.1928

4.3735

5.5542

3.8675

4.9518

4.0181

4.6386

4.1687

4.6084

4.1928

Fig. 7.5 NMI

k-means-ba-twe
k-means-ba-shape-dtw
k-means-ba-msm
k-means-ba-soft-dtw

k-means-ba-twe
k-means-ba-msm
k-means-ba-shape-dtw
k-means-ba-soft-dtw

Fig. 7.6 CD diagrams of Elastic Barycentre k-means over 83 datasets from the
UCR archive using the combine test train split. Missing datasets are outlined in

Table A.30

Additionally, for the test-train split, where both k-means-ba-shape-DTW and k-

means-ba-soft-DTW have significantly more completed results, we will conduct

further analysis.

7.5 Elastic Barycentre clusterer results 259

1.0
\
‘ / \\
| | N 4 |
i N - | [\
0.8 I [\ | 4
i | |
|
Il
U | |
0.6 - i p N
I\ () [4 N
\ | !)
() A N -
@Y Y/
044 N/ il / b
W [| [
[£ [) U
‘ ‘ L y. \ N
(\ A { \
024 / / . I H
N I () \) | [
N 4 R | ‘
)| \‘ N | ‘
\ {
! \\ A |
0.0 ~—r L
e
= & & & & & o =
2 > & < & o N
& 5 3 & & g b &
X g & X £ & X
N4 N 2 & ‘ & RS &
2 & & 2 & g & 2
& N \{_/(0 & P RS \{_,é\ <®
¢ ¥ ¢ &L & NE
<& A4

Fig. 7.7 Relative FitTime violin plot for each Elastic Barycentre clusterer over 83
of the UCR archive using the combined test-train split.

Figure 7.12 presents the critical difference diagram for six Elastic Barycentre
clusterers over 106 datasets. We observe a similar rank order results, but k-means-
ba-MSM achieves the highest average ranking for AMI, CLACC, and NMI, while
k-means-ba-TWE ranks highest for ARI. k-means-ba-TWE, k-means-ba-MSM,
k-means-ba-ADTW, and k-means-ba-DTW consistently appear in the top clique
for all evaluation metrics, while k-means-ba-ERP is the worst-performing clusterer
across all metrics.

Table 7.3 presents the average score summary for each Elastic Barycentre
clusterer across five evaluation metrics. k-means-ba-TWE achieves the highest
average score across all metrics, with k-means-ba-MSM closely following in second
place. Additionally, Table 7.4 shows the average ARI scores for different domains.
k-means-ba-TWE performs best in the Image, Sensor, and ECG domains, while k-
means-ba-DTW leads in the Simulated, Device, and Motion domains, and k-means-

ba-ADTW excels in the Spectro domain. Overall, no single Elastic Barycentre

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw

7.5 Elastic Barycentre clusterer results

260

4.2757

3.8037

3.1075

2.9766

3.5000

3.3364

Fig. 7.8 AMI

4.1822

3.0701

3.7850

|

3.1355

3.5140

3.3131

Fig. 7.10 CLACC

k-means-ba-msm
k-means-ba-twe
k-means-ba-adtw

k-means-ba-msm
k-means-ba-twe
k-means-ba-adtw

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw

k-means-ba-erp
k-means-ba-wdtw
k-means-ba-dtw

6 5 4 3 1
l 1 l 1 l 1 1 1 I
_43037 | L 30374
3.7757 3.0888
3.4346 3.3598
Fig. 7.9 ARI
6 5 4 3 1

4.3131

3.7944

3.0000

3.0654

3.4907

3.3364

Fig. 7.11 NMI

Fig. 7.12 CD diagrams of Elastic Barycentre k-means over 106 datasets from the

UCR archive using the combine test train split. Missing datasets are outlined in
Table A.31

clusterer dominates across all domains, although k-means-ba-DTW ranks best in

three domains and k-means-ba-TWE in two.

ARI | AMI | CLAcc | NMI | RI
k-means-ba-adtw | 0.252 | 0.305 | 0.566 0.328 | 0.711
k-means-ba-dtw 0.256 | 0.304 | 0.569 0.328 | 0.712
k-means-ba-erp 0.207 | 0.257 | 0.530 | 0.282 | 0.695
k-means-ba-msm | 0.256 | 0.309 | 0.571 0.331 | 0.709
k-means-ba-twe 0.273 | 0.317 | 0.580 0.340 | 0.716
k-means-ba-wdtw | 0.241 | 0.294 | 0.557 0.318 | 0.707

Table 7.3 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

To contextualise our Elastic Barycentre clusterer results, we include all baseline

clusterers as well as PAM results using the same elastic distances. Figure 7.18

shows the critical difference diagrams for the Elastic Barycentre clusterers alongside

the baseline clusterers and PAM.

k-means-ba-twe
k-means-ba-msm
k-means-ba-adtw

k-means-ba-msm
k-means-ba-twe
k-means-ba-adtw

7.5 Elastic Barycentre clusterer results

261

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-adtw | 0.320 | 0.220 0.222 | 0.380 0.146 | 0.170 | 0.312
k-means-ba-dtw | 0.307 | 0.209 0.195 | 0.586 0.173 | 0.177 | 0.246
k-means-ba-erp 0.259 | 0.212 0.199 | 0.306 0.079 | 0.113 | 0.279
k-means-ba-msm | 0.338 | 0.217 0.233 | 0.340 0.142 | 0.158 | 0.335
k-means-ba-twe | 0.364 | 0.211 0.255 | 0.398 0.158 | 0.142 | 0.373
k-means-ba-wdtw | 0.304 | 0.204 0.209 | 0.493 0.080 | 0.157 | 0.262

Table 7.4 Average ARI score on problems split by problem domain over 106 datasets
from the UCR archive using the combined test-train split.

Figure 7.18 demonstrates that Elastic Barycentre Average clusterers outperform
PAM with the same elastic distance across all evaluation metrics. Additionally, all
Elastic Barycentre clusterers outperform k-means-Euclidean.

The top clique across all evaluation metrics includes k-means-ba-TWE, k-means-
ba-MSM, k-means-ba-DTW, k-means-ba-ADTW, PAM-MSM, PAM-TWE, and
PAM-ADTW. The differences between k-means-ba-TWE and PAM-TWE, as well
as k-means-ba-MSM and PAM-MSM, are very small, as shown in Figure 7.13. For
both PAM-TWE and PAM-MSM, their average ARI is higher than their correspond-
ing Elastic Barycentre clusterer counterparts, primarily because PAM-TWE and
PAM-MSM significantly outperform k-means-ba-TWE and k-means-ba-MSM for
certain datasets.

Figure 7.23 shows the critical difference diagrams for all Elastic Barycentre
clusterers (including k-means-ba-shape-DTW and k-means-ba-soft-DTW) with
PAM and the baseline clusterers, in addition to k-means-soft-DBA. While no
clusterer is better than k-means-soft-DBA on average, for all evaluation metrics,
k-means-ba-TWE, k-means-ba-shape-DTW, k-means-ba-MSM, PAM-TWE, PAM-
soft-DTW appear in the same clique and are therefore not significantly different
from k-means-soft-DBA.

Furthermore, if we analyse the average scores shown in Table 7.5 while k-

means-soft-DBA has the highest average score for every evaluation metric, the gap

pam-msm ARI

7.5 Elastic Barycentre clusterer results 262

1.0 f o 1.0 i
pam-msm wins here pam-twe wins here
[53W, 1T, 51L] [48W, 7T, 50L] /
° . oo
o . e
081 b 0.8 1 . .
L] L]
/ : /
.
. o
.
gos L o] .« £
g . : ‘ . zp %
. [.
e o," : ® E e 0/ ® o
c 0 e
© o ° €Ewo ® o
0.4 3 e
g e 8 g o4 .
= o/..' - ° 00.
'y X
. o .
Y . ad 0.
0.2 4 .
e 02 e
L) ... L
/ . .o :/. i °
o o
004 k-means-ba-msm wins here b “" N i k-means-ba-twe wins here
' [51Ww, 1T, 53L1] 0_0«}(‘:2‘::' e ! [50W, 7T, 48L]
1
.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
k-means-ba-msm ARI k-means-ba-twe ARI
(mean: 0.2547) (mean: 0.2726)
{Wilcoxon test for equality of medians, p-value:OAISO} {Wilcoxon test for equality of medians, p-value=0A353}
Paired t-test for equality of means, p-value=0.058 Paired t-test for equality of means, p-value=0.457
(a) k-means-ba-MSM compared to PAM-MSM (b) k-means-ba-TWE compared to PAM-TWE

Fig. 7.13 k-means-ba-MSM and k-means-ba-TWE results compared directly to
PAM-MSM and PAM-TWE respectively over 105 datasets from the UCR archive
using the combined test-train split.

has significantly shrunk. For ARI the gap between the previous state-of-the-art
(k-means-ba-DTW) was 0.04 ARI. However, compared to k-means-ba-shape-DTW
the gap is only 0.015 and for k-means-ba-TWE the gap is only 0.017.

Figure 7.6 shows the average ARI score by domain. Notably when we consider
the average ARI by domain k-means-soft-DBA is only best for one domain: Device.
Between the different Elastic Barycentre clusterers, they perform best for four of
the seven domains. Specifically k-means-ba-TWE is best at two domains: Image
and Spectro.

Finally, we analyse the FitTime of each Elastic Barycentre clusterer compared
to the baseline clusterers and PAM. Figure 7.24 shows the violin plot for FitTime.
We observe that the relative FitTime for Elastic Barycentre Average is higher
than PAM using the same distance; as previously explained, this difference arises
from our experimental methodology. Specifically, with Forgy initialisation and 10

restarts, PAM benefits from precomputing the distance matrix and reusing it across

pam-erp
k-means-euclidean
k-means-ba-erp
k-sc

k-shapes

pam-dtw
pam-wdtw

pam-erp
k-means-euclidean
k-means-ba-erp
pam-dtw
pam-wdtw

k-sc

k-shapes

7.5 Elastic Barycentre clusterer results

263

151413121110 9 8 7 6 5 4 3 2 1
llllllllll lll 1 lllllllllll

10.2190 6.3048

10.0810 6.6095

9.4143 6.8619

8.8619 6.9381

8.3238 7.0238

8.2714 7.1476

8.2524 7.6952

7.9952

Fig. 7.14 AMI

151413121110 9 8 7 6 5 4 3 2 1
| 'l e ' S '

9.9000 6.7524

9.8952 6.7571

9.2238 6.8667

8.6524 7.0286

8.5333 7.0762

8.3667 7.3095

8.2190 7.4571

7.9619

Fig. 7.16 CLACC

k-means-ba-msm
k-means-ba-twe
pam-msm
pam-twe
k-means-ba-adtw
k-means-ba-dtw
pam-adtw
k-means-ba-wdtw

k-means-ba-twe
k-means-ba-msm
pam-msm
k-means-ba-adtw
pam-twe
k-means-ba-dtw
pam-adtw
k-means-ba-wdtw

k-means-euclidean
pam-erp
k-means-ba-erp
k-sc

pam-wdtw
pam-dtw

k-shapes

pam-erp
k-means-euclidean
k-means-ba-erp
k-sc

pam-dtw

k-shapes
pam-wdtw

151413121110 9 8 7 6 5
llllllllll ll 1 lll

4321
|

11

10.0238
9.8667
9.4238

6.4190
6.4952
6.7000

8.8048 6.9381

8.5524 7.0905

8.3857 7.1048

8.2952 7.8476

8.0524

Fig. 7.15 ARI

151413121110 9 8 7 6 5 4 3 2 1
I I T 'l PSPl e e

10.1571
10.0619
9.3667

6.3190
6.6190
6.9095

8.9095 6.9238

8.3857 7.0333

8.3238 7.1000

8.2476 7.7143

7.9286

Fig. 7.17 NMI

Fig. 7.18 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
over 105 datasets from the UCR archive using the combined test-train split. Missing
datasets are outlined in Table A.32.

all restarts. In contrast, the Elastic Barycentre Average methods must recompute

distances and averages at every iteration and restart. Therefore, if we conducted the

same experiment using only one restart, the Elastic Barycentre Average methods

would likely be faster than PAM when employing the same elastic distance.

k-means-ba-twe
k-means-ba-msm
pam-msm
pam-twe
k-means-ba-dtw
k-means-ba-adtw
pam-adtw
k-means-ba-wdtw

k-means-ba-msm
k-means-ba-twe
pam-twe
pam-msm
k-means-ba-adtw
k-means-ba-dtw
pam-adtw
k-means-ba-wdtw

k-means-euclidean
pam-erp
k-means-ba-erp
k-sc

k-shapes

pam-dtw
pam-shape-dtw
pam-wdtw
k-means-ba-wdtw
pam-adtw

k-means-euclidean
pam-erp
k-means-ba-erp
pam-dtw
pam-wdtw

k-sc

k-shapes
k-means-ba-wdtw
pam-shape-dtw
pam-adtw

7.5 Elastic Barycentre clusterer results

264

20191817161514131211109 8 7 6 54 3 2 1
|

13.6139 7.4177
13.3734 8.7405
12.7405 8.9177
12.0633 9.0759
114114 9.0823
11.4051 9.1772
11.1962 9.2405
11.1456 9.4557
10.7785 10.1899
10.5949 10.3797

Fig. 7.19 AMI

20191817161514131211109 8 7 6 5 4 3 2 1
Lilalalslalolylyl Lilslaloba bl beladul
13.6203 nll 7.8734
13.2215 5.6962
12.7405 8.7785
11.7595 9.1456
11.5316 9.1835
11.3201 92342
10.9494 92505
108165 9.6456
107152 103228
10.6899 10.4873

Fig. 7.21 CLACC

k-means-soft-dba
pam-twe
k-means-ba-twe
k-means-ba-shape-dtw
pam-soft-dtw
k-means-ba-msm
k-means-ba-soft-dtw
pam-msm
k-means-ba-adtw
k-means-ba-dtw

k-means-soft-dba
k-means-ba-soft-dtw
k-means-ba-twe
k-means-ba-shape-dtw
pam-twe
pam-soft-dtw

am-msm
k-means-ba-msm
k-means-ba-adtw
k-means-ba-dtw

k-means-euclidean
pam-erp
k-means-ba-erp
k-sc

pam-wdtw
pam-dtw

k-shapes
pam-adtw
pam-shape-dtw
k-means-ba-wdtw

k-means-euclidean
pam-erp
k-means-ba-erp
k-sc

k-shapes

pam-dtw
pam-shape-dtw
pam-wdtw
k-means-ba-wdtw
pam-adtw

20191817161514131211109 8 7 6 5 4 3 2 1
Lo lalalelady | AN
13.2011 7.6772
12.9810 8.4430
12.4747 8.8861
11.8924 8.9051
11.5000 9.1899
11.4494 0.4114
111772 9.5949
10.9620 9.6392
10.9367 10.4177
10.7405 10.4304

Fig. 7.20 ARI

20191817161514131211109 8 7 6 5 4 3 2 1
mnnnnnannnnnannnnnmn
13.6456 7.4051
13.3544 8.6835
12.7405 8.9051
12.1962 8.9557
11.4241 9.1329
11.3418 9.2025
11.2089 9.2468
11.1456 9.5000
10.7278 10.2975
10.5443 10.3418

Fig. 7.22 NMI

Fig. 7.23 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
and soft-DBA over 79 datasets from the UCR archive using the combine test train
split. Missing datasets are outlined in Table A.33.

k-means-soft-dba
k-means-ba-twe
k-means-ba-shape-dtw
pam-twe

pam-msm
k-means-ba-msm
k-means-ba-soft-dtw
pam-soft-dtw
k-means-ba-adtw
k-means-ba-dtw

k-means-soft-dba
pam-twe
pam-soft-dtw
k-means-ba-twe
k-means-ba-shape-dtw
k-means-ba-msm
k-means-ba-soft-dtw
am-msm
k-means-ba-adtw
k-means-ba-dtw

7.5 Elastic Barycentre clusterer results 265

ARI | AMI | CLAcc | NMI | RI
k-means-ba-adtw 0.259 | 0.301 | 0.597 | 0.311 | 0.685
k-means-ba-dtw 0.265 | 0.303 | 0.602 | 0.313 | 0.687
k-means-ba-erp 0.207 | 0.245 | 0.555 | 0.256 | 0.666
k-means-ba-msm 0.260 | 0.300 | 0.600 | 0.310 | 0.683
k-means-ba-shape-dtw | 0.290 | 0.325 | 0.617 | 0.335 | 0.698
k-means-ba-soft-dtw 0.267 | 0.303 | 0.614 0.314 | 0.683
k-means-ba-twe 0.288 | 0.319 | 0.618 0.329 | 0.694
k-means-ba-wdtw 0.249 | 0.291 | 0.592 | 0.301 | 0.680
k-means-euclidean 0.200 | 0.239 | 0.543 0.251 | 0.664
k-means-soft-dba 0.305 | 0.338 | 0.632 | 0.347 | 0.704
k-sc 0.220 | 0.251 | 0.573 0.262 | 0.643
k-shapes 0.240 | 0.286 | 0.587 | 0.297 | 0.678
pam-adtw 0.268 | 0.308 | 0.602 | 0.318 | 0.687
pam-dtw 0.246 | 0.288 | 0.590 | 0.299 | 0.676
pam-erp 0.191 | 0.232 | 0.546 | 0.244 | 0.660
pam-msm 0.280 | 0.314 | 0.616 | 0.324 | 0.695
pam-shape-dtw 0.267 | 0.305 | 0.603 | 0.316 | 0.685
pam-soft-dtw 0.277 | 0.317 | 0.614 | 0.327 | 0.686
pam-twe 0.292 | 0.324 | 0.625 0.334 | 0.699
pam-wdtw 0.243 | 0.285 | 0.589 | 0.296 | 0.672

Table 7.5 Summary of average score across multiple evaluation metrics over 79
datasets from the UCR archive using the combined test-train split.

1
| I | I
I \ [} I
01 A A I A
i A |
‘\ ‘ [
084 ||| ‘ | “‘ | N
: S \) |
B I | |\ |
\“ ! | | | ‘ \‘ | R |
S | | ‘ ,‘““‘\ I N
061/ vy | H A I |
| VY \ | / , .
VY [- | [\ £ | (
R \ 1l O |
B R |
0.4\ |/ Y| W \ ‘ W \|/ N
‘'R |/ voof W W W Ll
| ‘\ W - moom)
5 “ H H F [A H‘ I M\
[| Pt | | 1)
[/ \“‘ ‘u“ NN \“ | \‘ il “]
| |5)
o4 | Il RN NN |l
) il] o o |
\ [J\ v / () / V|
\ \ | \I/ 7\l \ \
\/ Wy | | / / | \/
0.0 -4 . . e . ! Y |
S
N T I Ry Y I I
K A 5 ¢ & N N & & & s & & & S
930’0 (\“):o o“f (,30@ & 'b’(ao (&:o N 0‘)(’ ‘{»'(1 ’O@ Q’b be ’b& &® P Q’b ’o@
RS 2 53 & % %;o 2 ,b(\‘o & < N ((‘ﬁ & <
& & & & PSS & g 2 <
AR RGNV N
@‘z, \{_((\ A

Fig. 7.24 Relative FitTime violin plot for Elastic Barycentre clusterers, PAM and
the baseline clusterers over 105 datasets from the UCR archive using the combined
test-train split.

7.5 Elastic Barycentre clusterer results 266

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-adtw 0.321 | 0.267 0.273 | 0.298 0.192 | 0.130 | 0.236
k-means-ba-dtw 0.307 | 0.257 0.234 | 0.536 0.217 | 0.140 | 0.137
k-means-ba-erp 0.254 | 0.258 0.249 | 0.216 0.108 | 0.068 | 0.184
k-means-ba-msm 0.341 | 0.267 0.278 | 0.254 0.181 | 0.120 | 0.224
k-means-ba-shape-dtw | 0.328 | 0.238 0.317 | 0.369 0.247 | 0155 | 0.375
k-means-ba-soft-dtw 0.306 | 0.188 0.294 | 0.416 0.237 | 0.146 | 0.207
k-means-ba-twe 0.372 | 0.263 0.320 | 0.320 0213 | 0.113 | 0.267
k-means-ba-wdtw 0.304 | 0.258 0.257 | 0.447 0.093 | 0.113 | 0.164
k-means-euclidean 0.242 | 0.272 0.238 | 0.221 0.072 | 0.074 | 0.174
k-means-soft-dba 0.371 | 0.265 0.314 | 0471 0.273 | 0.144 | 0.192
k-sc 0.244 | 0.291 0.313 | 0.085 0.041 | 0.097 | 0.395
k-shapes 0.264 | 0.225 0.226 | 0.390 0.110 | 0.141 | 0.407
pam-adtw 0.320 | 0.297 0.270 | 0.368 0.149 |0.132 | 0.291
pam-dtw 0.292 | 0.245 0.246 | 0.409 0.182 | 0.123 | 0.149
pam-erp 0.247 | 0.256 0.213 | 0.165 0.128 | 0.052 | 0.187
pam-msm 0.365 | 0.248 0.287 | 0.319 0.214 | 0.110 | 0.356
pam-shape-dtw 0.317 | 0.269 0.276 | 0.344 0.156 | 0.124 | 0.397
pam-soft-dtw 0.350 | 0.166 0.289 | 0.478 0.222 | 0.130 | 0.185
pam-twe 0.361 | 0.263 0.295 | 0413 0.224 |0.113 | 0.351
pam-wdtw 0.290 | 0.255 0.233 | 0.470 0.090 | 0.126 | 0.172

Table 7.6 Average ARI score on problems split by problem domain over 79 datasets
from the UCR archive using the combined test-train split.

7.5 Elastic Barycentre clusterer results 267

7.5.2 Test-train split

Figure 7.29 shows the critical difference diagrams for eight Elastic Barycentre
clusterers across 98 datasets using the test-train split. The ranking is similar
to that observed in the combined test-train split, with k-means-ba-MSM and k-
means-ba-TWE being the top two performers, consistently appearing in the top
clique. Additionally, k-means-ba-ADTW, k-means-ba-shape-DTW, and k-means-
ba-soft-DTW are also in the top clique across all evaluation metrics. However,
in the test-train split, k-means-ba-DTW does not appear in the top clique for any

evaluation metric, unlike in the combined test-train split.

k-means-ba-erp 25786 3.6684_ | means-ba-msm k-means-ba-erp —2:5361 | L 3729 . means-ba-msm
k-means-ba-wdtw —>:1480 39235 k.means-ba-twe k-means-ba-wdtw —>:0051 3.9439 _ k.means-ba-twe
k-means-ba-dtw —4:243° 39337 k.means-ba-adtw k-means-ba-dtw 22133 40510 k.means-ba-adtw
k-means-ba-shape-dtw —4:3%8¢ 43061 k.means-ba-soft-dtw k-means-ba-soft-dtw —%:43%1 43489 k-means-ba-shape-dtw
Fig. 7.25 AMI Fig. 7.26 ARI
8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1
| I | | I I T B | | I I P T NI B |
k-means-ba-erp —>:4745 3.9082_ | _means-ba-twe k-means-ba-erp 26327 | L 3663 | means-ba-msm
k-means-ba-dtw —2:107% 39184 | .means-ba-msm k-means-ba-wdtw —2:1173 3.8929 k.means-ba-adtw
k-means-ba-wdtw —3:0%62 41122 | means-ba-adtw k-means-ba-dtw —2:2643 39184 | _means-ba-twe
k-means-ba-soft-dtw —4:2092 41735 k.means-ba-shape-dtw k-means-ba-soft-dtw —44133 43980 | _means-ba-shape-dtw
Fig. 7.27 CLACC Fig. 7.28 NMI

Fig. 7.29 CD diagrams of Elastic Barycentre k-means over 98 datasets from the
UCR archive using the test-train split. Missing datasets are outlined in Table A.34.

Table 7.7 shows the average score for each Elastic Barycentre clusterer. Similar
to the combined test-train split, k-means-ba-TWE is the best-performing clusterer
across all evaluation metrics, closely followed by k-means-ba-MSM.

Table 7.8 shows the performance of each Elastic Barycentre clusterer by problem

domain. The same clusterers perform well across domains, consistent with the

7.5 Elastic Barycentre clusterer results 268

combined test-train split. Notably, k-means-ba-TWE performs best in only one
domain: Sensor, although it is just 0.001 ARI from being the top performer in the
Image domain. Additionally, in the Device and ECG domains, k-means-ba-shape-
DTW shows dominant performance, significantly outperforming the second-best

clusterer in both cases.

ARI | AMI | CLAcc | NMI | RI

k-means-ba-adtw 0.228 | 0.279 | 0.569 | 0.313 | 0.694
k-means-ba-dtw 0.226 | 0.274 | 0.562 | 0.309 | 0.694
k-means-ba-erp 0.179 | 0.223 | 0.529 | 0.260 | 0.674
k-means-ba-msm 0.238 | 0.285 | 0.572 | 0.319 | 0.696

k-means-ba-shape-dtw | 0.237 | 0.284 | 0.575 | 0.319 | 0.697
k-means-ba-soft-dtw 0.229 | 0.282 | 0.572 | 0.317 | 0.690
k-means-ba-twe 0.247 | 0.294 | 0.576 | 0.328 | 0.698
k-means-ba-wdtw 0.217 | 0.267 | 0.555 0.303 | 0.688

Table 7.7 Summary of average score across multiple evaluation metrics over 98
datasets from the UCR archive using the test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-adtw 0.293 | 0.225 0.166 | 0.346 0.192 | 0.171 | 0.195
k-means-ba-dtw 0.268 | 0.228 0.179 | 0.454 0.175 | 0.156 | 0.129
k-means-ba-erp 0.230 | 0.215 0.167 | 0.257 0.047 | 0.119 | 0.173
k-means-ba-msm 0.319 | 0.212 0.193 | 0.329 0.161 | 0.159 | 0.267
k-means-ba-shape-dtw | 0.268 | 0.213 0.200 | 0.358 0.205 | 0.173 | 0.357
k-means-ba-soft-dtw | 0.291 | 0.179 0.156 | 0.412 0.196 | 0.192 | 0.181
k-means-ba-twe 0.318 | 0.228 0.246 | 0.306 0.178 | 0.136 | 0.268
k-means-ba-wdtw 0.262 | 0.245 0.177 | 0.417 0.110 | 0.155 | 0.136

Table 7.8 Average ARI score on problems split by problem domain over 98 datasets
from the UCR archive using the test-train split.

We contextualise our results by incorporating the baseline clusterers, soft-DBA

and PAM using the same elastic distances as in the Elastic Barycentre clusterers.
Figure 7.34 presents the critical difference diagrams for the Elastic Barycentre

clusterers alongside the baseline clusterers, soft-DBA and PAM.

pam-erp
k-means-euclidean
k-shapes
k-means-ba-erp
pam-dtw
pam-wdtw

k-sc
k-means-ba-wdtw
pam-shape-dtw
k-means-ba-dtw

pam-dtw

k-shapes
k-means-euclidean
pam-erp
k-means-ba-erp
pam-wdtw
k-means-ba-wdtw
k-means-ba-dtw
k-sc
pam-shape-dtw

7.5 Elastic Barycentre clusterer results 269

Figure 7.34 shows results similar to the combined test-train split, with the
exception that PAM-TWE outperforms k-means-soft-DBA in CLACC and ARI.
Additionally, while the top clique remains consistent with the combined test-train
split, it includes fewer clusterers: PAM-TWE, k-means-soft-DBA, PAM-MSM,
k-means-ba-TWE, and k-means-ba-MSM across all evaluation metrics.

Furthermore, we observe that all Elastic Barycentre clusterers outperform k-
means-Euclidean. Additionally, all Elastic Barycentre clusterers outperform their
PAM counterparts with the same elastic distance, except for PAM-TWE and PAM-
MSM. For AMI, ARI, and NMI, k-means-ba-MSM outperforms PAM-MSM, but

for CLACC, PAM-MSM outperforms k-means-ba-MSM. Notably, PAM-TWE

consistently outperforms k-means-ba-TWE across all evaluation metrics.

20191817161514131211109 8 7 6 54 3 2 1

13.2296
13.1786

7.8673
8.2041

13.0357

8.3010

12.9082

8.7500

12.2500

8.7755

11.7500

8.8878

11.5408

9.1633

11.4898

9.3776

10.9694

9.5714

10.9490

9.8010

Fig. 7.30 AMI

20191817161514131211109 8 7 6 54 3 2 1

13.1378
13.0204
12.8061

7.6071
8.0510
8.5408

12.4643

8.9541

12.3316

8.9694

11.7653

9.3010

11.5255

9.4082

11.4031

9.5816

11.1735

9.6276

10.6122

9.7194

k-means-soft-dba
pam-twe
k-means-ba-msm
k-means-ba-adtw
k-means-ba-twe
pam-msm
pam-soft-dtw
k-means-ba-soft-dtw
pam-adtw
k-means-ba-shape-dtw

pam-twe
k-means-soft-dba
pam-msm
k-means-ba-twe
k-means-ba-msm
k-means-ba-adtw
k-means-ba-soft-dtw
k-means-ba-shape-dtw
pam-adtw
pam-soft-dtw

k-shapes
k-means-euclidean
pam-erp
k-means-ba-erp
pam-dtw
pam-wdtw

k-sc
k-means-ba-dtw
k-means-ba-wdtw
pam-shape-dtw

k-shapes
k-means-euclidean
pam-erp
k-means-ba-erp
pam-dtw

k-sc

pam-wdtw
k-means-ba-wdtw
pam-shape-dtw
k-means-ba-dtw

20191817161514131211109 8 7 6 5 4 3 2 1
|

13.9796

8.0102

12.9541

8.1071

12.7704

8.3316

12.6888

8.5408

12.5816

8.8418

11.8214

8.8980

11.4388

9.4388

10.9796

9.5204

10.9694

9.7398

10.5816

9.8061

Fig. 7.31 ARI

20191817161514131211109 8 7 6 5 4 3 2 1

13.4133
13.1327
12.9439
12.8673

7.7704
8.0357
8.2857
8.6429

12.4235

8.7602

11.6888

8.7959

11.5867

9.1276

11.3520

9.5561

11.1837

9.6173

11.0765

9.7398

pam-twe
k-means-soft-dba
k-means-ba-msm
pam-msm
k-means-ba-twe
k-means-ba-adtw
pam-soft-dtw
k-means-ba-shape-dtw
k-means-ba-soft-dtw
pam-adtw

k-means-soft-dba
pam-twe
k-means-ba-msm
k-means-ba-adtw
k-means-ba-twe
pam-msm
pam-soft-dtw
k-means-ba-soft-dtw
pam-adtw
k-means-ba-shape-dtw

Fig. 7.32 CLACC Fig. 7.33 NMI

Fig. 7.34 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
and soft-DBA over 98 datasets from the UCR archive using the test train split.
Missing datasets are outlined in Table A.35.

7.5 Elastic Barycentre clusterer results 270

Table 7.9 presents the average scores for the test-train split, comparing the
Elastic Barycentre clusterers, baseline clusterers, soft-DBA, and PAM. k-means-
soft-DBA is the best performing clusterer for three of the five evaluation metrics.
k-means-ba-soft-TWE achieves the highest average ARI, while PAM-TWE achieves
the highest RI. This differs from the combined test-train split where k-means-soft-
DBA had the highest average score for every evaluation metric.

Table 7.10 shows the performance of the Elastic Barycentre clusterers, baseline
clusterers, soft-DBA, and PAM across different problem domains. The results are

similar to those observed in the combined test-train split.

ARI | AMI | CLAcc | NMI | RI
k-means-ba-adtw 0.228 | 0.279 | 0.569 0.313 | 0.694
k-means-ba-dtw 0.226 | 0.274 | 0.562 | 0.309 | 0.694
k-means-ba-erp 0.179 | 0.223 | 0.529 | 0.260 | 0.674
k-means-ba-msm 0.238 | 0.285 | 0.572 0.319 | 0.696
k-means-ba-shape-dtw | 0.237 | 0.284 | 0.575 | 0.319 | 0.697
k-means-ba-soft-dtw 0.229 | 0.282 | 0.572 | 0.317 | 0.690
k-means-ba-twe 0.247 | 0.294 | 0.576 0.328 | 0.698
k-means-ba-wdtw 0.217 | 0.267 | 0.555 0.303 | 0.688
k-means-euclidean 0.177 | 0.219 | 0.523 0.257 | 0.675
k-means-soft-dba 0.246 | 0.300 | 0.588 0.334 | 0.701
k-sc 0.185 | 0.230 | 0.537 0.263 | 0.658
k-shapes 0.110 | 0.175 | 0.485 0.206 | 0.587
pam-adtw 0.229 | 0.275 | 0.576 | 0.309 | 0.692
pam-dtw 0.206 | 0.257 | 0.551 0.293 | 0.682
pam-erp 0.179 | 0.224 | 0.528 0.262 | 0.676
pam-msm 0.238 | 0.286 | 0.580 | 0.319 | 0.698
pam-shape-dtw 0.227 | 0.273 | 0.572 | 0.307 | 0.693
pam-soft-dtw 0.238 | 0.285 | 0.581 0.320 | 0.695
pam-twe 0.245 | 0.291 | 0.586 | 0.326 | 0.702
pam-wdtw 0.215 | 0.269 | 0.561 | 0.304 | 0.687

Table 7.9 Summary of average score across multiple evaluation metrics over 98
datasets from the UCR archive using the test-train split.

7.5 Elastic Barycentre clusterer results 271

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
k-means-ba-adtw 0.293 | 0.225 0.166 | 0.346 0.192 | 0.171 0.195
k-means-ba-dtw 0.268 | 0.228 0.179 | 0.454 0.175 | 0.156 | 0.129
k-means-ba-erp 0.230 | 0.215 0.167 | 0.257 0.047 | 0.119 | 0.173
k-means-ba-msm 0.319 | 0.212 0.193 | 0.329 0.161 | 0.159 | 0.267
k-means-ba-shape-dtw | 0.268 | 0.213 0.200 | 0.358 0.205 | 0.173 | 0.357
k-means-ba-soft-dtw 0.291 | 0.179 0.156 | 0.412 0.196 | 0.192 | 0.181
k-means-ba-twe 0.318 | 0.228 0.246 | 0.306 0.178 | 0.136 | 0.268
k-means-ba-wdtw 0.262 | 0.245 0.177 | 0.417 0.110 | 0.155 | 0.136
k-means-euclidean 0.219 | 0.241 0.164 | 0.274 0.040 | 0.115 | 0.153
k-means-soft-dba 0.304 | 0.216 0.166 | 0.493 0.212 | 0.187 | 0.185
k-sc 0.217 | 0.214 0.188 | 0.250 0.046 | 0.110 | 0.369
k-shapes 0.126 | 0.191 0.110 | 0.104 0.073 | 0.078 | 0.041
pam-adtw 0.291 | 0.213 0.175] 0.372 0.135 | 0.176 | 0.257
pam-dtw 0.244 | 0.201 0.158 | 0.417 0.138 | 0.163 | 0.112
pam-erp 0.222 | 0.236 0.181 | 0.244 0.067 | 0.096 | 0.173
pam-msm 0.315 | 0.231 0.200 | 0.318 0.164 | 0.151 0.277
pam-shape-dtw 0.258 | 0.208 0.205 | 0.360 0.142 | 0.166 | 0.352
pam-soft-dtw 0.295 | 0.151 0.190 | 0.462 0.166 | 0.180 | 0.235
pam-twe 0.311 | 0.228 0.212 | 0.364 0.187 | 0.151 | 0.271
pam-wdtw 0.251 | 0.254 0.176 | 0.442 0.102 | 0.153 | 0.143

Table 7.10 Average ARI score on problems split by problem domain over 98 datasets

from the UCR archive using the test-train split.

7.5.3 Elastic Barycentre clusterer conclusion

Overall we have presented results for 8 different Elastic Barycentre Average clus-

terers and compared the results to the baseline clusterers as well as PAM clusterers.

We showed that Elastic Barycentre clusterers offer some of the best clustering

performance outperforming the current state-of-the-art consistently over multiple

evaluation metrics.

We note for the combined test-train split the Elastic Barycentre clusterers, specif-

ically k-means-ba-TWE and k-means-ba-MSM are not significantly different from

k-means-soft-DBA which was previously the best performing clusterer by a large

margin (no other clusterer appeared in the same clique as it previously). Further-

more, we showed that the for every Elastic Barycentre clusterer they outperformed

7.6 Elastic Barycentre evaluation 272

PAM with the same elastic distance while being computationally significantly
cheaper.

Similarly for the test-train split we observe similar performance though the
improvement between PAM and the respective Elastic Barycentre clusterer was
much smaller. k-means-ba-TWE was consistently one of the best performing
clusterers in and is not significantly different from the previous state-of-the-art

k-means-soft-DBA.

7.6 Elastic Barycentre evaluation

We have now evaluated each Elastic Barycentre clusterer and have shown that it
achieves state-of-the-art performance for TSCL. We now seek to understand how
much the Elastic Barycentre Average contributes to the performance of each model.
To do this, we will compare each Elastic Barycentre clusterer to two other Lloyd’s-
based techniques that use the same elastic distances. Specifically, for each elastic
distance, we compare the results of the following methods: k-means with an elastic
distance using the arithmetic mean; alternate k-medoids with an elastic distance;
and k-means-ba with an elastic distance using the Elastic Barycentre Average.

Figures 7.35 and 7.36 present a bar graph displaying the average ARI and AMI
scores for each clusterer over the combined test-train split and the separate test-train
splits, respectively. We have excluded shape-DTW and soft-DTW because, for
k-means, each of these clusterers failed to converge on over 10 datasets.

For the combined test-train split, we observe that Elastic Barycentre clusterers
improve clustering over alternate k-medoids for all elastic distances for both ARI
and AMI. However, the degree of improvement differs greatly between distances.
Table 7.11a shows the percentage increase in ARI and AMI for each distance
between alternate k-medoids and k-means-ba. We observe from the table and

visually in Figure 7.35 that the performance improvement varies significantly

0350

0.300

7.6 Elastic Barycentre evaluation 273

0350

+0.002 +0.018 +0.008

0.300
nnnnnn
zzzzzz

oooooooooooo

oooooo

(a) ARI (b) AMI

Fig. 7.35 Comparison of the performance of k-means-ba, k-means, and alternate
k-medoids across six elastic distances using 103 datasets from the UCR archive,
evaluated on the combined test-train split. The blue bars represent the scores for
alternate k-medoids, the red bars correspond to k-means using the arithmetic mean,
and the green bars represent k-means-ba using the Elastic Barycentre Average. The
values above each set of bars indicate the difference in scores between k-means-ba
and the second best method. The dashed lines denote the average scores for each
clustering algorithm, with colours matching the corresponding bars.

across different distances. For distances such as ERP and DTW, we observe the
largest increases in both ARI and AMI. This can likely be explained by the fact that
the ERP and DTW alternate k-medoids methods start from much lower ARI and
AMI scores, and therefore there is greater potential for improvement. However, it
is noteworthy that TWE, which was already one of the best-performing alternate k-
medoids clusterers, improves by 7.39%. For distances that started with similar ARI
scores, such as alternate-ADTW and alternate-MSM, we observed much smaller
increases in performance.

For both AMI and ARI, we observe a similar trend in performance gain between
the clustering models. However, we note that ARI increases by more than AMI.
Since ARI measures the number of pairs of samples that are assigned to the same
or different clusters correctly, this suggests that the Elastic Barycentre algorithm
improves the clustering by more accurately grouping similar pairs and separating

dissimilar pairs of samples. In other words, the Elastic Barycentre enhances the

7.6 Elastic Barycentre evaluation 274

local pairwise relationships between data points, leading to a higher agreement in

pairwise assignments as captured by ARI.

Distance | % Increase ARI | % Increase AMI Distance | % Increase ARI | % Increase AMI
ERP 12.90% 8.82% ERP 11.49% 8.37%
ADTW 0.79% 0.66% ADTW 3.48% 3.87%
DTW 9.24% 6.25% DTW 16.92% 10.27%
MSM 2.80% 2.67% MSM 14.88% 9.85%
TWE 7.39% 3.58% TWE 19.07% 13.55%
WDTW 2.94% 1.72% WDTW 15.08% 10.38%
Average 6.68% 3.95% Average 13.49% 9.38%

(a) Combined test-train split (b) Combined test-train split

Table 7.11 Percentage increase of ARI and AMI for k-means-ba over alternate
k-medoids over datasets from the UCR archive: 103 combined test-train splits and
107 test-train splits.

On the other hand, AMI measures the agreement between the entire clusterings
by considering the mutual information and the distribution of cluster assignments.
The smaller increase in AMI indicates that while there is an improvement in the
overall cluster structure, it is less pronounced compared to the improvements in
pairwise sample agreements. Therefore, the greater increase in ARI suggests that
the Elastic Barycentre Average particularly enhances clustering performance in
terms of correctly assigning pairs of samples to the same or different clusters, which
is more sensitively reflected by ARI than by AMI.

For the test-train split, we find that the average improvement is significantly
greater than for the combined test-train split. Table 7.11 shows that the average
ARI improvement for the combined test-train split was 6.68%, while for AMI, it
was 3.95%. However, in the test-train split, we observe a much larger average im-
provement of 13.49% in ARI and 9.38% in AMI. Notably, the difference between
alternate-TWE and k-means-ba-TWE for the test-train split is 0.041 in ARI and
0.037 in AMI, highlighting a substantial improvement. This indicates that centroids

computed using the Elastic Barycentre Average are much better general represen-

0200

0215
+0.001
0250 +0.034
g
0225 0225
+0.000 = = -] 6.
o200 [
] l l 8
0150 0150
Q N o s ¢ s
& & & & o & &
Distance Measure

7.7 Conclusion 275

0350

''''''

+0.022

0.300

++++++ o
+0.008 % 0250
nnnnnn

(a) ARI (b) AMI

Fig. 7.36 Comparison of the performance of k-means-ba, k-means, and alternate
k-medoids across six elastic distances using 107 datasets from the UCR archive,
evaluated on the test-train split. The blue bars represent the scores for alternate
k-medoids, the red bars correspond to k-means using the arithmetic mean, and the
green bars represent k-means-ba using the Elastic Barycentre Average. The values
above each set of bars indicate the difference in scores between k-means-ba and the
second best method. The dashed lines denote the average scores for each clustering
algorithm, with colours matching the corresponding bars.

tations of the dataset compared to those produced by medoids or the arithmetic
mean.

Overall, we have shown that the Elastic Barycentre Average yields significantly
better results than using medoids or the arithmetic mean for both the combined
test-train and test-train splits. The improvement for each distance is not linear, with
different amounts of improvement observed for each elastic distance, ranging from
a 0.79% increase to a 19.07% increase. However, we have demonstrated that the

improvement is directly attributable to the use of the Elastic Barycentre Average.

7.7 Conclusion

In this chapter, we proposed a new averaging technique for time series data called
the Elastic Barycentre Average. This technique is inspired by the widely used

Dynamic Time Warping Barycentre Average, which exclusively works with the

7.7 Conclusion 276

DTW elastic distance. However, the Elastic Barycentre Average can be applied to
any elastic distance that produces a complete warping path.

We have provided pseudocode, default parameters, and clear examples demon-
strating how to compute the Elastic Barycentre Average. Visual examples of nine
new Elastic Barycentres were presented, highlighting the significant differences
between them, even though they were all derived from the same data.

Next, we conducted an experiment using the k-means clustering algorithm to
evaluate the performance of the Elastic Barycentre Average. We began by compar-
ing the Elastic Barycentre clusterers using different elastic distances against one
another to identify the best-performing variant. Then, we contextualised the results
by incorporating the baseline clusterers, PAM using the same elastic distances, and
k-means-soft-DBA. We demonstrated that multiple Elastic Barycentre clusterers
achieve state-of-the-art performance and outperform k-medoids models with the
same elastic distance. Furthermore, we showed that across the combined test-train
split and test-train split for all evaluation metrics, the best Elastic Barycentre clus-
terers: k-means-ba-TWE and k-means-ba-MSM, performance was not significantly
different from k-means-soft-DBA and in some instances surpasses it.

Finally, to isolate and demonstrate the contribution of the Elastic Barycen-
tre Average to improving Lloyd’s-based algorithms, we conducted an experiment
comparing alternate k-medoids and k-means to k-means-ba. These algorithms are
structurally identical, with the only difference being how centroids are computed:
alternate k-medoids computes medoids, k-means uses the arithmetic mean, and the
Elastic Barycentre clusterer employs the Elastic Barycentre Average. By comparing
their performance, we were able to measure the impact of the Elastic Barycentre
Average. We observed that for all elastic distances considered, the Elastic Barycen-
tre Average always improves clustering performance over k-means and alternate
k-medoids with the same elastic distance. In some cases, the Elastic Barycentre

Average resulted in an improvement of up to 19.07% in ARI. Overall, across the

7.7 Conclusion 277

considered elastic distances, we observed an average improvement of 6.68% in
ARI and 3.95% in AMI for the combined test-train split compared to alternate
k-medoids. For the test-train split, we observed an even greater improvement, with
an average increase of 13.49% in ARI and 9.38% in AMI compared to alternate
k-medoids.

In summary, we have introduced a new time series averaging method that,
when used with k-means, achieves and even surpasses the performance of current
state-of-the-art clustering methods. We have empirically shown that the primary
factor contributing to the success of the Elastic Barycentre clusterer is the Elastic

Barycentre Average.

Chapter 8

KESBA: A Fast and Scalable
End-to-End Elastic Distance

Clustering Algorithm

In Chapter 7, we proposed the Elastic Barycentre Average, a method for computing
improved averages of time series data by utilising elastic distances that produce a
complete alignment path.

When combined with the k-means algorithm, the Elastic Barycentre Average
significantly improves clustering performance of all the elastic distances considered,
outperforming methods that apply the same elastic distance with k-means, as well
as alternative approaches like alternate k-medoids or PAM. Notably, TWE and
MSM, when paired with the Elastic Barycentre Average, achieved state-of-the-art
performance, even surpassing k-means-soft-DBA in some evaluation metrics.

However, while clustering performance is the primary focus of an experimental
evaluation such as this thesis, real-world practitioners must also consider the runtime
of TSCL algorithms, which can be as important as the clustering performance. In

response to this, we propose a substantially faster version of the Elastic Barycentre

8.1 Introduction 279

Average k-means clusterer: the k-means (K) end-to-end elastic (E) stochastic
subgradient (S) Barycentre (B) Average (A) (KESBA).

KESBA leverages an accelerated version of the Elastic Barycentre Average
alongside various k-means optimisations, achieving state-of-the-art performance
with a runtime that is significantly faster than the original method and other state-of-
the-art clusterers. KESBA offers practitioners a versatile, highly scalable clusterer

specifically designed for real-world TSCL applications.

8.1 Introduction

TSCL techniques are notoriously computationally expensive. Throughout this
thesis, we have had to exclude several datasets from various experiments because
certain clusterers were unable to complete within our seven-day runtime limit.
While the UCR archive contains some large datasets, many real-world applications
involve datasets that are similar in size or significantly larger, both in terms of the
number of instances and the length of the time series. This poses a significant
limitation to the practical applicability of many TSCL approaches discussed in this
work.

Within the TSCL literature, there are numerous examples of clusterers that
prioritise lower computational runtime over achieving the best performance. These
methods offer practitioners fast alternatives that trade some clustering performance
for the ability to handle large datasets efficiently. Examples include k-shapes [89],
TADPole [9], SOMTimeS [52], JET [127], and many others. Among these, k-shapes
has emerged as one of the most widely used TSCL approaches.

In Chapter 4, we observed that k-shapes is orders of magnitude faster than
k-means-ba-DTW, while still delivering competitive performance relative to the

state-of-the-art. However, after conducting our new experiments throughout this

8.1 Introduction 280

thesis using both k-means and k-medoids clusterers, we found that k-shapes no
longer holds it place as a state-of-the-art clusterer.

Compared to the top-performing clusterer identified in Chapter 7, k-shapes
was, on average, 0.048 ARI and 0.033 AMI worse than k-means-ba-TWE for the
combined test-train split. For the test-train split, this performance gap was even
larger, with k-shapes averaging 0.136 ARI and 0.119 AMI worse than k-means-
ba-TWE. Furthermore, when compared to all of the Elastic Barycentre Average
k-means clusterers and PAM clusterers, k-shapes never ranked among the top four
cliques.

However, achieving superior clustering performance with the best-performing
PAM and Elastic Barycentre Average k-means clusterers comes at a significant
computational cost. We have demonstrated that PAM and the Elastic Barycentre
Average are orders of magnitude slower than k-shapes and k-means-Euclidean.

A substantial portion of the computational time for Elastic Barycentre Average
k-means clusterers is due to the Elastic Barycentre Average computation. This is
illustrated in Figure 8.1, which presents the FitTime CD diagram comparing various
Lloyd’s-based algorithms that differ only in their centroid computation methods
(e.g., medoids, arithmetic mean for k-means, and the Elastic Barycentre Average
for k-means-ba).

The computational complexity of the Elastic Barycentre Average significantly
limits its practicality for real-world clustering applications. Therefore, in this
chapter, we aim to develop a faster version of the Elastic Barycentre Average and
build a clusterer around it, enabling it to achieve state-of-the-art accuracy while
being significantly less computationally expensive. Moreover, this new approach
will be customisable to meet practitioners’ specific needs for runtime efficiency and

clustering performance.

8.2 Stochastic Subgradient Elastic Barycentre Average 281

151413121110 9 8 7 6 5 4 3 2 1
Ledadabalabalaly Lol daladal
k-means-ba-dtw 13:383° L 38458 gJlternate-dtw
k-means-ba-twe -13:9280 41308 Jlternate-wdtw
k-means-ba-wdtw 123327 | L 49065 3lternate-adtw
k-means-twe —2:8972 L 53692 Jlternate-msm
k-means-ba-msm —2:8318 64206 |_means-msm
k-means-ba-adtw —2:3%81 65140 k_means-wdtw
k-means-dtw —8:8393 67664 3lternate-twe
69252 |-means-adtw

Fig. 8.1 CD diagram for the FitTime of Lloyd’s-based clusterers with different
centroid computation algorithms over the UCR archive using the test-train split.
Missing datasets are outlined in Table A.36.

8.2 Stochastic Subgradient Elastic Barycentre Aver-
age

The Stochastic Subgradient Dynamic Barycentre Average (SSG-DBA) [108] shares
similarities with DBA, as both methods attempt to compute a subgradient. Sub-
gradient methods are a form of nonsmooth optimisation [7] that operate similarly
to gradient descent but replace the gradient with a subgradient. As discussed in
Section 2.4.7, DTW (and, similarly, other elastic distances) is not differentiable
everywhere, which prevents the use of gradient descent. Consequently, subgradient
methods provide a generalisation of the gradient under mild conditions that hold
for the Fréchet function [108].

The primary difference between SSG-DBA and DBA lies in their optimisation
approach: DBA is a batch optimisation method, whereas SSG-DBA is a stochastic
optimisation method. DBA computes an exact subgradient based on all the time
series in the collection, while SSG-DBA estimates the subgradient using a single
randomly selected time series from the collection. As a result, SSG-DBA updates

the current barycentre at every iteration, whereas DBA only updates the barycentre

8.2 Stochastic Subgradient Elastic Barycentre Average 282

average after completing a full pass through the collection of time series. Con-
sequently, after processing the entire collection, SSG-DBA performs n updates,
whereas DBA performs a single update [108].

Since SSG-DBA updates the average n times within a single iteration, it con-
verges to a solution that satisfies the necessary conditions more rapidly than DBA.
Like DBA, SSG-DBA is a heuristic method that approximates the optimal solu-
tion, meaning its estimation may differ from that of DBA. However, SSG-DBA
satisfies the local minimisation criterion of the Fréchet function, which ensures its
convergence [108].

To begin, we propose an adaptation to the SSG-DBA algorithm in the same way
we previously adapted DBA in Chapter 7: replace the DTW alignment path with
any other elastic distance that computes a complete warping path. Algorithm 37
and Algorithm 38 present the Elastic SSG Barycentre Average.

Algorithm 37 closely resembles the Elastic Barycentre Average shown in Algo-
rithm 35. Many lines of code are identical to those explained in Section 7.2, so we
will focus only on the new lines introduced for the Elastic SSG Barycentre Average.

Algorithm 37 requires two additional parameters that were not needed for the
Elastic Barycentre Average: initial_step_size and end_step_size. These parame-
ters control the gradient descent rate. The initial_step_size is the starting step size
for the gradient. On line 3, a new variable, current_step_size, is defined and set to
the value of initial_step_size. This variable tracks the current gradient descent size.
The refinement iteration begins on line 4. For clarity, we refer to the iterations in
Algorithm 37 as “refinement iterations” and the iterations in Algorithm 38 as the
“update iterations."

Within the refinement iteration, a new conditional step is introduced on lines
5 to 8, controlling the reduction of the gradient size within the update iteration in
Algorithm 38. If it is the first refinement iteration, the variable step_size_reduction

is set to linearly decrease the gradient size from initial_step_size to end_step_size

8.2 Stochastic Subgradient Elastic Barycentre Average 283

over the course of the n update iterations. For subsequent refinement iterations,
step_size_reduction is set to 0 since the step size has already reduced to end_step_size.

Next, the elastic_ssg_barycentre_update tunction is called to perform the Elas-
tic SSG Barycentre update iterations on line 9. It takes four parameters: barycentre
(the current barycentre), X (the current dataset of time series), current_step_size
(the starting gradient descent size), and step_size_reduction (which controls how
much the current_step_size is reduced during each iteration). Once the
elastic_ssg_barycentre_update completes, two variables are returned: the up-
dated barycentre and the current_step_size. After the first set of update iterations,
current_step_size will be equal to end_step_size and will remain at this value for
the rest of the algorithm’s execution.

Beyond this, the algorithm functions the same way as the Elastic Barycentre
Average. The refinement iterations will continue until max_iters is reached, and
once completed, the Elastic SSG Barycentre Average is returned. We will now
outline the elastic_ssg_barycentre_update algorithm in Algorithm 38.

Algorithm 38 presents the procedure to iteratively update the Elastic SSG
Barycentre Average for one pass through the dataset X. The process begins by
setting new_barycentre to the initial barycentre, barycentre (line 1), and starting
the iteration from 1 to n (line 2). A random time series, not previously selected, is
chosen from the dataset X (line 3). Using the randomly selected time series, the cost
matrix and alignment path are computed using a elastic distance that generates a
complete warping path (lines 4 and 5). A temporary barycentre, temp_barycentre,
is then created to store the intermediate results (line 6).

The generated alignment path is then used to update the barycentre. The jth
time point in the random_time_series is subtracted from the kth time point in the
new_barycentre, and the result is assigned to the kth time point in temp_barycentre

(line 8).

8.2 Stochastic Subgradient Elastic Barycentre Average 284

Algorithm 37: elastic_ssg_barycentre(X, max_iters, tol,
initial_step_size, end_step_size)

Input: X (Dataset of time series of length n. Each time series is of length
m), max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold),
initial_step_size (Initial step size), end_step_size (End step size)

Output: Elastic SSG Barycentre Average of X for a given elastic distance

1 barycentre < mean(X)

2 previous_dist <— oo

3 current_step_size < initial_step_size
4 for i < 1 to max_iters do

5 if i == [then

6 L step_size_reduction <— (initial _step_size — end_step_size)/n
7 else

8 L step_size_reduction < (0

9 barycentre,current_step_size <

elastic_ssg_barycentre_update(barycentre,X ,current_step_size, step_size_reduction)
10 curr_distance < 0

11 for each time series curr_ts in X do
12 curr_distance <
curr_distance + elastic_distance(barycentre,curr_ts)
13 if |previous_dist — curr_distance| < tol then
14 | break
15 previous_dist < curr_distance

16 return barycentre

Once all alignments have been processed, a new_barycentre is created by mul-
tiplying temp_barycentre by 2.0 x current_step_size (line 9). As the algorithm
progresses, current_step_size gradually decreases, causing the new_barycentre to
change by progressively smaller amounts with each iteration. Finally, current_step_size
is reduced by the value of step_size_reduction (line 10). The update iteration re-
peats until all time series have been processed (in a random order). Once complete,

the algorithm returns the updated new_barycentre and current_step_size (line 11).

8.3 Elastic SSG Barycentre analysis 285

Algorithm 38: elastic_ssg_barycentre_update(barycentre, X,
current_step_size, step_size_reduction)

Input: barycentre (Current estimate of barycentre), X (Dataset of time
series of length n. Each time series is of length m),
current_step_size (Step-size for the subgradient descent),
step_size_reduction (Amount current_step_size should reduce by
each iteration)

Output: Updated Elastic SSG Barycentre and the current_step_size after

reductions.
1 new_barycentre <— barycentre
2 fori< 1tondo
3 random_time_series <— choose a random time series from X (not
already selected)
CM <« elastic_distance_CM (barycentre,random_time_series)
alignment _path < optimal_warping_path(CM)
Initialise temp_barycentre as a zeros array of size m.
for each pair of indices (j,k) in alignment_path do
temp_barycentrek] < temp_barycentrelk] +
L (new_barycentre[k] — random_time_series|[j|)

e N & un A

9 new_barycentre < (2.0 X current_step_size) X temp_barycentre
10 current _step_size <— current_step_size — step_size_reduction

11 return new_barycentre,current_step_size

8.3 Elastic SSG Barycentre analysis

Figure 8.2 presents the Elastic SSG Barycentre Averages for 10 different elastic
distances applied to class 1 of the GunPoint dataset. For reference, the arithmetic
mean is also included (in red).

Similar to the Elastic Barycentre Average, it is noteworthy how distinct each
Elastic SSG Barycentre is from one another depending on the elastic distance used.
However, when compared to the Elastic Barycentre Averages for the same data
shown in Figure 7.1, the barycentres produced by the Elastic SSG method are very
similar. The global structures are nearly identical for most elastic distances, with
the exception of SSG-BA-DDTW (turquoise line), which deviates significantly

from the Elastic Barycentre DDTW Average.

8.3 Elastic SSG Barycentre analysis 286

The key difference between the Elastic SSG Barycentre Average and the Elastic
Barycentre Average lies in the local structures. For instance, in the case of SSG-
BA-TWE (yellow line), the peak is much more pronounced compared to BA-TWE
in Figure 7.1. Additionally, more local fluctuations are evident in all the Elastic
SSG Barycentre Averages. This is likely due to the Elastic SSG Barycentre Average
updating the barycentre at each iteration, whereas the Elastic Barycentre Average
updates the barycentre only once after all update iterations have been completed.

Additionally, we recorded the number of iterations required for each Elastic
Barycentre Average and Elastic SSG Barycentre Average to converge when produc-
ing an average for GunPoint class 1. The convergence criterion was either reaching
the maximum number of iterations or satisfying the early stopping condition, where
the barycentre change between iterations was less than tol. Table 8.1 presents the
number of iterations taken by each averaging technique to converge.

We observed that the Elastic SSG Barycentre Average required fewer iterations
to converge across all distances compared to the Elastic Barycentre Average. For
some distances, such as DTW, WDTW, DDTW, and WDDTW, the difference was
particularly significant. This indicates that similar Elastic Barycentre Averages can

be produced with much less computational effort.

Distance SSG-BA Iterations | BA Iterations
DTW 8 184
ADTW 5 2
WDTW 8 21
DDTW 10 500
WDDTW 5 500
Shape DTW 3 11
Soft DTW 2 3
ERP 2 3
MSM 2 3
TWE 2 3
Average 4.7 123

Table 8.1 Number of Iterations for SSG-BA and BA to produce the barycentres in
Figure 8.2 and 7.1 respectively. The maximum number of iterations was set to 500.

8.3 Elastic SSG Barycentre analysis

287

GunPoint dataset class 1

Mean Average

)

SSG-BA-DTW

80

120

&0

SSG-BA-ADTW

50

60

SSG-BA-WDTW

80

60

SSG-BA-DDTW

50

120

60

SSG-BA-WDDTW

80

120

&0

SSG-BA-Shape-DTW

50

60

SSG-BA-Soft-DTW

80

60

SSG-BA-ERP

50

120

60

SSG-BA-MSM

80

120

&0

SSG-BA-TWE

)

Fig. 8.2 Different Elastic SSG Barycentre Averages for GunPoint class 1.

8.4 The KESBA clustering algorithm 288

8.4 The KESBA clustering algorithm

We now propose the k-means (K) end-to-end elastic (E) stochastic subgradient (S)
Barycentre (B) Average (A) (KESBA) clustering algorithm. The goal of KESBA
is to deliver competitive clustering performance comparable to the newly identi-
fied state-of-the-art TSCL algorithms, while significantly reducing computational
runtime.

KESBA is built around the Elastic SSG Barycentre Average proposed previously.
Previous work has shown that SSG-DBA converges much faster than the traditional
DBA while producing similar results [108]. In Section 8.3, we demonstrated that
the adapted Elastic SSG Barycentre Average shares these characteristics, producing
a similar average to the Elastic Barycentre Average but with significantly less
iterations required.

However, integrating the Elastic SSG Barycentre Average into Lloyd’s algorithm
requires specific updates to be made. While the speed-up provided by the Elastic
SSG Barycentre Average is substantial, we introduce additional optimisations to
enhance the algorithm’s speed and scalability further.

Algorithm 39 outlines the KESBA clustering algorithm. We will now provide a
detailed explanation of all the enhancements we have made to Lloyd’s algorithm to

make the KESBA clustering algorithm as fast and scalable as possible.

8.4 The KESBA clustering algorithm 289

Algorithm 39: KESBA (X, k, max_iters, ba_subset_size, window,
initial_step_size, end_step_size)

Input: X (Dataset of time series of length n), K (Number of clusters),
max_iters (Maximum number of iterations before forced
termination), ba_subset_size (Percentage of time series to use each
iteration of Random Subset Elastic SSG Barycentre Average),
window (Sakoe-chiba bounding window for distance computation.),
initial_step_size (Initial SSG step size.), end_step_size (End SSG
step size.)

Output: Assignment of each time series to a cluster

1 centres < elastic_kmeans_plus_plus(X,k,window)
2 Let assignments be an empty array of length n

3 Let prev_assignments be an empty array of length n
4 for j < 1 to max_iters do

5 for each time series x; in X do
6 Compute the distance between x; and each of the k centres using the
window as a parameter
7 Assign x; to the nearest centre
8 if prev_assignment == assignment then
9 L break
10 if any cluster has no assignments then
11 repeat
12 for each cluster c; in centres do
13 if cluster c; has no assignments then
14 Set best_candidate to the time series that reduces
inertia the most and is not currently a centroid
15 cj < best_candidate
16 Recompute cluster assignments
17 until every cluster has at least one assignment,
18 for each centre cj in centres do
19 Update c; to be the Random Subset Elastic SSG Barycentre
Average of the time series assigned to cluster c;
20 prev_assignments <— assignments

21 return assignments

8.4 The KESBA clustering algorithm 290

8.4.1 Random Subset Elastic SSG Barycentre Average

The first and most significant modification we apply to Lloyd’s algorithm is the
development of a faster Elastic SSG Barycentre Average, which we call the Random
Subset Elastic SSG Barycentre Average, specifically designed for KESBA. This
method incorporates optimisations inspired by CLARA and CLARANS to reduce
the algorithm’s runtime.

At a high level, the Random Subset Elastic SSG Barycentre Average computes
the Elastic SSG Barycentre Average on a random subset of the data selected during
each refinement iteration. This strategy produces a similar average but significantly
reduces the computational cost compared to the full Elastic Barycentre Average.
The Random Subset Elastic SSG Barycentre Average is applied in line 19 of the
KESBA algorithm, as shown in Algorithm 39.

Algorithm 40 introduces the Random Subset Elastic SSG Barycentre Average,
which adds a new parameter compared to the standard Elastic SSG Barycentre
Average: ba_subset_size. This parameter, set between 0 and 1, controls the per-
centage of the dataset used in each refinement iteration. A value of 1 will use all
of the data whereas a value of 0.5 will use 50% of the data. During each iteration,
a random subset of the dataset is selected to update the current barycentre, with
ba_subset_size determining the number of time series included in the subset.

The ba_subset_size parameter gives practitioners the ability to balance runtime
with the quality of the computed barycentre. Our hypothesis is that a higher value
will improve the quality of the average but increase runtime, whereas a lower
value will reduce runtime at the potential cost of average quality. However, as
we will demonstrate in Section 8.7, we find that a lower ba_subset_size not only
significantly reduces runtime but also improves KESBA’s overall performance.

In Algorithm 40, the ba_subset_size parameter is applied on line 4 to calculate

the number of time series used in each refinement iteration, stored as num_ts_to_use.

8.4 The KESBA clustering algorithm 291

This value is rounded to determine the exact number of instances selected for
each iteration. For example, if ba_subset_size is set to 0.2 for a dataset with 100
instances, 20 instances will be randomly chosen for each refinement iteration.

To ensure sufficient data is used for the barycentre computation, we set a
minimum of 10 instances (or n if the cluster has fewer than 10 instances) and
a maximum of n to be used. This is necessary because Lloyd’s algorithm can
produce both very large and very small clusters. If a small cluster of only 10
instances is passed to the Random Subset Elastic SSG Barycentre function with
ba_subset_size set to 0.2, only two time series would be selected, leading to a
poor-quality barycentre. Setting a minimum ensures enough data is used to produce
a more reliable barycentre.

Next, on line 7, the step_size_reduction variable is adjusted based on the
num_ts_to_use variable, as this dictates the number of iterations over which the
step size must reduce to end_step_size. Then, on line 10, num_ts_to_use time
series are randomly selected from the dataset X, ensuring both selection and order
are randomised. These time series are passed to the random_subset _elastic_
ssg_barycentre_update function on line 11.

The remainder of the algorithm follows the Elastic SSG Barycentre Average.
On line 14, although only a random subset of the dataset is used to update the
barycentre, all time series are included when computing the total distance to the
barycentre. This ensures a consistent measure of total distance across iterations,
allowing for reliable convergence checks.

Algorithm 41 presents the update function for the Random Subset Elastic SSG
Barycentre. The primary difference from the original Elastic SSG Barycentre update
function is the inclusion of a random subset of X, denoted as random_subset_X,
which is passed as a parameter. Because this subset is already randomised, the
logic for shuffling the sequence has been removed, simplifying the function and

improving efficiency compared to the original.

8.4 The KESBA clustering algorithm 292

Algorithm 40: random_subset_elastic_ssg_barycentre(X, max_iters, tol,
initial_step_size, end_step_size, ba_subset_size)

Input: X (Dataset of n time series. Each time series is of length m),
max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold),
initial_step_size (Initial step size), end_step_size (End step size),
ba_subset_size (Percentage of time series to use for an update
iteration)

Output: Random Subset Elastic SSG Barycentre Average of X for a given

elastic distance
1 barycentre < mean(X)
2 previous_dist <— oo
3 current_step_size < initial_step_size
4 num_ts_to_use < min(n,max (10, (ba_subset_size X n)))
5 for i < 1 to max_iters do
6 if i ==1 then
7 L step_size_reduction <—

(initial_step_size — end_step_size) /num_ts_to_use

8 else
9 L step_size_reduction < 0
10 Let random_subset_X be an array of num_ts_to_use randomly
selected time series from X.
11 barycentre,current_step_size <—

random_subset_elastic_ssg_barycentre_update(barycentre,random_subset_X
current_step_size, step_size_reduction)

12 curr_distance + 0
13 for each time series curr_ts in X do
14 curr_distance <
curr_distance + elastic_distance(barycentre,curr_ts)
15 if |previous_dist — curr_distance| < tol then
16 | break
17 previous_dist < curr_distance

18 return barycentre

In Section 8.7, we conduct an extensive evaluation of the ba_subset_size pa-
rameter and its impact on clustering performance and runtime for KESBA. While
we recommend a default value between 0.4 and 0.5, we encourage practitioners

to adjust this parameter based on their specific computational runtime needs. Our

8.4 The KESBA clustering algorithm 293

Algorithm 41: random_subset_elastic_ssg_barycentre_update(barycentre,
random_subset_X, current_step_size, step_size_reduction)

Input: barycentre (Current estimate of barycentre), random_subset_X
(Dataset of randomly selected time series of size n. Each time series
is of length m), current_step_size (Step size for the subgradient
descent), step_size_reduction (Amount by which
current_step_size should reduce each iteration)

Output: Updated Random Subset Elastic SSG Barycentre and the

current_step_size after reductions
1 new_barycentre <— barycentre
2 for each time series random_time_series in random_subset_X do
3 CM <« elastic_distance_CM (new_barycentre,random_time_series)
alignment _path < optimal_warping_path(CM)
Initialise temp_barycentre as a zero array of size m.
for each pair of indices (j,k) in alignment_path do
temp_barycentrelk| < temp_barycentrelk| +
L (new_barycentre[k] — random_time_series|j|)

4
5
6
7

8 new_barycentre <
new_barycentre — (2.0 X current_step_size) X temp_barycentre
9 current_step_size <— current_step_size — step_size_reduction

10 return new_barycentre,current_step_size

evaluation in Section 8.7 is intended to provide practitioners with the necessary

insights to make informed decisions tailored to their requirements.

8.4.2 [Elastic k-means++ initialisation

One of the most significant computational improvements we introduce for KESBA
is the adaptation of k-means++ to work with elastic distances, specifically TWE and
MSM. While we have found instances of k-means++ being used with DTW in the
open-source TSCL community [118], we were unable to locate any literature that
evaluates its performance with elastic distances. Therefore, we believe we are the
first to integrate and systematically evaluate k-means++ with any elastic distances.

k-means++ [6] is widely regarded as one of the most popular and recommended
methods for cluster initialisation in traditional clustering literature [17]. However,

as shown in Chapter 4, k-means++ performs worse than Forgy, Random with 10

8.4 The KESBA clustering algorithm 294

restarts, and Forgy with 10 restarts for time series data. We hypothesise that this is
because k-means++ relies heavily on the Euclidean distance to measure similarity
between time series. As demonstrated through numerous experiments in this thesis,
the Euclidean distance is not a suitable distance measure for TSCL. In contrast,
elastic distances have proven to be significantly more effective. Therefore, we
hypothesise that incorporating elastic distances into k-means++ could substantially
improve the initial centroids, providing a viable alternative to Forgy with 10 restarts.

In the literature, the only reference we found to k-means++ with an elastic
distance (specifically DTW) was in the tslearn open-source repository [118]. Addi-
tionally, we were unable to find any evaluations of the impact of using k-means++
with elastic distances. While we do not conduct a review of initialisation methods,
we do compare k-means++ with elastic distances against Forgy with restarts.

Our results show that k-means++ with an elastic distance achieves clustering
performance comparable to Forgy with 10 restarts, while significantly reducing run-
time—by a factor of 10—since no restarts are required. This is because k-means++
avoids local optima more effectively than random initialisation strategies [17],
eliminating the need for multiple restarts. Although computing the initial centroids
using k-means++ is more expensive than using Forgy, the centroids selected by
k-means++ are theoretically “better,” meaning that Lloyd’s algorithm requires fewer
iterations to converge [17]. Thus, the initial cost of k-means++ is offset by the
reduced number of distance computations needed for convergence. Overall, elastic
k-means++ offers a significant reduction in computational time while delivering
clustering performance similar to Forgy with 10 restarts.

Algorithm 42 presents the Elastic k-means++ algorithm. This algorithm is
identical to that proposed by [6], but it uses an elastic distance in place of the
squared Euclidean distance. The Elastic k-means++ algorithm is used on line 1 of

the KESBA algorithm shown in Algorithm 39.

8.4 The KESBA clustering algorithm 295

Algorithm 42: elastic_kmeans_plus_plus(X, n_clusters)

BN - N7 T w

®

10

11

12
13

14

15
16

Input: X (Dataset of n time series, each of length m),

n_clusters (Number of clusters)

Output: centers (Array of initial cluster centers)

Select a random initial center index initial_center_idx from {1,2,...,n}

Initialise indexes as a list containing initial _center_idx

Compute min_distances as the elastic distances between each time series in
X and X [initial _center_idx]

for k =2 to n_clusters do

total_distance < 0

fori=1tondo
L total_distance = total_distance + min_distanceli]

Let probabilities be an array of zeros of length n
fori=1tondo
L probabilitiesi| < min_distancesli|/total_distance

Randomly select the next centroid index next_center_idx from
{1,2,...,n} with the weighted probability distribution probabilities
Append next_center_idx to indexes
Compute distances_new_center as the distances between each time
series in X and X [next_center_idx| using the elastic distance
min_distances[i] <— min(min_distancesli|,distances_new_center|i))

centers < X |indexes]
return centers

Overall, Elastic k-means++ will be shown to achieve clustering performance

comparable to Forgy with 10 restarts, but without the need for restarts, resulting in

significantly reduced computational runtime. In Section 8.7, we show that while

Elastic k-means++ is slightly outranked by Forgy with 10 restarts, the difference is

not statistically significant. Moreover, the runtime savings are substantial—over

eight times faster than Forgy with 10 restarts—making it a worthwhile trade-off

between a minimal reduction in clustering performance and significantly faster

runtimes.

8.4 The KESBA clustering algorithm 296

8.4.3 Lloyd’s-stopping condition

In Section 4.6, we defined a convergence criteria for Lloyd’s algorithm as measuring
the change in inertia between iterations. If the change in inertia falls below the
threshold rol, the algorithm is considered to have converged.

However, when using the Random Subset Elastic SSG Barycentre Average
within the k-means algorithm, measuring inertia change between iterations is no
longer applicable. This is because every time the Random Subset Elastic SSG
Barycentre Average computes the average of a collection (or cluster) of time series,
a different barycentre average is produced, even if the same time series are used.
This variability is due to the random order and random subset of data that the
Random Subset Elastic SSG Barycentre Average iteratively refines. As a result, the
inertia of the same set of time series will almost always differ between iterations,
causing the inertia to change even when the assignments remain unchanged. This
means measuring change in inertia between iterations is no longer an accurate way
to measure convergence.

One potential solution is to set the tol parameter higher. However, it is difficult
to determine a value that is high enough to account for the random inertia changes
caused by the Random Subset Elastic SSG Barycentre Average, yet low enough
to prevent premature convergence. Therefore, instead of relying on inertia which
is relative to the centroids, we measure the change in assignments to each cluster
between iterations. If the assignments do not change, the algorithm is considered to
have converged. This is demonstrated in Algorithm 39 on lines 8 and 9.

In Chapter 4, we noted that using a convergence condition based on unchanged
assignments between iterations could significantly increase runtime. However, due

to the other optimisations implemented in KESBA, this trade-off is acceptable.

8.4 The KESBA clustering algorithm 297

8.4.4 Increased iterations

In Chapter 4, we discussed the max_iters parameter for Lloyd’s algorithm, suggest-
ing a default value of 50 for all experiments in this thesis. We noted with unlimited
computational resources we would set this value higher. However, when using
Forgy initialisation with 10 restarts, as we have done throughout this thesis, we had
to carefully balance the number of iterations to ensure sufficient convergence while
allowing the algorithms to finish within our seven-day runtime limit.

However, for KESBA, the optimisations we implemented allow the algorithm to
afford a higher maximum number of iterations without exceeding the runtime limit.
Typically, as dataset size and the number of clusters increase, Lloyd’s algorithm
requires more iterations to converge. In Chapter 4, we demonstrated that while 50
iterations were sufficient for most datasets in the UCR archive, some of the larger
datasets did exceed this limit. Since KESBA is designed for very large datasets,
it is appropriate to significantly increase the max_iters value to 300 by default to
ensure convergence, even for datasets much larger than those in the UCR archive.
For many datasets in the UCR archive, we do not expect to approach this number of
iterations, and the larger value is set to provide redundancy for the largest datasets.

For the same reason, we can also increase the max_iters parameter for the Ran-
dom Subset Elastic SSG Barycentre Average. We set max_iters for this averaging
technique to 300. Again, while we do not expect most datasets to reach this number
of iterations, the higher limit is set for redundancy.

Although increasing the number of iterations may lead to longer runtimes, the
optimisations made to KESBA make this an acceptable trade-off, providing a more
scalable algorithm for even the largest datasets. The max_iters for both the Lloyd’s
iteration and Random Subset Elastic SSG Barycentre Average is provided as a

parameter to the KESBA algorithm.

8.5 KESBA cluster configuration 298

8.4.5 Sakoe-Chiba bounding window

The final optimisation we propose is the use of a Sakoe-Chiba bounding window.
The same Sakoe-chiba bounding window is used for every elastic distance computa-
tion within the KESBA. This includes within k-means++, the assignment stage, the
empty cluster stage and the averaging stage. This greatly reduces the computational
cost of using a elastic distance.

While the Sakoe-Chiba bounding window has been used in the assignment
phase of Lloyd’s algorithm [118], we have found no examples of it being used with
a barycentre average. A large portion of the computation time for the KESBA is
within the Random Subset Elastic SSG Barycentre Average. Specifically computing
the elastic cost matrix (line 3 in Algorithm 41).

However, it is a non trivial task to set a value for the bounding window. As
such in Section 8.7 we conduct extensive experiments aimed at identifying a value
that strikes the best balance between computational efficiency and maintaining the
algorithm’s strong clustering performance. This will provide practitioners with
a window size that maximises performance benefits while preserving clustering

quality.

8.5 KESBA cluster configuration

KESBA is designed to be versatile, giving practitioners full control over balancing
runtime and clustering performance. We recommend that practitioners primarily
parameterise KESBA based on their specific runtime requirements. However, we
provide default KESBA parameters that strike a balance between computational
efficiency and clustering quality.

Table 8.2 presents our recommended default parameters. While these serve

as a starting point, we strongly suggest practitioners consult our detailed KESBA

8.5 KESBA cluster configuration 299

tuning experiments in Section 8.7. These experiments are not intended to optimise
clustering performance, but to demonstrate how adjusting KESBA’s parameters
can influence both runtime and performance. This should help practitioners make
informed decisions by illustrating the impact each parameter has on computational
time and clustering quality.

For our KESBA experiments, we have chosen two elastic distances: TWE and
MSM. TWE is selected because of its consistent performance in both the PAM and
Elastic Barycentre Averaging experiments. However, as highlighted throughout this
thesis, TWE is also one of the most computationally expensive elastic distances.
To balance this, we include MSM, which also performs well in the PAM and
Elastic Barycentre Averaging experiments but is generally much faster than TWE.
These two distances should illustrate how the choice of elastic distance affects
both clustering and runtime performance in KESBA. Practitioners may opt for any

elastic distance that computes a complete optimal alignment path, as outlined in

Chapter 7.

max_iters | ba_subset_size | window | init_algo distance
KESBA-TWE | 300 0.4 0.4 TWE-k-means++ | TWE
KESBA-MSM | 300 0.5 0.5 MSM-k-means++ | MSM

Table 8.2 Default parameters for KESBA.

Table 8.3 shows the default parameters for the Random Subset Elastic SSG
Barycentre Average used across all KESBA clusterers and experiments. We follow
the default parameters suggested by [108] for the initial and final step sizes. The
window and ba_subset_size parameters are excluded from this table, as they vary
depending on the specific KESBA configuration. For example, in the KESBA-TWE
configuration, a window size of 0.4 and a ba_subset_size of 0.4 would be used for

the Random Subset Elastic SSG Barycentre Average.

8.6 KESBA experiment 300

tol max_iters | initial_step_size | end_step_size

1x107° | 300 0.005 0.05

Table 8.3 KESBA Random Subset Elastic SSG Barycentre Average parameters

8.6 KESBA experiment

8.6.1 Combined Test-Train Split

Figure 8.7 presents the CD diagrams for KESBA, compared to the baseline and
state-of-the-art clusterers identified in this thesis. For every evaluation metric, both
KESBA-TWE and KESBA-MSM are consistently ranked in the top clique. For
AMI and NMI, KESBA-MSM and KESBA-TWE achieve nearly identical rank-
ings. However, for ARI and CLACC, KESBA-TWE performs slightly better than
KESBA-MSM. While neither KESBA variant outperforms their Elastic Barycentre
Average counterparts, k-means-ba-TWE and k-means-ba-MSM, they come very
close in all evaluation metrics except ARI, where the Elastic Barycentre Average
demonstrates considerably better performance. Additionally, for AMI, CLACC
and NMI KESBA is significantly better than k-shapes, although for ARI, k-shapes
narrowly makes it into the top clique.

Looking at the raw average scores in Table 8.4, the difference between KESBA-
MSM and KESBA-TWE is minimal, with KESBA-TWE achieving slightly higher
average scores across all evaluation metrics, though the margin is small. KESBA-
MSM shows similar average scores to k-means-ba-MSM, except for CLACC, where
k-means-ba-MSM performs noticeably better. However, k-means-ba-TWE appears
stronger than KESBA-TWE in terms of average score, particularly for ARI and
CLACC.

In Figure 8.8, we directly compare KESBA to its Elastic Barycentre Average k-

means counterpart for ARI. KESBA-TWE and k-means-ba-TWE perform similarly,

8.6 KESBA experiment

301

7.1619
6.3286

4.7762
5.0667

k-means-euclidean
k-sc

5.8429 5.0952

k-shapes

k-means-ba-dtw —2:3857

5.1143

pam_twe 5.1143 5.1143

Fig. 8.3 AMI

0 9 8 7 6 5 4 3 2 1

7.0429

k-means-euclidean

k-sc 59619

5.6667

k-shapes

k-means-ba-dtw —2:4762

5.4667

kesba-msm

Fig. 8.5 CLACC

k-means-ba-msm
pam-msm
k-means-ba-twe
kesba-msm
kesba-twe

pam-msm
k-means-ba-msm
k-means-ba-twe
pam-twe
kesba-twe

k-means-euclidean
k-sc

k-shapes
kesba-msm
k-means-ba-dtw

k-means-euclidean
k-sc

k-shapes
k-means-ba-dtw
kesba-twe

7.1429
6.3476

5.8333

5.4381

5.3524

0 9 8 7 6 5 4 3 2 1

7.1143
6.3571

5.8238

5.3714

5.1810

Fig. 8.6 NMI

Fig. 8.7 CD diagrams of KESBA experiment over 105 datasets from the UCR
archive using the combined test-train split. Missing datasets are outlined in Ta-

ble A.37.
ARI | AMI | CLAcc | NMI | RI
k-means-ba-dtw 0.255 | 0.301 | 0.571 0.326 | 0.709
k-means-ba-msm | 0.255 | 0.306 | 0.573 0.328 | 0.706
k-means-ba-twe 0.273 | 0.315 | 0.583 | 0.338 | 0.713
k-means-euclidean | 0.199 | 0.248 | 0.522 | 0.274 | 0.690
k-sc 0.215 | 0.259 | 0.543 | 0.281 | 0.660
k-shapes 0.231 | 0.288 | 0.555 | 0.310 | 0.700
kesba-msm 0.253 | 0.303 | 0.566 0.325 | 0.705
kesba-twe 0.255 | 0.306 | 0.570 | 0.328 | 0.702
pam-msm 0.267 | 0.312 | 0.582 | 0.334 | 0.714
pam-twe 0.274 | 0.317 | 0.588 | 0.340 | 0.717

Table 8.4 Summary of average score across multiple evaluation metrics over 105
datasets from the UCR archive using the combined test-train split.

with k-means-ba-TWE winning 51 datasets and KESBA-TWE winning 49. The

gap is slightly larger for KESBA-MSM and k-means-ba-MSM, where k-means-ba-

MSM wins on 55 datasets compared to KESBA-MSM’s 44. In both cases, KESBA’s

k-means-ba-msm
k-means-ba-twe
pam-msm
pam-twe
kesba-twe

k-means-ba-msm
pam-msm
k-means-ba-twe
pam-twe
kesba-msm

k-means-ba-twe ARI
(mean: 0.2726)

(a) KESBA-TWE compared to k-means-ba-TWE

0.8 1

o
o
L

o
IS
L

8.6 KESBA experiment 302

wins are by small margins, suggesting that even with optimisations that reduce the
amount of data used in the averaging phase, KESBA still performs comparably
across most datasets. Overall, this comparison indicates that KESBA offers a viable
alternative to the Elastic Barycentre Average, delivering very similar results while

being significantly faster.

Fig. 8.8 KESBA-TWE and KESBA-MSM results compared directly to k-means-ba-
TWE and k-means-ba-MSM, respectively, for ARI over 105 datasets from the UCR
archive using the combined test-train split.

We have demonstrated that KESBA’s clustering performance is not significantly
different from its Elastic Barycentre Averaging counterpart, and it remains competi-
tive with the best-performing PAM clusterers. KESBA achieves this while having
a significantly lower runtime than both PAM and the Elastic Barycentre Average
clusterers. Figure 8.9 presents the relative FitTime violin plots, illustrating that
KESBA is consistently and significantly faster than its Elastic Barycentre Average
counterparts.

To further showcase KESBA’s FitTime superiority, we analysed the values

used to construct the Violin plots in Figure 8.9. Table 8.5 presents the total, mean,

= o 1.0
k-means-ba-twe wins here k-means-ba-msm wins here . °
[51W, 5T, 49L] o [55W, 6T, 44L]
L]
.
. ° 0.8
L]
/ ’ /
. { E_C(o’ ®
° o =206 :
. L . ¢ ") ﬁ., o .
go EN S o o
o/ © o o
Y o ¢ Q 3 .
e . = e
. s . c S04 °
« c 2 ° / L4
)4 gE
° £ v ©
o ~ L%
.
[av®
D) .
o 1
N g
3 ol
-] » 5
kesba-twe wins here 0.04 ”',‘f:.'.' o ! kesba-msm wins here
[49W, 5T, 51L] 4 ! [44W, 6T, 55L]
1
T T T T - - - - - -
0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
kesba-twe ARI kesba-msm ARI
(mean: 0.2548) (meant 0.2529)
Wilcoxon test for equality of medians, p-value=0.087 Wilcoxon test for equality of medians, p-value=0.203
Paired t-test for equality of means, p-value=0.058 Paired t-test for equality of means, p-value=0.405

(b) KESBA-MSM compared to k-means-ba-MSM

8.6 KESBA experiment 303

A y: y: \\
y y. N “ |
1.0 L \ £ N f\ 1
. y N i [
4 N) i “\
081 ‘ ‘ \ / M
\ | | | \ / |
| | | | | [' [
| . | |
| |
.y . . M f c
o6 ||| / ‘ / \ | /
) \ \ [| 'l y yZ
‘\ ‘ 1 | I // \\ (€ /
4 ‘ . 4 \ i [;‘)
\ | A | | /
041 | | J M l \ |
) \“ H A ‘\ “
| “ I ’ ‘”
\) ‘ H ‘ I
\ / A\ i W/ |
0.2 \\ / A A 1 H
y N yZ Il
A il |/
| ¢) ¢) (| |
0.0 . ! . | | 4 H !
S £ & £ & B -
& < & < & & &
L N By N Y & <
N QG S \(g? N Q'o Q
& 2 &
N & ¥

Fig. 8.9 Relative FitTime violin plot comparison for KESBA, PAM and Elastic
Barycentre Average clusterers over 105 datasets from the UCR archive using the
combined test-train split.

median, and maximum runtimes in hours for each clusterer across 105 datasets.
While PAM exhibits faster overall total, mean, and median runtimes compared to
KESBA, KESBA-MSM recorded the fastest maximum runtime, with KESBA-TWE
following closely as the second fastest. This underscores KESBA’s key advantage:
its scalability.

Although KESBA'’s overall runtime statistics—such as total, mean, and me-
dian—are very similar to PAM, the maximum runtime statistic highlights PAM’s
scalability issue. While PAM performs well on smaller datasets, its runtime grows
exponentially due to the need to compute a pairwise distance matrix, which has
a time complexity of O(n?). This exponential growth, coupled with the high
computational cost of elastic distances, renders PAM impractical for larger datasets.

A clear example of KESBA'’s efficiency is its performance on the Crop dataset,
the largest dataset in the UCR archive with 240,000 unique time series instances.
Using the combined test-train split, KESBA-MSM completed the dataset in just 48

minutes, while KESBA-TWE finished in 69 minutes. In contrast, none of the PAM

8.6 KESBA experiment 304

clusterers using elastic distances were able to produce results for the Crop dataset
within the seven-day runtime limit. Given that PAM would require 288,000,000
unique elastic distance computations, its runtime becomes computationally infeasi-
ble. Although we do not know exactly how long PAM would take to complete, it is
evident that it would exceed 168 hours (and likely far more), whereas KESBA fin-
ishes in around one hour. This stark difference underscores the superior scalability
of KESBA compared to PAM.

Furthermore, if the Crop dataset had been included in the overall experiment,
KESBA would have achieved the lowest total, mean, median, and maximum

runtimes among all the clusterers considered.

Metric | k-means- k-means- kesba- kesba-twe | pam-msm | pam-twe
ba-msm ba-twe msm

Total 829.95 1193.84 386.71 485.61 321.15 391.54

Mean 7.90 11.37 3.68 4.62 3.06 3.73

Median | 0.33 0.62 0.17 0.12 0.07 0.12

Max 84.33 121.71 40.32 77.56 77.83 83.12

Table 8.5 Four FitTime statistics for completing clustering on 105 datasets from the
UCR archive using the combined test-train split. “Total” refers to the cumulative
hours required to process all datasets, “Mean” represents the average time taken
per dataset, “Median” is the midpoint time to complete a dataset, and “Max” is the
longest time taken to complete any single dataset.

Additionally, Figure 8.10 presents the CD diagram for the FitTime of our
KESBA experiment. KESBA-MSM ranks among the fastest clusterers, only sur-
passed by k-shapes and k-means-Euclidean. However, we have demonstrated
that KESBA’s performance is significantly better than both k-shapes and k-means-
Euclidean. Moreover, as we will show later in this chapter, practitioners can
further reduce KESBA’s runtime through its versatile set of parameters, while still

maintaining superior performance compared to k-shapes.

8.6 KESBA experiment 305

10 9 8 7 6 5 4 3 2 1
I 1 I 1 I 1 I 1 1 1 I 1 1 I 1 I
k-means-ba-dtw —2:9742 1.0000_ k_means-euclidean
k-means-ba-twe 81333 | L 29714 shapes
k-sc —&:2762 4609 Kesba-msm
pam-twe —&1810 49619 pam-msm
kesba-twe —8:9381 27524 |.means-ba-msm

Fig. 8.10 CD diagram for KESBA FitTime compared to other clusterers for 105
UCR archive datasets using the combined test-train split.

Finally, we compare KESBA’s performance to k-means-soft-DBA. Initially, we
excluded k-means-soft-DBA from our analysis because it failed to complete 27
datasets within the seven-day runtime limit. Including it would have significantly
reduced the quality of the evaluation. However, since k-means-soft-DBA has
achieved the best clustering performance of any method considered in this thesis,
we believe it is important to include in the comparison.

Figure 8.15 shows the CD diagram for KESBA, including k-means-soft-DBA,
over 84 datasets from the combined test-train split. When including k-means-soft-
DBA, KESBA falls out of the top clique for every evaluation metric except ARL
Given KESBA's significantly shorter runtime compared to k-means-soft-DBA, this
is still impressive. Overall, Figure 8.15 shows that for ARI, KESBA-TWE is not
significantly different from k-means-soft-DBA. However, for CLACC, AMI, and
NMI, both KESBA-TWE and KESBA-MSM are significantly different.

Overall, we have presented KESBA for the combined test-train split. KESBA
demonstrates state-of-the-art performance while requiring significantly less run-
time. Compared to the Elastic Barycentre Averaging k-means clusterer, KESBA is
considerably faster. While its runtime is comparable to PAM on small to medium-
sized UCR datasets, KESBA is orders of magnitude faster than PAM on very large

datasets, such as Crop, underscoring its scalability.

k-means-euclidean
k-sc

k-shapes
k-means-ba-dtw
kesba-msm

k-means-euclidean
k-sc

k-shapes
k-means-ba-dtw
kesba-msm

8.6 KESBA experiment

306

11 10 9 8 7 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1
[P O O AU AP PO AP PO A [| Lalalala]
L9762 | L4517 | means-soft-dba k-means-euclidean —:2%48 4.8571
7.1964 5.2202 pam'tWe k_Sc 7.1607 5.2024
6.6905 5.5714 kesba'twe k_shapes 6.5714 5.2976
6.1488 55774 | means-ba-twe k-means-ba-dtw 62143 5.3929
5.8214 5.5833 pam_msm kesba_msm 6.0833 5.5476
L 56726 |.means-ba-msm 5.7679

Fig. 8.11 AMI Fig. 8.12 ARI
11 10 9 8 7 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1
| I I T I I I A O A | | I T T I A N A O A |
19702 | L 47619 K means-soft-dba k-means-euclidean —1:232% 4.5119
6.6845 5.3690 pam'tWe k-SC 7.2440 5.1726
6.4048 53929 pam msm k-shapes —5:786 5.5655
6.2619 5398 _ | _means-ba-twe k-means-ba-dtw —£:11%0 5.5833
6.1607 5.7381 kesba'twe kesba_msm 5.8333 5.6607
L 35812 K means-ba-msm 5.6786

Fig. 8.13 CLACC Fig. 8.14 NMI

Fig. 8.15 CD diagrams of KESBA experiment with soft-DBA over 84 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined
in Table A.38.

8.6.2 Test-train split

Figure 8.20 presents the CD diagrams for KESBA compared to the baseline and

state-of-the-art clusterers outlined in this thesis, using the test-train split. Both

KESBA-TWE and KESBA-MSM appear in the top clique for AMI, ARI, and NMI.

However, for CLACC, KESBA-MSM and KESBA-TWE falls just short of the top
clique. Interestingly, KESBA-MSM consistently outperforms KESBA-TWE in the
test-train split, whereas, for the combined test-train split, KESBA-TWE generally
performed better. In our Elastic Barycentre Average experiments we also observe
that k-means-ba-MSM consistently outperforms k-means-ba-TWE for the test-train
split, so it is not surprising that the same pattern holds for KESBA. Overall, our
findings for the test-train split align closely with those from the combined test-train

split.

k-means-soft-dba
k-means-ba-twe
pam-twe
pam-msm
kesba-twe
k-means-ba-msm

k-means-soft-dba
pam-twe
pam-msm
k-means-ba-twe
k-means-ba-msm
kesba-twe

8.6 KESBA experiment

307

10 9 8 7 6 5 4 3 2 1
| I I I | I T |
k-means-euclidean 22750 45045
k-shapes —8704 4.7679
k'SC 6.2589 4.9509
k-means-ba-dtw —2:8438 4.9732
kesba-twe —3:1250 4.9955

Fig. 8.16 AMI

10

o
—

6.6786

4.3661

k-means-euclidean
k-shapes

6.5893

4.7946

k-means-ba-dtw —8:0%82

4.9241

5.9955

k-sc

5.0000

5.4420

kesba-twe

5.1116

Fig. 8.18 CLACC

pam-twe
k-means-ba-msm
pam-msm
k-means-ba-twe
kesba-msm

pam-twe
pam-msm
k-means-ba-twe
k-means-ba-msm
kesba-msm

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw
kesba-twe

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw
kesba-twe

7.1429
6.7054

6.1027

5.9062

5.0982 |

10

—-©

6.8036
6.7768

6.3348

5.8170

5.2054

Fig. 8.19 NMI

Fig. 8.20 CD diagrams of KESBA experiment over 112 datasets from the UCR
archive using the test-train split.

Figure 8.21 shows the CD diagram for KESBA'’s FitTime compared to other

clusterers. For the test-train split, KESBA-MSM achieves a higher average FitTime

rank than k-shapes, although the difference is not statistically significant. It is

noteworthy that KESBA-MSM is the second fastest clusterer while still appearing

in the top clique for AMI, ARI, and NMI in terms of clustering performance.

k-means-ba-dtw
k-means-ba-twe
k-sc

pam-twe
kesba-twe

0 9 8 7 6 4 3 2 1

| I T | | T |

81875 | 13893 k-means-euclidean
7.8750 4.3482 keSba'msm

6.8393 4.4286 k_shapes

5.8393 48750 pam-msm

5.7768 5.4911

k-means-ba-msm

Fig. 8.21 CD diagram for KESBA FitTime compared to other clusterers for 112
UCR archive datasets using the test-train split.

pam-twe
k-means-ba-msm
pam-msm
k-means-ba-twe
kesba-msm

pam-twe
k-means-ba-msm
pam-msm
k-means-ba-twe
kesba-msm

8.6 KESBA experiment 308

To provide further context on the runtime of each clusterer relative to one
another, Table 8.6 outlines various FitTime statistics for each clusterer. In Table 8.6,
KESBA-MSM has the lowest FitTime for all four statistics. Compared to the
combined test-train split, the PAM clusterers show a significantly higher total
runtime. This is mainly due to the inclusion of the Crop dataset in the test-train
split experiments (as PAM finished Crop for the test-train split). Table 8.7 shows
the runtime (in hours) it took each clusterer to complete the Crop dataset. KESBA
is significantly faster than the other clusterers in terms of total runtime hours, being
almost twice as fast as the next closest, k-means-ba-MSM. This further demonstrates

KESBA'’s scalability.

Metric k-means- k-means- kesba- kesba-twe | pam-msm | pam-twe
ba-msm ba-twe msm

Total hours 226.06 398.76 145.94 227.20 426.00 480.17

Mean hours 2.15 3.80 1.39 2.16 4.06 4.57

Median hours | 0.03 0.07 0.03 0.05 0.05 0.06

Max hours 27.84 46.70 21.02 38.95 234.26 190.57

Table 8.6 Four FitTime statistics for completing clustering on 112 datasets from
the UCR archive using the test-train split. “Total” refers to the cumulative hours
required to process all datasets, “Mean” represents the average time taken per
dataset, “Median” is the midpoint time to complete a dataset, and “Max” is the
longest time taken to complete any single dataset.

k-means- k-means- kesba- kesba-twe | pam-msm | pam-twe
ba-msm ba-twe msm
Crop | 0.39 0.87 0.22 0.34 234.26 190.57

Table 8.7 Total time each clusterer took to complete Crop dataset in hours for the
test-train split. We note that our PAM clusterers were able to exceed our normal
seven-day runtime limit as they were run before our HPC introduced a runtime
limit.

Finally, similar to the combined test-train split, we also introduce k-means-soft-

DBA to evaluate KESBA against the best-performing clusterer. For the test-train

k-means-euclidean
k-shapes

k-sc
k-means-ba-dtw
kesba-twe

k-means-euclidean
k-shapes
k-means-ba-dtw
k-sc

kesba-twe

8.6 KESBA experiment 309

split, when k-means-soft-DBA is included in the evaluation, KESBA remains in the
top clique for AMI and NMI. However, for ARI and CLACC, KESBA falls into the
second-best clique. However, KESBA is significantly better than k-shapes for the

test-train split where it always appears in the bottom clique.

11 10 9 8 7 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1
Lol 11 | P T I | [I 11 P T I |
7.6779 4.8942 pam'tWe k_shapes 8.0192 4.8510
74183 49327 k-means-soft-dba k-means-euclidean 22663 | >.0721
7.0048 53606 |_means-ba-msm Kosc _6:8173 5.2260
6.3558 54038 ham msm k-means-ba-dtw —8:4615 5.3077
5.7644 55433 | means-ba-twe kesba-msm —5:6442 5.5000

56442 Lacha-msm 5.6346

Fig. 8.22 AMI Fig. 8.23 ARI

11 10 9 8 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1
| I I I I | I T | Lol 1y P T I I I |
7.4519 4.6250 pam_twe k_Shapes _ 75769 | 4.8029
74036 20913 _means-soft-dba k-means-euclidean —2:3625 | 4.8702
6.7452 5.2115 pam_msm k‘SC 7.0865 5.3365
6.6827 5.4760 k_means_ba_twe k'meanS'ba'dtW 6.3462 5.3558
5.9615 5.6202 k_means_ba_msm kesba_twe 5.8558 5.4663

5.7308 kesba_msm 5.7404

Fig. 8.24 CLACC Fig. 8.25 NMI

Fig. 8.26 CD diagrams of KESBA experiment with soft-DBA over 104 datasets
from the UCR archive using the test-train split.

8.6.3 Conclusion: KESBA

We have introduced KESBA, a fast and scalable TSCL algorithm that achieves state-
of-the-art performance while being significantly more computationally efficient
than comparable clusterers. Our results demonstrate that KESBA, using TWE and
MSM, delivers similar results to the Elastic Barycentre Average k-means clusterers,
but with substantially reduced runtime. Furthermore, we showed that while PAM
can achieve faster runtimes on small to medium-sized datasets, KESBA proves to

be orders of magnitude faster on large datasets, all while maintaining comparable

pam-twe
k-means-soft-dba
pam-msm
k-means-ba-msm
k-means-ba-twe
kesba-twe

pam-twe
k-means-soft-dba
k-means-ba-msm
pam-msm
k-means-ba-twe
kesba-msm

8.7 KESBA Runtime Versatility 310

clustering performance. Overall, KESBA is a state-of-the-art, versatile, and highly

scalable clusterer, purpose-built for real-world TSCL applications.

8.7 KESBA Runtime Versatility

One of the key advantages of KESBA is its adaptable runtime, allowing it to
meet a variety of computational and clustering performance requirements. Every
practitioner has unique constraints, whether prioritising computational speed or
clustering performance. KESBA offers several parameters that enable practitioners
to balance runtime and performance based on their specific needs.

In this section, we explore how each of KESBA’s parameters affects runtime and
clustering performance. Our objective is not to optimise clustering performance, but
rather to identify reasonable default settings that offer a good balance between the
two. Additionally, we aim to demonstrate how practitioners can leverage KESBA’s
parameters to achieve the desired balance between runtime efficiency and clustering
accuracy.

All of the experiments presented are for the combined test-train split because
we are focused on the runtime rather than optimisation clustering performance. As
such by combing the test-train split this gives KESBA the most amount of data to

evaluate it’s runtime and scalability over.

8.7.1 Elastic k-means++

Initialisation is critical for the success of any Lloyd’s-based algorithm. In Chapter 4,
we evaluated five different initialisation techniques and concluded that using Forgy
with 10 restarts provided the most consistent results. However, rerunning each
clusterer 10 times with different initial centroids is computationally expensive. To

address this, we developed Elastic k-means++, which ensures consistency without

8.7 KESBA Runtime Versatility 311

requiring multiple restarts, significantly reducing runtime while maintaining stable
clustering performance.

To demonstrate the effectiveness of Elastic k-means++, we conducted an experi-
ment comparing KESBA with Forgy initialisation (using 10 restarts) against KESBA
with Elastic k-means++ (whcih does not use any restarts). For this experiment, we
set both KESBA models to use a full window (1.0) and a full ba_subset_size (1.0),
ensuring that window and subset size do not influence the results. Table 8.8 details
the parameters used for each KESBA model in this experiment. Note that “KESBA-
full” is not the final KESBA model presented previously, as it uses a full window
and does not employ a subset for averaging. Later, we will demonstrate how adding
window and averaging parameters improves KESBA’s performance while reducing

runtime. This experiment focuses solely on the impact of initialisation strategies on

KESBA’s runtime.
max_iters | ba_subset_size | window | init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ | TWE
KESBA-full-MSM 300 1.0 1.0 MSM-k-means++ | MSM
KESBA-forgy-restarts-TWE | 300 1.0 1.0 Forgy 10 restarts | TWE
KESBA-forgy-restarts-MSM | 300 1.0 1.0 Forgy 10 restarts | MSM

Table 8.8 KESBA initialisation experiment parameters.

Figure 8.9 presents the CD diagrams comparing the impact of these initialisation
strategies on overall clustering performance. Across all evaluation metrics, Forgy
with 10 restarts marginally outperforms Elastic k-means++, though the difference is
not statistically significant. KESBA-full-TWE consistently ranks in the top clique
with KESBA-forgy-restarts-MSM and KESBA-forgy-restarts-TWE, indicating that
Elastic k-means++ provides comparable performance. KESBA-full-MSM is also in
the top clique for AMI, CLACC, and NMI, though it falls slightly behind in ARI.

Where Elastic k-means++ truly excels is in reducing runtime. Table 8.9 high-

lights the runtime savings with different initialisation strategies. KESBA-forgy-

k-means-euclidean

k-means-euclidean —=>—

8.7 KESBA Runtime Versatility

312

7 6 5 3 2 1
L]]]] |
5.0966 3.2670
k-sc —4:6989 3.5284
k-shapes 4.1250 3.6193
3.6648
Fig. 8.27 AMI
7 6 5 3 2 1

3.2784

kesba-forgy-restarts-msm
kesba-forgy-restarts-twe
kesba-full-twe
kesba-full-msm

kesba-forgy-restarts-twe

k-means-euclidean 42716

k-means-euclidean —2:2732

3.3523

k-sc —4:5852

3.5170

k-shapes —40241

3.5455

3.9943

Fig. 8.28 ARI

3.2443

kesba-forgy-restarts-twe
kesba-full-twe
kesba-forgy-restarts-msm
kesba-full-msm

kesba-forgy-restarts-msm

k-sc 44148 3.6023_ asha-forgy-restarts-msm k-s¢ 47557 35284 |asha-forgy-restarts-twe
k-shapes —2:283¢ 31213 kesha-full-twe k-shapes —%1136 36193 Lesha-full-twe
L 39452 |egba-full-msm L 36688 pagha-full-msm
Fig. 8.29 CLACC Fig. 8.30 NMI
Fig. 8.31 CD diagrams of KESBA with different initialisation strategies over 88
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.40
restarts-TWE takes over 500 more total hours than KESBA-full-TWE, while
KESBA-full-MSM completes all datasets 395 hours faster than KESBA-forgy-
restarts-MSM. The mean, median, and maximum runtimes also show that KESBA-
full models are significantly faster than Forgy with 10 restarts. On average, KESBA-
full-MSM is approximately eight times faster, as Forgy requires nine additional
runs due to the restarts.
Metric kesba-forgy- kesba-forgy- kesba-full-msm | kesba-full-twe
restarts-msm restarts-twe
Total hours 449.97 613.66 53.26 110.65
Mean hours 5.11 6.97 0.61 1.26
Median hours | 0.49 0.94 0.06 0.10
Max hours 35.48 56.98 6.08 13.09

Table 8.9 FitTime statistics for clustering 88 datasets from the UCR archive using

the combined test-train split.

Overall, the choice of initialisation strategy significantly impacts runtime. While

Forgy with 10 restarts provides consistent performance, it comes at a high com-

8.7 KESBA Runtime Versatility 313

putational cost. Elastic k-means++ delivers comparable stability and clustering
performance at a fraction of the runtime. For practitioners with limited computa-
tional resources, Elastic k-means++ is a more efficient option. If resources allow,
Forgy may offer marginally better results, but running Elastic k-means++ with 10

restarts could potentially outperform Forgy with the same number of restarts.

8.7.2 Random Subset Elastic SSG Barycentre Subset Size

A key feature of KESBA is the Random Subset Elastic SSG Barycentre, where the
ba_subset_size parameter controls the amount of data used in each update iteration
of the SSG barycentre average computation. Since the averaging computation
accounts for a significant portion of KESBA’s runtime, this parameter gives practi-
tioners considerable control over the algorithm’s runtime. Interestingly, adjusting
this parameter not only reduces runtime but can also improves clustering perfor-
mance. Below, we present experiments demonstrating how different ba_subset _size
values affect both runtime and clustering performance.

To ensure consistency across the experiments, we kept all other parameters
constant. We used k-means++ for initialisation, given its previously demonstrated
strength, and set the bounding window to 1.0 to avoid influencing the runtime.
Additionally, we focused solely on TWE for runtime analysis of different barycentre
subset sizes.

Table 8.10 explicitly defines the parameters used for each clusterer. When only
changing the ba_subset_size parameter, we label the models as "KESBA-average,"
followed by the subset size (e.g., "10-TWE") and the distance metric used. We also
include "KESBA-full," which does not use a subset and applies a full bounding
window.

Figure 8.36 presents the CD diagrams for clustering performance with dif-

ferent ba_subset_size values. Across all evaluation metrics, there is no statisti-

8.7 KESBA Runtime Versatility 314

max_iters | ba_subset_size | window | init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ | TWE
KESBA-average-10-TWE | 300 0.1 1.0 TWE-k-means++ | TWE
KESBA-average-20-TWE | 300 0.2 1.0 TWE-k-means++ | TWE
KESBA-average-30-TWE | 300 0.3 1.0 TWE-k-means++ | TWE
KESBA-average-40-TWE | 300 0.4 1.0 TWE-k-means++ | TWE
KESBA-average-50-TWE | 300 0.5 1.0 TWE-k-means++ | TWE

Table 8.10 KESBA subset size experiment parameters.

cally significant difference between the subset sizes. While using the full subset
(ba_subset_size = 1.0) yields the best performance for AMI, ARI, and NMI, the im-
provement in rank is marginal. Interestingly, for CLACC, using ba_subset_size =

0.4 actually outperforms the full window setting.

6 5 4 3 2 1 6 5 4 3 2 1
L | | | | | L | | | | |
kesba-average-30-twe —3672° 31822 Kesha-full-twe kesba-average-10-twe —3710 31729 esha-full-twe
kesba-average-10-twe —3:6636 33224 pesha-average-40-twe kesba-average-30-twe —37009 32110 kesha-average-40-twe
kesba-average-20-twe —3:6402 35187 Kesba-average-50-twe kesba-average-50-twe 35748 35654 kesba-average-20-twe
Fig. 8.32 AMI Fig. 8.33 ARI
6 5 4 3 2 1 6 5 4 3 2 1
L | | T | | | L | | | | |
kesba-average-10-twe —3:6862 3.3224_ |esha-average-40-twe kesba-average-30-twe 37009 31489 Kasha-full-twe
kesba-average-50-twe —2:6722 33318 Kesba-full-twe kesba-average-10-twe —3:6822 33224 Kesha-average-40-twe
kesba-average-30-twe 33794 34065 kesba-average-20-twe kesba-average-20-twe —383% 35187 kesba-average-50-twe
Fig. 8.34 CLACC Fig. 8.35 NMI

Fig. 8.36 CD diagrams of KESBA with different ba_subset_size over 107 datasets
from the UCR archive using the combine test train split. Missing datasets outlined
in Table A.41.

Additionally, Figure 8.37 shows the runtime of each ba_subset_size value
compared to the corresponding ARI score. A smaller ba_subset_size leads to
a faster runtime, with a significant improvement between using 10% and 20%.

The difference in runtime between 20% and 50% is minimal, but between 50%

8.7 KESBA Runtime Versatility 315

and 100%, the reduction is substantial, demonstrating the strong impact of the
ba_subset_size parameter on runtime.

An interesting observation from Figure 8.37 is that when using a ba_subset _size
of 40%, the average ARI score is almost identical to the score achieved when using
all of the data. This was unexpected, as we initially hypothesised that reducing the
amount of data would lead to a more linear decrease in performance. However, with
TWE, setting ba_subset_size to 0.4 achieves nearly the same ARI performance as
using the full dataset, while also saving over 100 hours of total runtime.

Finally, Figure 8.37 also shows that using a ba_subset_size of 10% or 20%
results in the lowest average ARI performance. However, the raw difference in
average ARI between using 10% and 100% of the data is minimal — only 0.0044
ARI, while saving approximately 180 hours of total runtime. This suggests that

using a very small ba_subset_size still performs competitively.

-0.259

-0.258
7251

-0.257
700

-0.256

(o)}
~
w

Average ARI Score

[e)]
ul
o

-0.255

Total Runtime (hours)

625
-0.254
600

1 1 L L L L - 0253
10 20 30 40 50 100
ba subset size (%)

575

Fig. 8.37 KESBA runtime (red line) compared to average ARI score (green line)
for different ba_subset_sizes over 106 datasets from the UCR combined test-train
split. Missing datasets are outlined in Table A.42.

8.7 KESBA Runtime Versatility 316

In summary, our experiments demonstrate that using KESBA with smaller
ba_subset_sizes dramatically reduces runtime while maintaining comparable clus-

tering performance.

8.7.3 Bounding Window

In TSC, bounding windows are commonly used to enhance classification perfor-
mance and reduce computational runtime [74]. However, their use in TSCL is less
frequent, and we found no examples in the literature where bounding windows
were applied during barycentre average computation. In this section, we present
experiments with different window sizes to explore their effects on clustering per-
formance and runtime. Our findings indicate that using a bounding window not
only improves clustering performance but also significantly reduces computational
runtime.

Table 8.11 details the configuration for our window experiment. To ensure

that the ba_subset_size does not influence the runtime, we set it to 1.0 across all

clusterers.
max_iters | ba_subset_size | window | init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ | TWE
KESBA-window-10-TWE | 300 1.0 0.1 TWE-k-means++ | TWE
KESBA-window-20-TWE | 300 1.0 0.2 TWE-k-means++ | TWE
KESBA-window-30-TWE | 300 1.0 0.3 TWE-k-means++ | TWE
KESBA-window-40-TWE | 300 1.0 04 TWE-k-means++ | TWE
KESBA-window-50-TWE | 300 1.0 0.5 TWE-k-means++ | TWE

Table 8.11 KESBA window size experiment parameters.

Figure 8.38 compares the runtime of each window size to the average ARI score

achieved. Generally, the runtime (red line) increases fairly linearly as the window
size increases. However, the average ARI score (green line) shows that a window

size of 30% outperforms using a full window while being over 316 hours faster.

8.7 KESBA Runtime Versatility 317

Moreover, using a 10% window reduces the total runtime by over 500 hours, with

an average ARI difference of only 0.005 compared to using a full window.
-0.260
700 -0.259

-0.258
600

-0.257

500
-0.256

Total Runtime (hours)
Average ARI Score

-0.255

300l -0.254

-0.253
200

10 20 30 40 50 100
window size (%)

Fig. 8.38 KESBA runtime (red line) compared to average ARI score (green line) for
different window sizes over 106 datasets from the UCR combined test-train split.
Missing datasets are outlined in Table A.42.

Overall, this shows the bounding window is an incredibly powerful parameter
for reducing runtime when used in all stages of the algorithm. Interestingly, we also
found that smaller window sizes can sometimes improve clustering performance.
Even in cases where the clustering performance is slightly worse than using a full
window, the raw ARI difference when using a 10% window is remarkably small,
making it a highly efficient option.

Overall, we recommend setting a bounding window size between 30% and 40%
for optimal clustering performance. However, significant runtime improvements
can be achieved by reducing the window to 10%, with only a small trade-off in
clustering performance. For extremely large datasets, we suggest using a window

size between 10% and 20%.

8.7 KESBA Runtime Versatility 318

8.7.4 Bounding Window and Barycentre Subset Size

We have demonstrated the independent benefits of using the Random Subset Elastic
SSG Barycentre subset size and a bounding window. For the final KESBA clusterer,
we propose applying both techniques simultaneously. However, tuning these values
separately is not practical in real-world clustering scenarios. To simplify the process,
we suggest setting the window size equal to the subset size.

To investigate the impact of using matching window and ba_subset_size values,
we have designed an experiment with various size settings. Table 8.12 outlines the
parameters used in this experiment, showing how the window and ba_subset_size
interact. In all cases, the window parameter matches the ba_subset_size, and we

recommend practitioners adopt this approach.

max_iters | ba_subset_size | window | init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ | TWE
KESBA-both-10-TWE | 300 0.1 0.1 TWE-k-means++ | TWE
KESBA-both-20-TWE | 300 0.2 0.2 TWE-k-means++ | TWE
KESBA-both-30-TWE | 300 0.3 0.3 TWE-k-means++ | TWE
KESBA-both-40-TWE | 300 0.4 0.4 TWE-k-means++ | TWE
KESBA-both-50-TWE | 300 0.5 0.5 TWE-k-means++ | TWE

Table 8.12 KESBA window size and barycentre average subset size experiment

parameters.

Figure 8.39 presents the results of this experiment. The figure compares the av-

erage ARI score (green line) for different window and ba_subset _size settings to the
runtime (red line). The x-axis represents the matching window and ba_subset_size
percentages.

In Figure 8.39, the runtime increases linearly as the window and subset sizes
increase. A similar trend was observed in previous experiments when the window
and subset sizes were evaluated independently, though it was less linear than when

using both parameters together. This supports our recommendation to set the

8.7 KESBA Runtime Versatility 319

window and subset sizes to the same value, as it ensures the algorithm scales
linearly with each parameter setting.

Interestingly, in Figure 8.39, we find that using a 40% window and ba_subset_size
actually yields an average ARI score that is 0.003 higher than when using a full
window and the entire dataset for averaging. Additionally, this configuration re-
duces the total runtime by over 250 hours compared to using a full window and the

entire dataset.

-0.2625
700 -0.2600
600 | -0.2575
z o
o) o
< 500 -0.2550 %
< L o
£ g
€ ()
2 -0.2525 8
rjcg) 400} %
i_
-0.2500
300}
-0.2475
200}
L 1 L 1 L 1 _02450
10 20 30 40 50 100

window and ba subset size (%)

Fig. 8.39 KESBA runtime (red line) compared to average ARI score (green line) for
different window sizes over 106 datasets from the UCR combined test-train split.
Missing datasets are outlined in Table A.42.

The CD diagrams in Figure 8.44 illustrate the performance of using matching
window and ba_subset_size values. The figure shows that the best-performing
KESBA configuration uses a 40% window and a 40% ba_subset_size for AMI,
CLACC, and NMI. However, for ARI, KESBA-full-TWE slightly outperforms
KESBA-both-40-TWE. Despite this, for AMI, ARI, and NMI, there is no statisti-
cally significant difference between the various configurations. The only notable
exception is CLACC, where KESBA-both-10-TWE performs significantly worse

than the other configurations.

kesba-both-10-twe
kesba-both-20-twe
kesba-both-30-twe

kesba-both-10-twe
kesba-both-50-twe
kesba-full-twe

8.7 KESBA Runtime Versatility

320

3.2890

3.3303

3.3807

4.1743

3.2110

3.4633

3.3761

3.3991

3.3761

kesba-both-40-twe
kesba-full-twe
kesba-both-50-twe

kesba-both-40-twe
kesba-both-20-twe
kesba-both-30-twe

kesba-both-10-twe
kesba-both-20-twe
kesba-both-30-twe

kesba-both-10-twe
kesba-both-20-twe
kesba-both-30-twe

3.2339

3.2890

3.3761

3.9679

3.2982

3.5275

3.3119

3.5229

3.3716

Fig. 8.42 CLACC Fig. 8.43 NMI

Fig. 8.44 CD diagrams of KESBA with equal window and ba subset size over 109
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.43.

When comparing the runtime from our previous experiment using only a bound-
ing window, the difference in runtime appears small. However, when we compare
KESBA-window-50-TWE with KESBA-both-50-TWE, we find that KESBA-both-
50-TWE is 78 hours in total runtime faster. Additionally, KESBA-both-50-TWE
achieves a higher average ARI score compared to using only a bounding window.
This demonstrates that the bounding window should be used in combination with
the ba_subset _size for optimal performance.

In conclusion, we have shown that using both the ba_subset_size and window
together improves clustering performance and reduces runtime compared to using
either parameter in isolation or using a full window and all the data for averaging.
We recommend that practitioners set both the window and ba_subset _size to a value
between 0.4 and 0.5. However, if lower runtime is required, smaller sizes still offer

comparable clustering performance while significantly reducing runtime.

kesba-full-twe
kesba-both-40-twe
kesba-both-50-twe

kesba-both-40-twe
kesba-full-twe
kesba-both-50-twe

8.8 Conclusion 321

8.8 Conclusion

In this chapter, we have presented KESBA: a state-of-the-art, versatile, and highly
scalable clusterer, designed for real-world TSCL applications. Our empirical results
demonstrate that KESBA with TWE performs as well as the current state-of-the-art
clusterers, while requiring significantly less computational runtime.

To develop KESBA, we introduced an elastic version of k-means++ (Elastic
k-means++), a novel averaging algorithm (Random Subset Elastic SSG Barycentre
Average), and implemented the use of a bounding window within the barycentre
averaging process and throughout the entire KESBA algorithm.

Our experiments demonstrate that KESBA’s performance is comparable to both
PAM and the Elastic Barycentre Average when using the same elastic distances.
Furthermore, KESBA consistently outperforms the Elastic Barycentre Average in
terms of runtime and achieves significantly faster performance than PAM, especially
on medium to large datasets, where the runtime improvement is on the scale of
orders of magnitude.

We have provided practitioners with a comprehensive set of experiments ex-
ploring KESBA's flexible parameters, which allow for fine-tuning of runtime and
clustering performance based on their requirements. Our results indicate that us-
ing a bounding window, combined with a matching value for the ba_subset_size,
outperforms using either technique independently. Specifically, we found that
a window and ba_subset_size of 40% provided the best clustering performance,
while significantly reducing runtime compared to using a full window and the entire

dataset for averaging.

Chapter 9

The Elastic Clustering Ensemble
(ECE) algorithm

In Chapter 6, we experimented with PAM using 12 different elastic distances. We
found that the best-performing elastic distances with PAM outperformed the current
state-of-the-art clusterers. However, when analysing the performance of each elastic
distance across different time series domains, we discovered that no single elastic
distance was the best across all domains. In our experiments, spanning seven time
series domains, six different elastic distances performed best in at least one domain.

Based on these findings, we hypothesise that an ensemble model capable of
selecting the most appropriate distance measure, or weighting predictions based
on the suitability of certain elastic distances for specific data, will significantly
improve clustering performance. Therefore, in this chapter, we introduce the Elastic
Clustering Ensemble (ECE) clusterer, which combines eight different elastic dis-
tance PAM clusterers using a novel proportionally weighted ensemble scheme. The
ECE clusterer achieves state-of-the-art performance, consistently outperforming

each of the individual PAM clusterers that it comprises it.

9.1 Introduction 323

9.1 Introduction

An ensemble of clusterers is a group of base clusterers whose individual decisions
are combined through a fusion process to cluster data. In the TSC literature,
ensemble models consistently rank among the top-performing classifiers, providing
substantial performance improvements [84]. One of the most well-known ensemble
models in TSC is the Elastic Ensemble (EE) classifier [74], which consists of 10
I-NN classifiers, each using a different distance measure: Euclidean, DTWCYV,
MSM, WDTW, ERP, TWE, LCSS, WDDTW, DDTWCYV, DTW, and DDTW. The
EE employs a proportionally weighted ensemble scheme, which prioritises the
predictions of 1-NN classifiers that perform well on the training data, as measured
by classification accuracy. The EE has been shown to significantly outperform
any individual 1-NN classifier within the ensemble. We hypothesise that a similar
ensemble model based on elastic distances could be developed for TSCL, yielding
more consistent and superior overall clustering performance compared to using any
single elastic distance.

Ensemble diversity is a critical factor in the success of ensembling strate-
gies [74]. In the TSCL literature, several ensemble clustering algorithms have been
proposed, such as RandomNet [72] and the Symbolic Pattern Forest (SPF) [71].
However, none have leveraged multiple different elastic distance based clusterers to
achieve ensemble diversity. Broadly speaking, ensemble diversity can be introduced
in various ways: using different clustering algorithms to form a heterogeneous
ensemble, selecting different data attributes for each clusterer (often randomly), or
modifying each clusterer internally by re-weighting the training data or incorpo-
rating randomisation [74]. We intend to introduce ensemble diversity by using a
range of different elastic distances with PAM and weighting them based on their

unsupervised clustering performance.

9.2 Clustering Ensemble Schemes 324

In addition to considering ensemble diversity, clustering ensemble models
must also consider the label correspondence problem [4]. When combining the
predictions of multiple clusterers, cluster labels often do not align. For example, one
clusterer might label a group of points as “cluster 17, while another might label the
same group as “cluster 4”. Although the labels differ, they refer to the same set of
data points. Therefore, in clustering ensembles, label alignment before predictions
are made is an important consideration. Various methods exist to address the label
correspondence problem, which will be outlined shortly.

In this chapter, we begin by outlining six popular cluster ensemble schemes
from the literature. We then propose our own cluster ensemble scheme, inspired
by the EE and incorporating concepts from existing cluster ensemble approaches.
Following this, we identify the base clusterers we will use to compose our ensemble
models. Using these base clusterers and the proposed ensemble scheme, we evaluate
the performance of our initial ensemble clusterer against both the baseline clusterers
and the individual PAM models that constitute it.

Next, we compare the performance of our ensemble scheme with the six clus-
tering ensemble schemes from the literature. We also experiment with different
parameters for our ensemble scheme to assess their impact. Finally, we use the
best-performing configuration of our ensemble scheme to create a new ensemble
clusterer, the Elastic Clustering Ensemble (ECE), which we evaluate against the

state-of-the-art clusterers identified previously in this thesis.

9.2 Clustering Ensemble Schemes

To begin, we present existing ensemble schemes that are used throughout the

literature. We will use these to evaluate our proposed ensemble scheme against.

9.2 Clustering Ensemble Schemes 325

9.2.1 Simple Vote (SV)

The simple vote (SV) ensemble is one of the simplest method for combining
clustering prediction. In this approach, each time series is assigned to the cluster
that it appears most frequently in across the base clusterers. For example, if five
base clusterers are used, and three assign a time series to “cluster 3" while the other
two assign it to “cluster 17, the ensemble will predict “cluster 3” because it has the
majority of votes. In the event of a tie, where multiple clusters receive the same
number of votes, the final label is randomly selected from the tied options.

However, before a prediction can be made, the label correspondence problem
must be addressed. SV employs a cost matrix that quantifies the misalignment
between clusters produced by different clusterers. The cost matrix is constructed by
comparing the frequency with which points from a cluster in one clustering overlap
with points from a cluster in a reference clustering. The objective is to minimise
this misalignment and find the optimal correspondence between clusters.

To find the optimal correspondence between clusters, the Hungarian algo-
rithm [62], is applied to the cost matrix. This algorithm finds the optimal mapping
of cluster labels from one clustering to another, minimising the total cost, which
in this case reflects how well clusters align across different clusterers. Once the
optimal mapping is found, the labels of the current clustering are reassigned accord-
ing to the reference clustering. By repeating this process for each clustering, the

algorithm ensures that all clusters are consistently aligned.

9.2.2 Iterative Voting IVC)

The Iterative Voting Consensus (IVC) [74] algorithm maps each data point to
a vector, where each element indicates its cluster membership across different
clusterings in an ensemble. The algorithm works iteratively, starting with an initial

set of cluster centres, each represented by a vector. Each dimension of these vectors

9.2 Clustering Ensemble Schemes 326

corresponds to the cluster memberships of points in the ensemble. A cluster centre,
therefore, is a vector that summarises the most common cluster assignments for all
the points currently assigned to that cluster.

In each iteration, the algorithm performs two steps. First, it updates the cluster
centres by computing the majority value for each dimension across the vectors of
the points assigned to the cluster. This means that for each feature (or position
in the vector), the centre takes on the value that most of the assigned points have
in that dimension. As a result, the cluster centre represents the most frequent
cluster memberships across the different clusterings in the ensemble. Second, the
algorithm reassigns each data point to the cluster whose centre has the smallest
Hamming distance to the point’s vector, which measures the number of differing
entries between the two vectors.

The process repeats until the clusters stabilise. The IVC algorithm mitigates the

correspondence problem through this iterative process.

9.2.3 Cluster-based Similarity Partitioning Algorithm (CSPA)

The Cluster-based Similarity Partitioning Algorithm (CSPA) [115] computes a
similarity matrix to address the issue of cluster label correspondence across different
base clusterers. From the similarity matrix, a similarity graph is constructed
where the vertices correspond to data points, and the edges represent the similarity
measures between these points. This graph is then partitioned into k clusters
using the METIS clustering algorithm [57], which produces the final ensemble
predictions.

A cluster label similarity matrix can be computed by comparing the predictions
of different base clusterers. Specifically, the similarity between two data points is
calculated as the ratio of the number of clusterings in which both points appear

in the same cluster to the total number of clusterings in the ensemble [87]. This

9.2 Clustering Ensemble Schemes 327

results in a fraction that represents how frequently two points are clustered together

across the ensemble.

9.2.4 Meta-CLustering Algorithm (MCLA)

The Meta-CLustering Algorithm (MCLA) [115] is a ensemble schema which
mitigates the correspondence problem by transforming the predicted labels for each
base clusterer into a hypergraph. Using the hypergraph a voting scheme is applied
to produce the final predictions.

Table 9.1 presents an example of how cluster labels from multiple base clusterers
are represented as a hypergraph. A hypergraph consists of vertices and hyperedges.
In a regular graph, an edge connects exactly two vertices, whereas a hyperedge is a

generalisation of an edge that can connect any number of vertices [4].

H(1) H(2) H(3)
A1) | A(2) | A(3) hy hy h3|hs hs he|h; hg ho
X1 1 2 1 vill 0 0]0 1T 0|1 0 O
x| 1 2 1 w|il 0 0]0 1 0|1 0 O
x3| 1 2 2 v3(1 O O]O 1 OO0 1 O
x| 2 3 1 w{0O I 0]0 O 1|1 0 O
(a) Original label vectors (b) Hypergraph representation

Table 9.1 Illustrative cluster ensemble problem with » = 3 and k = 3: Original label
vectors (left) and equivalent hypergraph representation with 9 hyperedges (right),
where r is the number of base clusterers and & is the number of clusters. Each
cluster is transformed into a hyperedge.

In Table 9.1, three base clusterers (A (1),A(2),A(3)) are shown, each predicting
clusters for four instances (x1,x,x3,x4). The base clusterers and their predictions
are listed in Table 9.1(a). Next, a binary membership indicator matrix H(q) is
constructed, with a column representing each cluster (now corresponding to a
hyperedge), as shown in Table 9.1(b). Each base clusterer generates a block in this
table, for example, A (1) corresponds to the binary membership indicator matrix

block H(1).

9.2 Clustering Ensemble Schemes 328

Each block for each base clusterer is concatenated to form H = (H(1),H(2),H(3)),
which defines the adjacency matrix of a hypergraph with n vertices and ZZ:] k(q)
hyperedges, where r is the number of base clusterers and g denotes the cluster
labels for the gth base clusterer. This process maps each cluster to a hyperedge and
the set of clusterings to a hypergraph. By transforming the predicted clusters to a
hypergraph the correspondence problem is mitigated.

Using the computed hypergraph, MCLA generates the final predictions by
constructing a Meta-Graph, where each hyperedge is treated as a node. This
Meta-Graph is then clustered using the METIS graph clustering algorithm to form
meta-clusters, grouping together similar hyperedges. For each meta-cluster, an
average of each cluster is computed, which is later used to assess similarity when
assigning new cluster objects. This process mitigates the label correspondence

problem.

9.2.5 Hybrid Bipartite Graph Formulation (HBGF)

The Hybrid Bipartite Graph Formulation (HBGF) [34] models instances and clusters
simultaneously in a graph. The graph edges can only connect instance vertices to
cluster vertices, resulting in a bipartite graph [34]. This means the HBGF bipartite

graph has two types of vertices:
1. Instance vertices: representing the data point being clustered

2. Cluster vertices: representing each cluster from the ensemble of base cluster-

€rs.

An edge is drawn between an instance vertex and a cluster vertex if the instance
belongs to that cluster. The weight of each edge is set to 1 to represent this
membership. No edges exist between vertices of the same type: instance vertices

cannot be directly connected to other instance vertices, and cluster vertices cannot

9.2 Clustering Ensemble Schemes 329

be connected to other cluster vertices. This process produces a graph that can be
partitioned using a graph partition algorithm such as METIS to produce the final

ensemble clusterings.

9.2.6 Nonnegative Matrix Factorisation (NMF)

Nonnegative Matrix Factorisation (NMF) [70] creates a collective similarity matrix
and decomposes it into lower-dimensional factors that capture the underlying
cluster structure shared among the base clusterers. This approach addresses the
label correspondence problem while extracting similarities to form a final cluster
consensus.

NMF begins by constructing a connectivity matrix M from the base clusterers’
predictions. This n X n matrix, where n is the number of data instances, contains
entries M;; that represent the frequency with which instances i and j are assigned
to the same cluster across all base clusterers. The matrix encapsulates the co-
association information between pairs of instances.

The connectivity matrix M is then factorised using an iterative algorithm that
ensures non-negativity in the resulting matrices. Specifically, NMF decomposes M
into two non-negative matrices: Q, which represents cluster membership indicators,
and S, a scaling matrix that adjusts the influence of each cluster.

To generate the final ensemble clustering predictions, the product of Q and
the square root of § is computed. Each data instance is then assigned to the
cluster corresponding to the highest value in its representation, producing the final

ensemble predictions.

9.3 Elastic Unsupervised Proportional Weighting (EUPW) 330

9.3 Elastic Unsupervised Proportional Weighting (EUPW)

The Elastic Ensemble (EE) for TSC [74] proposes a proportionally weighted voting
scheme based on the classification accuracy of each base classifier, normalised over
the number of transformations. In this scheme, a classifier’s weight in the ensemble
is equal to its normalised training accuracy. When using this approach with 10
I-NN classifiers with different elastic distances, [74] showed that EE significantly
outperforms any individual 1-NN classifier that composes EE. We hypothesise
that by developing a similar ensemble scheme tailored for elastic distance-based
clusterers, we could achieve comparable performance improvements for clustering.
However, the EE proportional ensemble scheme cannot be directly applied to
TSCL ensembling because TSCL is an unsupervised task, meaning there are no
ground truth labels to calculate classification accuracy. Additionally, the EE scheme
lacks a strategy to address the label correspondence problem. To overcome these
challenges, we propose the Elastic Unsupervised Proportional Weighting (EUPW)
ensemble scheme, which adapts the EE proportional weighting for unsupervised
tasks and includes an additional step to mitigate the label correspondence issue.
The first issue we tackle is the use of a supervised metric. Our proposal is
straightforward: instead of using a supervised evaluation metric, we use an unsu-
pervised one. Several unsupervised metrics exist, such as the Calinski-Harabasz
Index (CHI) [15], Davies-Bouldin Index (DBI) [25], and Silhouette Coefficient [58].
Many of these metrics rely on a distance measure and an averaging technique, typi-
cally the Euclidean distance and the arithmetic mean. However, as demonstrated in
Chapters 5 and 6, the Euclidean distance is not suitable for TSCL, and in Chapter 7,
we showed that the Elastic Barycentre Average is superior to the arithmetic mean for
time series data. Therefore, we hypothesise that traditional unsupervised evaluation

metrics may not perform well for TSCL.

9.3 Elastic Unsupervised Proportional Weighting (EUPW) 331

To address this, we propose elastic unsupervised evaluation metrics for EUPW
by adapting existing metrics, replacing the Euclidean distance with an elastic
distance. Additionally, if the evaluation metric relies on the arithmetic mean, we
substitute it with the Elastic Barycentre Average, using the same elastic distance.

For our initial experiments, we adapt the Calinski-Harabasz Index (CHI) to
create the Elastic Calinski-Harabasz Index (ECHI). Later in this chapter, we also
experiment with the Davies-Bouldin Index (DBI), creating the Elastic Davies-
Bouldin Index (EDBI). However, our initial focus remains on the using ECHI.

Adapting an unsupervised measure to be “elastic” involves replacing the Eu-
clidean distance and arithmetic mean with an elastic distance and the Elastic
Barycentre Average, respectively. Specifically, for our experiments, we use MSM
and TWE, as these distances produced the best results with the Elastic Barycentre
Average in Chapter 7. In principle, any elastic distance that generates a complete
warping path could be used with an elastic unsupervised measure.

When using TWE with the ECHI, we refer to the measure as ECHI-TWE, which
uses the TWE distance and its corresponding Elastic Barycentre Average. Similarly,
when using MSM, we refer to it as ECHI-MSM, which incorporates the MSM
distance and its Elastic Barycentre Average.

For ECHI, a higher value indicates better clustering, whereas a lower value
indicates worse clustering. This allows easy integration of the measure into the
EE proportional weighting scheme. However, for some unsupervised evaluation
metrics, such as DBI, lower scores indicate better clustering. To ensure consistency,
we invert such scores by dividing them by 1, allowing these metrics to be seamlessly
used within the EUPW ensemble scheme.

In addition to updating the weighting evaluation metric, we address the label
correspondence problem by using the same alignment algorithm from the SV

ensemble scheme. Specifically, when predicting the final cluster labels, a cost

9.4 Elastic Clustering Ensemble Experiment 332

matrix is constructed to quantify cluster misalignment, and the Hungarian algorithm
is applied to find optimal label mappings.

In summary, the EUPW scheme weights each clusterer based on an unsupervised
elastic evaluation metric like ECHI, normalised by the number of transformations.
Once a base clusterer’s prediction is selected according to its weighting, a cost
matrix is constructed to account for misalignment between base clusterers. The
Hungarian algorithm is then applied to determine the optimal label mappings, and

the final prediction is returned.

9.4 Elastic Clustering Ensemble Experiment

9.4.1 Base PAM Clusterers

For our elastic clustering ensemble experiments, we chose PAM as our base clusterer.
PAM was selected because it was one of the top-performing clusterers in our
previous experiments, demonstrating strong results on both the combined test-train
and test-train splits. Additionally, as highlighted in Chapter 6, we observed that
various elastic distances with PAM performed best for different time series domains.
This suggests that PAM with varying elastic distances provides diverse clustering
results, making it an ideal candidate for ensembling.

In the original Elastic Ensemble (EE) [74], 10 1-NN classifiers using different
elastic distances were combined to form an ensemble. The specific distances used
were: DTWCV, MSM, WDTW, ERP, TWE, LCSS, WDDTW, DDTWCYV, DTW,
and DDTW. DTWCV and DDTWCYV are tuned versions of the respective distances
incorporating a bounding window. These distances were selected for their ability to
produce diverse results across the UCR archive. Following a similar rationale, we

have chosen elastic distances for our PAM ensemble.

9.5 EUPW intial experiments 333

Our first choice is TWE, which was the top-performing distance with PAM
across all evaluation metrics in Section 6.5, making it an obvious selection. Next,
we selected distances that performed best in individual domains, either in the test-
train split or the combined test-train split, as described in Chapter 6. Across both
splits, MSM, WDTW, soft-DTW, shape-DTW, and ADTW were identified as the
top performers in one or more domains. However, we exclude shape-DTW as a
candidate due to its failure to complete for many datasets, which hinders evaluation.
Therefore, MSM, WDTW, soft-DTW, and ADTW were chosen next as base cluster
candidates.

To further increase diversity within the ensemble, we also included ERP, DTW,
and WDDTW. Although these three distances did not perform as well in our
previous clustering experiments, their clustering results were significantly different
from the core five distances, thereby adding diversity and potentially enhancing the
ensemble’s overall performance.

In summary, we selected the following base clusterers for all our ensemble
schemes: PAM-DTW, PAM-MSM, PAM-TWE, PAM-ERP, PAM-WDTW, PAM-
ADTW, PAM-WDDTW, and PAM-soft-DTW. The clusterings used for each base
clusterer are the same as those produced and evaluated in Chapter 6. We have two
less elastic distances than the EE, however, two elastic distances in the EE are tuned

versions of DTW and DDTW which we are are unable to do in clustering.

9.5 EUPW intial experiments

Our initial evaluation aims to assess the effectiveness of the proposed EUPW
ensemble scheme. To do this, we conduct an experiment using the eight base
PAM clusterers, which are ensembled with EUPW using three different distances:
Euclidean, MSM, and TWE. EUPW-Euclidean employs the standard CHI score,
while EUPW-TWE and EUPW-MSM use the adapted ECHI evaluation score. We

9.5 EUPW intial experiments 334

then compare the performance of these ensemble models against the baseline
clusterers and the two best-performing PAM variants. The goal is to determine the
relative strength of EUPW and evaluate whether the use of ECHI leads to improved

clustering performance.

9.5.1 Combined Test-Train Split

Figure 9.5 presents the critical difference diagrams for the EUPW ensemble over
the combined test-train split. We observe that for all four evaluation metrics,
EUPW-TWE and EUPW-MSM are the best performing clusterers and consistently
outperform the best-performing PAM models, PAM-TWE and PAM-MSM. Notably,
EUPW-TWE ranks as the top-performing clusterer across all evaluation metrics,
although the improvement is not statistically significant.

Additionally, EUPW-Euclidean is consistently outperformed by EUPW variants
that use elastic distances. This supports our hypothesis that elastic distances enhance
the CHI evaluation metric. EUPW-Euclidean only surpasses the best PAM variant
in terms of NMI, but lags behind in AMI, ARI, and CLACC.

Table 9.2 presents the average score for each clusterer across all evaluation met-
rics. EUPW-TWE performs best in ARI and CLACC, while PAM-TWE achieves
the highest average scores for AMI, NMI, and RI. Although the ARI and CLACC
scores between EUPW-TWE and PAM-TWE are quite similar, there is a noticeable
difference in median performance.

Figure 9.6 provides a direct comparison between EUPW-TWE, PAM-TWE, and
PAM-MSM. The figure shows that while EUPW-TWE achieves scores similar to
both PAM-TWE and PAM-MSM, it exhibits a significantly higher median score,
indicating that it performs more consistently across datasets with considerably less

variance in its results.

9.5 EUPW intial experiments

335

9 8 7 6 5 4 3 2 1
| I I I | I I |
k-means-euclidean —%2333 42389 aypw-twe
k-sc _5.7833 44556 _ o nw-msm
k-shapes —21336 4555 _ k_means-ba-dtw
pam-msm 29389 48000 o twe
48389 eypw-euclidean
Fig. 9.1 AMI

- w
-~

- o
i w
-~

6.1944 4.4000

k-means-euclidean eupw-twe
k-sc 55778 45556 o pw-msm
k-shapes —13% 45667 k_means-ba-dtw
eupw-euclidean —4:2722 47611 nam-msm
48222 pam twe

Fig. 9.3 CLACC

k-means-euclidean
k-sc

k-shapes
eupw-euclidean

k-means-euclidean
k-sc

k-shapes
pam-msm

6.3000
5.7833

4.3444

eupw-twe
4.5556

5.1889

eupw-msm

45944« _means-ba-dtw

4.9167

4.6556

pam-msm
pam-twe

4.6611

Fig. 9.2 ARI

- w
-~

6.2222
5.7944

i - O

4.2722
4.4667

eupw-twe

5.1444

eupw-msm

45500 k_means-ba-dtw

4.9444

4.8000

eupw-euclidean
pam-twe

4.8056

Fig. 9.4 NMI

Fig. 9.5 CD diagrams of EUPW experiment using the baseline clusterers and the
two best performing PAM variants over 90 datasets from the UCR archive using
the combine test train split. Missing datasets are outlined in Table A.44.

ARI AMI | CLAcc | NMI | RI
eupw-euclidean 0.240 | 0.270 | 0.583 0.277 | 0.672
eupw-msm 0.258 | 0.286 | 0.598 | 0.292 | 0.681
eupw-twe 0.2589 | 0.286 | 0.5985 | 0.292 | 0.681
k-means-ba-dtw 0.246 | 0.277 | 0.591 0.284 | 0.678
k-means-euclidean | 0.186 | 0.222 | 0.535 0.229 | 0.655
k-sc 0.196 | 0.224 | 0.552 | 0.231 | 0.622
k-shapes 0.229 | 0.268 | 0.579 | 0.274 | 0.673
pam-msm 0.249 | 0.279 | 0.590 | 0.286 | 0.680
pam-twe 0.2587 | 0.287 | 0.5984 | 0.293 | 0.685

Table 9.2 Summary of average score across multiple evaluation metrics over 90
datasets from the UCR archive using the combined test-train split.

Table 9.3 compares the EUPW results to the baseline clusterers and PAM across

different time series domains. Although EUPW does not achieve the highest average

ARI score in any single domain, it consistently performs well across all domains.

This is emphasised in Table 9.4, which shows the average rank of each clusterer for

eupw-twe ARI
(mean: 0.2589)

0.2

0.0

g
o
L

o
IS
L

9.5 EUPW intial experiments 336

1| eupw-twe wins here
[40W, 8T, 42L]

0.8

101 eupw-twe wins here
[40W, 10T, 40L]

0.8 1

.
e
)
o
.
o
o
.
D)
.
o

L]
L]
eupw-twe ARI
mean: 0.2589)

\ee
oo .\

2, “ . '. 1] ./:
_________ o - ° I M °
LTy 0.2 4 8
oS) &
Vs i 3 /7
(3 0
oS | L i
o H 7 xS | 5
KF v o 1 pam-twe wins here o | pam-msm wins here
:\7’3 © | [42W, 8T, 40L] 0.0 4 33’0;' | [40W, 10T, 40L]
/v ! T T T T T T L T T T T T
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
pam-twe ARI pam-msm ARI
(mean: 0.2587) (mean: 0.2490)
Wilcoxon test for equality of medians, p-value=0.429 Wilcoxon test for equality of medians, p-value=0.256
Paired t-test for equality of means, p-value=0.488 Paired t-test for equality of means, p-value=0.151

(a) EUPW-TWE compared to PAM-TWE

Fig. 9.6 EUPW-TWE results compared directly to PAM-MSM and PAM-TWE,
respectively, over 90 datasets from the UCR archive using the combined test-train
split.

ARI over the seven time series domains. Table 9.4 shows PAM-TWE’s lowest rank
is 2.5 for the ECG domain, but its highest rank is 6.273 for the Spectro domain.
In contrast, EUPW-TWE'’s lowest rank is 3.625 for the Simulated domain, with a
highest rank of 4.909 for the Spectro domain. This results in PAM-TWE having an
average rank difference of 3.774 between its best and worst ranks, while EUPW-
TWE has a smaller average rank difference of only 1.284. This demonstrates the
superior consistency of EUPW.

For this experiment (and subsequent EUPW experiments), we regrettably had
to exclude 20 datasets due to an issue we identified in our EUPW implementation,
specifically when using the ECHI evaluation metric. This problem caused the
algorithm to fail on certain datasets. We suspect the issue may be related to the
formation of empty clusters when applying the label alignment algorithm. In future
iterations of the algorithm, we aim to resolve this issue to ensure a complete set of

results can be obtained.

(b) EUPW-TWE compared to PAM-MSM

9.5 EUPW intial experiments 337

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
eupw-euclidean 0.324 | 0.148 0.260 | 0.415 0.103 | 0.125 | 0.184
eupw-msm 0.312 | 0.165 0.258 | 0.472 0.178 | 0.157 | 0.271
eupw-twe 0.317 | 0.166 0.261 | 0.464 0.164 | 0.157 | 0.280
k-means-ba-dtw 0.291 | 0.178 0.212 | 0.586 0.173 | 0.155 | 0.137
k-means-euclidean | 0.224 | 0.173 0.210 | 0.306 0.039 | 0.107 | 0.174
k-sc 0.222 | 0.185 0.270 | 0.187 0.032 | 0.074 | 0.395
k-shapes 0.274 | 0.155 0.203 | 0.429 0.096 | 0.160 | 0.407
pam-msm 0.333 | 0.132 0.246 | 0.391 0.167 | 0.134 | 0.356
pam-twe 0.325 | 0.146 0.252 | 0.475 0.179 | 0.136 | 0.351

Table 9.3 Average ARI score on problems split by problem domain over 90 datasets

from the UCR archive using the combined test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
eupw-euclidean 3.913 | 6.409 4957 | 5.375 6.000 | 4.154 | 5.750
eupw-msm 4.543 | 5.227 4.870 | 4.000 4.125 | 3.962 | 4.875
eupw-twe 4.543 | 4.909 4.283 | 3.625 4.250 | 4.115 | 4.375
k-means-ba-dtw 4.848 | 3.364 5.609 | 2.625 2.750 | 4.846 | 7.500
k-means-euclidean | 7.022 | 3.909 5.739 | 7.562 7.500 | 6.154 | 7.500
k-sc 6.413 | 3.818 5.043 | 8.188 7.375 | 5.615 | 4.375
k-shapes 4.804 | 4.818 5.435 | 5.250 5875 |5.615 | 4.125
pam-msm 3.935 | 6.273 4.370 | 5.375 3.750 | 5.385 | 4.000
pam-twe 4978 | 6.273 4.696 | 3.000 3.375 | 5.154 | 2.500

Table 9.4 Average ARI rank performance on problems split by problem domain
over 90 datasets from the UCR archive using the combined test-train split

9.5.2 Test-train split

Figure 9.11 presents the critical difference diagrams for the EUPW ensemble, the

baselines clusterers and the two best PAM variants. For the test-train split, EUPW

performs poorly. Additionally, we find that ECHI does not consistently outperform

CHI. For AMI and CLACC, EUPW with all distances performs worse than PAM-

TWE, but all three outperform PAM-MSM. For ARI, PAM-TWE outperforms all

three EUPW distances, and PAM-MSM outperforms EUPW-TWE and EUPW-

MSM. Overall, EUPW does not appear suitable for the test-train split.

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw

k-means-euclidean
k-shapes

k-sc
k-means-ba-dtw

9.5 EUPW intial experiments 338

Fig. 9.11 CD diagrams of EUPW experiment using the baseline clusterers and the
two best performing PAM variants over 78 datasets from the UCR archive using
the test-train split. Missing datasets are outlined in Table A.45.

9.5.3 Conclusion: EUPW initial experiments

We have presented the our initial results for EUPW over both the combined test-train
split and the test-train split, comparing EUPW against the baseline clusterers and the
two best-performing PAM variants. For the combined test-train split, EUPW with
TWE consistently emerged as the top-performing clusterer across all evaluation
metrics, although the difference was not statistically significant.

Throughout our combined test-train experiments, we identified one of EUPW’s
key strengths: its consistency. Compared to the best-performing PAM variants,
EUPW’s median ARI score was notably higher. Additionally, in our domain-based
evaluation, while EUPW did not achieve the highest average score for any domain, it
displayed the smallest difference in rank change across datasets, further highlighting

its consistent performance.

9 8 7 6 5 4 3 2 1 9o 8 7 6 5 4 3 2 1
| I . P I I I | | I I T | I I |
6.0641 4.1154 pam_twe k-Shapes 6.2308 4.1346
5.6987 46282 apw-msm k-means-euclidean —5:6474 4.5705
5.4103 4.6923 eupw_euclidean k_sc 5.3462 4.6346
4.9295 47244 aupw-twe k-means-ba-dtw 50192 4.7051

4.7372 pam_msm 4.7115

Fig. 9.7 AMI Fig. 9.8 ARI

9 7 6 5 4 3 2 1 9o 8 7 6 5 4 3 2 1
l 1 l 1 l 1 l 1 l 1 l 1 l 1 l 1 l l 1 l 1 l 1 1 1 l 1 l 1 l 1 l
5.7564 4.0962 pam_twe k-Shapes 6.0385 4.1026
5.5833 46987 aypw-msm k-means-euclidean —2:£7% 46474
5.3782 4.7244 eupw_euclldean k_sc 5.3974 4.7115
5.2564 47308 oypw-twe k-means-ba-dtw 42679 4.7115

4.7756 pam_msm 4.7436

Fig. 9.9 CLACC Fig. 9.10 NMI

pam-twe
eupw-euclidean
pam-msm
eupw-twe
eupw-msm

pam-twe
eupw-msm
eupw-euclidean
pam-msm
eupw-twe

9.6 EUPW Compared to Other Ensemble Schemes 339

However, when evaluating EUPW on the test-train split, its performance was
significantly weaker. PAM-TWE consistently outperformed all three EUPW dis-
tances across every evaluation metric. Moreover, for the test-train split, the original
CHI outperformed the ECHI. However, as will be shown, this problem does not
seem exclusive to the EUPW ensemble scheme.

In summary, EUPW with TWE shows promise as a strong ensemble scheme
for the combined test-train split, however, EUPW does not appear to be a suitable

choice for the test-train split.

9.6 EUPW Compared to Other Ensemble Schemes

We have evaluated our proposed ensemble scheme against the baseline clusterers
and the best-performing PAM variants. Next, we explore how EUPW compares
to other popular ensemble techniques from the literature. To do this, we design
an evaluation experiment comparing EUPW with six other ensemble techniques

previously outlined.

9.6.1 Combined Test-Train Split

Figure 9.16 presents the CD diagrams for the EUPW ensemble compared to six
other ensemble schemes and the two best-performing PAM variants. For AMI
and NMI, EUPW is, on average, the best-performing ensemble scheme. However,
for ARI and CLACC, EUPW-TWE is outperformed by both HBGF and CSPA.
Notably, EUPW-TWE is the only ensemble scheme that does not rank lower than
PAM-TWE for any evaluation metric. Although CSPA and HBGF perform well
for CLACC and NM]I, they perform worse than PAM-TWE for AMI and NMI, and

HBGF performs worse than PAM-MSM for both AMI and NMI. Importantly, none

9.6 EUPW Compared to Other Ensemble Schemes

340

of the clusterers included in the comparison are statistically significantly different

from each other.

11 10 9 8 7 6 5 4 3 2 1
11 10 9 8 7 6 5 4 3 2 1
Lalalalal 1o lala1al | I I | | I T |
mcla 6.4451 5.2418 eupW‘tWe mcla 6.5495 5.5220 CSpa
iterative-voting —8:4%66 24725 aypw-msm eupw-euclidean —8:4066 357118 hpgf
nmf 83352 2148 pam-twe simple-voting —&:3%81 3.7657_ aypw-twe
6.2253 5.8516 i At .) ; 6.1310 58297
hbgf —~== = oss SiMPple-voting iterative-voting pam-twe
pam-msm 22382 eupw-euclidean nmf —8:0330 39011 ham-msm
cspa 29231 aypw-msm
Fig. 9.12 AMI Fig. 9.13 ARI
11 10 9 8 7 6 5 4 3 2 1 11 10 9 8 7 6 5 4 3 2 1
| I I | | I I | | I I I | | I I I |
eupw-euclidean —&:356%4 3.4560 _ cgpa mcla —5:4560 52363 aypw-twe
mcla —8:4066 34725 Kphgf iterative-voting —&:4560 54560 aypw-msm
simple-voting —8:3022 38681 aypw-twe nmf —&3077 57363 pam-twe
pam_msm 6.0549 5.9066 pam-tWe hbgf 6.2692 5.7857 Simple-voting
6.0549 5.9286 6.1758 H 6.0220 H
nmf eupw-msm pam-msm eupw-euclidean
29890 jterative-voting 6.0989 cspa
Fig. 9.14 CLACC Fig. 9.15 NMI

Fig. 9.16 CD diagrams of EUPW compared to other ensemble schemes over 91
datasets from the UCR archive using the combine test-train split. Missing datasets
are outlined in Table A.46

Table 9.5 shows the average score for each ensemble scheme. One interesting
observation is that the SV scheme has the highest average score for ARI, AMI,
CLACC, and NMI. However, in Figure 9.16, SV never surpasses PAM-TWE
in terms of average rank, suggesting it is very inconsistent. To investigate this
further, we directly compare EUPW-TWE and SV in Figure 9.17(b). The figure
shows that EUPW-TWE consistently outperforms SV, and EUPW-TWE’s median
is significantly higher, indicating much greater consistency. However, SV for some
datasets considerably outperforms EUPW-TWE.

CSPA outperformed EUPW-TWE for ARI and CLACC, as shown in Figure 9.16.

Figure 9.17(a) highlights some interesting differences between the two. Notably,

eupw-twe ARI
mean: 0.2632)

0.2

00

g
o
L

o
IS
L

9.6 EUPW Compared to Other Ensemble Schemes

341

ARI | AMI | CLAcc | NMI | RI
cspa 0.258 | 0.283 | 0.598 | 0.289 | 0.689
eupw-euclidean | 0.245 | 0.276 | 0.586 | 0.282 | 0.675
eupw-msm 0.263 | 0.291 | 0.600 | 0.297 | 0.684
eupw-twe 0.263 | 0.291 | 0.600 | 0.297 | 0.684
hbgf 0.249 | 0.275 | 0.595 | 0.281 | 0.685
iterative-voting | 0.253 | 0.282 | 0.593 | 0.288 | 0.684
mcla 0.258 | 0.288 | 0.594 | 0.294 | 0.683
nmf 0.251 | 0.284 | 0.594 | 0.290 | 0.682
pam-msm 0.255 | 0.284 | 0.593 | 0.290 | 0.684
pam-twe 0.263 | 0.291 | 0.600 | 0.297 | 0.687
simple-voting 0.266 | 0.292 | 0.600 | 0.298 | 0.684

Table 9.5 Summary of average score across multiple evaluation metrics over 91
datasets from the UCR archive using the combine test-train split.

CSPA performs better than EUPW-TWE on six additional datasets, but CSPA’s

average ARI score and median is lower than EUPW-TWE. This suggests that

while EUPW-TWE may not achieve the best score for every datasets, on average is

performs much more consistently.

1| eupw-twe wins here
[41W, 3T, 47L]

0.8

0.4 06
cspa ARI
(mean: 0.2584)

T
0.8

{Wilcoxon test for equality of medians, p—value=0A597}

Paired t-test for equality of means, p-value=0.353

(a) EUPW-TWE compared to CSPA

simple-voting ARI
(mean: 0.2659)

0.8

g
o
L

o
IS
L

0.2 4

0.0

| simple-voting wins here /
[33W, 10T, 48L] /.
L]
° /g\/
L]
.
L
-
) L]
. X
3 0?./.
/./
N
.
. .0/.
8

1
o 1
_.\" i eupw-twe wins here
A . ! [48W, 10T, 33L]
o 1

T
0.8

0.4 06
eupw-twe ARI
(mean: 0.2632)

Wilcoxon test for equality of medians, p-value=0.964
Paired t-test for equality of means, p-value=0.373

(b) EUPW-TWE compared to Simple-Voting

Fig. 9.17 EUPW-TWE results compared directly to CSPA and Simple-Voting,
respectively, over 91 datasets from the UCR archive using the combined test-train

split.

9.6 EUPW Compared to Other Ensemble Schemes 342

Table 9.6 shows the average ARI score for each clusterer across different time
series domains. EUPW-MSM performs best in the Motion domain, CSPA performs
best in the Spectro and Sensor domain, and SV performs best in the Simulated
domain. However, PAM-MSM performs best in the Image and ECG domains
and PAM-TWE performs best in the Device domain. This shows no ensemble
outperforms the best PAM variant in all time series domain.

Furthermore, Table 9.7 shows the average ARI rank for each clusterer across
each time series domain. CSPA performs best in the most domains in terms
of average rank, but it also has a wide range between its best and worst rank
performance. CSPA’s worst rank performance is 7.271 for the Image domain.
Additionally CSPA ranks seventh or higher in three domains: Image, Device, and
Motion. In contrast, EUPW-TWE’s highest rank is 6.417 for the Image domain,
and it only ranks sixth or higher in two domains: Image and Device. This indicates
that while EUPW-TWE may not always achieve the top rank, it remains one of the

most consistently performing clusterers across all domains.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
cspa 0.270 | 0.204 0.276 | 0.523 0.133 | 0.147 | 0.317
eupw-euclidean | 0.333 | 0.148 0.260 | 0.415 0.088 | 0.143 | 0.184
eupw-msm 0.321 | 0.165 0.258 | 0.472 0.166 | 0.173 | 0.271
eupw-twe 0.326 | 0.166 0.261 | 0.464 0.149 | 0.172 | 0.280
hbgf 0.264 | 0.178 0.275 | 0.524 0.154 | 0.140 | 0.199
iterative-voting | 0.305 | 0.170 0.268 | 0.407 0.144 | 0.161 | 0.294
mcla 0.320 | 0.159 0.253 | 0.473 0.143 | 0.169 | 0.262
nmf 0.289 | 0.173 0.255 | 0.468 0.151 | 0.158 | 0.293
pam-msm 0.342 | 0.132 0.246 | 0.391 0.172 | 0.150 | 0.356
pam-twe 0.332 | 0.146 0.252 | 0475 0.181 | 0.149 | 0.351
simple-voting 0.335 | 0.157 0.249 | 0.524 0.149 | 0.171 | 0.265

Table 9.6 Average ARI score on problems split by problem domain over 91 datasets

from the UCR archive using the combine test-train split.

9.6 EUPW Compared to Other Ensemble Schemes 343

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
cspa 7.271 | 2.455 4.217 | 4.125 7.071 | 7.036 | 5.750
eupw-euclidean | 5.208 | 7.773 6.478 | 8.250 9.571 | 4.536 | 6.750
eupw-msm 6.062 | 6.136 6.391 | 6.438 5.500 | 4.464 | 6.625
eupw-twe 6.417 | 5.636 5.630 | 5.625 6.286 | 4.750 | 5.875
hbgf 6.979 | 3.273 4.565 | 4.125 5429 |6.321 9.750
iterative-voting | 5.146 | 6.818 5913 | 7.062 7.071 | 6.857 | 5.375
mcla 5917 | 6.591 7.196 | 7.000 6.000 | 6.214 | 7.750
nmf 6.292 | 4.545 6.457 | 5.188 5.786 | 6929 | 5.125
pam-msm 4.875 | 7.636 5.783 | 7.250 3.571 | 7.143 | 5.000
pam-twe 6.333 | 7.636 5717 | 4.625 3.429 | 6.643 | 2.250
simple-voting 5.500 | 7.500 7.652 | 6.312 6.286 | 5.107 | 5.750

Table 9.7 Average ARI rank performance on problems split by problem domain
over 91 datasets from the UCR archive using the combine test-train split.

9.6.2 Test-Train Split

Figure 9.6 presents the CD diagrams for EUPW compared to other ensemble
schemes for the test-train split. In our previous evaluation, we found EUPW is
not well-suited for the test-train split. However, this appears to be the case for
all ensemble schemes. Across all evaluation metrics, PAM-TWE consistently
outperforms each ensemble scheme. This suggests that none of the ensemble
methods can learn generalised representations of the data that translate effectively
for the test-train split.

Although EUPW is outperformed by PAM-TWE across all metrics, for AMI
and NMI, EUPW-MSM ranks as the second-best ensemble scheme, only behind
SV. For ARI, EUPW performs worse than three ensemble schemes: NMF, SV, and
IV. Interestingly, for ARI, EUPW-Euclidean outperforms both EUPW-MSM and
EUPW-TWE. In fact, EUPW-TWE ranks as the worst-performing ensemble scheme
for ARI, which is surprising given that it was the most consistent performer for
the combined test-train split. Lastly, for CLACC, EUPW is outperformed by two
ensemble schemes: IV and MCLA. Notably, both EUPW-MSM and EUPW-TWE

outperform EUPW-Euclidean for CLACC.

hbgf

pam-msm

cspa
eupw-euclidean
mcla

pam-msm
nmf

hbgf
eupw-euclidean
cspa

9.6 EUPW Compared to Other Ensemble Schemes 344
11 10 9 7 6 5 4 3 2 1
11 10 9 8 7 6 5 4 3 2 1
T T T T T T R RN P A
6.4400 5.2267_ pam_twe pam-msm 62600 54267 ham-twe
6.3467 5.7067 Slmple_votlng eUpW-tWG 6.2133 5.7200 nmf
6.1733 58933 o\ nw-msm hbgf 6.1600 5.8933 simple-voting
6.1467 59133 mf 6.1067 6.0000 : : ;
6.1400 0467 . . cspa iterative-voting
 oeer iterative-voting mcla —8:0933 60533 aypw-euclidean
: eupw-twe 6.0733
' eupw-msm
Flg. 9.18 AMI Fig. 9.19 ARI
11 10 9 8 7 6 5 4 3 2 1 11 10 8 7 6 5 4 3 2 1
I I I N I P I A I | I I IO I Y I A A |
6.3333 5293 pam.-twe hbgf —6:4000 52067 pam-twe
62733 3:8533 _ jterative-voting pam-msm —8:2933 3.7267_ gimple-voting
6.2400 5.8533 mcla Cspa 6.2000 5.8800 eUpW'mSm
6.1533 5.8733 eUpW'mSm mCIa 6.1533 5.9333 nmf
6.1200 29333 aypw-twe eupw-euclidean —81333 3.9667_ jterative-voting
60733 simple-voting 6.0867 eupw-twe

Fig. 9.20 CLACC

Fig. 9.21 NMI

Fig. 9.22 CD diagrams of EUPW compared to other ensemble schemes over 75
datasets from the UCR archive using the test-train split. Missing datasets are
outlined in Table A.47

When analysing the results by time series domain for ARI in Table 9.8, we
observe that for the Spectro, Simulated, Motion, and ECG domains, the ensemble
schemes perform significantly better than PAM-TWE and PAM-MSM. For instance,
in the Spectro domain, PAM-MSM averages a rank of 7.688 and PAM-TWE
averages a rank of 7.062, whereas the best-performing ensemble scheme, CSPA,
averages a rank of 3.312. A similar trend is evident in the Simulated and ECG
domains.

It is also noteworthy that for the ECG domain, CSPA and HBGF achieve average
ranks of over 10.00. If CSPA had not performed so poorly for ECG data, it might
have outperformed both PAM-TWE and PAM-MSM overall. However, EUPW-
MSM has a significantly lower rank than any other ensemble scheme in the ECG

domain, demonstrating a particular strength of the EUPW scheme.

9.6 EUPW Compared to Other Ensemble Schemes 345
Image | Spectro | Sensor | Simulated | Device | Motion | ECG

cspa 6.875 | 3.312 6.125 | 4.500 6.583 | 6.600 10.000
eupw-euclidean | 5.800 | 7.125 6.175 | 6.625 7.667 | 4400 | 4.833
eupw-msm 6.350 | 6.688 6.550 | 5.375 7.583 | 4550 | 3.333
eupw-twe 6.025 | 6.312 7.300 | 5.375 6.250 | 5.450 | 4.667

hbgf 7.425 | 3.812 5.225 | 4.500 5417 | 7.900 10.333
iterative-voting | 6.050 | 7.250 6.525 | 4.188 7.250 | 4.750 | 5.333
mcla 5.500 | 6.125 6.450 | 7.500 5917 | 6.100 | 4.167
nmf 6.275 | 3.938 5.750 | 5.312 4.833 | 6.600 | 6.500
pam-msm 4.675 | 7.688 5.300 | 9.375 4.833 | 8350 | 7.000
pam-twe 5.200 | 7.062 4.550 | 7.438 4.000 | 5.600 | 5.333
simple-voting 5.825 | 6.688 6.050 | 5.812 5.667 | 5.7700 | 4.500

Table 9.8 Average ARI rank performance on problems split by problem domain
over 75 datasets from the UCR archive using the test-train split.

9.6.3 Conclusion: EUPW Compared to Other Ensemble Schemes

We have presented results for six different ensemble schemes compared to EUPW
and the two best-performing PAM variants. For the combined test-train split, EUPW-
TWE was the only ensemble scheme to consistently outperform PAM-TWE across
all evaluation metrics. However, CSPA and HBGF were also identified as strong
alternative ensemble schemes. While EUPW-TWE was outperformed by CSPA on
average for ARI and CLACC, EUPW-TWE demonstrated higher consistency in
performance across different time series domains.

Our experiments for the test-train split highlighted that not only is EUPW
unsuitable for use on the test-train split, but none of the tested ensemble schemes
are suitable. PAM-TWE consistently outperformed all ensemble schemes across all
evaluation metrics. However, EUPW remained one of the more reliable ensemble
schemes, particularly excelling in domains such as ECG, where other ensemble
methods failed to perform well.

Overall, EUPW stands out as a strong and consistent ensemble scheme. For
the combined test-train split, it is the only ensemble scheme to outperform the

best-performing PAM variant across all evaluation metrics. However, it is evident

9.7 EUPW with Other Unsupervised Evaluation Metrics 346

that not just EUPW, but all ensemble schemes require further refinement to improve

their performance on the test-train split.

9.7 EUPW with Other Unsupervised Evaluation Met-
rics

For our evaluation, we initially chose to use the ECHI evaluation metric with
EUPW. We have demonstrated that EUPW performs better with an elastic version
of CHI (ECHI) than with the traditional CHI. However, as previously mentioned,
EUPW can be used with any unsupervised evaluation metric. To further explore
how the choice of evaluation metric impacts EUPW’s performance, we conduct an
experiment using the Elastic Davies-Bouldin Index (EDBI) with EUPW (EUPW-

EDBI) and compare the performance to EUPW with ECHI (EUPW-ECHI).

9.7.1 Combined Test-Train Split

Figure 9.27 shows the CD diagrams for EUPW using ECHI compared to EUPW
using EDBI. Across all evaluation metrics, EUPW-EDBI-TWE, EUPW-EDBI-
MSM, and EUPW-ECHI-TWE outperform the best-performing PAM variants.
For AMI and NMI, EUPW-EDBI outperforms the best EUPW-ECHI ensemble.
However, for CLACC and ARI, the best EUPW-ECHI outperforms the best EUPW-
EDBI. Overall, the difference in rank between these methods is minimal.

Table 9.9 shows the average scores for each clusterer across all evaluation
metrics. EUPW-ECHI achieves higher average scores than EUPW-EDBI for ARI,
AMI, CLACC, and NMI, but both are outperformed in RI by PAM-TWE. We
also compared EUPW-ECHI and EUPW-EDBI directly for both TWE and MSM,
as shown in Figure 9.28. For TWE, both ensemble schemes perform similarly,

with 35 ties. However, the median score of EUPW-ECHI-TWE is notably higher

pam-msm
eupw-ECHI-euclidean

pam-twe
eupw-EDBI-euclidean

eupw-EDBI-euclidean
eupw-ECHI-euclidean
pam-msm
eupw-EDBI-msm

9.7 EUPW with Other Unsupervised Evaluation Metrics

347

4.9891

4.1467

4.7772

4.2337

4.6196

4.3424

eupw-EDBI-twe
eupw-ECHI-twe

eupw-EDBI-euclidean
eupw-ECHI-euclidean

4.9511

4.1739

4.6522

4.2826

eupw-EDBI-msm eupw-EDBI-msm 23870 4.3533

4.5435 4.3478 eupW_ECHI_msm pam_msm 4.5815 4.4185
Fig. 9.23 AMI Fig. 9.24 ARI

8 7 6 5 4 3 2 1 8 7 6 5 4 3 2 1

| I I N | | I R | Lo 1 4 1 | I I |

4.9348 4.2174 eUpW'ECHI'tWe pam_msm 5.0000 4.1576

4.6630 43043 aypw-ECHI-msm eupw-ECHI-euclidean —2728 4.2446

4.5761 4.3641 eUpW'EDBI-tWe pam'tWe 4.6304 4.3478

4.5109 44293 pam-twe eupw-EDBI-euclidean —%:326 4.3587
Fig. 9.25 CLACC Fig. 9.26 NMI

Fig. 9.27 CD diagrams of EUPW using ECHI and EDBI compared over 92 datasets
from the UCR archive using the combine test-train split. Missing datasets are
outlined in Table A.48.

than EUPW-EDBI-TWE, suggesting that EUPW-ECHI has much more consistent
performance than EUPW-EDBI on some datasets. A similar trend is observed for
MSM, where EUPW-ECHI-MSM has a higher median and achieves 15 more wins
than EUPW-EDBI-MSM.

We also compared EUPW-EDBI to six other cluster ensemble schemes. Fig-
ure 9.33 presents the CD diagram for this comparison. Unlike EUPW-ECHI,
EUPW-EDBI does not suffer as much from issues related to empty clusters, allow-
ing it to produce results for a larger number of datasets. However, some datasets
remain missing, particularly for the SV scheme, which likely experiences the same
issue due to using the same label alignment algorithm. Consequently, 105 datasets
were included in this analysis.

The CD diagram in Figure 9.33 reveals a similar rank order for the ensemble
schemes. For AMI and NMI, EUPW-EDBI-TWE is the only ensemble scheme to

outperform PAM-TWE. However, for CLACC and ARI, both PAM-TWE and PAM-

eupw-ECHI-twe
eupw-ECHI-msm
eupw-EDBI-twe
pam-twe

eupw-EDBI-twe
eupw-ECHI-twe
eupw-EDBI-msm
eupw-ECHI-msm

9.7 EUPW with Other Unsupervised Evaluation Metrics 348

ARI | AMI | CLAcc | NMI | RI
eupw-ECHI-euclidean | 0.244 | 0.276 | 0.584 | 0.283 | 0.676
eupw-ECHI-msm 0.263 | 0.291 | 0.598 | 0.298 | 0.685
eupw-ECHI-twe 0.263 | 0.291 | 0.599 | 0.298 | 0.685
eupw-EDBI-euclidean | 0.248 | 0.281 | 0.588 | 0.287 | 0.677
eupw-EDBI-msm 0.260 | 0.289 | 0.597 | 0.296 | 0.683
eupw-EDBI-twe 0.259 | 0.289 | 0.597 | 0.295 | 0.682
pam-msm 0.253 | 0.284 | 0.590 | 0.291 | 0.684
pam-twe 0.262 | 0.291 | 0.597 | 0.298 | 0.688

Table 9.9 Summary of average score across multiple evaluation metrics over 92
datasets from the UCR archive using the combined test-train split.

1.01[eupw-ECHI-twe wins here / 1.91[eupw-ECHI-msm wins here /
[30W, 35T, 27L] [38w, 31T, 23L] o
./ ./
0.8 / 0.8 /
g v
e a Z_ / °
N 0.6 . ™~ 0.6 .
28 A 3 b
SN € £N
LE) o o :TI: =] /
i § :/ & § ad
3 E 0.4 ./.’. 3 E 0.4 ° .,./.
- o 5 4
[o @
. o/ v L] /
oy o%
_______ . i [———
0.2 %/f 0.2 . \.ig
1 !
A .
1 1
; : ! eupw-EDBI-twe wins here :’*.' ! eupw-EDBI-msm wins here
0.04 o0 ! [27W, 35T, 30L] 0.04 e ! [23W, 31T, 38L]
/ 1 /
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
eupw-EDBI-twe ARI eupw-EDBI-msm ARI
(mean: 0.2591) (mean: 0.2600)
Wilcoxon test for equality of medians, p-value=0.169 Wilcoxon test for equality of medians, p-value=0.093
Paired t-test for equality of means, p-value=0.041 Paired t-test for equality of means, p-value=0.146

(a) EUPW-ECHI-TWE compared to EUPW-EDBI- (b) EUPW-ECHI-MSM compared to EUPW-EDBI-
TWE MSM

Fig. 9.28 Comparison of EUPW-ECHI and EUPW-EDBI over 92 datasets from the
UCR archive using the combined test-train split.

MSM outperform all other cluster ensemble schemes, a contrast to the previous
experiment where CSPA and HBGF outperformed the best PAM variants for these

metrics.

9.7 EUPW with Other Unsupervised Evaluation Metrics

349

hbgf

5.4429

mcla

5.4714

cspa

5.5095

iterative-voting

5.6619

nmf

5.8190

eupw-EDBI-euclidean
mcla

Fig. 9.29 AMI

1 10 9 8
I |

5.9810

6.4857

5.5476

6.3333

5.6810

6.2000

5.6952

eupw-EDBI-twe

6.1619

5.7571

eupw-EDBI-msm

6.1476

5.9095

simple-voting

Fig. 9.31 CLACC

6.0810

eupw-EDBI-twe
eupw-EDBI-msm
pam-twe
eupw-EDBI-euclidean
simple-voting
pam-msm

pam-twe
pam-msm
hbgf

cspa
iterative-voting
nmf

eupw-EDBI-euclidean

mcla

simple-voting
eupw-EDBI-msm
iterative-voting

hbgf

mcla
iterative-voting
cspa

nmf

11 10

| I I

1 10 9 8
I I |

6.4952

5.5762

6.4000

pam-twe
5.6286

6.2095

pam-msm

5.8429 nmf

6.0286

5.9333

5.9905

hbgf

5.9381

Fig. 9.30 ARI

9 8
|

5.9571

6.5286

5.5333

6.4667

5.5524

6.3381

5.5667

6.3333

5.7238

6.2048

5.7905

Fig. 9.32 NMI

5.9619

eupw-EDBI-twe
cspa

eupw-EDBI-twe
pam-twe
eupw-EDBI-msm
eupw-EDBI-euclidean
simple-voting
pam-msm

Fig. 9.33 CD diagrams of EUPW-EDBI compared to other ensemble schemes over
105 datasets from the UCR archive using the combine test train split. Missing
datasets are outlined in Table A.50.

9.7.2 Test-Train Split

Figure 9.38 presents the CD for EUPW-EDBI over the test-train split. Neither

EUPW-EDBI nor EUPW-ECHI outperform the best-performing PAM variant.

However, EUPW-EDBI-TWE consistently outperforms the best-performing EUPW-

ECHI, suggesting that it may be better suited for the test-train split. Still, none of

the EUPW variants show statistically significant differences in performance.

pam-msm
eupw-EDBI-euclidean
eupw-ECHI-euclidean

eupw-ECHI-twe

pam-msm
eupw-EDBI-euclidean
eupw-ECHI-euclidean

eupw-ECHI-msm

9.8 The Elastic Clustering Ensemble (ECE)

350

4.8526

4.1026

4.8333

4.2756

4.5577

4.4103

4.5385

4.4295

Fig. 9.34 AMI

- <
- o
—
= w

N

+
-

4.8846

4.1346

4.7179

4.2564

4.5577

4.4679

4.5000

4.4808

Fig. 9.36 CLACC

pam-twe
eupw-EDBI-twe
eupw-ECHI-msm
eupw-EDBI-msm

pam-twe
eupw-EDBI-twe
eupw-EDBI-msm
eupw-ECHI-twe

eupw-EDBI-euclidean

4.8141

4.1538

4.7628

4.3077

pam-msm

4.5641

4.4295

eupw-EDBI-msm
eupw-ECHI-twe

4.5192

4.4487

eupw-EDBI-euclidean
pam-msm
eupw-ECHI-euclidean
eupw-ECHI-twe

- <

Fig. 9.35 ARI

- o
o
=~
- w
N

pam-twe
eupw-EDBI-twe
eupw-ECHI-msm
eupw-ECHI-euclidean

-~

4.8333

4.1026

4.8269

4.2756

pam-twe

4.5705

4.4103

eupw-EDBI-twe

4.5385

4.4423

eupw-ECHI-msm

Fig. 9.37 NMI

Fig. 9.38 CD diagrams of EUPW using ECHi and EDBI compared over 78 datasets
from the UCR archive using the test train split. Missing datasets are outlined in

Table A.49.

9.7.3 Conclusion: EUPW with Other Unsupervised Evaluation

Metrics

We have evaluated EUPW using two different unsupervised elastic evaluation

metrics: ECHI and EDBI. We found that their performance is similar across both the

combined test-train split and the test-train split. However, we showed that EUPW-

ECHI has more consistent performance than EUPW-EDBI for the combined test-

train split. For this reason, we recommend using ECHI as the default unsupervised

metric for the final EUPW scheme.

9.8 The Elastic Clustering Ensemble (ECE)

We have identified a set of base clusterers: PAM-DTW, PAM-MSM, PAM-TWE,

PAM-ERP, PAM-WDTW, PAM-ADTW, PAM-WDDTW, and PAM-soft-DTW,

eupw-EDBI-msm

9.8 The Elastic Clustering Ensemble (ECE) 351

along with an ensemble scheme, EUPW. When combined, we have shown the
ensemble performs better than any individual PAM variant. Specifically, from
our previous evaluations, we identified the EUPW-TWE ensemble scheme as the
most consistently performing scheme among the 12 different ensemble schemes we
considered.

Therefore, we now formally define a new ensemble clusterer that utilises the
eight base PAM clusterers and the EUPW-TWE ensemble scheme, which we call
the Elastic Clustering Ensemble (ECE).

We now present the results for ECE compared to the state-of-the-art clusterers

we have identified throughout this thesis.

9.8.1 Combined Test-Train Split

Figure 9.43 presents the CD diagrams comparing ECE to the state-of-the-art TSCL
approaches and the baseline clusterers. For all evaluation metrics, ECE outperforms
the other clusterers considered. However, for each evaluation metric, ECE remains
in the same top clique as k-means-ba-TWE, PAM-MSM, k-means-ba-DTW, k-
means-ba-MSM, and PAM-TWE. This improvement in performance over the Elastic
Barycentre Average clusterers and the PAM clusterers highlights the success of the
ensemble scheme.

Table 9.10 presents the average scores for each evaluation metric for each
clusterer. ECE performs best in ARI and CLACC, while PAM-TWE performs best
in AMI, NMI, and RI. As discussed previously, although PAM-TWE achieves high
average scores, it has lower median performance, making it far less consistent than
ECE. This is further highlighted in Table 9.11, which shows the average ARI rank
by problem domain. Although the ECE clusterer ranks highest in only one domain

(Motion), it consistently ranks within the top five across all domains.

k-means-euclidean
k-sc

k-shapes
pam-msm

k-means-euclidean
k-sc

k-shapes

pam-twe

9.8 The Elastic Clustering Ensemble (ECE)

352

| .

6.2611 4.3833 ECE k_means_euclldean 6.3278 4.4222
5.7889 44389 | means-ba-msm K-gc _5:8444 4.5722
5.1167 46556 | _means-ba-dtw k-shapes —31056 4.6611
4.8722 47000 | means-ba-twe pam-twe 47000 4.6833
4.7833 pam-tWe 4.6833

Fig. 9.39 AMI Fig. 9.40 ARI
9 8 7 6 5 4 3 2 1 9 7 6 5 4 3 2 1
| I I | | I I | || | I | | I I |
6.2167 44778 ECE k-means-euclidean 62500 4.4000
5.4944 46611 | means-ba-dtw Kesc 58111 4.4500
4.9889 47389 | means-ba-twe k-shapes —3:0833 4.6500
4.8611 4.7389 pam_msm pam_msm 4.8667 4.7167
48222 |_means-ba-msm 4.7722

Fig. 9.41 CLACC Fig. 9.42 NMI

Fig. 9.43 CD diagrams of ECE compared to the state-of-the-art clusterers and the
baseline clusterers over 90 datasets from the UCR archive using the combined
test-train split. Missing datasets are outlined in Table A.44.

In Chapter 4, we identified k-means-soft-DBA as the best-performing TSCL
approach by a significant margin. However, due to its very high computational
runtime, we were unable to obtain a complete set of results, with 27 datasets
failing to finish within our seven-day runtime limit. To ensure a comprehensive
evaluation, we first compared ECE to other clusterers over as many datasets as
possible, excluding k-means-soft-DBA. Now, we reintroduce k-means-soft-DBA
into the analysis, reducing the number of datasets included in the comparison.

Figure 9.48 shows the CD diagram comparing ECE to state-of-the-art cluster-
ers, including k-means-soft-DBA. For all evaluation metrics, k-means-soft-DBA
remains the best-performing clusterer. However, ECE shows no statistically signifi-
cant difference in performance across any of the evaluation metrics.

Finally, we conduct an evaluation to verify ECE outperforms each of the indi-

vidual PAM clusterers that comprise it, as shown in Figure 9.53. For AMI, ARI, and

ECE
k-means-ba-twe
pam-msm
k-means-ba-dtw
k-means-ba-msm

ECE
k-means-ba-msm
k-means-ba-dtw
k-means-ba-twe
pam-twe

353

9.8 The Elastic Clustering Ensemble (ECE)
ARI AMI | CLAcc | NMI | RI
ECE 0.2589 | 0.286 | 0.5985 | 0.292 | 0.681
k-means-ba-dtw 0.246 | 0.277 | 0.591 0.284 | 0.678
k-means-ba-msm | 0.235 | 0.273 | 0.581 0.280 | 0.673
k-means-ba-twe 0.255 | 0.285 | 0.593 0.292 | 0.681
k-means-euclidean | 0.186 | 0.222 | 0.535 0.229 | 0.655
k-sc 0.196 | 0.224 | 0.552 | 0.231 | 0.622
k-shapes 0.229 | 0.268 | 0.579 | 0.274 | 0.673
pam-msm 0.249 | 0.279 | 0.590 | 0.286 | 0.680
pam-twe 0.2587 | 0.287 | 0.5984 | 0.293 | 0.685

Table 9.10 Summary of average score across multiple evaluation metrics over 90
datasets from the UCR archive using the combined test-train split.

Image | Spectro | Sensor | Simulated | Device | Motion | ECG
ECE 4.587 | 5.136 4.522 | 3.500 4750 | 3.769 | 4.250
k-means-ba-dtw 4.891 | 3.455 5.935 | 2.625 2.500 | 4.885 | 7.500
k-means-ba-msm | 4.543 | 5.000 4370 | 5.125 5.000 | 4.577 | 5.250
k-means-ba-twe 4.022 | 5.591 4.609 | 5.000 4375 | 4.923 3.125
k-means-euclidean | 6.891 | 4.409 5.696 | 7.562 7.625 | 6.000 | 8.000
k-sc 6.283 | 3.955 5.174 | 7.938 7.500 | 5.769 | 5.125
k-shapes 4.739 | 4.636 5.348 | 5.125 6.250 | 5.077 | 4.875
pam-msm 4.065 | 6.227 4.500 | 5.125 3.875 | 5.077 | 4.000
pam-twe 4978 | 6.591 4.848 | 3.000 3.125 | 4923 | 2.875

Table 9.11 Average ARI rank performance on problems split by problem domain
over 90 datasets from the UCR archive using the cobined test-train split.

NMI, ECE achieves a lower rank than the next best-performing PAM variant. How-

ever, for CLACC, PAM-soft-DTW slightly outperforms ECE, indicating a potential

weakness in the ensemble. Overall, Figure 9.53 demonstrates that ECE improves

upon PAM clustering, although the improvement is not statistically significant.

k-means-euclidean
k-sc

k-shapes
k-means-ba-dtw
pam-msm

k-means-euclidean
k-sc
k-means-ba-msm
k-shapes
k-means-ba-dtw

9.8 The Elastic Clustering Ensemble (ECE) 354
10 9 8 7 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
| | | Ml | | | | | || | | I I |
7.1554 43518 1.means-soft-dba k-means-euclidean —-141 4.4932
6.5000 4.7568 ECE k_sc 6.4865 4.9122
5.8919 4.9595 pam-tWe k_shapes 5.7297 4.9527
5.5676 5.1689 k_means_ba_twe k_means_ba_dtw 5.6284 4.9662
5.3851 52635 k-means-ba-msm k-means-ba-msm —32:36% 5.1284
Fig. 9.44 AMI Fig. 9.45 ARI
0 9 8 7 5 4 3 2 1 10 9 8 7 6 5 4 3 2 1
[| M P | [P A M
7.1824 44189 k.means-soft-dba k-means-euclidean %1412 43311
6.0743 5.0270 ECE k_sc 6.5405 4.7770
5.6486 5.1216 pam'tWe k_shapes 5.8649 4.9459
5.6216 51824 nam msm k-means-ba-dtw —5:5698 5.1824
5.5338 5182 | means-ba-twe pam-msm —53782 5.2770
Fig. 9.46 CLACC Fig. 9.47 NMI

Fig. 9.48 CD diagrams of ECE compared to the baseline clusterers, state-of-the-art
and soft-DBA over 74 datasets from the UCR archive using the combine test train
split. Missing datasets are outlined in Table A.51.

k-means-soft-dba
ECE

pam-twe
k-means-ba-twe
pam-msm

k-means-soft-dba
ECE

pam-twe
k-means-ba-twe
k-means-ba-msm

9.8 The Elastic Clustering Ensemble (ECE 355
g
9 8 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1
Lol | || | I I | Lol | I | I I I |
pam_erp 6.5163 4.0978 ECE pam_erp 6.2174 4.1902 ECE
pam-wddtw —2:42%3 43152 nam-soft-dtw pam-wddtw —27337 4478 pnam-twe
pam-dtw —2:1522 45380 nam-twe pam-wdtw —2:1376 45598 nam-soft-dtw
pam-wdtw —2:1230 47300 Hham-msm pam-dtw —2:9870 45707 nam-msm
5.0761 5.0054
pam-adtw pam-adtw
Fig. 9.49 AMI Fig. 9.50 ARI
9 7 6 5 4 3 2 1 9 8 7 6 5 4 3 2 1
Lol | I T I I | Lol | || | I I I |
pam-erp —8:2283 43587 ham-soft-dtw pam-erp —&5272 41087 ECE
pam-dtw —23261 43913 FCE pam-wddtw —2:4293 42117 pam-soft-dtw
pam-wddtw —2:2772 46793 nam-msm pam-dtw —>1304 4548 nam-twe
pam-wdtw —2:2563 47337 nam-adtw pam-wdtw —2:1230 47826 Ham-msm
47391 pnam-twe 20761 nam-adtw
Fig. 9.51 CLACC Fig. 9.52 NMI

Fig. 9.53 CD diagrams of ECE compared to each PAM clusterer over 92 datasets
from the UCR archive using the combined test-train split. Missing datasets are
outlined in Table A.48.

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw

k-means-euclidean
k-sc

k-shapes
k-means-ba-dtw

9.8 The Elastic Clustering Ensemble (ECE)

356

9.8.2 Test-Train Split

Figure 9.58 presents the CD diagrams comparing the ECE clusterer to the baseline

and state-of-the-art clusterers for the test-train split. As previously noted, none

of the cluster ensemble schemes performed well on the test-train split, including

EUPW-ECHI. These findings remain true when comparing ECE to the state-of-the-

art: ECE is consistently outperformed by both PAM-TWE and PAM-MSM, though

it consistently appears in the top clique. Overall, for the test-train split, we recom-

mend using PAM-TWE or PAM-MSM directly, as these individual components

outperform the ensemble version.

©
— <

9 8 7 6 5 4 3 2 1
l 1 l 1 l 1 1 l 1 l 1 l 1 I
6.0513 4.1026
5.7436 4.3910
5.5513 4.5897
5.0256 4.7500

4.7949
Fig. 9.54 AMI

5.8333

3.9936

5.5769

4.4487

5.5192

4.7436

5.3397

4.7564

Fig. 9.56 CLACC

4.7885

pam-twe
k-means-ba-msm
k-means-ba-twe
pam-msm

ECE

pam-twe
k-means-ba-twe
pam-msm
k-means-ba-msm
ECE

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw

k-shapes
k-means-euclidean
k-sc
k-means-ba-dtw

6.2436

5.7179

4.0513

4.5064

5.5769

4.5449

5.0000

4.5513

Fig. 9.55 ARI

— w

4.8077

N

5.9872

4.0962

5.7308

4.4038

5.5513

4.6090

5.0641

4.7372

Fig. 9.57 NMI

4.8205

Fig. 9.58 CD diagrams of ECE compared to the state-of-the-art clusterers and the
baseline clusterers over 78 datasets from the UCR archive using the test-train split.
Missing datasets are outlined in Table A.45.

pam-twe
k-means-ba-msm
k-means-ba-twe
pam-msm

ECE

pam-twe
k-means-ba-msm
k-means-ba-twe
pam-msm

ECE

9.9 Conclusion 357

9.9 Conclusion

In this chapter, we introduced the ECE clusterer, which utilises eight elastic dis-
tance PAM models outlined in Chapter 6. To ensemble these PAM models, we
proposed the Elastic Unsupervised Proportional Weighting (EUPW) ensemble
scheme, using elastic, unsupervised evaluation metrics to achieve better and more
consistent ensemble predictions than six other considered ensemble schemes from
the literature.

We have demonstrated that the ECE clusterer outperforms the best PAM variants
that compose it and also outperforms the Elastic Barycentre Average clusterers.
While ECE does not surpass k-means-soft-DBA in any of our considered evaluation
metric, it further narrows the performance gap, making it one of the top-performing

clustering methods identified in this thesis.

Chapter 10

Conclusion

In this thesis, we have conducted the most comprehensive review of elastic distances
for TSCL to date, examining 12 different elastic distances, nine of which had not
previously been explored for TSCL. We proposed new methods that advance the
state-of-the-art in TSCL performance. Our key contributions include the devel-
opment of a robust, standardised Lloyd’s-based clustering model, a novel Elastic
Barycentre Averaging technique, KESBA—a state-of-the-art, versatile, and highly
scalable clusterer designed for real-world TSCL applications—and a new ensemble
scheme (EUPW) to create the ECE, a state-of-the-art PAM-based ensemble clus-
terer. The work presented in this thesis establishes a new benchmark for TSCL
research, offering scalable and highly effective approaches to clustering time series

data.

10.1 Discussion of Contributions

We began by addressing the inconsistent configurations of Lloyd’s-based cluster-
ing algorithms in the TSCL literature. By standardising Lloyd’s algorithm, we
established a unified framework for comparing five popular Lloyd’s-based TSCL

algorithms, which serve as our baseline of comparison. This standardisation enables

10.1 Discussion of Contributions 359

us to more accurately attribute differences in clustering performance to specific
model enhancements, rather than variations in Lloyd’s configuration.

Using this standardised Lloyd’s model, we conducted a comprehensive evalua-
tion of 12 elastic distances with the k-means clusterer. Our findings revealed that
several elastic distances, along with the Euclidean distance, outperform Dynamic
Time Warping (DTW), which has long been considered the state-of-the-art. We fur-
ther investigated the causes of DTW’s poor performance, identifying pathological
warping—exacerbated by the use of the arithmetic mean—as the key issue. Addi-
tionally, our extensive analysis highlighted the traits of the best-performing elastic
distances, revealing that those with an explicit warping penalty performed best.
Notably, ADTW, MSM, shape-DTW, TWE, and soft-DTW achieved state-of-the-art
results relative to the previously established baseline.

Building on our k-means evaluation, we applied the same methodology to four
different k-medoids clusterers. We found that similar elastic distances performed
best for k-medoids as they did for k-means. PAM emerged as the top-performing
model, followed by CLARANS and alternate k-medoids, while CLARA lagged
behind. Additionally, we conducted a detailed comparison between k-means and
alternate k-medoids, showing that k-medoids outperformed k-means across most
elastic distances. This analysis highlighted the critical role of the medoids com-
putation in achieving superior clustering performance. Notably, PAM-ADTW,
PAM-MSM, PAM-TWE, and PAM-soft-DTW surpassed the current state-of-the-art,
establishing a new baseline for TSCL performance.

Our k-medoids experiments highlighted the importance of incorporating the
elastic distances into the centroid computation. While the medoids significantly
outperformed the arithmetic mean, we noted that for DTW, which has a bespoke
averaging technique (DBA), the average performed better than the medoids. This

observation led us to develop the Elastic Barycentre Average.

10.1 Discussion of Contributions 360

The Elastic Barycentre Average is a generalisation of DBA that can be applied
to any elastic distance capable of computing a full alignment path through a cost
matrix. We incorporated the Elastic Barycentre Average into eight different elastic
distance k-means clusterers and observed substantial improvements in clustering
performance across all distances compared to using the arithmetic mean or medoids.
Notably, the best-performing elastic distances, such as MSM and TWE, when com-
bined with the Elastic Barycentre Average, not only outperformed but significantly
surpassed the existing state-of-the-art.

The state-of-the-art performance achieved by PAM-TWE, PAM-MSM, k-means-
soft-DBA, k-means-ba-MSM, and k-means-ba-TWE comes at a substantial com-
putational cost, making these algorithms impractical for many real-world datasets.
To address this limitation, we developed KESBA—a versatile, highly scalable
clustering algorithm tailored for large-scale datasets. KESBA provides practitioners
with a flexible set of parameters to balance computational efficiency and clustering
performance. At the heart of KESBA is the novel Random Subset Elastic Stochastic
Subgradient Barycentre Average, an elastic distance averaging algorithm, along
with several optimisations to our Lloyd’s baseline configuration. We demonstrate
that KESBA not only achieves state-of-the-art performance with significantly faster
runtime but also offers practitioners the flexibility to adjust parameters based on
their runtime requirements.

Finally, we introduced ECE, an ensemble of eight elastic PAM models developed
using a novel Elastic Unsupervised Proportional Weighting ensemble scheme.
The ECE outperformed six widely used ensemble schemes, all utilising the same
eight PAM base clusterers. Moreover, ECE surpassed the performance of each
individual PAM clusterer within the ensemble. ECE achieves state-of-the-art
clustering performance and ranks among the best clustering models considered in

this thesis.

10.2 Future Work and Extensions 361

We have made all the code for our clusterers and experiments available through
the open-source projects aeon and tsml-eval. This allows practitioners to reproduce
all the work presented in this thesis and further build upon and extend the algorithms

proposed.

10.2 Future Work and Extensions

The potential applications of elastic distances in TSCL are vast, and in this thesis, we
have primarily focused on partition-based TSCL algorithms. While we hypothesise
that our findings will extend to other TSCL approaches, such as density-based and
hierarchical-based algorithms, our future work will aim to benchmark these methods
similarly to our evaluation of partition-based approaches. Our ultimate goal is to
produce a comprehensive TSCL “bakeoff™ paper, akin to the TSC bakeoff [8].

By introducing elastic distances beyond DTW and developing a generalised
Elastic Barycentre Averaging function that can be applied to any elastic distance
capable of computing a complete alignment path, we hope to encourage the adop-
tion of superior elastic distances—such as MSM, TWE, soft-DTW, and shape-
DTW—both in existing and new TSCL models to advance state-of-the-art methods.
Additionally, for models where computational runtime is a concern, the Random
Subset Elastic Stochastic Subgradient Barycentre Average can be utilised with any
elastic distance, offering a flexible balance between computational efficiency and
clustering performance.

We also aim to study the impact of combining various elastic distances with the
Elastic Barycentre Average on existing unsupervised evaluation metrics, such as
Davies-Bouldin, Silhouette Coefficient, and Calinski-Harabasz. These metrics all
rely on a distance measure and an averaging technique. In Chapter 9, we indirectly
demonstrated that using the elastic distance and Elastic Barycentre Average in

unsupervised evaluation metrics significantly enhances their effectiveness. However,

10.2 Future Work and Extensions 362

we plan to empirically validate these finding, as it could greatly improve real-world
TSCL parameter tuning and evaluation.

Although KESBA is already a fast and versatile TSCL algorithm, we believe it
can be made even faster. TWE, the best-performing elastic distance in our KESBA
evaluation, satisfies the triangular inequality, which opens the possibility of using
alternative k-means algorithms like Elkan’s algorithm [28]. This approach could
significantly reduce the number of distance computations required, thereby further
improving KESBA’s runtime.

Lastly, throughout this thesis, we noted the strong performance of soft-DBA.
While soft-DTW already has a bespoke averaging technique, we experimented
with soft-DTW using the Elastic Barycentre Average. Although k-means-ba-soft-
DTW performed well, it did not surpass k-means-ba-MSM or k-means-ba-TWE.
Therefore, we hypothesise that developing a “soft” version of TWE and MSM,
to allow the development of Soft MSM and TWE Barycentre Averaging, could

potentially outperform the k-means-soft-DBA clusterer.

References

[1] Ahmed, M., Seraj, R., and Islam, S. M. S. (2020). The k-means algorithm: A
comprehensive survey and performance evaluation. Electronics, 9(8).

[2] Almahamid, F. and Grolinger, K. (2022). Agglomerative hierarchical clustering
with dynamic time warping for household load curve clustering.

[3] Algahtani, A., Ali, M., Xie, X., and Jones, M. W. (2021). Deep time-series
clustering: A review. Electronics, 10(23).

[4] Alqurashi, T. and Wang, W. (2019). Clustering ensemble method. International
Journal of Machine Learning and Cybernetics, 10(6):1227-1246.

[5S] Ankerst, M., Breunig, M. M., Kriegel, H.-P., and Sander, J. (1999). Optics:
ordering points to identify the clustering structure. In Proceedings of the 1999
ACM SIGMOD International Conference on Management of Data, SIGMOD
’99, page 49-60, New York, NY, USA. Association for Computing Machinery.

[6] Arthur, D. and Vassilvitskii, S. (2007). k-means++: the advantages of careful
seeding. In Proceedings of the Eighteenth Annual ACM-SIAM Symposium on
Discrete Algorithms, SODA °07, page 1027-1035, USA. Society for Industrial
and Applied Mathematics.

[7] Bagirov, A., Karmitsa, N., and Mkel, M. M. (2014). Introduction to Nonsmooth
Optimization: Theory, Practice and Software. Springer Publishing Company,
Incorporated.

[8] Bagnall, A., Lines, J., Bostrom, A., Large, J., and Keogh, E. (2017). The
great time series classification bake off: a review and experimental evaluation of
recent algorithmic advances. DAMI, 31(3):606—660.

[9] Begum, N., Ulanova, L., Dau, H. A., Wang, J., and Keogh, E. J. (2016). A
general framework for density based time series clustering exploiting a novel
admissible pruning strategy. ArXiv, abs/1612.00637.

[10] Bellman, R. and Kalaba, R. (1959). On adaptive control processes. IRE
Transactions on Automatic Control, 4(2):1-9.

[11] Benavoli, A., Corani, G., and Mangili, F. (2016). Should we really use
post-hoc tests based on mean-ranks? Journal of Machine Learning Research,
17(5):1-10.

References 364

[12] Berndt, D. J. and Clifford, J. (1994). Using dynamic time warping to find
patterns in time series. In Proceedings of the 3rd International Conference on
Knowledge Discovery and Data Mining, AAAIWS’94, page 359-370. AAAI
Press.

[13] Blazquez-Garcia, A., Conde, A., Mori, U., and Lozano, J. A. (2021). A review
on outlier/anomaly detection in time series data. ACM Comput. Surv., 54(3).

[14] Bonner, R. E. (1964). On some clustering techniques. IBM Journal of
Research and Development, 8(1):22-32.

[15] Calinski, T. and Harabasz, J. (1974). A dendrite method for cluster analysis.
Communications in Statistics, 3(1):1-27.

[16] Campello, R. J. G. B., Moulavi, D., and Sander, J. (2013). Density-based
clustering based on hierarchical density estimates. In Pei, J., Tseng, V. S., Cao,
L., Motoda, H., and Xu, G., editors, Advances in Knowledge Discovery and
Data Mining, pages 160—172, Berlin, Heidelberg. Springer Berlin Heidelberg.

[17] Celebi, M. E., Kingravi, H. A., and Vela, P. A. (2013). A comparative study
of efficient initialization methods for the k-means clustering algorithm. Expert
Systems with Applications, 40(1):200-210.

[18] Chen, L. and Ng, R. (2004). On the marriage of Ip-norms and edit distance.
In Proceedings of the Thirtieth International Conference on Very Large Data
Bases - Volume 30, VLDB °04, page 792-803. VLDB Endowment.

[19] Chen, L., Ozsu, M. T., and Oria, V. (2005). Robust and fast similarity search
for moving object trajectories. In Proceedings of the 2005 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’05, page 491-502,
New York, NY, USA. Association for Computing Machinery.

[20] Comaniciu, D. and Meer, P. (2002). Mean shift: A robust approach toward
feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell., 24:603—619.

[21] Cuturi, M. and Blondel, M. (2017). Soft-dtw: a differentiable loss function
for time-series. In Proceedings of the 34th International Conference on Machine
Learning - Volume 70, ICML’ 17, page 894-903. JMLR.org.

[22] Datta, S., Karmakar, C. K., and Palaniswami, M. (2020). Averaging meth-
ods using dynamic time warping for time series classification. In 2020 IEEE
Symposium Series on Computational Intelligence (SSCI), pages 2794-2798.

[23] Dau, H. A., Keogh, E., Kamgar, K., Yeh, C.-C. M., Zhu, Y., Gharghabi, S.,
Ratanamahatana, C. A., Yanping, Hu, B., Begum, N., Bagnall, A., Mueen, A.,
Batista, G., and Hexagon-ML (2018a). The ucr time series classification archive.
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

https://www.cs.ucr.edu/~eamonn/time_series_data_2018/

References 365

[24] Dau, H. A, Silva, D. F, Petitjean, F., Forestier, G., Bagnall, A., Mueen, A.,
and Keogh, E. (2018b). Optimizing dynamic time warping’s window width for
time series data mining applications. Data Mining and Knowledge Discovery,
32(4):1074-1120.

[25] Davies, D. L. and Bouldin, D. W. (1979). A cluster separation measure. /EEE
Transactions on Pattern Analysis and Machine Intelligence, PAMI-1(2):224-227.

[26] Demsar, J. (2006). Statistical comparisons of classifiers over multiple data
sets. J. Mach. Learn. Res., 7:1-30.

[27] Ding, H., Trajcevski, G., Scheuermann, P., Wang, X., and Keogh, E. (2008).
Querying and mining of time series data: experimental comparison of represen-
tations and distance measures. Proc. VLDB Endow., 1(2):1542-1552.

[28] Elkan, C. (2003). Using the triangle inequality to accelerate k-means. In Pro-
ceedings of the Twentieth International Conference on International Conference
on Machine Learning, ICML’ 03, page 147-153. AAAI Press.

[29] Ester, M., Kriegel, H.-P., Sander, J., and Xu, X. (1996). A density-based
algorithm for discovering clusters in large spatial databases with noise. In

Proceedings of the Second International Conference on Knowledge Discovery
and Data Mining, KDD’96, page 226-231. AAAI Press.

[30] Esteves, R. M. and Rong, C. (2011). Using mahout for clustering wikipedia’s
latest articles: A comparison between k-means and fuzzy c-means in the cloud.
In Proceedings of the 2011 IEEE Third International Conference on Cloud
Computing Technology and Science, CLOUDCOM 11, page 565-569, USA.
IEEE Computer Society.

[31] Estivill-Castro, V. (2002). Why so many clustering algorithms: A position
paper. SIGKDD Explor. Newsl., 4(1):65-75.

[32] Ezugwu, A. E., Ikotun, A. M., Oyelade, O. O., Abualigah, L., Agushaka,
J. O,, Eke, C. 1., and Akinyelu, A. A. (2022). A comprehensive survey of
clustering algorithms: State-of-the-art machine learning applications, taxonomy,

challenges, and future research prospects. Engineering Applications of Artificial
Intelligence, 110:104743.

[33] Fatima, S. S. W. and Rahimi, A. (2024). A review of time-series forecasting
algorithms for industrial manufacturing systems. Machines, 12(6).

[34] Fern, X. Z. and Brodley, C. E. (2004). Solving cluster ensemble problems by
bipartite graph partitioning. In Proceedings of the Twenty-First International
Conference on Machine Learning, ICML 04, page 36, New York, NY, USA.
Association for Computing Machinery.

[35] Forgy, E. W. (1965). Cluster analysis of multivariate data : efficiency versus
interpretability of classifications. Biometrics, 21:768-769.

References 366

[36] Fraley, C. and Raftery, A. E. (1998). How Many Clusters? Which Clustering
Method? Answers Via Model-Based Cluster Analysis. The Computer Journal,
41(8):578-588.

[37] Frinti, P. and Sieranoja, S. (2019). How much can k-means be improved by
using better initialization and repeats? Pattern Recognition, 93:95-112.

[38] Fréchet, M. (1948). Les éléments aléatoires de nature quelconque dans un
espace distancié. Annales de l’institut Henri Poincaré, 10(4):215-310.

[39] Garcia, S. and Herrera, F. (2008). An extension on “‘statistical comparisons
of classifiers over multiple data sets” for all pairwise comparisons. Journal of
Machine Learning Research, 9(89):2677-2694.

[40] Golub, G. H. and Van Loan, C. F. (2012). Matrix Computations, volume 3.
JHU Press.

[41] Guha, S., Rastogi, R., and Shim, K. (1998). Cure: an efficient clustering
algorithm for large databases. In Proceedings of the 1998 ACM SIGMOD
International Conference on Management of Data, SIGMOD ’98, page 73-84,
New York, NY, USA. Association for Computing Machinery.

[42] Gutiérrez, A. P., Delfa, J. L. V., and Lépez, M. V. (2023). Time series cluster-
ing using trend, seasonal and autoregressive components to identify maximum
temperature patterns in the iberian peninsula. Environmental and Ecological
Statistics, 30(3):421-442.

[43] Hautamaki, V., Nykanen, P., and Franti, P. (2008). Time-series clustering
by approximate prototypes. In 2008 19th International Conference on Pattern
Recognition, pages 1-4.

[44] Herrmann, M. and Webb, G. 1. (2023). Amercing: An intuitive and effective
constraint for dynamic time warping. Pattern Recognition, 137:109333.

[45] Hirschberg, D. S. (1977). Algorithms for the longest common subsequence
problem. J. ACM, 24(4):664—-675.

[46] Holder, C., Guijo-Rubio, D., and Bagnall, A. (2023). Clustering time series
with k-medoids based algorithms. In Ifrim, G., Tavenard, R., Bagnall, A.,
Schaefer, P., Malinowski, S., Guyet, T., and Lemaire, V., editors, Advanced
Analytics and Learning on Temporal Data, pages 39-55, Cham. Springer Nature
Switzerland.

[47] Holder, C., Middlehurst, M., and Bagnall, A. (2024). A review and evalu-
ation of elastic distance functions for time series clustering. Knowledge and
Information Systems, 66(2):765-809.

[48] Ikotun, A. M., Ezugwu, A. E., Abualigah, L., Abuhaija, B., and Heming,
J. (2023). K-means clustering algorithms: A comprehensive review, variants
analysis, and advances in the era of big data. Information Sciences, 622:178-210.

References 367

[49] Itakura, F. (1975). Minimum prediction residual principle applied to speech
recognition. /IEEE Transactions on Acoustics, Speech, and Signal Processing,
23(1):67-72.

[50] Jain, A. K. and Dubes, R. C. (1988). Algorithms for clustering data. Prentice-
Hall, Inc., USA.

[51] Javed, A., Lee, B. S., and Rizzo, D. M. (2020). A benchmark study on time
series clustering. Machine Learning with Applications, 1:100001.

[52] Javed, A., Rizzo, D. M., Lee, B. S., and Gramling, R. (2024). Somtimes: self
organizing maps for time series clustering and its application to serious illness
conversations. Data Mining and Knowledge Discovery, 38(3):813—-839.

[53] Jeong, Y., Jeong, M., and Omitaomu, O. (2011). Weighted dynamic time
warping for time series classification. Pattern Recognition, 44:2231-2240.

[54] Jorge, M.-B. and Cuevas, R. (2024). Time series clustering with random
convolutional kernels. Data Mining and Knowledge Discovery, 38(4):1862—
1888.

[55] Jr.,J. H. W. (1963). Hierarchical grouping to optimize an objective function.
Journal of the American Statistical Association, 58(301):236-244.

[56] Karypis, G., Han, E.-H., and Kumar, V. (1999). Chameleon: hierarchical
clustering using dynamic modeling. Computer, 32(8):68-75.

[57] Karypis, G. and Kumar, V. (1998). Multilevelk-way partitioning scheme for
irregular graphs. Journal of Parallel and Distributed Computing, 48(1):96—129.

[58] Kaufman, L. and Rousseeuw, P. (1990). Finding groups in data: An introduc-
tion to cluster analysis. Wiley, New York. ISBN 0-471-87876-6.

[59] Keogh, E. and Kasetty, S. (2003). On the need for time series data min-
ing benchmarks: A survey and empirical demonstration. Data Mining and
Knowledge Discovery, 7(4):349-371.

[60] Keogh, E.J. and Pazzani, M. J. (2001). Derivative dynamic time warping. In
SDM.

[61] Kobylin, O. and Lyashenko, V. (2020). Time series clustering based on the
k-means algorithm. Journal La Multiapp, 1(3):1-7.

[62] Kuhn, H. W. (1955). The hungarian method for the assignment problem.
Naval Research Logistics Quarterly, 2(1-2):83-97.

[63] Kumar, U., Legendre, C. P, Lee, J.-C., Zhao, L., and Chao, B. F. (2022). On
analyzing gnss displacement field variability of taiwan: Hierarchical agglom-

erative clustering based on dynamic time warping technique. Computers &
Geosciences, 169:105243.

References 368

[64] Lafabregue, B., Weber, J., Gangarski, P., and Forestier, G. (2022). End-to-end
deep representation learning for time series clustering: a comparative study.
Data Mining and Knowledge Discovery, 36(1):29-81.

[65] Lam, D. and Wunsch, D. C. (2014). Chapter 20 - clustering. In Diniz, P. S.,
Suykens, J. A., Chellappa, R., and Theodoridis, S., editors, Academic Press
Library in Signal Processing: Volume 1, volume 1 of Academic Press Library in
Signal Processing, pages 1115-1149. Elsevier.

[66] Le Quy Nhon, V. and Anh, D. T. (2012). A birch-based clustering method for
large time series databases. In Cao, L., Huang, J. Z., Bailey, J., Koh, Y. S., and
Luo, J., editors, New Frontiers in Applied Data Mining, pages 148—159, Berlin,
Heidelberg. Springer Berlin Heidelberg.

[67] Lee, C. and Van Der Schaar, M. (2020). Temporal phenotyping using deep pre-
dictive clustering of disease progression. In Proceedings of the 37th International
Conference on Machine Learning, ICML 20. JMLR.org.

[68] Leonard Kaufman, P. J. R. (1990a). Clustering Large Applications (Program
"CLARA"), chapter 3, pages 126—-163. John Wiley and Sons, Ltd.

[69] Leonard Kaufman, P. J. R. (1990b). Partitioning Around Medoids (Program
PAM), chapter 2, pages 68—125. John Wiley and Sons, Ltd.

[70] Li, T., Ding, C., and Jordan, M. 1. (2007). Solving consensus and semi-
supervised clustering problems using nonnegative matrix factorization. In
Seventh IEEE International Conference on Data Mining (ICDM 2007), pages
577-582.

[71] Li, X., Lin, J., and Zhao, L. (2019). Linear time complexity time series
clustering with symbolic pattern forest. In Proceedings of the Twenty-Eighth
International Joint Conference on Artificial Intelligence, IJCAI-19, pages 2930—
2936. International Joint Conferences on Artificial Intelligence Organization.

[72] Li, X., Xi, W., and Lin, J. (2024). Randomnet: clustering time series using
untrained deep neural networks. Data Mining and Knowledge Discovery.

[73] Li, Z., Yang, Y., Liu, J., Zhou, X., and Lu, H. (2021). Unsupervised feature se-
lection using nonnegative spectral analysis. Proceedings of the AAAI Conference
on Artificial Intelligence, 26(1):1026—-1032.

[74] Lines, J. and Bagnall, A. (2015). Time series classification with ensembles of
elastic distance measures. "dami”, 29:565-592.

[75] Lloyd, S. (1982). Least squares quantization in pcm. IEEE Transactions on
Information Theory, 28(2):129-137.

[76] Lucas, B., Shifaz, A., Pelletier, C., O’neill, L., Zaidi, N., Goethals, B.,
Petitjean, F., and Webb, G. 1. (2019). Proximity forest: an effective and

References 369

scalable distance-based classifier for time series. Data Min. Knowl. Discov.,
33(3):607-635.

[77]1 Ma, Q., Zheng, J., Li, S., and Cottrell, G. W. (2019). Learning representations
for time series clustering. In Wallach, H., Larochelle, H., Beygelzimer, A.,
d'Alché-Buc, F.,, Fox, E., and Garnett, R., editors, Advances in Neural Informa-
tion Processing Systems, volume 32. Curran Associates, Inc.

[78] MacQueen, J. B. (1967). Some methods for classification and analysis of
multivariate observations, pages ::::281-297. University of California Press.

[79] Marteau, P.-F. (2009). Time warp edit distance with stiffness adjustment for
time series matching. /EEE Transactions on Pattern Analysis and Machine
Intelligence, 31(2):306-318.

[80] McDowell, I. C., Manandhar, D., Vockley, C. M., Schmid, A. K., Reddy,
T. E., and Engelhardt, B. E. (2018). Clustering gene expression time series data

using an infinite gaussian process mixture model. PLOS Computational Biology,
14(1):1-27.

[81] McLachlan, G. J. and Krishnan, T. (2007). The EM algorithm and extensions.
John Wiley & Sons.

[82] Middlehurst, M., Ismail-Fawaz, A., Guillaume, A., Holder, C., Rubio, D. G.,
Bulatova, G., Tsaprounis, L., Mentel, L., Walter, M., Schifer, P., and Bagnall, A.
(2024a). aeon: a python toolkit for learning from time series.

[83] Middlehurst, M., Large, J., Flynn, M., Lines, J., Bostrom, A., and Bagnall,
A. (2021). Hive-cote 2.0: a new meta ensemble for time series classification.
Machine Learning, 110(11):3211-3243.

[84] Middlehurst, M., Schifer, P, and Bagnall, A. (2024b). Bake off redux: a
review and experimental evaluation of recent time series classification algorithms.
Data Mining and Knowledge Discovery.

[85] Mori, U., Mendiburu, A., and Lozano, J. A. (2016). Similarity measure
selection for clustering time series databases. IEEE Transactions on Knowledge
and Data Engineering, 28(1):181-195.

[86] Ng, R. and Han, J. (2002). CLARANS: A method for clustering objects for
spatial data mining. Knowledge and Data Engineering, IEEE Transactions on,
14:1003- 1016.

[87] Nguyen, N. and Caruana, R. (2007). Consensus clusterings. In Seventh IEEE
International Conference on Data Mining (ICDM 2007), pages 607-612.

[88] Niennattrakul, V. and Ratanamahatana, C. A. (2007). On clustering mul-
timedia time series data using k-means and dynamic time warping. In 2007
International Conference on Multimedia and Ubiquitous Engineering (MUE’07),
pages 733-738.

References 370

[89] Paparrizos, J. and Gravano, L. (2016). k-shape: Efficient and accurate cluster-
ing of time series. SIGMOD Rec., 45(1):69-76.

[90] Paparrizos, J. and Gravano, L. (2017). Fast and accurate time-series clustering.
ACM Trans. Database Syst., 42(2).

[91] Paparrizos, J. and Reddy, S. P. T. (2023). Odyssey: An engine enabling the
time-series clustering journey. Proc. VLDB Endow., 16(12):4066—4069.

[92] Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel,
0., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos,
A., Cournapeau, D., Brucher, M., Perrot, M., and Duchesnay, E. (2011). Scikit-
learn: Machine learning in Python. Journal of Machine Learning Research,
12:2825-2830.

[93] Petitjean, F., Inglada, J., and Gancarski, P. (2012). Satellite image time series
analysis under time warping. [EEE Transactions on Geoscience and Remote
Sensing, 50(8):3081-3095.

[94] Petitjean, F., Ketterlin, A., and Gangarski, P. (2011). A global averaging
method for dynamic time warping, with applications to clustering. Pattern
Recognition, 44(3):678—693.

[95] Qian, M. and Zhai, C. (2013). Robust unsupervised feature selection. In IJCAI
2013 - Proceedings of the 23rd International Joint Conference on Artificial
Intelligence, IJCAI International Joint Conference on Artificial Intelligence,
pages 1621-1627. Copyright: Copyright 2014 Elsevier B.V., All rights reserved.;
23rd International Joint Conference on Artificial Intelligence, IJCAI 2013 ;
Conference date: 03-08-2013 Through 09-08-2013.

[96] Rakthanmanon, T., Campana, B., Mueen, A., Batista, G., Westover, B., Zhu,
Q., Zakaria, J., and Keogh, E. (2013). Addressing big data time series: Mining
trillions of time series subsequences under dynamic time warping. ACM Trans.
Knowl. Discov. Data, 7(3).

[97] Rand, W. M. (1971). Objective criteria for the evaluation of clustering methods.
Journal of the American Statistical Association, 66(336):846—850.

[98] Ransom, S. M., Eikenberry, S. S., and Middleditch, J. (2002). Fourier tech-
niques for very long astrophysical time-series analysis. The Astronomical Jour-
nal, 124(3):1788.

[99] Ratanamahatana, C. A. and Keogh, E. (2004). Making Time-series Classifica-
tion More Accurate Using Learned Constraints, pages 11-22.

[100] Rodriguez, A. and Laio, A. (2014). Clustering by fast search and find of
density peaks. Science, 344(6191):1492-1496.

References 371

[101] Ruiz, L., Pegalajar, M., Arcucci, R., and Molina-Solana, M. (2020). A time-
series clustering methodology for knowledge extraction in energy consumption
data. Expert Systems with Applications, 160:113731.

[102] Résidnen, T. and Kolehmainen, M. (2009). Feature-based clustering for
electricity use time series data. volume 5495, pages 401-412.

[103] Sakoe, H. and Chiba, S. (1978). Dynamic programming algorithm optimiza-
tion for spoken word recognition. IEEE Transactions on Acoustics, Speech, and
Signal Processing, 26(1):43-49.

[104] Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P, Tiwari, A., Er,
M. J., Ding, W., and Lin, C.-T. (2017). A review of clustering techniques and
developments. Neurocomputing, 267:664—681.

[105] Schmidl, S., Wenig, P., and Papenbrock, T. (2022). Anomaly detection in
time series: a comprehensive evaluation. Proc. VLDB Endow., 15(9):1779-1797.

[106] Schubert, E. and Rousseeuw, P. J. (2019). Faster k-medoids clustering:
Improving the pam, clara, and clarans algorithms. In Amato, G., Gennaro, C.,
Oria, V., and Radovanovi¢, M., editors, Similarity Search and Applications,
pages 171-187, Cham. Springer International Publishing.

[107] Schubert, E. and Rousseeuw, P. J. (2021). Fast and eager k-medoids clus-
tering: O(k) runtime improvement of the pam, clara, and clarans algorithms.
Information Systems, 101:101804.

[108] Schultz, D. and Jain, B. (2018). Nonsmooth analysis and subgradient meth-
ods for averaging in dynamic time warping spaces. Pattern Recognition, 74:340-
358.

[109] Sezer, O. B., Gudelek, M. U., and Ozbayoglu, A. M. (2020). Financial
time series forecasting with deep learning : A systematic literature review:
2005-2019. Applied Soft Computing, 90:106181.

[110] Shi, L., Du, L., and Shen, Y.-D. (2014). Robust spectral learning for unsuper-
vised feature selection. In 2014 IEEE International Conference on Data Mining,
pages 977-982.

[111] Shifaz, A., Pelletier, C., Petitjean, F., and Webb, G. (2023). Elastic similarity
and distance measures for multivariate time series. Knowledge and Information
Systems, 65(6).

[112] Shiudkar, K. and Takmare, S. (2017). Review of existing methods in k-means
clustering algorithm. International Research Journal Engineering Technology,
4(2):1213-1216.

[113] Silva, M. and Henriques, R. (2020). Exploring time-series motifs through
dtw-som. pages 1-8.

References 372

[114] Stefan, A., Athitsos, V., and Das, G. (2013). The move-split-merge met-
ric for time series. IEEE Transactions on Knowledge and Data Engineering,
25(6):1425-1438.

[115] Strehl, A. and Ghosh, J. (2003). Cluster ensembles — a knowledge
reuse framework for combining multiple partitions. J. Mach. Learn. Res.,
3(null):583-617.

[116] Su, T. and Dy, J. (2004). A deterministic method for initializing k-means
clustering. In 16th IEEE International Conference on Tools with Artificial
Intelligence, pages 784-786.

[117] Tan, C. W., Bergmeir, C., Petitjean, F., and Webb, G. 1. (2021). Time series
extrinsic regression. Data Mining and Knowledge Discovery, 35(3):1032-1060.

[118] Tavenard, R., Faouzi, J., Vandewiele, G., Divo, F., Androz, G., Holtz, C.,
Payne, M., Yurchak, R., Ruwurm, M., Kolar, K., and Woods, E. (2020). Tslearn,

a machine learning toolkit for time series data. Journal of Machine Learning
Research, 21(118):1-6.

[119] Tibshirani, R., Walther, G., and Hastie, T. (2002). Estimating the Number
of Clusters in a Data Set Via the Gap Statistic. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 63(2):411-423.

[120] Tiwari, M., Zhang, M. J., Mayclin, J., Thrun, S., Piech, C., and Shomorony,
I. (2020). Banditpam: Almost linear time k-medoids clustering via multi-armed
bandits. In Advances in Neural Information Processing Systems, pages 368—374.

[121] Trirat, P., Shin, Y., Kang, J., Nam, Y., Na, J., Bae, M., Kim, J., Kim, B,
and Lee, J.-G. (2024). Universal time-series representation learning: A survey.
ArXiv, abs/2401.03717.

[122] Truong, C., Oudre, L., and Vayatis, N. (2020). Selective review of offline
change point detection methods. Signal Processing, 167:107299.

[123] Umatani, R., Imai, T., Kawamoto, K., and Kunimasa, S. (2023). Time series
clustering with an em algorithm for mixtures of linear gaussian state space
models. Pattern Recognition, 138:109375.

[124] Vesanto, J. and Alhoniemi, E. (2000). Clustering of the self-organizing map.
IEEE Transactions on Neural Networks, 11(3):586 — 600. Cited by: 2070.

[125] Vinh, N. X., Epps, J., and Bailey, J. (2010). Information theoretic measures
for clusterings comparison: Variants, properties, normalization and correction
for chance. Journal of Machine Learning Research, 11(95):2837-2854.

[126] Vlachos, M., Kollios, G., and Gunopulos, D. (2002). Discovering similar
multidimensional trajectories. In Proceedings 18th International Conference on
Data Engineering, pages 673—-684.

References 373

[127] Wenig, P., Hofgen, M., and Papenbrock, T. (2024). Jet: Fast estimation of
hierarchical time series clustering. Engineering Proceedings, 68(1).

[128] Yang, J. and Leskovec, J. (2011). Patterns of temporal variation in online
media. In Proceedings of the Fourth ACM International Conference on Web
Search and Data Mining, WSDM °11, page 177-186, New York, NY, USA.
Association for Computing Machinery.

[129] Yang, Y., Shen, H. T., Ma, Z., Huang, Z., and Zhou, X. (2011). /; ;-norm
regularized discriminative feature selection for unsupervised learning. In IJCAI
International Joint Conference on Artificial Intelligence, pages 1589—1594.

[130] Zhang, Q., Wu, J., Zhang, P., Long, G., and Zhang, C. (2019). Salient
subsequence learning for time series clustering. /IEEE Transactions on Pattern
Analysis and Machine Intelligence, 41(9):2193-2207.

[131] Zhang, T., Ramakrishnan, R., and Livny, M. (1996). Birch: an efficient data
clustering method for very large databases. In ACM SIGMOD Record, SIGMOD
’96, page 103-114, New York, NY, USA. Association for Computing Machinery.

[132] Zhao, J. and Itti, L. (2018). shapedtw: Shape dynamic time warping. Pattern
Recognition, 74:171-184.

[133] Zolhavarieh, S., Aghabozorgi, S., and Teh, Y. W. (2014). A review of
subsequence time series clustering. TheScientificWorldJournal, 2014:312521.
Epub 2014 Jul 21.

Appendix A

Excluded Datasets for Models

This appendix details the datasets excluded from each experiment’s analysis.

Datasets were excluded for one of the following reasons:

* The algorithm was too computationally expensive to complete within our

seven-day runtime limit.

* The algorithm began to diverge, resulting in random clustering and causing
the models to become stuck in infinite loops. Consequently, we had to

terminate the models’ execution before any results could be produced.

To show the missing datasets for each experiments we produce missing dataset
tables. Each table in this chapter is labelled with the corresponding experiment
name and lists the excluded datasets along with the reasons for their exclusion.
Datasets not mentioned in the tables are assumed to have been included in the
analysis. To conserve space, only the missing datasets are listed.

Table A.1 provides an example for a example experiment. Datasets are listed in
the rows, while clusterer names are listed in the columns. An “x” in a cell indicates
that the dataset was missing, whereas a “v"” indicates that the dataset was included
in the analysis. The table caption references the experiment and briefly outline the

reasons for the missing datasets.

375

Table A.1 Example of Missing Datasets for Clusterers. Datasets are missing due to
computational runtime exceeding seven days.

Dataset | Clusterer A | Clusterer B | Clusterer C | Clusterer D
Dataset 1 v v X v
Dataset 2 X v v v
Dataset 3 v X v v
Dataset 4 v v v X
Dataset 5 v v X v

Table A.2 Baseline Lloyd’s with k-means-soft-DBA using the combined test-train
split experiment missing datasets. A total of 27 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset k-means- k-means- k-means- k-sc k-shapes
ba-dtw euclidean | soft-dba

CinCECGTorso v v X v v
EOGHorizontalSignal v v X v v
EOG VerticalSignal v v X v v
EthanolLevel v v X v v
FordA v v X v v
FordB v v X v v
HandOutlines X v X v v
InlineSkate v v X v v
LargeKitchenAppliances v v X v v
Mallat v v X v v
MixedShapesRegularTrain X v X v v
MixedShapesSmallTrain v v X v v
NonlnvasiveFetalECGThorax1 | v/ v X v v
NonlnvasiveFetalECGThorax2 | v/ v X v v
Phoneme X v X v v
PigAirwayPressure v v X v v
PigArtPressure v v X v v
PigCVP v v X v v
RefrigerationDevices v v X v v
ScreenType v v X v v
SemgHandGenderCh2 v v X v v
SemgHandMovementCh2 v v X v v
SemgHandSubjectCh2 v v X v v
StarLightCurves X v X v v
UWaveGestureLibraryAll X v X v v
UWaveGestureLibraryX v v X v v
UWaveGestureLibraryZ v v X X v
Total Missing 5 0 27 1 0

376

Table A.3 Baseline Lloyd’s with k-means-soft-DBA using the test-train split experi-
ment missing datasets. A total of 8 datasets are excluded. Datasets are missing due
to computational runtime exceeding seven days.

Dataset k-means- k-means- k-means- k-sc k-shapes
ba-dtw euclidean | soft-dba

FordA v v X v v
FordB v v X v v
HandOutlines v v X v v
NonlnvasiveFetalECGThorax1 | v/ v X v v
NonlnvasiveFetalECGThorax2 | v/ v X v v
SemgHandMovementCh2 v v X v v
SemgHandSubjectCh2 v v X v v
UWaveGestureLibraryAll v v X v v
Total Missing 0 0 8 0 0

Table A.4 Baseline Lloyd’s using the combined test-train split experiment missing
datasets. A total of 6 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.

Dataset k-means- k-means- k-sc k-shapes
ba-dtw euclidean

HandOutlines X v v v
MixedShapesRegularTrain | x v v v
Phoneme X v v v
StarLightCurves X v v v
UWaveGestureLibraryAll | x v v v
UWaveGestureLibraryZ v v X v

Total Missing 5 0 1 0

377

Table A.5 k-means-elastic-distances-initial-experiments combined test-train split
experiment missing datasets. A total of 32 datasets are excluded. Datasets are
missing due to the repeated creation of empty cluster meaning results could not
be obtained. Models that obtained results for all datasets are excluded to conserve
space.

Dataset k- k- k- k- k- k- k-
means{ means; meansi means-+ means; meansi means-
adtw | ddtw | dtw edr lcss msm | shape-

means-
soft-
dtw

means-
twe

Adiac

CinCECGTorso

Coffee

DistalPhalanxTW

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FiftyWords

Fish

HandOutlines

InlineSkate

Mallat

Meat

MiddlePhalanxTW

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ProximalPhalanxOutlineAgeGroup

ProximalPhalanxTW

SemgHandMovementCh2

SemgHandSubjectCh2

ShapesAll

StarLightCurves

UWaveGestureLibraryAll

Wine

WordSynonyms

RN ENENENEN AN AN AN AN L AN ENENENENENENENENENENENENENENENENENENEN
S RN NN N N AN AN AN AN e L L AN I ENENENENENENENENENENENENENENENEN
S RN N NN e ENEN AN AN e Ll L ENENENENENENENENENENENENENENENENENENEN
RN ENENEN e N AN AN AN e e L LI ENENENENEN LI ENENENENENENENENENENENEN
S e R R B BN AN R e kel kel EN L L ENENENEN L LI ENENENE ENENENENEI I RN e
SR ENENENENEN N NN LI RN RN AN EN RN ENEN AN ENENENENENENENENENENENENEN
S EsIB Nl kel kel iaR il B NE N el kel kel R B N kel KR Bl R BN B N kel kR Rl B N el Kl Ra R R B RN AN A RN

%}

Total Missing

IR B el A i AN AN L RN e L L AN E ENENENENENENENEN L ENENENENEN I

S ENENENENENENENENEN fo E ENEe ENENENENENENENENENENENENENENENENENENEN

378

Table A.6 k-means-elastic-distances-initial-experiments test-train split experiment
missing datasets. A total of 24 datasets are excluded. Datasets are missing due
to the repeated creation of empty cluster meaning results could not be obtained.
Models that obtained results for all datasets are excluded to conserve space.

Dataset

+ INeans-

k-

dtw

k-
means-
less

k-
means-
msm

k-
means-

o »
=
&
=
?

tw

means-
soft-
dtw

Adiac

Coffee

DiatomSizeReduction

DistalPhalanxTW

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FiftyWords

Fish

Meat

MiddlePhalanxTW

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ProximalPhalanxOutline AgeGroup

ProximalPhalanxTW

SemgHandMovementCh?2

ShapesAll

UWaveGestureLibraryAll

Wine

Total Missing

= ENENESENENENEN L ENENENENENENENENENENENENENENENEN

RN ENENEN AN AN AN b ko ENENEN I ENENENENENENENENENENEN

S ENENENENEN AN ke o ENENENENENENENENENENENENENENEN

S ENENENENENEN I L ENEN S ENENEN I ENENENENENENENEN ks

el R R ksl ksl ENENENEN kel ENEel el Ll E ENENENEN LI LA L

= ENENESEN

;\XNN\\%NXN\N%\\\NNN%\\\\

= RNENEIENEENEI IR ol Bl il B LI ENENENEIENENENENENENES

379

Table A.7 k-means-elastic-distances-initial-experiments-no-Icss-soft-shape com-
bined test-train split experiment excluding methods with no missing datasets. A
total of 9 datasets are excluded. Datasets are missing due to the repeated creation of
empty cluster meaning results could not be obtained. Models that obtained results

for all datasets are excluded to conserve space.

Dataset k- k- k- k- k- k-
means- | means- | means- | means- | means- | means-
adtw ddtw dtw edr msm twe

Meat v v v X v v

NonlnvasiveFetalECGThorax1 | v/ X v v v v

NonlnvasiveFetal ECGThorax2 | v/ X v v v v

OliveOil v v v X v v

Phoneme X X X X v X

PigAirwayPressure v X X X v v

PigArtPressure X X X X X X

PigCVP X X X X X X

ShapesAll v v X X v v

Total Missing 3 6 5 7 2 3

380

Table A.8 k-means-elastic-distances-initial-experiments-with-baseline combined
test-train split experiment excluding methods with no missing datasets. A total of
14 datasets are excluded. Datasets are missing due to the repeated creation of empty
cluster meaning results could not be obtained. Specifically for k-means-ba-dtw and
k-sc datasets are excluded due to runtime exceeding our seven day limit. Models
that obtained results for all datasets are excluded to conserve space.

Dataset k- k- k- k- k- k- k- k-sc
meansi means{ meansi means{ meansi means{ means-
adtw | ba- ddtw | dtw | edr msm | twe

dtw

HandOutlines v X v v v v v v

Meat v v v v X v v v

MixedShapesRegularTrain v X v v v v v v

NonlInvasiveFetalECGThorax1 | v/ v X v v v v v

NonlnvasiveFetalECGThorax2 | v/ v X v v v v v

OliveOil v v v v X v v v

Phoneme X X X X X v X v

PigAirwayPressure v v X X X v v v

PigArtPressure X v X X X v X v

PigCVP X v X X X v X v

ShapesAll v v v X X v v v

StarLightCurves v X v v v v v v

UWaveGestureLibraryAll v X v v v v v v

UWaveGestureLibraryZ v v v v v v v X

Total Missing 3 5 6 5 7 2 3 1

Table A.9 k-means-elastic-distances-initial-experiments-with-baseline test-train
split experiment excluding methods with no missing datasets. A total of 7 datasets
are excluded. Datasets are missing due to the repeated creation of empty cluster
meaning results could not be obtained. Models that obtained results for all datasets

are excluded to conserve space.

Dataset k- k- k- k- k- k-
means{ means+ Ineansi means{ means: meanss
adtw | ddtw | dtw edr msm | twe

Adiac v v v X v v

Meat v v v X v v

NonlnvasiveFetalECGThorax1 | v/ X v v v v

OliveOil v v v X v v

PigAirwayPressure v X X v v v

PigArtPressure X X X X v X

PigCVP v v X X v v

Total Missing 1 3 3 5 1 1

381

Table A.10 k-means-elastic-distances-window-tuning combined test-train split ex-
periment missing datasets. A total of 11 datasets are excluded .Datasets are missing
due to the repeated creation of empty cluster meaning results could not be obtained.

Dataset k- k- k- k- k- k- k- k- k-
meansi means: means- | meansi means- | means+ means- | means; means-
adtw | ba- ba- ddtw | ddtw- | dtw | dtw- euclid | msm

dtw dtw- 20- 20-
20- window window
window

HandOutlines v X v v v v v v v

MixedShapesRegularTrain v X v v v v v v v

NonlInvasiveFetalECGThorax1 | v/ v v X X v v v v

NonlnvasiveFetal ECGThorax2 | v/ v v X v v v v v

Phoneme X X v X X X X v v

PigAirwayPressure v v v X X X X v v

PigArtPressure X v v X X X X v X

PigCVP X v v X X X X v X

ShapesAll v v v v v X v v v

StarLightCurves v X X v v v v v v

UWaveGestureLibraryAll v X v v v v v v v

Total Missing 3 5 1 6 5 5 4 0 2

Table A.11 k-means-elastic-distances-window-tuning test-train split experiment
missing datasets. A total of 4 datasets are excluded. Datasets are missing due to the
repeated creation of empty cluster meaning results could not be obtained.

Dataset k- k- k- k- k- k- k- k- k-
means:i means: means- | meansi means- | means+ means- | means; means-
adtw | ba- ba- ddtw | ddtw- | dtw dtw- euclid | msm

dtw dtw- 20- 20-
20- window window
window

NonlnvasiveFetalECGThorax1 | v/ v v X v v v v v

PigAirwayPressure v v v X v X v v v

PigArtPressure X v v X v X v v X

PigCVP v v v v v X v v v

Total Missing 1 0 0 3 0 3 0 0 1

382

Table A.12 Alternate k-medoids all distances combined test-train split experiment
missing datasets. A total of 36 datasets are excluded. Datasets are missing due to

computational runtime exceeding seven days.

Dataset

alternate-
edr

alternate-
lcss

alternate-
shape-dtw

alternate-
soft-dtw

ACSF1

Adiac

Beef

Car

Chinatown

Coffee

DiatomSizeReduction

DistalPhalanxOutline AgeGroup

DistalPhalanxTW

EthanolLevel

FiftyWords

Fish

FordA

HandOutlines

Herring

Mallat

Meat

MiddlePhalanxOutline AgeGroup

MiddlePhalanxOutlineCorrect

MiddlePhalanxTW

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

OliveOil

PigAirwayPressure

Plane

ProximalPhalanxOutlineAgeGroup

ProximalPhalanxOutlineCorrect

ProximalPhalanxTW

ShapesAll

StarLightCurves

Symbols

Trace

UWaveGestureLibraryAll

Wine

Total Missing

il ENENENENEN o ENENENE eI ENENENENEI RN EN I ENENENENENENENENENE ENENENEN IS

Ikl BN Kl EcE RNl Lol EalRal EaR Ral Rl Eal Ra R RN AN Rl Ea R RN R R RN RN ENI RN Rl RN RN Rl Rl RN Rl Rl Rl RN Rl e

=

S ENESI ENEN kol ENEN AN AN AN AN AN ENEN L L ENENENENENEN S LI ENENENENENENENENENENENEN

SR IR B Il RN K ENEI ENENEI ENENENENENENENEI ENEN E ENENENENEIENENENENENEN b

383

Table A.13 Alternate k-medoids without LCSS, EDR and soft-DTW combined
test-train split experiment missing datasets. A total of 6 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate-
shape-dtw

FordA

HandOutlines
MixedShapesRegularTrain
MixedShapesSmallTrain
StarLightCurves
UWaveGestureLibraryAll
Total Missing

QN | R R M M| K

Table A.14 Alternate k-medoids without LCSS, EDR and soft-DTW with baseline
clusterers combined test-train split experiment missing datasets. A total of 8 datasets
are excluded. Datasets are missing due to computational runtime exceeding seven
days.

Dataset alternate- | k-means- k-sc
shape-dtw | ba-dtw

FordA X v v
HandOutlines X X v
MixedShapesRegularTrain | x X v
MixedShapesSmallTrain | x v v
Phoneme v X v
StarLightCurves X X v
UWaveGestureLibraryAll | x X v
UWaveGestureLibraryZ v v X
Total Missing 6 5 1

384

Table A.15 Alternate k-medoids with all 12 elastic distances test-train split experi-
ment missing datasets. A total of 10 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days.

Dataset alternate- alternate- alternate- alternate-
euclidean | shape-dtw | soft-dtw

ACSF1

Adiac

HandOutlines

MiddlePhalanxOutline AgeGroup

MiddlePhalanxTW

OliveOil

ProximalPhalanxTW

Wine

Worms

WormsTwoClass

I ECIENENENENENENENENES
=)

i E RS ESES RN RN AN ENAN

S il kI ENENENENENEIENEN
R IENEN R RN RN RN NN E Nl e

Total Missing

Table A.16 Alternate k-medoids with all 12 elastic distance and the baseline cluster-
ers test-train split experiment missing datasets. A total of 10 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate- alternate- alternate- alternate-
euclidean | shape-dtw | soft-dtw

ACSF1

Adiac

HandOutlines

MiddlePhalanxOutline AgeGroup

MiddlePhalanxTW

OliveOil

ProximalPhalanxTW

Wine

Worms

WormsTwoClass

I EcIENENENENENENENENES
=)

ki EsI SRS ENENENENENEN

S i kI ENENENENENEIENEN
R IENENEEE NN E NNl E Nl e

Total Missing

385

Table A.17 Alternate k-medoids compared to k-means over the combined test-train
split across experiment missing datasets. A total of 7 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

Dataset k-means- k-means- k-means- k-means- k-means-
adtw ddtw dtw msm twe

NonlnvasiveFetalECGThorax1 | v/ X v v v
NonlnvasiveFetalECGThorax2 | v/ X v v v
Phoneme X X X v X
PigAirwayPressure v X X v v
PigArtPressure X X X X X

PigCVP X X X X X
ShapesAll v v X v v

Total Missing 3 6 5 2 3

Table A.18 Alternate k-medoids compared to k-means across test-train split experi-
ment missing datasets. A total of 6 datasets are excluded. Datasets are missing due

to computational runtime exceeding seven days.

Dataset alternate-| alternate- k- k- k- k- k-
adtw euclidean| means{ means{ means4 means4 means-
adtw | ddtw | dtw msm | twe
NonlnvasiveFetalECGThorax1 | v/ v v X v v v
PigAirwayPressure v v v X X v v
PigArtPressure v v X X X X X
PigCVP v v v v X v v
Worms X X v v v v v
WormsTwoClass X X v v v v v
Total Missing 2 2 1 3 3 1 1

386

! I [4 9 I ! I I I I ! I ! SuISSIIAL [®)0L
A A N X X A A A A A A A A [V ATRIqIToINISODACM)
A A X X X A A A A A A A A SAAINDIYSITIeIS
A A A X X A A A A A A A /| TXBIOYLDDHI[BISHFAISBAUTUON
S S S X X S S S S S A S /| TXBIOYTDDH[BISHAISLAUJUON
N » Vs N X Vs , Vs N N , , N ures [[ewgsadeySpaxIA
N , N , X Vs N N , N Vs N N ures] Je[n3oysodeySpaxIA
A A N A X A S A A A A A A Je[EIN
A A VA X X A A A A A A A A suipnQpueH
A A A A X A A A A A A A A VP04
X X X X X X X X X X X X X doip
A A A A X A S A A A A A A OSIOL.DDHDUD
Mip MIp
MIpPM (MIpPPM M} | -jjos |-adeys | wisw SSI| [UBIPIPONI di Ipd MIp | MIpp | mipe
-wied | -wed | -wied | -wied | -wed | -wed | -ued -wied | -wed | -wed | -ured | -wed | -wned jaseje(q

‘SABp UAAdS SUIPIIIX dwnunl [euoneindwod 03 anp Jurssiu
QIE S3oseIR(] "PIPNIOXA AI' SJASEIEP [] JO [BI10] Y “S}aseiep Sulsstu Judwiadxa Jds uren-3sa) paurquiod saouelsIp [[e Yim JNVd 61V 2I9BL

[~
&
I I (4 ! I I ! ! ! I I 0 I S SuIssIA [B)OL
A 2 2 A P A A M A A M M X M ZAIRIQITOINISINIABM N
A A A A A A A S A A A A S X [IVATeIqITaInIsanoAem N
N A X) N) N N A N) N U X SoAINDIY3I RIS
S A A A A S A A A S A A A X swuoyd
S A S S S S A S A S S S S /| TXBIOY LODH[BISAIAISLAUTUON
S A S S S S A S A S S A S /| IXBIOYLODH[BISAISLAUTUON
A A A A A A A A A A A A A A urel [[ewgsadeySpaxIN
s) s) a))))) N)) X urel[e[n3aysadeygpaxIy
A A A S A S A A A A » A A A Je[[eIN
A A A S A S A S A A S A A X SeuipnopueH
S A A S A A A A A A S A A A Vpiog
X X X X X X X X X X X M M M do1)
S A S A S S A S A S A A S A 0SI0L.DHOHOUTD
Mp
Iﬁﬁ—.
MIPAM [MIPPM IM) | wisw SSI[EPPIIND dx Ip3 | MIp | M)pp | m)ipe sadeys suBdw
-tued | -wed | -wed | -wed | -wed | -wed | -wed | -wed | -wed | -wed | -uwed - | 98-y -y jaseje(q
‘sAep uaAas 3uIpaadxa awrnunl feuoneindwod 03 onp JuISSIW AI. SJASBIB(] "PIPN[OX e S1aseiep
¢1 JO 12101 ¥ "s1oselep Jurssiut Juowradx Jipds urei-1s9) pauIquiod 9y} Uo SIAIISN]O SUI[ASEq YIIM SDURISIP d1SB[7] YIM JAV] 027V 2Iqel,

388

! ! < ! I I ! I I ! I I S SuIssIA [B)OL,
A A 2 2 A 2 A P P 2 M X A 7ZAIeIQUTOINISONOABAM N
A A A S A A A A » A A A X | TIVAIeIqrjamsenosem
N) X N N N) N N N N a X SaAINDIY3I RIS
S S A S A A A A » A S A X swuoyd
A A A 2 A A 2 M M M M M X | urerpren3aysadeySpaxiN
S A A A A S A A A A A A X SeuipnOpueH
X X X X X X X X X X X M A doxp
MIp
I“ﬁ—
MIPM |(MIPPM M) | wisw SSO[|UBdPION dxd Ip3 | MIp | MIpp | mipe FSUBIU
-wed | -wed | -wed | -wed | -uwed -wed | -wed | -wed | -wed | -wed | -uwed | 9s-y -y jsejeq
‘sAep

U9A9s SUIPaRIX9 swnunl feuoneindwod 0} anp SUISSIW aIe $Jaseje("PIPNOXS Ik SJAseIep / JO [€10) ¥ "s1asejep Sursstu juowrradxa Jids
UTB1)-)$9) POUIQUIOD Y} UO SIQISN[O dUI[aseq YPIm M LA-odeys-INVd Pue M ILJ-OS-INVd PN[OXd SOURISIP O1ISe[d () YIM AV 1TV 2I98L

389

Table A.22 PAM with 12 elastic distances with baseline clusterers on the test-train
split experiment missing datasets. A total of 1 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset pam-
shape-dtw
HandOutlines | x

Total Missing | 1

Table A.23 CLARANS with 12 elastic distances on the combined test-train split
experiment missing datasets. A total of 6 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset clarans- clarans-
shape-dtw | soft-dtw

HandOutlines
MixedShapesRegularTrain
NonlnvasiveFetalECGThorax1
NonlnvasiveFetalECGThorax?2
StarLightCurves
UWaveGestureLibraryAll
Total Missing

kI EcIENENENEN

QN[| R X X >R

390

Table A.24 CLARA with 12 elastic distances with baseline clusterers on the test-
train split experiment missing datasets. A total of 6 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

Dataset k-means- k-sc
ba-dtw

HandOutlines
MixedShapesRegularTrain
Phoneme

StarLightCurves
UWaveGestureLibraryAll
UWaveGestureLibraryZ
Total Missing

S EIENENENENEN

VRN RN Rl RN Rl e

Table A.25 CLARANS with 12 elastic distances with baseline clusterers on the
combined test-train split experiment missing datasets. A total of 8 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset clarans- clarans- k-means- k-sc
shape-dtw | soft-dtw ba-dtw

HandOutlines X v X v
MixedShapesRegularTrain X v X v
NonlnvasiveFetalECGThorax1 | x v v v
NonlnvasiveFetal ECGThorax2 | x v v v
Phoneme v v X v
StarLightCurves X X X v
UWaveGestureLibraryAll X X X v
UWaveGestureLibraryZ v v v X
6 2 5 1

Total Missing

391

Table A.26 Different k-medoids clusterers comparison over the combined test-train
split experiment missing datasets. A total of 22 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days. To conserve space we
exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset

alternate-
edr

alternate-
shape-dtw

alternate-
soft-dtw

clarans-
shape-dtw

clarans-
soft-dtw

ACSF1

Adiac

CinCECGTorso

Crop

DiatomSizeReduction

DistalPhalanxTW

FordA

HandOutlines

Mallat

Meat

MiddlePhalanxTW

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax?2

OliveOil

PigAirwayPressure

ProximalPhalanxOutline AgeGroup

ProximalPhalanxTW

StarLightCurves

UWaveGestureLibraryAll

Wine

Total Missing

KA ENENEI RN EI ENENENENE EI ENENENENEENENEI Ee

S RN EIENENENENENEN L LI ENENEN L LI ENENENENENEN

SR ksl ksl ksl Kl ENESI ENENENENEN I RN ENEIRNENEN L

S ENEel kol ENENENENEel E ENEI ENENENE ENENENENENENEN

RN I ENENENENENENENENENENENENENENENENENENEN

392

Table A.27 Different k-medoids clusterers comparison over the test-train split
experiment missing datasets. A total of 10 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset

alternate-

alternate-
euclidean

alternate-
shape-dtw

alternate-
soft-dtw

pam-
shape-dtw

ACSF1

Adiac

HandOutlines

MiddlePhalanxOutlineAgeGroup

MiddlePhalanxTW

OliveOil

ProximalPhalanxTW

Wine

Worms

WormsTwoClass

Total Missing

SJEsiEcIENENENENENENENENES
)

SlEsi kI ENENENENENENENEN

S L EEENENENENENEENEN

R IENENE RN R R RN RNl e

S ANESESENENENENEIENEN

393

Table A.28 Best k-medoids clusterers comparison over combined test-train split
experiment missing datasets. A total of 20 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days. To conserve space we
exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset

alternate-
shape-
dtw

alternate-
soft-dtw

clarans-
shape-
dtw

clarans-
soft-dtw

ACSF1

Adiac

CinCECGTorso

Crop

DistalPhalanxTW

FordA

HandOutlines

Mallat

Meat

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax 1

NonlInvasiveFetalECGThorax?2

OliveOil

Phoneme

ProximalPhalanxOutlineAgeGroup

ProximalPhalanxTW

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryZ

Total Missing

S ENEsi ke ENENENENENENEI L ENENEI I ENENENENEN

S kel ksl EclEcl ENEI ENENENENECIENE ENEIENENEol b

S RN kel ENENENEN S EE RN T ENENE ENENENENENEN

S RN i RS RN R R R R BN AN AN AN ANENENENENENEN

S RNEI LI ENENESI ENENENENESIENENEIENENENENENEN

i EaENENENENENENENENENENENENENENENENENENEN

394

Table A.29 Best k-medoids clusterers comparison over test-train split experiment
missing datasets. A total of 10 datasets are excluded. Datasets are missing due to

computational runtime exceeding seven days.

Dataset

alternate-

alternate-
shape-dtw

alternate-
soft-dtw

pam-
shape-dtw

ACSF1

Adiac

HandOutlines

MiddlePhalanxOutlineAgeGroup

MiddlePhalanxTW

OliveOil

ProximalPhalanxTW

Wine

Worms

WormsTwoClass

Total Missing

SJEsIEcIENENENENENENENENES
)

S EeE i ENENENENENESIENEN

 IENENE RN R R Rl RN AN Rl e

S ANENENENENENENEIENEN

395

Table A.30 Elastic Barycentre k-means using 8 different elastic distances over the
combined test-train split experiment missing datasets. A total of 29 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset

k-means-
ba-dtw

k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

k-means-
ba-twe

Adiac

CinCECGTorso

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FordA

FordB

HandOutlines

InlineSkate

Mallat

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax2

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ProximalPhalanxTW

SemgHandGenderCh2

SemgHandMovementCh2

SemgHandSubjectCh2

ShapesAll

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryX

UWaveGestureLibraryY

UWaveGestureLibraryZ

Yoga

el Rl R Rl Rl Rl RN Rl RN Rl RN R Rl Rl R R Rl Rl Bl Rl Rl Rl Rl RN Rl RN ol R N RN AN

Total Missing

RN ENENEN e kel ENENENENENENENEN LI ENENEN I ENENE ENENENENENENEN

[\8)
<

:\&\\NX\\N\NNXNNNNNN\\NNN\\\NN

= ENEN RN RN AN AN AN AN AN AN AN ENENEN L ENENENENENENENENENENENENENEN

396

Table A.31 Elastic Barycentre k-means using 6 different elastic distances over the
combined test-train split experiment missing datasets. A total of 5 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset k-means- k-means-
ba-dtw ba-twe

HandOutlines X v
MixedShapesRegularTrain | x v
Phoneme X X
StarLightCurves X v
UWaveGestureLibraryAll | x v

Total Missing 5 1

Table A.32 Barycentre averaging using 6 different elastic distances with the baseline
clusterers over the combined test-train split experiment missing datasets. A total
of 7 datasets are excluded. Datasets are missing due to computational runtime
exceeding seven days.

Dataset k- k- k-s¢c | pam- | pam- | pam- | pam- | pam- | pam-
means; means- adtw | dtw erp msm | twe wdtw
ba- ba-
dtw | twe

Crop v v v X X X X X X

HandOutlines X v v v v v v v v

MixedShapesRegularTrain | x v v v v v v v v

Phoneme X X v v v v v v v

StarLightCurves X v v v v v v X v

UWaveGestureLibraryAll | x v v v v v v v v

UWaveGestureLibraryZ v v X v v v v v v

Total Missing 5 1 1 1 1 1 1 2 1

397

Table A.33 Elastic Barycentre k-means using 6 different elastic distances with the
baseline clusterers and soft-DBA over the combined test-train split experiment
missing datasets. A total of 33 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days. To conserve space we exclude PAM
from this table and refer to Table A.19 for PAMs missing datasets.

Dataset k-means- k-means- k-means- k-means- k-means- k-sc
ba-dtw ba-shape- | ba-soft- ba-twe soft-dba
dtw dtw
Adiac v v X v v v
CinCECGTorso v X X v X v
Crop v v v v v v
EOGHorizontalSignal | v/ X v v X v
EOG VerticalSignal v X v v X v
EthanolLevel v X v v X v
FordA v X X v X v
FordB v X X v X v
HandOutlines X X X v X v
InlineSkate v X v v X v

Table A.34 Elastic Barycentre k-means using 8 different elastic distances over the

test-train split experiment missing datasets. A total of 14 datasets are excluded.

Datasets are missing due to computational runtime exceeding seven days.

Dataset

k-means-
ba-shape-

k-means-
ba-soft-

dtw dtw

Adiac

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FordA

FordB

HandOutlines

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

ProximalPhalanxTW

SemgHandMovementCh?2

SemgHandSubjectCh2

StarLightCurves

UWaveGestureLibraryAll

iRl R Rl AN R R R Rl R Rl RN RN R NN

Total Missing

S ENENENENEI St ENE LI ENENENES

[
[\®]

398

Table A.35 Elastic Barycentre k-means using 8 different elastic distances with
the baseline clusterers and soft-DBA over the test-train split experiment missing
datasets. A total of 14 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.

Dataset

k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

k-means-
soft-dba

pam-
shape-dtw

Adiac

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FordA

FordB

HandOutlines

NonlnvasiveFetal ECGThorax 1

NonlnvasiveFetal ECGThorax?2

ProximalPhalanxTW

SemgHandMovementCh?2

SemgHandSubjectCh2

StarLightCurves

UWaveGestureLibrary All

R Rl RN RN ENI RN R R Rl RN Rl RN RN RN N

Total Missing

[y
[%)

S ENENENENE bt bl ENEe E ENENENES

SR RN R RN RN Ea R Rl RN RN RN BN EN RN AN

S ENENENENENENENESI ENENENENENEN

Table A.36 Lloyd’s-based clusterers comparison with Elastic Barycentre Average
test-train split experiment missing datasets. A total of 5 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate- | k-means- k-means- k-means- k-means-
adtw adtw dtw msm twe

PigAirwayPressure | v v X v v
PigArtPressure v X X X X

PigCVP v v X v v

Worms X v v v v
WormsTwoClass X v v v v

Total Missing 2 1 3 1 1

399

Table A.37 KESBA baseline experiment using the combined test-train split experi-
ment missing datasets. A total of 7 datasets are excluded. Datasets are missing due
to computational runtime exceeding seven days.

=~
17,]
(o]
N
=
(¢”)

Dataset k-means- k-means-
ba-dtw ba-twe

pam-msm

Crop

HandOutlines

MixedShapesRegularTrain

Phoneme

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryZ

LR R RN Rl Rl RN AN
s ANENENESIENENEN
s EIENENENENENEN
= ENENENENENENES
SIRSENEIRSENENES g

Total Missing

400

Table A.38 KESBA baseline with soft-DBA experiment using the combined test-

train split experiment missing datasets. A total of 28 datasets are excluded. Datasets

are missing due to computational runtime exceeding seven days.

Dataset

k-means-
ba-twe

k-means-
soft-dba

=
7
(g]

=
(Y]
3

msm

=
o
3

CinCECGTorso

Crop

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FordA

FordB

HandOutlines

InlineSkate

LargeKitchenAppliances

Mallat

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

RefrigerationDevices

ScreenType

SemgHandGenderCh2

SemgHandMovementCh2

SemgHandSubjectCh2

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryX

UWaveGestureLibraryZ

el Rl Kl Rl Rl Rl Rl Rl Rl RN RN Rl Rl Nl Rl Nl Rl RN RN RN Rl Rl Nl Nl Rl KN RN !

Total Missing

SRNEN L kol ENENENENENENENEN LI ENENENE ENENENEI ENENENENENENEN

= ENENENENEN AN ENENENENENEN LI ENENENENENENENENENENENENENENEN

[\8]
BN

= ks EN

= ENECIEN

SN NN I AN RN NN N N AN AN N AN AN AN AN NS ENENENENENENEN RN~
(4]

401

Table A.39 KESBA baseline experiment using the test-train split experiment miss-
ing datasets. A total of 8 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days.

Dataset k-means-
soft-dba

FordA

FordB

HandOutlines
NonlnvasiveFetalECGThorax1
NonlnvasiveFetalECGThorax?2
SemgHandMovementCh2
SemgHandSubjectCh2
UWaveGestureLibraryAll
Total Missing

QR PR | P | > | | | | e

402

Table A.40 KESBA with different initlisation strategies over the combined test-train
split experiment missing datasets. A total of 24 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset

k-sc

kesba-
forgy-
restarts-
msm

kesba-
forgy-
restarts-
twe

kesba-full-
twe

CinCECGTorso

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

HandOutlines

Haptics

InlineSkate

Mallat

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax2

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

SemgHandGenderCh2

SemgHandMovementCh?2

SemgHandSubjectCh2

ShapesAll

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryX

UWaveGestureLibraryZ

Total Missing

L ENENENENENENENEN AN ENENENENENENENENENENENENENEN

NI NE NI kel sl il ici Rl ici Eal ich Rl ial Eal Rl Ko N Nl Ea N Rl Rl Nl Rl ol e

[\

S {B Nl il kel icl kel kel kel Ral Kol B N Kol Ral Kol Rl Kol Ral Ko R RN Kol Hal Rl Nall e

[t

= ENENENEN NN AN AN AN AN AN ENENENENENENENENENENENEN

403

Table A.41 KESBA with different ba subset sizes over the combined test-train
split experiment missing datasets. A total of 5 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset kesba- kesba- kesba- kesba- kesba- kesba-full-
average- average- average- average- average- twe
10-twe 20-twe 30-twe 40-twe 50-twe

NonlnvasiveFetalECGThorax1 | x X X X X v

NonlnvasiveFetalECGThorax2 | x X X X X v

Phoneme X X X X X X

PigArtPressure v v v v X v

UWaveGestureLibrary All X X X X X v

Total Missing 4 4 4 4 5 1

Table A.42 KESBA runtime comparison experiment combined test-train split ex-
periment missing datasets. A total of 6 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days.

Dataset kesba- kesba- kesba- kesba- kesba- kesba-
average- average- average- average- average- both-50-
10-twe 20-twe 30-twe 40-twe 50-twe twe

MiddlePhalanxOutlineAgeGroup | v/ v v v v X

NonlnvasiveFetalECGThorax 1 X X X X X v

NonlnvasiveFetal ECGThorax?2 X X X X X v

Phoneme X X X X X X

PigArtPressure v v v v X v

UWaveGestureLibraryAll X X X X X X

Total Missing 4 4 4 4 5 3

Table A.43 KESBA both experiment combined test-train split experiment missing
datasets. A total of 3 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.
Dataset kesba- kesba- kesba- kesba- kesba-full-
both-20- both-30- both-40- both-50- twe
twe twe twe twe
NonlnvasiveFetalECGThorax2 | v/ v v X v
Phoneme v v X X X
UWaveGestureLibraryAll X X X X v
Total Missing 1 1 2 3 1

404

Table A.44 Baseline EUPW experiment combined test-train split experiment miss-

ing datasets. A total of 22 datasets are excluded. Datasets are missing due to empty

clusters forming.

Dataset

eupw-
euclidean

eupw-msm

eupw-twe

IW'
»
(g}

=]
[
3

msm

=]
o
7

ACSF1

Adiac

CricketY

Crop

DiatomSizeReduction

FiftyWords

Fish

HandOutlines

MixedShapesRegularTrain

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ShapesAll

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryZ

WordSynonyms

Worms

Bl Eel PU| D D[[DR |) 4| | X R R e A
2 < NEN

S ENENENEIEEENENENENESI ENENENEI L ENENENENENENEN

= ENENEI RN AN EN RN RN AN AN AN ENENENENENENENENENENEN

Total Missing

S ENENEN e e ENENENENENEN LI EN LI ENENENECIENENEN

Bl Bel PR PP D D D | | | e R R R | e
2 < ANEN

= ENENENENENENENENENENENENENENENENENENEENENEN

S RSN ESEN ks ENEN RN EN AN AN ENENENENENENEN I ENENEN -
(4]

405

Table A.45 Baseline EUPW experiment test-train split experiment missing datasets.
A total of 34 datasets are excluded. Datasets are missing due to empty clusters
forming.

Dataset eupw-msm | eupw-twe
ACSF1 X X
Adiac X X
ArrowHead X X
Beef X X
Car X X
CricketY X X
DiatomSizeReduction X X
ECGFiveDays X X
FaceFour X X
FacesUCR X X
FiftyWords X X
GunPoint X X
Haptics X X
HouseTwenty X X
InsectEPGRegularTrain X X
InsectEPGSmallTrain X X
Lightning7 X X
MiddlePhalanxTW X X
NonlnvasiveFetalECGThorax1 | x X
NonlnvasiveFetalECGThorax2 | x X
Phoneme X X
PigAirwayPressure X X
PigArtPressure X X
PigCVP X X
Rock X X
SemgHandMovementCh?2 X X
ShapesAll X X
SwedishLeaf X X
Symbols X X
UWaveGestureLibraryX X X
UWaveGestureLibraryY X X
WordSynonyms X X
Worms X X
WormsTwoClass X X
Total Missing 34 34

406

Table A.46 EUPW compared to other ensembles schemes experiment over the
combined test-train split experiment missing datasets. A total of 21 datasets are
excluded. Datasets are missing due to empty clusters forming. To conserve space
we exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset

cspa

eupw-
euclidean

eupw-
msm

eupw-
twe

hbgf

iterative-

<
=
[
=3
=
[0)-]

mcla

=
2,

ACSF1

Adiac

CricketY

Crop

DiatomSizeReduction

ElectricDevices

FiftyWords

Fish

HandOutlines

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ShapesAll

StarLightCurves

UWaveGestureLibrary All

WordSynonyms

Worms

o RN AN ke ENENEN AN AN RN AN AN ENENENE ENEI ENENEN

el Rl R Rl Rl Rl Rl Nl KN Rl RN RN ANl KN E N KR Rl RN Rl e

el Rl RN Rl Rl Rl Kol Nl Kol Rl RN Rl ENI Rl KN E-N Kol Rl Kol Rl e

Total Missing

S ENENEI LI ENENENENENENE i El ENENENENESI ENENEN

[
o

[
o

S RN ENE LI ENENENENENEN I LI ENENENENE ENENEN

S ENENES kel ENENENENENEN I Rl Bl ENENENENEIENENEN

S ENENER I ENENENENENENESH ER Il ENENENENEIENENEN

S RN ENE LI ENENENENENEN I LI ENENENENE ENENEN

NN I RN RN RN RN RN RN B B B RN RN RS RN L RN RN RN - Y

407

Table A.47 EUPW compared to other ensembles schemes experiment over the
test-train split experiment missing datasets. A total of 37 datasets are excluded.
Datasets are missing due to empty clusters forming.

Dataset

cspa

eupw-msm

eupw-twe

iterative-

<
=
=
=

oQ

simple-

<
=
=
=

oQ

ACSF1

Adiac

ArrowHead

Beef

Car

CricketY

Crop

DiatomSizeReduction

ECGFiveDays

ElectricDevices

FaceFour

FacesUCR

FiftyWords

GunPoint

Haptics

HouseTwenty

InsectEPGRegularTrain

InsectEPGSmallTrain

Lightning7

MiddlePhalanxTW

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

Rock

SemgHandMovementCh?2

ShapesAll

SwedishLeaf

Symbols

UWaveGestureLibraryX

UWaveGestureLibraryY

WordSynonyms

Worms

WormsTwoClass

el R RN RN Rl RN Nl Rl Kol RN RN RN RN RN EN Rl Kol R R RN R R RN Rl Nl Rl Kol RN RN EN Rl RN EN Rl Kl RN Rl R ol e

el Rl Rl Rl RN Rl R Rl Rl Rl Rl Rl RN RN RN ol KR Rl Rl Rl RN Rl R Nl K Rl R N RN Rl Rl RN RN Rl Rl Rl ol e

Total Missing

SRS ESENEN RN RN N AN AN AN AN AN AN AN AN AN ENENENENENENENENENENEN I ENENECI ENENENENENEN

W
=

(75}
[N

S RN ENENEN AN AN AN AN AN AN AN AN EN

= ENENEN RN AN RN AN RN N AN N AN RN RN ENENEN AN ENENENENENENENENENENENENENENENENENEN

408

Table A.48 EUPW-ECHI compared to EUPW-EDBI over the combined test-train
split experiment missing datasets. A total of 20 datasets are excluded. Datasets are
missing due to empty clusters forming.

Dataset

euclidean

eupw-
ECHI-
msm

eupw-
ECHI-
twe

euclidean

eupw-
EDBI-
msm

eupw-
EDBI-
twe

pam-
msm

pam-

ACSF1

Adiac

CricketY

Crop

DiatomSizeReduction

FiftyWords

Fish

HandOutlines

NonlnvasiveFetalECGThorax1

NonlnvasiveFetalECGThorax2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

ShapesAll

StarLightCurves

UWaveGestureLibrary All

WordSynonyms

Worms

el Rl RN RN Rl Rl Rl ol R Rl RN RN E Nl Rl Nl Rl Nl Rl e

ol Nl RN ol Rl Nl Rl Nl Rl Nl Kol RN E NNl Rl Nl Rl Nl Kol e

Total Missing

S ENENEE S ENENENENENENE L E I ENENENECI ENENEN

[
o

[y
o

S ENENEI EIENENENENENENE I Eol ENENENEIENENEN

S RNkl Kl ENENENENENENENENENENENENEIENENEN

S ENENEsI ke ENENENENENENENENENENENENEIENENEN

S ENENENEN N ENENENENENENENENENENENEIENENEN

S RS ES RS I R R R BN RS ANANENENENENENEIENENEN

409

Table A.49 EUPW-ECHI compared to EUPW-EBI over the test-train split experi-
ment missing datasets. A total of 34 datasets are excluded. Datasets are missing
due to empty clusters forming.

Dataset eupw- eupw-
ECHI- ECHI-twe
msm

ACSF1 X X

Adiac X X

ArrowHead X X

Beef X X

Car X X

CricketY X X

DiatomSizeReduction X X

ECGFiveDays X X

FaceFour X X

FacesUCR X X

FiftyWords X X

GunPoint X X

Haptics X X

HouseTwenty X X

InsectEPGRegularTrain X X

InsectEPGSmallTrain X X

Lightning7 X X

MiddlePhalanxTW X X

NonlnvasiveFetalECGThorax1 | x X

NonlnvasiveFetal ECGThorax2 | x X

Phoneme X X

PigAirwayPressure X X

PigArtPressure X X

PigCVP X X

Rock X X

SemgHandMovementCh2 X X

ShapesAll X X

SwedishLeaf X X

Symbols X X

UWaveGestureLibraryX X X

UWaveGestureLibraryY X X

WordSynonyms X X

Worms X X

WormsTwoClass X X

Total Missing 34 34

410

Table A.50 EUPW using EDBI compared to other ensemble schemes over the
combined test-train split experiment missing datasets. A total of 7 datasets are
excluded. Datasets are missing due to empty clusters forming. To conserve space
we exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset cspa | eupw- eupw- | eupw- | hbgf | iterativemcla | nmf | simple;
EDBI- EDBI-| EDBI- voting voting
euclidean msm | twe

Crop X X X X X X X X X

ElectricDevices X v v v v v v v v

HandOutlines v X v v X X X X X

NonlnvasiveFetalECGThorax1 | v/ X v v X X X X X

NonlnvasiveFetalECGThorax2 | v/ X v v X X X X X

StarLightCurves X X X X X X X X X

UWaveGestureLibraryAll X X X X X X X X X

Total Missing 4 6 3 3 6 6 6 6 6

411

Table A.51 ECE compared with the baseline clusterers and the state-of-the-art and
soft-DBA over the combined test-train split experiment missing datasets. A total
of 38 datasets are excluded. Datasets are missing due to computational runtime
exceeding seven days.

Dataset ECE | k-means- k-means- k-means-
ba-dtw ba-twe soft-dba

IW'
7]
(g]
=
Y]
3

sSm

ACSF1

Adiac

CinCECGTorso

CricketY

Crop

DiatomSizeReduction

EOGHorizontalSignal

EOG VerticalSignal

EthanolLevel

FiftyWords

Fish

FordA

FordB

HandOutlines

InlineSkate

LargeKitchenAppliances

Mallat

MixedShapesRegularTrain

MixedShapesSmallTrain

NonlnvasiveFetalECGThorax 1

NonlnvasiveFetalECGThorax?2

OliveOil

Phoneme

PigAirwayPressure

PigArtPressure

PigCVP

RefrigerationDevices

ScreenType

SemgHandGenderCh2

SemgHandMovementCh?2

SemgHandSubjectCh2

ShapesAll

StarLightCurves

UWaveGestureLibraryAll

UWaveGestureLibraryX

UWaveGestureLibraryZ

WordSynonyms

Worms

kel Esl ENEN Kokl Esl ENENENENEN ol Kl il ki Eci ol Eol ENENENENENENENENE LI ENENENEI LR I RNl b

S ENENENEN e ENENENEN RN AN AN AN EN L RN AN EN AN ENENEN Eol ENENENENENENENENENENENENEN
= ENENEN RN RN N N AN N RN RN N AN AN RN RN RN AN N AN RN ENENEN AN AN ENENENENENENENEIENENENENE

AN RN NN AN N AN AN AN AN AN AN AN AN AN EN
SIBNE Nl kel ici iR N ol Rel Kol Ecl Kol Ech Rl EcR Ko R RN Ea R Bl R Rl Rl H ol Rl Nl RN RN ENIE N ER R R RN EN ENIE N R RN RN

B |
o AN RN RN RN N AN AN AN RN AN AN AN AN AN ENEN AN EN

Total Missing

2%
-

S RN ENENEN N e EN AN AN AN AN AN AN AN AN ENEN AN ENENENENENENENENENENENENENENENEIENENENEN

	Table of contents
	List of figures
	List of tables
	List of algorithms
	1 Introduction
	1.1 Thesis Contributions
	1.2 Thesis Outline

	2 Background and Related Work
	2.1 Time series data mining
	2.1.1 Time series unique characteristics
	2.1.2 Time series machine learning

	2.2 Clustering
	2.2.1 Hierarchical-based
	2.2.2 Partition-based

	2.3 Time series clustering (TSCL)
	2.4 Elastic distances
	2.4.1 Dynamic time warping (DTW)
	2.4.2 Derivative dynamic time warping (DDTW)
	2.4.3 Weighted dynamic time warping (WDTW)
	2.4.4 Weighted derivative dynamic time warping (WDDTW)
	2.4.5 Amercing dynamic time warping (ADTW)
	2.4.6 Shape dynamic time warping (shapeDTW)
	2.4.7 Soft dynamic time warping (soft-DTW)
	2.4.8 Longest common subsequence (LCSS)
	2.4.9 Edit Distance on Real Sequences (EDR)
	2.4.10 Edit Distance with Real Penalty (ERP)
	2.4.11 Move-split-merge (MSM)
	2.4.12 Time Warp Edit (TWE)

	2.5 TSCL Algorithms
	2.5.1 Partition-based TSCL

	3 Experimental Methodology
	3.1 The challenge of cluster evaluation
	3.2 TSCL Experimental Methodology
	3.2.1 Statistics for Evaluating Performance
	3.2.2 Comparison of Clustering Algorithms
	3.2.3 Tuning of Parameters

	3.3 Datasets
	3.4 Normalisation
	3.5 Software and Research Reproducibility
	3.5.1 Time Series Clustering in Python: aeon

	4 Lloyd's-based TSCL
	4.1 Introduction
	4.2 Lloyd's algorithm in TSCL
	4.3 A TSCL configuration for Lloyd's-based algorithms
	4.3.1 Initialisation Strategy
	4.3.2 Early Stopping Conditions
	4.3.3 Early Stopping Conditions: Maximum iterations
	4.3.4 Early Stopping Conditions: Inertia Change
	4.3.5 Empty Clusters
	4.3.6 Distance Measure and Averaging Technique

	4.4 Lloyd's Baseline
	4.5 Experiment Setup
	4.6 Configuration
	4.7 Result
	4.7.1 Combined test-train split results
	4.7.2 Test-train split results

	4.8 Conclusion

	5 k-means clustering using elastic distances
	5.1 Experiment Setup
	5.2 Configuration
	5.3 Results
	5.3.1 Combined test-train split results
	5.3.2 Test-train split results

	5.4 Tuning
	5.5 Conclusion

	6 k-medoids clustering using elastic distances
	6.1 Introduction
	6.2 TSCL k-medoids
	6.2.1 Alternate k-medoids
	6.2.2 PAM
	6.2.3 CLARA
	6.2.4 CLARANS

	6.3 Experiment setup
	6.4 Alternate k-medoids
	6.4.1 Alternate k-medoids Combined test-train split
	6.4.2 Alternate k-medoids Test-train split
	6.4.3 Comparison to k-means
	6.4.4 Alternate k-medoids conclusion

	6.5 PAM
	6.5.1 PAM Combined test-train split
	6.5.2 PAM Test-train split
	6.5.3 PAM conclusion

	6.6 CLARA
	6.6.1 CLARA Combined test-train split
	6.6.2 CLARA Test-train split
	6.6.3 CLARA Conclusion

	6.7 CLARANS
	6.7.1 CLARANS Combined test-train split
	6.7.2 CLARANS Test-train split
	6.7.3 CLARANS conclusion

	6.8 Analysis
	6.8.1 k-medoids with elastic distances
	6.8.2 k-medoids clustering performance

	6.9 Conclusion

	7 Elastic Barycentre Averaging
	7.1 Introduction
	7.2 Elastic Barycentre Averaging
	7.3 Elastic Barycentre analysis
	7.4 Experiment setup
	7.5 Elastic Barycentre clusterer results
	7.5.1 Combined test-train split
	7.5.2 Test-train split
	7.5.3 Elastic Barycentre clusterer conclusion

	7.6 Elastic Barycentre evaluation
	7.7 Conclusion

	8 KESBA: A Fast and Scalable End-to-End Elastic Distance Clustering Algorithm
	8.1 Introduction
	8.2 Stochastic Subgradient Elastic Barycentre Average
	8.3 Elastic SSG Barycentre analysis
	8.4 The KESBA clustering algorithm
	8.4.1 Random Subset Elastic SSG Barycentre Average
	8.4.2 Elastic k-means++ initialisation
	8.4.3 Lloyd's-stopping condition
	8.4.4 Increased iterations
	8.4.5 Sakoe-Chiba bounding window

	8.5 KESBA cluster configuration
	8.6 KESBA experiment
	8.6.1 Combined Test-Train Split
	8.6.2 Test-train split
	8.6.3 Conclusion: KESBA

	8.7 KESBA Runtime Versatility
	8.7.1 Elastic k-means++
	8.7.2 Random Subset Elastic SSG Barycentre Subset Size
	8.7.3 Bounding Window
	8.7.4 Bounding Window and Barycentre Subset Size

	8.8 Conclusion

	9 The Elastic Clustering Ensemble (ECE) algorithm
	9.1 Introduction
	9.2 Clustering Ensemble Schemes
	9.2.1 Simple Vote (SV)
	9.2.2 Iterative Voting (IVC)
	9.2.3 Cluster-based Similarity Partitioning Algorithm (CSPA)
	9.2.4 Meta-CLustering Algorithm (MCLA)
	9.2.5 Hybrid Bipartite Graph Formulation (HBGF)
	9.2.6 Nonnegative Matrix Factorisation (NMF)

	9.3 Elastic Unsupervised Proportional Weighting (EUPW)
	9.4 Elastic Clustering Ensemble Experiment
	9.4.1 Base PAM Clusterers

	9.5 EUPW intial experiments
	9.5.1 Combined Test-Train Split
	9.5.2 Test-train split
	9.5.3 Conclusion: EUPW initial experiments

	9.6 EUPW Compared to Other Ensemble Schemes
	9.6.1 Combined Test-Train Split
	9.6.2 Test-Train Split
	9.6.3 Conclusion: EUPW Compared to Other Ensemble Schemes

	9.7 EUPW with Other Unsupervised Evaluation Metrics
	9.7.1 Combined Test-Train Split
	9.7.2 Test-Train Split
	9.7.3 Conclusion: EUPW with Other Unsupervised Evaluation Metrics

	9.8 The Elastic Clustering Ensemble (ECE)
	9.8.1 Combined Test-Train Split
	9.8.2 Test-Train Split

	9.9 Conclusion

	10 Conclusion
	10.1 Discussion of Contributions
	10.2 Future Work and Extensions

	References
	Appendix A Excluded Datasets for Models

