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Abstract

In recent years, time series data has become increasingly ubiquitous, emerging

across numerous domains such as astronomy, biology, engineering, finance, manu-

facturing, medicine, meteorology, and more. A time series is an ordered sequence

of real valued observations. The most common form of ordering is in the time

domain. Although the concept of a time series is not limited to time-based or-

dering, the fact that human experience is inherently bound to the passage of time

makes time-domain data particularly prevalent. As a result, nearly any recorded

phenomenon can be represented as a time series.

The widespread generation of time series data, coupled with the desire to analyse

and derive insights from it, has sparked significant interest in time series machine

learning tasks. Among these, time series clustering (TSCL) has emerged as one

of the most prominent fields. TSCL aims to group time series into clusters where

the series within a cluster exhibit homogeneity, while those outside the cluster

are heterogeneous. As an unsupervised task, TSCL requires no manual labelling,

making it versatile and applicable to a wide range of time series datasets. It is often

employed as a key tool for exploratory data analysis.

One of the most common approaches to clustering time series data is to adapt

traditional clustering algorithms (e.g., k-means, k-medoids, DBSCAN, agglom-

erative clustering) by replacing conventional distance measures with elastic ones.

Elastic distances account for misalignment between time series during distance

computation—when similar events occur but are recorded at different time intervals



iii

in each series. By accounting for misalignment, elastic distances significantly

improve the quality of the similarity measure between time series.

Dynamic Time Warping (DTW) has become the most widely used elastic

distance in TSCL literature. However, other elastic distances have demonstrated

superior performance in related fields, such as time series classification. Despite

this, the TSCL community has been slow to adopt these alternatives. This thesis

addresses this gap by conducting the most comprehensive review of elastic distances

for TSCL. We evaluate 12 different elastic distances, nine of which had not been

previously applied to TSCL. Our empirical analysis reveal that many of these

unconsidered elastic distances significantly outperform DTW for TSCL tasks.

Building on these findings, we propose novel elastic distance-based algorithms,

including the Elastic Barycentre Average, the Elastic Unsupervised Proportional

Weighting (EUPW) ensemble scheme, the Elastic Clustering Ensemble (ECE),

and the k-means end-to-end Elastic Stochastic subgradient Barycentre Average

(KESBA) clusterer.

This thesis demonstrates the benefits of incorporating previously unexplored

elastic distances into established TSCL algorithms, introduces new elastic-based

averaging techniques, and presents the development of state-of-the-art elastic-based

partition and ensemble clustering methods. Together, these contributions advance

TSCL performance and lay the foundation for future innovations in the field.
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Chapter 1

Introduction

In recent years, time series data has become increasingly ubiquitous, emerging

across numerous domains such as astronomy, biology, engineering, finance, manu-

facturing, medicine, meteorology, and more [98, 80, 127, 109, 33, 67, 42]. A time

series is an ordered sequence of real valued observations [84]. The most common

form of ordering is in the time domain. Although the concept of a time series is not

limited to time-based ordering, the fact that human experience is inherently bound

to the passage of time makes time-domain data particularly prevalent. As a result,

nearly any recorded phenomenon can be represented as a time series.

The widespread generation of time series data, coupled with the desire to analyse

and derive insights from it, has driven substantial interest in time series data mining

tasks such as anomaly detection, classification, clustering, forecasting, querying,

regression, and segmentation [105, 84, 47, 109, 27, 122]. Interest in these tasks

continues to grow. Figure 1.1 illustrates the increasing number of published papers

across various time series data mining fields. The graph was generated using data

from the Web of Science 1, querying the number of papers with titles containing

the phrase “Time Series” followed by a specific field such as “Clustering”.

1https://clarivate.com/
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Fig. 1.1 Number of time series-related published papers over time. The data was
obtained from the Web Of Science, filtering papers that start with “Time Series”
followed by a field of interest.

One of the most popular fields is time series clustering (TSCL) [89]. The objec-

tive of TSCL is to group time series into clusters where the series within a cluster

exhibit homogeneity, while those outside the cluster display heterogeneity [14]. As

an unsupervised learning task, TSCL does not require human supervision or labour-

intensive data annotation, making it highly versatile and applicable to almost any

time series dataset without prerequisites. This flexibility makes TSCL a common

starting point for exploratory data analysis [133].

However, a key challenge in clustering is defining what constitutes a “good”

cluster. There is no universally accepted definition of a good cluster [50]. For

instance, homogeneity could be defined as time series generated by a common

underlying process or based on shared hidden variables [47]. Consider clustering

patients using medical data: one approach might group patients by gender, while

another might cluster by age. There are countless ways to group patients, each valid

depending on the chosen criteria for similarity.

A central concept in clustering is “similarity”. What makes one time series

more similar to another? These are critical questions in TSCL. In traditional
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clustering (i.e., clustering static, non-sequential tabular data), one of the most

common methods to measure similarity is through a distance measure.

A distance measure is a mathematical function that quantifies the similarity

or dissimilarity between data points. It assigns a numeric value representing how

close or far apart two points are in a feature space. Hundreds, if not thousands,

of clustering algorithms have been proposed [31], many of which use distance

functions to define similarity.

Measuring the distance between time series is significantly more complex

than for tabular data. While a time series can be represented in feature space,

this approach disregards the temporal ordering inherent in the data. Extensive

research has evaluated various distance measures for time series, and numerous

studies [74, 47, 111, 99, 76] have empirically shown that distance measures that

ignore temporal ordering (e.g., Euclidean distance) yield significantly less accurate

similarity measures between time series.

The most widely used distance measure to improve time series comparison is

Dynamic Time Warping (DTW) [10], the first in a family of algorithms known as

elastic distances. Elastic distances account for misalignment between time series

during distance computation. Misalignment occurs when the same or similar events

happen but are recorded at different time intervals in each series.

For example, consider recording the weather over two days: on the first day,

it only rains in the morning, while on the second day, it only rains in the after-

noon. Though both days experienced rain, the time (or temporal ordering) of this

event differs. A traditional distance measure that does not account for alignment

would fail to detect this similarity, as it does not account for the misalignment of

temporal events. However, an elastic distance would recognise this misalignment,

determining that rain occurred on both days and thus identifying the two time series

as similar.
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Consequently, the most common approach to clustering time series data is

to use traditional clustering algorithms (e.g., k-means [75], k-medoids [69], DB-

SCAN [29], Agglomerative [55]) but replace the Euclidean or other traditional

distance measures with an elastic distance. Numerous traditional clustering al-

gorithms have been adapted to work specifically with DTW. Examples include

k-means [94, 21, 47, 93], k-medoids [46, 47, 91], Agglomerative [2, 63, 51], Den-

sity Peaks [9, 51], and DBSCAN [51].

In recent years, many new elastic distances have been proposed, showing su-

perior performance to DTW in supervised tasks such as time series classification

(TSC) [74, 111, 76]. Despite this, the TSCL community has been slow to adopt

these new elastic distances, potentially missing opportunities to improve clustering

performance. Prior to this thesis, we identified only three instances in the TSCL

literature where alternative elastic distances to DTW were used: soft-DTW [21],

the Edit Distance on Real sequences (EDR) [85], and the Longest Common Subse-

quence LCSS [118].

This thesis seeks to address this gap in the research. Our objective is to conduct

the most extensive review of elastic distances for TSCL to date. We will review and

implement 12 different elastic distances, nine of which have not been considered for

TSCL before. These distances will be benchmarked using existing TSCL algorithms

previously tested only with DTW. Moreover, based on our findings, we will develop

new and novel TSCL algorithms that significantly advance the state-of-the-art in

TSCL while also being considerably faster in terms of runtime.

1.1 Thesis Contributions

1. Chapter 4 presents a robust Lloyd’s-based clustering algorithm for

TSCL. Many popular TSCL algorithms adapt k-means (Lloyd’s algorithm)

with time series distance functions to account for temporal dependencies.
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However, our survey of the TSCL literature reveals that nearly every Lloyd’s-

based algorithm is configured differently, making meaningful comparisons

difficult due to the algorithm’s sensitivity to configuration. To address this,

we propose a standardised Lloyd’s-based model for TSCL, consistently apply-

ing a specialised distance function across the initialisation, assignment, and

stopping condition. This unified approach allows us to attribute performance

differences to the distance function itself, rather than to varying configura-

tions. Using this model, we benchmark five of the most commonly used

Lloyd’s-based TSCL algorithms, which serve as our point of comparison

throughout the thesis.

2. Chapter 5 presents a comprehensive review of 12 different elastic dis-

tances using the k-means clustering algorithm. Building on our standard-

ised Lloyd’s configuration from Chapter 4, we conduct an extensive review

of 12 different elastic distances with the k-means algorithm. Our findings

challenge several common misconceptions within the TSCL community and

identify multiple new distances capable of achieving state-of-the-art perfor-

mance, which had been previously overlooked. Additionally, we analyse the

shared characteristics of the top-performing elastic distances and conduct a

detailed investigation into the unexpectedly poor performance of DTW.

3. Chapter 6 presents a detailed evaluation of 12 elastic distances across four

k-medoids clustering algorithms. In Chapter 5, we address a key limitation

of k-means when using elastic distances: centroid computation. Since most

elastic distances lack a specialised averaging technique (except for DTW),

k-means relies on the arithmetic mean, leading to suboptimal minimisation

of the objective function and resulting in unexpected clusterings. In contrast,

k-medoids can fully leverage elastic distances in both the assignment and

centroid computation stages without requiring any modifications. We evaluate



1.1 Thesis Contributions 6

four k-medoids variants, including two never before benchmarked with elastic

distances, and show that using elastic distances in centroid computation

significantly improves clustering performance. Additionally, our experiments

reveal that PAM with newly introduced elastic distances surpasses the current

state-of-the-art, establishing a new best-in-class TSCL approach.

4. Chapter 7 proposes a new Elastic Barycentre Averaging technique tai-

lored for TSCL. In Chapter 6, we demonstrate that k-medoids, which utilises

elastic distances for centroid computation, significantly outperforms methods

that rely on the arithmetic mean. However, when comparing PAM-DTW

(medoids) to k-means-ba-DTW (which uses a DTW-specific averaging tech-

nique), we observed that k-means-ba-DTW achieved superior clustering

performance. This led us to hypothesise that developing an averaging tech-

nique for the best-performing elastic distances could further enhance state-of-

the-art clustering. To this end, we propose the Elastic Barycentre Average,

a generalised version of the Dynamic Time Warping Barycentre Average

(DBA), applicable to any elastic distance that computes a full alignment path

through a cost matrix. Our empirical analysis show that using the Elastic

Barycentre Average for all elastic distances significantly improves clustering

performance compared to both the arithmetic mean and medoids. Moreover,

the best-performing elastic distances with this technique surpass the current

state-of-the-art.

5. Chapter 8 proposes the k-means end-to-end Elastic Stochastic subgradi-

ent Barycentre Average (KESBA) clusterer: a state-of-the-art, versatile,

and highly scalable clustering algorithm for real-world TSCL applica-

tions. In Chapter 7, we introduced a new elastic averaging technique that

achieved state-of-the-art TSCL performance. Additionally, in Chapter 6, we

found that PAM with certain elastic distances also exceeded the state-of-the-
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art. However, both PAM and the Elastic Barycentre Average were shown

to have prohibitively high computational costs, rendering them impractical

for large-scale TSCL applications. To address this, we develop KESBA,

designed specifically for large-scale TSCL. KESBA incorporates a novel ex-

tension of the Elastic Barycentre Average, called the Random Subset Elastic

Stochastic Subgradient Barycentre Average, along with several optimisations

to the baseline Lloyd’s algorithm outlined in Chapter 4. These improvements

enable KESBA to achieve state-of-the-art clustering performance while being

significantly faster than other high-performing algorithms.

6. Chapter 9 proposes the Elastic Clustering Ensemble (ECE): a state-of-

the-art elastic PAM ensemble created using a novel Elastic Unsupervised

Proportional Weighting (EUPW) ensemble scheme. Building on the best-

performing PAM clusterers identified in Chapter 6, we introduce a new

EUPW ensemble scheme to create the Elastic Clustering Ensemble (ECE).

Our empirical evaluation demonstrates that the ECE clusterer, leveraging the

EUPW ensemble scheme, achieves state-of-the-art clustering performance,

surpassing six other commonly recognised ensemble schemes from the litera-

ture.

1.2 Thesis Outline

This thesis is organised into ten chapters. In the following, we outline the contents

of the remaining chapters.

Chapter 2 offers a detailed background on TSCL. It begins by outlining the foun-

dational concepts of time series data mining, including key background information

and notation, and situates TSCL within this context. We then present a general

overview of TSCL, defining our specific research focus within the field. Following
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this, we provide an in-depth description of 12 elastic distance measures, complete

with formal notation and pseudocode for each. Finally, we review TSCL models

that incorporate specialised time series distance measures to enhance clustering

performance.

Chapter 3 outlines the experimental methodology used throughout this thesis.

We address the complexities involved in evaluating clustering performance and

propose a robust methodology to overcome these challenges. The chapter includes

details on statistical methods and comparison techniques, as well as an overview

of the open-source software packages utilised and contributed to, ensuring the

reproducibility of our research and results.

Chapter 4 surveys Lloyd’s-based TSCL algorithms and identifies significant

variation in configuration across different studies. Since Lloyd’s algorithm is highly

sensitive to its configuration, comparing results from different papers is challenging.

To address this, we propose a standardised Lloyd’s-based model for TSCL and

conduct benchmark experiments to establish a baseline for comparison, which is

used throughout this thesis.

Chapters 5 and 6 present an extensive review of k-means and k-medoids clus-

tering using 12 different elastic distances. We identify superior elastic distances

that had not previously been considered for TSCL and highlight specific models

that outperform the current state-of-the-art clustering algorithms. Additionally, we

analyse the attributes of the best-performing elastic distances to uncover common

traits that explain their superior performance.

Chapter 7 introduces a new averaging technique called the Elastic Barycentre

Average, a generalised version of the DBA algorithm that can be applied to any

elastic distance with a complete alignment path. We demonstrate that using the

Elastic Barycentre Average with k-means as the centroid computation algorithm

exceeds the current state-of-the-art performance.
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Chapter 8 presents a new clustering model called KESBA. To create KESBA,

we develop the Random Subset Elastic Stochastic Subgradient Barycentre Average,

an extension of the Elastic Barycentre Average, incorporating optimisations from

the Stochastic Subgradient Dynamic Barycentre Average and random subsampling

inspired by CLARA. Further enhancements to the standard Lloyd’s baseline clus-

terer enable KESBA to achieve state-of-the-art performance while significantly

reducing computational runtime compared to similar high-performing algorithms.

Chapter 9 introduces a new elastic PAM ensemble, the Elastic Clustering Ensem-

ble (ECE), developed using a novel Elastic Unsupervised Proportional Weighting

(EUPW) ensemble scheme. Our empirical analysis demonstrates that the ECE

clusterer, leveraging the EUPW scheme, outperforms six widely used ensemble

schemes from the literature, all using the same PAM models. Additionally, we show

that ECE surpasses the performance of each individual PAM model that comprises

it, further highlighting its effectiveness.

Chapter 10 concludes this thesis by summarising the key contributions and

discussing potential future directions for elastic distance TSCL research.
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Background and Related Work

This chapter introduces the relevant background material for this thesis. We begin

by outlining the foundational concepts of time series data mining, including key

background information and notation, and position TSCL within this context. Next,

we present a general overview of traditional clustering methods and explain how

TSCL builds upon these approaches. Following this, we provide an in-depth de-

scription of 12 elastic distance measures, including formal notation and pseudocode

for each. Finally, we review specific TSCL models relevant to this thesis that

incorporate specialised time series distance measures and averaging techniques to

enhance clustering performance.

2.1 Time series data mining

A time series is any data that has discriminatory features dependent on its order-

ing [8]. The most common form of ordering is in the time domain. Although the

concept of a time series is not limited to time-based ordering, the fact that human

experience is inherently bound to the passage of time makes time-domain data

particularly prevalent.
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Formally, we define a time series as:

T = (t1, . . . , ti, tm) (2.1)

where ti ∈ RCH is the observed value at the i-th time point, CH are the number of

channels for a time point, and m as the number of time points. When CH = 1, we

consider the time series to be univariate as each time point represent one value.

When CH > 1, we consider the time series to be multivariate as each time point

represents more than one value.

Time series can also be regularly or irregularly sampled. We consider a time

series to be irregularly sampled when the interval between observations are not

consistent. For example assume we have a time series T = (t1, t2, t3, t4), which has

four observations representing a temperature reading at a given time. T would be

considered regularly sampled if each reading was taken at the same time apart, say

exactly one hour. However, we would consider T to be irregularly sampled if the

first (t1) and second (t2) time point were recorded two hours apart but the third (t3)

and fourth (t4) observation were recorded thirty minutes apart. The interval they

were recorded at is not consistent therefore it is irregularly sampled.

Time series data exhibits unique characteristics not found in other data. Time

series machine learning techniques attempt to exploit these unique characteristics

and by doing so can achieve better results than traditional approaches. These unique

characteristics will now be outlined.

2.1.1 Time series unique characteristics

Temporal dependency

Time series data exhibits dependencies on its ordering. In other words, a given

time point may correlate to previous time points. In the context of time series
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machine learning, given an input time point ti a model may predict yi. However, if

the same value is observed at a later time point, say ti+n where n is some number of

observations in the future, the value of yi+n may be different to yi. This is due to

the model having observed more values since the last prediction and therefore, the

prediction changes due to the temporal dependency.

High dimensionality

In real world scenarios it is very common to encounter multivariate time series

where there could be tens if not hundreds of additional channels to consider. High di-

mensionality poses numerous problems when considering algorithmic and computa-

tional complexity, but also presents a complex data mining challenges. Multivariate

data mining techniques must consider the inter-relationship between observations

across channels. The discovery, and understanding of inter-relationship between

channels is critical to multivariate time series data mining.

Noise

Noise in time series is very common and can arise in many ways such as mea-

surement error with faulty sensors, rounding errors in the collection of the data or

other errors introduced by human error. An important challenge for data mining

techniques to overcome is determining what data is relevant and what is noise.

Missing values

Time series, especially in the real world scenarios, can have values missing. We

consider a time series to contain missing values if there is no reading for a given

time point where it is expected to have one for. The reason a time series may have

missing values could be due to faulty sensors, human error or data being unavailable

for collection at certain time points.
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Diverse semantics

In other data mining fields such as image or text data; patterns and trends learned in

one dataset to some extent can be transferred over to other datasets (namely word

or image embeddings). However, time series datasets are generally unique and

observations learned for one dataset will not be applicable to any other due to its

highly diverse and unique semantics.

2.1.2 Time series machine learning

The goal of a time series machine learning model is to leverage the unique character-

istics of time series data to generate a desired output. This output varies depending

on the specific discipline within time series machine learning. Some of the main

disciplines include:

Time series clustering (TSCL)

The objective of time series clustering (TSCL), is to group time series into clusters

where the series within each cluster exhibit homogeneity, while those outside the

cluster display heterogeneity [14]. As an unsupervised learning task, TSCL does

not require human supervision or labour-intensive data annotation, making it highly

versatile and applicable to almost any time series dataset without prerequisites. This

flexibility makes TSCL a popular starting point for exploratory data analysis [133].

Time series classification (TSC)

The objective of time series classification (TSC) is to assign predefined class labels

to a set of time series. TSC trains a classifier on a dataset by learning temporal

patterns and features that distinguish different classes. As a supervised learning

task, TSC requires the training data to be annotated with class labels that define the

observations. Once a classifier has been trained, new, unseen, and unlabelled time
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series data can be inputted into the model, which will predict class labels for the

unseen data.

Time series forecasting (TSF)

Time series forecasting (TSF) aims to predict the future values of a time series

by explicitly modelling the dynamics and dependencies among historical observa-

tions [121].

Time series extrinsic regression (TSER)

Time series extrinsic regression (TSER) is similar to TSC but instead of predicting

a discrete class labels, TSER predicts a continuous target variable. For instance,

TSC might classify an ECG signal as arrhythmia or normal, while TSER could be

used to predict a quantitative value such as the heart rate or respiratory rate of a

patient based on patterns in the ECG signal [117].

Time Series Segmentation (TSS)

Time series segmentation (TSS) aims to divide a time series into multiple subse-

quences and assign labels to each subsequence. This segmentation is useful for

identifying regime changes, anomaly detection, and trend analysis.

Time Series Anomaly Detection (TSAD)

Time series anomaly detection (TSAD) focuses on identifying unusual or abnormal

patterns in time series data. Anomalies can indicate significant temporal events.

TSAD methods typically aim to detect points, segments, or trends that deviate

significantly from the expected behavior of a time series [13].
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The above list is not intended to be an exhaustive list of all time series machine

learning disciplines but is instead meant to highlight the diverse time series machine

learning field and its huge range of real world applications.

The rest of the literature review will set out the specific literature that is the

focus of this thesis, namely TSCL and elastic distances. For simplicity, all examples

and pseudocode will assume the time series used are univariate of equal length m.

Additionally all arrays will be assumed to be indexed from 0.

2.2 Clustering

Before delving into specific TSCL approaches, we first outline traditional clustering

techniques to demonstrate how they have been adapted for TSCL. Over the years,

hundreds of clustering algorithms have been proposed [31] to solve various cluster-

ing problems. Broadly, these techniques can be divided into two main categories:

hierarchical-based and partition-based [32].

In this thesis, we focus primarily on partition-based clustering, as it is the

most commonly used and widely implemented approach in the TSCL literature.

Specifically, our research centres on crisp, squared error clustering [32], a method

that forms partitions by optimising a criterion function—typically minimising the

sum of squared distances within clusters. We focus on this type of clustering

because it is the most prevalent form of partition-based clustering in both the

traditional [32] and TSCL literature. While other partition-based methods, such as

density-based or model-based clustering, could be considered, these approaches

often pursue different clustering objectives, making direct comparisons and result

evaluations particularly challenging.
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2.2.1 Hierarchical-based

Hierarchical clustering refers to a family of algorithms that build nested clusters

by successively merging or splitting them [92]. Clusters are formed iteratively in

either a top-down or bottom-up manner, resulting in a dendrogram that depicts the

hierarchical structure of the clusters [104]. Agglomerative clustering, a bottom-up

approach, starts with individual objects and successively merges them to form

larger clusters. Conversely, divisive clustering, a top-down approach, begins with

all objects in a single cluster, which is then split into smaller clusters until each

object is isolated. A visualisation of hierarchical clustering is shown in Figure 2.1.

Popular examples of hierarchical clustering algorithms include Agglomera-

tive [55], Balanced Iterative Reducing and Clustering Using Hierarchies (BIRCH) [131],

Clustering Using Representatives (CURE) [41], and CHAMELEON [56]. Many of

these algorithms have been adapted for TSCL by incorporating time series distance

measures [63, 2, 51] and time series-specific averaging techniques [66].

Fig. 2.1 Hierarchical clustering dendrogram.
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2.2.2 Partition-based

Partition-based clustering is the opposite to hierarchical clustering [104]. Its pri-

mary goal is to generate clusters that capture the natural groupings inherent in a

dataset [32]. While partition-based clustering can be divided into several subcat-

egories, we will outline those most relevant to the TSCL literature. For a more

comprehensive overview of every partition-based subcategory, we refer interested

readers to [32]. In this thesis, we define three key subcategories of partition-based

clustering extensively used in TSCL: Squared Error, Density-based, and Model-

based clustering.

Squared error partition clustering

Squared error clustering is the most widely used form of partition-based cluster-

ing [32]. It divides a dataset into k clusters without any hierarchical structure

by optimising a criterion function, typically the squared error of a distance mea-

sure [65]. The main objective is to define k centroids (also called exemplars or

cluster centres) that represent each cluster. Instances are assigned to clusters based

on their similarity to the centroids. A visual example of squared error clustering is

shown in Figure 2.2. Figure 2.2 depicts three distinct clusters, each with a centroid

that minimises a given error function. All other instances are assigned to one of the

three clusters based on their proximity to the three centroids.

Examples of squared error clustering in the traditional clustering literature

include k-means [75] and k-medoids algorithms, such as Partition Around Medoids

(PAM) [69]. Notably, k-means is one of the most well-known and widely used

clustering algorithms in the traditional literature.

Owing to its popularity in traditional clustering literature and its straightforward

adaptability to time series-specific distance functions (by replacing the traditional

distance function with a time series-specific one), squared error clustering algo-
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rithms like k-means have become the most widely used clustering approaches in the

TSCL literature. Numerous TSCL algorithms have adapted traditional square error

partition clustering algorithms by incorporating time series-specific distance and av-

eraging techniques to enhance clustering performance [89, 94, 113, 128, 21, 46, 47].

Later in this chapter we will provide a detailed outline of each of the referenced

algorithms.

Fig. 2.2 Partition-based clustering example.

Density-based

Density-based clustering identifies clusters by locating regions in the data where the

density of points is higher than in other areas. Clusters are defined as dense areas

separated by regions of lower density, and points outside of these dense regions are

often considered noise [29]. The definition of a “dense” region depends on how

neighborhoods of data points are established. Typically, a distance measure is used

to assess the similarity between time series in a dataset. A common approach is
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to define neighborhoods based on a distance threshold, where two instances are

considered to be in the same neighborhood if their distance is within this threshold.

A distinctive feature of some density-based methods, such as Density-Based

Spatial Clustering of Applications with Noise (DBSCAN) [29], is that instances not

located near dense regions are not assigned to any cluster and are instead labelled

as noise. Figure 2.3 illustrates an example of density-based clustering.

Although Figure 2.3 resembles the squared error clustering example in Fig-

ure 2.2, it differs in that some instances are marked as noise (depicted in black).

Additionally, each cluster is represented by a ellipse that defines dense regions in

the data, forming the clusters. Overall, the figure highlights the differing objectives

between density-based and squared error clustering algorithms when attempting to

partition the data into clusters.

Examples of popular density-based clustering algorithms include DBSCAN [29],

Density Peaks (DP) [100], Hierarchical DBSCAN (HDBSCAN) [16], Ordering

Points to Identify the Clustering Structure (OPTICS) [5], and Mean-Shift [20]. In

the context of TSCL, various density-based models have been adapted for TSCL

using time series specific distance measures [9, 51].
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Fig. 2.3 Density clustering example.

Model-based

Model-based clustering assumes that the data is generated from an underlying prob-

abilistic model, where each cluster corresponds to a component of the model. The

most common approach is to represent the data as a mixture of distributions, with

each distribution representing a cluster [36]. The goal of model-based clustering is

to find the parameters of these distributions that best fit the data. Once the model is

established, data points are assigned to clusters based on the likelihood that they

were generated by each distribution.

Figure 2.4 illustrates the model-based clustering algorithm Self-Organising

Maps (SOM), where the neural network learns the distribution of input data by

mapping input neurons to output neurons (clusters). The weights between these

neurons are iteratively updated during training, allowing SOM to adapt to the data

by learning topological relationships. SOM organises data points into clusters based

on their likelihood of belonging to the same underlying distribution.

Examples of popular model-based partition clustering algorithms in the tradi-

tional literature include Expectation-Maximisation (EM) [81] and SOM [124], both
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of which have been applied in TSCL. Several SOM models have been proposed that

incorporate time series-specific distance measures [113, 52]. Additionally, EM has

been employed to estimate parameters for mixture models, improving clustering

performance [123].

w11 w12

t1 t2 tm

C2C1

w21 w22 wm1 wm2

......

......

Fig. 2.4 An example of a single-layered neural network clusterer. A time series
T = {t1, t2, . . . tm} of length m is mapped to m input neurons (one for each time
point). Each input neuron is connected to the output neurons with weights denoted
by wn1, where n is the input neuron number and the second value represents the
corresponding output neuron. The output neuron layer represents the clusters. In
this example there are two clusters (C1 and C2).

2.3 Time series clustering (TSCL)

TSCL shares the same objective as traditional clustering: to divide data into clusters

where instances within the same cluster are homogeneous, and those outside are het-

erogeneous. The key distinction lies in the type of data being clustered—time series

data. As previously established, time series data has unique temporal characteristics

that must be exploited to produce “good” clusterings.

Figure 2.5 provides a high-level overview of various clusterers proposed for

TSCL. The clusterers highlighted in blue represent traditional clustering models
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that have been adapted for TSCL, typically through the incorporation of time series-

specific distance measures and/or averaging technique. We have only included

models that literature specifically for TSCL has been published for.

Fig. 2.5 TSCL taxonomy.

In Figure 2.5, alongside the previously defined Hierarchical and Partition-based

categories of clustering, we have included three additional categories: “Deep

Learning,” “Feature-based,” and “Ensemble”. We separate Deep Learning because

it encompasses a wide range of clustering models that could potentially fit into

multiple other categories. For simplicity, we place them in their own category.

Feature-based time series machine is another popular time series analysis field.

In traditional clustering, input vectors are often considered “features”, which means

feature-based methods could theoretically be classified as traditional methods.

However, a key aspect of feature-based TSCL is the selection and generation of

unsupervised features, typically paired with a specific clustering model. Given the

extensive literature on unsupervised feature generation and selection, we assign it

its own category.
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Lastly, Ensemble TSCL models are placed in a separate category because

ensembles can be composed of models from various other categories. To simplify,

we treat them as distinct. While Figure 2.5 provides an overview of existing feature-

based and deep learning TSCL approaches, we will not explore them further in this

thesis, as they are not the focus of our research.

In Figure 2.5, nearly all the models listed under Hierarchical and Partition-based

clustering are traditional models that have been adapted with specialised time series

optimisations. Of the 20 clusterers highlighted in blue (meaning they are traditional

clusterers with time series specific optimisations), 17 have been adapted through

the use of a time series-specific distance measure and/or averaging technique. This

highlights that adapting traditional models with a distance and averaging method is

the primary approach for developing TSCL algorithms.

One of the most commonly used distance measures is Dynamic Time Warping

(DTW) [10], which belongs to a family of algorithms called elastic distances.

Among the 20 clusterers highlighted in blue, 13 (k-means-DBA, k-means-soft-

DBA, alternate, PAM, CLARA, CLARANS, Density Peaks, TADPole, OPTICS,

DBSCAN, HDBSCAN, SOM-DTW, SOMTimeS) have been adapted specifically

using an elastic distance. Of those, 12 specifically utilise DTW (k-means-soft-DBA

uses soft-DTW). This demonstrates that the most common—and as will be shown,

one of the most successful—ways of adapting traditional clustering algorithms is

through the use of elastic distances.

Since DTW’s introduction to time series data mining in 1994 [12], numerous

new elastic distances have been proposed [111]. Many of these newer distances have

been shown to significantly outperform DTW in supervised time series machine

learning tasks, such as TSC [74, 111]. However, none of these “better” elastic

distances for TSC have been explored in the context of TSCL. Therefore, the

primary question this thesis seeks to answer is: how do these other elastic distances

perform in TSCL?
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We will now outline the 12 different elastic distances that will be explored

throughout this thesis to test this hypothesis. Following this, we will provide detailed

reviews of 10 of the most commonly used TSCL approaches that incorporate a time

series-specific distance measure. These will serve as the core clusterers for our

analysis and development of new elastic distance TSCL models.

2.4 Elastic distances

Measuring the distance between time series is a primitive operation that can be used

for a range of tasks such as classification, clustering, extrinsic regression, anomaly

detection and retrieval. The simplest way to calculate the distance between two

time series is to use the Lp distance also known as the Minkowski distance [111].

Lp(a,b) =

(
m

∑
i
|ai−bi|p

) 1
p

(2.2)

where p is the order of the norm, a and b are time series, m is the length of the time

series and i is the current index in the time series that are being considered.

Equation 2.2 shows the Lp distance which takes a parameter p. The L1 (p = 1)

distance is known as the Manhattan distance and the L2 (p = 2) distance is known

as the Euclidean distance. The Lp distance is of limited application for time series

machine learning since it does not perform any alignment between two given time

series. This forces distance calculations to only consider point-to-point comparisons

between two series and does not allow for any misalignment between series in the x

axis, as shown in an example in Figure 2.6.

Distances that account for the misalignment between two time series during

the distance computation, can be considered as elastic distances. While there have

been numerous elastic distances proposed since their first conception, this thesis

will only consider a subset which are the most popular in recent literature.
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Fig. 2.6 Example of alignment between two time series when using a Lp distance.
The dashed grey lines represents which points in the red time series are compared
to in the blue time series.

2.4.1 Dynamic time warping (DTW)

Dynamic time warping (DTW) [10] was first proposed for time series machine

learning by [12]. DTW works by allowing one-to-many alignments (“warping”)

of points between two time series [111]. For disciplines such as TSC the one

nearest neighbor (1-NN) classifier using a tuned version of DTW was considered

state-of-the-art for many years and is still used as a baseline comparison for TSC

benchmarks [84].

DTW uses dynamic programming to find the optimal path through a cost

matrix (CM) that minimises the cumulative distance between two time series. It

achieves this by constructing a pairwise matrix where each index computes the

cost of aligning a point from the first time series with a point from the second time

series. Formally, the cost matrix for DTW is denoted as CMdtw. Let CMdtw be an

(m1+1)×(m2+1) cost matrix with indices starting from i= 1 and j = 1, where m1
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is the number of time points in first time series and m2 is the number of time points

in the second time series. The matrix CMdtw is initialised with CMdtw(1,1) = 0 and

+∞ for all other indexes.

Once the CMdtw has been initialised, for i from 1 to m1 and j from 1 to m2, the

values are incrementally updated such that:

CMdtw(i+1, j+1) = (ai−b j)
2 +min


CMdtw(i, j)

CMdtw(i+1, j)

CMdtw(i, j+1)

(2.3)

where a is a time series of length m1, and b is a time series of length m2.

Once all values in CMdtw have been computed the DTW distance between time

series a and b is given in Equation 2.4.

ddtw(a,b) =CMdtw(m1 +1,m2 +1) (2.4)

Algorithm 1 shows the algorithmic implementation of DTW outlined in Equa-

tions 2.3 and 2.4.

Algorithm 1: DTW (a,b, w)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1)
Output: DTW distance between a and b

2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
3 CM1,1← 0.
4 for i← 1 to m1 do
5 for j← 1 to m2 do
6 if |i− j|< w ·max(m1,m2) then
7 CMi+1, j+1← (ai−b j)

2 +min(CMi, j,CMi+1, j,CMi, j+1)

8 return CMm1+1,m2+1
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In addition to a distance being extracted from the CM, a “warping path” can

also be extracted. A warping path is defined as P =< (e1, f1),(e2, f2), . . . ,(es, fs)>

where each value in P is a pair of indices that define a traversal of matrix CM. A

valid warping path must start at location (1,1), end at point (m1,m2) and should

not backtrack.

The optimal warping path through a CM is P∗ which is defined by creating a

path that minimises the cumulative distance through a CM. Algorithm 2 shows the

process to extract P∗ from a CM. Figure 2.7 (a) shows the optimal path through

the CMdtw extracted using Algorithm 2 between the red and the blue time series.

Figure 2.7 (b) uses dashed grey lines show which time points in the red time series

are aligned to which time points in the blue time series.

(a) Optimal warping path (white squares)
through CMdtw between the red and blue time
series.

(b) A visualisation of the DTW align-
ment between the red and blue time
series.

Fig. 2.7 Optimal DTW warping path through CMdtw and a visualisation of DTW
alignment between the two time series.

DTW is susceptible to pathological warping where one time point in the first

time series is mapped to a large number of time points in the second time series [24].

This can be observed in Figure 2.7 (b) where the eighth time point in the red time

series maps to seven time points in the blue time series. Visually we can inspect



2.4 Elastic distances 28

Algorithm 2: optimal_warping_path (CM)
Input: CM (cost matrix of shape m1×m2)
Output: List of indices that make up the optimal warping path through CM

1 Let (x_size,y_size) be the dimensions of CM
2 i← x_size
3 j← y_size
4 P_star← []
5 while i > 1 or j > 1 do
6 P_star.append((i, j))
7 if i == 1 then
8 j← j−1
9 else

10 if j == 1 then
11 i← i−1
12 else
13 min_index← argmin([CMi−1, j−1,CMi−1, j,CMi, j−1])
14 if min_index == 0 then
15 i, j← i−1, j−1
16 else
17 if min_index == 1 then
18 i← i−1
19 else
20 j← j−1

21 P_star.append((1,1))
22 reversed_P_star = P_star.reverse()
23 return reversed_P_star

this alignment and see this is not a sensible realignment. To combat pathological

warping and improve DTWs time complexity which is O(m2), bounding windows

which constrain the optimal warping path have been proposed. A bounding window

limits how many time points can be mapped to a single time point in the other time

series.

In the literature the two most common bounding windows are the Sakoe-Chiba

bounding window [103] and Itakura Parallelogram bounding window [49]. Fig-

ure 2.8 gives a visual representation of the area in which each bounding technique

allows DTW to consider an optimal warping path through. Any points in the CM

highlighted in green can be aligned to however, any in white cannot be aligned to.
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(a) Visualisation of Sakoe-chiba bound-
ing bounding where w = 0.2.

(b) Visualisation of Itakura Parallelogram
bounding where max_w = 0.2.

Fig. 2.8 Visualisation of two CM bounding algorithms. Green squares represents
within bounds and white squares represent out of bounds.

The Sakoe-Chiba bounding window applies a bounding window of constant

width. This width is determined by the parameter w where 0≤ w≤ 1. w represents

the percentage of the time series of length m the bounding matrix should allow

warping through.

The Itakura Parallelogram bounding window changes the amount of warping

allowed based on the location within the CM. At the start and end of the window

very little warping is allowed. In the middle of the window a large amount of

warping is allowed. When visualised this bounding window forms a parallelogram

shape over the CM (Figure 2.8 (b)). The maximum width for Itakura Parallelogram

is determined by the parameter max_w where 0≤ max_w≤ 1. max_w represents

the percentage of the time series of length m the parallelogram will allow warping

through at its max width.

Figure 2.9 shows the use of a Sakoe-Chiba bounding window of w = 0.2 on the

CMdtw between the red and the blue time series. Figure 2.9 (b) shows that when

a bounding window is applied there is less pathological warping. Specifically the
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seventh time point in the red time series in Figure 2.9 only warps to 4 other time

points in blue.

(a) Optimal warping path (white squares)
through CMdtw between the red and blue
time with a Sakoe-Chiba bounding win-
dow of w = 0.2.

(b) A visualisation of the DTW alignment
between the red and blue time series with
a Sakoe-Chiba bounding window of w =
0.2.

Fig. 2.9 Optimal DTW warping path through CMdtw using a Sakoe-Chiba bounding
window and a visualisation of DTW alignment between the two time series using a
Sakoe-Chiba bounding window.

The Sakoe-Chiba bounding window will be assumed as the default window for

elastic distances (if a bounding window is specified). Consequently, any pseudocode

provided for our elastic distances will include an additional parameter, w, which

controls the Sakoe-Chiba bounding window. The default value of w is set to 1,

indicating that no bounding window is applied. The Sakoe-Chiba bounding window

is enforced by the condition if(|i− j|< w ·max(m1,m2)) in the pseudocode (or a

similar line depending on how the CM is initialised). For example, in the DTW

algorithm presented in Algorithm 1, the bounding window is applied on line 6.

2.4.2 Derivative dynamic time warping (DDTW)

Derivative DTW (DDTW) [60] proposes a modification to DTW that first transforms

the input time series into a their first-order derivative form. The motivation for
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taking the derivative is DTW only considers alignment in the time axis (i.e. x

axis). This means that when two time series differ in alignment in y axis (known

as “shape”) DTW cannot find these difference. By taking the first derivative of the

time series this extracts the shapes of the time series allowing DTW to consider the

alignment in both the x and the y axis. For example if we had two time points ai

and b j which have identical values, but ai is part of a rising trend and b j is part of

a falling trend. DTW would consider a mapping between these two points ideal,

although intuitively we would prefer not to map a rising trend to a falling trend [60].

If we were to use DDTW instead these two points would not be mapped together as

the trend (or shape) is considered.

The differential series of a is a′= (a′1,a
′
2, . . . ,a

′
m−1) where a′i defines the average

of the slopes between ai−1, ai, ai and ai+1. Formally this is defined in Equation 2.5.

a′i =
(ai−ai−1)+

(ai+1−ai−1)
2

2
(2.5)

where a is a time series and 1 < i < m.

Using the derived series from Equation 2.5 the DDTW distance can be defined

in Equation 2.6.

dddtw(a,b) = ddtw(a′,b′). (2.6)

Algorithm 3 and 4 show the pseudocode for DDTW described in Equations 2.5

and 2.6. In Algorithm 3, line 2, the loop starts from index 2 and ends at m− 2.

The reason for this is there is no time point before index 1 and no time points after

index m−2. Due to this the first and last values are removed hence the final array

a′ being of size m−2.

Figure 2.10 visualises the alignment path between the red and the blue time

series. When compared to the warping path in Figure 2.7, the warping path in
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Algorithm 3: average_of_slope (a)
Input: a (time series of length m)
Output: time series of length (m−2)

1 let a′ be an array of size (m−2) initialised to zero
2 for i← 2 to m−2 do

3 a′i−1←
(ai−ai−1)+

(ai+1−ai−1))
2

2

4 return a′

Algorithm 4: DDTW (a,b, w)
Input: a (time series of length m1), b (time series of length m2), w (window

proportion, default value w← 1)
Output: DDTW distance between a and b

1 a′← average_of_slope(a)
2 b′← average_of_slope(b)
3 return DTW(a′, b′, w)

Figure 2.10 is much more constrained as a result of accounting for the alignment in

the y axis as well as in the x axis.
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(a) Optimal warping path (white squares)
through CMddtw between the red and blue
time series.

(b) A visualisation of the DDTW align-
ment between the red and blue time se-
ries.

Fig. 2.10 Optimal DDTW warping path through CMddtw and a visualisation of
DDTW alignment between the two time series.

2.4.3 Weighted dynamic time warping (WDTW)

Weighted DTW (WDTW) [53] adds a multiplicative penalty to DTW for warping off

the diagonal. As observed in Figure 2.7 DTW is susceptible to pathological warping.

While a bounding window like the Sakoe-Chiba bounding window offers some

remedy to this problem, bounding windows act as hard cut offs to stop warping. To

find an appropriate window size for a given problem and additionally for this size

to be appropriate throughout the entire bounding window is very challenging. As

such WDTW proposes an alternative control for warping by adding a multiplicative

weighted penalty which acts as a “soft warping window”.

WDTWs takes a parameter g which controls the level of penalisation that occurs

for warping. Formally, Equation 2.7 defines the WDTW penalty.

weight|i− j| =
1

1+ e−g·( |i− j|−m
2 )

(2.7)
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where weight|i− j| is the multiplicative weight value for position |i− j| indexes

off the diagonal warping, g is the parameter that controls the penalty level and m is

the length of the time series.

To incorporate this weight penalty into DTW, it is multiplied with the Squared

Euclidean distance. This is shown in Equations 2.8 and 2.9. The CM should be

initialised with CMwdtw(1,1) = 0 and +∞ for all other entries.

CMwdtw(i, j) = weight|i− j| · (ai−b j)
2 +min


CMwdtw(i−1, j−1)

CMwdtw(i−1, j)

CMwdtw(i, j−1)

(2.8)

dwdtw(a,b) =CMwdtw(m1 +1,m2 +1) (2.9)

Algorithm 5 shows the algorithmic implementation of WDTW outlined in

Equations 2.7, 2.8 and 2.9.

Algorithm 5: WDTW (a,b, w, g)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), g (float that controls the
penalty level, default value g← 0.05)

Output: WDTW distance between a and b
2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
3 CM1,1← 0.
4 for i← 1 to m1 do
5 for j← 1 to m2 do
6 if |i− j|< w ·max(m1,m2) then
7 weight← 1

1+e−g·( |i− j|−max(m1,m2)
2 )

8 CMi+1, j+1←weight ·(ai−b j)
2+min(CMi, j,CMi+1, j,CMi, j+1)

9 return CMm1+1,m2+1
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(a) Optimal warping path (white squares)
through CMwdtw between the red and blue
time series where g = 0.3.

(b) A visualisation of the WDTW align-
ment between the red and blue time series
where g = 0.3.

Fig. 2.11 Optimal WDTW warping path through CMddtw and a visualisation of
WDTW alignment between the two time series where g = 0.3.

Figure 2.11 shows a WDTW warping path between the red and blue time series.

When compared to the warping path in Figure 2.7 the warping path it is much more

constrained. This is the result of the multiplicative penalty.
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2.4.4 Weighted derivative dynamic time warping (WDDTW)

Weighted derivative DTW (WDDTW) [53] is an extension to WDTW that takes the

derivative of the input time series before WDTW is performed. WDDTW attempts

to combines the benefits of DDTW and WDTW. This means WDDTW applies a

multiplicative warping penalty while taking advantage of shape information gained

by taking the derivative of the time series.

WDDTW will first take the derivative of each series shown in Equation 2.5

which will then be passed to Equation 2.9. This process is defined in Equation 2.10.

dwddtw(a,b) = dwdtw(a′,b′) (2.10)

The pseudocode for WDDTW is defined in Algorithm 6.

Algorithm 6: WDDTW (a,b, w, g)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), g (float that controls the
penalty level, default value g← 0.05)

Output: WDDTW distance between a and b
2 a′← average_of_slope(a)
3 b′← average_of_slope(b)
4 return WDTW(a′, b′, w, g)

Figure 2.12 illustrates the WDDTW alignment between the red and blue time

series. While it forms the same alignment as DDTW, as shown in Figure 2.10, the

parameter g controls the level of constraint on the warping path. Increasing the

value of g results in a more constrained warping path, while a lower value makes it

less constrained.
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(a) Optimal warping path (white squares)
through CMwddtw between the red and
blue time series where g = 0.3.

(b) A visualisation of the WDDTW align-
ment between the red and blue time series
where g = 0.3.

Fig. 2.12 Optimal WDDTW warping path through CMwddtw and a visualisation of
WDDTW alignment between the two time series where g = 0.3.

2.4.5 Amercing dynamic time warping (ADTW)

Amercing DTW (ADTW) [44] is a recently proposed variant of DTW which

penalises warping with a fixed additive cost (ω). The motivation for ADTW is to

address weaknesses of multiplicative penalties (e.g. WDTW, WDDTW) in that a

multiplicative weight is relative to the distances between aligned points along a

warping path, rather than being a direct function of the amount of warping [44].

Furthermore, ADTW addresses the limitation of using a bounding window to

constrain warping which only looks at potential alignment within a specific bound

and ignores anything outside of it.

ADTW takes a parameter ω which is a constant that is an additive penalty for

warping off the diagonal. Assuming a CM initialised with CMadtw(1,1) = 0 and

+∞ for all other entries, Equation 2.11 shows how to construct the CMadtw and

Equation 2.12 shows how to extract a distance from the CMadtw.
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CMadtw(i, j) = (ai−b j)
2 +min


CMadtw(i−1, j−1)

CMadtw(i−1, j)+ω

CMadtw(i, j−1)+ω

(2.11)

dadtw(a,b) =CMadtw(m1 +1,m2 +1) (2.12)

The pseudocode for ADTW is given in Algorithm 7.

Algorithm 7: ADTW (a,b, w, ω)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1) , ω (additive cost of
warping, default ω ← 1)

Output: ADTW distance between a and b
2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
3 CM1,1← 0.
4 for i← 1 to m1 do
5 for j← 1 to m2 do
6 if |i− j|< w ·max(m1,m2) then
7 CMi+1, j+1←

(ai−b j)
2 +min(CMi, j,CMi+1, j +ω,CMi, j+1 +ω)

8 return CMm1+1,m2+1

Figure 2.13 shows the ADTW warping path between the red and blue time

series. The warping path produced is very similar to DTW using a bounding matrix

in Figure 2.9. This shows the effectiveness of the constant to constrain pathological

warping.



2.4 Elastic distances 39

(a) Optimal warping path (white squares)
through CMadtw between the red and blue
time series where ω = 1.

(b) A visualisation of the ADTW align-
ment between the red and blue time series
where ω = 1.

Fig. 2.13 Optimal ADTW warping path through CMadtw and a visualisation of
ADTW alignment between the two time series where ω = 1.

2.4.6 Shape dynamic time warping (shapeDTW)

Shape DTW (shapeDTW) [132] transforms input time series to extract local struc-

tures (shapes) before applying DTW. ShapeDTW consists of two main steps. First,

each time point is transformed into a shape descriptor that encodes structural

information from its temporal neighborhood. Second, DTW is used on the two

transformed sequences of shape descriptors to extract an alignment path. Finally,

using the computed alignment path, the distance between the two time series is

calculated.

While multiple shape descriptors are described in [132], many require prior

knowledge of the data characteristics. Since unsupervised learning tasks, such as

TSCL, assume no prior knowledge of data characteristics, a shape descriptor named

“identity” is used. The identity shape descriptor utilises the raw subsequences as the

descriptor and as such assumes no prior knowledge of the data.

shapeDTW takes a parameter called reach which is the length of the subse-

quence to consider. The subsequences are extracted using a sliding window. The
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size of each window is given in Equation 2.13.

windows_size = 2× reach+1 (2.13)

As a consequence of using a sliding window approach, the input time series must

be padded on both ends to ensure subsequences are well-defined.

To pad the time series a = (a1, . . . ,ai,am) of length m, the start of the time series

is padded with the value a1, reach times, and the end of the time series is padded

with the value am, reach times. The resulting padded time series (padded_a) will

be of length padded_m given in Equation 2.14.

padded_m = m+2× reach (2.14)

Algorithm 8 defines the process described above to pre-process a given time

series to be used in shapeDTW.

Algorithm 8: extract_sliding_window (a,reach)
1 Input: a (time series of length m), reach (length of a subsequence)

Output: Matrix of subsequences
2 padded_a← pad_edges(a) // pad_edges assumes process described

above
3 padded_m← m+2× reach
4 window_size← 2× reach+1
5 Let subsequences be a matrix of shape window_size by m matrix initialised

with values 0.
6 for i← 1 to m do
7 subsequences(:,i) = a(i:i+window_size)

8 return subsequences

Once the subsequences have been extracted using Algorithm 8, the subse-

quences are passed to the DTW CM function given in Equation 2.3 and Algorithm 1

(assuming the whole CM is returned rather than just the last element of CM). Using
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the CMdtw, an optimal warping path can be extracted, and the distance can be

computed using Algorithm 9.

Algorithm 9: shapeDTW_from_cm (a, b, reach, CM)
1 Input: a (time series of length m1),b (time series of length m2), reach

(length of a subsequence), CM (CM of shape m1×m2)
Output: shapeDTW distance

2 i← m1
3 j← m2
4 distance← 0
5 while i≥ 1 and j ≥ 1 do
6 distance← distance+(areach+i−1−breach+ j−1)

2 min_a←CMi−1, j−1
7 min_b←CMi, j−1
8 min_c←CMi−1, j
9 if min_a < min_b and min_a < min_c then

10 i = i−1 ;
11 j = j−1 ;
12 else
13 if min_b < min_c then
14 j = j−1 ;
15 else
16 i = i−1 ;

17 return distance ;

Algorithm 10 demonstrates the full algorithm to compute shapeDTW.

Algorithm 10: shapeDTW (a,b, w, reach)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1) , reach (length of a
subsequence)

Output: shapeDTW distance between a and b
2 window_a← extract_sliding_window(a,reach)
3 window_b← extract_sliding_window(b,reach) CM←

DTW_CM(window_a,window_b,w) // Algorithm 1 but returns the entire CM
return shapeDTW_ f rom_cm(a,b,reach,CM)

Figure 2.14 shows the shapeDTW path between the red and blue time series. In

Figure 2.14 the first three time points in the blue time series are warped to the first

four time points in the red time series. When we visually inspect this alignment in

Figure 2.14 (b) it shows the first four time points in the red and blue time series are
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of very similar shape but are offset by one time point. shapeDTW identifies this

offset and realigns the two considering their shape.

(a) Optimal warping path (white squares)
through CMshapeDTW between the red and
blue time series where reach = 2.

(b) A visualisation of the shapeDTW
alignment between the red and blue time
series where reach = 2.

Fig. 2.14 Optimal shapeDTW warping path through CMshapeDTW and a visualisation
of shapeDTW alignment between the two time series where reach = 2.

2.4.7 Soft dynamic time warping (soft-DTW)

Soft Dynamic Time Warping (soft-DTW) [21] is an adaptation of DTW that uses

a soft minimisation function in place of the discrete minimisation function. The

soft minimisation function computes a smooth approximation of the minimum

by considering a soft-minimum over all possible alignment paths between two

time series. As a result, the output of soft-DTW changes smoothly as the input

changes, ensuring that the gradient exists and is continuous. This means soft-DTW

is differentiable everywhere in the cost matrix.

The soft-minimum function is defined in Equation 2.15:

soft_min(X) =−γ log ∑
xi∈X

e
−xi

γ (2.15)
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where X is a set of values over which the minimum is computed, γ > 0 controls the

smoothness of the approximation, and xi represents each individual value in X .

This soft-minimum function is incorporated into the DTW cost matrix function.

This is shown in Equation 2.16. The cost matrix is initialised similarly to DTW.

CMso f t_dtw(i, j) = (ai−b j)
2 + soft_min


CMso f t_dtw(i−1, j−1),

CMso f t_dtw(i−1, j),

CMso f t_dtw(i, j−1)

 (2.16)

dso f t_dtw(a,b) =CMso f t_dtw(m1,m2) (2.17)

Algorithm 11 illustrates the implementation of the soft-minimum function for

three variables x, y, and z, as described in Equation 2.15. Algorithm 12 then shows

how this soft_min_three function is integrated into the computation of the soft-DTW

distance between two time series a and b.

Algorithm 11: soft_min (x, y, z, γ)
1 Input: x, y, z (Input floating-point values), γ (smoothing parameter)

Output: Soft-minimum of three input floats with respect to γ

2 if γ = 0 then
3 return min(x,y,z)

4 max_val←max
(

x
−γ

, y
−γ

, z
−γ

)
5 summed_exp← e

(
x
−γ
−max_val

)
+ e

(
y
−γ
−max_val

)
+ e

(
z
−γ
−max_val

)
6 return −γ · (log(summed_exp)+max_val)

To compute a single optimal alignment path through the soft-DTW cost matrix,

Algorithm 2 can be applied similarly to DTW. However, unlike DTW, the soft-DTW

cost matrix is differentiable everywhere, enabling the computation of a gradient with

respect to the soft-DTW cost matrix. This gradient matrix can then be interpreted

as the expected alignment path under a Gibbs distribution [21]. In other words, the
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Algorithm 12: soft_DTW (a,b, w, γ)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1) , γ (smoothing
parameter)

Output: soft-DTW distance between a and b
2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
3 CM1,1← 0.
4 for i← 2 to m1 do
5 for j← 2 to m2 do
6 if |i− j|< w ·max(m1,m2) then
7 CMi, j← (ai−1−b j−1)

2 +
soft_min_three(CMi−1, j,CMi−1, j−1,CMi, j−1,γ)

8 return CMm1+1,m2+1

gradient matrix represents the contribution of each possible alignment to the final

distance.

The soft-DTW gradient matrix can be utilised in various downstream time series

tasks. In particular, this thesis focuses on its application to time series averaging.

We will outline how a gradient matrix can be used to compute the Soft Dynamic

Barycentre Average (soft-DBA) in Section 2.5.1.

To compute the gradient through the soft-DTW cost matrix efficiently, [21]

proposed a quadratic runtime algorithm based on backpropagation. The key insight

is that the final soft-DTW value (CMm1,m2) depends on all previous computations

in the matrix through the recursive soft-min operations. Therefore, using the chain

rule, we can compute the gradient with respect to every value in the cost matrix by

recursively propagating derivatives backwards. This backward recursion computes
∂CMso f t_dtw(m1,m2)

∂CMso f t_dtw(i, j)
for all cells (i, j). Programmatically the gradient matrix (E) can

be computed using Algorithm 13.

Figure 2.15 visualises this process. The figure illustrates: (i) the initial cost

matrix computed using soft-DTW and (ii) the gradient matrix (E), obtained by

applying the chain rule to the cost matrix with respect to the distance matrix.
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Algorithm 13: Soft_DTW_Gradient (D, CM, γ)
Input: D (pairwise squared Euclidean distance matrix of shape m1×m2),

CM (accumulated soft-DTW cost matrix of shape m1×m2),
γ (smoothing parameter)

Output: Gradient matrix
1 Let E be an m1×m2 matrix initialised with zeros
2 Em1,m2 ← 1.0
3 for i← m1−1 to 1 step −1 do
4 for j← m2−1 to 1 step −1 do
5 if i+1 < m1 then

6 wh← e
CMi+1, j−CMi, j−Di+1, j

γ

7 Ei, j← Ei, j +Ei+1, j ·wh

8 if j+1 < m2 then

9 wv← e
CMi, j+1−CMi, j−Di, j+1

γ

10 Ei, j← Ei, j +Ei, j+1 ·wv

11 if (i+1 < m1) and ( j+1 < m2) then

12 wd ← e
CMi+1, j+1−CMi, j−Di+1, j+1

γ

13 Ei, j← Ei, j +Ei+1, j+1 ·wd

14 return E

Previously, when using Algorithm 2 with DTW, a single optimal alignment path

was obtained, as shown in Figure 2.7(a).

In contrast, the gradient matrix shown in Figure 2.15 provides a more nuanced

representation of alignment probabilities, capturing the contribution of every pos-

sible alignment. This comparison highlights the advantage of deriving a gradient

matrix rather than a single alignment path.

Additionally, in Figure 2.15 (ii), the matrix is presented with a heatmap overlay,

where colours closer to purple indicate a lower likelihood of belonging to the

optimal alignment path, while indexes with more yellow and green hues are more

likely to be in the optimal alignment path. For example, in Figure 2.15 (ii), index

(1,1) and index (5,5) are marked in yellow with a value of 1.0, indicating a 100%

probability of being part of the alignment path.
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Fig. 2.15 Flow diagram to show how to compute a gradient matrix (E) from a cost
matrix. For the gradient matrix a heatmap is also used where purple is low values
to yellow and green value which represent high values.

2.4.8 Longest common subsequence (LCSS)

Longest Common Subsequence (LCSS) [126] is based on the edit distance algorithm

which is used for string matching [45]. Figure 2.16 shows an example of LCSS

used on a string matching problem. The figure demonstrates the process of adding

gaps (denoted by “-”) to each series to enable the LCSS “BAAB” to be extracted.

Fig. 2.16 Example of string matching using LCSS. The left image shows a direct
pairwise match (i.e. similar to using euclidean distance). The right image shows
gaps being allowed, denoted by “-” to find the longest common subsequence
between the two words. This allows matching with elasticity similar to DTW.

LCSS, is considered an edit distance. Edit distances evaluate the similarity

between two time series by counting the number of operations required to make



2.4 Elastic distances 47

them identical. Each operation has an associated cost, and the total cost represents

the distance between the two time series.

For example consider Figure 2.16. To make the two identical it would take

4 operations (removals) to make the two series identical. Therefore the distance

between the two time series could be considered 4.

LCSS builds on this concept of edit distances and specifically [126] adapts the

original algorithm to allow it to match real-valued data. This is done by adding a

floating point threshold ε where if the difference between two values is less than

ε , then they are considered a match. This allows the LCSS algorithm described

in [126] to be used for time series data.

In addition as LCSS allows “gaps” if there is no logical match between the

series making it less sensitive to noise. However, the quality of result is highly

sensitive to the parameterised value ε .

To extract the LCSS distance between two time series, LCSS generates a CM.

To begin the CM is initialised as a matrix of zeros. The CM is then generated using

Equation 2.18.

CMlcss(i, j) =


1+CMlcss(i−1, j−1) if (|ai−b j| ≤ ε)

max


CMlcss(i−1, j)

CMlcss(i, j−1)
otherwise

(2.18)

where CMlcss is the LCSS CM initialised, i is a integer where 0 ≤ i < m, j is a

integer where 0≤ j < m, ε is the matching threshold and a and b are time series of

length m.
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Once all values in CMlcss have been computed the LCSS distance between time

series a and b can be extracted using Equation 2.19.

dlcss(a,b) = 1−CMlcss(m1 +1,m2 +1)
min(m1,m2)

(2.19)

In Equation 2.19 the CM value is subtracted from 1 because, in traditional LCSS,

a perfect match between two time series yields a value of 1, while two infinitely

dissimilar series yield a value of 0. To ensure consistency with other distance

measures in this thesis, where higher values indicate greater dissimilarity, the LCSS

value is adjusted accordingly.

Algorithm 14 shows the pseudocode for Equations 2.18 and 2.19

Algorithm 14: LCSS (a,b, w, ε)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), ε (matching threshold to
determine if two subsequences are considered matching, default
value ε ← 1.))

Output: LCSS distance between a and b
2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values 0.
3 for i← 2 to m1 +1 do
4 for j← 2 to m2 +1 do
5 if |i− j|< w ·max(m1,m2) then
6 if ||ai−b j|| ≤ ε then
7 CMi, j← 1+CMi−1, j−1

8 else
9 CMi+1, j+1←max(CMi, j−1,CMi−1, j)

10 return 1− (CMm1+1,m2+1/min(m1,m2))

As an optimal LCSS warping path can have gaps this means the algorithm to ex-

tract the optimal warping path for DTW and similar elastic distances (Algorithm 2)

will not work for LCSS. As such LCSS has its own bespoke algorithm to extract

the optimal LCSS warping path. This is given in Algorithm 15.
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Algorithm 15: optimal_lcss_warping_path (a,b, w, ε , CM)
Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), ε (matching threshold to
determine if two subsequences are considered matching, default
value ε ← 1.)), CM (CM for LCSS, of shape (m1 +1,m2 +1))

Output: List of indices that make up the optimal warping path through CM
1 i← m1 +1
2 j← m2 +1
3 Pstar← []
4 while i > 1 and j > 1 do
5 if |(i−1)− ( j−1)|< w ·max(m1,m2) then
6 if |ai−1−b j−1| ≤ ε then
7 Pstar.append((i−1, j−1))
8 i← i−1
9 j← j−1

10 else if CM[i−1, j]>CM[i, j−1] then
11 i← i−1

12 else
13 j← j−1

14 reversed_P_star = P_star.reverse()
15 return reversed_P_star

Figure 2.17 shows the LCSS alignment path between the red and blue time

series. When compared to other warping paths (such as Figures 2.7, 2.10, 2.13 etc.)

the most obvious difference is the LCSS optimal warping path has gaps. Figure 2.17

(b) shows it may be logical to have gaps in our alignment paths. For example the

fifth index in the blue time series isn’t aligned to any index in the red time series.

This would seem ideal as there is no similar time points in the red time series

therefore it shouldn’t be aligned.
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(a) Optimal warping path (white squares)
through CMlcss between the red and blue
time series where ε = 1.

(b) A visualisation of the LCSS align-
ment between the red and blue time se-
ries where ε = 1.

Fig. 2.17 Optimal LCSS warping path through CMlcss and a visualisation of LCSS
alignment between the two time series where ε = 1.

2.4.9 Edit Distance on Real Sequences (EDR)

Edit Distance on Real Sequences (EDR) [19] builds on LCSS whereby it uses a

distance threshold ε to determine if two time points are considered a match, but in

addition it applies a constant penalty for non-matching time point occurs. This is

described in Equations 2.20, 2.21 and 2.22.

edr_cost(ai,b j) =


0 if (|ai−b j| ≤ ε)

1 otherwise
(2.20)

CMedr(i, j) = min


CMedr(i−1, j−1)+ edr_cost(ai,b j)

CMedr(i−1, j)+1

CMedr(i, j−1)+1

(2.21)

dedr(a,b) =
CMedr(m1 +1,m2 +1)

max(m1,m2)
(2.22)
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where CMedr is the EDR CM initialised to zeros, i is a integer where 0≤ i < m, j is

a integer where 0≤ j < m, ε is the matching threshold and a and b are time series

of length m.

By applying a constant penalty to gaps it makes the distance more accurate than

LCSS [19] and more robust to noise than DTW as it quantises the distance (values

increments of 0 or 1).

Finally EDR prescribes a more robust way to select the value of ε by using a

quarter of the maximum standard deviation of the input time series. This is given in

Equation 2.24.

σ(c) =

√
1

m−1

m

∑
i=1

(ci− c)2 (2.23)

ε =
max(σ(a),σ(b))

4
(2.24)

where a and b are time series of length m.

Algorithm 16 outlines EDR.

Figure 2.18 shows the EDR alignment path between the red and blue time series.

The EDR warping path is much more constrained than the DTW path (Figure 2.7).

Specifically the fifth index in the blue time series, which could be considered noise,

doesn’t throw off the EDR alignment as is does in the DTW CM. This highlights

EDRs ability to deal with noise by quantising the distance rather than using the

Squared Euclidean distance. This quantisation can be clearly seen in Figure 2.18

(a) with the CM values.
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Algorithm 16: EDR (a,b, w)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1)
Output: EDR distance between a and b

2 ε ←max(σ(a),σ(b))/4
3 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
4 CM1,:← 0
5 CM:,1← 0
6 for i← 2 to m1 +1 do
7 for j← 2 to m2 +1 do
8 if |(i−1)− ( j−1)|< w ·max(m1,m2) then
9 if ||ai−1−b j−1|| ≤ ε then

10 cost← 0

11 else
12 cost← 1

13 CMi, j←min(CMi−1, j−1 + cost,CMi−1, j +1,CMi, j−1 +1)

14 return CMm1+1,m2+1

(a) Optimal warping path (white squares)
through CMedr between the red and blue
time series.

(b) A visualisation of the EDR alignment
between the red and blue time series.

Fig. 2.18 Optimal EDR warping path through CMedr and a visualisation of EDR
alignment between the two time series.
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2.4.10 Edit Distance with Real Penalty (ERP)

Edit Distance with Real Penalty (ERP) [18] is an edit distance that attempts to

align time series by considering how indexes are carried forward through the CM.

Usually in CMdtw, if an alignment cannot be found, the previous value is carried

forward. ERP allows gaps or sequences of points that have no matches (similar

to LCSS). However, instead of using a threshold, like EDR or LCSS to determine

matches, ERP uses the Squared Euclidean distance between elements to measure

a match. Additionally the Squared Euclidean distance is used to apply a penalty

to warping which changes based on the time point in question. As ERP doesn’t

use a threshold for a match but instead uses the Squared Euclidean distance, this

means that it satisfies triangle inequality which can yield advantages in tasks such

as indexing and TSCL.

The penalty of warping (g) is set to a constant floating point which is the

standard deviation σ (Equation 2.23) of the training data.

Equations 2.25 and 2.26 define how the CMerp is generated and how a distance

extracted from it.

CMerp(i, j) = min


CMerp(i−1, j−1)+(ai−b j)

2

CMerp(i−1, j)+(ai−g)2

CMerp(i, j−1)+(b j−g)2

(2.25)

derp(a,b) =CMerp(m1 +1,m2 +1) (2.26)

where CMerp is the ERP CM initialised to zeros, i is a integer where 0≤ i < m, j is

a integer where 0≤ j < m, g is the penalty for moving off the diagonal and a and b

are time series of length m.

Algorithm 17 defines the implementation of ERP.
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Algorithm 17: ERP (a,b, w, g)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), g (penalty for warping
off the diagonal)

Output: ERP distance between a and b
2 Let CM be a (m1 +1) by (m2 +1) matrix initialised with all values ∞.
3 CM1,1← 0
4 for i← 2 to m1 +1 do
5 for j← 2 to m2 +1 do
6 if |(i−1)− ( j−1)|< w ·max(m1,m2) then
7 match←CMi−1, j−1 + ||ai−1−b j−1||
8 insert←CMi−1, j +(ai−1−g)
9 delete←CMi, j−1 +(b j−1−g)

10 CMi, j←min(match, insert,delete)

11 return CMm1+1,m2+1

Figure 2.19 shows the ERP warping path between the red and the blue time

series. The warping path is constrained due to the penalty applied for warping off

the diagonal.
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(a) Optimal warping path (white squares)
through CMerp between the red and blue
time series.

(b) A visualisation of the ERP alignment
between the red and blue time series.

Fig. 2.19 Optimal ERP warping path through CMerp and a visualisation of ERP
alignment between the two time series.

2.4.11 Move-split-merge (MSM)

Move-split-merge (MSM) [114] is an edit distance that assigns different “costs”

depending on the type of edit and its location within CMmsm. This differs from

similar edit distances such as ERP that for any given insertion or deletion operation

assigns a cost that is the absolute magnitude of the value that was inserted or

deleted [114].

For example when using ERP the cost to insert a 1 between 1s would yield a

cost of 1. However, the cost to insert a 10 between two 10s would yield a cost of

10. This means for the same edit operation, using ERP, the cost is dependent on

the value itself. MSM instead recognises these two edit operations are the same by

considering the CM neighborhood, and therefore the cost should be constant.

MSM computes the distance between two time series based on the number and

type of edit operations required to transform one series to the other [111]. MSM

has three types of edits: move, split and merge. A move operation substitutes one

value into another value, a split operation inserts a copy of the value immediately
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after itself and a merge operation removes a value if it is directly followed by an

identical value. Additionally MSM applies a cost (penalty) for warping off the

diagonal (merge and split) set by the parameter c. Figure 2.20 visually demonstrates

each operation.

Fig. 2.20 Example of different MSM edit operations. The top left box shows the
merge operation, the top right box shows the split operation and the bottom box
shows the move operation. The original sequence refers to the series before MSM
has applied a operation. The result sequence refers to the series after the MSM
operation has been applied.

MSM satisfies triangle inequality and is formally defined in Equations 2.27,

2.28 and 2.29

msm_cost(ai,ai−1,b j,c) =



c if (ai−1 ≤ ai ≤ b j)

c if (ai−1 ≥ ai ≥ b j)

c+min


|ai−ai−1|

|ai−b j|
otherwise

(2.27)

CMmsm(i, j) = min


CMmsm(i−1, j−1)+ |ai−b j|

CMmsm(i−1, j)+msm_cost(ai,ai−1,b j,c)

CMmsm(i, j−1)+msm_cost(b j,ai,bi−1,c)

(2.28)
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dmsm(a,b) =CMmsm(m1,m2) (2.29)

where CMmsm is the MSM CM initialised to zeros, i is a integer where 0≤ i < m, j

is a integer where 0≤ j < m, c is the cost for moving off the diagonal and a and b

are time series of length m.

MSM has a more sophisticated cost function (Equation 2.27) than other elastic

distances such as EDR (Equation 2.20). A move edit does not use the cost function

and is the absolute difference between the values. A split edit does use the cost

function: msm_cost(ai,ai−1,b j,c). A split operation considers if the value being

inserted, b j, is between two values ai and ai−1. If true, the cost is constant c.

However, if false, the cost c is added to the minimum deviation from the further

point ai and the previous point bi or ai−1. A merge edit also uses the MSM

cost function: msm_cost(b j,ai,bi−1,c). The merge edit is similar to the split

edit however, it computes the cost on the second series (b). By using this more

sophisticated cost function, MSM can compute a more context aware warping path

while satisfying triangle inequality.

Algorithms 18 and 19 define MSMs implementation.

Algorithm 18: cost_msm(x, y, z, c)
Input: x (first time point), y (second time point), z (third time point), c cost

of warping off the diagonal
Output: Cost value

1 if (y≤ x≤ z) or (y≥ x≥ z) then
2 return c

3 return c+min(|x− y|, |x− z|)

Figure 2.21 shows the MSM warping path between the red and blue time series.

Figure 2.21 has a very constrained warping path compared to DTWs warping path

in Figure 2.7. The MSM warping path is more constrained due to its sophisticated

cost function penalising pathological warping.
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Algorithm 19: MSM (a,b, w, c)
1 Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1), c (cost of warping off
the diagonal)

Output: MSM distance between a and b
2 Let CM be an m1×m2 matrix initialised to ∞.
3 CM1,1← |a1−b1|
4 for i← 2 to m1 do
5 if |(i−1)−0|< w ·max(m1,m2) then
6 split←CMi−1,1 + cost_msm(ai,ai−1,b1,c)
7 CMi,1← split

8 for j← 2 to m2 do
9 if |0− ( j−1)|< w ·max(m1,m2) then

10 merge←CM1, j−1 + cost_msm(b j,b j−1,a1,c)
11 CM1, j← merge

12 for i← 2 to m1 do
13 for j← 2 to m2 do
14 if |(i−1)− ( j−1)|< w ·max(m1,m2) then
15 move←CMi−1, j−1 + |ai−b j|
16 split←CMi−1, j + cost_msm(ai,ai−1,b j,c)
17 merge←CMi, j−1 + cost_msm(b j,ai,b j−1,c)
18 CMi, j←min(move,split,merge)

19 return CMm1,m2

(a) Optimal warping path (white squares)
through CMmsm between the red and blue
time series where c = 1.

(b) A visualisation of the MSM align-
ment between the red and blue time se-
ries where c = 1.

Fig. 2.21 Optimal MSM warping path through CMmsm and a visualisation of MSM
alignment between the two time series.
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2.4.12 Time Warp Edit (TWE)

Time Warp Edit (TWE) [79] is another edit distance adapted to the time series

domain. TWE combines an Lp distance technique with an edit based algorithm

that allows warping while remaining a metric (satisfies triangle inequality). The

objective of TWE is to remove time points from either time series a or b until they

are equal. To do so TWE defines three edit operations: match, deletea, deleteb.

Furthermore, TWE introduces the concept of “stiffness”. Stiffness (ν) is a mul-

tiplicative penalty that is applied to all three edit operations. Stiffness controls the

elasticity of the algorithm (how much it can warp). When the value of ν = 0 TWE

becomes more stiff like an Lp distance. When the value of ν = ∞ TWE becomes

less stiff and more elastic like DTW. In addition TWE has another parameter, λ ,

which is a constant penalty for warping off the diagonal (applied to deletea and

deleteb). By having two parameters to control many aspects of how a warping path

is generated, TWE can be one of the most versatile elastic distances.

Equations 2.30 and 2.31 formally define TWE.

CMtwe(i, j) = min


CMtwe(i−1, j−1)+(ai−b j)

2 +(ai−1−b j−1)
2 +2 ·ν

CMtwe(i−1, j)+(ai−ai−1)
2 +ν +λ

CMtwe(i, j−1)+(b j−b j−1)
2 +ν +λ

(2.30)

dtwe(a,b) =CMtwe(m1 +1,m2 +1) (2.31)

where CMtwe is the TWE CM initialised with CMtwe(1,1) = 0 and +∞ for all

other entries, i is a integer where 0 ≤ i < m, j is a integer where 0 ≤ j < m, ν is

the stiffness determining elasticity, λ is the constant penalty for warping off the

diagonal and a and b are time series of length m.
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Equation 2.30 shows that the “match” condition: CMtwe(i− 1, j− 1)+ (ai−

b j)
2+(ai−1−b j−1)

2+2 ·ν is more sophisticated than other edit distances. Specifi-

cally the current and previous time point values are considered (ai−b j)
2 +(ai−1−

b j−1)
2 to give greater context to the match allowing smoother alignments to be

generated while being less sensitive to noise.

Algorithm 20 defines TWE from Equations 2.30 and 2.31.

Algorithm 20: TWE(a, b, w, λ , ν)
Input: a (time series of length m1),b (time series of length m2), w

(window proportion, default value w← 1) λ (cost of warping off
the diagonal, default value λ ← 1.0) ν (stiffness of warping, default
value ν ← 0.001)

Output: TWE distance between a and b
1 Let CM be a m1 by m2 matrix initialised with all values ∞.
2 CM1,1← 0
3 for i← 2 to m1 do
4 for j← 2 to m2 do
5 if |(i−1)− ( j−1)|< w ·max(m1,m2) then
6 match =CMi−1, j−1 + ||ai−b j||+ ||ai−1−b j−1||+ν× (|i−

j|+ |(i−1)− ( j−1)|)
7 delete =CMi−1, j + ||ai−ai−1||+ν +λ

8 insert =CMi, j−1 + ||b j−b j−1||+ν +λ

9 CMi, j = min(match, insert,delete)

10 return CMm1,m2

Figure 2.22 shows the TWE warping path between the red and blue time series.

The warping path allows some warping while remaining somewhat constrained.

Figure 2.22 warps more than other edit distances (Figures 2.18, 2.19 and 2.21).

This is because the stiffness parameter is set very low: ν = 0.001. To make the path

more constrained we could increase the value of ν or increase the penalty λ = 1.

TWEs additional parameters makes it very versatile.
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(a) Optimal warping path (white squares)
through CMtwe between the red and blue
time series where ν = 0.001 and λ = 1.

(b) A visualisation of the TWE align-
ment between the red and blue time series
where ν = 0.001 and λ = 1.

Fig. 2.22 Optimal TWE warping path through CMtwe and a visualisation of TWE
alignment between the two time series where ν = 0.001 and λ = 1.

2.5 TSCL Algorithms

Thus far, we have defined time series data mining, positioned the TSCL discipline

within it, and provided a high-level overview of traditional clustering methods.

We have also highlighted how many TSCL approaches adapt these traditional

algorithms by incorporating time series-specific distance measures and/or averaging

techniques. Additionally, we have outlined 12 elastic distances for potential use

with these traditional clustering algorithms.

To benchmark our proposed elastic distance TSCL algorithms, we must first

establish a point of comparison by reviewing the existing TSCL approaches. There-

fore, we outline 10 of the most popular and widely cited partition-based TSCL

algorithms. By evaluating and implementing these algorithms, we can better situate

our new methods within the current literature and state-of-the-art.

As previously mentioned, we do not consider deep learning-based or feature-

based TSCL algorithms, as they do not adapt traditional clustering methods using

distance and/or averaging techniques. For readers interested in these areas, there are
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several comprehensive reviews on deep learning-based TSCL [3, 64], as well as an

extensive body of literature on unsupervised feature selection and generation [130,

54, 110, 102, 129, 73, 95].

Furthermore, many existing TSCL approaches follow a similar methodology to

what we plan to implement: adapting traditional clustering algorithms with time

series-specific distances and/or averaging techniques. By reviewing how this has

been done in previous research, we can refine the design and implementation of our

proposed clustering algorithms.

We will begin this section by clearly defining the objectives of partition-based

TSCL algorithms, using visualisations for clarity. Following this, we will outline 10

TSCL algorithms, offering detailed descriptions, formal notation, and pseudocode

for each.

2.5.1 Partition-based TSCL

As previously outlined, the primary objective of partition-based clustering is to

define k centroids (or exemplars or cluster centres) that represent each cluster. A

new time series is assigned to a cluster based on its similarity to these centroids.

In traditional clustering, the concept of a centroid, with multiple points assigned

to it, can easily be visualised, as shown in Figure 2.2. However, this concept

is less intuitive for TSCL. Therefore, we begin by visually demonstrating how

partition-based TSCL algorithms partition a dataset of time series.

Figure 2.23 presents a visualisation of partition-based clustering for time se-

ries data. Clusters of similar time series are formed (Cluster 1, 2, and 3), and a

centroid—represented by the coloured time series—is derived from the clustered

data.

Numerous partition-based models have been proposed for TSCL. However, at

their core, partition-based TSCL models aims to answer solve two problems:
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Fig. 2.23 Example of partition-based clustering using k-means on the Gunpoint
time series dataset. k-means employs the Euclidean distance and arithmetic mean to
form clusters. The black time series represent individual series assigned to Clusters
1, 2, and 3, while the colored lines indicate the centroids of each cluster.

1. How do you measure the similarity between two time series?

2. How do you form a centroid from a cluster of time series?

With these objectives in mind, specific partition-based TSCL approaches will

now be outlined.

k-means

k-means [78] describes an objective function that aims to minimise the sum-of-

squared errors (Equation 2.32). The most common algorithm to optimise this

objective function is Lloyd’s algorithm [75]. k-means, using Lloyd’s algorithm, is

one of the most well-known and popular partition-based TSCL algorithm.

Given a dataset of time series D = {T1,T2, . . . ,Tn} of length n, the goal of

k-means is to form k clusters such that the sum-of-squared errors (also known

as inertia) is minimised. Formally, the k-means objective function is defined in

Equation 2.32.

SSE =
k

∑
i=1

ni

∑
j=1
||T (i)

j − ci||2 (2.32)
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where k is the number of clusters, ni is the number of time series assigned to

cluster i, T (i)
j is the jth time series assigned to ith cluster, ci is the ith centroid, and

||T (i)
j − ci||2 is a distance measure between T (i)

j and ci.

Lloyds k-means

Lloyd’s [75] solution to the k-means problem is one of the most famous and popular

clustering algorithms [32]. All of the k-means variants outlined in this thesis use a

form of Lloyd’s algorithm. As such, “k-means” and “Lloyd’s algorithm” will be

referred to interchangeably.

To begin the Lloyd’s algorithm randomly selects k time series from dataset D to

act as initial centroids. These initial centroids are defined in Equation 2.33

C = {c1,c2, . . . ,ck} (2.33)

where C is an array of centroids, ci is the centroid for ith cluster, and k is the number

of clusters.

Once the initial centroids are defined, the k-means iterative optimisation begins.

First, each time series is assigned to its closest cluster using a distance measure.

This is known as the “assignment stage” and is formally defined in Equation 2.34.

argmin
S

k

∑
i=1

ni

∑
j=1
∥Tj− ci∥2 (2.34)

where S is the set of cluster assignments, k is the number of clusters, ni is the

number of time series assigned to cluster i, Tj is the jth time series in the dataset

D, ci is the ith centroid in the set of centroids C, and ∥Tj− ci∥2 is the squared

Euclidean distance between Tj and ci.

Once each time series has been assigned to its closest centroid, the centroids are

updated by computing the arithmetic mean of each cluster. The arithmetic mean of

cluster i is formally defined in Equation 2.35.
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µi =
1
|Ci|

ni

∑
j=1

T (i)
j (2.35)

where µi is the arithmetic mean of the ith cluster, ni is the number of time series

assigned to cluster i, and T (i)
j is the jth time series assigned to the ith cluster.

Once the arithmetic mean of each cluster is computed, the centroid of each

cluster is updated to its respective µi. This process is referred to as the “update” or

“centroid computation” stage. The completion of this step marks the end of a single

iteration of k-means.

The k-means algorithm continues iterating until the assignment of each time

series to its closest centroid does not change between iterations, thus the centroid

computed does not change between iterations.

Start End

Yes

No

Randomly select 
k centroids

Compute TS 
distance to 
centroids 

Compute mean 
of each group to 
be new centroids

Group TS based 
on minimum 

distance

Centroids same

as last iteration?

Fig. 2.24 Flow diagram of k-means algorithm

Figure 2.24 shows a flow diagram of the described k-means algorithm.

The above describes the simplest implementation of k-means. However, there

are many open issues and challenges with k-means.

Initialisation problem: - The initialisation problem in k-means is twofold:

defining the correct value of k, and defining the position of initial centroids [48].

Defining the correct value of k is an on going research question but techniques

such as the Elbow method, Silhouette coefficient [58], Canopy algorithm [30]

and the Gap statistic algorithm [119] have been proposed to find a appropriate

value of k. Selecting the position of the initial centroids is also an on going
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research question, however, several techniques have been proposed in the literature,

including random selection, furthest point heuristic, sorting heuristic, density-

based, projection-base and splitting techniques. The most comprehensive review of

initialisation techniques was done by [17] on 32 real and 12,228 synthetic datasets.

Their results do not clearly point out a single technique that would be consistently

better than others. As such for both TSCL and traditional clustering there is no

clear state-of-the-art approach for initialisation problem [37].

Distance measure: - The k-means convergence condition, sum-of-squared errors

(Equation 2.32), uses the Squared Euclidean distance. Due to the time series unique

characteristics, such as their temporal alignment, the Squared Euclidean distance has

been shown to perform poorly when measuring similarity between time series [74].

As such in the context of TSCL it is desirable to use a different similarity measure.

Finding a strategy to integrate other distance measures into k-means while still

conforming to its convergence criteria is challenging. In the context of TSCL

algorithms such as DBA [94] (see Section 2.5.1) have been proposed to allow DTW

(see Section 2.4.1) to be used with k-means.

Sensitivity to outliers: - A dataset with many outliers produces unstable clusters

with several k-means clustering algorithms runs [48]. This is due to outliers in-

creasing the sum-of-squared errors within clusters, thus affecting the final accuracy

of the clustering results [112]. This problem becomes even more pronounced in

TSCL because generally outliers exist within the individual time series as subseqe-

unces. Detection of these outliers is thus very challenging and an on going point of

research.
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k-Spectral Centroid (k-SC)

k-Spectral Centroid (k-SC) [128] is a TSCL specific algorithm that adapts k-means

to use a novel distance and averaging measure that is scale and shift invariant.

Formally the k-SC distance measure is defined in Equation 2.36 and 2.37.

α =
L2(a,b(q))2

L2(b(q),b(q))2 (2.36)

d̂(a,b) = min
α,q

L2(a,αb(q))
L2(a,a)

(2.37)

where b(q) is the result of shifting time series b by q time points, L2 distance is

given in Equation 2.2, and a and b are time series of length m.

k-SC aims to minimise the sum-of-squared errors (Equation 2.32). However,

instead of using the Euclidean distance like k-means, k-SC minimises over the

d̂(a,b) distance. Therefore, it would be inappropriate to perform the same average

as k-means [128] (Equation 2.35). Instead k-SC uses an averaging technique that

integrates the d̂(a,b) distance shift operation to compute a more accurate centroid.

The centroid computation in k-SC involves using the d̂(a,b) distance to find

the optimal shift q j that minimises the distance between each time series Tj ∈Ci

and the current centroid ci. Using these optimal shifts, a covariance matrix M is

constructed. Eigen decomposition of M is then performed to find the principal

component. The eigenvector corresponding to the smallest eigenvalue of M is used

as the new centroid. Formally, this process is defined in Equations 2.38 and 2.39:

M = ∑
Tj∈Ci

(
I−

TjT T
j

∥Tj∥2

)
(2.38)

c∗i = argmin
c

cT Mc
∥c∥2 (2.39)
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where M is the covariance matrix for the time series in cluster Ci, Ci is the ith cluster,

Tj is a time series in cluster Ci, I is the identity matrix, c is a candidate centroid

time series, and cT is the transpose of the time series c.

k-SC follows the same algorithm as k-means shown in Figure 2.23 but uses the

d̂(a,b) distance and the centroid computed under d̂(a,b) described above. Through

this process k-SC clusters time series based on their shape, even in the presence of

scaling and shifting variations.

Figure 2.25 presents the k-SC centroids generated for the Gunpoint dataset. In

contrast to the k-means centroids depicted in Figure 2.23, the k-SC centroids are

noticeably different. One reason for this is that, to facilitate visual inspection and

interpretation, the cluster centres have been scaled up. This scaling adjustment

does not alter the inherent structure of the centroids but amplifies their magnitude,

making key features such as peaks more distinguishable. For example, Cluster 3

may not visually appear to be a very good “average” of the time series in the cluster

in terms of scale. However, this issue is due to the visual scaling, as internally the

scale is inconsequential. The scale invariance means cluster assignments that may

be influenced solely by scale in k-means do not occur in k-SC.

0 25 50 75 100 125 150
4

3

2

1

0

1

2

3

4
Cluster 1

0 25 50 75 100 125 150
4

3

2

1

0

1

2

3

4
Cluster 2

0 25 50 75 100 125 150
4

3

2

1

0

1

2

3

4
Cluster 3

Fig. 2.25 Example of k-SC clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.
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k-shape

k-shape [89] is a TSCL specific algorithm that adapts k-means by using a novel

distance and averaging method that is both scale and shift invariant. Specifically,

k-shape develops a shape-based distance measure (SBD) that utilises the cross-

correlation of two time series.

Cross-correlation distances work by sliding time series b over time series a

and computing their inner product for each shift s of a. All possible shifts s are

considered within the range s ∈ [−m,m], where m is the length of both time series

a and b. This is achieved using Equation 2.40 and 2.41.

Rk(a,b) =


∑

m−k
l=1 al+k ·bl k ≥ 0

R−k(b,a) k < 0
(2.40)

CCw(a,b) = Rw−m(a,b) (2.41)

where w ∈ {1,2, . . . ,2m−1} and a and b are time series of length m.

Equation 2.41 produces an array of length 2m−1. The optimal shift can then

be found by identifying the position w at which CCw(a,b) is maximised. Based

on this value of w, the optimal shift of a with respect to b is given as a(s), where

s = w−m [89]. If the two series are perfectly aligned, then w = m.

To make the cross-correlation distance invariant to scale, [89] proposes the use

of a coefficient normalisation strategy integrated into the distance measure. The

resulting distance measure is called the Shape-Based Distance (SBD). The SBD is

formally described in Equation 2.42.

SBD(a,b) = 1−max
w

(
CCw(a,b)√

R0(a,a) ·R0(b,b)

)
(2.42)
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where CCw(a,b) represents the cross-correlation between a and b at lag w shown

in Equation 2.41, R0(a,a) and R0(b,b) are the auto correlations of a and b at lag 0

shown in Equation 2.40 and a and b are time series of length m.

k-shape doesn’t use the Euclidean distance to compute assignments therefore

it is inappropriate to use the arithmetic mean for centroid computation. As such

a centroid computation algorithm called shape extraction is proposed. The shape

extraction algorithm minimises the sum of squared distances over SBD(a,b).

The shape extraction algorithm aligns each time series Tj ∈Ci to the centroid ci

using SBD. Once each alignment has been obtained, a new centroid can be obtained

by using the maximisation of Rayleigh Quotient [40]. This process extracts the

most representative shape from the underlying data [89]. Additionally the centroid

produced is scale and shift invariant.

k-shape follows the same algorithm as k-means shown in Figure 2.23 but uses

the SBD distance and the shape extraction algorithm to compute new centroids.

This process clusters time series based on their shape, even in the presence of

scaling and shifting variations.

Figure 2.26 present the k-shape centroids generated for the Gunpoint dataset.
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Fig. 2.26 Example of k-shape clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.
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k-means-DBA

k-means-DBA [94] is a TSCL-specific algorithm that employs an averaging method

known as DTW barycentre averaging (DBA) [94] to compute centroids, and the

DTW distance to assign time series to clusters. Since the primary contribution of

k-means-DBA is its use of DBA as an averaging technique, we now detail how this

average is computed.

A barycentre refers to the central sequence that minimises the sum of squared

distances between itself and a set of sequences [94]. The most straightforward

method for computing this minimum is the arithmetic mean, which identifies the

time series that minimises the sum of squared Euclidean distances to all time series

in a given collection. The arithmetic mean was previously defined in Equation 2.35.

However, like the Euclidean distance, the arithmetic mean does not attempt

to realign time series before computing an average. Consequently, efforts have

been made to integrate the optimal DTW alignment path into the averaging process.

Specifically, the averaging computation is formulated as an optimisation problem

to minimise the DTW Fréchet function [38]. Formally, this is expressed as:

F(z) :=
1
n

n

∑
i=1

DTW (z,xi)
2 (2.43)

where F is the Fréchet function, z is the time series that minimises it, n is the

number of time series in the collection X = (x1,x2, . . . ,xn), and DTW is the DTW

distance.

However, a polynomial-time algorithm for globally minimising the non-differentiable,

non-convex Fréchet function remains unknown [108]. In essence, this means that

while an exact average can be computed, the runtime of such algorithms is infea-

sible for most real-world applications. Therefore, instead of computing the exact

minimum of the DTW Fréchet function, approximations are typically employed.
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One such approximation, and the most widely used, is DBA [94]. DBA begins

with an initial prototype—typically the arithmetic mean of the time series collec-

tion—and follows an iterative approach. In each iteration, every series is aligned

with the current prototype, and the values mapped to each position are collected.

The arithmetic mean is then applied to these collected values while preserving the

alignments.

Integrating the DTW distance and DBA averaging technique into k-means

results in the k-means-DBA clusterer. Figure 2.24 illustrates the traditional k-means

algorithm. To adapt the flow diagram for k-means-DBA, the distance measure is set

to DTW, and the centroid calculation is replaced with DBA.

Formally, for a given cluster Ci, the DBA centroid is computed as follows:

Initially, the arithmetic mean is calculated over time series Tj ∈Ci to produce an

initial centroid c
′
i. This centroid is iteratively refined by computing the DTW optimal

alignment path for each time series Tj ∈Ci to c
′
i (see Algorithm 2). After computing

the optimal alignment path for each Tj ∈Ci, each point is summed according to its

optimal alignment. The current iterations centroid c
′
i is then obtained by dividing

each time point in the new summed time series by the number of times it was

aligned (effectively taking the arithmetic mean of the aligned time series). The

newly generated centroid c
′
i is then used in the next iteration to be further refined.

The centroid will continue to be refined either for a specified number of iterations

max_iters or until the sum of squared DTW distance to centroid c
′
i does not change

between iterations.

An overview of the iterative DBA algorithm is shown in Figure 2.27.

Figure 2.28 presents the k-means-DBA centroids generated for the Gunpoint

dataset. The centroids produced, when compared to other k-means based centroids

(Figure 2.23, Figure 2.25 and Figure 2.26) are noticeably different. Particularly

looking at the peaks of each centroid, these are not present in other cluster centres.
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Fig. 2.27 Flow diagram of the DBA algorithm

Additionally the centroids seems to have many more local shapes instead of being

smooth.
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Fig. 2.28 Example of k-means-DBA clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given cluster (Clusters 1, 2 and
3). The colored lines through each cluster represent the centroid for each cluster.

One of the main drawbacks of using DBA is its computational complexity of

O(I ·N ·m2) where I is the fixed number of iterations, N is the number of time

series to average over, and m is the length of the time series. To address this issue,

research has focused on improving the computational efficiency of DBA.

[22] proposes a divide-and-conquer strategy with an additional early aban-

donment condition for DBA, which yields similar performance. Other extensions

include implementing a subgradient descent approach to DBA, which finds better



2.5 TSCL Algorithms 74

solutions in shorter time [108]. While, in principle, these approaches can replace

DBA in k-means-DBA, as Chapter 8 discusses, this is a non-trivial task. Further

details of these algorithms will be explored in Chapter 8.

k-soft-DBA

k-soft-DBA [21] is a TSCL-specific algorithm that utilises an averaging method

known as soft-DTW barycentre averaging (soft-DBA) alongside the soft-DTW

distance measure. Its key contribution lies in the application of soft-DBA in the

averaging stage of Lloyd’s algorithm. We now detail the computation of soft-DBA.

Similar to other averaging methods discussed previously, the objective of soft-

DBA is to minimise the Fréchet function presented in Equation 2.43, but with re-

spect to the soft-DTW distance. Although its goal is analogous to that of previously

outlined averaging methods, the approach employed by soft-DBA is fundamen-

tally different. While the previously described methods are heuristics that rely

on subgradient optimisation (which we define and explore further in Section 8.2),

the differentiability of soft-DTW allows for the computation of exact gradients,

enabling the application of gradient descent optimisation techniques.

To understand this process, we first examine how a gradient matrix computed

between two time series (defined in Section 2.4.7) can be used to help compute

a new time series. Once this foundation is established, we explore how gradient

descent algorithms can approximate a minimum of the Fréchet function more

effectively than previously outlined methods.

Consider a gradient matrix E computed between two time series using Algo-

rithm 13. This gradient matrix effectively captures information about how well

these time series align under all possible warping paths, weighted by their probabil-

ities. However, there is a crucial distinction: the gradient matrix E indicates how

changes in pairwise distances between points would affect the soft-DTW distance,
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but it does not directly specify how to modify the time series points to achieve these

changes. This is because E represents the derivative of the soft-DTW cost matrix

with respect to the distance matrix (i.e., squared Euclidean distances), rather than

with respect to the actual time series coordinates.

To address this, [21] employs a Jacobian transformation that maps the gradient

matrix of partial derivatives to a matrix of the same shape as the original input time

series. This transformation provides specific directions and magnitudes for updating

each point in the first time series to make it more similar to the second. When

working with a collection of time series X , we extend this concept by computing

the Jacobian transformation between the current average and each time series in the

collection. By summing these transformations at corresponding indices, we obtain

a single matrix that represents the aggregate update directions and magnitudes for

each point in the average time series. This combined matrix effectively synthesises

information from all time series in the collection, indicating how to adjust each

point in the current average to better represent the entire set.

Formally, the Jacobian transformation is derived by applying the chain rule, as

shown in Equation 2.44. This transformation maps the gradient matrix E, computed

using Algorithm 13, into updates for each point in the time series. Algorithm 21

provides the formal implementation of this transformation.

∂ soft_DTW(a,b)
∂ai

=
m2

∑
j=1

∂ soft_DTW
∂∆i, j

·
∂∆i, j

∂ai

=
m2

∑
j=1

Ei, j ·2(ai−b j)

(2.44)

where ∆ is a pairwise squared Euclidean distance matrix.

However, directly applying these aggregated updates would be problematic,

as different time series often suggest competing movements for the same points.

For instance, one time series might suggest moving a point upward, while another

suggests moving it downward. Simply summing and applying these contradictory
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Algorithm 21: Jacobian_Transform (a,b,E)
Input: a (time series of length m1), b (time series of length m2),

E (gradient matrix of shape m1×m2)
Output: Jacobian product matrix of shape m1

1 Let product be a vector of length m1 initialised with zeros
2 for i← 1 to m1 do
3 for j← 1 to m2 do
4 producti← producti +Ei, j ·2(ai−b j)

5 return product

suggestions could lead to suboptimal results or oscillatory behaviour. This is where

another advantage of soft-DTW comes into play: because it is differentiable, we

can apply a gradient descent algorithm.

Specifically, [21] proposes using the L-BFGS-B gradient descent optimisation

algorithm. While a full exposition of L-BFGS-B is beyond the scope of this thesis,

its core mechanism can be summarised as follows: the algorithm begins with an

initial average time series and computes the Jacobian transformation matrix across

the entire dataset. Using this information, it determines the optimal step sizes and

directions that minimise the overall soft-DTW distance between the average and all

time series simultaneously. This process iteratively refines the average time series,

with each iteration using the previously updated series as its new starting point.

The algorithm continues until convergence is reached, typically when the change in

the total soft-DTW distance between consecutive iterations falls below a specified

tolerance value. At this point, the algorithm returns the final averaged time series.

Integrating the soft-DTW and soft-DBA averaging techniques into k-means

results in the k-soft-DBA clusterer. Figure 2.24 illustrates the traditional k-means

algorithm. In adapting the flow diagram for k-soft-DBA, the distance measure is

set to soft-DTW, and the centroid calculation is replaced with soft-DBA.

Figure 2.29 presents the k-soft-DBA centroids generated for the Gunpoint

dataset. When compared to the DBA centroids in Figure 2.29, the centroids in
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Figure 2.29 are noticeably smoother. This is because the smoothing parameter γ

was set to 1. This means that the gradient is smoothed significantly compared to

DTW (which has a γ value of 0).
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Fig. 2.29 Example of k-soft-DBA clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.

k-medoids

k-medoids is an optimisation problem that, like k-means, aims to divide a dataset

into k clusters. However, instead of using an average as a centroid, k-medoids uses a

value within the dataset to serve as a centroid (a medoid). This approach minimises

the sum of dissimilarities of each time series T (i)
j ∈ Ci, making it particularly

effective in scenarios involving noise or outliers.

Specifically, k-medoids aims to minimise the objective function total deviation

(TD). Formally, this is defined in Equation 2.45.

T D =
k

∑
i=1

ni

∑
j=1
||T (i)

j −mi|| (2.45)

where k is the number of clusters, ni is the number of time series assigned

to cluster Ci, T (i)
j is the jth time series assigned to cluster Ci, mi is the medoids

(centroid) of cluster Ci, and ∥T (i)
j −mi∥ is a distance measure between T (i)

j and mi.
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If we use the squared Euclidean distance as the distance function in Equa-

tion 2.45 (i.e. ∥T (i)
j −mi∥= L2(T

(i)
j ,mi)

2), we almost obtain the k-means objective

function, the sum-of-squared errors (Equation 2.32). The difference is that k-means

is free to choose any ci ∈ R whereas k-medoids must choose mi ∈Ci [106].

To solve the above k-medoids problem, numerous k-medoids algorithms have

been proposed. The next four clusterers discussed will be algorithms that find a

local minimum for the k-medoids problem.

Alternate k-medoids

Alternate k-medoids attempts to solve the k-medoids optimisation problem by

employing Lloyd’s [75] algorithm. Traditionally Lloyd’s algorithm specifies a mean

average of each cluster should be extracted to be centroids. However, alternate

k-medoids extracts a medoids of each cluster instead. Formally the medoids of

cluster Ci is defined in Equation 2.46.

mi = argmin
T (i)

j ∈Ci

∑
T (i)

l ∈Ci

||T (i)
j −T (i)

l || (2.46)

where Ci is the ith cluster, T (i)
j is a candidate medoids from cluster Ci, T (i)

l

is a time series from cluster Ci to compute the distance between it and T (i)
j , and

||T (i)
j −T (i)

l || is a distance measure between T (i)
j and T (i)

l .

Figure 2.24 shows a flow diagram for the k-means algorithm. Alternate k-

medoids follows the same flow diagram but, instead of computing the mean of each

cluster, the medoid of each cluster is computed using Equation 2.46.

One of the main advantages of alternate k-medoids (and other k-medoids vari-

ants) over similar partition-base TSCL approaches is time series specific distance

measures can be used in both the assignment step (Equation 2.45) and centroid

computation step (Equation 2.46) with no additional logic needed to be added.



2.5 TSCL Algorithms 79

Figure 2.30 presents the alternate k-medoids centroids generated for the Gun-

point dataset. The centroids produced are time series within the given cluster

(medoids).
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Fig. 2.30 Example of alternate k-medoids clustering for time series Gunpoint dataset.
The black time series are time series that belong to a given cluster (Clusters 1, 2 and
3). The colored lines through each cluster represent the centroid for each cluster.

Partition Around Medoids (PAM)

Partition Around Medoids (PAM) [69] is another k-medoids clusterer. In traditional

clustering, PAM is considered better than alternate k-medoids [120] and is nor-

mally the assumed implementation of k-medoids. PAM consists of two algorithms,

BUILD to choose initial centroids and SWAP to further improve the clustering

towards, a local optimum.

The BUILD algorithm selects k initial centroids to cluster. To begin, BUILD,

chooses the time series with the smallest distance to all other time series to be

the first medoids. Then it selects the time series that reduces T D by the most

to be the next medoids. This process repeats until k initial centroids have been

selected. For reasons outlined in Chapters 4 and 6, this thesis will mostly ignore the

BUILD initialisation component of PAM and instead will use a random initialisation

strategy.

The second algorithm PAM uses is the SWAP algorithm. The SWAP algorithm

refines the initial centroids selected by considering all possible changes to the set of
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k medoids. This means every non-medoids will be swapped for a medoids to see if

a given swap reduces T D [106] (Equation 2.45). This is a greedy steepest-descent

method, and the process repeats until no further improvements are found.

As discussed, PAM has been empirically shown to produce better results than

other popular k-medoids clustering algorithms [120]. However, this comes at the

cost of computational complexity. Specially PAM requires a pairwise distance

matrix between every value in the dataset. This has a computational cost of O(n2).

Additionally, when considered in the context of TSCL, many time series distance

measures have high computational complexity. For example the most popular time

series distance measure, DTW, has computational complexity of O(m2). As a result

this high computational complexity means PAM is not always feesible.

Figure 2.31 presents the PAM centroids generated for the Gunpoint dataset. The

centroids produces are also time series within each cluster (medoids). The clusters

produced are very similar to that of alternate k-medoids (Figure 2.30) which is

unsurprising as both algorithms attempt to minimise the same objective function

given in Equation 2.45.
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Fig. 2.31 Example of PAM clustering for time series Gunpoint dataset. The black
time series are time series that belong to a given cluster (Clusters 1, 2 and 3). The
colored lines through each cluster represent the centroid for each cluster.

PAM has been extensively used in TSCL. Particularly, before the advent

of k-means-DBA (Section 2.5.1), PAM was the preferred TSCL approach with

DTW [94]. The reason for this is PAM can make better use of time series specific



2.5 TSCL Algorithms 81

distance measure than similar algorithms such as k-means. DTW was used as the

distance measure of choice with PAM [43].

Clustering LARge Applications (CLARA)

Clustering LARge Applications [68] is an extension of PAM which aims to improve

the computational complexity of PAM.

CLARA repeatedly applies PAM on a random subset of cases from the dataset.

The recommended number of samples to use for each run is s = 40+2k. Once a

random subset of samples has been taken, PAM is performed on this subset and

medoids are obtained. After, the remaining cases (not in the subset) are assigned to

one of the produced medoids. The T D (Equation 2.45) is then computed for these

medoids (considering all the data). This process repeats for multiple iterations and

the iteration that has the lowest T D is returned. Due to this optimisation the time

complexity of CLARA is reduced to O(k3 + s).

Figure 2.32 presents the CLARA centroids generated for the Gunpoint dataset.

The centroids produced, and as a result the time series assignments, are different

from other k-medoids algorithms (Figures 2.31 and 2.30). These medoids are not

as high quality but, they were obtained much faster.
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Fig. 2.32 Example of CLARA clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.



2.5 TSCL Algorithms 82

For TSCL, CLARA has been used as a faster alternative to PAM. One example

of CLARA being used in TSCL is for clustering energy consumption time series

data using various distance measures [101]. It was selected because the large

amount of energy data produced making PAM unviable.

CLARA based on raNdomised Search (CLARANS)

CLARA based on raNdomised Search (CLARANS) [86] is another extension of

PAM which aims to improve the computational complexity of PAM.

Specifically CLARANS updates the SWAP algorithm of PAM to use a greedy

optimisation approach. This is done by randomly swapping a non-medoids for

a randomly selected medoids. If the swap reduces T D (Equation 2.45) then the

swap is performed straight away. If it does not reduce T D a counter of attempts

is incremented. If attempts reaches a certain number, defined by a parameter

max_neighbors, then the search terminates and the current medoids are returned.

Additionally this process is repeated with different initial centroids n_init times.

This random selection gives CLARANS an advantage when handling large datasets

by avoiding local minima.

Figure 2.33 presents the CLARANS centroids generated for the Gunpoint

dataset.
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Fig. 2.33 Example of CLARANS clustering for time series Gunpoint dataset. The
black time series are time series that belong to a given cluster (Clusters 1, 2 and 3).
The colored lines through each cluster represent the centroid for each cluster.
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In the context of TSCL CLARANS has been suggested for use theoretically

however, it is yet to be formally researched specifically for time series data.



Chapter 3

Experimental Methodology

This chapter outlines the experimental methodology employed throughout this

thesis. Evaluating clusterings is inherently challenging, as “clusters are, in large

part, in the eye of the beholder” [31]. This subjectivity means there is no single

“correct” way to cluster a dataset, making the evaluation of clustering methods

particularly complex.

To address these challenges, this chapter will outline a robust experimental

methodology for evaluating clusterings. We will describe how we will perform

our experimental evaluation, identify key challenges within clustering evaluation,

and describe mitigation strategies to allow us to draw meaningful conclusions.

Additionally, we will include the software tools used for our evaluation and provide

details on how to reproduce our results.

3.1 The challenge of cluster evaluation

Cluster evaluation is inherently subjective. Different observers may have varying

opinions on what constitutes a “good” cluster, influenced by their domain knowl-

edge, experience, and the specific context of the data. This subjectivity can lead to
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multiple valid clusterings of the same dataset, each emphasising different aspects

of the data.

To illustrate this point, consider the GunPoint time series dataset from the UCR

archive (the UCR archive will be outlined in Section 3.3). The GunPoint dataset

was originally created to capture the motion of actors performing two distinct

actions: pointing a gun or pointing with their fingers. This dataset was generated

by recording two actors (one male and one female) executing these actions over a

five-second period, resulting in a sequence of 150 frames per action. The x-axis

coordinate of the hand’s centroid was extracted from each frame to form the time

series data.

In its original form, the dataset was labeled with two class labels: “gun” and

“point,” reflecting the actor’s action. In a TSC task, the objective is to separate the

time series into these two categories. However, in the context of clustering, where

the labels are unknown, this dataset can be interpreted in multiple valid ways.

Figure 3.1 illustrates three different interpretations of the GunPoint dataset.

Figure 3.1a shows the intended configuration, where the time series are separated

based on whether a gun is pointed or a finger is pointed. Figure 3.1b presents an

interpretation where the data is clustered by the actor’s age, resulting in “Young”

and “Old” categories. Finally, Figure 3.1c illustrates an interpretation where the

clusters are based on the actor’s sex, classifying them as either male or female.

All three interpretations of the GunPoint dataset shown in Figure 3.1 represent

valid and interesting cluster configurations. This raises an important question: If

our expectation in an experiment is for the clustering algorithm to produce clusters

that align with the class labels (e.g., “gun” and “point”), but the algorithm instead

separates the data into a different configuration (e.g., “male” and “female”), does

this mean the clustering algorithm is incorrect?

This is one example of the complexity of cluster evaluation. To address this

issue and other challenges, we will now present our TSCL methodology.



3.1 The challenge of cluster evaluation 86

0 20 40 60 80 100 120 140

1

0

1

2

Label: Gun

0 20 40 60 80 100 120 140

2

1

0

1

2

Label: Point

(a) Interpretation of the GunPoint dataset based on the action performed. The left plot
represents the “Gun” action (red time series), while the right plot represents the “Point”
action (blue time series).
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(b) Interpretation of the GunPoint dataset based on the actor’s age. The left plot represents
actions performed by the younger actor (red time series), and the right plot represents
actions performed by the older actor (blue time series).
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(c) Interpretation of the GunPoint dataset based on the actor’s gender. The left plot shows
actions performed by the female actor (red time series), while the right plot shows actions
performed by the male actor (blue time series).

Fig. 3.1 Examples of different interpretations of the GunPoint dataset. Each sub-
figure represents a distinct clustering criterion: (a) action type (Gun vs. Point), (b)
actor’s age (Young vs. Old), and (c) actor’s gender (Male vs. Female).
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3.2 TSCL Experimental Methodology

The goal of our TSCL methodology is to evaluate TSCL algorithms across a range

of time series problems, utilising various types of clustering algorithms and different

statistical evaluation metrics. We aim for our methodology to provide insights into

which algorithms and approaches may be most effective for specific clustering

tasks, offering guidance to those seeking to cluster their time series data.

We will now discuss the various components of our methodology. Each compo-

nent has a distinct function individually, but when combined, the aim is to reduce

subjectivity of cluster evaluation and provide meaningful insights into the clustering

performance of various models.

3.2.1 Statistics for Evaluating Performance

As outlined in Section 3.1, determining what constitutes a “good” cluster is chal-

lenging. However, numerous statistical evaluation techniques have been proposed to

help identify various qualities in clusters. Since no single technique can definitively

define “good” and “bad” clustering, this thesis employs a range of measurements

designed to highlight different aspects of cluster quality.

During TSCL evaluation, a dataset is defined as D= {(T1,y1),(T2,y2), . . . ,(Tn,yn)},

comprising n cases, where Tn is a time series Tn = {t1, t2, . . . , tm} of length m, with

tm representing the mth time point in Tn, and yn is a class label drawn from a set of

l possible class labels, y ∈ {1,2, . . . , l}.

To clarify, while class labels (y) are present during evaluation, during training

and prediction, a clusterer does not have access to any class labels. From the

perspective of a clusterer, a dataset is represented as D = {T1,T2, . . . ,Tn}.

The objective of a clustering model is to assign each time series in dataset D to

a cluster. The number of clusters does not necessarily correspond to the number of

unique class labels. The number of clusters is defined by the value k. Additionally,
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for some clusterers, k is not always predefined, and not every time series must be

placed into a cluster (e.g., excluding instances deemed as noise).

The output of a clustering model for a single time series is a probability distri-

bution over k clusters, p̂ = {p(C1), p(C2), . . . , p(Ck)}, where Ck is a cluster label

between 1 and k. If a time series is considered “noise,” it will not have an assign-

ment. Using these probabilities, the predicted cluster is the cluster assignment with

the highest probability.

ŷ = arg max
i=1...k

p̂(i) (3.1)

If a time series is not assigned to any cluster (i.e. considered noise), then a

cluster assignment of −1 is given to denote that the value is not assigned to any

cluster. Additionally, if a clustering model is unable to output a probability estimate

for each cluster, the predicted cluster’s probability is set to 1, and all other clusters’

probabilities are set to 0.

The various cluster evaluation techniques used will now be outline.

Mutual Information (MI)

Mutual Information (MI) is a function that measures the agreement between two

sets of labels, disregarding permutations. This means that the specific numeric

values assigned to labels or clusters are not important; only the correspondence

or matching between them is considered. In the context of cluster evaluation,

MI quantifies the agreement between the ground truth label yi and the predicted

cluster assignment ŷi. Formally, MI for a set of cluster predictions is defined in

Equation 3.2.

MI(Y,Ŷ ) = ∑
y∈Y

∑
ŷ∈Ŷ

P(y, ŷ) log
(

P(y, ŷ)
P(y)P(ŷ)

)
(3.2)
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where Y is the vector of ground truth labels for the instances in D, Ŷ is the

vector of predicted cluster labels for the same instances in D, y ∈ Y represents a

specific ground truth label, ŷ∈ Ŷ represents a specific predicted cluster label, P(y, ŷ)

is the joint probability distribution of y and ŷ, P(y) is the marginal probability of y,

and P(ŷ) is the marginal probability of ŷ.

The joint probability distribution P(y, ŷ) is the probability that an instance has

both the ground truth label y and the predicted cluster label ŷ. It is computed

from the co-occurrences of labels in the dataset (i.e., how many instances with the

same ground truth label appear in the same cluster). This makes MI permutation

invariant.

The marginal probabilities P(y) and P(ŷ) represent the probability of an instance

having the ground truth label y or the predicted cluster label ŷ, respectively.

While Mutual Information (MI) is a valuable measure for assessing the agree-

ment between clustering results and ground truth labels, it has certain limitations

that make it less effective in some scenarios. MI is not inherently normalised, mean-

ing its values can vary significantly depending on the size of the dataset and the

number of clusters, which can make it difficult to compare results across different

clustering experiments. Additionally, MI does not account for the agreement that

could occur by chance, particularly when the number of clusters is large.

As such, for cluster evaluations across multiple datasets and varying numbers of

clusters, MI is not a suitable evaluation metric. Therefore, this thesis will not use the

regular form of MI. Instead, two variants — Adjusted Mutual Information (AMI)

and Normalised Mutual Information (NMI), will be used. As will be outlined, these

two variants compensate for MI’s weaknesses.
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Normalised Mutual Information (NMI)

MI can produce misleading interpretations when used to compare clusterers with

different numbers of clusters or across different datasets. To address this, a nor-

malised version of MI — Normalised Mutual Information (NMI) — was proposed

to scale the value of MI between 0 and 1. An NMI value of 0 indicates no mutual

information between the ground truth and cluster labels, while an NMI value of 1

indicates perfect mutual information between them. Formally, NMI is defined in

Equation 3.3.

NMI(Y,Ŷ ) =
MI(Y,Ŷ )

1
2(H(Y )+H(Ŷ ))

(3.3)

where D, MI(Y,Ŷ ) is the Mutual Information as defined in Equation 3.2, and

H(Y ) and H(Ŷ ) are the entropies of the ground truth labels and predicted labels,

respectively, as defined in Equation 3.4.

H(X) =−∑
x∈X

P(x) logP(x) (3.4)

where H(X) represents the entropy of a set of labels X , and P(x) is the marginal

probability of label x in the set X .

By dividing by the mean of the clustering entropies, NMI ensures that its values

are independent of the absolute number of clusters or labels, regardless of the

dataset size. This provides a more standardised way to compare clustering results

across a range of datasets and numbers of clusters.

In its normalised form, Mutual Information offers valuable insight for comparing

a variety of clustering models across a wide range of datasets. NMI quantifies

how much information is shared between the ground truth labels and the clustering

labels. Additionally, it considers the purity of the clusters (i.e., the proportion of
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instances with the same ground truth labels within the same cluster), providing

insights beyond what simple accuracy measures can offer.

Adjusted Mutual Information (AMI)

Adjusted Mutual Information (AMI) [125] is another extension of MI that accounts

for the possibility that clustering agreement could occur purely by chance. MI

scores tend to be higher as the number of clusters increases because there are

more opportunities for random alignments between the ground truth labels and

the predicted cluster labels to occur. In the context of MI, even if a cluster is

meaningless and formed by random chance, a higher score may be returned if some

level of agreement exists. AMI attempts to correct for this by adjusting the MI

score to reflect only the agreements that do not occur by chance.

Formally, AMI is defined in Equation 3.5.

AMI(Y,Ŷ ) =
MI(Y,Ŷ )−E[MI(Y,Ŷ )]

max(H(Y ),H(Ŷ ))−E[MI(Y,Ŷ )]
(3.5)

where E[MI(Y,Ŷ )] is the expected Mutual Information under a random model, and

H(Y ) and H(Ŷ ) are the entropies of the ground truth labels and predicted labels,

respectively, as defined in Equation 3.4.

The Expected Mutual Information (EMI) is computed by finding the average MI

that would be expected if cluster assignments were made randomly. By subtracting

this value from the computed MI, the impact of random chance is greatly reduced.

Additionally, as shown in Equation 3.5, the normalisation of MI occurs similarly

to what is proposed in NMI (Equation 3.3), allowing the metric to be used across

datasets and models.

AMI offers similar benefits to NMI while also correcting for random chance,

making it potentially more accurate in some scenarios. However, this thesis will

evaluate over both NMI and AMI, even though the measurements are similar. The
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primary reason is NMI is one of the most popular measures in the literature. This

ensures that results can be more easily compared to work not directly considered in

this thesis. The second reason NMI is used alongside AMI is that by comparing the

difference between them, provides some insight into the impact of random chance

on specific models.

Rand Index (RI)

The Rand Index [97] is one of the most popular clustering evaluation metrics. It

measures the similarity between the ground truth labels and the predicted labels

by considering all pairs of samples and counting how many pairs are assigned to

the same or different clusters in both the ground truth and the predicted labels. The

RI score is from 0 to 1. Where 0 means there is no agreement between the ground

truth and cluster predictions and 1 indicates there is perfect agreement between the

ground truth and cluster predictions. Formally, this is defined in Equation 3.6.

RI(Y,Ŷ ) =
T P(Y,Ŷ )+T N(Y,Ŷ )

T P(Y,Ŷ )+T N(Y,Ŷ )+FP(Y,Ŷ )+FN(Y,Ŷ )
(3.6)

where T P(Y,Ŷ ) is the number of pairs of points that are in the same cluster in both

Ŷ and Y , T N(Y,Ŷ ) is the number of pairs of points that are in different clusters in

both Ŷ and Y , FP(Y,Ŷ ) is the number of pairs of points that are in the same cluster

in Ŷ but in different clusters in Y , and FN(Y,Ŷ ) is the number of pairs of points

that are in different clusters in Ŷ but in the same cluster in Y .cluster in Y .

One of the main drawbacks of the RI is that scores are typically closer to 1,

even for random clustering, due to the inherent agreement between most element

pairs. This occurs because the majority of element pairs are often assigned to

different clusters in both the predicted and ground truth clusterings, resulting in a

high proportion of agreeing pairs. As a result, the RI can yield high scores even

when the clustering does not accurately reflect the true structure of the data.
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However, the RI will be used in this thesis due to its widespread usage in the

literature and its ease of interpretation, being such a simple measure.

Adjusted Rand Index (ARI)

The Adjusted Rand Index (ARI) is an extension of RI that accounts for the chance

that clustering agreement could occur purely by chance. Formally ARI is defined

in Equation 3.7.

ARI(Y,Ŷ ) =
RI(Y,Ŷ )−E[RI(Y,Ŷ )]

1−E[RI(Y,Ŷ )]
(3.7)

where RI(Y,Ŷ ) is the Rand Index between Y and Ŷ , and E[RI(Y,Ŷ )] is the Expected

Rand Index under a random labeling model.

The Expected Rand Index (ERI) is computed by finding the average Rand

Index that would be expected if cluster assignments were made randomly. By

subtracting this value from the computed Rand Index, the impact of random chance

is significantly reduced.

Additionally, by accounting for the random chance of cluster assignments, the

ARI score is significantly deflated compared to the RI. The ARI score ranges

between −1 and 1. A score of −1 indicates perfect disagreement, meaning the

ground truth labels and predicted labels are exact opposites. A score of 0 indicates

that the clustering similarity is no better than random assignment. A score of 1

indicates perfect agreement, where the ground truth labels and predicted labels are

identical.

ARI scores tend to be closer to 0, making it easier to distinguish the performance

of different models across multiple datasets, and allowing for more meaningful

comparisons. Therefore, ARI provides valuable and unique insights into cluster

quality, making it an essential tool for overall cluster evaluation in this thesis.
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Clustering Accuracy (CL-ACC)

Clustering Accuracy (CL-ACC) is a supervised evaluation metric that measures the

proportion of correctly predicted instances relative to the total number of instances.

To determine whether a cluster prediction is considered “correct”, each cluster is

assigned to a corresponding class label. The assignment is done by selecting the

permutation of cluster and class label assignments Sk that maximises accuracy.

Determining the optimal assignment of class labels that maximises accuracy is

computationally expensive. To address this, combinatorial optimisation techniques,

the Hungarian algorithm [62] is employed. This approach involves constructing

a contingency matrix of cluster assignments and class labels, which is then trans-

formed into a cost matrix. The Hungarian algorithm is used to find the optimal

assignment, and the accuracy is subsequently calculated by comparing the predicted

cluster labels with the optimally assigned ground truth labels.

Formally, CL-ACC is defined in Equation 3.8:

CL-Acc(y, ŷ) = max
s∈Sk

1
|y|

|y|

∑
i=1


1, yi = s(ŷi)

0, otherwise
(3.8)

where Sk is the set of all possible permutations of cluster assignments, |y| is the

number of ground truth labels, and s(ŷi) represents the predicted cluster label for

instance i after applying the permutation s.

CL-ACC provides an interesting interpretation of cluster performance that is

different from other metrics considered in this thesis. While the primary objective

of clustering is not classification, CL-ACC assumes that the ground truth labels

represent one “correct” cluster configuration.
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Davies-Bouldin Index (DBI)

The Davies-Bouldin Index (DBI) [25] is an unsupervised measures that evaluates the

average similarity ratio of each cluster with its most similar cluster. An unsupervised

measure is one that does not require ground truth labels to produce a score.

DBI evaluates both intra-cluster relationships (similarity among values within

the same cluster) and inter-cluster relationships (similarity between different clus-

ters). A DBI value closer to 0 indicates better clustering performance, where

0 signifies that the clusters are both compact (intra-cluster similarity) and well-

separated (inter-cluster dissimilarity). The formal definition of DBI is provided in

Equation 3.9.

DBI(ŷ) =
1
k

k

∑
i=1

max
j ̸=i

(
si + s j

L2(C̄i,C̄ j)

)
(3.9)

where si is the average distance between each data point in cluster i and the

average time series of cluster Ci, s j is the average distance between each data

point in cluster j and the average time series of cluster C j, C̄i is the mean average

of cluster i (Ci), C̄ j is the mean average of cluster j (C j), and L2(C̄i,C̄ j) is the

Euclidean distance between the centroids C̄i and C̄ j.

DBI is an interesting measure to consider, as it is unsupervised. However, as

this thesis will show, a limiting factor in using DBI (and similar unsupervised

metrics) for TSCL evaluation lies in the distance and averaging computations. This

thesis will demonstrate that elastic distances outperform traditional ones, such as

the squared Euclidean distance, for clustering tasks. Moreover, integrating elastic

distances into the averaging computations produces significantly better averages

for time series data. Therefore, in the context of TSCL, DBI provides limited

insight unless paired with an elastic distance. An elastic version of DBI has yet to

be formally defined in the literature. In Chapter 9, we will introduce this elastic
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DBI and demonstrate that, when both an elastic distance and an elastic averaging

technique are used, DBI’s utility for TSCL is significantly enhanced.

Calinski-Harabasz Index (CHI)

The Calinski-Harabasz Index (CHI) [15], also known as the Variance Ratio Crite-

rion [92], is an unsupervised metric that evaluates clustering by comparing between-

cluster dispersion with within-cluster dispersion.

The between-cluster dispersion is quantified by the Between-Cluster Sum of

Squares (BCSS), defined in Equation 3.10.

BCSS =
k

∑
i=1

niL2(C̄i,C̄)2 (3.10)

where ni is the number of points in cluster Ci, and C̄ is the overall centroid of

the dataset.

The within-cluster dispersion is measured by the Within-Cluster Sum of Squares

(WCSS), shown in Equation 3.11.

WCSS =
k

∑
i=1

∑
x∈Ci

L2(x,C̄i)
2 (3.11)

where x is a point in the i-th cluster.

The CHI is then computed as the ratio of the between-cluster dispersion (BCSS)

to the within-cluster dispersion (WCSS), normalised by their degrees of freedom.

Formally, the CHI is expressed as:

CHI =
BCSS/(k−1)
WCSS/(n− k)

(3.12)

where k is the number of clusters, and n is the total number of data points.

A higher CHI indicates better-defined clusters, as it reflects greater between-

cluster separation relative to within-cluster cohesion. Like DBI, CHI offers a
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distinct perspective on clustering quality. However, it also relies on the squared

Euclidean distance, which, as we will show, is ineffective for TSCL. Additionally,

the calculation of cluster centroids (C̄i) and the overall dataset centroid (C̄) uses

the arithmetic mean, which we demonstrate does not perform well for time series

clustering tasks. As a result, in its original form, CHI provides limited insight into

time series clustering. In Chapter 9, we propose an elastic variant of CHI, which

we show offers a more accurate evaluation of time series clusterings compared to

the traditional CHI.

FitTime

An important consideration when evaluating clustering performance is the computa-

tion time required to train the model. FitTime refers to the duration taken to fit the

model to the training data and generate initial predictions. Although FitTime is not

the primary metric for assessing clustering performance, it plays a crucial role in

practical applications. In real-world scenarios, where computational resources and

time are often limited, a model’s efficiency can be a very important consideration.

Therefore, FitTime is a valuable metric to consider when making recommendations

for the deployment of clustering algorithms in practical settings.

3.2.2 Comparison of Clustering Algorithms

The next component of our methodology is to define how we will use these eval-

uation measures to compare clustering algorithms. The comparison of clustering

algorithms is a key aspect of our methodology. To conduct these comparisons

effectively, several factors are taken into account. This section will detail how

different variables are considered within out methodology to compare different

clustering algorithms.
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Over a Single Dataset

To begin, we will outline the simplest comparison variable: comparing multiple

models over a single dataset. A dataset, is assumed to have ground truth labels

present. These ground truth labels will not be used at any point during a model’s

training or prediction stage but will be used during evaluation. While this type

of evaluation wouldn’t be possible in real-world clustering (due to the lack of

labels), for an experimental methodology, supervised evaluation metrics offer the

best insight into quantifying “good” clustering. The following statistics will be

extracted from a model’s clustering: AMI, ARI, CLACC, NMI, RI, and FitTime.

We do not use any unsupervised metrics as we believe they do not provide good

insights into time series clusterings for reasons previously outlined. The reason

we choose to use multiple statistics is that each gives unique insight into specific

aspects of clustering quality.

Assuming each statistic has been extracted from the results of multiple TSCL

models, each model can be compared to another model for a specific statistic.

Models that perform better in each statistic can then be identified. Conclusions as

to why one model performs better, in the context of the dataset, can then be drawn.

Over Multiple Datasets

Evaluating a model’s performance over a single dataset only allows conclusions to

be drawn about the model’s performance for that specific dataset. However, this

thesis aims to draw more general conclusions about which TSCL models generally

perform best over a large range of different datasets. This will provide better

insight into which TSCL models would likely perform best for new time series data

not yet considered. To achieve this, we consider each models performance over

112 datasets (outlined in Section 3.3) so that broader conclusions can be drawn.
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However, evaluating so many different and diverse datasets presents significant

challenges for evaluation.

The first consideration is how each statistic is impacted by differences in size,

semantics, and the number of clusters a dataset possesses. Some clustering evalua-

tion metrics can be inflated for datasets with a large number of instances or clusters.

This is because having more clusters or more data increases the likelihood that

cluster “correctness” occurs purely by chance.

For example, in the case of MI, the probability of alignment between ground

truth and predicted labels increases with the number of clusters. Similarly, for the

RI evaluation measure, as the amount of data or the number of clusters increases,

so does the random chance of having agreeing or disagreeing pairs. In the UCR

dataset collection (outlined in Section 3.3), there are datasets with significantly

different numbers of class labels (clusters), such as the “ShapeAll” dataset with

60 unique class labels compared to “GunPoint,” which has only 2 unique class

labels. Furthermore, datasets like “ElectricDevices” have 16,637 unique time series

instances, compared to “BeetleFly,” which only has 40 unique time series instances.

A summary of various differences in the datasets we consider can be found in

Tables 3.3, 3.4 and 3.5.

Due to the diverse range of semantics, lengths and number of clusters we will

be considering, when drawing conclusions about model performance, specific

emphasis is placed on the AMI and ARI evaluation metrics. This is because they

are adjusted for random chance. The other cluster quality metrics (RI, NMI, and

CLACC), while still considered due to their popularity, will have less impact on

the general conclusions drawn in this thesis. Once statistics for each model, for

each dataset, have been obtained, the results will be presented and analysed in four

different ways.

The first, and most common way this thesis will analyse results, is by using

an adapted version of critical difference diagrams [26]. Specifically, we compare



3.2 TSCL Experimental Methodology 100

clusterers using a pairwise Wilcoxon signed-rank test and form cliques using the

Holm correction rather than the post-hoc Nemenyi test for each metric. This change

follows the work of [39] and [11]. While originally intended for classification

models, we believe critical difference diagrams offer similar insights for clustering

models.

An example of a critical difference diagram is shown in Figure 3.2. Figure 3.2

shows five dummy clusterers compared over some evaluation metric across a

number of datasets. The number line at the top shows the potential average rank of

a clusterer. In Figure 3.2, since there are five clusterers being compared, a clusterer

could have a rank between 1 and 5. A rank of 1 means the clusterer outperforms

all other considered clusterers on every dataset. A rank of 5 means the clusterer

performs worse than all other clusterers on every dataset. Therefore, a lower rank

indicates better performance in relation to the evaluation metric. Clusterers intersect

the average rank number line at the point where their average rank is positioned.

Each clusterer’s average rank is labelled on their line next to their name. Clusterers

are displayed in descending rank order.

In Figure 3.2, clusterer 2 performs best for the given evaluation metric over

some number of datasets with an average rank of 2.3243. This means over each

dataset for a given evaluation metric clusterer 1 was on average ranked 2.5586.

Clusterer 4 performs the worst, with an average rank of 3.6261.

In Figure 3.2, some clusterers’ lines are joined by thick black lines, indicating

that they belong to the same clique, meaning they are not significantly different

from each other (as described previously). Cliques are important for evaluation. For

example, clusterer 1 is in the same clique as clusterer 2, which means that although

clusterer 2 has a higher average rank, clusterers 1 and 2 are not statistically different.

Additionally, clusterer 4 and clusterer 5 form another clique at the lower rankings,

indicating that they, too, are not statistically different. Clusterer 3, however, is not

part of any clique, which signifies that it is statistically different from all other
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12345

clusterer 22.3243

clusterer 12.5586

clusterer 33.0450
clusterer 5 3.4459
clusterer 4 3.6261

Fig. 3.2 An example critical difference diagram using dummy clusterers over some
metric, over some amount of datasets.

clusterers. When interpreting this diagram, we would conclude that clusterers 1 and

2 are the best-performing clusterers, followed by clusterer 3, with clusterers 4 and

5 performing statistically the worst.

While critical difference diagrams are useful, they can be deceptive when used

in isolation. This is because they do not display the magnitude of the differences,

and the linear nature of clique finding can mask relationships between results [84].

For example, small differences in single cases across thousands of results can lead to

a higher rank despite the difference being minimal. This is a particularly important

consideration for this thesis due to the high number of datasets we evaluate and

the types of clusterers we consider. Additionally, this issue is likely to occur when

comparing similar clusterers or the same clusterer with different parameters, which

is central to this thesis.

As such, the second evaluation tool this thesis will use is tables showing aver-

aged results for each chosen metric. An example of one of these tables it shown

in Figure 3.1 and 3.2. Figure 3.1 shows the average scores across all datasets.

Figure 3.2 shows the average rank by domain. The domains are a subset of the 112

which will be defined in Section 3.3. While in isolation, tables such as 3.1 can be

misleading, when combined with our other techniques, they provide useful insights

into clustering performance.
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ARI AMI CLAcc NMI RI
clusterer 1 0.204 0.257 0.543 0.281 0.682
clusterer 2 0.183 0.234 0.529 0.260 0.676
clusterer 3 0.169 0.207 0.511 0.234 0.658
clusterer 4 0.165 0.223 0.513 0.248 0.656
clusterer 5 0.159 0.212 0.507 0.236 0.632

Table 3.1 Summary of average performance of dummy clusterers across multiple
evaluation metrics

Image Spectro Sensor Simulated Device Motion ECG
clusterer 1 0.341 0.158 0.227 0.358 0.085 0.207 0.376
clusterer 2 0.306 0.156 0.207 0.308 0.081 0.194 0.348
clusterer 3 0.269 0.132 0.205 0.253 0.142 0.106 0.352
clusterer 4 0.273 0.162 0.214 0.353 0.076 0.167 0.311
clusterer 5 0.273 0.156 0.242 0.236 0.071 0.120 0.298

Table 3.2 Average AMI score of dummy clusterers on problems split by problem
domain

In addition to tables and critical difference diagrams, we can use two additional

evaluation strategies to further explore the results: violin plots and clusterer scatter

diagrams.

A violin plot is similar to a box plot but provides additional information by

showing the distribution and probability density of the data. Figure 3.3 shows an

example of a violin plot. In Figure 3.3, the x-axis represents the different clusterers,

and the y-axis shows the CLACC scores. The plot’s vertical range indicates the

minimum and maximum scores, while the shape and width of the violin at different

y-values reveal where the data points are concentrated. Wider sections of the plot

indicate a higher density of scores, meaning more data points fall within that range.

Additionally, within each violin, there is a box plot that shows the interquartile

range (the line inside each violin) and the median score (the gap in the line inside

each violin). By assessing violin plots, we can better understand the distribution of

a clusterer’s performance.
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Fig. 3.3 Violin plot for CLACC of dummy clusterers over multiple datasets

Additionally, for statistics such as FitTime, when using a Violin plot we apply

a relative scaling to address the considerable variability in execution times across

datasets. The relative FitTime is calculated by dividing each original value by the

sum of that value and the dataset’s median (i.e., value
value+median). This transformation

scales all values into a range between 0 and 1, with lower values signifying faster

performance relative to the median. Such scaling facilitates more meaningful

comparisons, especially when execution times of some models differ by orders of

magnitude.

The final analysis tool used in this thesis is a scatter diagram that compares the

distribution of results between two clusterers. Figure 3.4 shows an example scatter

plot comparing clusterer 1 and clusterer 2. The x-axis represents the metric score

for one clusterer, while the y-axis represents the metric score for the other. Each

point on the plot corresponds to the best result for a specific dataset. The colour of

the point indicates which clusterer achieved the higher score for that dataset: green

if the clusterer on the y-axis performed better, blue if the clusterer on the x-axis

performed better, and orange if both clusterers achieved the same score.
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The gray diagonal line down the center of the plot represents the threshold

where both clusterers perform equally. The further a point is from this line, the

greater the difference in performance between the two clusterers for a given dataset.

The keys display the specific numbers of wins, ties, and losses for each clusterer.

Finally, the dashed lines represent the median scores of each clusterer.
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Wilcoxon test for equality of medians, p-value=0.002
Paired t-test for equality of means, p-value=0.001

Fig. 3.4 Example scatter plot between clusterer 1 and clusterer 2 for ARI over 107
datasets

Overall, using these four evaluation techniques, multiple clusterers will be

evaluated over multiple datasets of different sizes, number of clusters, semantics

and domains.

Over Combined Test-Train Data Split

In supervised machine learning fields, such as TSC, datasets are typically divided

into a training split and a test split. The training split is used to “train” the model,

while the test split (which remains unseen by the model during training) is used to
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evaluate the model’s performance. This approach helps prevent overfitting, where

the model memorises label assignments rather than learning the underlying patterns.

Additionally, evaluating on unseen data provides valuable insight into the model’s

ability to generalise from the data.

However, in unsupervised tasks such as TSCL, labels do not exist. This means

that overfitting is not a concern, and any patterns or structures learned by the model

must come from the model’s inherent understanding of the data itself, rather than

from predefined labels [51]. Consequently, a common approach in clustering is to

provide the model with all available data during training, since a separate prediction

step is not required. Additionally some TSCL models only work with the combined

test-train split and do not work with the test-train split [130, 2, 63].

Therefore, to evaluate clusterers for general clustering tasks, this thesis will

conduct evaluations over the combined test-train split. This means that models will

be trained on all available data which means they will be trained on the same data

they are predicting over.

Over Test-Train Data Split

Evaluating over the combined test-train split is the most common approach for

assessing clusterers. However, some TSCL clusterers feature distinct “fit” and

“predict” stages, allowing new time series to be added to existing clusters without

the need to recompute the entire model [89, 21, 94, 64, 128]. Models with this

capability (such as k-means) are particularly useful in scenarios where clustering

is a step in a larger pipeline. Examples include pipelines that require real-time

processing, such as streaming data, real-time anomaly detection, and other dynamic

applications [48].

Furthermore, evaluating models on unseen data provides a good indication of

how well models can extrapolate meaningful general patterns from the data. A
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model that performs well on unseen data has likely learned more general qualities

about the data, potentially making its clusterings more valuable.

Therefore, in addition to evaluating over the combined test-train split, this thesis

will also consider using the default UCR test-train split to identify models that

generate more generalised clusterings.

Over a Set Number of Clusters

One of the key parameters for all clustering models is the number of clusters. Some

clustering algorithms determine this parameter automatically, while others require

it to be set manually. Finding the optimal number of clusters for a dataset, given a

specific model, is a challenging task. For example, the performance of the k-means

algorithm on any given dataset is undeniably dependent on the number of clusters

specified [48]. Consequently, entire research fields have emerged dedicated to

identifying the optimal number of clusters for a given model.

The objectives of this thesis, however, do not focus on determining the optimal

number of clusters. Instead, we adopt a methodology commonly used in similar

literature [89, 91, 64, 46, 47]. Specifically, the number of clusters is set equal to

the number of unique class labels in the dataset. While this may not represent the

optimal number of clusters for a given model, one reasonable assumption is that a

“correct” clustering configuration could mirror the clustering of the ground truth

labels. Thus, it is expected, at least to some extent, that instances sharing the same

ground truth labels would exhibit some common, distinguishable characteristics.

Therefore, while the goal of clustering is not to perfectly replicate the predefined

groupings of ground truth labels, the ability to identify and organise data around

these distinguishable characteristics demonstrates desirable clustering qualities.

In addition, setting the same number of clusters for each dataset facilitates

more straightforward comparisons between different models. This is particularly
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important because some evaluation metrics are sensitive to the number of clusters

chosen (as discussed in Section 3.2.1). By standardising the number of clusters

across models, we introduce an additional control variable, which helps to isolate

the effects of other factors that this thesis is concerned with.

Consequently, our methodology involves setting the number of clusters for

models that require this parameter to the number of unique ground truth labels

in the dataset. This approach allows for a consistent comparison of clusterers

across multiple datasets, ensuring that differences in performance are more likely

attributable to the models themselves rather than variations in cluster quantity.

Over the Same Model Type

When evaluating clustering models of the same type (e.g., density-based, partition-

based, hierarchical-based), the models generally aim to achieve similar objectives,

making their clustering results directly comparable. Therefore, our methodology

will organise comparisons by focusing on performance within each defined type of

clustering model. Our experimentation will focus on partition-based clustering as

this will allow us to best compare different models.

3.2.3 Tuning of Parameters

In supervised learning tasks, a common practice in model evaluation is to tune

the model to maximise its performance based on a specific supervised metric like

classification accuracy. However, in TSCL, where labels are absent, this approach

is not applicable.

An alternative method for tuning clustering models is to use an unsupervised

metric, such as CHI or DBI. However, both of these metrics typically rely on the

Euclidean distance. As we will demonstrate in Chapter 9, using unsupervised

metrics with the Euclidean distance and arithmetic mean is not suitable for tuning
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TSCL models. Theoretically (and as we explore in Chapter 9), substituting the

Euclidean distance and arithmetic mean with a time series-specific distance measure

and averaging technique could improve the effectiveness of unsupervised metrics.

However, there have been no empirical studies in the literature that specify how, or

which, time series distances should be used. This leaves many unknowns regarding

the impact that adapted time series-based unsupervised metrics may have on results.

Given the uncertainties surrounding unsupervised tuning in the context of TSCL,

we will not adopt this approach. Instead, we will focus on providing generally

accepted “good” default parameter values sourced from the literature. If a distance

or clusterer significantly under performs relative to our expectations, we may update

these values. In such cases, we will conduct limited tuning using supervised metrics

to improve the results, though this process will not be exhaustive. Additionally, any

tuning will be applied across all datasets rather than on a per-dataset basis, with the

goal of identifying generally effective parameter values, rather than maximising

clustering performance for specific datasets.

3.3 Datasets

We conduct our experiments using the time series data from the University of

California, Riverside (UCR) archive [23]. Our focus is on univariate time series,

and for all experiments, we utilise 112 of the 128 datasets available in the UCR

archive. We exclude datasets that contain series of unequal length or missing values.

The univariate UCR archive is a highly diverse collection, enabling us to perform

experiments across a wide range of distinct time series. Tables 3.3, 3.4 and 3.5

provides summary distribution information about the 112 of the UCR univariate

datasets we consider.

A key aspect of our evaluation methodology is the significant variation in

dataset sizes, both in terms of the test-train split and the combined test-train split
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dataset size. This variation allows us to explore how different clustering algorithms

perform with varying amounts of data and across time series of different lengths.

The use of the test-train split specifically demonstrates how the models generalise

to unseen data, while the combined test-train split dataset size reflects performance

in traditional clustering scenarios.

Moreover, the wide range of unique class labels provides insights into how

clustering algorithms perform with different numbers of clusters, as the unique

labels will determine the number of clusters used in our experiments. Finally, the

diverse time series domains in the UCR archive offer valuable insights into how

models perform across different domains, revealing their strengths and weaknesses

in various contexts.

Number of training instances

1-100 41 (36.61%)
101-250 20 (17.86%)
251-500 29 (25.89%)
501-1000 15 (13.39%)
1001-2000 3 (2.68%)
2001-5000 2 (1.79%)
5001+ 2 (1.79%)

Minimum 16
Maximum 8926

Number of test instances

1-100 18 (16.07%)
101-250 27 (24.11%)
251-500 26 (23.21%)
501-1000 13 (11.61%)
1001-2000 10 (8.93%)
2001-5000 14 (12.50%)
5001+ 4 (2.68%)

Minimum 20
Maximum 16800

Table 3.3 Summary of number of training and test instances per dataset distribution
for 112 of the univariate UCR archive.
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Combined test-train split instances

1-200 22 (19.64%)
201-500 23 (20.54%)
501-1000 31 (27.68%)
1001-2000 10 (8.93%)
2001-5000 22 (19.64%)
5001-10000 2 (1.79%)
10001+ 2 (1.79%)

Minimum 40
Maximum 24000

Number of unique class labels

1-2 40 (35.71%)
3-8 50 (44.64%)
9-20 11 (9.82%)
21-30 2 (1.79%)
31-40 2 (1.79%)
41-50 3 (2.68%)
51+ 4 (3.57%)

Minimum 2
Maximum 60

Table 3.4 Summary of number of combined test and train instances and number of
unique class labels per dataset distribution for 112 of the univariate UCR archive.

Time series length

1-200 40 (35.71%)
201-500 31 (27.68%)
501-1000 20 (17.86%)
1001-2000 19 (16.96%)
2001+ 2 (1.79%)

Minimum 15
Maximum 3000

Dataset domain

Device 9
ECG 6
Image 32
Motion 17
Sensor 28
Simulated 8
Spectro 12

Table 3.5 Summary of number of time series lengths and dataset domain per dataset
distribution

3.4 Normalisation

One of the key decisions we made was to apply z-normalisation to all our data.

While we acknowledge that some argue “any improvement resulting from pre-

processing (normalisation) should not be attributed to the clustering method it-

self ” [51], others contend that “in order to make meaningful comparisons between

two time series, both must be normalised” [96].

Therefore, the decision to normalise or not remains an ongoing research ques-

tion. Ideally, with unlimited time and computational resources, we would run both

normalised and un-normalised experiments to compare the results. However, given
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the extensiveness of our experimentation, this is not feasible, and we are forced

to make a choice. Following the recommendation of [59] and [96] we choose to

normalise our data.

3.5 Software and Research Reproducibility

One of the priorities of this thesis is to open source all code and results to make

them available and reproducible by other researchers. During the course of this

research, it became evident that one of the most glaring differences between the

fields of TSCL and TSC is the availability of code for models and the consistency

of results across datasets and methodologies.

We implemented all of our models and evaluation code in Python 1. To ensure

reproducibility, we open sourced all of our clusterers in the aeon 2 open source

repository [82]. We also open sourced all of our evaluation code in the tsml-eval 3

open source project. Within the aeon toolkit, we also use the tslearn 4 open source

repository [118] and the scikit-learn 5 open source repository [92].

All of our experiments were run on a single thread of an Ice Lake Intel Xeon Plat-

inum 8358 2.6GHz processor on the University of East Anglia’s high-performance

computer (HPC) cluster with a 7 day computational runtime limit.

3.5.1 Time Series Clustering in Python: aeon

aeon is an open-source toolkit for time series machine learning. It is compatible

with scikit-learn and provides access to the latest algorithms for time series machine

learning, in addition to a range of classical techniques for tasks such as forecasting,

clustering, and classification [82].
1https://www.python.org/
2https://github.com/aeon-toolkit/aeon
3https://github.com/time-series-machine-learning/tsml-eval
4https://github.com/tslearn-team/tslearn
5https://github.com/scikit-learn/scikit-learn

https://www.python.org/
https://github.com/aeon-toolkit/aeon
https://github.com/time-series-machine-learning/tsml-eval
https://github.com/tslearn-team/tslearn
https://github.com/scikit-learn/scikit-learn
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Processing time series data in aeon can be approached in multiple ways. An

example of loading and clustering data using aeon is provided below. In the

example, we create a time series dataset X_train consisting of six time series

instances, each with 3 time points. aeon also offers utilities to load all UCR

datasets referenced throughout this thesis. These datasets can be downloaded at

timeseriesclassification.com. The example below was generated using version

0.11.0 of the aeon toolkit.

1 import numpy as np
2 from aeon.clustering import TimeSeriesKMeans
3

4 X_train = np.array ([[1, 2, 3], [4, 5, 6], [7, 8, 9], [13, 14,
15], [16, 17, 18], [19, 20, 21]])

5

6 combined_X = np.concatenate ([X_train , X_test ])
7

8 clst = TimeSeriesKMeans(n_clusters =3, distance="dtw",
random_state =0)

9

10 labels = clst.fit_predict(combined_X)

https://timeseriesclassification.com/dataset.php


Chapter 4

Lloyd’s-based TSCL

Contributing Publications

• Holder, C., Bagnall, A., Lines, J. (2024). On time series clustering with

k-means. arXiv preprint arXiv:2410.14269. Available at: https://arxiv.org/

abs/2410.14269.

Before exploring TSCL with elastic distances, we first establish a baseline

to compare our results against. The most common way to cluster time series

is to use k-means combined with a time series-specific distance and averaging

technique [89, 46, 47, 128, 21, 94] .One of the most common implementations of

k-means is using Lloyd’s algorithm. However, since Lloyd’s original proposal [75],

numerous modifications have been introduced. In traditional clustering, many of

these modifications are considered essential for achieving meaningful results and

as such the “baseline” k-means is assumed to adopt many of these strategies [92].

However, in TSCL there does not seem to be a well defined version of Lloyd’s

algorithm that is consistently adopted. As will be shown, some researchers incorpo-

rate specific modifications suggested in traditional clustering literature, while others

use the unmodified, original Lloyd’s algorithm. Furthermore, we observe instances

where different configurations of Lloyd’s-based algorithms are used within the same

paper. We argue that meaningful comparisons between Lloyd’s-based algorithms

https://arxiv.org/abs/2410.14269
https://arxiv.org/abs/2410.14269
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cannot be performed if the Lloyd’s-based algorithms are poorly configured, lack

essential modifications, or are configured inconsistently.

We dedicate an entire chapter to this topic because Lloyd’s-based algorithms

and their comparison are a central focus of this thesis. Much of our contribution

lies in the evaluation and comparison of various Lloyd’s-based algorithms using

different elastic distances and averaging techniques. Additionally, we aim to address

a gap in the research by providing a well-defined configuration for Lloyd’s-based

algorithms, which is currently lacking in the literature.

Therefore, in this chapter, we aim to establish a robust baseline for Lloyd’s

algorithm in the context of TSCL. We begin by reviewing the existing literature

and model configurations to highlight the inconsistencies in prior work. Next, we

propose a modified version of Lloyd’s algorithm, clearly explaining our design

choices and providing pseudocode for clarity. After defining our version of Lloyd’s

algorithm, we detail our experimental setup and recommend default parameters for

Lloyd’s algorithms. Our goal is to keep as many variables constant across different

Lloyd’s variants, adjusting only the specific parameters of each variant to isolate

their impact on results.

Finally, with a consistent Lloyd’s-based configuration and well-defined default

parameters, we perform a baseline experiment of the existing TSCL literature

using our Lloyd’s algorithm and experimental methodology. While our results are

generally consistent with the existing TSCL literature, we uncover some notable

findings that we believe are only revealed due to our robust configuration and

experimental approach.

4.1 Introduction

k-means is one of the simplest and most well-researched approaches for TSCL. Sev-

eral TSCL-specific variants of k-means have been proposed, such as k-shapes [89],
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k-SC [128], and k-DBA [94]. All of these algorithms use Lloyd’s algorithm [75]

(outlined in Figure 2.24) but modify either the distance measure used and/or the

averaging method employed.

In traditional clustering, k-means has an extensive body of literature dedicated

to improving every aspect of the algorithm, including initialisation of centroids,

selecting the optimal number of clusters, early convergence criteria, maximum

number of iterations, distance measures, and averaging methods, among others.

The list of improvements to the base k-means is so extensive that entire papers

are dedicated to reviewing the literature and summarising recent research on k-

means [48].

However, within the context of TSCL, there does not appear to be an agreed-

upon “default” version of Lloyd’s algorithm. Some research employs an unmodified

version of Lloyd’s algorithm [89], while other studies incorporate select optimi-

sations [46, 47]. Consequently, when comparing Lloyd’s-based algorithms, it is

often unclear whether the observed differences in results stem from the proposed

modifications or from variations in the configurations of Lloyd’s algorithm.

To address this issue, we will first identify the various versions of Lloyd’s algo-

rithm employed in the TSCL literature. Through this review, we will demonstrate

that there is a lack of consistency in the configuration of Lloyd’s algorithm, making

it difficult to compare results across different studies. This inconsistency suggests

that previous claims regarding the success of certain models may be influenced

more by the specific configuration of Lloyd’s algorithm rather than the inherent

effectiveness of the proposed methods.

Following this, we will explicitly define our configuration of Lloyd’s algorithm,

providing justification for each configuration choice. Subsequently, we will run each

of the aforementioned Lloyd’s-based algorithms using our defined configuration,

applying our methodology to reassess previous work. These results will serve as a

baseline for our subsequent experiments.
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4.2 Lloyd’s algorithm in TSCL

Lloyd’s-based methods have been the most popular approach for TSCL. Numerous

papers have proposed variants of Lloyd’s algorithm. Additionally, many of these

Lloyd’s-based methods, such as k-shapes, k-DBA, and k-SC, have been considered

by many as baselines for comparison. Table 4.1 provides an overview of some of

the literature that employs Lloyd’s algorithm-based techniques. The table highlights

a diverse range of TSCL literature, from general reviews of TSCL, such as [51],

to the proposal of new models that are compared against Lloyd’s techniques, such

as [89], and real-world use cases that utilise Lloyd’s methods, such as [93].

Table 4.1 also highlights the specific configuration decisions made for each

Lloyd’s technique. Upon reviewing Table 4.1, a keen observer may notice that no

two experiments use the same configuration. We conducted an extensive search

and found it is very rare to find two papers with the same Lloyds configurations.

We believe a significant factor contributing to this is the frequent reference to a

“default” or “traditional” version of k-means (Lloyd’s algorithm), without any clear

authority defining this “default” version.

As we are unable to find a clear definition of a “default” variant of Lloyd’s

algorithm for TSCL, we take it upon ourselves to first define an explicit “default”

implementation of Lloyd’s algorithm to be used consistently across all our experi-

ments. By doing so, we will eliminate differences in the performance of our Lloyd’s

algorithm due to varying configurations. To achieve this, we will go through each

stage of Lloyd’s algorithm and clearly define our choices for different optimisations.

We will then perform basic experiments with k-means to provide further validation

for our choices. Our goal is not to create the most well-optimised version of Lloyd’s

algorithm, but rather to create a version that assumes the average case for most use

cases and will allow meaningful experimentation to be performed using the models.
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Reference Num.
Cites

Init Distance Averaging Max iters Early stop-
ping

[64] 50 k-means++ Euclidean, SBD,
DTW

Mean, Shape ex-
traction, DBA

200 Inertia
change

[89] 504 Random Euclidean, SBD,
DTW, KSC dist

Mean, Shape
extraction, DBA,
KSC average

100 Membership
doesn’t
change
between
iterations

[94] 1248 Forgy DTW DBA 10 -
[51] 148 Forgy DTW, Euclidean,

SBD
DBA, Mean,
Shape extraction

15 Stops if
number
of clusters
reduces

[61] 2 Forgy DTW, Euclidean,
soft-DTW

DBA, Mean, soft-
DBA

- -

[130] 95 - Euclidean, SBD,
DTW, KSC dist

Mean, Shape
extraction, DBA,
KSC average

- -

[93] 271 - DTW, Euclidean DBA, Mean - -
[90] 144 Random Euclidean, SBD,

DTW, KSC dist
Mean, Shape
extraction, DBA,
KSC average

100 Membership
doesn’t
change
between
iterations

[77] 213 Random
with 5
restarts

Euclidean, SBD,
DTW, KSC dist

Mean, Shape
extraction, DBA,
KSC average

- -

[3] 50 Forgy Euclidean, SBD,
DTW, KSC dist

Mean, Shape
extraction, DBA,
KSC average

- -

[88] 263 Random Euclidean, DTW Mean - Membership
doesn’t
change
between
iterations

[91] 1 Random Euclidean, SBD,
DTW, KSC dist

Mean, Shape
extraction, DBA,
KSC average

300 Membership
doesn’t
change
between
iterations

Table 4.1 A sample of TSCL literature using Lloyd-based methods. The Reference
column lists relevant papers, with Num. Cites showing citation counts (as of August
2024). Init indicates the initialisation strategy, Distance specifies the distance
measure, and Averaging lists the corresponding averaging methods. Max Iters
defines the iteration limit, while Early Stopping outlines convergence criteria. A
“—” denotes unspecified or missing values.
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4.3 A TSCL configuration for Lloyd’s-based algo-

rithms

We will now outline our baseline configuration for Lloyd’s algorithm in the context

of TSCL. Our configuration choices are motivated by traditional clustering literature,

as many of these decisions are data-independent. However, to validate these

hypotheses for time series data, we also conduct basic experiments to demonstrate

that our reasoning holds true for TSCL.

The most basic version of Lloyd’s algorithm is outlined as a flow diagram in

Figure 2.24. In addition Algorithm 22 shows the most basic implementation of

Lloyd’s algorithms.

Algorithm 22: Lloyd’s Algorithm for k-means (X, k)
Input: X (Dataset of time series of length n), k (Number of clusters)
Output: Assignment of each time series to a cluster

1 Let centres be an array of k randomly chosen time series from dataset X
2 Let assignments be an empty array of length n
3 repeat
4 for each time series xi in X do
5 Compute the distance between xi and each of the k centres
6 Assign xi to the nearest centre

7 for each centre c j in centres do
8 Update c j to be the mean of all time series assigned to it

9 until assignments does not change between iterations;
10 return assignments

In Algorithm 22 line 1 uses a random initialisation strategy to define initial

centroids. Lines 3 and 9 outline the stopping condition: continue until assignments

don’t change between iterations. Lines 4 to 6 show the assignment phase of Lloyd’s

algorithm. Lines 7 to 8 demonstrate the centroid update stage. Finally, line 10

shows the returning of the assignments for each time series in X .
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4.3.1 Initialisation Strategy

The first explicit definition we will provide is the choice of cluster initialisation.

Aside from selecting an appropriate number of clusters, the initialisation strategy

is one of the most critical decisions in Lloyd’s algorithm. However, there is

no universally “best” solution to the initialisation problem, and it remains an

active area of research [48]. In traditional clustering, default approaches are often

recommended for initialisation, but these have not been commonly adopted in

TSCL.

Numerous initialisation strategies have been proposed. The most comprehensive

review of these strategies was conducted by [17], who compared eight of the most

commonly used methods. In Table 4.1, three different initialisation strategies are

outlined: Forgy, Random and k-means++.

• Forgy [35] initialisation chooses k random time series from the dataset to be

the initial centroids.

• k-means++ [6] initialisation starts by choosing the first centroid randomly.

Each subsequent centroid is then chosen based on a probability proportional

to the squared Euclidean distance from the nearest existing centroid. This

strategy ensures that centroids are spread out more evenly.

• Random initialisation selects k initial centroids by randomly assigning each

value in the dataset to a cluster. Once all values have been assigned, the

average of each cluster is computed, and these averages are used as the initial

centroids.

• Greedy k-means++ [6] is a variant of k-means++ that, instead of using a

probabilistic selection process for each new centroid, deterministically finds

the time series in the dataset that maximises the minimum distance from the
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already chosen centroids. This ensures that the centroids are as spread out as

possible from the initial selection.

While [17] did not provide a definitive answer to the best initialisation strategy,

some general conclusions were drawn. First, initialisation strategies such as Forgy

and random initialisation should be avoided due to their unreliability. Instead, [17]

recommended approaches such as greedy k-means++. Others have found similar

results, such as [1], who found that randomly generated centroids, without consid-

ering the position of such centroids in the datasets, lead to unexpected convergence.

Overall, randomly selected centroids cause the clustering operation to get stuck in a

low local minimum [37].

Greedy k-means++ traditionally employs a distance measure, typically the

squared Euclidean distance, to compute similarity. However, as many others [74,

111], and this thesis, have found, the Euclidean distance is not a suitable measure for

assessing time series similarity. Thus, while it is desirable to use greedy k-means++

due to its success in traditional clustering, it is unknown whether it will have the

same positive impact for TSCL (due to the use of the Euclidean distance). While

the logical step would be to change the distance measure k-means++ uses to match

that of Lloyd’s algorithm in use (e.g., use DTW), this may adversely impact some

distances more than others, thus making the overall impact difficult to measure.

Therefore, before k-means++ can be recommended, this gap in the research needs

to be addressed. We seek to investigate this problem in Chapter 8.

As there are many unknown variables when using k-means++ for TSCL, we

will not be using it for our experimentation. Additionally, we will not use single run

traditional methods such as Forgy and random initialisation, as random initialisation

strategies have been shown to lead to unexpected clustering convergence (local

minima). However, one proposed method to escape local minima is to rerun Lloyd’s

algorithm with r different starting centroids. Specifically, one can perform Forgy or
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random initialisation to initialise k-means r times and then select the final clustering

with the minimum SSE (Equation 2.32) [116]. The main problem with this method

is that it does not guarantee obtaining the optimal solution unless r is very large (thus

increasing the time complexity) [116]. Therefore, this approach is likely unviable

in real-world TSCL use cases, but it is useful for experimental methodologies (until

other initialisation strategies are understood for TSCL), as each experiment has r

opportunities to form optimal clusterings.

Therefore, we will adopt an initialisation strategy using Forgy initialisation and

perform 10 restarts, selecting the restart that yields the smallest SSE for the clus-

tering configuration. We chose the value of 10 as it is the default recommendation

by [92] when using a random initialisation strategy. For larger datasets, this value

may be insufficient, so we have implemented additional strategies to reduce the

likelihood of converging to local optima, including contingencies for empty cluster

formation, which will be discussed further below. We chose Forgy over random

initialisation because random initialisation involves an averaging stage. As has

been observed by others, and in this thesis, the traditional arithmetic mean is not

suitable for averaging time series. Therefore, we will adopt the simplest approach

with the fewest potential variables in the context of TSCL: Forgy initialisation with

10 restarts.

Algorithm 23 demonstrates the process of enhancing Lloyd’s algorithm with

restarts. Specifically, Algorithm 23 introduces a new parameter called n_init. For

our experimentation, we set n_init to 10 to perform 10 restarts with different

initial centroids. To keep track of the best clustering, lines 1 to 3 introduce three

variables to track the best solution found. The variable best_inertia is initialised

to infinity and will store the inertia of the best restart. Line 4 begins the loop that

performs n_init runs of Lloyd’s algorithm with different initial centroids. After

the standard Lloyd’s algorithm completes on line 13, line 14 calculates the inertia

(curr_inertia) for the current iteration, and line 15 compares this value to the



4.3 A TSCL configuration for Lloyd’s-based algorithms 122

previous best_inertia. If the curr_inertia is less than best_inertia, the variables

tracking the best run are updated accordingly. Finally, after all restarts have been

executed, the best clustering is returned on line 19.

Algorithm 23: Lloyd’s Algorithm with restart initialisation strategy (X, k,
n_init)

Input: X (Dataset of time series of length n), k (Number of clusters),
n_init (Number of restarts with different initial centroids)

Output: Assignment of each time series to a cluster
1 best_inertia← ∞

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n
4 for i← 1 to n_init do
5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 repeat
8 for each time series xi in X do
9 Compute the distance between xi and each of the k centres

10 Assign xi to the nearest centre

11 for each centre c j in centres do
12 Update c j to be the mean of all time series assigned to it

13 until assignments does not change between iterations;
14 Let curr_inertia be the SSE of the current clustering
15 if curr_inertia < best_inertia then
16 best_inertia← curr_inertia
17 best_assignments← assignments
18 best_centres← centres

19 return best_assignments

To demonstrate our hypothesis that Forgy initialisation with 10 restarts across

the UCR dataset is a sensible baseline, we conducted a series of simple experiments

using the traditional k-means algorithm with different initialisation techniques.

The CD diagrams in Figure 4.5 show that for k-means, all the initialisation

strategies fall into the same clique and therefore are not critically different. Table 4.2

presents the specific average scores across the UCR archive. While the values in

Table 4.2 appear fairly similar across all metrics, assessing the variation highlights

the rationale behind our choice.
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Fig. 4.5 CD diagram of different initialisation strategies for k-means over 112
datasets from the UCR archive using the combined test-train split. “random” refers
to random initialisation, “random-restarts” refers to random initialisation with 10
restarts, where the restart with the lowest inertia is selected. “forgy” denotes Forgy
initialisation, “forgy-restarts” represents Forgy initialisation with 10 restarts, where
the restart with the lowest inertia is selected, and “g-kmeans++” denotes greedy
k-means++.

Figure 4.6 shows a violin plot of the different initialisation strategies across the

UCR archive for CLACC. In Figure 4.6, Forgy, random, and greedy k-means++

display large variability in their performance, as demonstrated by the distribution

of their plots. However, Forgy with 10 restarts and random with 10 restarts produce

significantly more consistent results with very little variability across the UCR

archive. This is the type of performance we seek for our experimental methodology.

To clarify, based on Figure 4.6, Table 4.2, and Figure 4.5, it is clear that we

could choose either random or Forgy initialisation with 10 restarts. However, as

stated, we elect to use Forgy as it is the simplest option and introduces the fewest

variables that could impact our results.

One of the disadvantages of using an initialisation with restarts is the greatly

increased computational time required to run the model. In our case, by using 10
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ARI AMI CLACC NMI RI
random-restarts 0.209 0.258 0.525 0.283 0.700
forgy-restarts 0.208 0.257 0.526 0.283 0.699
random 0.201 0.251 0.518 0.276 0.697
forgy 0.203 0.255 0.521 0.281 0.696
g-k-means++ 0.203 0.250 0.518 0.276 0.693

Table 4.2 Summary of initialisation strategies’ average scores across multiple
evaluation metrics over 112 datasets from the UCR archive using the combined
test-train split.

for
gy

for
gy

-re
sta

rts

g-k
mea

ns+
+

ran
do

m

ran
do

m-re
sta

rts
0.35

0.40

0.45

0.50

0.55

0.60

Fig. 4.6 CLACC violin plot for different initialisation strategies over the 112 of the
UCR archive using the combined test-train split.

restarts, we increase our run time by 10 times. This is illustrated in Figure 4.7,

where the distribution of run times for initialisation techniques that use restarts is

significantly higher than for those that only run once.

4.3.2 Early Stopping Conditions

Lloyd’s algorithm, in its original form, is proven to always converge in a finite

number of iterations [75]. While this convergence may not necessarily lead to the

global optimum, it will always converge to some local optimum. Lloyd’s algorithm

considers convergence to be achieved when the SSE does not change between

iterations. When the SSE remains the same across iterations, it indicates that the
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Fig. 4.7 Relative FitTime violin plot for different initialisation strategies over the
112 of the UCR archive using the combined test-train split.

cluster assignments and, consequently, the centroids do not change, signifying that

the algorithm has converged. This is the default stopping condition for Lloyd’s

algorithm.

However, in addition to this stoppage condition, numerous early stopping condi-

tions have been proposed for Lloyd’s algorithm. The purpose of these early stopping

conditions is to terminate the algorithm before full convergence is reached, thereby

saving computation time. Early stopping is often utilised because Lloyd’s algorithm

exhibits diminishing returns with each iteration. Theoretically, as Lloyd’s algorithm

progresses towards convergence, the number of changes to cluster assignments

should decrease with each iteration. This suggests that while a substantial number

of changes might occur in the initial iterations, these changes should significantly

diminish as the algorithm continues.

As a result, Lloyd’s algorithm may reach a point where it updates very little

between iterations, yet it takes a considerable amount of time to reach a final

converged solution. This final solution might not be significantly better than the

one obtained if the algorithm were terminated early. Therefore, early stopping
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conditions aim to strike a balance between obtaining good, near-converged results

while terminating at an appropriate time to save computational resources.

4.3.3 Early Stopping Conditions: Maximum iterations

The first early stopping condition commonly used is setting a maximum number of

iterations before the algorithm must terminate. This stopping condition acts as a

safety net to prevent the algorithm from running for an infeasibly long time.

The maximum number of iterations is set by a parameter called max_iters,

which represents the maximum number of iterations before the algorithm is ter-

minated. max_iters should be set so that, in most cases, the maximum number of

iterations is never reached. However, in the rare case that this condition is met, the

maximum number of iterations should be sufficiently high to ensure that cluster

assignments do not change significantly between iterations.

The value for the maximum number of iterations is difficult to estimate because

the number of iterations Lloyd’s algorithm may take to converge depends on several

factors: the number of clusters, the size of the dataset, and the initial centres selected.

Additionally, some algorithms in the context of TSCL require more iterations than

traditional Lloyd’s due to the use of approximation strategies. For example, the

k-means-DBA averaging stage employs DBA, which is an approximation of the

average under DTW. The use of approximations can result in slower convergence.

With these factors considered, we aim to set our maximum iterations as high as

possible while being conscious of our computational resources. Table 4.3 shows

the average, minimum, and maximum iterations for computing squared Euclidean

k-means over 112 datasets from the UCR archive using the combined test-train

split. On average, a dataset in the UCR archive will converge in under 20 iterations.

However, there are 9 datasets that take, on average, more than 40 iterations in their
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“best iteration” to converge. These datasets are shown in Table 4.4. Of the 9 datasets,

only 2 exceed 50 iterations on an average iteration.

Average Iterations Best Iteration
Mean 17.42 18.44
Min 3.80 3.00
Max 74.90 140.00

Table 4.3 Number of iterations required for the squared Euclidean distance clus-
tering algorithm to converge without an early stopping condition on 112 datasets
from the UCR archive using the combined test-train split. The column labelled
“Average Iterations” indicates the average number of iterations across 10 restarts.
The “Best Iteration” column represents the number of iterations taken by the restart
that achieved the lowest inertia.

Dataset Best Iteration Average Iterations
ElectricDevices 140 74.9
Crop 59 66.2
FaceAll 52 37.0
UWaveGestureLibraryAll 51 26.6
UWaveGestureLibraryZ 51 46.0
FordA 47 48.0
SemgHandSubjectCh2 47 31.8
UWaveGestureLibraryY 46 43.3
FacesUCR 42 37.4

Table 4.4 The 9 datasets that averaged over 40 iterations in their “Best Iterations”
for the squared Euclidean k-means, out of 112 datasets from the UCR archive using
the combined test-train split.

With these baseline statistics on the number of iterations it takes for the squared

Euclidean distance to converge over the UCR archive, we elect to set our maximum

number of iterations to 50. While this number means that 5 datasets would not be

able to find their optimal convergence (as shown in Table 4.4), we are limited by

computational resources. If we had unlimited computational resources, we would

set the maximum number of iterations to 300 or more to ensure convergence in

every scenario. However, when considering the computational cost of experiments

with such high iterations, which run with 10 restarts, this value is not viable.
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Furthermore, for TSCL specifically, some of the variants of Lloyd’s algorithm

that this thesis will review use extremely computationally expensive distance and

averaging methods. For example, k-means-DBA uses the DTW distance for the

assignment stage, which is prohibitively computationally expensive. The averag-

ing technique used, DBA, also uses DTW, which further makes this algorithm

computationally impractical.

As such, while for some datasets optimal convergence will likely not be reached,

this is expected to impact the results of only 2 datasets (ElectricDevices and Crop)

on an average iteration. Additionally, as every variant of Lloyd’s algorithm is

constrained by the same maximum iteration parameter, they are all subject to the

same experimental conditions, which ensures that our experimental results will

remain valid.

Finally, a consideration is that in the context of the squared Euclidean k-means

clusterer, which uses the Forgy initialisation strategy, we would expect the number

of iterations taken to converge to be higher. As mentioned, the number of iterations

required to converge is directly linked to the quality of the initial centroids.

The second consideration as to why the squared Euclidean k-means clusterer

may have a higher number of iterations than expected is that the squared Euclidean

distance and the arithmetic mean are not ideal similarity or averaging techniques for

time series data. Therefore, theoretically, if we improve the distance and averaging

techniques for time series data, we would expect the algorithm to converge faster, as

more informed decisions are made by the model. This suggests that, as we explore

TSCL-specific variants of Lloyd’s algorithm, the number of iterations required

to converge should decrease, further reducing the likelihood that the maximum

iteration early stopping condition will be reached.

Algorithm 24 shows an updated version of Lloyd’s algorithm that incorporates a

maximum number of iterations. Specifically, Algorithm 24 introduces an additional

parameter called max_iters. This parameter defines the maximum number of
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iterations before the algorithm is forcibly terminated. Line 7 shows the loop from

1 to max_iters, which replaces the repeat-until loop in the previous version of

Lloyd’s algorithm. The original early stopping condition of Lloyd’s algorithm is

then moved to the end of the iteration on line 13. This condition checks whether

the assignments have changed between iterations, and if they have not, convergence

has been reached and the loop is therefore terminated.

Algorithm 24: Lloyd’s Algorithm with a maximum number of iterations
(X, k, n_init, max_iters)

Input: X (Dataset of time series of length n), k (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination)

Output: Assignment of each time series to a cluster
1 best_inertia← ∞

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n
4 for i← 1 to n_init do
5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 for j← 1 to max_iters do
8 for each time series xi in X do
9 Compute the distance between xi and each of the k centres

10 Assign xi to the nearest centre

11 for each centre c j in centres do
12 Update c j to be the mean of all time series assigned to it

13 if assignments does not change between iterations then
14 break

15 Let curr_inertia be the SSE of the current clustering
16 if curr_inertia < best_inertia then
17 best_inertia← curr_inertia
18 best_assignments← assignments
19 best_centres← centres

20 return best_assignments
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4.3.4 Early Stopping Conditions: Inertia Change

The second early stopping condition we adopt is measuring the inertia change (or

change in sum of squared distances) of assignments between iterations. Instead of

checking whether the exact assignment of time series change between iterations,

we measure the change in inertia between iterations. This functionally achieves

the same result as checking exact assignment changes, but allows practitioners

to set a parameterised threshold (tol), enabling the detection of sufficient conver-

gence, so that small changes in assignments between iterations are still considered

convergence.

The computation of inertia is the sum of the squared distances of each time series

to its closest centroid (i.e., the distance to its cluster assignment). By measuring the

inertia between iterations, if cluster assignments do not change, the inertia change

between iterations will be 0. Assuming tol ≥ 0, this means convergence will be

reached. This scenario is equivalent to the traditional Lloyd’s stopping condition of

assignments not changing between iterations.

By having a tolerance threshold, practitioners can control the definition of con-

vergence for the algorithm. Additionally, as outlined, Lloyd’s iterations exhibit

diminishing returns. This means that, as Lloyd’s algorithm moves toward con-

vergence, smaller and smaller changes to assignments will be made. Sometimes,

this also means Lloyd’s can get stuck in local optima, leading to minor fluctua-

tions in cluster assignments that yield very little improvement in overall cluster

performance. Under traditional Lloyd’s, the algorithm could remain stuck in a local

optima for a long time, until it eventually converges, which may yield minimal

improvements. By using inertia between iterations as the stopping criterion, these

slight fluctuations are detected, allowing the algorithm to converge without wasting

additional computational resources on small improvements.
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The value of tol is difficult to set, as it depends on what a practitioner may

want to define as convergence. However, for our experiments, while computational

runtime is a consideration, our focus is more on getting as close to “true” Lloyd’s

convergence as possible without wasting iterations on very minimal improvements.

As such, we set our value of tol to be 1× 10−6. We chose this value as it is the

default for the tslearn package. Additionally, we considered the scikit-learn

package, which uses a value of 1×10−4 for tol. We opted for the smaller value

to be conservative, so that we do not change the convergence criteria of Lloyd’s

algorithm too much; rather, we aim to save computational resources where very

small fluctuations are occurring. This value of tol may not be optimal for reaping

the most runtime benefit; however, for the sake of our experimentation, we prefer a

conservative estimate to ensure consistent convergence.

Algorithm 25 shows the updated version of Lloyd’s algorithm to use an inertia

tolerance threshold. Specifically, Algorithm 25 introduces an additional parameter

tol, which is the inertia variation threshold. This means that if the inertia changes

by less than tol between iterations, the algorithm will converge. To track the

inertia change, line 7 defines a new variable prev_inertia, which tracks the previous

iteration’s inertia. Next, for each iteration, curr_inner_inertia is computed on line

14. This value is then compared to prev_inertia on line 15. If this difference is less

than the tolerance threshold, the algorithm converges. However, if it is greater than

the tolerance threshold, prev_inertia is set to the current iteration’s inertia, and the

refinement continues.
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Algorithm 25: Lloyd’s Algorithm with an inertia tolerance threshold (X,
k, n_init, max_iters, tol)

Input: X (Dataset of time series of length n), k (Number of clusters),
n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination), tol (Inertia variation threshold)

Output: Assignment of each time series to a cluster
1 best_inertia← ∞

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n
4 for i← 1 to n_init do
5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 Let prev_inertia← ∞

8 for j← 1 to max_iters do
9 for each time series xi in X do

10 Compute the distance between xi and each of the k centres
11 Assign xi to the nearest centre

12 for each centre c j in centres do
13 Update c j to be the mean of all time series assigned to it

14 Let curr_inner_inertia be the SSE of the current clustering
15 if |curr_inner_inertia−prev_inertia|< tol then
16 break

17 prev_inertia← curr_inner_inertia

18 Let curr_inertia be the SSE of the current clustering
19 if curr_inertia < best_inertia then
20 best_inertia← curr_inertia
21 best_assignments← assignments
22 best_centres← centres

23 return best_assignments
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4.3.5 Empty Clusters

As outlined, the performance of Lloyd’s algorithm on any given dataset is unde-

niably dependent on the number of clusters specified [48]. Choosing the wrong

number of clusters can lead to strange convergence. Additionally, how clusters are

initialised is critically important as well. Setting an inappropriate number of clusters

or having poor initial centroids can result in empty clusters being formed. An empty

cluster is a cluster that has no values assigned to it, which is problematic because it

means this cluster is “stuck” and cannot be updated further. Fundamentally, this

results in one fewer cluster than specified being formed.

The traditional Lloyd’s algorithm does not provision for the formation of empty

clusters. Additionally, in many implementations, there is no detection of an instance

where an empty cluster is formed. In our initial implementation, we did not have any

explicit detection of empty cluster formation, and our only indication empty clusters

were being formed was due to errors being thrown when we tried to compute the

average of an empty assignment arrays.

On the one hand, if Lloyd’s algorithm forms an empty cluster, one could

consider this a form of early convergence. In [51], their k-means clusterer was set

up in this way. However, in our experiments, the formation of an empty cluster is

likely a weakness of our underlying model configuration rather than a reflection of

the model’s incapacity to properly cluster. Specifically, setting an arbitrary number

of clusters makes the possibility of empty clusters more likely.

Therefore, we looked for a potential solution in the TSCL literature. However,

we were unable to find any examples where the formation of empty clusters was

explicitly addressed for TSCL. The only acknowledgement of empty clusters form-

ing in TSCL that we could find was in [51]. [51] did not explicitly discuss empty

clusters in their paper, but in the source code provided, we found that they used the

formation of an empty cluster as a form of early stopping condition.
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While we could follow [51] and use the formation of an empty cluster as an

early stopping condition, we do not believe this is a good criterion to express

early convergence. As such, we look for a more robust solution in the traditional

clustering literature.

In traditional clustering, there is limited literature on defining protocols for

handling empty clusters. The general advice to practitioners to reduce the number

of clusters [92]. Due to the limitations described in this chapter and in Chapter 3,

we want to maintain a consistent number of clusters matching the number of ground

truth labels.

As such, we adopt a strategy where, when an empty cluster is formed, we choose

a time series from the dataset to become a new centroid. The choice of which time

series to select is an important consideration. There are two methods for selecting

this new centroid: randomly choosing a value from the dataset or choosing a value

that reduces inertia by the largest amount.

Randomly selecting a time series from the dataset to be a new centroid is a

simple solution but has certain implications. Firstly, the selected value could be

located in a similar position to the previous empty cluster, potentially leading to

another empty cluster forming shortly thereafter, necessitating yet another random

centroid selection. Secondly, at the point where the empty cluster forms, the

algorithm is likely already partially converged towards a local optimum. Selecting

a new random centroid could entirely change the optimum the algorithm was

converging towards. To some extent, this could be considered equivalent to a

complete restart of the algorithm with new initial centroids, leading to convergence

towards a different optimum. As such, random selection may unintentionally bias

clustering results. Therefore, we choose not to use this strategy.

Choosing a time series that reduces inertia by the largest amount as the new

centroid is generally a more effective strategy than random selection because it

directly targets the objective of the clustering algorithm. This strategy is the default
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solution that scikit-learn [92] employs to handle empty clusters in their k-means

implementation.

By selecting a time series that minimises inertia, the algorithm ensures that the

new centroid contributes to a more optimal clustering configuration. This approach

helps the algorithm maintain its progress toward convergence rather than potentially

disrupting it with a random selection that could lead to a less efficient clustering

outcome. Furthermore, it reduces the likelihood of forming another empty cluster,

as the selected time series is likely to be situated in a region of the dataset where its

inclusion will meaningfully improve cluster quality.

To identify the time series that would reduce the inertia by the largest amount,

the time series that is furthest from its assigned cluster centroid should be chosen.

This approach ensures that the new centroid is positioned in a way that maximally

improves the overall clustering by reducing the distance of an outlier data point,

thereby contributing the most to the reduction of inertia.

Algorithm 26 shows our final version of Lloyd’s algorithm, which can handle

empty clusters. Specifically, lines 12 to 19 outline how this is managed. The empty

cluster algorithm will continue to loop until there are no more empty clusters.

4.3.6 Distance Measure and Averaging Technique

The objective of k-means is to minimise the sum of squared errors (SSE) as given

in Equation 2.32. Lloyd’s algorithm achieves this by iteratively performing two key

steps: assignment and centroid computation. The assignment phase traditionally

employs the squared Euclidean distance, while the computation of centroids is

based on the arithmetic mean. The squared Euclidean distance and arithmetic

mean are fundamentally linked because the arithmetic mean minimises the sum of

squared Euclidean distances between a set of data points and their centroid.
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This implies that when considering a distance measure for the k-means algo-

rithm, the corresponding averaging technique must minimise the sum of squared

distances to ensure the methods validity. Although there are numerous distance

measures for time series data, only a limited number of time series averaging

techniques satisfy this criterion, which restricts their applicability within Lloyd’s

framework.

In the TSCL literature, five primary variants of Lloyd’s algorithm have been

defined, each specifying a distance measure and an associated averaging technique.

These have been outlined in Section 2.5.1 of our literature review, however, in

summary:

• k-means [75] is the traditional k-means algorithm that uses the squared

Euclidean distance and the arithmetic mean, which minimises the sum of

squared Euclidean distances.

• k-means-DBA [94] is a variant of k-means that uses the DTW distance and

minimises over the DTW distance using DBA.

• k-SC [128] is another variant of k-means that utilises the k-SC distance (which

does not have a specific name) and an averaging technique that minimises

the k-SC distance.

• k-shape [89] is a variant that uses the SBD and employs a shape extraction

algorithm to derive an average that minimises SBD.

• k-means-soft-DBA [21] is a variant of k-means that use the soft-DTW distance

and minimises over the soft-DTW distance using soft-DBA.
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4.4 Lloyd’s Baseline

Before we begin exploring elastic distances for TSCL, we must first define a

baseline for comparison. While similar baseline comparisons already exist in the

literature, none of these results have been generated following our extensive TSCL

methodology outlined in Chapter 3. Additionally, none of the existing results

configure their Lloyd’s-based models consistently (as shown in Table 4.1).

Therefore, we recreate this baseline under our methodology and model configu-

ration. We believe that our results isolate and showcase each model for its merits

rather than secondary factors, such as the influence of the initialisation strategy

or convergence criteria on the results. Under our methodology, we find that the

ability of some models have been overestimated and that the performance of models

considered state-of-the-art are not significantly better than traditional Euclidean

k-means.

4.5 Experiment Setup

As previously outlined, one of the primary goals of this thesis is to ensure clear and

reproducible experimentation for TSCL. To achieve this, we will begin by detailing

the methodology for our baseline experiments.

First, we will explicitly define the configuration of our Lloyd’s algorithm, pre-

sented in clear pseudocode that incorporates all the configuration options previously

discussed. Following this, we will establish a baseline using current models from

the literature. This will involve providing detailed, model-specific parameterisation,

along with justification for each choice. Once this baseline has been established,

we will proceed with our experiments involving k-means clustering using elastic

distances.



4.6 Configuration 138

4.6 Configuration

Algorithm 26 defines our Lloyd’s algorithm, which utilises Forgy initialisation with

restarts, a maximum iteration stopping condition, an inertia-based early convergence

criterion, and a mechanism for handling empty clusters.

Using our Lloyd’s configuration, we implemented five of the most commonly

used Lloyd’s-based algorithms in the literature: k-shapes, k-SC, k-means, k-means-

ba-DTW, and k-means-soft-DBA. Implementations for each of these models are

available in the aeon repository.

We refer to k-means-DBA as k-means-ba-DTW for clarity, as in Chapter 7, we

propose new barycentre averaging techniques under different distance measures.

The k-means-soft-DBA retains the DBA in its name because we do not experiment

further with this type of barycentre averaging, which uses a gradient descent method

with a differentiable distance measure.

Each model shares Lloyd’s-specific parameters. These parameters are detailed

in Table 4.5.

max_iters tol n_init init_algo distance averaging
k-means-Euclidean 50 1×10−6 10 Forgy Euclidean Arithmetic mean
k-shapes 50 1×10−6 10 Forgy SBD Shape extraction
k-means-ba-DTW 50 1×10−6 10 Forgy DTW DBA
k-SC 50 1×10−6 10 Forgy k-SC distance k-SC average
k-means-soft-DBA 50 1×10−6 10 Forgy soft-DTW soft-DBA

Table 4.5 Baseline Lloyd’s-based models parameters

In Table 4.5, five of Lloyd’s-specific parameters are kept constant (control

variables). The justification for each parameter choice has been outlined previously

in this chapter. The independent variable for this baseline experiment is, therefore,

the distance and averaging technique used.
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In addition to Lloyd’s-specific parameters, some models require additional

parameters for their distance functions. These distance-specific parameters are

summarised in Table 4.6.

The k-SC distance measure includes a parameter, max_shi f t, which is an integer

ranging from 0 to m, where m is the length of the time series. This parameter

controls the shifts that k-SC can perform to find the best position to “align” two

time series. We set max_shi f t to m to allow k-SC to find the optimal alignment

across all possible shifts for each time series considered.

Acronym Metric Parameters Default
SBD (Equation 2.42) No - -
k-SC distance (Equation 2.37) Yes max_shi f t ∈ [0, . . . ,m] max_shi f t = m
DTW (Equation 2.4) No w ∈ [0, . . . ,1] w = 1.0
Euclidean distance (Equation 2.2) Yes - -
soft-DTW (Equation 2.17) No γ ∈ [0, . . . ,∞] γ = 1.0

Table 4.6 Baseline Lloyd’s-based models distance parameters.

soft-DTW takes a parameter γ which controls the smoothness of the gradient.

γ is challenging to set because small changes significantly impact results. [21] ex-

perimented with four values of γ: {1.0,0.1,0.01,0.001}. They found that smaller

values of γ often lead to barycentres getting stuck in bad local minima. However,

their results also demonstrated that for some datasets, better results could be ob-

tained with lower values of γ (i.e., 0.01 and 0.001). Ultimately, they concluded,

however, that in the average case, it was better to use a higher value of 1.0, as it

consistently converged to “reasonable” solutions. We, therefore, opt to use a value

of 1.0 to optimise for the average case.

DTW can use a window parameter w. For now, we set w = 1.0, meaning a full

window will be used. This is done because there has been no experimentation with

the window parameter in the context of TSCL.
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Finally, the defined averaging techniques can also take additional parameters.

For example, k-means-DBA uses DTW, which can be parameterised with a win-

dow. Similarly, k-SC averaging takes a max_shi f t parameter and k-means-soft-dba

averaging takes a γ parameter. Throughout all of our experiments in this thesis,

unless explicitly stated otherwise, the same parameters specified for the distance

computation are also applied in the averaging computations.
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Algorithm 26: Lloyd’s Algorithm with all of our configurations (X, k,
max_iters, tol)

Input: X (Dataset of time series of length n), k (Number of clusters),
max_iters (Maximum number of iterations before forced
termination), tol (Inertia variation threshold)

Output: Assignment of each time series to a cluster
1 best_inertia← ∞

2 Let best_assignments be an empty array of length n
3 Let best_centres be an empty array of length n
4 for i← 1 to 10 do
5 Let centres be an array of k randomly chosen time series from dataset X
6 Let assignments be an empty array of length n
7 Let prev_inertia← ∞

8 for j← 1 to max_iters do
9 for each time series xi in X do

10 Compute the distance between xi and each of the k centres
11 Assign xi to the nearest centre

12 if any cluster has no assignments then
13 repeat
14 for each cluster c j in centres do
15 if cluster c j has no assignments then
16 Set best_candidate to the time series that reduces

inertia the most and is not currently a centroid
17 c j← best_candidate
18 Recompute cluster assignments

19 until every cluster has at least one assignment;

20 for each centre c j in centres do
21 Update c j to be the mean of all time series assigned to it

22 Let curr_inner_inertia be the SSE of the current clustering
23 if |curr_inner_inertia−prev_inertia|< tol then
24 break

25 prev_inertia← curr_inner_inertia

26 Let curr_inertia be the SSE of the current clustering
27 if curr_inertia < best_inertia then
28 best_inertia← curr_inertia
29 best_assignments← assignments
30 best_centres← centres

31 return best_assignments
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4.7 Result

With the configuration and model definitions for our baseline experiment now

established, we proceed with the experimentation and analysis of results. Results

have been divided into two categories: combined test-train split and test-train split.

Our results will now be presented.

4.7.1 Combined test-train split results

Figure 4.12 presents the critical difference diagrams for our baseline models across

four clustering metrics for the combined test-train split. We observe that k-means-

soft-DBA significantly outperforms all other baseline Lloyd’s clusterers across all

evaluation metrics. However, due to the extended runtime of k-means-soft-DBA,

we were only able to obtain results from 75 datasets, as the runtime for 27 datasets

exceeded our maximum seven-day limit for k-means-soft-DBA. For the datasets

that did complete, the FitTime comparison is shown in Figure 4.13. The figure

demonstrates that k-means-soft-DBA requires significantly more computational

time than the other clusterers.

Given the substantial number of missing results for k-means-soft-DBA, our anal-

ysis is constrained. As a result, we have decided to exclude k-means-soft-DBA from

the general Lloyd’s baseline analysis and only reintroduce it in the final analysis

to contextualise our findings. We will start by specifically analysing k-means-soft-

DBA across the 75 datasets for which results are available. Following this, we will

exclude k-means-soft-DBA from our baseline and evaluate the remaining models

across the entire UCR archive.

In Table 4.7, k-means-soft-DBA, on average, outperforms all other clusterers

across all metrics considered, and it does so by a significant margin. However, when

we divide the 75 datasets by problem domain, we find that, it is not the best clusterer

in every domain. Table 4.8 shows the ARI by problem domain. Interestingly, k-
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Fig. 4.12 CD diagrams of Lloyd’s-based algorithm over 75 datasets from the UCR
archive using the combined test-train split. The excluded datasets are detailed in
Appendix A, Table A.2. The reason for the exclusion is due to k-means-soft-DBA
being unable to finish within our seven day runtime limit.

means-soft-DBA is the best in only four of the seven categories, notably struggling

with ECG and Spectro data.

While previous studies have observed that soft-DBA can outperform methods

such as k-shapes or k-means-ba-DTW, we have not found any extensive analysis

in the literature highlighting the significant disparity between k-means-soft-DBA

and other traditionally considered state-of-the-art approaches. Overall, we find that

although computationally expensive, k-means-soft-DBA is by far the most effective

TSCL approach over the combined test-train split using 75 datasets.

We now exclude k-means-soft-DBA from our baseline experiment to provide a

more accurate baseline representation across the UCR archive. Figure 4.18 presents

the critical difference diagrams for our Lloyd’s baseline experiment. We include

results from 106 of the 112 datasets. 5 datasets are excluded due to k-means-

ba-DTW’s computational complexity preventing it from completing within our

seven-day runtime limit (detailed in Table A.4). Figure 4.19 shows the significant
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Fig. 4.13 Relative FitTime violin plot of baseline Lloyd’s clusterers over 75 datasets
from the UCR archive using the combined test-train split.

ARI AMI CLAcc NMI RI
k-means-ba-DTW 0.265 0.310 0.593 0.323 0.698
k-means-euclidean 0.204 0.251 0.538 0.265 0.675
k-means-soft-dba 0.305 0.346 0.623 0.357 0.714
k-sc 0.217 0.252 0.557 0.266 0.638
k-shapes 0.239 0.292 0.575 0.304 0.688

Table 4.7 Lloyd’s baseline experiment with k-means-soft-DBA average scores
across multiple evaluation metrics over 75 datasets from the UCR archive using the
combined test-train split.

computational requirement of k-means-ba-DTW compared to our other baseline

models.

Therefore, while our baseline combined test-train split analysis is missing 5

datasets, the inclusion of 106 datasets is sufficient to draw meaningful conclusions.

Additionally, in our separate test-train split analysis, all 112 datasets are included,

which helps to address the gap in dataset coverage.

Across all the clustering evaluation metrics considered, k-means-ba-DTW out-

performs the other Lloyd’s-based clusterers, with the exception of AMI, where
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Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-DTW 0.380 0.289 0.246 0.557 0.245 0.207 0.140
k-means-euclidean 0.321 0.323 0.252 0.261 0.106 0.140 0.159
k-means-soft-dba 0.419 0.311 0.327 0.524 0.292 0.212 0.181
k-sc 0.299 0.339 0.318 0.098 0.073 0.137 0.355
k-shapes 0.339 0.289 0.250 0.464 0.159 0.195 0.364

Table 4.8 Average ARI score on problems split by problem domain over 75 datasets
from the UCR archive using the combined test-train split.
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Fig. 4.18 CD diagrams of Lloyd’s-based algorithm over 106 datasets from the UCR
archive using the combined test-train split. The excluded datasets are detailed in
Appendix A, Table A.4. The reason for the exclusion is due to k-means-ba-DTW
being unable to finish within our seven day runtime limit.

k-shapes is not significantly different from k-means-ba-DTW (shown in Figure 4.18).

The specific average scores for each metric are provided in Table 4.9. While k-

means-ba-DTW is, on average, the best-performing clusterer in our baseline, an

examination of the results by problem domain for ARI and AMI reveals that k-sc

outperforms k-means-ba-DTW in three of the seven categories as shown in Ta-

bles 4.10 and 4.11. Specifically, k-sc significantly outperforms k-means-ba-DTW in

the ECG domain and surpasses all other clusterers in the Spectro domain. However,
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Fig. 4.19 Relative FitTime violin plot of baseline Lloyd’s clusterers over 106
datasets from the UCR archive using the combined test-train split.

k-sc’s overall average performance is diminished by its particularly poor results in

the Device domain, where it achieved only slightly better than random clustering.

ARI AMI CLAcc NMI RI
k-means-ba-DTW 0.254 0.302 0.569 0.326 0.711
k-means-euclidean 0.200 0.250 0.521 0.276 0.692
k-sc 0.213 0.257 0.538 0.278 0.654
k-shapes 0.230 0.289 0.552 0.311 0.702

Table 4.9 Lloyd’s baseline experiment average scores across multiple evaluation
metrics over 106 datasets from the UCR archive using the combined test-train split.

On average, k-shapes outperforms k-sc; however, it does not achieve the best

performance in any specific problem domain. Despite this, k-shapes performs

consistently across all problem domains, ranking second-best in six out of the

seven domains. This consistent performance is illustrated in Figure 4.20. While

k-shapes does not attain the highest ARI scores, it has the highest median score and

as result a much more consistent distribution than the other clusterers. Additionally,
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as shown in Figure 4.19, k-shapes is significantly faster in runtime than k-SC and

k-means-ba-dtw.
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Fig. 4.20 ARI of baseline Lloyd’s clusterers over 106 datasets from the UCR archive
using the combined test-train split.

Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-DTW 0.307 0.209 0.195 0.586 0.173 0.164 0.246
k-means-euclidean 0.250 0.219 0.191 0.306 0.052 0.104 0.274
k-sc 0.241 0.229 0.268 0.187 0.044 0.080 0.422
k-shapes 0.267 0.183 0.198 0.429 0.102 0.152 0.405

Table 4.10 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 106 datasets from the UCR archive using the combined
test-train split.

While our three TSCL-specific Lloyd’s algorithms outperform the traditional

k-means-Euclidean clusterer on average, the raw value improvements are relatively

small. Table 4.12 shows the average raw value difference between each baseline

clusterer and k-means-Euclidean. For ARI, k-means-ba-DTW is, on average, 5.4%

better, k-sc is 1.3% better, and k-shapes is 3% better than k-means-Euclidean.

Similar improvements are observed across the other considered metrics. Notably,
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Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-DTW 0.384 0.238 0.221 0.606 0.193 0.220 0.337
k-means-euclidean 0.327 0.263 0.221 0.344 0.076 0.153 0.348
k-sc 0.304 0.272 0.301 0.202 0.066 0.127 0.482
k-shapes 0.347 0.236 0.239 0.514 0.135 0.203 0.471

Table 4.11 Lloyd’s baseline experiment average AMI score on problems split by
problem domain over 106 datasets from the UCR archive using the combined
test-train split.

k-shapes performs 3.9% better for AMI and 3.5% better for NMI. The RI metric

shows significantly smaller improvements, which, as discussed in Section 3.2.1, is

due to RI not adequately accounting for random chance.

Overall, this baseline highlights the challenges of TSCL and helps set realistic

expectations. In contrast, the current state-of-the-art model in TSC, HIVE-COTE

2.0 [83], achieves an average accuracy of 89.14% [84] across 112 datasets from the

UCR archive, compared to the 1NN-Euclidean baseline, which achieves 68.62%

accuracy [23]. This results in a classification accuracy difference of 20.52%. From

our baseline experiment, it is evident that TSCL has yet to achieve this level of

improvement over traditional approaches. Therefore, it is crucial to contextualise

TSCL results in comparison to related fields such as TSC.

Our combined test-train split will serve as our primary evaluation baseline;

however, we will also consider the test-train split. The baseline results for the

test-train split will be outlined next.

ARI AMI CLAcc NMI RI
k-means-ba-DTW 0.054 0.052 0.048 0.050 0.019
k-sc 0.013 0.007 0.017 0.002 -0.038
k-shapes 0.030 0.039 0.031 0.035 0.010

Table 4.12 Difference in performance between each clusterer and k-means-
Euclidean across multiple evaluation metrics over 106 datasets from the UCR
archive using the combined test-train split.
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4.7.2 Test-train split results

Similar to our combined test-train results, we will begin our evaluation by includ-

ing k-means-soft-DBA. Although more datasets completed within the seven-day

runtime limit, for consistency, we will also exclude k-means-soft-DBA from our

test-train baseline experiment after the initial evaluation, reintroducing it only for

contextualisation.

Figure 4.25 shows the critical difference diagrams for four clustering metrics

across 104 UCR datasets. As with the combined test-train split critical diagrams

in Figure 4.12, k-means-soft-DBA significantly outperforms the other clusterers.

However, similar to the combined test-train split results, we observe that while

k-means-soft-DBA outperforms each clusterer on average, it is not the best in every

domain. Table 4.13 shows the ARI performance by problem domain, where k-

means-soft-DBA performs best in four of the seven categories. k-means-soft-DBA

particularly struggle with the Spectro and ECG domain. In the Spectro domain

k-means-soft-DBA is outperformed by k-means-Euclidean and k-means-ba-DTW

on average for ARI. This was also the case in the combined test-train split further

highlighting a weakness in of k-means-soft-ba.

Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-DTW 0.355 0.235 0.231 0.515 0.192 0.212 0.128
k-means-euclidean 0.301 0.242 0.210 0.332 0.058 0.163 0.146
k-means-soft-dba 0.400 0.227 0.232 0.561 0.232 0.238 0.162
k-sc 0.308 0.222 0.238 0.298 0.064 0.144 0.335
k-shapes 0.229 0.212 0.191 0.176 0.109 0.146 0.056

Table 4.13 Average ARI score on problems split by problem domain over 104
datasets from the UCR archive using the test-train split.

To maintain consistency with our combined test-train split evaluation, we now

exclude k-means-soft-DBA from our baseline analysis. Figure 4.30 presents the

critical difference diagrams for our baseline experiments across 112 UCR archive
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Fig. 4.25 CD diagrams of Lloyd’s-based algorithm over 104 datasets from the UCR
archive using the test-train split. The excluded datasets are detailed in Appendix A,
Table A.3. The reason for the exclusion is due to k-means-ba-DTW being unable to
finish within our seven day runtime limit.

datasets using the test-train split. The figure shows that k-means-ba-DTW remains

the best-performing clusterer, though by a smaller margin. However, for CLACC,

k-means-ba-DTW is not significantly different from k-sc and k-means-euclidean.

Another notable observation from Figure 4.30 is that k-shapes performs particu-

larly poorly, with the worst average rank across all four clustering metrics. This is

surprising, as k-shapes performed well on average in the combined test-train split

experiments. This discrepancy potentially highlights a weakness of k-shapes: it

may struggle to learn robust general representations of the data, leading to poorer

performance on new, unseen data.

The clustering scores for each clusterer are presented in Table 4.16. Compared

to k-means-euclidean, the performance increase is lower than what was observed in

the combined test-train split. This is highlighted in Table 4.15. For the test-train

split, k-means-ba-DTW shows an average improvement of approximately 4% over

k-means-euclidean (excluding RI). The performance of k-sc remains consistent with
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Fig. 4.30 CD diagrams of Lloyd’s-based algorithm over 112 datasets from the UCR
archive using the combined test-train split.

ARI AMI CLAcc NMI RI
k-means-ba-DTW 0.226 0.281 0.553 0.315 0.701
k-means-euclidean 0.185 0.235 0.521 0.271 0.686
k-sc 0.194 0.244 0.534 0.277 0.672
k-shapes 0.121 0.191 0.485 0.223 0.608

Table 4.14 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 112 datasets from the UCR archive using the test-train split.

the results from the combined test-train split, while k-shapes, as noted, performs

significantly worse than in the combined test-train baseline experiment.

When assessing the results by problem domain, k-means-ba-DTW performs best

in the same four domains. Additionally, it ties with k-sc for the best performance

in the Sensor domain. Comparing k-means-ba-DTW’s values across domains

with those in Table 4.12, we find that for the Spectro, Sensor, Device, Motion,

and ECG domains, k-means-ba-DTW achieves similar ARI scores to those in the

combined test-train results. However, k-means-ba-DTW performs significantly

worse in the Simulated and Image domains. Notably, in the Simulated domain,

k-means-ba-DTW’s ARI is reduced by over 1%.
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ARI AMI CLAcc NMI RI
k-means-ba-DTW 0.041 0.046 0.032 0.044 0.015
k-sc 0.009 0.009 0.013 0.006 -0.014
k-shapes -0.064 -0.044 -0.036 -0.048 -0.078

Table 4.15 Performance difference against k-means-euclidean across multiple eval-
uation metrics over 112 datasets from the UCR archive using the test-train split.
The raw value increase (or decrease) is presented in each cell.

Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-DTW 0.265 0.191 0.181 0.454 0.175 0.169 0.239
k-means-euclidean 0.222 0.207 0.164 0.274 0.040 0.140 0.260
k-sc 0.227 0.185 0.181 0.250 0.046 0.138 0.404
k-shapes 0.134 0.167 0.122 0.104 0.073 0.093 0.125

Table 4.16 Lloyd’s baseline experiment average ARI score on problems split by
problem domain over 112 datasets from the UCR archive using the test-train split.

Overall, our results suggest that k-means-ba-DTW learns more robust and

meaningful representations of the data than the other baseline methods. In con-

trast, k-shapes struggles to obtain representations that generalise well to unseen

data. This is likely due to the use of cross-correlation, which can extract effective

representations for known data but does not translate well to new, unseen data.

4.8 Conclusion

We have now completed a baseline experiment across five Lloyd’s-based cluster-

ers commonly used in the TSCL literature. Our assessment has highlighted the

strengths and weaknesses of each clusterer, with a focus on their relative perfor-

mance improvements compared to k-means-euclidean. While our findings align

with existing literature, we believe our experiments provide new insights into these

clusterers and more accurately presented their relative performance.

Our findings show that k-means-soft-DBA significantly outperforms the other

baseline clusterers. Although it is known that k-means-soft-DBA can perform better
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than many other clusterers, its superiority has not been thoroughly demonstrated

through a robust methodology that clearly establishes its significant advantage over

other TSCL approaches in both the combined test-train split and the test-train split.

However, this performance comes at the cost of computational time. Due to its

high computational demands, we were unable to complete a full benchmark using

k-means-soft-DBA, which led to its exclusion from our baseline experiments.

Excluding k-means-soft-DBA, we find that k-means-ba-DTW is the best-performing

clusterer, followed by k-shapes for the combined test-train split. However, for the

test-train split, while k-means-ba-DTW remains the top-performing baseline clus-

terer, k-shapes’ performance significantly degrades, suggesting that it struggles to

learn generalised representations of the data. Overall, our best baseline clusterer

shows an average improvement of around 5% over k-means-euclidean in the com-

bined test-train split, and an average improvement of around 4% in the test-train

split. With this baseline established using a robust methodology and a consistently

parameterised Lloyd’s algorithm, we will now begin exploring the use of elastic

distances for k-means.



Chapter 5

k-means clustering using elastic

distances

Contributing Publications

• Holder, C., Middlehurst, M. & Bagnall, A. A review and evaluation of elastic

distance functions for time series clustering. Knowl Inf Syst 66, 765–809

(2024). https://doi.org/10.1007/s10115-023-01952-0

A robust benchmark has been established which we can evaluate our results

against. We will now begin experimenting with elastic distances. Our first exper-

iment will consider the popular k-means clusterer. We will try k-means with 12

different elastic distances and compare the results to each other and our baseline

clusterers. We aim to keep our initial experiments as simple as possible only altering

the distance measurement in the assignment phase.

As such we have set broad expectations. Our hypothesis is that substituting

distance measures without altering the averaging methods will not yield better

results than the current state-of-the-art established in our baseline. However, we

expect many of the distances to outperform k-means-euclidean. We expect that



5.1 Experiment Setup 155

our results and the ordering of elastic distances to be similar to that of the 1-NN

classifier in TSC.

5.1 Experiment Setup

For our initial experimentation we will swap out the traditional Euclidean distance

for an elastic distance in the k-means clusterer. We acknowledge that considering

a distance measure in isolation as a parameter without regard for the averaging

technique means there is no guarantee of convergence under k-means, however,

we hypothesise that k-means will still converge sufficiently for many datasets. Ad-

ditionally, we expect our experiment to offer an initial overview of which elastic

distances perform best for TSCL. Furthermore, when we introduce a new elastic

averaging technique in Chapter 7 for use in k-means with elastic distances, compar-

ing the results to these initial experiments will showcase the improvements of our

new averaging technique.

5.2 Configuration

We conduct our experiment using the k-means clusterer, employing the same

Lloyd’s algorithm (Algorithm 26) as used in our baseline experiment. The distance

measure is our independent variable, while all other parameters remain constant.

Table 5.1 outlines the specific parameters used for each model.

Each elastic distance has its own set of parameters, which are detailed in Sec-

tion 2.4. Our goal is not to fine-tune these elastic distances to maximise performance

across the UCR archive. Instead, we aim to establish sensible default parameters

that serve as a starting point for practitioners to achieve effective clustering. Our

initial default parameters are outlined in Table 5.2.



5.2 Configuration 156

max_iters tol n_init init_algo distance averaging
k-means-adtw 50 1×10−6 10 Forgy ADTW Arithmetic mean
k-means-ddtw 50 1×10−6 10 Forgy DDTW Arithmetic mean
k-means-dtw 50 1×10−6 10 Forgy DTW Arithmetic mean
k-means-edr 50 1×10−6 10 Forgy EDR Arithmetic mean
k-means-erp 50 1×10−6 10 Forgy ERP Arithmetic mean
k-means-lcss 50 1×10−6 10 Forgy LCSS Arithmetic mean
k-means-msm 50 1×10−6 10 Forgy MSM Arithmetic mean
k-means-twe 50 1×10−6 10 Forgy TWE Arithmetic mean
k-means-wddtw 50 1×10−6 10 Forgy WDDTW Arithmetic mean
k-means-wdtw 50 1×10−6 10 Forgy WDTW Arithmetic mean
k-means-shape-dtw 50 1×10−6 10 Forgy shape-DTW Arithmetic mean
k-means-soft-dtw 50 1×10−6 10 Forgy soft-DTW Arithmetic mean

Table 5.1 Elastic distance k-means model parameters

These default parameters were selected based on recommendations from the

TSC literature [111, 76]. In the TSC literature, many elastic distance parameters

are suggested to be tuned on a per-dataset basis. For example, [111] recommends

selecting the default value for TWE’s ν from an exponentially growing sequence,

{10−5,5×10−5,10−4,5×10−4,10−3,5×10−3, . . . ,1}, resulting in 100 possible

parameterisations for each dataset. However, in clustering tasks, evaluating 100

different parameterisations is impractical. As outlined in Chapter 3, tuning in

clustering is often infeasible for practitioners due to the lack of labels in real-world

scenarios. Therefore, for parameters that require tuning in the TSC literature, we

rely on the suggested single-value defaults provided in the original papers.

If the performance of a distance measure differs significantly from our expecta-

tions—based on its performance in the TSC literature—we may perform additional

tuning. This could either demonstrate that tuning does not significantly impact the

distance measure’s effectiveness in TSCL or prompt a reassessment of the initial

defaults.
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Acronym Metric Parameters Default
ADTW (Equation 2.12) No ω ∈ [0, . . . ,∞] ω = 1.0
DTW (Equation 2.4) No w ∈ [0, . . . ,1] w = 1.0
DDTW (Equation 2.6) No w ∈ [0, . . . ,1] w = 1.0
WDTW (Equation 2.9) No g ∈ [0, . . . ,∞] g = 0.05
WDDTW (Equation 2.10) No g ∈ [0, . . . ,∞] g = 0.05
LCSS (Equation 2.19) No ε ∈ [0, . . . ,∞] ε = 1.0
ERP (Equation 2.26) Yes g ∈ [0, . . . ,∞], g = σ(X)

EDR (Equation 2.22) No ε ∈ [0, . . . ,∞] ε = 1
4σ(X)

MSM (Equation 2.29) Yes c ∈ [0, . . . ,∞] c = 1
TWE (Equation 2.31) Yes ν ,λ ∈ [0, . . . ,∞] ν = 0.001,λ = 1
shape-DTW No reach ∈ [0, . . . ,∞] reach = 30
soft-DTW No γ ∈ [0, . . . ,∞] γ = 1.0

Table 5.2 Summary of elastic distance functions, and our initial parameters

5.3 Results

Our analysis is divided into two sections: the combined test-train split results and

the test-train results. After analysing the combined test-train and the test-train splits

individually, we will investigate unexpected results in our experiments, ultimately

concluding with a summary of our findings.

As outlined previously, since we are not updating the averaging method to

minimise each distance, there is no guarantee of convergence. This has led to some

unexpected outcomes. Specifically, we observed that some clusterers are prone

to repeatedly forming empty clusters. Although we apply a mitigation strategy

(outlined in Section 4.6), we have set a limit on how many attempts can be made

to resolve them (to prevent infinite loops). If empty clusters persist, the algorithm

is terminated, and no results are returned for that set of initial centroids. If empty

clusters form across all ten reruns with different initial centroids, no results can be

obtained for that experiment, leading to missing results. Therefore, for our initial

k-means experiments we have a number of missing results. A full list of all the

missing results for each model is provided in Table A.5.
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Repeated empty cluster formation can also occur in traditional k-means using

Euclidean distance, but it is typically rare and often indicates an incorrect number

of clusters is set. We believe that, because our distance measures are not minimised

under the arithmetic mean and an arbitrary number of clusters is set, this issue

is exacerbated. This likely explains why distances that diverge the most from

Euclidean distance (e.g., LCSS and shape-DTW) exhibit more frequent occurrences

of empty cluster formation.

However, we believe enough datasets across all models completed to draw

meaningful conclusions from. We do find however, for the combined test-train split

some distances in particular failed on significantly more datasets than other. As

such we will begin by including these distances in the analysis but then exclude the

distances with a large number of missing datasets in our later analysis to draw more

meaningful conclusion for the clusterers that did obtain a full set of results.

5.3.1 Combined test-train split results

Figure 5.5 shows the critical difference diagrams for our k-means elastic distance ex-

periments for all of the distances considered. We observe that ADTW, shape-DTW,

MSM, soft-DTW, TWE, and WDTW consistently appear in the top clique across

all evaluation metrics. Conversely, DDTW, EDR, DTW, and LCSS consistently

fall into the bottom clique, and notably perform worse, on average, than Euclidean

distance.

In the critical difference diagrams in Figure 5.5, while ADTW consistently

achieves the top rank, MSM follows closely, ranking second in three out of the

four metrics. However, if we examine the raw metric values across the 78 datasets,

shape-DTW performs best in four of the five evaluation metrics, as shown in

Table 5.3.
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Fig. 5.5 CD diagrams for k-means with 13 distances over 78 datasets from the UCR
archive using the combined test-train split.

To understand why shape-DTW achieves the highest average values but not the

top rank across evaluation metrics, we can examine the results by problem domain.

Table 5.3 presents the average ARI value by problem domain for each clusterer. In

some domains, such as simulated and ECG, shape-DTW significantly outperforms

the other distances. For example, in the ECG domain, shape-DTW surpasses the

next best clusterer by 13.6% in terms of ARI. However, in other domains like

Devices, shape-DTW ranks among the lowest-performing clusterers.

Although we don’t directly use missing datasets as part of our measurable

analysis, it is notable that shape-DTW failed to produce results for 22 datasets due

to repeated empty cluster formation. This could indicate that shape-DTW struggles

with certain types of time series data, which may explain the significant variability

in the quality of its results.
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ARI AMI CLAcc NMI RI
k-means-adtw 0.194 0.232 0.556 0.239 0.656
k-means-ddtw 0.135 0.164 0.509 0.172 0.586
k-means-dtw 0.147 0.187 0.522 0.196 0.611
k-means-edr 0.133 0.160 0.519 0.170 0.616
k-means-erp 0.174 0.210 0.545 0.218 0.648
k-means-euclidean 0.169 0.205 0.534 0.213 0.646
k-means-lcss 0.135 0.170 0.527 0.180 0.613
k-means-msm 0.188 0.228 0.558 0.236 0.651
k-means-shape-dtw 0.204 0.243 0.563 0.251 0.650
k-means-soft-dtw 0.183 0.225 0.553 0.233 0.635
k-means-twe 0.184 0.220 0.555 0.228 0.646
k-means-wddtw 0.158 0.191 0.534 0.199 0.631
k-means-wdtw 0.177 0.215 0.553 0.223 0.649

Table 5.3 Summary of average score across multiple evaluation metrics for k-means
with 13 distances over 78 datasets from the UCR archive using the combine test-
train split split.

Soft-DTW consistently appears in the top performing clique for all evaluation

metrics and performs well across all problem domains. However, while it performs

better than other distances on average, it does not achieve the highest maximum

results or the lowest minimum results compared to other top distances like ADTW,

shape-DTW, MSM, and TWE. Figure 5.6 illustrates this, showing that soft-DTW’s

minimum result are higher than most other distances, but its maximum results

are lower than the other top performing distances. Overall, this demonstrates that

soft-DTW is one of the most consistent performers, and it tends to avoid the extreme

highs and lows.

LCSS was one of the worst-performing distances on average, consistently

outperformed by the Euclidean distance across all evaluation metrics. Its results are

generally only marginally better than random clustering. We observed that when

the distance between a centroid generated using the arithmetic mean and a time

series is measured using LCSS, a large number of values are considered gaps. We

suspect this could be a cause of poor performance.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-adtw 0.254 0.091 0.231 0.239 0.058 0.143 0.266
k-means-ddtw 0.148 0.128 0.224 0.108 0.046 0.044 0.212
k-means-dtw 0.163 0.065 0.207 0.260 0.027 0.095 0.142
k-means-edr 0.163 0.057 0.181 0.150 0.053 0.067 0.232
k-means-erp 0.217 0.067 0.224 0.216 0.079 0.119 0.184
k-means-euclidean 0.208 0.094 0.214 0.221 0.052 0.125 0.174
k-means-lcss 0.104 0.081 0.188 0.188 0.062 0.123 0.214
k-means-msm 0.252 0.063 0.228 0.225 0.094 0.122 0.227
k-means-shape-dtw 0.239 0.099 0.255 0.307 0.050 0.118 0.402
k-means-soft-dtw 0.199 0.104 0.228 0.270 0.080 0.138 0.221
k-means-twe 0.214 0.071 0.261 0.236 0.079 0.107 0.220
k-means-wddtw 0.201 0.086 0.245 0.110 0.041 0.088 0.213
k-means-wdtw 0.195 0.070 0.238 0.275 0.064 0.139 0.139

Table 5.4 Average ARI score on problems split by problem domain for k-means with
13 distances over 78 datasets from the UCR archive using the combine test-train
split split.

Finally, before excluding shape-DTW, soft-DTW, and LCSS from the analysis

to include more datasets from the UCR archive, we evaluate the FitTime for each

distance. Figure 5.7 shows the FitTime for each clusterer. The most noticeable

observation is that k-means with shape-DTW and soft-DTW takes significantly

longer to run relative to the other distances.
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Fig. 5.6 ARI of k-means with 13 distances over 80 datasets from the UCR archive
using the combined test-train split.
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We now exclude shape-DTW, soft-DTW, and LCSS from our analysis to include

more datasets in the evaluation of the remaining distances. After excluding these

three models, all other models have complete results for 103 datasets. The missing

datasets are shown in Table A.7, and they are missing due to repeated empty cluster

formation across all initial Forgy centroids.

Figure 5.12 shows the critical difference diagram for 103 datasets across 10

different distances. ADTW, MSM, and TWE consistently appear in the top clique.

Additionally, for CLAcc, WDTW and ERP also appear in the top clique. DDTW,

DTW, and EDR are consistently in the bottom clique. For every evaluation metric,

DDTW, DTW, EDR, and WDTW perform worse than Euclidean distance.
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Fig. 5.12 CD diagrams for k-means with 10 distances over 103 datasets from the
UCR archive using the combined test-train split.

The distances that appear in the top clique share a common characteristic: they

all explicitly penalise warping off the diagonal with a constant value. ADTW

uses the constant ω , TWE uses λ , and MSM employs a constant cost c. While
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WDTW also applies a penalty, it is a “soft” penalty that increases gradually as more

warping occurs. As such it performs well over our evaluation metrics but is unable

to consistently perform as well as ADTW, MSM or TWE. Table 5.5 shows the

average score for each clusterer. MSM achieved the highest average score for four

evaluation metrics, joint best with ADTW for one, and ADTW was best for one

other.

As further evidence supporting our hypothesis, we examine the performance

difference between DTW and ADTW. ADTW is the same algorithm as DTW, but

with the addition of a constant penalty applied for moving off the diagonal. Despite

this relatively simple modification, ADTW ranks among our best-performing clus-

terers, while DTW is one of the worst. This stark contrast in performance highlights

the contribution of a explicit warping penalty.

Across different problem domains, for AMI, as shown in Table 5.6, MSM, TWE,

and ADTW are the top performers in five out of seven categories, with WDTW

leading in one category. For ARI, as shown in Table 5.7, MSM, TWE, and ADTW

dominate in four categories, while WDTW is best in two.

In the Image, Sensor, Simulated, and ECG domains, the average AMI and ARI

scores are significantly higher compared other domains. In the Device, Sensor, and

Motion domains, the average ARI and AMI scores are much lower. Notably, in

the Spectro domain, Euclidean distance achieves the highest average score for both

AMI and ARI.

DTW, DDTW, and EDR consistently appear in the bottom clique and perform

worse than Euclidean distance. This is somewhat surprising, as we initially ex-

pected that DTW would perform well and at least better than k-means-euclidean.

Additionally, WDDTW also performs worse than Euclidean distance on average.

We hypothesise that the poor performance of these distances is due to their lack

of an explicit penalty for warping off the diagonal. DTW, DDTW, and EDR rely on

an implicit penalty, where warping further from the diagonal naturally increases the
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ARI AMI CLAcc NMI RI
k-means-adtw 0.224 0.269 0.552 0.278 0.684
k-means-ddtw 0.156 0.196 0.497 0.206 0.605
k-means-dtw 0.169 0.216 0.511 0.227 0.635
k-means-edr 0.161 0.190 0.508 0.202 0.641
k-means-erp 0.207 0.251 0.542 0.261 0.681
k-means-euclidean 0.202 0.246 0.532 0.257 0.679
k-means-msm 0.224 0.270 0.556 0.280 0.683
k-means-twe 0.214 0.259 0.549 0.270 0.677
k-means-wddtw 0.189 0.229 0.526 0.240 0.658
k-means-wdtw 0.209 0.254 0.548 0.264 0.679

Table 5.5 Summary of average score across multiple evaluation metrics for k-means
with 10 distances over 103 datasets from the UCR archive using the combine test-
train split split.

overall distance, thereby leading to a higher cost. However, without control over the

degree of warping, this can result in pathological warping [24], which we suspect

occurred here. We will test this hypothesis in Section 5.4 by applying a bounding

window to DTW and DDTW, and analysing where and how much warping occurs.

Before exploring the test-train split results, we reintroduce our baseline Lloyd’s

clusterers to contextualise our findings. Figure 5.17 shows the critical difference

diagrams for our k-means experiment with elastic distances, alongside the baseline

Lloyd’s models.

The results are somewhat surprising. Despite the intentional simplification

of our experimentation, MSM, ADTW, and TWE consistently appear in the top

clique across all evaluation metrics, alongside k-means-ba-DTW and k-shapes.

Furthermore, for three of the evaluation metrics, MSM achieves a better average

rank than k-shapes, while ADTW outperforms k-shapes across all four metrics.

The performance gap between ADTW and k-means-ba-DTW is more pronounced,

which is expected since elastic distances are used in both the assignment and

centroid computation stages for k-means-ba-DTW.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-adtw 0.364 0.181 0.261 0.370 0.083 0.216 0.226
k-means-ddtw 0.266 0.165 0.233 0.229 0.077 0.091 0.156
k-means-dtw 0.284 0.135 0.227 0.390 0.061 0.147 0.128
k-means-edr 0.255 0.157 0.209 0.269 0.086 0.084 0.187
k-means-erp 0.329 0.167 0.263 0.341 0.107 0.194 0.168
k-means-euclidean 0.322 0.187 0.254 0.344 0.076 0.199 0.159
k-means-msm 0.374 0.164 0.272 0.350 0.120 0.199 0.198
k-means-twe 0.339 0.179 0.283 0.371 0.108 0.171 0.194
k-means-wddtw 0.329 0.155 0.264 0.227 0.067 0.146 0.159
k-means-wdtw 0.325 0.157 0.268 0.393 0.085 0.211 0.137

Table 5.6 Average AMI score on problems split by problem domain for k-means
with 10 distances over 103 datasets from the UCR archive using the combine
test-train split split.

These findings highlight the significant potential of elastic distances. Even

without a fully developed model that integrates elastic distances into the centroid

computation, several of these distances already achieve state-of-the-art performance.

Observing the improvement from k-means-DTW to k-means-ba-DTW, we hypoth-

esise that developing bespoke averaging techniques for MSM, ADTW, and TWE

could lead to substantial advancements in clustering performance, as they start from

a higher baseline accuracy than DTW.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-adtw 0.294 0.142 0.234 0.328 0.058 0.160 0.266
k-means-ddtw 0.180 0.145 0.227 0.185 0.046 0.050 0.212
k-means-dtw 0.205 0.098 0.212 0.329 0.027 0.094 0.142
k-means-edr 0.212 0.109 0.188 0.243 0.053 0.062 0.232
k-means-erp 0.263 0.135 0.232 0.306 0.079 0.139 0.184
k-means-euclidean 0.255 0.147 0.223 0.306 0.052 0.143 0.174
k-means-msm 0.300 0.135 0.233 0.315 0.094 0.149 0.227
k-means-twe 0.260 0.143 0.259 0.326 0.079 0.123 0.220
k-means-wddtw 0.263 0.123 0.247 0.178 0.041 0.087 0.213
k-means-wdtw 0.256 0.118 0.243 0.341 0.064 0.163 0.139

Table 5.7 Average ARI score on problems split by problem domain for k-means with
10 distances over 103 datasets from the UCR archive using the combine test-train
split split.
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Fig. 5.17 CD diagrams for k-means using 10 distances with the baseline Lloyd’s
models over 98 datasets from the UCR archive using the combine test train split.
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5.3.2 Test-train split results

We now consider the test-train split. Across all distances, 103 datasets were

successfully completed by all models. The datasets that were excluded were due to

repeated empty clusters forming for certain distances. A complete list of excluded

datasets is provided in Table A.7.

Figure 5.22 shows the critical difference diagram for the test-train split results,

revealing a similar ranking of distances as observed in the combined test-train split.

MSM, ADTW, soft-DTW, and TWE consistently appear in the top clique, while

shape-DTW and WDTW rank in the top clique for ARI but fall into the second-best

clique for other evaluation metrics. DDTW, DTW, WDDTW, LCSS, and EDR

consistently appear in the bottom clique and perform worse than k-means-euclidean.
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Fig. 5.22 CD diagrams for k-means using 13 distances over 103 datasets from the
UCR archive using the test-train split.

MSM achieves the highest average score across all evaluation metrics, as shown

in Table 5.8. This contrasts with our findings from the combined test-train split,
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where shape-DTW had the highest average score across all metrics except RI. This

suggests that shape-DTW does not generalise as well to unseen data, indicating

it may struggle to learn robust representations. However, even in the combined

test-train split, MSM performed consistently well across all metrics.

To further contextualise our results we also include the baseline Lloyd’s models

in our results. Figure 5.27 shows the critical difference diagrams for all 12 elastic

distances with our baseline Lloyd’s models incorporated. Figure 5.27 shows that

MSM and ADTW are the two best performing distances notably outperform k-

means-ba-DTW on average. This suggests that the general representations learned

by MSM and ADTW using the arithmetic mean are better than those learned using

DBA. We hypothesise that this is likely not due to DBA producing poor averages,

but rather that the assignments determined by the DTW distance are poor and thus

the average produced in also poor. Similar to the combined test-train results, ADTW,

MSM, and TWE consistently appear in the top clique, along with k-means-ba-DTW.

Our findings are consistent with the combined test-train split and support our

hypothesis that distances which explicitly penalise warping perform well, while

those with implicit penalties perform poorly. While the general rank order of

the distances remains consistent, shape-DTW performs notably worse than in the

combined test-train split. Additionally, when contextualising our results with the

state-of-the-art methods, we found that ADTW and MSM surprisingly outperform

all other approaches.
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Fig. 5.27 CD diagrams for k-means using 13 distances with the baseline Lloyd’s
models over 103 datasets from the UCR archive using the test train split

ARI AMI CLAcc NMI RI
k-means-adtw 0.178 0.221 0.547 0.236 0.650
k-means-ddtw 0.137 0.179 0.512 0.194 0.591
k-means-dtw 0.144 0.189 0.526 0.204 0.614
k-means-edr 0.146 0.175 0.520 0.191 0.628
k-means-erp 0.158 0.200 0.536 0.216 0.645
k-means-euclidean 0.154 0.195 0.528 0.211 0.642
k-means-lcss 0.145 0.185 0.527 0.201 0.620
k-means-msm 0.188 0.232 0.555 0.247 0.653
k-means-shape-dtw 0.169 0.213 0.543 0.227 0.639
k-means-soft-dtw 0.181 0.223 0.552 0.237 0.648
k-means-twe 0.176 0.215 0.549 0.230 0.646
k-means-wddtw 0.153 0.194 0.528 0.210 0.629
k-means-wdtw 0.158 0.208 0.537 0.223 0.644

Table 5.8 Summary of average score across multiple evaluation metrics over 103
datasets from the UCR archive using the test-train split.
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5.4 Tuning

Generally, most of the distances performed as expected, and the overall rank order

aligns with TSC results [111]. However, DTW was an exception, as it did not

perform as well as anticipated.

Throughout our experiments, we observed that DTW was one of the worst-

performing distances and was notably always worse than k-means-Euclidean for

both the combined test-train split and the test-train split. In the TSC literature, DTW

is traditionally used with a Sakoe-Chiba band set between 5% and 20% because

it is prone to pathological warping [24]. However, in our initial experiments, we

opted not to use a bounding window, instead keeping a full window. The reason for

this is that DTW is the only distance that has been extensively used in the TSCL

literature, and we have not found examples where a warping window was used.

We suspect that DTW’s poor performance is due to pathological warping. To

investigate this, we conducted a tuning experiment using a warping window for

DTW. Additionally, we examined DDTW, as it also uses DTW after applying the

first derivative. While we did not expect DDTW to be among the best-performing

distances, it may still suffer from pathological warping, warranting further investi-

gation.

To test this hypothesis, we reran k-means-DTW, k-means-DDTW, and k-means-

ba-DTW with a 20% bounding window for both the test-train split and the combined

test-train split. Similar to our previous experiments, due to empty clusters contin-

uing to form, we were unable to obtain a complete set of results. Therefore, the

combined test-train split evaluation is conducted over 101 datasets (missing datasets

are listed in Table A.10), and the test-train split evaluation is conducted over 108

datasets (missing datasets are listed in Table A.11).

The critical difference diagrams for the combined test-train split are shown in

Figure 5.32, and the critical difference diagram for the test-train split is shown in
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Figure 5.37. Clusterers labelled with “20-window” indicate that a 20% bounding

window was used in the computation.
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Fig. 5.32 CD diagrams for our tuned DTW k-means clusterers over 101 datasets
from the UCR archive using the combine test train split.

In both the test-train split and the combined test-train split, applying a 20%

window improves the performance of DTW and DDTW, but not by a significant

margin. Despite this improvement, k-means-dtw-20-window still performs worse

than k-means-Euclidean. The scatter plots in Figure 5.38 provide more detailed

insight into this. For the ARI evaluation metric, even with a 20% window, DTW is

significantly outperformed by Euclidean distance, as highlighted by the difference

in medians shown in Figure 5.38a. When comparing full-window DTW to the

20% window DTW in Figure 5.38b, the 20% window does result in significantly

more wins for the ARI metric. However, the large number of ties suggests that the

warping window was ineffective for many datasets.

Similarly, for k-means-ba-DTW, there is no significant difference between k-

means-ba-DTW and k-means-ba-DTW-window-20. Figure 5.39 provides a direct

comparison of k-means-ba-DTW and k-means-ba-DTW-window-20 in terms of
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Fig. 5.37 CD diagrams for our tuned DTW k-means clusterers over 108 datasets
from the UCR archive using the test train split.
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ARI over both the combined test-train and test-train splits. Overall, there are many

ties in results for both splits, suggesting that the performance is largely independent

of the warping window. However, in terms of absolute ranking k-means-ba-DTW

with no bounding does outperform k-means-ba-window-20.
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Fig. 5.39 Scatter plot comparison of k-means-ba-DTW-20-window compared to
k-means-ba-DTW over the combined test-train split and the test-train split.

Overall, from our DTW tuning experiment, we found that while a bounding

window can improve the performance of DTW and DDTW, the improvements were

not significant. We initially expected a larger performance gain. To investigate

why the clustering results remained poor even with a 20% bounding window, we

conducted a further experiment to evaluate how and where different distances warp,

aiming to reveal the specific warping patterns that lead to better performance.

To perform this analysis, we took the final centroids produced by k-means-

DTW-20-window, k-means-DTW-5-window, k-means-TWE, and k-means-MSM
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on the training split. We added a new clusterer, k-means-DTW-5-window, which

uses a 5% warping window with DTW to further investigate pathological warping.

For each clusterer, we then counted the number of diagonal, horizontal, and vertical

moves required in the warping path when assigning each test instance to its closest

centroid for each distance. This was done for all datasets in the UCR archive. The

number of horizontal moves is always equal to the number of vertical moves, as an

optimal warping path must end at (0,0). Our findings are presented in Table 5.9.

Distance Average Optimal
Path Length

Average Number
of Diagonal
Moves

Average Number
of Horizon-
tal/Vertical
Moves

Ratio of Diag-
onal Moves to
Horizontal/Ver-
tical Moves

DTW (20% window) 863 230 633 2.75
DTW (5% window) 690 326 363 1.11
MSM 576 499 77 0.15
TWE 591 484 107 0.22

Table 5.9 Average length of the optimal warping path for each time series in the
test split assigned to its closest centroid. The UCR 112 univariate archive has an
average time series length of 551.

In Table 5.9, we observe that for MSM, for every one diagonal move, there are

0.15 horizontal/vertical moves. Similarly, for TWE, for every one diagonal move

made, there are 0.22 horizontal/vertical moves. This indicates that the warping paths

for MSM and TWE are very constrained, generally consisting of long stretches of

diagonal moves with minimal horizontal or vertical adjustments. Consequently, the

total average warping path lengths for MSM and TWE are 576 and 591, respectively.

In contrast, even with a 20% or 5% warping window, DTW exhibits significantly

more horizontal and vertical movement compared to MSM and TWE. For every one

diagonal move, DTW with a 20% window makes 2.75 horizontal/vertical moves,

while DTW with a 5% window makes 1.11 such moves. This means that DTW with

a 5% warping window makes over seven times more horizontal/vertical moves than

MSM, and with a 20% window, DTW makes over 18 times more horizontal/vertical
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moves. Essentially, even when a bounding window is applied, DTW still pushes its

movements to the window’s limit, moving more horizontally and vertically than

diagonally. The average warping path length for DTW with a 20% window is 863,

and for DTW with a 5% window, it is 690. Both of these values are significantly

higher than the warping path lengths for MSM and TWE.

A visualisation of this difference in warping paths is shown in Figure 5.40, which

compares the warping paths of two time series from the Fish dataset using DTW and

MSM distances. The MSM warping path is much more constrained, beginning with

a slight deviation off the diagonal but maintaining a relatively constant trajectory

thereafter. In contrast, the DTW path fluctuates significantly, with more pronounced

vertical and horizontal movements compared to MSM. Overall, these additional

movements result in the DTW alignment path being significantly longer than that

of MSM.

(a) DTW warping path (b) MSM warping path

Fig. 5.40 Comparison of DTW and MSM warping paths for two time series in
the Fish UCR dataset. The warping path is the white line on top of a heat map
representation of each distance’s cost matrix.
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Overall, our tuning results further support our hypothesis that using an explicit

penalty for warping off the diagonal, rather than relying on an implicit one, leads to

better TSCL results. Additionally, we found that applying a warping window does

not significantly improve the performance of DTW.

5.5 Conclusion

We have conducted an extensive review of the k-means clusterer using elastic

distances. We have found that distances such as MSM, TWE, and ADTW consis-

tently outperformed other elastic distances. Conversely, DTW, DDTW, EDR, and

WDDTW performed significantly worse, often being outperformed by k-means-

Euclidean. Our results suggest that for k-means clustering, distances that explicitly

penalise warping off the diagonal consistently deliver better results than those using

an implicit penalty.

To contextualise our findings, we included commonly used time series clusterers

from the literature, two of which are considered state-of-the-art. We found that

ADTW, MSM, and TWE were not significantly different from k-means-ba-DTW

and k-shapes across all evaluation metrics, though they did not outperform k-means-

ba-DTW in terms of absolute ranking on the combined test-train split.

We also extended our experimentation to the test-train split, where we observed

consistent results with the combined test-train split. However, for the test-train

split we observed that MSM and ADTW outperformed all considered clusterers

including the state-of-the-art baseline models.

In addition we performed an in-depth analysis to understand why DTW per-

formed poorly. Although we experimented with different window sizes for tuning

DTW, we found that this did not lead to significant improvements. Our analysis

revealed that the pathological warping in DTW, compared to more successful dis-

tances like TWE and MSM, is likely responsible for its subpar performance. These
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findings further support our hypothesis that explicitly penalising warping off the

diagonal is a key factor in the success of clustering distances.

In conclusion, although our experiments were intentionally simplified, the

results exceeded our expectations and demonstrate the potential of elastic dis-

tances—particularly those with explicit warping penalties—for TSCL. By compar-

ing the performance difference between k-means-DTW with k-means-ba-DTW, we

hypothesise that leveraging better elastic distances in centroid computation could

lead to significantly improved clustering results. With this in mind, we will now

explore k-medoids clusterers, which can utilise elastic distances not only in the

assignment stage but also in centroid computation without requiring adjustments to

the baseline algorithm.



Chapter 6

k-medoids clustering using elastic

distances
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A limitation of the k-means elastic distance methods discussed in Chapter 5 lies in

the computation of centroids. By relying on the arithmetic mean, these methods

fail to account for the alignment of time series during centroid calculation, which

considerably hampers the performance of elastic distances in k-means clustering.

In contrast, k-medoids algorithms, although similar in structure to k-means, dif-

fer significantly in their approach to centroid computation. In k-medoids, centroids

(or medoids) are selected based on the distance that minimises the total deviation

(TD), thereby incorporating elastic distances into the centroid calculation. Given
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this advantage, we hypothesise that k-medoids-based algorithms will outperform

k-means-based methods when elastic distances are employed.

6.1 Introduction

Before the introduction of DBA in 2011 [94], PAM-DTW [69] (PAM using DTW)

was the preferred partition-based method for TSCL [88], primarily due to its ability

to incorporate elastic distances in both the assignment and centroid computation

stages, which resulted in improved clusterings.

However, with the advent of DBA [94], interest in k-medoids for TSCL declined.

This shift occurred because k-means-ba-DTW offered comparable performance

to PAM-DTW while being significantly less computationally expensive. Many k-

medoids algorithms, including PAM, require the computation of a pairwise distance

matrix, which often becomes impractical in real-world TSCL scenarios, reducing

the feasibility of these approaches.

In the TSCL literature, only two k-medoids methods have been explored: PAM

and alternate k-medoids. We outlined the difference between these models in Sec-

tion 2.5.1. Moreover, these two clusterers have only been studied using Euclidean

and DTW distances. Alternate k-medoids with DTW is very similar to k-means-

DTW, with the primary difference being that alternate k-medoids computes medoids

as cluster centres, whereas k-means-DTW uses the arithmetic mean. In the liter-

ature, it has been shown that alternate k-medoids-DTW significantly outperform

k-means-Euclidean [46]. However, as demonstrated in Chapter 5, k-means-DTW

performs significantly worse than k-means-Euclidean.

Given that the only difference between these two algorithms is the method

of centroid computation, we hypothesise that clusterers capable of incorporating

elastic distances into the centroid computation will demonstrate significantly better

performance. Additionally, we hypothesise that the performance improvement from
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using medoids over the arithmetic mean will be similar for each distance. Therefore,

we expect MSM, TWE, and ADTW to be the top-performing k-medoids clusterers

as they were for the k-mean experiments.

To test these hypotheses, we begin by identifying four commonly used k-

medoids clusterers, two of which have never been applied to TSCL before using

elastic distances. We then proceed with experimentation for each model. Our

evaluation is divided into two sections. First, we will evaluate each k-medoids

clusterer in isolation, comparing elastic distances within the same model to identify

the best version of each. Baseline clusterers will also be included to provide context

for the results. Second, after evaluating each k-medoids model individually, we will

combine the results to assess how elastic distances impact each model, identify the

best-performing k-medoids-based clusterer, and comparing them to state-of-the-art

clusterers.

6.2 TSCL k-medoids

We identify and configure four different k-medoids clusterers for use with elastic

distances. Below, we outline each clusterer, provide pseudocode, and explain the

reasoning behind our configuration decisions.

6.2.1 Alternate k-medoids

Alternate k-medoids [75] follows Lloyd’s algorithm, but instead of computing the

arithmetic mean, it calculates the medoid of each cluster. Therefore, we adapt

our previously defined Lloyd’s algorithm (Algorithm 26) by updating the centroid

computation to use medoids. Additionally, for our experiments, we configure the

parameters for alternate k-medoids in the same way as we did for our k-means

elastic experiments, outlined in Table 5.1.
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To adapt our Lloyd’s algorithm for the alternate k-medoids, we make two key

changes. First, we modify the objective function to minimise total dissimilarity

(TD) instead of inertia. This adjustment also necessitates updating the centroid

computation, where we now compute the medoid of each cluster instead of using

the arithmetic mean.

Second, we remove the process for handling empty clusters, as this issue does

not arise in k-medoids algorithms. In k-medoids, the medoid is always a data point

from the dataset, ensuring that at least one data point is assigned to each cluster.

Algorithm 27 presents the alternate k-medoids algorithm used in our experi-

ments.
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Algorithm 27: Alternate_k-medoids(X, k, n_init, max_iters, tol,
n_init))

Input: X (Dataset of time series of length n), k (Number of clusters),
n_init (Number of restarts with different initial medoids),
max_iters (Maximum number of iterations before forced
termination), tol (TD variation threshold)

Output: Assignment of each time series to a cluster and corresponding
medoids

1 best_T D← ∞

2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k
4 for i← 1 to n_init do
5 Let medoids be an array of k randomly chosen time series from dataset

X
6 Let assignments be an empty array of length n
7 Let prev_T D← ∞

8 for j← 1 to max_iters do
9 for each time series xi in X do

10 Compute the distance between xi and each of the k medoids
11 Assign xi to the nearest centre

12 for each centre c j in medoids do
13 Update c j to be the medoids of all time series assigned to it

14 Let curr_inner_T D be the of the current clustering
15 if |curr_inner_T D−prev_TD|< tol then
16 break

17 prev_T D← curr_inner_T D

18 Let curr_T D be the of the current clustering
19 if curr_T D < best_T D then
20 best_T D← curr_T D
21 best_assignments← assignments
22 best_medoids← medoids

23 return best_assignments,best_medoids
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6.2.2 PAM

PAM [69] is the most popular k-medoids algorithm [107]. PAM traditionally

consists of two steps: BUILD and SWAP. The BUILD step determines the initial

medoids, while the SWAP step refines the initial medoids to reach a local optimum.

These steps are detailed in Algorithm 29 and Algorithm 30, respectively, and the

complete PAM algorithm that combines them is shown in Algorithm 28.

The BUILD step is designed to select “good” initial medoids, and its effective-

ness largely depends on the quality of the distance measure used. In our initial

experiments, we chose to use a different initialisation strategy than BUILD. We

instead choose to use Forgy initialisation with 10 restarts. This approach allows us

to focus specifically on how elastic distances affect the SWAP step within PAM.

Additionally, by using the same initialisation method as our Lloyd’s-based algo-

rithms, we can make more accurate comparisons and better understand how elastic

distances influence the refinement and averaging process.

PAM shares many of the same configuration options as Lloyd’s. Specifically

it shares max_iters, n_init and init_algorithm. We set these values to matches our

Lloyd’s-based clusterers for consistency.

Algorithm 28: PAM(X, k, max_iters)
Input: X (Dataset of objects), k (Number of clusters), max_iters

(Maximum number of iterations for PAM SWAP), (TD variation
threshold)

Output: Final assignments of each object to a cluster and corresponding
medoids

1 initial_medoids← PAM_BUILD(X ,k)
2 assignements,medoids← PAM_SWAP(X ,k,max_iters, initial_medoids)
3 return assignments,medoids
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Algorithm 29: BUILD(X, k)
Input: X (Dataset of objects), k (Number of clusters)
Output: Initial k medoids

1 T D← ∞, m1← null
2 for each object xc in X do
3 T D j← 0
4 for each object xo in X do
5 T D j← T D j +d(xo,xc)

6 if T D j < T D then
7 T D← T D j
8 m1← xc

9 for each object xo in X do
10 if xo = m1 then
11 continue
12 dnearest(o)← d(m1,xo)

13 for i← 1 to k−1 do
14 best_T D← ∞

15 best_x← null
16 for each object xc in X do
17 if xc in {m1, . . . ,m j} then
18 continue
19 curr_T D← 0
20 for each object xo in X do
21 if xo in {m1, . . . ,m j} then
22 continue
23 change_in_T D← d(xo,xc)−dnearest(o)
24 if change_in_T D < 0 then
25 curr_T D← curr_T D+ change_in_T D

26 if curr_T D < best_T D then
27 best_T D← curr_T D
28 best_x← xc

29 T D← T D+best_T D
30 mi+1← best_x

31 return {m1, . . . ,mk}
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Algorithm 30: SWAP(X, k, max_iters, medoids)
Input: X (Dataset of of time series of length n), k (Number of clusters),

max_iters (Maximum number of iterations), medoids (Initial
medoids to refine)

Output: Assignments of each time series to a cluster and corresponding
medoids

1 for each object xo in X do
2 Compute nearest(o), dnearest(o), and dsecond(o)

3 for i← 1 to max_iters do
4 best_T D← 0
5 best_m← null
6 best_x← null
7 for each medoid m j in medoids do
8 for each non-medoid xc in X do
9 curr_T D← 0

10 for each non-medoid xo in X do
11 curr_T D← curr_T D+∆(xo,m j,xc)

12 if curr_T D < best_T D then
13 best_T D← curr_T D
14 best_m← m j
15 best_x← xc

16 if best_T D≥ 0 then
17 break
18 Swap roles of medoid best_m and non-medoid best_x
19 for each object xo in X do
20 Update nearest(o), dnearest(o), and dsecond(o)

21 T D← T D+best_T D

22 Let assignments be an array where each element xo in X is assigned to the
nearest medoid in {m1, . . . ,mk}

23 return assignments,medoids

6.2.3 CLARA

CLARA [68] repeatedly applies PAM to random subsets of the dataset. Using the

medoids produced for a subset, all values in the entire dataset are then assigned to

their nearest medoids, and the TD of the configuration is measured. This process is

repeated, and the iteration with the lowest TD is returned.
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Algorithm 31: PAM_without_BUILD(X, k, n_init, max_iters)
Input: X (Dataset of time series of length n), k (Number of clusters),

n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination)

Output: Assignment of each time series to a cluster and corresponding
medoids

1 best_T D← ∞

2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k
4 for i← 1 to n_init do
5 Let initial_medoids be an array of k randomly chosen time series from

dataset X
6 assignements← PAM_SWAP(X ,k,max_iters, initial_medoids)
7 Let curr_T D be the of the current clustering
8 if curr_T D < best_T D then
9 best_T D← curr_T D

10 best_assignments← assignments
11 best_medoids← medoids

12 return assignments,medoids

To facilitate this process, CLARA uses two additional parameters: the number

of samples to use for each subset (n_samples) and the number of runs to perform

with different random samples (n_sampling_iters). We set n_samples to 40+

2k for each dataset as it is recommended in the original paper [68]. Choosing

an appropriate value for n_sampling_iters is more challenging, as the optimal

value depends on factors such as the size of the dataset and the availability of

computational resources. For our experiments, we set this value to 10. While

this may be higher than necessary for many datasets, we opted for a value that is

applicable across all datasets in the UCR archive, thus choosing a higher value than

usual.

After a random subset of time series is selected, PAM is executed. Traditionally,

CLARA uses PAM with BUILD initialisation (Algorithm 28). However, in our

version of CLARA, we employ PAM with Forgy initialisation and 10 restarts
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(Algorithm 31). The version of CLARA used in our experimentation is defined in

Algorithm 32.

Algorithm 32: CLARA(X, k, n_samples, n_sampling_iters,
max_iters)

Input: X (Dataset of time series of length n), k (Number of clusters),
n_samples (Number of samples in each subset), n_sampling_iters
(Number of sampling iterations), max_iters (Maximum number of
iterations before forced termination)

Output: Assignment of each time series to a cluster and corresponding
medoids

1 best_T D← ∞

2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k
4 for i← 1 to n_sampling_iters do
5 Let random_subset be an array of n_samples randomly chosen time

series from dataset X
6 subset_assignments,medoids← PAM(random_subset,k,max_iters
7 Let assignments be an array of integers where each element represents

the index of the medoid in medoids closest to the corresponding time
series in D.

8 Let curr_T D be the of the current clustering based on the assignments
in assignments.

9 if curr_T D < best_T D then
10 best_T D← curr_T D
11 best_assignments← assignments
12 best_medoids← medoids

13 return best_assignments,best_medoids

6.2.4 CLARANS

CLARANS [86] updates the PAM SWAP algorithm by randomly choosing a value

in the dataset to become a random medoid. If that swap reduces TD, then the swap

is performed immediately. If it doesn’t reduce TD, a counter is incremented to track

the number of failed swaps. If this counter exceeds the value of the max_neighbours

parameter, then the algorithm terminates and returns the medoids and assignments

for the configuration.
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The CLARANS algorithm introduces a new parameter, max_neighbours, which

defines the maximum number of neighbouring solutions the algorithm will explore

for each set of medoids. A neighbouring solution is obtained by replacing one of

the medoids with a non-medoid and evaluating if this reduces the total cost. It

is recommended to set max_neighbours to 1.25% of the total number of possible

swaps for the dataset [86].

Additionally, CLARANS uses a parameter called num_local, which determines

the number of restarts the algorithm performs with different initial medoids, selected

using Forgy initialisation. In our previous experiments, we already employ this

strategy, though we refer to this parameter as n_init. For consistency across our

experiments, we will use the name n_init in our CLARANS implementation instead

of num_local.

Algorithm 33 outlines the CLARANS SWAP procedure, and Algorithm 34

presents the full CLARANS algorithm.
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Algorithm 33: CLARANS_SWAP(X, k, max_neighbours, medoids)
Input: X (Dataset of of time series of length n), k (Number of clusters),

max_neighbours (Maximum attempt to find a swap), medoids
(Initial medoids to refine)

Output: Assignments of each time series to a cluster and corresponding
medoids

1 Let assignments be the assignment of each value in X to its closest medoids
in medoids

2 Let T D be the TD of the assignments clustering
3 i← 0
4 while i < max_neighbours do
5 Let medoids_to_replace be a randomly selected medoids from

medoids
6 Let non_medoids_to_swap be a randomly selected non-medoids from

X
7 Let candidate_medoids be the medoids array where

medoids_to_replace is swapped non_medoids_to_swap
8 Let candidate_assignments be the assignment of each value in X to its

closest medoids in candidate_medoids
9 Let canidate_T D be the TD of the candidate_assignments clustering

10 if candidate_T D < T D then
11 T D← candidate_T D
12 assignments← candidate_assignment
13 medoids← candidate_medoids

14 else
15 i← i+1

16 return assignments,medoids
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Algorithm 34: CLARANS(X, k, n_init, max_iters)
Input: X (Dataset of time series of length n), k (Number of clusters),

n_init (Number of restarts with different initial centroids),
max_iters (Maximum number of iterations before forced
termination)

Output: Assignment of each time series to a cluster and corresponding
medoids

1 best_T D← ∞

2 Let best_assignments be an empty array of length n
3 Let best_medoids be an empty array of length k
4 for i← 1 to n_init do
5 Let initial_medoids be an array of k randomly chosen time series from

dataset X
6 assignements← PAM_SWAP(X ,k,max_iters, initial_medoids)
7 Let curr_T D be the of the current clustering
8 if curr_T D < best_T D then
9 best_T D← curr_T D

10 best_assignments← assignments
11 best_medoids← medoids

12 return assignments,medoids
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6.3 Experiment setup

To evaluate four different k-medoids algorithms across 12 elastic distances, we

divide our experiments and analysis into two sections. First, we evaluate each

k-medoids model in isolation, comparing each models performance to itself using

different elastic distances and incorporating baseline results. In this first section,

our goal is to identify the best-performing elastic distance for each model. Once

each model has been analysed individually, we will then compare the k-medoids

algorithms against one another, including the baseline clusterers, to determine the

best-performing k-medoids approach for TSCL.

Many of the k-medoids algorithms share common parameters. While the specific

configurations for each elastic distance model will be defined individually in their

respective sections, Table 6.1 provides a general overview of the configuration

used across all k-medoids models. Our goal is to maintain consistency in as many

parameters as possible, altering only the distance measure. This approach ensures

that we are evaluating the performance of the distance measures themselves, rather

than differences in model configuration.

max_iters n_init init_algo additional
PAM 50 10 Forgy -
alternate k-medoids 50 10 Forgy tol = 1×10−6

CLARA 50 10 Forgy n_samples = 40+2k
CLARANS 50 10 Forgy max_neighbours = 0.0125(k(n− k))

Table 6.1 Baseline k-medoids models parameters. A “-” means the parameter does
not apply to the model.

In addition to the model-specific parameters, the elastic distances require default

parameter values to be set. Table 5.2 outlines the parameters used for each elastic

distance, which are the same as those employed in Chapter 5. Based on our

experimentation in Chapter 5, these parameters serve as good default parameters as

the performance of each distance was aligned with our expectations.



6.4 Alternate k-medoids 193

6.4 Alternate k-medoids

For our experiment each alternate k-medoids model configuration is defined in

Table 6.2.

max_iters tol n_init init_algo distance
alternate-adtw 50 1×10−6 10 Forgy ADTW
alternate-ddtw 50 1×10−6 10 Forgy DDTW
alternate-dtw 50 1×10−6 10 Forgy DTW
alternate-edr 50 1×10−6 10 Forgy EDR
alternate-erp 50 1×10−6 10 Forgy ERP
alternate-euclidean 50 1×10−6 10 Forgy Euclidean
alternate-lcss 50 1×10−6 10 Forgy LCSS
alternate-msm 50 1×10−6 10 Forgy MSM
alternate-twe 50 1×10−6 10 Forgy TWE
alternate-wddtw 50 1×10−6 10 Forgy WDDTW
alternate-wdtw 50 1×10−6 10 Forgy WDTW
alternate-shape-dtw 50 1×10−6 10 Forgy shape-DTW
alternate-soft-dtw 50 1×10−6 10 Forgy soft-DTW

Table 6.2 Alternate k-medoids model parameters

6.4.1 Alternate k-medoids Combined test-train split

Figure 6.5 presents the combined test-train split results for alternate k-medoids

with all elastic distances. However, 36 datasets are missing from this evaluation.

The primary reason for this is that certain distances did not complete within the

seven-day runtime limit. Specifically, LCSS did not finish for 30 datasets, EDR

for 9 datasets, and soft-DTW for 10 datasets. A comprehensive list of the missing

datasets is provided in Table A.12.

The number of missing datasets specifically for LCSS is surprisingly high. In

previous experiments, LCSS did not exhibit extended convergence times. This

discrepancy may suggest a potential issue within our code, although no such issue

was observed in the test-train split. Another possible explanation is that LCSS may



6.4 Alternate k-medoids 194

12345678910111213

alternate-soft-dtw5.6382

alternate-twe5.6579

alternate-msm5.8750

alternate-adtw5.9013

alternate-ddtw6.7697

alternate-shape-dtw6.9276

alternate-wddtw7.0855
alternate-wdtw 7.0855

alternate-dtw 7.2500
alternate-edr 7.3750
alternate-lcss 7.6184
alternate-erp 8.6776

alternate-euclidean 9.1382

Fig. 6.1 AMI

12345678910111213

alternate-msm5.7105

alternate-adtw5.7368

alternate-twe5.7500

alternate-soft-dtw5.8487

alternate-shape-dtw6.2434

alternate-edr6.8026

alternate-dtw6.9145
alternate-wdtw 7.2105

alternate-lcss 7.4342
alternate-ddtw 7.5592

alternate-wddtw 8.2039
alternate-erp 8.6053

alternate-euclidean 8.9803

Fig. 6.2 ARI

12345678910111213

alternate-twe5.8224

alternate-adtw5.8882

alternate-msm5.9803

alternate-soft-dtw5.9934

alternate-shape-dtw6.5526

alternate-edr6.6513

alternate-wdtw6.9342
alternate-dtw 7.0066
alternate-lcss 7.3289

alternate-ddtw 7.4013
alternate-wddtw 7.8092

alternate-erp 8.5395
alternate-euclidean 9.0921

Fig. 6.3 CLACC

12345678910111213

alternate-twe5.6316

alternate-soft-dtw5.6382

alternate-adtw5.8553

alternate-msm5.9342

alternate-ddtw6.8092

alternate-shape-dtw6.9408

alternate-wdtw7.0395
alternate-wddtw 7.1645

alternate-dtw 7.2303
alternate-edr 7.3947
alternate-lcss 7.5526
alternate-erp 8.6579

alternate-euclidean 9.1513

Fig. 6.4 NMI

Fig. 6.5 CD diagrams of alternate k-medoids over 76 datasets from the UCR archive
using the combined test-train split. Missing datasets are outlined in Table A.12.

struggle to effectively form medoids, leading the algorithm to consistently reaching

the maximum number of iterations, thereby significantly increasing the runtime.

Due to the total of 36 missing datasets for the combined test-train split, it is

challenging to draw broad and meaningful conclusions. Therefore, we present the

initial results with all elastic distances but then choose to exclude LCSS, EDR and

soft-DTW due to multiple missing datasets. Therefore, we will briefly analyse these

three distances for the results that have finished and then exclude them from the

rest of the results.

Alternate-LCSS always appears in the bottom clique. While it is always better

in terms of average rank than alternate-Euclidean it is not significantly better.

Alternate-EDR seems to have the most variable rankings. For AMI and NMI EDR

appears in the bottom clique. However, for CLACC it appears in the top clique and

appears in the second best clique for ARI. This discrepancy may suggest that while
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there are many pairs of time series accurately assigned, the overall distribution of

the values maybe poor and there could be a lot of overlap between clusters.

Alternate-soft-DTW is one of the best performing elastic distances always

appear in the top clique. We will focus our evaluation of alternate-soft-DTW when

analysing the test-train split as it has completed many more datasets allowing more

meaningful analysis. However, for the limited number it has completed for the

combined test-train split it is one of the best performing distances.

We now exclude alternate-LCSS, alternate-EDR, and alternate-soft-DTW from

our analysis. Figure 6.10 presents the critical difference diagrams for nine different

elastic distances across 106 datasets. For all evaluation metrics, alternate-TWE

achieves the highest average rank, followed by alternate-MSM and alternate-ADTW.

In Figure 6.10, for every evaluation metric, all elastic distances outperform

alternate-Euclidean, except ERP for CLACC. TWE, MSM, ADTW, and shape-DTW

consistently feature in the top cliques, whereas Euclidean, ERP, DTW, WDTW,

and WDDTW are always in the bottom clique. Additionally, in a surprising result,

DDTW appears in the top clique for AMI and NMI, marking the first time in our

experiments that DDTW has been ranked so highly.

Table 6.3 provides the average scores for each model across all evaluation

metrics. In terms of average score, alternate-TWE is the best-performing model for

every metric. However, across different domains (Table 6.4), alternate-TWE ranks

highest in only two out of the seven domains. Alternate-ADTW, alternate-MSM,

alternate-shape-DTW, and alternate-WDTW each perform best in one or more

categories.

To contextualise the results, Figure 6.15 displays the critical difference diagrams

with the baseline clusterers included. k-means-ba-DTW is the best-performing

clusterer across all evaluation metrics. However, alternate-TWE, alternate-MSM,

alternate-ADTW, and alternate-shape-DTW consistently appear in the top clique

alongside it. Moreover, for every evaluation metric, alternate-MSM, alternate-TWE,
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Fig. 6.10 CD diagrams of alternate k-medoids over 106 datasets from the UCR
archive using the combined test-train split. Missing datasets are outline in Ta-
ble A.13.

ARI AMI CLAcc NMI RI
alternate-adtw 0.248 0.302 0.559 0.327 0.715
alternate-ddtw 0.205 0.271 0.535 0.294 0.693
alternate-dtw 0.232 0.286 0.550 0.311 0.707
alternate-erp 0.181 0.235 0.508 0.262 0.685
alternate-euclidean 0.185 0.236 0.509 0.263 0.694
alternate-msm 0.246 0.300 0.562 0.324 0.713
alternate-shape-dtw 0.245 0.296 0.558 0.320 0.712
alternate-twe 0.253 0.306 0.565 0.330 0.716
alternate-wddtw 0.208 0.276 0.536 0.300 0.690
alternate-wdtw 0.231 0.287 0.550 0.313 0.705

Table 6.3 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

alternate-ADTW, and alternate-shape-DTW outperform k-shapes. Overall, while

no alternate k-medoids approach surpasses the current state-of-the-art, many of the

elastic distances are not significantly different from it.
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Image Spectro Sensor Simulated Device Motion ECG
alternate-adtw 0.290 0.232 0.218 0.468 0.118 0.166 0.324
alternate-ddtw 0.291 0.164 0.212 0.242 0.091 0.096 0.250
alternate-dtw 0.284 0.178 0.199 0.452 0.149 0.154 0.261
alternate-erp 0.232 0.153 0.176 0.255 0.088 0.098 0.268
alternate-euclidean 0.243 0.197 0.178 0.251 0.045 0.099 0.260
alternate-msm 0.323 0.169 0.217 0.346 0.174 0.148 0.390
alternate-shape-dtw 0.298 0.196 0.226 0.372 0.125 0.154 0.418
alternate-twe 0.321 0.173 0.228 0.440 0.188 0.146 0.325
alternate-wddtw 0.315 0.163 0.203 0.264 0.063 0.089 0.252
alternate-wdtw 0.294 0.180 0.196 0.487 0.076 0.157 0.267

Table 6.4 Average ARI score on problems split by problem domain over 106 datasets
from the UCR archive using the combined test-train split.

6.4.2 Alternate k-medoids Test-train split

Figure 6.20 presents the critical difference diagram for alternate k-medoids over 102

of the UCR test-train splits. The general ranking order remains consistent with the

combined test-train split results. Alternate-soft-DTW, alternate-ADTW, alternate-

TWE, alternate-MSM, and alternate-shape-DTW consistently appear in the top

clique across all evaluation metrics. In contrast, alternate-ERP, alternate-LCSS,

alternate-WDDTW, and alternate-Euclidean are consistently placed in the bottom

clique. However, on the test-train split, both alternate-ERP and alternate-LCSS

perform worse than alternate-Euclidean for every evaluation metric, which was not

the case in the combined test-train split, where alternate-ERP only performed worse

for one dataset.

Table 6.5 summarises the average performance of each clusterer across all

evaluation metrics. Alternate-soft-DTW is the best-performing clusterer overall,

excelling in three out of the seven domains. Alternate-MSM performs best in two

domains, alternate-ADTW in one, and alternate-DTW in one. Notably, this is the

first time alternate-DTW has been the top-performing distance for any domain.
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Fig. 6.15 CD diagrams of alternate k-medoids with baseline clusterers over 104
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.14

ARI AMI CLAcc NMI RI
alternate-adtw 0.223 0.279 0.564 0.312 0.701
alternate-ddtw 0.194 0.255 0.538 0.287 0.684
alternate-dtw 0.197 0.257 0.536 0.292 0.692
alternate-edr 0.194 0.242 0.533 0.275 0.688
alternate-erp 0.170 0.220 0.509 0.257 0.674
alternate-euclidean 0.177 0.228 0.520 0.264 0.687
alternate-lcss 0.141 0.198 0.498 0.233 0.639
alternate-msm 0.214 0.270 0.545 0.303 0.697
alternate-shape-dtw 0.227 0.277 0.561 0.311 0.702
alternate-soft-dtw 0.239 0.294 0.569 0.327 0.706
alternate-twe 0.213 0.268 0.548 0.301 0.697
alternate-wddtw 0.180 0.239 0.525 0.274 0.676
alternate-wdtw 0.194 0.254 0.533 0.289 0.689

Table 6.5 Summary of average score across multiple evaluation metrics over 102
datasets from the UCR archive using the test-train split.
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Fig. 6.20 CD diagrams of alternate k-medoids over 102 datasets from the UCR
archive using the test-train split. Missing datasets are outlined in Table A.15.

Image Spectro Sensor Simulated Device Motion ECG
alternate-adtw 0.280 0.154 0.169 0.335 0.146 0.213 0.315
alternate-ddtw 0.255 0.120 0.182 0.257 0.105 0.145 0.249
alternate-dtw 0.211 0.163 0.166 0.385 0.119 0.185 0.217
alternate-edr 0.255 0.123 0.182 0.311 0.121 0.121 0.211
alternate-erp 0.216 0.087 0.179 0.215 0.048 0.131 0.263
alternate-euclidean 0.225 0.151 0.158 0.228 0.064 0.140 0.275
alternate-lcss 0.133 0.041 0.158 0.260 0.070 0.143 0.185
alternate-msm 0.273 0.152 0.178 0.313 0.103 0.179 0.320
alternate-shape-dtw 0.260 0.136 0.200 0.349 0.150 0.195 0.378
alternate-soft-dtw 0.283 0.156 0.189 0.468 0.172 0.206 0.273
alternate-twe 0.281 0.121 0.187 0.273 0.132 0.160 0.341
alternate-wddtw 0.272 0.131 0.172 0.212 0.054 0.086 0.249
alternate-wdtw 0.212 0.160 0.171 0.374 0.070 0.182 0.225

Table 6.6 Average ARI score on problems split by problem domain. 102 datasets
from the UCR archive using the test-train split.

Figure 6.25 presents the critical difference diagram for alternate k-medoids

with the baseline clusterers over the test-train split. Across all evaluation metrics,
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alternate-soft-DTW and alternate-ADTW emerge as the top two performing alter-

nate k-medoids clusterers, consistently outperforming k-means-ba-DTW. While k-

means-ba-DTW remains in the top clique for both ARI and CLACC, it is surpassed

on average by alternate-MSM, alternate-TWE, alternate-shape-DTW, alternate-soft-

DTW, and alternate-ADTW. Alternate-ERP and alternate-LCSS, on the other hand,

are consistently in the bottom clique and are the only two elastic distances that

perform worse than k-means-Euclidean.
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Fig. 6.25 CD diagrams of alternate k-medoids over 102 datasets from the UCR
archive using the test-train split. Missing datasets are outlined in Table A.16

6.4.3 Comparison to k-means

One of our hypothesis was that k-medoids algorithms would outperform k-means

across all elastic distances. Secondly, we proposed that using medoids as centroids

would result in similar performance improvements across all distances when com-
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pared to k-means. We will now test these hypotheses by directly comparing the

results of k-means with those of alternate k-medoids.

Alternate k-medoids employs Lloyd’s algorithm, similar to k-means. As previ-

ously outlined, the key difference between alternate k-medoids and k-means lies

in how the centroids are computed. Alternate k-medoids uses medoids (which can

utilise elastic distances), while k-means relies on the arithmetic mean. Comparing

alternate k-medoids with k-means enables us to directly assess the impact of using

medoids as cluster centroids.

Figure 6.30 presents the critical difference diagram comparing the performance

of alternate k-medoids and k-means. In this comparison, all elastic distances

perform better with alternate k-medoids than with k-means. On average, we observe

a rank improvement of approximately 2.22 when using alternate k-medoids instead

of k-means with the same elastic distance. This is shown in Figure 6.31.

However, while alternate k-medoids with elastic distances outperform k-means

with the same distances, k-means-ADTW and k-means-MSM still appear in the

top clique for ARI, CLACC, and NMI. These two methods are only consistently

outperformed by alternate-TWE, alternate-MSM, and alternate-ADTW.

Figure 6.32 compares the difference in average score for each elastic distance

in terms of ARI and AMI. The numbers shown above each distances bars shows

the difference between scores of alternate k-medoids (blue) and k-means (red). For

both ARI and AMI, the average score improves for all distances except ERP and

Euclidean. On average alternate k-medoids improves the clusterers performance by

0.031 for ARI and 0.037 AMI.

Figure 6.32 shows that DDTW, DTW and EDR exhibit the most significant

improvements for both AMI and ARI. These distances have an implicit warping

penalty. In Chapter 5, we hypothesised that elastic distances with implicit warping

penalties are more susceptible to pathological warping, especially when compared

to an unaligned centroid. Based on Figure 6.32, we theorise that when the centroid
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Fig. 6.30 CD diagrams of alternate k-medoids and k-means over 105 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined
in Table A.17

Fig. 6.31 Average rank improvement for each elastic distance when using alternate
k-medoids over k-means over 105 datasets from the UCR archive combined test-
train split.
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is computed with alignment, less pathological warping occurs, leading to a general

improvement for all distances, but particularly for those with an implicit warping

penalty, such as DTW, DDTW and EDR.

(a) ARI (b) AMI

Fig. 6.32 Comparison of the performance of alternate k-medoids and k-means using
various elastic distances across 105 datasets from the UCR archive, evaluated on the
combined test-train split. The blue bars represent the scores for alternate k-medoids,
while the red bars indicate the scores for k-means. The dashed blue and red lines
denote the average scores for alternate k-medoids and k-means, respectively.

Figure 6.37 presents the comparison between alternate k-medoids and k-means

for the test-train split. In this comparison, we observe that alternate k-medoids

improves clustering performance for many elastic distances. However, the im-

provement is not as significant as in the combined test-train split comparison.

Additionally, for some evaluation metrics, alternate k-medoids performs worse than

k-means with the same elastic distance. For instance, Figure 6.37 shows that across

all four evaluation metrics, k-means-MSM consistently achieves a higher average

rank than alternate-MSM.

Figure 6.38 shows the ARI and AMI performance for each distance using

alternate k-medoids and k-means over the test-train split. On average, alternate

k-medoids improved the ARI performance by 0.007. For AMI, the improvement

was 0.012. This represents a notably smaller improvement than observed in the

combined test-train split.
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Fig. 6.37 CD diagrams of alternate k-medoids and k-means over 106 datasets
from the UCR archive using the test-train split. Missing datasets are outlined in
Table A.18.

Similar to the combined test-train split, alternate DTW, DDTW and EDR show

the greatest improvement compared to k-means. This further supports our theory

that distances with an implicit warping penalty depend more on an aligned centroid

for improved performance than those with an explicit penalty.

Additionally, Figure 6.38 shows that alternate-ERP performs worse than k-

means-ERP, consistent with the combined test-train split results. However, for

ARI, alternate-MSM perform worse than k-means-MSM. This was not observed in

the combined test-train split. Though the difference is only −0.010 for ARI and

−0.004 for AMI, in the combined test-train split, alternate-MSM outperformed

k-means-MSM.
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(a) ARI (b) AMI

Fig. 6.38 Comparison of the performance of alternate k-medoids and k-means using
various elastic distances across 106 datasets from the UCR archive, evaluated on
the test-train split. The blue bars represent the scores for alternate k-medoids, while
the red bars indicate the scores for k-means. The dashed blue and red lines denote
the average scores for alternate k-medoids and k-means, respectively.

Overall, for both the combined test-train split and the test-train split, alternate

k-medoids improves clustering performance compared to k-means when using

the same elastic distance. This improvement is particularly evident for distances

that use an implicit warping penalty. However, the improvement observed in the

test-train split is significantly smaller, on average, than in the combined test-train

split. We hypothesise that this is due to the reduced amount of data available in the

test-train split, which lowers the likelihood of finding good medoids in the training

data. As a result, performance degrades, and the improvement is substantially

reduced.

6.4.4 Alternate k-medoids conclusion

Overall, for both the combined test-train split and the test-train split, we observe

that elastic distances enhance the performance of alternate k-medoids compared

to alternate-Euclidean. Additionally, in both splits, the best-performing alternate

models perform similarly to, and in some evaluation metrics, even better than the

current state-of-the-art approaches.
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Furthermore, we directly compared alternate k-medoids with elastic distances to

k-means using the same elastic distances. In the combined test-train split, alternate k-

medoids improved clustering by an average of 0.027 ARI and 0.032 AMI compared

to k-means using the same distance. A similar trend was observed in the test-train

split, though to a lesser extent, where alternate k-medoids improved clustering by

an average of 0.0046 ARI and 0.0089 AMI compared to k-means.

At the beginning of this section, we also hypothesised that the performance

improvement compared to k-means using the same elastic distance would be con-

sistent across distances. However, this was not the case. Specifically, distances with

implicit warping penalties (e.g., DTW and DDTW) benefited significantly more

from using medoids than those with explicit warping penalties (e.g., MSM, TWE,

ADTW). This difference was particularly pronounced in the test-train split results.

6.5 PAM

For our experiments each PAM model configuration is defined in Table 6.2.

max_iters n_init init_algo distance
PAM-adtw 50 10 Forgy ADTW
PAM-ddtw 50 10 Forgy DDTW
PAM-dtw 50 10 Forgy DTW
PAM-edr 50 10 Forgy EDR
PAM-erp 50 10 Forgy ERP
PAM-euclidean 50 10 Forgy Euclidean
PAM-lcss 50 10 Forgy LCSS
PAM-msm 50 10 Forgy MSM
PAM-twe 50 10 Forgy TWE
PAM-wddtw 50 10 Forgy WDDTW
PAM-wdtw 50 10 Forgy WDTW
PAM-shape-dtw 50 10 Forgy shape-DTW
PAM-soft-dtw 50 10 Forgy soft-DTW

Table 6.7 PAM model parameters
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6.5.1 PAM Combined test-train split

Figure 6.43 shows the critical difference diagram for PAM with 12 different elastic

distances. In Figure 6.43, all elastic distances outperform PAM-Euclidean for all

evaluation metrics. In addition, across all evaluation metrics, PAM-TWE and PAM-

MSM consistently appear in the top clique. PAM-soft-DTW, PAM-ADTW, and

PAM-EDR are in the top clique for three out of the four evaluation metrics. While

all elastic distances perform better than PAM-Euclidean, PAM-LCSS and PAM-

ERP consistently appear in the bottom clique alongside PAM-Euclidean across all

evaluation metrics.
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Fig. 6.43 CD diagrams of PAM over 101 datasets from the UCR archive using the
combine test train split. Missing datasets are outlined in Table A.19.

Table 6.8 shows the average score for each evaluation metric. For all metrics,

PAM-TWE achieves the highest average score. However, when assessing perfor-

mance by domain (Table 6.9), PAM-TWE only performs best in the Device domain.
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Furthermore, no single distance consistently performs best over the the majority of

domains. PAM-ADTW performs best in two categories which is the most categories

one distance performs best in. This suggests that even though for all the distances

the same potential medoids are available, no distance chooses the same medoids.

ARI AMI CLAcc NMI RI
pam-adtw 0.244 0.293 0.562 0.317 0.705
pam-ddtw 0.206 0.264 0.541 0.284 0.681
pam-dtw 0.225 0.276 0.550 0.301 0.694
pam-edr 0.231 0.267 0.562 0.289 0.690
pam-erp 0.177 0.224 0.512 0.252 0.681
pam-euclidean 0.177 0.222 0.507 0.250 0.684
pam-lcss 0.153 0.200 0.507 0.224 0.631
pam-msm 0.255 0.299 0.573 0.322 0.711
pam-shape-dtw 0.243 0.290 0.564 0.314 0.703
pam-soft-dtw 0.251 0.300 0.571 0.324 0.703
pam-twe 0.262 0.304 0.579 0.328 0.714
pam-wddtw 0.203 0.258 0.541 0.283 0.680
pam-wdtw 0.222 0.273 0.549 0.299 0.692

Table 6.8 Summary of average score across multiple evaluation metrics over 101
datasets from the UCR archive using the combined test-train split.

Image Spectro Sensor Simulated Device Motion ECG
pam-adtw 0.312 0.232 0.229 0.368 0.106 0.171 0.291
pam-ddtw 0.326 0.170 0.230 0.170 0.084 0.083 0.162
pam-dtw 0.284 0.191 0.208 0.409 0.138 0.160 0.149
pam-edr 0.341 0.101 0.254 0.304 0.146 0.124 0.206
pam-erp 0.248 0.182 0.175 0.165 0.093 0.100 0.187
pam-euclidean 0.247 0.217 0.180 0.155 0.064 0.099 0.152
pam-lcss 0.154 0.055 0.190 0.241 0.064 0.146 0.282
pam-msm 0.355 0.183 0.238 0.319 0.173 0.150 0.356
pam-shape-dtw 0.307 0.209 0.234 0.344 0.123 0.159 0.397
pam-soft-dtw 0.340 0.137 0.240 0.478 0.165 0.165 0.185
pam-twe 0.351 0.196 0.240 0.413 0.181 0.148 0.351
pam-wddtw 0.337 0.172 0.198 0.191 0.081 0.083 0.172
pam-wdtw 0.283 0.203 0.193 0.470 0.076 0.164 0.172

Table 6.9 Average ARI score on problems split by problem domain over 101 datasets
from the UCR archive using the combined test-train split.
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To contextualise our PAM results, Figure 6.48 shows the critical difference

diagrams for PAM with 12 elastic distances compared to the baseline clusterers. In

Figure 6.48 PAM-MSM consistently outperforms k-means-ba-DTW in average rank

across all evaluation metrics, although the difference is not statistically significant

for any metric. For all evaluation metrics, PAM-MSM, PAM-soft-DTW, PAM-TWE,

k-means-ba-DTW, PAM-ADTW, PAM-EDR, and PAM-shape-DTW consistently

appear in the top clique. Interestingly, k-shapes, which for previous experiments

always appeared in the top clique for all evaluation metrics, only appears in the top

clique for CLACC and ARI.

Furthermore, in Figure 6.48, all clusterers outperform PAM-Euclidean. How-

ever, PAM-ERP is outperformed by k-means-Euclidean for CLACC, and PAM-

LCSS is outperformed by k-means-Euclidean for AMI, ARI, and NMI. PAM-

Euclidean, PAM-LCSS, k-means-Euclidean, and PAM-ERP consistently appear in

the bottom clique.

Another notable observation is that PAM-DTW performs significantly worse

than k-means-ba-DTW in three out of the four evaluation metrics, only appearing

in the same clique for ARI. This suggests that, across the UCR archive, averaging-

based centroid methods may outperform medoid-based centroid methods. We will

explore this hypothesis further later in the chapter.

Due to the 11 missing datasets in the initial comparison of PAM with all elastic

distances, we exclude models with more than 5 missing datasets to ensure that the

missing data does not significantly affect our findings. As a result, we exclude

PAM-soft-DTW and PAM-shape-DTW, which failed to produce results for 6 and

11 datasets, respectively, due to exceeding the seven-day runtime limit. Figure 6.53

presents the critical difference diagrams for PAM across 105 datasets. The rank

order of the distances remains consistent with previous results, even with the

additional datasets.
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Fig. 6.48 CD diagrams of PAM with baseline clusterers over 99 datasets from the
UCR archive using the combine test train split. Missing datasets are outlined in
Table A.20.

Figure 6.54 shows scatter plots comparing the results of PAM-MSM and PAM-

TWE directly against k-means-ba-DTW. Both PAM-MSM and PAM-TWE perform

similarly, winning a comparable number of datasets, and often performing well

on the same datasets. Additionally, for datasets where both methods excel, their

performance is nearly identical, suggesting that PAM-MSM and PAM-TWE likely

find many of the same medoids.

An interesting observation is that, compared to k-means-ba-DTW, both PAM-

MSM and PAM-TWE exhibit significantly better results for some datasets, but

significantly worse performance than k-means-ba-DTW for others. This reveals a

notable weakness of medoid-based clustering algorithms: for strong performance,

there must be a representative medoid in the dataset for each cluster. If such a
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Fig. 6.53 CD diagrams of PAM with 10 elastic distances, exclude PAM-soft-DTW
and PAM-shape-DTW with the baseline clusterers over 105 datasets from the
UCR archive using the combine test-train split. Missing datasets are outlined in
Table A.21.

medoid is absent, the clustering performance degrades significantly. This likely

explains the large performance variance when comparing these methods to k-means-

ba-DTW. For datasets with strong medoids, the PAM models excelled, but for those

without suitable medoids, their performance suffered.

We now consider the runtime complexity of PAM. PAM has a computational

complexity of O(kn2). While it is an expensive algorithm to run, for TSCL specif-

ically, the most expensive component is the requirement of a pairwise distance

matrix. For example, if we were to compute a pairwise distance matrix for the

dataset X of size n using DTW, the computational complexity of DTW is O(m2),

where m is the length of both time series. This means to compute the DTW pairwise



6.5 PAM 212

0.0 0.2 0.4 0.6 0.8 1.0
k-means-ba-dtw ARI

(mean: 0.2547)

0.0

0.2

0.4

0.6

0.8

1.0

pa
m

-m
sm

 A
RI

(m
ea

n:
 0

.2
66

7)

*Dashed lines represent the median

pam-msm wins here
[55W, 1T, 49L]

k-means-ba-dtw wins here
[49W, 1T, 55L]

Wilcoxon test for equality of medians, p-value=0.319
Paired t-test for equality of means, p-value=0.230

(a) PAM-MSM compared to k-means-ba-DTW

0.0 0.2 0.4 0.6 0.8 1.0
k-means-ba-dtw ARI

(mean: 0.2547)

0.0

0.2

0.4

0.6

0.8

1.0

pa
m

-tw
e 

AR
I

(m
ea

n:
 0

.2
73

7)

*Dashed lines represent the median

pam-twe wins here
[53W, 2T, 50L]

k-means-ba-dtw wins here
[50W, 2T, 53L]

Wilcoxon test for equality of medians, p-value=0.294
Paired t-test for equality of means, p-value=0.108

(b) PAM-TWE compared to k-means-ba-DTW

Fig. 6.54 PAM-MSM and PAM-TWE results compared directly to k-means-ba-
DTW over 105 datasets from the UCR archive using the combine test-train split.

distance matrix of X , it would have a computational complexity of O(n2×m2)

(assuming unique pairs).

We specifically observed this huge runtime complexity as all our PAM models

failed to complete within the seven day runtime limit for the Crop dataset. This

is not surprising, as Crop is one of the largest datasets, containing 24,000 unique

instances. Computing a pairwise distance matrix for the Crop dataset dataset would

require 288,000,000 unique distance computations. This highlights one of the key

drawbacks of PAM: calculating large pairwise distance matrices for many elastic

distances is infeasible.

Figure 6.55 shows the relative FitTime for each PAM model compared to the

baseline clusterers. All the considered PAM models exhibited significant runtimes.

However, many appear faster than the baseline models such as k-means-ba-DTW.

This is because in our experimental setup with 10 restarts using different Forgy

initialisations, PAM benefits from precomputing the distance matrix and reusing

it for all restarts. This means that whether we used 1 or 10 restarts, the runtime
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would remain similar. In contrast, clusterers such as k-means-ba-DTW and k-SC

must compute the averages and distances in every iteration, as these values cannot

be precomputed. Therefore, under our methodology, PAM’s runtime might appear

more favourable than it actually is. In practice, if k-means-ba-DTW were run with a

single initialisation, it would be approximately ten times faster than what is shown

in Figure 6.55, whereas PAM’s runtime would remain largely unchanged.
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Fig. 6.55 Relative FitTime violin plot for PAM with 13 distances and the baseline
clusterers over 99 UCR archive datasets using the combined test-train split.

6.5.2 PAM Test-train split

We now examine PAM over the test-train split. Figure 6.60 shows the critical

difference diagrams for PAM using 12 elastic distances across 111 datasets from

the UCR archive. The rank order of each distance remains largely consistent with

the combined test-train split.

PAM-TWE and PAM-MSM consistently appear in the top clique similar to the

combined test-train split. However, in addition for the test-train split, PAM-soft-

DTW, PAM-ADTW, and PAM-shape-DTW are also in the top clique for every
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evaluation metric. Furthermore, PAM-TWE achieves the highest average score

across all evaluation metrics, as shown in Table 6.10, which is consistent with the

combined test-train split.

PAM-Euclidean performs the worst by rank on AMI and NMI but outperforms

PAM-WDDTW and PAM-LCSS on ARI. For CLACC, PAM-Euclidean surpasses

PAM-DTW, PAM-WDDTW, and PAM-ERP. Notably, PAM-WDDTW, PAM-LCSS,

PAM-Euclidean, PAM-ERP, PAM-DDTW, and PAM-DTW consistently appear in

the bottom clique across all evaluation metrics.
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Fig. 6.60 CD diagrams of PAM over 111 datasets from the UCR archive using the
test-train split. Missing datasets are outlined in Table A.22.

Table 6.11 highlights the performance of each model across different domains.

A pattern similar to that in the combined test-train split is observed: no single

distance dominates multiple domains. Interestingly, although PAM-ADTW was the
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top performer in two domains for the combined test-train split, for the test-train

split PAM-ADTW is not the best in any domain.

ARI AMI CLAcc NMI RI
pam-adtw 0.232 0.285 0.567 0.318 0.702
pam-ddtw 0.191 0.256 0.535 0.287 0.675
pam-dtw 0.209 0.268 0.541 0.303 0.692
pam-edr 0.216 0.262 0.553 0.294 0.693
pam-erp 0.185 0.238 0.523 0.275 0.687
pam-euclidean 0.182 0.233 0.522 0.270 0.687
pam-lcss 0.154 0.210 0.507 0.244 0.637
pam-msm 0.240 0.294 0.569 0.327 0.707
pam-shape-dtw 0.231 0.284 0.564 0.318 0.703
pam-soft-dtw 0.239 0.294 0.570 0.328 0.703
pam-twe 0.246 0.299 0.576 0.333 0.711
pam-wddtw 0.180 0.242 0.524 0.276 0.672
pam-wdtw 0.219 0.279 0.552 0.315 0.697

Table 6.10 Summary of average score across multiple evaluation metrics over 111
datasets from the UCR archive using the test-train split.

Image Spectro Sensor Simulated Device Motion ECG
pam-adtw 0.290 0.180 0.179 0.372 0.135 0.198 0.333
pam-ddtw 0.268 0.171 0.176 0.220 0.098 0.093 0.279
pam-dtw 0.250 0.167 0.164 0.417 0.138 0.175 0.215
pam-edr 0.299 0.093 0.202 0.311 0.151 0.137 0.291
pam-erp 0.227 0.186 0.180 0.244 0.067 0.122 0.269
pam-euclidean 0.231 0.179 0.162 0.251 0.075 0.121 0.265
pam-lcss 0.168 0.043 0.162 0.284 0.087 0.158 0.181
pam-msm 0.317 0.186 0.194 0.318 0.164 0.175 0.360
pam-shape-dtw 0.263 0.173 0.205 0.360 0.142 0.184 0.406
pam-soft-dtw 0.298 0.127 0.189 0.462 0.166 0.198 0.324
pam-twe 0.314 0.187 0.203 0.364 0.187 0.174 0.358
pam-wddtw 0.277 0.165 0.149 0.236 0.064 0.079 0.233
pam-wdtw 0.257 0.211 0.178 0.442 0.102 0.180 0.218

Table 6.11 Average ARI score on problems split by problem domain over 111
datasets from the UCR archive using the test-train split.

To contextualise the test-train split results, we include the baseline clusterer in

Figure 6.65. The results of PAM with the baseline differ slightly from those for the
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combined test-train split. PAM-TWE, PAM-MSM, PAM-soft-DTW, PAM-ADTW,

and PAM-shape-DTW consistently appear in the top clique. Notably, k-means-ba-

DTW does not rank in the top clique. The bottom clique remains the same as in the

combined test-train split, with the addition of k-shapes.
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Fig. 6.65 CD diagrams of PAM with baseline clusterers over 111 datasets from
the UCR archive using the test train split split. Missing datasets are outlined in
Table A.22.

To investigate why k-means-ba-DTW did not appear in the top clique, Fig-

ure 6.66 presents a scatter diagram comparing PAM-MSM and PAM-TWE to

k-means-ba-DTW. For the combined test-train split, k-means-ba-DTW demon-

strated comparable performance to PAM-MSM and PAM-TWE. However, for

the test-train split, both PAM-MSM and PAM-TWE significantly outperformed

k-means-ba-DTW. This discrepancy may highlight a potential weakness of DBA,

suggesting that the averages it produces are not as effective on unseen data as
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(b) PAM-TWE compared to k-means-ba-DTW

Fig. 6.66 PAM-MSM and PAM-TWE results compared directly to k-means-ba-
DTW over 111 datasets from the UCR archive using the test-train split.

medoids are. Furthermore, similar to the combined test-train split, PAM-MSM and

PAM-TWE appear to perform well on the same datasets, obtaining similar scores

for them. This may again suggest that similar medoids are being selected for both

methods.

6.5.3 PAM conclusion

Overall, for both the combined test-train split and the test-train split, we observe

that elastic distances significantly enhance the performance of PAM compared to

PAM with the Euclidean distance. Additionally, for the combined test-train split, the

best-performing elastic distances with PAM are not significant difference from the

state-of-the-art k-means-ba-DTW algorithm. Furthermore, for the test-train split,

several elastic distances with PAM outperform the state-of-the-art by a significant

margin.
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The rank order of elastic distances remains consistent across both the combined

test-train and test-train splits. Specifically, MSM and TWE consistently emerge as

the best-performing elastic distances for PAM, followed closely by ADTW, shape-

DTW, and soft-DTW. This pattern in rank order is similar to what we observed with

k-means. This further evidences our hypothesis that elastic distances that explicitly

penalise warping off are better for TSCL.

6.6 CLARA

For our CLARA experiments, we use the configurations defined in Table 6.12.

max_iters n_init init_algo distance n_samples
CLARA-adtw 50 10 Forgy ADTW 40+2k
CLARA-ddtw 50 10 Forgy DDTW 40+2k
CLARA-dtw 50 10 Forgy DTW 40+2k
CLARA-edr 50 10 Forgy EDR 40+2k
CLARA-erp 50 10 Forgy ERP 40+2k
CLARA-euclidean 50 10 Forgy Euclidean 40+2k
CLARA-lcss 50 10 Forgy LCSS 40+2k
CLARA-msm 50 10 Forgy MSM 40+2k
CLARA-twe 50 10 Forgy TWE 40+2k
CLARA-wddtw 50 10 Forgy WDDTW 40+2k
CLARA-wdtw 50 10 Forgy WDTW 40+2k
CLARA-shape-dtw 50 10 Forgy shape-DTW 40+2k
CLARA-soft-dtw 50 10 Forgy soft-DTW 40+2k

Table 6.12 CLARA model parameters. k is the number of clusters for a given
datasets.

6.6.1 CLARA Combined test-train split

Figure 6.71 presents the critical difference diagrams for CLARA using 12 dif-

ferent elastic distances over 112 datasets. CLARA-soft-DTW, CLARA-MSM,

CLARA-TWE, CLARA-shape-DTW, and CLARA-ADTW consistently appear in

the top clique across all evaluation metrics. Additionally, although not significantly
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different, CLARA-soft-DTW consistently ranks the highest. All elastic distances

outperform CLARA-Euclidean for all evaluation metrics. However, CLARA-ERP

and CLARA-LCSS consistently rank in the bottom clique alongside CLARA-

Euclidean.
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Fig. 6.71 CD diagrams of CLARA over 112 datasets from the UCR archive using
the combined test-train split.

We anticipated the rankings to be similar to those of PAM, as CLARA uses

PAM internally. For the most part, the results are comparable, with soft-DTW,

MSM, TWE, and ADTW consistently appearing in the top 4–5 positions. However,

we observe that shape-DTW performs better with CLARA than with PAM in terms

of ranking, while EDR, which appeared in the top clique for PAM, does not for

CLARA. Additionally, WDTW performs significantly better with CLARA, ranking

in the top clique for AMI and NMI, compared to its performance with PAM. The
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lower-ranking distances follow a similar pattern, with ERP and LCSS consistently

found in the bottom clique alongside Euclidean, as with PAM.

Table 6.13 presents the average scores across 112 datasets for each distance and

evaluation metric. CLARA-soft-DTW achieves the highest average score across

four evaluation metrics and ties with CLARA-shape-DTW for the best average

score in ARI. However, the differences in raw average scores among CLARA-soft-

DTW, CLARA-shape-DTW, CLARA-MSM, CLARA-ADTW, and CLARA-TWE

are minimal.

ARI AMI CLAcc NMI RI
clara-adtw 0.201 0.259 0.529 0.282 0.687
clara-ddtw 0.164 0.232 0.507 0.254 0.653
clara-dtw 0.187 0.247 0.519 0.271 0.682
clara-edr 0.182 0.228 0.515 0.250 0.668
clara-erp 0.159 0.214 0.493 0.239 0.668
clara-euclidean 0.161 0.211 0.490 0.237 0.672
clara-lcss 0.138 0.190 0.487 0.214 0.632
clara-msm 0.200 0.258 0.528 0.280 0.684
clara-shape-dtw 0.214 0.265 0.542 0.287 0.690
clara-soft-dtw 0.214 0.271 0.546 0.294 0.691
clara-twe 0.200 0.258 0.527 0.281 0.685
clara-wddtw 0.160 0.227 0.504 0.252 0.658
clara-wdtw 0.185 0.248 0.522 0.273 0.681

Table 6.13 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the combined test-train split.

Table 6.14 shows CLARA’s performance across different problem domains.

CLARA-soft-DTW performs best in three domains: Image, Simulated, and Device.

CLARA-shape-DTW also leads in three domains: Sensor, Motion, and ECG.

Finally, CLARA-DTW performs best in the Spectro domain, tied with CLARA-

ADTW.

In our PAM results, presented in Section 6.5, shape-DTW and soft-DTW were

the best performers in only one domain each. Specifically, PAM-shape-DTW

excelled in the ECG domain, and PAM-soft-DTW in the Simulated domain. With
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CLARA, both CLARA-soft-DTW and CLARA-shape-DTW remain top performers

in these domains while also excelling in two additional domains each.

PAM-ADTW was the top performer in the Spectro domain, and CLARA-ADTW

has maintained that position. However, CLARA-DTW surprisingly shares the same

average score in the Spectro domain as CLARA-ADTW. This is unexpected, as

ADTW has consistently outperformed DTW in all of our previous experiments,

including the PAM results.

Image Spectro Sensor Simulated Device Motion ECG
clara-adtw 0.226 0.220 0.189 0.353 0.095 0.135 0.231
clara-ddtw 0.218 0.164 0.166 0.208 0.046 0.096 0.171
clara-dtw 0.203 0.220 0.184 0.324 0.111 0.120 0.174
clara-edr 0.228 0.092 0.204 0.279 0.132 0.101 0.188
clara-erp 0.184 0.161 0.182 0.196 0.078 0.099 0.157
clara-euclidean 0.184 0.207 0.171 0.192 0.031 0.097 0.230
clara-lcss 0.139 0.028 0.187 0.216 0.062 0.120 0.176
clara-msm 0.239 0.172 0.216 0.238 0.096 0.127 0.280
clara-shape-dtw 0.206 0.186 0.227 0.322 0.116 0.173 0.367
clara-soft-dtw 0.242 0.155 0.220 0.395 0.137 0.137 0.243
clara-twe 0.222 0.190 0.218 0.295 0.117 0.117 0.248
clara-wddtw 0.217 0.159 0.178 0.180 0.044 0.073 0.166
clara-wdtw 0.198 0.182 0.195 0.353 0.056 0.134 0.200

Table 6.14 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the combined test-train split.

Figure 6.76 presents the critical difference diagram for CLARA with 12 elastic

distances, including the baseline clusterers. Across all evaluation metrics, k-means-

ba-DTW ranks the highest and consistently appears in the top clique alongside

k-shapes. However, for CLACC, CLARA-soft-DTW also appears in the top clique.

Beyond CLACC, no other CLARA models are present in a top clique.

Additionally, several CLARA models perform worse than k-means-Euclidean.

Specifically, CLARA-DDTW, CLARA-WDDTW, CLARA-ERP, and CLARA-

LCSS consistently rank below k-means-Euclidean for all evaluation metrics. Fur-

thermore, CLARA-LCSS and CLARA-ERP consistently appear in the bottom
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clique and, for NMI, ARI, and AMI, perform significantly worse than k-means-

Euclidean.
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Fig. 6.76 CD diagrams of CLARA with baseline clusterers over 106 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined
in Table A.24.

Figure 6.77 presents the FitTime critical difference diagram for CLARA, includ-

ing the baseline clusterers. Most CLARA models are faster than k-shapes, which

was previously the fastest state-of-the-art TSCL model. Notably, CLARA-MSM,

CLARA-TWE, and CLARA-ADTW, as shown in Figure 6.76, do not differ signif-

icantly from k-shapes in terms of clustering performance. However, Figure 6.77

shows that they are significantly faster. CLARA-soft-DTW is the best-performing

CLARA clusterer, but is considerably slower than k-shapes. Therefore, a potential

alternative to k-shapes, which offers similar performance but is faster, is CLARA

with MSM, TWE, or ADTW.
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Fig. 6.77 CD diagram for FitTime of CLARA with 12 elastic distance and the
baseline clusterers over 106 UCR archive datasets using the combined test-train
split.

6.6.2 CLARA Test-train split

Figure 6.82 shows the critical difference diagrams for CLARA using the test-train

split across 12 elastic distances. The rank order is very similar to the combined test-

train split, where CLARA-soft-DTW, CLARA-MSM, CLARA-TWE, and CLARA-

ADTW consistently appear in the top clique. However, CLARA-shape-DTW does

not appear in the top clique for NMI, whereas it was included in the top clique for

all evaluation metrics in the combined test-train split. While all CLARA clusterers

outperform CLARA-Euclidean, CLARA-ERP and CLARA-LCSS continue to rank

in the bottom clique for every evaluation metric. Additionally, in the test-train split,

CLARA-DDTW and CLARA-WDDTW also consistently rank in the bottom clique

for every evaluation metric.

In Figure 6.82, we observe that, similar to the combined test-train split, CLARA-

soft-DTW is the best-performing clusterer. However, the gap in absolute average

rank is much smaller compared to the combined test-train split. In the combined

test-train split, CLARA-soft-DTW was on average 0.6662 ranks higher than the

next best CLARA clusterer for each evaluation metric (as shown in Figure 6.71). In
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contrast, for the test-train split, CLARA-soft-DTW is only 0.3186 ranks higher on

average than the second-best CLARA clusterer.
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Fig. 6.82 CD diagrams of CLARA over 112 datasets from the UCR archive using
the test train split.

This reduction in CLARA-soft-DTW’s dominance for the test-train split is

further highlighted in Table 6.15, where it only achieves the highest average score

for CLACC. In the combined test-train split, CLARA-soft-DTW had the best

average score across all evaluation metrics. In the test-train split, CLARA-MSM

has the highest average scores for ARI, AMI, and NMI, and ties with CLARA-TWE

for the best score in RI.

Table 6.16 shows the best-performing CLARA clusterers by domain for the

test-train split. The same distances continue to excel in similar domains as in the

combined test-train split, with CLARA-soft-DTW still leading in the Simulated and

Device domains and CLARA-shape-DTW performing best in Motion and ECG.
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ARI AMI CLAcc NMI RI
clara-adtw 0.190 0.244 0.533 0.279 0.681
clara-ddtw 0.153 0.222 0.504 0.254 0.646
clara-dtw 0.181 0.240 0.523 0.275 0.678
clara-edr 0.182 0.227 0.520 0.260 0.670
clara-erp 0.153 0.205 0.497 0.243 0.664
clara-euclidean 0.154 0.200 0.495 0.238 0.666
clara-lcss 0.125 0.176 0.484 0.210 0.623
clara-msm 0.203 0.259 0.539 0.293 0.685
clara-shape-dtw 0.196 0.247 0.541 0.281 0.681
clara-soft-dtw 0.200 0.256 0.545 0.291 0.683
clara-twe 0.200 0.254 0.535 0.288 0.685
clara-wddtw 0.151 0.221 0.506 0.256 0.653
clara-wdtw 0.184 0.244 0.528 0.280 0.680

Table 6.15 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the test-train split

However, CLARA-MSM performs best in the Image domain, and CLARA-TWE

leads in the Sensor domain, both of which were close to being the best in the

combined test-train split. CLARA-WDTW emerges as the best performer in the

Spectro domain, whereas CLARA-DTW and CLARA-ADTW were the best in this

domain in the combined test-train split. CLARA-DTW remains the second-best

performer for Spectro.

An interesting observation from Tables 6.15 and 6.16 is that the average values

in the test-train split are not significantly lower than those in the combined test-train

split. For example, CLARA-soft-DTW achieved an average score of 0.546 in the

combined test-train split and 0.545 in the test-train split.

Furthermore, when comparing the average ARI for the Image, Spectro, and

Device domains between the combined test-train split and the test-train split, we

find that the test-train split yields a higher average ARI for these three domains.

For instance, in the Image domain, the best-performing CLARA clusterer achieved

an average ARI of 0.242 in the combined split, compared to 0.257 in the test-train

split.
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Image Spectro Sensor Simulated Device Motion ECG
clara-adtw 0.221 0.186 0.170 0.310 0.096 0.144 0.231
clara-ddtw 0.187 0.165 0.156 0.182 0.062 0.108 0.167
clara-dtw 0.202 0.224 0.168 0.293 0.114 0.122 0.170
clara-edr 0.240 0.076 0.202 0.263 0.133 0.096 0.200
clara-erp 0.182 0.166 0.169 0.201 0.047 0.098 0.153
clara-euclidean 0.184 0.190 0.152 0.207 0.018 0.096 0.225
clara-lcss 0.120 0.023 0.167 0.212 0.064 0.121 0.137
clara-msm 0.257 0.182 0.199 0.268 0.086 0.131 0.267
clara-shape-dtw 0.211 0.170 0.182 0.298 0.102 0.168 0.324
clara-soft-dtw 0.229 0.127 0.183 0.371 0.152 0.152 0.248
clara-twe 0.253 0.182 0.208 0.230 0.111 0.118 0.232
clara-wddtw 0.179 0.170 0.173 0.196 0.056 0.076 0.162
clara-wdtw 0.195 0.231 0.179 0.337 0.062 0.131 0.188

Table 6.16 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the test-train split.

For many other clusterers, this outcome would be unexpected. However, since

CLARA uses a randomly selected subset of data, these results may suggest that

the training split contains more “good” potential medoids than the test split. As a

result, when the test split is excluded from training, the likelihood of identifying

one of these better medoids increases compared to the combined test-train split.

Figure 6.87 presents the critical difference diagrams for CLARA using 12 elastic

distances, including the baseline clusterers. The ranking is very similar to that of the

combined test-train split, with the exception of k-shapes performing poorly on the

test-train split. We also observe that the performance gap between the best CLARA

clusterers and the state-of-the-art k-means-ba-DTW is very small. Additionally,

while only CLARA-soft-DTW appeared in the top clique for the combined test-train

split, Figure 6.87 shows that CLARA-MSM consistently appears in the top clique

for every evaluation metric.
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Fig. 6.87 CD diagrams of CLARA with baseline clusterers over 112 datasets from
the UCR archive using the test train split.

6.6.3 CLARA Conclusion

Overall, CLARA exhibits a similar rank ordering of elastic distances to what

was observed in PAM and alternate k-medoids. For the combined test-train split,

CLARA-soft-DTW was the best-performing clusterer across all evaluation metrics

in terms of both average rank and absolute scores. In the test-train split, CLARA-

soft-DTW also had the highest average rank across all evaluation metric, but it was

consistently outperformed by CLARA-MSM in terms of average scores.

Most of the CLARA clusterers performed significantly worse than the current

state-of-the-art. While CLARA-soft-DTW was not consistently significantly dif-

ferent from k-shapes, it was much slower, greatly reducing its utility. Overall, our

CLARA experiments suggest that CLARA is not well-suited for TSCL, even with
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elastic distances. However, the results do help further support our hypothesis on

which elastic distances perform best.

6.7 CLARANS

For each of our CLARANS experiments we use the model configurations defined

in Table 6.17.

max_iters n_init init_algo distance max_neighbours
CLARANS-adtw 50 10 Forgy ADTW 0.0125(k(n− k))
CLARANS-ddtw 50 10 Forgy DDTW 0.0125(k(n− k))
CLARANS-dtw 50 10 Forgy DTW 0.0125(k(n− k))
CLARANS-edr 50 10 Forgy EDR 0.0125(k(n− k))
CLARANS-erp 50 10 Forgy ERP 0.0125(k(n− k))
CLARANS-euclidean 50 10 Forgy Euclidean 0.0125(k(n− k))
CLARANS-lcss 50 10 Forgy LCSS 0.0125(k(n− k))
CLARANS-msm 50 10 Forgy MSM 0.0125(k(n− k))
CLARANS-twe 50 10 Forgy TWE 0.0125(k(n− k))
CLARANS-wddtw 50 10 Forgy WDDTW 0.0125(k(n− k))
CLARANS-wdtw 50 10 Forgy WDTW 0.0125(k(n− k))
CLARANS-shape-dtw 50 10 Forgy shape-DTW 0.0125(k(n− k))
CLARANS-soft-dtw 50 10 Forgy soft-DTW 0.0125(k(n− k))

Table 6.17 CLARANS model parameters. k is the number of clusters for a given
datasets and n is the number of instances for a given dataset.

6.7.1 CLARANS Combined test-train split

Figure 6.92 presents the critical difference diagrams for CLARANS using 12

elastic distances over the combined test-train split. For every evaluation metric,

CLARANS-ADTW, CLARANS-soft-DTW, CLARANS-MSM, and CLARANS-

TWE consistently appear in the top clique, just as they did for PAM and CLARA.

Additionally, all CLARANS clusterers outperform CLARANS-Euclidean. How-

ever, similar to CLARA and PAM, CLARANS-LCSS and CLARANS-ERP consis-

tently rank in the bottom clique along with CLARANS-Euclidean.



6.7 CLARANS 229

12345678910111213

clarans-adtw5.7028

clarans-soft-dtw5.8066

clarans-msm6.0000

clarans-twe6.2972

clarans-shape-dtw6.4104

clarans-wdtw6.5849

clarans-ddtw6.5896
clarans-wddtw 6.8160

clarans-dtw 6.9009
clarans-edr 7.2689
clarans-lcss 8.6698
clarans-erp 8.7217

clarans-euclidean 9.2311

Fig. 6.88 AMI

12345678910111213

clarans-adtw5.7925

clarans-msm5.8962

clarans-twe5.9906

clarans-soft-dtw6.1132

clarans-shape-dtw6.5377

clarans-dtw6.5755

clarans-wdtw6.6557
clarans-edr 6.7783

clarans-ddtw 7.3774
clarans-wddtw 7.5283

clarans-lcss 8.4057
clarans-erp 8.4764

clarans-euclidean 8.8726

Fig. 6.89 ARI

12345678910111213

clarans-twe5.9434

clarans-msm5.9528

clarans-adtw6.1415

clarans-soft-dtw6.1981

clarans-shape-dtw6.4953

clarans-wdtw6.6651

clarans-dtw6.6840
clarans-edr 6.7500

clarans-ddtw 7.2783
clarans-wddtw 7.4528

clarans-lcss 8.1557
clarans-erp 8.3632

clarans-euclidean 8.9198

Fig. 6.90 CLACC

12345678910111213

clarans-adtw5.6132

clarans-soft-dtw5.8019

clarans-msm6.0142

clarans-twe6.2689

clarans-shape-dtw6.4340

clarans-wdtw6.5519

clarans-ddtw6.8160
clarans-dtw 6.9057

clarans-wddtw 6.9198
clarans-edr 7.2406
clarans-erp 8.6415
clarans-lcss 8.6462

clarans-euclidean 9.1462

Fig. 6.91 NMI

Fig. 6.92 CD diagrams of CLARANS over 106 datasets from the UCR archive
using the combined test-train split. Missing datasets are outlined in Table A.23.

Table 6.18 shows the average score for each evaluation metric for CLARANS.

CLARANS-ADTW is the best-performing clusterer in four out of five evaluation

metrics, while CLARANS-TWE performs best in one. This differs from what we

observed with PAM and CLARA, where TWE was the best-performing distance for

PAM, and soft-DTW led for CLARA across all metrics. However, the differences

between the top distances in CLARA and PAM were minimal. We observe the same

trend for CLARANS where CLARANS-ADTW, CLARANS-MSM, CLARANS-

TWE, and CLARANS-soft-DTW show only minimal differences in total average

scores.

Table 6.19 presents CLARANS’ performance across different domains. Similar

to PAM, no single distance dominates across a majority of domains. In fact, six

different distances are best across the seven domains, with only CLARANS-shape-

DTW achieving the highest average score in more than one domain. Additionally,
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like CLARA, DTW performs best in the Spectro domain. In the Simulated domain,

it is noteworthy how much better CLARANS-WDTW performs, with an ARI score

0.092 higher than the next best CLARANS clusterer.

ARI AMI CLAcc NMI RI
clarans-adtw 0.252 0.298 0.565 0.322 0.711
clarans-ddtw 0.207 0.268 0.538 0.288 0.686
clarans-dtw 0.231 0.275 0.557 0.300 0.700
clarans-edr 0.222 0.259 0.549 0.281 0.690
clarans-erp 0.178 0.224 0.512 0.251 0.681
clarans-euclidean 0.175 0.220 0.507 0.247 0.684
clarans-lcss 0.151 0.201 0.505 0.225 0.639
clarans-msm 0.240 0.290 0.564 0.313 0.706
clarans-shape-dtw 0.235 0.284 0.555 0.308 0.703
clarans-soft-dtw 0.239 0.291 0.562 0.315 0.699
clarans-twe 0.250 0.295 0.568 0.318 0.711
clarans-wddtw 0.204 0.258 0.535 0.282 0.685
clarans-wdtw 0.233 0.284 0.553 0.308 0.703

Table 6.18 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

Image Spectro Sensor Simulated Device Motion ECG
clarans-adtw 0.330 0.188 0.218 0.436 0.143 0.173 0.281
clarans-ddtw 0.305 0.151 0.229 0.234 0.091 0.088 0.175
clarans-dtw 0.297 0.219 0.184 0.436 0.154 0.158 0.153
clarans-edr 0.325 0.078 0.212 0.347 0.165 0.121 0.222
clarans-erp 0.236 0.167 0.164 0.264 0.111 0.102 0.168
clarans-euclidean 0.247 0.207 0.153 0.234 0.040 0.101 0.160
clarans-lcss 0.155 0.049 0.169 0.293 0.080 0.130 0.267
clarans-msm 0.325 0.170 0.216 0.368 0.167 0.144 0.270
clarans-shape-dtw 0.305 0.191 0.203 0.358 0.134 0.142 0.416
clarans-soft-dtw 0.333 0.134 0.195 0.436 0.189 0.156 0.200
clarans-twe 0.332 0.172 0.236 0.364 0.171 0.148 0.336
clarans-wddtw 0.316 0.167 0.203 0.248 0.081 0.079 0.176
clarans-wdtw 0.292 0.216 0.192 0.528 0.075 0.165 0.164

Table 6.19 Average ARI score on problems split by problem domain over 106
datasets from the UCR archive using the test-train split.
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Figure 6.97 shows the critical difference diagrams for CLARANS alongside the

baseline clusterers. For AMI and NMI, CLARANS-ADTW outperforms the state-

of-the-art k-means-ba-DTW. However, for CLACC and ARI, k-means-ba-DTW

ranks higher. Still, CLARANS-ADTW, k-means-ba-DTW, CLARANS-MSM,

CLARANS-soft-DTW, and CLARANS-TWE consistently appear in the top clique.

Notably, CLARANS knocks k-shapes out of the top clique for AMI and NMI.

Furthermore, only two CLARANS estimators—CLARANS-ERP and CLARANS-

LCSS—perform worse than k-means-Euclidean.

Figure 6.98 presents the FitTime comparison for CLARANS and the base-

line clusterers. With the exception of shape-DTW and soft-DTW, CLARANS is

significantly faster than k-means-ba-DTW while achieving similar performance.

Additionally CLARANS on average is fastest than k-shapes, while consistently

offering better clustering performance. This suggests that CLARANS could be a

good choice when computational constraints prevent the use of k-means-ba-DTW.
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Fig. 6.97 CD diagrams of CLARANS with baseline clusterers over 104 datasets
from the UCR archive using the combine test train split. Missing datasets are
outlined in Table A.25.
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Fig. 6.98 Relative FitTime violin plot for CLARANS with 13 distances and the
baseline clusterer over 104 UCR archive datasets using the combined test-train
split.
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6.7.2 CLARANS Test-train split

Figure 6.103 presents the critical difference diagrams for CLARANS using 12 dif-

ferent elastic distances over the test-train split. CLARANS-soft-DTW, CLARANS-

MSM, CLARANS-TWE, and CLARANS-ADTW consistently appear in the top

clique, similar to our previous findings. CLARANS-Euclidean, CLARANS-LCSS,

CLARANS-DDTW, CLARANS-WDDTW, and CLARANS-ERP consistently rank

in the bottom clique, with CLARANS-LCSS performing worse than CLARANS-

Euclidean for both AMI and NMI. The overall ranking aligns with our combined

test-train CLARANS results, as well as the PAM and CLARA results.

12345678910111213

clarans-soft-dtw5.7857

clarans-msm5.8125

clarans-twe5.8661

clarans-adtw6.2589

clarans-shape-dtw6.7589

clarans-dtw6.8438

clarans-wdtw6.9330
clarans-edr 7.0089

clarans-wddtw 7.1205
clarans-ddtw 7.5625

clarans-erp 8.0804
clarans-euclidean 8.4420

clarans-lcss 8.5268

Fig. 6.99 AMI

12345678910111213

clarans-msm5.7455

clarans-soft-dtw5.9196

clarans-twe5.9598

clarans-adtw6.1250

clarans-shape-dtw6.4777

clarans-edr6.5759

clarans-wdtw6.9464
clarans-dtw 7.1161

clarans-wddtw 7.7232
clarans-ddtw 7.8705

clarans-erp 7.8884
clarans-lcss 8.1964

clarans-euclidean 8.4554

Fig. 6.100 ARI

12345678910111213

clarans-adtw5.8571

clarans-twe5.9509

clarans-msm5.9866

clarans-soft-dtw6.0848

clarans-edr6.4241

clarans-shape-dtw6.5134

clarans-wdtw7.0134
clarans-dtw 7.1429

clarans-wddtw 7.6786
clarans-erp 7.9107

clarans-ddtw 7.9420
clarans-lcss 8.1295

clarans-euclidean 8.3661

Fig. 6.101 CLACC

12345678910111213

clarans-twe5.8214

clarans-msm5.8705

clarans-soft-dtw5.9688

clarans-adtw6.1429

clarans-shape-dtw6.7009

clarans-dtw6.7679

clarans-wdtw6.8125
clarans-edr 6.9598

clarans-wddtw 7.2009
clarans-ddtw 7.8036

clarans-erp 8.0625
clarans-euclidean 8.3527

clarans-lcss 8.5357

Fig. 6.102 NMI

Fig. 6.103 CD diagrams of CLARANS over 112 datasets from the UCR archive
using the test-train split.

Tables 6.20 and 6.21 show a similar trend, where CLARANS-MSM, CLARANS-

soft-DTW, CLARANS-TWE, and CLARANS-ADTW are the best-performing
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clusterers. Interestingly, CLARANS-DTW performs best in the Simulated domain,

as shown in Table 6.21.

ARI AMI CLAcc NMI RI
clarans-adtw 0.219 0.275 0.561 0.310 0.699
clarans-ddtw 0.178 0.248 0.524 0.281 0.670
clarans-dtw 0.217 0.273 0.551 0.309 0.697
clarans-edr 0.206 0.255 0.550 0.287 0.689
clarans-erp 0.174 0.221 0.519 0.259 0.680
clarans-euclidean 0.175 0.223 0.515 0.261 0.685
clarans-lcss 0.148 0.202 0.504 0.236 0.635
clarans-msm 0.232 0.284 0.562 0.318 0.705
clarans-shape-dtw 0.217 0.271 0.554 0.305 0.697
clarans-soft-dtw 0.228 0.284 0.564 0.317 0.697
clarans-twe 0.229 0.286 0.560 0.320 0.704
clarans-wddtw 0.188 0.254 0.531 0.288 0.675
clarans-wdtw 0.210 0.267 0.546 0.303 0.696

Table 6.20 Summary of average score across multiple evaluation metrics over 112
datasets from the UCR archive using the test-train split.

To contextualise our findings, Figure 6.108 shows the critical difference dia-

grams for CLARANS with 12 elastic distances and the baseline clusterers. CLARANS-

soft-DTW, CLARANS-TWE, CLARANS-MSM, and CLARANS-ADTW consis-

tently outperform k-means-ba-DTW. Notably, the CLARANS clusterers signifi-

cantly outperform k-means-ba-DTW in CLACC and ARI, pushing it out of the top

clique. Overall, CLARANS demonstrates significantly better performance over the

test-train split compared to the state-of-the-art, while remaining considerably less

computationally expensive.

6.7.3 CLARANS conclusion

Overall, CLARANS demonstrates strong clustering performance. The rank order

for both the combined and test-train splits is consistent with previous observations

for PAM, alternate k-medoids, and CLARA. Specifically, for the combined test-

train split, CLARANS-ADTW achieved the best average rank across all evaluation
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Image Spectro Sensor Simulated Device Motion ECG
clarans-adtw 0.263 0.219 0.169 0.330 0.149 0.177 0.288
clarans-ddtw 0.228 0.131 0.155 0.339 0.119 0.081 0.258
clarans-dtw 0.241 0.185 0.157 0.474 0.202 0.173 0.233
clarans-edr 0.271 0.100 0.201 0.271 0.127 0.141 0.296
clarans-erp 0.214 0.139 0.162 0.225 0.112 0.117 0.266
clarans-euclidean 0.214 0.206 0.168 0.221 0.030 0.118 0.250
clarans-lcss 0.151 0.026 0.159 0.291 0.105 0.159 0.167
clarans-msm 0.289 0.195 0.206 0.284 0.167 0.168 0.320
clarans-shape-dtw 0.241 0.213 0.173 0.334 0.154 0.168 0.380
clarans-soft-dtw 0.281 0.116 0.191 0.446 0.162 0.180 0.279
clarans-twe 0.288 0.137 0.212 0.331 0.202 0.157 0.281
clarans-wddtw 0.275 0.149 0.166 0.253 0.071 0.092 0.263
clarans-wdtw 0.267 0.169 0.160 0.408 0.084 0.189 0.201

Table 6.21 Average ARI score on problems split by problem domain over 112
datasets from the UCR archive using the test-train split.

metrics and had the highest average score for all but one metric. Additionally,

for AMI and NMI, CLARANS-ADTW outperformed k-means-ba-DTW while

maintaining significantly lower computational time.

Similarly, in the test-train split, multiple CLARANS models showed strong

clustering performance. CLARANS-soft-DTW, CLARANS-MSM, CLARANS-

TWE, and CLARANS-ADTW delivered very similar results across all evaluation

metrics and all achieved the highest average rank for one evaluation metric. Further-

more, all four of these CLARANS clusterers consistently outperformed the current

state-of-the-art while remaining significantly less computationally expensive.
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Fig. 6.108 CD diagrams of CLARANS with baseline clusterers over 112 datasets
from the UCR archive using the test-train split.

6.8 Analysis

We have now presented the results for each k-medoids approach with different

elastic distances, comparing them to their own results and to the baseline clusterers.

However, we have not yet compared each k-medoids approache against one another.

In this section, we will compare each k-medoids approach to each other to highlight

the strengths and weaknesses of each method and identify the best-performing

k-medoids approach.

6.8.1 k-medoids with elastic distances

We first examine the performance of each k-medoids model across different elastic

distances. Figure 6.109 presents a bar graph displaying the average ARI and
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AMI scores for each k-medoids clusterer with different distance measures over the

combined test-train split. Similarly, Figure 6.110 provides the same representation

for the test-train split.

From Figures 6.109 and 6.110, we observe that PAM generally achieves the

highest average scores in both the combined and test-train splits. CLARANS and

alternate exhibit very similar performance across all distances, ranking just below

PAM, while CLARA consistently performs the worst among the four models.

(a) ARI (b) AMI

Fig. 6.109 Comparison of the performance of four k-medoids algorithms across
11 elastic distances using 90 datasets from the UCR archive, evaluated on the
combined test-train split. The blue bars represent the scores for alternate k-medoids,
green for CLARA, red for CLARANS, and purple for PAM. The dashed lines
indicate the average scores for each clustering algorithm, with colours matching the
corresponding bars. LCSS was excluded due to its failure to complete a significant
number of datasets. The missing datasets are listed in Table A.26.

In both figures, TWE, soft-DTW, MSM, shape-DTW, and ADTW are con-

sistently the top-performing distances for every model. ERP, on the other hand,

is consistently the worst-performing distance (aside from LCSS, which had to

be excluded). Notably, for the combined test-train split, alternate k-medoids and

CLARANS perform very similarly across all distances. Additionally, for the test-

train split, CLARANS is the only model that occasionally outperforms PAM with

the same distance. For instance, CLARANS-DTW and CLARANS-WDDTW
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outperform PAM-DTW and PAM-WDDTW in ARI and AMI over the test-train

split.

(a) ARI (b) AMI

Fig. 6.110 Comparison of the performance of four k-medoids algorithms across 11
elastic distances using 105 datasets from the UCR archive, evaluated on the test-train
split. The blue bars represent the scores for alternate k-medoids, green for CLARA,
red for CLARANS, and purple for PAM. The dashed lines indicate the average
scores for each clustering algorithm, with colours matching the corresponding bars.
LCSS was excluded due to failing to complete a large number of datasets. Missing
datasets are outlined in Table A.27.

Overall, both figures demonstrate the importance of choosing the right elastic

distance. Additionally, we have shown that, in general, each elastic distance affects

the models similarly, as no single combination of distance and model significantly

alters the rank order of the models.

6.8.2 k-medoids clustering performance

We now narrow the focus of our experiment to the top five distances for each

k-medoids model: ADTW, MSM, TWE, shape-DTW, and soft-DTW. We will

compare each model with these five elastic distances to find the best performing

k-medoids-based clusterer with elastic distances. Figure 6.115 shows the critical

difference diagrams for the four k-medoids clusterers, comparing their top five

elastic distances to each other and the baseline clusterers over the combined test-

train split.
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Figure 6.115 demonstrates that multiple k-medoids models outperform the

current state-of-the-art in terms of average rank, though the differences are not

statistically significant. PAM-soft-DTW is the best-performing clusterer across all

evaluation metrics, followed by PAM-TWE and PAM-MSM. Notably, alternate-soft-

DTW ranks in the top three for CLACC and NMI. Additionally, CLARANS-ADTW

appears in the top clique for AMI, ARI, and NMI, although it does not perform

as well for CLACC. Finally, the best-performing CLARA clusterer is CLARA-

soft-DTW, which consistently appears in the bottom clique, but its performance

across all evaluation metrics is not significantly different from k-shapes, which was

previously considered state-of-the-art.
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Fig. 6.115 CD diagrams of 4 k-medoids clusterers with their top 5 distances with
baseline clusterers over 92 datasets from the UCR archive using the combine test
train split. Missing datasets are outlined in Table A.28
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Table 6.23 presents the average scores achieved by each clusterer across 92

datasets over the combined test-train split. PAM-soft-DTW and PAM-TWE achieve

the highest average scores across all datasets. However, Table 6.22 shows that,

by domain, PAM models are only the best performers in the Image and Spectro

domains. Interestingly, CLARANS-based models perform best in the Device and

ECG domains, while k-means-ba-DTW leads in the Simulated and Motion domains,

and k-SC remains the top performer for the Sensor domain.

ARI AMI CLAcc NMI RI
pam-adtw 0.233 0.277 0.570 0.300 0.695
pam-msm 0.241 0.279 0.578 0.301 0.698
pam-shape-dtw 0.232 0.273 0.570 0.296 0.693
pam-soft-dtw 0.242 0.286 0.578 0.310 0.694
pam-twe 0.250 0.285 0.585 0.308 0.702
alternate-adtw 0.228 0.272 0.565 0.296 0.695
alternate-msm 0.225 0.267 0.567 0.290 0.692
alternate-shape-dtw 0.225 0.264 0.564 0.289 0.692
alternate-soft-dtw 0.236 0.283 0.573 0.307 0.693
alternate-twe 0.232 0.274 0.571 0.297 0.695
clara-adtw 0.177 0.224 0.530 0.248 0.667
clara-msm 0.175 0.220 0.530 0.243 0.663
clara-shape-dtw 0.192 0.233 0.545 0.257 0.672
clara-soft-dtw 0.196 0.242 0.552 0.266 0.674
clara-twe 0.178 0.222 0.532 0.247 0.666
clarans-adtw 0.238 0.277 0.573 0.301 0.698
clarans-msm 0.223 0.265 0.568 0.288 0.690
clarans-shape-dtw 0.221 0.264 0.563 0.288 0.691
clarans-soft-dtw 0.223 0.271 0.569 0.295 0.687
clarans-twe 0.233 0.271 0.573 0.294 0.696
k-means-ba-dtw 0.232 0.273 0.570 0.297 0.694
k-means-euclidean 0.169 0.210 0.513 0.237 0.672
k-sc 0.187 0.223 0.537 0.244 0.639
k-shapes 0.208 0.260 0.555 0.282 0.685

Table 6.22 Summary of average score across multiple evaluation metrics over 92
datasets from the UCR archive using the combined test-train split.

Figure 6.116 presents the FitTime for each clusterer. The most computationally

expensive model is PAM-shape-DTW, followed by alternate-MSM. However, all
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Image Spectro Sensor Simulated Device Motion ECG
pam-adtw 0.298 0.165 0.236 0.368 0.109 0.157 0.291
pam-msm 0.342 0.100 0.245 0.319 0.167 0.136 0.356
pam-shape-dtw 0.290 0.136 0.240 0.344 0.127 0.147 0.397
pam-soft-dtw 0.311 0.110 0.247 0.478 0.176 0.152 0.185
pam-twe 0.338 0.116 0.247 0.413 0.179 0.136 0.351
alternate-adtw 0.277 0.163 0.230 0.404 0.121 0.153 0.263
alternate-msm 0.310 0.117 0.225 0.281 0.166 0.134 0.342
alternate-shape-dtw 0.283 0.134 0.240 0.309 0.117 0.140 0.390
alternate-soft-dtw 0.311 0.125 0.225 0.447 0.193 0.150 0.170
alternate-twe 0.306 0.121 0.237 0.388 0.181 0.133 0.231
clara-adtw 0.218 0.146 0.191 0.291 0.099 0.100 0.161
clara-msm 0.236 0.090 0.221 0.170 0.090 0.092 0.240
clara-shape-dtw 0.190 0.106 0.237 0.255 0.124 0.150 0.339
clara-soft-dtw 0.230 0.131 0.231 0.323 0.142 0.106 0.172
clara-twe 0.225 0.112 0.222 0.236 0.114 0.082 0.187
clarans-adtw 0.314 0.137 0.236 0.380 0.140 0.164 0.281
clarans-msm 0.312 0.090 0.234 0.305 0.164 0.132 0.270
clarans-shape-dtw 0.281 0.139 0.224 0.295 0.143 0.133 0.416
clarans-soft-dtw 0.291 0.108 0.215 0.387 0.199 0.144 0.200
clarans-twe 0.316 0.091 0.256 0.310 0.165 0.135 0.336
k-means-ba-dtw 0.283 0.141 0.210 0.536 0.173 0.164 0.137
k-means-euclidean 0.217 0.147 0.199 0.221 0.039 0.104 0.174
k-sc 0.221 0.160 0.279 0.085 0.032 0.080 0.395
k-shapes 0.228 0.122 0.208 0.390 0.096 0.152 0.407

Table 6.23 Average ARI score on problems split by problem domain over 92 datasets
from the UCR archive using the test-train split.

PAM models, except PAM-shape-DTW, are faster than k-means-ba-DTW (although,

as discussed, our methodology favours models that allow for precomputation).

Notably, as shown in Figure 6.115, CLARANS-ADTW stands out as one of the

fastest algorithms, and as mentioned earlier, it ranks in the top clique for AMI, ARI,

and NMI, potentially providing a fast alternative with very good performance.

Finally, Figure 6.121 presents the critical difference diagram for 102 datasets,

comparing each k-medoids clusterer with the top five elastic distances, along with

the baseline clusterers. We observe similar rankings to the combined test-train split,
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Fig. 6.116 Relative FitTime violin plot for 4 k-medoids clusterers with their top
5 distances and the baseline clusterers over 92 UCR archive datasets using the
combined test-train split.

where PAM-TWE, PAM-soft-DTW, and PAM-MSM consistently rank among the

top four clusterers across all evaluation metrics.

However, for the test-train split, CLARANS-based clusterers perform signif-

icantly better and consistently rank higher than alternate k-medoids clusterers.

Additionally, more than half of the k-medoids approaches considered in the experi-

ment outperform the current state-of-the-art method, k-means-ba-DTW.

Overall, our experimental comparison demonstrates that k-medoids-based clus-

terers with elastic distances provide superior clustering performance for both the

combined test-train split and the test-train split. In particular, we identify PAM-

TWE, PAM-soft-DTW, and PAM-MSM as the new state-of-the-art clusterers for

both splits. Additionally, we highlight CLARANS-ADTW as a fast alternative that

consistently delivers strong performance, although it does not match the effective-

ness of the PAM clusterers.
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Fig. 6.121 CD diagrams of 4 k-medoids clusterers with their top 5 distances with
baseline clusterers over 102 datasets from the UCR archive using the test-train split.
Missing datasets are outlined in Table A.29.

6.9 Conclusion

In this chapter, we presented and evaluated results for four different k-medoids

models across 12 elastic distances. We found that TWE, MSM, ADTW, soft-DTW,

and shape-DTW consistently performed best across all k-medoids models. Con-

versely, ERP, LCSS, DDTW, and WDDTW were consistently the worst-performing

distances for each approach.

Our analysis showed that PAM is the best-performing k-medoids model for

TSCL, followed by CLARANS and alternate k-medoids, which jointly take second

place depending on the distance measure used. CLARA performed significantly
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worse than the other k-medoids models. The overall best-performing models were

PAM-TWE, PAM-soft-DTW, and PAM-MSM for both the combined test-train split

and the test-train split.

Additionally, we demonstrated that using elastic distances for centroid compu-

tation is crucial for the success of any model. By comparing alternate k-medoids to

k-means using the same elastic distance and the arithmetic mean, we observed that

using medoids consistently improved performance for all distances. However, we

also found that when an average was computed with the alignment path of an elastic

distance (e.g., k-means-ba-DTW), the average version significantly outperformed

the medoids variant. This suggests that further improvements to the state-of-the-art

could be achieved by using an averaging technique with better elastic distances,

such as TWE, MSM, or ADTW.

Regarding our hypotheses, we first showed that incorporating elastic distances

into centroid computation greatly enhances clustering performance. We initially

hypothesised that the performance improvement would be similar across all dis-

tances, but we found this was not the case. Distances with an implicit warping

penalty benefited more from medoids than those with an explicit penalty, though

not to the extent of outperforming the explicit warping penalty distances. Finally,

we hypothesised that the best-performing distances from Chapter 5 would, when

paired with medoids, be the best performing distances for k-medoids. We confirmed

this, showing that PAM-ADTW, PAM-MSM, PAM-TWE, and PAM-soft-DTW all

surpassed the performance of the current state-of-the-art k-means-ba-DTW for both

the combined test-train split and the combined test-train split.
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k-means-ba-DTW is one of the best-performing clusterers we have considered. As

demonstrated in our experiments in Chapter 5 and Chapter 6, it consistently ranks

among the top TSCL approaches, significantly outperforming both k-means-DTW

and PAM-DTW. Our experiments suggest that this superior performance is due to

the use of the DBA algorithm for centroid computation; however, this algorithm is

currently limited to DTW only.

To address this limitation, we develop a new averaging technique, which is a

generalised form of the DBA algorithm that can be applied to any elastic distance

that computes a complete optimal alignment path. We call this averaging technique

the Elastic Barycentre Average. In this chapter we outline the Elastic Barycentre

Average algorithm, visually demonstrate how it differs from DBA, and conduct an
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empirical evaluation to showcase its superiority and ability to achieve state-of-the-

art clustering performance with various elastic distances.

7.1 Introduction

In Chapter 5, we observed that while some elastic distances significantly outper-

formed k-means-Euclidean, others performed notably worse. We hypothesised that

this discrepancy was due to pathological warping in distances that did not explicitly

penalise warping off the diagonal, a problem exacerbated when using an average

time series generated without considering alignment (i.e., the arithmetic mean).

The importance of incorporating alignment during centroid computation was

further highlighted in Section 5, where we directly compared k-means-DTW to k-

means-ba-DTW. We found that using an elastic distance in the centroid computation

dramatically improved clustering performance. Moreover, this observation was

consistent across all elastic distances when comparing alternate k-medoids to k-

means using the same elastic distances in Section 5.4.

However, despite the improvements seen with PAM, when PAM-DTW was com-

pared to k-means-ba-DTW in Section 6.5, we found k-means-ba-DTW significantly

outperformed PAM-DTW across all evaluation metrics. Moreover, k-means-ba-

DTW was one of the best-performing clusterers overall, even when compared to

PAM variants such as PAM-MSM and PAM-TWE. This led us to hypothesise that

an average representation, could be superior to a medoid-based representation for

TSCL. One possible reason for this is that medoid-based algorithms rely on the

existence of a “good” representative within the dataset for each cluster. If such

representatives do not exist, k-medoids’ performance can suffer significantly.

In this chapter, we aim to develop an elastic averaging technique that can be

applied to a variety of elastic distances, rather than just one (e.g. DBA). We hypoth-

esise that if we can create an averaging method tailored to each elastic distance, it
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will significantly enhance the performance of those distances in k-means clustering,

compared to using the arithmetic mean and the medoids. Furthermore, we expect

that distances like MSM, TWE, and ADTW, which have already demonstrated

strong clustering performance, could outperform the current state-of-the-art when

used with this averaging technique.

7.2 Elastic Barycentre Averaging

Previously, we defined DBA and outlined how it minimises the DTW Fréchet

function in Section 2.5.1. However, to the best of our knowledge, the minimisation

of Fréchet functions for other elastic distances has not been explored in the literature.

To address this gap, we propose a generalisation of the DTW Fréchet function to

accommodate any elastic distance. Formally, we define this generalisation as

follows:

F(z) :=
1
n

n

∑
i=1

d(z,xi)
2 (7.1)

where d represents an elastic distance.

We will now use this generalised formulation to adapt DBA to work with any

elastic distance that computes a complete optimal alignment path which we refer to

as the Elastic Barycentre Average. The Elastic Barycentre Average approximates

the minimum of Equation 7.1 by adapting DBA with other elastic distance alignment

path.

Formally, the Elastic Barycentre Average algorithm is presented in Algorithm 35.

The key modification to the original DBA algorithm is the substitution of the DTW

alignment path with that of another elastic distance, provided that it computes a

complete optimal warping path.
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Algorithm 35: elastic_barycentre(X, max_iters, tol)
Input: X (Dataset of time series of length n. Each time series is of length

m), max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold)

Output: Elastic Barycentre Average of X for a given elastic distance
1 barycentre← mean(X)
2 previous_dist← ∞

3 for i← 1 to max_iters do
4 barycentre← elastic_barycentre_update(barycentre,X)
5 curr_distance← 0
6 for each time series curr_ts in X do
7 curr_distance←

curr_distance+ elastic_distance(barycentre,curr_ts)
8 if |previous_dist− curr_distance|< tol then
9 break

10 previous_dist← curr_distance

11 return barycentre

The elastic_barycentre algorithm, shown in Algorithm 35, computes the Elastic

Barycentre of the dataset X . The algorithm takes three parameters: first, the dataset

X , consisting of n time series, each of length m; second, max_iters, an integer that

defines the maximum number of update iterations before the algorithm terminates

and returns the barycentre; and finally, tol, a threshold for early stopping, which

halts the algorithm if the total distance to the barycentre changes by less than tol

between consecutive iterations.

Algorithm 35 begins by calculating the mean time series of the dataset X (line

1). The mean average of a collection of time series is defined in Equation 2.35.

A variable is then initialised to track the total distance to the barycentre from the

previous iteration, starting at ∞ (line 2). The refinement loop follows, running for

up to max_iters iterations (line 3). During each iteration, the barycentre is updated

by calling the elastic_barycentre_update function (line 4). After the barycentre

is updated, the total distance between each time series and the new barycentre is
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calculated (lines 6 and 7). The elastic_distance function can apply any elastic

distance that produces a complete optimal warping path.

A complete optimal warping path is one that forms a continuous path through

a cost matrix, starting at the index (m-1, m-1) and finishing at (0,0), assuming 0

indexing. This means that distances like LCSS, which allow “gaps” in their optimal

warping path, cannot be used with the Elastic Barycentre Average.

Once the total distance to the new barycentre is obtained, the early stopping

condition is checked. If the difference between the previous total distance to the

previous barycentre and the current iterations total distance to the current barycentre

is less than tol, the loop terminates early (lines 8 and 9). Otherwise, the previous

distance is updated to the current iteration’s distance (line 10). Once all iterations

are completed (or the early stopping condition is met), the final refined barycentre

is returned (line 11).

Algorithm 36: elastic_barycentre_update(barycentre, X)
Input: barycentre (Current estimate of barycentre), X (Dataset of time

series of length n. Each time series is of length m)
Output: Updated Elastic Barycentre

1 Initialise num_alignments as an array of zeros of length m
2 Initialise sum_barycentre as a matrix of zeros of size m
3 for each time series curr_ts in X do
4 CM← elastic_distance_CM(barycentre,curr_ts)
5 alignment_path← optimal_warping_path(CM)
6 for each pair of indices ( j,k) in alignment_alignment do
7 sum_barycentre[k]← sum_barycentre[k]+ curr_ts[ j]
8 num_alignments[k]← num_alignments[k]+1

9 new_barycentre← summed_barycentre/num_alignments
10 return new_barycentre

The elastic_barycentre_update function, shown in Algorithm 36, performs a

single update of the current barycentre. It takes two parameters: barycentre, a time

series of length m representing the current barycentre to be refined, and X , a dataset

containing n time series, each of length m.
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The function starts by initialising two arrays. The first, num_alignments, is an

array of length m that tracks how many times each index in the barycentre time series

is aligned to (line 1). This will later be used to divide the corresponding values in

sum_barycentre. The second array, sum_barycentre, also of length m, accumulates

the values that align to each specific index in the barycentre. For example, if time

series Ti of length 3 has an alignment path of (0,0),(0,1),(1,1),(2,2) with the

barycentre, sum_barycentre would be updated as follows: sum_barycentre0 = T0,

sum_barycentre1 = T0 +T1, and sum_barycentre2 = T2.

This illustrates how the barycentre average differs from the arithmetic mean.

Specifically, sum_barycentre1 is updated to T0 +T1 because the alignment path

maps the first index of the barycentre to two different values in T .

With these initial variables, the update process begins by iterating through each

time series in X (line 3). First, an elastic distance cost matrix is computed (line 4).

The algorithms for obtaining the cost matrix for a given elastic distance are outlined

in Section 2.4, but instead of returning the final distance (which is the last value

in the cost matrix), the entire cost matrix is returned. From this cost matrix, the

optimal alignment path is extracted using the optimal_warping_path algorithm

(line 5). The optimal_warping_path algorithm is defined in Algorithm 2. Any

elastic distance that can compute its optimal warping path using Algorithm 2 may

be used in line 4 (i.e. not LCSS).

Next, using the extracted alignment path (a list of tuples mapping the optimal

alignment), each tuple is iterated over (line 6). In each tuple, j represents the index

of the current time point in the time series, which is aligned to the kth time point

(index) in the barycentre. Using this mapping, the value of sum_barycentre[k] is in-

cremented by the value of curr_t[ j] (line 7). To track how many times each point in

sum_barycentre[k] has been aligned, the corresponding value in num_alignments[k]

is incremented by 1.
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This process is repeated for every time series in the dataset X . Once all

time series have been processed, the new barycentre is calculated by dividing

sum_barycentre by num_alignments (line 9). This yields the new_barycentre,

which is then returned (line 10).

7.3 Elastic Barycentre analysis

Although the update to the original DBA algorithm is straightforward, we observe

significant variation in the averages produced for each distance measure. Figure 7.1

illustrates the Elastic Barycentre Averages for 10 different elastic distances over

class 1 of the GunPoint dataset. Additionally, the figure includes the arithmetic

mean (in red) for reference.

One of the most notable features of Figure 7.1 is the distinct variation in

the barycentres produced by each elastic distance. While we anticipated some

differences, the extent of the variation is greater than expected. Starting at the top

of Figure 7.1, the arithmetic mean, which does not account for alignment, appears

generally smooth, exhibiting a dome-like shape.

BA-DTW (DBA) forms a similar dome shape but with a lower peak and a

longer, sharper plateau. Additionally, there is a noticeable peak at the centre. BA-

DTW closely resembles BA-WDTW, although the peak in BA-WDTW occurs

later along the time axis. BA-ADTW, BA-MSM, BA-ERP, and BA-TWE show

a similar overall structure, characterised by a sharper incline to a peak followed

by a smooth descent. The primary differences among them lie in the finer local

variations. For instance, BA-TWE exhibits subtle fluctuations near the peak before

a smooth decline, whereas BA-MSM shows numerous local fluctuations as the

barycentre descends.

BA-shape-DTW stands out with a dome-like structure but features a depression

in the middle. BA-DDTW appears shifted along the time axis compared to the
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Fig. 7.1 Different Elastic Barycentre Averages for Gunpoint class 1.
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other barycentres and has a more compressed overall shape. BA-soft-DTW shares

several characteristics with BA-MSM and BA-ADTW but exhibits more localised

fluctuations. Finally, BA-WDDTW shows a steep ascent and descent around the

dome, with significant localised fluctuations.

While visually inspecting each barycentre provides some insight, it does not

offer a quantitative evaluation of their quality. Therefore, we aim to design an

experiment to assess their effectiveness using the k-means clusterer. In the next

section, we outline our experimental approach to evaluate each Elastic Barycentre.

7.4 Experiment setup

We will now outline our experiments to evaluate the Elastic Barycentre Average.

Each Elastic Barycentre will be assessed using the k-means clusterer, where the

Elastic Barycentre technique serves as the centroid computation method, and the

same elastic distance is used in the assignment computation.

We will compare the results of each Elastic Barycentre clusterer to each other to

determine the best Elastic Barycentre averaging technique and assess whether the

rank order of each distance is consistent with our previous experiments. Addition-

ally, we will compare the results to the baseline clusterers and the best-performing

k-medoids techniques identified in Chapter 6 to contextualise results.

Next, we will conduct a more detailed analysis of each Elastic Barycentre

Average to evaluate how much the averaging technique contributes to the success of

each clusterer. This will involve comparing the Elastic Barycentre Average results

to those from Chapter 5 and Chapter 6. By comparing the Elastic Barycentre results

to other Lloyd’s-based algorithm using the same elastic distances but with different

centroid computation techniques (arithmetic mean and medoids), we can isolate the

specific impact each Elastic Barycentre has on the final clustering performance.



7.4 Experiment setup 255

Table 7.1 shows the configuration of each model used in our experiments. Four

elastic distances were excluded from the analysis. LCSS was omitted because it is

incompatible with the Elastic Barycentre Average, as it does not produce a complete

alignment path (i.e., it allows gaps). DDTW and WDDTW were excluded because

the resulting barycentre averages are two time points shorter than the input time

series, which introduces complexity when computing distances between time series

of different lengths in the k-means algorithm. Finally, EDR was excluded due to

computational resource limitations, which required us to narrow the scope of our

experiments.

max_iters tol n_init init_algo distance averaging
k-means-ba-adtw 50 1×10−6 10 Forgy ADTW BA-ADTW
k-means-ba-dtw 50 1×10−6 10 Forgy DTW BA-DTW
k-means-ba-erp 50 1×10−6 10 Forgy ERP BA-ERP
k-means-ba-msm 50 1×10−6 10 Forgy MSM BA-MSM
k-means-ba-twe 50 1×10−6 10 Forgy TWE BA-TWE
k-means-ba-wdtw 50 1×10−6 10 Forgy WDTW BA-WDTW
k-means-ba-shape-dtw 50 1×10−6 10 Forgy shape-DTW BA-shape-DTW
k-means-ba-soft-dtw 50 1×10−6 10 Forgy soft-DTW BA-soft-DTW

Table 7.1 Elastic Barycentre model parameters

The parameters set in Table 7.1 are the same as those used in our k-means

experiments in Chapter 5 and alternate k-medoids experiments in Chapter 6. The

only change made for our Elastic Barycentre averaging experiments is the averaging

technique which is specified in the “averaging” column.

We have adopted a unique naming convention for each barycentre averaging

technique, differing from the original Dynamic Time Warping Barycentre Average

(DBA). This is because multiple distances share the same first character, leading to

potential ambiguity in their names. Therefore, for clarity, our naming convention

starts with “BA” (Barycentre Average), followed by a “-” and then the specific

distance used.



7.4 Experiment setup 256

For instance, the clusterer k-means-ba-DTW refers to the k-means algorithm that

uses the barycentre average (“ba”) with the DTW distance for both the assignment

stage and the barycentre averaging method. Similarly, when the barycentre average

is used with the TWE distance in k-means, the clusterer is called k-means-ba-TWE.

We also produce a new barycentre average for soft-DTW. As outlined in Sec-

tion 2.5.1, the soft-DBA averaging technique already exists. The key difference is

that soft-DBA exactly minimises the barycentre average function, while BA-soft-

DTW uses an estimate of the minimum. Although we do not expect BA-soft-DTW

to outperform soft-DBA, it serves as an interesting point of comparison to evaluate

the accuracy of the estimates it produces.

Each elastic distance used in both the assignment and averaging phases requires

specific parameters. We use the elastic distance parameters outlined in Table 5.2,

applying the same parameters for both the assignment and averaging stage. These

parameters are consistent with those used in all previous experiments, allowing for

direct comparison.

max_iters tol init_barycentre distance
BA-ADTW 50 1×10−6 Arithmetic mean ADTW
BA-DTW 50 1×10−6 Arithmetic mean DTW
BA-ERP 50 1×10−6 Arithmetic mean ERP
BA-MSM 50 1×10−6 Arithmetic mean MSM
BA-TWE 50 1×10−6 Arithmetic mean TWE
BA-WDTW 50 1×10−6 Arithmetic mean WDTW
BA-shape-DTW 50 1×10−6 Arithmetic mean shape-DTW
BA-soft-DTW 50 1×10−6 Arithmetic mean soft-DTW

Table 7.2 Elastic Barycentre averaging parameters

Finally, each barycentre averaging method has its own set of parameters. Ta-

ble 7.2 outlines the parameters used for each Elastic Barycentre Average. We

set max_iters to 50, as this value has been shown to ensure sufficient conver-

gence [108]. The tol parameter is set to a very small value, ensuring that early
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convergence occurs only if very minor changes are observed. We use the arith-

metic mean as the initial barycentre, following the recommendation in the original

paper [94]. Although we could use a medoid as the initial barycentre, doing so

would introduce significant computational overhead and could disproportionately

affect certain distances. Lastly, the “distance” column represents our independent

variable, which is changed for each Elastic Barycentre Average.

We now conduct our Elastic Barycentre Averaging experiments using the

methodology and parameters defined above.

7.5 Elastic Barycentre clusterer results

7.5.1 Combined test-train split

Figure 7.6 presents the critical difference diagram for eight different Elastic Barycen-

tre clusterers. Across all evaluation metrics, k-means-ba-TWE is the best-performing

clusterer and consistently ranks in the top clique. Joining k-means-ba-TWE in the

top clique are k-means-ba-MSM and k-means-ba-shape-DTW for all evaluation

metrics. Additionally, k-means-ba-soft-DTW is in the top clique for all evalua-

tion metrics except ARI. Notably, five Elastic Barycentre clusterers outperform

k-means-ba-DTW across all evaluation metrics.

However, Figure 7.6 only includes results from only 83 datasets. This is

because k-means-ba-shape-DTW and k-means-ba-soft-DTW failed to complete

over 17 datasets each within our seven-day runtime limit. This issue is highlighted

in Figure 7.7, which shows the FitTime of each model.

Due to the large number of missing datasets, we will exclude k-means-ba-shape-

DTW and k-means-ba-soft-DTW from further analysis to allow for evaluation over

a larger number of datasets. However, we will include them when comparing

results to k-means-soft-DBA, as it also has a similar number of missing datasets.
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Fig. 7.6 CD diagrams of Elastic Barycentre k-means over 83 datasets from the
UCR archive using the combine test train split. Missing datasets are outlined in
Table A.30

Additionally, for the test-train split, where both k-means-ba-shape-DTW and k-

means-ba-soft-DTW have significantly more completed results, we will conduct

further analysis.
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Fig. 7.7 Relative FitTime violin plot for each Elastic Barycentre clusterer over 83
of the UCR archive using the combined test-train split.

Figure 7.12 presents the critical difference diagram for six Elastic Barycentre

clusterers over 106 datasets. We observe a similar rank order results, but k-means-

ba-MSM achieves the highest average ranking for AMI, CLACC, and NMI, while

k-means-ba-TWE ranks highest for ARI. k-means-ba-TWE, k-means-ba-MSM,

k-means-ba-ADTW, and k-means-ba-DTW consistently appear in the top clique

for all evaluation metrics, while k-means-ba-ERP is the worst-performing clusterer

across all metrics.

Table 7.3 presents the average score summary for each Elastic Barycentre

clusterer across five evaluation metrics. k-means-ba-TWE achieves the highest

average score across all metrics, with k-means-ba-MSM closely following in second

place. Additionally, Table 7.4 shows the average ARI scores for different domains.

k-means-ba-TWE performs best in the Image, Sensor, and ECG domains, while k-

means-ba-DTW leads in the Simulated, Device, and Motion domains, and k-means-

ba-ADTW excels in the Spectro domain. Overall, no single Elastic Barycentre
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Fig. 7.12 CD diagrams of Elastic Barycentre k-means over 106 datasets from the
UCR archive using the combine test train split. Missing datasets are outlined in
Table A.31

clusterer dominates across all domains, although k-means-ba-DTW ranks best in

three domains and k-means-ba-TWE in two.

ARI AMI CLAcc NMI RI
k-means-ba-adtw 0.252 0.305 0.566 0.328 0.711
k-means-ba-dtw 0.256 0.304 0.569 0.328 0.712
k-means-ba-erp 0.207 0.257 0.530 0.282 0.695
k-means-ba-msm 0.256 0.309 0.571 0.331 0.709
k-means-ba-twe 0.273 0.317 0.580 0.340 0.716
k-means-ba-wdtw 0.241 0.294 0.557 0.318 0.707

Table 7.3 Summary of average score across multiple evaluation metrics over 106
datasets from the UCR archive using the combined test-train split.

To contextualise our Elastic Barycentre clusterer results, we include all baseline

clusterers as well as PAM results using the same elastic distances. Figure 7.18

shows the critical difference diagrams for the Elastic Barycentre clusterers alongside

the baseline clusterers and PAM.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-adtw 0.320 0.220 0.222 0.380 0.146 0.170 0.312
k-means-ba-dtw 0.307 0.209 0.195 0.586 0.173 0.177 0.246
k-means-ba-erp 0.259 0.212 0.199 0.306 0.079 0.113 0.279
k-means-ba-msm 0.338 0.217 0.233 0.340 0.142 0.158 0.335
k-means-ba-twe 0.364 0.211 0.255 0.398 0.158 0.142 0.373
k-means-ba-wdtw 0.304 0.204 0.209 0.493 0.080 0.157 0.262

Table 7.4 Average ARI score on problems split by problem domain over 106 datasets
from the UCR archive using the combined test-train split.

Figure 7.18 demonstrates that Elastic Barycentre Average clusterers outperform

PAM with the same elastic distance across all evaluation metrics. Additionally, all

Elastic Barycentre clusterers outperform k-means-Euclidean.

The top clique across all evaluation metrics includes k-means-ba-TWE, k-means-

ba-MSM, k-means-ba-DTW, k-means-ba-ADTW, PAM-MSM, PAM-TWE, and

PAM-ADTW. The differences between k-means-ba-TWE and PAM-TWE, as well

as k-means-ba-MSM and PAM-MSM, are very small, as shown in Figure 7.13. For

both PAM-TWE and PAM-MSM, their average ARI is higher than their correspond-

ing Elastic Barycentre clusterer counterparts, primarily because PAM-TWE and

PAM-MSM significantly outperform k-means-ba-TWE and k-means-ba-MSM for

certain datasets.

Figure 7.23 shows the critical difference diagrams for all Elastic Barycentre

clusterers (including k-means-ba-shape-DTW and k-means-ba-soft-DTW) with

PAM and the baseline clusterers, in addition to k-means-soft-DBA. While no

clusterer is better than k-means-soft-DBA on average, for all evaluation metrics,

k-means-ba-TWE, k-means-ba-shape-DTW, k-means-ba-MSM, PAM-TWE, PAM-

soft-DTW appear in the same clique and are therefore not significantly different

from k-means-soft-DBA.

Furthermore, if we analyse the average scores shown in Table 7.5 while k-

means-soft-DBA has the highest average score for every evaluation metric, the gap
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Fig. 7.13 k-means-ba-MSM and k-means-ba-TWE results compared directly to
PAM-MSM and PAM-TWE respectively over 105 datasets from the UCR archive
using the combined test-train split.

has significantly shrunk. For ARI the gap between the previous state-of-the-art

(k-means-ba-DTW) was 0.04 ARI. However, compared to k-means-ba-shape-DTW

the gap is only 0.015 and for k-means-ba-TWE the gap is only 0.017.

Figure 7.6 shows the average ARI score by domain. Notably when we consider

the average ARI by domain k-means-soft-DBA is only best for one domain: Device.

Between the different Elastic Barycentre clusterers, they perform best for four of

the seven domains. Specifically k-means-ba-TWE is best at two domains: Image

and Spectro.

Finally, we analyse the FitTime of each Elastic Barycentre clusterer compared

to the baseline clusterers and PAM. Figure 7.24 shows the violin plot for FitTime.

We observe that the relative FitTime for Elastic Barycentre Average is higher

than PAM using the same distance; as previously explained, this difference arises

from our experimental methodology. Specifically, with Forgy initialisation and 10

restarts, PAM benefits from precomputing the distance matrix and reusing it across
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Fig. 7.18 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
over 105 datasets from the UCR archive using the combined test-train split. Missing
datasets are outlined in Table A.32.

all restarts. In contrast, the Elastic Barycentre Average methods must recompute

distances and averages at every iteration and restart. Therefore, if we conducted the

same experiment using only one restart, the Elastic Barycentre Average methods

would likely be faster than PAM when employing the same elastic distance.
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Fig. 7.23 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
and soft-DBA over 79 datasets from the UCR archive using the combine test train
split. Missing datasets are outlined in Table A.33.
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ARI AMI CLAcc NMI RI
k-means-ba-adtw 0.259 0.301 0.597 0.311 0.685
k-means-ba-dtw 0.265 0.303 0.602 0.313 0.687
k-means-ba-erp 0.207 0.245 0.555 0.256 0.666
k-means-ba-msm 0.260 0.300 0.600 0.310 0.683
k-means-ba-shape-dtw 0.290 0.325 0.617 0.335 0.698
k-means-ba-soft-dtw 0.267 0.303 0.614 0.314 0.683
k-means-ba-twe 0.288 0.319 0.618 0.329 0.694
k-means-ba-wdtw 0.249 0.291 0.592 0.301 0.680
k-means-euclidean 0.200 0.239 0.543 0.251 0.664
k-means-soft-dba 0.305 0.338 0.632 0.347 0.704
k-sc 0.220 0.251 0.573 0.262 0.643
k-shapes 0.240 0.286 0.587 0.297 0.678
pam-adtw 0.268 0.308 0.602 0.318 0.687
pam-dtw 0.246 0.288 0.590 0.299 0.676
pam-erp 0.191 0.232 0.546 0.244 0.660
pam-msm 0.280 0.314 0.616 0.324 0.695
pam-shape-dtw 0.267 0.305 0.603 0.316 0.685
pam-soft-dtw 0.277 0.317 0.614 0.327 0.686
pam-twe 0.292 0.324 0.625 0.334 0.699
pam-wdtw 0.243 0.285 0.589 0.296 0.672

Table 7.5 Summary of average score across multiple evaluation metrics over 79
datasets from the UCR archive using the combined test-train split.
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Fig. 7.24 Relative FitTime violin plot for Elastic Barycentre clusterers, PAM and
the baseline clusterers over 105 datasets from the UCR archive using the combined
test-train split.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-adtw 0.321 0.267 0.273 0.298 0.192 0.130 0.236
k-means-ba-dtw 0.307 0.257 0.234 0.536 0.217 0.140 0.137
k-means-ba-erp 0.254 0.258 0.249 0.216 0.108 0.068 0.184
k-means-ba-msm 0.341 0.267 0.278 0.254 0.181 0.120 0.224
k-means-ba-shape-dtw 0.328 0.238 0.317 0.369 0.247 0.155 0.375
k-means-ba-soft-dtw 0.306 0.188 0.294 0.416 0.237 0.146 0.207
k-means-ba-twe 0.372 0.263 0.320 0.320 0.213 0.113 0.267
k-means-ba-wdtw 0.304 0.258 0.257 0.447 0.093 0.113 0.164
k-means-euclidean 0.242 0.272 0.238 0.221 0.072 0.074 0.174
k-means-soft-dba 0.371 0.265 0.314 0.471 0.273 0.144 0.192
k-sc 0.244 0.291 0.313 0.085 0.041 0.097 0.395
k-shapes 0.264 0.225 0.226 0.390 0.110 0.141 0.407
pam-adtw 0.320 0.297 0.270 0.368 0.149 0.132 0.291
pam-dtw 0.292 0.245 0.246 0.409 0.182 0.123 0.149
pam-erp 0.247 0.256 0.213 0.165 0.128 0.052 0.187
pam-msm 0.365 0.248 0.287 0.319 0.214 0.110 0.356
pam-shape-dtw 0.317 0.269 0.276 0.344 0.156 0.124 0.397
pam-soft-dtw 0.350 0.166 0.289 0.478 0.222 0.130 0.185
pam-twe 0.361 0.263 0.295 0.413 0.224 0.113 0.351
pam-wdtw 0.290 0.255 0.233 0.470 0.090 0.126 0.172

Table 7.6 Average ARI score on problems split by problem domain over 79 datasets
from the UCR archive using the combined test-train split.
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7.5.2 Test-train split

Figure 7.29 shows the critical difference diagrams for eight Elastic Barycentre

clusterers across 98 datasets using the test-train split. The ranking is similar

to that observed in the combined test-train split, with k-means-ba-MSM and k-

means-ba-TWE being the top two performers, consistently appearing in the top

clique. Additionally, k-means-ba-ADTW, k-means-ba-shape-DTW, and k-means-

ba-soft-DTW are also in the top clique across all evaluation metrics. However,

in the test-train split, k-means-ba-DTW does not appear in the top clique for any

evaluation metric, unlike in the combined test-train split.
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Fig. 7.29 CD diagrams of Elastic Barycentre k-means over 98 datasets from the
UCR archive using the test-train split. Missing datasets are outlined in Table A.34.

Table 7.7 shows the average score for each Elastic Barycentre clusterer. Similar

to the combined test-train split, k-means-ba-TWE is the best-performing clusterer

across all evaluation metrics, closely followed by k-means-ba-MSM.

Table 7.8 shows the performance of each Elastic Barycentre clusterer by problem

domain. The same clusterers perform well across domains, consistent with the
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combined test-train split. Notably, k-means-ba-TWE performs best in only one

domain: Sensor, although it is just 0.001 ARI from being the top performer in the

Image domain. Additionally, in the Device and ECG domains, k-means-ba-shape-

DTW shows dominant performance, significantly outperforming the second-best

clusterer in both cases.

ARI AMI CLAcc NMI RI
k-means-ba-adtw 0.228 0.279 0.569 0.313 0.694
k-means-ba-dtw 0.226 0.274 0.562 0.309 0.694
k-means-ba-erp 0.179 0.223 0.529 0.260 0.674
k-means-ba-msm 0.238 0.285 0.572 0.319 0.696
k-means-ba-shape-dtw 0.237 0.284 0.575 0.319 0.697
k-means-ba-soft-dtw 0.229 0.282 0.572 0.317 0.690
k-means-ba-twe 0.247 0.294 0.576 0.328 0.698
k-means-ba-wdtw 0.217 0.267 0.555 0.303 0.688

Table 7.7 Summary of average score across multiple evaluation metrics over 98
datasets from the UCR archive using the test-train split.

Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-adtw 0.293 0.225 0.166 0.346 0.192 0.171 0.195
k-means-ba-dtw 0.268 0.228 0.179 0.454 0.175 0.156 0.129
k-means-ba-erp 0.230 0.215 0.167 0.257 0.047 0.119 0.173
k-means-ba-msm 0.319 0.212 0.193 0.329 0.161 0.159 0.267
k-means-ba-shape-dtw 0.268 0.213 0.200 0.358 0.205 0.173 0.357
k-means-ba-soft-dtw 0.291 0.179 0.156 0.412 0.196 0.192 0.181
k-means-ba-twe 0.318 0.228 0.246 0.306 0.178 0.136 0.268
k-means-ba-wdtw 0.262 0.245 0.177 0.417 0.110 0.155 0.136

Table 7.8 Average ARI score on problems split by problem domain over 98 datasets
from the UCR archive using the test-train split.

We contextualise our results by incorporating the baseline clusterers, soft-DBA

and PAM using the same elastic distances as in the Elastic Barycentre clusterers.

Figure 7.34 presents the critical difference diagrams for the Elastic Barycentre

clusterers alongside the baseline clusterers, soft-DBA and PAM.
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Figure 7.34 shows results similar to the combined test-train split, with the

exception that PAM-TWE outperforms k-means-soft-DBA in CLACC and ARI.

Additionally, while the top clique remains consistent with the combined test-train

split, it includes fewer clusterers: PAM-TWE, k-means-soft-DBA, PAM-MSM,

k-means-ba-TWE, and k-means-ba-MSM across all evaluation metrics.

Furthermore, we observe that all Elastic Barycentre clusterers outperform k-

means-Euclidean. Additionally, all Elastic Barycentre clusterers outperform their

PAM counterparts with the same elastic distance, except for PAM-TWE and PAM-

MSM. For AMI, ARI, and NMI, k-means-ba-MSM outperforms PAM-MSM, but

for CLACC, PAM-MSM outperforms k-means-ba-MSM. Notably, PAM-TWE

consistently outperforms k-means-ba-TWE across all evaluation metrics.
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Fig. 7.34 CD diagrams of Elastic Barycentre k-means with the baseline clusterers
and soft-DBA over 98 datasets from the UCR archive using the test train split.
Missing datasets are outlined in Table A.35.
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Table 7.9 presents the average scores for the test-train split, comparing the

Elastic Barycentre clusterers, baseline clusterers, soft-DBA, and PAM. k-means-

soft-DBA is the best performing clusterer for three of the five evaluation metrics.

k-means-ba-soft-TWE achieves the highest average ARI, while PAM-TWE achieves

the highest RI. This differs from the combined test-train split where k-means-soft-

DBA had the highest average score for every evaluation metric.

Table 7.10 shows the performance of the Elastic Barycentre clusterers, baseline

clusterers, soft-DBA, and PAM across different problem domains. The results are

similar to those observed in the combined test-train split.

ARI AMI CLAcc NMI RI
k-means-ba-adtw 0.228 0.279 0.569 0.313 0.694
k-means-ba-dtw 0.226 0.274 0.562 0.309 0.694
k-means-ba-erp 0.179 0.223 0.529 0.260 0.674
k-means-ba-msm 0.238 0.285 0.572 0.319 0.696
k-means-ba-shape-dtw 0.237 0.284 0.575 0.319 0.697
k-means-ba-soft-dtw 0.229 0.282 0.572 0.317 0.690
k-means-ba-twe 0.247 0.294 0.576 0.328 0.698
k-means-ba-wdtw 0.217 0.267 0.555 0.303 0.688
k-means-euclidean 0.177 0.219 0.523 0.257 0.675
k-means-soft-dba 0.246 0.300 0.588 0.334 0.701
k-sc 0.185 0.230 0.537 0.263 0.658
k-shapes 0.110 0.175 0.485 0.206 0.587
pam-adtw 0.229 0.275 0.576 0.309 0.692
pam-dtw 0.206 0.257 0.551 0.293 0.682
pam-erp 0.179 0.224 0.528 0.262 0.676
pam-msm 0.238 0.286 0.580 0.319 0.698
pam-shape-dtw 0.227 0.273 0.572 0.307 0.693
pam-soft-dtw 0.238 0.285 0.581 0.320 0.695
pam-twe 0.245 0.291 0.586 0.326 0.702
pam-wdtw 0.215 0.269 0.561 0.304 0.687

Table 7.9 Summary of average score across multiple evaluation metrics over 98
datasets from the UCR archive using the test-train split.
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Image Spectro Sensor Simulated Device Motion ECG
k-means-ba-adtw 0.293 0.225 0.166 0.346 0.192 0.171 0.195
k-means-ba-dtw 0.268 0.228 0.179 0.454 0.175 0.156 0.129
k-means-ba-erp 0.230 0.215 0.167 0.257 0.047 0.119 0.173
k-means-ba-msm 0.319 0.212 0.193 0.329 0.161 0.159 0.267
k-means-ba-shape-dtw 0.268 0.213 0.200 0.358 0.205 0.173 0.357
k-means-ba-soft-dtw 0.291 0.179 0.156 0.412 0.196 0.192 0.181
k-means-ba-twe 0.318 0.228 0.246 0.306 0.178 0.136 0.268
k-means-ba-wdtw 0.262 0.245 0.177 0.417 0.110 0.155 0.136
k-means-euclidean 0.219 0.241 0.164 0.274 0.040 0.115 0.153
k-means-soft-dba 0.304 0.216 0.166 0.493 0.212 0.187 0.185
k-sc 0.217 0.214 0.188 0.250 0.046 0.110 0.369
k-shapes 0.126 0.191 0.110 0.104 0.073 0.078 0.041
pam-adtw 0.291 0.213 0.175 0.372 0.135 0.176 0.257
pam-dtw 0.244 0.201 0.158 0.417 0.138 0.163 0.112
pam-erp 0.222 0.236 0.181 0.244 0.067 0.096 0.173
pam-msm 0.315 0.231 0.200 0.318 0.164 0.151 0.277
pam-shape-dtw 0.258 0.208 0.205 0.360 0.142 0.166 0.352
pam-soft-dtw 0.295 0.151 0.190 0.462 0.166 0.180 0.235
pam-twe 0.311 0.228 0.212 0.364 0.187 0.151 0.271
pam-wdtw 0.251 0.254 0.176 0.442 0.102 0.153 0.143

Table 7.10 Average ARI score on problems split by problem domain over 98 datasets
from the UCR archive using the test-train split.

7.5.3 Elastic Barycentre clusterer conclusion

Overall we have presented results for 8 different Elastic Barycentre Average clus-

terers and compared the results to the baseline clusterers as well as PAM clusterers.

We showed that Elastic Barycentre clusterers offer some of the best clustering

performance outperforming the current state-of-the-art consistently over multiple

evaluation metrics.

We note for the combined test-train split the Elastic Barycentre clusterers, specif-

ically k-means-ba-TWE and k-means-ba-MSM are not significantly different from

k-means-soft-DBA which was previously the best performing clusterer by a large

margin (no other clusterer appeared in the same clique as it previously). Further-

more, we showed that the for every Elastic Barycentre clusterer they outperformed
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PAM with the same elastic distance while being computationally significantly

cheaper.

Similarly for the test-train split we observe similar performance though the

improvement between PAM and the respective Elastic Barycentre clusterer was

much smaller. k-means-ba-TWE was consistently one of the best performing

clusterers in and is not significantly different from the previous state-of-the-art

k-means-soft-DBA.

7.6 Elastic Barycentre evaluation

We have now evaluated each Elastic Barycentre clusterer and have shown that it

achieves state-of-the-art performance for TSCL. We now seek to understand how

much the Elastic Barycentre Average contributes to the performance of each model.

To do this, we will compare each Elastic Barycentre clusterer to two other Lloyd’s-

based techniques that use the same elastic distances. Specifically, for each elastic

distance, we compare the results of the following methods: k-means with an elastic

distance using the arithmetic mean; alternate k-medoids with an elastic distance;

and k-means-ba with an elastic distance using the Elastic Barycentre Average.

Figures 7.35 and 7.36 present a bar graph displaying the average ARI and AMI

scores for each clusterer over the combined test-train split and the separate test-train

splits, respectively. We have excluded shape-DTW and soft-DTW because, for

k-means, each of these clusterers failed to converge on over 10 datasets.

For the combined test-train split, we observe that Elastic Barycentre clusterers

improve clustering over alternate k-medoids for all elastic distances for both ARI

and AMI. However, the degree of improvement differs greatly between distances.

Table 7.11a shows the percentage increase in ARI and AMI for each distance

between alternate k-medoids and k-means-ba. We observe from the table and

visually in Figure 7.35 that the performance improvement varies significantly
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(a) ARI (b) AMI

Fig. 7.35 Comparison of the performance of k-means-ba, k-means, and alternate
k-medoids across six elastic distances using 103 datasets from the UCR archive,
evaluated on the combined test-train split. The blue bars represent the scores for
alternate k-medoids, the red bars correspond to k-means using the arithmetic mean,
and the green bars represent k-means-ba using the Elastic Barycentre Average. The
values above each set of bars indicate the difference in scores between k-means-ba
and the second best method. The dashed lines denote the average scores for each
clustering algorithm, with colours matching the corresponding bars.

across different distances. For distances such as ERP and DTW, we observe the

largest increases in both ARI and AMI. This can likely be explained by the fact that

the ERP and DTW alternate k-medoids methods start from much lower ARI and

AMI scores, and therefore there is greater potential for improvement. However, it

is noteworthy that TWE, which was already one of the best-performing alternate k-

medoids clusterers, improves by 7.39%. For distances that started with similar ARI

scores, such as alternate-ADTW and alternate-MSM, we observed much smaller

increases in performance.

For both AMI and ARI, we observe a similar trend in performance gain between

the clustering models. However, we note that ARI increases by more than AMI.

Since ARI measures the number of pairs of samples that are assigned to the same

or different clusters correctly, this suggests that the Elastic Barycentre algorithm

improves the clustering by more accurately grouping similar pairs and separating

dissimilar pairs of samples. In other words, the Elastic Barycentre enhances the
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local pairwise relationships between data points, leading to a higher agreement in

pairwise assignments as captured by ARI.

Distance % Increase ARI % Increase AMI
ERP 12.90% 8.82%

ADTW 0.79% 0.66%
DTW 9.24% 6.25%
MSM 2.80% 2.67%
TWE 7.39% 3.58%

WDTW 2.94% 1.72%
Average 6.68% 3.95%

(a) Combined test-train split

Distance % Increase ARI % Increase AMI
ERP 11.49% 8.37%

ADTW 3.48% 3.87%
DTW 16.92% 10.27%
MSM 14.88% 9.85%
TWE 19.07% 13.55%

WDTW 15.08% 10.38%
Average 13.49% 9.38%

(b) Combined test-train split

Table 7.11 Percentage increase of ARI and AMI for k-means-ba over alternate
k-medoids over datasets from the UCR archive: 103 combined test-train splits and
107 test-train splits.

On the other hand, AMI measures the agreement between the entire clusterings

by considering the mutual information and the distribution of cluster assignments.

The smaller increase in AMI indicates that while there is an improvement in the

overall cluster structure, it is less pronounced compared to the improvements in

pairwise sample agreements. Therefore, the greater increase in ARI suggests that

the Elastic Barycentre Average particularly enhances clustering performance in

terms of correctly assigning pairs of samples to the same or different clusters, which

is more sensitively reflected by ARI than by AMI.

For the test-train split, we find that the average improvement is significantly

greater than for the combined test-train split. Table 7.11 shows that the average

ARI improvement for the combined test-train split was 6.68%, while for AMI, it

was 3.95%. However, in the test-train split, we observe a much larger average im-

provement of 13.49% in ARI and 9.38% in AMI. Notably, the difference between

alternate-TWE and k-means-ba-TWE for the test-train split is 0.041 in ARI and

0.037 in AMI, highlighting a substantial improvement. This indicates that centroids

computed using the Elastic Barycentre Average are much better general represen-
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(a) ARI (b) AMI

Fig. 7.36 Comparison of the performance of k-means-ba, k-means, and alternate
k-medoids across six elastic distances using 107 datasets from the UCR archive,
evaluated on the test-train split. The blue bars represent the scores for alternate
k-medoids, the red bars correspond to k-means using the arithmetic mean, and the
green bars represent k-means-ba using the Elastic Barycentre Average. The values
above each set of bars indicate the difference in scores between k-means-ba and the
second best method. The dashed lines denote the average scores for each clustering
algorithm, with colours matching the corresponding bars.

tations of the dataset compared to those produced by medoids or the arithmetic

mean.

Overall, we have shown that the Elastic Barycentre Average yields significantly

better results than using medoids or the arithmetic mean for both the combined

test-train and test-train splits. The improvement for each distance is not linear, with

different amounts of improvement observed for each elastic distance, ranging from

a 0.79% increase to a 19.07% increase. However, we have demonstrated that the

improvement is directly attributable to the use of the Elastic Barycentre Average.

7.7 Conclusion

In this chapter, we proposed a new averaging technique for time series data called

the Elastic Barycentre Average. This technique is inspired by the widely used

Dynamic Time Warping Barycentre Average, which exclusively works with the
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DTW elastic distance. However, the Elastic Barycentre Average can be applied to

any elastic distance that produces a complete warping path.

We have provided pseudocode, default parameters, and clear examples demon-

strating how to compute the Elastic Barycentre Average. Visual examples of nine

new Elastic Barycentres were presented, highlighting the significant differences

between them, even though they were all derived from the same data.

Next, we conducted an experiment using the k-means clustering algorithm to

evaluate the performance of the Elastic Barycentre Average. We began by compar-

ing the Elastic Barycentre clusterers using different elastic distances against one

another to identify the best-performing variant. Then, we contextualised the results

by incorporating the baseline clusterers, PAM using the same elastic distances, and

k-means-soft-DBA. We demonstrated that multiple Elastic Barycentre clusterers

achieve state-of-the-art performance and outperform k-medoids models with the

same elastic distance. Furthermore, we showed that across the combined test-train

split and test-train split for all evaluation metrics, the best Elastic Barycentre clus-

terers: k-means-ba-TWE and k-means-ba-MSM, performance was not significantly

different from k-means-soft-DBA and in some instances surpasses it.

Finally, to isolate and demonstrate the contribution of the Elastic Barycen-

tre Average to improving Lloyd’s-based algorithms, we conducted an experiment

comparing alternate k-medoids and k-means to k-means-ba. These algorithms are

structurally identical, with the only difference being how centroids are computed:

alternate k-medoids computes medoids, k-means uses the arithmetic mean, and the

Elastic Barycentre clusterer employs the Elastic Barycentre Average. By comparing

their performance, we were able to measure the impact of the Elastic Barycentre

Average. We observed that for all elastic distances considered, the Elastic Barycen-

tre Average always improves clustering performance over k-means and alternate

k-medoids with the same elastic distance. In some cases, the Elastic Barycentre

Average resulted in an improvement of up to 19.07% in ARI. Overall, across the
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considered elastic distances, we observed an average improvement of 6.68% in

ARI and 3.95% in AMI for the combined test-train split compared to alternate

k-medoids. For the test-train split, we observed an even greater improvement, with

an average increase of 13.49% in ARI and 9.38% in AMI compared to alternate

k-medoids.

In summary, we have introduced a new time series averaging method that,

when used with k-means, achieves and even surpasses the performance of current

state-of-the-art clustering methods. We have empirically shown that the primary

factor contributing to the success of the Elastic Barycentre clusterer is the Elastic

Barycentre Average.



Chapter 8

KESBA: A Fast and Scalable

End-to-End Elastic Distance

Clustering Algorithm

In Chapter 7, we proposed the Elastic Barycentre Average, a method for computing

improved averages of time series data by utilising elastic distances that produce a

complete alignment path.

When combined with the k-means algorithm, the Elastic Barycentre Average

significantly improves clustering performance of all the elastic distances considered,

outperforming methods that apply the same elastic distance with k-means, as well

as alternative approaches like alternate k-medoids or PAM. Notably, TWE and

MSM, when paired with the Elastic Barycentre Average, achieved state-of-the-art

performance, even surpassing k-means-soft-DBA in some evaluation metrics.

However, while clustering performance is the primary focus of an experimental

evaluation such as this thesis, real-world practitioners must also consider the runtime

of TSCL algorithms, which can be as important as the clustering performance. In

response to this, we propose a substantially faster version of the Elastic Barycentre
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Average k-means clusterer: the k-means (K) end-to-end elastic (E) stochastic

subgradient (S) Barycentre (B) Average (A) (KESBA).

KESBA leverages an accelerated version of the Elastic Barycentre Average

alongside various k-means optimisations, achieving state-of-the-art performance

with a runtime that is significantly faster than the original method and other state-of-

the-art clusterers. KESBA offers practitioners a versatile, highly scalable clusterer

specifically designed for real-world TSCL applications.

8.1 Introduction

TSCL techniques are notoriously computationally expensive. Throughout this

thesis, we have had to exclude several datasets from various experiments because

certain clusterers were unable to complete within our seven-day runtime limit.

While the UCR archive contains some large datasets, many real-world applications

involve datasets that are similar in size or significantly larger, both in terms of the

number of instances and the length of the time series. This poses a significant

limitation to the practical applicability of many TSCL approaches discussed in this

work.

Within the TSCL literature, there are numerous examples of clusterers that

prioritise lower computational runtime over achieving the best performance. These

methods offer practitioners fast alternatives that trade some clustering performance

for the ability to handle large datasets efficiently. Examples include k-shapes [89],

TADPole [9], SOMTimeS [52], JET [127], and many others. Among these, k-shapes

has emerged as one of the most widely used TSCL approaches.

In Chapter 4, we observed that k-shapes is orders of magnitude faster than

k-means-ba-DTW, while still delivering competitive performance relative to the

state-of-the-art. However, after conducting our new experiments throughout this
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thesis using both k-means and k-medoids clusterers, we found that k-shapes no

longer holds it place as a state-of-the-art clusterer.

Compared to the top-performing clusterer identified in Chapter 7, k-shapes

was, on average, 0.048 ARI and 0.033 AMI worse than k-means-ba-TWE for the

combined test-train split. For the test-train split, this performance gap was even

larger, with k-shapes averaging 0.136 ARI and 0.119 AMI worse than k-means-

ba-TWE. Furthermore, when compared to all of the Elastic Barycentre Average

k-means clusterers and PAM clusterers, k-shapes never ranked among the top four

cliques.

However, achieving superior clustering performance with the best-performing

PAM and Elastic Barycentre Average k-means clusterers comes at a significant

computational cost. We have demonstrated that PAM and the Elastic Barycentre

Average are orders of magnitude slower than k-shapes and k-means-Euclidean.

A substantial portion of the computational time for Elastic Barycentre Average

k-means clusterers is due to the Elastic Barycentre Average computation. This is

illustrated in Figure 8.1, which presents the FitTime CD diagram comparing various

Lloyd’s-based algorithms that differ only in their centroid computation methods

(e.g., medoids, arithmetic mean for k-means, and the Elastic Barycentre Average

for k-means-ba).

The computational complexity of the Elastic Barycentre Average significantly

limits its practicality for real-world clustering applications. Therefore, in this

chapter, we aim to develop a faster version of the Elastic Barycentre Average and

build a clusterer around it, enabling it to achieve state-of-the-art accuracy while

being significantly less computationally expensive. Moreover, this new approach

will be customisable to meet practitioners’ specific needs for runtime efficiency and

clustering performance.
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alternate-msm5.3692

k-means-msm6.4206

k-means-wdtw6.5140

alternate-twe6.7664

k-means-adtw6.9252
k-means-dtw 8.8505

k-means-ba-adtw 9.5981
k-means-ba-msm 9.8318

k-means-twe 9.8972
k-means-ba-wdtw 10.5327

k-means-ba-twe 13.0280
k-means-ba-dtw 13.3832

Fig. 8.1 CD diagram for the FitTime of Lloyd’s-based clusterers with different
centroid computation algorithms over the UCR archive using the test-train split.
Missing datasets are outlined in Table A.36.

8.2 Stochastic Subgradient Elastic Barycentre Aver-

age

The Stochastic Subgradient Dynamic Barycentre Average (SSG-DBA) [108] shares

similarities with DBA, as both methods attempt to compute a subgradient. Sub-

gradient methods are a form of nonsmooth optimisation [7] that operate similarly

to gradient descent but replace the gradient with a subgradient. As discussed in

Section 2.4.7, DTW (and, similarly, other elastic distances) is not differentiable

everywhere, which prevents the use of gradient descent. Consequently, subgradient

methods provide a generalisation of the gradient under mild conditions that hold

for the Fréchet function [108].

The primary difference between SSG-DBA and DBA lies in their optimisation

approach: DBA is a batch optimisation method, whereas SSG-DBA is a stochastic

optimisation method. DBA computes an exact subgradient based on all the time

series in the collection, while SSG-DBA estimates the subgradient using a single

randomly selected time series from the collection. As a result, SSG-DBA updates

the current barycentre at every iteration, whereas DBA only updates the barycentre
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average after completing a full pass through the collection of time series. Con-

sequently, after processing the entire collection, SSG-DBA performs n updates,

whereas DBA performs a single update [108].

Since SSG-DBA updates the average n times within a single iteration, it con-

verges to a solution that satisfies the necessary conditions more rapidly than DBA.

Like DBA, SSG-DBA is a heuristic method that approximates the optimal solu-

tion, meaning its estimation may differ from that of DBA. However, SSG-DBA

satisfies the local minimisation criterion of the Fréchet function, which ensures its

convergence [108].

To begin, we propose an adaptation to the SSG-DBA algorithm in the same way

we previously adapted DBA in Chapter 7: replace the DTW alignment path with

any other elastic distance that computes a complete warping path. Algorithm 37

and Algorithm 38 present the Elastic SSG Barycentre Average.

Algorithm 37 closely resembles the Elastic Barycentre Average shown in Algo-

rithm 35. Many lines of code are identical to those explained in Section 7.2, so we

will focus only on the new lines introduced for the Elastic SSG Barycentre Average.

Algorithm 37 requires two additional parameters that were not needed for the

Elastic Barycentre Average: initial_step_size and end_step_size. These parame-

ters control the gradient descent rate. The initial_step_size is the starting step size

for the gradient. On line 3, a new variable, current_step_size, is defined and set to

the value of initial_step_size. This variable tracks the current gradient descent size.

The refinement iteration begins on line 4. For clarity, we refer to the iterations in

Algorithm 37 as “refinement iterations” and the iterations in Algorithm 38 as the

“update iterations."

Within the refinement iteration, a new conditional step is introduced on lines

5 to 8, controlling the reduction of the gradient size within the update iteration in

Algorithm 38. If it is the first refinement iteration, the variable step_size_reduction

is set to linearly decrease the gradient size from initial_step_size to end_step_size
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over the course of the n update iterations. For subsequent refinement iterations,

step_size_reduction is set to 0 since the step size has already reduced to end_step_size.

Next, the elastic_ssg_barycentre_update function is called to perform the Elas-

tic SSG Barycentre update iterations on line 9. It takes four parameters: barycentre

(the current barycentre), X (the current dataset of time series), current_step_size

(the starting gradient descent size), and step_size_reduction (which controls how

much the current_step_size is reduced during each iteration). Once the

elastic_ssg_barycentre_update completes, two variables are returned: the up-

dated barycentre and the current_step_size. After the first set of update iterations,

current_step_size will be equal to end_step_size and will remain at this value for

the rest of the algorithm’s execution.

Beyond this, the algorithm functions the same way as the Elastic Barycentre

Average. The refinement iterations will continue until max_iters is reached, and

once completed, the Elastic SSG Barycentre Average is returned. We will now

outline the elastic_ssg_barycentre_update algorithm in Algorithm 38.

Algorithm 38 presents the procedure to iteratively update the Elastic SSG

Barycentre Average for one pass through the dataset X . The process begins by

setting new_barycentre to the initial barycentre, barycentre (line 1), and starting

the iteration from 1 to n (line 2). A random time series, not previously selected, is

chosen from the dataset X (line 3). Using the randomly selected time series, the cost

matrix and alignment path are computed using a elastic distance that generates a

complete warping path (lines 4 and 5). A temporary barycentre, temp_barycentre,

is then created to store the intermediate results (line 6).

The generated alignment path is then used to update the barycentre. The jth

time point in the random_time_series is subtracted from the kth time point in the

new_barycentre, and the result is assigned to the kth time point in temp_barycentre

(line 8).
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Algorithm 37: elastic_ssg_barycentre(X, max_iters, tol,
initial_step_size, end_step_size)

Input: X (Dataset of time series of length n. Each time series is of length
m), max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold),
initial_step_size (Initial step size), end_step_size (End step size)

Output: Elastic SSG Barycentre Average of X for a given elastic distance
1 barycentre← mean(X)
2 previous_dist← ∞

3 current_step_size← initial_step_size
4 for i← 1 to max_iters do
5 if i == 1 then
6 step_size_reduction← (initial_step_size− end_step_size)/n

7 else
8 step_size_reduction← 0

9 barycentre,current_step_size←
elastic_ssg_barycentre_update(barycentre,X ,current_step_size,step_size_reduction)

10 curr_distance← 0
11 for each time series curr_ts in X do
12 curr_distance←

curr_distance+ elastic_distance(barycentre,curr_ts)
13 if |previous_dist− curr_distance|< tol then
14 break

15 previous_dist← curr_distance

16 return barycentre

Once all alignments have been processed, a new_barycentre is created by mul-

tiplying temp_barycentre by 2.0× current_step_size (line 9). As the algorithm

progresses, current_step_size gradually decreases, causing the new_barycentre to

change by progressively smaller amounts with each iteration. Finally, current_step_size

is reduced by the value of step_size_reduction (line 10). The update iteration re-

peats until all time series have been processed (in a random order). Once complete,

the algorithm returns the updated new_barycentre and current_step_size (line 11).
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Algorithm 38: elastic_ssg_barycentre_update(barycentre, X,
current_step_size, step_size_reduction)

Input: barycentre (Current estimate of barycentre), X (Dataset of time
series of length n. Each time series is of length m),
current_step_size (Step-size for the subgradient descent),
step_size_reduction (Amount current_step_size should reduce by
each iteration)

Output: Updated Elastic SSG Barycentre and the current_step_size after
reductions.

1 new_barycentre← barycentre
2 for i← 1 to n do
3 random_time_series← choose a random time series from X (not

already selected)
4 CM← elastic_distance_CM(barycentre,random_time_series)
5 alignment_path← optimal_warping_path(CM)
6 Initialise temp_barycentre as a zeros array of size m.
7 for each pair of indices ( j,k) in alignment_path do
8 temp_barycentre[k]← temp_barycentre[k]+

(new_barycentre[k]− random_time_series[ j])
9 new_barycentre← (2.0× current_step_size)× temp_barycentre

10 current_step_size← current_step_size− step_size_reduction

11 return new_barycentre,current_step_size

8.3 Elastic SSG Barycentre analysis

Figure 8.2 presents the Elastic SSG Barycentre Averages for 10 different elastic

distances applied to class 1 of the GunPoint dataset. For reference, the arithmetic

mean is also included (in red).

Similar to the Elastic Barycentre Average, it is noteworthy how distinct each

Elastic SSG Barycentre is from one another depending on the elastic distance used.

However, when compared to the Elastic Barycentre Averages for the same data

shown in Figure 7.1, the barycentres produced by the Elastic SSG method are very

similar. The global structures are nearly identical for most elastic distances, with

the exception of SSG-BA-DDTW (turquoise line), which deviates significantly

from the Elastic Barycentre DDTW Average.
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The key difference between the Elastic SSG Barycentre Average and the Elastic

Barycentre Average lies in the local structures. For instance, in the case of SSG-

BA-TWE (yellow line), the peak is much more pronounced compared to BA-TWE

in Figure 7.1. Additionally, more local fluctuations are evident in all the Elastic

SSG Barycentre Averages. This is likely due to the Elastic SSG Barycentre Average

updating the barycentre at each iteration, whereas the Elastic Barycentre Average

updates the barycentre only once after all update iterations have been completed.

Additionally, we recorded the number of iterations required for each Elastic

Barycentre Average and Elastic SSG Barycentre Average to converge when produc-

ing an average for GunPoint class 1. The convergence criterion was either reaching

the maximum number of iterations or satisfying the early stopping condition, where

the barycentre change between iterations was less than tol. Table 8.1 presents the

number of iterations taken by each averaging technique to converge.

We observed that the Elastic SSG Barycentre Average required fewer iterations

to converge across all distances compared to the Elastic Barycentre Average. For

some distances, such as DTW, WDTW, DDTW, and WDDTW, the difference was

particularly significant. This indicates that similar Elastic Barycentre Averages can

be produced with much less computational effort.

Distance SSG-BA Iterations BA Iterations
DTW 8 184

ADTW 5 2
WDTW 8 21
DDTW 10 500

WDDTW 5 500
Shape DTW 3 11
Soft DTW 2 3

ERP 2 3
MSM 2 3
TWE 2 3

Average 4.7 123
Table 8.1 Number of Iterations for SSG-BA and BA to produce the barycentres in
Figure 8.2 and 7.1 respectively. The maximum number of iterations was set to 500.



8.3 Elastic SSG Barycentre analysis 287

0 20 40 60 80 100 120 140
1.5
1.0
0.5
0.0
0.5
1.0
1.5
2.0

GunPoint dataset class 1

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

1.5
Mean Average

0 20 40 60 80 100 120 140
1.5

1.0

0.5

0.0

0.5

1.0

1.5

SSG-BA-DTW

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

1.5
SSG-BA-ADTW

0 20 40 60 80 100 120 140

1.0

0.5

0.0

0.5

1.0

1.5

SSG-BA-WDTW

0 20 40 60 80 100 120 140

1.0

0.5

0.0

0.5

1.0

1.5
SSG-BA-DDTW

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

1.5
SSG-BA-WDDTW

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

1.5
SSG-BA-Shape-DTW

0 20 40 60 80 100 120 140
1.5

1.0

0.5

0.0

0.5

1.0

1.5

SSG-BA-Soft-DTW

0 20 40 60 80 100 120 140
1.0

0.5

0.0

0.5

1.0

SSG-BA-ERP

0 20 40 60 80 100 120 140
1.5

1.0

0.5

0.0

0.5

1.0

1.5
SSG-BA-MSM

0 20 40 60 80 100 120 140

1.5

1.0

0.5

0.0

0.5

1.0

1.5

SSG-BA-TWE

Fig. 8.2 Different Elastic SSG Barycentre Averages for GunPoint class 1.
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8.4 The KESBA clustering algorithm

We now propose the k-means (K) end-to-end elastic (E) stochastic subgradient (S)

Barycentre (B) Average (A) (KESBA) clustering algorithm. The goal of KESBA

is to deliver competitive clustering performance comparable to the newly identi-

fied state-of-the-art TSCL algorithms, while significantly reducing computational

runtime.

KESBA is built around the Elastic SSG Barycentre Average proposed previously.

Previous work has shown that SSG-DBA converges much faster than the traditional

DBA while producing similar results [108]. In Section 8.3, we demonstrated that

the adapted Elastic SSG Barycentre Average shares these characteristics, producing

a similar average to the Elastic Barycentre Average but with significantly less

iterations required.

However, integrating the Elastic SSG Barycentre Average into Lloyd’s algorithm

requires specific updates to be made. While the speed-up provided by the Elastic

SSG Barycentre Average is substantial, we introduce additional optimisations to

enhance the algorithm’s speed and scalability further.

Algorithm 39 outlines the KESBA clustering algorithm. We will now provide a

detailed explanation of all the enhancements we have made to Lloyd’s algorithm to

make the KESBA clustering algorithm as fast and scalable as possible.



8.4 The KESBA clustering algorithm 289

Algorithm 39: KESBA (X, k, max_iters, ba_subset_size, window,
initial_step_size, end_step_size)

Input: X (Dataset of time series of length n), k (Number of clusters),
max_iters (Maximum number of iterations before forced
termination), ba_subset_size (Percentage of time series to use each
iteration of Random Subset Elastic SSG Barycentre Average),
window (Sakoe-chiba bounding window for distance computation.),
initial_step_size (Initial SSG step size.), end_step_size (End SSG
step size.)

Output: Assignment of each time series to a cluster
1 centres← elastic_kmeans_plus_plus(X ,k,window)
2 Let assignments be an empty array of length n
3 Let prev_assignments be an empty array of length n
4 for j← 1 to max_iters do
5 for each time series xi in X do
6 Compute the distance between xi and each of the k centres using the

window as a parameter
7 Assign xi to the nearest centre

8 if prev_assignment == assignment then
9 break

10 if any cluster has no assignments then
11 repeat
12 for each cluster c j in centres do
13 if cluster c j has no assignments then
14 Set best_candidate to the time series that reduces

inertia the most and is not currently a centroid
15 c j← best_candidate
16 Recompute cluster assignments

17 until every cluster has at least one assignment;

18 for each centre c j in centres do
19 Update c j to be the Random Subset Elastic SSG Barycentre

Average of the time series assigned to cluster c j

20 prev_assignments← assignments

21 return assignments
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8.4.1 Random Subset Elastic SSG Barycentre Average

The first and most significant modification we apply to Lloyd’s algorithm is the

development of a faster Elastic SSG Barycentre Average, which we call the Random

Subset Elastic SSG Barycentre Average, specifically designed for KESBA. This

method incorporates optimisations inspired by CLARA and CLARANS to reduce

the algorithm’s runtime.

At a high level, the Random Subset Elastic SSG Barycentre Average computes

the Elastic SSG Barycentre Average on a random subset of the data selected during

each refinement iteration. This strategy produces a similar average but significantly

reduces the computational cost compared to the full Elastic Barycentre Average.

The Random Subset Elastic SSG Barycentre Average is applied in line 19 of the

KESBA algorithm, as shown in Algorithm 39.

Algorithm 40 introduces the Random Subset Elastic SSG Barycentre Average,

which adds a new parameter compared to the standard Elastic SSG Barycentre

Average: ba_subset_size. This parameter, set between 0 and 1, controls the per-

centage of the dataset used in each refinement iteration. A value of 1 will use all

of the data whereas a value of 0.5 will use 50% of the data. During each iteration,

a random subset of the dataset is selected to update the current barycentre, with

ba_subset_size determining the number of time series included in the subset.

The ba_subset_size parameter gives practitioners the ability to balance runtime

with the quality of the computed barycentre. Our hypothesis is that a higher value

will improve the quality of the average but increase runtime, whereas a lower

value will reduce runtime at the potential cost of average quality. However, as

we will demonstrate in Section 8.7, we find that a lower ba_subset_size not only

significantly reduces runtime but also improves KESBA’s overall performance.

In Algorithm 40, the ba_subset_size parameter is applied on line 4 to calculate

the number of time series used in each refinement iteration, stored as num_ts_to_use.
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This value is rounded to determine the exact number of instances selected for

each iteration. For example, if ba_subset_size is set to 0.2 for a dataset with 100

instances, 20 instances will be randomly chosen for each refinement iteration.

To ensure sufficient data is used for the barycentre computation, we set a

minimum of 10 instances (or n if the cluster has fewer than 10 instances) and

a maximum of n to be used. This is necessary because Lloyd’s algorithm can

produce both very large and very small clusters. If a small cluster of only 10

instances is passed to the Random Subset Elastic SSG Barycentre function with

ba_subset_size set to 0.2, only two time series would be selected, leading to a

poor-quality barycentre. Setting a minimum ensures enough data is used to produce

a more reliable barycentre.

Next, on line 7, the step_size_reduction variable is adjusted based on the

num_ts_to_use variable, as this dictates the number of iterations over which the

step size must reduce to end_step_size. Then, on line 10, num_ts_to_use time

series are randomly selected from the dataset X , ensuring both selection and order

are randomised. These time series are passed to the random_subset_elastic_

ssg_barycentre_update function on line 11.

The remainder of the algorithm follows the Elastic SSG Barycentre Average.

On line 14, although only a random subset of the dataset is used to update the

barycentre, all time series are included when computing the total distance to the

barycentre. This ensures a consistent measure of total distance across iterations,

allowing for reliable convergence checks.

Algorithm 41 presents the update function for the Random Subset Elastic SSG

Barycentre. The primary difference from the original Elastic SSG Barycentre update

function is the inclusion of a random subset of X , denoted as random_subset_X ,

which is passed as a parameter. Because this subset is already randomised, the

logic for shuffling the sequence has been removed, simplifying the function and

improving efficiency compared to the original.
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Algorithm 40: random_subset_elastic_ssg_barycentre(X, max_iters, tol,
initial_step_size, end_step_size, ba_subset_size)

Input: X (Dataset of n time series. Each time series is of length m),
max_iters (Maximum number of iterations before forced
termination), tol (Change in barycentre threshold),
initial_step_size (Initial step size), end_step_size (End step size),
ba_subset_size (Percentage of time series to use for an update
iteration)

Output: Random Subset Elastic SSG Barycentre Average of X for a given
elastic distance

1 barycentre← mean(X)
2 previous_dist← ∞

3 current_step_size← initial_step_size
4 num_ts_to_use←min(n,max(10,(ba_subset_size×n)))
5 for i← 1 to max_iters do
6 if i == 1 then
7 step_size_reduction←

(initial_step_size− end_step_size)/num_ts_to_use
8 else
9 step_size_reduction← 0

10 Let random_subset_X be an array of num_ts_to_use randomly
selected time series from X.

11 barycentre,current_step_size←
random_subset_elastic_ssg_barycentre_update(barycentre,random_subset_X ,
current_step_size,step_size_reduction)

12 curr_distance← 0
13 for each time series curr_ts in X do
14 curr_distance←

curr_distance+ elastic_distance(barycentre,curr_ts)
15 if |previous_dist− curr_distance|< tol then
16 break

17 previous_dist← curr_distance

18 return barycentre

In Section 8.7, we conduct an extensive evaluation of the ba_subset_size pa-

rameter and its impact on clustering performance and runtime for KESBA. While

we recommend a default value between 0.4 and 0.5, we encourage practitioners

to adjust this parameter based on their specific computational runtime needs. Our
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Algorithm 41: random_subset_elastic_ssg_barycentre_update(barycentre,
random_subset_X, current_step_size, step_size_reduction)

Input: barycentre (Current estimate of barycentre), random_subset_X
(Dataset of randomly selected time series of size n. Each time series
is of length m), current_step_size (Step size for the subgradient
descent), step_size_reduction (Amount by which
current_step_size should reduce each iteration)

Output: Updated Random Subset Elastic SSG Barycentre and the
current_step_size after reductions

1 new_barycentre← barycentre
2 for each time series random_time_series in random_subset_X do
3 CM← elastic_distance_CM(new_barycentre,random_time_series)
4 alignment_path← optimal_warping_path(CM)
5 Initialise temp_barycentre as a zero array of size m.
6 for each pair of indices ( j,k) in alignment_path do
7 temp_barycentre[k]← temp_barycentre[k]+

(new_barycentre[k]− random_time_series[ j])
8 new_barycentre←

new_barycentre− (2.0× current_step_size)× temp_barycentre
9 current_step_size← current_step_size− step_size_reduction

10 return new_barycentre,current_step_size

evaluation in Section 8.7 is intended to provide practitioners with the necessary

insights to make informed decisions tailored to their requirements.

8.4.2 Elastic k-means++ initialisation

One of the most significant computational improvements we introduce for KESBA

is the adaptation of k-means++ to work with elastic distances, specifically TWE and

MSM. While we have found instances of k-means++ being used with DTW in the

open-source TSCL community [118], we were unable to locate any literature that

evaluates its performance with elastic distances. Therefore, we believe we are the

first to integrate and systematically evaluate k-means++ with any elastic distances.

k-means++ [6] is widely regarded as one of the most popular and recommended

methods for cluster initialisation in traditional clustering literature [17]. However,

as shown in Chapter 4, k-means++ performs worse than Forgy, Random with 10
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restarts, and Forgy with 10 restarts for time series data. We hypothesise that this is

because k-means++ relies heavily on the Euclidean distance to measure similarity

between time series. As demonstrated through numerous experiments in this thesis,

the Euclidean distance is not a suitable distance measure for TSCL. In contrast,

elastic distances have proven to be significantly more effective. Therefore, we

hypothesise that incorporating elastic distances into k-means++ could substantially

improve the initial centroids, providing a viable alternative to Forgy with 10 restarts.

In the literature, the only reference we found to k-means++ with an elastic

distance (specifically DTW) was in the tslearn open-source repository [118]. Addi-

tionally, we were unable to find any evaluations of the impact of using k-means++

with elastic distances. While we do not conduct a review of initialisation methods,

we do compare k-means++ with elastic distances against Forgy with restarts.

Our results show that k-means++ with an elastic distance achieves clustering

performance comparable to Forgy with 10 restarts, while significantly reducing run-

time—by a factor of 10—since no restarts are required. This is because k-means++

avoids local optima more effectively than random initialisation strategies [17],

eliminating the need for multiple restarts. Although computing the initial centroids

using k-means++ is more expensive than using Forgy, the centroids selected by

k-means++ are theoretically “better,” meaning that Lloyd’s algorithm requires fewer

iterations to converge [17]. Thus, the initial cost of k-means++ is offset by the

reduced number of distance computations needed for convergence. Overall, elastic

k-means++ offers a significant reduction in computational time while delivering

clustering performance similar to Forgy with 10 restarts.

Algorithm 42 presents the Elastic k-means++ algorithm. This algorithm is

identical to that proposed by [6], but it uses an elastic distance in place of the

squared Euclidean distance. The Elastic k-means++ algorithm is used on line 1 of

the KESBA algorithm shown in Algorithm 39.
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Algorithm 42: elastic_kmeans_plus_plus(X, n_clusters)
Input: X (Dataset of n time series, each of length m),
n_clusters (Number of clusters)
Output: centers (Array of initial cluster centers)

1 Select a random initial center index initial_center_idx from {1,2, . . . ,n}
2 Initialise indexes as a list containing initial_center_idx
3 Compute min_distances as the elastic distances between each time series in

X and X [initial_center_idx]
4 for k = 2 to n_clusters do
5 total_distance← 0
6 for i = 1 to n do
7 total_distance = total_distance+min_distance[i]

8 Let probabilities be an array of zeros of length n
9 for i = 1 to n do

10 probabilities[i]← min_distances[i]/total_distance

11 Randomly select the next centroid index next_center_idx from
{1,2, . . . ,n} with the weighted probability distribution probabilities

12 Append next_center_idx to indexes
13 Compute distances_new_center as the distances between each time

series in X and X [next_center_idx] using the elastic distance
14 min_distances[i]←min(min_distances[i],distances_new_center[i])

15 centers← X [indexes]
16 return centers

Overall, Elastic k-means++ will be shown to achieve clustering performance

comparable to Forgy with 10 restarts, but without the need for restarts, resulting in

significantly reduced computational runtime. In Section 8.7, we show that while

Elastic k-means++ is slightly outranked by Forgy with 10 restarts, the difference is

not statistically significant. Moreover, the runtime savings are substantial—over

eight times faster than Forgy with 10 restarts—making it a worthwhile trade-off

between a minimal reduction in clustering performance and significantly faster

runtimes.
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8.4.3 Lloyd’s-stopping condition

In Section 4.6, we defined a convergence criteria for Lloyd’s algorithm as measuring

the change in inertia between iterations. If the change in inertia falls below the

threshold tol, the algorithm is considered to have converged.

However, when using the Random Subset Elastic SSG Barycentre Average

within the k-means algorithm, measuring inertia change between iterations is no

longer applicable. This is because every time the Random Subset Elastic SSG

Barycentre Average computes the average of a collection (or cluster) of time series,

a different barycentre average is produced, even if the same time series are used.

This variability is due to the random order and random subset of data that the

Random Subset Elastic SSG Barycentre Average iteratively refines. As a result, the

inertia of the same set of time series will almost always differ between iterations,

causing the inertia to change even when the assignments remain unchanged. This

means measuring change in inertia between iterations is no longer an accurate way

to measure convergence.

One potential solution is to set the tol parameter higher. However, it is difficult

to determine a value that is high enough to account for the random inertia changes

caused by the Random Subset Elastic SSG Barycentre Average, yet low enough

to prevent premature convergence. Therefore, instead of relying on inertia which

is relative to the centroids, we measure the change in assignments to each cluster

between iterations. If the assignments do not change, the algorithm is considered to

have converged. This is demonstrated in Algorithm 39 on lines 8 and 9.

In Chapter 4, we noted that using a convergence condition based on unchanged

assignments between iterations could significantly increase runtime. However, due

to the other optimisations implemented in KESBA, this trade-off is acceptable.
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8.4.4 Increased iterations

In Chapter 4, we discussed the max_iters parameter for Lloyd’s algorithm, suggest-

ing a default value of 50 for all experiments in this thesis. We noted with unlimited

computational resources we would set this value higher. However, when using

Forgy initialisation with 10 restarts, as we have done throughout this thesis, we had

to carefully balance the number of iterations to ensure sufficient convergence while

allowing the algorithms to finish within our seven-day runtime limit.

However, for KESBA, the optimisations we implemented allow the algorithm to

afford a higher maximum number of iterations without exceeding the runtime limit.

Typically, as dataset size and the number of clusters increase, Lloyd’s algorithm

requires more iterations to converge. In Chapter 4, we demonstrated that while 50

iterations were sufficient for most datasets in the UCR archive, some of the larger

datasets did exceed this limit. Since KESBA is designed for very large datasets,

it is appropriate to significantly increase the max_iters value to 300 by default to

ensure convergence, even for datasets much larger than those in the UCR archive.

For many datasets in the UCR archive, we do not expect to approach this number of

iterations, and the larger value is set to provide redundancy for the largest datasets.

For the same reason, we can also increase the max_iters parameter for the Ran-

dom Subset Elastic SSG Barycentre Average. We set max_iters for this averaging

technique to 300. Again, while we do not expect most datasets to reach this number

of iterations, the higher limit is set for redundancy.

Although increasing the number of iterations may lead to longer runtimes, the

optimisations made to KESBA make this an acceptable trade-off, providing a more

scalable algorithm for even the largest datasets. The max_iters for both the Lloyd’s

iteration and Random Subset Elastic SSG Barycentre Average is provided as a

parameter to the KESBA algorithm.
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8.4.5 Sakoe-Chiba bounding window

The final optimisation we propose is the use of a Sakoe-Chiba bounding window.

The same Sakoe-chiba bounding window is used for every elastic distance computa-

tion within the KESBA. This includes within k-means++, the assignment stage, the

empty cluster stage and the averaging stage. This greatly reduces the computational

cost of using a elastic distance.

While the Sakoe-Chiba bounding window has been used in the assignment

phase of Lloyd’s algorithm [118], we have found no examples of it being used with

a barycentre average. A large portion of the computation time for the KESBA is

within the Random Subset Elastic SSG Barycentre Average. Specifically computing

the elastic cost matrix (line 3 in Algorithm 41).

However, it is a non trivial task to set a value for the bounding window. As

such in Section 8.7 we conduct extensive experiments aimed at identifying a value

that strikes the best balance between computational efficiency and maintaining the

algorithm’s strong clustering performance. This will provide practitioners with

a window size that maximises performance benefits while preserving clustering

quality.

8.5 KESBA cluster configuration

KESBA is designed to be versatile, giving practitioners full control over balancing

runtime and clustering performance. We recommend that practitioners primarily

parameterise KESBA based on their specific runtime requirements. However, we

provide default KESBA parameters that strike a balance between computational

efficiency and clustering quality.

Table 8.2 presents our recommended default parameters. While these serve

as a starting point, we strongly suggest practitioners consult our detailed KESBA
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tuning experiments in Section 8.7. These experiments are not intended to optimise

clustering performance, but to demonstrate how adjusting KESBA’s parameters

can influence both runtime and performance. This should help practitioners make

informed decisions by illustrating the impact each parameter has on computational

time and clustering quality.

For our KESBA experiments, we have chosen two elastic distances: TWE and

MSM. TWE is selected because of its consistent performance in both the PAM and

Elastic Barycentre Averaging experiments. However, as highlighted throughout this

thesis, TWE is also one of the most computationally expensive elastic distances.

To balance this, we include MSM, which also performs well in the PAM and

Elastic Barycentre Averaging experiments but is generally much faster than TWE.

These two distances should illustrate how the choice of elastic distance affects

both clustering and runtime performance in KESBA. Practitioners may opt for any

elastic distance that computes a complete optimal alignment path, as outlined in

Chapter 7.

max_iters ba_subset_size window init_algo distance
KESBA-TWE 300 0.4 0.4 TWE-k-means++ TWE
KESBA-MSM 300 0.5 0.5 MSM-k-means++ MSM

Table 8.2 Default parameters for KESBA.

Table 8.3 shows the default parameters for the Random Subset Elastic SSG

Barycentre Average used across all KESBA clusterers and experiments. We follow

the default parameters suggested by [108] for the initial and final step sizes. The

window and ba_subset_size parameters are excluded from this table, as they vary

depending on the specific KESBA configuration. For example, in the KESBA-TWE

configuration, a window size of 0.4 and a ba_subset_size of 0.4 would be used for

the Random Subset Elastic SSG Barycentre Average.
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tol max_iters initial_step_size end_step_size
1×10−6 300 0.005 0.05

Table 8.3 KESBA Random Subset Elastic SSG Barycentre Average parameters

8.6 KESBA experiment

8.6.1 Combined Test-Train Split

Figure 8.7 presents the CD diagrams for KESBA, compared to the baseline and

state-of-the-art clusterers identified in this thesis. For every evaluation metric, both

KESBA-TWE and KESBA-MSM are consistently ranked in the top clique. For

AMI and NMI, KESBA-MSM and KESBA-TWE achieve nearly identical rank-

ings. However, for ARI and CLACC, KESBA-TWE performs slightly better than

KESBA-MSM. While neither KESBA variant outperforms their Elastic Barycentre

Average counterparts, k-means-ba-TWE and k-means-ba-MSM, they come very

close in all evaluation metrics except ARI, where the Elastic Barycentre Average

demonstrates considerably better performance. Additionally, for AMI, CLACC

and NMI KESBA is significantly better than k-shapes, although for ARI, k-shapes

narrowly makes it into the top clique.

Looking at the raw average scores in Table 8.4, the difference between KESBA-

MSM and KESBA-TWE is minimal, with KESBA-TWE achieving slightly higher

average scores across all evaluation metrics, though the margin is small. KESBA-

MSM shows similar average scores to k-means-ba-MSM, except for CLACC, where

k-means-ba-MSM performs noticeably better. However, k-means-ba-TWE appears

stronger than KESBA-TWE in terms of average score, particularly for ARI and

CLACC.

In Figure 8.8, we directly compare KESBA to its Elastic Barycentre Average k-

means counterpart for ARI. KESBA-TWE and k-means-ba-TWE perform similarly,
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Fig. 8.7 CD diagrams of KESBA experiment over 105 datasets from the UCR
archive using the combined test-train split. Missing datasets are outlined in Ta-
ble A.37.

ARI AMI CLAcc NMI RI
k-means-ba-dtw 0.255 0.301 0.571 0.326 0.709
k-means-ba-msm 0.255 0.306 0.573 0.328 0.706
k-means-ba-twe 0.273 0.315 0.583 0.338 0.713
k-means-euclidean 0.199 0.248 0.522 0.274 0.690
k-sc 0.215 0.259 0.543 0.281 0.660
k-shapes 0.231 0.288 0.555 0.310 0.700
kesba-msm 0.253 0.303 0.566 0.325 0.705
kesba-twe 0.255 0.306 0.570 0.328 0.702
pam-msm 0.267 0.312 0.582 0.334 0.714
pam-twe 0.274 0.317 0.588 0.340 0.717

Table 8.4 Summary of average score across multiple evaluation metrics over 105
datasets from the UCR archive using the combined test-train split.

with k-means-ba-TWE winning 51 datasets and KESBA-TWE winning 49. The

gap is slightly larger for KESBA-MSM and k-means-ba-MSM, where k-means-ba-

MSM wins on 55 datasets compared to KESBA-MSM’s 44. In both cases, KESBA’s
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wins are by small margins, suggesting that even with optimisations that reduce the

amount of data used in the averaging phase, KESBA still performs comparably

across most datasets. Overall, this comparison indicates that KESBA offers a viable

alternative to the Elastic Barycentre Average, delivering very similar results while

being significantly faster.
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(b) KESBA-MSM compared to k-means-ba-MSM

Fig. 8.8 KESBA-TWE and KESBA-MSM results compared directly to k-means-ba-
TWE and k-means-ba-MSM, respectively, for ARI over 105 datasets from the UCR
archive using the combined test-train split.

We have demonstrated that KESBA’s clustering performance is not significantly

different from its Elastic Barycentre Averaging counterpart, and it remains competi-

tive with the best-performing PAM clusterers. KESBA achieves this while having

a significantly lower runtime than both PAM and the Elastic Barycentre Average

clusterers. Figure 8.9 presents the relative FitTime violin plots, illustrating that

KESBA is consistently and significantly faster than its Elastic Barycentre Average

counterparts.

To further showcase KESBA’s FitTime superiority, we analysed the values

used to construct the Violin plots in Figure 8.9. Table 8.5 presents the total, mean,
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Fig. 8.9 Relative FitTime violin plot comparison for KESBA, PAM and Elastic
Barycentre Average clusterers over 105 datasets from the UCR archive using the
combined test-train split.

median, and maximum runtimes in hours for each clusterer across 105 datasets.

While PAM exhibits faster overall total, mean, and median runtimes compared to

KESBA, KESBA-MSM recorded the fastest maximum runtime, with KESBA-TWE

following closely as the second fastest. This underscores KESBA’s key advantage:

its scalability.

Although KESBA’s overall runtime statistics—such as total, mean, and me-

dian—are very similar to PAM, the maximum runtime statistic highlights PAM’s

scalability issue. While PAM performs well on smaller datasets, its runtime grows

exponentially due to the need to compute a pairwise distance matrix, which has

a time complexity of O(n2). This exponential growth, coupled with the high

computational cost of elastic distances, renders PAM impractical for larger datasets.

A clear example of KESBA’s efficiency is its performance on the Crop dataset,

the largest dataset in the UCR archive with 240,000 unique time series instances.

Using the combined test-train split, KESBA-MSM completed the dataset in just 48

minutes, while KESBA-TWE finished in 69 minutes. In contrast, none of the PAM
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clusterers using elastic distances were able to produce results for the Crop dataset

within the seven-day runtime limit. Given that PAM would require 288,000,000

unique elastic distance computations, its runtime becomes computationally infeasi-

ble. Although we do not know exactly how long PAM would take to complete, it is

evident that it would exceed 168 hours (and likely far more), whereas KESBA fin-

ishes in around one hour. This stark difference underscores the superior scalability

of KESBA compared to PAM.

Furthermore, if the Crop dataset had been included in the overall experiment,

KESBA would have achieved the lowest total, mean, median, and maximum

runtimes among all the clusterers considered.

Metric k-means-
ba-msm

k-means-
ba-twe

kesba-
msm

kesba-twe pam-msm pam-twe

Total 829.95 1193.84 386.71 485.61 321.15 391.54
Mean 7.90 11.37 3.68 4.62 3.06 3.73
Median 0.33 0.62 0.17 0.12 0.07 0.12
Max 84.33 121.71 40.32 77.56 77.83 83.12

Table 8.5 Four FitTime statistics for completing clustering on 105 datasets from the
UCR archive using the combined test-train split. “Total” refers to the cumulative
hours required to process all datasets, “Mean” represents the average time taken
per dataset, “Median” is the midpoint time to complete a dataset, and “Max” is the
longest time taken to complete any single dataset.

Additionally, Figure 8.10 presents the CD diagram for the FitTime of our

KESBA experiment. KESBA-MSM ranks among the fastest clusterers, only sur-

passed by k-shapes and k-means-Euclidean. However, we have demonstrated

that KESBA’s performance is significantly better than both k-shapes and k-means-

Euclidean. Moreover, as we will show later in this chapter, practitioners can

further reduce KESBA’s runtime through its versatile set of parameters, while still

maintaining superior performance compared to k-shapes.



8.6 KESBA experiment 305

12345678910

k-means-euclidean1.0000

k-shapes2.9714

kesba-msm4.6095

pam-msm4.9619

k-means-ba-msm5.7524kesba-twe 6.0381
pam-twe 6.1810

k-sc 6.2762
k-means-ba-twe 8.1333
k-means-ba-dtw 9.0762

Fig. 8.10 CD diagram for KESBA FitTime compared to other clusterers for 105
UCR archive datasets using the combined test-train split.

Finally, we compare KESBA’s performance to k-means-soft-DBA. Initially, we

excluded k-means-soft-DBA from our analysis because it failed to complete 27

datasets within the seven-day runtime limit. Including it would have significantly

reduced the quality of the evaluation. However, since k-means-soft-DBA has

achieved the best clustering performance of any method considered in this thesis,

we believe it is important to include in the comparison.

Figure 8.15 shows the CD diagram for KESBA, including k-means-soft-DBA,

over 84 datasets from the combined test-train split. When including k-means-soft-

DBA, KESBA falls out of the top clique for every evaluation metric except ARI.

Given KESBA’s significantly shorter runtime compared to k-means-soft-DBA, this

is still impressive. Overall, Figure 8.15 shows that for ARI, KESBA-TWE is not

significantly different from k-means-soft-DBA. However, for CLACC, AMI, and

NMI, both KESBA-TWE and KESBA-MSM are significantly different.

Overall, we have presented KESBA for the combined test-train split. KESBA

demonstrates state-of-the-art performance while requiring significantly less run-

time. Compared to the Elastic Barycentre Averaging k-means clusterer, KESBA is

considerably faster. While its runtime is comparable to PAM on small to medium-

sized UCR datasets, KESBA is orders of magnitude faster than PAM on very large

datasets, such as Crop, underscoring its scalability.
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Fig. 8.15 CD diagrams of KESBA experiment with soft-DBA over 84 datasets from
the UCR archive using the combined test-train split. Missing datasets are outlined
in Table A.38.

8.6.2 Test-train split

Figure 8.20 presents the CD diagrams for KESBA compared to the baseline and

state-of-the-art clusterers outlined in this thesis, using the test-train split. Both

KESBA-TWE and KESBA-MSM appear in the top clique for AMI, ARI, and NMI.

However, for CLACC, KESBA-MSM and KESBA-TWE falls just short of the top

clique. Interestingly, KESBA-MSM consistently outperforms KESBA-TWE in the

test-train split, whereas, for the combined test-train split, KESBA-TWE generally

performed better. In our Elastic Barycentre Average experiments we also observe

that k-means-ba-MSM consistently outperforms k-means-ba-TWE for the test-train

split, so it is not surprising that the same pattern holds for KESBA. Overall, our

findings for the test-train split align closely with those from the combined test-train

split.
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Fig. 8.20 CD diagrams of KESBA experiment over 112 datasets from the UCR
archive using the test-train split.

Figure 8.21 shows the CD diagram for KESBA’s FitTime compared to other

clusterers. For the test-train split, KESBA-MSM achieves a higher average FitTime

rank than k-shapes, although the difference is not statistically significant. It is

noteworthy that KESBA-MSM is the second fastest clusterer while still appearing

in the top clique for AMI, ARI, and NMI in terms of clustering performance.
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Fig. 8.21 CD diagram for KESBA FitTime compared to other clusterers for 112
UCR archive datasets using the test-train split.
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To provide further context on the runtime of each clusterer relative to one

another, Table 8.6 outlines various FitTime statistics for each clusterer. In Table 8.6,

KESBA-MSM has the lowest FitTime for all four statistics. Compared to the

combined test-train split, the PAM clusterers show a significantly higher total

runtime. This is mainly due to the inclusion of the Crop dataset in the test-train

split experiments (as PAM finished Crop for the test-train split). Table 8.7 shows

the runtime (in hours) it took each clusterer to complete the Crop dataset. KESBA

is significantly faster than the other clusterers in terms of total runtime hours, being

almost twice as fast as the next closest, k-means-ba-MSM. This further demonstrates

KESBA’s scalability.

Metric k-means-
ba-msm

k-means-
ba-twe

kesba-
msm

kesba-twe pam-msm pam-twe

Total hours 226.06 398.76 145.94 227.20 426.00 480.17
Mean hours 2.15 3.80 1.39 2.16 4.06 4.57
Median hours 0.03 0.07 0.03 0.05 0.05 0.06
Max hours 27.84 46.70 21.02 38.95 234.26 190.57

Table 8.6 Four FitTime statistics for completing clustering on 112 datasets from
the UCR archive using the test-train split. “Total” refers to the cumulative hours
required to process all datasets, “Mean” represents the average time taken per
dataset, “Median” is the midpoint time to complete a dataset, and “Max” is the
longest time taken to complete any single dataset.

k-means-
ba-msm

k-means-
ba-twe

kesba-
msm

kesba-twe pam-msm pam-twe

Crop 0.39 0.87 0.22 0.34 234.26 190.57

Table 8.7 Total time each clusterer took to complete Crop dataset in hours for the
test-train split. We note that our PAM clusterers were able to exceed our normal
seven-day runtime limit as they were run before our HPC introduced a runtime
limit.

Finally, similar to the combined test-train split, we also introduce k-means-soft-

DBA to evaluate KESBA against the best-performing clusterer. For the test-train
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split, when k-means-soft-DBA is included in the evaluation, KESBA remains in the

top clique for AMI and NMI. However, for ARI and CLACC, KESBA falls into the

second-best clique. However, KESBA is significantly better than k-shapes for the

test-train split where it always appears in the bottom clique.
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Fig. 8.26 CD diagrams of KESBA experiment with soft-DBA over 104 datasets
from the UCR archive using the test-train split.

8.6.3 Conclusion: KESBA

We have introduced KESBA, a fast and scalable TSCL algorithm that achieves state-

of-the-art performance while being significantly more computationally efficient

than comparable clusterers. Our results demonstrate that KESBA, using TWE and

MSM, delivers similar results to the Elastic Barycentre Average k-means clusterers,

but with substantially reduced runtime. Furthermore, we showed that while PAM

can achieve faster runtimes on small to medium-sized datasets, KESBA proves to

be orders of magnitude faster on large datasets, all while maintaining comparable
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clustering performance. Overall, KESBA is a state-of-the-art, versatile, and highly

scalable clusterer, purpose-built for real-world TSCL applications.

8.7 KESBA Runtime Versatility

One of the key advantages of KESBA is its adaptable runtime, allowing it to

meet a variety of computational and clustering performance requirements. Every

practitioner has unique constraints, whether prioritising computational speed or

clustering performance. KESBA offers several parameters that enable practitioners

to balance runtime and performance based on their specific needs.

In this section, we explore how each of KESBA’s parameters affects runtime and

clustering performance. Our objective is not to optimise clustering performance, but

rather to identify reasonable default settings that offer a good balance between the

two. Additionally, we aim to demonstrate how practitioners can leverage KESBA’s

parameters to achieve the desired balance between runtime efficiency and clustering

accuracy.

All of the experiments presented are for the combined test-train split because

we are focused on the runtime rather than optimisation clustering performance. As

such by combing the test-train split this gives KESBA the most amount of data to

evaluate it’s runtime and scalability over.

8.7.1 Elastic k-means++

Initialisation is critical for the success of any Lloyd’s-based algorithm. In Chapter 4,

we evaluated five different initialisation techniques and concluded that using Forgy

with 10 restarts provided the most consistent results. However, rerunning each

clusterer 10 times with different initial centroids is computationally expensive. To

address this, we developed Elastic k-means++, which ensures consistency without
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requiring multiple restarts, significantly reducing runtime while maintaining stable

clustering performance.

To demonstrate the effectiveness of Elastic k-means++, we conducted an experi-

ment comparing KESBA with Forgy initialisation (using 10 restarts) against KESBA

with Elastic k-means++ (whcih does not use any restarts). For this experiment, we

set both KESBA models to use a full window (1.0) and a full ba_subset_size (1.0),

ensuring that window and subset size do not influence the results. Table 8.8 details

the parameters used for each KESBA model in this experiment. Note that “KESBA-

full” is not the final KESBA model presented previously, as it uses a full window

and does not employ a subset for averaging. Later, we will demonstrate how adding

window and averaging parameters improves KESBA’s performance while reducing

runtime. This experiment focuses solely on the impact of initialisation strategies on

KESBA’s runtime.

max_iters ba_subset_size window init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ TWE
KESBA-full-MSM 300 1.0 1.0 MSM-k-means++ MSM
KESBA-forgy-restarts-TWE 300 1.0 1.0 Forgy 10 restarts TWE
KESBA-forgy-restarts-MSM 300 1.0 1.0 Forgy 10 restarts MSM

Table 8.8 KESBA initialisation experiment parameters.

Figure 8.9 presents the CD diagrams comparing the impact of these initialisation

strategies on overall clustering performance. Across all evaluation metrics, Forgy

with 10 restarts marginally outperforms Elastic k-means++, though the difference is

not statistically significant. KESBA-full-TWE consistently ranks in the top clique

with KESBA-forgy-restarts-MSM and KESBA-forgy-restarts-TWE, indicating that

Elastic k-means++ provides comparable performance. KESBA-full-MSM is also in

the top clique for AMI, CLACC, and NMI, though it falls slightly behind in ARI.

Where Elastic k-means++ truly excels is in reducing runtime. Table 8.9 high-

lights the runtime savings with different initialisation strategies. KESBA-forgy-
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Fig. 8.31 CD diagrams of KESBA with different initialisation strategies over 88
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.40

restarts-TWE takes over 500 more total hours than KESBA-full-TWE, while

KESBA-full-MSM completes all datasets 395 hours faster than KESBA-forgy-

restarts-MSM. The mean, median, and maximum runtimes also show that KESBA-

full models are significantly faster than Forgy with 10 restarts. On average, KESBA-

full-MSM is approximately eight times faster, as Forgy requires nine additional

runs due to the restarts.

Metric kesba-forgy-
restarts-msm

kesba-forgy-
restarts-twe

kesba-full-msm kesba-full-twe

Total hours 449.97 613.66 53.26 110.65
Mean hours 5.11 6.97 0.61 1.26
Median hours 0.49 0.94 0.06 0.10
Max hours 35.48 56.98 6.08 13.09

Table 8.9 FitTime statistics for clustering 88 datasets from the UCR archive using
the combined test-train split.

Overall, the choice of initialisation strategy significantly impacts runtime. While

Forgy with 10 restarts provides consistent performance, it comes at a high com-
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putational cost. Elastic k-means++ delivers comparable stability and clustering

performance at a fraction of the runtime. For practitioners with limited computa-

tional resources, Elastic k-means++ is a more efficient option. If resources allow,

Forgy may offer marginally better results, but running Elastic k-means++ with 10

restarts could potentially outperform Forgy with the same number of restarts.

8.7.2 Random Subset Elastic SSG Barycentre Subset Size

A key feature of KESBA is the Random Subset Elastic SSG Barycentre, where the

ba_subset_size parameter controls the amount of data used in each update iteration

of the SSG barycentre average computation. Since the averaging computation

accounts for a significant portion of KESBA’s runtime, this parameter gives practi-

tioners considerable control over the algorithm’s runtime. Interestingly, adjusting

this parameter not only reduces runtime but can also improves clustering perfor-

mance. Below, we present experiments demonstrating how different ba_subset_size

values affect both runtime and clustering performance.

To ensure consistency across the experiments, we kept all other parameters

constant. We used k-means++ for initialisation, given its previously demonstrated

strength, and set the bounding window to 1.0 to avoid influencing the runtime.

Additionally, we focused solely on TWE for runtime analysis of different barycentre

subset sizes.

Table 8.10 explicitly defines the parameters used for each clusterer. When only

changing the ba_subset_size parameter, we label the models as "KESBA-average,"

followed by the subset size (e.g., "10-TWE") and the distance metric used. We also

include "KESBA-full," which does not use a subset and applies a full bounding

window.

Figure 8.36 presents the CD diagrams for clustering performance with dif-

ferent ba_subset_size values. Across all evaluation metrics, there is no statisti-
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max_iters ba_subset_size window init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ TWE
KESBA-average-10-TWE 300 0.1 1.0 TWE-k-means++ TWE
KESBA-average-20-TWE 300 0.2 1.0 TWE-k-means++ TWE
KESBA-average-30-TWE 300 0.3 1.0 TWE-k-means++ TWE
KESBA-average-40-TWE 300 0.4 1.0 TWE-k-means++ TWE
KESBA-average-50-TWE 300 0.5 1.0 TWE-k-means++ TWE

Table 8.10 KESBA subset size experiment parameters.

cally significant difference between the subset sizes. While using the full subset

(ba_subset_size = 1.0) yields the best performance for AMI, ARI, and NMI, the im-

provement in rank is marginal. Interestingly, for CLACC, using ba_subset_size =

0.4 actually outperforms the full window setting.
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Fig. 8.36 CD diagrams of KESBA with different ba_subset_size over 107 datasets
from the UCR archive using the combine test train split. Missing datasets outlined
in Table A.41.

Additionally, Figure 8.37 shows the runtime of each ba_subset_size value

compared to the corresponding ARI score. A smaller ba_subset_size leads to

a faster runtime, with a significant improvement between using 10% and 20%.

The difference in runtime between 20% and 50% is minimal, but between 50%
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and 100%, the reduction is substantial, demonstrating the strong impact of the

ba_subset_size parameter on runtime.

An interesting observation from Figure 8.37 is that when using a ba_subset_size

of 40%, the average ARI score is almost identical to the score achieved when using

all of the data. This was unexpected, as we initially hypothesised that reducing the

amount of data would lead to a more linear decrease in performance. However, with

TWE, setting ba_subset_size to 0.4 achieves nearly the same ARI performance as

using the full dataset, while also saving over 100 hours of total runtime.

Finally, Figure 8.37 also shows that using a ba_subset_size of 10% or 20%

results in the lowest average ARI performance. However, the raw difference in

average ARI between using 10% and 100% of the data is minimal — only 0.0044

ARI, while saving approximately 180 hours of total runtime. This suggests that

using a very small ba_subset_size still performs competitively.

Fig. 8.37 KESBA runtime (red line) compared to average ARI score (green line)
for different ba_subset_sizes over 106 datasets from the UCR combined test-train
split. Missing datasets are outlined in Table A.42.
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In summary, our experiments demonstrate that using KESBA with smaller

ba_subset_sizes dramatically reduces runtime while maintaining comparable clus-

tering performance.

8.7.3 Bounding Window

In TSC, bounding windows are commonly used to enhance classification perfor-

mance and reduce computational runtime [74]. However, their use in TSCL is less

frequent, and we found no examples in the literature where bounding windows

were applied during barycentre average computation. In this section, we present

experiments with different window sizes to explore their effects on clustering per-

formance and runtime. Our findings indicate that using a bounding window not

only improves clustering performance but also significantly reduces computational

runtime.

Table 8.11 details the configuration for our window experiment. To ensure

that the ba_subset_size does not influence the runtime, we set it to 1.0 across all

clusterers.

max_iters ba_subset_size window init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ TWE
KESBA-window-10-TWE 300 1.0 0.1 TWE-k-means++ TWE
KESBA-window-20-TWE 300 1.0 0.2 TWE-k-means++ TWE
KESBA-window-30-TWE 300 1.0 0.3 TWE-k-means++ TWE
KESBA-window-40-TWE 300 1.0 0.4 TWE-k-means++ TWE
KESBA-window-50-TWE 300 1.0 0.5 TWE-k-means++ TWE

Table 8.11 KESBA window size experiment parameters.

Figure 8.38 compares the runtime of each window size to the average ARI score

achieved. Generally, the runtime (red line) increases fairly linearly as the window

size increases. However, the average ARI score (green line) shows that a window

size of 30% outperforms using a full window while being over 316 hours faster.
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Moreover, using a 10% window reduces the total runtime by over 500 hours, with

an average ARI difference of only 0.005 compared to using a full window.

Fig. 8.38 KESBA runtime (red line) compared to average ARI score (green line) for
different window sizes over 106 datasets from the UCR combined test-train split.
Missing datasets are outlined in Table A.42.

Overall, this shows the bounding window is an incredibly powerful parameter

for reducing runtime when used in all stages of the algorithm. Interestingly, we also

found that smaller window sizes can sometimes improve clustering performance.

Even in cases where the clustering performance is slightly worse than using a full

window, the raw ARI difference when using a 10% window is remarkably small,

making it a highly efficient option.

Overall, we recommend setting a bounding window size between 30% and 40%

for optimal clustering performance. However, significant runtime improvements

can be achieved by reducing the window to 10%, with only a small trade-off in

clustering performance. For extremely large datasets, we suggest using a window

size between 10% and 20%.
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8.7.4 Bounding Window and Barycentre Subset Size

We have demonstrated the independent benefits of using the Random Subset Elastic

SSG Barycentre subset size and a bounding window. For the final KESBA clusterer,

we propose applying both techniques simultaneously. However, tuning these values

separately is not practical in real-world clustering scenarios. To simplify the process,

we suggest setting the window size equal to the subset size.

To investigate the impact of using matching window and ba_subset_size values,

we have designed an experiment with various size settings. Table 8.12 outlines the

parameters used in this experiment, showing how the window and ba_subset_size

interact. In all cases, the window parameter matches the ba_subset_size, and we

recommend practitioners adopt this approach.

max_iters ba_subset_size window init_algo distance
KESBA-full-TWE 300 1.0 1.0 TWE-k-means++ TWE
KESBA-both-10-TWE 300 0.1 0.1 TWE-k-means++ TWE
KESBA-both-20-TWE 300 0.2 0.2 TWE-k-means++ TWE
KESBA-both-30-TWE 300 0.3 0.3 TWE-k-means++ TWE
KESBA-both-40-TWE 300 0.4 0.4 TWE-k-means++ TWE
KESBA-both-50-TWE 300 0.5 0.5 TWE-k-means++ TWE

Table 8.12 KESBA window size and barycentre average subset size experiment
parameters.

Figure 8.39 presents the results of this experiment. The figure compares the av-

erage ARI score (green line) for different window and ba_subset_size settings to the

runtime (red line). The x-axis represents the matching window and ba_subset_size

percentages.

In Figure 8.39, the runtime increases linearly as the window and subset sizes

increase. A similar trend was observed in previous experiments when the window

and subset sizes were evaluated independently, though it was less linear than when

using both parameters together. This supports our recommendation to set the
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window and subset sizes to the same value, as it ensures the algorithm scales

linearly with each parameter setting.

Interestingly, in Figure 8.39, we find that using a 40% window and ba_subset_size

actually yields an average ARI score that is 0.003 higher than when using a full

window and the entire dataset for averaging. Additionally, this configuration re-

duces the total runtime by over 250 hours compared to using a full window and the

entire dataset.

Fig. 8.39 KESBA runtime (red line) compared to average ARI score (green line) for
different window sizes over 106 datasets from the UCR combined test-train split.
Missing datasets are outlined in Table A.42.

The CD diagrams in Figure 8.44 illustrate the performance of using matching

window and ba_subset_size values. The figure shows that the best-performing

KESBA configuration uses a 40% window and a 40% ba_subset_size for AMI,

CLACC, and NMI. However, for ARI, KESBA-full-TWE slightly outperforms

KESBA-both-40-TWE. Despite this, for AMI, ARI, and NMI, there is no statisti-

cally significant difference between the various configurations. The only notable

exception is CLACC, where KESBA-both-10-TWE performs significantly worse

than the other configurations.
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Fig. 8.44 CD diagrams of KESBA with equal window and ba subset size over 109
datasets from the UCR archive using the combined test-train split. Missing datasets
are outlined in Table A.43.

When comparing the runtime from our previous experiment using only a bound-

ing window, the difference in runtime appears small. However, when we compare

KESBA-window-50-TWE with KESBA-both-50-TWE, we find that KESBA-both-

50-TWE is 78 hours in total runtime faster. Additionally, KESBA-both-50-TWE

achieves a higher average ARI score compared to using only a bounding window.

This demonstrates that the bounding window should be used in combination with

the ba_subset_size for optimal performance.

In conclusion, we have shown that using both the ba_subset_size and window

together improves clustering performance and reduces runtime compared to using

either parameter in isolation or using a full window and all the data for averaging.

We recommend that practitioners set both the window and ba_subset_size to a value

between 0.4 and 0.5. However, if lower runtime is required, smaller sizes still offer

comparable clustering performance while significantly reducing runtime.
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8.8 Conclusion

In this chapter, we have presented KESBA: a state-of-the-art, versatile, and highly

scalable clusterer, designed for real-world TSCL applications. Our empirical results

demonstrate that KESBA with TWE performs as well as the current state-of-the-art

clusterers, while requiring significantly less computational runtime.

To develop KESBA, we introduced an elastic version of k-means++ (Elastic

k-means++), a novel averaging algorithm (Random Subset Elastic SSG Barycentre

Average), and implemented the use of a bounding window within the barycentre

averaging process and throughout the entire KESBA algorithm.

Our experiments demonstrate that KESBA’s performance is comparable to both

PAM and the Elastic Barycentre Average when using the same elastic distances.

Furthermore, KESBA consistently outperforms the Elastic Barycentre Average in

terms of runtime and achieves significantly faster performance than PAM, especially

on medium to large datasets, where the runtime improvement is on the scale of

orders of magnitude.

We have provided practitioners with a comprehensive set of experiments ex-

ploring KESBA’s flexible parameters, which allow for fine-tuning of runtime and

clustering performance based on their requirements. Our results indicate that us-

ing a bounding window, combined with a matching value for the ba_subset_size,

outperforms using either technique independently. Specifically, we found that

a window and ba_subset_size of 40% provided the best clustering performance,

while significantly reducing runtime compared to using a full window and the entire

dataset for averaging.



Chapter 9

The Elastic Clustering Ensemble

(ECE) algorithm

In Chapter 6, we experimented with PAM using 12 different elastic distances. We

found that the best-performing elastic distances with PAM outperformed the current

state-of-the-art clusterers. However, when analysing the performance of each elastic

distance across different time series domains, we discovered that no single elastic

distance was the best across all domains. In our experiments, spanning seven time

series domains, six different elastic distances performed best in at least one domain.

Based on these findings, we hypothesise that an ensemble model capable of

selecting the most appropriate distance measure, or weighting predictions based

on the suitability of certain elastic distances for specific data, will significantly

improve clustering performance. Therefore, in this chapter, we introduce the Elastic

Clustering Ensemble (ECE) clusterer, which combines eight different elastic dis-

tance PAM clusterers using a novel proportionally weighted ensemble scheme. The

ECE clusterer achieves state-of-the-art performance, consistently outperforming

each of the individual PAM clusterers that it comprises it.
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9.1 Introduction

An ensemble of clusterers is a group of base clusterers whose individual decisions

are combined through a fusion process to cluster data. In the TSC literature,

ensemble models consistently rank among the top-performing classifiers, providing

substantial performance improvements [84]. One of the most well-known ensemble

models in TSC is the Elastic Ensemble (EE) classifier [74], which consists of 10

1-NN classifiers, each using a different distance measure: Euclidean, DTWCV,

MSM, WDTW, ERP, TWE, LCSS, WDDTW, DDTWCV, DTW, and DDTW. The

EE employs a proportionally weighted ensemble scheme, which prioritises the

predictions of 1-NN classifiers that perform well on the training data, as measured

by classification accuracy. The EE has been shown to significantly outperform

any individual 1-NN classifier within the ensemble. We hypothesise that a similar

ensemble model based on elastic distances could be developed for TSCL, yielding

more consistent and superior overall clustering performance compared to using any

single elastic distance.

Ensemble diversity is a critical factor in the success of ensembling strate-

gies [74]. In the TSCL literature, several ensemble clustering algorithms have been

proposed, such as RandomNet [72] and the Symbolic Pattern Forest (SPF) [71].

However, none have leveraged multiple different elastic distance based clusterers to

achieve ensemble diversity. Broadly speaking, ensemble diversity can be introduced

in various ways: using different clustering algorithms to form a heterogeneous

ensemble, selecting different data attributes for each clusterer (often randomly), or

modifying each clusterer internally by re-weighting the training data or incorpo-

rating randomisation [74]. We intend to introduce ensemble diversity by using a

range of different elastic distances with PAM and weighting them based on their

unsupervised clustering performance.
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In addition to considering ensemble diversity, clustering ensemble models

must also consider the label correspondence problem [4]. When combining the

predictions of multiple clusterers, cluster labels often do not align. For example, one

clusterer might label a group of points as “cluster 1”, while another might label the

same group as “cluster 4”. Although the labels differ, they refer to the same set of

data points. Therefore, in clustering ensembles, label alignment before predictions

are made is an important consideration. Various methods exist to address the label

correspondence problem, which will be outlined shortly.

In this chapter, we begin by outlining six popular cluster ensemble schemes

from the literature. We then propose our own cluster ensemble scheme, inspired

by the EE and incorporating concepts from existing cluster ensemble approaches.

Following this, we identify the base clusterers we will use to compose our ensemble

models. Using these base clusterers and the proposed ensemble scheme, we evaluate

the performance of our initial ensemble clusterer against both the baseline clusterers

and the individual PAM models that constitute it.

Next, we compare the performance of our ensemble scheme with the six clus-

tering ensemble schemes from the literature. We also experiment with different

parameters for our ensemble scheme to assess their impact. Finally, we use the

best-performing configuration of our ensemble scheme to create a new ensemble

clusterer, the Elastic Clustering Ensemble (ECE), which we evaluate against the

state-of-the-art clusterers identified previously in this thesis.

9.2 Clustering Ensemble Schemes

To begin, we present existing ensemble schemes that are used throughout the

literature. We will use these to evaluate our proposed ensemble scheme against.
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9.2.1 Simple Vote (SV)

The simple vote (SV) ensemble is one of the simplest method for combining

clustering prediction. In this approach, each time series is assigned to the cluster

that it appears most frequently in across the base clusterers. For example, if five

base clusterers are used, and three assign a time series to “cluster 3” while the other

two assign it to “cluster 1”, the ensemble will predict “cluster 3” because it has the

majority of votes. In the event of a tie, where multiple clusters receive the same

number of votes, the final label is randomly selected from the tied options.

However, before a prediction can be made, the label correspondence problem

must be addressed. SV employs a cost matrix that quantifies the misalignment

between clusters produced by different clusterers. The cost matrix is constructed by

comparing the frequency with which points from a cluster in one clustering overlap

with points from a cluster in a reference clustering. The objective is to minimise

this misalignment and find the optimal correspondence between clusters.

To find the optimal correspondence between clusters, the Hungarian algo-

rithm [62], is applied to the cost matrix. This algorithm finds the optimal mapping

of cluster labels from one clustering to another, minimising the total cost, which

in this case reflects how well clusters align across different clusterers. Once the

optimal mapping is found, the labels of the current clustering are reassigned accord-

ing to the reference clustering. By repeating this process for each clustering, the

algorithm ensures that all clusters are consistently aligned.

9.2.2 Iterative Voting (IVC)

The Iterative Voting Consensus (IVC) [74] algorithm maps each data point to

a vector, where each element indicates its cluster membership across different

clusterings in an ensemble. The algorithm works iteratively, starting with an initial

set of cluster centres, each represented by a vector. Each dimension of these vectors
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corresponds to the cluster memberships of points in the ensemble. A cluster centre,

therefore, is a vector that summarises the most common cluster assignments for all

the points currently assigned to that cluster.

In each iteration, the algorithm performs two steps. First, it updates the cluster

centres by computing the majority value for each dimension across the vectors of

the points assigned to the cluster. This means that for each feature (or position

in the vector), the centre takes on the value that most of the assigned points have

in that dimension. As a result, the cluster centre represents the most frequent

cluster memberships across the different clusterings in the ensemble. Second, the

algorithm reassigns each data point to the cluster whose centre has the smallest

Hamming distance to the point’s vector, which measures the number of differing

entries between the two vectors.

The process repeats until the clusters stabilise. The IVC algorithm mitigates the

correspondence problem through this iterative process.

9.2.3 Cluster-based Similarity Partitioning Algorithm (CSPA)

The Cluster-based Similarity Partitioning Algorithm (CSPA) [115] computes a

similarity matrix to address the issue of cluster label correspondence across different

base clusterers. From the similarity matrix, a similarity graph is constructed

where the vertices correspond to data points, and the edges represent the similarity

measures between these points. This graph is then partitioned into k clusters

using the METIS clustering algorithm [57], which produces the final ensemble

predictions.

A cluster label similarity matrix can be computed by comparing the predictions

of different base clusterers. Specifically, the similarity between two data points is

calculated as the ratio of the number of clusterings in which both points appear

in the same cluster to the total number of clusterings in the ensemble [87]. This
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results in a fraction that represents how frequently two points are clustered together

across the ensemble.

9.2.4 Meta-CLustering Algorithm (MCLA)

The Meta-CLustering Algorithm (MCLA) [115] is a ensemble schema which

mitigates the correspondence problem by transforming the predicted labels for each

base clusterer into a hypergraph. Using the hypergraph a voting scheme is applied

to produce the final predictions.

Table 9.1 presents an example of how cluster labels from multiple base clusterers

are represented as a hypergraph. A hypergraph consists of vertices and hyperedges.

In a regular graph, an edge connects exactly two vertices, whereas a hyperedge is a

generalisation of an edge that can connect any number of vertices [4].

λ (1) λ (2) λ (3)
x1 1 2 1
x2 1 2 1
x3 1 2 2
x4 2 3 1

(a) Original label vectors

H(1) H(2) H(3)
h1 h2 h3 h4 h5 h6 h7 h8 h9

v1 1 0 0 0 1 0 1 0 0
v2 1 0 0 0 1 0 1 0 0
v3 1 0 0 0 1 0 0 1 0
v4 0 1 0 0 0 1 1 0 0

(b) Hypergraph representation

Table 9.1 Illustrative cluster ensemble problem with r = 3 and k = 3: Original label
vectors (left) and equivalent hypergraph representation with 9 hyperedges (right),
where r is the number of base clusterers and k is the number of clusters. Each
cluster is transformed into a hyperedge.

In Table 9.1, three base clusterers (λ (1),λ (2),λ (3)) are shown, each predicting

clusters for four instances (x1,x2,x3,x4). The base clusterers and their predictions

are listed in Table 9.1(a). Next, a binary membership indicator matrix H(q) is

constructed, with a column representing each cluster (now corresponding to a

hyperedge), as shown in Table 9.1(b). Each base clusterer generates a block in this

table, for example, λ (1) corresponds to the binary membership indicator matrix

block H(1).
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Each block for each base clusterer is concatenated to form H =(H(1),H(2),H(3)),

which defines the adjacency matrix of a hypergraph with n vertices and ∑
r
q=1 k(q)

hyperedges, where r is the number of base clusterers and q denotes the cluster

labels for the qth base clusterer. This process maps each cluster to a hyperedge and

the set of clusterings to a hypergraph. By transforming the predicted clusters to a

hypergraph the correspondence problem is mitigated.

Using the computed hypergraph, MCLA generates the final predictions by

constructing a Meta-Graph, where each hyperedge is treated as a node. This

Meta-Graph is then clustered using the METIS graph clustering algorithm to form

meta-clusters, grouping together similar hyperedges. For each meta-cluster, an

average of each cluster is computed, which is later used to assess similarity when

assigning new cluster objects. This process mitigates the label correspondence

problem.

9.2.5 Hybrid Bipartite Graph Formulation (HBGF)

The Hybrid Bipartite Graph Formulation (HBGF) [34] models instances and clusters

simultaneously in a graph. The graph edges can only connect instance vertices to

cluster vertices, resulting in a bipartite graph [34]. This means the HBGF bipartite

graph has two types of vertices:

1. Instance vertices: representing the data point being clustered

2. Cluster vertices: representing each cluster from the ensemble of base cluster-

ers.

An edge is drawn between an instance vertex and a cluster vertex if the instance

belongs to that cluster. The weight of each edge is set to 1 to represent this

membership. No edges exist between vertices of the same type: instance vertices

cannot be directly connected to other instance vertices, and cluster vertices cannot
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be connected to other cluster vertices. This process produces a graph that can be

partitioned using a graph partition algorithm such as METIS to produce the final

ensemble clusterings.

9.2.6 Nonnegative Matrix Factorisation (NMF)

Nonnegative Matrix Factorisation (NMF) [70] creates a collective similarity matrix

and decomposes it into lower-dimensional factors that capture the underlying

cluster structure shared among the base clusterers. This approach addresses the

label correspondence problem while extracting similarities to form a final cluster

consensus.

NMF begins by constructing a connectivity matrix M from the base clusterers’

predictions. This n×n matrix, where n is the number of data instances, contains

entries Mi j that represent the frequency with which instances i and j are assigned

to the same cluster across all base clusterers. The matrix encapsulates the co-

association information between pairs of instances.

The connectivity matrix M is then factorised using an iterative algorithm that

ensures non-negativity in the resulting matrices. Specifically, NMF decomposes M

into two non-negative matrices: Q, which represents cluster membership indicators,

and S, a scaling matrix that adjusts the influence of each cluster.

To generate the final ensemble clustering predictions, the product of Q and

the square root of S is computed. Each data instance is then assigned to the

cluster corresponding to the highest value in its representation, producing the final

ensemble predictions.
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9.3 Elastic Unsupervised Proportional Weighting (EUPW)

The Elastic Ensemble (EE) for TSC [74] proposes a proportionally weighted voting

scheme based on the classification accuracy of each base classifier, normalised over

the number of transformations. In this scheme, a classifier’s weight in the ensemble

is equal to its normalised training accuracy. When using this approach with 10

1-NN classifiers with different elastic distances, [74] showed that EE significantly

outperforms any individual 1-NN classifier that composes EE. We hypothesise

that by developing a similar ensemble scheme tailored for elastic distance-based

clusterers, we could achieve comparable performance improvements for clustering.

However, the EE proportional ensemble scheme cannot be directly applied to

TSCL ensembling because TSCL is an unsupervised task, meaning there are no

ground truth labels to calculate classification accuracy. Additionally, the EE scheme

lacks a strategy to address the label correspondence problem. To overcome these

challenges, we propose the Elastic Unsupervised Proportional Weighting (EUPW)

ensemble scheme, which adapts the EE proportional weighting for unsupervised

tasks and includes an additional step to mitigate the label correspondence issue.

The first issue we tackle is the use of a supervised metric. Our proposal is

straightforward: instead of using a supervised evaluation metric, we use an unsu-

pervised one. Several unsupervised metrics exist, such as the Calinski-Harabasz

Index (CHI) [15], Davies-Bouldin Index (DBI) [25], and Silhouette Coefficient [58].

Many of these metrics rely on a distance measure and an averaging technique, typi-

cally the Euclidean distance and the arithmetic mean. However, as demonstrated in

Chapters 5 and 6, the Euclidean distance is not suitable for TSCL, and in Chapter 7,

we showed that the Elastic Barycentre Average is superior to the arithmetic mean for

time series data. Therefore, we hypothesise that traditional unsupervised evaluation

metrics may not perform well for TSCL.
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To address this, we propose elastic unsupervised evaluation metrics for EUPW

by adapting existing metrics, replacing the Euclidean distance with an elastic

distance. Additionally, if the evaluation metric relies on the arithmetic mean, we

substitute it with the Elastic Barycentre Average, using the same elastic distance.

For our initial experiments, we adapt the Calinski-Harabasz Index (CHI) to

create the Elastic Calinski-Harabasz Index (ECHI). Later in this chapter, we also

experiment with the Davies-Bouldin Index (DBI), creating the Elastic Davies-

Bouldin Index (EDBI). However, our initial focus remains on the using ECHI.

Adapting an unsupervised measure to be “elastic” involves replacing the Eu-

clidean distance and arithmetic mean with an elastic distance and the Elastic

Barycentre Average, respectively. Specifically, for our experiments, we use MSM

and TWE, as these distances produced the best results with the Elastic Barycentre

Average in Chapter 7. In principle, any elastic distance that generates a complete

warping path could be used with an elastic unsupervised measure.

When using TWE with the ECHI, we refer to the measure as ECHI-TWE, which

uses the TWE distance and its corresponding Elastic Barycentre Average. Similarly,

when using MSM, we refer to it as ECHI-MSM, which incorporates the MSM

distance and its Elastic Barycentre Average.

For ECHI, a higher value indicates better clustering, whereas a lower value

indicates worse clustering. This allows easy integration of the measure into the

EE proportional weighting scheme. However, for some unsupervised evaluation

metrics, such as DBI, lower scores indicate better clustering. To ensure consistency,

we invert such scores by dividing them by 1, allowing these metrics to be seamlessly

used within the EUPW ensemble scheme.

In addition to updating the weighting evaluation metric, we address the label

correspondence problem by using the same alignment algorithm from the SV

ensemble scheme. Specifically, when predicting the final cluster labels, a cost
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matrix is constructed to quantify cluster misalignment, and the Hungarian algorithm

is applied to find optimal label mappings.

In summary, the EUPW scheme weights each clusterer based on an unsupervised

elastic evaluation metric like ECHI, normalised by the number of transformations.

Once a base clusterer’s prediction is selected according to its weighting, a cost

matrix is constructed to account for misalignment between base clusterers. The

Hungarian algorithm is then applied to determine the optimal label mappings, and

the final prediction is returned.

9.4 Elastic Clustering Ensemble Experiment

9.4.1 Base PAM Clusterers

For our elastic clustering ensemble experiments, we chose PAM as our base clusterer.

PAM was selected because it was one of the top-performing clusterers in our

previous experiments, demonstrating strong results on both the combined test-train

and test-train splits. Additionally, as highlighted in Chapter 6, we observed that

various elastic distances with PAM performed best for different time series domains.

This suggests that PAM with varying elastic distances provides diverse clustering

results, making it an ideal candidate for ensembling.

In the original Elastic Ensemble (EE) [74], 10 1-NN classifiers using different

elastic distances were combined to form an ensemble. The specific distances used

were: DTWCV, MSM, WDTW, ERP, TWE, LCSS, WDDTW, DDTWCV, DTW,

and DDTW. DTWCV and DDTWCV are tuned versions of the respective distances

incorporating a bounding window. These distances were selected for their ability to

produce diverse results across the UCR archive. Following a similar rationale, we

have chosen elastic distances for our PAM ensemble.
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Our first choice is TWE, which was the top-performing distance with PAM

across all evaluation metrics in Section 6.5, making it an obvious selection. Next,

we selected distances that performed best in individual domains, either in the test-

train split or the combined test-train split, as described in Chapter 6. Across both

splits, MSM, WDTW, soft-DTW, shape-DTW, and ADTW were identified as the

top performers in one or more domains. However, we exclude shape-DTW as a

candidate due to its failure to complete for many datasets, which hinders evaluation.

Therefore, MSM, WDTW, soft-DTW, and ADTW were chosen next as base cluster

candidates.

To further increase diversity within the ensemble, we also included ERP, DTW,

and WDDTW. Although these three distances did not perform as well in our

previous clustering experiments, their clustering results were significantly different

from the core five distances, thereby adding diversity and potentially enhancing the

ensemble’s overall performance.

In summary, we selected the following base clusterers for all our ensemble

schemes: PAM-DTW, PAM-MSM, PAM-TWE, PAM-ERP, PAM-WDTW, PAM-

ADTW, PAM-WDDTW, and PAM-soft-DTW. The clusterings used for each base

clusterer are the same as those produced and evaluated in Chapter 6. We have two

less elastic distances than the EE, however, two elastic distances in the EE are tuned

versions of DTW and DDTW which we are are unable to do in clustering.

9.5 EUPW intial experiments

Our initial evaluation aims to assess the effectiveness of the proposed EUPW

ensemble scheme. To do this, we conduct an experiment using the eight base

PAM clusterers, which are ensembled with EUPW using three different distances:

Euclidean, MSM, and TWE. EUPW-Euclidean employs the standard CHI score,

while EUPW-TWE and EUPW-MSM use the adapted ECHI evaluation score. We



9.5 EUPW intial experiments 334

then compare the performance of these ensemble models against the baseline

clusterers and the two best-performing PAM variants. The goal is to determine the

relative strength of EUPW and evaluate whether the use of ECHI leads to improved

clustering performance.

9.5.1 Combined Test-Train Split

Figure 9.5 presents the critical difference diagrams for the EUPW ensemble over

the combined test-train split. We observe that for all four evaluation metrics,

EUPW-TWE and EUPW-MSM are the best performing clusterers and consistently

outperform the best-performing PAM models, PAM-TWE and PAM-MSM. Notably,

EUPW-TWE ranks as the top-performing clusterer across all evaluation metrics,

although the improvement is not statistically significant.

Additionally, EUPW-Euclidean is consistently outperformed by EUPW variants

that use elastic distances. This supports our hypothesis that elastic distances enhance

the CHI evaluation metric. EUPW-Euclidean only surpasses the best PAM variant

in terms of NMI, but lags behind in AMI, ARI, and CLACC.

Table 9.2 presents the average score for each clusterer across all evaluation met-

rics. EUPW-TWE performs best in ARI and CLACC, while PAM-TWE achieves

the highest average scores for AMI, NMI, and RI. Although the ARI and CLACC

scores between EUPW-TWE and PAM-TWE are quite similar, there is a noticeable

difference in median performance.

Figure 9.6 provides a direct comparison between EUPW-TWE, PAM-TWE, and

PAM-MSM. The figure shows that while EUPW-TWE achieves scores similar to

both PAM-TWE and PAM-MSM, it exhibits a significantly higher median score,

indicating that it performs more consistently across datasets with considerably less

variance in its results.
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Fig. 9.5 CD diagrams of EUPW experiment using the baseline clusterers and the
two best performing PAM variants over 90 datasets from the UCR archive using
the combine test train split. Missing datasets are outlined in Table A.44.

ARI AMI CLAcc NMI RI
eupw-euclidean 0.240 0.270 0.583 0.277 0.672
eupw-msm 0.258 0.286 0.598 0.292 0.681
eupw-twe 0.2589 0.286 0.5985 0.292 0.681
k-means-ba-dtw 0.246 0.277 0.591 0.284 0.678
k-means-euclidean 0.186 0.222 0.535 0.229 0.655
k-sc 0.196 0.224 0.552 0.231 0.622
k-shapes 0.229 0.268 0.579 0.274 0.673
pam-msm 0.249 0.279 0.590 0.286 0.680
pam-twe 0.2587 0.287 0.5984 0.293 0.685

Table 9.2 Summary of average score across multiple evaluation metrics over 90
datasets from the UCR archive using the combined test-train split.

Table 9.3 compares the EUPW results to the baseline clusterers and PAM across

different time series domains. Although EUPW does not achieve the highest average

ARI score in any single domain, it consistently performs well across all domains.

This is emphasised in Table 9.4, which shows the average rank of each clusterer for
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(b) EUPW-TWE compared to PAM-MSM

Fig. 9.6 EUPW-TWE results compared directly to PAM-MSM and PAM-TWE,
respectively, over 90 datasets from the UCR archive using the combined test-train
split.

ARI over the seven time series domains. Table 9.4 shows PAM-TWE’s lowest rank

is 2.5 for the ECG domain, but its highest rank is 6.273 for the Spectro domain.

In contrast, EUPW-TWE’s lowest rank is 3.625 for the Simulated domain, with a

highest rank of 4.909 for the Spectro domain. This results in PAM-TWE having an

average rank difference of 3.774 between its best and worst ranks, while EUPW-

TWE has a smaller average rank difference of only 1.284. This demonstrates the

superior consistency of EUPW.

For this experiment (and subsequent EUPW experiments), we regrettably had

to exclude 20 datasets due to an issue we identified in our EUPW implementation,

specifically when using the ECHI evaluation metric. This problem caused the

algorithm to fail on certain datasets. We suspect the issue may be related to the

formation of empty clusters when applying the label alignment algorithm. In future

iterations of the algorithm, we aim to resolve this issue to ensure a complete set of

results can be obtained.
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Image Spectro Sensor Simulated Device Motion ECG
eupw-euclidean 0.324 0.148 0.260 0.415 0.103 0.125 0.184
eupw-msm 0.312 0.165 0.258 0.472 0.178 0.157 0.271
eupw-twe 0.317 0.166 0.261 0.464 0.164 0.157 0.280
k-means-ba-dtw 0.291 0.178 0.212 0.586 0.173 0.155 0.137
k-means-euclidean 0.224 0.173 0.210 0.306 0.039 0.107 0.174
k-sc 0.222 0.185 0.270 0.187 0.032 0.074 0.395
k-shapes 0.274 0.155 0.203 0.429 0.096 0.160 0.407
pam-msm 0.333 0.132 0.246 0.391 0.167 0.134 0.356
pam-twe 0.325 0.146 0.252 0.475 0.179 0.136 0.351

Table 9.3 Average ARI score on problems split by problem domain over 90 datasets
from the UCR archive using the combined test-train split.

Image Spectro Sensor Simulated Device Motion ECG
eupw-euclidean 3.913 6.409 4.957 5.375 6.000 4.154 5.750
eupw-msm 4.543 5.227 4.870 4.000 4.125 3.962 4.875
eupw-twe 4.543 4.909 4.283 3.625 4.250 4.115 4.375
k-means-ba-dtw 4.848 3.364 5.609 2.625 2.750 4.846 7.500
k-means-euclidean 7.022 3.909 5.739 7.562 7.500 6.154 7.500
k-sc 6.413 3.818 5.043 8.188 7.375 5.615 4.375
k-shapes 4.804 4.818 5.435 5.250 5.875 5.615 4.125
pam-msm 3.935 6.273 4.370 5.375 3.750 5.385 4.000
pam-twe 4.978 6.273 4.696 3.000 3.375 5.154 2.500

Table 9.4 Average ARI rank performance on problems split by problem domain
over 90 datasets from the UCR archive using the combined test-train split

9.5.2 Test-train split

Figure 9.11 presents the critical difference diagrams for the EUPW ensemble, the

baselines clusterers and the two best PAM variants. For the test-train split, EUPW

performs poorly. Additionally, we find that ECHI does not consistently outperform

CHI. For AMI and CLACC, EUPW with all distances performs worse than PAM-

TWE, but all three outperform PAM-MSM. For ARI, PAM-TWE outperforms all

three EUPW distances, and PAM-MSM outperforms EUPW-TWE and EUPW-

MSM. Overall, EUPW does not appear suitable for the test-train split.
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Fig. 9.11 CD diagrams of EUPW experiment using the baseline clusterers and the
two best performing PAM variants over 78 datasets from the UCR archive using
the test-train split. Missing datasets are outlined in Table A.45.

9.5.3 Conclusion: EUPW initial experiments

We have presented the our initial results for EUPW over both the combined test-train

split and the test-train split, comparing EUPW against the baseline clusterers and the

two best-performing PAM variants. For the combined test-train split, EUPW with

TWE consistently emerged as the top-performing clusterer across all evaluation

metrics, although the difference was not statistically significant.

Throughout our combined test-train experiments, we identified one of EUPW’s

key strengths: its consistency. Compared to the best-performing PAM variants,

EUPW’s median ARI score was notably higher. Additionally, in our domain-based

evaluation, while EUPW did not achieve the highest average score for any domain, it

displayed the smallest difference in rank change across datasets, further highlighting

its consistent performance.
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However, when evaluating EUPW on the test-train split, its performance was

significantly weaker. PAM-TWE consistently outperformed all three EUPW dis-

tances across every evaluation metric. Moreover, for the test-train split, the original

CHI outperformed the ECHI. However, as will be shown, this problem does not

seem exclusive to the EUPW ensemble scheme.

In summary, EUPW with TWE shows promise as a strong ensemble scheme

for the combined test-train split, however, EUPW does not appear to be a suitable

choice for the test-train split.

9.6 EUPW Compared to Other Ensemble Schemes

We have evaluated our proposed ensemble scheme against the baseline clusterers

and the best-performing PAM variants. Next, we explore how EUPW compares

to other popular ensemble techniques from the literature. To do this, we design

an evaluation experiment comparing EUPW with six other ensemble techniques

previously outlined.

9.6.1 Combined Test-Train Split

Figure 9.16 presents the CD diagrams for the EUPW ensemble compared to six

other ensemble schemes and the two best-performing PAM variants. For AMI

and NMI, EUPW is, on average, the best-performing ensemble scheme. However,

for ARI and CLACC, EUPW-TWE is outperformed by both HBGF and CSPA.

Notably, EUPW-TWE is the only ensemble scheme that does not rank lower than

PAM-TWE for any evaluation metric. Although CSPA and HBGF perform well

for CLACC and NMI, they perform worse than PAM-TWE for AMI and NMI, and

HBGF performs worse than PAM-MSM for both AMI and NMI. Importantly, none
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of the clusterers included in the comparison are statistically significantly different

from each other.
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Fig. 9.16 CD diagrams of EUPW compared to other ensemble schemes over 91
datasets from the UCR archive using the combine test-train split. Missing datasets
are outlined in Table A.46

Table 9.5 shows the average score for each ensemble scheme. One interesting

observation is that the SV scheme has the highest average score for ARI, AMI,

CLACC, and NMI. However, in Figure 9.16, SV never surpasses PAM-TWE

in terms of average rank, suggesting it is very inconsistent. To investigate this

further, we directly compare EUPW-TWE and SV in Figure 9.17(b). The figure

shows that EUPW-TWE consistently outperforms SV, and EUPW-TWE’s median

is significantly higher, indicating much greater consistency. However, SV for some

datasets considerably outperforms EUPW-TWE.

CSPA outperformed EUPW-TWE for ARI and CLACC, as shown in Figure 9.16.

Figure 9.17(a) highlights some interesting differences between the two. Notably,
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ARI AMI CLAcc NMI RI
cspa 0.258 0.283 0.598 0.289 0.689
eupw-euclidean 0.245 0.276 0.586 0.282 0.675
eupw-msm 0.263 0.291 0.600 0.297 0.684
eupw-twe 0.263 0.291 0.600 0.297 0.684
hbgf 0.249 0.275 0.595 0.281 0.685
iterative-voting 0.253 0.282 0.593 0.288 0.684
mcla 0.258 0.288 0.594 0.294 0.683
nmf 0.251 0.284 0.594 0.290 0.682
pam-msm 0.255 0.284 0.593 0.290 0.684
pam-twe 0.263 0.291 0.600 0.297 0.687
simple-voting 0.266 0.292 0.600 0.298 0.684

Table 9.5 Summary of average score across multiple evaluation metrics over 91
datasets from the UCR archive using the combine test-train split.

CSPA performs better than EUPW-TWE on six additional datasets, but CSPA’s

average ARI score and median is lower than EUPW-TWE. This suggests that

while EUPW-TWE may not achieve the best score for every datasets, on average is

performs much more consistently.

0.0 0.2 0.4 0.6 0.8 1.0
cspa ARI

(mean: 0.2584)

0.0

0.2

0.4

0.6

0.8

1.0

eu
pw

-tw
e 

AR
I

(m
ea

n:
 0

.2
63

2)

*Dashed lines represent the median

eupw-twe wins here
[41W, 3T, 47L]

cspa wins here
[47W, 3T, 41L]

Wilcoxon test for equality of medians, p-value=0.597
Paired t-test for equality of means, p-value=0.353

(a) EUPW-TWE compared to CSPA

0.0 0.2 0.4 0.6 0.8 1.0
eupw-twe ARI

(mean: 0.2632)

0.0

0.2

0.4

0.6

0.8

1.0

sim
pl

e-
vo

tin
g 

AR
I

(m
ea

n:
 0

.2
65

9)

*Dashed lines represent the median

simple-voting wins here
[33W, 10T, 48L]

eupw-twe wins here
[48W, 10T, 33L]

Wilcoxon test for equality of medians, p-value=0.964
Paired t-test for equality of means, p-value=0.373

(b) EUPW-TWE compared to Simple-Voting

Fig. 9.17 EUPW-TWE results compared directly to CSPA and Simple-Voting,
respectively, over 91 datasets from the UCR archive using the combined test-train
split.
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Table 9.6 shows the average ARI score for each clusterer across different time

series domains. EUPW-MSM performs best in the Motion domain, CSPA performs

best in the Spectro and Sensor domain, and SV performs best in the Simulated

domain. However, PAM-MSM performs best in the Image and ECG domains

and PAM-TWE performs best in the Device domain. This shows no ensemble

outperforms the best PAM variant in all time series domain.

Furthermore, Table 9.7 shows the average ARI rank for each clusterer across

each time series domain. CSPA performs best in the most domains in terms

of average rank, but it also has a wide range between its best and worst rank

performance. CSPA’s worst rank performance is 7.271 for the Image domain.

Additionally CSPA ranks seventh or higher in three domains: Image, Device, and

Motion. In contrast, EUPW-TWE’s highest rank is 6.417 for the Image domain,

and it only ranks sixth or higher in two domains: Image and Device. This indicates

that while EUPW-TWE may not always achieve the top rank, it remains one of the

most consistently performing clusterers across all domains.

Image Spectro Sensor Simulated Device Motion ECG
cspa 0.270 0.204 0.276 0.523 0.133 0.147 0.317
eupw-euclidean 0.333 0.148 0.260 0.415 0.088 0.143 0.184
eupw-msm 0.321 0.165 0.258 0.472 0.166 0.173 0.271
eupw-twe 0.326 0.166 0.261 0.464 0.149 0.172 0.280
hbgf 0.264 0.178 0.275 0.524 0.154 0.140 0.199
iterative-voting 0.305 0.170 0.268 0.407 0.144 0.161 0.294
mcla 0.320 0.159 0.253 0.473 0.143 0.169 0.262
nmf 0.289 0.173 0.255 0.468 0.151 0.158 0.293
pam-msm 0.342 0.132 0.246 0.391 0.172 0.150 0.356
pam-twe 0.332 0.146 0.252 0.475 0.181 0.149 0.351
simple-voting 0.335 0.157 0.249 0.524 0.149 0.171 0.265

Table 9.6 Average ARI score on problems split by problem domain over 91 datasets
from the UCR archive using the combine test-train split.



9.6 EUPW Compared to Other Ensemble Schemes 343

Image Spectro Sensor Simulated Device Motion ECG
cspa 7.271 2.455 4.217 4.125 7.071 7.036 5.750
eupw-euclidean 5.208 7.773 6.478 8.250 9.571 4.536 6.750
eupw-msm 6.062 6.136 6.391 6.438 5.500 4.464 6.625
eupw-twe 6.417 5.636 5.630 5.625 6.286 4.750 5.875
hbgf 6.979 3.273 4.565 4.125 5.429 6.321 9.750
iterative-voting 5.146 6.818 5.913 7.062 7.071 6.857 5.375
mcla 5.917 6.591 7.196 7.000 6.000 6.214 7.750
nmf 6.292 4.545 6.457 5.188 5.786 6.929 5.125
pam-msm 4.875 7.636 5.783 7.250 3.571 7.143 5.000
pam-twe 6.333 7.636 5.717 4.625 3.429 6.643 2.250
simple-voting 5.500 7.500 7.652 6.312 6.286 5.107 5.750

Table 9.7 Average ARI rank performance on problems split by problem domain
over 91 datasets from the UCR archive using the combine test-train split.

9.6.2 Test-Train Split

Figure 9.6 presents the CD diagrams for EUPW compared to other ensemble

schemes for the test-train split. In our previous evaluation, we found EUPW is

not well-suited for the test-train split. However, this appears to be the case for

all ensemble schemes. Across all evaluation metrics, PAM-TWE consistently

outperforms each ensemble scheme. This suggests that none of the ensemble

methods can learn generalised representations of the data that translate effectively

for the test-train split.

Although EUPW is outperformed by PAM-TWE across all metrics, for AMI

and NMI, EUPW-MSM ranks as the second-best ensemble scheme, only behind

SV. For ARI, EUPW performs worse than three ensemble schemes: NMF, SV, and

IV. Interestingly, for ARI, EUPW-Euclidean outperforms both EUPW-MSM and

EUPW-TWE. In fact, EUPW-TWE ranks as the worst-performing ensemble scheme

for ARI, which is surprising given that it was the most consistent performer for

the combined test-train split. Lastly, for CLACC, EUPW is outperformed by two

ensemble schemes: IV and MCLA. Notably, both EUPW-MSM and EUPW-TWE

outperform EUPW-Euclidean for CLACC.
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Fig. 9.22 CD diagrams of EUPW compared to other ensemble schemes over 75
datasets from the UCR archive using the test-train split. Missing datasets are
outlined in Table A.47

When analysing the results by time series domain for ARI in Table 9.8, we

observe that for the Spectro, Simulated, Motion, and ECG domains, the ensemble

schemes perform significantly better than PAM-TWE and PAM-MSM. For instance,

in the Spectro domain, PAM-MSM averages a rank of 7.688 and PAM-TWE

averages a rank of 7.062, whereas the best-performing ensemble scheme, CSPA,

averages a rank of 3.312. A similar trend is evident in the Simulated and ECG

domains.

It is also noteworthy that for the ECG domain, CSPA and HBGF achieve average

ranks of over 10.00. If CSPA had not performed so poorly for ECG data, it might

have outperformed both PAM-TWE and PAM-MSM overall. However, EUPW-

MSM has a significantly lower rank than any other ensemble scheme in the ECG

domain, demonstrating a particular strength of the EUPW scheme.
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Image Spectro Sensor Simulated Device Motion ECG
cspa 6.875 3.312 6.125 4.500 6.583 6.600 10.000
eupw-euclidean 5.800 7.125 6.175 6.625 7.667 4.400 4.833
eupw-msm 6.350 6.688 6.550 5.375 7.583 4.550 3.333
eupw-twe 6.025 6.312 7.300 5.375 6.250 5.450 4.667
hbgf 7.425 3.812 5.225 4.500 5.417 7.900 10.333
iterative-voting 6.050 7.250 6.525 4.188 7.250 4.750 5.333
mcla 5.500 6.125 6.450 7.500 5.917 6.100 4.167
nmf 6.275 3.938 5.750 5.312 4.833 6.600 6.500
pam-msm 4.675 7.688 5.300 9.375 4.833 8.350 7.000
pam-twe 5.200 7.062 4.550 7.438 4.000 5.600 5.333
simple-voting 5.825 6.688 6.050 5.812 5.667 5.700 4.500

Table 9.8 Average ARI rank performance on problems split by problem domain
over 75 datasets from the UCR archive using the test-train split.

9.6.3 Conclusion: EUPW Compared to Other Ensemble Schemes

We have presented results for six different ensemble schemes compared to EUPW

and the two best-performing PAM variants. For the combined test-train split, EUPW-

TWE was the only ensemble scheme to consistently outperform PAM-TWE across

all evaluation metrics. However, CSPA and HBGF were also identified as strong

alternative ensemble schemes. While EUPW-TWE was outperformed by CSPA on

average for ARI and CLACC, EUPW-TWE demonstrated higher consistency in

performance across different time series domains.

Our experiments for the test-train split highlighted that not only is EUPW

unsuitable for use on the test-train split, but none of the tested ensemble schemes

are suitable. PAM-TWE consistently outperformed all ensemble schemes across all

evaluation metrics. However, EUPW remained one of the more reliable ensemble

schemes, particularly excelling in domains such as ECG, where other ensemble

methods failed to perform well.

Overall, EUPW stands out as a strong and consistent ensemble scheme. For

the combined test-train split, it is the only ensemble scheme to outperform the

best-performing PAM variant across all evaluation metrics. However, it is evident
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that not just EUPW, but all ensemble schemes require further refinement to improve

their performance on the test-train split.

9.7 EUPW with Other Unsupervised Evaluation Met-

rics

For our evaluation, we initially chose to use the ECHI evaluation metric with

EUPW. We have demonstrated that EUPW performs better with an elastic version

of CHI (ECHI) than with the traditional CHI. However, as previously mentioned,

EUPW can be used with any unsupervised evaluation metric. To further explore

how the choice of evaluation metric impacts EUPW’s performance, we conduct an

experiment using the Elastic Davies-Bouldin Index (EDBI) with EUPW (EUPW-

EDBI) and compare the performance to EUPW with ECHI (EUPW-ECHI).

9.7.1 Combined Test-Train Split

Figure 9.27 shows the CD diagrams for EUPW using ECHI compared to EUPW

using EDBI. Across all evaluation metrics, EUPW-EDBI-TWE, EUPW-EDBI-

MSM, and EUPW-ECHI-TWE outperform the best-performing PAM variants.

For AMI and NMI, EUPW-EDBI outperforms the best EUPW-ECHI ensemble.

However, for CLACC and ARI, the best EUPW-ECHI outperforms the best EUPW-

EDBI. Overall, the difference in rank between these methods is minimal.

Table 9.9 shows the average scores for each clusterer across all evaluation

metrics. EUPW-ECHI achieves higher average scores than EUPW-EDBI for ARI,

AMI, CLACC, and NMI, but both are outperformed in RI by PAM-TWE. We

also compared EUPW-ECHI and EUPW-EDBI directly for both TWE and MSM,

as shown in Figure 9.28. For TWE, both ensemble schemes perform similarly,

with 35 ties. However, the median score of EUPW-ECHI-TWE is notably higher
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Fig. 9.27 CD diagrams of EUPW using ECHI and EDBI compared over 92 datasets
from the UCR archive using the combine test-train split. Missing datasets are
outlined in Table A.48.

than EUPW-EDBI-TWE, suggesting that EUPW-ECHI has much more consistent

performance than EUPW-EDBI on some datasets. A similar trend is observed for

MSM, where EUPW-ECHI-MSM has a higher median and achieves 15 more wins

than EUPW-EDBI-MSM.

We also compared EUPW-EDBI to six other cluster ensemble schemes. Fig-

ure 9.33 presents the CD diagram for this comparison. Unlike EUPW-ECHI,

EUPW-EDBI does not suffer as much from issues related to empty clusters, allow-

ing it to produce results for a larger number of datasets. However, some datasets

remain missing, particularly for the SV scheme, which likely experiences the same

issue due to using the same label alignment algorithm. Consequently, 105 datasets

were included in this analysis.

The CD diagram in Figure 9.33 reveals a similar rank order for the ensemble

schemes. For AMI and NMI, EUPW-EDBI-TWE is the only ensemble scheme to

outperform PAM-TWE. However, for CLACC and ARI, both PAM-TWE and PAM-
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ARI AMI CLAcc NMI RI
eupw-ECHI-euclidean 0.244 0.276 0.584 0.283 0.676
eupw-ECHI-msm 0.263 0.291 0.598 0.298 0.685
eupw-ECHI-twe 0.263 0.291 0.599 0.298 0.685
eupw-EDBI-euclidean 0.248 0.281 0.588 0.287 0.677
eupw-EDBI-msm 0.260 0.289 0.597 0.296 0.683
eupw-EDBI-twe 0.259 0.289 0.597 0.295 0.682
pam-msm 0.253 0.284 0.590 0.291 0.684
pam-twe 0.262 0.291 0.597 0.298 0.688

Table 9.9 Summary of average score across multiple evaluation metrics over 92
datasets from the UCR archive using the combined test-train split.
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Fig. 9.28 Comparison of EUPW-ECHI and EUPW-EDBI over 92 datasets from the
UCR archive using the combined test-train split.

MSM outperform all other cluster ensemble schemes, a contrast to the previous

experiment where CSPA and HBGF outperformed the best PAM variants for these

metrics.
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Fig. 9.33 CD diagrams of EUPW-EDBI compared to other ensemble schemes over
105 datasets from the UCR archive using the combine test train split. Missing
datasets are outlined in Table A.50.

9.7.2 Test-Train Split

Figure 9.38 presents the CD for EUPW-EDBI over the test-train split. Neither

EUPW-EDBI nor EUPW-ECHI outperform the best-performing PAM variant.

However, EUPW-EDBI-TWE consistently outperforms the best-performing EUPW-

ECHI, suggesting that it may be better suited for the test-train split. Still, none of

the EUPW variants show statistically significant differences in performance.
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Fig. 9.38 CD diagrams of EUPW using ECHi and EDBI compared over 78 datasets
from the UCR archive using the test train split. Missing datasets are outlined in
Table A.49.

9.7.3 Conclusion: EUPW with Other Unsupervised Evaluation

Metrics

We have evaluated EUPW using two different unsupervised elastic evaluation

metrics: ECHI and EDBI. We found that their performance is similar across both the

combined test-train split and the test-train split. However, we showed that EUPW-

ECHI has more consistent performance than EUPW-EDBI for the combined test-

train split. For this reason, we recommend using ECHI as the default unsupervised

metric for the final EUPW scheme.

9.8 The Elastic Clustering Ensemble (ECE)

We have identified a set of base clusterers: PAM-DTW, PAM-MSM, PAM-TWE,

PAM-ERP, PAM-WDTW, PAM-ADTW, PAM-WDDTW, and PAM-soft-DTW,
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along with an ensemble scheme, EUPW. When combined, we have shown the

ensemble performs better than any individual PAM variant. Specifically, from

our previous evaluations, we identified the EUPW-TWE ensemble scheme as the

most consistently performing scheme among the 12 different ensemble schemes we

considered.

Therefore, we now formally define a new ensemble clusterer that utilises the

eight base PAM clusterers and the EUPW-TWE ensemble scheme, which we call

the Elastic Clustering Ensemble (ECE).

We now present the results for ECE compared to the state-of-the-art clusterers

we have identified throughout this thesis.

9.8.1 Combined Test-Train Split

Figure 9.43 presents the CD diagrams comparing ECE to the state-of-the-art TSCL

approaches and the baseline clusterers. For all evaluation metrics, ECE outperforms

the other clusterers considered. However, for each evaluation metric, ECE remains

in the same top clique as k-means-ba-TWE, PAM-MSM, k-means-ba-DTW, k-

means-ba-MSM, and PAM-TWE. This improvement in performance over the Elastic

Barycentre Average clusterers and the PAM clusterers highlights the success of the

ensemble scheme.

Table 9.10 presents the average scores for each evaluation metric for each

clusterer. ECE performs best in ARI and CLACC, while PAM-TWE performs best

in AMI, NMI, and RI. As discussed previously, although PAM-TWE achieves high

average scores, it has lower median performance, making it far less consistent than

ECE. This is further highlighted in Table 9.11, which shows the average ARI rank

by problem domain. Although the ECE clusterer ranks highest in only one domain

(Motion), it consistently ranks within the top five across all domains.
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Fig. 9.43 CD diagrams of ECE compared to the state-of-the-art clusterers and the
baseline clusterers over 90 datasets from the UCR archive using the combined
test-train split. Missing datasets are outlined in Table A.44.

In Chapter 4, we identified k-means-soft-DBA as the best-performing TSCL

approach by a significant margin. However, due to its very high computational

runtime, we were unable to obtain a complete set of results, with 27 datasets

failing to finish within our seven-day runtime limit. To ensure a comprehensive

evaluation, we first compared ECE to other clusterers over as many datasets as

possible, excluding k-means-soft-DBA. Now, we reintroduce k-means-soft-DBA

into the analysis, reducing the number of datasets included in the comparison.

Figure 9.48 shows the CD diagram comparing ECE to state-of-the-art cluster-

ers, including k-means-soft-DBA. For all evaluation metrics, k-means-soft-DBA

remains the best-performing clusterer. However, ECE shows no statistically signifi-

cant difference in performance across any of the evaluation metrics.

Finally, we conduct an evaluation to verify ECE outperforms each of the indi-

vidual PAM clusterers that comprise it, as shown in Figure 9.53. For AMI, ARI, and
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ARI AMI CLAcc NMI RI
ECE 0.2589 0.286 0.5985 0.292 0.681
k-means-ba-dtw 0.246 0.277 0.591 0.284 0.678
k-means-ba-msm 0.235 0.273 0.581 0.280 0.673
k-means-ba-twe 0.255 0.285 0.593 0.292 0.681
k-means-euclidean 0.186 0.222 0.535 0.229 0.655
k-sc 0.196 0.224 0.552 0.231 0.622
k-shapes 0.229 0.268 0.579 0.274 0.673
pam-msm 0.249 0.279 0.590 0.286 0.680
pam-twe 0.2587 0.287 0.5984 0.293 0.685

Table 9.10 Summary of average score across multiple evaluation metrics over 90
datasets from the UCR archive using the combined test-train split.

Image Spectro Sensor Simulated Device Motion ECG
ECE 4.587 5.136 4.522 3.500 4.750 3.769 4.250
k-means-ba-dtw 4.891 3.455 5.935 2.625 2.500 4.885 7.500
k-means-ba-msm 4.543 5.000 4.370 5.125 5.000 4.577 5.250
k-means-ba-twe 4.022 5.591 4.609 5.000 4.375 4.923 3.125
k-means-euclidean 6.891 4.409 5.696 7.562 7.625 6.000 8.000
k-sc 6.283 3.955 5.174 7.938 7.500 5.769 5.125
k-shapes 4.739 4.636 5.348 5.125 6.250 5.077 4.875
pam-msm 4.065 6.227 4.500 5.125 3.875 5.077 4.000
pam-twe 4.978 6.591 4.848 3.000 3.125 4.923 2.875

Table 9.11 Average ARI rank performance on problems split by problem domain
over 90 datasets from the UCR archive using the cobined test-train split.

NMI, ECE achieves a lower rank than the next best-performing PAM variant. How-

ever, for CLACC, PAM-soft-DTW slightly outperforms ECE, indicating a potential

weakness in the ensemble. Overall, Figure 9.53 demonstrates that ECE improves

upon PAM clustering, although the improvement is not statistically significant.
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Fig. 9.48 CD diagrams of ECE compared to the baseline clusterers, state-of-the-art
and soft-DBA over 74 datasets from the UCR archive using the combine test train
split. Missing datasets are outlined in Table A.51.
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Fig. 9.53 CD diagrams of ECE compared to each PAM clusterer over 92 datasets
from the UCR archive using the combined test-train split. Missing datasets are
outlined in Table A.48.
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9.8.2 Test-Train Split

Figure 9.58 presents the CD diagrams comparing the ECE clusterer to the baseline

and state-of-the-art clusterers for the test-train split. As previously noted, none

of the cluster ensemble schemes performed well on the test-train split, including

EUPW-ECHI. These findings remain true when comparing ECE to the state-of-the-

art: ECE is consistently outperformed by both PAM-TWE and PAM-MSM, though

it consistently appears in the top clique. Overall, for the test-train split, we recom-

mend using PAM-TWE or PAM-MSM directly, as these individual components

outperform the ensemble version.
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Fig. 9.58 CD diagrams of ECE compared to the state-of-the-art clusterers and the
baseline clusterers over 78 datasets from the UCR archive using the test-train split.
Missing datasets are outlined in Table A.45.
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9.9 Conclusion

In this chapter, we introduced the ECE clusterer, which utilises eight elastic dis-

tance PAM models outlined in Chapter 6. To ensemble these PAM models, we

proposed the Elastic Unsupervised Proportional Weighting (EUPW) ensemble

scheme, using elastic, unsupervised evaluation metrics to achieve better and more

consistent ensemble predictions than six other considered ensemble schemes from

the literature.

We have demonstrated that the ECE clusterer outperforms the best PAM variants

that compose it and also outperforms the Elastic Barycentre Average clusterers.

While ECE does not surpass k-means-soft-DBA in any of our considered evaluation

metric, it further narrows the performance gap, making it one of the top-performing

clustering methods identified in this thesis.



Chapter 10

Conclusion

In this thesis, we have conducted the most comprehensive review of elastic distances

for TSCL to date, examining 12 different elastic distances, nine of which had not

previously been explored for TSCL. We proposed new methods that advance the

state-of-the-art in TSCL performance. Our key contributions include the devel-

opment of a robust, standardised Lloyd’s-based clustering model, a novel Elastic

Barycentre Averaging technique, KESBA—a state-of-the-art, versatile, and highly

scalable clusterer designed for real-world TSCL applications—and a new ensemble

scheme (EUPW) to create the ECE, a state-of-the-art PAM-based ensemble clus-

terer. The work presented in this thesis establishes a new benchmark for TSCL

research, offering scalable and highly effective approaches to clustering time series

data.

10.1 Discussion of Contributions

We began by addressing the inconsistent configurations of Lloyd’s-based cluster-

ing algorithms in the TSCL literature. By standardising Lloyd’s algorithm, we

established a unified framework for comparing five popular Lloyd’s-based TSCL

algorithms, which serve as our baseline of comparison. This standardisation enables
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us to more accurately attribute differences in clustering performance to specific

model enhancements, rather than variations in Lloyd’s configuration.

Using this standardised Lloyd’s model, we conducted a comprehensive evalua-

tion of 12 elastic distances with the k-means clusterer. Our findings revealed that

several elastic distances, along with the Euclidean distance, outperform Dynamic

Time Warping (DTW), which has long been considered the state-of-the-art. We fur-

ther investigated the causes of DTW’s poor performance, identifying pathological

warping—exacerbated by the use of the arithmetic mean—as the key issue. Addi-

tionally, our extensive analysis highlighted the traits of the best-performing elastic

distances, revealing that those with an explicit warping penalty performed best.

Notably, ADTW, MSM, shape-DTW, TWE, and soft-DTW achieved state-of-the-art

results relative to the previously established baseline.

Building on our k-means evaluation, we applied the same methodology to four

different k-medoids clusterers. We found that similar elastic distances performed

best for k-medoids as they did for k-means. PAM emerged as the top-performing

model, followed by CLARANS and alternate k-medoids, while CLARA lagged

behind. Additionally, we conducted a detailed comparison between k-means and

alternate k-medoids, showing that k-medoids outperformed k-means across most

elastic distances. This analysis highlighted the critical role of the medoids com-

putation in achieving superior clustering performance. Notably, PAM-ADTW,

PAM-MSM, PAM-TWE, and PAM-soft-DTW surpassed the current state-of-the-art,

establishing a new baseline for TSCL performance.

Our k-medoids experiments highlighted the importance of incorporating the

elastic distances into the centroid computation. While the medoids significantly

outperformed the arithmetic mean, we noted that for DTW, which has a bespoke

averaging technique (DBA), the average performed better than the medoids. This

observation led us to develop the Elastic Barycentre Average.
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The Elastic Barycentre Average is a generalisation of DBA that can be applied

to any elastic distance capable of computing a full alignment path through a cost

matrix. We incorporated the Elastic Barycentre Average into eight different elastic

distance k-means clusterers and observed substantial improvements in clustering

performance across all distances compared to using the arithmetic mean or medoids.

Notably, the best-performing elastic distances, such as MSM and TWE, when com-

bined with the Elastic Barycentre Average, not only outperformed but significantly

surpassed the existing state-of-the-art.

The state-of-the-art performance achieved by PAM-TWE, PAM-MSM, k-means-

soft-DBA, k-means-ba-MSM, and k-means-ba-TWE comes at a substantial com-

putational cost, making these algorithms impractical for many real-world datasets.

To address this limitation, we developed KESBA—a versatile, highly scalable

clustering algorithm tailored for large-scale datasets. KESBA provides practitioners

with a flexible set of parameters to balance computational efficiency and clustering

performance. At the heart of KESBA is the novel Random Subset Elastic Stochastic

Subgradient Barycentre Average, an elastic distance averaging algorithm, along

with several optimisations to our Lloyd’s baseline configuration. We demonstrate

that KESBA not only achieves state-of-the-art performance with significantly faster

runtime but also offers practitioners the flexibility to adjust parameters based on

their runtime requirements.

Finally, we introduced ECE, an ensemble of eight elastic PAM models developed

using a novel Elastic Unsupervised Proportional Weighting ensemble scheme.

The ECE outperformed six widely used ensemble schemes, all utilising the same

eight PAM base clusterers. Moreover, ECE surpassed the performance of each

individual PAM clusterer within the ensemble. ECE achieves state-of-the-art

clustering performance and ranks among the best clustering models considered in

this thesis.
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We have made all the code for our clusterers and experiments available through

the open-source projects aeon and tsml-eval. This allows practitioners to reproduce

all the work presented in this thesis and further build upon and extend the algorithms

proposed.

10.2 Future Work and Extensions

The potential applications of elastic distances in TSCL are vast, and in this thesis, we

have primarily focused on partition-based TSCL algorithms. While we hypothesise

that our findings will extend to other TSCL approaches, such as density-based and

hierarchical-based algorithms, our future work will aim to benchmark these methods

similarly to our evaluation of partition-based approaches. Our ultimate goal is to

produce a comprehensive TSCL “bakeoff” paper, akin to the TSC bakeoff [8].

By introducing elastic distances beyond DTW and developing a generalised

Elastic Barycentre Averaging function that can be applied to any elastic distance

capable of computing a complete alignment path, we hope to encourage the adop-

tion of superior elastic distances—such as MSM, TWE, soft-DTW, and shape-

DTW—both in existing and new TSCL models to advance state-of-the-art methods.

Additionally, for models where computational runtime is a concern, the Random

Subset Elastic Stochastic Subgradient Barycentre Average can be utilised with any

elastic distance, offering a flexible balance between computational efficiency and

clustering performance.

We also aim to study the impact of combining various elastic distances with the

Elastic Barycentre Average on existing unsupervised evaluation metrics, such as

Davies-Bouldin, Silhouette Coefficient, and Calinski-Harabasz. These metrics all

rely on a distance measure and an averaging technique. In Chapter 9, we indirectly

demonstrated that using the elastic distance and Elastic Barycentre Average in

unsupervised evaluation metrics significantly enhances their effectiveness. However,
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we plan to empirically validate these finding, as it could greatly improve real-world

TSCL parameter tuning and evaluation.

Although KESBA is already a fast and versatile TSCL algorithm, we believe it

can be made even faster. TWE, the best-performing elastic distance in our KESBA

evaluation, satisfies the triangular inequality, which opens the possibility of using

alternative k-means algorithms like Elkan’s algorithm [28]. This approach could

significantly reduce the number of distance computations required, thereby further

improving KESBA’s runtime.

Lastly, throughout this thesis, we noted the strong performance of soft-DBA.

While soft-DTW already has a bespoke averaging technique, we experimented

with soft-DTW using the Elastic Barycentre Average. Although k-means-ba-soft-

DTW performed well, it did not surpass k-means-ba-MSM or k-means-ba-TWE.

Therefore, we hypothesise that developing a “soft” version of TWE and MSM,

to allow the development of Soft MSM and TWE Barycentre Averaging, could

potentially outperform the k-means-soft-DBA clusterer.
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Appendix A

Excluded Datasets for Models

This appendix details the datasets excluded from each experiment’s analysis.

Datasets were excluded for one of the following reasons:

• The algorithm was too computationally expensive to complete within our

seven-day runtime limit.

• The algorithm began to diverge, resulting in random clustering and causing

the models to become stuck in infinite loops. Consequently, we had to

terminate the models’ execution before any results could be produced.

To show the missing datasets for each experiments we produce missing dataset

tables. Each table in this chapter is labelled with the corresponding experiment

name and lists the excluded datasets along with the reasons for their exclusion.

Datasets not mentioned in the tables are assumed to have been included in the

analysis. To conserve space, only the missing datasets are listed.

Table A.1 provides an example for a example experiment. Datasets are listed in

the rows, while clusterer names are listed in the columns. An “x” in a cell indicates

that the dataset was missing, whereas a “✓” indicates that the dataset was included

in the analysis. The table caption references the experiment and briefly outline the

reasons for the missing datasets.
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Table A.1 Example of Missing Datasets for Clusterers. Datasets are missing due to
computational runtime exceeding seven days.

Dataset Clusterer A Clusterer B Clusterer C Clusterer D
Dataset 1 ✓ ✓ x ✓
Dataset 2 x ✓ ✓ ✓
Dataset 3 ✓ x ✓ ✓
Dataset 4 ✓ ✓ ✓ x
Dataset 5 ✓ ✓ x ✓

Table A.2 Baseline Lloyd’s with k-means-soft-DBA using the combined test-train
split experiment missing datasets. A total of 27 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
euclidean

k-means-
soft-dba

k-sc k-shapes

CinCECGTorso ✓ ✓ x ✓ ✓
EOGHorizontalSignal ✓ ✓ x ✓ ✓
EOGVerticalSignal ✓ ✓ x ✓ ✓
EthanolLevel ✓ ✓ x ✓ ✓
FordA ✓ ✓ x ✓ ✓
FordB ✓ ✓ x ✓ ✓
HandOutlines x ✓ x ✓ ✓
InlineSkate ✓ ✓ x ✓ ✓
LargeKitchenAppliances ✓ ✓ x ✓ ✓
Mallat ✓ ✓ x ✓ ✓
MixedShapesRegularTrain x ✓ x ✓ ✓
MixedShapesSmallTrain ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ x ✓ ✓
Phoneme x ✓ x ✓ ✓
PigAirwayPressure ✓ ✓ x ✓ ✓
PigArtPressure ✓ ✓ x ✓ ✓
PigCVP ✓ ✓ x ✓ ✓
RefrigerationDevices ✓ ✓ x ✓ ✓
ScreenType ✓ ✓ x ✓ ✓
SemgHandGenderCh2 ✓ ✓ x ✓ ✓
SemgHandMovementCh2 ✓ ✓ x ✓ ✓
SemgHandSubjectCh2 ✓ ✓ x ✓ ✓
StarLightCurves x ✓ x ✓ ✓
UWaveGestureLibraryAll x ✓ x ✓ ✓
UWaveGestureLibraryX ✓ ✓ x ✓ ✓
UWaveGestureLibraryZ ✓ ✓ x x ✓
Total Missing 5 0 27 1 0
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Table A.3 Baseline Lloyd’s with k-means-soft-DBA using the test-train split experi-
ment missing datasets. A total of 8 datasets are excluded. Datasets are missing due
to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
euclidean

k-means-
soft-dba

k-sc k-shapes

FordA ✓ ✓ x ✓ ✓
FordB ✓ ✓ x ✓ ✓
HandOutlines ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ x ✓ ✓
SemgHandMovementCh2 ✓ ✓ x ✓ ✓
SemgHandSubjectCh2 ✓ ✓ x ✓ ✓
UWaveGestureLibraryAll ✓ ✓ x ✓ ✓
Total Missing 0 0 8 0 0

Table A.4 Baseline Lloyd’s using the combined test-train split experiment missing
datasets. A total of 6 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
euclidean

k-sc k-shapes

HandOutlines x ✓ ✓ ✓
MixedShapesRegularTrain x ✓ ✓ ✓
Phoneme x ✓ ✓ ✓
StarLightCurves x ✓ ✓ ✓
UWaveGestureLibraryAll x ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ x ✓
Total Missing 5 0 1 0
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Table A.5 k-means-elastic-distances-initial-experiments combined test-train split
experiment missing datasets. A total of 32 datasets are excluded. Datasets are
missing due to the repeated creation of empty cluster meaning results could not
be obtained. Models that obtained results for all datasets are excluded to conserve
space.

Dataset k-
means-
adtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
edr

k-
means-
lcss

k-
means-
msm

k-
means-
shape-
dtw

k-
means-
soft-
dtw

k-
means-
twe

Adiac ✓ ✓ ✓ ✓ x ✓ ✓ x ✓
CinCECGTorso ✓ ✓ ✓ ✓ ✓ ✓ x x ✓
Coffee ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
DistalPhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
EOGHorizontalSignal ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
EOGVerticalSignal ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
EthanolLevel ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
FiftyWords ✓ ✓ ✓ ✓ ✓ ✓ x x ✓
Fish ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
HandOutlines ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
InlineSkate ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
Mallat ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
Meat ✓ ✓ ✓ x x ✓ ✓ ✓ ✓
MiddlePhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
MixedShapesRegularTrain ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
MixedShapesSmallTrain ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ ✓ ✓ x x ✓
NonInvasiveFetalECGThorax2 ✓ x ✓ ✓ ✓ ✓ x x ✓
OliveOil ✓ ✓ ✓ x x ✓ ✓ ✓ ✓
Phoneme x x x x x ✓ x x x
PigAirwayPressure ✓ x x x ✓ ✓ x x ✓
PigArtPressure x x x x x x x x x
PigCVP x x x x x x x x x
ProximalPhalanxOutlineAgeGroup ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
ProximalPhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ x ✓
SemgHandMovementCh2 ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
SemgHandSubjectCh2 ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
ShapesAll ✓ ✓ x x ✓ ✓ x x ✓
StarLightCurves ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
UWaveGestureLibraryAll ✓ ✓ ✓ ✓ ✓ ✓ x x ✓
Wine ✓ ✓ ✓ ✓ x ✓ ✓ ✓ ✓
WordSynonyms ✓ ✓ ✓ ✓ ✓ ✓ x ✓ ✓
Total Missing 3 6 5 7 13 2 22 12 3
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Table A.6 k-means-elastic-distances-initial-experiments test-train split experiment
missing datasets. A total of 24 datasets are excluded. Datasets are missing due
to the repeated creation of empty cluster meaning results could not be obtained.
Models that obtained results for all datasets are excluded to conserve space.

Dataset k-
means-
adtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
edr

k-
means-
lcss

k-
means-
msm

k-
means-
shape-
dtw

k-
means-
soft-
dtw

Adiac ✓ ✓ ✓ x x ✓ ✓ x
Coffee ✓ ✓ ✓ ✓ x ✓ ✓ ✓
DiatomSizeReduction ✓ ✓ ✓ ✓ x ✓ ✓ ✓
DistalPhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ ✓
EOGHorizontalSignal ✓ ✓ ✓ ✓ ✓ ✓ x ✓
EOGVerticalSignal ✓ ✓ ✓ ✓ ✓ ✓ x ✓
EthanolLevel ✓ ✓ ✓ ✓ ✓ ✓ x ✓
FiftyWords ✓ ✓ ✓ ✓ ✓ ✓ x x
Fish ✓ ✓ ✓ ✓ x ✓ ✓ ✓
Meat ✓ ✓ ✓ x x ✓ ✓ ✓
MiddlePhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ x ✓ x x
NonInvasiveFetalECGThorax2 ✓ ✓ ✓ ✓ ✓ ✓ x x
OliveOil ✓ ✓ ✓ x x ✓ ✓ x
Phoneme ✓ ✓ ✓ ✓ ✓ ✓ x x
PigAirwayPressure ✓ x x ✓ ✓ ✓ x x
PigArtPressure x x x x ✓ ✓ x x
PigCVP ✓ ✓ x x ✓ ✓ x x
ProximalPhalanxOutlineAgeGroup ✓ ✓ ✓ ✓ x ✓ ✓ ✓
ProximalPhalanxTW ✓ ✓ ✓ ✓ x ✓ ✓ x
SemgHandMovementCh2 ✓ ✓ ✓ ✓ ✓ ✓ x ✓
ShapesAll ✓ ✓ ✓ ✓ ✓ ✓ x x
UWaveGestureLibraryAll ✓ ✓ ✓ ✓ ✓ ✓ x ✓
Wine ✓ ✓ ✓ ✓ x ✓ ✓ ✓
Total Missing 1 3 3 5 12 1 13 11
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Table A.7 k-means-elastic-distances-initial-experiments-no-lcss-soft-shape com-
bined test-train split experiment excluding methods with no missing datasets. A
total of 9 datasets are excluded. Datasets are missing due to the repeated creation of
empty cluster meaning results could not be obtained. Models that obtained results
for all datasets are excluded to conserve space.

Dataset k-
means-
adtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
edr

k-
means-
msm

k-
means-
twe

Meat ✓ ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ x ✓ ✓ ✓ ✓
OliveOil ✓ ✓ ✓ x ✓ ✓
Phoneme x x x x ✓ x
PigAirwayPressure ✓ x x x ✓ ✓
PigArtPressure x x x x x x
PigCVP x x x x x x
ShapesAll ✓ ✓ x x ✓ ✓
Total Missing 3 6 5 7 2 3
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Table A.8 k-means-elastic-distances-initial-experiments-with-baseline combined
test-train split experiment excluding methods with no missing datasets. A total of
14 datasets are excluded. Datasets are missing due to the repeated creation of empty
cluster meaning results could not be obtained. Specifically for k-means-ba-dtw and
k-sc datasets are excluded due to runtime exceeding our seven day limit. Models
that obtained results for all datasets are excluded to conserve space.

Dataset k-
means-
adtw

k-
means-
ba-
dtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
edr

k-
means-
msm

k-
means-
twe

k-sc

HandOutlines ✓ x ✓ ✓ ✓ ✓ ✓ ✓
Meat ✓ ✓ ✓ ✓ x ✓ ✓ ✓
MixedShapesRegularTrain ✓ x ✓ ✓ ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ x ✓ ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ x ✓ ✓ ✓ ✓ ✓
OliveOil ✓ ✓ ✓ ✓ x ✓ ✓ ✓
Phoneme x x x x x ✓ x ✓
PigAirwayPressure ✓ ✓ x x x ✓ ✓ ✓
PigArtPressure x ✓ x x x ✓ x ✓
PigCVP x ✓ x x x ✓ x ✓
ShapesAll ✓ ✓ ✓ x x ✓ ✓ ✓
StarLightCurves ✓ x ✓ ✓ ✓ ✓ ✓ ✓
UWaveGestureLibraryAll ✓ x ✓ ✓ ✓ ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ ✓ ✓ ✓ ✓ ✓ x
Total Missing 3 5 6 5 7 2 3 1

Table A.9 k-means-elastic-distances-initial-experiments-with-baseline test-train
split experiment excluding methods with no missing datasets. A total of 7 datasets
are excluded. Datasets are missing due to the repeated creation of empty cluster
meaning results could not be obtained. Models that obtained results for all datasets
are excluded to conserve space.

Dataset k-
means-
adtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
edr

k-
means-
msm

k-
means-
twe

Adiac ✓ ✓ ✓ x ✓ ✓
Meat ✓ ✓ ✓ x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ ✓ ✓
OliveOil ✓ ✓ ✓ x ✓ ✓
PigAirwayPressure ✓ x x ✓ ✓ ✓
PigArtPressure x x x x ✓ x
PigCVP ✓ ✓ x x ✓ ✓
Total Missing 1 3 3 5 1 1
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Table A.10 k-means-elastic-distances-window-tuning combined test-train split ex-
periment missing datasets. A total of 11 datasets are excluded .Datasets are missing
due to the repeated creation of empty cluster meaning results could not be obtained.

Dataset k-
means-
adtw

k-
means-
ba-
dtw

k-
means-
ba-
dtw-
20-
window

k-
means-
ddtw

k-
means-
ddtw-
20-
window

k-
means-
dtw

k-
means-
dtw-
20-
window

k-
means-
euclid

k-
means-
msm

HandOutlines ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓
MixedShapesRegularTrain ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ ✓ x x ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓
Phoneme x x ✓ x x x x ✓ ✓
PigAirwayPressure ✓ ✓ ✓ x x x x ✓ ✓
PigArtPressure x ✓ ✓ x x x x ✓ x
PigCVP x ✓ ✓ x x x x ✓ x
ShapesAll ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓
StarLightCurves ✓ x x ✓ ✓ ✓ ✓ ✓ ✓
UWaveGestureLibraryAll ✓ x ✓ ✓ ✓ ✓ ✓ ✓ ✓
Total Missing 3 5 1 6 5 5 4 0 2

Table A.11 k-means-elastic-distances-window-tuning test-train split experiment
missing datasets. A total of 4 datasets are excluded. Datasets are missing due to the
repeated creation of empty cluster meaning results could not be obtained.

Dataset k-
means-
adtw

k-
means-
ba-
dtw

k-
means-
ba-
dtw-
20-
window

k-
means-
ddtw

k-
means-
ddtw-
20-
window

k-
means-
dtw

k-
means-
dtw-
20-
window

k-
means-
euclid

k-
means-
msm

NonInvasiveFetalECGThorax1 ✓ ✓ ✓ x ✓ ✓ ✓ ✓ ✓
PigAirwayPressure ✓ ✓ ✓ x ✓ x ✓ ✓ ✓
PigArtPressure x ✓ ✓ x ✓ x ✓ ✓ x
PigCVP ✓ ✓ ✓ ✓ ✓ x ✓ ✓ ✓
Total Missing 1 0 0 3 0 3 0 0 1
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Table A.12 Alternate k-medoids all distances combined test-train split experiment
missing datasets. A total of 36 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days.

Dataset alternate-
edr

alternate-
lcss

alternate-
shape-dtw

alternate-
soft-dtw

ACSF1 x x ✓ x
Adiac x x ✓ x
Beef ✓ x ✓ ✓
Car ✓ x ✓ ✓
Chinatown ✓ x ✓ ✓
Coffee ✓ x ✓ ✓
DiatomSizeReduction x x ✓ ✓
DistalPhalanxOutlineAgeGroup ✓ x ✓ ✓
DistalPhalanxTW ✓ x ✓ x
EthanolLevel ✓ x ✓ ✓
FiftyWords ✓ x ✓ ✓
Fish ✓ x ✓ ✓
FordA ✓ ✓ x ✓
HandOutlines ✓ ✓ x x
Herring ✓ x ✓ ✓
Mallat ✓ x ✓ ✓
Meat x x ✓ x
MiddlePhalanxOutlineAgeGroup ✓ x ✓ ✓
MiddlePhalanxOutlineCorrect ✓ x ✓ ✓
MiddlePhalanxTW x x ✓ ✓
MixedShapesRegularTrain ✓ ✓ x ✓
MixedShapesSmallTrain ✓ ✓ x ✓
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓
NonInvasiveFetalECGThorax2 ✓ x ✓ ✓
OliveOil x x ✓ x
PigAirwayPressure x x ✓ ✓
Plane ✓ x ✓ ✓
ProximalPhalanxOutlineAgeGroup ✓ x ✓ x
ProximalPhalanxOutlineCorrect ✓ x ✓ ✓
ProximalPhalanxTW x x ✓ x
ShapesAll ✓ x ✓ ✓
StarLightCurves ✓ ✓ x x
Symbols ✓ x ✓ ✓
Trace ✓ x ✓ ✓
UWaveGestureLibraryAll ✓ ✓ x x
Wine x x ✓ ✓
Total Missing 9 30 6 10
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Table A.13 Alternate k-medoids without LCSS, EDR and soft-DTW combined
test-train split experiment missing datasets. A total of 6 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate-
shape-dtw

FordA x
HandOutlines x
MixedShapesRegularTrain x
MixedShapesSmallTrain x
StarLightCurves x
UWaveGestureLibraryAll x
Total Missing 6

Table A.14 Alternate k-medoids without LCSS, EDR and soft-DTW with baseline
clusterers combined test-train split experiment missing datasets. A total of 8 datasets
are excluded. Datasets are missing due to computational runtime exceeding seven
days.

Dataset alternate-
shape-dtw

k-means-
ba-dtw

k-sc

FordA x ✓ ✓
HandOutlines x x ✓
MixedShapesRegularTrain x x ✓
MixedShapesSmallTrain x ✓ ✓
Phoneme ✓ x ✓
StarLightCurves x x ✓
UWaveGestureLibraryAll x x ✓
UWaveGestureLibraryZ ✓ ✓ x
Total Missing 6 5 1
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Table A.15 Alternate k-medoids with all 12 elastic distances test-train split experi-
ment missing datasets. A total of 10 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days.

Dataset alternate-
adtw

alternate-
euclidean

alternate-
shape-dtw

alternate-
soft-dtw

ACSF1 ✓ ✓ ✓ x
Adiac ✓ ✓ ✓ x
HandOutlines ✓ ✓ x ✓
MiddlePhalanxOutlineAgeGroup ✓ ✓ ✓ x
MiddlePhalanxTW ✓ ✓ ✓ x
OliveOil ✓ ✓ ✓ x
ProximalPhalanxTW ✓ ✓ ✓ x
Wine ✓ ✓ ✓ x
Worms x x x ✓
WormsTwoClass x x x ✓
Total Missing 2 2 3 7

Table A.16 Alternate k-medoids with all 12 elastic distance and the baseline cluster-
ers test-train split experiment missing datasets. A total of 10 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate-
adtw

alternate-
euclidean

alternate-
shape-dtw

alternate-
soft-dtw

ACSF1 ✓ ✓ ✓ x
Adiac ✓ ✓ ✓ x
HandOutlines ✓ ✓ x ✓
MiddlePhalanxOutlineAgeGroup ✓ ✓ ✓ x
MiddlePhalanxTW ✓ ✓ ✓ x
OliveOil ✓ ✓ ✓ x
ProximalPhalanxTW ✓ ✓ ✓ x
Wine ✓ ✓ ✓ x
Worms x x x ✓
WormsTwoClass x x x ✓
Total Missing 2 2 3 7
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Table A.17 Alternate k-medoids compared to k-means over the combined test-train
split across experiment missing datasets. A total of 7 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

Dataset k-means-
adtw

k-means-
ddtw

k-means-
dtw

k-means-
msm

k-means-
twe

NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ x ✓ ✓ ✓
Phoneme x x x ✓ x
PigAirwayPressure ✓ x x ✓ ✓
PigArtPressure x x x x x
PigCVP x x x x x
ShapesAll ✓ ✓ x ✓ ✓
Total Missing 3 6 5 2 3

Table A.18 Alternate k-medoids compared to k-means across test-train split experi-
ment missing datasets. A total of 6 datasets are excluded. Datasets are missing due
to computational runtime exceeding seven days.

Dataset alternate-
adtw

alternate-
euclidean

k-
means-
adtw

k-
means-
ddtw

k-
means-
dtw

k-
means-
msm

k-
means-
twe

NonInvasiveFetalECGThorax1 ✓ ✓ ✓ x ✓ ✓ ✓
PigAirwayPressure ✓ ✓ ✓ x x ✓ ✓
PigArtPressure ✓ ✓ x x x x x
PigCVP ✓ ✓ ✓ ✓ x ✓ ✓
Worms x x ✓ ✓ ✓ ✓ ✓
WormsTwoClass x x ✓ ✓ ✓ ✓ ✓
Total Missing 2 2 1 3 3 1 1
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Table A.22 PAM with 12 elastic distances with baseline clusterers on the test-train
split experiment missing datasets. A total of 1 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset pam-
shape-dtw

HandOutlines x
Total Missing 1

Table A.23 CLARANS with 12 elastic distances on the combined test-train split
experiment missing datasets. A total of 6 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset clarans-
shape-dtw

clarans-
soft-dtw

HandOutlines x ✓
MixedShapesRegularTrain x ✓
NonInvasiveFetalECGThorax1 x ✓
NonInvasiveFetalECGThorax2 x ✓
StarLightCurves x x
UWaveGestureLibraryAll x x
Total Missing 6 2
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Table A.24 CLARA with 12 elastic distances with baseline clusterers on the test-
train split experiment missing datasets. A total of 6 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-sc

HandOutlines x ✓
MixedShapesRegularTrain x ✓
Phoneme x ✓
StarLightCurves x ✓
UWaveGestureLibraryAll x ✓
UWaveGestureLibraryZ ✓ x
Total Missing 5 1

Table A.25 CLARANS with 12 elastic distances with baseline clusterers on the
combined test-train split experiment missing datasets. A total of 8 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset clarans-
shape-dtw

clarans-
soft-dtw

k-means-
ba-dtw

k-sc

HandOutlines x ✓ x ✓
MixedShapesRegularTrain x ✓ x ✓
NonInvasiveFetalECGThorax1 x ✓ ✓ ✓
NonInvasiveFetalECGThorax2 x ✓ ✓ ✓
Phoneme ✓ ✓ x ✓
StarLightCurves x x x ✓
UWaveGestureLibraryAll x x x ✓
UWaveGestureLibraryZ ✓ ✓ ✓ x
Total Missing 6 2 5 1
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Table A.26 Different k-medoids clusterers comparison over the combined test-train
split experiment missing datasets. A total of 22 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days. To conserve space we
exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset alternate-
edr

alternate-
shape-dtw

alternate-
soft-dtw

clarans-
shape-dtw

clarans-
soft-dtw

ACSF1 x ✓ x ✓ ✓
Adiac x ✓ x ✓ ✓
CinCECGTorso ✓ ✓ ✓ ✓ ✓
Crop ✓ ✓ ✓ ✓ ✓
DiatomSizeReduction x ✓ ✓ ✓ ✓
DistalPhalanxTW ✓ ✓ x ✓ ✓
FordA ✓ x ✓ ✓ ✓
HandOutlines ✓ x x x ✓
Mallat ✓ ✓ ✓ ✓ ✓
Meat x ✓ x ✓ ✓
MiddlePhalanxTW x ✓ ✓ ✓ ✓
MixedShapesRegularTrain ✓ x ✓ x ✓
MixedShapesSmallTrain ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ ✓ x ✓
NonInvasiveFetalECGThorax2 ✓ ✓ ✓ x ✓
OliveOil x ✓ x ✓ ✓
PigAirwayPressure x ✓ ✓ ✓ ✓
ProximalPhalanxOutlineAgeGroup ✓ ✓ x ✓ ✓
ProximalPhalanxTW x ✓ x ✓ ✓
StarLightCurves ✓ x x x x
UWaveGestureLibraryAll ✓ x x x x
Wine x ✓ ✓ ✓ ✓
Total Missing 9 6 10 6 2
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Table A.27 Different k-medoids clusterers comparison over the test-train split
experiment missing datasets. A total of 10 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset alternate-
adtw

alternate-
euclidean

alternate-
shape-dtw

alternate-
soft-dtw

pam-
shape-dtw

ACSF1 ✓ ✓ ✓ x ✓
Adiac ✓ ✓ ✓ x ✓
HandOutlines ✓ ✓ x ✓ x
MiddlePhalanxOutlineAgeGroup ✓ ✓ ✓ x ✓
MiddlePhalanxTW ✓ ✓ ✓ x ✓
OliveOil ✓ ✓ ✓ x ✓
ProximalPhalanxTW ✓ ✓ ✓ x ✓
Wine ✓ ✓ ✓ x ✓
Worms x x x ✓ ✓
WormsTwoClass x x x ✓ ✓
Total Missing 2 2 3 7 1
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Table A.28 Best k-medoids clusterers comparison over combined test-train split
experiment missing datasets. A total of 20 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days. To conserve space we
exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset alternate-
shape-
dtw

alternate-
soft-dtw

clarans-
shape-
dtw

clarans-
soft-dtw

k-
means-
ba-dtw

k-sc

ACSF1 ✓ x ✓ ✓ ✓ ✓
Adiac ✓ x ✓ ✓ ✓ ✓
CinCECGTorso ✓ ✓ ✓ ✓ ✓ ✓
Crop ✓ ✓ ✓ ✓ ✓ ✓
DistalPhalanxTW ✓ x ✓ ✓ ✓ ✓
FordA x ✓ ✓ ✓ ✓ ✓
HandOutlines x x x ✓ x ✓
Mallat ✓ ✓ ✓ ✓ ✓ ✓
Meat ✓ x ✓ ✓ ✓ ✓
MixedShapesRegularTrain x ✓ x ✓ x ✓
MixedShapesSmallTrain x ✓ ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ x ✓ ✓ ✓
OliveOil ✓ x ✓ ✓ ✓ ✓
Phoneme ✓ ✓ ✓ ✓ x ✓
ProximalPhalanxOutlineAgeGroup ✓ x ✓ ✓ ✓ ✓
ProximalPhalanxTW ✓ x ✓ ✓ ✓ ✓
StarLightCurves x x x x x ✓
UWaveGestureLibraryAll x x x x x ✓
UWaveGestureLibraryZ ✓ ✓ ✓ ✓ ✓ x
Total Missing 6 10 6 2 5 1
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Table A.29 Best k-medoids clusterers comparison over test-train split experiment
missing datasets. A total of 10 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days.

Dataset alternate-
adtw

alternate-
shape-dtw

alternate-
soft-dtw

pam-
shape-dtw

ACSF1 ✓ ✓ x ✓
Adiac ✓ ✓ x ✓
HandOutlines ✓ x ✓ x
MiddlePhalanxOutlineAgeGroup ✓ ✓ x ✓
MiddlePhalanxTW ✓ ✓ x ✓
OliveOil ✓ ✓ x ✓
ProximalPhalanxTW ✓ ✓ x ✓
Wine ✓ ✓ x ✓
Worms x x ✓ ✓
WormsTwoClass x x ✓ ✓
Total Missing 2 3 7 1
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Table A.30 Elastic Barycentre k-means using 8 different elastic distances over the
combined test-train split experiment missing datasets. A total of 29 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

k-means-
ba-twe

Adiac ✓ ✓ x ✓
CinCECGTorso ✓ x x ✓
EOGHorizontalSignal ✓ x ✓ ✓
EOGVerticalSignal ✓ x ✓ ✓
EthanolLevel ✓ x ✓ ✓
FordA ✓ x x ✓
FordB ✓ x x ✓
HandOutlines x x x ✓
InlineSkate ✓ x ✓ ✓
Mallat ✓ x ✓ ✓
MixedShapesRegularTrain x x x ✓
MixedShapesSmallTrain ✓ x x ✓
NonInvasiveFetalECGThorax1 ✓ x x ✓
NonInvasiveFetalECGThorax2 ✓ x x ✓
Phoneme x x x x
PigAirwayPressure ✓ x x ✓
PigArtPressure ✓ x x ✓
PigCVP ✓ x x ✓
ProximalPhalanxTW ✓ ✓ x ✓
SemgHandGenderCh2 ✓ x ✓ ✓
SemgHandMovementCh2 ✓ x x ✓
SemgHandSubjectCh2 ✓ x ✓ ✓
ShapesAll ✓ x ✓ ✓
StarLightCurves x x x ✓
UWaveGestureLibraryAll x x x ✓
UWaveGestureLibraryX ✓ x ✓ ✓
UWaveGestureLibraryY ✓ x ✓ ✓
UWaveGestureLibraryZ ✓ x ✓ ✓
Yoga ✓ x ✓ ✓
Total Missing 5 27 17 1
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Table A.31 Elastic Barycentre k-means using 6 different elastic distances over the
combined test-train split experiment missing datasets. A total of 5 datasets are
excluded. Datasets are missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
ba-twe

HandOutlines x ✓
MixedShapesRegularTrain x ✓
Phoneme x x
StarLightCurves x ✓
UWaveGestureLibraryAll x ✓
Total Missing 5 1

Table A.32 Barycentre averaging using 6 different elastic distances with the baseline
clusterers over the combined test-train split experiment missing datasets. A total
of 7 datasets are excluded. Datasets are missing due to computational runtime
exceeding seven days.

Dataset k-
means-
ba-
dtw

k-
means-
ba-
twe

k-sc pam-
adtw

pam-
dtw

pam-
erp

pam-
msm

pam-
twe

pam-
wdtw

Crop ✓ ✓ ✓ x x x x x x
HandOutlines x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
MixedShapesRegularTrain x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Phoneme x x ✓ ✓ ✓ ✓ ✓ ✓ ✓
StarLightCurves x ✓ ✓ ✓ ✓ ✓ ✓ x ✓
UWaveGestureLibraryAll x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ x ✓ ✓ ✓ ✓ ✓ ✓
Total Missing 5 1 1 1 1 1 1 2 1
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Table A.33 Elastic Barycentre k-means using 6 different elastic distances with the
baseline clusterers and soft-DBA over the combined test-train split experiment
missing datasets. A total of 33 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days. To conserve space we exclude PAM
from this table and refer to Table A.19 for PAMs missing datasets.

Dataset k-means-
ba-dtw

k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

k-means-
ba-twe

k-means-
soft-dba

k-sc

Adiac ✓ ✓ x ✓ ✓ ✓
CinCECGTorso ✓ x x ✓ x ✓
Crop ✓ ✓ ✓ ✓ ✓ ✓
EOGHorizontalSignal ✓ x ✓ ✓ x ✓
EOGVerticalSignal ✓ x ✓ ✓ x ✓
EthanolLevel ✓ x ✓ ✓ x ✓
FordA ✓ x x ✓ x ✓
FordB ✓ x x ✓ x ✓
HandOutlines x x x ✓ x ✓
InlineSkate ✓ x ✓ ✓ x ✓

Table A.34 Elastic Barycentre k-means using 8 different elastic distances over the
test-train split experiment missing datasets. A total of 14 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

Adiac ✓ x
EOGHorizontalSignal x ✓
EOGVerticalSignal x ✓
EthanolLevel x ✓
FordA x x
FordB x x
HandOutlines x ✓
NonInvasiveFetalECGThorax1 x x
NonInvasiveFetalECGThorax2 x x
ProximalPhalanxTW ✓ x
SemgHandMovementCh2 x ✓
SemgHandSubjectCh2 x ✓
StarLightCurves x ✓
UWaveGestureLibraryAll x ✓
Total Missing 12 6
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Table A.35 Elastic Barycentre k-means using 8 different elastic distances with
the baseline clusterers and soft-DBA over the test-train split experiment missing
datasets. A total of 14 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.

Dataset k-means-
ba-shape-
dtw

k-means-
ba-soft-
dtw

k-means-
soft-dba

pam-
shape-dtw

Adiac ✓ x ✓ ✓
EOGHorizontalSignal x ✓ ✓ ✓
EOGVerticalSignal x ✓ ✓ ✓
EthanolLevel x ✓ ✓ ✓
FordA x x x ✓
FordB x x x ✓
HandOutlines x ✓ x x
NonInvasiveFetalECGThorax1 x x x ✓
NonInvasiveFetalECGThorax2 x x x ✓
ProximalPhalanxTW ✓ x ✓ ✓
SemgHandMovementCh2 x ✓ x ✓
SemgHandSubjectCh2 x ✓ x ✓
StarLightCurves x ✓ ✓ ✓
UWaveGestureLibraryAll x ✓ x ✓
Total Missing 12 6 8 1

Table A.36 Lloyd’s-based clusterers comparison with Elastic Barycentre Average
test-train split experiment missing datasets. A total of 5 datasets are excluded.
Datasets are missing due to computational runtime exceeding seven days.

Dataset alternate-
adtw

k-means-
adtw

k-means-
dtw

k-means-
msm

k-means-
twe

PigAirwayPressure ✓ ✓ x ✓ ✓
PigArtPressure ✓ x x x x
PigCVP ✓ ✓ x ✓ ✓
Worms x ✓ ✓ ✓ ✓
WormsTwoClass x ✓ ✓ ✓ ✓
Total Missing 2 1 3 1 1
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Table A.37 KESBA baseline experiment using the combined test-train split experi-
ment missing datasets. A total of 7 datasets are excluded. Datasets are missing due
to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
ba-twe

k-sc pam-msm pam-twe

Crop ✓ ✓ ✓ x x
HandOutlines x ✓ ✓ ✓ ✓
MixedShapesRegularTrain x ✓ ✓ ✓ ✓
Phoneme x x ✓ ✓ ✓
StarLightCurves x ✓ ✓ ✓ x
UWaveGestureLibraryAll x ✓ ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ x ✓ ✓
Total Missing 5 1 1 1 2
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Table A.38 KESBA baseline with soft-DBA experiment using the combined test-
train split experiment missing datasets. A total of 28 datasets are excluded. Datasets
are missing due to computational runtime exceeding seven days.

Dataset k-means-
ba-dtw

k-means-
ba-twe

k-means-
soft-dba

k-sc pam-
msm

pam-
twe

CinCECGTorso ✓ ✓ x ✓ ✓ ✓
Crop ✓ ✓ ✓ ✓ x x
EOGHorizontalSignal ✓ ✓ x ✓ ✓ ✓
EOGVerticalSignal ✓ ✓ x ✓ ✓ ✓
EthanolLevel ✓ ✓ x ✓ ✓ ✓
FordA ✓ ✓ x ✓ ✓ ✓
FordB ✓ ✓ x ✓ ✓ ✓
HandOutlines x ✓ x ✓ ✓ ✓
InlineSkate ✓ ✓ x ✓ ✓ ✓
LargeKitchenAppliances ✓ ✓ x ✓ ✓ ✓
Mallat ✓ ✓ x ✓ ✓ ✓
MixedShapesRegularTrain x ✓ x ✓ ✓ ✓
MixedShapesSmallTrain ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax1 ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax2 ✓ ✓ x ✓ ✓ ✓
Phoneme x x x ✓ ✓ ✓
PigAirwayPressure ✓ ✓ x ✓ ✓ ✓
PigArtPressure ✓ ✓ x ✓ ✓ ✓
PigCVP ✓ ✓ x ✓ ✓ ✓
RefrigerationDevices ✓ ✓ x ✓ ✓ ✓
ScreenType ✓ ✓ x ✓ ✓ ✓
SemgHandGenderCh2 ✓ ✓ x ✓ ✓ ✓
SemgHandMovementCh2 ✓ ✓ x ✓ ✓ ✓
SemgHandSubjectCh2 ✓ ✓ x ✓ ✓ ✓
StarLightCurves x ✓ x ✓ ✓ x
UWaveGestureLibraryAll x ✓ x ✓ ✓ ✓
UWaveGestureLibraryX ✓ ✓ x ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ x x ✓ ✓
Total Missing 5 1 27 1 1 2
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Table A.39 KESBA baseline experiment using the test-train split experiment miss-
ing datasets. A total of 8 datasets are excluded. Datasets are missing due to
computational runtime exceeding seven days.

Dataset k-means-
soft-dba

FordA x
FordB x
HandOutlines x
NonInvasiveFetalECGThorax1 x
NonInvasiveFetalECGThorax2 x
SemgHandMovementCh2 x
SemgHandSubjectCh2 x
UWaveGestureLibraryAll x
Total Missing 8
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Table A.40 KESBA with different initlisation strategies over the combined test-train
split experiment missing datasets. A total of 24 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset k-sc kesba-
forgy-
restarts-
msm

kesba-
forgy-
restarts-
twe

kesba-full-
twe

CinCECGTorso ✓ x x ✓
EOGHorizontalSignal ✓ x x ✓
EOGVerticalSignal ✓ x x ✓
EthanolLevel ✓ x x ✓
HandOutlines ✓ x x ✓
Haptics ✓ x ✓ ✓
InlineSkate ✓ x x ✓
Mallat ✓ x x ✓
MixedShapesRegularTrain ✓ x x ✓
MixedShapesSmallTrain ✓ x x ✓
NonInvasiveFetalECGThorax1 ✓ x x ✓
NonInvasiveFetalECGThorax2 ✓ x x ✓
Phoneme ✓ x x x
PigAirwayPressure ✓ x ✓ ✓
PigArtPressure ✓ x x ✓
PigCVP ✓ x x ✓
SemgHandGenderCh2 ✓ x x ✓
SemgHandMovementCh2 ✓ x x ✓
SemgHandSubjectCh2 ✓ x x ✓
ShapesAll ✓ x x ✓
StarLightCurves ✓ x x ✓
UWaveGestureLibraryAll ✓ x x ✓
UWaveGestureLibraryX ✓ ✓ x ✓
UWaveGestureLibraryZ x ✓ ✓ ✓
Total Missing 1 22 21 1
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Table A.41 KESBA with different ba subset sizes over the combined test-train
split experiment missing datasets. A total of 5 datasets are excluded. Datasets are
missing due to computational runtime exceeding seven days.

Dataset kesba-
average-
10-twe

kesba-
average-
20-twe

kesba-
average-
30-twe

kesba-
average-
40-twe

kesba-
average-
50-twe

kesba-full-
twe

NonInvasiveFetalECGThorax1 x x x x x ✓
NonInvasiveFetalECGThorax2 x x x x x ✓
Phoneme x x x x x x
PigArtPressure ✓ ✓ ✓ ✓ x ✓
UWaveGestureLibraryAll x x x x x ✓
Total Missing 4 4 4 4 5 1

Table A.42 KESBA runtime comparison experiment combined test-train split ex-
periment missing datasets. A total of 6 datasets are excluded. Datasets are missing
due to computational runtime exceeding seven days.

Dataset kesba-
average-
10-twe

kesba-
average-
20-twe

kesba-
average-
30-twe

kesba-
average-
40-twe

kesba-
average-
50-twe

kesba-
both-50-
twe

MiddlePhalanxOutlineAgeGroup ✓ ✓ ✓ ✓ ✓ x
NonInvasiveFetalECGThorax1 x x x x x ✓
NonInvasiveFetalECGThorax2 x x x x x ✓
Phoneme x x x x x x
PigArtPressure ✓ ✓ ✓ ✓ x ✓
UWaveGestureLibraryAll x x x x x x
Total Missing 4 4 4 4 5 3

Table A.43 KESBA both experiment combined test-train split experiment missing
datasets. A total of 3 datasets are excluded. Datasets are missing due to computa-
tional runtime exceeding seven days.

Dataset kesba-
both-20-
twe

kesba-
both-30-
twe

kesba-
both-40-
twe

kesba-
both-50-
twe

kesba-full-
twe

NonInvasiveFetalECGThorax2 ✓ ✓ ✓ x ✓
Phoneme ✓ ✓ x x x
UWaveGestureLibraryAll x x x x ✓
Total Missing 1 1 2 3 1
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Table A.44 Baseline EUPW experiment combined test-train split experiment miss-
ing datasets. A total of 22 datasets are excluded. Datasets are missing due to empty
clusters forming.

Dataset eupw-
euclidean

eupw-msm eupw-twe k-means-
ba-dtw

k-sc pam-
msm

pam-
twe

ACSF1 ✓ x x ✓ ✓ ✓ ✓
Adiac ✓ x x ✓ ✓ ✓ ✓
CricketY ✓ x x ✓ ✓ ✓ ✓
Crop x x x ✓ ✓ x x
DiatomSizeReduction ✓ x x ✓ ✓ ✓ ✓
FiftyWords ✓ x x ✓ ✓ ✓ ✓
Fish ✓ x x ✓ ✓ ✓ ✓
HandOutlines x ✓ ✓ x ✓ ✓ ✓
MixedShapesRegularTrain ✓ ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax1 x x x ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax2 x x x ✓ ✓ ✓ ✓
OliveOil ✓ x x ✓ ✓ ✓ ✓
Phoneme ✓ x x x ✓ ✓ ✓
PigAirwayPressure ✓ x x ✓ ✓ ✓ ✓
PigArtPressure ✓ x x ✓ ✓ ✓ ✓
PigCVP ✓ x x ✓ ✓ ✓ ✓
ShapesAll ✓ x x ✓ ✓ ✓ ✓
StarLightCurves x x x x ✓ ✓ x
UWaveGestureLibraryAll x x x x ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ ✓ ✓ x ✓ ✓
WordSynonyms ✓ x x ✓ ✓ ✓ ✓
Worms ✓ x x ✓ ✓ ✓ ✓
Total Missing 6 19 19 5 1 1 2
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Table A.45 Baseline EUPW experiment test-train split experiment missing datasets.
A total of 34 datasets are excluded. Datasets are missing due to empty clusters
forming.

Dataset eupw-msm eupw-twe
ACSF1 x x
Adiac x x
ArrowHead x x
Beef x x
Car x x
CricketY x x
DiatomSizeReduction x x
ECGFiveDays x x
FaceFour x x
FacesUCR x x
FiftyWords x x
GunPoint x x
Haptics x x
HouseTwenty x x
InsectEPGRegularTrain x x
InsectEPGSmallTrain x x
Lightning7 x x
MiddlePhalanxTW x x
NonInvasiveFetalECGThorax1 x x
NonInvasiveFetalECGThorax2 x x
Phoneme x x
PigAirwayPressure x x
PigArtPressure x x
PigCVP x x
Rock x x
SemgHandMovementCh2 x x
ShapesAll x x
SwedishLeaf x x
Symbols x x
UWaveGestureLibraryX x x
UWaveGestureLibraryY x x
WordSynonyms x x
Worms x x
WormsTwoClass x x
Total Missing 34 34
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Table A.46 EUPW compared to other ensembles schemes experiment over the
combined test-train split experiment missing datasets. A total of 21 datasets are
excluded. Datasets are missing due to empty clusters forming. To conserve space
we exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset cspa eupw-
euclidean

eupw-
msm

eupw-
twe

hbgf iterative-
voting

mcla nmf simple-
voting

ACSF1 ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Adiac ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
CricketY ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Crop x x x x x x x x x
DiatomSizeReduction ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
ElectricDevices x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
FiftyWords ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Fish ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
HandOutlines ✓ x ✓ ✓ x x x x x
NonInvasiveFetalECGThorax1 ✓ x x x x x x x x
NonInvasiveFetalECGThorax2 ✓ x x x x x x x x
OliveOil ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Phoneme ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
PigAirwayPressure ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
PigArtPressure ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
PigCVP ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
ShapesAll ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
StarLightCurves x x x x x x x x x
UWaveGestureLibraryAll x x x x x x x x x
WordSynonyms ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Worms ✓ ✓ x x ✓ ✓ ✓ ✓ ✓
Total Missing 4 6 19 19 6 6 6 6 6
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Table A.47 EUPW compared to other ensembles schemes experiment over the
test-train split experiment missing datasets. A total of 37 datasets are excluded.
Datasets are missing due to empty clusters forming.

Dataset cspa eupw-msm eupw-twe iterative-
voting

simple-
voting

ACSF1 ✓ x x ✓ ✓
Adiac ✓ x x ✓ ✓
ArrowHead ✓ x x ✓ ✓
Beef ✓ x x ✓ ✓
Car ✓ x x ✓ ✓
CricketY ✓ x x ✓ ✓
Crop x ✓ ✓ ✓ ✓
DiatomSizeReduction ✓ x x ✓ ✓
ECGFiveDays ✓ x x ✓ ✓
ElectricDevices x ✓ ✓ ✓ ✓
FaceFour ✓ x x ✓ ✓
FacesUCR ✓ x x ✓ ✓
FiftyWords ✓ x x ✓ ✓
GunPoint ✓ x x ✓ ✓
Haptics ✓ x x ✓ ✓
HouseTwenty ✓ x x ✓ ✓
InsectEPGRegularTrain ✓ x x ✓ ✓
InsectEPGSmallTrain ✓ x x ✓ ✓
Lightning7 ✓ x x ✓ ✓
MiddlePhalanxTW ✓ x x ✓ ✓
NonInvasiveFetalECGThorax1 ✓ x x ✓ ✓
NonInvasiveFetalECGThorax2 ✓ x x ✓ ✓
OliveOil ✓ ✓ ✓ x x
Phoneme ✓ x x ✓ ✓
PigAirwayPressure ✓ x x x ✓
PigArtPressure ✓ x x ✓ ✓
PigCVP ✓ x x x ✓
Rock ✓ x x ✓ ✓
SemgHandMovementCh2 ✓ x x ✓ ✓
ShapesAll ✓ x x ✓ ✓
SwedishLeaf ✓ x x ✓ ✓
Symbols ✓ x x ✓ ✓
UWaveGestureLibraryX ✓ x x ✓ ✓
UWaveGestureLibraryY ✓ x x ✓ ✓
WordSynonyms ✓ x x ✓ ✓
Worms ✓ x x ✓ ✓
WormsTwoClass ✓ x x ✓ ✓
Total Missing 2 34 34 3 1
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Table A.48 EUPW-ECHI compared to EUPW-EDBI over the combined test-train
split experiment missing datasets. A total of 20 datasets are excluded. Datasets are
missing due to empty clusters forming.

Dataset eupw-
ECHI-
euclidean

eupw-
ECHI-
msm

eupw-
ECHI-
twe

eupw-
EDBI-
euclidean

eupw-
EDBI-
msm

eupw-
EDBI-
twe

pam-
msm

pam-
twe

ACSF1 ✓ x x ✓ ✓ ✓ ✓ ✓
Adiac ✓ x x ✓ ✓ ✓ ✓ ✓
CricketY ✓ x x ✓ ✓ ✓ ✓ ✓
Crop x x x x x x x x
DiatomSizeReduction ✓ x x ✓ ✓ ✓ ✓ ✓
FiftyWords ✓ x x ✓ ✓ ✓ ✓ ✓
Fish ✓ x x ✓ ✓ ✓ ✓ ✓
HandOutlines x ✓ ✓ x ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax1 x x x x ✓ ✓ ✓ ✓
NonInvasiveFetalECGThorax2 x x x x ✓ ✓ ✓ ✓
OliveOil ✓ x x ✓ ✓ ✓ ✓ ✓
Phoneme ✓ x x ✓ ✓ ✓ ✓ ✓
PigAirwayPressure ✓ x x ✓ ✓ ✓ ✓ ✓
PigArtPressure ✓ x x ✓ ✓ ✓ ✓ ✓
PigCVP ✓ x x ✓ ✓ ✓ ✓ ✓
ShapesAll ✓ x x ✓ ✓ ✓ ✓ ✓
StarLightCurves x x x x x x ✓ x
UWaveGestureLibraryAll x x x x x x ✓ ✓
WordSynonyms ✓ x x ✓ ✓ ✓ ✓ ✓
Worms ✓ x x ✓ ✓ ✓ ✓ ✓
Total Missing 6 19 19 6 3 3 1 2
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Table A.49 EUPW-ECHI compared to EUPW-EBI over the test-train split experi-
ment missing datasets. A total of 34 datasets are excluded. Datasets are missing
due to empty clusters forming.

Dataset eupw-
ECHI-
msm

eupw-
ECHI-twe

ACSF1 x x
Adiac x x
ArrowHead x x
Beef x x
Car x x
CricketY x x
DiatomSizeReduction x x
ECGFiveDays x x
FaceFour x x
FacesUCR x x
FiftyWords x x
GunPoint x x
Haptics x x
HouseTwenty x x
InsectEPGRegularTrain x x
InsectEPGSmallTrain x x
Lightning7 x x
MiddlePhalanxTW x x
NonInvasiveFetalECGThorax1 x x
NonInvasiveFetalECGThorax2 x x
Phoneme x x
PigAirwayPressure x x
PigArtPressure x x
PigCVP x x
Rock x x
SemgHandMovementCh2 x x
ShapesAll x x
SwedishLeaf x x
Symbols x x
UWaveGestureLibraryX x x
UWaveGestureLibraryY x x
WordSynonyms x x
Worms x x
WormsTwoClass x x
Total Missing 34 34
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Table A.50 EUPW using EDBI compared to other ensemble schemes over the
combined test-train split experiment missing datasets. A total of 7 datasets are
excluded. Datasets are missing due to empty clusters forming. To conserve space
we exclude PAM from this table and refer to Table A.19 for PAMs missing datasets.

Dataset cspa eupw-
EDBI-
euclidean

eupw-
EDBI-
msm

eupw-
EDBI-
twe

hbgf iterative-
voting

mcla nmf simple-
voting

Crop x x x x x x x x x
ElectricDevices x ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
HandOutlines ✓ x ✓ ✓ x x x x x
NonInvasiveFetalECGThorax1 ✓ x ✓ ✓ x x x x x
NonInvasiveFetalECGThorax2 ✓ x ✓ ✓ x x x x x
StarLightCurves x x x x x x x x x
UWaveGestureLibraryAll x x x x x x x x x
Total Missing 4 6 3 3 6 6 6 6 6
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Table A.51 ECE compared with the baseline clusterers and the state-of-the-art and
soft-DBA over the combined test-train split experiment missing datasets. A total
of 38 datasets are excluded. Datasets are missing due to computational runtime
exceeding seven days.

Dataset ECE k-means-
ba-dtw

k-means-
ba-twe

k-means-
soft-dba

k-sc pam-
msm

pam-
twe

ACSF1 x ✓ ✓ ✓ ✓ ✓ ✓
Adiac x ✓ ✓ ✓ ✓ ✓ ✓
CinCECGTorso ✓ ✓ ✓ x ✓ ✓ ✓
CricketY x ✓ ✓ ✓ ✓ ✓ ✓
Crop x ✓ ✓ ✓ ✓ x x
DiatomSizeReduction x ✓ ✓ ✓ ✓ ✓ ✓
EOGHorizontalSignal ✓ ✓ ✓ x ✓ ✓ ✓
EOGVerticalSignal ✓ ✓ ✓ x ✓ ✓ ✓
EthanolLevel ✓ ✓ ✓ x ✓ ✓ ✓
FiftyWords x ✓ ✓ ✓ ✓ ✓ ✓
Fish x ✓ ✓ ✓ ✓ ✓ ✓
FordA ✓ ✓ ✓ x ✓ ✓ ✓
FordB ✓ ✓ ✓ x ✓ ✓ ✓
HandOutlines ✓ x ✓ x ✓ ✓ ✓
InlineSkate ✓ ✓ ✓ x ✓ ✓ ✓
LargeKitchenAppliances ✓ ✓ ✓ x ✓ ✓ ✓
Mallat ✓ ✓ ✓ x ✓ ✓ ✓
MixedShapesRegularTrain ✓ x ✓ x ✓ ✓ ✓
MixedShapesSmallTrain ✓ ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax1 x ✓ ✓ x ✓ ✓ ✓
NonInvasiveFetalECGThorax2 x ✓ ✓ x ✓ ✓ ✓
OliveOil x ✓ ✓ ✓ ✓ ✓ ✓
Phoneme x x x x ✓ ✓ ✓
PigAirwayPressure x ✓ ✓ x ✓ ✓ ✓
PigArtPressure x ✓ ✓ x ✓ ✓ ✓
PigCVP x ✓ ✓ x ✓ ✓ ✓
RefrigerationDevices ✓ ✓ ✓ x ✓ ✓ ✓
ScreenType ✓ ✓ ✓ x ✓ ✓ ✓
SemgHandGenderCh2 ✓ ✓ ✓ x ✓ ✓ ✓
SemgHandMovementCh2 ✓ ✓ ✓ x ✓ ✓ ✓
SemgHandSubjectCh2 ✓ ✓ ✓ x ✓ ✓ ✓
ShapesAll x ✓ ✓ ✓ ✓ ✓ ✓
StarLightCurves x x ✓ x ✓ ✓ x
UWaveGestureLibraryAll x x ✓ x ✓ ✓ ✓
UWaveGestureLibraryX ✓ ✓ ✓ x ✓ ✓ ✓
UWaveGestureLibraryZ ✓ ✓ ✓ x x ✓ ✓
WordSynonyms x ✓ ✓ ✓ ✓ ✓ ✓
Worms x ✓ ✓ ✓ ✓ ✓ ✓
Total Missing 19 5 1 27 1 1 2
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