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Abstract

Representations of p-adic groups have deep applications to

number theoretic questions via the conjectured Langlands

correspondence. While the complex representation theory is

well-understood in a wide variety of cases, the l-modular theory

for l ̸= p is still largely unsolved. For the case of GLn, a block

decomposition is known, as is a description of the irreducible

representations in each block, but the full structure of the blocks

remains open. Recent developments in the categorification of the

Langlands correspondence have suggested that it is in fact the

study of the derived category that is of central interest.

We obtain, for the derived unipotent l-modular block

Db
fg(H1(G)) of G = GLn(F ) for a p-adic field F , an explicit

classical generator V . In the process, we also obtain an analogous

result in the case of G = GLn(k) for k a finite field. The proof

proceeds in two parts. Firstly, we show that another

representation Q, which plays a key role in the underived

l-modular representation theory, is a classical generator. This

requires establishing various finiteness properties for the unipotent

block B1(G), namely that it is Noetherian and possesses a certain

subcategory B′
1(G) of finite global dimension. Secondly, we relate

the two classical generators using the theory of irreducible

l-modular representations of GLn(k).

Using this classical generator, we give a (triangulated, linear)

equivalence from Db
fg(H1(G)) to the perfect complexes over a dg

Schur algebra. This is a derived l-modular analogue for the result

in the complex setting that the unipotent block is equivalent to

modules over the Iwahori-Hecke algebra. We conclude with a

composition formula for the dg Schur algebra.
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Introduction

Synopsis

We summarise the history of the study of p-adic groups, from

classical problems to the Langlands program, and establish the state

of the art of both the complex and l-modular representation theory,

as well as modern categorical and derived approaches. We then

summarise the key results of this thesis, and lay out the structure

of how we will go about presenting our argument.

1.1 Background

1.1.1 Representation Theory and the Langlands Program

The ideas of reciprocity and class field theory date back hundreds of years (see

Cox [2022] for a modern summary). The former was used to find prime solutions

to integer equations, and provided an equivalence between the existence of nth

roots modulo different primes, which could be computed effectively. Class field

theory extended this to the problem of determining when certain prime ideals in

a number field split over an abelian extension, and in this setting reciprocity was

generalised to an isomorphism between the class group and the galois group of

an (unramified) abelian extension.

In Langlands [1970], Langlands proposed a series of conjectures massively

generalising reciprocity and class field theory to the non-abelian case. In

particular, he proposed a reciprocity between automorphic forms of reductive

groups over number fields (which generalise class groups) and representations
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over a hypothetical object called the Weil group, which he proposed to be

closely related to the Galois group of the number field. These would allow for

the solution of equations which relate to non-abelian extensions, and hence

would have far-reaching applications throughout number theory.

One insightful method is to localise the conjectured correspondence for a

single prime p, that is, to work over a p-adic field. This provides numerous

advantages, most notably, that the Weil group in this setting has an explicit

definition, and that the automorphic forms become ordinary irreducible

(smooth) representations of the reductive p-adic groups, allowing for the

introduction of techniques from representation theory. We refer to Kaletha

[2023] for an overview.

Group representation theory has been extensively studied since the 19th century,

with much of the theory focusing on finite groups of lie type and real lie groups.

Both of these classes of groups provide techniques that have analogues for p-adic

groups, allowing for the automorphic side of the local Langlands correspondence

to be described in detail.

Historically, the theory for p-adic groups drew from the theory of real lie groups,

but more recently purely algebraic methods have been developed which connect

to the theory of finite groups of lie type. In particular, the representation theory

of reductive finite groups forms in many ways a special case of that of p-adic

groups, and proofs of results for p-adic groups often proceed by reducing to the

case of finite groups.

1.1.2 Complex Representations of Finite and p-adic

Groups

Let F be a non-archimedean local field, with residue field k of characteristic

p and cardinality q, and let G (respectively Gf ) be the F -points (respectively

k-points) of a reductive algebraic group over F (respectively k).

The theory of representations of both G and Gf with complex coefficients is

well-understood. The latter was classified in general by Lusztig in Lusztig [1984,

1988], and this was recently translated into a Langlands-compatible language

in Imai and Jr [2025], Imai [2025]. Work is still underway to provide a p-adic

analogue for the geometric methods used in the finite case (Chan and Ivanov
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[2021] provides such a construction for inner forms of GLn).

This classification can be formulated in the language of supercuspidal support

(also known as Harish-Chandra series) and Hecke algebras. Namely, there is a

partition of the irreducible representations of Gf according to their

supercuspidal support. The summand generated by an equivalence class of

such representations is then equivalent to modules over a finite Hecke algebra

of some explicit Coxeter group. A key ingredient in the proof of this result is

showing that the summand corresponding to a given supercuspidal support is

equivalent to a summand arising from a unipotent supercuspidal support of

some other group. In this form it is known to be generalisable to the p-adic

setting.

By Bernstein [1984], the category of smooth complex representations of G is

known to decompose into blocks, which are parameterised by inertial

supercuspidal support. Furthermore, in many cases the supercuspidal

representations, and hence the blocks, can be parameterised via the theory of

types. This was done first for GLn in Bushnell and Kutzko [1999], and has

since been shown for inner forms of GLn in Sécherre and Stevens [2012], for

tamely ramified groups in Fintzen [2021b,a] (when p does not divide the order

of the Weyl group), for classical groups in Miyauchi and Stevens [2014] (when

p is odd), or for depth zero representations in Moy and Prasad [1996].

In these cases, the types give an explicit progenerator for the block, whose

endomorphisms are a twisted affine Hecke algebra, and furthermore, the Hecke

algebra often has an explicit description in terms of generators and relations

(for example Adler et al. [2024b,a] for tamely ramified groups, Morris [1993]

for blocks of depth zero, and Miyauchi and Stevens [2014] for certain cases of

classical groups), and a well-understood representation theory.

These blocks are often equivalent to each other. For example, there is a

reduction to depth zero blocks for tamely ramified groups in Adler et al.

[2024a]. In particular, for GLn, there is a single unipotent block B1(G),

namely the block containing the trivial representation 1, which has

progenerator P = indG
I 1 (I an Iwahori subgroup) and Hecke algebra HR(n)

extended affine of type An−1. It was shown, first in Bushnell and Kutzko

[1999] and expanded on in Dat [2017], that each block of GLn(F ) is

equivalent to some B1(H), where H is a finite product of general linear

groups over finite extensions of F .
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1.1.3 l-modular Representation Theory

While complex representations already contain a great deal of information, they

are in a sense the simplest kind of representations. Algebraically, they are split

(irreducible representations are absolutely irreducible) and for finite groups they

are semisimple (indecomposable representations are irreducible). Furthermore,

they are amenable to geometric and analytic methods. A more complete picture

of the representation theory can be obtained by generalising to other coefficient

rings, but the techniques that may be used become more restrictive, and the

theory becomes more complicated.

The next natural case to consider is l-modular representation theory, that is,

representations over algebraically closed fields of characteristic l ̸= 0.

Representations in this setting remain split, but additional complexity can arise

from l no longer being invertible (for finite groups, for example, semisimplicity

can fail). The case where l = p displays a very different structure to the

complex case, and is beyond the scope of discussion for this thesis. We shall

henceforth focus on the case where l ̸= p.

The simplest case is when l is banal, which means that it does not divide the

index of any compact open subgroup of G or Gf in any larger compact open

subgroup. For Gf , this case remains semisimple, and so the representation

theory is the same as the complex case. The representation theory is expected to

be the same as the complex case for G also. Indeed, Bernstein’s decomposition

still holds (Dat et al. [2024b]). It is likely that the equivalence of the blocks with

modules over Hecke algebras also holds via the arguments from the complex

case (in the cases where the types are known), but the author does not know

anywhere this has been written down.

When l is not necessarily banal, the situation becomes different. The

construction of types in the known cases still holds and gives every

supercuspidal representation (Fintzen [2022], Kurinczuk and Stevens [2020],

Ḿınguez and Sécherre [2014]). However, while the subcategories of

Bernstein’s decomposition are still well-defined, in general they are not direct

summands, such as for SLn (Cui [2022]), or even disjoint, such as for Sp8

(Dat [2018b]). Blocks are instead expected to be unions of Bernstein

subcategories. These unions have been found explicitly in some cases, such as

for inner forms of classical groups when p ̸= 2 (Helm et al. [2024]).
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Surprisingly, it is shown in Vignéras [1998] that, for G = GLn(F ), Bernstein’s

block decomposition still holds. Indeed, this is also known to be true for inner

forms of GLn also (Sécherre and Stevens [2016]), though we shall not consider

that case here. The decomposition for Gf is also known explicitly (Fong and

Srinivasan [1982]), though, like in the complex case, it is finer than the Bernstein

decomposition. It thus makes sense to ask, for G = GLn, if these blocks are

related to the modules over the Hecke algebra associated to their type, and if

they are equivalent to a unipotent block.

We address the latter question first. For G = GLn(F ), there is still a single

unipotent block B1(G), which contains 1, and the same equivalence of an

arbitrary block to B1(G) for some product of GLm(E). To the author’s

knowledge, this has not been recorded anywhere. As such, we interrupt the

introduction to provide a proof, at least over F̄l.

Theorem 1.1.1. Let F be a p-adic field, B a block of the category of

representations of GLn(F ) with coefficients in F̄l. Then B is equivalent to the

principal block (that is, the block containing the trivial representation) of

representations of some
∏

iGLmi
(Ei), where Ei are degree di extensions of F

such that
∑

imidi = n.

Proof. By Chinello [2018], we may reduce to the case where B has depth zero.

We wish to conclude by Dat [2018a]; however, Dat works over Z̄l. We may

think of any representation over F̄l as a representation over Z̄l via inflation,

that is, taking the maximal ideal m of Z̄l to act as zero. Furthermore, by Helm

[2016], each block over F̄l is exactly the subcategory of a block of Z̄l consisting

of those representations where m acts as zero. Thus it suffices to show that

Dat’s equivalence restricts to an equivalence of the corresponding blocks over

F̄l.

To this end, it suffices to show that Dat’s equivalence is Z̄l-linear. To see this

suffices, observe that, given a representation V over Z̄l, by considering scalar

multiplication by elements of Z̄l as endomorphisms of V , the equivalence being

Z̄l-linear would imply that m acts as zero on one side of the equivalence if and

only if it acts as zero on the other side. Hence the equivalence would then

restrict to the blocks over F̄l.

To see that Dat’s equivalence is linear, we inspect its construction. In Theorem

4.2.2 of Dat [2018a] Dat first gives an equivalence between a depth zero block
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and a category of certain modules over a multi-object Hecke algebra, sending

a representation V to, at each object, a space of invariant vectors. This is

manifestly Z̄l-linear. Then in Theorems 4.3.8 and 4.3.9 of the same paper

Dat gives a Morita equivalence between two such categories over multi-object

Hecke algebras, where one is equivalent to a principal block via the previous

equivalence. But Morita equivalences are always linear.

It seems likely to the author that one could also show directly that Dat’s proof

works over more general coefficient rings.

We return to the former question of whether the blocks are equivalent to

modules over their Hecke algebra: the answer is negative. While we can still

define the representation P = indG
I 1 and the Hecke algebra

HR(n) = EndG(P ) from the type as in the complex case, the equivalence of

B1(G) with the category of modules over HR(n) fails. Specifically, P fails to

be a generator (and when l divides q − 1 it also fails to be projective).

For example, consider l odd and dividing q + 1, and Gf = GL2(k). Then

B1(G) contains two irreducible representations, but the Hecke algebra only

has one irreducible module (James [1986]). A similar argument on the

subcategories of fixed central character (Ḿınguez and Sécherre [2014]) shows

that the equivalence also fails for G = GL2(F ) in this case.

Despite this, for GLn, a great deal is still known. Most notably, all the

irreducible representations of Gf have been classified by Richard Dipper and

Gordon James (Dipper [1985], James [1986], Dipper and James [1986]),

extending the classification of Lusztig in the complex case, and a similar

method describes the irreducible representations of G (Ḿınguez and Sécherre

[2014]).

A description of the full category of representations, instead of just the

irreducible representations, has however proven elusive. The state of the art

can be found in Vignéras [2003], building on the result of Takeuchi [1996] for

Gf . Vignéras defines for G a subcategory B′
1(G) of B1(G) given by the

representations annihilated by I = AnnH(G) P , where H(G) is the global

Hecke algebra of G.

She then shows two things. Firstly, that some power of I annihilates B1(G).

This implies that B′
1(G) generates B1(G) under extensions, and so in particular
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contains all irreducible representations. Secondly, she shows that B′
1(G) is

equivalent to the category of modules over the Schur algebra SR(n), an algebra

closely related to HR(n) but with a richer l-modular structure.

Vignéras achieves this result by giving an explicit progenerator Q of B′
1(G),

whose endomorphisms give SR(n). However, she also observes that SR(n) is

the endomorphisms of a much simpler representation V , whose annihilator is

I, but which is not projective or a generator in B′
1(G) in general. Note that,

as ever, all of this holds analogously for Gf as well as for G. Thus, while we

know a great deal, we do not have a complete description of B1(G).

1.1.4 Derived Representation Theory

One may recall that the local Langlands correspondence concerned only

irreducible representations, so at first it might not seem obvious why an

understanding of the full category would be useful. However, beyond

independent interest, the (local) Langlands correspondence has been

categorified in Fargues and Scholze [2024] into an equivalence between certain

derived categories of sheaves on stacks corresponding to p-adic groups and

their Langlands parameters. In particular, for a given quasi-split G, the

automorphic side of the categorical local Langlands correspondence has a

semi-orthogonal decomposition into the derived categories of representations

of the inner forms of the Levi subgroups of G.

Thus, for applications to the Langlands program, it is the derived category of

representations that is of primary interest. In the complex case, the detailed

understanding of the underived theory naturally extends to the derived setting.

However, in the l-modular setting, it may be possible to provide a complete

description of the derived setting using only the partial structure results known

in the underived setting. This is the goal of this thesis.

1.2 Results

Recall that we consider representations over an algebraically closed field of

characteristic different from p. Write Db
fg(H1(G)) for the bounded derived

category of finitely generated unipotent representations, and for a triangulated
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category T with object G write ⟨G⟩T for the subcategory classically generated

by G. The main result of this thesis is the following theorem:

Theorem 1.2.1. For G = GLn(F ), and for V and Q as in the previous

subsection, we have that Db
fg(H1(G)) = ⟨Q⟩Db

fg(H1(G)) = ⟨V ⟩Db
fg(H1(G)).

This allows us to describeDb
fg(H1(G)) via the theory of dg algebras. Let V

• be a

projective resolution of V in B1(G), and write dg-End for the dg endomorphism

algebra of a complex and per for the perfect complexes over a dg algebra.

Corollary 1.2.2. There is a triangulated equivalence

Db
fg(H1(G)) ≃ per(dg-EndG(V

•)).

Now, dg-EndG(V
•) has zeroth cohomology SR(n), and so can be seen as a dg

enhancement of the latter. Due to the relative simplicity of V , we can describe

the composition law of dg-EndG(V
•) explicitly in terms of resolutions on the

finite group, analogously to the composition law for SR(n).

To establish that Q classically generates Db
fg(H1(G)), we use the results of

Dat [2009] to show that the categories under consideration are Noetherian, and

extend a result of Cui [2015] to show a further key finiteness property, which is

implicit in the literature but spelled out explicitly for the first time herein:

Lemma 1.2.3. For any n, the Schur algebra SR(n) has finite global dimension.

To show an equivalence between the categories generated by Q and V , we use

the unipotent block B1(Gf ) of the finite reductive quotient Gf = GLn(k). It

contains certain finite analogues Pf , If , Qf and Vf of P , I, Q and V . This

allows us to use the structure theory of Gf found in James [1986] to describe

the composition factors of Vf and Qf . Thus we may show a finite version of

our main theorem:

Lemma 1.2.4. Db
fg(H1(Gf )) = ⟨Qf⟩Db

fg(H1(Gf ))
= ⟨Vf⟩Db

fg(H1(Gf ))
.

We then attempt to lift this equivalence into the p-adic setting. However, a

barrier occurs, as Q is not a priori parahorically induced from Qf . We prove

equality by showing inclusion in each direction. To show one direction, we prove

the following property of If :

Lemma 1.2.5. If ⊆ I.
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We show this by giving an abstract argument that works for any reductive group.

To show the other direction, we use the structure theory of If given in Takeuchi

[1996], Dipper and James [1989] to show the following:

Theorem 1.2.6. Qf is a direct sum of submodules of Pf .

We also give many examples of these theorems, such as in the case of cyclic

defect group, where the results are more readily apparent. It would be interesting

to see if a direct proof of the theorem could be achieved via the classification

of Ḿınguez and Sécherre [2014].

1.3 Organisation of the Thesis

Section 2 of this thesis recalls the relevant background theory of finite and p-adic

groups and their representations. In particular, we recall notions of parabolic and

parahoric subgroups and induction and restriction along them, as well as blocks,

projective covers, affine cellular algebras, dg algebras, and derived categories.

Section 3 features our arguments for the finite groupGf . We recall the structure

theory of Dipper and James, and use it to prove our results about Vf and Qf .

Section 4 recalls the results of Vignéras, and then uses the work of Dat and Cui

to show that the category of smooth representations is Noetherian and that the

Schur algebra has finite global dimension.

In section 5, we combine the results of the previous sections, together with our

result on the relationship between the annihilators, to show our main theorem.

Finally, we investigate the structure of the dg algebra dg-EndG(V
•), and provide

a composition formula using results on double cosets of extended affine Weyl

groups.
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Groups, Algebras, and their

Representation Theory

Synopsis

We review the general theory of representations of algebras,

including the relations between projective representations,

idempotents, and blocks, as well as the operations of induction

and restriction. We also explore certain particular types of

algebras, namely the group algebras of reductive, topological, and

p-adic groups, which have the further operations of parabolic and

parahoric induction. Finally, we review the theory of complexes

and dg algebras, as well as the definition of an affine cellular

algebra.

2.1 Notation and Conventions

We shall throughout take R to be a commutative ring, and A a (not necessarily

commutative or unital, but associative) R-algebra. In particular, we do not

assume that subalgebras have the same unit, even when they are unital.

All modules and representations will be left modules and left representations.

We will assume that all A-modules M are nondegenerate, that is, that AM =

M . We write Mod(A) for the category of (nondegenerate) modules over A.

When A = R[G] is a group algebra, we will just write G instead of R[G] when

it appears as a decoration, such as Mod(G) and HomG instead of Mod(R[G])

and HomR[G] respectively.
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Whenever G is a topological group, we will assume that all representations of

G are smooth (see Section 2.7 for the definition). In particular, in this case

Mod(G) shall denote the category of smooth representations.

We write the trivial representation of a group G over R as 1G, or simply 1

when G is clear from context.

We write the indicator function of S ⊆ X, that is, the function X → R which

is 1 on S and 0 on X\S, as 1S.

We use the term p-adic field to denote any non-archimedean local field F

with residual characteristic P , without assuming F has characteristic zero. We

endow p-adic fields with the topology arising from their local field structure.

2.2 Projective Representations, Blocks,

Idempotents, and Endomorphisms

Suppose that that A is idempotent (that is, that A2 = A).

Definition 2.2.1. We say that two indecomposable A-modules are in the same

block if they are equivalent under the equivalence relation generated byM ∼ N

if HomA(M,N) ̸= 0.

The blocks of Mod(A) are the closure under direct sums of the above

equivalence classes.

Mod(A) has a block decomposition if, writing Ci for the block of Mod(A), we

have that each M ∈ Mod(A) decomposes as M =
⊕

iMi for Mi ∈ Ci.

Observe in particular that if M and N are in different blocks then

HomA(M,N) = 0. When a block decomposition exists, we may then

decompose A as a direct sum of left ideals
⊕

iAi for Ai ∈ Ci. We call the

ideals Ai the block algebras.

For a ∈ A, we have module maps Ai → A =
⊕

iAi given by a′ 7→ a′a. By

composing with the projection maps and using that HomA(Ai, Aj) = 0 for

i ̸= j, we can see that this map must have image contained in Ai. Thus the

Ai are also right ideals, and so in particular the Ai are (non-unital) algebras
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themselves, with AiAj = 0 for i ̸= j. Thus, by taking the summands of A2

and A in each Ci and using that A2 = A, we must also have A2
i = Ai, that is,

that the Ai are idempotent.

Given an A-module M , write M =
⊕

iMi for Mi ∈ Ci. Then for m ∈ Mi,

the map Aj → Mi given by a 7→ am must be zero for i ̸= j. Thus AjMi = 0

for i ̸= j. Thus, by taking summands of AM and M in each Ci and using

that AM = M , we must also have that AiMi = Mi, and hence also that

AiM =Mi.

Thus, the Ci are exactly the full subcategories of modulesM such that AiM =

M , and Ci
∼= Mod(Ai) by restricting the A-action on such M to an Ai-action.

We now restrict to the case where R is an algebraically closed field and A is

unital and finite dimensional over R, and follow Assem et al. [2006].

In this case, we can decompose the identity element 1 ∈ A as a sum 1 =
∑

i ei

for ei ∈ Ai. Then ei is the identity element of Ai, and the ei form a set of

primitive orthogonal central idempotents, such that eiA = Ai and eiM = Mi.

We call ei the central idempotent of the block Ci.

A has a module decomposition into indecomposable modules
⊕n

k=1 Pk, and

any two such module decompositions must contain the same modules up to

isomorphism with the same multiplicities. In particular, as indecomposable

modules must lie in a single block, we have Ai =
⊕

Pk∈Mod(Ai)
Pk. Furthermore,

the Pk are projective, and every projective indecomposable module is isomorphic

to some Pk. There is a unique idempotent ek for each k such that Pk = Aek,

and conversely any set of primitive orthogonal idempotents ek with
∑

k ek =

1 gives a decomposition A =
⊕n

k=1Aek with the Pk = Aek projective and

indecomposable. If Pk is in the block Ci then ek ∈ Ai, and conversely. We call

ek the idempotent generating Pk.

By considering the left action of 1 =
∑n

l=1 el on A =
⊕n

k=1Aek, we may

further decompose A =
⊕n

k,l=1 elAek. We have ϕ : elAek
∼−→ HomA(Ael, Aek)

by sending an element to its right multiplication action. Thus, we may evaluate

the left action of a ∈ A on p ∈ Pj by as
∑n

k,l,m=1 ϕ
−1(ϕ(akl)ϕ(pm)) where

a =
∑n

k,l=1 akl for akl ∈ elAek and p =
∑n

m=1 pm for pm ∈ emAej.

Pk possesses a unique maximal submodule, and hence a unique simple quotient

Lk. All simple modules are the quotient of some Pk, and Pk is the projective
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cover of Lk.

2.3 l-Modular Reduction

Here we follow Linckelmann [2018].

Definition 2.3.1. An l-modular system is a complete discrete valuation ring

OK with residue field R algebraically closed of characteristic l and fraction field

K of characteristic zero.

Suppose that A is the extension R ⊗OK
OB of some unital OK-algebra OB

that is finite free as an OK-module. Let B = K ⊗OB, and suppose that B is

split semisimple, that is, that every simple B-module M is projective and has

EndB(M) = K.

For a simple B-module M , there exists a OB-module OM with M = K ⊗OK

OM . Given such anOM , we call M̄ := R⊗OK
OM an l-modular reduction ofM .

Note that l-modular reductions are not in general unique. Given also a simple

A-module N , call the decomposition number dMN of N in M the multiplicity

of N in some (hence any) composition series for M̄ . This is independent of the

choice of OM .

The decomposition matrix of OB is the matrix with rows indexed by simple B-

modules M , columns by simple A-modules N , and (M,N)-entry dMN . Where

OB is clear, we shall often abuse notation and simply speak of the decomposition

matrix of A.

Conversely, given such M and N , there exists a primitive idempotent e of OB

such that Ae is the projective cover of N . Then M has multiplicity dMN in

any composition series of Be. Thus, N ′ occurs in any composition series for

Ae with multiplicity
∑

M dMN ′dMN .

2.4 Induction and Restriction

We again follow Linckelmann [2018]. Suppose A and A′ are both R-algebras

with f : A→ A′ a R-algebra homomorphism.
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Definition 2.4.1. Restriction of scalars resA
′

A : Mod(A′) → Mod(A) is the

functor sending M ∈ Mod(A′) to the A-module with the same underlying R-

module as M and A-action (a,m) 7→ f(a)m where the right-hand side is the

A′-action of M .

Induction indA′

A : Mod(A) → Mod(A′) is the functor A′ ⊗A −. Note that in

the case of topological groups, we shall instead use this notation for compact

induction (see Section 2.7).

Both functors are R-linear and transitive, that is, functorial in f up to coherent

natural isomorphism.

Now suppose further that A and A′ are unital.

By Frobenius Reciprocity, indA′

A is left adjoint to resA
′

A . Furthermore, resA
′

A is

exact.

Proposition 2.4.2. Suppose f has a right adjoint g. If g is exact then f

preserves projective modules.

Hence, indA′

A always preserves projective modules.

We adopt the standard convention that indG
H and resGH are reserved for when

f : R[H] → R[G] is induced by an inclusion of groups H ↪→ G, and that we

instead call them co-invGH and inflG
H respectively when f : R[G] → R[H] is

induced by a quotient of groups G↠ H with kernel K.

In the case of an H ↪→ G, as R[G] is free over R[H], it follows that indG
H is also

exact. In the particular case that H is a finite index subgroup of G, Frobenius

reciprocity also gives that indG
H is right-adjoint to resGH , and so resGH preserves

projective modules.

We may also identify indG
H(M) with the H-equivariant functions G → M

whose support is a finite union of left-H-cosets, where we give G a left-H-

action via (h, x) 7→ xh−1 and a right-G-action via (x, g) 7→ g−1x, and the

left-G-action on indG
H(M) is induced by the right-G-action on G. The element

g⊗m ∈ indG
H(M) is identified with the unique map with support gH such that

g 7→ m. In particular, indG
H(1) has basis 1xH for x ∈ G/H, where g ∈ G sends

1xH to 1gxH .

If K and H are both subgroups of G, then the Mackey Decomposition gives
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an isomorphism

resGH ind
G
KM

∼=
⊕

g∈HgK

indH
H∩gKg−1res

gKg−1

H∩gKG−1M
g

where M g is the representation of gKg−1 with the same underlying R-module

asM and action (x,m) 7→ (g−1xg)m, where the right-hand side is theK-action

of M .

In the case of a quotient G↠ H with kernel K, we may identify co-invGH(M)

with the quotient M/KM , where KM denotes the R-module spanned by km

for k ∈ K and m ∈ M . In particular, gK ⊗m is identified with gm +KM .

If |K| is finite and invertible in R, then M/KM can be identified with the

R-submodule of K-invariant elements of M via m + KM 7→ 1
|K|
∑

k∈K km.

Thus, in this case, co-invGH is also right adjoint to inflG
H , and hence is exact,

and so inflG
H preserves projective modules. In particular, if |G| invertible in R,

then by inflating from the trivial group we get that 1 is projective.

By the third isomorphism theorem, if G has normal subgroup K, and L is a

subgroup ofG containingK, then there is a natural isomorphism indH
L infl

L
L/K

∼=
inflH

H/K ind
H/K
L/K .

2.5 Reductive Groups

We follow Milne [2017]. Let F be a field, and G be an affine algebraic group

over F , that is, a group object in the category of affine schemes. For a field

extension E of F , write the extension of scalars of G to E as GE. Write F alg

for the algebraic closure of F .

Definition 2.5.1. We say that G is unipotent if may be obtained by a finite

number of extensions from subgroups of the additive algebraic group F over F .

The unipotent radical of G is the largest smooth connected unipotent normal

algebraic subgroup over F . This is well-defined.

We say that G is reductive if it is smooth, connected, and the unipotent radical

of GF alg is trivial.

Henceforth, we assume that G is reductive.
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Definition 2.5.2. A split torus in G is any algebraic subgroup S isomorphic to

F×n, where F× is the multiplicative algebraic group over F .

Let NG(−) and ZG(−) denote respectively the normaliser and the centraliser

in G.

Let S be a maximal split torus in G. Then the (finite) Weyl group of G is

Wf := NG(S)/ZG(S). This does not depend on S.

A parabolic subgroup of G is a smooth algebraic subgroup C over F such

that the quotient G/C (which is always a quasi-projective scheme over F ) is

projective.

The quotient of C by its unipotent radical U is a reductive group over F . We

call any splitting M of this quotient a Levi subgroup of C. Every parabolic

subgroup has a Levi subgroup.

The Levi subgroups of parabolic subgroups C of G are precisely the subgroups

of the form ZG(S) for S a split torus in G. Furthermore, S is maximal exactly

when C is minimal.

A parabolic subgroup C of G containing a maximal split torus S has a unique

Levi subgroup containing S, which is ZG(S0) for some split torus S0 ⊆ S.

Given a parabolic C with Levi M, there exists a unique parabolic C̄ with Levi

M whose intersection with C is exactly M. We call C̄ the opposite parabolic of

C with respect to M.

Let C be a minimal parabolic subgroup of G with Levi subgroup M = ZG(S)

for some maximal split torus S in G. The Bruhat decomposition says that the

map Wf = NG(S)/ZG(S) → C\G/C given by w 7→ CwC is a bijection.

Definition 2.5.3. Let S be a maximal split torus in G. We write X(S) for the

set of morphisms S → F× of algebraic groups over F .

Write F sep for the separable closure of F .

Suppose G is split, that is, that we can choose S so that SF sep is a maximal

split torus in GF sep . For α ∈ X(S), a root group Uα of G with respect to S is

an algebraic subgroup of G over F such that
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� S normalises Uα,

� there is an isomorphism of algebraic groups uα : Uα → F, and

� under uα the conjugation action of s ∈ S is sent to multiplication by

α(s).

Note that Uα is unique when it exists, but there can be many possible choices

for uα. We call any α which has a root group a root.

Suppose now G is not necessarily split. Then for any maximal split torus S,

there exists an algebraic subgroup T of G containing S such that TF sep is a

maximal split torus in GF sep . Fix such a S and T. A root of G with respect to

S is any nonzero α ∈ X(S) that is the restriction to S of a root β of GF sep with

respect to TF sep .

For a root α, the group generated by the Uβ for all β that restrict to a α is the

extension of scalars to F sep of a unique algebraic subgroup Uα of G. We call

Uα the root group of α.

Neither the roots nor the root groups depend on the choice of T, and they

agree with the previous definition in the case that G is split.

A base for the roots is a set ∆ of roots such that

1. if α, β ∈ ∆ then α + β /∈ ∆, and

2. every root is a Z-linear combination of roots in ∆ with all coefficients of

the same sign.

We call roots in ∆ simple with respect to ∆. We also call a root positive with

respect to ∆ if the coefficients in (2) above are all non-negative.

Let C be a minimal parabolic subgroup of G with Levi subgroup M = ZG(S).

Then there exists a unique base ∆ for the roots with respect to S such that

the unipotent radical U of C is generated by root groups Uα for α positive

with respect to ∆. Conversely, the positive roots with respect to some base

∆ for the roots with respect to S will generate the U of some unique minimal

parabolic subgroup of G with Levi subgroup ZG(S).
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2.6 Parabolic Induction for Finite Groups

We now follow Dipper and Fleischmann [1992] and Hiss [1993]. We now suppose

that F is a finite field, and continue to let G be an affine algebraic group over

F .

Fix a parabolic subgroup C with Levi subgroup M. Write G = G(F ) for the

F -points of G, and similarly for C, M, and U.

Definition 2.6.1. Parabolic induction from M to G along C is the functor

iGM,C = indG
C infl

C
M : ModR(M) → Mod(G).

Parabolic restriction from G toM along C is the functor rGM,C = co-invCMresGC :

Mod(G) → ModR(M).

iGM,C is exact. As C has finite index in G, we have that rGM,C is left adjoint to

iGM,C , so rGM,C preserves projective modules.

Furthermore, if M has index in C which is invertible in R, then rGM,C is also

right adjoint to iGM,C , so rGM,C is exact and iGM,C preserves projective modules.

As the index of M in C is the order of U , which is a power of the characteristic

p of F , this holds precisely when p is invertible in R.

Definition 2.6.2. We call an irreducible G-representation V cuspidal if

HomG(i
G
M,CW,V ) = 0 for all irreducible M -representations W .

The cuspidal support of an irreducible G-representation V is a Levi subgroupM

and an irreducible cuspidalM -representationW such that HomG(i
G
M,CW,V ) ̸=

0.

Every irreducible G-representation V has a cuspidal support (L,W ), and

furthermore it is unique up to G-conjugacy.

2.7 Topological Groups and Smooth

Representations

We follow Vignéras [1996]. We now let G be a (Hausdorff) topological group,

and furthermore assume that it is locally compact and totally disconnected,



Chapter 2: Groups, Algebras, and their Representation Theory 24

that is, that it has a neighbourhood basis of the identity given by compact open

subgroups.

Definition 2.7.1. A representation V of G is smooth if every element v ∈ V

is fixed by an open subgroup of G.

A Haar measure on G is a nonzero R-valued map µ on the compact open

subgroups of G that is

� finitely additive, that is, µ(A ⊔B) = µ(A) + µ(B), and

� left-G-invariant, that is, µ(gA) = µ(A) for all g ∈ G.

A Haar measure always exists in the case where we can take the neighbourhood

base of the identity to have pro-order invertible in R, and in this case any

compact open subgroup of invertible pro-order will have nonzero Haar measure.

Haar measures are unique up to multiplication by elements of R×.

Definition 2.7.2. Fix a Haar measure µ on G. The global Hecke algebra H(G)

of G is the (non-unital) algebra whose underlying R-module is the space of

compactly supported maps f : G→ R with that are right-and-left-U -invariant

for some compact open subgroup U . Composition is given by convolution:

(ff ′)(x) = µ(U)
∑

g∈supp(f)/U

f(g)f ′(g−1x).

where U is any compact open subgroup fixing f and f ′ on the right and left

respectively. This does not depend on the choice of U .

H(G) is idempotent. Note that when G is discrete, H(G) is isomorphic to R[G]

via 1g 7→ µ(1)g.

Let V ∈ Mod(G), let v ∈ V and f ∈ H(G), and let U be a compact open

subgroup of K1 fixing v and fixing f on the right. We define an action of H(G)

on V by

fv = µ(U)
∑

k∈supp(f)/U

f(k)kv.

Then Mod(G) is isomorphic to Mod(H(G)) by mapping V ∈ Mod(G) to the

same underlying R-module equipped with the above action.

Definition 2.7.3. Let I be a compact open subgroup of G. The Hecke algebra

of G with respect to I is the R-algebra HR(G, I) = End(indG
I 1)

op.
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By Frobenius reciprocity, HR(G, I) is isomorphic to the algebra of the left-and-

right-I-invariant functions G→ R with multiplication given by convolution:

(f ⋆ f ′)(g) =
∑

x∈G/I

f(x)f ′(x−1g).

The indicator functions of I-double cosets give a R-basis of HR(G, I), and it is

unital with identity 1I .

If I is normal, then HR(G, I) is isomorphic to R[G/I] via 1gI 7→ g. When

µ(I) ̸= 0, HR(G, I) is isomorphic to the subalgebra 1IH(G)1I of H(G) via

f 7→ 1
I
f .

A closed subgroup H of G is also locally compact and totally disconnected.

The functor resGH sends smooth representations to smooth representations. If

H is open, indG
H also sends smooth representations to smooth representations.

Definition 2.7.4. The smooth part of a representation V of G is the subset

of all v ∈ V that is fixed by an open subgroup of G. It is a smooth

subrepresentation.

For H a closed subgroup of a locally compact and totally disconnected

topological group G, compact induction is the functor

indG
H : Mod(H) → Mod(G) sending M to the smooth part of the space of

H-equivariant maps f : G → M whose support is contained in KH for K

compact.

Compact induction is exact and preserves smooth modules, and agrees with

induction whenever H is open in G. Furthermore, if G/H is compact, then

compact induction is right adjoint to resGH , and so resGH preserves projective

modules.

When H is an open subgroup of G, we can pick a Haar measure on H that

is the restriction of the Haar measure on G. We then have an inclusion of

global Hecke algebras H(H) → H(G) by considering H(H) as the subset of

functions whose support is contained in H. In this case, res
H(G)
H(H) = resGH and

ind
H(G)
H(H) = indG

H .

Similarly, if K is a closed normal subgroup, the quotient H = G/K is locally

compact and totally disconnected. The functors inflG
H and co-invGH both send

smooth representations to smooth representations. If K is open and compact
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with µ(K) ̸= 0, then co-invGHM can be identified with the R-submodule of

K-invariant elements of M via m + KM 7→ 1
|K:K′|

∑
k∈K/K′ km, where K ′

is an open compact subgroup of K fixing m. Thus, in this case, co-invGH is

also right adjoint to inflG
H , and hence is exact, and so inflG

H preserves projective

modules.

If K is open, compact, and normal in G with µ(K) ̸= 0, µ also gives a

Haar measure on K. Then H(H) ∼= R[H] ∼= HR(G,K) ∼= 1KH(G)1K via

f 7→ µ(K)f 7→ µ(K)f 7→ f . In particular, we have a map H(G) 7→ H(H)

given by f 7→ 1
µ(K)2

1Kf1K , and then ind
H(H)
H(G) = co-invGH and res

H(H)
H(G) = inflG

H .

2.8 Parahoric Subgroups

We follow Kaletha and Prasad [2023]. We now take G = G(F ), for F a p-adic

field with valuation ν and residue field k, and G a reductive group over F . Let

S be the F -points of a maximal split torus S of G.

Suppose that G is split, that is, that SF sep is a maximal split torus in GF sep . In

particular, this is true for GLn. This assumption is only for simplicity, and there

is a definition for the compact torus and parahoric subgroups for any reductive

group.

Definition 2.8.1. The compact torus I0 as the intersection of the kernels of all

νλ for λ ∈ X(S). Note that this is an abstract subgroup of S, not an algebraic

group over F .

Write Y (S) for the morphisms F× → S of algebraic groups over F .

There is a perfect pairing X(S) × Y (S) → Z given by ⟨λ, ϕ⟩ = n where

λϕ = (−)n : F× → F×.

Let v ∈ R⊗Z Y (S). Then the perfect pairing X(S)× Y (S) → Z extends to a

pairing X(S) × R ⊗Z Y (S) → R. Thus we may define α(v) ∈ R for any root

α of G with respect to S.

Given such a root α, there exist unique u′, u′′ ∈ U−α such that

sα := u′u−1
α (1)u′′ ∈ NG(S)(F ). For all roots α and β, we have that

sαu
−1
β (1)s−1

α ∈ Uγ for some root γ. A weak Chevalley system is a choice for
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the uα such that the above element is equal to u−1
γ (±1) for some choice of

sign. Note that for a weak Chevalley system, it is in fact the case that

u′ = u′′ = u−1
−α(±1) for some choice of sign.

Definition 2.8.2. Let v ∈ R ⊗Z Y (S) and let (uα) be a weak Chevalley

system. Define the subgroup Uα,0 of Uα as the preimage of [−α(v),∞] under

νuα. Again, note that this is an abstract subgroup of Uα, not an algebraic

subgroup over F .

A parahoric subgroup of G is the group J generated by I0 and the Uα,0 for all

roots α, for some choice of v and (uα).

A minimal parahoric subgroup is called an Iwahori subgroup.

Parahoric subgroups J are open and compact. Furthermore, there exists a

unique group scheme J over O such that JF = G and J (O) = J , and which

retains both of these properties over any unramified extension of F . Then Jk is

a smooth connected algebraic group over k. We define the pro-p radical J1 of

J to be the preimage under J = J (O) → J (k) = Jk(k) of the k-points of the

unipotent radical of Jk. Then J1 is the maximal normal open pro-p subgroup

of J . The quotient of Jk by its unipotent radical is reductive, and we call it the

reductive quotient of J . Its k-points are in bijection with J/J1 in the obvious

way.

All split groups are unramified, that is, they are the extension of scalars to F

of a (not necessarily unique) reductive group scheme over O. If we fix G some

such choice of reductive group scheme over O, then G is in fact the group

scheme of a maximal parahoric of G.

Definition 2.8.3. The Iwahori-Weyl group of G is the group

W = NG(S)(F )/I0.

If I is an Iwahori subgroup of G containing I0, the Iwahori decomposition says

that the map W → I\G/I given by w → IwI is a bijection.
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2.9 Parabolic and Parahoric Induction for p-adic

Groups

We continue to follow Vignéras [1996]. We now take G = G(F ) for F a p-adic

field and G a reductive group over F . Then G is locally compact and totally

disconnected, and has a neighbourhood basis of the identity of pro-p subgroups.

Fix a parabolic subgroup C with Levi subgroup M. Write G = G(F ) for the

F -points of G, and similarly for C, M, and U. Then C, U , and M are closed

subgroups of G.

Definition 2.9.1. Parabolic induction from M to G along C is the functor

iGM,C = indG
C infl

C
M : ModR(M) → Mod(G). Note that we are using compact

induction.

Parabolic restriction from G toM along C is the functor rGM,C = co-invCMresGC :

Mod(G) → ModR(M).

Both functors respect smooth representations, and iGM,C is exact. Furthermore,

G/C is compact, and so rGM,C is left adjoint to iGM,C , and rGM,C preserves

projectives.

Now let K be a parahoric subgroup of G with pro-p radical K1, and write

Gf = K/K1. Recall that both K and K1 are open and compact.

Definition 2.9.2. Parahoric induction from Gf to G along K is the functor

IGGf ,K
= indG

K infl
K
Gf
.

Parahoric restriction from G to Gf along K is the functor

RG
Gf ,K

= co-invKGf
resGK .

Both functors preserve smooth representations. IGGf ,K
is exact and left adjoint

to RG
Gf ,K

.

When p is invertible in R we have that G has a Haar measure µ such that

µ(K1) ̸= 0. In this case RG
Gf ,K

is exact, and so IGGf ,K
preserves projectives.

Viewing smooth representations of Gf , K and G as modules over H(Gf ), H(K)

and H(G) respectively, and choosing Haar measures as in the previous section,

we have IGGf ,K
= H(G)⊗H(K) − and RG

Gf ,K
= H(Gf )⊗H(K) −.
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2.10 Complexes, Derived Categories, and dg

Algebras

Here we follow Keller [2006].

Definition 2.10.1. A complex over A is a Z-graded A-module M• together

with a graded module homomorphism d′ of degree 1, the differential, such that

d′2 = 0. The shift operator [1] on complexes (M•, d′) is given byM [1]n =Mn+1

and d′[1] = −d′ (note the − sign). The cohomology of M• is the graded A-

module H•(M•) = ker(d′)/ im(d′).

Let (M•, d′) and (N•, d′′) be A-complexes. The R-complex of dg morphisms

dg-HomA(M
•, N•) has in degree n the graded A-module homomorphisms f :

M• → N• of degree n, with differential

df := d′′f − (−1)nfd′

for all f :M• → N• of degree n.

A morphism of complexes is a dg morphism f of degree 0 that lies in ker(d),

that is, such that d′′f = fd′.

A homotopy of morphisms of complexes f, g :M• → N• is a dg morphism h of

degree −1 such that dh = f − g, that is, such that f − g = d′′h− hd′. If such

an h exists we say f and g are homotopic. This gives an equivalence relation

on morphisms of complexes.

Write K(A)(M•, N•) for the homotopy equivalence classes of morphisms of

complexes f : M → N . We have that

Hn(dg-HomA(M
•, N•)) = K(A)(M•, N•[n]).

A dg algebra over R is an R-complex (B, d) whose underlying graded R-module

is a graded algebra over R, satisfying the graded Leibniz rule

d(fg) = d(f)g + (−1)nfd(g)

for all f ∈ B of degree n and g ∈ B.

We think of an ordinary (ie non-dg) algebra as a dg algebra with all elements

having degree 0.
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The dg endomorphism algebra dg-EndA(M
•) is the dg algebra whose complex is

dg-HomA(M
•,M•), with multiplication given by componentwise composition.

A dg module over B is an R-complex (M•, d′) with a graded module action of

B of degree 0, extending the R-action, such that

d′(fv) = (df)v + (−1)nf(d′v)

for all f ∈ B of degree n and v ∈M•.

Let (M•, d′) and (N•, d′′) be dg modules. The complex of dg morphisms

of dg modules dg-HomB(M
•, N•) is the subcomplex of dg-HomR(M

•, N•)

consisting of those dg morphisms that are also B-module homomorphisms.

When B = A is an ordinary algebra, the two notions of dg-HomA(M
•, N•)

agree.

Morphisms (respectively homotopies of morphisms) of dg modules are the dg

morphisms of dg modules that are also morphisms (respectively homotopies of

morphisms) of complexes.

Write K(B) for the category whose objects are dg modules over B and whose

morphisms are homotopy equivalence classes of morphisms of dg modules.

A morphism of dg modules M• → N• is a quasi-isomorphism if the induced

morphism of graded modules H•(M•) → H•(N•) is an isomorphism.

The derived category of dg modules over B, written D(B), is the localisation

of K(B) with respect to the quasi-isomorphisms.

Let 0 → L• f−→ M• g−→ N• → 0 be an exact sequence of morphisms of dg

modules that is split as a sequence of morphisms of graded B-modules, with

splitting 0 → N• i−→ M• p−→ L• → 0. Then h := pd′i is a morphism of dg

modules N• → L•[1], and we take as our distinguished triangle

(L•,M•, N•, f, g, h). With these distinguished triangles, K(B) is a

triangulated category. This induces a triangulated structure on D(B).

For any short exact sequence of morphisms of dg modules 0 → L• f−→ M• g−→
N• → 0 there exists a morphism of dg modules h : N• → L•[1] such that

(L•,M•, N•, f, g, h) is a distinguished triangle in D(B).

In particular, if two dg modules in a short exact sequence of morphisms of dg
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modules both live in a full triangulated subcategory of D(B), then so does

the third, and hence such categories are closed under kernels, cokernels, and

extensions in the category of dg modules.

Definition 2.10.2. A resolution of a module M is a complex M• such that

M i = 0 for i ≥ 0 and

H i(M•) =

M, i = 0

0, i ̸= 0.

A resolution is finitely generated (respectively, projective) if it is a complex of

finitely generated modules (respectively, projective modules). The length of a

complex is imax − imin − 1, where imax and imin are respectively the largest and

smallest indices i such that M i ̸= 0.

Let M• be a projective resolution of M in Mod(A). Then

Hn(dg-EndA(M
•)) ∼= HomD(A)(M,M [n]).

Definition 2.10.3. We say a set of objects G of a triangulated category T

classically generates a triangulated subcategory T ′ of T if T ′ is the smallest full

triangulated subcategory of T closed under isomorphisms and direct summands

and containing G. We also write T ′ = ⟨G⟩T .

The triangulated category per(B) of perfect objects in D(B) is ⟨B⟩D(B).

Observe that, in the case that B is an ordinary algebra A, then per(A) is the full

subcategory of D(A) consisting of objects isomorphic to finite length complexes

of finitely generated projective A-modules.

We write Db
fg(A) for the subcategory of D(A) consisting of objects isomorphic

to finite length complexes of finitely generated A-modules. This is a triangulated

subcategory of D(A) that is closed under direct summands in D(A).

Theorem 2.10.4. Let T be a full triangulated subcategory of D(A) that is

closed under direct summands, let M be an object in both Mod(A) and T ,

such that ⟨M⟩T = T , and let M• be a projective resolution of M in Mod(A).

Then there is a triangulated equivalence

T ≃ per(dg-EndA(M
•)).
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Proof. We seek to apply Theorem 3.8(b) of Keller [2006], so we must check

that all the conditions of said theorem hold. Section 3.6 of the same

establishes that D(B) is algebraic, and hence so is T , as it is a triangulated

subcategory. Furthermore, Section 3.5 of the same establishes that D(B) is

idempotent-complete (as it has arbitrary coproducts), and hence, as T is

closed under direct summands, T is also idempotent-complete. Finally, as

Hn(dg-EndA(M
•)) ∼= HomDb

fg(A)(M,M [n]) and T is full, we get

Hn(dg-EndA(M
•)) ∼= HomT (M,M [n]). Thus all the conditions of Theorem

3.8(b) hold.

Definition 2.10.5. An object M in Mod(A) is a generator if every object in

Mod(A) is the quotient of a direct sum of copies of M .

A finitely generated projective generator is called a progenerator.

Proposition 2.10.6. Suppose M is a progenerator of Mod(A). Then M

classically generates per(A).

Proof. As finitely generated projective modules are precisely the direct

summands of finite direct sums of A, we have per(A) = ⟨A⟩per(A).

Furthermore, as a progenerator is finitely generated and projective, we have

M ∈ per(A). It thus suffices to show that A ∈ ⟨M⟩per(A). But as M is a

generator, A is the quotient of a direct sum of copies of M . As A is finitely

generated, this direct sum may be taken to be finite, and as A is projective,

the quotient splits, so A is a direct summand of a finite direct sum of copies

of M .

We shall also need the following general homological observations.

Proposition 2.10.7. If A is noetherian and of finite global dimension, then

every finitely generated A-module M has a finite length finitely generated

projective resolution.

Proof. As A is noetherian and M is finitely generated we know by Rotman

[2009] Lemma 7.19 that M has a finitely generated projective resolution. But

asA has finite global dimension, say n, replacing the n-th term with the (n−1)th

syzygy gives, by Rotman [2009] Proposition 8.6, a finitely generated projective

resolution of length n.
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Proposition 2.10.8. If M• is a finite length complex of A-modules, and each

M i has a finite length finitely generated projective resolution, thenM• is quasi-

isomorphic to a finite length complex of finitely generated projective modules.

Proof. For each i, write P i• for a choice of finite length finitely generated

projective resolution of M i.

By Gelfand and Manin [2003] Lemma III.7.12, M• is quasi-isomorphic to the

complex T • whose terms are T k = ⊕i+j=kP
ij. As M• has finite length, each

T k is a finite direct sum of finitely generated projective modules, and hence is

finitely generated and projective. Furthermore, as M• and all of the P i• have

finite length, T • also has finite length.

2.11 Affine Cellular Algebras

We follow Koenig and Xi [2012]. In this section, R will be a noetherian

domain and A will be unital and have an involution i (that is, an R-linear

anti-automorphism).

Definition 2.11.1. A 2-sided ideal J in A such that i(J) = J is called an

affine cell ideal if there are

� a free R-module V of finite rank,

� a finitely generated commutative R-algebra B with involution σ,

� and a left A-module structure on ∆ = V ⊗R B that commutes with the

regular right B-module structure,

such that, if we define a right A-module structure on ∆′ = B ⊗R V by xa =

τ−1(i(a)τ(x)) where τ : ∆′ → ∆, b ⊗ v 7→ v ⊗ b, there is an isomorphism

of A-A-bimodules α : J → ∆ ⊗B ∆′ = V ⊗R B ⊗R V making the following

diagram commute:

J V ⊗R B ⊗R V

J V ⊗R B ⊗R V

α

v⊗b⊗v′ 7→v′⊗σ(b)⊗vi

α
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A is said to be affine cellular if there is an R-module decomposition A =⊕K
k=1 J

′
k such that, for all k, we have that i(J ′

k) = J ′
k, and furthermore that

Jk =
⊕k

k′=1 J
′
k′ is a 2-sided ideal in A such that J ′

k = Jk/Jk−1 is an affine cell

ideal in A/Jk−1.

Write Vk and Bk for the V and B as above that give an affine cell ideal structure

for J ′
k.

An affine cellular algebra is said to be idempotent affine cellular if, for all k, we

have that J ′
k is generated as a 2-sided ideal in A/Jk−1 by a nonzero idempotent.

Let A be affine cellular with notation as above. If, as a 2-sided ideal in A/Jk−1,

we have that J ′2
k = J ′

k and J
′
k contains a nonzero idempotent e, then e generates

J ′
k as a 2-sided ideal in A/Jk−1.

Proposition 2.11.2. Suppose e is an idempotent in A.

1. If i(e) = e, and if A is affine cellular, with notation as above, then so is

eAe, with the same Bk, and J
′
k replaced with eJ ′

ke.

2. If AeA = A, then restriction of scalars gives a Morita equivalence from

A to eAe.

3. If j ∈ eAe generates a 2-sided ideal J in A, then it generates eJe in eAe.

Proof. The first claim is Yang [2014], Lemma 3.3, and the second is Proposition

2.4 from the same paper.

The third claim is a quick direct calculation:

eJe = eAjAe

= eAejeAe
(2.11.1)

where the last line follows as j ∈ eAe.

Let R′ be a noetherian domain that is an R-algebra, A an (idempotent) affine

cellular R-algebra. Then R′⊗RA is an (idempotent) affine cellular algebra with
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affine cellular structure induced from that on A by taking the tensor product

throughout by R′.

Definition 2.11.3. The global dimension of A, written gl dim(A), is the

smallest m ∈ N ∪ {∞} such that any A-module M has a projective resolution

of length at most m. If m ∈ N then we say A has finite global dimension.

Theorem 2.11.4. Suppose A is idempotent affine cellular, with notation as

above, and suppose rad(Bk) = 0 and gl dim(Bk) < ∞ for all k. Then

gl dim(A) <∞.

Proof. This is Theorem 4.4(b) of Koenig and Xi [2012].



3

l-Modular Unipotent

Representations of Finite

Reductive Groups

Synopsis

We prove the finite version of our main theorem: that

Db
fg(H1(Gf )) for Gf = GLn(k) is classically generated by the two

representations Qf and Vf . We also prove that Qf is a direct sum

of subrepresentations of the representation Pf , which will allow us

to lift this theorem to the p-adic setting in Chapter 5. We proceed

by first defining all the relevant objects, then using the theory of

l-modular representations of GLn(k) to describe the composition

factors of Qf and Vf . We then explore various special cases,

where the results and reasoning can be seen more explicitly, and

which provide intuition for the general case.

3.1 Definitions and Notation

Let R be an algebraically closed field of characteristic l, let k be a finite field

of characteristic p ̸= l and cardinality q, and let G be a (connected) reductive

algebraic group over k. Write Gf = G(k) for the k-points of G.

Fix in Gf a minimal parabolic subgroup If . For GLn, we may without loss of

generality take If to be the upper triangular matrices. Similarly, we write I1f
for the unipotent radical of If , which is then the unipotent upper triangular
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matrices. Fix also a maximal split torus Tf in If , which for GLn we again take

without loss of generality to be the diagonal matrices. Let Ī1f be the unipotent

radical of the opposite parabolic of If with respect to Tf , which is then the

unipotent lower triangular matrices. Furthermore, for GLn the Weyl group

Wf = N(Tf )/Tf is isomorphic to Sn, the symmetric group on {1, . . . , n}, and
has a canonical splitting sending each permutation in Sn to the corresponding

permutation matrix in N(Tf ) ⊆ Gf .

Definition 3.1.1. Write H(Gf ) for the group algebra of Gf over R.

Write Mod(Gf ) for the category of Gf -representations over R, that is, modules

over H(Gf ).

Write Pf = ind
Gf

If
1.

Let B1(Gf ) be the full subcategory of Mod(Gf ) consisting of all representations

all of whose irreducible subquotients are subquotients of Pf . Note that this is a

direct summand of Mod(Gf ) (see eg Vignéras [2003] D12), and hence a direct

sum of blocks. We call the blocks in this summand, as well as the representations

in the summand, unipotent. Note this is is the correct definition for GLn, but

does not agree with the usual definition of unipotent for other groups. Write

B̸=1(Gf ) for the direct sum of all non-unipotent blocks.

Denote the corresponding direct sums of block algebras of H(Gf ) by H1(Gf )

and H ̸=1(Gf ) respectively.

We call the block containing the trivial representation 1 the principal block.

Observe that the principal block is unipotent, and that both Pf and 1 are

unipotent and finitely generated.

Let Jf be the set of parabolic subgroups of Gf containing If . Elements of

Jf are called standard parabolic subgroups. For Jf ∈ Jf , let MJf be the Levi

subgroup of Jf containing Tf . Let UJf be the unipotent radical of a minimal

parabolic subgroup of MJf . Then UJf corresponds to a base for the roots of

MJf with respect to Tf . Let XJf be the set characters of UJf that are nontrivial

on all simple root groups in UJf but trivial on all other positive root groups.
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Definition 3.1.2. Write

Γf =
⊕
Jf∈Jf

⊕
χJf

∈XJf

i
Gf

MJf
,Jf

ind
MJf

UJf
χJf .

Let If be the annihilator of Pf in H(Gf ). Then put Qf = Γf/IfΓf , and put

H′
1(Gf ) = H(Gf )/If .

Put B′
1(Gf ) the full subcategory of Mod(Gf ) consisting of representations M

with IfM = 0.

Observe that, as Pf is unipotent, If contains H ̸=1(Gf ), and so Qf is also

unipotent, and H′
1(Gf ) (resp B′

1(Gf )) is a quotient (respectively subcategory)

of H1(Gf ) (resp B1(Gf )).

Definition 3.1.3. Write

Vf =
⊕
Jf∈Jf

ind
Gf

Jf
1.

Observe that Vf is a finite direct sum of submodules of Pf , and so is unipotent

and finitely generated.

We seek to establish two facts which shall enable us to describe the p-adic

setting:

Theorem 3.1.4. For G = GLn,

1. Qf is a direct sum of subrepresentations of Pf

2. ⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

= Db
fg(H1(Gf ))

Note that the latter result is of independent interest, and provides an analogue

for finite groups of the main theorem of this thesis.

3.2 Classical Generators for Finite GLn

Henceforth, we shall assume that G = GLn. Note that in this case, for fixed Jf ,

all χJf ∈ XJf are conjugate, and so all ind
MJf

UJf
χJf are isomorphic (see Vignéras

[2003], Section 5.6).
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Proposition 3.2.1. The unipotent part of Γf is a progenerator for B1(Gf ).

Proof. The proof mirrors Theorem 5.13(1) and 5.10 of Vignéras [2003] (see

also Takeuchi [1996] for another proof). Γf is by construction finitely generated

and projective, and for any unipotent irreducible representation we may apply

Property H1 of Vignéras [2003] to show that it has a nonzero vector invariant

under a certain unipotent subgroup, which implies that it is a quotient of Γf

by 5.4(3) of the same source. Hence we conclude by said source’s Corollary

3.7.

Corollary 3.2.2. Qf is a progenerator of B′
1(Gf ).

Our proof proceeds by describingQf using the work of Dipper and James (James

[1986], Dipper and James [1989]). Recall that a partition λ of a nonnegative

integer n is a non-increasing tuple (λi) of positive integers with sum n. The

dominance order on partitions is the partial order where λ ≥ µ precisely when∑j
i=1 λi ≥

∑j
i=1 µi for all i. We associate to each partition λ a standard

parabolic Jf (λ) of Gf , namely the upper block triangular matrices with the ith

block having size λi.

In Theorem 8.1 of James [1986], it is shown that there is a bijection from

partitions λ of n to unipotent irreducible representations D(λ). As this claim

holds for any choice of R algebraically closed of characteristic l ̸= p, it is also

true for an algebraically closed field K of characteristic 0.

We thus fix an l-modular system OK with fraction field K and residue field R,

such that the group algebra K[G] is split semisimple. Theorem 8.1 of James

[1986] gives a canonical choice S(λ) for an l-modular reduction of the unipotent

irreducible representation over K corresponding to λ.

Lemma 3.2.3. S(λ) and D(λ) are objects in B′
1(Gf ).

Proof. It is shown in Theorem 8.1 of James [1986] that each S(λ) is a

submodule of ind
Gf

Jf (λ)
1, and that D(λ) is a quotient of S(λ). Hence S(λ)

and D(λ) are subquotients of Pf .

We now introduce the finite Schur algebra, whose decomposition matrix is

deeply entwined with that of Gf . In later chapters, we shall see a p-adic

analogue, which we shall simply call the Schur algebra, hence the use of the
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qualifier ‘finite’ for this version (perhaps it would be better to call the p-adic

version the ‘Iwahori-Schur’ algebra, but we have not seen this convention

anywhere).

Definition 3.2.4. The finite Schur algebra SR(n)f is the endomorphism algebra

EndH(Gf )(Vf ).

Observe that, while we have defined this over R, by considering endomorphisms

of induced representations over a general ring, this definition would make sense

over K and OK . Indeed, by Theorem 2.24 and Note 2.18(ii) of Dipper and

James [1989], the finite Schur algebras over K and R are the extensions of

scalars of the finite Schur algebra over OK , and by Dipper and James [1991]

the finite Schur algebra over OK is free, so we may speak of l-modular reduction

of modules over the finite Schur algebra. The surprising property of SR(n)f that

makes it relevant for us is the following:

Proposition 3.2.5. EndH(Gf )(Qf ) is Morita equivalent to SR(n)f .

Proof. This is part (a) of the theorem in the introduction of Takeuchi [1996]

(see also Theorem 5.8 of Vignéras [2003]).

With this we may now show the first part of Theorem 3.1.4. Write P (µ) for

the projective cover of D(µ) in B1(Gf ).

Theorem 3.2.6. Qf is a direct sum of subrepresentations of Pf .

Proof. Let (dλµ) denote the submatrix of the decomposition matrix of H(Gf )

corresponding to the S(λ) and D(µ).

As Qf is a progenerator of B′
1(Gf ), there is an induced equivalence of categories

between B′
1(Gf ) and the category of modules over SR(n)f . By parts (b) and (c)

of the theorem in the introduction of Takeuchi [1996], this equivalence identifies

the S(λ) with the l-modular reduction of the simple modules of SK(n)f , and the

D(µ) with the simple modules of SR(n)f . Thus (dλµ) is the full decomposition

matrix of SR(n)f .

Write P ′(µ) for the projective cover of D(µ) in B′
1(Gf ). Then

P ′(µ) = P (µ)/IfP (µ). Furthermore, as B′
1(Gf ) is equivalent to modules over

SR(n)f , and the latter has decomposition matrix (dλµ), we have that D(ν)

occurs in any composition series for P ′(µ) with multiplicity
∑

λ dλνdλµ.
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In Theorem 3.8 of Dipper and James [1989] they construct a quotient of P (µ),

which we shall call Y (µ), which is a submodule of Pf , and such thatD(ν) occurs

in any composition series for Y (µ) with multiplicity
∑

λ dλνdλµ. The former

property implies that IfY (µ) = 0, and hence that the quotient P (µ) → Y (µ)

factors through P ′(µ). But the latter property says that P ′(µ) and Y (µ) have

the same composition factors. Hence they must in fact be isomorphic.

Thus every projective indecomposable representation in B′
1(Gf ) is a

subrepresentation of Pf . But Qf is projective in B′
1(Gf ), and so Qf must be a

direct sum of the Y (µ).

To show that ⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

= Db
fg(H1(Gf )), we proceed

by showing that the first two categories contain every unipotent irreducible

representation. This in fact suffices, as the next lemma shows. Let D be the

set of all unipotent irreducible representations, that is, the set of all D(λ).

Lemma 3.2.7. Db
fg(H1(Gf )) = ⟨D⟩Db

fg(H1(Gf ))
.

Proof. As the D(λ) are finitely generated and unipotent, we know that

⟨D⟩Db
fg(H1(Gf ))

⊆ Db
fg(H1(Gf )). But all finitely generated representations of

Gf have finite length, and so all objects of Db
fg(H1(Gf )) arise from objects in

D via finitely many distinguished triangles.

Thus it is enough to show that ⟨Qf⟩Db
fg(H1(Gf ))

and ⟨Vf⟩Db
fg(H1(Gf ))

contain D .

We first consider Vf , for which we make use of the explicit structure theory of

the D(λ).

Lemma 3.2.8. D ⊆ ⟨Vf⟩Db
fg(H1(Gf ))

.

Proof. We show D(κ) ∈ ⟨Vf⟩Db
fg(H1(Gf ))

by decreasing induction along the

dominance order for κ. First, observe that ind
Gf

Jf (κ)
1 is a summand of Vf , and

so ind
Gf

Jf (κ)
1 ∈ ⟨Vf⟩Db

fg(H1(Gf ))
.

Next, by Theorem 7.19(iii) of James [1986], ind
Gf

Jf (κ)
1 has a composition

series with all factors of the form S(λ) with λ ≥ κ, in which S(κ) occurs with

multiplicity 1. But by Theorem 8.1 of James [1986], S(λ) itself has a

composition series with all factors of the form D(µ) with µ ≥ λ, in which

D(λ) occurs with multiplicity 1. Thus ind
Gf

Jf (κ)
1 has a composition series with



Chapter 3: l-Modular Unipotent Representations of Finite Reductive Groups42

all factors of the form D(µ) with µ ≥ κ, in which D(κ) occurs with

multiplicity 1.

But by the inductive hypothesis, all D(µ) with µ > κ are in ⟨Vf⟩Db
fg(H1(Gf ))

.

Thus, by considering the sequence of distinguished triangles giving the

composition series ind
Gf

Jf (κ)
1 in terms of D(µ), we see that

D(κ) ∈ ⟨Vf⟩Db
fg(H1(Gf ))

.

To show the same for Qf , we make use of the following property, which comes

from deep results about SR(n)f .

Lemma 3.2.9. SR(n)f has finite global dimension.

Proof. By Theorem 3.7.2 of Cline et al. [1990] (see also the main theorem of

Du et al. [1998]), a family of algebras SR(N, n)f (written Sq(N, n,R) in their

notation) are quasi-hereditary. By Theorem 3.6(a) of Cline et al. [1990] any

quasi-hereditary algebra over a field has finite global dimension. But by Theorem

2.24 of Dipper and James [1989] and Lemma 1.3 of Dipper and James [1991]

SR(N, n)f and SR(n)f are Morita equivalent whenever N ≥ n.

This allows us to conclude by a purely formal argument.

Lemma 3.2.10. D ⊆ ⟨Qf⟩Db
fg(H1(Gf ))

.

Proof. Qf is a progenerator of B′
1(Gf ), so by Proposition 2.10.6 we have that

⟨Qf⟩Db
fg(B

′
1(Gf ))

= per(B′
1(Gf )). But, as B′

1(Gf ) is equivalent to modules over

SR(n)f , and the latter has finite global dimension, and is furthermore Noetherian

(as it is a finite dimensional algebra over a field), we have by Proposition 2.10.7

that per(B′
1(Gf )) = Db

fg(B′
1(Gf )). Thus D ⊆ Db

fg(B′
1(Gf )) = per(B′

1(Gf )) =

⟨Qf⟩Db
fg(B

′
1(Gf ))

.

Thus we have the second part of Theorem 3.1.4.

Theorem 3.2.11. ⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

= Db
fg(H1(Gf )).

While the above proof works in general, the next sections provide further insight

into the structure of various special cases, where the main theorem can be shown

more directly.
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3.3 Finite GLn for l | q − 1

For this section, we shall assume that the characteristic l of R divides q − 1,

and that l > n. This case behaves somewhat differently to the other cases, as

the Schur algebra is semisimple, and so it merits special consideration.

Lemma 3.3.1. The only unipotent block is the principal block.

Proof. By Theorem 7.11 of Dipper and James [1989], each block contains

exactly those D(λ) which have the same fixed 1-core. But all λ have the same

1-core, namely the empty partition.

Lemma 3.3.2. Pf is a direct sum of the D(µ).

Proof. This is Ackermann [2006], Proposition 4.22, and its proof. The point

is that in this case the endomorphisms of Pf are just the group algebra of

Sn, and as l > n this is semisimple. Hence Pf is a direct sum of irreducible

representations. But any such representation must be unipotent, and hence is

some D(µ).

Corollary 3.3.3. Every D(µ) is a summand of Pf .

Proof. The D(µ) are by definition the irreducible subquotients of Pf . But Pf

is a direct sum of irreducible representations, so every D(µ) must occur as a

summand of Pf .

Corollary 3.3.4. If = H ̸=1(Gf )⊕ rad(H1(Gf )).

Proof. As Pf is unipotent, every element of H̸=1(Gf ) annihilates it. It remains

to see which elements of H1(Gf ) annihilate Pf .

Now, rad(H1(Gf )) is the intersection of the annihilators of all irreducible

H1(Gf )-modules, that is, all D(µ). But each D(µ) is a summand of Pf , and

Pf is a direct sum of D(µ). Thus its annihilator in H1(Gf ) is exactly

rad(H1(Gf )).

Corollary 3.3.5. Qf is a direct sum of the D(µ). Every D(µ) is a summand

of Qf .
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Proof. As If contains H̸=1(Gf ), the summand of IfΓf in B̸=1(Gf ) is the same

as the summand of Γf in B̸=1(Gf ). As the unipotent part of Γf is a progenerator

of B1(Gf ), it will be a direct sum of P (µ), and every P (µ) will be a summand

of it. As P (µ) is finitely generated and H1(Gf ) is Artinian, we have that

rad(H1(Gf ))P (µ) = rad(P (µ)), and so P (µ)/ rad(H1(Gf ))P (µ) ∼= D(µ).

Thus the quotient Qf will be a direct sum of D(µ), and all D(µ) will be a

summand of Qf .

In particular, as both Qf and Pf are direct sums of the D(µ), and all D(µ)

are summands of both Qf and Pf , it is clear that Qf is a direct sum of

submodules of Pf , and that

⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Pf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

= Db
fg(H1(Gf )).

3.3.1 Example: n = 1

We give the case n = 1 explicitly, as it is instructive for the case of general n.

In this setting, If = Gf and I1f = 1. Thus, Pf = Vf = 1 and Γf = ind
Gf

1 1 =

H(Gf ). Hence we can explicitly calculate If =
{∑

g∈Gf
rgg
∣∣∣∑g∈Gf

rg = 0
}
,

and so Qf = 1.

Thus, for n = 1, we see directly that the only unipotent block is the principal

block, containing a single irreducible representation 1. Furthermore, we can see

that Pf and Qf are not just direct sums of D(1) = 1, but are in fact both

exactly 1. In particular, Theorem 3.2.6 and Theorem 3.2.11 both tautologically

hold in this case: 1 is a direct sum of submodules of itself, and generates the

same derived category as itself.

3.4 Finite GLn for l | qe − 1, e > n
2

For this section, we shall take n ≥ 2, and we shall further assume that the

characteristic l of R divides qe − 1 for some e > n
2
, but not qe

′ − 1 for any

e′ < e. This is exactly the case of cyclic defect, and in this case the full structure

of the blocks is well-understood.

Lemma 3.4.1. The principal block has e simple representations L1, . . . , Le.

Write their respective projective covers as P1 . . . , Pe. Then the Pi have the
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following subrepresentation lattices:

P1

Q1

•

0

D1

D2

D1

Pi

•

• Qi

•

0

Di

Di+1

Di−1

Di−1
Di+1

Di

Pe

•

Qe •

• •

• •

•

0

De

De−1

De

De

De−1

De−1

De

De

De−1

De

Furthermore, all other blocks are either of this form, in which case we say they

are blocks of cyclic defect, or are semisimple (that is, contain a unique projective

indecomposable representation, which is also irreducible).

Notice that we have named a certain subrepresentation Qi of each Pi, and that

Pi/Qi
∼= Qi−1 for 2 ≤ i ≤ n.

Proof. Theorem 4.2 of Ackermann [2006] says that any block with cyclic defect

group is of this form. The initial remarks from Section 4.2 of the same source

establish that all blocks have cyclic or trivial defect group for the n and e we

consider.

Now observe that, as l does not divide q or q−1, we have that Pf is projective.

We also have by definition that Pf ∈ B1(Gf ). Hence Pf is a direct sum of the

P (µ).

Recall from Section 2.6 the notions of cuspidal representation and cuspidal

support.

Proposition 3.4.2. All unipotent representations have one of the following
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two cuspidal supports: either (Tf ,1Tf
), or (M,C) = (GLe(k)×GLn−e(k), σ×

1GLn−e(k)), where σ is the unique cuspidal unipotent representation of GLe(k).

Proof. This is Proposition 2.2 of Ackermann [2006].

Proposition 3.4.3. There is a bijection between unipotent blocks with cyclic

defect group and unipotent representations with cuspidal support (M,C), given

by sending a block with irreducible representations D1, . . . , De as above to De.

We may parameterise these blocks by partitions ν of n− e, and in each block

we have that Di = D(µi) for µ1, . . . , µe the unique partitions of n with e-core

ν such that µ1, . . . , µe is in decreasing lexicographical order.

Proof. By Proposition 2.2 of Ackermann [2006], with r = 1 and s = n − e,

the irreducible representations D(ρ) with cuspidal support (M,C) are exactly

those for which ρ ends with at least e copies of 1. To get the e-core of such a

partition we can remove the final e copies of 1: this is indeed the e-core as the

resulting partition has size n − e < e. Conversely, given an arbitrary partition

ν of size n − e, we can form a partition of size n by adding e copies of 1 to

the end. The above maps are mutually inverse and so give a bijection between

e-cores ν and representations D(ρ) with cuspidal support (M,C).

Meanwhile, the same proposition with r = 0 and s = n gives that the irreducible

representationsD(µ) with cuspidal support (Tf ,1) come exactly from the µ that

are e-regular. Thus, either µ has e-core µ, which is thus not equal to the e-core

of any other partition, or it has e-core ν of size n − e, and there is a unique

ρ with e-core µ such that D(ρ) has cuspidal support (M,C). Furthermore, as

we can always form an e-regular µ from a partition ν of size n− e by adding e

to the first entry, each D(ρ) with cuspidal support (M,C) shares an e-core ν

with at least one D(µ) with cuspidal support (Tf ,1).

Now, by Proposition 4.1 and Theorem 4.2 of Ackermann [2006] (recall also

the previously-mentioned Theorem 7.11 of Dipper and James [1989]), two

partitions are in the same block precisely when they have the same e-core.

Furthermore, the same source also gives that the blocks are either semisimple

or have e irreducible representations, and in the latter case the order is given

by decreasing lexicographical order on the partitions. Thus, either the block

contains a single D(µ) with cuspidal support (Tf ,1) and e-core µ, and is

semisimple, or it contains a single D(ρ) with cuspidal support (M,C), as well
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as at least one D(µ) with cuspidal support (Tf ,1), both with e-core ν. In the

latter case the block must hence contain exactly e irreducible representations,

and the partition of minimal lexicographical order is the one corresponding to

the D(ρ) with cuspidal support (M,C), so this D(ρ) must be De.

Corollary 3.4.4. Every P (µ), except for the Pe of each unipotent block with

cyclic defect, is a summand of Pf .

Proof. Every irreducible D(µ) in a unipotent block, except the De of a block

with cyclic defect, has cuspidal support (Tf ,1Tf
), meaning exactly that it is a

quotient of Pf . But as Pf is projective, the corresponding P (µ) must hence be

a summand of Pf . Thus, every P (µ) except the Pe must be a summand.

As in Section 2.2, we may decompose H1(Gf ) as a direct sum (with

multiplicities) of the P (µ), and furthermore, by identifying an element of

H1(Gf ) with its right multiplication action on the P (µ), this sum then further

decomposes into a direct sum of all homomorphisms between the P (µ) in the

first sum. This identifies each copy of P (µ) in the first sum with the space of

all morphisms P (ν) → P (µ) running over all P (ν) in the first sum. We may

thus consider the left action of h ∈ H(Gf ) on p ∈ P (µ) as precomposing the

sum of morphisms P (ν) → P (µ) corresponding to p with the sum of

morphisms P (κ) → P (λ) corresponding to h.

Let H1,e(Gf ) be the linear span of all h ∈ H1(Gf ) corresponding to morphisms

whose domain and codomain are both isomorphic to the Pe of some unipotent

block of cyclic defect. This does not depend on the choice of decomposition.

Corollary 3.4.5. If = H ̸=1(Gf )⊕ rad(H1,e(Gf )).

Proof. As Pf is unipotent, its annihilator contains all of H̸=1(Gf ). It thus

remains to see which elements of H1(Gf ) annihilate Pf . We may consider the

summand in each unipotent block separately.

Consider first a block of cyclic defect. Then Pf is a direct sum of the Pi, and

so we may consider its elements as morphisms of the Pi, on which H(Gf ), also

thought of as morphisms of UPIRs, acts by precomposition. From

Lemma 3.4.1 we can see that the only morphisms of UPIRs that annihilate via

precomposition every Pi apart from Pe are the morphisms with domain and

codomain isomorphic to Pe, and whose image is contained in Qe. This is
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exactly the nilpotent morphisms with domain and codomain isomorphic to Pe,

which is rad(H1,e(Gf )).

The case of a semisimple block is much simpler, as here no nonzero morphism

annihilates the unique P (µ) = D(µ) in the block, and so the part of If in the

block is zero.

Lemma 3.4.6. Qf is a direct sum of P (µ) not isomorphic to the Pe of some

unipotent block of cyclic defect, and representations isomorphic to the Pe/Qe

of some unipotent block of cyclic defect. All said representations occur in the

sum.

Proof. As If contains H̸=1(Gf ), the summand of IfΓf in B̸=1(Gf ) is the same

as the summand of Γf in B ̸=1(Gf ). As the unipotent part of Γf is a progenerator

of B1(Gf ), it is a direct sum of the P (µ), and every P (µ) is a summand of it.

The unipotent part of If is rad(H1,e(Gf )). Considering these as morphisms of

UPIRs as before, and considering each unipotent block separately, we can see

that rad(H1,e(Gf ))P (µ) = 0 for all P (µ) apart from the Pe of a block of cyclic

defect, where rad(H1,e(Gf ))Pe = Qe. Thus the quotient Qf will be a direct

sum of P (µ) except for the Pe, and of representations isomorphic to Pe/Qe,

and all such representations will occur in the sum.

Note that Pe/Qe
∼= Qe−1. Thus we can see directly the first part of the theorem.

Corollary 3.4.7. Qf is a direct sum of subrepresentations of Pf .

Proof. Every summand of Qf is either a P (µ) that isn’t a Pe, which is a

summand of Pf , or Qe−1, which is a subrepresentation of Pe−1 and hence a

subrepresentation of Pf .

We now turn to the second part of the theorem. Let ν be a partition of n− e.

To ν we associate the partition κ of n given by adding e to the first element of

ν. Then κ has e-core ν, and is lexicographically the largest κ with this property.

Hence D(κ) is the D1 of the block of cyclic defect associated to ν. Because of

this, we can expand the reasoning used in the proof of Theorem 3.2.11.

Lemma 3.4.8. The D1 of the block associated to ν is a summand of ind
Gf

Jf (κ)
1.
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Proof. We know that D1 is D(κ). By Theorem 8.1 of James [1986], this is

the unique simple quotient of an indecomposable module S(κ), all of whose

other irreducible subquotients are D(µ) for µ > κ. But since κ is the greatest

partition in its block with respect to the lexicographical order, and hence also

for the dominance order, D1 cannot have any nontrivial extensions by such a

representation. Thus in fact D1 = S(κ).

Now, again by Theorem 8.1 of James [1986], S(κ) is in turn a submodule of

ind
Gf

Jf (κ)
1, and then applying Theorem 7.19(iii) of the same gives that ind

Gf

Jf (κ)
1

has a composition series by S(λ) with multiplicities zero unless λ ≥ κ, in which

S(κ) = D(κ) occurs with multiplicity one. But all the irreducible subquotients

of S(λ) for λ > κ are D(µ) for µ ≥ λ > κ, and hence lie in different blocks to

D(κ), so they cannot have nontrivial extension with D(κ). Thus, D1 = D(κ)

is a summand of ind
Gf

Jf (κ)
1.

Thus we can give a much more explicit proof of Theorem 3.2.11.

Theorem 3.4.9. ⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

= Db
fg(H1(Gf )).

Proof. We shall show that both ⟨Qf⟩Db
fg(H1(Gf ))

and ⟨Vf⟩Db
fg(H1(Gf ))

contain

every D(µ).

Both Qf and Vf contain as summands P (µ) apart from the Pe of the blocks

of cyclic defect. In particular, they both contain every D(µ) in a semisimple

block. It thus remains to consider a block of cyclic defect.

Observe that, if some triangulated and idempotent-complete subcategory of

Db
fg(H1(Gf )) contains Di and Pi, then it must contain Di−1 and Di+1. This

is because taking the quotient of the inclusion Di → Pi and then the kernel of

the quotient Pi/Di → Di gives Di−1 ⊕Di+1.

Now, Vf has summands isomorphic to D1 and to P1, . . . , Pe−1. Hence by the

above claim ⟨Vf⟩Db
fg(H1(Gf ))

contains all irreducible representations D1, . . . , De.

Next, observe that the kernel of the inclusion Qi → Pi is Qi−1, so any

triangulated category containing Pi and Qi must contain Qi−1.

Hence, as Qf has summands isomorphic to Qe−1 and P1, . . . , Pe−1, by the

above claim ⟨Qf⟩Db
fg(H1(Gf ))

contains Q1. But the quotient of the inclusion of
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Q1 in P1 is D1, so ⟨Qf⟩Db
fg(H1(Gf ))

contains D1, and so by the previous case

⟨Qf⟩Db
fg(H1(Gf ))

contains all irreducible representations D1, . . . , De.

3.4.1 Example: n = 2

We explore in more depth the simplest case, namely when n = 2. Hence

l | q2 − 1 but l ∤ q − 1 and l ∤ q, or in other words l is odd and l | q + 1.

Here, Lemma 3.4.1 and its corollaries tell us that the principal block contains

two irreducible representations D1 = 1 and D2 cuspidal, with projective covers

P1 and P2 respectively, such that P1 a summand of Pf but P2 is not.

In fact, by Frobenius reciprocity, we get HomGf
(Pf ,1) = HomIf (1,1), and so

Pf has a trivial quotient. Thus we can see directly that Pf must contain P1 as

a summand.

Furthermore, by Frobenius reciprocity again, we have that

HomGf
(Pf , Pf ) = HomIf (1, res

Gf

If
Pf ). Applying the Mackey decomposition

and using the Bruhat decomposition Gf = If ⊔ If ( 0 1
1 0 ) If we hence obtain

HomGf
(Pf , Pf ) = HomIf (1,1) ⊕ HomIf (1, ind

If
Tf
1) =

HomIf (1,1)⊕ HomTf
(1,1). Hence End(Pf ) is two-dimensional.

But, by Lemma 3.4.1, End(P1) is already two-dimensional, so we in fact must

have equality Pf = P1. In particular, this also directly shows that P2 is not

a summand of Pf . Now, as the unipotent blocks are those whose irreducible

representations are subquotients of Pf , and the only subquotients of Pf = P1

are D1 and D2, we can see directly also that the principal block is the only

unipotent block. We could also have seen this by noting that (2) and (1, 1) are

the only two partitions of 2, and both have empty 2-core, so there is indeed

only one unipotent block, containing two irreducible representations.

Furthermore, as P1 = Pf = ind
Gf

If
1, we may thus describe D2 explicitly: D2 is

the quotient of rad(Pf ) =
{∑

g∈Gf/If
rgg
∣∣∣∑g∈Gf/If

rg = 0
}
by the relation ∼

such that
∑

g∈Gf/If
rgg ∼ 0 if and only if rg = rg′ for all g, g

′.

Now, in this case, we have the explicit descriptionQf = P1⊕Q1 = Pf⊕rad(Pf ),

which is not equal to Vf = Pf ⊕ 1. Nonetheless, Qf is manifestly a direct sum

of submodules of Pf , and we can see that ⟨Qf⟩Db
fg(H1(Gf ))

= ⟨Vf⟩Db
fg(H1(Gf ))

=
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Db
fg(H1(Gf )) via the short exact sequences

0 rad(P1) P1 1 0

and

0 1 rad(P1) D2 0.

We can also describe the structure of If = H ̸=1(Gf )⊕ rad(H1,e(Gf )) explicitly

in this case. Write H1(Gf ) as a direct sum of P (µ), and fix a copy of P2 in this

sum. Henceforth, P2 shall be considered as a subrepresentation of H1(Gf ) via

the inclusion of the summand we have fixed. We can see from Lemma 3.4.1

that rad(H1,e(Gf )) is generated by any element γ corresponding to a morphism

P2 → P2 with image Q2. It is possible to give an explicit description of such a

γ. For simplicity of exposition, we assume p ̸= 2.

Write e for the central idempotent of the unipotent block. Note that e1 =
1

|If |
∑

g∈If g is idempotent and has H(Gf )
1

|If |
∑

g∈If g = Pf . Thus P1 = Pf is

generated by e1. Write e2 for the primitive idempotent generating P2.

Consider now the quadratic extension k′ of k gained by adjoining a square root

of a nonsquare element ϵ, and let x+
√
ϵy for x, y ∈ k generate the l-torsion in

k′×. Note that, as there is no l-torsion in k (by our assumption that l does not

divide q− 1), but there is nontrivial l-torsion in k′× (as l does divide q+ 1 and

hence q2 − 1) we have that x and y are both nonzero: if not, then (x+
√
ϵy)2

lies in k, and hence x+
√
ϵy has order dividing 2(q−1), which has no l-torsion,

a contradiction. Write lr for the order of x+
√
ϵy in k′×, noting that r > 0 by

the previous discussion.

We shall also make use of the following two conjugacy classes in Gf : the

conjugacy class in Gf of ( 1 1
0 1 ) will be denoted C1, and the conjugacy class of

( x y
ϵy x ) will be denoted C2. Also write 1 = ( 1 0

0 1 ) for the identity matrix in Gf .

We make the initial observation that

C1 =

{(
1 0

a 1

)∣∣∣∣∣a ∈ k×

}
∪

{(
1− ab a

−ab2 1 + ab

)∣∣∣∣∣a ∈ k×, b ∈ k

}

and

C2 =

{(
b ϵy2−(x−b)2

a

a 2x− b

)∣∣∣∣∣a ∈ k×, b ∈ k

}
.



Chapter 3: l-Modular Unipotent Representations of Finite Reductive Groups52

To see this, note that, for two-by-two matrices, any noncentral matrices sharing

a characteristic polynomial must lie in the same conjugacy class. Hence, as the

matrices listed have characteristic polynomials (X − 1)2 and (X − x)2 − ϵy2

respectively, and are not central, they do indeed lie in C1 and C2 respectively.

But it is known (see for example Digne and Michel [1991], Chapter 15 Table 1)

that the sizes of C1 and C2 are q2 − 1 and q(q − 1) respectively, so we have in

fact obtained the entire class.

We finally write Zλ = −
∑

g∈C1
g +

∑
g∈C2

g + λ1.

Lemma 3.4.10. There exists some (necessarily unique) λ ∈ R such that we

can take γ to be e2Zλ.

Proof. By Paige [2014], Proposition 2.6, P2 is the extension of scalars to R of

a representation P̃2 over OK , which, when extended to K, decomposes as a

direct sum of irreducible representations: the Steinberg representation π0 and

each of the supercuspidal lifts πi of D2, for i in the range 0 < i ≤ lr−1
2

.

From the final remarks of Section 2 on page 363 and the opening remarks of

Section 4 on page 368 of Paige [2014], there is an injective homomorphism

ψ : End(P̃2) ↪→ K⊕ lr+1
2 , given by sending the endomorphism υ to a tuple

(u0, ui) where u0 and ui are the induced actions of υ on π0 and πi respectively

(necessarily scalar as π0 and πi are irreducible).

Write HOK
(Gf ) for the group algebra of Gf over OK . Then, by those same

remarks, the natural map r : Z(HOK
(Gf )) → End(P̃2), sending an element of

the centre of the group algebra to its action by multiplication, is surjective.

Then, by Theorem 4.11 and Remark 1 in section 4 of Paige [2014], we see that

End(P̃2) is generated as an algebra by rỸ for some Ỹ ∈ Z(HOK
(Gf )), and that

ψ(rỸ ) = (2, ζ i + ζ iq) = (2, ζ i + ζ−i), for ζ a primitive lrth root of unity.

To find an explicit description for a Ỹ with this tuple, we make repeated use of

Lemma 4.1 from Paige [2014], which says that, if C is a conjugacy class in Gf ,

then ψ(r∑
g∈C g) = |C|(Tr(π0(C))

dimπ0
, Tr(πi(C))

dimπi
). We combine this with the character

table information from Digne and Michel [1991] Chapter 15 Table 1, which says

that
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Cong. class 1 C1 C2

Size 1 (q + 1)(q − 1) q(q − 1)

Tr(π0) q 0 −1

Tr(πi) q − 1 −1 −ζ i − ζ iq

Using this, and that Tr(π(1)) = dim π for any representation π over K, we get

that ψ(r∑
g∈C1

g) = (0,−(q+1)), that ψ(r∑
g∈C2

g) = (−(q− 1),−q(ζ i + ζ iq)),

and that ψ(r1) = (1, 1).

Thus we find that a valid choice is Ỹ = 1
q

∑
g∈C1

g− 1
q

∑
g∈C2

g+ q+1
q
1, as then

ψ(rỸ ) = (2, ζ i + ζ iq), and as Ỹ is a sum of sums over conjugacy classes it is

central. Now, as Ỹ is central, we have that the left action of Ỹ and the right

action of e2Ỹ e2 = e2Ỹ on P̃2 = HOK
(Gf )e2 define the same endomorphism of

P̃2, and hence the right action of e2Ỹ also generates End(P̃2).

Recall that End(P̃2) ∼= e2HOK
(Gf )

ope2 and End(P2) ∼= e2H(Gf )
ope2. Thus we

get a surjective map End(P̃2) ∼= e2HOK
(Gf )

ope2 → e2H(Gf )
ope2 ∼= End(P2)

induced by the quotient HOK
(Gf ) → H(Gf ). Hence the right action of e2Ỹ ∈

e2H(Gf )e2 generates End(P2).

Define Y = −
∑

g∈C1
g +

∑
g∈C2

g. As q + 1 = 0 and q is invertible in R, and

since the right action of e2Ỹ generates End(P2), the right action of e2Y also

generates End(P2). Observe that Y is also central.

Fix some γ′ ∈ End(P2) with image Q2. Then End(P2) ∼= e2H(Gf )e2 is spanned

by e2 and the positive powers of γ′. Thus, there exists some unique λ such that

e2Zλ = e2(Y + λ1) is a linear combination of strictly positive powers of γ′.

But if the image of e2Zλ is a strict subset of Q2, then it must in fact be a

linear combinations of γ′k for k ≥ 2, and so e2Y = −λ1 +
∑

k≥2 rkγ
′k cannot

generate the endomorphism γ′, a contradiction. Thus e2Zλ must have image

Q2, and so is a valid choice for γ.

Lemma 3.4.11. We can write Zq−1 =
∑

i µicixizi+
∑

j νjdj (
0 1
1 0 ) yj for some

ci, dj ∈ I1f , some xi, yj ∈ Tf , some zi ∈ Ī1f , and some µi, νj ∈ R. Furthermore,

we may choose this sum such that it satisfies
∑

i µici = 0 and
∑

j νjdj = 0.

Proof. We proceed by factorising each g in C1∪C2 into one of the forms µcxz

or νd ( 0 1
1 0 ) y for c, d ∈ I1f , x, y ∈ Tf , z ∈ Ī1f , and µ, ν ∈ R. We shall make

repeated use of the following formula:



Chapter 3: l-Modular Unipotent Representations of Finite Reductive Groups54

(
w x

y z

)
=



1 xz−1

0 1

w − xyz−1 0

0 z

 1 0

yz−1 1

 if z ̸= 01 wy−1

0 1

0 1

1 0

y 0

0 x

 if z = 0, y ̸= 0

observing that these are respectively of the two above forms.

We start with g ∈ C1. First, note that ( 1 0
a 1 ) ∈ Ī1f for all a ∈ k×, and so

summing over the q − 1 terms in C1 of this form we get
∑

a∈k× z1,0,a for

z1,0,a = ( 1 0
a 1 ) ∈ Ī1f .

Next, let a ∈ k×, b ∈ k be such that 1 + ab ̸= 0. Then(
1− ab a

−ab2 1 + ab

)
∈

(
1 a(1 + ab)−1

0 1

)
Tf Ī1f .

Now, observe that a(1 + ab)−1 = (a−1 + b)−1, and so we have two cases:

If b = 0, then in fact we just have(
1− ab a

−ab2 1 + ab

)
=

(
1 a

0 1

)

Hence summing the q−1 terms we get by varying a over k× gives
∑

a∈k× ( 1 a
0 1 ).

If b ̸= 0, then 1 + ab = 0 precisely when a = −b−1, so fixing b and varying a

over k×\{−b−1} means (a−1 + b)−1 takes every value a′ in k a single time (by

setting a = (a′ − b)−1) except 0 (which would need a = −b−1) and b−1 (which

would need a = 0). Hence summing these q − 2 terms gives∑
a′∈k×\{b−1} (

1 a′
0 1 )x1,b,a′z1,b,a′ for some x1,b,a′ ∈ Tf and z1,b,a′ ∈ Ī1f .

Meanwhile, if 1 + ab = 0, we observe that necessarily b ̸= 0, and that if we fix

such a b then there is exactly one a satisfying this relation, namely a = −b−1.

Now, we have that(
1− ab a

−ab2 1 + ab

)
∈

(
1 (1− ab)(−ab2)−1

0 1

)(
0 1

1 0

)
Ī1f .



Chapter 3: l-Modular Unipotent Representations of Finite Reductive Groups55

Simplifying gives (1− ab)(−ab2)−1 = 2b−1, and varying b over k× means 2b−1

takes every value a′ ∈ k× a single time (by setting b = 2a′−1). Hence summing

these q − 1 terms gives
∑

a′∈k× ( 1 a′
0 1 ) (

0 1
1 0 ) y1,a′ for some y1,a′ ∈ Tf .

Now we consider g ∈ C2. Let a ∈ k× and b ∈ k, and suppose first that

2x− b ̸= 0. Then(
b ϵy2−(x−b)2

a

a 2x− b

)
∈

(
1 ϵy2−(x−b)2

a(2x−b)

0 1

)
Tf Ī1f .

Now, note that ϵy2 − (x− b)2 ̸= 0 as ϵ is by assumption not a square. Hence

fixing b and varying a over k× means ϵy2−(x−b)2

a(2x−b)
takes every value a′ ∈ k× a

single time (by setting a = ϵy2−(x−b)2

a′(2x−b)
). Hence summing these q−1 terms gives∑

a′∈k× ( 1 a′
0 1 )x2,b,a′z2,b,a′ for some x2,b,a′ ∈ Tf and z2,b,a′ ∈ Ī1f .

The remaining case is when 2x − b = 0, noting there is exactly one such b,

namely 2x, and that it is not zero, since x cannot be zero and l ̸= 2. Then(
b ϵy2−(x−b)2

a

a 2x− b

)
∈

(
1 ba−1

0 1

)(
0 1

1 0

)
Tf

and so varying a over k× means ba−1 takes every value a′ ∈ k× a single time

(by setting a = ba′−1). Hence summing these q − 1 terms gives∑
a′∈k× ( 1 a′

0 1 ) (
0 1
1 0 ) y2,a′ for some y2,a′ ∈ Tf .

Now, we recall that we have Zq−1 = −
∑

g∈C1
g +

∑
g∈c2 g + (q − 1)1. Hence,

putting all our results together, we have that

Zq−1 =−
∑
a∈k×

z1,0,a −
∑
a∈k×

( 1 a
0 1 )−

∑
b∈k×

∑
a′∈k×\{b−1}

( 1 a′
0 1 )x1,b,a′z1,b,a′

−
∑
a′∈k×

( 1 a′
0 1 ) (

0 1
1 0 ) y1,a′ +

∑
b∈k\{2x}

∑
a′∈k×

( 1 a′
0 1 )x2,b,a′z2,b,a′

+
∑
a′∈k×

( 1 a′
0 1 ) (

0 1
1 0 ) y2,a′ + (q − 1) ( 1 0

0 1 )

which is of the form
∑

i µicixizi +
∑

j νjdj (
0 1
1 0 ) yj for some ci, dj ∈ I1f , some

xi, yj ∈ Tf , some zi ∈ Ī1f , and some µi, νj ∈ R. It remains to check that∑
i µici = 0 and

∑
j νjdj = 0.



Chapter 3: l-Modular Unipotent Representations of Finite Reductive Groups56

Considering first
∑

j νjdj, we can see that we get

−
∑
a′∈k×

( 1 a′
0 1 ) +

∑
a′∈k×

( 1 a′
0 1 ) = 0.

Now we consider
∑

i µici. This is

−
∑
a∈k×

( 1 0
0 1 )−

∑
a∈k×

( 1 a
0 1 )−

∑
b∈k×

∑
a′∈k×\{b−1}

( 1 a′
0 1 )

+
∑

b∈k\{2x}

∑
a′∈k×

( 1 a′
0 1 ) + (q − 1) ( 1 0

0 1 )

= (−(q − 1) + (q − 1)) ( 1 0
0 1 ) +

∑
a′∈k×

(−1− (q − 2) + (q − 1)) ( 1 a′
0 1 )

= 0.

The above calculation allows us to find the value of λ such that γ = e2Zλ.

Lemma 3.4.12. (e− e1)Zq−1 ∈ If .

Proof. We shall directly calculate (e− e1)Zq−1P1 and observe that it is zero.

Now, eP1 = P1, so it in fact suffices to show that (1− e1)Zq−1P1 = 0. Thus,

we need to show for any g ∈ Gf that (1− e1)Zq−1g
∑

b∈If b = 0, that is, that

Zq−1g
∑

b∈If b is left-If -invariant.

By the Bruhat decomposition, we may without loss of generality take g = iw

for i ∈ If and w either 1 or ( 0 1
1 0 ). But i commutes with Zq−1 as the latter is

central, and so Zq−1g
∑

b∈If b = iZq−1w
∑

b∈If b. Thus we may without loss of

generality take i = 1, and show that Zq−1w
∑

b∈If b is left-If -invariant.

Now, we can write If = I1fTf . Observe first that Tf commutes with w, and

also with Zq−1 as Zq−1 is central. Thus, if i ∈ Tf , then iZq−1w
∑

b∈If b =

Zq−1wi
∑

b∈If b = Zq−1w
∑

b∈If b, so Zq−1w
∑

b∈If b is left-Tf -invariant. Thus,

it only remains to prove that Zq−1w
∑

b∈If b is left I
1
f -invariant.

We shall divide this into two cases depending on the value of w, respectively 1

and ( 0 1
1 0 ).
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Consider the first case. Then Zq−1w
∑

b∈If b = Zq−1

∑
b∈If b. As Zq−1 is

central, I1f commutes with Zq−1, so if i ∈ I1f then

iZq−1

∑
b∈If b = Zq−1i

∑
b∈If b = Zq−1

∑
b∈If b, so we have left-I1f -invariance.

For the second case, we use that, by Lemma 3.4.11, we have

Zq−1 =
∑

i µicixizi +
∑

j νjdj (
0 1
1 0 ) yj for some ci, dj ∈ I1f , some xi, yj ∈ Tf ,

some zi ∈ Ī1f , and some µi, νi ∈ R, such that
∑

i µici = 0 and
∑

j νjdj = 0.

Now, we have that Ī1fw = wI1f ⊆ wIf , so ziw ∈ wIf . Additionally,

Tfw = wTf ⊆ wIf , so xiw, yjw ∈ wIf . Thus,

Zq−1w
∑
b∈If

b =
∑
i

µicixiziw
∑
b∈If

b+
∑
j

νjdj ( 0 1
1 0 ) yjw

∑
b∈If

b

=
∑
i

µiciw
∑
b∈If

b+
∑
j

νjdj ( 0 1
1 0 )w

∑
b∈If

b

= 0

where the last equality follows as
∑

i µici = 0 and
∑

j νjdj = 0. As in fact

Zq−1w
∑

b∈If b = 0 in this case, it is certainly in particular left-I1f -invariant.

Corollary 3.4.13. γ = e2Zq−1.

Proof. We have that (e− e1)Zq−1 ∈ If , and hence e2Zq−1 = e2(e− e1)Zq−1 ∈
If . But then for all λ ̸= q − 1 we have that e2ZλP1 = e2(λ − (q − 1))P1 is

one-dimensional and spanned by β, so e2Zλ /∈ If . Thus as γ ∈ If we must

have γ = e2Zq−1.

Henceforth we shall simply write Z for Zq−1.

Lemma 3.4.14. (e− e1)Z generates the unipotent part of If .

Proof. We know that (e− e1)Z ∈ If . Furthermore, we have that γ = e2Z =

e2(e − e1)Z and that γ generates the unipotent part of If . Hence so does

(e− e1)Z.

We thus have an explicit description of If , namely that it is generated by

the non-unipotent elements plus a single unipotent element (e − e1)Z, where

Z = −
∑

g∈C1
g +

∑
g∈C2

g + (q − 1)1 for certain conjugacy classes C1 and

C2 in Gf , whose elements we have given explicitly. These results generalise to

the case n = e > 2 by considering a degree n extension instead of a quadratic

extension, with appropriate choices of C1, C2 and λ.



4

l-Modular Unipotent

Representations of p-adic Groups

Synopsis

We establish the first part of the main theorem of this thesis,

namely that Q classically generates Db
fg(H1(G)). This essentially

amounts to showing that various finiteness and generation results

from the finite setting continue to hold in the p-adic setting. After

defining relevant objects, we present Vignéras’s p-adic version of

Takeuchi’s results on generators, as well as two key finiteness

properties: that Mod(G) is Noetherian, and that SR(n) has finite

global dimension. The ingredients for both already exist in the

literature, but they nonetheless require some care to rigorously

prove. In particular, the former involves the property of second

adjunction, and the latter employs the theory of affine cellular

algebras. We then use these to give the first part of the main

theorem.

4.1 Definitions and Notation

Let F denote a p-adic field, with ring of integers O, uniformiser ϖ, and residue

field k. Let G be a (connected) reductive algebraic group over F , and write

G = G(F ) for its F -points, which we consider as a topological group via the

topology on F . For simplicity of exposition we will assume that G is unramified,

that is, it is the extension of scalars to F of a reductive group scheme over O.
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Moreover, we will fix such a reductive group scheme over O, and also write it

as G. For GLn we simply take G = GLn over O.

Let K = G(O). Recall that this is a maximal parahoric subgroup. Let K1 be

its pro-p radical. For GLn, we therefore have that K
1 = 1+ϖMn,n(O). Write

Gf for the reductive quotient of K, that is, G(k). We retain the notation from

the previous chapter for the various subgroups and representations of Gf .

Inside K, fix an Iwahori subgroup I. We may without loss of generality take

I to be the preimage of If under the quotient K → Gf . We fix a split torus

S, which we can take without loss of generality for GLn to be the diagonal

matrices. We write I0 for the compact part of S, which is the intersection

of S and I. For GLn, the Iwahori-Weyl group W = N(S)/I0 is isomorphic

to Zn ⋊ Sn, where Sn acts on Zn by permuting the entries. Furthermore,

W has a canonical splitting by sending Sn to the permutation matrices and

(i1, . . . , in) ∈ Zn to the diagonal matrix with (j, j)th entry ϖij .

Let R be a commutative ring in which p is invertible. Recall from Section 2.7

that we write Mod(G) for the category of smooth representations of G over R,

and that Mod(G) is isomorphic to the category of nondegenerate modules over

the global Hecke algebra H(G). We fix a Haar measure on G with µ(K1) = 1.

4.2 The Unipotent Block of p-adic GLn

For this section only, R shall be an algebraically closed field of characteristic

different from p, and G shall be GLn. Many of the properties of Gf used in

the previous chapter to establish the finite version of the main theorem can be

proven in an analogous manner for G. We first recall Vignéras’s generalisation

of Takeuchi [1996].

Definition 4.2.1. We call the block of Mod(G) containing the trivial

representation 1 the unipotent block. Write B̸=1(G) for the direct sum of all

non-unipotent blocks.

Write H1(G) and H ̸=1(G) for the corresponding direct sums of block algebras

of H(G).

For a representation M , write M1 for its summand in the unipotent block.
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Let P = IGGf ,K
Pf = indG

I 1.

Let I be the annihilator in H(G) of P .

Let H′
1(G) = H(G)/I, and let B′

1(G) be the category of H(G)-modules

annihilated by I, that is, the category of modules over H′
1(G).

Let J be the set of all parahoric subgroups containing I and contained in K,

that is, the preimages of Jf ∈ Jf under the quotient K → Gf . We call those

parahoric subgroups in J standard.

Let Γ = IGGf ,K
Γf =

⊕
J∈J

⊕
χJf

∈XJf
indG

J infl
J
MJf

ind
MJf

UJf
χJf , and let Q =

Γ/IΓ.

Remark. In Vignéras [2003], the definition of J is larger: it is the set of all J

containing I, not just those contained in K. Hence, her definition of Γ contains

more summands of the form ΓJ = indG
J infl

J
MJf

ind
MJf

UJf
χJf . However, for GLn,

all J containing I are conjugate to some J ′ containing I and contained in K,

and hence each summand ΓJ of her Γ is isomorphic to some summand ΓJ ′ of

our Γ. Hence, her notions of Γ1 and Q are progenerators if and only if ours

are, and the two notions have Morita equivalent endomorphism algebras and

classically generate the same category.

By Section 5.12 of Vignéras [2003], we have that P ∈ B1(G). Hence the

quotient H(G) → H′
1(G) factors through H1(G), and so B′

1(G) is a subcategory

of B1(G). We can now state Vignéras’s result.

Proposition 4.2.2. There exists some positive integerN such that INB1(G) =

0. Furthermore, B′
1(G) has progenerator Q, and Γ has progenerator Γ1.

Proof. These are respectively Theorem 5.13 (3), Proposition 5.10, and Theorem

5.13 (1) of Vignéras [2003].

4.3 The Noetherian Property and Second

Adjunction

We return to the case of R a general commutative ring (in which p is invertible)

and G a general reductive group. To prove the first part of our main theorem,
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we need analogues for G of two finiteness properties that are known for Gf . The

first is that Mod(G) is Noetherian. For Mod(Gf ) this is immediate as H(Gf ) is

a finite dimensional algebra over a field. For Mod(G) this is essentially already

known. We shall nonetheless be fully explicit in our exposition.

Definition 4.3.1. Let δG : G→ R be the map δG(g) = µ(gK1g−1).

We say that G has second adjunction over R if, for all parabolic subgroups C

of G and all Levi subgroups M of C, we have that parabolic induction iGM,C is

left adjoint to δCr
G
M,C̄

, where recall that C̄ is the opposite parabolic of C with

respect to M.

Proposition 4.3.2. Suppose R is Noetherian, and suppose that G has second

adjunction over R. Then Mod(G) is Noetherian.

Proof. This is Dat [2009] Theorem 1.3.

Theorem 1.5 of Dat [2009] then gives that GLn, alongside several other families

of groups, have second adjunction. Since then, the result has been proven in

full generality for any reductive group over F .

Proposition 4.3.3. G has second adjunction over R.

Proof. This is Dat et al. [2024a], Corollary 1.3.

Remark. In fact, Dat et al. [2024a] establishes second adjunction via even

stronger finiteness conditions on various Hecke algebras associated to G,

which are proven in full generality in Dat et al. [2024b].

Corollary 4.3.4. Suppose R is Noetherian. Then Mod(G) is Noetherian.

In particular, when R is an algebraically closed field of characteristic not p,

B′
1(G) and B1(G) are Noetherian. The former is equivalent to the category of

modules over SR(n) by Proposition 4.2.2, so SR(n) is Noetherian. Similarly, the

latter is equivalent to the category of modules over End(Γ1), and so End(Γ1)

is Noetherian. But being Noetherian is preserved by Morita equivalences of

non-unital rings with enough idempotents (Ánh and Márki [1987], Proposition

3.3), and so H′
1(G) and H1(G) are Noetherian. Thus, the ideal I1 in H1(G) is

finitely generated.
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4.4 The Iwahori-Hecke and Schur Algebras

The other finiteness property we need to prove the first part of the main theorem

is that a p-adic version of SR(n)f has finite global dimension. To define this

algebra, we first need to introduce the Iwahori-Hecke algebra.

Definition 4.4.1. The Iwahori-Hecke algebra of G over R is the Hecke algebra

HR(G, I) of G with respect to I, as defined in Section 2.7. Thus, it is the

algebra EndG(P )
op. For GLn we shall also write the Iwahori-Hecke algebra as

HR(n).

Recall again from Section 2.7 that HR(G, I) is isomorphic to the R-algebra

spanned by indicator functions 1IgI , with multiplication given by convolution.

Thus, by the Iwahori decomposition, it has R-basis {Tw | w ∈ W}, where

Tw = 1IwI .

The structure of W can be used to give explicit generators and relations for

HR(G, I). Write l for the length function of W , and S for the simple affine

reflections in W . For simplicity, we only recall their definitions for GLn (see

for example Morris [1993] for the definition in full generality). Write Xi for

the ith standard basis element of Zn, and write elements of Sn using cycle

notation. Let σi = (i i + 1) for i ∈ {1, . . . , n − 1}, let

σ0 = σn−1 . . . σ2σ1σ2 . . . σn−1(X1X
−1
n ), and let τ = sn−1 . . . s1X1. Then

S = {σi|0 ≤ i ≤ n− 1}, and the length l(w) of w ∈ W is the minimal

number of σi required to express w as a product of σi and τ .

Using this, we can give explicitly the relations defining HR(G, I):

Proposition 4.4.2. HR(G, I) is generated by the Tw for w ∈ W subject to the

relations

TwT
′
w = Tww′ for w,w′ ∈ W with l(ww′) = l(w) + l(w′)

T 2
s = (q − 1)Ts + q for s ∈ S

Proof. This is Theorem 2.1 of Vignéras [2016].

Definition 4.4.3. Write Z[q] for polynomials in q. Write Hq(G, I) for the

Z[q]-algebra with the generators and relations of Proposition 4.4.2, where q is

replaced with q. We call this the Iwahori-Hecke algebra of G over Z[q]. For

GLn we shall also write it as Hq(n).
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Note that, by Remark 2.4(1) of Vignéras [2003], HR(G, I) ∼= R⊗Z[q] Hq(G, I),

where we make R a Z[q]-algebra by sending q 7→ q.

Recall that Wf denotes the Weyl group of Gf . As G is unramified, this is the

same as the (finite) Weyl group Wf ⊆ W of G. Recall that for GLn this is

Sn ⊆ Zn ⋊Sn. Write Sf for the simple reflections in Wf . For GLn these are

the transpositions σi for 1 ≤ i ≤ n− 1. For each subset P of Sf , let WP denote

the subgroup of Wf generated by P, and let xP =
∑

w∈WP
Tw.

Definition 4.4.4. The Schur algebra of G over R is the R-algebra SR(G, I)

defined by

SR(G, I) = EndHR(G,I)

⊕
P⊆Sf

xPHR(G, I)


where the endomorphisms are of right HR(G, I)-modules.

The Schur algebra Sq(G, I) of G over Z[q] is similarly defined by replacing

HR(G, I) with Hq(G, I) in the above definition.

For GLn, we also denote the Schur algebras over R and Z[q] as SR(n) and

Sq(n) respectively.

Again by Remark 2.4(1) of Vignéras [2003], we have

SR(G, I) = R ⊗Z[q] Sq(G, I). Furthermore, as x∅ = 1, the endomorphisms of

the x∅HR(n) summand of SR(G, I) (respectively the x∅Hq(n) summand of

Sq(G, I)) are canonically isomorphic to HR(G, I) (respectively Hq(G, I)) by

identifying an element of the latter with its action by left scalar multiplication

on the former. Thus, HR(G, I) (respectively Hq(G, I)) is an idempotent

subalgebra of SR(G, I) (respectively, Sq(G, I)).

As in the finite case, the importance of SR(n) comes from the following

surprising property:

Proposition 4.4.5. Let G = GLn. Then EndG(Q) is Morita equivalent to

SR(n).

Proof. This is Proposition 5.8 of Vignéras [2003].

For GLn, we can describe the subsets of Sf in a more explicit way.
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Definition 4.4.6. A composition of n is a tuple λ = (λ1, . . . , λM) of positive

integers that sums to n.

Given a composition λ, define P(λ) to be the subset of Sf of all (i i+ 1) with∑m
m′=1 λm′ ≤ i <

∑m+1
m′=1 λm′ for some m. This gives a bijection between

compositions of n and subsets of Sf .

4.5 The Global Dimension of the Schur Algebra

We now assume that G = GLn. We also assume, without changing our

notation, that Hq(n) and Sq(n) are defined over Z = Z[q± 1
2 ], and that R is a

Z -algebra (with q 7→ q as before). Note that this requires a choice of q
1
2 ∈ R.

Remark. This mild additional assumption is in order to draw on results from

the literature. It would be interesting to investigate what happens without this

assumption. For example, Du et al. [1998] show that SR(n)f is quasi-hereditary

and has finite global dimension without this assumption, and it seems likely

similar methods could be used for SR(n).

Recall that SR(n)f was shown to have finite global dimension by giving the

Morita equivalent algebra SR(N, n)f the structure of a quasi-hereditary algebra.

We wish to show that SR(n) has finite global dimension. Hence we proceed

analogously to the finite case by finding a Morita equivalent algebra that has a

well-behaved affine cellular structure.

Firstly, we give another presentation for the Hecke algebra: the Bernstein

presentation. This is taken as the definition of the Hecke algebra in much of

the literature on Schur algebras, in particular in McGerty [2003].

Proposition 4.5.1. Hq(n) has a presentation with generators Ti, 1 ≤ i ≤ n−1,
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and X±1
i , 1 ≤ i ≤ n, and relations

T 2
i = (q− 1)Ti + q

TiTi+1Ti = Ti+1TiTi+1

TiTj = TjTi if |i− j| > 1

XiX
−1
i = 1 = X−1

i Xi

XiXj = XjXi

TiXiTi = qXi+1

TiXj = XjTi if j /∈ {i, i+ 1}.

Furthermore, Ti = Tsi for 1 ≤ i ≤ n− 1.

Proof. This is Theorem 1.4 of Vignéras [2006], which also contains a statement

of the Bernstein decomposition for a general G, and a definition of the Xi in

terms of the Tw.

The proof in the finite case used the family of algebras SR(N, n)f . These have

a p-adic analogue.

Definition 4.5.2. Fix some N > n. An N -composition of n is an N -tuple of

nonnegative integers that sum to n. Write the set of all N -compositions of n

as Λ(N, n).

For λ ∈ Λ(N, n) we define P(λ) to be P(λ′) where λ′ is the composition of n

given by deleting all the zero entries from λ.

Definition 4.5.3.

Sq(N, n) = EndHq(n)

 ⊕
λ∈Λ(N,n)

xP(λ)Hq(n)

.
Let Λ0(N, n) denote the elements of Λ(N, n) where all zero entries occur

after every nonzero entry. There is thus a bijection between Λ0(N, n) and

compositions of n. Write λ(P) for the element of Λ0(N, n) corresponding to

the composition λ with P(λ) = P. Then P(λ(P)) = P. Thus, by gluing the

identity maps xPHq(n) → xP(λ(P))Hq(n), we obtain an inclusion
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⊕
P⊆Sf

xPHq(n) ⊆
⊕

λ∈Λ(N,n) xP(λ)Hq(n), and hence an inclusion

Sq(n) ⊆ Sq(N, n).

By the theory of affine cellular algebras, which we will expand on in the next

section, Sq(N, n) is known to have finite global dimension, and this is preserved

under reasonable extensions of scalars.

Proposition 4.5.4. Let R be a Noetherian domain of finite global dimension.

Then Sq(N, n)⊗Z R has finite global dimension.

Proof. In Section 1.10 of Lusztig [1999], Lusztig defines an algebra Ŝq(N, n)

(written Un,N,N ;Z in his notation). In Cui [2015], Theorem 4.7 (see also

Nakajima [2015]), Ŝq(N, n) ⊗Z R is shown to have finite global dimension.

Note that they only claim that Ŝq(N, n)⊗Z R has finite global dimension, but

their proof in fact holds for Ŝq(N, n) ⊗Z R, as their proof that Ŝq(N, n) is

affine cellular over Z in fact shows that it is affine cellular over Z . But

Ŝq(N, n) is isomorphic to Sq(N, n) by Pages 2 and 3 of McGerty [2003].

As in the finite case, we show that Sq(N, n) ⊗Z R and SR(n) are Morita

equivalent. Let e denote the identity of Sq(n), that is, the sum of the identities

on each xP(λ(P))Hq(n). It is an idempotent in Sq(N, n), and we have Sq(n) =

eSq(N, n)e.

Lemma 4.5.5. Sq(N, n)eSq(N, n) = Sq(N, n).

Proof. The identity map on xP(λ)Hq(n) is gef , where f and g are the identity

maps xP(λ)Hq(n)
f

⇄
g
xP(λ(P(λ)))Hq(n). Thus Sq(N, n)eSq(N, n) contains the

identity of Sq(N, n), and thus is all of Sq(N, n).

Theorem 4.5.6. Let R be a Noetherian domain of finite global dimension.

Then SR(n) has finite global dimension.

Proof. Sq(n) is Morita equivalent to Sq(N, n) by Proposition 2.11.2, and hence

SR(n) is Morita equivalent to Sq(N, n) ⊗Z R. But the latter has finite global

dimension.
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4.6 Aside: Affine Cellular Structures for the

Schur and Hecke Algebras

We retain the assumptions of the previous section. We have so far treated the

finite global dimension of Sq(N, n)⊗R as a black box. However, analogously to

the finite case, this property is a single consequence of a much richer structure

theory of Sq(N, n): it is an affine cellular algebra. In this aside we will transfer

this affine cellular structure to Sq(n) and Hq(n).

Remark. While the affine cellular structures we give are transferred from

Sq(N, n), it should in principle be possible to attempt to construct them

directly on Sq(n) or Hq(n) using analogous methods to the construction for

Sq(N, n). It would be interesting to know whether this affine cellular

structure, if it exists, is the same one that we construct here.

We first expand on the affine cellular structure of Sq(N, n).

Proposition 4.6.1. Sq(N, n) is idempotent affine cellular. Using the notation

of Definition 2.11.1, we furthermore have that:

1. Sq(N, n) has a basis eA, where A are certain Z-by-Z matrices.

2. The involution i on Sq(N, n) is given by i(eA) = eAt .

3. For all λ ∈ Λ(N, n), we have that ediag(λ) is the identity map on

xP(λ)Hq(n), where we write diag(λ) for the Z-by-Z matrix which is

N -by-N -block-diagonal, with each diagonal block itself diagonal with

mth entry λm.

4. For each k, the module J ′
k contains the element lk = ediag(λ(k)), where

λ(k) ∈ Λ(N, n) has decreasing entries.

5. lkeA = eA for any A = (aij) with row(A) = λ(k), where

row(A) =
(∑

j∈Z aij

)
1≤i≤N

.

6. For each k, Bk is of the form Z [X1, . . . , Xmk
, X−1

i1
, . . . , X−1

ink
] for some

{i1, . . . , ink
} ⊆ {1, . . . ,mk}.

Proof. By Cui [2015], Theorem 4.7 (see also Nakajima [2015]), the algebra

Ŝq(N, n) defined in Section 1.10 of Lusztig [1999] is idempotent affine cellular.
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Again, they only claim that it is affine cellular over Z, but in fact their proof

shows it is affine cellular over Z . But as we observed in the last section,

Ŝq(N, n) is isomorphic to Sq(N, n) by Pages 2 and 3 of McGerty [2003].

The details of this structure are collated in Sections 3 and 4 of Deng and Yang

[2016]:

The first claim is their Definition 3.1.

The second claim is their Equation 4.6 (they call the involution τ).

The third claim is their Equation 8.4.

Their Proposition 4.3, meanwhile, defines certain sets cλ for every

λ ∈ Λ(N, n) with decreasing entries. Then, by their Equation 4.7 and the

preceding paragraphs on Page 443, the J ′
k are spanned by certain cλ(k) . (In

their notation, the modules J ′
k are written as C ′

i).

From their Definition 3.1, for any λ ∈ Λ(N, n), there is the element lλ =

ediag(λ). Their Proposition 4.1 says that there is some other element, written

{lλ}, equal to lλ. Then their Equation 4.3 says that {lλ} ∈ cλ when the entries

of λ are decreasing. Thus we get the fourth claim.

The fifth claim is their Equation 3.6.

In their Equation 4.8, they define, for every λ ∈ Λ(N, n) with decreasing

entries, rings Bλ=Z [X1, . . . , Xλ1 , X
−1
i1
, . . . , X−1

iN
] where ij = λ1 − λj+1 and

we set λN+1 = 0. Their Proposition 4.4 then gives a generalised matrix

algebra structure on the J ′
k, with coefficients in Bλ(k) . But their Remark 2.2

says that this is exactly an affine cellular structure, with Bk = Bλ(k) . Thus we

have the sixth claim.

To reduce to Sq(n), we need some further properties of the idempotents.

Lemma 4.6.2. For all k, we have that lk lies in Sq(n), and lk is an idempotent

generating the affine cell ideal J ′
k.

Proof. Now we observe that every decreasing tuple in Λ(N, n) is an element of

Λ0(N, n), and that by Claim (4) of Proposition 4.6.1 lk = ediag(λ(k)) and λ
(k) is

decreasing. Thus lk ∈ Sq(n).
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Finally, by Claim (5) of Proposition 4.6.1 we have that lk is idempotent, and

as Sq(N, n) is idempotent affine cellular the J ′
k are idempotent, so lk generates

J ′
k.

Recall from the previous section that e is the identity element of Sq(n).

Lemma 4.6.3. Both e and the ediag(λ) are fixed under the involution.

Proof. By definition, e is the sum of the identity maps on each of the summands

in Definition 4.4.4. But, by claim (3) of Proposition 4.6.1, these are precisely the

ediag(λ) for λ ∈ Λ0(N, n). It thus suffices to show that the ediag(λ) are preserved

under i. But diag(λ) is a diagonal matrix, and by Claim (2) of Proposition 4.6.1

we have that i sends eA to eAt .

Using these we can reduce to our Schur Algebra.

Theorem 4.6.4. Sq(n) is idempotent affine cellular. For each k, we have that

Bk is of the form Z [X1, . . . , Xmk
, X−1

i1
, . . . , X−1

ink
] for some {i1, . . . , ink

} ⊆
{1, . . . ,mk}. The ideals eJ ′

ke are generated by lk.

Proof. We know Sq(N, n) is idempotent affine cellular with the Bk of the

stated form by Proposition 4.6.1. We want to apply Claims (1) and (3) of

Proposition 2.11.2. But, by Lemma 4.6.3 and Lemma 4.6.2, the conditions of

Proposition 2.11.2 hold.

To use this structure to show finite global dimension, we need some properties

of the Bk.

Lemma 4.6.5. Let R be a commutative ring. Fix some m ∈ N and some set

{i1, . . . , in} ⊆ {1, . . . ,m}.

1. If R is a domain, then rad(R[X1, . . . , Xm, X
−1
i1
, X−1

in
]) = 0.

2. If gl dim(R) <∞, then gl dim(R[X1, . . . , Xm, X
−1
i1
, X−1

in
]) <∞.

Proof. We show the first result by proving that if A is a domain then A[x]

and A[x, x−1] are domains with zero Jacobson radical. That A[x] is a domain

follows as the leading coefficients of any nonzero polynomials must multiply to
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give a nonzero leading coefficient for the product. To see that rad(A[x]) = 0,

note that if p(x) ∈ rad(A[x]) then 1+xp(x) must be a unit, so p(x) = 0. The

logic for A[x, x−1] is identical except that we now must consider 1+xkp(x) for

k large enough that xkp(x) only has terms of strictly positive degree.

The second follows from the Hilbert Syzygy Theorem, which gives the

polynomial case (see Rotman [2009] Theorem 8.37). The case for Laurent

series follows as localisation is exact and preserves projective modules.

Alternatively, it is a special case of McConnell and Robson [2001], Theorem

7.5.3 (iii) and (iv).

With this we can give an alternate proof of Theorem 4.5.6.

Theorem 4.6.6. Let R be a Noetherian domain such that gl dim(R) < ∞.

Then gl dim(SR(n)) <∞.

Proof. By Theorem 4.6.4, Sq(n) is idempotent affine cellular, and hence so is

SR(n). But by Lemma 4.6.5 we have rad(Bk) = 0 and gl dim(Bk) <∞. Thus

we may apply Theorem 2.11.4.

We now use the affine cellular structure we have obtained on the Schur algebra

to obtain an affine cellular structure on the Hecke algebra.

Lemma 4.6.7. Hq(n) is of the form lSq(n)l (equivalently, lSq(N, n)l) for

some idempotent l ∈ Sq(n) such that i(l) = l. Thus, Hq(n) is affine cellular,

with ideals lJkl, and Bk of the form Z [X1, . . . , Xmk
, X−1

i1
, . . . , X−1

ink
] for some

{i1, . . . , ink
} ⊆ {1, . . . ,mk}.

Proof. Let l = ediag(1,...,1,0,...,0). Then, as P(1, . . . , 1, 0, . . . , 0) = ∅, we have

that l is the identity map on the x∅Hq(n) summand. This is idempotent, and

lSq(n)l is precisely the Hq(n)-endomorphisms of x∅Hq(n), which we canonically

identified with Hq(n).

Furthermore, by Lemma 4.6.3, l is fixed by the involution i.

Thus, by Proposition 2.11.2 and Theorem 4.6.4, Hq(n) is affine cellular with

ideals lJkl and Bk of the stated form.
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For every P ⊆ Sf , the Poincare series of P is defined to be AP(q) =
∑

w∈WP
ql(w),

where WP is the subgroup of Wf generated by P. We write A(q) for ASf (q).

For every P, AP(q) is a factor of A(q) (Humphreys [1990], Section 5.12).

Proposition 4.6.8. Suppose A(q) is invertible in R and that R is a Noetherian

domain. Then

1. HR(n) and SR(n) are Morita equivalent.

2. The two-sided ideal lJkl of HR(n)/lJk−1l is generated by the idempotent

x′k =
1

A
P(λ(k))

(q)
xP(λ(k)).

3. HR(n) is idempotent affine cellular.

4. If furthermore gl dim(R) <∞, then gl dim(HR(n)) <∞.

Proof. The first claim is Deng and Yang [2016], Appendix Lemma 1.4, which

they prove via Claim (2) of Proposition 2.11.2 by showing that SR(n)lSR(n) =

SR(n).

We now show the second claim. We know that Jk is generated by lk, that is,

by the identity map on xP(λ(k))HR(n), by Lemma 4.6.2 and Claim (4) of

Proposition 4.6.1. Consider the embedding ϕ1 : xP(λ(k))HR(n) → HR(n), and

the projection ϕ2 : HR(n) → xP(λ(k))HR(n) given by left multiplication by

xP(λ(k)). Then the element ϕ1lkϕ2 lives in both HR(n) and Jk, and hence in

lJkl. But this element is just xP(λ(k)). Hence x
′
k also lives in lJkl.

Now Deng and Yang [2016] Equation 8.9 gives that ϕ2ϕ1 = AP(λ(k))(q)lk. Hence

x′2k =
1

AP(λ(k))(q)
2
x2
P(λ(k))

=
1

AP(λ(k))(q)
2
ϕ1lkϕ2ϕ1lkϕ2

=
1

AP(λ(k))(q)
ϕ1l

3
kϕ2

=
1

AP(λ(k))(q)
ϕ1lkϕ2

=
1

AP(λ(k))(q)
xP(λ(k))

= x′k

(4.6.1)
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so x′k is idempotent. Furthermore,

ϕ2x
′
kϕ1 =

1

AP(λ(k))(q)
ϕ2ϕ1lkϕ2ϕ1

= AP(λ(k))(q)lk

(4.6.2)

and hence, as lk generates all of J ′
k as a 2-sided ideal in SR(n)/Jk−1, so does

x′k. Thus we are done by Proposition 2.11.2.

The third and fourth claims follow from the second and Lemma 4.6.7, together

with Lemma 4.6.5.

When A(q) is not invertible, we cannot define all the idempotents x′k. It seems

unlikely that HR(n) is idempotent affine cellular in this case.

4.7 A Classical Generator for p-adic GLn

We continue to assume G = GLn, and further assume that R is an algebraically

closed field of characteristic different from p. We now have everything we need

to prove the first part of the main theorem, in the same manner as we did in

the finite case.

Lemma 4.7.1. Db
fg(H

′
1(G)) = per(H′

1(G)).

Proof. By Proposition 4.2.2, B′
1(G) has progenerator Q. Thus, H

′
1(G) is Morita

equivalent to SR(n). Hence it suffices to show Db
fg(SR(n)) = per(SR(n)).

Now, SR(n) has finite global dimension by Theorem 4.5.6, and it is Noetherian

by Corollary 4.3.4. Thus by Proposition 2.10.7 and Proposition 2.10.8, every

object of Db
fg(SR(n)) is isomorphic to an object in the subcategory per(SR(n)).

But as these are both isomorphism-closed subcategories ofD(SR(n)), they must

agree.

Lemma 4.7.2. Db
fg(H1(G)) = ⟨Db

fg(H
′
1(G))⟩Db

fg(H1(G))

Proof. Inclusion of the right side in the left is immediate as all H′
1(G)-modules

are H1(G)-modules.
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Let M• be an object in Db
fg(H1(G)). Without loss of generality we can thus

take it to be a complex of finitely generated unipotent representations. Then by

Proposition 4.2.2, we have some finite N such that INM• = 0. Observe that,

as M• is a complex of unipotent representations, we have that I iM• = I i
1M

•

for any i ≥ 0. Now, by Corollary 4.3.4, we have that I1 is finitely generated,

and M• is a complex of finitely generated representations, so the I iM• are

also complexes of finitely generated representations for all i ≥ 0. Hence the

quotients I iM•/I i+1M• are objects in Db
fg(H

′
1(G)). Thus M• is a repeated

extension of complexes inDb
fg(H

′
1(G)), and so is in ⟨Db

fg(H
′
1(G))⟩Db

fg(H1(G)).

Theorem 4.7.3. Db
fg(H1(G)) = ⟨Q⟩Db

fg(H1(G)).

Proof. By Proposition 4.2.2, Q is a progenerator for B′
1(G). Thus by

Proposition 2.10.6 we have that per(H′
1(G)) = ⟨Q⟩per(H′

1(G)). Thus we are

done by Lemma 4.7.1 and Lemma 4.7.2.



5

Describing the Derived l-Modular

Unipotent Block

Synopsis

We finish the proof of the main theorem by establishing that

V is a classical generator of Db
fg(H1(G)) for G = GLn(F ), and

hence that Db
fg(H1(G)) is equivalent to perfect complexes over

dg-EndG(V
•). We do this by combining the first part of the main

theorem from Chapter 4 with the finite version of the main theorem

from Chapter 3. Lifting the finite version of the theorem to the p-

adic setting requires the additional result from Chapter 3 as well a

further result showing, essentially, that If is a subset of I. This

involves careful coset calculations in the global Hecke algebra. We

then explore the structure of the dg Schur algebra dg-EndG(V
•),

giving a composition formula in terms of resolutions on the finite

group GLn(k).

5.1 A Second Classical Generator for p-adic GLn

We retain the notation of the previous chapter. Furthermore, we assume

throughout that R is an algebraically closed field of characteristic l different

from p, and that G = GLn.

Definition 5.1.1. Let V = IGGf ,K
Vf . Thus, V =

⊕
J∈J indG

J 1.

We seek to establish that Db
fg(H1(G)) = ⟨V ⟩Db

fg(H1(G)). The idea is to lift the
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finite version of this result, that is, the second claim of Theorem 3.1.4, from

Gf to G. To do this, we first relate B1(Gf ) and B1(G):

Proposition 5.1.2. Let πf ∈ Mod(Gf ). If πf ∈ B1(Gf ), then IGGf ,K
πf ∈

B1(G). Conversely, if πf ∈ B̸=1(Gf ), then IGGf ,K
πf ∈ B̸=1(G).

Proof. This is Vignéras [2003], Lemma D14 (a1) and (a2), noting that

Conjecture H3 in said paper is stated to hold for G = GLn(F ).

Corollary 5.1.3. V and IGGf ,K
Qf are both finitely generated and unipotent.

Proof. V and IGGf ,K
Qf are the image under parahoric induction of Vf and Qf

respectively. Both Vf andQf are unipotent and finitely generated, and parahoric

induction preserves both properties.

Thus both V and IGGf
(Qf ) are in Db

fg(H1(Gf )). Now we are ready to lift the

finite version of the main theorem to G.

Corollary 5.1.4. ⟨IGGf
(Qf )⟩Db

fg(H1(G)) = ⟨V ⟩Db
fg(H1(G)).

Proof. Parahoric induction is exact, so this is immediate from the second claim

of Theorem 3.1.4.

We want to conclude by Theorem 4.7.3, which says that

Db
fg(H1(G)) = ⟨Q⟩Db

fg(H1(G)). Unfortunately, I
G
Gf ,K

Qf = Γ/(IGGf ,K
IfΓf ) is not

a priori equal to Q = Γ/IΓ. It thus remains to show that IGGf ,K
Qf and Q are

in fact equal, that is, that IGGf ,K
IfΓf = IΓ. The first claim of Theorem 3.1.4

is exactly enough to show one inclusion:

Lemma 5.1.5. IIGGf ,K
Qf = 0.

Proof. By the first claim of Theorem 3.1.4, Qf is a direct sum of

subrepresentations of Pf . Hence I
G
Gf ,K

Qf is a direct sum of subrepresentations

of IGGf ,K
Pf = P , and subrepresentations of P are annihilated by

I = Ann(P ).

Corollary 5.1.6. IΓ ⊆ IGGf ,K
IfΓf .
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Proof.

0 = IIGGf ,K
Qf

= I(Γ/(IGGf ,K
IfΓf ))

= (IΓ + IGGf ,K
IfΓf )/(I

G
Gf ,K

IfΓf )

To show the reverse inclusion, it is simplest to work with H(G)-modules. Recall

from Section 2.7 that we may view H(K) as the subalgebra of H(G) consisting

of functions supported on K, and that the image of the endomorphism of H(K)

given by f 7→ 1K1f1K1 may be identified with H(Gf ) via g ↔ 1gK1 . Also recall

that, viewing representations of Gf , K and G as modules over H(Gf ), H(K)

and H(G) respectively, parahoric induction is then just H(G) ⊗H(K) −, where

H(G) and H(Gf ) are viewed as H(K)-algebras via the aforementioned maps.

Using this, we may rewrite IGGf ,K
IfΓf and IΓ as

IGGf ,K
IfΓf = H(G)⊗H(K) IfΓf (5.1.1)

and

IΓ = IH(G)⊗H(K) Γf = I ⊗H(K) H(Gf )Γf (5.1.2)

respectively.

Hence, it will suffice to show that H(G)⊗H(K) If lies inside I ⊗H(K) H(Gf ), as

subsets of H(G)⊗H(K) H(Gf ).

There are a series of simplifications that can be made to this picture. First,

recall that, by the Iwahori decomposition, P = indG
I 1 is generated by elements

of the form 1iwI for w ∈ W and i ∈ I, and H(G) acts on these elements by

convolution on the left. Thus we may view P as a left ideal in H(G). Hence,

if Z ∈ H(G), then Z ∈ I if and only if, for all i ∈ I and w ∈ W , we have that

Z1iwI = 0.

Similarly, by the Bruhat decomposition, Pf = ind
Gf

If
1 is generated by the

elements iwfIf for wf ∈ Wf and i ∈ If , and H(Gf ) acts on these elements by

left multiplication, so Pf can be analogously viewed as a left ideal in H(Gf ).

Thus, if Z ∈ H(Gf ), then Z ∈ If if and only if, for all i ∈ If and wf ∈ Wf ,
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we have that ZiwfIf = 0 .

Next, observe that the map g 7→ 1gK1 identifies H(Gf ) with a subalgebra of

H(K), and thus of H(G). This identifies the element iwfIf ∈ Pf with 1iwf I ∈
H(G), and furthermore identifies If ⊆ H(Gf ) as a subset of H(G). Therefore,

if Z ∈ If , then, for all i ∈ If and wf ∈ Wf , we have that Z1iwf I = 0.

Furthermore, the above map is a splitting of the quotient map H(K) → H(Gf ),

and so in H(G)⊗H(K)H(Gf ) the element f⊗g is equal to the element f1gK1⊗1.

Hence, H(G)⊗H(K) If = H(G)If ⊗ 1. Now, I is a left ideal in H(G), and so

to show H(G)If ⊗ 1 ⊆ I ⊗H(K) H(Gf ) it is enough to show that If ⊗ 1 ⊆
I ⊗H(K)H(Gf ) as subsets of H(G)⊗H(K)H(Gf ). Thus, in particular, it suffices

to show that If ⊆ I.

Lemma 5.1.7. H(G)⊗H(K) If ⊆ I ⊗H(K) H(Gf ).

Proof. By the previous remarks, it suffices to show that for any Z ∈ If , w ∈ W ,

and i ∈ I, we have Z1iwI = 0.

First, observe that Z ∈ H(Gf ), and so Z is a linear combination of terms of

the form 1gK1 . Now, as µ(K1) = 1 by our convention for normalisation, we

have Z = Z1K1 , and so Z1iwI = Z1K11iwI .

Now, by the convolution formula,

1K11iwI(x) = µ(K1 ∩ iwIw−1i−1)
∑

k∈K1/(K1∩iwIw−1i−1)

1K1(k)1iwI(k
−1x)

= [K1 : K1 ∩ iwIw−1i−1]−11K1iwI .

As K1 is a pro-p group, c = [K1 : K1 ∩ iwIw−1i−1]−1 is well-defined and

nonzero in R, so Z1K11iwI = cZ1K1iwI .

Let w0 be a minimal length coset representative for w in Wf\W . Hence w =

wfw0 for some wf ∈ Wf .

As wf ∈ Wf ⊆ K, wf normalises K1. Similarly, as i ∈ I ⊆ K, we have that i

also normalises K1. Hence Z1K1iwI = Z1iwfK1w0I .

Now, by Lemma 3.19 and Variant 3.22 of Morris [1993], we have that K1(K ∩
w0Iw

−1
0 ) is a standard parahoric subgroup, and so in particular contains I.
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Multiplying by w0I on the right thus gives

Iw0I ⊆ K1(K ∩ w0Iw
−1
0 )w0I

⊆ K1(Kw0I ∩ w0I)

= K1w0I.

Thus we have K1w0I ⊆ Iw0I ⊆ K1w0I, so we have equality Iw0I = K1w0I.

Hence Z1iwfK1w0I = Z1iwf Iw0I .

Now, we write Z =
∑

g∈Gf
rg1gK1 for some rg ∈ R. Recall that i and wf

normalise K1 ⊆ I, so iwfIw0I is left-K1-invariant. Thus, as µ(K1) = 1, the

convolution formula gives Z1iwf Iw0I =
∑

g∈Gf
rg1giwf Iw0I .

By definition, Z ∈ If . But recall that, by the previous remarks, this means

that Z1iwf I = 0, that is, that
∑

g∈Gf
rg1giwf I = 0. In particular, for any fixed

coset kI of I in K, we have that∑
g∈Gf

kI=giwf I

rg = 0.

Hence

∑
g∈Gf

rg1giwf Iw0I =
∑

k∈K/I

 ∑
g∈Gf

kI=giwf I

rg

 1kIw0I

=
∑

k∈K/I

0

= 0

Putting this all together, we obtain Z1iwI = 0.

Thus we get our desired equality.

Corollary 5.1.8. Q = IGGf ,K
Qf .

Proof. By Lemma 5.1.7, together with Equation 5.1.1 and Equation 5.1.2, we

have that IGGf ,K
IfΓf ⊆ IΓ. But by Corollary 5.1.6, the converse is true. Thus

IGGf ,K
IfΓf = IΓ, and so IGGf ,K

Qf = Γ/(IGGf ,K
IfΓf ) = Γ/IΓ = Q.
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We now have all the ingredients to prove our main theorem.

Theorem 5.1.9. Db
fg(H1(G)) = ⟨V ⟩Db

fg(H1(G))

Proof. We already know from Theorem 4.7.3 that

Db
fg(H1(G)) = ⟨Q⟩Db

fg(H1(G)), and from Corollary 5.1.4 that

⟨IGGf ,K
(Qf )⟩Db

fg(H1(G)) = ⟨V ⟩Db
fg(H1(G)). But by Corollary 5.1.8 we have

Q = IGGf ,K
Qf .

Corollary 5.1.10. Let V • be a projective resolution of V in Mod(G). There

is a triangulated equivalence Db
fg(H1(G)) ≃ per(dg-EndG(V

•)).

Proof. This follows applying Theorem 2.10.4 to the category Db
fg(H1(G)) and

its classical generator V .

5.1.1 Example: n = 1

When n = 1 and l | q − 1, we can be more explicit. In this case we have that

Γ = IGGf ,K
Γf = indG

K11, and V = P = IGGf ,K
Qf = indG

K1. In particular, we

can see directly that IIGGf ,K
Qf = IP = 0, so IΓ ⊆ IGGf ,K

IfΓf .

Recall that If =
{∑

g∈Gf
rgg
∣∣∣∑g∈Gf

rg = 0
}
. This case is made simpler as

G = F× is abelian. Observe that K = O× and W = {ϖi|i ∈ Z}. Hence, by

the Iwahori decomposition, a basis for P is given by xi = 1ϖiO× for i ∈ Z. By
commutativity, gxi = xi for any g ∈ K. Hence for r =

∑
g∈Gf

rgg ∈ If , we

have rxi =
∑

g∈Gf
rggxi = xi

∑
g∈Gf

rg = 0. Thus we indeed have If ⊆ I,
and hence the exact equality Q = IGGf ,K

Qf = V .

5.2 The dg Schur Algebra

Now that we have our main theorem, we wish to describe the structure of

dg-EndG(V
•), as this will give us information about the structure of

Db
fg(H1(G)). We start by unwinding the definition of V •.

Definition 5.2.1. For J ∈ J , let 1•
J be a projective resolution of 1J in the

category of smooth J-representations.
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Then we may put V • =
⊕

J∈J indG
J 1

•
J , as this is indeed a projective resolution

of V =
⊕

J∈J indG
J 1J .

Definition 5.2.2. We define the dg Schur Algebra to be S = dg-EndG(V
•).

The following proposition justifies the choice of name.

Proposition 5.2.3. SR(n) = H0(S).

Proof. H0(S) is just the endomorphism algebra of V , which is SR(n) by

Vignéras [2003], Theorem 2.3.

SR(n) has a natural basis, which can then be used to give a composition formula.

We perform an analogous decomposition for S.

Definition 5.2.4. We introduce, for J,M ∈ J and g ∈ G, the complex

SMgJ = dg-HomJ∩g−1Mg(res
J
J∩g−1Mg1

•
J , res

g−1Mg
J∩g−1Mg(1

•
M)g).

Proposition 5.2.5. There is an isomorphism of complexes

F : S ∼−→
⊕

J,M∈J

⊕
g∈M\G/J

SMgJ

Proof. By factoring over the direct sums comprising V •, we have

S ∼=
⊕

J,M∈J

dg-HomG(ind
G
J 1

•
J , ind

G
M1

•
M)

as complexes of R-modules. Now, via Frobenius reciprocity (which preserves

the differential) and the Mackey Decomposition,

dg-HomG(ind
G
J 1

•
J , ind

G
M1

•
M)

∼=dg-HomJ(1
•
J , res

G
J ind

G
M1

•
M)

∼=dg-HomJ(1
•
J ,

⊕
g∈M\G/J

indJ
J∩g−1Mgres

g−1Mg
J∩g−1Mg(1

•
M)g)

∼=
⊕

g∈M\G/J

dg-HomJ(1
•
J , ind

J
J∩g−1Mgres

g−1Mg
J∩g−1Mg(1

•
M)g)

∼=
⊕

g∈M\G/J

dg-HomJ∩g−1Mg(res
J
J∩g−1Mg1

•
J , res

g−1Mg
J∩g−1Mg(1

•
M)g)

∼=
⊕

g∈M\G/J

SMgJ .
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In particular, we obtain the isomorphism of R-modules

H0(F) : SR(n)
∼−→

⊕
J,M∈J

⊕
g∈M\G/J

H0(SMgJ).

Furthermore, we have that

H0(SMgJ) = HomJ∩g−1Mg(res
J
J∩g−1Mg1J , res

g−1Mg
J∩g−1Mg(1M)g)

= HomJ∩g−1Mg(1J∩g−1Mg,1J∩g−1Mg).

Thus, every element of H0(SMgJ) is a scalar multiple of the identity map idMgJ

on 1J∩g−1Mg.

Continuing our analogy with SR(n), we describe composition on the SMgJ .

Given an element f • ∈ SMgJ , we can pass along the three-step isomorphism

F−1 of Proposition 5.2.5 to find the element of S which is sent to it under F :

f •

Frobenius Reciprocity7−−−−−−−−−−−→

v ∈ 1
•
J 7→ [j ∈ J 7→ f •(jv)]

Mackey Decomposition7−−−−−−−−−−−−→

v ∈ 1
•
J 7→ [x ∈ G 7→ mxf(jxv)1MgJ(x)]

Frobenius Reciprocity7−−−−−−−−−−−→

ϕ ∈ indG
J 1

•
J 7→

x ∈ G 7→
∑

y∈J\G

mxy−1f •(jxy−1ϕ(y))1MgJ(xy
−1)



(5.2.1)

where, for x ∈MgJ , we fix a decomposition x = mxgjx. Note that the choice

of decomposition does not affect the isomorphism.

Definition 5.2.6. For f •
1 ∈ SLgJ and f •

2 ∈ SMg′L, write f
•
2 ⋆f

•
1 for the element

F(F−1(f •
2 )F−1(f •

1 )) of
⊕

M\G/J SMḡJ .

To describe ⋆, we shall need the following sets.
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Definition 5.2.7. Let M,L, J ∈ J , and fix double cosets LgJ,Mg′L,MḡJ

in G. Then we set

CMḡJ
Mg′L,LgJ =

{
j ∈ (J ∩ g−1Lg)\J

∣∣ḡ ∈Mg′Lgj
}
.

We may also symmetrically define

ĈMḡJ
Mg′L,LgJ =

{
m ∈M/(M ∩ g′Lg′−1)

∣∣∣ḡ ∈ mg′LgJ
}
.

With these we can give a general formula for composition in the dg-case:

Lemma 5.2.8. Let f •
1 ∈ SLgJ and f •

2 ∈ SMg′L. Then the projection of f •
2 ⋆ f

•
1

in SMḡJ is the map v ∈ 1
•
J 7→

∑
j∈CMḡJ

Mg′L,LgJ

mf •
2 (lf

•
1 (jv))


where ḡ = mg′lgj.

Proof. By applying Equation 5.2.1 to f •
1 and f •

2 , we know that F−1(f •
2 )F−1(f •

1 )

is the following morphism in S:

ϕ ∈ indG
J 1

•
J 7→ x ∈ G 7→

∑
y∈L\G

mxy−1f •
2

lxy−1

∑
z∈J\G

lyz−1f •
1 (jyz−1ϕ(z)) 1LgJ(yz

−1)

 1Mg′L(xy
−1)

where xy−1 = mxy−1g′lxy−1 and yz−1 = lyz−1gjyz−1 .

Now, to get the projection of f •
2 ⋆f

•
1 = F(F−1(f •

2 )F−1(f •
1 )) in SMḡJ , we apply

Equation 5.2.1 in reverse:
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Frobenius Reciprocity7−−−−−−−−−−−→

v ∈ 1
•
J 7→ x ∈ G 7→∑

y∈L\G

∑
z∈J\G

mxy−1f •
2 (lxy−1lyz−1f •

1 (jyz−1zv1J(z))) 1LgJ(yz
−1)1Mg′L(xy

−1)

= v ∈ 1
•
J 7→ x ∈ G 7→∑

y∈L\G

mxy−1f •
2 (lxy−1lyf

•
1 (jyv)) 1LgJ(y)1Mg′L(xy

−1)

Mackey Decomposition, project onto SMḡJ7−−−−−−−−−−−−−−−−−−−−−−−→

v ∈ 1
•
J 7→ j ∈ J 7→∑

y∈L\G

mḡjy−1f •
2 (lḡjy−1lyf

•
1 (jyv)) 1LgJ(y)1Mg′L(ḡjy

−1)

Frobenius Reciprocity7−−−−−−−−−−−→v ∈ 1
•
J 7→

∑
y∈L\G

mḡy−1f •
2 (lḡy−1lyf

•
1 (jyv)) 1LgJ(y)1Mg′L(ḡy

−1)


=

v ∈ 1
•
J 7→

∑
j∈CMḡJ

Mg′L,LgJ

mf •
2 (lf

•
1 (jv))



Note that the above map may also be written asv ∈ 1
•
J 7→

∑
m∈ĈMḡJ

Mg′L,LgJ

mf •
2 (lf

•
1 (jv))


where ḡ = mg′lgj.

In particular, taking zeroth cohomology shows that the composition map on

SR(n) is exactly convolution of the idMgJ , so we recover the composition

formula for SR(n).
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5.2.1 Example: n = 1

In this case J contains the single element K = O×. Recall also that W =

{ϖi|i ∈ Z}, and that, by the Iwahori decomposition, W indexes the double

cosets KgK. We thus fix W as the indexing set for K-double cosets going

forward. Furthermore, as G = F× is abelian, we have that K ∩ g−1Kg = K,

and hence that

SKgK = dg-HomK(1
•
K ,1

•
K).

In particular, for all g, we have that SKgK is isomorphic to SK1K .

G being abelian also implies that

CKḡK
Kg′K,KgK =

{1}, ḡ ∈ Kg′g

∅, ḡ /∈ Kg′g
.

As we are using W as our indexing set, we can see that ḡ ∈ Kg′g if and only

if ḡ = gg′. Thus, the composition f •
2 ⋆ f

•
1 of f •

1 ∈ SKgK and f •
2 ∈ SKg′K has

zero projection in all SKḡK except for SKg′gK . Again using the abelian property

and that g′g = 1g′1g1, we get that the projection of f •
2 ⋆ f

•
1 in SKg′gK is the

map f2f1.

Thus we may define a map SK1K ⊗R SR(n) → S via f ⊗ idKgK 7→ f ∈ SKgK ,

and our previous work shows that, equipping the left hand side with

componentwise composition, this is an isomorphism of dg algebras.

Furthermore, SR(n) is isomorphic to the polynomial ring R [ϖ]. It remains to

describe SK1K .

By Ackermann [2006], Proposition 4.24, the projective cover P̂f of 1Gf
has a

totally ordered submodule lattice of length lr, where r is maximal such that

lr | q − 1, with all subquotients isomorphic to 1Gf
. Fix an endomorphism α of

P̂f with kernel 1. Then, inflating to K without changing notation, a minimal

projective resolution 1•
K of 1K has period 2 and is as follows:

. . . P̂f P̂f 0α αlr−1

Thus, an element of SK1K of degree i is zero in degree j > −i, and in each

degree j ≤ −i is a linear combination of
{
αk
∣∣0 ≤ k < lr

}
. These compose

subject to the relation αlr = 0, and no other relations.
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Boston, Inc., Boston, MA, 1996. ISBN 0-8176-3929-2.

Marie-France Vignéras. Induced R-representations of p-adic reductive

groups. Selecta Math. (N.S.), 4(4):549–623, 1998. ISSN 1022-1824,1420-

9020. doi: 10.1007/s000290050040. URL https://doi.org/10.1007/

s000290050040.
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