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Abstract
The inference of phylogenetic networks, whichmodel complex evolutionary processes
including hybridization and gene flow, remains a central challenge in evolutionary
biology. Until now, statistically consistent inference methods have been limited to
phylogenetic level-1 networks, which allow no interdependence between reticulate
events. In this work, we establish the theoretical foundations for a statistically consis-
tent inference method for a much broader class: semi-directed level-2 networks that
are outer-labeled planar and galled. We precisely characterize the features of these
networks that are distinguishable from the topologies of their displayed quartet trees.
Moreover, we prove that an inter-taxon distance derived from these quartets is circular
decomposable, enabling future robust inference of these networks from quartet data,
such as concordance factors obtained from gene tree distributions under the Network
Multispecies Coalescent model. Our results also have novel identifiability implica-
tions across different data types and evolutionary models, applying to any setting in
which displayed quartets can be distinguished.

Keywords Phylogenetic network · Semi-directed network · Reticulate evolution ·
Quartet · Identifiability · Circular split system

1 Introduction

As analysis of genomic datasets has advanced, growing evidence has indicated that
hybridization and other reticulate events play a significant role in evolution (see, e.g.,
Swithers et al. (2012); DeBaun et al. (2023); Sessa et al. (2012)). Hence it is desirable,
and increasingly common, to rely on phylogenetic networks instead of phylogenetic
trees to depict evolutionary relationships between species. We consider semi-directed
(phylogenetic LSA) networks in which the root is suppressed, since the root location
cannot be identified under many models of evolution and data types (Solís-Lemus and
Ané 2016; Baños 2019; Ané et al. 2024; Gross et al. 2021; Xu andAné 2022), and such
networks might be rooted in practice using an outgroup (Kinene et al. 2016). Limited
by both the lack of theoretical identifiability results for complex networks, as well
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as computational constraints, existing statistically consistent inference methods focus
on the class of semi-directed level-1 networks (Solís-Lemus and Ané 2016; Allman
et al. 2019; Kong et al. 2024; Holtgrefe et al. 2025; Allman et al. 2025a). Within
this class of networks, reticulate events are assumed to be isolated from each other,
forcing the network to consist of only tree-like parts and disjoint cycles. Numerous
identifiability results have been obtained for this restricted class of networks, proving
that theoretically (most of) a level-1 network can be distinguished from biological data
under several evolutionary models (Gross et al. 2021; Baños 2019; Xu and Ané 2022;
Allman et al. 2022, 2024b; Englander et al. 2025).

Several results have shown that certain features of higher-level networks (infor-
mally, networks with a higher degree of interdependence between reticulate events)
can be identified frombiological data. Specifically, the tree-of-blobs—a tree depicting
only the tree-like branching structure of a network — is identifiable from gene tree
probabilities under several variants of the Network Multispecies Coalescent model
(Allman et al. 2023; Rhodes et al. 2025), as well as from nucleotide sequences under
the Jukes-Cantor and Kimura-2-Parameter models (Englander et al. 2025). Similarly,
when a blob (a 2-edge-connected component of the network) is outer-labeled planar
(i.e., it can be drawn in the plane without crossing edges and with the taxon labels
on the outside), the circular order of its pendant subnetworks is identifiable from the
same types of data and under the same models (Rhodes et al. 2025; Englander et al.
2025).

Two recent breakthroughs have shown the identifiability of the full structure of
some higher-level networks. On the one hand, (Englander et al. 2025) showed that
under the Jukes-Cantor model, semi-directed binary, strongly tree-child level-2 net-
works can be identified from nucleotide sequences if the networks contain no 3-cycles
within blobs. On the other hand, Allman et al. (2025b) showed identifiability of certain
semi-directed binary, galled, strongly tree-child level-k networks from gene tree prob-
abilities under variations of the Network Multispecies Coalescent model. Both these
results demonstrate that theoretically sound inference methods for networks more
general than level-1 are possible, though neither suggest a particular computationally
tractable inference procedure.

In this paper, we take a first step in this direction by providing the theoretical foun-
dations for a statistically consistent inference method for a class of level-2 networks.
In particular, our main result (Theorem 5.5) revolves around a canonical form that
characterizes exactly when semi-directed level-2 networks that are both galled and
outer-labeled planar (see Figure 1 for an example of such a network) can and cannot
be distinguished by means of displayed quartets. Hence, this canonical form is the
most refined network that can theoretically be inferred when using displayed quartets
alone, and thus also illuminates the theoretical limits of level-2 network inference
methods relying only on quartets. Since our result does not rely on any specific model,
immediate identifiability results follow from biological data generated under models
of evolution that meet our criteria. In particular, our result shows that the canonical
form can be identified under any model in which the topology of displayed quartets
can be identified. This includes all aforementioned models (Englander et al. 2025;
Rhodes et al. 2025).
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Fig. 1 Left:A rooted phylogenetic level-2 network on 17 human populations (Raghavan et al. 2014), where
the directions go from left to right and the root is located at the black dot. The network was constructed from
16 complete genomes from modern human worldwide and MA-1, a 24,000-year-old anatomically modern
human from theMal’ta site in south-central Siberia.Right:The semi-directed phylogenetic network obtained
from the rooted network by suppressing its root and only retaining directions of the dashed hybrid edges.
The network is level-2, outer-labeled planar, and galled

Our identifiability proof is constructive in nature and at its heart lies a generalization
of the inter-taxon quartet distances associated to semi-directed level-1 networks1 from
Allman et al. (2019, 2025a). These distances have the advantage that they can be
computed directly from data such as concordance factors: summaries of gene tree
distributions under the Network Multispecies Coalescent model. We prove that these
distances are circular decomposable for so-called bloblets: networks with a single
internal blob (see Theorem 4.7). Essentially, these distances can be decomposed into
sums of simpler metrics in a way that respects the circular ordering of the taxa induced
by the planar embedding of the network. Interestingly, this approach directly leads to
an inference algorithm for computing outer-labeled planar, galled, level-2 networks in
the spirit of the existing level-1 inference tools NANUQ and NANUQ+ (Allman et al.
2019, 2025a). An outline of this algorithm is sketched in the discussion; specifics and
its implementation will follow in future work.

This paper is structured as follows. Section 2 covers preliminaries on phylogenetic
networks, split systems, circular decomposable metrics, and the quartet metric from
Rhodes (2019). In Section 3 we prove some auxiliary results used in Section 4 to
prove circular decomposability of the inter-taxon quartet distances under considera-
tion. Section 5 contains the main result about our canonical form and the biological
identifiability results that follow from it. We end with a discussion in Section 6.

1 See also (Holtgrefe et al. 2025) for a similar distance.
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2 Preliminaries

2.1 Phylogenetic networks

We use standard terminology for phylogenetic networks as in Steel (2016).

Definition 2.1 (Rooted phylogenetic network) A (binary) rooted (phylogenetic) net-
work N+ on a set of at least two taxa X is a rooted directed acyclic graph such that (i)
the (unique) root has in-degree zero and out-degree two; (ii) its leaves are of in-degree
one and out-degree zero and they are bijectively labeled by elements of X ; (iii) all
other nodes either have in-degree one and out-degree two (known as tree nodes), or
in-degree two and out-degree one (known as hybrid nodes).

A rootednetwork admits a natural partial order of its nodes.The least stable ancestor
(LSA) of a set of leaves Y of a rooted network is the lowest node through which all
directed paths from the root to any leaf in Y must pass. Throughout this work, we
assume that for all rooted networks on X , the root is the LSA of X (also known as LSA
networks). The two edges directed towards a hybrid node are called hybrid edges. We
call a leaf in X a hybrid (leaf) if its parent is a hybrid node.

Definition 2.2 (Semi-directed phylogenetic network) A (binary) semi-directed (phy-
logenetic) network N on X is a partially directed graph that can be obtained from a
binary rooted phylogenetic LSA network N+ by undirecting all non-hybrid edges and
suppressing the former root.

In the definition above, the rooted network N+ is called a rooted partner of N
(see also Figure 2(a) and (b)). We define hybrid nodes and edges in semi-directed
networks analogously to those for rooted networks, and note that a semi-directed
network may have parallel edges. A semi-directed network without hybrid nodes is a
(binary unrooted) phylogenetic tree.

Since phylogenetic networks, whether rooted or semi-directed, never have cycles
in the (semi-)directed sense, we use the term cycle to mean nodes forming a cycle in
the fully undirected network. For instance, the level-2 networks in Figure 1 each have
three cycles, with the semi-directed network on the right showing two 8-cycles, while
the third is a 14-cycle that includes all nodes within the large blob.

A blob of a rooted or semi-directed network is a maximal weakly connected sub-
graph without any cut edges. An articulation node of a blob is a node in the blob that
is incident to a cut edge of the network. A blob with m articulation nodes is called
an m-blob. By contracting a blob, we mean replacing the blob by a single node, and
suppressing it in case this node has degree-2. The tree-of-blobs of a semi-directed
network is the phylogenetic tree that can be obtained from it by contracting every blob
(see Figure 2(c)). In the following definition, we list some additional properties that
semi-directed networks may have.

Definition 2.3 Let N be a semi-directed network. Then, we call N

(i) level-k for some non-negative integer k if there exist at most k hybrid nodes in
each blob of the network;
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Fig. 2 (a): A rooted phylogenetic network N+ on X = {x1, . . . , x10} (b): The semi-directed phylogenetic
network N on X = {x1, . . . , x10} obtained from N+. The network N is outer-labeled planar, strictly level-2
and galled (c): A phylogenetic tree T on X = {x1, . . . , x10} that is displayed by N with multiplicity 2. The
tree that can be obtained from T by contracting the two dotted edges is the tree-of-blobs of N (d): Three
quarnets induced by N (e): Three displayed quartets of N

(ii) strictly level-k for some positive integer k if the network is level-k but the
network is not level-(k − 1);
(iii) a bloblet (network)2 if the network has a single non-leaf blob;
(iv) k-cycle-free for some non-negative integer k if the network contains no cycles
of length k;
(v) outer-labeled planar if the network has a planar embedding with the leaves on
the unbounded face;
(vi) galled if for every hybrid node h and every pair of partner hybrid edges
e = (v, h) and e′ = (v′, h), there exists a cycle in the network (disregarding edge
directions) that contains e and e′ and no other hybrid edges of the network.

Note that a galled network can equivalently be defined as one with no hybrid node
ancestral to another hybrid node in the same blob (i.e., there is no pair of hybrid nodes
in the same blob having a path between them in which all directed edges have the same
orientation), or in the binary setting of this article, as one where each hybrid node is
an articulation node. We also extend the notions of level and strict level to individual
blobs by counting the number of hybrid nodes in that particular blob.

2 Such networks have also been called simple.
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The specific classes of networks we consider are given in the next definition. Fig-
ure 2(a) and (b) depict a semi-directed network from the classN′

2 and one of its rooted
partners.

Definition 2.4 The (binary) semi-directed phylogenetic networks that are outer-
labeled planar, galled, and level-k (for some k ≥ 0) form the class Nk . The strictly
level-k networks inNk form the subclassN′

k . The bloblets inNk andN′
k , respectively,

form the subclassesBk and B′
k .

An up-down path between two labeled leaves x1 and x2 of a semi-directed network
is a path of k edges where the first � edges are directed towards x1 and the last k − �

edges are directed towards x2, where undirected edges are considered bidirected.

Definition 2.5 (Subnetwork) Given a semi-directed network N on X and some Y ⊆ X
with |Y | ≥ 2, the subnetwork of N induced by Y is the semi-directed network N |Y
obtained from N by taking the union of all up-down paths between leaves in Y ,
followed by exhaustively suppressing all degree-2 nodes.

If |Y | = 4 with Y = {x, y, z, w}, we may write N |xyzw to mean N |{x,y,z,w}. Such a
network is called a quarnet, or a quartet in case N is an unrooted phylogenetic tree
(see Figure 2(d)).

Given a semi-directed network N on X and a phylogenetic tree T on X , we say that
T isdisplayed by N if it can be obtained from N bydeleting exactly one hybrid edge per
hybrid node, then recursively deleting all leaves not in X and exhaustively suppressing
degree-2 nodes. We use T (N ) to denote the set of phylogenetic trees displayed by N .
The multiplicity μ(T , N ) of T in T (N ) is the number of distinct choices of hybrid
edges in N that when deleted lead to the displayed tree T . If T /∈ T (N ), then we set
μ(T , N ) = 0. We write μ(N ) = ∑

T∈T (N ) μ(T , N ), and note that if N has r hybrid
nodes, then |T (N )| ≤ μ(N ) = 2r . Lastly, we refer to a quartet tree that is displayed
by a quarnet of N as a displayed quartet of N . See Figure 2(c) and (e).

2.2 Split systems and circular metrics

This section introduces several known concepts related to splits and metrics, see e.g.
Bryant et al. (2007); Allman et al. (2019). Recall that a pseudo metric d : X2 → R≥0
on a finite set of elements X is a symmetric non-negative function that (i) satisfies
the triangle inequality; and (ii) has the property that d(x, x) = 0 for all x ∈ X .
In particular, for x, y ∈ X , d(x, y) = 0 need not imply x = y. All results in this
work revolve around pseudo metrics, which we will simply use the word metrics for
convenience unless we want to emphasize the fact that we are considering pseudo
metrics.

A split A|B = B|A of a finite set X with at least two elements is a bipartition of
X with A, B ⊆ X . A split is empty if A or B has size 0, and it is trivial if A or B has
size 1. We say that a cut edge of a semi-directed network N induces the split A|B of
its leaf set X if the removal of the cut edge disconnects the leaves labeled by elements
in A from those labeled by elements in B. We denote the set of splits induced by the
cut edges of a semi-directed network N as Split(N ). Similarly, we denote the set of
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splits induced by the displayed trees of N by Split(T (N )). To distinguish between the
two, we call the former the induced splits of N and the latter the displayed splits of
N. Clearly, Split(N ) ⊆ Split(T (N )).

The set of all nonempty splits of a finite set X is denoted by Split(X), and we call
a non-empty set S ⊆ Split(X) a split system on X . A map ω : Split(X) → R≥0 is
a weighted split system. We let the support of the weighted split system, denoted by
supp(ω), be the split system S ⊆ Split(X) containing each split that has a positive
weight ω. Note that any weighted split system ω : Split(X) → R≥0 induces a metric
dω on X as follows. Given some split A|B ∈ Split(X), we define the split metric δA|B
as

δA|B(x, y) =
{
0, if x, y ∈ A or x, y ∈ B;
1, otherwise.

(1)

Then, the metric dω induced by ω is

dω(x, y) =
∑

S∈Split(X)

ω(S) · δS(x, y). (2)

It is easy to see that the triangle inequality holds for dω, so that it is indeed a (pseudo)
metric.

Before the next definition, we define a circular order C of a finite set X =
{x1, . . . , xn} as an ordering of its elements up to reversal and cyclic permutations.
We often denote such a circular order as C = (x0, x1, . . . , xn = x0) or simply
C = (x1, . . . , xn).

Definition 2.6 (Circular split system) A split system S ⊆ Split(X) is circular if there
exists a circular order C = (x0, x1, . . . , xn = x0) of the finite set X = {x1, . . . , xn}
such that each split in S has the form Si j (C) = Ui j |Vi j for some i �= j with Ui j =
{xi+1, . . . , x j } andVi j = {x j+1, . . . , xi }.We say that such a circular order is congruent
with S.

We sometimes write Si j instead of Si j (C) if C is clear from the context. The circular
split system consisting of all splits Si j (C) for a circular order C is denoted by S(C). For
example, Figure 3 gives a visualization of a circular split systemS ⊂ S

(
(x1, . . . , xn)

)
.

Note that the split system in the figure is also congruent with other circular orders not
depicted. We say that a weighted split system is circular if its support is a circular
split system.

Definition 2.7 (Circular decomposable metric) A metric d : X2 → R≥0 is circular
decomposable, if there exists a circular weighted split system ω : Split(X) → R≥0
such that d = dω.

In other words, a metric d is circular decomposable if it can be decomposed as a sum
of weighted split metrics, all corresponding to one circular split system. As shown in
Bandelt and Dress (1992) (see also (Bryant et al. 2007)), if d is circular decomposable,
this decomposition is the unique way to decompose d into a sum of weighted (weakly
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Fig. 3 A visualization of the circular split system S ⊂ Split(T (N )), containing all non-trivial dis-
played splits (depicted by the black lines) of the outer-labeled planar, semi-directed network N on
X = {x1, . . . , x10} (depicted in gray) from Figure 2(b). S ⊂ S(C) is congruent with the circular order
C = (x1, . . . x10) (depicted by the dotted lines), one of the induced circular orders of N . Two splits are
highlighted in thick black and are labeled using the notation from Definition 2.6

compatible) split metrics, i.e., the circular weighted split system ω is unique. Hence,
we may also define the support supp(dω) of a circular decomposable metric dω as the
unique support of the corresponding circular weighted split system ω.

To prove that a metric is circular decomposable we use the following proposition,
which follows from a lemma of Chepoi and Fichet (1998). To avoid confusion, when
referring to the split weights defined in the following proposition, we may sometimes
write αi j (d) or αi j (d, C) instead of simply αi j .

Proposition 2.8 Let X be a finite set of elements, d : X2 → R≥0 a pseudo metric,
C = (x0, x1, . . . xn = x0) a circular order of X and S ⊆ S(C). For all Si j ∈ S(C), let
αi j be the split weight of Si j associated with d and C, which is defined as

αi j = d(xi , x j ) + d(xi+1, x j+1) − d(xi , x j+1) − d(xi+1, x j ).

Then, d is circular decomposable with support S if and only if αi j ≥ 0 for all Si j ∈
S(C) and S = {Si j ∈ S(C) : αi j > 0}.
Proof Chepoi and Fichet (1998) proved that any symmetric function d : X2 → R

with a zero diagonal can be written as

d(x, y) = 1

2

∑

Si j∈S(C)

αi j · δSi j (x, y) (3)

for all x, y ∈ X and for any circular order C of X . The backward direction then follows.
For the forward direction, note that by the main result in Chepoi and Fichet (1998) (see
also (Christopher et al. 1996) for an alternative proof), circular decomposable metrics
congruent with a circular ordering C are equivalent toKalmanson metrics (Kalmanson
1975) compatible with C, that is, metrics for which αi j ≥ 0 for all Si j ∈ S(C). So,
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if d is circular decomposable with support S, all αi j are non-negative. Therefore, 3
gives the circular decomposition of d. Since this decomposition is unique (Bandelt
and Dress 1992), it also follows that S = {Si j ∈ S(C) : αi j > 0}.

We say that a semi-directed network N on X induces a circular order C of X if there
exists an outer-labeled planar representation of N that induces the circular order C of
the leaves in X (see Figure 3). As shown in Rhodes et al. (2025), outer-labeled planar
semi-directed networks induce at least one circular order of their leaf sets. Moreover,
if the outer-labeled planar network is a bloblet, this circular order is unique. See also
(Moulton and Wu 2022) for results related to the planarity of rooted networks. The
following result straightforwardly connects the induced circular orders of an outer-
labeled planar network to the displayed splits of the network.

Proposition 2.9 Let N be an outer-labeled planar, semi-directed network on X. Then,
Split(T (N )) is a circular split system congruent with any circular order of X induced
by N.

Proof Let C be an induced circular order of N . Clearly, every tree T ∈ T (N ) is
also outer-labeled planar and induces the order C. Then, Split(T ) is a circular split
system congruent with C for all T ∈ T (N ) (see, e.g., Gambette et al. (2012)). Hence,
Split(T (N )) = ⋃

T∈T (N ) Split(T ) is a circular split system congruent with C.

2.3 Quartet metric of a phylogenetic tree

We revisit the metric from Rhodes (2019), which was defined on the leaves of a
phylogenetic tree based on the quartets induced by that tree.

Let T be a phylogenetic tree on four leaves {x, y, z, w}, i.e. T is a quartet tree.
Then, for any pair of leaves {x, y}, we let

ρxy(T ) =
{
0 if x and y form a cherry,

1 otherwise.
(4)

Note that ρxy(T ) = δS(x, y), where S is the unique non-trivial split induced by T .
We can use this concept to define a metric dT for any phylogenetic tree T with at

least four leaves. Recall that T |xyzw denotes the quartet tree on leaf set {x, y, z, w}
induced by the tree T .

Definition 2.10 (Quartet metric) Let T be a phylogenetic tree on leaf set X with
n = |X | ≥ 4. For any pair of leaves x �= y of X let

dT (x, y) =
∑

z,w �=x,y

2 · ρxy(T |xyzw) + 2n − 4, (5)

with dT (x, x) = 0. Then, dT is the quartet metric of T .

A metrization of a tree T = (V , E) is a map w : E → R>0 that assigns a positive
weight to each edge. Next, we define the quartet metrization of a phylogenetic tree T
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on X , which assigns a weight w(e) to every edge e of T . First note that each internal
edge e of T determines a partition of X into 4 non-empty blocks (X1, X2, X3, X4)
where the split associated to e is X1 ∪ X2|X3 ∪ X4 and the splits associated to the
4 adjacent edges all lead to one Xi . To obtain the quartet metrization now assign to
every internal edge e the weight

w(e) = |X1||X2| + |X3||X4|. (6)

Similarly, every pendant edge, incident to a leaf x , induces a tripartition ({x}, X1, X2)

of X . To every such edge e we assign the weight

w(e) = |X1||X2|. (7)

The following inequality will be useful later in this manuscript.

Proposition 2.11 Let T = (V , E) be a phylogenetic tree on leaf set X with |X | ≥ 4
and suppose that T is equipped with the quartet metrization w : E → R≥0. Then, for
every edge e in T , we have w(e) ≥ |X | − 2.

Proof First suppose that e is a pendant edge inducing the tripartition ({x}, X1, X2) of
X . Then, w(e) = |X1||X2|. The inequality now follows from the fact that n1 · n2 ≥
n1 + n2 − 1 if n1, n2 ≥ 1.

Now suppose e is internal inducing the partition (X1, X2, X3, X4). Then, w(e) =
|X1||X2|+|X3||X4|. Again, the inequality follows because n1n2+n3n4 ≥ ∑4

i=1 ni−2
whenever all ni ≥ 1.

The relationship of the quartet metric defined in Definition 2.10 and the quartet
metrization is captured in the following.

Theorem 2.12 (Rhodes 2019) Let T = (V , E) be a phylogenetic tree on leaf set X with
|X | ≥ 4. Then, for every pair {x, y} ⊆ X, the quartet metric dT (x, y) is the distance
in T between x and y when T is equipped with the quartet metrizationw : E → R≥0.

Corollary 2.13 Let T be a phylogenetic tree on at least four leaves. Then, the quartet
metric dT is circular decomposable and its support is Split(T ).

3 Displayed quartet metric of a phylogenetic network

Here we generalize the quartet metric for a tree to semi-directed networks, accounting
for the multiplicities of the quartets. Although at first glance this generalization seems
primarily of theoretical value since it is unclear whether the quartet multiplicities —
and thus the resulting distances — can be computed directly from data, the results
here are linked in the next section to a second generalization where the generalized
distances can be estimated.
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Let N be a semi-directed network on four leaves {x, y, z, w}, i.e., a quarnet, (possi-
bly a tree). Then, the first step in generalizing the quartet metric is to use the set T (N )

of quartet trees displayed by N , accounting for their multiplicities, to obtain

ρ̃xy(N ) = 1

μ(N )

∑

T∈T (N )

μ(T , N ) · ρxy(T ). (8)

That is, the ρ̃xy-value for a pair of leaves (x, y) of a quarnet N is simply the average
ρxy-values for all the quartet trees that N displays, weighted by multiplicity. If N is
a quartet tree, this reduces to Eq. (4). In case the quarnet is strictly level-1, we obtain
thatμ(N ) = 2 andμ(T , N ) = 1, resulting in ρ-values of either 1/2 or 1. This exactly
coincides with the ρ-values used for NANUQ (Allman et al. 2019).

Figure4 illustrates pairwise ρ̃-values for several outer-labeled planar, galled quar-
nets. For a quarnet to be galled, every hybrid node must be parental to a leaf, but
otherwise the hybrid nodes may be chosen arbitrarily in these examples, as long as
their choice results in a valid semi-directed network. Thus, for the quarnet in the sec-
ond column of Figure 4, exactly one of {x, y, z, w} needs to be a hybrid, whereas for
the third column exactly one of {x, y} and one of {z, w} need to be hybrids. As an
example, note that — independent of the choice of hybrids — the quarnet in the third
column displays the quartet xy|zw with multiplicity 3, the quartet xz|yw with multi-
plicity 1, and the quartet xw|yz with multiplicity 0, resulting in the shown ρ̃-values
of 1/4, 3/4 and 1. Because contracting a 2-blob, or contracting either a 3-blob or a
3-cycle within a blob to a node, has no impact on displayed tree topologies, the values
of ρ̃ hold slightly more generally.

As was the case for phylogenetic trees, this newly defined ρ̃ gives rise to a metric
on the leaf set of an n-leaf semi-directed network. Recall that N |xyzw is the induced
quarnet on the leaf set {x, y, z, w} of a semi-directed network N .

Definition 3.1 (Displayed quartet metric) Let N be a semi-directed network on leaf
set X with n = |X | ≥ 4. For any pair of leaves x �= y of X we let

d̃N (x, y) =
∑

z,w �=x,y

2 · ρ̃xy(N |xyzw) + 2n − 4, (9)

with d̃N (x, x) = 0. Then, d̃N is the displayed quartet metric of N .

Recall that the ρ̃-value of a quarnet is the average over the ρ̃-values of each quartet it
displays (Eq. (8)). The followingnowgeneralizesLemma21 fromAllman et al. (2019).
Informally, it says that the ρ̃-value of a quarnet of a network N can equivalently be
viewed as a weighted average over N ’s displayed trees of the ρ-values of their induced
quartets.

Lemma 3.2 Let N be a semi-directed network on leaf set X with |X | ≥ 4. If
{x, y, z, w} ⊆ X, then

ρ̃xy(N |xyzw) = 1

μ(N )

∑

T∈T (N )

μ(T , N ) · ρxy(T |xyzw).
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Fig. 4 Top: Five undirected graphs N̄ that can be obtained by undirecting an outer-labeled planar, galled
quarnet N on leaf set {x, y, z, w} after contracting 2-blobs, 3-blobs, and 3-cycles within a blob. To make
N̄ semi-directed again (disregarding the creation of 2-blobs, 3-blobs and 3-cycles), hybrid nodes can be
chosen only from the articulation nodes of the undirected blobs since N must be galled, as long as N remains
semi-directed. Middle: The values ρ̃..(N ) (as defined in Eq. (8)) in case N is outer-labeled planar, galled
and N̄ is as in the top row are shown on edges connecting two taxa. Bottom: The values ρ..(N ) (as defined
in Eq. (10)) in case N is outer-labeled planar, galled and N̄ is as in the top row

Proof Suppose that N has r hybrid nodes and that N |xyzw has p ≤ r hybrid nodes.
Then, μ(N |xyzw) = 2p and μ(N ) = 2r , so that

μ(N |xyzw) = 2p−rμ(N ),

and for any quartet tree T ′ on {x, y, z, w},

μ(T ′, N |xyzw) = 2p−r
∑

T∈T (N ):
T |xyzw=T ′

μ(T , N ).

Thus,

ρ̃xy(N |xyzw) = 1

μ(N |xyzw)

∑

T ′∈T (N |xyzw)

μ(T ′, N |xyzw) · ρxy(T
′)

= 1

2p−rμ(N )

∑

T ′∈T (N |xyzw)

2p−r
∑

T∈T (N ):
T |xyzw=T ′

μ(T , N ) · ρxy(T |xyzw)

= 1

μ(N )

∑

T∈T (N )

μ(T , N ) · ρxy(T |xyzw).

��
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The next theorem generalizes Theorem 23 of Allman et al. (2019), showing that
the displayed quartet metric on a network is simply a weighted sum of the metrics on
its displayed trees.

Theorem 3.3 Let N be a semi-directed network on leaf set X with |X | ≥ 4 and let
{x, y} ⊆ X. Then,

d̃N (x, y) = 1

μ(N )

∑

T∈T (N )

μ(T , N ) · dT (x, y).

Proof Let n = |X |. Using Definition 2.10 and 3.1, Lemma 3.2, and the equality
μ(N ) = ∑

T∈T (N ) μ(T , N ), we obtain

d̃N (x, y)
3.1=

∑

z,w �=x,y

2 · ρ̃xy(N |xyzw) + 2n − 4

3.2=
∑

z,w �=x,y

2 ·
⎡

⎣ 1

μ(N )

∑

T∈T (N )

μ(T , N ) · ρxy(T |xyzw)

⎤

⎦ + 2n − 4

= 1

μ(N )

∑

T∈T (N )

μ(T , N )

⎡

⎣
∑

z,w �=x,y

2ρxy(T |xyzw)

⎤

⎦ + 2n − 4

2.10= 1

μ(N )

∑

T∈T (N )

μ(T , N ) · dT (x, y).

This theorem shows that the metric d̃N is a weighted sum of quartet metrics, with
nonnegative weights. Recall that from Corollary 2.13, each of these metrics is cir-
cular decomposable and has the induced splits of the corresponding tree as support.
Together with the fact that Split(T (N )) is a circular split system if N is outer-labeled
planar (Proposition 2.9) and by the uniqueness of the split decomposition of a circular
decomposable metric (Bandelt and Dress 1992), we obtain the following result.

Corollary 3.4 Let N be a semi-directed, outer-labeled planar network on at least four
leaves. Then, the displayed quartet metric d̃N is circular decomposable, with support
Split(T (N )).

4 NANUQmetric of a phylogenetic network

The displayed quartet metric d̃N of a network N presented in the last section has a
straightforward connection to the quartet metrics of displayed trees. However, one of
its components, the multiplicity of a displayed quartet, is not likely to be obtainable
from data. In this section, we propose a different network generalization of the quartet
tree metric that does not account for these multiplicities.

First, we introduce a different generalization of ρ from Section 2.3. Let N be a
semi-directed network on four leaves {x, y, z, w} (which could be a quartet tree), i.e.,
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N is a quarnet. Then, in contrast to ρ̃ of the previous section, we ignore multiplicities
and instead define

ρxy(N ) = 1

|T (N )|
∑

T∈T (N )

ρxy(T ). (10)

That is, ρ for a pair of leaves of a quarnet is the unweighted average ρ of all the quartet
trees N displays. In case N is strictly level-1, |T (N )| = 2, and so this new extension
coincides exactly with the ρ̃-value defined in Eq. (8), and hence also with the ρ that
is used for NANUQ (Allman et al. 2019). For other levels, this newly defined ρ and
the ρ̃ from Eq. (8) are generally different (see Figure 4).

As before, ρ induces a corresponding metric on the leaves of a semi-directed net-
work with four or more leaves. Since this metric will be the main generalization of
the metric in Allman et al. (2019), we call it the NANUQ metric.

Definition 4.1 (NANUQmetric) Let N be a semi-directed network on leaf set X with
n = |X | ≥ 4. For any pair of leaves x �= y of X , let

dN (x, y) =
∑

z,w �=x,y

2 · ρxy(N |xyzw) + 2n − 4, (11)

with dN (x, x) = 0. Then, dN is the NANUQ metric of N .

An immediate consequence of the definition and Theorem 3.3 is the following,
expressing the NANUQ metric as a sum of quartet metrics of the displayed trees of
the network, plus an error term.

Lemma 4.2 Let N be a semi-directed network on leaf set X with |X | ≥ 4 and let
{x, y} ⊆ X. Then,

dN (x, y) = 1

μ(N )

∑

T∈T (N )

dT (x, y) · μ(T , N ) + ε(x, y),

where ε(x, y) = 2 · ∑
z,w �=x,y(ρxy(N |xyzw) − ρ̃xy(N |xyzw)).
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Proof Let n = |X |. Then,

dN (x, y) =
∑

z,w �=x,y

2 · ρxy(N |xyzw) + 2n − 4

=
∑

z,w �=x,y

2 · (ρ̃xy(N |xyzw) + ρxy(N |xyzw) − ρ̃xy(N |xyzw)) + 2n − 4

= d̃N (x, y) +
∑

z,w �=x,y

2 · (ρxy(N |xyzw) − ρ̃xy(N |xyzw))

= 1

μ(N )

∑

T∈T (N )

dT (x, y) · μ(T , N ) + 2
∑

z,w �=x,y

(ρxy(N |xyzw) − ρ̃xy(N |xyzw))

= 1

μ(N )

∑

T∈T (N )

dT (x, y) · μ(T , N ) + ε(x, y).

��

4.1 NANUQmetric is circular decomposable for level-2 bloblet networks

In the rest of this section, we restrict to networks in the class B2 with at least four
leaves and show that the NANUQ metric is circular decomposable for this class.
Recall that this class contains all semi-directed, level-2, outer-labeled planar, galled,
bloblet networks. Furthermore, B′

2 contains all strictly level-2 networks in this class
(see Figure 5 for a general example of a network in B′

2). Note that parallel edges
(2-cycles) only appear as a 2-blob for a network inN2, and since a k-taxon bloblet in
B2 ⊆ N2 with k ≥ 3 cannot have a 2-blob, we do not need to consider parallel edges
for such bloblets.

For convenience, we assign a standard partition of the leaves to the networks in
B′

2. As shown in Figure 5, the leaf set X of such a network can be partitioned as
P = {A1, A2, B1, B2,C1,C2}, uniquely up to the interchange of A with B and 1 with
2. We call P a canonical partition of X . Here, we write A = A1 ∪ A2, B = B1 ∪ B2
and C = C1 ∪ C2, where C contains the two hybrids of N .

We say that a set of leaves S is on cycle 1 (resp. on cycle 2) of N if S ⊆ A1∪B1∪C1
(resp. S ⊆ A2 ∪ B2 ∪ C2), and that the set S is on the same cycle if either of these
holds.

The following lemmapresents an exact expression for the error term ε of Lemma4.2
for a network inB′

2. In stating it, indices i are taken modulo 2, so, for example, when
i = 2 the set Ai+1 is A1.

Lemma 4.3 Let N be a semi-directed network on leaf set X from the class B′
2 with

|X | ≥ 4 and let P be a canonical partition of X. Let {x, y} be any pair of leaves from
X. Then,

dN (x, y) = 1

4

∑

T∈T (N )

dT (x, y) · μ(T , N ) + ε(x, y),
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Fig. 5 A general strictly level-2
network from the class B′

2 with
a canonical partition
P = {A1, A2, B1, B2,C1,C2}
of its (unlabeled) leaves.

where ε(x, y) = ε(y, x) and

ε(x, y) = 1

2
·

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

−|A1||A2| − |B1||B2| if x ∈ Ci and y ∈ Ci+1,

|Ai+1| + |Bi+1| if x ∈ Ci and y ∈ Ai ∪ Bi ,

−|Bi | if x ∈ Ci and y ∈ Ai+1,

−|Ai | if x ∈ Ci and y ∈ Bi+1,

−1 if x ∈ Ai and y ∈ Ai+1, or x ∈ Bi and y ∈ Bi+1,

0 otherwise.

(12)

Proof Since μ(N ) = 22 = 4, by Lemma 4.2 all that remains is to compute the error
term ε, where

ε(x, y) = 2
∑

z,w �=x,y

(ρxy(N |xyzw) − ρ̃xy(N |xyzw)).

Next, note that for any N |xyzw its underlying undirected network N̄ = N |xyzw with 3-
cycles contracted appears — up to relabeling the leaves— in one of the three leftmost
columns of the top row of Figure 4. Specifically, if N |xyzw contains no 4-blob, N̄ will
be the quartet tree in the far-left column, if N |xyzw has a strict level-1 4-blob or a strict
level-2 4-blob with a 3-cycle, N̄ appears in the second column; otherwise, it appears
in the third column. Figure 4 also gives the value of ρxy(N |xyzw)− ρ̃xy(N |xyzw), with
this expression being non-zero only when N |xyzw is strictly level-2 after contracting
3-cycles and x, y are adjacent in the induced circular order. In particular, if these
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conditions hold, then

ρxy(N |xyzw) − ρ̃xy(N |xyzw) =
{
1/4 if x, y are on the same cycle,

−1/4 if x, y are on different cycles.

Computing ε(x, y) is now a matter of checking every quarnet of N on leaves x
and y to see if it falls in one of the above two classes contributing a non-zero term.
To simplify this, note that the sign of ε is completely determined by whether x and
y are on the same cycle or not. Next, note that a quarnet on x and y can only be
strictly level-2 after contracting 3-cycles, if (i) the quarnet has the two hybrids in its
leaf set (otherwise it would be at most level-1); and (ii) it has two leaves on each
cycle (otherwise one of the cycles would be a 3-cycle which would be contracted).
Furthermore, recall from above that (iii) the term is non-zero only when x and y are
adjacent in the quarnet order.

Thus, to determine ε(x, y) it suffices to first count the number of choices of the
other two leaves z andw such that the induced quarnet satisfies the conditions (i)-(iii).
Multiplying this count by 1

4 · 2 = 1
2 , and then determining the sign as above yields the

value.
Case 1: x ∈ Ci and y ∈ Ci+1. Condition (i) is already satisfied. To adhere to

condition (iii), we can either pick both leaves z, w in A or both in B. To adhere to
condition (ii), z, w must be on different cycles. In total, this gives |A1||A2|+ |B1||B2|
choices of z and w.

Case 2: x ∈ Ci and y ∈ Ai ∪ Bi . By condition (i), we must pick the other hybrid
in Ci+1. Then, to make x and y adjacent (condition (iii)) and to force them to have
two leaves on either cycle (condition (ii)), there are exactly |Ai+1| + |Bi+1| choices.

Case 3: x ∈ Ci and y ∈ Ai+1. Again, we need to pick the other hybrid in Ci+1 for
condition (i). Then, there are |Bi | choices for the fourth leaf to satisfy the other two
conditions.

Case 4: x ∈ Ci and y ∈ Bi+1. Analogous to Case 3.
Case 5: x ∈ Ai and y ∈ Ai+1 or x ∈ Bi and y ∈ Bi+1. In this case, we need to

pick the two hybrids in C to satisfy all conditions. Hence, there is only one choice.
Case 6: otherwise. In this case, we have that for some i ∈ {1, 2} (1): {x, y} ⊆ Ai ,

(2): {x, y} ⊆ Bi , (3): x ∈ Ai and y ∈ Bi (or vice versa), or (4): x ∈ Ai and y ∈ Bi+1
(or vice versa). In all cases, we need to pick the two hybrids. But then, either condition
(ii) or condition (iii) is not satisfied. Thus, there are no valid choices. ��

Having expressed the NANUQ metric for networks in B′
2 as a sum of the circular

decomposable quartet metric and an explicit error term, we can now show that the
NANUQmetric is itself circular decomposable. As a first step we compute bounds on
the split weights αi j (see Proposition 2.8).

Given a bloblet N inB′
2 with leaf set X and canonical partition P , each of its dis-

played trees can be obtained by removing one hybrid edge for each of the two hybrids.
Allowing for multiplicities, this gives rise to four displayed trees (see Figure 6). We
denote these trees by T�1�2 with �i ∈ {Ai , Bi }, where, for example, �i = Ai means
that the hybrid edge incident to Ci and joined to the subgraph on Ai is kept intact, but
its partner hybrid edge (attached to the Bi subgraph) is removed. Hence, when taking
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Fig. 6 The four trees displayed by a general semi-directed network from the class B′
2, using the labeling

from Figure 5. If some of the taxon sets Ai , Bi are empty, some of these trees may be isomorphic and have
a different topology

multiplicities into account, every network N then has the displayed trees TA1A2 , TA1B2 ,
TB1A2 and TB1B2 (see again Figure 6). Here, multiplicities arise if some of the sets
Ai , Bi are empty. For example, the trees TA1A2 and TB1A2 are isomorphic if A1 and
B1 are empty.

We call a non-trivial split of a displayed tree T a major split if it separates the
leaves in A from those in B. Hence, a major split is of the form A|B ∪ C , A ∪ C |B,
A∪C1|B∪C2, or A∪C2|B∪C1. As an example, if |A|, |B| ≥ 1, then A∪C1|B∪C2
is a major split of TA1B2 .

Lemma 4.4 Let N be a network on leaf set X from the classB′
2 with n = |X | ≥ 4,P a

canonical partition of X, and C = (x0, . . . , xn = x0) the circular order induced by N.
Let T = T�1�2 be a displayed tree of N , dT the quartet metric on T , and Si j ∈ S(C)

a split. Then,

(a) αi j (dT ) = 0, if Si j /∈ Split(T );
(b) αi j (dT ) ≥ 2|X | − 4 > 0, if Si j ∈ Split(T );
(c) αi j (dT ) > 2|A1||A2| + 2|B1||B2|, if Si j ∈ Split(T ) and Si j is a major split of T .

Proof Note that C is an induced order for T , so Split(T ) ⊆ S(C). By Corollary 2.13,
dT is circular decomposable and its support is Split(T ). Statement (a) then follows
from Proposition 2.8.

To prove statements (b) and (c), let Si j ∈ Split(T ) be arbitrary and e the unique
edge of T inducing it. Again, by Proposition 2.8 and Corollary 2.13, we already have

αi j (dT ) = dT (xi , x j ) + dT (xi+1, x j+1) − dT (xi , x j+1) − dT (xi+1, x j ) > 0.

First suppose that i + 1 �= j and j + 1 �= i . Then, since Si j is the split induced by
e, x j+1xi |xi+1x j is a quartet induced by T whose internal edge is e. By the 4-point
condition for additive metrics on trees (Buneman 1971),

αi j (dT ) = dT (xi , x j ) + dT (xi+1, x j+1) − dT (xi , x j+1) − dT (xi+1, x j ) = 2 · w(e),
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wherew(e) is the length of e under the quartetmetrization. If i+1 = j or j+1 = i , we
similarly obtain thatαi j = 2·w(e). FromProposition 2.11,wehave thatw(e) ≥ |X |−2
and (b) follows.

Now suppose that Si j is a major split of T . Using Eq. (6), even if some of the sets
A1, A2, B1, B2 are empty, we then always have that w(e) > |A1||A2| + |B1||B2| and
the bound in (c) follows. ��

The next lemma shows that if N is a network from the classB′
2 inducing the circular

order C and Si j ∈ S(C), then, if Si j is not induced by any displayed tree of N , its split
weight will be zero under dN .

Lemma 4.5 Let N be a network on leaf set X from the class B′
2 with n = |X | ≥ 4,

C = (x0, . . . xn = x0) the circular order induced by N, and Si j ∈ S(C). If Si j /∈
Split(T (N )), then αi j (dN ) = 0.

Proof Recall that μ(N ) = 4. For simplicity, we thus show the result for the
distances 4 · dN . Let P be a canonical partition of X . Denote by T̃ (N ) =
{TA1A2 , TA1B2 , TB1A2 , TB1B2} the multiset of trees displayed by N . Then, using the
equation from Lemma 4.3 and the fact that μ(T , N ) = 1 when summing over all
trees T in the multiset T̃ (N ),

4 · dN (x, y) =
∑

T∈T̃ (N )

dT (x, y) + 4 · ε(x, y),

with ε(x, y) as in Lemma 4.3. Let Y = {xi , xi+1, x j , x j+1} and suppose Si j /∈
Split(T (N )). Then Si j is a non-trivial split, and thus xi+1 �= x j and x j+1 �= xi .
Hence, |Y | = 4.

As shorthand notation, let dkl = 4 · dN (xk, xl) and εkl = 4 · ε(xk, xl). Similarly,
for a tree T ∈ T̃ (N ), let d ′

kl(T ) = dT (xk, xl), and d ′
kl = ∑

T∈T̃ (N ) d
′
kl(T ). Then

Lemma 4.3 states that dkl = d ′
kl + εkl . Lastly, we write D1 = di, j + di+1, j+1,

D2 = di, j+1 + di+1, j , so that D1 and D2 correspond to the positive and negative
terms for αi j from Proposition 2.8. Similarly, we write D′

p, D
′
p(T ), and Ep with

p ∈ {1, 2} for analogs of this expression using d ′, d ′(T ), and ε, respectively.
In this notation,

αi j (4 · dN ) = D1 − D2 = (D′
1 − D′

2) + (E1 − E2).

Since Si j /∈ Split(T (N )) and αi j (dT ) = D′
1(T ) − D′

2(T ), Lemma 4.4(a) implies that
D′
1(T ) − D′

2(T ) = 0 for all T ∈ T̃ (N ), and hence D′
1 − D′

2 = 0. It is therefore
enough to show E1 = E2. To do so, we consider three cases.

Case |Y ∩C | = 0: Since all leaves in Y are non-hybrids and xi , xi+1 are neighbors
in C, {xi , xi+1} is a subset of A or of B. Similarly, {x j , x j+1} is a subset of A or of B.
If {xi , xi+1} ⊆ A and {x j , x j+1} ⊆ B (or vice versa), then from Eq. (12) we obtain
that E1 = E2 = 0. On the other hand, if {xi , xi+1} ⊆ A and {x j , x j+1} ⊆ A (or both
are subsets of B), then by Eq. (12) we get that E1 = E2 ∈ {0,−2,−4}.

Case |Y ∩C | = 1: Without loss of generality, assume xi = c1 ∈ C1 and xi+1 ∈ B.
Note that either {x j , x j+1} ⊆ A or {x j , x j+1} ⊆ B, since x j , x j+1 are non-hybrids
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adjacent in C. Assume first that {x j , x j+1} is a subset of exactly one of A1, A2, B1, or
B2. Then, since the error terms in Eq. (12) depend only on the specific set in which
the leaves are contained, it follows that εi, j = εi, j+1 and εi+1, j+1 = εi+1, j and that
E1 = E2.

Assume now that x j ∈ B1 and x j+1 ∈ B2, and hence xi+1 ∈ B1. Then Si j is, for
instance, a split of TA1B2 , a contradiction. With the circular order C, it is not possible
that x j ∈ B2 and x j+1 ∈ B1, since xi+1 is not a hybrid. If x j ∈ A2 and x j+1 ∈ A1, then
the split Si j is a split of TA1B2 (also TA1A2 ), a contradiction. Lastly, since xi+1 ∈ B, it
is not possible that x j ∈ A1 and x j+1 ∈ A2.

Case |Y ∩C | = 2:Wewill show that in this case the split Si j will always be induced
by a displayed tree, and hence this case cannot occur. We may again assume xi ∈ C1.

If x j ∈ C2, we may also assume that xi+1 ∈ B and x j+1 ∈ A. Then, Si j is a split in
the displayed tree TA1B2 . Similarly, if x j+1 ∈ C2, we may assume that xi+1, x j ∈ B.
Then, Si j is a split in the displayed tree TA1A2 . Finally, if xi+1 ∈ C2, then either A or
B is empty. Assuming the latter, then, x j , x j+1 ∈ A and Si j is a split in TA1A2 . ��

The next lemma can be seen as a counterpart to Lemma 4.5. It says that if N is a
network from the class B′

2 inducing the circular order C and Si j ∈ S(C), then, if Si j
is induced by some displayed tree of N , its split weight will be strictly positive under
dN .

Lemma 4.6 Let N be a network on leaf set X from the class B′
2 with n = |X | ≥ 4,

let C = (x0, . . . , xn = x0) be the circular order induced by N, and let Si j ∈ S(C). If
Si j ∈ Split(T (N )), then αi j (dN ) > 0.

Proof Let P be a canonical partition of X , let Si j ∈ Split(T (N )) ⊆ S(C) be arbitrary
and let Y = {xi , xi+1, x j , x j+1}. Note that we have |Y | ≥ 3 (as |Y | ≤ 2 does not
correspond to a split Si j ). We again show the result for the distances 4 · dN , using the
same notation as in the proof of Lemma 4.5. We consider four main cases.

Case 1, |Y ∩ C | = 0 and |Y | = 4: In this case, all leaves in Y are non-hybrids
and thus |X | ≥ 6. Then, by Eq. (12), E1 ≥ −4 and E2 ≤ 0. Hence, E1 − E2 ≥ −4.
Since Si j ∈ Split(T̃ (N )), there is a tree T ∈ T̃ (N ) which induces Si j . Then, relying
on the definition of αi j from Proposition 2.8, αi j (dT ) =D′

1(T ) − D′
2(T ) ≥ 2|X | − 4

by part (b) of Lemma 4.4, while for all the other trees T ′ ∈ T̃ (N ) by parts (a) and (b)
of Lemma 4.4, αi j (dT ′) =D′

1(T
′) − D′

2(T
′) ≥ 0. Thus, D′

1 − D′
2 ≥ 2|X | − 4 ≥ 8.

Therefore, αi j (4 · dN ) = (D′
1 − D′

2) + (E1 − E2) > 0.
Case 2, |Y ∩C | = 1 and |Y | = 4: In this case, there is exactly one hybrid leaf in Y ,

and we may assume xi ∈ C1, xi+1 ∈ B and that the circular order C goes clockwise
in Figure 5. Then x j , x j+1 are both in B or both in A, which we consider as subcases.

Case 2.1, x j , x j+1 ∈ B: If xi+1 ∈ B2, then because the circular order C goes
clockwise in Figure 5, we must have x j , x j+1 ∈ B2. Then by Eq. (12), E1 = E2,
so D1 − D2 = D′

1 − D′
2 > 0 by Lemma 4.4(b). If xi+1, x j , x j+1 ∈ B1, or if

xi+1 ∈ B1 and x j , x j+1 ∈ B2, we similarly find E1 = E2 and D1 − D2 > 0. Lastly,
if xi+1, x j ∈ B1 and x j+1 ∈ B2, then E1 = 2|A2| + 2|B2| − 2 and E2 = −2|A1|,
so E1 − E2 = 2(|A2| + |B2| + |A1| − 1) > 0. We again have that D′

1 − D′
2 > 0 by

Lemma 4.4(b), so D1 − D2 > 0.
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Case 2.2, x j , x j+1 ∈ A: By Eq. (12), εi+1, j = εi+1, j+1 = 0, so E1 = εi, j and
E2 = εi, j+1. Moreover, we cannot have x j , x j+1 ∈ A2, because then Si j would not be
a split of a tree in T̃ (N ). If x j , x j+1 ∈ A1, then E1 = E2. By Lemma 4.4(b) we know
that D′

1−D′
2 > 0, so we get that D1−D2 > 0. If instead x j ∈ A2 and x j+1 ∈ A1, then

E1 = −2|B1| and E2 = 2|A2| + 2|B2|. So, E1 − E2 = −2|A2| − 2|B1| − 2|B2| ≥
−2|X | + 6. Note that in this case Si j is a split in both TA1A2 and TA1B2 . Hence,
D′
1 − D′

2 ≥ 4|X | − 8 by Lemma 4.4(b). Thus, D1 − D2 > 0.
Case 3, |Y ∩C | = 2 and |Y | = 4: Without loss of generality, assume that xi ∈ C1

and that the circular order C goes clockwise in Figure 5. We consider three cases
depending on the location of the other hybrid in the circular order of the 4 taxa.

Case 3.1, xi+1 ∈ C2: For xi and xi+1 to be neighbors in C, we must have that
|B| = 0. We now consider two subcases, noting that the case x j , x j+1 ∈ A1 follows
from Case 3.1a by symmetry.

• Case 3.1a, x j , x j+1 ∈ A2: In this case εi, j = εi, j+1 and εi+1, j = εi+1, j+1, so
E1 = E2. Since D′

1 − D′
2 > 0 by Lemma 4.4(b), D1 − D2 > 0.

• Case 3.1b, x j ∈ A2 and x j+1 ∈ A1: Now, E1 = −2|B1|−2|B2| = −2|B| = 0 and
E2 = 2|A1| + 2|B1| + 2|A2| + 2|B2| = 2|A| (since |B| = 0 in Case 3.1). Hence,
E1− E2 = −2|A| = −2|X |+4. Since Si j is a split of TA1A2 , TA1B2 and TB1A2 , by
Lemma 4.4(b), D′

1−D′
2 ≥ 6|X |−12. Thus, D1−D2 = (D′

1−D′
2)+(E1−E2) ≥

4|X | − 8 > 0.

Case 3.2, x j ∈ C2: We consider three subcases. Note that the case where xi+1 ∈
B2 and x j+1 ∈ A2 is analogous to Case 3.2c. Furthermore, we have that E1 =
−2|A1||A2| − 2|B1||B2| in all three subcases.
• Case 3.2a, xi+1 ∈ B1 and x j+1 ∈ A2: Thus, E2 = −2|B1|−2|A2|. Next, note that

Si j is a major split of TA1B2 . Thus, by Lemma 4.4(c), D′
1 − D′

2 ≥ D′
1(TA1B2) −

D′
2(TA1B2) > 2|A1||A2| + 2|B1||B2|. Since E1 − E2 ≥ E1 ≥ −2|A1||A2| −

2|B1||B2|, we have D1 − D2 = (D′
1 − D′

2) + (E1 − E2) > 0.
• Case 3.2b, xi+1 ∈ B2 and x j+1 ∈ A1: Since xi , xi+1 and x j , x j+1 are neighbors
in C, |A2| = |B1| = 0. Thus E1 = 0 and since ε j,i+1 = 2|A1| + 2|B1| =
2|A1| and ε j+1,i = 2|A2| + 2|B2| = 2|B2|, we find E2 = 2|A1| + 2|B2|. Thus
E1−E2 = −2|A1|−2|B2| = −2|X |+4. Since Si j is a split of TA1,A2 and TA1,B2 ,
by Lemma 4.4(b), D′

1 − D′
2 ≥ 4|X | − 8 and it follows that D1 − D2 > 0.

• Case 3.2c, xi+1 ∈ B1 and x j+1 ∈ A1: We must have |A2| = 0. Moreover,
ε j,i+1 = −2|A2| = 0 and ε j+1,i = 2|A2|+2|B2| = 2|B2|, so E2 = 2|B2|. Using
|A2| = 0 again, E1 − E2 = −2|B1||B2| − 2|B2|. Then, since Si j is a major split
of TA1A2 and TA1B2 , we have by Lemma 4.4(c) that D′

1(TA1A2) − D′
2(TA1A2) >

2|A1||A2| + 2|B1||B2| = 2|B1||B2|, and similarly D′
1(TA1B2) − D′

2(TA1B2) >

2|B1||B2|. Thus, D′
1−D′

2 > 4|B1||B2| and so D1−D2 = (D′
1−D′

2)+(E1−E2) >

2|B1||B2| − 2|B2| ≥ 0. In particular, D1 − D2 > 0.

Case 3.3, x j+1 ∈ C2: We consider two subcases. Note that the case with xi+1, x j ∈
B1 follows from Case 3.3b by symmetry.

• Case 3.3a, xi+1 ∈ B1 and x j ∈ B2: Then, E1 = −2|A1| − 2|A2| = −2|A| and
E2 = −2|A1||A2|−2|B1||B2|−2.Hence, E1−E2 ≥ E1 = −2|A| ≥ −2(|X |−4)
using that |B|, |C | ≥ 2 in this case. Then, since Si j is a split in TA1A2 , we have by
Lemma 4.4(b) that D′

1 − D′
2 ≥ 2|X | − 4. Thus, D1 − D2 > 0.
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• Case 3.3b, xi+1, x j ∈ B2: Since xi and xi+1 are neighbors in C, we must
have |B1| = 0. We also have E1 = −2|A1| + 2|B1| + 2|A1| = 0 and
E2 = −2|A1||A2| − 2|B1||B2| = −2|A1||A2|. Thus, E1 − E2 ≥ 0. Since
D′
1 − D′

2 > 0 by Lemma 4.4(b), it follows that D1 − D2 > 0.

Case4, |Y | = 3:Wemayassume xi+1 = x j , so E1 = εi, j+ε j, j+1 and E2 = εi, j+1.
Moreover, since Si j is the trivial split {x j } | (

X \ {x j }
)
which appears in all four trees

in T̃ (N ), by Lemma 4.4(b), D′
1 − D′

2 ≥ 8|X | − 16. If |Y ∩ C | = 0, the argument for
Case 1 applies (with |X | ≥ 5) , so we may henceforth assume |Y ∩ C | ≥ 1. We are
left with the following four subcases, up to symmetry.

Case 4.1, xi ∈ C and x j , x j+1 /∈ C : In this case, we have that E1 ≥
−2max{|A1|, |A2|, |B1|, |B2|} − 2 ≥ −2(|X | − 2) − 2 = −2|X | + 2, while
E2 ≤ 2max{|A1| + |B1|, |A2| + |B2|} ≤ 2|X | − 4. Hence, E1 − E2 ≥ −4|X | + 6.
Thus, since D′

1 − D′
2 ≥ 8|X | − 16, we obtain D1 − D2 > 0.

Case 4.2, x j ∈ C and xi , x j+1 /∈ C : In this case we get that E1 ≥
−4max{|A1|, |A2|, |B1|, |B2|} ≥ −4|X | + 8, while E2 ≤ 0. Hence, E1 − E2 ≥
−4|X | + 8 and again D1 − D2 > 0 as in Case 4.1.

Case 4.3, xi , x j ∈ C and x j+1 /∈ C :Wemay assume that xi ∈ C1, x j = xi+1 ∈ C2.
Since xi and xi+1 are neighbors in C, we may also assume |B| = 0 and x j+1 ∈ A2.
Then, E1 = −2|A1||A2| − 2|B1||B2| + 2|A1| + 2|B1| = −2|A1||A2| + 2|A1|. Since
E2 = −2|B1| = 0, we see E1 − E2 = −2|A1||A2| + 2|A1|. Now consider the
tree TA1B2 and let e be the edge in this tree inducing the split Si j = C2| (X \ C2).
Then, under the quartet metrization w, we have that w(e) = (|A1| + 1)|A2| (see
Eq. (7)). Hence, by a similar argument as in the proof of Lemma 4.4(c), we obtain
that D′

1 − D′
2 ≥ D′

1(TA1B2) − D′
2(TA1B2) > 2|A1||A2|. Therefore, D1 − D2 =

(D′
1 − D′

2) + (E1 − E2) > 0.
Case 4.4: xi , x j+1 ∈ C and x j /∈ C . By symmetry, we may assume that xi ∈ C1,

x j ∈ B1 and x j+1 ∈ C2, so |B1| = 1 and |B2| = 0. Then, E1 = 2|A2| + 2|B2| −
2|A2| = 2|B2| = 0 and E2 = −2|A1||A2| − 2|B1||B2| = −2|A1||A2|. Hence,
E1 − E2 ≥ 0, so D1 − D2 > 0. ��

Wenowshow that theNANUQmetric is circular decomposablewith support exactly
the set of splits induced by the displayed trees of a network. We conjecture that this
theorem can be extended to the classN2 (for some more details, see the discussion in
Section 6).

Theorem 4.7 Let N be a semi-directed network on at least four leaves from the
class B2. Then, the NANUQ metric dN is circular decomposable and its support
is Split(T (N )).

Proof Wemay assume that N is inB′
2, i.e., is strictly level-2, since the result is known

for level-1 networks (Allman et al. 2019). By Proposition 2.9, Split(T (N )) is a circular
split system congruent with the circular order induced by N . Then, by Proposition 2.8
and Lemma 4.5 and 4.6, dN is circular decomposable and has support Split(T (N )). ��
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Fig. 7 Illustration of operations (i)-(vi i i) used in Definition 5.1.

5 Identifiability of a canonical form

In this section, we prove identifiability results for a canonical form of networks inB2
and N2, which can be obtained by applying a series of operations introduced below.
Since the canonical formmay not itself be a semi-directed network, its main purpose is
not to infer the quartet-related properties from previous sections directly — although
quartet information can still be recovered by reversing the operations until a valid
semi-directed network is reached. Instead, the canonical form is primarily intended
to determine whether a pair of networks is distinguishable. Moreover, it captures the
essential features relevant for inference and reflects the kind of output one would
expect from an algorithmic method based on our results (see also the discussion in
Section 6).

Recall fromSection 2 that, given a semi-directed network N on X , the semi-directed
network obtained by contracting its 2-blobs is the network where every 2-blob in N is
replaced by a degree-2 node which is then suppressed (see Figure 7(i)). Similarly, the
semi-directed network obtained by contracting its 3-blobs is the network where every
3-blob in N is replaced by a degree-3 node (see Figure 7(ii)). By contracting a 3-cycle
in a blob B, we mean that the 3-cycle is replaced by a single node (see Figure 7(v)).
By undirecting a 4-cycle in a semi-directed network, wemean that every directed edge
in the 4-cycle is replaced with an undirected edge (see Figure 7(viii)). Since actions
such as these result in graphs which are not necessarily semi-directed networks, we
refer to these as ‘mixed graphs’.

If N is outer-labeled planar, each k-blob B of N (with k ≥ 4) induces a unique
circular order of the subnetworks around the blob B (Rhodes et al. 2025). The mixed
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Fig. 8 The four possible 3-cycle-free 5-leaf networks in B2, up to relabeling the leaves. Each subfigure
contains networks with the same canonical form. The networks N2 and N3 both have a dts-undetectable
4-cycle (in thick black), and their canonical form is the network N1. The network N4 consists of the split
symmetric 5-blob, with its canonical form obtained by replacing the blob by a completely undirected 5-cycle
(see also Figure 7(iv)).

graph obtained from N by replacing B by its representative cycle is the graph where
B is replaced with an undirected k-cycle inducing the same circular order of the
subnetworks around B (see e.g. Figure 7(iii) and (iv)).

Leading up to Definition 5.1, we restrict attention to N inN2, and B inB′
2 a k-blob,

k ≥ 5, with hybrid nodes u and v. If B is a 5-blob that is isomorphic to the blob of
Figure 8(b), then we say B is split symmetric. This naming stems from the fact that
the set of splits of the displayed trees in such a blob remains the same when cyclically
permuting the leaves.

A 4-cycle in B is a dts-undetectable 4-cycle (displayed-tree-split undetectable 4-
cycle) if it contains a hybrid node u and a parent pv of the other hybrid node v.
See Figure 8(a) for two dts-undetectable 4-cycles in 5-blobs, and Figure 9(a) for two
dts-undetectable 4-cycles in 6-blobs. Every dts-undetectable 4-cycle can be labeled as
(pu, u, p′

u, w), where pu, p′
u are the two parents of u with pu, u articulation nodes and

one of {p′
u, w} a parent of the other hybrid node v. By suppressing a dts-undetectable

4-cycle (pu, u, p′
u, w), we mean deleting the hybrid edge (pu, u), undirecting the

hybrid edge (p′
u, u), and subsequently suppressing the two resulting degree-2 nodes.

Suppressing a dts-undetectable 4-cycle turns B into a level-1 blob with the same
circular order and with the hybrid v retained as the unique hybrid node in the now-
cycle B (see e.g. Figure 7(vi)).

A non-hybrid edge of B incident to an articulation node is called a frontier edge.
The frontier edges of B are exactly the non-hybrid edges on the ‘outside of the blob’
in a planar representation, such as in Figures 8 anf 9. Lastly, suppose that B is not a
split symmetric 5-blob and does not have a dts-undetectable 4-cycle (note that then
k ≥ 6). A frontier edge {s, t} of B is a dts-undetectable edge (displayed-tree-split
undetectable edge) if (1) both s and t are parents of a hybrid in B, or (2) s is a parent
of a hybrid in B and t is part of a 4-cycle in B (or vice versa). See Figure 9(e) for
examples. Note that since k ≥ 6, each blob can have at most one dts-undetectable
edge.

Theoperations anddefinitions illustrated inFigures 8 to 9, nowpermit the following.
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Fig. 9 The nine possible 3-cycle-free 6-leaf networks in B2, up to relabeling the leaves. Each subfigure
contains networks with the same canonical form. The networks N2 and N3 both have a dts-undetectable
4-cycle (in thick black), with canonical form N1. The networks N7 and N8 have a dts-undetectable edge of
type 1 (in thick black), and network N9 has a dts-undetectable edge of type 2 (in thick black). The canonical
form for the networks in class (e) is non-binary (i.e, the degree of some non-leaf vertex is strictly greater
than 3) and obtained by contracting the thick black edges and undirecting the hybrid edges in the remaining
4-cycle within the blob (see also Figure 7(vii) and (viii))

Definition 5.1 Let N be a semi-directed network on X from the classN2. The canon-
ical form Nc of N is the mixed graph obtained from N by applying the following
operations in order:

(i) contracting every 2-blob;
(ii) contracting every 3-blob;
(iii) replacing every 4-blob with its representative cycle;
(iv) replacing every split symmetric 5-blob with its representative cycle;
(v) contracting 3-cycles in k-blobs (k ≥ 5);
(vi) suppressing dts-undetectable 4-cycles in k-blobs (k ≥ 5);
(vii) contracting dts-undetectable edges in k-blobs (k ≥ 6);
(viii) undirecting the remaining 4-cycles in k-blobs (k ≥ 6)

Since operations (i)-(vi i i) only alter the structure of individual blobs, the opera-
tions result in the same mixed graph independent of the order in which the blobs are
considered. Hence, the canonical form of a network is unique.

The following characterizes those networks whose canonical form matches itself.
Note that for 2-, 3- and 4-cycle-free bloblets in B′

2, the condition that a bloblet is
in canonical form is, equivalently, that the two hybrids xh1 , xh2 are not separated by
exactly one leaf, . . . , xh1 , xl , xh2 , . . . , in the induced circular order.
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Observation 5.2 Let N be a 2-, 3-, and 4-cycle-free semi-directed network from the
classN2 such that the edge distance between two hybrid nodes in any strictly level-2
blob is not 3. Then, N ∼= Nc.

The importance of the canonical form is highlighted in the following.

Lemma 5.3 Let N1 and N2 be two networks from N2 on the same leaf set X. Then,
Nc
1

∼= Nc
2 if and only if Split(T (N1)) = Split(T (N2)).

Proof First note that operations (i)-(vi i i) from Definition 5.1 preserve the tree-of-
blobs of a network. Since the displayed splits of a network uniquely determine its
displayed quartets, and hence its tree-of-blobs (Allman et al. 2023), it suffices to
consider N1, N2 with the same tree-of-blobs. Hence, we can treat the blobs separately
and may assume N1, N2 ∈ B2.

The result is straightforward if n = |X | ∈ {2, 3, 4}, so we assume n ≥ 5 and
disregard operations (i)-(i i i) in Definition 5.1. It can be checked directly that two
networks that are the same after applying operation (iv), which applies to a specific
5-taxon network, have the same displayed splits. We next explain that operations (v)

and (vi), which keep networks in B2, have no effect on the set of splits of the trees
displayed by the network.

Operation (v), contracting a 3-cycle to a node preserves the set of displayed trees,
since a 3-cycle displays exactly the same trees as a 3-leaf tree.

If a network has a dts-undetectable 4-cycle, it must have one of two structures. See
Figures 8(a) and 9(a) for these in 5- and 6-blobs, and note that for n ≥ 7 the cycle at the
‘top’ simply becomes larger (i.e., has more leaves between b and c). The suppression
of these 4-cycles by operation (vi) does remove some of the displayed trees, all of
which are caterpillars, so that, for instance, in N2 of Figure 9 the tree ((( f , e), a))...)

is not displayed anymore. This only removes the split f e|a.... As this split is on other
displayed trees before and after operation (vi), it has no impact on the collection of
splits of the displayed trees.

Next, consider operations (vi i) and (vi i i) of Definition 5.1. We will show that if
two networks become isomorphic after applying these operations, they have the same
displayed splits. If only operation (vi i) (resp. operation (vi i i)) is applied, the pair
of networks must be isomorphic to the pair of networks in Figure 11(a) (resp. Fig-
ure 11(b)). Lastly, if both operations (vi i) and (vi i i) are applied, the pair of networks
comes from the three networks N7, N8, and N9 in Figure 9(e), with possibly more
leaves between b and c if n > 6. Similar to the previous paragraph, it is straightforward
to check that the sets of displayed splits coincide in all three cases.

For the remainder of the proof, we may assume that N1 = Nc
1 and N2 = Nc

2 have
the canonical form produced by applying operations (iv)-(vi i i), so they have no 3-
cycles, no dts-undetectable edges, are not symmetric 5-blobs, may be non-binary only
as produced by operation (vi i), and only have undirected 4-cycles not stemming from
dts-undetectable 4-cycles. That Nc

1 = Nc
2 implies Split(T (N1)) = Split(T (N2)) is

now obvious. It remains to show the converse.
Suppose then that N1 = Nc

1 � Nc
2 = N2. If N1, N2 induce different circular

orders, then by Rhodes (2025), Thm.5.3, the displayed quartets of N1 and N2 differ,
and hence Split(T (N1)) �= Split(T (N2)), as required. Thus we may assume N1 and
N2 induce the same circular orders henceforth.
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Fig. 10 Splits graphs of the displayed splits of the seven sets of networks with different canonical forms in
Figures 8 and 9

Fig. 11 Three pairs of networks from the class B2 used in the proof of Lemma 5.3. Dotted edges indicate
locations where additional leaves may be attached. The networks N1 and N2 in subfigure (a) have n ≥ 7
leaves and 4 ≤ i ≤ n − 3. The networks N3 and N4 in subfigure (b) have n ≥ 7 leaves and 3 ≤ i ≤ n − 4

We will prove that Split(T (N1)) �= Split(T (N2)) by induction on n, with base
cases n = 5 and n = 6. Since Split(T (N1)) and Split(T (N2)) are both (unweighted)
circular split systems, they can be depicted by a splits graph (see e.g. Huson et al.
(2010) for details). Figure 10 shows that the splits graphs of networks from Figures 8
and 9 (i.e., when n = 5 or n = 6) are distinct for different canonical forms. Hence,
the base cases hold.

Now suppose n ≥ 7 and that the theorem holds for smaller n. We will repeatedly
use that if N1|Y c

� N2|Y c for some Y ⊂ X , then Split(T (N1|Y )) �= Split(T (N2|Y ))

by the induction hypothesis, and hence Split(T (N1)) �= Split(T (N2)). We denote this
implication by (∗).

We first consider the case where one network, say N1, is isomorphic to the net-
work N5 of Figure 11(c). Then, every displayed tree on the network (N1|X\{x1})c
(resp. (N1|X\{x4})c) induces the non-trivial split x2x3|x4x5x6x7 (resp. x5x6|x1x2x3x7).
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If (N2|X\{x1})c (resp. (N2|X\{x4})c) does not have this split on every displayed tree,
we are done by (∗). This implies x1 and x4 are hybrids in both networks. More-
over, x1, x2, x3 (resp. x4, x5, x6) must be on the same cycle to get these splits. Since
N1 � N2 but the networks induce the same circular order, we must then have that
N2 is isomorphic to network N6 in Figure 11(c). But then (N1|Y )c � (N2|Y )c for
Y = {x1, x2, x3, x4, x5, x7} and we are done by (∗).

We may now assume that neither N1 nor N2 is isomorphic to N5 in Figure 11(c).
Then, we claim there exists a set of leaves {x, a, b, c} such that (i) N1 (and hence N2)
induces the circular order (x, a, b, c, . . .), (ii) x is a hybrid leaf of N1, (iii) c is not
a hybrid leaf of N1, (iv) x, a, b are incident to the same k-cycle S of N1 with k ≥ 6
(i.e. at least 4 leaves are incident to this cycle). A set satisfying properties (i)-(iii) must
exist since n ≥ 7, and N1, N2 � N5 ensures (iv) is also possible.

Properties (i)-(iv) ensure that by taking the subnetwork of N1 induced by X \ {a}
(where we write N ′

1 = N1|X\{a} and N ′
2 = N2|X\{a}), no 3-cycles, dts-undetectable

edges, or new 4-cycles are created. Therefore, (N ′
1)

c can simply be obtained from Nc
1

by removing a and suppressing the resulting degree-2 node. Equivalently, Nc
1 can be

obtained from (N ′
1)

c by inserting the leaf a between leaves x and b. If (N ′
1)

c ∼= (N ′
2)

c,
then since N1 and N2 induce the same circular order, Nc

2 can also be obtained from
(N ′

2)
c by inserting the leaf a between leaves x and b. This is a contradiction, since

then Nc
1

∼= Nc
2 . Hence, we may assume (N ′

1)
c

� (N ′
2)

c. It then follows from (∗) that
Split(T (N1)) �= Split(T (N2)). ��

In the following proposition, we use the notationQ(N ) = Q(T (N )) to denote the
set of quartet trees induced by the displayed trees of a network N .

Proposition 5.4 Let N1 and N2 be two networks fromN2 on the same leaf set X. Then,
the following are equivalent:

(i) Nc
1

∼= Nc
2 ;

(ii) Q(N1) = Q(N2);
(iii) Split(T (N1)) = Split(T (N2)).

Furthermore, if N1, N2 ∈ B2 ⊆ N2 and |X | ≥ 4, then (i)-(i i i) are equivalent to

(iv) dN1 = dN2 .

Proof The equivalence between (i) and (i i i) was shown as Lemma 5.3. That (i i i)
implies (i i) follows easily, since one canobtain the set of displayedquartets from the set
of splits of the displayed trees. To see that (i i) implies (i i i), supposeQ(N1) = Q(N2).
Then, by Allman et al. (2023), N1 and N2 have the same trees-of-blobs T , and the
splits corresponding to cut edges of N1 and N2 are equal. Thus, we can consider each
blob of N1 and N2 separately, and it suffices to assume that N1, N2 ∈ B2. If |X | ≤ 3,
(i i i) is trivially true. If instead |X | ≥ 4, dN1 = dN2 , since the distances dN1 and dN2

are obtained from the quartets of N1 and N2, and we assumed those sets were equal.
By Theorem 4.7 and because the decomposition of a circular decomposable metric is
unique, we obtain (i i i).

The remaining implications follow immediately since if N1, N2 ∈ B2 and |X | ≥ 4,
(i i) implies (iv) and (iv) implies (i i i). ��
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Note that in the previous proposition, (i)-(i i i) ⇒ (iv) is also true if N1, N2 ∈ N2,
but for the converse N1, N2 ∈ B2 is necessary. In particular, we cannot use a similar
argument as before, since we have not proved that dN1 = dN2 implies N1 and N2 have
the same tree-of-blobs. As mentioned before Theorem 4.7, we conjecture that this is
true for networks in the classN2. Indeed, proving this extension of Theorem 4.7 to the
class N2 would suffice to obtain the equivalence (i)-(i i i) ⇔ (iv) in Proposition 5.4
for networks in N2, and vice versa.

With a slight reformulation of Proposition 5.4, we obtain the main theorem.

Theorem 5.5 (a) Let N1 and N2 be two semi-directed, outer-labeled planar, level-2,
galled networks. Then, N1 and N2 are distinguishable from their displayed quartets
if and only if N1 and N2 have different canonical forms.

(b) Let N1 and N2 be two semi-directed, outer-labeled planar, level-2, galled bloblet
networks on at least four leaves. Then, N1 and N2 are distinguishable from their
pairwise NANUQ distances if and only if N1 and N2 have different canonical
forms.

As an instance of part (b) of the theorem, the pairwise NANUQ distances for each
of the five canonical classes of B2 networks on 6 taxa shown in Figure 9 are given
in Table 1. These, together with distances obtained by permuting taxon labels, each
correspond to a unique labeled canonical form, although only 3 of the forms, 9(b),
9(c), 9(d), determine a unique network in B2. Nonetheless, from the splits graphs in
Figure 10, the circular order of taxa is immediately seen in all cases, and the splits
graphs shapes show that the hybrid node in any k-cycle with k ≥ 5 and no dts-
undetectable edge is determined. Note that hybrid identifiability from this distance
does not hold for all 5-blobs, since the symmetry of the splits graph for 8(b) gives no
hybrid information.

Looking to the future, for data analysis grounded in the main results of Theo-
rem 5.5, note that when considering outer-labeled-planar networks, the necessary
quartet information for applying the theorem is known to be obtainable under several
models and data types currently in use for inference. For identifiability from gene
trees, these include models of gene tree formation by variations of the Network Multi-
species Coalescent (NMSC) process with both independent and common inheritance,
and a displayed tree (DT) model in which gene trees are formed on the network
without incomplete lineage sorting (Rhodes et al. 2025). Quartet relationships are
also identifiable directly from sequence data, assuming a Jukes-Cantor or Kimura-2-
Parameter substitution process on the displayed trees of the network (Englander et al.
2025). Although both of these works prove identifiability results beyond that of quartet
information, neither suggests a clear path to practical inference. Indeed, although The-
orem 5.5 is phrased as an identifiability result, its underlying reliance on the NANUQ
distance has the potential to contribute to fast network inference methods.

6 Discussion

In this study, we have focused on the class of outer-labeled planar, galled, level-2,
semi-directed networks: a class of phylogenetic networks more general than level-
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Table 1 Pairwise NANUQ distances for 6-taxon bloblet networks with the five canonical forms of Figure 9.
As proved in Theorem 5.5, these distances distinguish the five canonical forms.

(a) Distances for networks N1, N2
and N3, all with the same canonical form. This class
includes the level-1 6-cycle network N1.

b c d e f

a 14 17 18 17 14

b 11 16 19 20

c 15 18 19

d 15 16

e 11

(b) Distances for N4.
b c d e f

a 14 18 18 17 13

b 14 17 18 17

c 13 17 18

d 14 18

e 14

(c) Distances for N5.
b c d e f

a 11 16 18 18 17

b 13 19 19 18

c 14 19 18

d 13 16

e 11

(d) Distances for N6.
b c d e f

a 13 16 18 17 16

b 11 17 20 19

c 16 19 18

d 13 16

e 11

(e) Distances for networks N7, N8 and
N9, all with the same canonical form.

b c d e f

a 14 17 18 17 14

b 11 17 19 19

c 16 18 18

d 13 16

e 13
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1, which allows some interdependent reticulate events. While this formally means
that all blobs are assumed to be outer-labeled planar, galled, and level-2, a careful
reading of our proofs shows they in fact permit 2- and 3-blobs not meeting these
conditions. Consequently, our results can be applied slightly more generally than
the class description initially suggests. We have established that most features of the
networks in this class—captured precisely by a canonical form—are identifiable from
displayed quartets, implying by results elsewhere (Englander et al. 2025; Rhodes et al.
2025) that identifiability holds from different types of biological data under several
models of evolution (see the end of Section 5).

A second contribution of this work is that our proof is constructive and lays the
theoretical foundation for a consistent inference algorithm for the canonical form of
a class of level-2 networks under the Network Multispecies Coalescent model, in the
spirit of NANUQ and NANUQ+ (Allman et al. 2019, 2025a). Notably, this would
yield the first algorithm for a subclass of level-2 networks that is known to be statisti-
cally consistent for specific models and data types. While both purely combinatorial
approaches (e.g., Iersel et al. 2009, 2022, ) and computationally cumbersomeBayesian
and pseudolikelihood approaches (e.g., Yu and Nakhleh 2015; Zhang et al. 2018; Wen
and Nakhleh 2018, ) exist, neither addresses potential non-identifiability issues. The
specific algorithm, together with its implementation and performance analysis, will
follow in future work; however, we sketch an initial outline in the following paragraph.

First, using the existing software tool TINNiK (Allman et al. 2024a), the tree-of-
blobs of a network canbe consistently constructed from concordance factors: summary
statistics derived from gene tree probabilities under the NetworkMultispecies Coales-
cent model. Once this tree is constructed, it suffices to consider every blob separately,
and hence we focus on bloblets for the remainder of this paragraph. Specifically, the
concordance factors give information about displayed quartets and they can be used
to compute the pairwise NANUQ distances between the leaves of a bloblet (see again
Table 1). Then, when input to the consistent method Neighbor- Net for fitting cir-
cular decomposable metrics, these distances give rise to a splits graph (Bryant and
Moulton 2004). As we have shown in Theorem 4.7, the NANUQ distances are circular
decomposable and thus, for perfect data, the resulting splits graph depicts the splits
of the displayed trees of the network and they correspond to a unique canonical form
of the network (Proposition 5.4). Using concepts similar to the darts of Allman et al.
(2019), this canonical form can be derived directly from the splits graph. While we
do not explicitly treat this here, as noted after Theorem 5.5, some of this is intuitive:
the circular ordering of the bloblet leaves and their hybrid nodes are easily seen in
most cases (see, e.g., Figure 12). Following the NANUQ+ framework (Allman et al.
2025a), with noisy data, a ‘best fit’ canonical form can be chosen by a more formal
criterion.

We end by stating a few open problems related to the theory developed in this work.
First, we conjecture that one of our main results (Theorem 4.7) can be extended to
more general classes of networks. Specifically, supported by exploratory simulations,
we conjecture that this theorem extends to all level-2 outer-labeled planar galled net-
works (not just bloblets within this class), as is the case for level-1 networks (Allman
et al. 2019). Although such a result would not give new identifiability results from
biological data (since the tree-of-blobs is already identifiable from quartets (Allman
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Fig. 12 Left: An outer-labeled
planar, galled, level-2,
semi-directed bloblet network N
on leaf set X = {a, . . . ,m}.
Right: The splits graph of the
pairwise NANUQ distances dN
of the network N , obtained with
Neighbor- Net (Bryant and
Moulton 2004)

et al. 2023)), it could be useful for inference. In particular, it would allow for obtaining
the tree-of-blobs of a network in the class N2 directly from the NANUQ distances,
instead of relying on TINNiK (Allman et al. 2024a). In addition, we conjecture that
the NANUQ metric of outer-labeled planar, galled, level-3, bloblet networks is also
circular decomposable. Proving this will either require an even more extensive case
analysis than in Lemma 4.6, or a different technique. A final related open problem is
whether some of our results can be extended to a parametric family of distances, as
introduced in Allman et al. (2025a). Such a result might be used to make an infer-
ence algorithm more robust, or for developing heuristics for choosing best-fit blob
structures, as in the level-1 case.
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