This paper is accepted for publication, after peer review, in Cognition & Emotion, but it is not the
Version of Record and does not reflect post-acceptance improvements, or any corrections. The

Version of Record is available at http//dx.doi.org/10.1080/02699931.2025.2578697

Observer and Stimulus Factors Jointly Shape Perceptual Similarity of

Static and Dynamic Facial Emotions

Laura Manno', Louise Ewing', Stephanie Rossit', Andrew Bayliss', Guomei Zhou?, Mintao Zhao'

1, School of Psychology, University of East Anglia, Norwich, UK.

2, Department of Psychology, Sun Yat-sen University, Guangzhou, China

Correspondence concerning this paper should be addressed to Mintao Zhao.
School of Psychology

University of East Anglia

Norwich Research Park

Norwich NR4 7TJ, UK

Email: Mintao.Zhao@uea.ac.uk



mailto:Mintao.Zhao@uea.ac.uk

Abstract

Facial emotion perception is influenced by many factors (e.g., context, conceptual knowledge,
facial motion), but how these factors jointly shape emotion perception remains unclear. The
present study investigated how observer- and stimulus-based information interact to influence the
perceived similarity of facial emotions. Participants categorized the emotion (Experiment 1) or
assessed the intensity (Experiment 2) of two static or dynamic facial expressions before rating their
similarity. The results showed that perceived similarity between facial expressions could be
predicted by representational distances computed using stimulus properties, recognized emotions,
or perceived intensity. Combining all three factors produced the best prediction performance,
though the contribution of perceived intensity was more consistent for dynamic than static facial
emotions. Moreover, the perception of static and dynamic facial emotions showed remarkable
similarities and critical differences. All measures of similarity between facial expressions were
highly correlated across dynamic and static conditions. However, dynamic facial emotions
consistently elicited better categorization performance and lower perceived intensity compared to
static facial emotions. These results demonstrate novel differences in the processing of static and
dynamic facial emotions and provide new insights into how perceived emotion and intensity join

with stimulus properties to shape our perception of facial emotion.
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Introduction

Facial expressions of emotions constitute powerful and complex non-verbal social signals
that people use to read others' emotions (Barrett et al., 2019; Ekman, 1992; Jack & Schyns, 2015)
and draw inferences about their goals and intentions (Buck & VanLear, 2002; Keltner & Haidt,
1999; Todorov et al., 2015; Van Kleef, 2009). Previous research suggests that perception of facial
expressions is influenced by many different factors (e.g., context, culture, conceptual knowledge,
facial texture and shape information, Elfenbein & Ambady, 2002; Elfenbein et al., 2007; Jack et al.,
2012; Sormaz et al. 2016; Brooks & Freeman, 2018). Yet, how these factors jointly affect the
perception of facial emotions has remained largely unexplored. For instance, happiness and pain
can share overlapping facial configurations but convey distinct emotional content, whereas
physically very distinct expressions such as crying and smiling can both reflect the same content:
happiness. Moreover, although facial expressions are often dynamic and nuanced (Du et al., 2014;
Delannoy & McDonald, 2009; Namba et al., 2017; Valstar et al., 2007), research on facial emotion
perception remains largely relying on categorizing or matching static facial expressions according
to separate and discrete emotion dimensions (e.g., happiness or fear). To understand how people
perceive subtle differences and similarities of facial emotions, in the present study, we tested how
stimulus (i.e., physical similarity) and observer-based information (i.e., perceived emotion and
intensity) jointly contribute to the perception of facial emotions, for both static and dynamic facial

expressions.

Theories of emotion perception often aim to reduce emotional experience to its elementary
building blocks, such as basic emotion categories or shared underlying dimensions. For instance,
theories based on emotion categories, such as the basic emotion theory (Ekman, 1992; Ekman &
Cordaro, 2011; Levenson, 2011; Panksepp & Watt, 2011; Tracy & Randles, 2011), reduce the full
range of expressions of emotion to a limited set of core and conceptually discrete categories (but
see Barrett, 2006). These theories remain highly influential as they align well with significant
emotional experiences and are linked to facial movements and neural processes that are
potentially shaped by evolution and adaption (Ekman & Cordaro, 2011; Pessoa & Adolphs, 2010;
Susskind et al., 2008). By contrast, theories based on emotional dimensions attribute emotion
perception along a few continuous dimensions, such as valence and arousal (e.g., the affective
circumplex, Russell, 1980, 2003; see also Mauss & Robinson, 2009). Discrete emotions, like fear
and happiness, can then be constructed with distinct combinations of these underlying dimensions
(Lindquist & Barrett, 2008).

Recent studies suggest that emotion recognition based on these basic emotions and

emotional dimensions may overlook the similarities and nuanced differences between different
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facial expressions. Cowen and Keltner (2020; 2021) assessed the explanatory power of classical
theoretical models using large datasets of facial, vocal, and video stimuli and large samples of
participants. They found that the six basic emotion categories and the valence-arousal model each
accounted for only about 30% of the variance in participants' emotion perception. They propose
that a high-dimensional model encompassing more distinct emotions, such as pride, awe, and
sympathy, is needed to effectively capture the complexity of emotional perception. Moreover, the
representational boundaries between different emotional categories appear smooth and blended
rather than discrete, reflecting the nuanced and overlapping nature of emotional experiences (see
also Cowen & Keltner, 2017). To capture such nuanced differences and similarities in emotion
perception, in the present study, we asked participants to directly evaluate the similarity of facial

expressions in addition to emotion categorization and arousal rating.

Theories of emotion perception also face challenges in fully incorporating the role of facial
motion in emotion perception. Previous research has shown significant morphological and dynamic
differences between spontaneous and posed facial expressions (Delannoy & McDonald, 2009;
Krumhuber et al., 2021; Namba et al., 2017; Valstar et al., 2007). Moreover, varying the temporal
dynamics of facial movements also changes the recognition of facial emotion, in terms of both
behavioural and neural responses (Bould, Morris, & Wink, 2008; Furl et al., 2020; Pollick et al.,
2003). The same facial expression can convey subtly different emotional meanings (e.g., interest,
pride, pleasure, and joy) by varying the duration or frequency of facial movements (Mortillaro et al.
2011). These findings suggest that facial motion constitutes a crucial signal for perception of facial
emotion, particularly when information from static faces is inadequate (for reviews, see Krumhuber
et al., 2013, 2023). In the present study, to further elucidate the differences and similarities
between perception of static and dynamic facial expressions, we tested emotion perception using

both still images and moving faces.

Perceptual similarity between static facial expressions is influenced by both stimulus- and
observer-based factors. For instance, Sormaz et al. (2016) showed that facial emotion perception
is influenced by stimulus-based physical cues, such as facial shape and texture information. In
their study, they computed shape-related similarity between pairs of emotional faces with
Procrustes analysis, and surface texture similarity using image-based correlations between pixel
intensities. They found that these physical properties of stimuli strongly predicted subjective ratings
of similarity between facial emotions. Murray et al. (2021) investigated how shape, surface, and
conceptual information affect facial expression processing using both a perceptual task (i.e., ‘odd
one out’) and an emotion categorization task. Using representational similarity analysis, they
compared the performance of three models of emotion similarity. Two models were based on
visual features of the stimuli: one focusing on facial shape and the other on surface texture. The

third model was based on the similarity of emotion concepts inferred from the rating of animated
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emotional situations on six emotion dimensions (e.g., anger, disgust, Skerry & Saxe, 2015). They
found that facial shape was associated with performance on the perceptual task, surface textures
were linked to responses to the categorical task, and emotion concepts were related to

performance on both tasks.

Observers’ knowledge about emotional concepts also affects perceptual similarity of facial
emotions. For example, when participants rate two emotions as conceptually similar, faces
depicting these two emotions tend to be perceived as being of a corresponding level of similarity,
even after controlling for stimulus-based physical similarity computed using the configuration of
face movements (i.e., facial action units; Brooks & Freeman, 2018). Similarly, Skerry and Saxe
(2015) found that perceived emotion (e.g., from facial expressions) and inferred emotion (e.g.,
based on emotion concepts or scenarios) shared partially overlapping neural codes (see also
Brooks et al., 2019). These findings highlight the roles of observer-based factors, such as
conceptual knowledge associated with emotional facial expressions, in perception of facial

expressions of emotion.

How these different types of observer- and stimulus-based information jointly contribute to
facial emotion perception remains to be elucidated. Firstly, the research mentioned above is
primarily focused on perceptual similarity between static and stereotypical facial emotions. How
these two types of information shape perception of dynamic facial emotions remain unclear.
Secondly, previous studies have mainly concentrated on the similarity between core basic emotion
categories (e.g., happiness vs fear; Sormaz et al., 2016), whether the findings apply to fine-grained
within-category facial emotions (e.g., different expressions of happiness) has received little
research attention. In addition, despite being one of the fundamental dimensions of emotion
perception (Russell, 1980, 2003), how arousal/intensity of emotion contributes to perceptual
similarity of facial emotions remains unclear. Finally, while previous research highlighted the
contribution of various types of information (e.g., facial shape or conceptual knowledge about
emotion) to facial emotion perception, they have rarely tested how different types of information
make shared and unique contributions to emotion perception (cf. Brooks & Freeman, 2018; Murray

et al., 2021). With the present study, we aimed to address these questions.

We conducted two experiments to investigate how emotional concepts, emotional intensity,
and stimulus-based physical information jointly influence the perception of similarity between facial
emotions, both within- and across-emotional categories, depicted in both static and dynamic facial
expressions. Experiment 1 focused on emotional concepts and stimulus-based properties, and
Experiment 2 focused on emotional intensity and stimuli properties. For each experiment, we first
tested the association between directly rated similarity between facial emotions and the

corresponding similarity computed from (a) participants’ perception of emotion concepts or



intensity, and (b) physical properties of images or videos showing facial emotions. We then used
both representational similarity analysis and multiple linear regression analysis to examine how
perceived and stimulus-based information predict directly rated similarity between facial emotions.
Finally, we performed model comparison analysis to contrast regression models with different
combinations of observer- and stimulus-based information, which allowed us to examine how each
type of information makes unique and shared contributions to perceived similarity between facial

expressions of emotions.

Experiment 1

Experiment 1 investigated how perceived emotion categories (i.e., conceptual information)
and stimulus-based similarity (physical information) jointly affect the perception of similarity
between facial expressions, and whether their contributions differ between perception of static and
dynamic facial emotions. For the former, we specifically tested whether combining both physical
and conceptual information provides a better account of perceptual similarity than when
considering either alone. For the latter, we tested whether similarity between dynamic facial
expressions is influenced by physical or conceptual information differently than static facial
expressions. To address these questions, we asked participants to perform a combined emotion
categorization and similarity rating task. Specifically, they were shown pairs of facial expressions of
emotion (both static or both dynamic) sequentially and asked to categorize each facial expression
in a forced choice task. Then, they rated the similarity of the pair of facial expressions. We
computed categorization similarity across facial expressions using participants’ confusions errors in
the emotion categorization task (e.g., Murray et al., 2021; Skerry & Saxe, 2015) and calculated
physical similarity across the expressions using image-based Gabor similarity (e.g., Bllthoff &
Zhao, 2021; Dobs et al., 2014). If both physical and conceptual information contribute to judgments
of similarity, then both categorization and physical similarity should be correlated with perceived
similarity in the rating task. If these two types of information make both unique and shared
contributions to perceptual similarity between facial expressions, then the combination of physical
and conceptual information should yield better prediction for participants' ratings than when based

on either alone.

Methods
Participants
Eighty undergraduate students from the University of East Anglia took part in the study.
Data from five participants were excluded from the analysis due to their low response rates (i.e.,
responded to < 50% of the trials) or a request to “not use their data” during debrief. For the final
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sample of 74 participants, 39 completed the dynamic condition (18-33 years old, Mean age = 20.6,
SD = 3.06; 5 males, 34 females; 36 European; 3 Asian), and 35 completed the static condition (18-
28 years old, Mean age = 19.9, SD = 2.41; 4 males, 31 females; 33 European, 1 Asian, and 1
African). Power analysis using G*Power3.1 showed that, for a 2 by 3 mixed design, to detect a
medium effect (f = 0.25) of within factor or within-between interaction at a =.05 (with assumption of
correlation among repeated measures = 0.5), 32 participants in total is required to achieve a power
(1-B) of .85. Here and for Experiment 2, all participants provided informed consent before taking
part in the study, were debriefed at the end, and received course credits as compensation for their

time. The procedure was approved by the University Ethics Committee.

Stimuli and Tasks

Our stimuli were taken from the MPI Facial Expression Database (Kaulard et al., 2012),
which features non-professional actors posing facial expressions based on the description of
everyday scenario prompts. To record facial expressions for the database, Kaulard et al. (2012)
first told participants an scenario (e.g., “While doing sports you suddenly have an accident in which
you twist one ankle and graze your knee.”) and then asked them “to remember a similar situation in
their life, to imagine that they were in that situation again, and to act accordingly” in front of an
array of cameras (p. 5). Participants could repeat the expression until they felt comfortable before
recording. Therefore, the recorded facial expressions were posed in response to imaginary
situations, which may differ from genuine emotional expressions in real life and may differ in terms
of posted facial movements across actors (i.e., individual differences in the production of facial
emotions).

We selected three emotions (i.e., happiness, fear, and pain) that include both positive and
negative valence and both heavily and less investigated emotions that can be reliably
characterized by a distinctive pattern of facial expression (Cowen & Keltner, 2020; Williams, 2002).
For each emotion, we included high- and low-intensity expressions induced by two different
scenarios, respectively (See supplementary Table S1 for the list of scenarios used to induce the
selected facial expressions used in the present study).

For dynamic facial expressions, we initially selected 60 video clips from 10 actors in the
database (5 females and 5 males, each had 6 videos of 3 emotions x 2 intensities). We edited the
videos to remove non-face related information (e.g., tracking markers in the original videos) and
converted them into grayscale. All videos started with 5 frames of a neutral expression, with the
face centered on a black background measuring 720 x 576 pixels. All six facial emotions from the
same actor were of the same length (1000 or 2000 ms), ending at the frame showing the peak of

the emotion.



Static stimuli were created by extracting the frame conveying the peak of the emotion from
each video. These peaks were established from a pilot study in which ten adult volunteers
categorized the emotion in each video and identified the frame they believed to convey the
emotional peak. This pilot also prompted our exclusion of stimuli from one actor, because
participants indicated they had difficulties accurately identifying their intended emotions. The final
stimuli included a total of 54 static stimuli and 54 dynamic stimuli (9 actors x 3 emotions x 2
intensities).

Like many facial expression databases (see Krumhumber et al., 2021, for a review), not all
actors in the MPI facial expression database (Kaulard et al., 2012) produced identical facial
movements, even when responding to the same emotion scenarios. To evaluate potential
variations across actors in posing the same facial expressions, we performed a stimulus-based
analysis that infers the consistency of emotion production by examining the consistency of emotion
perception using a pretrained computational algorithm (See Supplementary Figure $1). That is,
the more similar the patterns of algorithm-based emotion perception, the more consistent the
emotion production is across actors. The results showed that different actors posed the same facial
expressions in a highly consistent manner (mean cosine similarity, 0.80, SD, 0.07). Moreover, this
across-actor consistency in posing the same facial expressions was higher than the within-actor
consistency in posing different facial emotions (mean cosine similarity, 0.59, SD, 0.10, {13) = 4.51,
p <.001). These results suggest that the production of these facial expressions is reasonably

consistent across actors.

Procedure

Participants completed the integrated emotion categorization and similarity rating task
(Figure 1) online using the Gorilla platform (Cauldron Science Ltd., UK). Each trial started with a
fixation cross (1000 ms) followed by a text screen indicating whether they would see images or
videos of facial expressions (e.g., “Image 1” or “Video 1”7, 500 ms). The stimulus was then
displayed centrally (static condition: 2000 ms; dynamic condition: 1000 or 2000 ms depending on
the actors) before a response screen appeared (for a maximum of 5 seconds). Participants were
asked to categorize facial expressions as accurately and quickly as possible, by pressing one of
the three buttons corresponding to the three emotion categories. Once a response was made or
the 5-second display time passed, the procedure was then repeated for the second stimulus, which
showed a facial expression from the same actor displayed for the same duration. After both
categorizations, participants were asked to rate the similarity between the two facial expressions

using a 7-point Likert scale ranging from 1 (totally different) to 7 (exactly the same).
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Figure 1. Example of a trial sequence used in the static condition in Experiment 1. On each trial,

participants categorized two facial expressions according to their emotion and then rated the

degree of similarity between the two facial expressions using a 7-point Likert scale.

Each participant completed 160 trials in a randomized order with either dynamic or static
facial expressions. Emotional category and intensity of the two facial expressions (i.e., stimulus 1
and 2) varied across trials. Specifically, 40 trials showed identical facial expressions (same
emotion and intensity), 40 showed the same emotion but different intensities (e.g., high intensity
happy and low intensity happy), 40 showed different emotions at the same level of intensity (e.g.,
low intensity happy and low intensity fear), and 40 showed different emotions at different levels of
intensity (e.g., high intensity happy and low intensity fear). The three facial emotions were relatively
equally allocated across the 320 stimuli used for the 160 trials (Fear, 106 times; Happy, 108 times;
Pain, 106 times).

Computing categorization and physical similarity between facial expressions

By examining behavioral confusions between facial expressions and recognized emotions,
previous studies have used emotion categorization responses to establish the conceptual similarity
between different facial emotions, (e.g., Brooks et al., 2019; Skerry & Saxe, 2014; Murray et al.,
2021). Following this approach, we asked participants to perform a similar forced-choice emotion
categorization task and calculated the categorization similarity based on their confusion errors
observed in this task. We used categorization similarity to index conceptual similarity between
facial expressions. That is, the more the emotions of the two facial expressions were confused with
each other during emotion categorization, we inferred the more similar they are in terms of
participants’ concepts about these emotions. Note that emotion categorization made during this

forced-choice task may not capture the full “contents” of facial emotion perception.

Physical similarity between two facial expressions was calculated as the Gabor similarity

between two stimuli (Lades et al., 1993). Prior works have shown that Gabor similarity between
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facial images correlates with perceptual similarity of facial identities (Bulthoff & Zhao, 2020, 2021;
Yue et al., 2012), expressions (Xu & Biederman, 2010), and facial movements (Dobs et al., 2014).
Gabor similarity has also been used to provide an objective similarity measure of facial emotion

stimuli (images: Susskind et al., 2007; videos, Dobs et al., 2014).

For the static condition, we first autodetected faces using a face-detector embedded in the
Matlab computer vision toolbox (MathWorks, MA) and resized autodetected face images into 256
by 256 pixels. We then generated a feature vector for each image with 8,000 filters, which resulted
from applying a Gabor jet [5 scales x 8 orientations x 2 phases (sine and cosine) at the
intersections of a 10 x 10 uniform grid. Gabor dissimilarity was computed as the Euclidean
distance between the two feature vectors generated for each of the two facial images. Identical
images produced a value of zero, and more different images produced higher Gabor dissimilarity
values. For the dynamic condition, we calculated Gabor dissimilarity between corresponding
individual frames of the two videos, using the average values across all frames as the measure of

physical similarity between two videos (e.g., Dobs et al., 2014).

Results and Discussion

Emotion categorization

Error rates for emotion categorization are shown in Figure 2A. A mixed 2 (condition:
dynamic vs. static; between-participants factor) by 3 (emotion: happy, fear, pain; within-participants
factor) ANOVA revealed a main effect of facial emotion, F(2, 144) = 121.02, p < .001, ny,?= .63.
Follow up contrasts showed that participants made fewest errors when categorizing facial
expressions of happy (M+SE: 0.08+0.01), followed by fear (0.17+0.01), and then pain (0.34+0.02,
for both the static condition, all {(34) > 5.39, p <.001, Cohen’s d > 0.91, and the dynamic condition,
all t{(38) > 6.26, p < .001, Cohen’s d > 1.00. The main effect of stimulus condition was significant,
F(1,72)=10.20, p =.002, ny? = .12. Participants made fewer categorization errors in the dynamic
condition (0.17+0.01) than those observed in the static condition (0.22+£0.01). The interaction
between facial emotion and stimulus condition was not significant, F(2, 144) = 0.58, p = .561, np2<
.01, suggesting that the effect of emotion was consistent across static and dynamic facial
expressions. These results demonstrate a dynamic advantage in facial emotion recognition and

that facial expressions of happiness are more separable from those of fear and pain.

To explore the influence of individual differences in emotion recognition (i.e., variations
across participants) and emotion production (i.e., variations across the actors posing the facial
expressions) on our results, we conducted a linear mixed model (LMM) analysis, with both

participants and actors of stimuli as random factors ('Response ~ Condition * Emotion + 1|Subject
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+ 1|StimuliActor’). The results showed significant effects of stimulus condition, F(1, 1994) = 6.82, p
=.009, facial emotion, F(1, 1994) = 30.87, p < .001, and a non-significant interaction, F(1, 1994) =
1.70, p = .192. Therefore, our results cannot be attributed to individual differences in emotion
categorization among our participants, nor to variations in emotion production across the actors

posing these facial expressions.

When examining confusion errors, where participants mistakenly categorized target facial
emotion as other emotions (Figure 2b), we found that fear was confused more often with pain than
happy (dynamic condition: {(38) = 6.68, p < .001, Cohen’s d = 1.07; static condition, {(34) = 2.79, p
=.009, Cohen’s d = 0.46). Similarly, pain expression was confused more often with fear than
happy (dynamic condition: {(38) = 8.64, p < .001, Cohen’s d = 1.38; static condition: {(34) = 5.15, p
<.001, Cohen’s d = 0.87). Happy was confused more often with pain than fear [dynamic condition,
t(38) = 4.69, p <.001, Cohen’s d = 0.75; static condition, #(34) = 3.90, p <.001, Cohen’s d = 0.66].
Moreover, the proportion of confusion errors tended to be more evenly distributed in the static
condition than in the dynamic condition (fear, x%1) = 6.43, p = .011; happy, x31) = 2.54, p = .111;
pain, x%1) = 1.59, p = .208). These results indicate that facial expressions of fear and pain are

more frequently confused with each other, and less so with facial expressions of happiness.
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Figure 2. Emotion categorization performance in Experiment 1. A. Mean error rates for

categorizing static and dynamic facial emotions. Dots represent individual participants’

performance. *, p < .001. B. Proportion and mean number of confusion errors made during emotion

categorization. X-axis represents facial emotion, and Y-axis represents categorized emotion by

participants.

Association between perceptual similarity and emotion categorization
To examine how the recognized emotions from the two facial expressions on each trial

contributed to their rated similarity, we computed the categorization similarity for each face pair in

the 160 trials. Specifically, for the two facial expressions in a trial, we calculated how likely each of

-11 -



these two faces was wrongly categorized as showing the intended emotion of the other face and
then averaged the two values. The resulting value indexes how likely the two facial expressions
were confused with each other in terms of emotion categorization. We then correlated the mean
categorization similarity observed for each of the 160 trials with the corresponding mean
perceptual similarity derived from the similarity rating task (Figure 3A). We found strong
correlations between categorization and perceptual similarity, for both the static (r =.81, p <.001)
and dynamic conditions (r = .86, p < .001). Moreover, this association was consistently observed
for individual participants, whether they viewed static (all r > .42, p < .001, except one participant, r
= .08, p=.293) or dynamic facial expressions (all r > .52, p < .001, Figure 3B). The more the two

faces induced confusion in their emotion categorization, the higher their rated similarity.
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Figure 3. Perceptual similarity between facial expressions is associated with emotion

categorization similarity and stimulus-based physical similarity, at both group level (A, C) and

individual participants level (B, D). Dots in A and C represent measures observed for individual

trials used in the Similarity Rating task; dots in panels B and D represent results of individual

participants.

Association between perceptual similarity and stimuli properties
Similar analyses were performed to investigate how physical similarity between two facial

expressions contributed to their rated similarity. To do so, we first computed Gabor dissimilarity
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between two images or videos in a trial (see Methods). We then standardized the measure [i.e.,
physical similarity = (Maximal observed Gabor dissimilarity — Gabor dissimilarity) / Maximal
observed Gabor dissimilarity], so the resulting physical similarity values would vary between 0 and
1, with 1 representing the highest stimulus similarity (i.e., identical stimuli). As shown in Figure 3C,
we observed significant correlations between stimulus-based physical similarity of the 160 trials
and its corresponding perceptual similarity derived from rating, for both the static (r= .88, p <.001)
and dynamic conditions (r = .84, p <.001). Analysis of data from individual participants confirmed
that this correlation occurred for all but one participant (static condition, all r > .55, p <.001, except

one participant, r = .04, p =.602; dynamic condition, all r> .58, p <.001, Figure 3D).

Representational similarity metrices across facial expressions of emotion

To examine the relative similarity across all six facial expressions (3 emotions x 2
intensities), we computed their representational similarity based on perceptual similarity,
categorization similarity, and physical similarity. Across the 160 trials, we averaged these
measures according to the full combination of the six facial expressions, yielding a 6 by 6 matrix for
each of the three measures (Figure 4; see supplementary Table S2 for full details of correlation
analysis). Representational similarity matrices for static and dynamic faces were remarkably similar
for all three measures (all r> .97, p <.001). Categorization and perceptual similarity matrices
appeared to be more aligned with each other for dynamic faces (r =.93, p <.001) than for static
faces (r=.88, p <.001). A reversed pattern was observed for physical and perceptual similarity, with
numerically higher correlation for static faces (r =.94, p <.001) than for dynamic faces (r =.90, p
<.001). Both perceptual and categorization similarity matrices showed distinctive grouping of facial

emotions (regardless of intensity), which was not clearly visible in the physical similarity matrices.

-13 -



Static Dynamic

]

Similarity

Perceputal

.

NN

F
F

HL
HH
PL
p

I

e

5

Similarity

Categorization

I
o

N

F
F
HL
HH
PL
PH

,_
o

8

T
=4

6

Physical
Similarity

4

o

2
FL FH HL HH PL PH FL FH HL HH PL PH

Facial Emotion

Figure 4. Representational similarity matrices for static and dynamic facial expressions based on

perceptual, categorization, and physical similarity. Facial emotions from top to bottom (Y axis) and

from left to right (X axis) represent low (L)- and high (H)-intensity expressions of fear (FL, FH),

happiness (HL, HH), and pain (PL, PH). Blue to yellow color bars represent low to high similarity.

Shared and unique contribution of categorization and physical similarity to perceptual
similarity

Multiple linear regression analyses were performed to examine how physical and
categorical similarities predict the rated similarity for the 160 trials. As summarized in Table 1, both
categorization and physical similarity predicted perceptual similarity well (all adjusted R?= .66, all F
2 304.52, p <.001). Physical similarity accounted for a greater proportion of the variance than
categorization similarity for static faces (adjusted R?, .77 vs .66), but both predictors accounted for
similar proportions of the variances for dynamic faces (adjusted R?, .76 vs .75). Importantly,
combining both predictors yielded the best model performance, accounting for 90% and 91% of
total variances observed for the rating of static and dynamic faces respectively. Model
comparisons revealed better performance when both physical and categorization similarity were
used as predictors than when using either alone (all R? changes > 0.12, all F changes > 184.02, p
<.001). These results indicate that both categorical and physical information contribute to

perceived similarity between facial expressions, and each makes unique and shared contributions.
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Table 1. Results of regression analysis for Experiment 1

Model R? R?agjustea F AF-1 AF-2
Static facial emotion

1. Categorization similarity .658 .656 304.52*

2. Physical similarity 775 774 545.07*

3. Combined .897 .895 680.23* 361.38* 184.02*

Dynamic facial emotion

1. Categorization similarity .750 .749 474.70*

2. Physical similarity .765 .764 515.10*

3. Combined 913 912 823.63* 293.57* 266.52*

Note. *, p <.001; AF-1/2, change of F values when compared to Model 1 or 2.

Experiment 2

Experiment 1 showed that both physical similarity and emotion categorization similarity
contribute to how we perceive facial emotion, and that facial motion provides an advantage in
recognizing emotions. In Experiment 2, we investigated how emotion intensity information affects
perceptual similarity between facial emotions. This question is critical because emotion intensity is
related to one of the fundamental dimensions of the valence-arousal account of emotion perception
(Mauss & Robinson, 2009; Kuppens et al., 2013; Russel, 2003). Furthermore, processing of
emotion intensity has been shown to involve dissociable neural substrates from those supporting
emotion categorization (e.g., Muukkonen & Salmela, 2022). To this end, we asked participants to

rate the intensity of facial expressions before judging their similarity.

We manipulated emotion intensity differently from previous studies, which have typically
artificially varied facial emotion stimuli. For instance, different levels of emotion intensity are often
achieved by exaggerating or weakening facial muscle movements via morphing between images
showing different facial emotions (e.g. Biele & Grabowska 2006; Calvo et al., 2016; Murray et al.,
2021; Sormaz et al., 2016). Although these manipulations provide elegant control over stimulus-
based properties, they may not capture emotional intensity expressed spontaneously in facial
expressions (e.g., Chen et al., 2024). In this experiment, the intensity of facial emotions was

defined by the scenarios the actors used for posing specific facial emotions (Kaulard et al., 2012).
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Emotion intensity conveyed in these posed facial expressions is arguably less artificial than that via

directly manipulating facial images and videos.

For the similarity rating task, we changed the 7-point discrete Likert scale to a continuous 0-
100 scale. This allowed us to examine whether perceptual similarity obtained in Experiment 1
persists when participants make more nuanced comparisons between facial expressions. Finally,
by integrating results from Experiment 1, Experiment 2 also allowed us to further examine how
emotion categorization, intensity perception, and physical similarity jointly contribute to perceptual
similarity between facial expressions of emotions. If perceived intensity information makes both
unique and shared contributions to perceptual similarity between facial expressions, we should
observe a strong association between intensity similarity and rated similarity and significantly
improved model prediction performance when intensity information is included as additional

predictors.

Methods

Participants

Forty students from the University of East Anglia were recruited for this experiment (11
males, 29 females; aged between 19-30 years, M = 20.8, SD = 2.97; 37 European, 2 Asian, and 1
American; 20 each were randomly assigned in the static and dynamic conditions). Using the same
data quality criteria from Experiment 1, no participants were excluded from the data analysis.
Power analysis using G*Power3.1 showed that, for a 2 by 2 mixed design, to detect a medium
effect (f = 0.25) of within factor or within-between interaction at a = .05 (with assumption of
correlation among repeated measures = 0.5), 38 participants in total is required to achieve a power
(1-B) of .85.

Stimuli, Tasks, and Procedure
The stimuli were the same as in Experiment 1. The tasks and procedure were also similar

to those of Experiment 1, with two variations (Figure 5). First, for each of the two facial
expressions in a trial, instead of performing the emotion categorization task, participants were
asked to rate the intensity of each facial expression using a 7-point Likert scale. Participants made
their response by clicking on the corresponding buttons on the screen. For the similarity rating
task, participants made their judgments by moving the handle of an on-screen slider, where 0

represents “Totally different” and 100 “Exactly the same”. The handle was initially placed on 50.
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Figure 5. Example of the emotion intensity and similarity rating task for the static condition in

Experiment 2. In each trial, participants first rated the intensity of two facial expressions before

rating their similarity using a slider ranging from 0 (Totally different) to 100 (Exactly the same).

Results and Discussion

Perception of emotional intensity

Mean rated intensities for dynamic and static facial expressions are shown in Figure 6. A
mixed 2 (condition: static vs dynamic; between-participants factor) x 2 (stimulus intensity: low vs
high; within-participants factor) ANOVA revealed a significant main effect of stimulus intensity,
F(1,38) = 139.94, p < .001, n,2=.79. This result confirmed that facial expressions elicited by high
intensity emotional scenarios (M+SE = 4.17+0.11) were perceived as more intense than those
elicited by low intensity emotional scenarios (3.90+0.11). The main effect of condition was also
significant, F(1,38) = 5.54, p = .024, ny,? = .13, with static facial expressions (4.30+0.16) perceived
as more intense than dynamic facial expressions (3.77+0.16). There was no significant interaction
between stimulus intensity and condition, F(1,38) = .070, p = .793, np,?=.002. As in Experiment 1,
to examine whether our findings persist after accounting for both individual differences in emotion
perception across participants and in emotion production across the actors posing the facial
expressions, we performed a LMM analysis, with participants and actors of the stimuli as random
factors (i.e., ‘Response ~ Condition * Intensity + 1|Subjects + 1|StimuliActors’). The results
revealed the same pattern of responses (stimulus intensity, F(1,716) = 5.36, p = .021; condition,
F(1,716) = 4.63, p = .032; Interaction, F < 7). Therefore, the effects of facial motion and scenario
intensity on emotion perception are unlikely driven by individual differences in emotion

categorization or actor-related variability in the production of these facial expressions.
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Figure 6. Perceived emotional intensity from static and dynamic facial expressions elicited by low-

and high-intensity emotional scenarios. **, p < .001.

Association between perceived intensity, stimuli properties and rated similarity
To examine whether the rated similarity between two facial expressions is associated with

the perceived intensity from each facial expression, we first computed the difference between the
rated intensity for the pairs of facial expressions in each trial. We then standardized these
differences [i.e., Intensity similarity = (Maximal observed intensity difference — intensity differences)
/ Maximal observed intensity difference]. The resulting intensity similarity measures would vary
between 0 and 1, with 1 being the highest intensity similarity (i.e., identical rating of intensity). We
found that mean intensity similarity was significantly correlated with mean rated similarity across
the 160 trials, for both the static (r = .83, p <.001) and dynamic conditions (r = .81, p <.001,
Figure 7A). Significant correlation between intensity similarity and perceptual similarity was also
observed for each participant in both the static and dynamic conditions (all r> .27, p < .002; Figure
7B).

Consistent with Experient 1, we observed strong correlations between the physical
similarity computed for each pair of facial expressions and its corresponding perceptual similarity
obtained from ratings, for both the static (r = .89, p <.001) and dynamic conditions (r = .88, p <
.001, Figure 7C). This correlation was also observed for individual participants (all r> .38, p <
.001; Figure 7D).
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We also computed representational similarity metrices across the six facial expressions of

emotions to examine their relative similarity (Figure 8, see Table S3 for full details of correlation

analysis). Static and dynamic facial expressions showed remarkably similar matrices for all three

measures (all r> .86, p <.001). Perceptual similarity matrices appeared to be more aligned with

physical similarity matrices (static faces, r =.95, dynamic faces, r =.91; both p <.001) than with

intensity similarity matrices (static faces, r =.91, dynamic faces, r =.88, both p <.001). Note that

only perceptual similarity matrices showed distinctive grouping of facial emotions (regardless of

intensity), which was not clearly visible in the intensity and physical similarity matrices.
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Figure 8. Representational similarity matrices for static and dynamic facial expressions based on

perceptual, intensity, and physical similarities. Facial emotions from top to bottom (Y axis) and from
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(HL, HH), and pain (PL, PH). Blue to vellow color bars code low to high similarity values.

Shared and unique contribution of intensity and physical similarity to perceptual similarity

As in Experiment 1, multiple linear regression analyses were performed to examine how
physical and intensity similarity predict similarity judgements. As summarized in Table 2, both
intensity and physical similarity predicted perceptual similarity well (all adjusted R?> .68, F =
294.85, p < .001). Physical similarity accounted for more proportion of the variance than intensity
similarity for static faces (adjusted R?, .80 vs .68), but they accounted for similar proportion of
variances for dynamic faces (adjusted R?, .77 vs .75). The combined model incorporating both
physical and intensity information showed the best prediction performance, accounting for 83%
and 82% of rating variances observed in the static and dynamic condition, respectively. Model
comparisons showed a small but significant improvement in performance when intensity
information is added to physical information (static condition: AR? = .03; dynamic condition: AR? =
.05; both F>27.73, p <.001), and a relatively larger improvement in performance when physical
information is added to intensity information (static condition: AR? = .13; dynamic condition: AR? =
.07; both F> 133.82, p <.001). These findings indicate that intensity and physical information make
both unique and shared contributions to the perceived similarity between facial emotions.
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Table 2. Results of regression analysis for Experiment 2

Model R? R?agjustea F AF-1 AF-2
Static facial emotion

1. Intensity similarity .681 .679 337.79*

2. Physical similarity .798 .796 622.50*

3. Combined .828 .826 377.78* 133.82* 27.73*

Dynamic facial emotion

1. Intensity similarity .750 .749 294 .85*

2. Physical similarity 770 .768 527.83*

3. Combined .821 .818 359.13* 148.37* 44.64*

Note. *, p <.001; AF-1/2, change of F values when compared to Model 1 or 2.

Predicting perceptual similarity using physical, categorization and intensity information

To further investigate how physical, categorization and intensity information jointly
contribute to perceptual similarity between facial expressions of emotion, we combined the data
from the two experiments and performed multiple linear regression analysis to predict rating
responses using the three predictors. As shown in Table 3, adding categorization similarity to
physical similarity significantly improved prediction performance, for ratings observed for both the
static and dynamic conditions in Experiments 1 and 2 (all AR? > .08, F = 139.68, p <.001). Further
addition of intensity similarity consistently improved the prediction performance for ratings of
dynamic expressions in both experiments (all AR?> =2 .01, F = 30.01, p <.001). However, to predict
ratings of static expressions, further addition of intensity similarity only significantly improved
performance for Experiment 2 (AR? = .02, F(1,156) = 30.36, p <.001) and not Experiment 1 (AR? =
.002, F(1,156) = 3.17, p =.077). Therefore, while combining all three predictors yielded the highest
prediction performance for both static and dynamic facial expressions (all adjusted R? = .90,
F(3,156) = 460.79, p <.001), the unique contribution of intensity information was relatively low
(accounting for 2% of variances or less). Detailed comparisons across all combination of the three
predictors indicated that the effect of intensity similarity was largely accounted for by physical
similarity between facial expressions (see supplementary Table S4 for full details of model

prediction performance and model comparisons across all combination of these three predictors).
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Table 3. Prediction of similarity ratings using physical (P), categorization (C), and intensity (1)

similarity.
Predicting Ratings of Experiment 1 Predicting Ratings in Experiment 2
Model R? R?pqj AR? AF R? R?pq; AR? AF
Static condition
P 775 T74 775 545.07* .798 .796 .798  622.50*
P+C .897 .895 121 184.02* .879 .878 .082 571.27*
P+C+l .899 .897 .002 3.17m .899 .897 .020 30.36*
Dynamic condition
P .765 .764 .765 515.10* 770 .768 770 527.83*
P+C 913 912 148  266.52* .878 877 108 139.68*
P+C+l 927 .926 .014 30.01* .901 .899 .023 35.72*

Note. AR%/AF, change of R? and related F statistics when compared to the previous model (e.g., P

vs intercept, P+C vs P). *, p <.001. ns, not significant.

General discussion

In the present study, we investigated how emotion recognition, intensity perception, and
stimulus-based physical information jointly contribute to the perception of facial expressions of
emotion. Unlike previous research that focuses on how to map facial expressions onto
semantically discrete emotion categories (i.e., emotion recognition and categorization), we aimed
to understand how these different types of information jointly predict perceptual similarity between
scenario-based facial expressions. Our results demonstrate that both emotion categorization (as
posited by the Basic Emotion Theory, Ekman, 1992; Levenson, 2011) and intensity perception (as
proposed by the Dimension Theory of Emotion, e.g., Russel, 1980, 2003; see also Mauss &
Robinson, 2009) shape the judgment of similarity between facial expressions of emotion.
Furthermore, these two types of observer-based information also interact with stimulus-based
information (i.e., physical similarity) to better predict perceptual similarity judgments. While the
unique effect of emotion categorization was clearly dissociated from the effect of stimulus-based
physical information, the unique contribution of intensity perception to similarity judgments was less
so, with most of its effect accountable by stimuli properties. These findings indicate that the
perception of facial emotion is more complex and nuanced than mapping facial expressions onto
discrete emotion concepts (Cowen & Keltner, 2020, 2021; Shuman et al., 2015; Snoek et al. 2023).
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The present study shows remarkable similarity but also critical differences between the
perception of dynamic and static facial emotions. Across the two experiments, perceptual similarity
between facial expressions obtained with dynamic and static facial emotions were highly
correlated, at both the condition level and the trial level (supplementary Table S2 and S$3). This
finding suggests that dynamic facial cues do not change the relative “mental distance” between two
facial emotions. On the other hand, dynamic and static facial expressions did differ in terms of
recognized emotions and perceived intensity. We observed a dynamic advantage in facial emotion
categorization, consistent with previous research (Krumhuber et al., 2023; cf. Fiorentini & Viviani,
2011). This dynamic advantage applies to the core basic emotions (e.g., happy and fear) and other
scenario-based facial expressions like pain. Previous research suggests that the beneficial effect
of dynamic cues is most prominent in suboptimal situations (e.g., when facial emotions are
displayed with point-light or blurred stimuli, Krumhuber et al., 2013), and it disappears when
sufficient facial information is available or when facial emotions are displayed at high intensity
(Bould et al., 2008; Fiorentini & Viviani, 2011). Our results indicate that the dynamic advantage is
not contingent on suboptimal conditions; it persists across both high- and low-intensity emotions
even when full facial information is available. Moreover, emotion categorization errors appeared to
be more clustered around one of the two incorrect categories for dynamic than for static facial
expressions (Figure 2B). This polarized pattern suggests that dynamic facial cues provide strong,
albeit sometimes misleading, cues that guide participants’ interpretation of facial emotion. As we
only tested a limited set of facial expressions (i.e., high- and low-intensity expressions of
happiness, fear and pain), further research is needed to determine how well these findings
generalise to other basic emotion categories or other types of facial expressions (e.g.,

conversational or compound emotions; Dobs et al., 2014; Du et al., 2014).

Our participants also rated static facial expressions as more intense than dynamic ones.
This finding concurs with a recent study (Krumhumber et al., 2021) but it contrasts with prior
research reporting higher intensity, arousal, and authenticity judgments for dynamic than static
facial expressions (Biele & Grabowska 2006; Krumhuber et al., 2013, but see Becker et al., 2024).
Two possibilities might account for the lower intensity perceived from the dynamic than from the
static facial expressions. First, peak emotions are often displayed with shorter time for dynamic
(i.e., in a fraction of frames) than for static facial expressions. Participants might have aggregated
the intensity perceived from individual frames to derive the overall intensity of dynamic facial
expressions, which in theory would be lower than that for the static facial expressions (i.e., lasting
frame of peak emotions). Second, it might be due to the different temporal profiles of emotion
intensity between the spontaneous facial expressions used here and the posed, prototypical
expressions used in previous studies. It has been shown that the velocity and sequence of facial

movements differ between spontaneous and posed expressions (Namba et al., 2017). Posed or
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artificially created facial emotions typically follow a clear onset-apex-offset trajectory, where facial
muscle contractions accumulate to a peak before subsiding. In contrast, spontaneous expressions
often exhibit more complex temporal profiles characterised by having multiple peaks or lower-
intensity emotional peaks, resembling an onset-apex-onset-apex-offset progression (Delannoy &
McDonald, 2009). Participants’ intensity ratings might have biased by those multiple low-intensity
peaks, resulting in an overall lower rating than that observed for the static facial emotions with one
high-intensity peak. This account may partially explain Becker and colleagues’ (2024) recent
findings. They showed that video recordings and photographs of facial emotions had similar
intensity ratings, and both were perceived as more intense than artificially created dynamic facial
emotions (i.e., via morphing). These results suggest that dynamic facial expressions are not
consistently perceived as more emotionally intense than static facial expressions, even though

they enhance emotion recognition (Calvo et al, 2016).

Our study shows that discrete emotion categorization and gradient intensity perception
contribute to judgments of perceptual similarity between emotional expressions, and that these
observer-based processes join with stimulus-based physical properties to shape how people
perceive facial emotions. Previous research also showed that perceptual similarity between facial
emotions is associated with stimulus-based properties (e.g., facial shape and texture information,
Murray et al., 2021; Sormaz et al., 2016; but see Brook et al, 2018, when physical similarity of
faces was measured using the facial action coding system). Nonetheless, these studies only
examined the perception of static faces. Dobs et al. (2014) showed that Gabor similarity calculated
between dynamic facial expressions is related to their perceived similarity, but this study assessed
perceptual similarity between facial expressions only indirectly (participants decided which one of
two presented facial expressions was more similar to a previously viewed one). Indirect measures
of perceptual similarity between static facial expressions were also used in Murray et al. (2021,
with an odd-one-out task) and in Brook et al (2018, with on-screen trajectories of mouse
responses). Note that the dynamic facial expressions used in these studies are often created by
animating or morphing facial images (e.g., Calvo et al., 2016; Dobs et al., 2014; Murray et al.,
2021). Becker et al (2024) recently showed that dynamic morphed emotions differed from
spontaneous dynamic facial emotions in terms of perceived intensity and genuineness. Here, our
results demonstrate that stimulus-based physical similarity predicts well the directly rated similarity

of both static and dynamic facial emotions.

For both static and dynamic facial expressions, perceptual similarity judgments of facial
expression pairs were significantly correlated with their similarity when calculated using the
confusion errors in emotion categorization (i.e., categorization similarity), using differences
between rated intensity (i.e., intensity similarity), and using image-based Gabor dissimilarity (i.e.,
physical similarity). Thus, perceptual similarity between facial expressions is not exclusively
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determined by stimulus-based properties. The way in which people interpret the emotion and
intensity of facial expressions also contributes to perceived similarity, with the combination of these
two factors accounting for 80-86% of variances ratings observed in our study (supplementary
Table S4). When both observer- and stimulus-based information are taken into consideration,
prediction of perceptual similarity is better than when relying on either type of information alone,
accounting for a higher proportion (90-93%) of rating variances (Table 3). These results are
consistent with previous findings that observers' knowledge of emotional concepts influences their
perception of facial expressions (Brooks & Freeman, 2018; Murray et al., 2021; Nook, Lindquist, &
Zaki, 2015). For instance, Brooks and Freeman (2018) showed that when participants' conceptual
knowledge of one emotion category overlapped with an alternative category, presenting facial
expressions of either emotion is likely to induce co-activation of both categories, causing confusion
in emotion categorization (see also Skerry & Saxe, 2014). In our study, facial emotions that are
frequently miscategorized as a different emotion were also rated as being more similar to that
alternative. These results suggest that conceptual information about emotions affects how people
perceive the similarity between facial expressions, whether such perceptual similarity is measured
implicitly (e.g., via motor responses, Brooks & Freeman, 2018, visual pattern of neural responses,

Skerry & Saxe, 2014) or explicitly via direct rating.

Although perceived emotion and intensity both contribute to the rated similarity between
facial expressions and enhance the prediction of ratings when combined with stimulus-based
information, they interact differently with stimulus-based information in predicting perceptual
similarity (supplementary Table S4). For instance, emotion categorization similarity consistently
makes a unique contribution to rated similarity; it accounted for an additional 7-15% of response
variances when combined with either physical or both physical and intensity information. In
contrast, intensity information can only account for an additional 0-5% of variances when combined
with physical information or with both physical and emotion categorization information. These
results suggest that the contribution of intensity information is largely accounted for by physical and
emotional information. Moreover, while adding emotion categorization information significantly
improved prediction performance for both static and dynamic conditions across the two
experiments, adding intensity information failed to improve model performance when predicting
rating of static faces in Experiment 1. These results suggest that physical and emotional
information may be better at accounting for intensity information conveyed via facial configuration
(in static condition) than that conveyed via facial motion (in dynamic condition). Consistent with this
view, Chen et al. (2024) recently showed that facial movements convey information about both
emotion categories and intensity of facial expressions, and these two types of information are

expressed with different temporal dynamics.
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Our study may also shed light on how different types of observer- and stimulus-based
information jointly predict facial expression similarity. Perceptual similarity between basic emotions
has been associated with stimulus-based properties (e.g., facial shape and texture) and
participants’ knowledge about emotions (e.g., Brooks & Freeman 2018; Murray et al., 2021;
Sormaz et al., 2016). Here, we show that these findings apply to both static and dynamic facial
emotions and for both across- and within-category emotion judgments. Moreover, in addition to
emotional concepts, emotion intensity also contributes to perceptual similarity between facial
emotions, particularly when intensity is conveyed via dynamic facial information. Our comparison of
different prediction models demonstrates that emotion categorization, intensity perception, and
stimulus-based properties make both unique and overlapping contributions to the perception of
facial emotion similarity. By combining observer- and stimulus-based information, our regression
models exhibit remarkable prediction performance (adjusted R? = .90), particularly when taking
potential individual differences in similarity ratings into consideration (cf. R? = .386 for the

perceptual task reported in Murray et al., 2021).

Note that the use of scenario-based facial expressions may impose certain limitations on
the generalizability of our findings. Firstly, caution should be taken when attempting to generalize
the present findings to the perception of genuine facial expressions of emotions. Posed facial
expressions (e.g., imagining being in a fearful situation) often differ from real-life genuine emotional
expressions (e.g., encountering a suddenly appearing brown bear). Genuine facial expressions
often involve involuntary muscle movements and are typically linked to neural processes in
subcortical brain areas (Ekman, 1992; Pessoa & Adolphs, 2010), which may not be accurately
reproduced via consciously controlled facial movement in posed expressions (e.g., McLellan et al.,
2010). Secondly, individual differences in both the perception and production of facial expressions
should be considered when investigating the contribution of observer and stimulus factors to facial
emotion perception. From the stimulus side, different actors may portray the same emotion with
substantial variability in their facial movements, even when they are attempting to pose the same
facial emotion with the same scenario. From the observer side, the same facial expression could
be interpreted differently by different individuals and people often confuse one basic emotion with
another (e.g., fear with surprise, Brooks et al., 2019; see also Barret et al., 2019; Elfenbein &
Ambady, 2002; Duran & Fernandez-Dols, 2021; for reviews). Although our LMM analysis showed
that our results are less likely driven by individual differences across observers (i.e., emotion
perception) or across stimuli (i.e., emotion production), whether individual differences in emotion
production and perception similarly affect the perception of posed versus genuine emotional

expressions remains to be established.

In conclusion, the present study investigated how stimulus-based (e.g., physical similarity)

and observer-based information (e.g., perception of emotion and its intensity) contribute to
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perceptual similarity judgements for both static and dynamic facial expressions. Our results
demonstrate that perceptual similarity between facial emotions is jointly shaped by their conceptual
category, intensity, and physical similarity. These different types of information make a unique and
shared contribution to perceptual similarity, with weightings varying depending on whether facial
expressions are static or dynamic. These findings not only highlight novel differences between
processing of static and dynamic facial emotions but also offer further evidence for the emerging
view that perception of facial emotions is more nuanced and complex than that characterized by
discrete emotion categories or distinctive patterns of facial movements (e.g., Brooks & Freeman
2018; Cowen & Keltner, 2021; Snoek et al. 2023).
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Supplementary Materials

A. Selection of stimuli from the MPI facial expression database.

Table S1. Scenarios used to elicit facial expressions of happiness, fear, and pain.

Emotion Intensity Scenarios

Happy Low “You are lying on your couch after a delicious dinner”

Happy High “You have reached a goal, and you are happy to have accomplished it”

Fear Low “After leaving your flat you realize you forgot to switch off the cooker”

Fear High “A monster appears suddenly”

Pain Low “You watch a TV transmission of your favorite sport event. One player has
a serious accident. You can see bones sticking out of the player’s body”

Pain High “While doing sports you suddenly have an accident in which you twist one

ankle and graze your knee.”

B. Consistency of emotion production across actors

To assess if different actors posed the same facial expressions consistently, we first extracted
responses of an artificial intelligence algorithm designed to measure facial expressions
(www.hume.ai), resulting in vectors along 48 emotion dimensions for each stimulus. Then, for each
of the six categories of facial expressions, we measured the across-actors consistency by
calculating the mean of all pairwise similarities across the nine vectors (one for each actor) using
cosine similarity (i.e., 1 means identical, 0 means no similarity, and -1 means perfectly opposite).
The mean across-actors consistency was 0.80 (SD: 0.07; range: 0.73-0.88 for the six facial

expressions, Figure S1, left panel).

For comparison, for each actor, we also measured their within-actor consistency when they pose
different facial emotions, using the mean of all pairwise cosine similarities across model responses
to different categories of facial emotions (e.g., high intensity happy vs high intensity fear). The
mean within-actor consistency was 0.59 (SD: 0.10; range: 0.38-0.68 for the nine actors, Figure S1,
middle panel), which is significantly lower than the across-actor consistency, {(13) = 4.51, p <.001
(Figure S1, right panel). Therefore, although not all actors in the MPI facial expression database
(Kaulard et al.,2012) produced identical facial movements for the same facial emotion, they did

pose the same facial expressions in a highly consistent manner.
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Figure S1. Consistency of emotion production across and within actors. Left, mean pairwise

cosine similarity across the nine actors for the same facial expressions. Middle, mean pairwise

cosine similarity across the six facial expressions within the same actor. Right, differences in mean

cosine similarity between across-actor-same-expression condition and within-actor-different-

emotion condition.

C. Correlation analysis across representational similarity matrices.

Table S2. Results of correlation analysis for representational similarity matrices observed in

Experiment 1 (see Figure 4 in the main text for representational similarity matrices).

Rating Rating Categorization Categorization  Gabor
Static Dynamic Static Dynamic Static
Rating Dynamic 972
Category Static .879 922
Category Dynamic .869° 925 992
Gabor Static .935 .883" 715 715
Gabor Dynamic 947 900" 748 746" 988"

Note. *, p <.001. Shaded areas represent the correlations between static and dynamic conditions.

Table S3. Results of correlation analysis for representational similarity matrices observed in

Experiment 2 (see Figure 8 in the main text for representational similarity matrices).

Rating Rating Intensity Intensity Gabor
Static Dynamic Static Dynamic Static
Rating Dynamic .966"
Intensity Static .906 .848’
Intensity Dynamic .856" .884° .860°
Gabor Static .948" .898" 910 .838
Gabor Dynamic 956" 911" 884" 819" 988"

Note. *, p <.001. Shaded area represents correlation between static and dynamic conditions
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D. Performance and comparison of regression models using all combinations of the three

predictors to predict rating responses.

Table S4. Results of regression analyses using all combinations of physical (P), categorization (C),

and intensity (1) similarity to predict rated similarity observed in Experiments 1 and 2.

Predicting ratings of Experiment 1 Predicting ratings of Experiment 2
Static Faces Dynamic Faces Static Faces Dynamic Faces
R2pq F R F R g F R g F

Model performance
1.1 582 22217 627 267.97* .681 337.79% .649  294.85*
2.P 774 54507 764 515.10* 798 622.50* .768  527.83*
3.C 656  304.52* 749 474.70* 589  229.18* .681  340.61*
4. 1+P .780 283.21* 806 331.37* 826  377.78* .818  359.13*
5.C+P 895 680.23* 912 823.63* .878 571.27* 877  565.39*
6. 1+C 802 322.08* .858 479.96* 822  368.61* .824  374.19*
7. 1+P+C 897  460.79* 926 660.57* .897  462.20* 899  472.18*
Model comparisons
[+C vs | 220 17596 .230 257.29* 143  127.97* A75 37419
[+C vs C 146 116.68* 109 121.92* 233  207.91* 143 129.90*
C+Pvs C 238 361.38* .163 293.57* .287  373.32* 195 251.07F
C+PvsP 121 184.02* 148 266.52* .082 106.72* 108  139.68*
P+l vs P .008 5.58T .043 35.42* .030 27.73* .051 44.64*
P+l vs | 199 143.66* 179  147.06* 147  133.82* 70  148.37F
[+P+C vs P+l A16 177.86* 119 253.42* .071 109.39* .080 126.08*
[+P+C vs C+P .002 3.17ms .014 30.01*  .020 30.36* .023  35.72*
[+P+C vs I+C 095 14547 068 144.49* 074 114.84* .074  116.70*

Note. * p <.001.%, p =.019; ns, not significant. Shaded areas show additional contribution of

intensity similarity to similarity rating beyond physical and categorization similarity.
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